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| This procedure (ZORBA) is studied in detail for a resolution theorem |

proving system. A set of algorithms (ZORBA-I) which automatically generates

an analogy between a new unproved theorem, Tyo and a previously proved Theorem, |
T, is described in detail. ZORBA-I is implemented in LISP on a PDP-10. |

A large set of axioms, D, that is sufficient To prove a variety of |

non-trival theorems is provided. The user supplies (1) T)5 (2) T; and (3)
a proof of T, proof [T}. ZORBA-I outputs a set of axioms D' (D' €D) which

it proposes for proving Tp The axioms in D-D' are deleted and a proof of

Th is attempted.
ZORBA-T creates an analogy,¢¢, which consists of two submaps:

(1) a one-one map between the predicates that appear in |

proof [T] and D'; |

(2) a one-many map between the axioms that are used in

proof [T], called AXSET, and those in D'.

A complete analogy includes all the predicates and axioms that

appear in proof{T]. A partial analogy contains only some of these. One

partial analogy of, is an extension of another partial analogy as if one |
| of the submaps of a, is a restriction of the corresponding submap of Qty

ZORBA-T operates by developing a sequence of partial-analogies that |
terminate in a complete «. |

A program called INITAL-MAP creates the first partial analogy, Qty 5
by associating the predicates that appear in the statements of T and Tp A |
second program (EXTENDER) uses a small set of operators which transform a

partial-analogy into an extended partial-analogy. It uses syntactic de- oo

scription of the clauses in AXSET to instigate searches through D to find E |
analogs for each clause. Each new clause assoclation may create a new

partial-analogy. The sequence of partial analogies flnally terminates in a |
complete analogy which includes D' as a submap.

ZORBA-T is examined in terms of its empirical performance on paris |
of analogous theorems drawn from abstact algebra. A D is chosen with 250 clauses

and D' is found for each of several theorems that requre only 5-20 axioms to

prove them. Analytical studies are included which show that ZORBA-I can be |

useful to aid automatic theorem proving in many pragmatic cases while it may

be a detriment in certain specially contrived cases. |

The limitation of ZORBA-I's representation of an analogy are discussed

along with proposals for future research.



4 i
<" |

] . o -

. . -d
= LJ

- -%

. - .

ty

,

1

a

.



+ he

4 a * *
[ J

Fry

Fd

-

LJ

|

AS :!
i

;
1

|

i
]

;

»

.



| BIBLIOGRAPHIC DATA 1. Report No. | 2 | | 3. Recipient's Accession No.
SHEET STAN-71-08-216 ATM-1b7 or |
4. Title and Subtitle Lo | a | A | ~~ |5. Report Date

REASONTNG BY ANATOGY WITH APPLICATIONS TO HEURISTIC August, 1971
| PROBLEM SOLVING: A CASE STUDY 6. I

7. Author(s) 8. Performing Organization Rept.

Robert Elliot Kling No. |
9. Performing Organization Name and Address | 10. Project/Task/Work Unit No. |

I Computer Science Department _
Stanford University | oo 11. Contract/Grant No.
Stanford, California 94305 | SD-18% | |

12. Sponsoring Organization Name and Address | | 13. Type of Report & Period | |
| Covered |

Advanced Research Projects Agency |

| [14 | | BR

15. Supplementary Notes | | | |

16. Abstracts Ap information~-processing approach to reasoning by analogy is developed
that promises to increase the efficiency of heuristic deductive problem-
solving systems. When a deductive problem-solving system accesses a large set

| of axioms more than sufficient to solve a particular problem, it will often | FC

create many irrelevent deductions that are derived from the unnecessary

axioms. These 1lrrelevent deductions may be quite numerous and saturate the |

memory of the problem solver before it solves the problem. At the current |
state of the art, the most complex problems solved by automatic procedures Lo
require less than two dozen axioms to solve. A data base twice this size

is sufficient to render any but the simplest problem unsolvable. In general, ]
there 1s no decision procedure which can be used ro restrict a data base

to a set of necessary axioms. Here, any analegy with some previously solved
problem and a new unsolved problem is used to restrict the data base to a |

small set of appropriate axioms. | | |
17. Key Words and Document Analysis. 17a. Descriptors | |

| 17b. Identifiers /Open-Ended Terms |

17c. COSATI Field/Group | |

18. Availability Statement 19.. Security Class (This 21. No. of Pages
ea Report)

Release unlimited i NC LA 51) 191
20. Security Class (This

Page .
| _ UNCLASSIFIED

FORM NTI1S-35 (10-70) | USCOMM-DC 40329-P71



| STANFORD ARTIFICIAL INTELLIGENCE PROJECT August 1971 |
oo MEMO AIM-147

aN COMPUTER SCIENCE DEPARTMENT REPORT oo oe |

. NO. CS 216 | ER

-- REASONING BY ANALOGY WITH APPLICATIONS TO | | RE
| HEURISTIC PROBLEM SOLVING: A CASE STUDY oo

CT Robert Elliot Kling | en

: ABSTRACT : An information-processing approach to reasoning by analogy |
J)

oo | is developed that promises to increase the efficiency of oo |

Sn heuristic deductive problem-solving systems. When ag |

0 | deductive problem-solving system accesses a large set of

co axioms more than sufficient to solve a particular problem, | |

N it will often create many irrelevent deductions that are |

oo | derived from the unnecessary axioms. These irrelevent |

Ld deductions may be quite numerous and saturate the memory of

oo the problem solver before it solves the problem. At the |

Cu current state of the art, the most complex problems solved by

a automatic procedures require less than two dozen axioms to
J

oo This research was supported by the Advanced Research Projects Agency
oo of the Office of the Secretary of Defense under Contract SD-183.

oo The views and conclusions contained in this document are those of the
Lo author and should not be interpreted as necessarily representing the

| official policies, either expressed or implied, of the Advanced Research

oo Projects Agency or the U.S. Government.

Reproduced in the USA. Available from the Clearing house for Federal

; Scientific and Technical Information, Springfield, Virginia 22151.

| Price: Full size copy $3.00; microfiche copy $ .95.

CO



| solve. A data base twice this size is sufficient to |

| render any but the simplest problem unsolvable. In general, -
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with some previously solved problem and a new unsolved problem oo

is used to restrict the data base to a small set of eppropriate ,

| | axioms. 3;

| This procedure (ZORBA) is studied in detail for a resolution .

| theorem proving system. A set of algorithms (ZORBA-I) which

automatically generates an analogy between a new unproved |

| | theorem, Tyo and a previously proved theorem, T, is described
| in detail. ZORBA-I is implemented in LISP on a PDP-10. -

A large set of axioms, D, that is sufficient to prove a oo

| variety of non-trivial theorems is provided. The user supplies -

| (1) T,3 (2) T; and (3) a proof of T, proof [T}. ZOREA-I outputs
a set of axioms D' (D'c D) which it proposes for proving T,- N

The axioms in D-D' are deleted and a proof of Ty is attempted. oo
ZORBA-I creates an analogy, Q, which consists of two submaps: _

| ~ (1) a one-one map between the predicates that appear in B

proof [T] and D'; oo

(2) a one-many map between the axioms that are used in .

| proof [T}, called AXSET, and those in D'. | _

A complete analogy@ includes all the predicates and B

axioms that appear in proof[T]. A partial analogy contains only NB

| some of these. One partial analogy Q, is an extension of

another partial analogy Qo if one of the submaps of a, is

a restriction of the corresponding submap of a, - ZORBA-T oo
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0 | | Operates by developing a sequence of partial-analogies that

” | terminate in a complete (QQ.

H A program called INITIAL-MAP creates the first partial

N | analogy, 0 by associating the predicates that appear in the
Lo statements of T and Ty A second program (EXTENDER ) uses
Co a small set of operators which transform a partial-analogy

Sh into an extended partial-analogy. It uses syntactic de-

ER | scription of the clauses in AXSET to instigate searches |

oo through D to find analogs for each clause. Each new
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i. clause associlation may create a new partizl-analogy. The
sequence of partial analogies finally terminates in a |

“7 complete analogy which includes D' as a submap.

ZORBA-T is examined in terms of its empirical performance

| NB on paris of analogous theorems drawn from abstract algebra.
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oo. | A D is chosen with 250 clauses and D' is found for each of
y several theorems that require only 5-20 axioms to prove them.

Analytical studies are included which show that ZORBA-T can be

oe | useful to aid automatic theorem proving in many pragmatic |

. cases while it may be a detriment in certain specially |

- contrived cases.
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- FOREWORD |

This thesis 1s the first comprehensive report of a five-year |

| project that studied the use of analogies to aid deductive problem

solving. Some of the ideas presented here will appear in the pro-

oo fessional literature. Portions of Chapter III are to be presented’

— | at the 1971 IFIP Conference held at Ljubljana, Yugoslavia. Chapters

BE 111, IV, and V are to be presented” at the International Joint Confer-
_ ence on Artificial Intelligence, To be held in London, September 1971.

oo This research has been supported by the Advanced Research

CL | Projects Agency and the National Aeronautics and Space Administration

Con under Contract NAS12 -2221, and Rome Air Development Center under

LJ Contract AF 30(602)-L147. -
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is quite new, for I have developed an operationally specific model 4

for a kind of reasoning by analogy that has barely been studied in | .
the past. | | w

Some writers have demonstrated the usefulness of analogies to Ti

| aid concept acquisition as a helpful adjunct to problem solving. | 0;
| Wertheimer's studies with school children (concept-acquisition) and ~

| Polyats ?’ extensive examples of heuristic aids to problem solving CL
(concept-formation) are two cases in point. In addition, a few

| experimental studies’ verify the usefulness of relevant experience. i
- However, none of these workers specify in any detail the cognitive -

| processes that are invoked to create, appreciate, and exploit analog- 7

ical information. Some artificial intelligence (AI) researchers have

| created problem-solving and theorem-proving® and game~playing pro-~ i
grams” that generate fewer irrelevant inferences or play a better | L

game (of bridge) based on the experiences they have had in the past. =
However, each of the programs is designed to slowly improve from | ¥ |
problem to problem and "learns to perform well only after exposure |

to a large number of problems or games. While they develop a kind of )
a sophistication that is general for a particular domain of discourse-——

N e.g., geometry, logic, bridge — they are unable to extrapolate the B

| quite powerful problem-dependent information that we associate with ~
learning by analogy. | Tr

Thus we face a difficult situation: We want to study an impor~ -
| tant cognitive process at an operational level of detail which (a) a

| has no adequate model in the problem-solving literature, and (b) is td

unprecedented in existing computer~based problem-solving systems. | | 0
| LL]

| - 2

"References are listed at the end of this thesis. w

| rhe one AI program that exhibits a variety of analogical reasoning a
| | in solving problems that appear on the Miller Analogies Test cannot Tn

use the analogies it generates to assist some deductive problem-

solving system and contributes little to our discussion. It is a

described in more detail in the next section of this chapter. .

o T

| 8

| uw



Se | The approach that I will explicate in the following chapters is

Co devoted to desipning and implementing a new artificial system that is

= sufficiently complete to generate and exploit analogies between pairs

oo | of fairly complex problems. It is able to substantially improve the

| | performance of a deductive problem-solving program that is associated
oo with it. In addition, its qualitative behavior resembles many fea-
oo tures of human problem solving 02 Tt including set, productive con-

fusion, developing relevant abstractions, evaluation of promising
oo | leads, and the creation of partial solutions. The mechanisms that it

— includes may well be imcorporated in some later simulation of human

2 analogical reasoning. This approach parallels a previous important

— linkage between AI research and the simulation of cognitive proc-

esses. In 1964 Danield Bobrow = reported his development of a pro-

B gram that solved algebra word problems of the sort studied by high |
school students. He had created a program that was sufficiently com- |

N plex to solve many problems of this class. After he reported his |
oC work, Simon and Paige analyzed the problem-solving protocols of |
a high school and college students asked to solve similar problems.

They found many of the mechanisms that were used by people to be

TY represented in Bobrow's program. When we are researching a new area,

“ | a research strategy that precedes a validated simulation model with a
| model that is merely sufficient to perform the appropriate behavior

CL seems necessary. In order to create a sufficiency model, we first

N need to find the set of operations necessary to produce our desired

behavior. While referring to computer simulation of perceptual

B | processes, oye emphasizes this order and writes: |
"It should also be pointed out that the above problems

oY require, first of all, research with the computer itself in

oo order to establish, for example, what internal organization

— is required for the generation of a precept or capacity by

SE the computer. Following this, the computer behavior must |

ol be compared with the behavior of living organisms." |

ol



The paradigm I will describe for reasoning by analogy can be

appreciated both as a novel advancement of contemporary AI technology

and as a Tertile addition to the sparse psychological literature con- |

cerned with reasoning by analogy as a cognitive process. For the .

latter, it suggests a set of necessary operations that can be | a

included in a simulation model. Lo

| In the next chapter, I will begin to limit the kinds of problem
solving and analogies that we will study. Several varieties of .
anglogy will be distinguished from the point of view of the kind of ros

| information processing that is necessary to recognize and exploit »

: them. One class of anaglogles is selected for further study. A oo

paradigm (ZORBA™) for utilizing this class of analogies is developed.
In addition, a particular instance of this paradigm (ZORBA-I) is |

| | studied in detail for a particular kind of problem-solving system, a a
| resolution~logic theorem prover, which in turn is applied to a par- |

ticular domain of discourse — abstract algebra. Thus, at each

stage our study will become increasingly specific. Consequently, Se

many recurrent terms will need to be redefined periodically. For oo

example, here I am content to allow the reader to use my preliminary oo

definition of an analogy as a sort of similarity. In the next chap- oo

| ter, several varieties of analogy will be distinguished. Later

still, within the context of ZORBA-~I, an analogy will be represented

as a particular set of one-one, oOne-many, and many-many mappings. N

| The next two sections place ZORBA in the context of contemporary oo

AI and problem-solving research. This chapter concludes with a | |
brief outline of the dissertation. B

- | .

B. ZORBA in the Context of AI Research |

Although ZORBA is an unprecedented extension of AT into the .

mechanical generation and exploitation of analogies to aid heuristic |

*ZORBA is an acronym for (ZO) ReasoningBy Analogy. Zorba was a
passionate, intuitive Greek, and many of our contemporaries consider Co

analogy an intuitive process outside the reglm of reason. Co

| | ) oo



problem solving, it draws many ideas from a long research tradition.

oC These include: |

- | (1) ZORBA-T 1s associated with a particular heuristic problem
I | solver (resolution theorem prover) and necessarily relates

Ho | to many of its particular features — e.g., axiomatic data
Fo | base, single rule of inference, etc. | |

oo (2) ZORRBRA can easily be described by using many concepts that
IE are recurrent and basic in the heuristic problem-solving

Cd literature. These include ideas such as a search space,

- legal-move generator, candidate-move ordering function,

Lo | and matching routines. ZORBA operates with a search

Co | space in which each node is a special kind of mapping

- | ("partial analogy") and has routines for generating suc-
| cessor nodes ("descendant analogies") that contain more

a. information than their ancestry. When a node has several

oe descendants, an ordering function is invoked to select the

oo descendant most likely to be a valid extension of it.
ES | Matching routines are invoked to create the set of possi-

oT | ble extensions, in selecting the most plausible member of

od | this set, and in generating the actual extension. These

oo processes will be described in substantial detail in Chap~
| ter IV.

- . (3) Specific AI programs have dealt with elementary forms of |

Co reasoning by analogy and learning applied to heuristic

oo | problem solvers. For completenessI want to describe

N this work here.

. One program in the AT tradition stands out for its potential

- | relevance. In 1964, Tom Evans” reported developing a system that
successfully solved problems from the Miller Analogies Test, a widely

Co used intelligence test. A testee 1s asked to
select one of five given figures that satisfy a given analogical

oo | relationship. For example, which of (a)...(e) is to Diagram C as



| Diagram A is Lo Diagram B in Figure 1 below? Iivans' program was Co

highly successful in solving many problems in this class and was one |

of the most complex programs of its day. However, much of ifs com-~ |

plexity was devoted to the pattern-recognition aspects of its activ-

ity-~ e.g., separating (oH into OO) and x rather
© than (o— and . The algorithms he developed for actually a.

generating and testing his analogies are not described. In fact, he oo

admits attempting "all possible combinations’ of associations until he oo

finds an appropriate analogy. Fortunately, he is dealing with only co

| two or three (geometric) objects and the relations between them, and

he has to consider, at most, 10 to 20 possible mappings. In contrast, Co

~~ some of the analogies we will treat in this thesis allow over 10 pos oo
sible mappings (Chapter VII) from which we must select one analogy! |
When Evans finally generates his analogy by his unspecified process,

he stops. He doesn't exploit his analogy to aid some other problem- Bn

solving process. (Later in this introduction, we will discuss some oo

experiments by Dreistatdtwho showed that people can use some simple oo

| visual analogies to aid deductive problem solving.) Despite these a

limitations, Evans does contribute two key ideas which are exploited Lo

in ZORRA: (1) An analogy is viewed as a special kind of mapping, and a

(2) an analogy between a picture P, and a picture P, can be derived oo
by matching a description Py with a description of F, and asgoclating

the corresponding objects and relations. |

| ZORBA is concerned with the axioms and rules of inference used to

| solving a deductive problem rather than the relations that describe a | |
two-dimensional diagram. Thus, the description (of axioms) it uses™ .

- are quite different from Evans' picture description language. In oo
E addition, the number of possible mappings it could generate if it

| | tried "all possible combinations" of the relation it wants to associ- oo

ate are prohibitively large (Chapter VII). Thus, we need explicit Lo

| heuristics for restricting the set of mappings to those that are most J

plausible, and for selecting the best among these. Unfortunately, he Co

leaves us in the dark, and we must invent our processes anew. oo
See Chapter I11I. : 2

6 .
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FIGURE 1. SAMPLE ITEM FROM MILLER ANALOGIES TEST. oo



Lvans' analogy is the only implemented AI program that treats

treats some of the problems explored here. In 1969, Joseph Becker |
oo | sketched a model of induction and analogy for a semantic memory sys-

tem that added two ldeas to the literature:

oo (1) An analogy is defined as a specific kind of one-one mapping B

between kernels of a semantic net, 10 |
(2) A means of creating an analogy between two situations that

were "essentially analogous,” differing in unessential BN

ways, 1s developed in terms of a weighting scheme.

Becker is interested in the processes that underly understanding -

| natural language and concept formation. His universe of discourse .
| deals with simple gituations such as:

Sq Peter the monkey ate two bananas at 3:00 a.m. on Tuesday.
Peter is at the zoo. )

| | 5S, Harlow the monkey ate a banana for breakfast on Saturday
| at home.

S3 Susan fed Harlow a banana in the park. -

He is concerned with generalizing over sets of situations such as |

| | 5, - S2 to "induce": "monkeys eat bananas." He gives analogy forma-
tion a crucial developmental role in the process by generating an oo

analogy between Sq and S55 and between So and Sz to induce his Co
generalization. He includes a means of scoring the relative impor- a

tance of elementary facts that compose a situation. For example, Co

| here, we want to neglect Susan's feeding Harlow (55) and Harlow's .
eating on Saturday (85) to generate an analogy between Sq and Sp « CL
I am purposely vague about the details of Becker's treatment since he BN

uses special representations and terminology that would demand too

much description to develop adequately in this introduction, This

work was a valuable gedanken plece since Becker explicated his anal- .

| ogy generation process in some detail, in contrast to Evans who |

| neglected to explicate this process at all. Unfortunately, Becker _

| | | 8 a.



never implemented his model or reported extensions or variations of

BN his paradigm. | |

a The AI literature dealing with analogical reasoning contains |
RE only the two paradigms cited here. Any work relating analogy to

problem solving must start from scratch. | |

‘oe (In Chapter II, we survey the kinds of information processing |
required by various kinds of analogies.) Fortunately, many of the |

. | processes required for non-trivial analogical reasoning (Chapters TTI-
| VI) can be carried out with the techniques that are well known to |

a artificial intelligence: tree-search,™ matching, etc. Since we are
co | using analogies to expedite the search for the solution of a new

problem, we need to relate our analogizing system to some existing |

oo problem-solving system. The AI tradition provides several candidates |

o (Chapter III), and a resolution-logic system has been chosen as an |
= - experimental vehicle for the approach that is developed here. This

Ld particular problem-solving (theorem-proving) system has been .

- developed as part of a well defined research tradition that goes back

| to the very first deductive problem solving system that was imple- |

mented: the Logic Theorist of Newell, Shaw, and Simon’, From the

BN vantage point of heuristic theorem proving, the use of analogical |
o information that is developed here (Chapter III) is one kind of |
oo heuristic for decreasing the search space that includes the desired |

t- proof. In fact, ZORBA~I uses an analogy to select a small set of

Ci axioms that are likely to be necessary for a problem solution from a

Co date base that includes considerably more (irrelevant) axioms.

Co Methods for selecting relevant axioms prior to solving a problem have

Ly been an outstanding unresolved issue in the heuristic problem-solving |

N and theorem-proving fields. Here, we are able to provide ag novel

| | approach to this important matter.
In summary, ZORBA~I provides a link between the heretofore sepa-

B | rate areas of reasoning by analogy, and heuristic problem solving.
. Little work has been reported in the former area, and the research
a reported in this dissertation breaks new ground in our understanding :

| 5
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| of the process of analogy generation. Heuristic problem solving is |

one of the classical areas of AI research, with a relatively rich tra-

dition of paradigms and important research issues. Our work falls oo

directly within this tradition by tackling an important unsolved oo

| issue in heuristic problem solving (data-base reduction) by applying
| analogical information within the context of a currently popular |

~ problem-solving paradigm (resolution logic). a

- C. ZORBA in the Context of Contemporary Problem Solving Research | oo
in Psychology

N The use of analogies to aid problem-solving ability falls into oo
| two classical areas of cognitive psychology: concept-formation and

| problem-solving (or directed thinking). Unfortunately, very little of a
the research literature is even peripherally relevant to the work that .

is reported here. In 1969, Driestadt™ reported a clever experiment oo
that studied the use of (visual) analogies to aid the problem (puzzle) Co

. solving task. He asked his subjects to solve several problems that Co

required a particular geometric configuration as a solution. For Lo

example, a "tree planting problem" in which ten trees must be arranged i

| in five rows of four trees per row was presented. The problem state- -

ment and its solution are shown in Figure 2. Some of his subjects

were shown a set of pictures that embodied a five-pointed star pattern |

| | required for the solution. Different pictures contained a playing
card joker, a rocket zooming to the stars (Figure 2), and an aquarium

| | with starfish. These pictures were withheld from control subjects who oo

required significantly more time to solve these problems than subjects Co

who were presented with the pictorial aids. Dreistadt concluded that -

visual analogies were a useful aid to this problem-solving task. oo

Dreistadt's work is progressive insofar as it is the only reported oo

research that directly relates the usefulness of analogies to problem~ .

| solving speed. Unfortunately, he doesn't study the way his subjects BN
| create the analogy and represent it to themselves. |



i | Given data: 10 Trees 2 4 4 4 A 4 A i A 4

N ; ~ A/ | A pe rows
Cs Solution: ~ 9 | I trees/row

Sa Associated Pictures: ’ |

i. FIGURE 2. TREE PLANTING PROBLEM |



oo Two styles of problem~solving research that potentially could aid

| our understanding fail to be relevant for similar reasons: oo

| (1) come researchers pose problems to subjects that require Co

novel uses for familiar objects=V. For example, a piece oe
| of paper may have to be rolled into a tube to transfer oo

| | steel balls from one container to another. Various oo
| studies have been conducted to learn howproblem~solving

| ability varies with a demonstration of the "appropriate

| functions," irrelevant but superficially similar train-
| ing problems, etc.

| | (2) Learning theorists® have long been concerned with trans-~ |
fer of the solution rules of one problem set (training
set) to other related problems. In a typical experiment -

a subject will be given a set of problems to solve. In a

the course of solving them he will learn some rule that oo

| | applies to each problem in the set. He is then pre- EE

| | sented with a second problem set which requires a solu- -
tion rule which may be similar, more general, or quite CL

| different from the rule learned in solving the first oo
set. The subject's ease in solving the second set of | oo

| problems is studied as a function of the relationship
between the solution rules used in the first and second a.

problem sets. i.

Both these research styles openly develop their results at a a
different level of generality than we need here. Most contemporary

NB psychologists are concerned with behaviors rather than consciousness. oo

The latter was exorcised from academic psychology near the turn of oo

the century in lieu of the former, which is more amenable to experi- ;

mental observation. Most experimental results are stated in do

| behavioral terms — e.g., The use of visual analogies can aid some Co

kinds of problem solving. The description of underlying mechanisms .

(other than S-R patterns) and representations necessary to develop an .

information~processing model of the sort we want here require infer- N



— ences about the contents of a person's consciousness that are unset-

: tling to most contemporary experimental psychologists. A protocol

NE analysis in the spirit of Newell= could conceivably be carried out
. for many of the experiments reported in the literature, if the

| N researchers were more interested in the details of the ongoing inner
Co | processes of their subjects. Unfortunately, we have no such reports
a relating to the role of analogical reasoning in problem solving to

- rely upon.

- D. Preview of the Following Chapters |

| | | The remainder of this dissertation followsa simple pattern.
o Chapter IT is devoted to exploring the kinds of information that can
Co B be transferred between analogous problems. It was originally writ-

- | ten as a solitary document in 1969, after ZORBA-I was conceived, and
Es before 1t was implemented. Its conceptual framework is a little dif-
—- ferent from that which appears in other chapters. All except Chap- |
Cs ter IT were written after the bulk of experimental work was complete, |

LL and provide a post-ZORBA view of reasoning by analogy. Chapter II is

Co : included in its original version, since it provides an important

y study that serves as a pre-~ZORBA introduction. ZORBA is introduced
| in Chapter III, and expounded in Chapters IV and V. The experimental

oo | results appear in a table at the end of Chapter V and are inter-
ol spersed throughout Chapter VI. In contrast to the experimental
oo results, a set of interesting formal properties of the algorithms is

7 developed in Chapter VII. In particular, conditions under which the

EE use of analogies alds problem-solving efficiency are discussed. Chap-

Cr ter VIII includes comments on extensions to ZORBA-I to include a .

i. | wider variety of analogies. We conclude with a retrospective glance

| | and suggestions for future research in Chapter IX. A brief note which
describes ZORBA-I as an implemented operating system appears as

| Appendix C.

a 13 |
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Lg IT AN INFORMATION-PROCESSING APPROACH

| TO REASONING BY ANALOGY

gp. A. Introduction |

ny | Reasoning by analogy (RBA) has been discussed in artificial |

intelligence circles because of its extraordinary value in human |

y | | oo problem solving and its elusiveness to mechanization. Without an |
oo | ability to analogize, we would be unable to generalize, induce, or

4 theorize. Moreover, thinking would be rather tedious, as we would
have to solve each distinct problem afresh, without referring to pre-

| = vious experience. Fortunately the spectrum of similarities we are oo
= | able to exploit is rather wide, encompassing many Types, each with

| its own subvarieties. Unfortunately, we call much of this diverse

Ls behavior "reasoning by analogy." Hopefully, in the near future, we

| can develop some useful refinements for RBA. For the present, 1'1ll |
rl |

2 simply describe some of the activities that are considered RBA.

| With respect to any particular kind of analogy, RBA includes |
CM |

Lj | the following activities:

| (1) Given a particular problem, theorem, or situation (PIS) |

- | find a previously known PTS that is analogous. |

- (2) Given a PTS, produce a special kind of analogous PTS. |Cob |

. This would include producing the mechanical analog of an

| | electrical circuit, the n-dimensional analog of a |

Ls 2~dimensional geometric theorem, the continuous analog |

| of a discrete function, the interpersonal analog of an |

Ll international conflict, the French analog of a Greek |
: idiom, etc. |

i (3) Given an explanation of the functioning of some PIS, pro- :

vide an explanation for the functioning of some analogous

LJ | |



(4) Given two PTS's that are allegedly analogous, find at | |

least one coherent analogy between them. | | oo

(5) Given two analogous PTIS's and a set of consequences of

observations drawn from one, infer an analogous set of

mmr crema RP ammmanmnn Am AhAaamrrat diana achat Rha Athans -

| manageable proportions this discussion covers problems that can be |

solved by deduction from some initial set of axioms, or derived by 7

the application of a set of operations to a set of initial states, or To

| that can easily be transformed into this form. Although it is possi- —

ble to fit a wide variety of problems®”, including geometric construc- =
| tions, puzzles, and robot manipulation tasks, into this framework, B

| the majority of problems considered here are theorems in the usual is
| ¥ | |

sense . More structured than "real-world problems," this class

| | offers a decent starting point for any mechanized analogical problem ig
solving that hopes to be successful.

| Ll

1. Change of Parameters
| i

Two PIS's are recognizable as identical up to a change of ‘|

| parameters = e.g.,

| N

| | L =f (1+ x2) ax , n>0
© =

| | © pa

I, - (n+ x) ax , n>0. BN

: Computing I, and I, are "varameter~variant" problems. |

2. Generalization

In each pair of PTS, one is a generalization (or simplifi- SI

a | cation of the other:

(1) Let the pair of PTS be the 3-ring and 5-ring Tower LJ

of Hanol puzzles. The S5-ring puzzle is more

general than the 3-ring puzzle. {0



_ | (2) Tl: Given a triangle ABC, prove that the three

LL oo | vertex-angle bisectors meet in a unique point.

oy TL’: The premises of Tl imply that this point is

_- | the center of the inscribed circle,

Co T2: Given a tetrahedron WXYZ, prove that the bisec-

Lo tors of any three dihedral angles that do not

a meet in a common vertex intersect in a unique

Co point.

a T2’: The premises of T2 imply that this point is |
Lo the center of the inscribed sphere. : |

on bE Similar Relational Structures |

Co The pairs of theorems T3/T4 and T5/T6 are '"relationally |

LJ isomorphic" when represented as graphs with nodes and links of |
"3 different types to represent relations and objects of different

Ld classes. (The partitions of nodes and branches is, in effect,

- a categorical semantics for the graph language.) In viewing

Nu the proofs of these theorem pairs, one finds that they are

N identical up to a set of substitutions (e.g., abelian group/

commutative ring, angle bisector/perpendicular bisector, ete.)

N that results from the mapping associated with the analogy.

io T3 : The bisectors of the three vertex angles of ag

oo triangle intersect in a unique point that is

Lo the center of the inscribed circle.

oo Th: The perpendicular bisectors of the three gides

Ly of a triangle intersect in a unique point that

is the center of the circumscribed circle.

co Ie The intersection of two abelian groups is an

Co abelian group. |

_ T6 : The intersection of two commutative rings is a

y commutative ring.



| This class is an extension of the parameter-variant class, i.

| and with some provision for mapping sets (clusters of nodes) into B
| sets of different cardinality, they may also include many gener- -

oo alization-type analogies. Note that the relational isomorphism Po

is "local." |

| The preceding analogies were selected for their trans- =

parency, but even isomorphisms can be complex. For example, con- Lo

sider: | oo

T7: Let ABC and abc be two triangles in the same .

plane defined within a k-dimensional finite 2.

geometry over the Galois field arF[p 1. Let »

| these triangles be perspective for a point O, oo
| such that 0, A, and a are collinear, 0, B, Db oo

are collinear, and O, C, ¢ are collinear. Let

9be the point of intersection of AB and ab,fs N

| that of AC and ac, and € that of BC and bec. oo

Then the points &,8 , and ¥Y are collinear. oo

| T8: Let X, Y, and Z be three subgroups of a geo-

metric set of subgroups of G, such that no oo
one of them in The group is generated by the a.

| other two. We select other subgroups of the T

geometric set as follows: each of them is in Lo

| the group {X,Y,Z}; O is any such subgroup not
contained in any one of the subgroups {X,Y}, -

fy,z3, {z,%}; X,¥,2 are such subgroups dif- N
| ferent from O,x,y,z and contained respectively oo

| | in {0,Xx}, {0,Y}, and {0,2}. Let M, E, andv Bn
be the subgroups of the geometric set of sub- BN
groups common to the respective pairs of groups a.

{X,Y}, {x,y%, {Y,z},{y,2z}, and {Z,X},{z,x]}. re

oo Then each of the two subgroups (4, €, and V, Lo
| | is in the subgroup generated by the other two. po

| | | .

19 -



| | Every k-dimensional projective geometry over a Galois

field GF[p | is capabic of a concrete representation by an
oo +1

abelian group of order o(E Jn and type (1,1,1,...,1) if we con-
oo consider each subgroup oforder oo as a point in the geometric

space.>” This association renders T7 logically equivalent and
— relationally isomorphic to T8, although this correspondence is

oo | hardly obvious. | |

oo hh, Plans are Identical

Plans for the solution of each PTS are identical (at some

level of abstraction) — e.g.,

| (1) T9: If a given affine transformation commutes with

oo every other affine transformation, then that

Jp transformation is the identity.

| TiO: If a given affine transformation commutes with

— all the translations, then that transformation

= is also a translation (see Fig. 3 for proof |
: plan).

on (2) T11l: If F(w) is the Fourier transformation of f(t),

Co prove that e" p(y) is the Fourier transforma- |
. tion of f(t-T). |

_ T12: If F(w) is the Fourier transformation of f(b),
oo 1 Wy . | |

prove That @) r=) is the Fourier transforma-
tion of f(at) (see Fig. 4 for proof plan).

CL |

oo 20 |



Parameterize Affine oo

each transformation = -fe E — |

Vo= AT + a

y Translation Co

Set up expression MN =1 &+ |
for commutivity ne

Identity

Mo=1§& NB

Simplify expressions

| (matrix and vector | | .
manipulation)

| Identify coefficients
of mgtrix

| and vector variables oo

Solve the associgted | .
. coefficient equations

| Describe the resultant a

transformation |

FIGURE 3. PLAN FOR PROVING THEOREM 9 OR THEOREM 10. |



Write the expression for the Fourier |
. | transformation of the given function |

a | | Select a change of variables | | |
oo oo that will reduce the kernel : |

oo : of the integral to fx)e JW ax | |

oo Substitute the new variables |

SU for the old ! |

wd | Simplify the kernel of the integral

LL ! to fx)e 9" Fax |

. : > miu Tx | |
BN | Substitute Fw’) for J fx)e dx

oN FIGURE 4. PLAN FOR PROVING THECREM 11 OR THEOREM 12

22 |



(3) T13: Let an arbitrary line 44 intersect each of a
three parallel lines Sq S55 Ss at points D5 -
9% and. Pz» respectively. Let another arbi- oY
trary line Ls intersect S15 So» and 5: at Co
points dys Ooo and U3 5 respectively. Then oo

P,P dp % N

~~ Tlk: Let an arbitrary line 4, intersect each of i.

| three parallel planes S15 So and S3 at points -
Py> Py, and Px 5 respectively. Let another N
arbitrary line 1, intersect STE S55 and S3 at
points dy2 Uo and % 5 respectively. Then BN

Pie 41% BN

(See Fig. 5 for proof plan.) | a

| Although a coherent planning language for this diverse
set of problems has not yet been written, it is clear that they .

are "identical' at some level of abstraction easily accessible -

to people, a

5 Change of Representation

The solutions of both PTS's involve a common change of Le

representation and style of argument. :

| (1) Pi: Consider the classical truncated checkerboard oo

domino~covering problem. | oo

| | P2: Consider a 3 X 3 cubical apple with a worm on oo

u its surface. The worm travels from cube to SR

adjacent cube, boring a hole without ever -

25 .



g Construction: Dropa line dy from py I to 53.

oo | dy intersects So at ao and 5% at ax.
| Drop a line d, from gy| to $3.
7 do intersects s, at by, and 5% at bx.

