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ABSTRACT

This reportsthe simulation of a parallel processing system based
on a directed graph representation of parallel computations. The
graph representation is based on the model developed by Duane Adams in
which programs are written as directed graphs whose nodes represent
operations and whose edges represent data flow. The first part of the
report describes a simulator which interprets these graph programs.
The second part describes the use of the simulator in a hypothetical
environment which has an unlimited number of processors and an unlimited
amount of memory. Three programs, a trapezoidal quadrature, a sort and
a matrix multiplication, were used to study the effect of varying the
relative speed of primitive operations on computation time with problem
size. The system was able to achieve a high degree of parallelism. For
example, the simulator multiplied two n by n matrices in a simulated
time proportional to n. '
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INTRODUCTION

Many approaches have been taken to the problem of parallel computation.
One set of approaches, characterized by ILLIAC IV, allows only one instruc-
tion stream, but allows each instruction to be cérried out on many data
items simultaneously. This approach does not lead to serious problems of
sequencing, but it is suitable principally for problems using large arrays.
To take advantage of the fact that most problems require many operations
which are independent and can, therefore, be carried out simultaneously
requires one to use several independent instruction streams. This leads
to sequenciné problems, however, since concurrently executing sections of
code may refer to the same piece of data in an indeterminate order. One
approach to these problems has been to require the programmer to specify
where parallel execution may occur and to leave to him the problem of ma-
king sure that no conflict may occur between concurrently executing sections
of code. This approach is typified by the FORK and JOIN statements pro-
posed for ALGOL. A similar approach is to attempt to isolate the data
items which are referred to by more than one piece of concurrently exe-
cuting code and then to provide semi-automatic protection for these. This
is the approach taken by Dijkstra's semaphore system.

These approaches suffer from the fact that the burden of providing
parallel execution is on the programﬁer. The sequencing problem arising in
multiple instruction stream parallelism will thus become a source of pro-
gramming bugs since the programmer will not always use the interlocks
correctly. Furthermore, because of the additional programming required to

use interlocks etc., the programmer will not take full advantage of the



opportunities for parallelism inherent in an algorithm, particularly at a
very local (i.e., intrastatement) level.

An approach less prone to error is one which provides for multiple
instruction streams where the sequencing, and thus the degree of parallel-
ism, is specified implicitly rather than explicitly. This requires that
the program be written in a different representation than that provided by
conventional programming languages, since the sequencing implicit in these
does not distinguish between those cases in which one operation must logi-
éally follow another and those in which there is no such logical necessity.
In other words, it is desirable to have a representation in which operations
are implicitly simultaneous unless they are logically dependent on one another.
Directed graphs provide one such representation. In this representation,
the nodes of the graph represent operations performed on data stored on
edges directed into the node. A data item has no permanent location in
this representation, but rather "travels' along the edges of the graph to
the operations which are performed on it. An example of this approach is
the computation graph model of Duane Adams. Adams' model allows one to
program sophisticated algorithms, such as matrix inversion, in a way which
allows both the single instruction stream type of parallelism and multiple
instruction stream parallelism down to a very low level.

A program in Adams' model consists of a set of directed graphs called
graph procedures. Graph procedures consiét of two types of nodes, primitive
nodes and procedure nodes. Primitive nodes represent the basic operations
performed by the system (addition, multiplication, etc.). Procedure nodes
cause invocation of another graph procedure, i.e., they specify that

the computation to be performed by that node is the one represented by the
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named graph procedure. Edges specify the sequencing of the operations
performed by the nodes; 1if there is an edge directed from node i to node j,
then the result of the operation specified by node i is an input to the

operation specified by node j. The edges act as first-in first-out gqueues,

L
L
L

i.e, the data items are operated on by node j in the order in which they

were output by node i. There are two types of primitive nodes, p-nodes

r—

and s-nodes. P-nodes can execute when there is at least one data item on
each edge directed into the node. If there is more than one data item on

each input edge, the operation may be performed simultaneously on each set

—

of input items. This allows the single instruction stream type of parallel-
ism to be performed within the model. In order to insure that multiple in-
stances of an operation terminate in the same order in which they initiated,

the model specifies that there be an initiation queue associated with each

node. An identifier is placed on the initiation queue for each instance of

— r—

the operation which is initiated, and that instance does not terminate until

its identifier is at the head of the initiation queue.

—

The other type of primitive node is the s-node. Associated with each

edge directed into an s-node is a status bit whih specifies that the edge

r-—

is either locked or unlocked. An s-node can initiate when there is at

least one data item on each unlocked input edge, regardless of whether or
~not there is data on any of the locked edges. The values of the edge sta-
; tus bits are reset at the end of the operation specified by the node. The

new values are a function of the old status values and of the data input to

r r— r—

the node from the unlocked edges. Since the conditions for the initigtion
of an s-node depend on the results of the last operation performed by that

node, only one instance of the operation specified by an s-node can be

—
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carried out at a time.

Procedure nodes specify that the named directed graph is to be exe-
cuted using the values on the input edges to the procedure node. They are
initiated as p-nodes, so that more than one instance of a given graph pro-
cedure may be executed concurrently.' Aiso, the graph procedure named by a
procedure node may be the one in which the node is contained so that re-
cursive execution of graph procedures is possible.

This report describes a simulator which interprets Adams's graph
programs, carrying out the computations specified by a set of graph pro-
cedures and keeping statistics on the timing and resource usage, and it
describes experiments performed with the simulator. Simulations were run
on a number of sﬁ;ll programs, including a matrix multiply program, a
quadrature program, and a sort program. The programs were run uéing varying
amounts of data, various speeds for the primitive operations, also with and
without allowing multiple instances of a p-node to execute simultaneously.
All of the simulations described here were run using the assumption that the
machine sﬁecified by the simulator had an unlimited number of processors to
carry out the operations specified by the primitive nodes and an unlimited
amount of memory. Of course, this is an unrealistic éssumption. These
simulations were run in an attempt to discover the "inherent" resource
usage characteristic of the programs and to discover the effect of vary-
iﬁg the relative speed of primitive operations independently of effects due
to different algorithms for allocating processors in an environment with a
finite number of processors. These effects can then be controlled during

simulations run in the more realistic enviromment of a finite machine.
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i Experiments conducted to discover efficient algorithms for allocating
processors in a finite enviromment will be described in a subsequent re~

port.
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THE GRAPH PROGRAM SIMULATOR

The simulator described here may be thought of as a parallel computer,
although it was not my intention to simulate any particular machine archi-
tecture. As such, it has the following components:

Storage for graph procedures
Storage for data (edges), initiation queues, and the status of
nodes and edges in an executing graph procedure
A pool of processors with input and output registers
Logic for performing the operations specified by the primitive
nodes
Control logic for determining which nodes are ready to execute,
assigning processors to those nodes, recognizing that a
processor is done, and putting the results on the output
edges in the order dictated by the initiation queue.
The first type of storage is static during the execution of a graph pro-
gram, while the second is dynamic. Besides the above components, the simu-
lator also has the code necessary to gather statistics on the simulation,
provide a trace, etec.

Two distinct machine models are possible for the simulator, one in
which each processor is a specialized functional unit, able to execute only
a single type of primitive node and one in which the processors are all
general processors so that each can execute all of the primitive nodes. I
will call the first the functional unit model and the second the multi-
processor model. In terms of an actual implementation, the functional
unit model has the advantage that it is not necessary to duplicate the

decoding and control circuitry required to decode operations in each



processor. It has the disadvantage of limiting the flexibility of proces-

sor allocation algorithms. In addition, if the mix of functional units
available on the machine does not closely match that required by a given
program, many of the functional units-will be idle much of the time. The
savings gained by not duplicating control circuitry may thus be lost to
increased inefficiency. The distinction between the two models is not too
important in the unlimited resource environment, since it makes no sense
to ask what the optimum ratio of adders to multipliers is, for example, if
one has an infinite supply of both. In the finite environment, however,
the simulator can be used to determine the cost in functional unit idle-
ness of the functional unit model, and these costs could then be weighed
against the costs of duplicating control circuitry.

Each processor in the simulator contains three input regiéters and
three output registers by means of which data is gated from and to the
edges. A gating bit is associated with each of the registers. For the
input registers, these indicate whether the corresponding edge was locked
or unloéked and, thus, whether there is data in the register. For the
output edges, the gate bits indicate whether or not the processor produced
output in that register so that the control circuitry will know whether to
gate the contents of the register onto the corresponding output edge. This
allows a processor to produce output conditionally. Each processor also
ﬁas a completion bit and a timer associated with it. The timer is a
simulator expedient which allows the processor to execute for a particular
number of cycles. A block diagram of a processor is shown in Figure la.
Figure 1b shows how the processors would be arranged in the functional
unit model. The availability queues indicate whether a processor is free

or assigned to some node. -If it is assigned, they indicate to which node.

2



r

rrr . r Mmoo e

Program storage can be divided into two parts: that which is static
during execution of the program and that which is dynamic. The static
storage contains the graph procedure definition and the dynamic storage
contains the edges, initiation queues, and node and edge status flags.
For each graph procedure, three arrays are needed. Two are one dimen-
sional arrays with one entry for each node in the procedure. One gives
the type of each node (i.e. the operation code), and the other identifies
the graph procedure named by the node if it is a procedure node.

The graph itself is represented by a connection matrix whose i, jth

entry is non-zero only if there is an edge directed from node i to node j
in the graph‘irogram. If the entry in the connection matrix is non-zero
it is an integer which identifies the edge connecting the two nodes. The
static storage is shown in Figure 3.

The dynamic storage consists of node and edge status flags, pointers
to edges and initiation queues, the edges and initiation queues, and
storage for structured operands. These are shown in Figures 3, 4, and 5.
Only the status bits and edge initiation queue pointers (Figure 3) are
copied when a new procedure is initiated.

The status bits for a node indicate whether it is idle, ready to
initiate, or executing. P-nodes may be both executing and ready to ini-
tiate at the beginning of -the same simulator cycle, since more than one
copy of the node may execute on that cycle. The status bit associated
with an edge indicates whether it is locked or unlocked. If the edge
is directed into a p-node, its status is always unlocked.

The basic data structure of the graph model is the first-in first-

out queue. Queues are used as a basic ordering device to maintain the
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sequence of operations during a computation. Their use in the edges
provides implicitly the array structures which are specified explicitly
by indexing in conventional programs. The programming of the simulator is
thus facilitated by a programmiﬁg language which allows queues as & data
structure. The resulting simulaﬁor is also a‘better description of the
graph model since the ordering provided by queues ig implicit as in the
model. Queues can be programmed in PE/I by using structures and compile
time macros.

Edge and initiation queues are represented by PL/I structures
having four parameters which determine the access to the queue and an array
which holds ;he values in the queue. The four parameters are: (1) the
index of the array element which holds the head of the queue; (2) the
index of the element holding the tail; (3) the number of élements currently
stored in the queue; and (4) the maximum number of elements which the
Jgueue can hold. A PL/I compile time procedure is used to define QUEUE
as a data type in the simulator, i.e., to produce the proper structure
declaraticn when a simulator variable is declared to be of type QUEUE.
Special access procedures are used for entering and deleting values |
which treat the array assoclated with the queue as a circular buffer.
These procedures, together with the compile time macros have the effect
of making QUEUE a basic data type within the simulator.

Edges are then represented as an array of queues as are initiation
queues. Both arrays have an associated allocation list whose entries
indicate whether the corresponding queue is allocated and if so, to which
node or edge. When the simulator wishes to allocate an edge, it searches

the allocation list until it finds an entry which is zero. The edge



number is then put in this entry, and the edge pointer is set to the
corresponding queue. The allocation list entry is reset to zero when
the edge is released. When no edge resources have been allocated to an
edge, the pointer is zero. InitiétiGn queues are allocated for all nodes
in a graph procedure when the procedure is called.

Representation of structured data in the simulator differs from that
in the Adams model in two respects. Iirst, structured elements are not
stored directly on the edges in the simulator. Instead, they are stored
in a separate array and pointers to the location of the structure within
fhe array are kept on the edges in their place. At most, one instance of
a given pointe; may be on the edges at one time so that the pointer
"represents"” the bracketed data structure on the edge. Second, rather
than use a special bracket symbol at the beginning and end of the structﬁre,
the starting location (denuted by the pointer value) and a count of the
number of items is used. Items may themselves be pointers, so the
structure is recursive Jjust as Adams bracket notation is. The format
of structures is: (length) (item)* where (length) is an integer and
the number of (item)s must be equal to the value of (length). It is
easy to show that the pointer-count representation allows exactly the

same structures as does the bracket notation (¥). However, having the
; length explicitly available simplifies storage allocation for the simulator
and also avoids the problems of settiné aside a special value for the |
bracket character and of examining each element in the structure to find
the closing bracket. Pointers are not explicitly distinguished from data
in the simulator. Rather it is assumed that each type of primitive node
knows what type of data to expect and that graph programs will use the

correct primitive nodes. ‘This requires different primitive node types

10
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for the same operation on scalar and structured data, but it has the
advantage that the edge access procedures do not have to examine each
item so that the same queue access procedures can be used for all queues
in the simulator. In a hardware implementation this advantage would be
outweighed by the flexibility gaiﬁed by using a single bit to distinguish
between pointers and data.
Simulations take place in three stages. First, machine character-
istics (number and speeds of processors, amount of storage, etc.) are
read in followed by the graph program definition and the simulator is
initialized. Second, successive machine cycles are simulated until a
cycle occurs during which no node executes. This indicates the progrem
has terminated. Finally, the memory and processor use is printed in bar
graph form together with some statistics on the simulation. Figures 6-10
show the simulator flowchart.
The simulation of a single machine cycle is done in three stages.
In the first stage all those nodes which are ready to initiate are marked.
This is done by examining all the non-zero entries in the row of the con~
nection matrix which corresponds to the node in guestion, i.e., all the
input edges for that node. If any edge is both unlocked and empty then
the node is not ready to initiate. Otherwise, it is ready to initiate.
A p-node may be marked ready to initiate even though it is already execu-
ting if data has arrived which permits a second copy of the node to ini-
tiate. |

Allocation of processors among those nodes which are ready to initiate
is done by a self-contained procedure so that the allocation algorithm
can be readily changed. This procedure puts the processor identifier in
the nodes initiation queue and changes the node status from ready to exe-

cuting. It is also resﬁonsible for determining whether multiple copies

11
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executing. It is also responsible for determining whether multiple copies
of the node should be initiated. Each processor has a unique number
assigned to it and entered into the availability queue when the simulator
is initialized. The size of each Queue determines the number of processors
which are available for the corresponding node type. When a unit is
assigned to a node the processor number is removed frum the proper pro-
cessor available gueue and put onto the initiation queue for that node.
One data item is then removed from each input edge and put into "input
registers" associated with the processor. If the node is a p-node and
there is stil} data on each input edge, another processor is taken from
the available queue and put onto the initiation queue of the node.
This process is repeated until some input edge has no data. The process
provides the vcetor parallclism required by the graph progran model.
Associated with each unit is a timer. When the unit is taken from
the unit pool this variable is set to zero. After the ready nodes have
been iniﬁiated, the timer of each executing processor is incremented and
compared against the time required for that type of node. When the two
are equal, i.e., when the node has executed the required number of time
steps, the simulator transfers to code which carries out the actual oper-
ation. The transfer is by means of a switch on the node type. If the
processor identifier is now first on the initiation queue of the node, the
results are put on the output edges and the processor identifier is re-
moved from the initation queue and placed on the proper unit pool queue.
If another processor is first on the initiation queue, this processor is
not terminated, but if that processor subsequently terminates in the same

time step, the simulator looks again at the initiation queue and

17



terminates this one without waiting for the next time step. Thus, the
order imposed by the initation queue is maintained, but the simulator
carries out as many terminations at-a-time as it can.