. Prove: (a) AD Pa, ~ AD) Pzas Co
oo (b)  Agyayby ~ Ag a3Py Fo |
. | by: 3 equal vertex angles imply ~ A's. f

Deduce: (a) _‘272 _ _P1if2

oo | Corresponding parts of ~A's are in equal ratio.

y | Prove: (a) P,a, = dy 0s

oo | (b)  pya, = aby |
CL | by: Opposite sides of a rectangle are equal. | |

Deduce: (a) DPiPp + PoP3 = P1Pz

Co (b) aya, + 995 = 919g |
| from: Adjacent segments on same straight line. oo]

a PP 941%
- Deduce: ER—

- P,Ps % G3 |

i from: Preceding equalities. |

© FIGURE 5. PLAN FOR PROVING THEOREM 13 OR THEOREM 1k



| | returning to a previously drilled subcube.

Prove that it is impossible for the worm to |

| terminate his path in the centermost cube. . |

(2) If A is a matrix with transpose at, | oo

oo 715: (aD)T =a oo

116: (a B)® = BT Al.

(3) If A is a matrix with inverse I

| Ti7: (47) ~ =A

718: (A B)~t = pt at, |

Fach of the preceding problem pairs entails similar repre- oo

sentations. The truncated checkerboard and the cubical apple

problems are both solved by coloring adjacent cells black and

white and then using a parity argument. If we restrict our-

selves to a simple operator~free matrix algebra, T1l5 and T16 .

~ are most easily proved by representing each matrix by its i550 .
element and manipulating the 158 terms according to the speci- oo

fied computations. On the other hand, T17 and T18 are both | oo

| easily proved by simple algebraic operations. What a person .

extrapolates from T15 to T16 or from T17 to T18 is a specific

| representation in which problem-solving ability is enhanced. oo

| | If a person were faced with the problem (ah)! = (a HT, he N
might be unsure of which representation to choose, and would |

: try either one. (It turns out that either representation

affords straightforward proofs.) |

| 6. Common Subproblem oo

: Both problems involve a common subproblem. oo

| | (1) Let A be a matrix with elements 2 ; and an inverse oo

| | 25 _



B 1d det[A]

N | and

| det[A] = ON Er
Co 2 1J 1J

i where 24 is the j-30 cofactor of A. Thus, the
Ls | computation of amt and det[A] share the common sub-

| problem of computing some cofactor of A.

HE (2) Consider a robot in a room full of scattered metal

a. furniture. |

Lo | Pl: The robot 1s asked to paint the floor of the
ca room.

L- | F2: The robot is asked to replace each piece of |
an furniture with a similar wooden piece from the

J) | next room.

oo | ~~ Fach of these problems can be solved by first clear-
a | | ing all the metal furniture out of the given room,
ry oo and in that sense they are analogous. | |

- Problems that involve only one common subproblem can be

= really rather different and still allow useful problem-solving |

a | extrapolations. Probably these extrapolations are best | |
cs regarded by treating the subproblems as substantial problems

= | unto themselves. For example, every time we encounter a trig- :

- | onometric integral in solving some problem, we become better
L | integrators and increase our facility for rapidly guessing
B | appropriate substitutions. Thus, the extrapolation of inte- | |

: gration techniques from one problem to another is due to
— recognizing the need for our developed skill as an integrator, |
- | rather than noting some gross aspects of problem structure.

|



D. Information Transfer Between Problem Solutions

A bold step toward RBA will be taken when an automatic algorithm oo

for creating an analogy between two problem statements is developed. to

Presumably, such an algorithm need only know the two theorem state- oo

| ments and have access to the data base of axioms. Even if one has a a.
detailed analogy that is limited to the relations and objects explic-~ .

| | itly mentioned in the theorem statements, one still must know how to oo

use this information to accelerate the search for a solution. |

| While some useful information may be gleaned from this

| "restricted analogy,” much of the information in a proof of the new a
theorem often involves additional relations, facts, and patterns of oo

inference that are absent from the problem statement. Any interest- oo

: ing analogy-generating algorithm will need to operate upon theorem oe

| proofs as well as theorem statements. The search for | a

analogous "additional information” helps pin down the viability and nu

level of abstraction that can be expected from a given analogy. If oo

~~ we don't obtain much side information, we may believe that our | .
} analogy is too specific. If we obtain too much, our analogy may be

too general.

In any but the most simple problems, the solution is derived in N

terms of relations that do not appear in the problem statements. | |

Suppose we had a magical system that could offer information CL

| helpful to proving anunknown theorem if it were given an analogous -

proved theorem. What kind of interesting advice could we expect

| from this program? At one extreme it might be clairvoyant and offer

a complete solution to the baffling problem. Short of such omnis- .

cience, what kind of partial information would be helpful? Textbook

| writers often append hints of two types to the problems they provide:

| (1) Problem difficulty (easy, hard) oo

| (2) "Hints" that include:

| (a) Suggested representation N

(b) Appropriate methods .



oC (¢) Relevani principles or theorems

- (4d) Valuable s=rtproblems.

| | In the second case, there seem to be three different levels of
"heuristic detail," each with possible attendant information.

- 1. Representations

et Representations are mentioned in Section C~5 of this |
= chapter.

A style of argument may be added -— e.g., induction,

a | parity, etc. Additional details such as which parameter to

LJ induce on may be included.

Bh 2, Plan

| Consider a problem solution as a sequence of states 5
R and state transition operators Ps as in Fig. 6 below: :

“oo | Fy 2 | P3 a
i y Sq P— 2 — — (52) : a rE o . o

El FIGURE 6. A PLAN DEPICTED AS A SEQUENCE OF STATES

or Although the depicted operators have unary inputs, several

oo inputs may be possible, as in inference from several inter-
oo | 6
Lod mediate results (states) . Likewlse, there may be several
A outputs —~e.g., a problem may be split into several intermedi-

ou ate subproblems. A plan is any sequence of state descriptions

and/or operator descriptions that parallels an alleged problem

solution. These descriptions are usually abstracted versions |

oo (patterns) that may have several candidates in the object |

| 28



| language. In this sense they are weakly specified. Several |
| varieties of informationmay be offered as a plan: oo

| (1) A sequence of operations or methods may be specified |

(Fig. 4). oo

(2) A sequence of patterns that describe the expected oo
state sequence (a state monitor"). |

| (3) A sequence of subgoals described in the object |
| language (Fig. 5).

| | A functional planning language needs at least four fea-

tures: a

- | (1) Its own logic .

| (2) A well-defined nexus between the planning states/ -

| methods and the object-language states/methods | .

| | (3) An ability to reference future results oo

(4) Some facility to manipulate data representations so

that the flow between different processes is smooth. oo

| These features are integral to an autonomous planning sys-
| tem. When we focus on the kinds of information that can be oo

extrapolated from problem to problem at a planning level we oo

| find: |

(1) Plan, as described above

(2) Estimates on the difficulty of various subproblems

(3) Conditions describing when to terminate a process: |
s Fd i

"simply the kernel of an integralto f(x)e IV x N
. (Fig.4)

| (4) Opergtor inputs: "deduce 8 from Theorem Ty and »
1

| 3-1 N

This wealth of side information (nonsequential) associ~ Lo

ated with a plan can range in abstraction from being detailed BEN
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| in the object language (a particular theorem) to some more
| abstract description {..g., a theorem relating groups and homo- :

. morphisms, a sufficient condition for a set to be a group, etc.)

3. Object Language Level

| (1) Explicit subproblems and lemmas (Fig. 5)

oo | (2) Relevant theorems that will be used in the proof

i. (Fig. 5)

CL (3) The set of relations to be used in the problem solu-

E tion

= (4) Problem difficulty. |

Co | The set of relevant theorems need not be structured with

— their relevant subgoals as in Fig. >, but may be an unordered

a | set of which the PSS is conspicuously conscious.

So It is now clear that the range of helpful advice is

rather broad, both in level of detail and degree of structure. |

- Although a restricted analogy could be generated first and the |
oo "helpful information" later, it would be nice if some of it |

2) were a byproduct of the analogy-~generating program.

ol E. Automated Use of Analogical Information

a In this section, I will combine several themes that have run

through this chapter and apply them to the automation of analogical

ry problem solving. First, I will summarize some of the key points |

wd that I have mentioned in the preceding sections.

- | (1) The idea of analogy is ill defined. There are at least

od several kinds of related analogies. |

Te | (2) Each of these analogical varieties would best be recog-

on nized by somewhat different means. |

wd

. | 50



(3) The kinds of information that are extrapolable between |

| analogous problems of each variety are quite different. oo

Thus, the algorithms and designs for using these diverse |

types of information are likely to be quite different.

oo (ll) One of the key issues in extending analogical information |
| is knowing in advance the level of generalization that

| will hold for each analogized parameter, method, operation, |
theorem, or fact.

oo (5) A set of strategy/planning languages that would allow an | |
| appropriate degree of generality would be quite complex.

| . These facts imply: | oo
| N oo

(a) No analogy-oriented PSS (APSS) should be expected to

| process all varieties of analogy, since each involves |
a somewhat different style of information processing.

(b) An APSS that attempts to extrapolate general sequen-

tial plan-like information or patterns of inference, |

| | and attempts to actively direct a problem solver |
that incrementally infers and tests inferences |

against its supervisory schema would be quite com- i

plex. Lo

| Many of the example problems presented in Section C of this oo

chapter push the limit of contemporary PSS and will probably be non-

trivial for any of the planning-oriented systems that will emerge in oo

| the next few years. Thus, we end up wanting to use analogical infor- Lo

| mation without creating plans or other forms of skeletal solution -

structures. | oo

The means of doing this are actually very simple if we review a

| our situation again. A typical APSS will have a large data base and -

| be presented with a pair of problems: One is unsolved and the other oo

| * A PSs is a "problem~solving system."
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J has already been solved and its solution is available to the APSS.

- | I want to underscore a critical way in which this situation differs

N | from the typical PSS. Most PSS's work on a "minimal" data base for
: which the user has selected an adequately small set of axioms . When
oo the data base of a typical PSS is expanded to include some irrelevant

- | axioms, they begin to generate a substantial set of irrelevant infer-
Co ences (due to the interaction of relevant and irrelevant axioms and

— their descendent inferences). Consequently, they begin to flounder
> in their search and may fail to solve problems that are easily |

od solvable with a minimal axiom set. To be concrete, consider a PSS

- that uses 8 axioms to prove some theorem T with a search that gener-

| ates 100 inferences for, say, a 20«~step proof. Adding 10 more axioms

to the data base may force it to generate 500 inferences before find-

| N ing its 20-step proof. In a sense, these figures are doctored, since
- a set of 10 axioms can be chosen that will have no appreciable effect
oo on the search-space size, while another set of 10 may be added that

Ce | can explode the search space almost arbitrarily.’

Ba | Since an APSS will be proving somewhat diverse theorems with a
(usually) common data base, it is in principle bound to seek proofs

To in a context abundant in excessive and irrelevant data. One key
— method for exploiting analogical information is to select a subsetof

Cm | axioms appropriate for proving the new theorem. Then,

SE | we are constricting the context in which theorem proving takes place

| by narrowing the set of accessible axioms. The usual strategies of
u the particular PSS can be used unmodified; the analogical information

| |

J *A11 known resolution systems and. aps! Operate this way. Gelern-
ter's Geometry theorem-proverad is the only system that accessed gz

i superset of the necessary axioms. He used a special model to cut his

CL : search space to include only relevant inferences. |

= Tn the first case, add axioms that use many distinct predicate let- |
ters and many distinct function symbols. In the latter case, use |

Se axioms with only one or two predicate letters, and choose axioms that |
will resolve with most of the others, preferably recursively. |
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| | is merely used to narrow the context sufficiently to reduce the search
space to a more manageable size. Selecting an appropriate axiom set -

is one ofseveral kinds of information that may be added independently |

of PSS strategy. A more complete and suggestive listing includes: L

| (1) Restricting the set of admissible relations ol

(2) Restricting the set of admissible operator symbols -

| (3) Restricting the set of admissible axioms | oo

| | | (4) Restricting the order of operator nesting a

| © (5) Generating analogous subproblems, solving them, and oo

oo oo adding them as axioms. | N

oo This list can be extended, depending on the kinds of information used -

| by a particular PSS. Thus, if a PSS has a look~aghead estimstor .

| (like REF-ARF)~7, then that too may be analogized without modifying oo
| the PSS structure. The key idea is that an effective means of oo

exploiting analogical information is to modify the context in which .
a particular theorem prover operates, rather than subjecting it to a oo

| planning~like scheme that supervises the sequence of its inference

making. oo oo

| | Now, the actual means for generating analogies and a

extrapolating analogous axioms depends upon the representations and .
PSS used. These details have been developed and implemented. for a Co

| resolution-based theorem prover and are described in the following

| : chapters. | o.
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Ll | IIT AN INTRODUCTION TO ZORERA

— A. Introduction

oo ZORBA, outlined in this chapter, is a paradigm for handling some

“o kinds of analogies. This is the first instance of a system that

“1 derives the analogical relationship between two problems and outputs

to) the kind of information that can be usefully employed by a problem-

oy solving system to expedite its search. As such, ZORBA is valuable

| in three ways:

(1) It shows how nontrivial analogical reasoning (AR) can be

| performed with the technical devices familiar to heuristic

. programmers -— e.g., tree search, matching, and pruning.

fond (2) Tt provides a concrete information-processing framework :

- within which and against which one can pose and answer

y questions germane to AR.

B (3) Since it is implemented (in LISP), it is available as a |
research tool as well as a gedanken tool. |

os The last two contributions are by far the most important, although

LJ] our attention will focus upon the first. In the 50's and 60's, many

researchers felt that analogical reasoning would be an important

CL addition to intelligent problem-solving programs. However, no sub-

| | stantial proposals were offered, and the idea of AR remained rather

| nebulous, merely a hope. ZORBA may ralse more questions of the

o "what if?" variety than it answers. However, now, unlike the situ-

ation in 1968, we have an elementary framework for making these

guestions and their answers operational.

=~ B.  ZORBA Paradigm

| Although prior to ZORBA there were no concrete paradigms for AR,

Tr there was an unarticulated undeveloped paradigm within the artificial

intelligence Zeitgeist. Suppose a problem solver had solved some |
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a | problem P and has its solution S. If a program is to solve a new,

| - | analogous Pro it should do the following:

oo : (1) Examine S and construct some plan (schema) S' oo

oo | that could be used to generate S. }

| (2) Derive some analogy Q: Py = P. Lo

(3) Construct @ (8) =8 IK

| a (4) Execute 8‘, to get S,, the solution to P,- ER

| If P was solved by executing a plan, then S’ would be available and
Step 1 could be omitted. Although nobody has explicated this idea oo

aE in publications, from various conversations with workers in the
field, I have come to believe that the preceding description is Co

close to the paradigm that many would have pursued. As such, it | ...

constitutes the (late-60's) conventional wisdom of artificial intel-

ligence. Certainly this (planning) paradigm is attractively ele- oo

gant! However, in 1969, when the research was begun, it was an |

~~ inappropriate approach for two reasons: |

| (1) There are no planning-oriented problem solvers that are | Co

fully implemented and that operate in a domain with inter-
x Lo

esting nontrivial analogies . This state of affairs

probably will change in the next few years, but it now |

renders difficult any research that depends on the exist- N

: | ence of such a system.

| | (2) Given the plans generated by such a system, it is hard to

| | | know a priori at what level of generality the derived .

| * 30 31 . . |
| | PLANNER” =~ at MIT and QA4”™ at SRI are two current planning-oriented =

| | problem solvers under development. The first is partially imple-
- mented and the second exists only on paper. It 1s not yet clear To

what problem-solving power PLANNER will have, and how effective it oo
| will be in domains with interesting analogies. oo
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a analogy will map into an executable analogous plan. If

= Sh falls, is (0 too strong, or wrong? Should @ be modi -
3 | fied and a variant 5 computed, or should the system
ih keep @, and Just back up its planner and generate an

“a alternative subplan using its own planning logic? At

J | | best this is a rather complex research issue that would

i. involve a good planning-oriented problem solver as an

CL easlly accessible research tool. AT worst, the preceding

BN paradigm may be too simple and a sultable 0 may be devel-

| oped interactlvely with how much successful problem-
solving has proceededso far. (A complete @ should not |

ol be attempted before some problem solving begins and is

~ extended as needed in the course of solving P.-) |

no Happily, there is an alternative approach that circumvents the |

. preceding difficulties. Consider a system that has solved some prob- |

Lo lem P and is posed with a new (analogous) Pr to solve. Clearly, it |
Co must operate on some large data base sufficient to solve both P and |

Ny Py (see Fig. 7). In addition to the subbase for solving P and Py
|

oo | | D, \ D, | \
-- Theorems to solve Theorems to solve |

N . Data Base D rd

FIGURE 7. VENN DIAGRAM OF THEOREMS IN DATA BASE |

- there are likely to be even more theorems in the set D - (D, U D,)-
Now, given P, it is impossible to infer a minimal Dy - In practice, a

user may select some D, Sela D, < D, © D which the problem solver
| | will access to solve P. If one studies the searches tnat problem
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solvers generate when they work with nonoptimal data bases, it is

obvious that many of the irrelevant inferences that are generated

are derived from the data-base assertion (theorems, axioms, facts) in N

| D ~- D, (or D, - Dy). In fact, as the number of theorems irrelevant
| to the solution P becomes large, the number of irrelevant inferences Lo

derived from this set begins to dominate the number of irrelevant | ©

inferences generated within D, and its descendants alone . In fact, -
| ~ while a problem solver might solve P given an adequate and small Dy Lo

| | it may be swamped and run out o space before a solution given a D, }
that is much larger than needed . Clearly, one effective use of |

analogical information would be to select a decent subset D, of D -
such that size[D, < size[D,] << size[D]. For example, a typical oo
theorem in algebra provable by AE" — g resolution logic theorem a

proof — may require only 10 axioms (0), while the full algebraic .
data base has 250 axioms. If a system could select a Ds such that Co

size[D,] = 15 axioms, a massive saving in search could be obtained. fo
In fact, the theorem that would be unprovable on a D with size[D]=250 Lo

| ~~ would now be provable. a.

oo Asecond kind of information that would be useful to help solve -

: Py would be a set of lemmas (or subgoals) Lys eee L, whose analogs
a(L,), ce a(L,) could be solved by the system before attempting P- | =

“Even given an optimal data base, a problem solver will generate some
irrelevant inferences. -

Yin general, automatic problem solvers and theorem provers run out of no
space rather than time when they fail to solve a problem. Ernstd3 N
emphasizes this point with regard to GPS, and I have had similar
experiences with QAZ° a resolution logic theorem prover. Lo

. | 57 | Co



| At this point I will not discuss how to recognize a lemma and

BN generate its analog; ingt~2d,I merely want to note that lemmas may
oo be effectively used without using a planning language that forces

- backup in case of failure. Suppose we somehow get a(L,), coe a(L;).
os A typical planner would order the a(Ly) e.g. , 0(Ly) > a(L,) ees ECL,
Lo attempt to solve them in sequence, and stop if any lemma falls to be

- | solved. In contrast, we merely need to attempt each a(x). J we
get a solution, we add a(L;) to the data base (like a theorem) and

BN continue with the next lemma. If we fall, we continue anyway. At

worst, we wasted some computation time. Each useful G(L,) decreases
the number of steps in the solution of Py and may decrease the depth
of the solution tree. Thus, lemmas are helpful in getting a faster

- solution. Note, however, that a successful a(L;) need not be used
Co in the solution of Pp It is merely available. Thus, we are not
od bound by the fail~backup orientation of sequential planning logics.

a In summary, if we use analogical information to modify the

ha enviroment’ in which a problem solver operates, we can effectively

) *Recognizing lemmas depends on the problem-solving system. For
example, in resolution logic, some good criteria for lemmahood are:

- (1) A ground unit used more than twice (or k times) in a proof.
| (2) A unit that is a merge.
= (3) A clause that is the "least descendant" of more than 2 (or k)

units.

nN "Generating a lemma depends on the system's ability to associate |
or variables with variables, and the association may be tricky when

skolem functions are introduced. |

dd In fact, under some conditions, the axioms used to solve a(Ls ) may |
be deleted from D, so that size[D,] is decreased, and (Lj) is not |
attempted again inadvertently during the solution of P,. |

oo ere environment is synonymous with data base. But it can also
i include permissible function orderings (in predicate calculus) and
- other kinds of restrictive information. Each rule restricting the |

"enviroment" could be translated into an equivalent new decision
. rule restricting the application of the inference procedures of the

| problem solver, However, I find it easier to think of ZORBA in
vd terms of modified environments rather than (the equivalent) modi-
BN | fied decision rules.



abbreviate the work a problem solver must perform. ‘Of course, a |
well-chosen enviromment will always lead to a more efficient search. oo

Usually, we have no idea how to tailor a subenviromment automati- .

cally to a particular problem. Here we do it by exploiting its a

| analogy with a known solved problem. Now, the representations used, oo

the analogy-generating programs, and the types of additional infor- | Co

| mation output will depend on the problem~solving system (and even oo

| | the domain of application). Any further discussion needs to specify
| these two items. | |

~~ C. Applications to Resolution Logic BN

| The preceding discussion referred to any problem solver, and is Co

| just a proposal. Computer programs have been implemented to apply .
this paradigm to a resolution-logic theorem prover, Qs. For the .

~~ class of analogies these programs handle, this is an accomplishment. oo

| When we begin to focus on a particular paradigm, two issues are | a
more easily resolved:

| (1) What kinds of information are most useful to provide a
| the problem solver?

(2) Which representations shall we use to describe the N
analogies and handle The necessary data? N

Actually, these two issues interact. For example, if we want |

to study planning-level analogies, then we need a problem-solver BN

_ that can create and execute plans for the problems it attempts. In
g | turn, we expect to be passing 1t information that refers to its | E

sequence of plans, criteria for subgoal completion, etc. Many impor-

tant details of this research are affected by our choice of problem- a

| : solving system. In addition, the classes of analogy we can study oo
| are affected by the kinds of problem-solver that we choose. Farlier Ls

I noted that a planning-problem~solving system was not avallable oo

| when this research was begun. In the beginning stage of this Co
| research it was unclear how wide a variety of problem domains we N

39 i.



oo | would like to consider. Both abstract algebra and plane geometry
4 J | are rich in analagous problems, and we wanted to be able to consider
To at least both. Thus, rather than turning to a specialized problem-

— solving system like Gelernter's GEOMETRY-O machine or Norton's
a | BN Group-Theorist™?, we declded on a general-purpose system. Our |
EE | . ~~ choice between a resolution-based system and a GPS~like system was

strongly influenced by the recent development of a relatively flexi-

» ble resolution-theorem prover in the laboratory at Stanford Research

B Institute where this research was carried out. In fact, this reso- |

Ny | lution system, QA3, was implemented in LISP on the SDS~-940, the same
| language and same machine on which ZORBA was to be implemented . No

oo other, equally powerful problem-solving system was available in | |
- either LISP or on the SDS-940 at that time. At least a year's work
Th was saved by opting t0 use QA5 as an experimental vehicle,

- | . Resolution is attractive on its own merits, as well: |

N (1) It is a highly popular inference system that is currently |
N | ] receiving a vast amount of attention. The results of

a 7ZORRA~I can be relatively easily related to other develop-
= ments in this "hot" area of study. |

| | (2) Resolution uses first-order predicate calculus, which has
- substantial expressive power. Any problem whose solution

ro may be deduced from a set of first-order axioms in some |
se natural inference system can be transformed into a resolu-

oo tion theorem. | nz has been used to solve the monkey

Cee Fo ORRA programs were later converted to PDP-10 LISP when the SRI
on Artificial Intelligence Laboratory changed machines.

= since our discussion is shifting to resolution, our terminology
je. | will shift from the language of problem solving to the language of

| theorem-proving, with the following equivalences: |

- problem ~ theorem -
CE solution ~ proof | | |

- oo oo ho |

J | | |
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oo oo | and bananas problem and the tower of Hanoi puzzle, handle |
- | questions pertaining to drug interactions, make diagnostic

Co | | inferences in a simple medical application, and prove |

theorems in geometry, algebra, and number theory.

4d (3) Practical resolution systems are more powerful than come

_ peting systems like GPS. The resolution system allows more

» natural representations for some applications, particularly

BN mathematics.

a. Resolution logic 1s an inference rule whose statements are called |
*

clauses ir, Thus, a resolution-oriented analogizer will deal with |
- clauses and their descriptions. In contrast, GPS uses sets of |

| objects to describe its states, and we would expect that an analogy

| | system devoted to GPS would deal with (complex) objects and their

oh attributes. Table 1 contrasts the kinds of information helpful to

oo QA3 and GPS. An analogy facility developed for GPS would be

SE oriented to its peculiar information structures instead of clauses.

- Table 1

k | KINDS OF INFORMATION HELPFUL TO QA% AND GPS

gA> (Resolution) GPS

. Relevant axioms Relevant operators

a Expected predicates Abbreviated difference table

. Lemmas Subgoals

oo Admissible function nestings Restrictions on opera-
tor applications

a | * |
A clause is an element in the conjunctive normal form of a skole-

Co mized wif in the predicate calculus. For example,

BN —person[x] v father[g(x);x] is the clause associated with:
| Vx person[x] —Hy father[y:;x] (every person has a father).



| I want to digress briefly and describe the kinds of theorems

that the implemented system, ZORBA~I, tackles. Briefly, they are

theorem pairs in domains that can be axiomatized without constants oo

| (e.g., mathematics) and that have one-one maps between their oo
| predicates. The theorems are fairly hard for QA% to solve. for .

example, ZORBA-1 will be given proof of the theorem: |

TL: The intersection of two abelian groups is an abelian | i.

| group and is asked to generate an analogy with oo

| To: The intersection of two commutative rings is a commuta- .
tive ring. | | Co

| Given: -

: | T3 1 A factor group G/H is simple iff H 1s a maximal normal | co

| subgroup of G. Co

B | Generate an adequate analogy with .

| Th : A quotient ring A/C is simple iff C is a maximal 1deal in A. .

| None of these theorems is trivial for contemporary theorem provers.

| (See Table 2 in a later section, for a listing of additional theorem

pairs.) T, has a 35-step proof and I, has a 50-step proof in a
| decent axiomatization. A good theorem prover (QA3) generates about Lo

| 200 inferences in searching for either proof when its data base is

: minimized to the 13 axioms required for the proof of I, or to the i

12 axioms required for the proof of Ty - If the data base is oY
| | increased to 20 to 30 reasonable axioms, the theorem prover may oo

generate 600 clauses and run out of space before a proof is found. -

Note also that the predicates in the problem statement of these N

| theorems contain only a few of the predicates used in any proof. oo

Thus, Tl can be stated using only {INTERSECTION; ABELIAN}, but a

E proof requires {GROUP; IN; TIMES; SUBSET; SUBGROUP; COMMUTATIVE} in a
| addition. Thus, while the first set is known to map into {INTERSEC- B

| TION, COMMUTATIVERING}, the second set can map into anything. Co

Figure 8 shows a set P including all the predicates in the data .

base.

oo Wo .
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oo FIGURE 8. VENN DIAGRAMS OF RELATIONS IN STATEMENTS T, Lys AND DY

© Ve know P’) and P’,, the sets of predicates in the statements of the
_ | new and old theorems, Ly and T. In addition we know the predicates

Py in some proof of T (since we have a proof at hand). We need to
find the set PE, that contains the relations we expect in some proof

| of Lo and we want a map QQ: a(p,) = Ese
| Clearly, a wise method would be to find some G’, a restriction

a. of @ to Pp’, such that a’(P’)) = Py Then incrementally extend @’ to
a’ys a’ss ..., each on larger domains until some a'(P,) = P,. ZORBA-I

i does this in such a way that each incremental extension picks up new

oo clauses that could be used in a proof of Tye In fact, 1f we get no
Co new clauses from an extended @ is faulty. The next section will

Co describe the generation algorithm in a little more detail. |

= D. ZORBA's Representation of an Analogy

so | | In the preceding sections I have implied that an analogy 1s some

7 kind of mapping. The ZORBA paradigm— e.g., using an analogy to

od | restrict the environment in which a theorem prover works = does not

J restrict this mapping very much. For different intuitively analogous

theorem pairs, this mapping would need to be able to associate predi-

| cates (and axioms) in a one~oOne, one-many, or many-many fashion, pos-

| | sibly dependent on context. For other theorem pairs, one-one
BN | mappings and context-free mappings are adequate. ZORBA~1 1s a par=-

| | ticular set of algorithms that restricts its acceptable analogies to

7 | | those that map predicates one-one with no context dependence. It

Co | h3



allow: onc-many associations between axioms — ec..., one axiom of’ the |

: | proved theorem is associated with one or more axioms that will be used

| to prove the new, analogous theorem. More explicity, a ZORBA-I anal- oo

ogy @ is a relation a X a” X a’, where: “oo

- (1) a is a one-one map between the predicates used in the i
| proof of the proved theorem T and the predicate used in the . bo

| proof of the unproved theorem Ty -

| (2) a’ is a one~many mapping between clauses. Each clause used
| in the proof of T is associated with one or more clauses ‘

from the data base D that ZORBA-I expects To use in prov- Co

ing Tye a.

| (3) @' is a many-many mapping between the variables that appear to

| in the statement of T and those that appear in the state- -

ment of 9% | CL

Different sections of ZORBA~I use these various maps — e.g.., a’ |
and/or ar, and/or ac. Usually I will drop the superscript and simply

| refer to "the analogy Q." Thus, "the analog of an axiom ax, under -
~~ analogy@" should be understood to mean a lax], and will often be

| mentioned simply as "the analog of ax +" Co

In the previous section I refer to a sequence of analogies | Co

| Cys Pa Cy - Z0RBA~T usually does not develop a’ in one step. Rather, | -
it incrementally extends some limited analogy into one that maps a

| few more variables, predicates, or clauses. This process is described .
in full detail in the next fewsections. Here, I just want to define

| several terms that refer to this process. When I refer to "the oo

analogy between T and Ty" I refer to a mapping that includes every So
variable in the statement of T, and every predicate and clause used in Co

the proof of T. This "complete" mapping is obtained as the final -

step of a sequence of mappings that contain the associations of some Co

| predicates and some clauses. I refer to these incomplete mappings as

"partial analogies." In addition, we are concerned with an Important



| relationship between two (partial) analogies. A (partial or com-

Co | | plete) analogy 0, 1s an extension of a partial analogy a; 1f some of
Ca | a — e.g. a’; ; Og 0 — 1s a submap restriction of the corres-
a ponding submap of 0p to a smaller domain. Intuitively, when we add

IN oo a new predicate or clause association to a. so as TO create Oy 5 we
» oo say that a. has been extended to Oy « We are now ready TO survey
I ZORBA-I. |

CL E. An Overview of the Analogy-Generating Algorithm

Lo | | I want to describe the ZORBA-I algorithm in two stages, first

_- briefly in this section and then in greater detail in the following

Cl two chapters. I will precede these descriptions by some background

oo on the representations and information available to the system.

» oo ZORBA~I is presented with the following:

= (1) A new theorem to prove, T,
oC (2) An analogous theorem T (chosen by the user) that has

SO already been proved.

o (3) Proof[T], which is an ordered set of clauses, {c,
set. Vk c,, 1s defined by:

(2) A clause in— T, or | |

B | (b) An axiom, or |

(¢) Derived by resolution from two clauses

CL c; andcy J <kandi<k.
These three items of information are problem~-dependent. In

Co | addition, the user specifies a "semantic template" for each predicate |

N in his language. This template associgtes a semantic category with |
each predicate and predicate~place, and is used to help constrain the |

oo predicate mappings to be meaningful. For example, structure[set

operator] is associated with the predicate "group." Thus, ZORBA~I

oo knows that "A" is a set and "¥" is an operator when it sees

group[A;*]. Currently, the predicate types (for algebra) are

L5



STRUCTURE, RELATION, MAP, and RELSTRUCTURE; the variable types are

SET, OPERATOR, FUNCTION, and OBJECT.

| Tn addition, ZORBA~I can make up a description descr{ec] of any a.

clause c according to the following rules:

(1) iv s.t. p and— p appear in c, impcond[p] € descrlc]. .

(2) 7 s.t. p appears in c, pos[p] ¢ descr[cl. oo

(7) v, s.t. 4 DP appears in c, neg[pl € descr[c]. |
3

| Thus, the axiom, every abelian group is a group = €.8., i.

| T(x ¥*) abelian[x;¥]— group[x;¥] — 1s expressed by the clause oo

cyt abelian[x;*] Vv group[x;¥], which is described by oo

negl abelian], pos[group]. oo

Fach element of a description — e.g., pos{group] — is a "feature" of a
the description. Each feature corresponds to one predicate, so the .

number of features in a clause equals the number of predicates in the

clause. The theorem, the homomorphic image of a group is a group --— co

| | v(x y * % 0) | .
hom[@3;x;y] A group[x;¥,] oo

— group[y;¥,] — is expressed by the clause oo

| c,: Tthom[gsx;y]l V = group[x;*| v grouply;¥,] | -
and is described by =

neg[hom}, impcond[group]. a.

| | Two different clauses may have the same description. |

Let:

Cy —intersection|[x;y;z] Vv subset{x;y] .

c), : —intersection[x;ysz] V subset[x;z].

| EEA I

See Appendix A for the definitions and semantic templates of the a
predicate letters.



2b Then:

— descrle; = descr[c) | = neg| intersection], pos[subset].
of | Clause descriptions ere used to characterize the axioms whose

I. analogs we seek. ZORBA~-1I selects as analogs clauses that have
*

Lo descriptions that are close to the analogs of the descriptions of

~ axioms in the known axion set. Although in a special context

ZORBA-T actually uses an ordering relation on a set of descriptions

nN to find a "best clause," it usually exploits a simpler approach.

| We will say that a clause c¢ satisfies a description

| d iff d C descrlc]. Thus, several clauses may satisfy the same

a description. |

Let: |

cg: mint ersection|x;y;z] V—group[y;¥] v—grouplz;*]Vvgroup[x;*¥]

Cs: — subgroup x;y:;¥*] v—subset[x;v].

"Jd Then, the following statements are true:

oo (1) fess) satisfy impcond[group]

(2) feyscy,05] satisfy pos[ group] |

I (3) c, satisfies neglabelian}, pos{group] |

oo (4) fesse) 506) satisfy pos[subset] | |
CL | (5) cp satisfies neg[ subgroup], pos| subset]

- | (6) No clause of these six satisfies pos{intersection].