When a procedure node is encountered, a copy must be made of the
defining graph. The nodes and edges in this copy must be renamed so as
to be distinguishatle from cthcr coriles cxecuting cencurrently. In
addition, the initial data on the edges must be present each time the
' graph procedure is called. The creation of a copy is accomplished by
adding a new level of naming to the PL/I structures containing the edges
and the node date. Thus, the array of queue EDGES is actually the
fully qualified name COPY (I,J) * EDGES. This is the JEE call of graph
procedure I. COPY (I,0) is the definiton of the graph procedure I,
while for J>0 COPY (I,J) is the copy which is artually execnted.

When procedure I is called its edges can then be initial
executing the structure assignment statement.
copy (1,J) - EDGES = COPY (I,0) ° EDGES

Initially, the simulator assigns COPY (l,O) and executes the graph
procedure consisting of COPY (1,1). When a procedure node is encountered,
I is reset to the name of the procedure and a copy of the node is exe-
?uted for one time step (i.e. each node in the procedure is executed one
fime step). If the procedure has not terminated at the end of the time
step, control returns to the calling procedure but the node remains in
execute status. When the node terminates, it is taken out of execute
status and this indicates to the simulator that control is not to be
passed to the node on subsequent time steps. The edge initialization

only takes place when the node is in the ready-to-initiate state.

A
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In simulating a given type of node the actual execution takes place
on the last of the n cycles specified for the execution time of that node.
The first n-1 cycles are simply delay cycles and no action takes place
during them. Procedure nodes muét‘fe specified as a procedure call
operator whose argument is the name of the procedure to be invoked.

The procedure operator itself has an execution time of n cycles,
which represents the setup time (resetting pointers, ailocating
storage, etc.) necessary for that invocation of the graph procedure,
and the invoked procedure does not begin to execute until the last
of these cycles, so that the total time required for a procedure
node is the g&me required for the procedure call operator plus the
time required to execute the constituent nodes.

Although execution takes place only on the last cycle of the node's
execution, aata is taken off the input edges prior to initiation and the
processor is allocated to the node throughout the execution period.

Thus, the simulator acts externally as if the processor were executing for
n cycles. When the node is initiated, a processor is assigned to it by
removing the processor number from the appropriate availability queue and
placing it in the node's initiation queue. The data from each unlocked
input edge is transferred to the corresponding input register in the
assigned preccessor and the gate bits of all input registers are set to
reflect the edge-status bits. If the node is an s node, the processor
resets the gate bit at the end of execution. The gate bit is then used
to reset the edge-status bit.

The execution of a node is carried out by two procedures, EXECUTE

and HARDWARE. EXECUTE determines which nodes are ready to initiate,

calls the processor allocation algorithm, transfers the data from edges
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to registers and sets the gate bit. After a delay which represents the
execution time of the node, it calls HARDWARE to apply the functions
associated with the node. HARDWARE operates only on the registers of the
assigned processor; it does not know the edge connections of the node to
which the processor is assigned. When control is returned to it, EXE-
CUTE resets the edge status bits according to the processor gate bits,
and transfers data from the output registers to the output edges. In
some cases, the processor may return a null result in one or more out-
put registers so that the value in the register is undefined. The pro-
cessor flag RRF indicates to EXECUTE whether or not the corresponding
output register value is to be put onto an output edge.

EXECUTE also has the task of assuring that results are put onto the
output edges in the order dictated by the initiation queue. This is
accomplished by checking whether the first processor in the initiation
queue has completed. If not, no other processors in the queue are
checked on that cycle. Otherwise, the data from that processor is put
onto the cutput edges and the process is repeated for the next item in
the initiation queue. Completion is indicated by the processor flag
DONE. In this version of the simulator all nodes of a given type are
constrained to have the same execution time. The order of initiation
: and termination would thus remain constant even without the initiation
queue mechanism.

Allocation of edge resources is done by the procedure M-ALLOCATE.
This procedure is called by EXECUTE before it transfers output from
processor registers to an edge. It is also called by the procedure call

operator in order to allocate storage for initial values to be placed on
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the procedure's edges before initiation. The current version of
M-ALLOCATE allocates edge resources in fixed size blocks. In the
unlimited resources model 15 edge-resources are allocated for each
edge when M-ALLOCATE is calied; This has proven ample for all of the

programs which have been simulated.
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SIMULATOR INPUT AND OUTPUT

The simulator first reads in a set of graph procedures defining the
program to be simulated. It then simulates each time step of the pro-
gram's execution until no nodes are able to execute. Simulation of g
time step consist in first marking all the nodes in the éraph which are
ready to initiate, then allocating processors to these nodes, and
finally, executing all the nodes which are able to execute on that time
step. The number of processors used during the time step is recorded
-for each node type, as well as the number of edge resources in use at
the beginning of the cycle. This information is printed at the.end of
the simulation.

The input to a simulation consists of two parts, machine charac-
teristics and the graph program. The first part specifies three types
of parameters: (1) whether the execution is to have vector parallelism;
(2) the execution time for each primitive node type; and (3) the number
of processors for each primitive node type. Parallelism is specified by
a bit constant - '1'B for vector parallel mode, 'O'B for concurrency
only mode. In the latter mode only one copy of a p-node4can execute at
a time. This bit is followed by a list of pairs of integers giving the
time in cycles that each processor type requires to execute and the num-
ber of processors of that typg.

The graph program is read in as a set of graph procedures. The format
for the input of the graph program is best described by a bnf syntax.

{graph program) st = 0
| {(graph procedure) (graph program)

(graph procedure) (name) (procedure definition) (ini-

tial data)
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(name) s

(procedure definition)

(node count) “i:

(node list)

(op list)

(name list)
(connection matrix)

(initial data)

(edge information)

(edge number)

(status bit)

(data list) :

(count) :

(data) ::

Zeros terminate both the data list and the set of graph procedures.

Il

(positive integer)

(node count) (node list) (con-
nection matrix)

(integer)

(op list) (name list)

{1ist of integers}

{list of integers}

{list of integers}

0

| (edge information) (initial
data)

(edge number) (status bit)
(data list)

(positive integer)

'1'B /*lockedx/
| '0'B /*unlocked*/

(count) (data)
(non-negative integer)

{list of floating point numbers}
| (empty)

The integer (name) identifies the graph procedure being defined

while those in the (name list) identify those procedure nodes which are

constituents of that procedure. Procedures can be read in any order and

may contain nodes naming procedures not yet read in.

must have the name 1, and execution begins with this procedure.

The number of entries in (op list) and (name list) must be equal

to (count), while the (connection matrix) must have (count)@ entries.

The main procedure



Only those edges specified by an edge number are initialized. If
an edge is initialized its initial status setting must be given. Edges
leading into p-nodes are set to unlocked. The status of all edges
which are not explicitly initializéd are set to unlocked before the sim-
ulation begins.

Simulator Storage Parameters

The following parameters can be varied to adjust the storage used
by the simulator in order to fit the requirements of the graph being
interpreted. M#T is the maximum number of time steps the computation
| will run. Simulation results are stored in a M#T by NT#+1 array, where
NT# is the number of primitive node types. ERM is the maximum number of
edges and IQM the maximum number of initiation Queues which can be
allocated. IQM must be >= the number of procedures executing at one
time times the number ot nodes in each. The arrays used are of size:
ERM by EGLNMX+4; IQM by EGLNMX+4; ERM; and IGQM. EGLNMX is the maximum
number of data items which can be held on an edge at one time. EGMX
and NDMM refer to storage of graph procedure definitions. NDMX is the
maximum number of nodes in any one procedure (excluding copies), and
EGMX is the maximum number of edges in any one procedure. The major
arrays used are: 2 of size PROCM by NDMX; 1 of length PROCM by NDMX+1
by NDMX+1l; 1 of length PROCM by EGMX by EGILNMX+2; 2 of length GMAX by
EGMX, where PROCM is the number of gréph procedures in the graph pro-
gram being simulated and GMAX is the maximum number of procedures which
can be active at one time, including multiple calls to the same proce-

dure. (Hence this parameter limits the depth of recursion).

24



(
C

r~—

r—

r—- rr— r— r— r— r—

r r— r— r—

r—

r—

Certain of these parameters (M#T, PROCM, ERM, IQM, EGMX, GMAX,
and NDMX) are read in by the simulator at the start of‘each run. They
are read in DATA format, and so may be entered in any order. They are
the first data read in by the simuiator.

There are two types of output from the simulator, trace output
and resource use summary output. Trace output is printed during the
simulation and consists of identification of nodes in execution, pro-
cedures which have been invoked, input and output register contents,
etc. It is primarily useful in debugging graph programs. The resource
use summary is printed at the end of the simulation. For each type of
resource, in;iuding edge resources, the following information in prin-
ted: (1) A bar graph showing the number of resources of that type
used at each time step of the simulated computation; (2) The total
number of resource cycles used for that type of resource; (3) the
percent utilization of that type of resource; (4) the average number
of resources used per time step; and (5) the maximum number of resources
used at any time step. The same information is also summarized for all
processor resources. The total number of resource cycles provides a
measure of the "cost" of the computation, the percent utilization
measures the efficiency with which resources are being used, and the
average resources used per time step gives an estimate of the degree
of parallelism attained.

Representation of structured data in the simulator differs from
that in the Adams model in two respects. First, structured elements
are not stored directly on the edges in the simulator. Instead, they

are stored in a separate array, and pointers to the location of the
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structure within the array are kept on the edges in their place. At
most, one instance of a given pointer may be on the edges at one time so
that the pointer "represents'" the bracketed data structure on the edge.
Second, rather than use a special bracket symbol at the beginning and
end of the structure the starting location (denoted by the pointer
value) and a count of the number of items is uséd. Items may themselves
be pointers so the structure is recursive Jjust as Adams' bracket no-
tation is. The format of structures is: (length) (item)* where |
(length) is an integer and the number of (item)s must be equal to the
value of (length). It is easy to show that the pointer-count repre-
sentation allows exactly the same structures as does the bracket nota;
tion. However, having the length explicitly available simplifies
storage allocation for the simulator and also avoids thg problens of
setting aside a special value for the bracket character and‘of exenining
each element in the structure to find the closing bracket. Pointers

are not explicitly distinguished from data in the simulator. Rather

it ié assumed that each type of primitive node knows what type of data
to expect and that graph pfograms will use the correct primitive nodes.
This requires different primitive node types for the same operation on
scalar and structured data, but it has the advantage that the edge access
procedures do not have to examine egch item so that the same queue access
irocedures can be used for all queues in the simulator. In a hardware
implementation this advantage world be outweighted by the flexibility

gained by using a single bit to distinguish between pointers and data.
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PRIMITIVE NODES

The choice of which operations were to be implemented in the simul-
ator was somewhat arbitrary. Since no hardware constraints or cost
considerations were available as a guide, primitive nodes were chosen
primarily because they were convenient for writing the programs to be
simulated. Any hardware implementation of this model would include
primitive nodes similar to those implemented here, although they would
undoubtedly differ in some details.

The following table lists the twenty-eight primitive node types
in the simylator. The first column gives the operation code used by the
simulator, the second the name of the node type together with the symbol
used in drawing the graph procedures, the third and fourth the data types
of inputs and outputs, and fifth gives the functions which determine
edge status settings for s-nodes. Only two s-nodes were needed, but
these were used frequently. Loop control, type 11, selects its first
input on the first execution and the second on all subsequent execu-
tions of the same node. Select route, type 12, selects either its
second or its third input depending on the value of its first input,
which is boolean. If the first input is true, the second input is
selected, otherwise the third.

The arithmetic and boolean operations (zero test, negation, plus,
increment, decrement, multiply, subtract, divide, less than, GTEQ, AND,
OR) work in the obvious way. The equivalent of branchlng in a conven-
tional computer is provided by the conditional route and branch route
nodes. The conditional route node has two inputs, the first of which

is a boolean value. If the value of the boolean is true, the second

27



CODE

o V1 W

v o =

10

11

13
14
15
16
17
18.
19
20
21

22

23

NAME

Procedure Call
Zero Test
Negation

Plus

Increment
Decrement
Multiply

Two Copies
Conditional Route
Branch Route

Loop Control

Select Route

Subtract
Divide

Less Than
First

Rest

First - Rest
Null Test
Length
Unbracket
Split

GTEQ

TABLE 1 ~ PRIMITIVE NODES

INPUTS
Any
(=0) Float _
(=) Boolean
(+) Float, Float
(+1) Float
(-1) Float
(%) Float, Float
(2) Scalar
(Cond) Bool, Float
(BR) Bool, Float
() Float, Float
(SR) Bool, Float.
Float
(-) Float, Float
(2) Float, Float
(<) Float, Float
Vector
Vector
Vector
Vector
Vector
Vector
Vector
(>=) Float, Float

QUTPUTS
Any
Boolean
Boolean
Float
Float
Float
Float
Scalar, Scalar
Float
Float, Float

Float

Float

EDGE_STATUS

P-node

P~node

P-node

P-node

P-node

P-node

P-node

P-node

- P-node

P-node

U,IL,U;
L,U-L,U

True, U,L,I—

UL, F,ULL —LU
IUL - ULL, LLU-ULL

Float

Float

Boolean

Float

Vector

Float, Vector
Vector, Boélean
Vector, Float
Float

Vector, Vector

Boolean

P-node

P-node

P-node

P-node

P-node

P-node

P-node

P-node

P-node

P-node

P-node
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ol And ) Boolean,Boolean  Boolean P-node
25 Or (V) Boolean,Boolean  Boolean P-node
26 Insert Vector, Float Vector P-node
27 Two Copies-Vector (2) Vector Vector, Vector P-node
28 Identity D Any Any P-node

input is placed on the output edge. Otherwise, there is not output.
Branch route has two inputs and two outputs. The first input is a
boolean. If it is true, the second input is placed on the first output
edge and nothing is placed on the second output edge. Otherwise theré is
no output on the first edge and the second input is placed on the second
input edge.

The TWO COPIES node takes one input and puts it onto the two output
edges. This is by far the most commonly occurring node in the graph programs
which I have written. Because the implementation of structured operands re-
quires that there be one and only one copy of a pointer to a vector, a special
node type is needed to copy vectors. The vector itself is copied to a new
location in structured operand storage, and a pointer to the new location is
output together with the pointer to the original location.

The UNBRACKET node causes a vector of length n to be split into its
éomponents. The n components are put onto the output edge. This is the
only primitive node which puts more than one item on a single output edge
so that it must be treated as a special case by the execution logic. Rather
than putting the contents of the processor output register onto the output
edges, the register is used as a pointer and the contents of the structured

operand storage pointed at are put on the output edge.
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FIRST, REST, FIRST-REST, and SPLIT all operate on vectors. FIRST puts
out the first component of the vector. REST decrements the length field of
the vector, moves the length field to the position occupied by the first com-
ponent of the vector and outputs a pointer to the new vector thus created.
FIRST-REST combines these operations, outputting the first component and a
pointer to a vector containing the remaining components. SPLIT outputs
pointers to two vectors containing the first half and second half of the com-
ponents of the input vector. If length of the input is odd, the first half is
one longer.

Length inputs a vector and outputs the original vector and its length.
NULL TEST inputs a vector and outputs the vector and a boolean whose value
is true if the vector is NULL (has a length field equal to zero) and false
otherwise. INSERT inputs a vector and a scalar and outputs a new vector of
length n+l which has the scalar as its last component.

The PROCEDURE CALL node requires the most complex logic of the primi-
tive nodes. It must allocate space for the named graph procedure, transfer
the contents of the processor input registers to the input edges of the
procedure, detect termination of the procedure and transfer the contentsvof
the output edges to its output registers, bracketing if necessary. Bracketing
is done by creating a new vector in structured operand storage and putting a
pointer to this vector in the output register. Finally, the space allocated

to the graph procedure must be freed.
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USE OF THE SIMULATOR

This section describes three graph programs which
were written for the simulator and the results of simulations
run using them. The programs are a trapezoidal rule quadrature,
a sort, and a matrix multiplication. The simulations show
how the computation time, processor use and degree of parallelism
vary wi;h the amount of data, the effect of changing the relative
speed of primitive node types, and, in one case, the dependence
of computation time on data values. Each program, and the

simulations run with it, is described separately and the results

are summarized in the conclusion.
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TRAPEZOIDAL RULE QUADRATURE

In order to determine what processor speeds should be used for sim-
ulation, the time required for various.operations on several existing com~
puters were compared. The results are shown in the following table. In the
second half of the table the times are normalized so that integer addition
equals one. The time for floating point addition then ranges from 1.33 to
slightly over 2 andvfhe time for floating point division from 5.0 to 17.1.

From the studies of varying processor speeds done on the sort and
trapezoidal quadrature program, it appears that the main effect of changing
processor speeds _from a uniform execution time of one cycle to a vafied set
of times falling within the range of existing computers is to scale the time
required for the computation by an amount equal to the mean execution time of
the nodes in the program. Second order effects, caused by delays in the exe-
cution of nodes which depend on the output of slower nodes, are not signifi-
cant unless the variance in processor speeds is higher than that in existing
computers, e.g. unless one node is much slower than the others.

The trapezoidal quadrature program calculates the polynomial
(b-a)/h
h*

iZo f(a+ih) - (f(a) + £(b))/2). The values of h, a, and b are inputs

to the procedure, and the function to be inteprated is specified by supplying
a;graph procedure which computes the value of that function. Successive
values of atih are generated by adding h fo the previous value. This loop

is terminated when the value of a+ih equal to b has been generated. These
values are fed into the procedure node for f(x), and the output of that node
is fed into a summation loop. Generation of the last value of x causes the

value in the summuation loop to be fed into a subtract node which subtracts
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the value (f(a) + f(b) )/2, calculated from the initial values, from the sum.

The resulting difference is multiplied by h to give the value of the integral.

:
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TABLE 2

REPRESENTATIVE EXECUTION TIMES FOR SOME EXISTING COMPUTERS

EXECUTION TIMES

6600  PDP10  360/91 360/75 360/k0 7600
FP + 40Ons  L4.46u 2cy .83 14.3 hey
FP - LOOns  L4.6hu 2cy .83 1,3 keye
I+ 300ns  2.53u lcy =60ns .39 7.5 2cy
FP x 1000ns 10.2%u 3cy 2.05 76.3 5cy
FP + 2900ns 14.1lu Ocy 3.80 128.1 20cy
A 500ns  2.35u 1 .59 7.5 2cyc
- 300ns 1.5u 1 .39 7.5 2cyc
Br 1500ns  1.36 6+ 1.10 5.02 11
BC 1500ns  1.68u T+ .39+1.10  T7.5c 11
Subrout.
Branch 2.21 .99 6.88 13

ley=27 .5ns

Ratios add (integer)=1

F+ 1.33 1.76 2.00 2.13 1.91 2.00
F- 1.33 1.76 2.00 2.13 1.91 2.00
I+ 1.00  1.00 1.00 1.00 1.00 1.00
- FPX 3.33 L.o7 3.00 5.26 10.2 2.50
- FP+ 9.67 5.58 9.00 9.75 17.1 5.00
A 1.00  0.93 1.00 1.51 1.00 1.00
- 1.00  0.595  1.00 1.00 1.00 1.00
BR 5.00 0.5k 6.00 2.82 5.50
BC 5.00 0.664 7.00 3.82 1.00 5.50
Sub- 2.52 6.50
routine :
Branch
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Since the values of at+ih are generated by a sequential loop, the time
to perform the quadrature is at best proportional to the number of points
used. For functions which require little calculation, this loop will do-
minate the quadrature time. Howeve£, if f(x) is sufficiently complex, the
time required to compute it will be much larger than the time required to
compute all the a+ih. The computation of f(a+ih) will then proceed approx-
imately in paraliel for all values of 1. 1n this case, the computation time
still has the form kl n + ko, where n is the number of points, but ko will

be much larger than kl so that the kln term will not be significant except

for very large n.
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TRAPEZOIDAL RULE QUADRATURE

g T(x)dx = h * | T r(a+in) -

Fig. 10

f(a) + £(b)
2
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Square Root Procedure

This graph procedure calculates the square root of a positive floating
point number by Newton's method. The initial approximation is provided
from the polynomial (x3-5x2+15x+5)/16. This is derived from the L4 term
Taylor series expansion for (l+y)l/2 =1 + y/2 - y2/8 + y3/l6 by setting
y = x - 1. This polynomial is computed by nodes 1 through 17. The remain-
ing nodes compute the approximation Y+l = (Yn + x/Yn)/z to y = x and test
for an error below a specified limit. The iteration stops when |yn - yn+l <e
where € 1is the constant placed on the edge between nodes 32 and 33, in this
case 10_5. The test is computed by nodes 26, to 32-35, and the resultant
boolean is dis%ributed by nodes 36, 27, and 18 to the gating nodes which
either enable another iteration or halt the computation and gate the result
to the output edge of the procedure through node 39.

Fig. (15a) shows the processor resource usage for SQRT (2.0) under the
assumption that all processors executed in equal times. Fig. (15b) shows
the same computation with processor times which assume gating and similar
operations take 1 cycle, additon, subtraction, logical operations and
compares 2 cycles, multiplication 4 cycles, and division 6 cycles.

Newton's method is inherently sequential,, so there is little overlap

in the execution of this graph procedure. The maximum number of processors

; executing in any cycle was four. The time for execution was 133 cycles,

but the total of processor cycles used was 200 so that 67 cycles were over—
lapped or 1/3 of the total. To put it another way, with strictly sequential

execution the computation would have taken 1/3 longer.
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S5 hud
56: k#
STz #

Ly



e

—

—

—

i e

53:#

59 :#

60 ##

(382333

62 #

63:

64
TOTAL RESJURCE CYCLES USED = 111.00 ¥ UTILIZATION = 0.39
AVERAGE RESODURCES USED PER TIME STEP = 1.73 MAXTIMUM = 4
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~ SQRT (2.0) - Varied Processor Speeds
TOTAL PROCESSUR KESUURCE USAGE
L:nds
2344
J:HWR

YO &~

se e on 4o e o

W RER R

p—

Py ¥
11: 44
12:##
12244
l4:#
15: #
lo #
17:#
1l #
19: 4
2034
21:#
22: 4
234
24k
25t #
26 #
2T R
28 #
29k
EREE
31 4#
32:8
33:4%
342k
35324
364
37:4
34 4
393 #
401 4
4138
42 #
4324
INAE
45 #
L4613 4
Gl 8
A3 R
[N
5Tt H#
S1: a8k
S2HRR
S3 hH#E
Sqt #ik
55: 4%
56 #
St #
58 #
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593 4
6 H#
6l HHne
YARZ 3T
63 ##
54 #
65: #
66: n#
674
68 4
69 #
T2 4
71: 4
724
T3:#
T4 4
15 %
16 4%
T7:#
T8 #
19 #
3C #
3Lz #_
824
33: 4
B4 ¥
85: 44
36 H#K
8Ts hith
O KEF
3 HR#
PIEE S
9l:4
G924
I3 4
G4 4
95 ##
5 HHKH
GTswuba#
9B H#
99 K
100: 4
101 ##
1024
103 #
104: 4%
106:#
176 %
10734
1)t 4
1Cos#
1l w
1llc#
112 %
113:#
1lata
115: %
llot#
117:#
1132 #

L7



11924
112G kB
121 wkk
122 #i#
123:h#4
1242 i fi#
1253 44
126: 4
127:#
1282 4
129: #
130: 44
131:Hdk#
132:#
133 #
134:
135:

TOTAL RESUGURCE CYCLES USED = 200

AVERAGE RESDURCES USED

PER TIME STEP
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JUTAL PRGCESSUR RESUURCE USAGE I oYX ax
Letn# 1
2iAhANEARABAR
3rhhhhaRAn
YTl

Sthhhhhatinnnn

O hhhanRKAi

Thhhnui

CER T2 X 13

Q:hbhhhnisd
LC2hbhAdtnA
Llzawbhnhbinana
L2hhhhnhinaing
L3AHARRRABRAAR
LazhhadbAhnhhAnh
LOhhmuNMhnluM