- | Clearly, if a description contains only a few features, then

= several clauses may satisfy it.

ol B | The semantic templates are used during both the INITIAL-MAP
oo | (when the predicates and variables in the theorem statements are

= mapped) as well as in the EXTENDER, which adds additional predi-

%

_— | The "analog of a description" is defined in Chapter V.



cates needed for the proof of Th and finds a set of axioms to use a
in proving Tye The clause descriptions are used only by EXTENDER.

I intend the brief description that follows to provide an | |

overviewof ZORBA-I in preview to the next two chapters of text,

which describe it in considerable detail. In addition, this pre- Co
view section may be a helpful "roadmap" for reference when the :

| reader immerses himself in the detalls that follow later on. ro

| ZORBA~1 operates in two stages. INITIAL-MAP is applied to the oY

statements of T and I, to create an ay , which is used by EXTENDER a
to start its sequence of a; and a » which terminate in a complete Ce
@. INITTAL-MAP starts without a priori information about the i

| analogy it is asked to help create. Both a’ and a’ are empty when -

it begins. INITIAL-MAP uses the pair of wffs that express T and N
Ty as well as the restrictions imposed by the semantic categories | N |
to generate a; and a, that include all the predicates and vari- | a.
ables that appear in the two wiffs. For example, the statements of oo

| T, - I, can contain three of the nine predicates used in proof[T.], | oo
and the statements of Ts ~ LT), can contain five of the 12 predicates Po |

| used in proof[T,]. In brief, INITIAL-MAP provides a starting | Lo
| ~~ point from which EXTENDER can develop a complete (Q. | =

| The INITIAL-MAPuses an operator called ‘oc

atommatch[ atom, satom, sa], which extends analogy by adding the predi- |
| | cates and mapped variables of atom, and atom, to analogy a. Thus, Co

ATOMMATCH now limits ZORBA-~I to analogies where atoms in the state-~ oo

ments of T and I, map one-one. INITTAT~MAP is a sophisticated u
search program that sweeps ATOMMATCH over likely pairs of atoms,

one of which is from the statement of T, the other from the state-

| | ment of Ty Alternative analogies are kept in parallel (no backup),
and INITIAL-MAP terminates when it has found some analogy that

includes all the predicates in the theorem statements. This one is

output as a: - oo

| * Atoms, not predicates.



oo EXTENDER accepts a partial analogy generated by INITIAL-MAP and

— | uses it as the first term in a sequence of successive analogies Gs
ik The axioms used in proof[T] are few in comparison to the size of the

= | large data base, and comprise the "domain" for a complete a®. For
EE each axiom used in proof[T], we want to find a clause from the data |

_ base that is analogous to it. The axioms used in proof[T] are called

_ AXSET and are used by EXTENDER in a special way. Each partial

- analogy a; is used to partition AXSET into three disjoint subsets
B called allla.l, some[0,], and none(a,].

| If all the predicates in an axiom ax, ¢ AXSET are in a» then
| ax is in 211la. ls if some of its predicates are in a, then ax,

» is in some[q,] and if none of its predicates are in as» then ax,
is in nonel@, 1. For brevity, these sets will be called ALL, SOME,

| | | and NONE, and their dependence on a; will be implicit. This par=-
oo tition is trivial to compute, and initially, none or a few ax, are

oo in ALL, and most ax, belong to SOME and NONE. We want to develop a

— sequence of analogies a,» Jg=1, ... n, that contain an increasingly
larger set of predicates and their analogs. If an axiom is contained

Cs in ALL, then by definition we know the analogs of each of its predi-

oo cates. It can not assist us in learning about new predicate associl-

oo ations. In contrast, we know nothing about the analogs of any of the
a | predicates used in axioms contained in NONE. Analog clauses for |

a these axioms are hard to deduce since we have no relevant information
to start a search. Unlike these two extreme cases, the axioms in

oo SOME are especially helpful and will become the focus of our atten-

— | tion. For each such axiom we know the analogs of some of its predi-

en | cates from as . These provide sufficient information to begin sg
. search for the clauses that are analogous to them. When we finally

- associate an axiom with its analog, we can match their respective

descriptions and associate the predicates of each that do not appear

| on 0; . We can extend a, to SE and thus the analogs of axioms
oo on SOME provide a bridge between the known and the unknown, between

. the current a, and a descendent SER and thus the analogs of axioms

FT | | 49



on SOME provide a bridge between the known and the unknown, between 2

the current a, and a descendent Tspq When EXTENDER has satisfac- a
| torily terminated, ALL = AXSET, SOME = NONE =f. 50 the game becomes Fn

finding some way to systematically move axioms from NONE to SOME to Lo

ALL in a way that for each ax, moved, some analog a (ax, ) = ax) is .
found that can be used in the proof of Ty Moreover, each new asso- -

ciation of clauses should help us extend ad] by providing .
information about predicates not contained in ase N

The following chapters are devoted to a detailed explication of .

| ZORBA~-T. INITIAL-MAP is a comparatively simple system and will be |
| covered in Chapter IV. EXTENDER is far more novel in its conception

and complex in its details. It will be introduced in Chapter IV and to

examined in greater detail in Chapter V. I recommend that the seri- -

N ouse reader skim these two chapters to acquaint himself with most | a
of the concepts and a few examples. Such a prelude will illuminate wo

~ the following discussion like the bright sun burning off a morning

fog. | | a
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| | Iv. A DESCRIPTION OF INITTAL-MAP

A. Introduction |

At heart, ZORBA~I is a heuristic program designed to generate

- | analogies between theorem pairs stated in a subset of predicate calcu-
- lus. It has been designed and implemented in a fairly modular manner
oo to facilitate understanding and ease of generalization. Thus, much

— of the gystem can be described in algorithmic terms. In this chapter

- I hope to evoke some appreciation of the heuristic foundations of the

a program while describing its operation with algorithmic clarity.

a ZORBA-I uses an interesting set of searching and matching routines, |

iN | which have been empirically designed, generalized, and testedon a

set of problem pairs (4 - I, and Ts - I), are fair representatives of
B thig set). The control structures of INITIAL~-MAP and EXTENDER have

been designed to pass fairly similar structures to the various match

a routines (described below). Thus, the following descriptions will

- cover cases in which the structures to be mapped are fairly similar.

oo For example, most of the routines that match sets of items assume

— that the sets are of equal cardinality and that they will map one-

- one. such assumptions are valid for a large class of interesting

CL | analogies (such as the group-ring analogy in abstract algebra), and

simplify the description of the various procedures. Analogies that |

B require weaker assumptions and more complex procedures are described

in Chapter VIII. |

In the previous chapter I provided a rationale for the design of

B INITTAL~-MAP and EXTENDER, which generate a restricted analogy and

| expand 1t to cover all the relations and axioms necessary for the new
Bh proof. Z0RBA~I can be easlly expressed in terms of these two funce
E tions as follows:

- zorba., [newwff ;0ldwff ; AXSET*] = =
(1) Set analogies to the list of analogies generated by

BN initialmap[ newwff joldwff].

| | (2) Apply extender|analogy; AXSET] to each analogy or analogies.

-— :



(54) Return the resultant set of anslogies. |

The preceding description allows that there may be more than one .
| analogy generated by either INITIAL-MAP or EXTENDER. In practice, BN

however, each tends to generate but one (good) analogy. In the fol-

| lowing paragraphsI will describe INITTAL-MAP in some detail. EXTEN- oo

| DER will be discussed 1n the next chapter.

ZORBA-I is designed to find the analog of each axiom in AXSET a

| and thus create @°. The brief description of EXTENDER in the pre-
| | vious chapter suggests that if we know the analog of at least one a

predicate in the domain of a”, then we can partition AXSET into -
ALL, SOME, and NONE to start EXTENDER creating a series of partial

| analogies a, G5 «.. that terminates in some complete a, The. LL
algorithm for INITIAL-MAP that is described here is designed to find

| an association between each predicate in the statement of Ty with :
each predicate that sppears in the statement of T. For most inter-

esting theorems, the theorem statements are usually expressed with .

| more than one predicate. Consequently, INITTAL-MAP will typically

provide an of that will have more than one predicate assoclation Co
| and that is more than sufficient to initiate EXTENDER. In Chap- -

| ter VIII, a simpler version of INITTAL-MAP that often works will be

described. Once the system gains some experience (creates some .

analogies) in a particular domain, it could dispense with INITIAL- oo

© MAP and use the analogs of those predicates that it found in the |
past and appear in proof[T] as a - However, here we will adopt a
quite conservative approach and show how a good a; can be developed .
in the absence of any a priori predicate assoclations whatsoever. _

TNITIAL-MAP is designed to take two first-order predicate calcu- .
lus wffs and attempt to generate a mapping between the predicates and .

variables that appear in them. The variable mapping information is

| | used to assist INITIAL-MAP in mapping predicates in cases of seeming |

ambiguity; INITIAL-MAP outputs a set of associated predicates that

* XS ET is the set of axioms that appears in proof[T]. |

| 0 | N



. | appear in the statements of IL, and T. This restricted mapping is
used as a starting analogy by EXTENDER, which finds a complete

mapping for all the predicates used in proof[Tl. As a by-product,

| EXTENDER finds analogs for each of the axioms on AXSET. INITIAL-MAP |

| (unlike EXTENDER) does not reference AXSET, the set of axioms used to |
oo prove T, and is symmetric with respect to caring which wff represents |

a | the proved or unproved theorem. INITTAL=MAP uses atommetch| atom, ;
oo | atom, ; Gd] as an operation to add the predicate/variable |
oo information to analogy(. As its name hints, ATOMMATCH matches

x the predicates and variables of its atomic arguments and adds the |

Co resultant mapping to the developing analogy (a).

© B. The Design of ATOMMATCH

J | ATOMMATCH is used as an elementary operationby every matching

a. routine in the INITIAL-MAP system (Figure 9). Thus, we will dis-
cuss it first, and then consider how INITTIAL~MAP is organized to

apply it intelligently. |

- | INTTTAL-MAP |

| [aromiaren] | seme|

I cere : ;

| | | ATOMMATCH | | TEMPSTFT | | muzrmvarcHl|

N | ATOMMATCH | | mupsIFT | ATOMMATCH|

| | MATCH | |

oo | ~ FIGURE 9. HIERARCHY OF MATCHING ROUTINES CALLED BY INITIAL-MAP



Consider how we might write an ATOMMATCH. Suppose atom, and atom, |
are of the same order (same number of variables) and each variable

place in each atom has the same semantic type. For example, let oo

atom, = intersection, 3x, 3x, ]

| atom, = intersectionly, ;y,;¥;] | .
| Clearly, we want oo

* |

intersection~ intersection oo

and. oo

X)~¥y 5» L=1,2,3. | oo

So, if atom, = pix; ceo x |

and atom, = alys oo Vo] and p = q (thus, n =m) and we will set

Pp ~q |

and |

Xs~ Vs» 1 =1, 2, cee No oo

So far, ATOMMATCH is quite trivial. Suppose, however, p # q or ©

n #m. For example, let

atom, = group[x; * _
and a

| _. . | Co
| atom, ringly; 55 +1.

Clearly we want to associate the set x with the set y, and the | Cs

cperator *y with either or both of x, and toe ATOMMATCH can know
which variables represent sets, etc., by checking the semantic tem=- |

plates associated with group and ring. Now, the template associ-

ated with ring is structure|set;operator; operator]. We will map |

x |

| T will use the symbol "<" as in "x~ y" to mean "x is associ=- Lo

ated with (analogous to) y." N

| 5,



| | | variables with each other so as $0 preserve predicate place order-
| ing and semantic type. To Laiidle the unequal number of variables, we

. will temporarily expand the atom group[x;* ] to include a dummy vari-
able of type operator, "dummycp, and will rewrite it as group x,%, 3

Co dummy op J . The symbol "dummyop" is used to expand either (or both)

atoms to be of the same order and ensure that a variable (possibly

a. dummy) of the same semantic hype is in corresponding places in each

Cl | atom. Then we can map the variables one-one in order of appearance.

For example, we can associate |

- and |
| ¥ dumm oo (% +),» (%, »dummyop) ~ (¥,,+,)

os Then, we can remove dymmyop and rewrite

iJ A — He .

We can describe this process formall in two stages:

oo (1) Make the two atoms type-compatible and of the same order

by adding dummy variables whenever necessary.

] Let |
= . 5 1 |

B atom, ply; con KX]

. atom, = aly, ‘oo Vp]

LL template atom, | = typelpl [typelx, ] ‘es type[x 1]

_ template atom, | = typelql [typely,] ‘oe typely 11. |

Furthermore, suppose that the ordering of the types is the same in

oo each template, even though the number of variables of each particular

- type need not be identical for corresponding "type blocks." Thus,

- in the preceding example, in both "group" and "ring" the type set

Co precedes the Type operator. Each template has cne set variable,

but a differing number of operator variables. Thus, we could par-

- tition the ordered set of variables in atom, and. atom, by letting

some x, and x,., belong to the same partition if typelx, |] =
oo typelx, 1. Now there are an equal number of partitions in both



| atom, and abo, . Returning to our example, we partition group x;* |

into [[x], [*;]], and the ringl[y;* ;+] into [[y], [*,3+,1]. (The |
brackets indicate that the order of elements is preserved.) .

(2) Map the partitioned subsets into each other, preserving oo
their order within the partitions, and map elements into

elements if the two subsets have an equal number of ele~ :
ments.

| This completes our brief description of ATOMMATCH. From now a

on, we will consider ATOMMATCH as an elementary operation that will .

expand the developing analogy to include a (possibly) new predicate .

pair and (possibly) new pairs of variable associations. We need to oo

| know how to select pairs of atoms from the statements of T and Th to Co
be ATOMMATCHed. co

C. The INITTAL-MAP Control Structure .

| We have two wffs representing T and Ta as arguments of ol
INITTAL=-MAP, and we want to find some way to slide ATOMMATCH over -

~~ pairs of atoms selected from the wifs. First, note that the syntax Co

of the wffs may be a helpful guide in selecting potential matches. Co

| | Suppose oo

T,:B — aly), .

| where A and B are any wifs and p and g are unary predicates. :

We would presume that p ~ gq (predicates) .

| x ~ vy (variables) oo

and A ~ B (sub~wffs) -

where we expect that wifs A and B would be decomposed dcwn to Co

atoms for ATOMMATCH. If A and B had implication signs in them, Lo

we could decompose them similarly. There are many possibilities for oo

the forms of T and Tye We find that if T and Ly are closely .
| analogous, then their syntactic forms are likely to be very similar. -
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Lo | ZORBA considers T and T, to have the formats that can be repre-
Co | sented by the generative grammar:

el T (A — A)

. | A — plz, ve x Ja|plx, sen XI

"a INITTAL-MAP is designed to decompose the input wlfis T and Ly
_ into associated syntactic substructures until a subwff is either an

Co k

atom plx; coo x J or a conjunction of atoms A p,[x; eo. x 1. Ab

Cs | this point INITIAL-MAP enters a hierarchy of selecting and match-

ing routines (Figure 9) to decide which pairs of atoms shall be

ATOMMATCHed.. Naturally, if the subwifs are Just atoms, it calls

. ATOMMATCH directly. Otherwise, 1t enters a program alerarchy

headed by a routine named SETMATCH, which selects appropriate atom |
pairs from the sets of conjuncted atoms in the subwifs. |

tJ |

In the following discussion, the number of atoms conjuncted in |

| each set are assumed equal (k = £). SETMATCH can be described in |
oo |

terms of its subfunctions as follows: |
= . |

. Setmatch[set, ; set, ; anal : |

. (1) Partition the atoms in set, and set, into subsets that
uN | have identical semantic templates (a "semantic partition).

RB Thus, if set, is group[x;¥] A abelian|[y:¥] A intersec-
| tionf[z x;y] the semantic partition will be

{{intersectionfz;x;yl}}

a since group and abelian are both of type struct]set;opl.

. (2) Select the partitions of set, and set, that have but one
» element and call these sing, and sing, respectively.

Co (3) The remaining partitions have more than one element; call

-- them mult, and mult, , respectively.

| "jhen an analogy (0 is referenced within the description of an algorithm,
—- it willbe represented as a variable ang wherever that is more convenient.



(L) Match the atoms in sing, with those in sing, by executing |
singlematch[ sing, 3sing, jana]. |

(5) Match the remaining atoms by executing | .

| multimatchlmilt. mult, jana]. a

| SETMATCH, SINGLEMATCH, and MULTIMATCH are all heuristically oo

designed one-~pass matching strategies that make strong assumptions -

| about the nature of the theorem statements T and Ty for an | “
| analogous theorem pair. oo

| SETMATCH assumes that the atoms in seb, and set, will mep one- -
| | one and that the semantic-partitions will map one-one. Suppose we SR

| have a semantic partition: oo

partition, = {{atom, atom, }{ atom, atom }3}{atom } | i.

partition, = {{atom, atom, }{atomg atom} }{atom, 3. | |
SETMATCH assumes that {atom and {atom .} wlll correspond, rather a.
than [ atom, } and, say, {atomg atom, 3. Tt calls SINGLEMATCH to oo
map the single~gtom partitions onto the single-atom partitions. Co

Tn addition, it calls MULTIMATCH to map, in pairs, the par- a.
tions containing several atoms each.

MULTIMATCH assumes that the analogy will preserve semantic -

type sufficiently well so that atoms withina particular partition

will correspond only to atoms in one other partition. oo

Thus, if {atom atom, } ~ {atom atom, } | -
then atom, ~ atom, or atom, | a

atom, ~ atom, or atom, . : oo

| It forbids matches across partitions, such as

. atom, ~ atom, .

atom, ~ atomg | -

atom, ~ atom, , etc. .
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» SINGLEMATCH and MULTIMATCH also share a common default condition. | |

a. If all but one of the elements of a set X are mapped with all but |

| one of the elementsof a set Y, then these two elements are associ- |

ated by default without any further decision making. In SINGLEMATCH |
Su the sets X and Y are sets of atoms or partitions of atoms. |

oo SINGLEMATCH[ set, ;set, ana] may be easily described in terms of
| | | this default condition and a function called

tempsift[s, 3s, ;testinsanal. TEMPSIFT applies testfn[x;y] to the
. first element of Sq and each successive element y of 85 until |
Sl it finds a y’ € Ss such that testfn[x;y’]l = T. It then executes

| | atommateh[x;y anal, |

| increments to the next element of x” of s,, and seeks another |
ye 5, 5 such that testfn[x’:;y"] = T, etc. Thus, for every x € S15 |

| it finds the first y ¢ 55 such that testfn[x;y]l= T and executes
oo atommatch[x;y;anal. Typical testfn's check whether x and y have

ER the same semantic template or are analogs of each other according to

SRI | the developing analogy, ana. | |

Singlematch[set, jset, anal: = | oo

| | (1) If set, and set, have but one element ("terminal default
N condition"), go to 8. oo

y | (2) Execute tempsift[set ;set,stestfn, anal, where testfn, [x;y]
is true 1ff x and y have the same semantic template. |

Cy (3) If sety and set, are empty, go to 9.
If the terminal default condition is true, go to 8.

LL (4) Execute tempsift[ set, jset, jtestin, anal, where testin, [x;y]
Co is true iff the predicate letter in atom y 1s the analog

y of the predicate letter of that in atom x according to
h analogy ana.

Lo (5) If set, and set, are empty, go to 9.
| If terminal default condition holds, go to 8.



(6) Execute bempsift[set) set, testing anal, where
| testin, [x;y] is true iff the type of the predicate appear-

| ing in atom x 1s the same as the semantic type of the NB

| predicate appearing in atom y. ©

(7) If set; and set, are empty, go to 9. a.
| If the terminal default condition holds, go to 8. ol

Otherwise print an error message and halt. oo

| (8) Apply ATOMMATCH to the remaining atoms ofset, and set,. a.
(9) sTOP. | a

| | To illustrate the preceding algorithm with a simple example, let

| set, = {intersection[x;y;z], abeliangroup[x;*]]} Lo

| | set, = {intersection[u;v;w], commutativeringlu;*,+]}. IE

| At Step 2 we associate: N

intersection[x;y;z] ~intersection[u;viw]. Cs

Then, since we satisfy the terminal default condition, we associate: :

| | abelian[x;*] ~ commutativering[u;¥*;+]. | oo

| | MULTIMATCH is a little more complex than SINGLEMATCH. First BN
we need to decide which partitions are to be associated before asso=-

ciating atoms within partitions. Suppose we have two sets of par- |

titions, set, and set,. If both sets have but one partition each
(a common case), then we expect these to be associated by default -

and declare them accordingly. Secondly, if in some partition of oo

set, there is an atom with predicate p that is known to be analog- .
ous to predicate q, then the partition in set, that contains q

should be associated with that which contains p. Remember that }

these partitions were constructed on the basis of semantic templates. |
| Thus, while several atoms containing a predicate p may be in a | a.

particular partition, there will be only one partition that contains oo

atoms with predicate p. Iastly, if in set, and set, there is but
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CL one partition that contains atoms whose predicates have the same

| type ~~ e.g., STRUCTURE, viien we expect these partitions to be agso-

a ciated. Let MULTIMATCHL name the function that actually associ-

ates atoms within a partition according to analogy ana. |

. | Multimatch[set, jset anal : = |
» (1) Tf the terminal default condition for partitions holds, |

| go to 7. | |

Lo (2) Let pred[x] = the predicate letter of atom x.

BN | For each partition y , sequence through egch atom x € y. |
| | If pred[x] is on analogy ana find the partition z € set,

such that the analog of pred[x] appears in =z. Execute

oo MULTIMATCHL[ yv;z;anal for each such pair y,z.

| (3) If the terminal default condition holds, go to 7.

| | If set, and set, are empty, go to 8.

. (+) For each partition y € set, select the first atom x.
oo Find a partition =z & set, such that the type of predi- |

| | cates in z equals type[x]. If there is only one such
z € set,, execute MULTIMATCHL[y;z;anal.

(5) If the terminal default condition holds, go to 7.

if set, and set, are empty, go to 8.

J (6) If set, or set, is still not exhausted, print an error
. message and halt.

oo (7) Apply MULTIMATCHL to the remaining partitions in set,

Cy | and set, .

— | (8) STOP.

a | | Fach set of atoms in a partition has the same semantic template.
- This property defines a partition. Thus, at the level of abstrac-

a | tion provided by the templates, all of these atoms are alike and

any differences need to be discriminated by other criteria. Let us

a consider an example to motivate the design of MULTIMATCHL. The
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| theorem pair Ts ~- Ty, can be written as: |

Ts v (g,m,x,%, ) group[ g;¥, A |

| propernormal[m;g;*. | A factorstructure[x;g;m] |

A simplegroup[x;*, ] - maximalgroup[m;g;*. | | i.
, |

| I), V(rsn3ys¥, 5+.) ringlr;¥ 5+, A =

properideal[n;r;¥, ;+,] A factorstructure[y;r;n] oo

| A simpleringly;¥, ;+,] — maximalring[njr;¥, 5+]. -
First, ZORBA-I associates: N

oo maxima lgroup ~ maximalring

when it decomposes Ts - T), into subwffs distinguished by the syntax oo
of the implication sign. Later, an application of SINGLEMATCH adds:

| propernormal~ properideal .

factorstructure~ factorstructure .

Xo~ Foe _

| MULTIMATCH is passed one partition from each wif. I. contributes
{grouplg;*,], simplegroup[x;*1} , |

and T) contributes a.
{ring[r;¥, s+], simpleringly;*;+,13 . B

If we apply the MULTIMATCH algorithm just described to each of .

| these partitions, we find: -

oo | Step 1. We do not satisfy the terminal default condition. |

| Step 2. None of the predicates that appear in these par- | oo
titions appear on the current analogy. We gather |

no new information here. |



- Step 3. We stilldo not satisfy the terminal default

. condition. |

a. Step 4. We want to use MULTIMATCHL to associate the

_ atoms in these partitions.

so Of these two partitions, the former pair have the template struc-

_— ture[set joperator] and the latter pair have structure[set operator;

CJ operator]. Fortunately, our analogy has variable mapping informa-

tion that 1s quite relevant here. We know that:

Co X ~~ Na ] |

- We can assume that if some variable appears in only one atom in par-

oo tition, the analogous atom is one that contains its analog variable, |

= if it too appears in only one atom. For example, the variable "g"

a appears only in group[g;*, |, and its analog '"r" appears only in
Ld ring[r;¥, 3+, ]. So, we deduce: |

oo group[g;¥*| ~ ring[ri¥, s+] .

o A similar argument based upon |

. | leads us to deduce:

LJ simplegroup[x;¥, ] ~ simplering|y;¥, ; 5] |
|

oo although we could have also deduced this last association by our |

= terminal default condition. Notice that "%," is not a discrimi- |

- nating variable since it appears in both group[g;*. ] and |
Co simplegroup[x;*, 1. After each atom pair is associated, we apply
. ATOMMATCH to it to deduce more variable associations and update our

analogy.

i. The preceding description of MULTIMATCHL can be simplified

BN and generalized by realizing that we are just using a specialized

submap of the developing analogy to extend it further. This special
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| submap is Just that mapping of variables where each variable appears oo
in only one atom of the partition. In the preceding example, the |

submap was Just: |

X ~ Yo | | Co

Multimatch|partition, jpartition,;enal: = :

(1) Set a to a list of variables that appear in only one -
| | atom of partition, . To

| (2) Set 4, to similar list computed on partition. | oo

(3) Set anaprs = {x’' ~y'|x’ ¢ Li, ¥' € 4, and y’ is the ana- oo
log of x’ by ana}. — ~

| (4) Execute tempsift[partition, spartition, testfn jana], | oo
where testfn [u;v] is true iff for some variable pair oo
x! ~ vy’ anaprs variable x’ appears in atom u and vari- Co

able y’ appears in atom v. .

(5) STOP. =

INITIAL-MAP has been completely described. At this point we N

| have sufficient machinery to generate a mapping between the predi- N

cates and variables that appear in the statements of theorem palrs a

such as Tq - IT, and Ts =I,. Next, we want to extend this map~
| ping to include all the predicates that appeared in the proof of the -

proved theorem T and are likely to appear in the proof of the new oo

~ theorem Tye In addition, we would like to pick up a small set of ro

axioms adequate for proving Ty - EXTENDER performs both functions -
and 1s described in the next two chapters. -



Lr | V AN ELEMENTARY DESCRIPTION OF EXTENDER

A. Introduction |

B In the last chapter I described INITIAL-MAP in substantial

detail. In comparison, EXTENDER is a far more complex and subtle |

© | system, which I will explicate here less completely. I intend to

Co accomplish several simple aims with this first exposition: |

a (1) Expose the reader to the motivation and rationale under- |

Lo lying the EXTENDER design. |

oo (2) Convey some appreciation for the flavor of some well- | |
specified computational algorithms for creating an analogy. |

B a (3) Provide an intelligible, self-contained, introductory |
- account of EXTENDER adequate for the general reader, and |
oo motivate the more sophisticated specialist to continue |

wo into the next chapter for a more complete exposition.

BE The rationale of EXTENDER depends on a few simple related |
- ideas. I will begin by explicating these, then develop MAPDESCR ~~

_ the clause-description mapping operation -~— and conclude with a dis-

wd cussion of two simple versions of EXTENDER. |

" In the last section I suggested that our complete analogy could |

- be seen as the last map a, in a series a, of increasingly more
oo complete analogies. Although we may be developing several such |

- series in parallel, they all begin with the same aq -- the analogy

| produced by INITIAL-MAP. Each a, maps some subset of the predi-
cates that appear in the proof of theorem T. Fach distinct subset

will, in general, lead to a different partition of AXSET into

| (ALL, SOME, NONE}. When we search for the analog of an axiom
(clause), we will look for some clause that satisfies the analog of

oo its description under the current analogy.
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B. The Analogs of Clause Descriptions |

Each clause has a unique description, descr[ec], which has been

introduced in Chapter IIT. We will denote the analog of oo

descrlc] by some analogy as as a laescre]]. a, [descr(c]] » |
equal to a copy of descr[c] in which every predicate that appears in PR

a; is replaced by its analogous predicate. Predicates that are =
absent from a. are left untouched. For example, suppose we have oo
a trivial a,: |

| aq: abelian~ commutativering | | oo

Cr —abelian[x;*] Vv group[x;*]. Co

a, : negl abelian], pos[group]l. = deserfe, ]

| a, Lar] = neglcommutativeringl, pos[group].
Suppose we are seeking to extend a, by finding the analog of N

cy Tt is quite unlikely that we will find a clause that satisfies |
this description, (ald, 1), sinceit would be derived from some oo
{rare) theorem that relates a condition on commutative rings to a

group structure. In any event, it would not be an analog of Cy» Co
If we sought all the clauses that satisfied negl[commutativering], we oo

would be sure to include cq and Cg which at least include Cg > oy
the clause we desire: | Co

% —commutativering[x;¥;+] Vv ring[x;%;+] a

Cg —commutativering[x;¥;+] Vv commutative] *;x] . Co
Thus, sometimes we want to search for clauses that satisfy descrip- a

tions with features — e.g., neg|[commutativering] —— that contain

only predicates that appear on a particular analogy a, . Now, what
we are doing is a four-step process: A

| (1) Make a description d for an axiom clause c¢ , descrc].

(2) Create an analog description 0; [ descrlc]] for the cur-
rent analogy, as . |
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( (3) Delete from a,ldescr{c]] any feature that contains a
Co predicate that does not appear in a,. Denote this
. restriction of a;ldescrlcl] £0 o3 by a,ldescrfe]].
- (4) Search the data base for clauses that satisfy |

CJ a,ldescr[c]].

IR In our example, aldescrfc,]] = a, [a1] = neg[ comnutativering]
a G.ldescricl] is a "restriction of the analog of the description of
= c to analogy o . "Since this phrase is quite cumbersome, we
Sh. | will simply call it a "restricted description' and implicity under-

= | stand its dependence on a -
> At different times EXTENDER may seek clauses that satisfy a |

oo complete analogous description a,ldescr] or just a restricted one
ny | | a;ldescr]. In summary, EXTENDER relies upon four key notions:

oe (1) An ordered sequence of partial analogies a; -
or (2) A partition of the axioms used in proof[T] (AXSET) into

oo three disjoint sets: ALL, SOME, and NONE, | |

(3) A search for clauses that satisfy the analogs of the

description of the clauses in proof[T].

(k) A restriction of our descriptions relative to an analogy

| oo ays by including only those features with predicates oo
ol | that appear in a, . |

N C. Mapping Descriptions

| INITTAL-MAP used an operation called ATOMMATCH in a rather

| clever way to extend 1ts current analogy. likewise, EXTENDER |

uses an operation called MAPDESCR for a similar purpose. Both

- operations use abstract descriptions in order to associate their

Co | data: ATOMMATCH uses the semantic template associated with a |

Le predicate, and MAPDESCR uses the description of the clauses it is |
- associating. EXTENDER and INITIAL-MAP differ in that EXTENDER |
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generates g new partial analogy each time it activates MAPDESCR

(and the resultant mapping is new), while INITIAL-MAP uses -

| ATOMMATCH to expand one growing analogy. oo

| Each partial analogy a, 1s derived from its antecedent oo
| 0s. by adding: Co

(1) An association of one clause ax,€ SOME with one or more .
clauses from the data base. oo

(2) An association of the predicates in those clauses.

A simple example will illustrate this amply. If aq 1s the initial oo
analogy generated by INITIAI~MAP applied to the pair of theorems

| Tq - Ls , 1ts predicate map is |

| abelian~. commutativering |
intersection~ intersection. N

Suppose we know that Cr ~ Cg We would like to extend a, to a, =
| by adding: | oo

oo (2) abelian~ commutativering | oo
group~ ring. |

To motivate the structureof MAPDESCR, let us design a version oo

of it that would enable us to extend a, to a, in this example. |
MAPDESCR is charged with mapping neg[abelian], pos[group] (4) with
neg[ coomutativering], pos[ring] when it knows that: .

| aq: abelian~ commutativering

intersection ~ intersection.

First, we can eliminate neg[abelian] from A and oo
negcommutativering] from dg on the basis of @,, which associates Co
"abelian" and "commutativering. | | |

| Q,[neglabelian]] = negcommutativeringl]. Now we are Co



oo Co oo | | |

. | simply left with associating pos[group] and pos{ringl]. Since these

Co are the only two elements .ef't, have the same semantic type (STRUC-

Ny TURE), and have the same feature (pos), we can map them by default
and add |

. group ~ring | |

to a, .

J Now we can write a version of MAFDESCR that accepts as argu-

- ments two clause descriptions and an analogy a: |

= mapdescr[deser) descr, 3]: =
Co (1) vx x € descr, s.t. a,lxle descr,, delete x from descr,
ie | and a,lx] from descr, . Thus, we exclude all those
oo features we know about from a, -

(2) vx x € descr, and x € descr,, map the predicate that
oo appears in x into itself and delete x from descry

| and descr. | oo

. | (3) In the remnants of descr, and descr, : |

| (a) If there are unique elements of descr, and descr,

a | | that have the same feature — e.g., pos — and
[a semantically compatible predicates, associate those n

= | terms and delete them from the remnant descriptions.

_ Here "semantic compatibility’ means "same semantic |

I. | (b) If more than one element of descr, and descr, have | |
Ld N the same feature — e.g., pos -- then discriminate

“ | within these elements on the basis of the semantic :

od | types of thelr predicates.

oo | | (4L) Return the resultant list of paired predicates.
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| Most often, in my algebra data base, a clause description consists |

| of two, three, or four features. EXTENDER ensures that some of -

the predicates in any pair of clauses passed on to MAPDESCR are on .

as - Thus, by the time we reach Step 3 of the MAPDESCR algorithm ,
~~ we often have descriptions of length one, which map trivially by . a

default, or descriptions of length two with different features —

e.g., Pos and neg. Thus, Step 3b, which requires disambiguation

| based on predicate types, occurs rarely in this domain (abstract oo

oo algebra). .

When MAPDESCR returns a list of predicate pairs that result .

| ~ from mapping the descriptionof a clause c, (descr, above) with the o
| description of a clause c (descr, ; above) according to analogy a 5 oo

it creates a new analogy Qspy Cin is the same as a. except Co
that: ~

(1) Its predicate map is the union of the one returned by | «

MAPDESCR and the one appearing on i.
oo (2) Its clause mapping is the union of the one appearing on Lo

Thus, when EXTENDER is attempting to extend ass it creates
| a new analogy sy) 2 iio , etc. for each clause pair it maps when

| those clauses were selected on the basis of information in a, - of oo
| course, there is a procedure to see whether the predicate associ- | =

ations of a new analogy have appeared in some previously generated Lo

| analogy and thus prevent the creation of redundant analogies. In .

this case the two corresponding clauses are added to each existing :

analogy for which the predicate pairs returned by MAPDESCR are a )

subset of its predicate map. |

D. The Candidate Image Set _

| After 1 explicate one additional idea I can describe a simple

version of EXTENDER. When EXTENDER is extending G, it is |
| searching the large data base for some clause that is the analog of .

| a. oo



an axiom c, € SOME. Now we could search for the set of clauses | | |

3 that satisfy a;ldescrle ii, but we will run into the difficulty | |
oo | described earlier in this section. Thus we search for clauses that |

- satisfy 0;ldescrle, I]. If a; contains the correct analog for | |
ol each predicate that appears on it, then the set of clauses C that

He | satisfy a,ldescrle, |] is guaranteed to contain the desired analog
| of Cpe ("image" of Cpe ). We will refer to CC as the "candidate

Ls | image set." Suppose that C has but one member, c¢’/ . Then we |

know that c¢ 1s the analog (image) of c,, and should extend |

» a. 0.0 by associating oo

“ | Cy ~~ c! SE
- When the set of clauses that satisfies a restricted description con- |

cn talns one member, we are guaranteed that it is the image clause we |

RS seek if ce’ does not contain any erroneous associations. Now, if | |
i. C is empty, we have reason to suspect the correctness of a; and we
oy ought to stop developing this branch of the analogy search space. |

oo On the other hand, if C has more than one member, and a; is cor- | |
| | rect, we know that our desired image is in C. If we have a clause | |
N c¢c with description descr[c] and some analogy a, that contains -

| . only one of the predicates in c¢ , then a,ldescrlcl] will have but |
or one feature and many clauses will satisfy it. If some later

oo analogy Oy (a2 < ap) includes another predicate from c¢ in oo
— addition to the one on as then a, [descr[c]] will have two fea- |
- | tures and will be satisfied by fewer clauses than a,[descrlcl]. oo
ow Thus, as sequences of analogies evolve, each clause will have :

oo decreasingly fewer candidate images that satisfy its restricted oo

description. | |

_ | To search for the clauses that satisfy the analog of a | |
y | restricted (short) description, EXTENDER invokes an operator
~ shortdescr[@,] .  SHORTDESCR is a dependent on (, in three ways: |
Ny (1) It searches for the analogs of clauses that appear on

BN SOME (which is different for each a). |

J |



| oo (2) It generates descriptions that include only the predi- I

| cates that appear explicitly in a. oo

(3) It uses the predicate map a - | .
SHORTDESCR returns a (possibly empty) list of axioms (from | Co

| SOME) , each of which is paired with a set of clauses from the data oo

base that satisfy the analog of its restricted description. Each Co

| | axiom is guaranteed to have its analog under a; in its associated SE
"candidate image set.” If we find no candidates at all, for any .

: ax, ¢ SOME, then we know that a, contains some wrong predicate
associations, and we ought to mark it as "infertile" and discon-

tinue attempting to extend it. Of the images we find, we prefer

| those axiom-candidate associations with but one candidate image. If

‘we apply MAPDESCR to each such palr, we can be sure that we have a se

consistent extension of as. fn

| E. Simple Versions of EXTENDER i

Let us consider a primitive version of EXTENDER, EXTEND,

| which exploits these few ideas. | Fe

Extend1[, ; AXSET] : = |

| B (1) Let analist = @,)> the set of active analogies. EE

| | | (2) If a, is complete, STOP. oo

| | (3) Partition AXSET into {ALL, SOME, NONE} relative to a,-
| (4) Set imlist to shortdescr(a,]. | |

| If imlist = ¢, mark a, as BARREN and go to 7.

(5) Set unimages to the subset of imlist that has only one .

candidate analog for each axiom. |

B | If unimages = 4, go to 7. | oo

(6) Apply MAPDESCR to each axiom and its analog that appears BN

| on unimages. If MAPDESCR adds a new analogy, add it to

| | the end of analist. :
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- (7) Ir analist is cmpty., STOP. |

oo Otherwise, set a, to the next element on analist. Go |
to 2. :

| | The success of FXTENDL 1g highly dependent on the clauses in |
the data base. If there are few clauses, then it is likely that some

_ ax, ¢ SOME will have but one image under SHORTDESCR at each itera-~
or tion and that EXTENDL will be successful. As the data base

“ increases in size with ever more clauses involving predicates that

Ld will gppear in proof([T, |, it becomes more likely that SHORTDESCR
ry will generate several images for every ax, € SOME in some iteration.
Cr N At this point it will fail to extend a, and miss the analogy alto- |

| gether. To remedy this situation, we need a way of dealing with

. cases in which SHORTDESCR returns several candidate images for each

ax ¢ SOME. We need some way to select the clause from the candidate
set that is most likely to be the analogwe seek. When EXTENDER

o | meets a situation of this sort, it orders all the images according to

oo their liklihood ofbeing analogousto the ax, € AXSET with which
- they are paired. IT will initiate the description of one such order-

a ing relation by a simple example. BE

7 Consider, for example, the clause c,, and an analogy Q, that | |
SR - includes |

| oo intersection~ intersection oo

| subgroup ~subring | |

oo Cp subgroup[x;y;*] V —group[x;*¥] V —grouply;¥] v —subset[x;y]

. dys negl group], negl subset], pos[subgroup]

i. 0,[d,,] = pos[ subring].
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| Suppose our data base contains two clauses C14 and C1 that sat-

isfy ald] :

Cyqt = subring[m;r¥;+] Vv —ideal[m;r;¥3+] Co

| dy qt = neg(ideal, pos(subring) -

| Cyn subring[xja;*;+] V—aringla;*;+] Vvring[x;*;+] oo
: V subset] x;a] Co

| | dys = neg[ringl, negl[subset], pos[subring]. |

| We can compare C7 and C1 by comparing dy q and dys with -

SE (relative to a). We want a partial ordering of a set of
descriptions relative to a target description and a particular

analogy — e.g., a @qldy 3d, 5d a] ~— that orders description d, a
with respect to d,. A simple @q can be developed as follows:

Let: -

ro .Q
dy = dy - Gla | | -

| a, = dy = ald | =

| J

| For dy and a) compute the number of features — e.g. pos = in com=- .
mon with 4d’. oo

The description with the most features in common is closest to =

~~ d. In our example, we have ro

a’15 = negl[ group], neg[subset]
oo | Co

d'y1 = neg ideal] -

d’y, = neglring],neg[ subset] . | .

| / . ’ t | ro .
. Clearly, d,, 1s closerto dj, than di;, so we select dq,,

our closes description, and Cp aS the image of 10 under ay,

| After MAPDESCR maps Cig ~ Cio it will add:

| oh



CL group ~ ring

B subset ~ subset |

LL | to Q, to create an a: |

oo a: intersection ~ intersection |
or oo subgroup ~ subgroup | |

Tr | group ~ ring

subset ~ subset . | | |

A more sophisticated (pq Can look at the semantic types of predicates
~~ that share common features if two descriptions are equivalent under |

oo | the simple ¢, described above. EXTENDER uses an operator called
MULTIMAP to select the best image (using 9s) for a clause that has

CT several candidate images with a restricted description under a, -
wl Exploiting this notion, we can write a more powerful EXTENDER

-- called EXTEND2. oo

: Extend2[q., ; AXSET] : = |

oo (1) Let analist = @, ‘oo a); the list of active analogies.
Start with analist = (a). |

= | EB (2) If a. is complete, STOP. |

a (3) Partition AXSET into {ALL, SOME, NONE} relative to ae

(4) Set imlist to shortdescr[@.]. |
a. If imlist = §, mark 0; as "infertile" and go to 8.

(5) get unimages to the subset of imlist that has only one

candidate analog for each axiom.

| If unimages = 0, go to 7.

(6) Apply MAPDESCR to each axiom and its analog that appears

| on unimages. If MAPDESCR adds a new analogy, add it to

oo | the end of analist. Go to 8. |
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| | (7) Apply MULTIMAP to imlist to select an optimal candidate |

- image under oi for each axiom. Set unimages to this oo
list of axioms paired with best candidates. Go to 6.

(8) If analist is empty, STOP. |

| Otherwise, set a, to the next element on analist. Go .
to 2. oo

| This version of EXTENDER is quite powerful and will handle a | N
wide variety of theorem pairs. The implemented versions of BN

EXTENDER are far more complex than these simplified tutorial ver-

sions. They (1) allow backup, (2) have operations for combining a .
set of partial analogies into a "larger" analogy consistent with Co

all of them, (3) have a sophisticated evaluation for deciding which oo

particular axiom-candidate set to pass to MULTIMAP (in lieu of :

Step 7 above), and (4) can often localize which predicate associ~ | .

ations are contributing to an infertile analogy when one 1s generated. re

~~ Table 2 contains a brief summary of ZORBA~I's behavior when it is _.

applied to five T =~ Ly pairs drawn from abstract algebra. The oo

number ofpartial analogies generated includes a4 generated by .
INITIATL-MAP. |



BN SUMMAIKY OF ZORBA~I PERFORMANCE

- reopen | Mumber of | Number of | Number of fomber OT | Number of |
core Predicates | Predicates | Axioms in 1-08 Partial

oo Pairs . a Axioms .

in Theorem | Mapped by | Proof [T] Found. by Analogies |
-- Proof I-MAP EXTENDER by ZORBA~IL |

I. Ly - Ls 9 J 13 | 15 5

| | I ~ I), 12 5 13 17 7 |

| | I. - Tg 3 3 2X1 2% 5 |

T - Tg 5 I 6 7 2

- Tg = To | T 2 12 16 6

oo Tq : The intersection to two abelian groups is an abelian subgroup
| of the parent group. |

ny | Ts : The intersection of two commutative rings is a commutative
oo subring of the parent rings. |

T. : A factor group G/H is simple if H is a maximal normal |
| | 5 subgroup of G. |

| T), : A quotient ring A/C is simple if C is a maximal ideal in A.

oo Ts : The intersection of two normal groups is a normal group. |

- | Te + The intersection of two ideals is an ideal.

~ T : The homomorphic image of a subgroup is a subgroup.
oo Ig : The homomorphic image of a subring is a subring.

Tq : The homomorphic image of an abelian group is an abelian group.

ow Tp: The homomorphic image of a commutative ring is a commutative
ring. |
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— VI ~~ EXPERIMENTS WITH ZORBA-I

- A. Introduction

N | Our previous discussions have been rather abstract and have
| drawn upon various examples in a piecemeal fashion. Now we are |

oo ready to explore the behavior of ZORBA-I when it is applied to a

- full-scale problem. In this exposition, descriptionsof the |
° | algorithms have preceded any experimental results. This ordering |

a is pedagogically motivated, to allow briefer explanations to accom | |

Ca pany the experiments that are reported here. Also, this order

y | parallels the history of ZORBA-I's development. These algorithms
CL were first conceived during the Winter of 1969 and briefly reported
N at the Machine Intelligence Workshop held at Stanford University in
N February of that year. They were favorably received, but required

implementation and experimental validation to test their value. At

that time several key ideas were visionary leaps. Attempting to

oo reduce the size of a data base used by a theorem prover by exploiting

- an analogy was well conceived (on paper) at that time. A simple

oo form of EXTENDER involving clause descriptions and a sequence of

Co a partial analogies were integral to the conception. All of these
ideas were developed in a testable form. But there wereno guaran-

tees to their validity or value. For example, in the earliest con- |

ception, clause descriptions were static through EXTENDER's search.

There were no guarantees that different descriptions might not be

- neededat different stages of search. It turned out that both

oo approaches were needed. A static description, descr[e], is computed
— for a clause. At each stage EXTENDER uses a select subset of this |

oe | description, based on a’ to compute a restricted description, to | |
me search for analogous clanses. The notion of a restricted description,

as well as several refinements of EXTEND? that are developed in this |

chapter, were conceived after a crude version of ZORBA-I was imple-

~ mented, EXTENDER was developed in an interactive time-sharing
| | | environment (using PDP-10 LISP). It is unlikely that the program



would have progressed very far with a paper and pencil approach only. |

| A data base of 239 clauses dealing with abstract algebras, called |
| AIGBASE (Appendix B) was created to provide a sizeable set of axioms. -

No existing theorem prover could even attempt to prove any of the

theorems used 1n these experiments without trimming the data base

| substantially. On one hand, the experience gained and the resultant Sh

| successes with this large data base were invaluable to developing -
ZORBA-I, On the other hand, the massive size of the data base made

hand simulations infeasible. Fven to simply decide which clauses

| it is helpful to have a computer to quickly search the data base.

At this stage of discussion, we experience a certain creative BN
| tension, We have a set of fruitful, but untested ideas. Will they

work? I labored with ZORBA-I under this tension for over a year and h
found the successes that I am presenting here.

ZORBA-I was developed by structuring it to run on two problem BN

| pairs, TT, and Tz=1), (Table 2). Later, it was run on the remaining N
problem pair (Table 2) and successfully created the appropriate

| analogies without difficulty. In the course of its development, oo

EXTENDER underwent several changes. Fach change was accompanied by Co

a new insight into the process of analogy generation. These insights Co

will be presented in this chapter along with the algorithms that | Co
embody them. Prior to examining ZORBA-I's behavior in greater detail, -

I want to introduce a representation that will simplify our under- oo
standing of ZORBA-I's operation. | oo

B. Analogy Space

| At the highest level, we can look at ZORBA-I's behavior in terms BN
of the partial analogies that itl generates. Figure 10 portrays a .
simple space containing seven (partial) analogies.



| MULTIMAP

h SHORTDESCR / ~~ \_ SHORTDESCR |

MULTIMAP / MULTIMAP | SHORTDESCR

FIGURE 10. A SAMPLE ANALOGY SPACE

oo The arrows between the nodes that represent partial analogies

oo are labeled with SHORTDESCR and MULTIMAP, which were described in the

| last chapter. Tach of these is a search procedure for finding a |

oo clause from the data base (here AIGRASE) that is likely to be analo-

gous to a clause in AXSEL. The association of the clauses 1s used

oo | to extend a partial analogy a; to Qyyq SHORTDESCR and MULTIMAP
- can also be viewed as operators that extend {transform) one partial

- analogy into a more complete partial analogy. A great deal of com=~

ol putation is hidden below this level of description, but is determined

by 1t. For example,in Figure 10, Cg 1s extended from ay, by
oo | SHORTDESCR. We know that a, induces a unique partition of AXSET

into allla}], some[a}] and noae[q; | (Chapter III). Since 0
B is the only extension of (@, we presume that SHORTDESCR found oaly
N one ax, € SOME with but one image, Cy We know that descr(ax ] is

matched with deser[e,] to create the new a.” -

| 80



A great deal of ZORBA=I's behavior can be concisely represented oo

by the analogy space representation of Figure 10. It presents Lo

| ZORBA's decision procedures explicitly by showing which partial |

analogles are directly related, and, implicitly which operators

| failed. For example, we know that shortdescr(G,] failed if MULTI- |
| | MAP is used to extend a. Here each a, is the abstract set of o

| maps defined in Chapter III. As our discussion unfolds, a partial

analogy will become more concrete as it is elaborated through vari- Co

ous examples. “oo

| C. ZORBA-I in Action oo

| We are just about ready to watch ZORBA~I generate an analogy.

Let's consider the theorem pair T, - T,. oo

| Lye The intersection of two abelian groups is an abelian sub- N
group of the parent groups. i.

I: The intersection of two commutative rings is a commuta~ -
tive subring of the parent rings. | -

Suppose a theorem-prover (QA3) has proved I, and wants to | a
| prove TI,. Furthermore, suppose it knows that i and T, are analo- oo

gous . | oo

ZORBA-T is given the following information: Co

1)" T./ % a
| 1: V(a bc *) abelian[a;x] V abelian[b;*] Vv inter- | .

section[csaib] —absubgroup[c;a;*] |

(2) T,": V(x yv z ¥ +) commring[x;¥;+] V commring[y;¥;+] to
V intersection[z;x;y] —commsubring[z;x;¥*;+]., -

w | |

| See Appendix A for the definitions of these predicate symbols | =
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| (3) The (resolution) proof tree of theorem Tr, (Table 3) from
_ which it extracts AXSET., the set of axioms used in the proof | |

NB (Table 4). |

| These three items are problem-dependent. In addition, ZORBA-T
N can refer to the semantic template (Appendix A) of any predicate, and

oo it can access a large data base. In these experiments ALGBASE

(Appendix B) is the data base used. |

When ZORBA-I starts on the problem just presented, it first exe- |

» cutes initial-map[T; I; to find analogs for the predicates inter- | |
| section, abelian, and absubgroup with members of the set

{intersection, commring, commsubring}. This process was described
tJ

in some detall in Chapter III. INITIAL-MAP outputs a single analogy

Oy | |

| a,” intersection ~ intersection

uN | abelian ~ commring

-- oo absubgroup ~ commsubring - |

Bh Next, EXTENDER is applied to @, and it attempts to find an
N | analog for each axiom in AXSET. In the process, it generates a

= | sequence of several analogies (Table 5) which terminates in a com-

— plete analogy (Table 6). | | |

Table 3 | |

— RESOLUTION PROOF OF THEOREM T.

Co . - |
1 sbelian[al, stark] negation of theorem

BN 2  group[x, star]-abelian[x, star] axiom
3  group|al,star 4] from 1,2

- L  abelian[bl,stark] negation of theorem

N | continued

re | |

_ See Appendix A for definition of predicate symbols and Appendix B
| for description of clause format.



Table 3
Continued -

5 group| bl,stark] | negation ol theorem oo

6 intersection[xl,al,bl] from 4,2
7  group[k,star] - intersection[k,g,h] |

~group|g,star] -group[h,star] axiom o

8 groupl[xl,star] =-groupl[al,star] | To
-group|[bl,star] from 6,7

9 group[xl,stark] -group[al,stark] from 5,8 oo
10  group|xl,stari] from 3,9

| 11  subset[x,y] =intersection[x,y,z] axiom
12 subset[xl,al] from 6,11 Bh

| 13  subgroup[h,g,star] -subset[h,g] | |
-grouplg,star] -group[h,star] axiom oo

| 1 subgroup[xl,al,star] -group[al,star] oo
-group[x1l,star] from 12,13

15 subgroup xl,al,stark] -group[xl,stark] from 3 ,1k SE

16 subgroup[ x1,al,stark] | from 10,15 CL
17  ~absubgroupl[xl,al,stark] negation of theorem -

18 absubgroup| x,y, star] ~abelian[x,star] oo
~subgroup[x,y,star] axiom

| 19 -abelian[xl,starlt] ~subgroup[xl,al,stark] from17,18 |
20  =-abelian[xl,stark] | from 16,19 .

21 abelian[g,star] -groupl[g,star] | | oo
~commutative[ star,g] axiom CL

22  abelian[xl,starl] -commutativelstark,xl1] from 10,21 BN

23  ~commutative|stark ,x1] from 20,22 |
24 commutative[star,s] in[skb[star,sl,s] axiom

| 25 in| skd[ stark,x1] from 23,24 a.

| 26  inla,z] -inl[a,x] -
~intersection[x,y,z] axiom -

27  inf[a,bl] -in[a,x1] from 6,26

| 28  in[skh[stark,x1]bl] from 25,27 BN

29  commutative[star,g] ~abelian[g,star] axiom N
30 cormutative[stark ,bl] from 4,29

: oo



i | Table 3 |
N Continued

— 31  commutative[star,s] in[sk3[star,sls] axiom |

oo 32  in[sk3[stark,x1],x1] from 2%,31 |

i. 33  in[sk3[stark,x1],bl] | from 32,27 |

oo 34 commutative[star,s] ~times[star,skh[star,sl,sk3[star,sl,cl__. =

BE 35  ~times[stark,skh|starlk,x1],sk3[stark ,x1],c] from 23% ,3k

_ 36  commutative[star,s] |
times[star,sk3[star,s],skh[star,s],sk5[star,s]] axiom

Nn 37  times[starh,sk3[stark,x1],skl[stark ,x1],sk5]stark,x1]] from 23

. 38  times[star,b,a,c] -in[a,s]
i -in[b,s] ~times[star,a,b,c]

-commutative[star,s] axiom

| 39  times[starh,skb{stark,x1],sk3[ stark,,x1],c] ~in[sk3[stark,x1]s]
_ ~in[ski[ stark ,x1],s] ~commutativelstarh,s] from 37,38

oo 10  -in[sk3[stark,xl]l,s] -in[skh[stark,xl],s] | |
| | -commutative[ stark ,s] | from 35,39
od

Ll -in[ skh [stark ,x1],b 1]-commutative[ stark ,bl] from 33,40
. Lo  ~in[skW[stark,x1],bl] from 30,41

| 4% contradiction from 28,42

Sy



Table b |

| AXSET FOR ABSGPT (THEOREM T.) oo

ABSGPT~1 group[x;star] V—abelian x;star] .
neglabelian] pos[group] En

ABSGPT~2  grouplk;star] Vv —intersection[k;g;hl] Vv —grouplg;star]
| V —group[h;star] .

| neg| intersection] impcond[ group] | |

ABSGPT-3  subset[x;y] V—intersection[x;y;z] N
neg| intersection]  pos[subset]

| ABSGPT~4  subgroup[h;g;star] Vv —subset[h;g]Vv mgrouplg;star]
V —group|histar]

neg group]  negl[subset]  pos| subgroup] | oo

ABSGPT-5  absubgroup|[x;y;star] Vabelian[xjstar] V —subgroup[x;y;star] Co
neg[ subgroup]  negl[abelian] pos[ absubgroup]

| ABSGPT~-6  abelian[g;star] Vv —group[g;starl] V —commutative[star;g]
negcommutative] negl[group pos{abelian] oo

ABSGPT~7  commutative[star;s] Vv in[skl(star;s),s] | |
| pos[in]  pos[commutative] vo

ABSGPT-8  in[ajz] vin[aj;x] Vv inbersection[x;y;z] oo
negl intersection] impcond[in] | Co

~ ABSGPT-9  commutative[ star;g] Vv Tabelian[gsgstarl]
negl abelian]  pos[commutative] | oo

ABSGPT-10 commutative[star;s] Vv in[sk3(star;s),s] oo
pos[in]  pos[commutative]

ABSGPT-11 commutative[ stars] Vv —times[star;skh(star,s), sk3(star;s),c]
pos[in]  pos[commutative] |

ABSGPT-12 commutative[star;s] Vv times[star;sk3(star,s),skk(star,s), N

pos[times]  pos[commutative] |

| ARSGPT~13 times[star;biajc] vinl[a;s] Vvin[bss] Vv—times[star;a;b;c] a.
| V commutative star;s]

negcommutative] neglin]  impcond[times] oo

| | 35 | |



- | Table 5

ANATOGY SEARCH SPACE FOR |

» | a,

a intersection~ intersection
Ld | abelian~ abelian

bo ~~ i 1 yd. absubgroup ~ comuring |
N | snormoEsca

oo | ABSGPT~5 ~ AX127-1 a a,
(ABSGPT-1 ~ AX33-1
ABSGPT-2 ~ AXWT1) subgroup ~ Subring |

» | | | MULTTMAP-1

- / a |

. ABSGPI-U ~ AX12-1 fo > |
oo (ABSCPT-3 ~({AX9-1;AX9-21) \ subset~ subset | |
I. | group~ ring |

B | MULTTMAP-1

| (ABSGPT-9 ~ AX1h2-1) |

<3 \ commitative ~ commutative |

_ MULTTMAP-1 |

. ABSGPT-13 ~ AX51-1 / a_ N\
| | (ABSGPT-7 ~ [AX51-1, AX51-2} g \ |
- ABSGPT~8 ~ {AX60~-1,AX60~2,AX60-31 | in~ in |
. ABSGPT-10 ~ {AX52-1, AX52-2) \. times ~ times /

| ABSGPT-11 ~ AX52-k tre”

: J | ABSGPT-12 ~ AX52-3)
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Table ©

COMPLETE ANALOGY (as) 'OR ABSGPT

a’ =a: intersection ~ intersection | .
| abelian~ commutative co

absubgroup~~ commsubring

subgroup~~ subring .

| subset~~ subset oo

| group ~ ring |
| | commutative~ commutative |

in~ in |

times~ times

gf = a : ABSGPT-1~ AX33-1 | oo
| ABSGPT-2 ~ AXLT7-1 co

ABSGFPT-3 ~ fAX9-1; AX9-2} oo
| ABSGPT~4 ~ AX12-1

ABSGPT~5 ~ AX127-1 | .

| ABSGPT~6 ~ AX38-1

ABSGPT~7~ {AX51-1; AXS51-2} |

ABSGPT=8 ~ {AX60-1; AX60~2; AX60~31}

| ABSGPT-9 ~ AX1ho-1 | |

a ABSGPT-10 ~ {AX52-1; AX52-2}
© ABSGPT-11 ~ AX52-k4 .

ABSGPT~12 ~ AX52-3 | |

ABSGPT~13 ~ AXS1~1 oo

he ABSGPT~j axioms from AXSET appear in Table 4 and the AXn~k oo
axioms from ALGBASE appear in Table7.
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- Table 7 |

CLAUSES FROM ALGBASE (Appendix B) | |

ANALOGOUS TO AXSET FOR ABSGP {Table L) |
|

nN AX9-1 subset{x,y] Vv —~intersection[x,y,z] |
neg| intersection], pos[subset] |

AXQ=2 subset[x,z] V —intersection[x,y,z] |
A negl[ intersection), pos[subset] |

| AX12-1 subring[x,a,star,plus] V —ringla,star,plus]
| —subset[x,a}] V —ring{x,star,plus] |

neg subset], neg[ringl, pos[subring] |

oo AX33-1 ring[r,star,plus] V —commringr,star, plus]
oo neg| coomring], pos|[ring]

| AX38-1 commring,star,plus} V-qringer,star,plus]
- — commutative star;r]

. neg commutative] neg[ring] pos|[commring]

AXhT~-1 ring[x,star,plus]V —ringla,star,plus]
—ring[b,star,plus] V —intersection[x,a,b]

_- neg[intersection] impcond|ring]

oo | AX51-1 times star,b,a,sk73[b,a,star,s]] V—=in[a,s]Vv
—in[b,s]V—times[star,a,b,sk73[b,a,star,s]]V
— commutativel star,s]

- negcommutative] negl[in] impcond[times]

oo AX52-~1 comm[star,s] Vv in{sk75[star,s],s]
| pos[in] pos commutative]

B AX52 = commutative[star,s] Vv in[sk76[star,s],sl |
Co pos[in] pos|[commutative]

AX52-3 commutative[star,s}vtimes[star,sk75[star,si,sk76[star,s]v
Lo [star,s]]

» | pos[ times] pos{commutative]

AX52 = commutative star,s] vtimes[star,sk76[star,s],sk75][star, 5], cl
oo neg[times] pos[commutative]

AX60-1 in[x,clVv —in[x,alVv
—in[x,b]V—ointersection][c,a,b]

» neg intersection] impcond[in]
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AX60~2 in[x,b] v—in[x,c] v oo
—intersection[c,a,b] =
negl intersection] impcond[in]

| AX60-3 in[x,alvin[x,clv
| —intersection[c,a,b] oo

negl intersection] impcond[in] .

| AX127-1 commsubring[x,y,star,plus]V—commring[x,star,plus] _
—subring[x,v,star,plus]

~~ neg[subring] neglcommring] pos[commsubring] 2

| AX1L2-1 commutativel star,r}Vv—commring|r,star,plus] -
| neg commring] pos|[commutative] ~

AX1Y2-2 ring[r,star,plus]yV— comring[r,star,plus] oo
| negcommring| pos[ring]

AX1h3-1 commring[r,star,plus] Vvcommutative[star,r] .
= ring[r,star,plus]
negl ring! negcommutative] pos|commring] no

| .

| oo



. |

u Table 5 presents an elaborated version of the analogy space

search that was introduced in Figure 10, Each partial analogy,
=

7 , 1s depicted with the incremental information it adds to a, 7
For example, Qs is shown associating the predicates

Co commutative ~ commutative and the clauses ABSGPT-6 ~ AX38-1. This

= means that

a = a; U commutative ~commutative.
n ay was created by associating the axiom ABSGPT~-6 from AXSET |
a (Table 4) with the clause AX38-1 from ALGBASE (Table 7).

The clause agsoclations that appear in parentheses next to the

. node representing Ox contaln an association between ABSGPI~35
o (from AXSET) and {AX9-1, AX9-2} (from AIGBASE). Both of these |

oo clauses from ALGBASE satisfy Ql descr[ ABSGPT-311, and they are
- assoclated after 0x is created: ©

ABSGPT-3: —intersection[x;y;z] V subset{x;y].

a; contains the analogs of both predicates that appearin ABSGPT-3.
Consequently, we can immediately seek its analog after creating az .

- Certainly, no descendant partial analogy a, (3 > 3) will add any
oo new information to aid us in finding the analog of this axiom. In

- addition, we can see that a, is created from a, by the applica-
a tion of an operator MULTIMAPL, which is a close relative of MULTIMAP

i and will be described below. ZORBA=~I generates a complete analogy oo

Qe as the fifth term in a sequence of fertile partial analogies.

EE Now, this description of ZORBA~I is quite informative to a per-

_- son intimate with the algorithms employed. Substantial computation

L that 1s integral to ZORBA-1 is unrepresented in Table 5 and needs to

Up: Xx

For simplicity we will refer to {AX9-1l, AX9-2} as the image of |
or ABSGPT-3, since these two clauses are description-equivalent. We |
- will speak of (candidate) images of an axiom when these are two
7 or more sets of clauses that are not description~equivalent.

. © | |



be elaborated for an uninitiated reader. For example, SHORTDESCR .

searched for the images of many clauses (SOME) when extending a, oo
| and found that one clause (ABSGPT-5) had but one image. The -

results of the other searches are omitted in the "analogy space pro- .

tocol" representedin Table 5. MULTIMAPL is used to select a .

oo likely image clause for an axiom that has more than candidate image -

~ based on heuristic ordering function gq, (Chapter V). | BN

Table 8 fills in a sample of this detail in portraying a little

of the information flow through SHORTDESCR. We can see that

shortdescr[Q, | finds at least one candidate image for each clause in .
SOME. Only one axiom (ABSGPT~5 from Table 4) has only one candidate

image. It is passed onto MAPDESCR to create a; from a; and the
predicate associations that arise from mapping the description of |

 ABSGPT-5 with the description of AX127-1. oo

A new analogy a, is created and is checked to see whether |

| a; C 0; for any a,- Here, the only analogy generated so far
is ab ¢ ay . (In fact, a; © a; .) Referring to Table 7 we see
how @, is created from @, by SHORIDESCR associating ABSGPT-5

| | with AX127 ~1. We can also see that this association adds | oo

subgroup ~ subgroup | | a

| to ay and creates a larger a; : |

as : intersection~ intersection -
| | abelian~ commring .

abeligansubgp ~~commring | -

| subgroup ~~ subring .

Finally, G0, is added to the list of active analogies, and since it -
| is the only unextended analogy, it is extended next. 7

a! |



WE : . |

Cy oo | Table 8 |

Cy | SEGMENT OF PROTOCOL FROM EXTENDER SEARCH

B | EXTEND OC (generated by INITIAL-MAP) :

- oo | PARTITION AXSET g
h

a | SOME = {ABSGPT-1; ABSGPT-2; ABSGPT-%; ABSGPI-5; ABSGPT-8; |

7 NONE = {ABSGPT~L; ABSGPT-7; ABSGPT-10; ABSGPT-11l; ABSGPT-12: :
BN ABSGPT~13] !

| APPLY SHORTDESCR TO SOME ol

BN ABSGPT~1 has 7candidate Images under as BN :

CJ oo | ABSGPT~2 has 9 candidate images under a: j
co ABSGPT~3 has 9 candidate images under as

ABSGPT-5 has 1 candidate image under a; :

N | | ABSGPT-6 has © candidate images under ay : |

ABSGPT~8 has 9 candidate images under a; i

CL | | ABSGPT~O has [ candidate images under ah | |
a Select axioms from AXSET with 1 candidate image |- | | APPLY MAPSESCR to ABSGPT-5 and AX127-1

| | Create Gs
a a, is a new partial analogy
a Select the next partial analogy to extend : G, |



Table 8

(Concluded)

PARTITION AXSET | =

| ALL = {ABSGPT-5} |

| SOME = {ABSGPT-1, ABSGPT-2, ABSGPT-3, ABSGPT-4, ABSGPT-6, =
ABSGPT-8, ABSGPT-9}

: NONE = {ABSGPT-7, ABSGPT-10, ABSGPT-11, ABSGPT-12, ABSGPT-13} |

| APPLY SHORTDESCR to SOME -.

N SELECT BUGSET SOME | | i.
od BUTSET = {ABSGPT-L] | .

ABSGPT=4 has 3 candidate images under a, .

| | APPLY MULTTMAPL to ABSGPT-4 and its candidate images: N

: [(AX12-1, AX126-2, AX128-1) |

: ORDER the candidate image set by g,: AX12-1 is the best can- | BN
: didate : .

: APPLY MAPDESCR to ABSGPT-4 and AX12-1 a. B

CREATE C.;. B |

| c; is a new partial analogy .
SELECT the next partial analogy to extend: Gs a.

; PARTITTON AXSET .
ALL = [ABSGPT-1, ABSGPT-2, ABSGPT-3, ABSGPT-L, ABSGPT-5}

Co SOME = {ABSGPT~6, ABSGPT~8, ABSGPT-9] ;

; NONE = {ABSGPT~7, ABSGPT-10, ABSGPT-1l, ABSGPT-12, ABSGFT-13} |



: | AXSET is partitioned with respect to a,” (Table 8a), and we are
| ready to execute shortdescr|Q, | in a little detail (Table 8a): |

: | SOME[,]: = {ABSGPT-1, ABSGPT-2, ABSGPT~3, ABSGPT-L,
| ABSGPT=0, ABSGPT~3, ABSGPT~9}

ABSGPT-4: —group[ h,*1} V —group[g;*] V —subset{h;e’

| V subgrouplh;g;*]

| ABSGPT=6: — commutative [*;g] V —group[g;¥]Vv avelianl gl

CL) |

a | a," [descr ABSGPT-E] = 0," [descr ABSGPT-6] = pos! abelian].

y Since oi does not add any information to a about addi=io:
predicates in ABSGPT-6, the search for any clauses that satisfy 2%.

regtrichted descepticn will Ta 1dertical in shortdescr{a.]. In corn
To Vad

trast, a.” did add the sralog of the predicate SUBGROUP which
appearsin ABSGPT~4 :

— a, "[descr[ ABSGPT-4]] < 0," [descr[ABSGPT-} ] = pos subgroup;.

" | ~~ We expect that a, will enhance our ability to search for the
oo | analog of ABSGPT-k, but will add nothing to our search for the

3 | analog of ABSGPT-6. shortdescr(q,] should seek the analog of
= | ABSGPT~L (and any clauses thet 1t similarly effects) and skip over

uN | those clauses that do not contain predicates that a,” added to
a," In this case, ABSGPT-4 is the only clause that a," informs

» us about. (The only other clause in AXSET that references the
predicate SUBGROUP was used to create a,)- Often, but not in this

oo | problem, the "budding set" contains several members.