Loz HiahnRnnas
LT:hhhbiih

lLB8:psntinnnnt

19 hhhhabhnbhha
20HhAnhhhnnnig
CLiAhbRRANAGREH
223 hAhNBhAtALA
23ThAhHRNRRBARN

Q4 hhhhnbhnbng
COCUNRRADRRARRA
2OSHARBRBANRHHA
LI hnhhbhhAanhAh
26 hnnhhidng
29 hAhhhiRbnhkn
30 hahbhinnnhanni
JLkHABRBARANARY
B2SHKAAANRRBRAANRBHRY
33chuhhhhhnhbnnn
34zHRhnhnhiANnn
3bshhhnhohnhhnnh
30hhbshhbanhbhiant
STIhhhhbhnnhhnhin
38:AARABARNAARIA
3I9HuhNARIHRARAH
QOSHAANDRIRAERN
GLIAARARADARAANAHASY
G2SHRANHRNABH IR Y
Q32 abhANABAARNRABAN
ShchhBhbhihathinhid
G5 hhhnNa AR ARE
GO hAARRARRAARARARE
GTARRRBABAABANRARY
GUIARRHBRBAARRRAHER
GO hfthhhABAhRhunE
SCeHbhuhRhunniiahs
Sleahhbhhhhahrhhnhnay
SCIhABNBIENANRARAARARRES R
EHANNNANGRARNNHRAHARRH
SUsLANNAANNBAIAARBHARAAY
SSThhhNNURABRBBRAURBRANRH
SOLHAANARBRAGRANGERARYAN
STahhrhhinnhbanbnnah
SBhumNbnhnAnuBHRARRNN
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SOABANUANRRANRARNANAAR
OO HUMNBANNBRHARARBRHARE
OLeAhAAMARNBAARAARNBERS
C2HAANNBANANANBAABBNRENES
O3 hAAANHEBHBHANHRENIURRRG#
C4: hANRNNGEARANRARNNBAN
OOChUNNHBNARNADANRRAN
GO ANNNRAARELARRANEN
OT:ABANNAANARRINAANEE
COZHANHARNANRAHRAARIAY
O hANGIABAGRANARNANANRH SN
TOHNARABANANKEADARER
TL:hAAARARABAARRRURE
CAARBAAARARIONARSY
T3CHRNBARBURANIARN
T4 hhABARNINIRERN
IS hahhbnasnANnad
TOhhANMANHNENRS
TIzhbhtdrbhnaban
TORANRASRBANAA A
TOAUMUARNANNRUAB AR
BUSAMARRANNRABABNANN
BLENMNEBNRNARBRANH
BRI AARRABNUNNEG h bW
B3z ABRANRENANNRIY
COZNNANANNBARRERA
ES:hhiRANDANRAR
BOTAAAANRAARANNN
BT hannhhhARRANRY
BR:ANARRRAAIBRZAN
BYShNNBRANARENDANR
QUL HAANANANNBHRINN RS
QL bhanarhnfanrbrhansd
Q2 AANBHRANRINAH
G3:ANRNAANARARNNRA
GaHAANRRBANARNNN
SSChAANRGANRARNAR
QO ASAAAANKARNAA
QT AUANHIRAARRBHAY
QO ARANRARNAANR
QO AhANHRBNARIN
LOUHBANABNRRAYH
LOL: hhhANGhAGANBAAA
MO hAhNARANANARNIRY
LOBSAAARNARAN AN BHE
Loz asAANNANARNAANA
LOSANANBARBNANRARH
LOOGS AAARNIBANSNBRAH
LUT:hARNBHARANNAN
LCOABARABRAAANA
LO9:haNARdNANN
LLOzAdhhnahaANS
LLL:udhdnanabng
L12:AAANBAhNANRARY
LISANANARRRANNERANE
LL4: hAANRBANNNAHINN BN
LIS hnhnhnnNAARANH
LLlozAMNNHRARBARANA
LI7:hhanahhananns
Lidzhahannbning
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LISz hhhnbhnhniti
120z hdnhdbiing
V21 hnnfinink i
L22: i hhbhhhnin
L23:HnDARNBRANR
124 nhdvbbhhdnis
L25: nanbhbhhhidnn
L2OhBUARERHEN
L2212 kAR RAHKN
128z 8hhhnkhiby
129z hahhtindint ¥
130 hahhbnpn
LoL:natNbnnn
132:8a0dini
133 hhAb b
L34 hhikfias
L35z hdnntian
L30zhaunbuduny
137:4h8uBHHH
138 hbnbhnsd
L392ptntinns
140:ndnunisn
lelzknanbe

142 tkbhi s
laszannns
Lag:Hunhi
L45:4hu#

lac: hahia

14T hhhaaBun
148z hanhné
la9:shhniit
150:nbdné

LSl hukn#
152: a8 84
193:u##4
154wk s
1L59:4#k

1564 #

157448

156 #unis

159: ##

160 ##

161:#

162: 4

163:4#

léaz

1652 #

L6611 #

lo7: #

168 #

169 #

170 #
171 #4

172: 4

173z #

1742

1752

THESOOI SUBSCRIPTRANGE I STATEMENT 00225 AT OFFSET +00812 FROM
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TUTAL PROCESSUOR RESOURCE USAGE S J/x ax
1288 1
2 HBRAARHRY RN
EEETIYYETY

GANNRARERNBA
SIHRNRARE #HAE
OHNNANRNAE
TRANGHER
BIHAUHH
QANNHAHA NN
1O ARMHHERR
LLzHUNBANENLRS
L2 5 AHARARRIAY
13:HANNRARENNRNS
LAz HARBRREREHNRY
LS ANSHHER UHH
16 hhHERNH HY
IWAR 23372
LB 4NAHAREN
LOHARURHENIBHHE
QOSHHHANRBHIHYH
2L HAASRESNEHIH
22 HHHEABE KH B H
2IHAHHRBLBHHHY
24THABARRR MR HE
2S5 hHRRRHUAURAAHY
2O0HH#RNREENENRE
2Tz hRNRAANNE AN
2B ARMHUBHNNY
29 HHUHSHNRMAY
BOAHAANERNEHRRBAS
BLANRHRARNEHREH
B2HARHBRERHHANAAHN
BATHNANNNHENERNAERS
B4 HHHRNRAABRHNRH
BS5HRNARRNNALARY
BOHNNRBHANEABURA
BTHhAHLAHHRNERERNH
ABANARAARNRENRH
B9z AASHNARNHRHAN
LGOS HRAAABEN HiH
GLEHARHRRBRARRHAANA
G2THNNRARRNEANRE AR
GIHANNRNRERERRRREN
QL HAHRANRRE BARBAH
G5 RNNNARANHRAHALS
GOTHANNRRHNHRAHRAY
GTHRBRNER NS HRRHAY
LGEBIHARBARNNENRN HRiA
GOHANRARENHRHNRHBY
SOHARYANKRENAHRY
SL:HNNANBSUPRABRRANY
S2:HARANARNNAHRUANRRAAREN
SITHALNHUBREARHRRBRNAE AR
S4:HAUNAAU K RBNRH LR RRUEN
SSIHNARNNRBHANAREARUAHR#Y
SOHBRENRR ML SHAHARNNRHH
STIHABUARBNANERHHRIH
SBNANARnHAH AR URHR I
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SO HHRNASH BH RERHREA LA 4
SO HARRNRHAHARRBARRSNRRR

OLHHUHARTHUBHBABRAN LAY

B2 HHARRHB R B HHARHRARAHE REH

OB HAAIARRANRRBHANBRBBRERRA Y
LT AAUBHYBRRE RN HRARY HEHH
CSHURNNRBHEHHERSHR Y

O ARNRYHARENK SHH AR AHA

T HANUNRHRT HHRARBARE

OB HHAANRRARARRARHRASY

O HANNNBNAHAABURABARERREH
TOTHRHSHRRAH RULBABHEREH
TLHANBARE WY RUBRB AR RER Y
T2hHUSHERRBHRIARSHY
T3:HUBHARRBEHRH S HE NG
TazsAAHARREARALAHARHREH

TS HABRANRREALAHGHE 4
TOTHHARRUBRBA ARG RIHBH
TTHARRHEE AR RR RN AR
TO:HEMRARHARARNHRHR RS
TOHHARHNRRE RE B R AN RHH 1A
BOHHNRHARRAF BARNBURERHBEHH
BLIANAANRPT NE BRRABBH RS HRH

B HUNHRHAN N Rt AR AARERI S
BA:HANRAKRSAGHBHAHREAY
BasHHNNNAKRERBARNRUYH
SSHHNHARN R RARHARBHHRH
BOTHABNHSHNHARHARRABHIS
BTRARREUBRENERBH AR R Y
BAHHUGHUU MUHHARARIAHR Y
BOHARRHRHK NN HH RGN AR W H
SOHHRUBBRAUANRBHBAHAARRREBHY
SLIHHHRRAH AU BRAUBHH ARG HHHHH#
Q2 HHNIHNERHBHBHRHR RN HE R4
SBHURHHAUNEBARRBRE AR HIE
SGIHARARRHBHHANARHRYH 1Y

IS HAHBHARARKUREHAB I HH
SOSHURNHBENEBBHANBHRIERHGH
STAABRRARALRHHRBURENHAHRHH

QB HANAHRB RARRAHHBH AR RN H A

QO hHHHAHNNHRAHARFHAHRRNY
LOO:AHSANURARREHARNARUBURY
IOL:AANUNBEUHABESRAABREHHERAN
LO2:HAHAHAKHABHRHAURAHURRHIHBAAY
LOB:HHHARRENUBBHARHBRARHHRER A
LOL: HHRANBRANANHASRURUBBNBAHAR
ICSHUNRHANHN AARRBBHE RRRHREH
LO6: AHRAHHRAEBREHRHE AR RUAH
LOT 2 A4HABIEABHBHHRBHARRRARNHAH
OB ANNHHRR HR R AR RARH RRABRHRH
LOSHAUHHERREARARBHFRANHHIH
LIOHARKNHH AN AR AR R BRAH A
LLLIZAH#HAARG REARARRAB N HRA NG Y
V122 AHHAHAL NAHT R RS GHRRAH AR R R
LIBHMNHASE AU RARRYRARAAGABIRINHA A
LAz HARAAREHRRHAABHERANH AR AR A AU HH
LIS: ANARARGARARBHARHBE A BAARN Y
LIO:#AHHHAAARBHHHAHN RN SRS
L1TANRAHERRENRBHAHBRRHHHEH Y
LIBAUHRHREHBHRNRAABE RS RRNIARH

23



VIO ARKRRABRAUANANRUNRLERUAA Y Y
L20: HANARUARBABHHNARHEHABANHY

L2L:AURARBE U HRH R HAR G SRR R HY

L22: HHKARRERE SHHABARBHBHBHRAANR S
L1232 HARARREARNGAHABHBABHABRARABHNY
L24SHBHRUNRENHRHNRAHRNRABHRIBNRARR U S
L2SIHRAANAE RURRBANRRARTRUR BN AN
126 AHASNRRENHARRARHRRARAHARNE -
L2THHURRBAN NG REHHARHBHARRHG G S
L2BHRHURRHNENRBRRHNARANRHAY

129 HAHSHARNBARBNRANARURAH
L30HHARSHUNERHHBAHRARRGH
L3LAURBAHENERY BB HBRUH

132 hUAUHRRAN AR BHARRUHY
133HARBRRERERFRHHANARHH

134 HANSHANHNFHERRBHARRAH B #

L3S HHRGAHRRNERARHRARARBNREH

L3O HHHAHBE KU RBHRAARBARHHREH

13T RANARHERHNRRRARRBHRNRH
13B:HANRURRRANHRHUARRRANS

L3O HHARBARR AU RRHAARHARY

LaO: AArARREBHHERRRERHR
LAL:ARANNEERERNARHUNE
LA hANAHRETHARARR AN
Va3 RANKANUBRRBRRANIH
L44z HARRNRRNARHR ARG BHE
LAS2AARBRNRNN HRRARUBHEH
LA4OS HANNRRARNNRRHURAAASH
LATHRABAAARARARARANSRINY
LaBzHiddudin R RERGRARHAH
L4 ANAHRARNERRRARRH AH
IS0 AHKUNEARNRRAHRAIA
151z HARRRAK B HEHBS S
1S2: HHARHKRNARRARHY

1S53 KAKANGRAUNAHS
LSA:HRANBRA NERAUH

LSS5 ANNMARRARHINRY
1S6HHRNRRENNNNRNRAH
LSTRARNBNKRE REHARHHHH
LB HANRRABNAHENNHAANHH
LSS RARHARSNNHUHANAY
LGOS AANAARS Ui BHRAREHY
LOL:ARNAHBRNERRRHRH
LO2:HANRANBNBARAN

LE3: ANMRREE N HHH

164 hHHANERNERE

LOS: HARNHnHAARY
LO6O6HHHHKAH HANHH

LOT: ARYUAUS NAHRAHN
LoBHARARHA N HANSHEH
LOQ: # a4t Wi nHNNRRHY
LT0HHARRAHNRANBHRHAA
LTL SRR HE HABHBY
LTI2:HANAA NG R B H B AH
LIB2HARRARNAHHEH
LI4SHANANNH Wi BH#

LTS A4##H 4R H#H
LTOHHNBHRRAK A
LTITd 0 BHASH UY
INEERETEIEI RS S T T

5k
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L79: AHA4ARBHARRIER
LBOARRARHERHHEASRE

LBL:A#NAHAHNAHRRYHAA
LB HHARARERENERY
1B3:HAHANAK hHBHHA
LBAHARUIAA AL RE HHH
L35 hAlARHENR IR
1B86:H RN HHRARIR
18T HANRARRRER
188 ANANHEHNHY
LBOHAHRHNSNNE
L0z haKARYUH ANk H
LOL:HHARRHARE TR #H
VG2 H#RANBE NG RRHRHH
ICERFTEEEY S 220303
194 HARAARNNANNN RS
19S5 HH#RHNRRE R #HH
1962 AHARRAR R HHRHH
LOT:HABRHERNHBHH
LS8 HAKEH IR HRHH
199 AHHAARRAREH
200 HAHRKHERES
2CLHHRBHRB AR
202 HHYUHARN AN BIHEH
203 HANNARKREHHBRHRE
2C4zHANNARHRANARNIHEY
205 HARBALR AURERGH
206 HHERARRNHHERAR
207 HHARBRENHHNRY
2R pPHUBARRNNAE
QO HARNUIE NN #
210 HRREHBH#Y
211 AHAHHBRN HH
212 hARAARE RRH
QLIHH#ARANH AR A
214 HUKAAAE N WIS
215 A HHRRARNEHARA
CLOHRKURNNANH
QLT hARMNERREH
LB hHBHRAY HEH
219 H#H#HA AR 4 ##
220 HH4HAREM
Q2L HHRHAKY
222 H#H#AEH
223 ahnn ik
224 ANFHAE
25 HHHG R
226 hhHNASK HEH
2T HARKYNN N
2B HAKRHAEH
229 HHHHHES
230 hARAHKA
231 44i84H
2323 hut A
233 HAHAH
234 HHERRH
235:#4##
236:hHA#A
23T HAYH LY
238 HHBHNH
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239 HAKKNRH
240 HANKH

241 HHRHH

242 HHHH

243 H A

244 HHH#

245 H N H

24644

24T HAHN ST
248 HAHEN

2494 4

250 %4

251:4

2524

253:#

25432 #

255: 4

25614

257:4

2582 4

259:4

26C#

2614 ~

262 #

263 4

264

2653 .
TOTAL RESOURCE CYCLES USED = 3340 X UTILIZATION = 7
AVERAGE RESOURCES USED PER TIME STEP = 14 MAXIMUM = 32
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Variation of Relative Processor Speeds

The trapezoidal quadrature program was run with all processors exe-
cuting in one cycle (Fig. 18) and with the times for different processors
varied from one cycle for simple gating nodes to 6 cycles for divide (Fig. 19)
19); with uniform times the computation took 70 cycles and with varied exe-
cution times it took 122 cycles. In order to compare the two cases meaning-
fully, the uniform execution run must be scaled so that the common processor

speed is equal to the mean of the speeds of the nodes in the graph program

under the varied execution case. Otherwise, the first case just represents

a run with faster hardware than the second. Not counting dummy nodes which do
do not execute, the 69 nodes in the graph program for f/kdx represent a to-
tal of 121 cycles using the timings of the varied processor speed simulation.