~ Definition: An axiom ax, € some, ] is a member of budset [3]
| | iff ax includes some predicate p that is contained (with analog)

D p a. ie the immed:in : ~ QF. where (. ig the Immediate parent of (J.-.
| 3 J-1’ J-1 P J

CL | olli



By limiting our searches in SHORTDESCR to BUDSET, we eliminate |

much excess computation. For example, here some[@, contains seven
axioms, but we will only search for an extension to a, with one of -
them. When the data base D is large, these searches are rather -

costly, and the restriction of SHORTDESCR to BUDSET is important for

computational efficiency. In addition to this pragmatic issue, we a
have an important theoretical observation. Suppose a clause 2%
in budset(q,] fails to have an image under as- If we can assume |
that the appropriate analog of ax, 1s in D and satisfies }

aldescr[ax, |] for the correct analogy (0, then we know that a,” a
contains at least one faulty predicate association. Clearly, this Lo

| improper assoclation is in the set a,” - a”; 1: since previously | oy
(at Gs 1) we had either (1) no search ax, € none[d, 1). The use

: of BUDGET enables us to localize the error in a faulty a, when one -
arises.

Let's return to our discussion of EXTEND-3's behavior with | oo

T= Tyo Shortdescr[a,] is invoked to search for the image of oo
| pbudset[q,] and finds that one axiom (ABSGPT-L4) has an image set. It

then uses MULTIMAP-1 to order the image set by ¢, (Chapter V) and
associates ABSGPT-4 with the most likely candidate clause (AX12-1)

| from ALGBASE. MAPDESCR is invoked again, and a new partial analogy, oo

| Qs - is created. FXTENDER lterates agaln and continues its process oo
until it finds the complete analogy (Table 5). ce

By now the reader should have a good grasp of ZORBA-I's inner

| processes. In order to follow its behavior through the remaining

experiments that it performed, I need to describe two operators that :

| extend a partial analogy. First, we need to explore MULTIMAP, which co

was introduced in the last chapter with EXTENDERZ, Then, we can Lo

consider a new kind of operation (called CHUNK) which can accrete -

("chunk") one "superanalogy' from merging two or more partial analo- -

| | gies. N
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» | | | : | | |

LC MULTIMAP was described (Chapter V) as an extension process that

. | allows MAPDESCR to be applied to an axiom ax, € SOME, and the most |
- likely of several candidates that are ordered by a likelihood funce

- “tion Pq A simple 04 has already been outlined, and MULTIMAP
was described as applying MAPDESCR to each axiom with more than

| one candidate image. In our preceding discussion we considered =

Co simpler version of MULTIMAP, called MULTIMAPL. This operation

attempts to extend a. only if SHORTDESCR failed and budsetia |
a | had but one member with more than one candidate image. These

: candidates te] are ordered by u and MAPDESCR, applied to | |
- ay and the best clause, Cp > under this ordering. This procedure

CL is adequate for generating an analogy for TI, - T, (Table 5). This oo
oo particular problem is the only one of the difficult four (Table 2;

that can be solved with only SHORTDESCR and MULTIMAPL. We need bo |
N } discuss how ZORBA-I behaves when SHORTDESCR fails and BUDSET con

tains several members, each with several candidate images, as well

oY as the behavior of ZORBA-I when SHORTDESCR succeeds with a BUDSET

oo with several members. We will discuss the first item next.

a D. An Pxample of MULTIMAP

oo In our preceding example, each partial analogy could be extended

oo | by the application of SHORTDESCR on MULTIMAPL. If shortdescr(a,]
failed, then only one clause (ax, ) in budset had more than one can-

a didate image. a; could be extended by ordering the candidate
ay | image set by ©4 and associating the best candidate with ax,

oo | This serendipitous srrangement occurs rarely if shortdescr[a,] fails.
i Typically, if shortdescr[a.] failg, several clauses will have more

than one candidate image. We are then faced with twc decisions:

| NB (1) Which ax, in BUDSET shall we decide to map with their
- | | candidate images?

Li | | (2) Which candidate image shall be selected for each clause?



We have already decided the answer to Question 2 by using ed

| to order the candidates. Our answer to Question 1 is really at | |

issue here. We have several choices: a

| (1) Extend a, to several distinct partial analogies by | |
pairing each ax, BUDSET with its best candidate image

| under Pq e

| (2) Extend a. to one partial analogy by pairing only one |
| : ax, € BUDSET with its best candidate image under 9g °

| | - ZORBA-I chooses the last of these three alternatives for two so

reasons: | Co

(1) Two extensions of the same analogy often result in | Co

redundant searches. (This issue is discussed in a

oo | Section E of this chapter.) oo

| | (2) More than one extension of an analogy at each stage of

iteration will enlarge the search space exponentially. oo

| Now, we know (Chapter V) that if a [descr (ax, )] yields Co
| a candidate image set with more than one member, we can oc

| expect that our desired image is in this set if a,” is 2
| valid. If we extend CG; by mapping only one ax, € BUD- _—

| SET, we will pick up the remaining elements of BUDSET at

some other level (k>j) of iteration.

: We need some oleqsc,] that will order the clauses in BUDSET oo
based on their (heuristic) desirability. ZORBA-I uses two criterias

| in ordering BUDSET (relative to 0): | -

| | (1) If a clause c,» has more features available (based on oo

N 0 [descrlc]] than a clause Cy, WE should prefer cy to a
Cpe Fach feature gvaillable in the restricted descrip- Po

| tion helps us narrow the search for its desired candil=- ;

date image. oo



] (2) If two clauses «c¢, and c, are equivalent by the pre- |
BN ceding criterion, then we might prefer Cy to C,, by a
N second criterion, Pa is a heuristic ordering function;

| it might give us the wrong image for a particular clause. |

If we add fewer new predicates to a,” we take less risk |
oo in a. than if we add more predicates (and err).
| | ZORBA-I uses both criteria in their obvious order to create a |
h clause-ordering function PQ Since we have a ?. that 1s oriented
oo toward providing the clause that will give us additional information

- | at the least risk, MULTIMAP runs ¢, over SOME. Occasionally, ?, I
Co will prefer clauses that do not appear in BUDSET since their |

Lo | restricted description has more features than that of any clause in | )

- BUDSET. (The following example will illustrate this point more

» fully.) Using > we can write MULTIMAP as follows:

- Multinap(a,] := |
= (1) Order budsetla, | by PD, described above.
a (2) Select the best element ax of SOME. |

(3) Find the set fe.) of clauses from the data base that

satlsly a;[descr (ax, )] . | |

ry oo (4) Order fe, by © ° |

or (5) Apply MAPDESCR to ax, and C42 the best clause in fe,].
a (6) Check to see if mapdescr[ax sc. ] U 0,” creates a new
vod D } . ’

Qs . If so, create ST) and exit.

. (7) set ax, to the next best element of budset[a,].
i If all have been tried, executean error. Otherwise, go to (3).

oy We have just defined MULTIMAP as it is used by ZORBA-~I. Both

. ©. and (pg Bre treated as functional parameters, and we can have a
| family of MULTIMAP operators with each one having a particular pair |

= of heuristic ordering functions ¢, and oy -

a | 98



We are now ready to consider a particular example, I - Tg5
from Table 2. The analogy-space search for this pair of theorems

is shown in Table 9.  SHORTDESCR and MULTIMAP are invoked alter- oo

nately to generate a final complete analogy Qs Since Ts con- oo
cerns a property of intersecting normal groups, this problem pair is oo

| | referred to as INTNOR. The axioms (AXSET) are listed in Table10 -

and the reader is referred to the listing of ALGBASE in Appendix B. co

| To check which axioms are paired with them in Table 9, let's | oo

look at an iteration of EXTENDER that invokes MULTIMAP. EXTENDER oo

| finds that shortdescr(a, | fails. It then orders some[ ] as in CL
Table 11. These clauses fall into three 9, -equivalent groups. . -

| The first group, INTNOR~15...INTNOR-19, could add one predicate to Co

| ox and have two features gvailable for a search. A second set Co
composed of {INTNOR-1, INTNOR-2, INTNOR-3, INTNOR-53} also could add

one predicate to o , but have a restricted description with only a
one feature. The last set is composed of but one axiom, INTNOR-21,

which could add three predicates to a,” if its analog were found. oo
0" add subset~ subset to a,” and budset [a] equals {INTNOR-5}. -

However,we don't want to search for the image of INTNOR-5 in oo

preference to any of the clauses preferred by PD. * The clauses of _
the first set in Table 11 have fewer candidate images than the So

| clauses in the two lower-ranking sets. The last column lists the | gs

number of clauses that satisfy 0 [descrax, 1] for each axy in Lo
some[@] . If we choose a clause that has only three candidate -
images in preference to one with nine, we can assume that 0g will oo

have an easier time in ordering the get. This is not necessarily oo

true, and is purely a heuristic decision, We decide to choose a

| clause with the fewest candidate images to extend a. Now, we NB
don't want to search for the candidate images of every axiom in oo

some[d | , since these searches are expensive. Thus, we use the ©, oo
| above to order clauses by their likelihood of having a small candi- oo

date image set. The criterion is simple: as the number of features so

in a restricted description of a clause increases, 1ts candidate [
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| Table 9

. ANALOGY STARCH SPACE FOR

| I. - T, ANALOGY

| | From INITIAL-MAP / a, | \
| (INTNOR-L4 ~ AXAT-1) eroup ~ ring | |

eo | | \ intersection ~ intersection |
| | No normal ~ ideal /

J | INTNOR-20 ~ AX128-1 | MUTT TMAD |

Co | INTNOR-9 ~ {AX148-1, AX149-11} / a
iE | { INTNOR-10 ~ {AX1h8-2, AX1L8-2} : : |

| \ Subgroup ~ subring |

= | | SHORTDESCR | .
oo | INTNOR-8 ~ AX12-1 / Qs |

(INTNOR-6 ~ [AX9-1, AX9-2} ;j \ ~ sub |

3 | | INTNOR-11 ~ {AX148-31) Subset subset

| | | MULT IMAP | |

a | INTWOR-10 ~ {AX120-6, AX120-7, AX129-8}  —¥_
- ! ({ INTNOR-1, INTNOR-2, INTNOR-3} ~ Oy |
} | | {AX60-1, AX60-2, AX60-3} /
a | | INTNOR-5 ~ AX10-2 hn |

| { INTNOR-16, INTNOR-17, INTNOR-183~ |
1 {AX129-6, AX129-7, AX129-81) Vs | |

h | | | SHORTDESCR

\ | / Cs \ |
| INTNOR~-21 ~ {AX128-2, AX128-3, oo ~ aE

AX128-4} Times ~ times | |
inverse ~ inverse / :
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Table 10

AXSET FOR THEOREM Ts | Co

: Ts : The intersection of two normal groups is a normal
| group 2 .

XE group g;*] A normalla;g;*] A normall[b;g;¥] |
oo : A intersection[c;a;b] —normallc;g;*] : | .

INTNOR-1  in[xjc] Vv —in[x;al v —in[x;b] V —intersection[c;a;b] ; .
| oo negl intersection], impcond|in] ;

INTNOR-2  in[x3;bl Vv —in[x;c] V —intersection[cya;b] :
neg| intersection], impcond[in] B oe

INTNOR->  in[xjal V —in[xjc] Vv —intersection[c;a;b] ] |
| negl intersection], impcond|in] : =

oo INTNOR-4  group[k;star] Vv —intersection[k;g;h] Vv —group|g;star] | oo
FT V —group[h;star] -
: negintersection], impcond[group] : |

{| INTNOR-5  infa,y) V —inf[ajx] V —sybset[x;y] a
| : negl subset], impcond{in] ! a

INTNOR-6  subset[x,y] V —intersection[x;y;z] :
| neg| intersection], pos|[subset] ; rs

; INTNOR-7  subset[x;z] V —intersection[x;y;z] oo
negl intersection], pos[subset] -

| TNTNOR-8 subgroupl[higsstarl Vv —grouplh;star] Vv —group|g;star] .
: V —subset[h;g] NE
1 negl subset], negl[group], pos{ subgroup] ;

: INTNOR-Q  groupl[hjistar] Vv —subgrouplh;g;star] :
: neg| subgroup), pos[group] ] oo

INTNOR-10 groupfg;star] Vv —subgroup[h;g;star] Co
| neg| subgroup}, pos[group] i oo

INTNOR-11 subsetlhigl V —subgroup[h;g;star] : oo

| : neg[ subgroup], pos[subset] : a
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CL Table 10 |
R | (Concluded) | |

| | A
Sn i INNINOR-12 normall[higi;star] Vv —subgroup[hi;g;star] v —in[sk :
So (star;g;h] shi f
oT neg[in]  neglsubgroup]  pos[normal] !

a - I INTNOR-13 normal[h;g;star] V — subgroup[h;g;star} v J
Lo —inverse[star;skS1l(star;g;h); skb9lstar;gin)] :

: ~ pos[inverse neg[subgroup] pos|normall y

cL §  INTNOR-14 normall[h;g;star] V —subgroup[h;g;star] v ! |
times[ star ;sk50(star;g;hl; sk51[star;g;hl; |

Fo : skb52[star;gsh)] :
oo a. pos[times) neg subgroup] pos[normall ;

§ INTNOR~15 normallhjg;star] Vv —subgrouplh;g;star] v times[stax;
oo : skh9(star;g;h); skh8(star;g:;h); sk50(star;z;h)] !
SEE pos[times] neg|subgroup! pos[normall] )

oo | : INTNOR-16 normal[h;g;star] Vv —subgroup[h;g;star] | ;
l vo in[skb1L(star;g;h)el i
: pos{in]  negfsubgroup] pos[normal] i

| E NTNOR-17 mnormall[hsg;star] V —subgrouplh;g;star] :
oT x V in sk50(star;gsh); Gl :

3 pos[in]  negl subgroup]  pos{normal] ;
i

~ i INTNOR-18 normallh;g;star V —subgroup[h;g;star] !
: v in[skh9(star;gsh); gl ;

oo | pos[in]  negl[subgroup]  pos[normal] ]
| | INTNOR-19 normallh;g;star] v — subgrouplh;g;star] |
i ] Vv in] skb8(star;g;h); HI ;

| ; pos[in]  negl[subgroup]  pos[normall

. : INTNOR-20 subgroupl[h:gsstar] V —normal[h;g;star] 8
od | neg[normal]  pos[subgroup] ;

| INTNOR-21 infush] Vv —in[hhih] v —in[gg;gl i
| Vv —in[yigl V —in[m;gl Vv —times|star;gg;hh;y] !

» : V —times[star;yimiul v inverse starim;gg] |
V —normal[h;g star] Ck

; neg[normal] negl[inverse] neg[times] impcond[in] i
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| Table 11 |

SOME[Q,] ORDERED BY q FOR MULTTMAP | .

| The Predi~ Number of |
» cate Axiom | | | Clauses from :

ALGBASE that §
: ] * Can Add to . :

| 1 Axioms D Satisfy the
a | Restricted

: 5 a_ld : .

: 5 escr (c)] | Description | |

| | set 1 | | |
| INTNOR-19 in | neg[subring], pos[ideal] | 2 |

| Twor-18 in | neg[subring], pos[ideal] | 3 B

| TNTNOR-17 in negl subring|, pos[ideall] | 3 _

| INTNOR~16 | in negsubringl, pos[ideal] | 2 : oo

| INTNOR-15 | times | neg[subring], pos[ideall | 3 oo

| INTNOR-14 | times | neg[subring], pos[ideal] | z N

| INTNOR-13 | inverse neg subring], pos{ideal] |] z |

| TTNOR~12 in I neg[subring], pos[ideal] Z »

| TNTNOR~5 | in  neg| subset] e |

| INTNOR-3 | in | negl[intersection] | 6 | Co

INTNOR~-2 | in | negintersection] 6 .

| | INTNOR-2 | in negl intersection] | 6 Co

| Set 3 | |

| NTOR-21 | { in, | neg[ideall 7 | N
, times, | |

| | inverse } | ; -

5

See Table 10 for axioms corresponding to the names listed here, Co

Lo



oC - | | |

gy image set decreases in size. Computing P. is cheap and allows us
Lo choose a low-risk clause in advanceof searching for its candidate

. mage seb. |
Co | Now, all the clauses within the (three) sets in Table 11 are

y | ¢,~equivalent. MULTIMAP (defined above) just chooses the first
BN clause, which is INTNOR=~19 here. It uses this clause to extend a

| to ay, - EXTENDER then iterates to consider extensions of ay, -
Shortdescr[q, | finds a single candidate image for an axiom in |

oe | some[q, | and creates a final partial analogy, Gs (Table 9). |

oo ©. The Chunking Process | | |

: In our preceding discussion of SHORTDESCR., BUDSET contained |

a only one axiom at each stage of 1teration. Extending Gs by
SHORTDESCR led to a unique extension 0sp1 when it was successful.

© In general, BUDSET has more than one member, and SHORTDESCR can be

or | successful in these cases too. In each such event, we can naturally

oy “have several partial analogies, and each is a legitimate extension of

wd its immediate predecessor. A simple example of this phenomenon is

. | | presented in Table 12 for an attempt to generate an analogy for |

Cy | problem Ts - I), (Table 2). Partial~analogy a, has two distinct
BN descendants by SHORTDESCR. Both add the associations of different

| | predicates to a,” , and they do not conflict. (See Tables 12 and

N | EXTENDER creates two distinct descendants, a, and a,
RB (Table 12), and continues its search. When 0. is extended to

| | 0; it adds HOM ~ HOM which is contained in a,” . 0, is extended
in rapid sequence to Og» a; and Og « EXTENDER then extends Qs to

a to Cys and extends Gq to 206 and finds that it has developed a
| complete ar for this problem. Unfortunately, it developed a redun- |

oo dant line of search: ag © as, A substantial amount of work was |
LJ spent in developing Qs and. Ie that may have been avoided. Suppose
i. we created a larger partial-analogy ay, = az U ay - Since a; and ay,
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| | Table 12 -

| oo ANALOGY-SPACE SPARCH FOR T, - T, WITHOUT CHUNK

} a From initial-map a, ~~ 5 .
. | pnormal~ pideal | oo

| | MAXTREE-14 ~ simplegroup~ simplering | | .
AX131=2 facts ~ facts |

group ~ group a
- . maxring~ maxring

| | MAXTREE-14 ~ AX131-2 i MULTIMAP | co
| ~~ a TN -

| | | >
psubset~ psubset on

| SHORTDESCR 7 “a. SHORTDESCR | | B
MAXTREE-Q ~ a = Tg ~ — | -AX137 =2 | ) \  MAXTREE- |

of normal 2 ideal | hom~ hom | AX132~-1 a
identity ~ identity \ map~ map | oo

SHORTDESCR | | wwrrmar | .

| | MAXTREE-8 ~ 7G Og, MAXTREE-6 ~ | .
| » {AX133-1, hom~ hom | \ subset ~ subset, (AXLLS, |AX158-1, \. AXIbL-23 .

| AX159-1} a . A

| | MULTIMAP | | | MULEHAY | :
| a, | yan LL N\ B oo
9 4 MAXTREE-10 ~ |

MAXTREE~3 ~ | subring ~subring | normal=~ ideal | 160-1 | _-
AX128-1 | \ py, AX ~-

| | SHORTDESCR

Gg \ AX157-2 oo
\ ldentity~ identity , oo

| | | MULTIMAP a

\ subgroup~subring AX128-3 _-

*see Table 13 for definitions of the MAXTREE axioms. Co



| | | Table 13 |

| AXSET FOR THEOREM Ts |

a I : If a factor group G/M is simple, M is a maximal
Ld oo normal subgroup of G. a

Co iy Grouplgs;¥] A pnormal[m;g;¥*] A facts[x;gim] |
CL | A simplegroup[x;*] —maximal[m;g;¥*] | | |

- | MAXTRERE-L —ident[star;x;g] V—opnormall[x;g;star] |
v- : neg pnormal] neglident] | |

oo MAXTREE~2 normal| x;gsstar] V —pnormal[x;g;star]
Co neg[pnormal] pos[normall |

re MAXTREE=~3 subgroup[x;g;star]Vv —normal[x;g;star] B
. neg[normal] pos[ subgroup]

cy | MAXTREE~4 subset[h;gl V —subgroupl[h;g;star]
neg[ subgroup} pos[subset]

MAXTREE-5 hom[ hommap[ star;n;g;xl; g:x] Vv —grouplg;star] | |
| V —normal[n;g;star] | |

EE neg[ facts] neglnormal] Vv negl[group] V pos[hom] |

° MAXTREE-6 map[phi;x;map [ x3bsa;phi] V —hom[phi;a;b]
» V —subset|{x;al |

negl subset] negl[hom]  pos[mapl] |

BN | N MAXTREE~] group g;star] V —simplegroup|g;star]
oe | negl simplegroup] pos[group]

oo | MAXTREE-8 —identity[star2;y;b]l V —hom[f;a;b]
oo | V —grouplajstarl] Vv —group[bjstar2]

Vv —map|[fixiy]l Vv identity[starl; x:a]
neg[map] negl[group] neg[hom]  impcond[ident]

oC MAXTREE~Q —normal[y;bsstar2] v —identity[star;x;g]
ey V —psubset[x;g] V —simplegroup|g;star]

| neg simplegroupl negl[psubset] pos[ident] |
tid neg normal] |

| 106 |



Table 13 | |
(Concluded) Co

| MAXTREE=-L10 normal[y;b;star2] V —grouplasstarl] | oe
| V —groupl[bistar2] V —groupl[b;star2]
| V —hom[phisasb] Vv —map[phi;x;y] |

| V —normal[x;a;starl] oo
| neg[map] neglhom] neg[group] impcond[normal] |

MAXTREE-11 psubset[x3;g] V —pnormal[x;g;star]- oo

V —group[b;star?]
neg[map] negl[group] neg[hom] impcond|psubset]

MAXTREE-13 = maximal[m;g;star] v —group|[g;star] |
V —pnormal[m;g;star]
V pnormall[otherset(star;g;m); g;star]

impcond[pnormall negl[group] pos[maximal]

MAXTREE~14 maximal[m;g;star]l Vv —group[g;star]
V —pnormal[m;g;star] psubset[m;otherset star;g;m]

pos| subset] neg[pnormal] neglgroup] .
| V pos[maximal]

are descended from the same partial-analogy 0, by SHORTDESCR and _
| they do not have conflicting associations, we expect that our super- C

analogy will expedite our search. We need to define a new operator Fos

called CHUNK, to create this new "large" partial analogy. _

| ~ Definition: A partial=-analogy a, is chunked from a set of a
| | partial analogies {a} if: Co

(1) Each of the a, are descendent from the same partial- | oo
analogy oF by SHORTDESCR. he

(2) None of the ay have conflicting associations in 0," —_— _
Cel s ay has p ~ gq and ay, has Dp ~ r, | oo
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= (3) @, =u a.
Co | | A modified search is depicted in Table 14. A careful compari- |

= son between the searches with snd without CHUNK is quite instructive.

i. Both develop identically up to @). up (Table 14) = os ua; |
iy : | (Table 12).

. : Now, MAXTREE-S is in allla,.] and the node corresponding to hi
TEE | (Table 12) is not developed. In our CHUNK-free search, a adds

| | normal~ ideal to a”. In the search with CHUNK, that association
| is carried directly from a, to Qs by CHUNK. Hence, it need not

3 be developed again. Chunk[a 30: | is G5 and quite easy to compute,
| in contrast to every other partial-analogy which requires at least

Co one search through the data base to find a clause that satisfies a

So given restricted description. If we disregard O15 (the CHUNKED |
partial-analogy) as a very low-cost item, then we see that the |

Co - search with CHUNK created only six partial-analogies in contrastto

Ld | the ten partial-analogies created in the search without CHUNK. |

co |
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Table 14

ANALOGY~S PACE SEARCH FOR Ts - I, WITH CHUNK
| NE }

From initial-map — ay -
| | / pnormal ~ ideal )

| J simplegroup ~ simplering
| | facts ~ facts Lo

| | group ~ ring
| maximal ~ maxring Cd oo

| MuLTTMAP =

a | B
MAXTREE-1L ~ psubset ~ psubset } | |

SHORTDESCR/ ~~ \SHORTDESCR -

a <5 N / a, “| MAXTREE-12 ~
~ normal ~ ideal hom ~ hom AX1Z2-1 oo
identity ~ identity map ~ map

/ normal ~ ideal || identity ~ identity =
\ hom ~ hom | nN
\. map ~ map

1 MULTTMAP B
MAXTREE-6 ~ rd a ~N | .16 | |
{AX118-1,

| AX161-1} \ subset ~ subset | -

| MuTTIMAP a

MAXTREE-4 ~ 17 -

AX=-5 \ subgroup ~ subring | Co
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| VII ANALYTICAL APPROACHES TO ZORBA-1

oo A. Introduction |

= | Previously, we have treated ZORBA-I as a pragmatically moti- |
Ps | vated and empirically developed system. We have informally studied

(J various experiments by the case analysis of particular examples. In |

CL | contrast, we will now study four properties of ZORBA-I from a formal

wu and analytic viewpoint: :

PE. (1) How the use of semantic types decreases the size of the

. J search space of admissible ar.

oe (2) How the use of an INITIAL-MAP prior to EXTENDER further

CL reduces this search space.

TT (3) Conditions for which an analogy will aid or hinder a reso-

ed lution theorem prover. |

oo (4L) Necessary conditions that AXSET and T, must satisfy for
| EXTENDERto operate successfully.

N ZORBA-I initiates its development of an analogy @ without any
a priori information regarding associations between particular predi-

a | B cate pairs. However, it does demand that associated predicates be

of the same semantic Type. This restriction considerably limits the

Co number of possible mappings that could qualify for ab, and will be |
Lo briefly discussed first.

oo | Suppose ML axioms are used to prove T and they reference Pr |
so predicates. Furthermore, suppose the data base D contains M, axioms
Co that include Fy predicates. If we assume that our predicates and
oo axioms map are one-one, we can have:

i. — axiom mappings |

REE and
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p° | .
_ , predicate mappings. |

| (By ~ Bp) -

Each of these will associate one axiom (or predicate) used in proof[T] |

with one axiom (or predicate) from the data base D. If My = 250,
M = 10, Py = 40, and Pr = 10, we have about 1024 axiom mappings oo

250! 15 ho! : |nd about 10 ls redicate mappings possible. Now
Grey) @ Gor) P Sppries B I
let's look at the introduction of types. In ZORBA-I types are uti- oo

lized to maintain a meaningful analogy. For example, in geometry, |

we prefer To assoclate a Triangle with some other object such as a oo

tetrahedron, or regular polygon, rather than a relationship such as

bisect or parallel. A ZORBA-I user must specify a type for each Co

predicate. He can use these types to insist upon having certain -

predicates map into predicates within the same equivalence class. of Lo

course, a user can default by declaring every predicate to be of one oo

type only, and thus allow a wider variety of mappings. Here, we want

to see how the number of possible predicate mappings is reduced by the |

exploitation of types. For our purposes, here, a "type" will simply N
be the label of an equivalence class of predicates. |

| Suppose we have + types, and let 'D _ _ . There are K,| + = Ky ‘
predicates of each type in the data base D. Furthermore, let there .

be Kr predicates of each type among the Moy predicates that appear in oo
proof[T] (t x Kn = Mo) « Then, there are Kye © possible |

| predicate mappings. (K Kp)! .

Let Py = 36, and Fp = 12; then the number of possible predicate .
| mappings is indicated in the table below: |
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t (number of types) t= 1 t = 2 | t = 3 | t =4 |

ol | - | 6 x 1007 1.69 x 10% | 1.6 x 102 | 6.5 x 10°

A, : — . = = 6 =
Ky = Pr/t; K, = Bp/t Py =36 Pp =12 |

oo In this artificial example, the inclusion ofa new type reduces the
oo | number of possible maps by a factor of 10°. Still, the number of |
hel | potential maps is large (about 1019). In the case of theorem

A | Ty - TL, and AIGRBASE, the number of potential maps is 4.3 x 10°
Cod with any types at all. Of course, we are seeking just one good ab |

Co in this large search space. |

Lo In the preceding analysis, we assume that each predicate can be
_. | associated with any other predicate. In fact, ZORBA-I makes a more |

- | restrictive assumption.  INITIAL~MAP insists that a predicate that
appears in the statement of T be associated with a predicate that |

oo appears in the statement of I Again, artificially, suppose that
| N K predicates of each type appear in the statement of T. Then,

(x, - K): 1%
oY | KI + |7 predicate associations are

a possible. | oo

= If K=1, t =k, Ky =9, and kK, = 3 (since Py = 36 and Pn = 12),
J then only 2049 mappings are permissible. Thus, breaking the crea-~

i. tion of @° into two portions, creates an "additive" rather than
| multiplicative effect on the combinatorial pcssibilities. Again, we

oo substantially diminish the size of our search space. These reduc~

| oo tions are quite striking for the three real problems for which the

| Our artificiality is to suppose that there are an equal number of
LJ | predicates of each type. For example, ALGBASE has the following

distribution of predicate types: PROP-1; MAP-3; STRUCTURE-8;
“0 RELATTON~19; RELSTRUCTURE-~11. |
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number of possible mappings have been completed in Table 15. We

| see that the effect of INITTAL~MAP and EXTENDER 1s to reduce

| the possible number of mappings by several orders of magnitude. It |

| | is also clear that EXTENDER allows the majority of possible map- | -

| pin s. L

B. Time-Space Analysis of the ZORBA~I Algorithm o

In these few pages I want to outline an argument pertaining to oo

the efficiency of a theorem-proving system containing ZORBA-I and .

QA3 (e.g., generates an analogy to restrict the data base) to one

without ZORBA-I (e.g., does not restrict its data base). oo

Both the INITIAL-MAP and EXTENDER procedures of ZORBA-I are a

| predicate mapping procedures. | we

INITTAL-MAP associates each predicate that appears in the

statement of the unproved theorem Ty with a predicate that appears _
in the statement of the proved theorem T. io

Since T and TI, are both glven, we know the set of possible .
maps. Suppose Ly (and T) each include P, predicates in thelr no

| | statements; then there are at most P_! maps (assume one-one maps). oo
| The addition of semantic types restricts the set of admissible predi- 2

cates that may be associated with a given predicate. For example, vo

if there are +t Types with P predicates per type in the theorem a.
statements, then the number of possible maps is oo

(5%) t i.| r (t Pn) (= for k = 1)

Note: P.\ t 5
Ene > VT easil |

| proved

| (Pp = 12, and t =3 —12! > (411°, ete.). co
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od | Table 15 |

oo NUMBER OF PREDICATE MAPS CONSISTENT WITH TYPE RESTRICTIONS

| Theorem- Theorem No Tnitisgl- :

oo | Pair Total Statements Decomposition Map | Extend. ;
: C ;

: - 5 Ne Z ;
| | Ly Ls 9 5 8.6 x 10 1 bh.35 x 10

_ | Lo T 12 5 2.5 x 10 16 6.12 x 5)
J . | | | . :

7, -T, 8 a 1.2 x 107 1 |5.k x 10° §

I, The intersection to two abelian groups is an
Bn | abelian subgroup of the parent group.

I: The intersection of two commutative rings is a
. | commutative subring of the parent rings.

BN T, A factor group G/H ig simple if H is a maximal
| | normal subgroup of G. | | |

N - I), : A quotient ring A/C is simple if C is a maximal |
ideal in A.

| Ts: The intersection of two normal groups is a normal
a group.

- | lip The intersection of two ideals 1s an ideal. |
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| (PP 4p V1! choices :( D Fp Py) oo

for the map generated by EXTENDER (momentarily excluding type | so
«a »

restrictions). In practice, Ey >> Br >> PF, , so that the number LL
of possible maps generated by INITIAL~MAP is much smaller than the Po

number of maps that could be generated by EXTENDER. Pos

Thus the worst behavior of ZORBA-I is most likely to be induced qc

by the worst behavior of EXTENDER. | Li

In my algebra data base: Po

Py = LO - constant for all theorems oo

B, ~ 10-12
Theorem Co

| P ~ Dal Dependent | B

 ¢. Background on EXTENDER oo

EXTENDER accepts a one~one association of predicates output by

INITTAT-MAP. Thus it knows the analogs of P predicates and must »
find those of (Pp - P) more. Clearly, it does the most work if

CP =1. (P must> 1.) | .
| S 5 i.

Superficially EXTENDER works as follows: | |

| (1) Take the current predicate map o and uses 1t to associate =
| some selected axiom ax, from proof[T] with some (hopefully) -

| | analogous clause c, from the data base. -

| (2) Use the current predicate map 0; tO associate the predi- .
| cates of ax with those in Cpe ax, has been chosen so that N
oo | some (but not all) of its predicates appear in a; Tn this

| association of 8%, Cy is used to learn the associgbtions of NB
new predicates and create a new map C41 which includes {
the union of those on a: - Eo
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, | (3) Go to 1 (iterate until all predicates are on someQF ).
| | J

Observation: In the best case, one axiom would include all |

} Py-L predicates and EXTENDER would iterate only once, as illustrated |
oo | below: oo | |

RU ay ) Provided by
Co | Nn” INITIAL-MAP

PR (& . Some ax, has all |a, | | > Pp~L, predicates

| = | In addition, we assume that we select the correct Cy to associate |
os with it immediately, and that the clause~description-matching rou-

a | tine outputs only one predicate association. |

a Observation: If only one predicate is added at each iteration

Cl of EXTENDER, we require Fr - Py iterations to complete a. Thus,
- the maximum depth of the analogy search space is Pr ~ Pos minimally

_ 1 (as above), and (of course) is usuallyin between 1 and (Bp - Pp).

oo D. Worst-Case Analysis of EXTENDER |

= Tn this section I want to describe how EXTENDER may be ineffi-

Lo cient when compared with a resolution system. What we want to study

- here are axiom systems that:

yt (1) Force EXTENDER to generate az "maximum" number of partial

- analogies in its search for @~ between T and Tp
oo (2) Allow a resolution program (with an unsophisticated

- | strategy) to generate a "minimum" number of resolvents in

od | its search for a proof of Ty

“on | S50, we are comparing the number of partial analogies generated
wd by EXTENDER with the number of clauses in a resolution search. If

= we really want to be exact we should compare: |
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ny cost| partial analogy] + n, . cost| resolvent] | To

ng cost[resolvent]

where “

n, = number of partial analogies generated by EXTENDER go

n, = number of nodes in resolution search with the EXTENDER- | <i
| derived data base

ng = number of nodes in resolution search without the smaller pL
data base provided by EXTENDER.

For now, we will simply compare nq with es under various con=- oo
ditions. In a later section I will comment on the relative costs

| of generating a partial analogy in EXTENDER's search and generating a
a resolvent in a resolution search.

I will explicate the following results: | a

(1) If a data base is explicit designed to befoul EXTENDER

| and ald resolution, we can find conditions where ny >> n, .
(n, = ng). Anglogy seeking in this case decreases the
efficiency of the overall ZORBA-I-QA5 system, .

(2) A few simple conditions on the axioms in a data base can »

| cregte searches where I, > n,, and n, 2 De Now, the »
addition of analogy seeking may do no worse, and may sub-

| stantially aid the performance of the resolution system.

These axiom systems are highly contrived (particularly for

n, =n, = mn, ) and are of limited usefulness. re
| | (3) Finally, we deduce from 2, above and the nature of prag-

matically interesting axiom systems, that n, << = no
ny << ns and nq + n, << n. | oo

In uncontrived cases, the addition of analogies can be a sub= -

| stantial aid to the system performance. N
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J I'll begin by motivating the design of an axiom system to create

Co | Condition 2 above and then restrict it further to create Condition 1.

LL | Let's consider how we may generate a worst-case for Z0RBA.

- First, we would like an analogy search tree as deep as possible.
LL From the preceding discussion, we want only to add one predicate

BN association to the analogy at each iteration.

: A little thought will show you (as it showed me) that this cri-

Co terion forces the axioms used in proof[T] into a particular form.

oo | Each clause must contain at most two predicates, each appearing in =
| | literalof opposite sign. In This case, a mapped clause can add

information about (at most) one predicate to the current a; . Thus,
or | two predicate clauses force EXTENDER to generate a new os for each

oo | predicate~pair added. Note that a clause may contain only one
— | predicate, or more than two literals. In the following example,

CL c, and c, are admissible, while cs (three predicates) is not:

oo cy: —pqlxsyl Vv oplysx]

y ct —pylxsyl Vv —p[x52] polxsysz] |

Ce cz play] Vo apalssyiel pelzsxsyl

BN | Let's consider a particular "worst" axiom system, and see how to

| N generate an associated "worst" axiom set, called WORSTBASE (Table 16).
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| Table 16 o

| WORSTBASE AXIOM SET

| c, ? p, [a,b] | |
| cg: apply] Vp lysxselxsyl] |

| cg: Py lx5ys52] V SEARS

a —PzLwsx3y] \ p) [wi tlx3y]] |
Co cg: —m, lelusvlszl vp [z;glusv]] i.

| 2% —py, [£257] 52] Vp [25 [x37] ] |
| c i —by [flxsylsz] v py [£lx;71] -

5 cq FPslx3y] V Psy 5x] V pglxsxsysy] .

| Cpt Ppslxsysyl mplysysxl pyglasxsysyl .

SEE ~P gol xy 3h (y)] P15 B(¥) 573%] pc x3%357] | =

| “1 Psp xs rx] V pyplxsysyix] | .
C5: Pql J Vogl ] -

| cg —P1),0l (RY; Pq ] | ~

Crpi Py, Iv pl ] | y
| _ c1gr Ppl [AVE JNi | n

T: pglasasb;b] | | |
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IB Suppose Ty is piglesesdsdl.
INITTAL~MAP will associate |

| PL.

oo and associated with a, SOME = {cy 3
~~ We want to have a data base in which Cqq will potentially map into
oT | k-different clauses.

Consider two clauses, C1 and Cz? |

By cpt Pps lxsyiyl Vopyslysysx] vip glasxeysyl

= | Cy 3 ~Ppsolxsys8(y)] Vv Ps ol By) sy3x] V pglxsxsysyls

Bh The description of C14 restricted to a’ we © ,T pos[p, ,] wwe WLLL
y cull out both Cio and C15 |

Also, the following equivalence shows that Cis and. C13 are
. description equivalent relative to ay:

deser[ec.,] = neg[pys 1; pos[p, (]

descr[e,,] = neglpisql pos[p,gl.
- Thus, EXTENDER will generate two descendant analogies:

B Pg ~ Pig \ Us Pg ~ pig

= Ps ~ P150 \ \ 1 “12 4 Ps P15

a. If we had a clause Cy) in the data base, then we would have still

ed a third descendent analogy, which adds Pe ~ P15g

a cyt Ppgolxsrlxsrlxl] Vv opglxsysysx] |

120 |



For the moment, let's create a data base that gives us just two alter- Co

natives at each stage: co

| af ab T= fc; -5 and 3 both create a SOME {Cg} |
| and we want clauses that will give us two alternatives for each ro

| Consider: | Co

| °16¢ “Pio AL . .

| ~ (Predicate arguments are irrelevent because we select candidates based

on predicate sign features, since only These appear in the clause |

descriptions.) |

ap . aP oo
| 5 can associate 10 with either C15 Or Cig» and 3 can ,

associate it with either Cys Or Cqgs as illustrated in Figure 11.

/ ) / a \

py) UE, hy SUE, | -

| FIGURE 11. FRAGMENT OF ANALOGY SPACE FOR WORSTBASE. a.
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[i | | | | :

L. In general, 1f we want to generate a maximally ambiguous data base | |

a. that will force k~ary branching in the analogy tree, we need Kk.

. description~equivalent axioms in it for each axiom used in proof[T].

. | (E, - P - 1)
Cj | k ~-1

l + ———————— nodes

Co k = 1 |

Co In this case, there may actually be k-anglogles. Suppose that actu-

- ally only one clause of the form c v py | appears, so that at
the last level of search, one analogy emerges that includes all

N : Ko - K, predicates. oo

LS | | Let's compare this situation with the behavior of the resolution

oo program. Suppose we Just attempt To prove I, with the set of
axioms described above, oo

. | -T, will (in general) resolve with each of C15 end cq, |
CL creating two resolvents, R, and R, (corresponding to a, and a,
BN in Figure 11).

or | Ry will resolve with C16 to produce an Rs (corresponding
oo to Qe) s and with Cyr to produce an R, (corresponding to G.)-

< Likewlse, R, will resolve with °15 and 18 to produce two |
— resolvents (at least).

= Fach new analogy corresponds to the addition of a new predicate

-3 association to its ancestor analogy.

— ; In 'resolution-space,” we need to resolve two clauses to intro-
I | duce a new predicate into the search space. 50, each partial

{i | analogy corresponds to some resolution. However, if the axioms have

| more than two literals per clause, we will need to have additional

w } resolutions (which don't introduce new predicates) to clash with

BN | these "extra" literals. Thus, in general, our axiom sets are not

N | restricted to clauses of length two.

| From the preceding discussion we can deduce:
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| (1) If our data base is limited to two clauses, each of which

contains two predicates (as specified above, and no func- .

tion symbols for reasons to be specified below), then a

resolution search for the proof of Ty may generste a oo
number of resolutions equal to the number of analogies =

generated by EXTENDER in its search for the analogy To

between T and Lye i

(2) If the data base contains an axiom set in which each 7

| clause contains at most two predicates, and the number of Sy.

literals in some clauses exceeds two, then EXTENDER will —

generate fewer partial analogies in its search than a .

resolution program proving Ta will din its search. N

The preceding statements non-formally state that the number of ol

| partial analogies generated by EXTENDER will be less than or Co

(at worst) equal to the number of resolvents generated by a resolu- »

tion search program (n, < ng) ~
Now let's look at a restriction of this axiom system that .

creates a situation in which n, >> n, (analogy seeking is detri- _
. : ° F4 o oo

mental), and n, zn). Consider a variant of Cy30 Cc 15° which .
appears below with Co and iS | .

cpt Ps lXysy] Vo pelysysxl Vv opglxsxsysyl Lo

| Cyst mPgolxsyshlyl] Vip olly)sysx] vo piglasysysy] 3

T, piglescsdsdl (from our previous discussion). —

| -T, will resolve with c,, but not with C13 , since —pyglesesdsdl ~
will unify with P,c[x3x3555] but not with ISR SHENAE Here we oo

| | have a case in which two clauses CP and C15) are identical in
terms of their descriptions and are indistignuishable in analogy- ro

space, yet will not resolve with the same clause (here -T,) and Lo
hence do not generate equivalent resolvents in resolution space. -



| I'11 paraphrase his situation. To get n, >> ng, we want to gener- |
ate many more partial analogies than resolvents. Now, the axiom

BN system we developed in our previous discussion was designed so that

ny could equal n, (2-clauses). Eachpartial-analogy represents
. one potential resolution. Now, suppose our axiom system 1s such

h ~~ that clauses that are equivalent at the description level and are
a expected to resolve in analogous ways do not in fact resolve.

For example, see Figure 12.

a SES, a Saunt No resolvent

| LJ \ / \ R, peteen Ls |
_ | . JA Ny NY AD, and c 13 . |

oo | | (RB = 7 x c \ |
- \ / \ \ "1 aX Ci \

Na - Na N—— \ |
Co | \ |

oc ~ 0 oc ~ t Ro does not ©
11 713 C10 12 | \ exist

| Se me mm?

FIGURE 12. COMPARISON OF THE ANALOGY SPACE AND |

i ITS ASSOCIATED RESOLUTION SPACE

| . |

oo Now, in resolution space, R', may be attempted, but never created.

BN In contrast, 0, is attempted and is added as a newanalogy. Thus,

| in analogy space, a, is indistinguishable from 0x5 and will lead
N | to descendent analogies (Figure 11) that will never have any equivalent
a resolvents in the resolution search. In fact, 1f there are k |

TC description~equivalent variants of each clause in proof[T] on the

CTT | data base, and each axiom in proof[T] is a 2-clause, then

Notice that we name RB, before we say that it doesn't exist. This
oT is much like needing to describe a purple cow in order to point out

that none of those exist either.
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| ey -

| n, = m-l and ng =", ti B

| If k¥ 2 and n = 10, ng, = 9 and ng = 256; if k = 2, | -
n=12, n, =11, and ng = 102k.

| Let us review these two cases and see what is at issue. In the 7

| case of the first "bad" axiom system we simply let the axioms be | .

| description=equlvalent in such a way that EXTENDER could create a —-
distinct partial analogy for each resolvent that could be created by oo

~~ the resolution search procedure. In the second case, the "poor

| axiom" system, we created axioms that did not resolve because appro-

priate literals would not unify, while (superficially) at the level of N
clause descriptions, k=~clauses at each level appear equivalent. In B
passing, I want to note that the proofs for which resolution~without- .

| EXTENDER searches are more efficient than resolution-with-EXTENDER oo

searches are in linegr<format with no axiom applied more than once. -
~ These are a subset of "input oroofs™Y and it is known that only cer- -
tain theorems may have a proof in this form. It is a very restricted -

proof format. .

We have just considered two extreme cases. In the best case, we _

| develop just one partial analogy a, since some clause in AXSET | —
contains all the predicates we need. In the worst case, we may gen= u

| erate many more analogies than resolvents since EXTENDER's descrip-

~~ tions are insensitive to some features of resolution — e.g., when N
two clsuses unify. Nevertheless, we had to construe a special data
base to confuse EXTENDER. In the next few paragraphs I shall |

| describe how a "real" data base differs from our construed one. oo

‘In our creation of WORSTBASE (Table 16), we made three assump- B

tions, none of which is true, in general. (Of course, all are true -
| for our contrived WORSTBASE but none is true in our more typical To

AIGBASE.) The assumptions are as follows: C



(1) Fach clause contains either one or two predicete letlers.

oo This 1s a highly artificial assumplbion that interacts with

other assumptions. In centrast, ALGBASEH contains 239

clauses, of which 98 have 3 predicate letters, 33 have b

| predicate letters, and 3 have © predicase letters (in
addition to 98 that contain 2 predicate letters, gnd 7 hat

a contain one predicate letter.) Over 50% of the clauses in

= ALGBAGE contaln more than two predicate letters, |

Ba (2) Each resolvent will resolve with some small number of
- clauses =~ approximately k. Now, 1f each cleuse contalns

| but 2 predicate letters and the data base contains relatively |
woe many (say 10 to 50) predicates, then we expect each clause |

Cy could conceivably resolve with only a few other clauses.

Cd Again, this assumption is highly artificial. We developed

- our artificlal data base in such a way that the possible

N regolvents would be as few as possible. However, most
axiom systems are quite "rich" and allow many resolvents

| (inferences). For example, in WORSTBASE, the negation of

- | the theorem resolves with only k clauses. In contrast.
| in ALGBASE, - Ty (Appendix B) will create 29 resolvents at

- one level of inference, snd ~ can create HS resolvents at
one level of inference. These resolvents can easily create | |

Lo hundreds of resolvents at the next and deeper levels.

oo (3) At each level of the EXTENDER search, there are k
ol degscription~equivalent candidate images. We created a situ-

oo ation in which k nearly isomorphic gxicm systems are

| embedded. in the game data pases. In ALGBASE there are

oo 5 (k = 3%); group-ring; group-group, ring-ring. The first is

| the only "genuine analogy, while the latter two are iden-

| | titles. Now a’ is rich enough to map some ring-related
| predicates into some group-related predicates al the oub-

set =~ e.g., group~ring or normal~ideal --~ znd consequently
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rule out the spurious maps (identities) that provide 3-way

| (k-way) branching. In a geometry data base, which

| included properties of triangles, tetrahedrons, and regular Co

| polygons, there could be two legitimate analogies: LL

triangle~tetrahedron and triangle~regular polygon. Again, |

we expect the INITIAL-MAP of the problem statements to pro-

vide a ay that will select out the proper analogy. |

All of these assumptions interact to create a data base WORSTBASE -

that gives EXTENDER a comparatively hard time compared to unaided ‘i

| resolution, while suggesting that more pragmatic axiom systems will .

give EXTENDER a much easier search than unaided resolution. |

E. Necessary Conditions for an Analogy oo

ZORBA~I has three necessary conditions for creating an analogy. oo

| The first, created by the form of ATOMMATCH, pertains to the form of N

the statements of T and Tye In the statements of T and Tyo oo
atoms must map one-one from T to Tye Notice that we do not insist N
that predicates map one-one. Consider an INITTAL-MAP between:

Tq The intersection of two abelian groups is an abelian Lo
group, | ro

Tio! The intersection of an abelian group and a commutative y
ring is an abelian group. |

’, i « ¥ : ° 3%
T1q : abelian[a; dV abelian[b; 1 =

V intersection[c;a;b] —abelian[c, ;% | u
| ’, . . ‘ o

| To's abelian[x; 5] Vv commring[y; ~~ a.
Vv intersection|[zx;y] —~abelian[z;*,]. oo

ATOMMATCH can associate | .

abelian[c;*, | ~ abelian[x;¥,] |
and
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abellan|b;*. | ~ commring[y;*, 3+, ]

To at different times and handle many-one predicate maps — e.g., | |

Lo abelian ~{abelian, commring}. However, the EXTENDER would need to |
- | know (and it does not yet) how to handle this ambiguous information. |

— | The second restriction is created by the extension of the anal- |
ogy by finding image clauses that satisfy the incrementally improved

So analogy. To state this condition on the image clauses in a formal

| way, 1 need to introduce some simple terminology. Let us say that a

clause c¢ bridges aset of predicates Py to another set of predi-

cates bE, 11: | |

= | Py C Py | |

| PF, U predsc] E,
J | |

B | Py N predsfcl# 0 |

J and (redundantly) |

Co PE, N preds| cl # ¢

| Now, consider two clauses, cq and Cy» We will say that Cq and Cp
Co bridge from Py to FE, if PP’ and Cy bridge from P, to P’, and Cy

bridges from P’ to Bye Hence, b,c P’c P,. In general, we will
nT say that an unordered set of C of k clauses C bridges from Py ie P, ifr

Co] Ply P nove Pros and |

y (1) = c, € C; and c; bridge from P; to P’ , P'.

a (2) \FE J =2, ¢eey k=1 and ¢ € C, and
Lo | ¢c. bridges from P! to P!. ..

J © J J+l

nN (3) @ Cp ¢ C and Cy bridge from Pro1 to FE. :
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| Let us define:

Pr[T] = Predicates used inproof of T. Co

preds{T] = Predicates used in statement of T. oo

| Gg = Analogy from T +o Tye Co
descr[c] = Description of clause c. .

| ol descr[c]] = Analog description of the description of }

| | ¢ under CQ.

| ax[T] = Axioms used in proof of T,

(2) A necessary condition for the EXTENDER to work is that: Fo

1 c¢= ax[T] and c¢ bridges Pr{T] +o preds{T] o

| s.t. for Qc) = {c”, c’ satisfies[descr[c’]]1} Vv c’ €c

@(c) bridges from Pr(T,] to preds[T].

| More verbally, some subset of the axioms in the proof of T that Co

bridge from the domain of INITIAL-MAP to preds[T,] have a set of i
image clauses under @ that bridge the images of INITIAL-MA? to Lo

preds[T,]. Thus, the proofs need not be isomorphic, but some | —
restricted subset have a nearly iscmorphic image similarly restricted y

to the bridging condition.
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. VIIT VARIATIONS OF ZORBA-T |

Ls A. Introduction

| We have surveyed ZORBA-I by analyzing its structure (Chapter VII)
oe | and examining its behavior on pairs of theorems drawn from abstract |
“1 algebra (Chapter VI). By design, it is limited to generating anal- |

ogies for a subclass of the "relationally similar" analogies described |
. in Chapter IT. In particular, ZORBA~I is restricted by the follow- |

- ing assumptions: |
(1) @® is a one-one map.

Lo (2) a? associgtes predicates of the same type. |

ol (3) The axioms in AXSET are free of constants. |

B | (L) The statements of T and Ly are free of function symbols.

nN (5) The atoms in the statements of T and T, can be associated
one-one. |

Co These specifications are stated abstractly, and they limit the domains
| to which ZORBA~I can be applied. Theorem pairs in abstract algebra

| that exploit the group-ring analogy seem to satisfy Assumption 1,

n while many interesting anglogies in plane-geometry do not. Eliminag- |

ting constants from our axioms (Assumption3) limits us to mathe~

matics and some puzzles. Almost every analogy I have seen preserves

semantic types (Assumption 2) for some suitable set of types.

a. If the strategies that are aceptable by the theorem-proving sys-
Co tem insist that an axiom is either in the data base or not considered

Lo at all, Then at must be complete for ZORBA-I to give it useful

5 information. On the other hand, if the theorem prover can prefer

LL some axioms Lo others, then it could use an incomplete a’ as a gulde

oo for which axioms to prefer. In this chapter, we will consider vari-

. ations of ZORBA-I that relax some of these restrictions.
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B. Variations of EXTENDER for One-Many Predicate Maps -

In EXTENDER, a® is limited to one-one predicate associations by oo

MAPDESCR (Chapter V), the algorithm that associates clause descrip-

tions. The version presented (and implemented) will halt if it can Ha

not find a one-one mapping. Suppose we generalized MAPDESCR to create _

one-mgny predicate mappings. A new algorithm of this sort would be ol

the product of some fresh research, but we will assume, for the moment, -

that we have one. Then we need to redefine the analog of a clause )

description a;ldescrlcll, to include our one-many associations. For .
example, if:

| descr[c] = neg[p, | pos[p,]

and | .

then a;ldescrlc]] may be the set {neglq J, posf a]; neglq,l, posfa;1;
neglq,l, neelq,l, posla,l}. | BN

We could consider a candidate image of c¢ to be a clause that oe

| satisfies any of these three descriptions. A

Some of this discussion can be clarified by studying a simple | oo

example. Consider the following pair of theorems: oo

| Tye A point on the bisector of an angle is equidistant | 2
from its sides. | .

Tix A point on the perpendicular bisector of a line seg- ro
ment is equidistant from its end points. _-

| Table 17 contains statements of these theorems and illustrative oo

| figures. Table 18 includes some of the axioms necessary to

prove them, and Table 19 contains definitions of the predicate sym- oo

| bols used in the axioms. The two theorems can be proved by following Lo

a similar plan (proving two right triangles congruent as a subgoal) Co
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Table 17 | |
i.

STATEMENTS, FIGURES, AND AXSET FOR BISECTION THEOREMS
iJ | |

Co | | € \ D y \ .

| | i

- | Figure for Theorem Ty), Figure for Theorem T1z |

} B

ol oo | | Ty), perpendicular] line{D;Bl; line[A:] |
oo | | Vv perpendicular{line[D;Clline[C;A] | |
» | oo ~ V abisect[line[D;A]; angle[A;ep[B;C]]

 eqlen[line[B;D]; line[D;cl].

| | |
So / . . . . . .

| | IT); perpendicularline[ X;v]; line[w;z]] :
- | | V lbisect{line[X:Y]; linel[w;z]]

SE | — eqlen[ line[ x; Ww] ; line[x;z].

» 1



Table Fé _-

AXIOMS NIKDED 00 PROVE 1, AND Ly | =

AX1l: eqglen[line[x:;y]; line[x:y]] a

AX2: —triangle[x;y;z] V —ritang[y;ep[x;z]] N
V ritriangle[y;x;z] | oo

| © AX3:  —ritriangle[xiyiz] V —ritriangle[u;v;w] oo
V —eqglen[linely;z]; line[v;w]] .

| V —eqangl[ysep(x;z]; vi ep[uswl]
V teongruent{x;y;ziusviw]

 AXh:  —teongruent{x;y;ziuiviw] V eqlen[line[ }3 line] 11] | a

AX5: —abisect[line[y;ul; angle[x;ep[y;zlil] N
V eganglyseply;zl; vy; eplxsull

~ AX6: —abisect[line[x;yv]; line[u;v]] CL

V —intersect[r;linel[x;:;y]; linel[u;v]] -

Vv eglen[linef{usr]; line[r;v]] | -

| AX7:  —ritriangle[x;yi;z] V —ritriangle[u;viwl] Co

—eglen[line[x;yl; line[x; zl]

_. AX8: —perpendicular[line[x;y]; line[u;v]] vo

| V —intersection|line[x;yl; line[u;v] v ritang[z;ep[u;v]] | _

—— -
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ue Co Table 19 |

NB DEFINITIONS OF PREDICATE AND FUNCTION SYMBOLS FOR GEOMETRY

~ abisect[line[x;y]; angle[usep[u;w] ‘Line xy bisects uvw.

> eqang[y;ep[x;2] ;viep[uswl Lxyz = ¥ uvw.

CL | eqlen[line[x;yl; line[u;v]] Xy = uv

| intersect z;line[x;y]; line[u;v] Iines xy and uv intersect |
oo at point z.

y lbisect[line[x;y]; line[u;v]] Line xy bisects line uv.

| | perpendicular] line[x;v]linelu;v]] xy| uv. |

Sy | ritang[viep[x;2]] L xyz is a right-angle
ou vertex y and end points

[ep] x and z.

h ritriangle[x;y;z] Points x, y and z form
oo a right triangle with

| right-angle «xyz.

N teongruent|[x;yv;iziu;v wl A XyZ = A uvw.

oo | triangle[x;y;z] Points x, y and z form a |
u | right triangle.



or by using analogous sets of axioms to prove each. Now, suppose

that we have proved Ts using axioms {AX1, AXh, AX6, AX7, AX8}, N
oo and want to find an analogous set of axioms to use in the proof of |

| 7’), . First, ZORBA-I would use INITIAL-MAP to associate the atoms .

in the statements of T's and Ty) to produce a - The version of
INITTAL-MAP described in Chapter III will not work here since it a

| takes account neither of function symbols (ATOMMATCH) nor one~many <

atom associations (SETMATCH). suppose that INITIAT~MAP was appropri=- ts

ately generalized and able to produce a partial analogy a, . | .

ay : perpendicular ~ perpendicular | Co
lbisect ~ abisect | |

eqlen ~ eglen Lo

Now, ZORBA-I calls EXTENDER with (, as its starting analogy. It par-
titions AXSET and computes | | oo

| some[a,] = {AX}, AXO, AXT, AX8] Cs

a, [descr AX6] = neglabisect], pos[eqglen]. :

AX6 is the only clause in some[Q, | whose restricted description (with oo
respect to a) has more than one feature. AXy7, for example, has Co
neg| eqlen] as a description and we expect many clauses in a geometry i

data base to satisfy this single feature. We want AX6, the defin- | to

ition of line bisection, to be associated with AX5, the definition 2

of angle bisection. Now AXS5 satisfies a, [descr[ax6]], but has predi- ¢
cate (intersect) which is not associated with any predicate in AX6. -

We are assuming that our new MAPSECR (Chapter V) has been generalized i

to handle associations of this sort. Suppose we associate AX6 with |

AX5 and generate O,:
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Ls a, : eqlen ~ {eqang, eqlen}
BN perpendicular ~ perpendicular | |

. lbisect~ abisect .

We extend oR and compute: |

| | | | some[a,] = {AX7, AX3} .

cy AX7 is the axiom used to prove the congruence of the two right

triangles for 5 Now, we want to get the analogous axiom (AX3) to
| use in the proof of Te. First, compute |

oo ~ descr[AX7] = neg[ritriangle], neg[eqlen], pos [tcongruent].

oo | We now have to create an @.[descr[AX[]] that can be satisfied by

i! oo AX3.  Bither neg[eqlen] or negl[eglen], negl[eqang] will suffice,

though o, (Chapter V) would probably prefer the latter. Again,
- | | MAPDESCR applied to AX( and AX3 would need to handle the one-many map.

oo | | ~~ eqglen ~ {eqglen, eqgang}

a | This example has been chosen for its (relative) simplicity. It
oo exemplifies some of the vagaries of analogies with one-many predicate

oY associations. | |

oo | | (1) Most predicates are associated one-one. Only a few predi- |
oe cates associate one-two or one-three.

. | (2) If a predicate p is associated with predicates g and |

| r: p~ {qg,r}; then p may be associated with gq in

oo | | order to find the analogof one axiom, with 1 to find the

oo analog of a second axiom, and with both gq and r to find

oo | the analog of a third axiom. In this example, the associ-
od ations |

. | AX1  AX2
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| satisfy this pattern. | | oo

In the last paragraph I have outlined the kind of changes that _

EXTENDER would require if analogies with one-many predicate maps | Ls

| | were to be allowed. Notice that we are still dealing with a class Co
of analogies that fit the ZORBA paradigm: a set of axioms analogous N
to those of the proved theorem can prove our new theorem. In this | N
case, the correspondence between the predicates in which the axioms

are expressed 1s more complex than in the one-one case we have -

examined In detall, while the axiom associations are still of the oo

game sort. | oo

C. Variations of INITIAL-MAP -

) | We have discussed the limitations imposed upon ZORBA-I by a

EXTENDER. In addition, INITTAL~MAP imposes Restrictions 5 and 6 oo
mentioned at the beginning of this chapter. The axioms used to 3

prove a theorem may include function symbols since EXTENDER, which SJ

| considers the axioms, ignores function symbols in its clause descrip- '

| tions. In fact, all of the algebra proofs described in Chapter V wo

and VI use function symbols in the set of necessary axioms. .

In the geometric example (14,5 and T7)) ) we have just considered, tc
theorem statements and axioms that rely heavily upon function symbols | .

provide a natural and elegant representation. It is possible to _

rewrlte these axioms without function symbols. Tor example,

| lbisect[line[x;yl; linefu;v]] becomes line[z;x;y] V line[w;u;v] .
Vv lbisect[z jw]. However, a function-free axiomation requires longer

| clauses and more (symmetry) axioms. ATOMMATCH (Chapter ), the -
| operation that associates variables in clauses, would need to be oo

generalized to include function symbols and an abllity to generate qo

more than one mapping when the functions allow syntactic symmetries. vo

| In addition, the section of SETMATCH that assoclates atoms into sets Po

© based on distinct analogous variables (Chapter IV) might use function .

symbols to ald discriminations. -

Lo
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N The version of INITIAL-MAP that is described in Chapter III is a
- | | rather complex matching program that exploits the syntactic structure
ol of the wifs to decide which atoms are to be associated. INITIAL-MAP

performs a simple, crucial role in ZORBA-I— it creates a’. EXTENDER
“0 needs a: for a starting point and cares neither how a3 1s generated |
wr nor whether it contains all the predicates used in the theorem state-

oy ments. az need contain only one predicate to activate EXTENDER. Ir |
ol a; contains more predicates, then it provides a more fertile beginning |
- | for EXTENDER. In particular, some [a] will increase with the size of

B as. We saw (Chapter VII) that increasing the size of a: can dramabi-
cally decrease the size of the total search space for aP. The point

B of these observations is quite simple: we can often generate an a’
oo with a much simpler version of INITTIAL-MAP than was described in Chap-
Co | ter IIT. Even when we generalize from one-one to one-many predicate |

“J maps, we have kept our mapping type-invariant (Chapters IIT and VII).

"0 Predicates that are associated must be of the same semantic type.

vs | Again, we will presume that if a predicate appears in the state~
oo | ment of g theoremT, then its analog will appear in the statement of

od | | Tp Now, consider the following version of INITIAL-MAP, called
_ INITIAL-MAPL:

J | Tnitigl-mapl]newwff;oldwff]: =

. (1) Partition the predicates that appear in newwff by their

ol semantic type.

- Do the same for the predicates that appear in oldwlf.
wd (2) For each predicate partition of newwff that contains only

i. one element, pair it with the predicate partition of oldwff |

Lo) | that has the same type, if it has but one member.

(3) If this set of paired-predicates is non-empty, set it equal

to ab.

— | If it is empty, set a’ to initial~map[oldwffinewwff] using
© the algorithm of Chapter IV.

- (4) Stop and Whistle. |
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For example, let Ty and Ty, mentioned earlier in this chapter be N
oldwff and newwff respectively. Furthermore, let RELATION be the

semantic type of {perpendicular, lbisect, abisect}, and EQREL be the i.

semantic type of the predicate cqglen (Table 19).  INITIAL-MAPL will Co

create or = {eqlen~ cqlen}. We still might want to run INITIAL- | Co
MAP on the two wffs toexpand 07 to include the remaining predicates Co
they contain. But we are not compelled to do this. This simpli- oy

fied version of INITIAL-MAP can be used either as a preprocessor or vo

as a substitute for it. It also provides some means for handling |

oo wif pairs with non-~isomorphic syntax when the semantic types are fine | .
| enough to unambiguously associate predicates based on predicate types

only.

D. Treating Constants NB

| In addition to restricting its predicate association to one-one

maps, ZORBA~T does not allow axiom systems that include constants. .

In contrast to the one-many maps treated in the preceding paragraphs, |
creating analogies in axiom systems that include constants will

probably require analysis algorithms different in spirit from oo
INITTAL~MAP and EXTENDER. fo

| ~ (Congider a robot that is instructed to go from SRI to (a) an .

office on its floor; (b) Stanford University; (c) San Francisco; .
| (4) New York City; (e) Chicago. These five problems could be stated

to QA3 as | .

| Tot Ese at[ robot; office; 5.0)

Tig CEN at[ robot; Stanford: Spl | .
Tio: Esp at[robot; San Francisco; spl |

Ts: CEP at[ robot; NYC; JN |

Tt ¥sg at[ robot; Chicago; Sel

139 a



u - By trivial syntactic matching we could assoclate office Lb with

| Chicago, Stanford with San Francisco, etc. The robot's actions to

B cet from SRI to Stanford,San Francisco, New York City, or Chicago
oo are pairwise similar. But the INITIAL-MAP or EXTENDER would have |
"1 | to know the "semantics" of these (geographic) constants (with

— | respect to SRI) and the robot's actions to assess which problems are
adequately analogical and which action rules should be extrapolated

Cd to the unsolved problem.

SE | B, Relationship Between ZORBA-I and QA3 | | |

- In the preceding section I have discussed the organization and

— use of ZORBA-I independently of QA3. In this section, I merely want |

= to note how a change in QA3 can affect the way in which the analogil~
oo cal information output by ZORBA-I can be used.

0 | The present version of ZORBA-I outputs a set of clauses that it
i. proposes as a restricted data base for proving 9% | If every clause
a in proof[T] has at least one image clause, then simply modifying the |

o | QA5 data base is magnificently helpful. However, if the analogy is

_ weak and we have only a partial set of images, what can we do? If |
every predicate used in the proof[T] has an image, we could restrict

E our data base to Just those clauses containingthe image predicates.
a. | Couldwe do better? And what do we do with a partial analogy in

- | which some clauses and some predicates have images, but not all of
oo “either set have images? At this point we meet limitations imposed |
“od by the design of QA3. All contemporary theorem provers, including |

1 | QA3, use a fairly homogeneous data base. QA3 does give preference
a, B to short clauses, since it is bullt around the unit~preference strat-

- egy But it has no way of focusing primary attention on a select

Ls subset of axioms A¥, and attending to the remaining axioms in D-A¥
Co only when the search is not progressing well. One can rig various

| | devices, such as making the clauses in A* "pseudo-~units" that would
N be attended to early. Or, with torch and sword, one could restruc-
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ture QA3 around a "graded memory" which orders clauses according to a oo

user specified ordering function. Basically, we have to face the oo

| fact that our contemporary strategies for theorem proving are designed N
to be as optimal as possible in the absence of a priori problem-

dependent information. These optimal strategies are difficult to

reform to wisely exploit a priori hints and guides that are problem- |

dependent. Various kinds of a priori information can be added. It Co

| is a separate and sizeable research task to decide how to do it. I -
presume, but do not know, that these comments extrapolateto other qo

problem-solving procedures. A system that is organized around oo .

a priori hints, heretofore user-supplied, may look very different than oo a

one that is designed to do its best on its own. QA3 was chosen | | -
because it was available and saved years of work in developing a new

theorem prover that would be more suitable. However, further research |

in AR may well benefit from focusing attention on a more flexible |

theorem~-proving system that can accept a wide range of "advice" from oo

the analogy generator. ol

Lo



» | | IX  ZORBA IN RETROSPECT

N I should like to encapsulate some of the key concepts that are

N implicit in ZORBA and embodied in ZORBA-I: |

Cl | (1) Some fairly interesting analogical reasoning can be handled

by modifyingthe environment in which a problem-solver |
Ny | | operates, rather than forcing the use of a sequential |
- planning language.

J | | (2) Fach problem-solver/theorem~prover will utilize different

N | | | a priori information and consequently will require different |
| | | analogy~-generation programs tailored to its representations.

oo In Chapter ITI, I suggested how an analogy system oriented
ol toward GPS would differ from one oriented toward resolution

oe | logic.

. (3) A good analogy generator will output some information help-
| ful to speeding up a problem search as a byproduct of a

oo successfully generated analogy.

- | (4) Part of the problemof reasoning by analogy is to specify |
IE precisely how the derived analogical information is to be

SV oo used by the problem solver. For the class of analogies

| | | handled by ZORBA we tacitly assume that restricting our

vo | data base is the means to exploit the analogy. For other
- kinds of analogies (Chapter III) a wider variety of uses

Cy may be suggested for the information to be derived from the

ol analogy. We would like a system to automatically decide
. | that one analogy can be used only to provide a particular
oo subgoal for the problem solver while another analogy can be
a used tO provide a complete plan and still another analogy

oo can be used only to suggest a particular set of axioms

Co without specifying the sequences they should be used in.



(5) An effective, nontrivial analogy generator can be adequately Lo
| built that uses a simple type theory and primitive semantic | Lo

selection rules. -

| (6) Although analogies are nonformal and are semantically ns
| oriented, nontrivial analogies can be handled by a semi- oo

| formal system wrapped around g highly formal theorem-prover. .