This gives a mean execution time of 121/69 = 1.75 cycles. Hence we have

the following:

Tvaried 122 cycles

11

Tuniform TO*¥1.75 cycles = 122.5 cycles

In order to test the effect of slowing down a single processor type
to the point where it could cause significant delays, we re-ran the simu-
lation of varied processor times with the divide slowed down to 16 cycles
and other times the same (Fig. 20). This is a slower divide, relative to
other operations, than is found in current large scale computers. Norma-
lized to fixed point add, one finds divide times ranging from 5.00 (cDC 7600)
to 9.75 (IBM 360%/75).% The computation took 172 cycles with the slow divide.
The total number of cycles represented by the nodes in the graph program is

161 when divide = 16, so that the mean time for a node to execute is 2.33

cycles giving



Tuniform = 2.33 x 70 cycles = 163.1 cycles
Tslow divide = 172 cycles
Putting in a very slow divide unit thus results in a slower computa-

tion than increasing the mean processor execution time by a corresponding
amount. Thus there are probably significant delays when other nodes-are
idle waiting for the result of a divide. However, the increase in execu-
tion time is only 5.6 percent even in this case where one node type is Iour
times slower than the next slowest node, the multiply. In the casé where the
" divide time is more nearly comparable to other processor speeds, the difference
between varied processor speeds and a uniform execution time, which keeps

the mean processor execution time constant, is negligible.

- Trapezoidal Runs

The trapezoidal quadrature program was run using SQRT (x) and SIN (x)
as the functions to be integrated. These functions are complex enough so
that they will execute concurrently for several values of x. Further more,
the execution of SQRT(X) is data dependent since it is an iterative approx-
imation program whose initial approximation becomes worse as X moves away
from 7.0. This dependence is illustrated in figs. 2la-2le, which show the
processor usage for SQRT(x), x=,3,4,5, and 10. The computation took from
133 to 308 cycles and from 200 to 470 processor cycles were used. None of
the other programs simulated is data dependent in the sense that the amount
of computation depends on the value of the data used.

As a result, the time required to compute J/xds is not simply a func-
tion of the number of points used in the quadrature. Rather, it has the
form t = f(n) + g(a,b), where n is the number of points used and (a, b) is

the interval over which /x is integrated.

*The IBM 360/40, however, has a relative divide speed of 17.1.
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TOTAL PRCCESSCR RESDURCE ULSAGE fvVx dax

Lidhd
2IHNAHABKEAERH
STHAMHANAY
SERTFEYTI Y
SrHARBBUHEH
AEXTL YT
TIHARBAHERY
BrHAHNAKBEAY
G HHNHEHHESY
10 sH#RBRRUSY
L1z hhbhantdpsd
12:HHdRN K
13:HuABREEAYY
Loz HNAUHNUBARY
1S HAARRBAAR R Y
Lo hhkhypausus
17 hannuftayy
1B HHAKUURYHANH
GRS T Y E YT Y
20 HHARHHARS AR S
2LIHAHRBHARSRAIGHoH
22: ARG ARAARGANTBYY
2AAHARHEAAUNBY 4
2at HAHABABH AN HARY
25 HAAHUERHALARS
2L THHEEEEPA Y
ST hhERUHHAHUANAERYE B
2ueinphdunkhdaddnandnn
2GTHHAHAANUANAYY
LR EEEET TR ET
ESERTETET YY"
32 hhERANRERYY
BITEARANNANRAYEY
BacEABBHBRAYY
35 hANHHHBHY
AbIHRHSEERYHY
BTk HASHUAGE A
EREE ER TR TR T Y
BOTHANENHBURNHE
GUTHASURHHBEAAY Uy
GLHANHHHERREE A
G2 HAHBERHAA G Y
43T hukubgnEY
GHIHWHAHBHYH Y
GOTHRHAHGHEAEY
GOt KUNHBUKY
R XTI IR
GRTAEAREHBUY S
GO TARKRAHNY ANy Y
SOtH#UUYHEGHA
Sl hufnuendg
S2THARRNHNE
54 #ityn
S54: hhaAd4y
SRR TR
SErhhupuy ey
ST:hhhhuauunig
SHIANHMRE S

Fig. 18
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all processors execute in
one cycle



S5 HANNERN

COIHHRAHY

RS2 13 1

O2: HHNNRRN

63 HEMH

64 A KN

CSHAERE

662 H#

6T #

68 :#

69 4

TJO #

T1:

T2
TOTAL RESOQOURCE CYCLES USED = 663 2 UTILIZATION = 920
AVERAGE RESQURCES USED FER TIME STEP = 9 MAXIMUM = 19



TOTAL PROCESSOR RESOURCE USAGE
1a###
2:ANAANRBARAA
ERERRREE S L
LGINHHANRUBHRYSY
Schdthhundnng
CHANRARRANY

! TINHRURHH
B HANRNHANY
QHANRNREY
10z hABAANNHY
- ISEREEERERI RS L
L2:HAHRRERRERAS
13z AAAAAARNAANNAS
LazHUNNRERGENHN
LSS HARRUAKEN
Loz RAANRNN
LTzHANARARARHNEA
LBAiNAMAANRELH
19 ANAKARANRNNAA
QCHRANNHRESAAUA
2L ARARAANAHAA
22INANNHHBANNY
QIHARBHRBHEHAH
43 AARANARNRNAN
SHAUABUBAARNY
26 AhARNHHARY
QTHAKNARARAAGIHN
QBHANHARRUHURARA
2O AAhARAANARANANHA
BOHAANAHNARNANY
BLHAARHMARARH#AY
EVARRERERENRER RS R
B3:HANANRAARAANNA
B34 HAAANRAAURA
3S5hhkbhhhhhNY
BOHANNGAHAAHR
3Tz hhbhhhnbnng
BRIANKMNANANAS
. B9 HRIARENBERAY
4O ARARARAAAN
GLIANNRNANARY
CVARREREEL LSS
4GBhANRAAHAAY
LQUIHHNUHRAR Y
G5 AARKAARNANY
GOSHRURREANNRHS
GTITHARRRBUYURARNSY
4GB HAARAAARARAARIA
GOSHAUHUBRAAAINAA
CORRRRRRREEREERE S
SLeAAhANhhhdnAY
S2HRMHRAANURY
S3: hitANARANRNY
SG:HANNBAANANARY
SSIHANIRHRHAARAR
S56:hhiARRARAAANNAY
STLHRANURENRAARNARENY
SBIAALEANANANAAA

=

r

—

r— r

rr— r— o

r—

Fig. 19
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SOSHNANNRREANAN
COHANNNEREH
Sl hANRRANAN
C2HAANNRANINNNY
CR2AAEANANNRANNN
SGANNANAREAN
OSHMNRNNRRARN
COTARNNRANAS
6T sHANERY
CY:HEET 373
69 KhANAN
TO: RhundNH
TL:hehhMNEN
T22hhbbhhuadnn
TIZRNAARHNNANN
Tas LAAANNNER
TOHRHRAEHN
TOELHESARRY
TTIsHANNRAH
T8z #M#un
TS hahiny
SO AR HANEN
BLRYNNHNARH
B2 AAANANNAANY
BAsNAANERRARNS
EATHANNEEER
85 AakHEN
86 KARNEH
BTz hARNANY
BB sHANRMS
BIHANRANY
Q0 AARKHAWNN
QLINHURN4A
Q2HHNNRY
93: NANNN
QL sHANNRA
SSshhANMEY
QO AANNHER
ST:HUN#RNN
OB HAKANARN
SO HANNNA
100 #4H N
101 ANNAR
102z 4#%444
103z a4
104z hhhbny
1054 NNNRNRARN
1002 Adhindd
10T nakiss
LCB H4%#Y
109: #n#
110:#4
11144
112: 44
113 :4#
1142 a4
L15c#¥ANE
116:#4
117244
118: 4%
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119 #

120 #

121:#

1223 4

123:

124:
TOTAL RESOURCE CYCLES LSED = 1062 % UTILIZATION = 61
AVERAGE RESCURCES USED PER TIME STEP = 8 MAXIMUM = 17

r—roroo T
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e
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TOTaL PROCE SSCR RESOURCE USAGE

1 H44

2 HHNRAANRANY
I ARARARES

G KRANARROAN
SeHUNBHRRRS Y
b HANAHBAUY
TIHRHEREY
BINUNRARNRY

QI ANNNSHESY
LO:HR#NRBEEHRA
L1zUahaNNmNUasY
L2 hhhNNRNGREN
L3SHANRHRUARRANY
Loz AAANNANANNIY
1S HaNBREBNAS
LOHARRANY
1T HANRUBORANNN
LB HERRARBERIH
LOANNUERHBARAN
202 HKANUNARAAAS
DL HRUBHRREH AR
22 HAANNSUAYLY
23HHNHKRHARAENY
2UTHUNMARNUBRNY
25 hhARYHNHNAS
2OTHANUBANNER

QT AAEARNNSHBHRRY
2O ARANANNAUARAN
2OHHNKBENHSNNN MY
BOTHANNSHHNANNRY
TP HHARNNNARNNNY
A2IRHMHERAEARURA
33 ANANANNRINAAAR
B HANSNHNSRNY
IS HUMMHENSES
36T HNANARANARY
BT HBHBERURANE
38T AARMHANBHNS
ZOTHUARBEBYINNNE
GOTHANNNNBHRY
LI NNNNEAYNEN
GRHHANBHRAHN
43T HANBEYNAN Y
L GLTHAABRRRRN
T GSIHAAANERRAE
GOIHEARERNBEN
LT HEMBHRNNRH
LOTHUHURRHIEN
G hRRBARHREY
SOHANRRRRERY
SLzHRNAUNBRRAS
S2: HNRANNNANA
53 cHANBURRERN
S4t AAARBBRNRAH
St HRUNURRBEY
SOTHEHNSHARHY
ST:aahuAuNNAA
SOIANNNHBNNHN

JYx ax

Fig. 20
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divide = 16 cycles
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r— r rm— T

S rorTTrTrTT

59 hAGHRHHANH
CGHHRBHANRUA
CLIHHABERRUHN

G2 hhHHHRY AN

O3 HUHUHANAHY

Chz b hhhHHHRUNS
65t hhubhHENES
COIHHANUHBHANY
CTHHUARBRASH

6L AHUSHHEUEH
OVRAUHABRITH

TO: HHHABKB U
TLHEEAREREHRN

T2 hhpihusdd

T3 HHAHNAKAAN S

TG HURHABABER

TS hhhhaanNdY
TOIHUNHHRBHERHS
TT:hEAHHBBRARBERY
T8 hHAHNHANNRUANY
TOHAAKRHNBAANBANS
BO: AARURARREAHAUR
ELhAAANNASHNAY
B2:HARSHBHRENY
B3t hHARHBHRAUAY
B4 AARAHNBHERAE
BSTHBARAVHBE BN
BCL A AAHAHAHANNYHY
QT HAKGEBRAANABARNAY
CRIHHHHHRHEH YN
BY: HhRANARRAES

GC tHHANHBARY

Gl: HuANEHAHY
CRIHHHBBHNARAYR
ORIHBNUHMEAHEHYH
QL hHKAHRYYHAY

OGS UBANHURIBY
QOIHENHRAEY

SN TTILL.

QB IHHHHAY

G9: hHHHEE

LCC: HHdaEs
LOL:##aduans

102 HhbhuBaFANY
LU HANBERERHYH
TN HAHRRHHRY

OS5 AAhNEURY
106 SHUSKANH
10T héhauky
1CE s hunuHt
LOSHH###Y
L10: HAHREH
L11:HHHAHAH
L12:hhhhntudy
L13chbhhhantudg
L14:H 8RR
115 hafdns
116z #HBHRA
Ll17snups#ny

118: He44ps
65



L19sHHBH#AY
120 hRHHHHY
121 KA Hu#e
122 H#8H#it#
123 4hndis
124 #R#BY
125 RuA##H
1262 HHHRAH
127 :H#up#8
128 Han iy
12C cHRupiny
V30 HAHMRBHY
131 hhhnuiusd
132 RAREBHEY
133:thisbpbpsd
13a4zHubk44H
L35 h#A##Y
136 hhdnid
137 Hu4HuMY
1384 44HU#
139z i hhHinu
LR E YT S S
1412 hahnas N
Lla2: uohuad
143 s ppd#
144 hhbnis
145U sl
LGOHUNRURE
I AR EETE LY
148 abyisy
143448044
150 hhhbH
151 sH#HHY
1524 4u#4
1532 #4484
LS54z iHtiupsH
155 4hhdupygly
15046 hH#EH
1S T pudigst
LI ETIEET
159 sH#NHA
16D #AH
lel iy
L62: 444
1632 #4
154 444
165 hnhii
16644
16744
168: #
169: #
1704
171: 4
172:#
173:
174:
TOTAL RESOURCE CYCL ES USED = 1492 2 UTILIZATIOM = 61
AVEF AGE RESOURCES USED PER TIME STEP = 8 MAXIMUM = 17
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SWrT (21 VARIED PrRUCESSUR TIMES
TUTAL PROCE3SSUR RESUURLE USAGE
IS E ¥ T
2 iHK
3ikHn
43 HAR
S5:auk
o H##
T:#
82 #
92 #
10 #k
Lls#4
l2: w#
13: ##
let i
15: 4
l6: 4
17: 4
18 :#
19z
20: #
2l ~
22:#
23: 4
24 #
25 4
26 #
PARE
283 i
29 4
30:4
EIEL.Y )
32:#
333 4
3¢ #
3hs
362 #
3(: 8
33 ¥
3924
40: #
4l #
4ot
432 4
443 4
RS
462
47: #
48: &
49 1 #
S0si#
51 #k#
S2: Hith
S3: #ith
SHUIRRH#
552 ##
S50 #
57 #