The first and last remarks suggest a fertile research strategy. _
Many good analogies are suggestive; the relational structures between N

| the solved and unsolved problems are similar, but not homomorphic. | N
Tn fact, their relationships are less well behaved than any of the N

mappings in our mathematicized language. For example, the geometric

| | analogy described in Chapter VIII needs to allow a few predicates to no
map one-many whlle most are mapped one-one. The restrictions on the Co

analogy @ (Chapter III) were largely defined after most of ZORBA-I | 7

was implemented. Much of the formalism employed in explaining the or

algorithms is also post-hoc. Creating a formal description of -

| ZORBA-I has helped clarify and articulate such concepts as the Co

restrictions on a and the analog description of a clause when 0%
is one-many. ZORBA-T was pragmatically designed within the frame- :
work of clause descriptlons and sequences of partial analogies; any oo
procedure that worked for abstract algebra was acceptable. The oo

freedom from formalism in the early stages of this research focused

attention on a rich class of theorems regardless of their formal | i

| properties. In contrast, a research strategy that attempted to i

formally define an analogy at the outsell and proceed with much rigor _—

. most likely would have yielded a complete procedure for a less inter- .

| esting class of problems. The choice of & problem domain is tricky. .

| We want a wide variety of analogies. At the same time they must N
entail sufficiently simple problems to be solved by our simple-minded

problem-solving systems. In mathematics both abstract algebra and a.

Euclidean geometry are "dense" in analogies between pairs of theorems o
that are not very complex. In contrast, the analogies that can be | (



a | Co exploited in number theory are between theorems that require theorem
| provers much more powerful than we now have, We all

y use analogies to ald solving problems and proving theorems, regard-
- less of the area we are considering. However, most domains are |
B sparse in good nontrivial analogies between simple problems. We
- | would be aided by a small catalog of the kinds of analogies we can
Co - find at various levels of problem difficulty in different areas.

~ Such a study could refine the approach of Chapter II to include the

“4 oo role of semantic types and restrictions on the submaps of @ ~ e.g., |
a a’. |

EI Even within the ZORBA paradigm we need at least two styles of

— generating an analogy. ZORBA-I is an instance of’ one, and the com~
LL | ments about treating constants in the context of robot manipulation

SI | problems (Chapter VIII) calls for another, still undeveloped approach.

EE | 7ZORBA-T passes only a modified data base to its associated
i= | ~~ theorem prover. Much more information is latent — e.g., how to use

oy | a particular axiom. In resolution, for example, a ground-unit clause

Co | may be needed only once in a proof, but generate a vast number of
BB | irrelevent resolvents in the search for that proof. It may unify

. | with literals in many different clauses and be given a great deal of
BN attention in a unit-preference strategy. We need to learn how to

oo specify when such a unit should be used. More generally, we need to |

oo | learn how to specify and represent such information for a problem-
a solving system. | | |

| PLANNER is a problem-solving system that has recently been
CT developed at M.I.T. It allows a user to specify whether a particular

SE theorem is to be used for forward inference or backward chaining. It

| incorporates a flexible pattern matching language and appropriate

ad features to allow a user to select The theorems which may be used in

| inference chains. From the point of view of problem-solving research

§ it makes little difference whether such advice is given by knowledg-
oo able persons or an analogy~-generating program. From our point of
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view, since PLANNER." is designed to accept advice, it may be a superb
vehicle for handling a wider variety of analogical information if its Yo
problem solving power is adequate. It 1s not yet clear whether vo

PLANNIIR can prove any ol the theorems used in the experiments reported | to

| here. If PLANNER were to be used as a target problem solving vehicle | -
oo for a new analogy system (call it ZORBA-IT), then ZORBA-II would place vs

somewhat different constraints on its mappings than does ZORBA-I. | a
| Table 20 depicts the English, wff, resolutions and PLANNER representa- | .

tions of two axioms that were found to be analogous by ZORBA-I (Chap- N

ter VI). Resolution represents these wffs by one clause each while |
| PLANNER distinguishes two possible theorems which differ in their use. | a.

A THANTE theorem 1s used to make a forward inference. For example, | I

(THANTE (X) (P X)(THASSERT (0,x))) could assert (Q A) when the data oR
base includes (P A). In contrast, a THCONSE theorem is used for .

backward chaining. (THCONSE (X) (qQ X) (THGOAL (P X))) will be trig- .

| gered to set up the goal (THGOAL (P A)) if it is ever attempting to | N
prove (Q A). The two uses correspond to the same wff: B

| W(x) plx] — glx] .

ZORBA-T has but one axiom map, a”, which gssoclates clauses one-many. a
We would expect that ZORBA-II would have an axiom submap that associ- To

| ates THANTEs with THANTEs and a separate submap oe assoclate THCONSEs

with THCONSEs. More verbally, 1f an axiom ax, was used to prove a | po
| theorem T by backward chaining (THCONSE), we would expect the ana- Lo

log of ax would prove the analogy theorem LY by backward chaining i
also. By using PLANNER theorem types, we can map local proof struc- | .

ture (under our analogy) by preserving theorem types under the analog -

I have purposely omitted two important issues: -

oo (1) Given a theorem T how can we recognize a good analogous N
| theoremT from among The set of theorems we have proved?

(2) How do the representations we use affect our ability to per- N
oo ceive and exploit analogies?



N English: | |

Sy oo Every abelian group is a group |

en predicate calculus wif: (x *) abelian[x;¥] —group[x;¥] |

~ resolution clause: —abelian[x;¥] Vv group[x;*]

Ba | PLANNER consequent theorem: |
oo |

| (THCONSE (X *) (ABELIAN X ¥) (THGOAL (GROUP X *))) |

oo PLANNER antecedant theorem:

| (THANTE (X *) (GROUP X *) (THASSERT (ABELIAN X ¥)))

- English: oo

_ Every commutative ring is a ring |

or | predicate calculus wif: ¥(r ¥ +) commring[r:;¥;+]— ring[r;%;+]

resolution clause: —commring[r;*;+] Vv ring[r;*;+] |

| | | PLANNER consequent theorem:
(THCONSE (R * +) (COMMRING R * +) (THGOAL (RING R * +))) |

PLANNER antecedent theorem:

(THANTE (R * +) (Ring R ¥ +) (THASSERT (COMMRING R * +)))

N Resolution and PLANNER Representations
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~The answers to these two interact. Within the set of algebra | oo

Lheoroem: {T,5 Wee Ty) that were used as examples in Chapters IV-
VIT, the followinp proceedure will satisfy problem (1): |

(1) Convert T, from a wff to a clause and create its descrip- BN
| tion. (Chapter III) | N

(2) Replace each predicate in the resultant description with

} its semantic-type. Thus, neg[group] will become | -

| negl structure].

(3) Search through memory to find the theorems that satisfy the

type-description of T, | | -

Now, the forms of the theorem statements we have used are so nearly

isomorphic that this simple search will give usa small set of good Ho

candidate analogs. A variant of ZORBA-I could be used to test which -

of these few candidates create a complete @, and we have solved our a.

| problem. G !

| | Now, suppose that our theorem statements are not so similar. | a.

Consider the following theorems: »

T, v(x vy *) | Py
| abelian[x;¥] A abelian[y;¥] A intersection[z;x;y] -

— absubgroup| z ;x ;¥] | oe

T, : V(r;siwix;t) N
| commring[r;*;+] A commring|[s;¥;+] A intersection[w;x;+]

— commsubring wr ;¥;+] oo

| | I,’ : T(r;s;w;*;+) :
commring[r;¥;+] A commring|s;¥;+] A intersection[w;¥;+] i.

| —commutative*;w] A ring[w;¥:;+] A subring[wir;¥;+] Co

Now, the procedures described in Chapters IV and VIII will easily |

| create the proper analogy between T, and I. I,’ 1s logically

| | | N

| L



J equivalent to T,. The predicate "commsubring' has been replaced with |
its definition.

Ll None of the procedures we have described will find the analogy
! |

- | Tq = T, .

WN : (1) a’ is no longer one-one. The predicate ABSUBGROUP now
| has no analog that appears in the proof or statement of

m |

I | (2) The predicates in the statements of T, and I,’ do not cor-
ho | respond  (INITIAL-MAP is foiled).

Co Unfortunately, a slight shift of form sabotages all of our algorithms. |

This unhappy observation should be a starting point for future

| | research. |

Co) |
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| APPENDTX A

DEFINITIONS OF PREDICATES AND THEIR SEMANTIC TEMPLATES |

Abelian[x;*] structure[ set ;operator] |

| | x is an abelian group under the operation "*", |

an | Absubgp(x;y3;¥] relstructure[set;set operator]

B x 1s an abelian subgroup of y under the operation "%",

Assoc[*:8] relation| operator set] | |

on | The set s is associative under the operation '*",

oo | Closed[*;3]  relation|[operator;set] | |

oo The set s 1s closed under the operation "¥7. Co

a Commutative *,3] relation operator ;set]

< oo The set s is commutative under the operation "¥",

= Commring[R;¥;+] structure[set operator operator]

_ ~~ The set r 1s a commutative ring under the operations '"¥" and

Co LS SLL

nN : Commutativering[r;¥;+] same as commring|r;¥;-+] | | |

. Commsubring| x;y ;%;+] relstructure[set set ;operator operator]

TT The set x 1s a commutative subring of the sety under the

oo “operations " " and "+",

a Clring[xi¥;+] structure|set joperator joperator]

= The set x 1s a commutative ring with a multiplicative unit

5 under the operations "*" and "+".

| | 49 |



Dist[*;+;5] relation] operator operator; set] | |

The operation * is distributive over the operation "+" on the |

set "Ss". | oo

Equalset[x;y] relation[set;set] | nh

set x equals set y. ‘

| Factorstructure[x;y;z] same as facts[x;y;z] oo

Facts[x;y;z] relation[set;set;set] N
x =y/z. | |

Group] x ;*] structure set ;operator] -
The set x is a group under the operation "¥" gnd the additive so

operation "+". vo

Ident[*;a3;x] relation[operatorjobject;set] Lo

A is the identy element of the set x under the operation "¥", oo

In[x;S] relation[object set] BN
Xx *—3 .

| Intersection[x;y;z] relation[setb;set;set] a

XxX =y Nz. oo

Inv] *;a;S] relation operator; object ;set] »

| The inverse of a under operation"*" — e.g., aL, .

Lassoc[*;S] relation[operator;set]

The set S is left-associative under the operation "¥", .



Cl Ldist[*;+;5] relative operator ;operator;set] |

Co The operation "¥" is left-distributive over the operation "+"

| Mep[fix:y] map[F ;set,set]
| f map the set x into the set y. f:x — ye

Co Map[f;a;b] map| FN,object object]

— oo fla] = b.

or Maximal{x;y;¥] relstructure[set,set,operator,operator]

| x is a maximal subgroup of y under the operation "¥"

BN Meximalgroup[x;y;¥] same as maximallx;y;¥]

a Maximalring| x;y ;¥;+] same as maxring[x;y;¥;+]

-- Maxring[ xy ;%;+] relstructure[ set,set operator operator]

oo Xx 1s a maximal subring of y under the operation ¥ and +.

_. Nonempty[ 3S] prop set]

N Normallxsy;¥] relstructure[set,set operator] |
x is a normal subgroup of y under the operation ™*",

oC Pideall[x;y:¥;+] relstructure[set,set,operator,operator]

~ oo x 1s a proper ideal of ring y under the operations "¥*'" and "+".

Pnormal[x;y;¥]  relstructure[set,operator]

x is a proper-normal subgroup of y under the operation "¥",

B proper] same as pideal[x;y;¥;+]

oo propernormall x;y ;x] same as pnormall[x;y;¥] |



| | Pnsubgroup[ x;y ;¥*] relstructure[set,set,operator] |
set x is a proper normal subgroup of y under the set "¥]. Co

Psubset[s;y] relstructure[set,set] :

XCY o o | _

Rassoc|¥*;8] relstructure| overator,operator,set] |

| The set S is right-associative under the operation "*, oo

| RAdist[*;+5] relstructure| operator ,operator,set]

| The operation "#*" ig right-distributive over operation "+" .
in the set 8. oo

| Ring[Rj;¥* +] structure[ set ,operator operator] =

The set R is a ring under the multiplicative operation "¥] .

and the additive operation "+". -

Simplegroup| x ;¥] structure[ set operator] | |
The set x 1s a simplegroup under the operation "*¥". BN

Simplering[x;¥;+ structurel set ,operator,operator] Pe

| The set x is a simplering under the operation * and + "

Subgroup| x;y ;¥] relstructure| set ;set operator] tL

~ The set x is a subgroup of y under "*'. .

Subring[ x;y ;%;+] relstructure| set,set,operator,operator] .

The set x is a subring of the set y under "¥" and "+". .

| Subset] x;y] relation[set,set] to

| 152 |



. | Times[¥;x3y3z] relation[operation,object,object object]

| Zz =X ¥y.

a Unitring[S,*,+] structureset,operator,operator]

Le The set 8S is a ring with a unit under "*" and "+". | |

w Welldef[*;3] relation[operator,set]

| The operation "¥*" is well defined on the set S. |

oo | 155
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APPENDIX B

B oo LISTING OF ALGBASE

| The following listing of the 239 clauses in ALGBASE uses the
| predicate symbols defined in Appendix A. They are indexed by a

oo | "clause name" to facilitate reference when considering the experi-
- | ments reported in Chapter VI. These names are indexed by two
a parameters, n and k, in the format AXn-k. For example, AX5-2 and |

Cd AX%-% are the names of two clauses in ALGBASE. The k~parameter -

oo following the dash numbers a clause with respect to its parent wff,

Cs AXn. The n-parameters are generated sequentially (by QA3) when-

| : ever a new wif enters its data base. Thus, the first wff entered

N is named AX1 and its clauses are named AX1-1, AX1-2, etc. If AX25 |

| v(x) plx]> gx] A rlx], |
then |

AX25-1: px] Vv rix]

- and | |

- AXR5-2: px] Vv qlx]

oo | are its two derivative clauses. In principle, all clauses are

. | independent, while in practice the same skolem function may appear |
| in several clauses that are descendent from the same parent wif. |

| | For example, see the clauses associated with AX52 that define the |
B predicate "commutative."  Skolems functions that were automatically
a generated by a prenex algorithm (in QA%) are denoted by SKj — e.g.,

oo | The listings in this appendix were printed on a PDP-10 line

rl printer and conform to its type set. The or sign (v) is omitted

_ | between literals, and the negation sign (—) appears as a dash (-).
ol Finally, the description of each clause (Chapter III) is printed

_. | directly below it. |

Co | oo 154



1s AX1-1 SUBGROUPLH,G,»5TAR] «NORMALLH,G,STARI | N

| NEGEnNORMALD pOsTsSUBGROUP] | .

| 2, AX1.2 INLU,HJ ~IN[HH,H] LIN[GG,G] =INCY,G) =INLM,G) -
| »TIMEGLGTAR,GG, HH, Y] »TIMESLSTAR,Y ,M,y) =INVERSELSTAR,M,GG) -

| -NORMALLH,G, STAR] a

| NEGUNORMALJ NEGLUINVERSE] NEGLTIMES] IMPCONDLIN]

3 Axeel NOWMALCH,G,5TAR] «SUBGROUPLH,G, STAR] -
«IN[SKS[STAR;G,H]er]

NEG IN] NEG[SUBGROUPJ POS[{NURMAL] | -

‘ AX 2.2 NORWALLH,G, STAR ~SUBGROUPLH,G,START .
INVERSELSTAR,SKALSTARs ;, H1 +s SK2L STAR, Go HI]

| POSC INVERSE] NEG[LSURGRUPI POSE NORMALI

21 AX2=S NORM4ALTH,G, STAR) =SUBGROURLH, G+ STAR) =
TIMESISTAR ,SKI[LSTAR, GH) »SKALSTAR,G,H],SKBLSTAR; GH] N

POSCTIMESY NEGLSUBGROUPY POSCNORMAL] -

0, AX2~4 NORMALLH, Gy STAR] «SUBGROUPLH, Gy STAR) C
TIMESLSTAR,SK2[STAR,GsH1,SKL[STAR,G,H],SK3[STAR,G, HI] N

POSE TIMES] NEGLSUBGROUP] POSLNORMAL] .

| 7 AX2w5 NORMAL CHG, STAR) ~SUBGROUPLH,G, STAR] B
| INLSK4LSTAR,G, HIG] -

POSLINI NEGLSUBGROUP] POSINORMALJ -

| 8, AX2=6 NORMALLCH, G4 STAR] «SUBGROUP[H,C,STAR]
INLSK3[STAR,GsHJI YG] o

| POSLIN] NEGLSUBGROURI POSINORMALJ | Lo
155 .



— | | oo |

ju | 9, AXS o7 NORMAL LH,G,STAR] «SUBGROUP[H,G,STAR)
INLSK2LSTAR, Gy HIG) oo

n POSCINI NEGLSUBGRQUP] pOSINORMAL)

10, AX2-8 NuRMALCH,G, STAR) «SUBGROUPLH,G STAR)
oo INLCSKLLSTAR, Ga HTH] |

Cu POSTINI NEGLSUBGROUP] POSINORMAL |

11+ AX3~1 GROUPLH,5TAR] ~SUBGROUP[H,G,STAR)

m  NEG[SUBGROUPJ POS[GROUR) B
ig

u 12. AX3-2 GROUPLG,STAR) =SUBGROUP[H,G,STAR] |

] | NEGE SUBGROUP J POS[ GROUP] | |
i | oo

13,» AX3.3 SUBSETIH,5) -3URGROUPLH, G,STAR]
i | | |

NEGLSUBGROUPJ POS[ SUBSET] |
m | |

14, AX4-1 SUBGROUP[H,G,35TAR) ~GROUPCH,STAR] «GROUPLG,STAR]

i  wSUBSETLH, GJ |

© NEGLSUBSETJ NEGLGROUPJ pOS[SUBGROUP)

~ | | |

- | 15. AX5-1 NORMALE X,Y, STAR] ABEL JAN[Y, STAR] |
| »SUBGROUPL X, Ys STAR]

NEGLSUBGROUPJ NEGL ABEL [ANI POSCNORMAL] |
Ly

is, AX6-1 SUBGHOUPTX,Y STAR] ~RINGLY,STAR,P
rSUBRINGLX,YsSTAR,PLUS] HNGLY STAR, PLUS)

m |

Ld NEGLSUBRINGI NEGLRINGI POS[5USGROUP) | | |

Li

- | 156 | |
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17 AR7-% ABELTANIX, STAR] -ABELTANCY STAR] |
~SUBGROUP[X,Y, STAR] .

NEGLSUBGROUPRP] IMPCONDLABEL JAN] oe

18, AX8=3 SUBGROUP 3B, AA» STAR] ~HOMrF As B =GROUP[A, STAR q CC
»SUBGROUP AA, A, STAR, »1AP{ LF, AA, BB] N

NEGLMAP4] NEG[GROUP] NEGLHOM] IMPCOND[ SUBGROUP J | .

| -

34, AX21i=1 GROUP[G,STAR] ~WELLDEF{STAR,GJ «ASSOCLSTAR,G] Ce
ZIDENTITY[STAR,E,G] ~In[SK120STAR,G1,G) RN

NEGC IN] NEGCIDENTITY] «WEGLASSOC] NEGLWELLDEF] POSCGROUP] -

35, AX21<2 GROUP[G,STAR] =WELLDEF[STAR,G] =ASSOCISTAR,G) -
~IDENTITY[STAR,E,G] INVERSELSTAR,SK12[STAR,G3,SK11(STAR,G]] :

oo POSL INVERSE] NEGEIOENTITY] NEGLASSQC) NEGLWELLODEF] bs

POSE GROUP?

36 pret.’ GROUPL, STR] =WELLDEFLSTAR GJ =» ASSOCESTAR,G]~IOENTITYISTARSEIG] INCSKI1LSTAR,GI,G6] :
¢]

| POS[ IN] NEG IDENTITY] NEG[ ASSOC] NEGIWELLDEF] POS GROUP]

| 37. AX23=1 NORMALLIN,G,3TAR] =GROUP[G,STARI FACTSLX,G,N)

NEGLFACTS] NEGLGROUP) POSINORMAL] r

38 4 AX24.1 FACTS[SKLI3LOSTAR,;B,A), A,B] ~GROUF[A,STAR] J.
«NORMALLB,Ay, STAR]

NEGINORMAL3 NEGEGROUPI POSCFACTS]

i.

59 Ax26=1 ~~ HOM{SK14LSTAR,Z,Y,X2,Y,X] ~FACTS[X,Y,2] -
~GROUPLY ,STAR] oo

NEGL GROUP] NEGLFACTSI PQOS[ HOM] | B

40, AX27~1 ITOENTITY[STAR:BsX] «GROUP[LA,STAR] «FACTSLX,A,8]

NEGLFACTSI NEGLGROUP] POSLIDENTITY] | i



| Taz, AX291 VORMALELX,G,STAR]  «GROUPLG,STARY
- «NORMAL[A,G,STAR] ~-NORMAL[B,G,STAR] «INTERSECTION[X,A,B]

NEGL INTERSECTION] NEGLGROUPI IMPCONDINORMALI |

43, AX3A=1 NowMALLBB,AA, STAR] »GROUPLA,STAR] |
. ~NORMALLB,A,STAR] ~HOM[F,A,AA] =MAPL[F,8,B8] |

-  NEGLCMAP13] NEGLHOM] NEGCL GROUP] IMPCONDINORMALJ

» 44, AX31-1 INVERSELSTAR2,EE, H) =GROUPLG,STARL]
| ~~ =GROUP[H,STARZ] =HOMIPH] 4 Gs HM] = INVERSE[STARLE.G]

N NEGrLMAP1] NEG[HOM] NEGrGROUP] IMPCOND[L INVERSE]

Cy 45 , AX32=1 TIMESCSTAR2,81,B82,83] ~MAPLLF+AL1,B1)
oo | ~MAP{[FsA2,B2] ~MAP1[F,A3:B3) =TIMESLUSTARL{,A1,A2,A3)
— GROUP[G,» STAR] |
a POS[ GROUP] NEGLMAP1j] IMPCONDLTIMES) | |

N 46 AX 32-2 TIMESISTAR2,B1,82,83] ~MAPL{(F,A1,B1)
| ~MAP1LF,A2,B2] ~MAPL[F 43:83] »TIMESLSTAR1,A1,A2,A3)
-- GROUP[H, STARZ] K

= ~ POS[{ GROUP] NEGIMAP17 IMPCONDCTIMES]

N 47 , AX 32 =3 TIMESISTAR2,B4,B2,+B3] «MAPLLF AL, B11]
. -MAP4LF, A2,B2] ~MAPLLF,A3,B3] »TIMESLSTARL,AL ,A2,A3]
. MAPLF1GaH]

. POS; MAP] NEGLMAP1y IMPCONDLCTIMES] |

N 48 AX32=4 TIMESCSTAR2,B1,B2,B3) «MAPL(F,AL1,B1)
» =MAP1L[F,A2,B2) ~MAP1{F,A3,B3] ~TIMESESTARL, AL,A2,A3])

wHOMCF,G, HJ

. | NEGLHOM] NEGLMAP13 IMPCONDLTIMES) |



49, AX33-1 RINGLR,STAR,pLUS] =COMMRINGLR,STAR,PLUS) | »

NEG[L COMMRING J POSLRING] . .

5g, AX33-2 INLA,R] .COMMRINGLR,STAR,PLUS] a

NEGLCOMMRINGJ POS[ IN] | :

51 | AX33=3 TIMESCSTAR,B,4,C) JTIMESUSTAR,AB,C]
| | wCOMMRINGLR,STAR,PLUS]

NEGLCOMMRING] IMPCONDLTIMESI B

52 4 AXZ4=1 COMMRINGrR,STAR,PLUS =RINGLR,STAR, PLUS)

mINLSKyop PLUS, STAR, RYiR) © ~IN[SK16[PLUS STARR] ,R .| STIMESESTAR, SK1gLP Lu STARR, SK1sCPLUS, STAR,R, SK17CPLUS, 3T Co
| AR,R7?7] 31 |

NELTIMES] NEGLINI NgGLRNGI POSLCOMMR[Ng] N

| 53 AX34 m2 COMMRINGLR STAR) pL US] =RINGIR,STAR, pLUS] Oo

TIMES[LSTAR,SK15[PLUS,STAR, RJ, SK16[PLUS,STAR,R],SK17LPLUS,STA | =

POSCTIMESY NEGLIN] NEGCRING] POSLCOMMRING) i

54, AX35e1 RINGLR,STAR,pLUS] =UNITRINGLR,§TAR,PLUS] “i

NEGCUNITRINGI POSCRING3 .

55 4 AX35m2 IDENTITYCSTAR,SK1B8LPLUS,STAR,R],R] -
~UNITRINGLR,STAR,PLUS?) 3 |

NEGLUNITRING] POSCIUENTITY] .

- 26 AX3I6 =] UNITRINGLR STAR, pLLUS]) mRINGILR STAR, pL US] i
| =I DENTITYLSTAR, EL, R] | |

NEGF IDENTITY] NEGLRING] POSCUNITRING] | -
161 -



u | | |

57 4 AX38e1l COMMR [NGL R) STAR ,PLUS] »RINGLR ,STAR, PLUS] |
| wCOMMUTATIVE[LSTAR,R) | |

oo NEGLCOMMUTATIVE) NgGLRINGY POSCCOMMRING)

. 58, AX39«1 COMMUTATIVE{PLUS+R] =RINGCR,STAR,PLUS)

= | NEGLRINGI POSLCOMMUTATIVE]

| 59¢ AX40-1 RDISTISTAR.PLUSIR] =RINGLR,STAR,PLUS]

NEGLCRING] POSLRDIST] |

uy 60, AX41~1 LDISTLSTAR,PLUS,R] ~RING[R,STAR,PUS)

os NEGCRING] POSLLDIST]

a. 61. AX42~1 NONEMPTY[R] -RINGC&,S5TAR,PLUS] |

h NEGLRING] POSINONEHPTY) |

62, AX43-1 HOMLgKi9[PLUSISTAR,Z2,Y,X]2YsX) «FACTSIX)Y22]
~RINGLY,STAR,PLUS]

Nn NEGLRING) NEGLFACTSI POGIHOMI]

oo 63 AX44=1 IDEALCBA»STARypLUS] »RINGLAsSTAR, PLUS)
Ny =FACTSIX,A,B1

i. NEGLFACTSy NEGLRINGy POSCIVEAL]

Ba 64, AX45w1 FACTSLSK2@PCPLUS,STAR,By AJ A,B]
wRINGLA,STAR,PLUS] ~IDEALLB, A,STAR,PLUS]

= | NEGL IDEAL] NEGLRING) PosCFACTS])

Cs 162 |



65, AX46w1 RINGLB,STAR,PLUS] ~HOM(F,A,Bl «RINGCA; STAR, PLUS] | L

NEG[{HOMI IMPCONDLRING] .

66 AX47=1 RINGEX,STAR,PLUS] ~RINGLASSTAR,PLUS] .
»RINGLB, STAR, PLUS] ~INTERSECTION[X,A,B] Lo

NEGL INTERSECTION] IMPCONDLRING 2

67+ AX49-1 TIMESLISTAR,E,X,X] ~INCX,5] «IDENTITYLSTAR,E,S]

| NEGL IDENTITY] NEGL IND POSCTIMES] | N

68, AX49+2 TIMESISTAR,X,EsX] =INLX,5] =IDENTITY[STARE,S] T

NEGL IDENTITY NEGLINI POSITIMES) | | .

69, AXS5D~1 IDENTITY[STAR,E,S] IN[SK21[S+EsSTARIsS] -

POSCINY POSCIDENTITY] Lo

784 Ax58-2 IDENTITYLgTAR,E,S]
»T IMESLSTAR, SK21(S,E.STARyE,SK21 S,E?1] e STAR J)
CTIMESCSTARSESK21LS EF STAR] SK21LS,EsSTART) —
NEGETIMES] POSCIDENTITy] =

71, AX51.1 TIMESLSTAR,B.,A,SK73(B,A,STAR,S1] =]N[A,S) |
~IN[B,S] »-TIMES[STAR,A,B,SK73(B,A,STAR,S]] |
»COMMUTATIVECSTAR,S] N

NEGLCOMMUTATIVED NEGLIND IMPCONDCTIMES? N

POSEINY POSLCOMMUTATIVE] .

oo 153 | | | =



~ 73. AX52e2 COMMUTATIVE[STAR,S] INCSK76[STAR,$3,81

- POSCINI POSCCOMMUTATIVE)

= 24. AXS 23 COMMUTATIVELSTAR,S)
CL TIMESCSTAR,SK75[STARS 1,5K76(STAR,S],S5K?7?2) 7[STAR,S]] SE

mm |  POSLTIMES] POSLCOMMUTAT]VE] | |

oo 75, AXS D4 COMMUTATIVELSTAR,S]
oo »TIMESCSTAR,SK76(STaAR,53,5K750(8TAR,S],C] oo

oo © NEGCTIMES] POSCCOMMUTATIVE] |

s 76, AX53-1 INLGK25[0X3,x] ~NONEMPTY[X]

= NEGINONEMPTYJ POSC in) | |

oo 77. AX54-1 TIMESUSTAR,AsWsV] =IN[A,S] =INCBsS] ~=IN(C,S) |
CL ~IN[SK26LC+B»ASSTAR,S],5]) -IN[SK270C,B+A,STAR,S],8]

- =TIMESLSTAR,A,B,SK240C,8,A+STAR, S31]
_ =TIMESCSTAR,SK240C,B8+A,5TAR,5),C,SK270C,B,A,STAR,S]] }

oo ~TIMESLSTA?] R,B»C,SK24[C,B+A,STAR,S]] ~ASSQCISTAR,S]

_ NEGCASSOUC] NEGLINI IMPCONDITIMES,

- 78, AX54-2 TIMES[STAR,UsCoV] =IN[A,SI <IN[B,S] =INCC,S)
- | ~IN[SK29LC,BsA,STAR,S3,5] ~INCSK32[C,B,A,STAR,S3,S]

| mIN[LSK31[C:B»A»STAR,S51,5)
I »TIMESLSTAR,B,C,SK31(C,u,A,STAR,S31]

~TIMESCSTAR,A,SK317C,B,A,STAR,S8],SK32LC,B,A,STAR,S71]
an ~TIMES[STA?) R,A,B,5K29:C,By)A,STAR,SJ] ~ASSOC[STAR,S]

+ | NEGL ASSOC] NEGLINI [MPCONDL TIMES] |

a 79, AX55-1 ASSOC[STAR,57 ~RAS50C[STAR,S] «LASSOC[STAR,S)

» NEG[LASSOC] NEG[LRASSOC] POS[ ASSOC) |



8g » AX56.1 TIMES(STAR,8,A,E] «IN[CA,S] «IN[B,S) :
wIDENTITYLGTAR,E,S7 =~1VERSELSTAR,A,B] |

| NEGEL INVERSE] NEGLIpeNTITY] NEGLINI POSCTIMES]

81. AX56=2 TIMESISTAR,A,B,E) -IN[A,S] -INCB,S] ol
| »]DENTITY[STAR,E,S] ~INVERSE[STAR,A,B] CL

. NEGC INVERSE] NEGCINENTITY] NEGUIN] POSCTIMES) -

82, AX57=1 [NVERSELSTAR, As B1 INCA, SK38LSTAR, By, Ad] | a

POSTINI POSC INVERSE] B

83, AX57=2 INVERSELSTAR,A,B] IN[B,SK38[STAR,B,A]]

) POSCINI POSE INVERSE .

| 84 , AX5 743 INVERSEC STAR, A,B] N
| IDENTITY STAR,SK3I9[STAR,B+AJ,SKI8[STAR,B,A?] J] -

POSLIDENTITY] POSL INVERSE] 5

| 85, AX57 m4 INVERSELSTAR, A,B) -
STIMESISTAR, A+B SK3IFLSTARI Br AT] :
wp IMEgLgTAR, By A, SK39L5TAR, By Ad) ¢.

NEGL TIMES POS[LINVERSE] ro

oo 86, AX58=1 IN[C,51 -IN[LA,S] «IN[LB,S] =TIMES[STAR:A,B,C] .
~CLOSEOLSTAR,S ; :

NEGL CLOSED] NEGLTIHES] IMPCONDLIN] Lo

| 87, AX59-1 CLOSERL3TAR,S) INCSK4gls,STARI:S) Co

POSCINI POS[CLOSED) .



— © 88, AX59.2 CLOSED[4TAR,S) INLSK41[s,5TAR],S]

~ POSCIN] POSCCLOSED] |

_ 89, | | | AX59m3 CLOSEDLSTAR,S) |
BE TIMESL STAR, SK4Q[S, STAR], SK41[S,STAR),S2?] K42[S,5TAR]] |

POSCTIMES] POSCCLOSEDT |

u 98+ AX59-4 CLOSED[STAR,S5] =IN[SK42[5,STAR),S] | |

Cy NEGL IN] POSICLOSED] |
J | |

co 91+ Ax 621 INIX,C] ~IN[{x,A] «IN[X,B] ~INTERSECTIONCC,A,B]

| NEGLINTERSECTIONI IMPCoNDL IN] |

SU 92. AX6@=2 INLX,B]) ~IN[x,CJ =INTERSECTION[C,A,B] |

uy NEGL INTERSECTION] 14PCONDLIN]D | |

E 93, AX608-3 INLXsA] ~IN[Cx,C] ~INTERSECTION[CsA,B)
» NEGLINTERSECTION] [MPCONDLIND |

= 94 , Ax61=1  INTERGECTIONIC,A,B)  «INLSK43[C,B,A],C]

»[N[SK44[C1BrA],A] .IN[SK44[C,B,A],B] |

5 NEGLINI POSLINTERSECTION]

95, AX6lac [NTERSECTIONCC, A BI «]N[SK43[C
oo INCSK44(C,ByAJ,C] | NE FCB a2.C3

Nn IMPCONDLIN] POSCINTERSECTIONY



96, AX61e3 INTERSECTION[ Cy A,B) INCSK43[CyByAJ,B) |
=] NL SK44{C/)BrAJ,A] ~IN[SKA4[C,B,A),B] | J

- IMPCONDLINI POS[ INTERSECTIONT a

oo 97+  AX61l.4 INTERSECTIONLIC,A,B8] IN[SK43(C,B,Ad,B] N
INCSK44LC,B,A,C] "

N POSLINy POSCINTERSECTION] a

98, AX61 +5 INTERSECT IONCC, A,B] INLSKAILCy)BsAT,A] Ld
- »]N[SK44[C,B,AJ,A) ~IN[CSK44LC,B,4A],8] oo |

) IMPCOND[IN] POS[ INTERSECTION] | | a

| 99,  AX61=6 INTERSECTIONLC,A,B) IN[SK43(C,B,A,A) | -
INLSK44LC,B, ATC] -

POSCIN] POSCINTERSeCTIoN] | »

100, AX62=1 INCAL,A] «wgPLFsA,B] =MAPLCF,AL,B1] I

NEGLMAPL1] NEGLMAP] POS[ IN] a.

: 101, AX62-2 IN[B1,3] ~4aAPLF,A»B] «MAPLLF,AL,B1) =

NEGLMAPL] NEGLMAR] POS[ IN] i.