67



58 #
593 #
0044
oliuans
62 HiR#
CERET
b4 it
65: #
6L H#
6T #
o8 #
69 #
70: #
Tl #
T2: #
T3: %
T4 8
715 #
1ot #
T #
718: 4
719t #
30: #
3l #
82:#
8334
34 #
8H: ##4
. B8O SHER
BT:nitn
83 Hak
B9 HitH
90 ##
91l :4
Y2 4
93: #
94 3 4
9o M
Q6 AN
QT s kit n#
“9uia#
99: ¢
100: #
101 s#n
10234
103¢+#
104:#
105:%
106: #
107: ¢
1084
109:#
110:»
1il: 4
1L12:#
113:4
1l4:#
Llos#
llo:#
117:4
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CL18:#

119:#
120:4#
: 121z hin
L 122: ###
; 123 ###
g 124 4448
; 125: ##
b 1263 #
5 127:#
| 128:#
- 129:#
130: ##
131 s hpks
‘ 132: 4
}' 133: 4%
; 134:
i 135: .
F— TUTAL RESOURCE CYCLES USED = 200,00 2 UTILIZATION = 063
| AVERAGE RESOURCES USED PER TIME STEP = 1. 48 MAXIMUM = 4
i
- :
l
L
i_
L
-
L
. '
-
L
.
?z
-
;
f -
—

69
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SWRT (3) VARTED PROCESSUR TIMES

TOTAL PRUCESSOR KESUUKLE USAGE
12 ans
2%
3 a#n
43 RAR
S nan
O RM
T #
8 #
9 #

10 ##
ll:a#
12: ##
13: %%
l4:#
15: %
162 #
17: #
18 :#
l9: 4
20 ®
2l: 4 -
22 #
23 #
243 #
255 4%
26
2T #
283 #
29 #
30:#
ERS¥ 2
32: 4
33:4
34: 4
35: %
36:F
37:#
Iy i
3vc#
40: #
4134
42: 8
433 #.
44 ¥
4H3: 8
46 R
47: 4
48: #
49 #
504
SL: uu#
S2: itk
S53:#i#
5432 R#t#H
553 44 -
boi #
ST w

70




r

r-- r— - r oo

—

—

58:#
59 #
60 H#H#
Ol #unn
62 Hui#
63:n#
64 #
653 #
66 /%
67:#
682 #
AR
70: %
T1:5
72: 8%
T3 #
T4 #
152 4
T6: #
17: 4
78 2 4
19:#%
80: #
gl:i
824
8w
3458
852 ##4
36 RN
sTsamn
v8: #idH
89 wkk
90 : #+#
91 :4
92:#
93: #
94 2
95 #
63 AR g
9f : #itng
98 ##
993 #
L0C: #
101 s 4#
102:»
103: #
104: 4
1093 #
106: %
10724
108:#%
109:#
110: #
11l:#
112:%
113:4
L1424
115: #
116:#
117:#

-~

71



118 #
119:4
120 ##
L21:uk#
122: #it#
123 sni#tn
lL24:hun
1252 ##
L26: #
127 #
1284
129: #
13C: 48
131 sinns
132: naun
133: 44
134:4
1354
136 h#
137:#
13d: 4
L39::#
l4C: # -~
lalz #
L42: 4
143: 4
la44: #
145:#
l4ob:#
la47:#
LaB: #
14 #
150: #
151:#
152: #
153 :»
154 %
1553 #i#t
156 #h4h
15T #aw
158wt
1593 git#
160: ##
161 ¢ #
lo2:s
163: #
lo4: s
lo5:#4
166 inua
167:#
l68: #
169:
170: _
TOVTAL KESUOURCE CYCLLES USED = 254400 2 UTILIZATION = Oeb5%
AVERAGE RESOURCLES USEU PER TIME STEP = 1.49 MAXIMUM = 4

T2
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SQRT(4) VARIED PRCCESSCR TIMES
TCTAL PROCESSOR RESOURCE USAGE
'Y 1]
2:44
34HH4
G HAN
SsHNK
6:##
T:#
8 #
CRY
10: 44
11:4#
12 :##
13244
1l4:4
15:#
16:#
17:#
18:#
19: 4
20:#
21:#% -
22:#
23:4
24 #
25 #
26 #
2T #
28:#
?29: 4
304
3l :4#
32:#
33:4
34:H
353 #
36:#
374
38:#
394
40 H
41 4
42 4
43: 4
44 s #
45: 4
46 #
47 #
483 #
49 #
SO H#
S1:H#N
52 sH#HM
S3IsHAH#
SGsHi#
55:H##
S6:#
57 :#

3



583 #

59 :#
60N
6L HiRH
62 SHNAN
63:4#
64 #
65 #

66 ##¥ .
6Tz #
68:#
69: #
TO #
Tl:#
T2: 4

T3 :#
Taz 4
T75: 4
T6: #
TT4
T8:#
79: ¥
804

8l :# -
82:#
83:#
B4t #
B85:4#
RGH#HK
BT:AN#
BR:HA#
B s #i#H
9044
91:4

92 :# .
93 : 4 ‘
94 z 4 .
954 ¥
Q6 H NN
QTHNNN
98 :4#
993 4
100 :#
101 :4#
102 :#
103: 4
104: 4
1054
1063 4
107 : 4
108: #
1N9: #
110:#
111:#
112:#
113:#
11424
1154
1164
17:#

1 -



118:#
119:#
120 ##
121 : 8 k#
122:44#%
1234 ik
124 : 444
125: 4 #
126 :#
127: 4
128 :#
129:#
13044
131 s dAu#
13249044
13344
134:4
135: ¥
136:4#
1374
138: 4
139:#
140 #
141: 4
142 :#
143: 4
144 #
145: 4
146: 4
147:#
148: 4
149: 4
150 #
151:#
152: #
153: 4
154:#
155 s ##
156:###4
157 4 4#
158 :###4
159: 4 ##
160 s 44
lL61:#
162:#
163:4
164:4
16544
166 :HHKH#
16T Hi# K
168:4#
169:#
170: 4
171 s##
172:4
173: #
174 :#
175: #
176:#
1774

75



178:#
179:#
180:4
181:4
182:#
183: 4
184: 4
185: #
1862 #
187:#4
188:#
189: #
19044
191 4 4%
1924 R4
193 : #u8
194: 4i#
165 s ##
196 4
197 : #
1982 #
199 : #
200 4##¥
201 Huié
2024
203 :# !
2N4 2
. 205:
TOTAL RESOURCE CYCLES USED = 308,00 % UTILIZATION = NDe b4
AVERAGE RESOURCES USEC PER TIME STEP = 1.50 MAXIMUM = 4



r;‘_f' . — r—

r

r—

SQRT(5) VARIFD PRCCESSCR TINMES
TOTAL PROCESSCR RESQOURCE USAGE
1sHEN
2344
BHNN
G SHRH#
StiNH
6K
T4
S #
CRE]
1044
1144
12:44
13244
14:#
1524
16: 4
17:4#
18:#
19: 4
204
21 # ~
22 #
234
24 H
25:#
264
27 ¥
28:#
29: #
3N H
3144
32: 4
33:4
343 8
35: 4
36 #
374
384
39:4
40 4
41 :4
42 #
434
442 H
45: 4
46 4
4T 4
48 #
49 #
50:44#
S1:4d#
52 :4#N
S3s4 h#
S4HNHN
5544
563 #
57 :#



LR
59: 4
6O HM
IREXT T
62 HNUHN
6344
64 #
65:#
662 HH
6T #
68:#
69: #
T0: 4
T1l:#
T2: 4
T34
T4 4
T5: #
To #
TT:#%
T84
79 : 4
CLEY |
8l:#
82: 4
83:4
844
8BS 44
864 M4
RERY T
BR:ANN
8Y s 4 ##H
CLEY Y|
91:#
Q2:#
CERE
Q42 4
95 4H
Q6 HNNH
QTsHENN
98 k#
99 : #
100 :#
101 s##
102:#
103:#
104 #%
135 :#
106:#
1074
108 #
109:#
110:#
111:4
112: 4
113:#
114:#
115: #
116:4#
117:#

78



r:;

A r

-

-

118:#
1194
12N 44
121 s 4 ##
122: 444
1234 4#4
124448
1254
126 :#
1274
128 #
129:#
130cs##
131 4 #ih
1324444
13344
134 :#
135: %
13644
137:4
138: 4
139:4#
140 # -
141: 4%
142 s #
1434
144 :#
145: #
1463 #
1474
148:#
149 : ¥
159 #
1514
152:#
153:#4
154:#
155 4#
156: 444
157444
158 : 444
159 4 u#
16D :4#

1614
162:4
163:#
164:H

1652 44
166 :HHRHK
16T HH##
168: 44
169:#
1704
171 44
1724
173:#
174 :4
175:#
176: 4
177:#

79



178: 4
179:#
180z 4
181 :#
182:#
1834
184 :#
1865: #
186:#
187:#
188:#
189: #
190 s 4#
191 :###
192 s4 ##
193 : 444
194: 444
165:4#
196: #
197 :#
168 : 4
199 : #
200: 44 ~
2014 u4H
202 #
2034
204
205:
TOTAL RESOURCE CYCLES USED =

308,0C

AVERAGE RESOURCES USED PER TIME STEP =

80

2 UTILIZATION =

1.5¢C

MAX IMUM

0. 64

4
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SWRT{(10) VARIED PRUCESSUR TIMES
TOTAL PROCESSUR RESOURCE USAGE
13 ###
23 4#
N
G HK#
S5 Bk
6H#¥
T:4
82 #
9 #
10 ##
1l:##
12:##
132 ##
l4:n
15:#
l6: #
17:#
18:#
19: #
20: #
21 :#
223 #% =~
23 4
243 #
253 #
26 #
273 #
283 #
29:#
30:#
31248
32: 4
334
343 #
35: #
36: #
374
38:#
39: #
40z #
4l:#
423
43z #
443 #
45 #
Lol #
47 4
48 ¢
49 #
502 ##
51 H#n
S2 S H##
S3:it##
S4: #HiHk
553 4#
6t #
57:#

81



58: #
59: 4
60 it#
61 HHnH
62 HkHN
634K
04t #
65: #
66 tHH
6T:#
63 #
69 #
70:#
TL:#
712: #
T3: %
Ta#
75:#
76: #
1T #
7824
19: 4
80: #
8l:z#
823M
83: 4
843 #
852 ##
36 ¥R
B7:dkn
38 #M#
89:H#MR
90 ¥ #
9l: #
CPEE
93 :#
94 s #
952 w#
Q62 HHnn
CYEE ¥ 3T
98 H
99 #
100: #

C10Ll:zHu

. 10224
- 103: 4
104 #
105:#
106: #
107:#
108: #
109: 4
110: #
111 #
112:#
113: 4
114: 4
115:#
1lo:#
117z 4#




r:;. r— [ r— | G rttf

r—

r

r- r— r—

-

1184
11924

120z w#
121 kit
122:###
123:#un
l24: #ik
1252 ##
126:4
127:#
128: #
129: #
130:##
L31:zHuus

SCiARAR
133z 44
13434
135:#
L36: ##
L37:#
138:#
139:4#
140 #
L4l :# ~
142:4
L43: 4
l4s: #
145: #
l4o:#
1724
148: #
149: 4
150:#
151: #
152: #
153:4
154:#
155z ##
L1562 ##i
L57:#en
158 #un
159: #nn
160z ##
lol:#
L62:4#
L63: 4
lo4: #
165 ##
Léo:##nw
LOT: gk
lod:##
16924
170: #
L71:4n
172:4
173: #
174z 4
175 #
176:4#
177:#

83



178: 4
179:#

180z #
181:#
182:#
183:#
134: #
185: #
186:#
187z #
188: #
189: #
190z ##
191 s#ep
192: ###
L93: i###
194 s #it#
195:4#
196: #
197: #
198:#

. 199:#
2002 ##
201 sHan
202 BHuB
2033 ##

204 #
205z #
2063 ##
207: #
208:#
209:#
210z #
211:#
212: #
213z #
2143 #
215: #
216:#
217:#
218: #
219: #
220: #
221 :4
c22:#
223: #
224 #
2252 4#
2263 #Hit#
22T ###
2283 H MM
229 #4¥
2303 4%
231 #
232 #
233:#
2343 #
235 k#
236 HERE
23T u#MN

~

|



r

— r— r— r—

rr— ¢ r— r— rm— r—r

2382 #4
239:#
2404
241z ##
242 #
243 : #
244 #
2452 #
2463 #
24T #
248:#
249: #
250 #
251:¢#
2524
253 #
254: 4
255:#
2563 #
25T: #
258:#
259: #
260 ##
2612 Hith -
262 sH##
263 ###%
264 u#
265 ##
206: #
26T #
268 #
269: #
2T70:##
2TL:hii#
2T72: #ithd
2734 #
274 #
2T5: #
276 ##
277: #
278 #
279 ¥
280: #
281 #

. 282 #

283:#
284: &
285:#
2865 #
2871 #
288 #
289 #
29024
291: #
292 #
293 : 4
294 #
295 ki
2963
29T h##
85




298 H###M

299 h i #

3C00:##

301l:»

302: #

303:#

304:#

305:##

306 #i#t##

307: #

308:#

309:

310:

FUTAL RESOURCE CYCLES USED = 470,00 2 UTILIZATION = 0.65
AVERAGE RESUURCES USED PEKR TIME STEP = 152 MAX IMUM = 4
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SORT PROGRAM
The SORT program was written by Duane Adams. The version used for
simulation differs from his in two respects. First, the primitive node gset
is different for certain vector (record) operations. For certain operations,

such as length or null, one almost always wants to use the operand later, as

well as the result of the operation. Thus, in Adams' program, length is pro-
ceeded by a two copies node, one output of which is fed into the length
node. Since making a copy of a vector or record is bound to be a time con-
suming operation, in this version the primitive node length outputs both the
length of the vector and the vector itself. Thus, there is no need to make

a second copy of the vector. The relevant primitive nodes are shown below:

vector
Vo= 1 Vy = V)
vy = length (Vl) V.=V =g
then true else false
2 3. 2 3
vector integer vector boolean

The second respect in which my program differs from Adams' is that
the procedure ROUTE SELECT was rewritten to allow for more parallelism. In
Adams' version, shown in Figure 3a, comparison of the first element of the two

two records must wait until the determination of whether either record is

.null. In mine, it proceeds simultaneously with the null check, and the

conditional output nodes (4 and 5 in figure 3a) is moved to the bottom

of the graph. This has the disadvantage that the procedure may take the
first of a null record, which works in my implementation but gives a mean-
ingless result. The result of a meaningless comparison is never output,
however, and the procedure works much faster for the common case where

neither record is null (6 cycles vs. 11 cycles).
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PROCEDURE :

SORT

Fig. 22
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PROCEDURE :

MERGE

null.

Vec

3

13
UNBRACK

8]

10
L

5 2
COPIES

BRANCH
ROUTE

1z

PROGRAM: SORT

1
null.
vec
L
T
UNBRACK
U
L
1k
16
COPIES
0]
Vi
11
Fig. 23
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PROCEDURE: ROUTE SELECT PROGRAM: SORT

yurt | % 2
TEST
)
cop1Es ) ©
Y3 :
FIRST -
8
y
10
A
U
12
1

Fig. 24
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PROCEDURE: ROUTE SELECT PROGRAM: SORT

— —

ADAMS' VERSION

COND
ROUTE

r—

r';.'_-. r—

r—

r-

- 0 r

e

- SELECT
18

Fig. ZE
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Since the only data type implemented in the simulator is floating
point, a record is identical to a vector. A file is Just a vector each
of whose elements is a record (vector). If a file contains m record;
each of length n, its representation is identical to that of an m by n

L]
matrix.

Variation of Execution Time with File Size

The processor usage for sorts of various length files are shown.

The sort program can be considered as having two parts, the first of
which recursively splits the file into subfiles, and the second of which
merges the subflies together again. The merge is not initiated until the
split has reached the lowest level. The number of stages required to split
the original file into subfiles of length 1 is equal to rloggnT, where n is
the number of records in the file. There will then be a similar number of
merge stages, at each of which the subfiles are merged pairwise. The time
and n., respec-

1 2

since each comparison results in one

taken by the merge procedure to merge two files of length n
tively will be proportional to ny + n2

record being put on the output edge and there are ny + n2 records in the
ocutput file. Since the merging of a subfile pair at any stage proceeds

in parallel with that of all other pairs at the same stage, the time for

each merge stage is determined by the length of the longest subfile pro-

duced by this stage. The total merge time is the sum of the times taken by
éach stage, and will thus be proportional to the sum of the lengths of the
iongest file produced at each stage. The last stage produces one file of
length n, the next-to-last stage produces the longest of the two inputs to the

the last stage, i.e. a file of length [n/21, the stage before that a file of

length [n/41 etc. The time to merge is thus proportional to

flog2n7 L
n+ [n/2 + n/4l +...42 = I In/2M
. i=0

92




]

If we then write time taken by the sort as T= const. + ts + tm
where ts is the time to split the file into subfiles and tm the time to

merge the subfiles, then we have

—

flog2n1'l

_ i
(1) T =k, + klrlogen] +k, ;I In/271

— r—

When n is a power of 2, n = 2m, the series in the last term is equal to

{ 2n-2, i.e.
.
{ [10g,2"] -1 m-1
2 m i - - i = m+1 - _ -
L_ iéo . 2t/er = i§02m/2 2 2 =2n 2
L
Giving T = k_  +k; logyn + k2(2n-2)
| .
o herwise
’ llog.n]
1 log.ni-1 .
- 2n-2 < .22 n/2*1 < 2n + [log.,nl - 2
i=0 - 2
{
o
The. right side follows from
g .
e flogzn]—l i flogzn]—l i flogzn]—l i [loggn]-l
< =
( 120 [n/27] < [Z; (n/27+1) 1&g (/2 + LIo 1
i
(-
flog2n1-l N
( = I (1/27) + T1iog.nl
i=0 2
-
. [log,.nl
! 1-(1/2) 2
— 1_(1/2) + rlogzn]
L
i [log,.nl
{ 22 2 =2
“ =n + [log.nl
2flogen] 2

-
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- (2log2n—flog2n1)

= 202

A

242

logon

logzn _

-2+ flog2n1 since 2

(2.2flog2n1

2.21082n - flog2n1

=2n - 2 + flog2n1

-2) + flog2n1
+ [logen]

logon - [logonl <1

The sort program was run for files of length 3,4,5,A,7 with all processor

types executing in one cycle. The resulting elapsed times fit EQN 1 exactl&

with k=5, k;=19, and k,=13.

Tlog2n1-l

N flogen] i§O

TABLE 3

[n/2i1

= w
no
(o))

5 3 10
6 3 11
T 3 13
9 L 19

T CALCULATED

5+38+65=108
5+38+78=121
5+5T7+130=192
5+57+143=205
5+5T+169=231

5+75+24T=328

T OBSERVED

108
121
192
205
231

328

The time taken by this sort is independent of the original order of the

records in the file since neither the number of subfiles produced nor the

number of comparisons required to merge two files depends on the contents of

the records.
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SORT - 3 Record File

TOTAL PROCESSCR RESCURCE USAGE

N H W e
ce o5 o o4 s
I

QiHRRHHS
10 HHE#AY

L1 #B4RHE
124 #e4##
V13448 4H
Lecubnting
LS HHESHH
16 #K#
1744448
18:/##44
19:h444

2N s 4 k4 H -~
Ry 2 ¥ 3
22 HNYHRRR
YERE X R Y T
24 hHERHH
25 HiEHBE
26 Btk #

2T Hi#
28 s H##
29 HHkH
BOHHAKRRUH
AL HAHRAR
32 H4EY

33 H#H

34 HHHH#R
BSIHUBRAHHY
36:HHKHHR
3T HHHER
BBIHREAE
EERE I IY
GO HEH

41 sHas

LGP HHAH
CEREZT XY S
GO HBRHH
LGS THHEKNENR
46 s HI#
GTHAGRY
LGB SHAHBHIY
GO HURRUH
SOHUH#H
S51:H###H
S2 s HH#H#HY
S3:hi#H
S4##

565 ##

562 #

5T ci##A#

S8 ¥4#

Fig. 26a
Q5



S59: 444
YRR YT
6l HHKEH
G2 HURNRN
bIHRERE
64 s HAHH
65 S H4H#
66T R4
6744
68:44
69 :huH
TOhHk4#
TY:HERHYE
T2 2444
T3:H4
Tashh#d
TS RAN4HY
ThsHERAR
TT:H4844
TR 44u#
TO:# 44
RIs##
Bl:H#
82444
BACHKMAAH
B4t hiiih
B5: 4 ##
86: 4#
B8B7 18444
BRSHENHRHY
8IcHunbH
AN HHH#
Il s 4Rt 4
CYE¥.3 1
Q344
Q4 2 /¥
LR E T T
Q64K uH
QT :fH4e Y
QR WY 4R
Q9 s #
V3D da##
101 H4HuE4H
172 : 44844
173 il
1204k w
125 k4
16 44
107:#
108 4
1093
119:
TOTAL RESOURCE CYCLES USED

423

AVERAGE RESOURCES USFC PER TIME STEP

96

-
=

% UTILIZATION =

4

MAXTMUM

=

7
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SORT - 4 Record File

TOTAL PROCESSOR RESOURCE USAGE

SN -

e 8o %0 2e o

xR ER
»

6 HHUH

Tshhih

B HANS
QIRARRAN

LO: HAKR#
LL:Hunnuintng
L2: wibdNuR AR
L3 KARKRKRRNAAR
L4z hHNRBHREHARERD N
LS hdhunbtnand
16 snitun
L7:ubhabhnhi

LB hhunbknnk

1O hkniuahmn

2O HRANARRAW

QLI hAkuANHARN
22 HHRNAHHHRRI AR
2A3HbhHBHNRRERY
24 fihkhhhnhihd
2H: R Rhnna i
26 hERBREHAR

2T Hunuuk

2B HMRERN
29:HHNHREVH
BOSHARNRRAAUERH
BLIARGHERERARR
EVEX 2332237
EERE 3T 3T

BG4I HNRRAURREN
B3S:HdHRRERRRHERGR
36 nbnhHERRRENR
AT anubANARE
38R RERARERRH
39 hbRABRRY
PERF YT YT
LlsHudnun
Q2 HHRBHEERH
QITRANIRATHRARY
GhcHURRANNNERE
ASZhEBNRUHNRAK
QO HHnHAER

QT HEBRAGHRHRN
GBI RARKRAABRHANRE »
GO hunnANRRERNAN
SCIRWSRAURIER
SIiubthhhv hth
S HNuMUNEH
SAznuvhni

SG: hik#

SS:HERA

S6HE

ST:H##

S8 uut

Fig. 26b



SYSLHER
60z ik

6lL:HRHRE
YR T X X1
632 HH#RGR
AGSHRIH
65:dhn#
66 R AR
6T:##
683HE
69: HEH
TOzhknk#
Tl REAKN
T2: 84K
T3z h#

T4 HENK
TS huntrM
TO: HH# KA #
TT:huks
T8 AMRK
Tz # Mk
80 ##
8l:i#

B2 HMk
B3 HHNER
B4z HHHN
B85S HHENR
86 ##M

BT HE#N
8B:HNHEKN
B HNNRN
CIvER 3. 1.7
QLK n#n
CrEE 1Y
93 : HH -
943 4R
OS5 ki#
GO HHENRH
CRRN YT Y
OB H#N
99: 4 #
100 wiii
101 hbuniun
102 kntin#
103: wttin
104 B nb#
1052 nii#t
106 &#
107 #4
1)Bs #u#
109 #Hhun
110 unniu
111 4nEHN
112: 44
113 hkHN
LlGaz Huuini
115 nidu#
1L16inik
L1T:skiun
118 un

— ]



— r— - ' r::,; r- r— r—

—

o ot e
N N
— 30
(1)
R T™IH
k3

s o

TUTAL RESOURCE CYCLES USED =

678

AVERAGE RESCURCES USED PER TIME STEP

2 UTILIZATION =
6 MAXIMUM

14



SORT - € Record File

.
TOTAL PROCESSOR RESOURCE USAGE

Bk S S i 4
»

a0 o0 e oo oo

VSN -

3
*
»
*
*x

THkHb

BikNnk

IREAHEH

LOsHune
L1z:HNRNNBNRAY
L2:HNRANNNRNN
L3AHUnUnuiiAN
LazHARABURNNRANEN
IS hANNUMARNE
LOHANNRNUKRNNRNH
VT RHRBHHERNENY
LB HNHENENNRNNN :
LOCHRRAARNNNNRERUNN
2 HARERMIARHNNNY
2L HERNaRNH
22INNNNRRENEN
23 HRRNEARNNN
2LIHNNNRERUAN

25 KNMUNHERAN
2OEHNRNANERNNNN
QTSHANENNRRNANARINN
28 HBNNRHRNRNNNNRY
2O HNNRNRRRENNN
SORNMRNUNNNNNN
BLzNNERNNNNEN

32 NMNNRNNA

33 HNNMENNN

B4 HRERERRNNY
BOCHANNRNRNNNANEN
BOIHHRNRURNINNEN
BTHNRNERANANY
3BHNNNRENNY

B HMNNNBNNNNAN
GQOHENBANNNRNRNRNNN
QLIHURRANRNRNNNRS
G2IHNNRNURNNRNN
AINUNRRRRRERNAN
QA NRNNRNDINN
ASHENRRNEN
GOSHNURNNRN
GTRENRNENRAN
LGBINNNRURERENRNAY
LGOHRENRERNNNNNY
SOHANNBHANRNNN
SLeWNRRRRHH
S2:HUNNRRNHNNIN
STIHUNRRRNENRBRANNNY
SLzHNHARUAUNNNNRN
SSINNUNRARNRNIN
SOHNNRRRRANNEN
STHUUNNNRNNS
SBEMANURESR

Fig. 26¢
/100



SOsHHuNREN

6D HHMaHY

6l iitiRY

G2 HUHRARAH
63HHBHNREY

S ¥ TTYTT Y

OS5 HHHURERH

GO HUGRHHRBER
OTHHURNEHANURENH
CBINRRANAAUSRES
COHHRARHHRUE
TOHHRUEHRUBHE
TL:WHEHHBRY
T2:H#AubB##

T3 HHMHHY

TG hulhitutht

TS HBRRERBHAURKY
TO HHuBERRAEY
TT HRHERRBREH
T8 #HEHEH
TQ:RH#KEHHRLHNH
BOHAHRBEANRIRARY
BLIHRNRHARMRNENY
B2 HUHGHAHMEH
BIHHURARINAH
BaHANUAG#Y
BSHARKAH
BOHHHHItY

BT RUHRRBHRH

BB HNRHHRANKASHE
BOIHRRAGUNRBHNRY
QO#MANEREH
QlL:#KHARH

Q2 HHUMHRHENAS
QIHNRERAANBRARNY
QLU RRAHRRRBAUHRR
SSIHARHAHARUA
Q6 HHRHRARREN
QT RARRHNHRN

QB ##HHNH

QO HHH A

IGLES ST YT

LOL s RAKHGREBI#RY
LO2SRAHNNURRBUNA
1O3:HRuSHREY
L0G s Hihih#
LOS:HUARRURBHHY
LOB:HUKRREHNENRENH
LOT:HARUARNUUBAN
LOB: H#NRHEHHRRY
LOQHARHEHRBIN
LIO: #¥iHuEH#HKH
ISSRE T 13 5T

112: ##4##
113 : #4444

ll4z##

115: ###4

L16: ###

117:h#s

L18 :###

101



119:#4H##
120 #AkUN#
L2L huupé
122 :444# 4
123 u ik #
1242444
125:4#
126: ¥4
127 # i
128: Hikdu
L29: kb 4#
L3D s ###
131: 44
132:4444
133 #NNNAN
134 #N4 4R
135 kéud
136: 4408
137 :¥¥4
138 :##
139: 44
140 # 4%
IEIRE 3712
BUYEE 1Y
1434404
144 : 44
L4S #4844
Lab e 4RN
14T 4HH##4H
148 #i##
L4Q: Hiu#
15 s ks
151 s 44
15244
1534k
LS4 umiui
155: kun#
156 #Hk 4
157:##
1584414
1S9 MuuaH
160 HkNAR
Lol s#ing
162 :#¥ip
163 KRN