182, AX63-1 CLOSED[STAR,S] =WELLDEFCSTAR,S] a

. NEGLWELLDEFJ POSCCLOSED] B

103, AX§3w2 TIMESLSTARsAsB,SKAS[B,A+IS,STAR]D] ~INCA,S])
»IN[(B,S] ~WELLDEF[STAR,S a

NEGLWELLDEF] NEGCINI POS[TIMES, »



124,  AX64=1 JELLDEFL STAR, S 3 «CLOSEDPC gTAR,S] |
SE NEGLTIMES NEGLCLOSED] POSCWELLDEF3

a 105, AX6 42 WELLOEFCSTAR,S3 -CLOSEDCSTAR,S]
- IN[SK47(S,5TAR],S] |

© POSLIN NEGLCLOSED, POSCWELLDEF] |

N 106, AX64.3 WELLDEFLSTAR,S) -CLOSEDCSTAR,S]
INCSK46[S, START, S)

N POSL IN] NEGC CLOSED] POS[ WELL DEF]

» 107, AX65-1 IN[SK4S[X,B,A,F1:B] =~MAPLF A+B] «]N[X,AJ

= NEGCMAPI IMPCONDCInj oo

B 108, AX65-2 MAPLIF,X,SK48LX,B,A,F1] =MAP[F A,B) =INLX,A) |

: NEGC INI NEGLMAP] POSCMAPL)

i | 109, AX66«1 INLY,B) wHOY[PHI ANB) «INC X, A) ~MAPL[PHI X,Y]

se NEGCMAP1] NEGLHOM] IMPCINDCIN]

110, AX67 1 HaP1[PS]1,Y,X]  ~HOMCPHI, A,B]  «INCX,A)
ol | wMAP1LPHI, X,Y] ~INVERSE[COMP,PSI,PHI]

N NEGLINVERSEJ NEG[IN] NEGLHOMI IMPCONDLMAPY3

. 111, AX68=1 NURMALCM,G, STAR) =PNSUBGROUPCM,G, STAR]

os NEGLPNSUBGROUPI POS[NGRMAL] |



112s AXo8w2 =IDENTITY(STAR,M;G] «pNSUBGROUPLM,C,STAR) NB

| NEGIPNSUBGROUPI NEGL IDENTITY) | -

113: AX68»3 ~EQUALSET[M,G) =PNSUBGROUPI[M,G,STAR] i

| NEGLPNSUBGROUPI NEGLEQU LSET] J)

| 114, AX69=1 INVERSE[STARG:F] ~INVERSECSTAR,F,G] | N

| IMPCONDL INVERSE] »

| 115, AR7D.1 INVERSELCOMP oF 4G] ~HOMIF sA»R] =HOMEG3B 9A ] oo

| NE GL HOM] POS[CINVERSE] B

| 116, AX71.1 HOMLCOSK49[B,APHII,B,A) HOMLPHI, A,B] .

= JMPCONDLHOM] | .

| 117, AX73=1 HOM[SKSGLC,B,A,6,F)sAsC] “HOMEF +A ,8] Fl

| ~~ IMPCONDCHOM) i

118, AX74-1 INTERSECTIONDX,Z2,Y] INTERSECTION X,Y;Z] N

~ IMPCONDL INTERSECTION] N

| | 119, AX75m1 COMMRINGIR ,STAR, PLUS] LCIRINGLR,STAR,PLUS] i

| © NEGLCIRINGJ POSCCOMMRING] | -

120, AX75=2 UNITRINGLR,STAR,PLUS] ~CLRINGLR,STAR,PLUS] N

| | NEGLCLRING] POSLUN[TRING] -

| 170 | .
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- | 121,  AX76=1  CL1RINGLR,STAR,PLUS] ~=COMMRINGLR,STAR,PLUS)

y ~UNITRING[R, STAR, PLUS |

NEGCUNITRING] NEGLCCOMMRING] POSCCIRING]

a 122, A 77-1  DIST[STAR1,STAR2,5] =LDIST[STARL,STARZ,S]
Co WROISTLSTARL,STAR2,53 |

. NEGCRDIST, NEGLLDIST) POSLUIST]

TT 123, AX78=1 CLOSED TAR, S) =RASGOCIg TAR, 5]

oo | NEGLCRASSOCI POSLCLQSED] |

Ce 124, AX78%2 TIMESISTA 2A VW] ~INCA,S] »IN[B,S) «[NLC,s5)
Bb «TIMES[{STAR,A,B,U] «TIMES{STAR,U,C,V] ~TIMES[STAR,B,C,W)
= ~RASSOC[ STAR, 5] | |

- NEG[RASSOCJ NEGLIN] IMP ONDE TIMES) |

y | 125, AX7 9m 1 RASSOC STAR, S) «CLOSEDLSTAR,S]
. ~~ wTIMESISTAR,SK66[S,5TAR],SK72LS,STAR],SK71[S,STAR]]

B © NEGLTIMES] NEGLCLOSED] POSLRASSOC)

» 126, AX79=2 RASSOCLSTAR,S) ~CLOSEDLSTAR,S)
TIMES[STAR,SK670S,STAR], SK68LS,STAR],SK71LS,STAR])

y POS[TIMES] NEGICLOSED] POS[RASSOC) |

i. 127, AX79=3 RASSOC[STAR,S] ~CLOSEDLSTAR,S)
BN TIMESCSTAR,SK69LS,STAR, SKe8[S,5TAR],SK7@LS,STAR J]

POSLTIMES] NEGLCLOSED] POSLRASSOC)



328, AX794 RASSOCLSTAR,S) ~CLOSEDLSTAR,SS y
TIMES[STAR,5K66[S,STAR],SK67(S,STAR],SK69[S,STAR]] | BN

| POSCTIMES) NEGLCLOSED] POSLRASSOC) y

129, AX79ab RASSOCISTAR, S] «CLOSED STAR.S] Uo
IN[SK68LS,STAR],S] N

POSTINI NEGCCLOSED]) POS[RASSOC] -

136, AX79=6 <ASSOCLSTAR,S] ~CLOSEDLSTAR,ST
INCSK67(S,STARY,S] | Sy

POS[CINT NEGL CLOSED] POS; RASSOC] |

131, AX79w7 RASSOCLSTAR,S) ~CLOSEDLSTAR,S] —
 INESK66[S,STARI,S] |

POS[{ INI NEG[ CLOSED] POS{RASSOC) N

132, AX80.1 CLOSEDCSTAR,S] .LASSOCCSTAR,S] .

NEG[LASSOC] POS[ CLOSED] CY

133, aAx808.2 TIMESLSTAR,U,CoV] oS IN[ASS] SINCBsS] SINLC,S] .
~~ =TIMESLSTAR,B,C,W)  =7IMESLSTAR,AWV] =TIMESLSTAR,A,B,U] Fv

=L ASSOC[ STARS] | Co

NEGrLASSOCJ] NEGLIN] IMPCONDLTIMES) | re

134, AX81~1 LASSOCLSTAR,S] ~cLOSEDLSTAR,S] ro
»TIMESLSTAR, SK63LS,STARI+SK620S, STAR), SK64[S,STARI] Ls

NEGLC TIMES] NEG[CLOSED] POS[L ASSOC) i

135, AXB1w2 LASSOCLSTAR,S] ~CLOSEDLSTAR,S] BN
TIMES[STAR,SK6B[S,STAR],SK61CS,STAR],SK63[S,STAR)] i

~ POSCTIMES) NEGICLOSED) POSLLASSOC) a

| | | 172 -



. | 136, AXB1lw3 LASSOCLSTAR,S) =CLOSEDISTAR, S]
h TIMES[STAR,SK6@[S,STAR1,S5K65[S,STAR),SK64(S,STAR]]

© pOSLTIMESY NEGCCLOSED] POS[LASSOC) N

CL 137, AX81~4 LASSOCLSTAR,SI ~ =CLOSED(STAR,S] |
TIMES[STAR,SK61[S» STAR], SK62LS,STAR],SK65(S, STAR] |

Ny © POSLTIMES] NEGLCLOSED] POSCLASSOC) |

oo 138, AX 81-5 LASSOCCSTAR,S ~CLOSEDCSTAR,S
INLSKe2[S»STARI,S) | |

RB ~ POS[IN] NEG[CLOSED] POS[LASSOC] :

y 139, AXE1.6 LASSOCLSTAR,S] -CLOSEDLSTAR,S] |
| IN[SKe1lg, STAR], 5] |

N POSLIN] NEGLCLOSEDy POSCLASSOCY |

ud 145,  AXB1.7 LASSUCLSTAR,S] -CLOSEDLSTAR,S]
| INCSK6@LS, START, SJ

POS{ INI NEG[CLOSEDI POS[L ASSOC]

. 141, AX83.1 COMMUTATIVELSTARGJ =ABELIANCG,STARY I

a NE GL ABEL [AN] POSCCOMMUTATI VE] | |

y 142, AXB3«2 GROUPLG,STARD] =ABELIANCG STAR] | |

NE GE ABEL IAN] POS[GROUP3 .

143, AXB6a1 TI4ESCSTAR2,B1,82,83]  ~MAPL[F,A1,B1)
w . ~MAP{[F, A2,B21 ~MAP {[F,A3,83] = «TIMESLSTARL,A1,A2,A3)

«GROUPLG,STAR1] =GROUP[H,STAR2] »HOMLF,G,H]J

N NEGLHOM) NEGLGROUP] NEG[MAP1) IMPCONDLTIMES] |



144, AX87-1 INLGKB7[X],xd =NONEMPTY[X] |

NEGLNONEMPTYJ POSTIN) - )

145, AX9@-1 MAFCCOMp(F,INVERSELFJIJ,B:B] =»HOMLF, A.B J .

NEGLHOMI POSIMAP] | |

146, AX92=1 MAP LF INVERSEFLY, AsByF1,¥]  =INLY,83
=MAPTF, A,B] no

NEGLMAPI NEGLINI POSIMAP1) |

147, AX92~2 INLINYERSEF[Y,A,B,F1,A) =INCY,B] -MAP[F,A,B] .

NEGLMAPI IMPCONDCIN] | | 0

148, AX93-1 MAPLLF,csMAPFIX,A,ByFJ]] «IN[X,A) =MAP[F,A,B]

NEGCMAPI NEGLIN] POS[MAPL] | a

149, AX93~2 INCMAPF({X,A,BiFJ1,B) »IN[X,A) =MAP[F,A,8] «

~~ NEGIMAPI IMPCONDLIN | -~

150, AX94~1 INLAl,A] ~MAP[F,A,B] =MAPLCF ,ALl:B1] | a

NEGEMAP13 NEGLMAPI POS[INI .

151, AX94=2 IN[B1,B] =MAP[F,A,B] «MAP{L[F,A1,817] £0

© NEGEMAP4J NEGLMAPI POS[IN3 5

152, AX95=1 IN[XesA] eMaplpPHI, A,B] ~MAPLICPHI; X,Y] |

NEGLMAP1] NEGLMAP] POSLIN] »

174 -



Co | 153, AX95=2 INCY,B] «MAPTPHI A,B] «MAPLLPHI, X,Y]

| NEGIMaAP1] NEGIMAP) POS IN] |

BN 154, AX96=1  MAPLLCOMPLF, INVERSECFJI,Y,Y] «MAPLF A,B]
oo ~ wINLY,B] ~MAPL[F ,INVERSEF[Y,A»BsF),2]

oo NEGL INI NEGIMAPI IMPCONGIMAPL] |

N 155, AX97=1 IN[Y,B] =MAP[PHI, A,B] «INIX,AJ «MAPLLPHI, X,Y]

= © NEGLMAP1] NEGLMAP) [MPCONDCIN) |

_. 156, AX98=1 INLX,A] «MAP[VFH] A,B) -IN[ Yi) wMAF{LFHL AT J

2 NEG[ MAP NEGLMAPI IMPCONDLIN3 |

a 157, AX99=1 GROUPLG, STAR] ~MAXIMALIM,G,gTAR)

:  NEGIMAXIMAL] POSCGROUP3

o 158, AX99<2 PNORMALLM,G, STAR] <MAXIMALLM,G,5TAR]

ES © NEGLMAXIMALJ POS[PNORMALJ |

a 159, AX 99 ~3 ~PSUBSETLM, OTHERGETLSTAR, G, M33
-  =PNORMAL [OTHERSET(STA?] RyG4M1,G,STAR] ~MAXIMALLM,G, STAR]

- © NEGUMAXIMALJ NEGLPNORM,|] NeGLPSUBSET] oo

B 160, AX100=1 AAXIMALIM) Gy STAR] ~GROUPLG,STAR]
“yo | ~PNORMAL[M46 +S TAR] PNORMAL[OTHERSET{ STAR,G,M3,G, STAR]

- IMPCONDL PNORMAL] NEGLGROUPI POSCMAXIMAL3

161, AX128=2 ~~ MAXIMALLM,G,5TAR) «GROUP[Gs STAR]
| wPNORMAL[M,6,STAR] PSUISET(M,0THERSETCSTAR,G,M]] |

- POS[PSUBSET] NEGLPNORMALI NEGLGROUPI POSCMAX IMAL J



170, AXi@%e1l HOM[HOMMAPISTAR,MN,G,XJ,GyX] cGROUPLG STAND
~NORMALLN,Go STAR] »FACTS{X.6,N]

 NEGLFACTSI NEGINORMALJ NEGLGROUPI POS[HOM] RB

171, AX1D 61 SUBGROUPLH,G,STAR] ~GROUPLH, STAR] _
~GROUPLG ,STAR] =SUBSET[H,G] |

NEGE SUBSET NEGLGROUPI »OS[SUBGROUP)

172 AXL37 =] ~-IDENTITY[ STARZ, Y, 8] «HOMLF s4 8 me
»GROUP[ A,STAR1] ~GROUP[B,STARZ]) “MAFLF, X,Y] n
IDENTITYDSTARL XA]

© NEGLMAPJ NEGLGROUPI NEGLHOMJ IMPCONDLIDENTITY] N

173, AXi08m1 InENTITYLSTARZ2,Y:B1] wHOMIPHE, A,B] to
«GROUP A,STARL) -GROUPLB, STARZ] wMAP[PH], X,Y

© LIDENTITYCSTARL,Xs a3

NEG[MAP1 NEG[GROyP3I NEG HOM] IMPCONDLIDENT]Ty] | 3

174, 2X1@9=1 PSUSSET[Y,BI ~HOMIPHI, arg) LGROUPLA,STARY] i
»GROUPLB,STAR2] =MAPLPHI, x,y] =PSUBSETLy,Al

NEG[MAPJ] NEGLGROUP] NFG[HOM] IMPCOND[PSUBSET] .

175, Axi18=1 NORMALLY ,B,5TARZ J ~GROUn{A,S5TARYL] io

«NORMALX, A, STARL)

NEGLMAPI NEGLHOMI WEGLGROUPJ IMPCONDLNORMALD .

176¢ AX111=1 NORMAL[Xs G, STAR] ~pNORMALIX,G,STAR) -

NE GLPNORMaLY POSINORMAL] 3

ne | L



— © 177, AX111-2 PSUBSETIX,;] =PNORMAL(X,6+5TAR) |

i NEGLPNORMAL) POSCPSUBSET] | |

y © 178 AX111.3 =IDENTITYCSTAR,X,G) =PNORMALLX,G, STAR]
NEGLPNORMALI NEGLIDENT [TY] :

Fo 179. AX{12=1 Pas RMALLIX,G,S TAR] “NORMALEX, Gs STAR]
Lo ~PSUBSET[X,G] IDENTITY STAR, X,G) |

_- POSC IDENTITY] NEGUPSUBSET] NeGINQRMALJ POSIPNORMAL]

Ba 188. AX113~1 SUBSET[X»Y] =PSUBSETLX,Y]
tod

3 NEGLPSUBSETJ POS[SURSET) | |

i. © 181, AX113.2 -EQUALSETCX,Y] «PSUBSETIX,Y] | |

- NEGLPSUBSETJ) NEGLEQWUALSET] |

- 182, AX114~1 SUBSE Tr X,Y) wPSUBSETI X,Y]

= NEGLPSUBSET POSTSUKSET 4 |

Lo 183, AX115=1 FOYUBSETIX,v]) »SUBSETIX,Y) EQUALSETIX,Y] -

a POSLEGQUALSETI NEGLSUSSET) POSCPSURSET) |

" 184, AX116=1 PSUBSET(X,z] =pFSUBSETIXeY] ~pSyYBgETLY/2]

- IMPCOND[PSUBSET

0 185, AX117-=1 SUBGROUPLX,G,STAR] «NORMALLX,G,STAR]

- NE GL NORMALJ POS[ SUBGROUP 3



162, AXi@i=~i GROUP([H STAR] =SUBGROUPTH,G,5TAR]

NE GL SUBGROUPJ POSL GROUP] | iy

163, AX121.2 GROUP[G,STAR] =SUBGROUPCH,G,STAR]

NEGL SUBGROUP] POS[ GROUP] a

164, AX101.3 SUBSET[H.,G] =SUBGROUPLH,G,STAR] Co

NEGL SUBGROUP] POSCSURSET) os

| 165, AX1@2+=1 GRQUP[GsSTARI »SIMpLEGROUPLG,STAR] ae

NEGESIMPLEGROUP] POSIGROUP] | i

166, AX102=2 ~NORMALLX,6,35TAR] IDENTITYLSTAR, XG] .
~PSUBSET[X,G] =SIMPLEGRQUP[G,STAR ve

NEGLSIMPLEGROUPJ NpGCPSUBSETI POSUIDENTITY) NEGUNORMALJ | :

167 AX103w1 SIMPLEGROUPLG,STAR] «GROUPL Gs STAR] -
NORMALISK94[STAR,GJ3,G,STAR]

POSCNORMALJ NEG[GRQUPJ POSLSIMPLEGROUP) .

168, : AX103»2 SIMPLEGROUP[G STAR] «GROUPLG, STAR] | po
=» JOENTITYLSTAR,SK91[STARGI, 6] y 3

NEGL IDENTITY] NEGLGROUP] POS[SIMPLEGROUP oo

169. AX183»5 SIMPLEGROUP(G,STAR] »GROUP(Gs STAR) i»

PSUBSET{ SKILLS TAR, G1:6G)

POS{PSUBSET) NEGCGROUP] POSC{SIMPLEGROYP) »

| 178 i



oo © 186,  AX11B=1  MAP[PWI.X,MAPFCX,B,A,PH]]]  =HOMIPHI A,B]
i. © &SUBSETLY,AJ

a NEGLSURSETJ] NEGLHOM] PnS[MAP) | |

187, AX116-2  SUBSETIMAPFLXsBy AjPHIJ,B]  ~HOMIPHI ,A,B]
i ~SUBSETCX, Al |

a NEGCHOM] IMPCONDCSUSSET) |

188, AX119-1 IDENTITYCFACTSETORLX,STAR,GyNJ,N,X]
oo wNORMALIN,G, STAR] «FACTSLX,G,N]

a NEGLFACTSI NEGINORMALI POSCIDENTITYI ol

Cd 189, AX120-1 EQUALSET[XsG) ~NORMALLN,G,STAR] =FACTS[X,G,N] |
wIDENTITY[STAR,N,G]J

y NEGL IDENTITY] NEGLFACTS] NEGCNORMAL] POSCEQUALSET)

(J 193, Axlzl~1 JOENTITYLSTAR, X61 =NORMALEN,G, STAR] |
y ~FACTSIX,G,N] =EQUALSET[X,G] |

ol NEGCEQUALSET) NEGLFACTS] NEGCNORMAL] POSCIDENTITY]

CL 191, AX122-1 NORMALGs, STAR]

- POST NORMAL] |

oo 192, AX123-1 EQUALSETCxX,X]

POSLEQUALSET] |

oo 193, AX124~1 ABELIANLX,sTAR] =ABSUBGROUPCX,Y,STAR] |

. © NEGLABSUBGROUP) POSCABELIAN) oo



T4994. AX124+2 SUBGROUPIX,Ys STAR) =ABSUBGROUPLX,Ys STAR] N

NE Gp ABSUBGROUP1 POSE SUG ROUP ] N

195, 4X125-1 ABSUBGROUPLX,Y, STAR) ABEL JANCX, ESTAR) i.
«SUBGROUPL X,Y, STAR Co

NEGLSUBGROUP] NEGLABELIAN] POSLABSUBGROUP] -

196, Ax126-1 COMMRINGLXSTAR) PLUS? -
| = COMMSUBRINGLX,Y STAR, PLUS] u

NEGL COMMSUBRING] POSLCOMMRING)

187. AX126=-2 SUBRINGLX,Y STAR, PLUS]
«COMMSUBRING[X,Y,5TaR, PLUS] J

NE GE COMMSUBRING] PQSLSyU3RING] i

198, AX1i27m=1 COMMSUBRINGLX,Y,STAR PLUS] N
«COMMRINGLX, STAR, PLUS] -SUBRINGCX,Y,STAR,PLUS] .

NEGLSUBRING] NEGL[COMMRING] POSECOMMSUBRING) -

199, AX128=1 SUBRINGIM,x,STAR,PLUS] «IDEALIM,R,STAR,FLUS] {J

NEGL IDEAL] POSCSUBRING] .

280 + AX128=2  IN[B2,M) -IN[A,M]  =IN[B,MJ  =IN[X,R] Co
wT IMESISTAR,X,A,X1] «TIMESLSTAR,A,X,%X2] =INVERSELPLUS,B1,8. |
»TIMES[PLUS,B,B1,B2] =IDEALLM,R,STAR,PLUS] »

NEGL IDEAL] NEGLINVERSE] NEGLTIMES) IMPCONDCIN] a

201, AX128=3  IN[X2,M]  =IN[A,M]  =INLB,M)  =IN[X,R] »
| eTIMESCSTAR, X,ApX1] =»TIMES[STAR,A,X, X22] «INVERSE[PLUS,By,B] .

“) IMES PLUS, B, Bi 1-3 -[JEALLM,R,STAR,PLUS] i

NEGC IDEAL) NEGLINVERSE] NEGLTIMES] IMPCONDCIN -

180 a



a 202,  AX128+4  [N[X1,M]  <INCA,MI  «INLB,MJ  =INIX,RJ
| wT IMESLSTAR,X, Ay X31] »TIMESISTAR,A,X, X2] «INVERSE[LPLUS,B1,8B])
B oo  TIMESIPLUS,B,B1,8B2) =10DEALLM,R,STAR,PLUS]

y NEGL IDEAL) NEGUINVERSE] NEGLTIMES) IMPCONDLINI

»IN[LSK98IPLUS) STAR ,R,M], M] « INCSKOQrPLUS,STAR,Ry M7 ,M]
| -INLSKO6LPLUS,STAR,,R,M7,M]

N CNEGLIND NEGLSUBRING) POSTIDEAL) |

. 204, AX129-2 IDEALLM,R,5TAR,pPLUS] «SUBRINGLM,R,;STAR,PLUS]

B TIMESL PLUS,SK94LPLUS,STAR,Ry M],SK95[ PL US,STAR, R, M],SKI6[ PLUS

Co © POSCTIMES) NEGLSUBRINGI POSLIDEAL)

. 285, AX129-3 [DEALCM,R,STAR, PLUS] ~SUBRING[IM,R,STAR, PLUS]
- INVERSELPLUS ,SK95[ PLUS ,STAR, Ry M],SK94LPLUS,STAR,R,M]]

a POSL INVERSE] NEGLSURRING] POSC IDEAL]

wu 206, AX129-4 IDEALIM)R,STAR.pLUS] =gUBRINGL[M,R,3TAR,PLUS]
TIMESCSTAR,SKO3ILPLUS)STAR,R,M],SK97[PLUS,STAR,R,MJ,SK99CPLUS

POSCTIMES] NEGLSUBRING] POSCIDEAL]

oo 287, AX129=5 IDEALCMiR,STAR,PLUS) ~SUBRINGIM,R STAR, PLUS]
or TIMES{STAR,SK97L[PLUS,STAR,R,M],SK93[PLUS,STAR,R,M],5K98[PLUS

LL STA? R,R,M1]

7 POSCTIMES] NpgGLSUBRING) POS IDEAL] |

y 208, Ax129=6 1DEA_[M)5, gTAR,PLUGg) «SUBRINGCIM,R STAR: pL US J
— INCSKO7 PLUS, STAR, 3, Mj, R] |

a ~ POSLIN] NEGLSUBRING] POS[IDEAL]

a 181



209, AX129=7 1DEALIM,7,5TAR,PLUS] =SUBRINGLM:R,STAR,PLUS] | oo
INCSKOAL PLUS STAR, R, MJ MY |

FOSCINT NEGUSUBRING) PQOS[IDEALY | ]

210, AX129.8 IDEALCMiR,STAR,PLUST .SUBRINGLM,R,STAR,PLUS] re

INCSKISLPLUS, STAR, RM], N

POSCINI NEGLSUBRING] POSC]DEAL] N

211s AX130-1 RINGLR,STAR,PLUS) «MAXRINGLA,R, STAR,PLUS] rs

NEGEMAXRING) POSLRING]

232y AX130-2 pIDEALCAIR,STAR,PLUS] ~MAXRINGLA,R,STAR, PLUS] i.

NEGCMAXRING] POSCPIDEAL] .

2134 AXL3Q=3 ~P SUBSET[A,0THERSETLSTAR,PLUS, A, R]
oP IDEALLOTHERSE?) TESTAR,PLUS,A,R],R,STAR,PLUS] -
»MAXRINGLA,Rs STAR, PLUS]

NEGCMAXRING] NEG[PIDEAL] NEG[PSUBSET) oo .

244, AX131=1  MAxRINGLA,R,STAR,PLUS] =RINGCR,STAR,PLUS] -
| oP IDEALLA,R,STAR,PLUS] J

PIDEALLOTHERSET[{STAR,PLUS,A,RI,R,STAR,PL?] US]

IMPCONDCPIOEAL] NEGLRINGI POSCMAXRING] .

215, AX131=2 MAXRINGCA,R/)STAR,PLUS] ~RINGELR,STAR,PLUS] Lo
»PIDEALLA,R,STAR,PLUS] PSUBSET[A,OTHERSET[STAR,PLUS,A,R]]

POSCPSUBSET] NEGLP IDEAL] NEGLRING] POSCMAXRING] .

| 216, AX132=1 PSUBSET[ X,B) wHOMUPHI , A,B) a
wR INGA, STARI, PLUS] ~-RING[B,STAR? PLUS - POR av
«PSUBSETLX,A] i 2:PLES2) MAP CPHL X,Y =

NEGCMAP] NEGIRING] NEGCHOMI IMPCOND[PSUBSET) -

182 »



a 217,  AX133=1  IDgNTITYLSTAR2,Y,8]  «RINGCLAsSTAR1,PLUSL]
i ~ =RINGILB,STAR2,PLUS?2] -HOMIPHI, A,B) =MAPLPH],X,Y]

~]DENTITYLSTARL,X, A]

NEGLMAP] NEGIHOMI] HEGLRING] IMPCONDCIDENTITY)

_ | 218, AX134~1 IOENTITYLFACTSETOPLCXs STAR PLUS, RAT, A,X]
- -10EAL[A,R,S?] TAR,PLUS) -FACTSLX,R,A] |

J NEGEFACTS] NEGLIDE1] POSCIDENTITY] |

- 219, AX135~1 IDEALCA+R,STAR,PLUS] ~PIDEALLA,R,STAR,PLUS]

N NEGLPIDEAL] POSCIVEAL] |

. 220, AX135-2 PSUBSETLA,R+STAR,PLUS] =PIDEALLA,R,STARPLUS]

= NEGCPIDEAL] POSCPSUHSET] |

BN 221, AX135+3 =1DENTITY(STAR,A,R] =pIDEALLA,R,STAR,PLUS]

RB NEGLPIDEALJ NEGLIDENTITY? |

“ns 222 AX136~1 PID ALCA,RySTAR,PLUSY =IDEALCA,R,STAR,PLUS]
»PSUBSETLA,R,STAR,PLUS] IDENTITY[STAR,A,R) |

- POSCIDENTITY] NEGOPSURSETI NEGLIDEALDY POSCPIDEAL)

oo 223, AX137-1 RINGLR,STAR)PLUS] ~SIMpLERINGLR,STAR,PLUS]

: © NEGCSIMPLERING] POSCRING] |

i. 224, AX137-2  =10EAL[Y,K,STAR,PLUS]  [DENTITY(STAR,Y,R
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22° A%138=1 SIMPLERINGIR, STAR PLUS] =RINGLR,ST 4% PLUS |
[DEALL SK1320 PLUS STAR) RI +R) STAR, PLUS) |

POSLIDEALI NEG[RINGI PCS[SIMPLERING] oo

226, 7X138-2 S[MPLERINGIR,STAR,PLUS]  =RINGLR,STAR,PLUS] )
»IDENTITYCSTAR,SKL#2(PLUS, STARR), R] ry

NEGP IDENTITY] NEGrRING) POS[SIMPLERING)

227,  pA%X138=3  SIMPLERINGIR:STAR,PLUSI WRINGLR,STaR PLUS] B
PSUBSETLSK102lPLUS,STAR,R] sR] |

POSLPSUBSETI NEGCRINGI POS[SIMPLERING) oo

228, AX142«1 COMMUTATIVELSTAR,R] «COMMRINGCR,STAR,PLUS]

NEGLCOMMRING] POSLCOMMUTATIVE] -

| 229, AX142.2 RINGLR,STAR,PLUS] =COMMRINGCR,STAR,PLUS] .
NEGL COMMRING J POSLRING §

23ps  AX143=1 COMMRINGLR,STAR,PLUS] «COMMUTATIVELSTAR,R] L.
wRINGLR, STAR PLUS] .

NEGL RING] NEG[ COMMUTATIVE] POSLCOMMRING) .

231, AX148=1 RINGLA,STAR,PLUS] -SUBRINGLA,B,STAR,PLUS] -

~ NEG[SUBRING) POSLRING] -

232, AX148<2 RING[B,STAR,PLUS] «SUBRING[A,B,STAR,PLUS] 9»

© NEG[SUBRINGJ POSCRING] Ns



N | 233, AX148=3 SUBSET[A,B] «SUBRINGLA,B,STAR,P US]
B NEGCSUBRING] POS[CSURSET) |

a. 234, AX158w1 ~IDENTITY[PLUS2,Y 8B) ~HOMCF, A,B)
| «RING[A,STAR1,PLUSY ~RING[B,STAR2,PLUS2) =MAPLF, X,Y)
— ~ IDENTITY[PLUS1,XsA] |

oo NEGLMAPI NEGLRING] NEGCHOM) IMPCONDLIDENTITY] |

| 235, AX159=1 ~IDENTITY[STAR2,Y 4B] «HOM[F , A,B)
~RING[A,STAR1,PLUS1; ~RING[IB,STARZ2,PLUSZ) ~MARCF,X,Y] |

BE IDENTITY[STARL, X, Aq |

es NEGCMAPI NEGIRING] VEGCHOMI IMPCONDCIDENTITY]

h 236, AX160~-1 IDEALLBB,)AA,STAR,pLUS] «RINGCA,STAR,pLUS] |
rT ~ =IDEALCB,A,STAR,PLUS] ~HOM[F,A,AA] «MAP[F,B,BB) -

NEGEMAP) NEGLHOM] NEGL RING) IMPCONDL IDEAL] | |

B 37. AX161-1 MAPLF «Al, IMAGE[ AL BAF] =HOM(F ,A,3]
a. »SUBSETL AL ,A] |

- NEGLSUBSET3 NEGLHOMI POS MAP;

I 238, AX162=1 GROUP[3,STAR2] =HOM[PHI,A,B] «GROUP[A,STARL)

CL NEGLHOMJI IMPCONDL[GRQUP3 |

oo 239, AX165~1 HOM[F,ASyB,BSUB] ~HOM[F,A,B) ~SUBSETLASUB,A]
- | «MAP LF ,ASUB, BSUB]

NEGLMAP] NEGLSUBSETJ I1MPCONDLHOM)
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u CL APPENDIX C

= ZORBA-IAS A USER SYSTEM |

- ZORBA-T has been implemented in LISP on a Digital Equipment

LL Corporation FPDP-10 Computer used in an interactive (time-sharing)

. mode. The (interpreted) system uses 100K of LISP words which are

a | | divided as follows: | | |

25K Basic LISP System; |

CL 10K Special LISP Trace Package;

oo oo | 15K (QA3) Functions used to maintain the data base, prenex

- | | wifs into clauses; |

| | | 25K ALGBASE loaded into QA3's data base:

. 15K ZORBA~I including I/O for analogies;

| ~ 10K Freespace for running programs.

a | 100K Total

| | I designed ZORBA-I empirically. Algorithms were coded for the |

| information flows I understood. When I was in doubt or didn't know
N a how to handle a particular decision, I would program a break point

that enables me to communicate with the LISP EVAL at that point in

- the program. TI could interrogate the state of ZORBA-I, edit func-

TH tions, execute various 1/0 operations, and continue running the
— program 1n order to design the needed sections of the ZORBA-I

— algorithms.

oo Without such flexible interactive facility, it is doubtful that

J ZORBA-T could have been developed at all. |

To In principle, ZORBA-I and QA3 are intimately linked while in

a practice they are barely connected.

In principle, the operating procedure for ZORBA-I would be:

oo (1) Load the ZORBA-I system on the PDP-10.

(2) Select a theorem Ty to prove and an analogous theorem T that

- | 186 |



has been proved.

(3) Load the data-base, e.g. ALGRASE from disk or tape. oo

| (4) Load the resolution tree (saved from the run of QA3 when .

T was proved) from disk or tape.

(5) Execute ZORBA-I[T, ;T] to create an analogy @. .

(6) Delete all clauses from the data base which do not appear Po

in the image of a”. to

(7) Call QA3 to prove T, using the restricted data base. Co

Two practical reasons inhibit these last two steps in the imple- .

mented system: Co

(1) The version of QA3 that runs on the PDP-10 is incompatible .

with the QA3 memory structures which ZORBA~I inherited |

from its initial implementation on the SDS-940. Substan-

tial work would need to be done to render the two com- |

patible again.

(2) The full blown QA3 system would demand an additional 15K BN

of code and possibly additional freespace. The resultant

system would be ~ 115K in size and would exceed the memory i.

| capacity of the PDP~10 LISP system at Stanford Research Co
Institute. In practice, QA3 could be loaded after po

ZORBA~-I was run by deleting the ZORBA~I code after use. Ch

QA3's code would be deleted and ZORBA-I's code would be Ce

reloadedto run the next analogy problem. Consequently, CL

ZORBA-TI has been run as an independent system from QA3. _

Two theorems (T, and I), ) were run on the PDP-10 version of | nN
QA% using the data bases output by ZORBA-I after it gen-

| erated an analogy with I and. Iz respectively. The QA3 r
search was, in fact, quite small (~ 100 clauses) and it



oo | found the two proofs easily. Other theorems in the experi- |

= a mental set required special QA3 strategies that were not
h | convertedto the PDP-10. Consequently, the impact of |
- | ZORBA~T on restricting their QA3 search was not explictly
wd } tested.
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