. 16444

S 165 ##

1663 ¥
16T HRRAH
6B HNNAR
169 s# Mk
IR ASEE Y]
171 #R4H
LT2:HHNNNS
1T3:#u8 %0
174z #4kH
LTS ####
176644
17744
178:#4

102

e
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r— r— r— r— r—

r—

—

179z #¥#
L8O ##¥AM
1814884
182444
183 :4#
1842 4#¥44
1B85:H#RNRS
1BOH#kUN
18T :#i#kWN
188:##k#
189 ###
190 s ##
191 s #4#
192 :###
193 s M4##H
194 ##¥4
19Ss####
196344
19Tz #ds#
198z ##ks##
199 ¥N¥NH
200: 4 # -
201 SH¥KH
202 s Hi#
20344
204 #
205: #
2063
207
YOTAL RESOURCE CYCLES USED = 14090
AVERAGE RESOURCES USED PER TIME STEP

103

T UTILIZATION =

7

MAXTMUM



SORT - 7 Record File

TOTAL PROCESSOR RESOURCE USAGE

e oo oo o0 e
*

LR R S 3

62 HREN
T huus
B HRNK
9 KRN RH
10: ##H¥
ISR Y11 11134
L2 HUMANARR RN
L3S HARNRUNERY
L4z HRMANANRBUUANY
LS HUABHARH 4N
LOSHRRNRNUERAUNGHRAAN
CLTIRNMA R ARBARRNNN
LB UNUNHNNRRUNARUNY S
LOSHBARRUNRUBRARNRBUANA Y
20 HANBHARNARNRRUNDY
QLI HERNURRBHAY
22 HHHBHBHRURABAN
P EYE 11132111138 )
24 HNMENUAHERAMNY
2SS HMANNRURBRAURY
26 RHRENNANRAARRRANN
QTSHRRRERARRARAEHNARARRANH
2B HBRANRABUNRBERANSRANS
29 HHNRHNNHRRUARARRY
ZOSHRAHKNRNAGRNANERE
BLEHUARAURNGHRANH
B2 HRARHANI RN
kSR 1132211237
BLsHUNARURRENNRNY
BOTHNMRNNNEARARBRRBIRINY
BOTHNRURFNMGANNNRBNBARN
BT UNNRRNNAREENRNAA
Y RN 1323211211
YL RANBUNNRBRENEANA N
QOSHMERNNRAHNRNNERRNENENSN
QLEHKNERRURAARRUNRERI Y
L2SHUHNNNNRABRANRAAN
AISHNMNUNNHER MR RRAAN
GazENRRINSENEERNN
L4OSHNARNNRANNY
LOETHRENNNANARY
GTIHURRARNBARUR Y
LGOS HNURANKEABHNNBUARANE
GO RNERRENRUBURRERURNE
SO:HWHANNNBARNBENNNN
SLeRNSANNSRARH
S2: HUANNNBHAHBARNHRN
53 HMUNNRURRVBERNRE RN REY
SH:HNANNENUHENNURNARNNN
SSTRMBENMRURRAHBREAY
SOTHRNEANABERINRARAN
STSRUERKUUAKARNBNAA
SO HNANSNUHNIY

104




;_ —

r— r—

‘r\_;l.‘ o 'r»-.a{

‘r‘.;;“;..‘f “‘r: -

=

“(l;‘——

—

T

SO KRHHHNAS
60z HUANHANE
SLHNRHH

62: RUNUHNAN

63: KHANRIAS

643 KNRHARIY

65 KRNNNHIH

662 HUNKHERUAE
CTHARKANRARRRNAR
68 RHURNNANRRAN
69: HRNERRIERE
TO: HHAKRHHHA#H
TL: HRRRRN N

T2: REMHIH

T3: HHNRAR

T4z RERRREAA

TS HURHFNRARAAHA
To: HRRRHRRENAR
TT:RERHRRERH
T8z HHHNAH

TO: HEARN NN HH
BOHMARHRRANARRAN
BLINNREARAAARRY
B2: WM HEHH N
B3 HNMKANNN A
B4t HUNMRRHH

853 KUNHAH

86z EH#HAA

BT HANRANKN

B8 AR UNARRINA
BYT HUMNHANEA Y
O HHMKHNNAH
Lz HMRRHHE

Q2 RUNBKRKARY
O UMM RRHURRREHY
4z HHAHHRRARRAN
95 KRHENNKN KR
963 HUKAMHUAHY
ST HNNANKRE

98z #H#H#Y

99z HiAR KN

L0O: HHNN HK##
LOL: #MNRANNMNARY
LO2: RUMKRMURARE
103: HHHAANRRY
104 #EHHAS

105: #HNNARREANR
LOG: HEHUKUIEKRHHAN
LOT: #ENKUKRERANH
LOB: HURRUREH Y
109: #HNRUSNENY
L10: ##HAARIY
111z #Ruuss

L12: HhkAH

1132 HHNHHN

Lla: #HHHANY

115: #R## N

1162 ##u#

1172 HiN

118 #¥NiH
105



L19: HENNURH
120 HHERER
L21: #ddu#
L2222 ##M M
123z #in#
124 #4848
125 ##
1263 ##
127: #

128 ###4
129 #ik
130:##4
131 ###
132 HE4¥
133z HuMuns
134 HiNNH
L35 ###¥
136 444
137: ##4
138 ##
139: ##
140: ##4
IRYRN Y13 3
142 ¥¥Nes ~
143 444
l44z #¥
1452 #Kuw
LAG: HMNHKH
LaT: hitbnu
L4B: ##iE
La9s #id#
150z ###
151 ##
152:##%
L53: ###4
LS54 #¥dn s
LSS ###uy
156: ###
15T ##
158: ##%p
Loz #uN#N
160 #¥#-#
1612 #éud
L62: #M#H
1632 ###
-164: ##
1653 ##
L66: ###
LOT: #d#nn
LOB s #¥#RH
169 ##¥
LTO: ##
LT7L: ##4#4
L72: #uidsnn
LT73: #u#in
174 HaM#
LTS ##u#
176: ###
LT7: ##

178: 44
106



179 ###
L0 ##ii#
181 #W#H
182 #in#
183:##4

L84 H#n#

L35 RELRHR

186 #HHEH

- 187 ##u#

188 ##k#H

L899 a4

190 ##

- 191 : ##

192 444

193: #n#ud

- 194 #¥##

195 #itk#

196 ##

18 L9T: ####

L98: KH#H#R

; 199: ##uk 4

JL 200z #H##

{ 201 s ##u#

202 #i#

203 4t

204 ##

205 #H#H

2002 HRHEH#N

20T Hunt

. 208: ##an

209 ##

2LO: #it##

L1 HEREAY

212 #Han#H

2L HH#W

Qlas ##tiH
- 215 ###

i 216 ##

QLT H#

QLB H#EY

FACAE 3132

220 HA¥N#

221 :H#n

N - 2223 ##

' 223444y
Q24 HitHKkRN
225 HHRHH
226 #H#nd
22T: ##us
228 #i#
229 #4#
2304
2314
232:

233:
TOTAL RESOURCE CYCLES_USED = 1716 % UTILIZATION = 3
AVERAGE RESUURCES USED PER TIME STEP = 7 MAXIMUM = 23

r

—
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SORT - 9 Record File

TOTAL PROCESSCR RFESOURCF 1JSAGE

B I N S
s o0 4 8 e
*

R AR
3

AIHUMHA

T:444#

34444

QIRHARANN

LOsHuu#

LL:HHBMAGBRAN

12 uBdiHuRAHNN

13:RAHNRURHEN

lbs 4HUBUNIRE LYY

1S cHuUANRNASHY
LOHARGHANRBIAURRRUNB Y Y

1T HHRBHARMANRRHEB RN AYY
1SIHYUAHRNUURNUUBHAENRHAYH

1V HARHGHRHERHHNRABGHRA GBS HBR Y

VIHHANEAATHAURBARB AU Y RY
CLIHASHUARANHRGAEGRPY
DR2IANHBYUHANBHRHAH UYL H
QA HUHNRHARBURA BB UA Y]
QLZHBHRRGR MU RNRN SRS
POCHUHARRABHBUHARHAVHAH
DOTHHRHSRUUT BB YR U
2TIHHRARARBUHHBHRUE YR B GBS 1A
QRCHHRIRANURERURUBRANRARUA Y
PACHYHRKBARHHBYAAARARG AN
BVIHRHRRBHBH AU MG RUH IR Y

V)L s GERAHAR AN US4

AP HRHAYRERE RS R u Y
IVLARABGRAENLRREAHBEAY
IGTHARSHBBRHAREUBR SR Y

IS5 udHBRUpRERRAGERARER YN EGES
BEIRAHGEHUBHUBNURB SRR HA
ITIHRUHUEHARANER RS Y
ELEEEET TS NEERE S 2 Y

IR AT TSN ISR R ES LSS TE Y]
GTLARZABAHGH AN R NSRBI EH
R EFEIIFYESET IS N SN L EE Y 'Y 2]
LGP inARAHBIHN R U RS and
GIIHANSNHBHHRRUBEAYENERRY
GOt HARERRRUHBNARBHSHAANH
GOTHARRUBGHANAREHINHAY
GOt HENRAARHABRAT R EY
GT Ay dpiHbBUMBHEHIH Y
GATHBAHBHRBEHEHR UGSy
AL ABANGHREH RN HE SR U kA §
S ad dHHEHAAE RS UABY 2 ¥
SVIHABRRRNEHNEHARY
SPiudtiGifntihhlntlishtigany
SAsunnsnhdnidlntiopgnndeddiglisdas gy
Shshdgasdidnhabny s nntindlas
EEREEETETTEEREEEFAERE FEEEY |
SHIHUHERY AR Rt Rl A Y
STiiifAnnidunnesHidsdsiadyy

LR ETEI T EREE N SRR AWE ¥

Fig. 26e
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r— - r- r— r— rr— r—

—

SOIAHANRRHAIAAALBEY
ADIHFHHEREREHEREH
GlLHHREHARHEHRH
B2 hEHRBERARN
CITHHLHARARE
bELInHBBRHHRY
SHHEHHHHGH
bRLRHRERRIH
GTIHHBHEHHHUHYA
ARIURBHBAUAHENY
6 HRAHBUHRRUA
TrIHERAREBAEY
IAEEEIZEIY RS

T2 HEHHHHHENHEY
T3 HARRBHRYARH
THIHARRARERAY

TS REHBAUHBHRYY
THIHERHBHRBEN
TT:HERHHEBHEN

TR UtdnbnsH
TATHAHRHHB NS

B HARGHHUBAHEHYEY
BLI#HAARHBHARHHY
BO:#auinhnvintsy
R3sUHRHRHHYY
BLsHUEntkEHEY

B HHARRAERH YN
BOIHRENHRHUNE
STIHRRHARNHEEY
EEES FEEYE RS XA T
SITHHARARURI Y Y
ChEN T YT TY R

Q1 :HHHHHRH
SQO2LHAKRRBRHAHH
I AHABHARE AR
G HEHNRHRAUHHUR
OSzHEBARKNHYY
QARLHARSHAHHH

QT 4Hd4HRRRY
SRAIHHSHAHRABYH
QI HHRRHARURBY
1COaMBdRRRANY

IV s HAHRHURUAAHY
1I2:HUKHBHREHNE
103 4HHRHARNEY
1D4HHHMARN
INSHARKBHHUNAY
LG RRHRHBHBHUHSYH
INTHHRBYUHBHHRHUY
JRALERF EEXFF FTEE R
RS R EX X TR
IREETIZETE R R
1l1l 4R b REHS B4
112 44pdHugtiy
L13:hdnbnbstith
LG HHRRARRBUHNY
IR RS F ¥ YN YEEER
IR R RS YN Y
L17:HHHHER
VIR $panunt
109



V19 HHu4dAEH
120 HURBBRAUBE
V2 ) 2 HMRSHHIRN
122 HAHHBHAHE
123 H4RHEHEN
124 2 HARNGHRY
125 HURRHRYHE
1264 HRAMNY
V27 HAHBHE
129 : 46804
129 HHkH
1232 # K4
131 : 444
132:4444

133 h4knnk
134 :4RigH#4
135444
136: H##

137 hKuitn
133 hHudniy
139 HHattnn
14D #Hk 84

14 c HHtth 4#H
la? i ndu#

143 HHH
IR E X1

1452 Uil
l4b: HHnuRH
V4T Hukitin
14 sHupn
TAG: h4H

157 HEKKY
LS :h8ubbnt
LO2:EAR#A#H
153 :du8in
154: 444844
155 4444
15644

157 Hu#H

198 u#Hy
159t #hnnib
167 T HHaRRE
161 s R#K 44
162 HH#
163:#4nup
LoLHHRARKY
169 HEHH#R
1664444k
V6T R AW
168 #4484
169y ##

170 nt#

171 :#nnsy
L7244 4 ad
173: 44 dKH
176:4a4#

175 mit#

L7A: hHHkAS
LT7 4 E# ks
173 HARKEY

110




| AeRE-X 1Y Y]
V18T HHHRR
1811 ##k#
VR s 4
1332 4#4
184 Hih#
135 :#H{4HAY
186 4 HEEHE
187 4HRud
1R3:#H#H
1BO 4 HE KN
190 s hRALHAR
101 HHBH4H Y
192 s #4u4p
193 :#Bk4E
1346 /Hi8H
195 #a#
19644
197 : 84
198+ #
197 : 444
2Nt Hp#
201 s hH4
202 1 ## -
PRAERE ¥.1. ¥
2L hAR RIS
205 444 ad
206k f
2T HuH#4
2I: 4k
PASERE 1

210 44
211 s H 4w
212t hiph4
213: 44444
214 1444
215: 44

216 HhkuH
21T s HHHRAH
218 HHuh#t
219:4Hu4
272N s ki h#
221 1 H#R
222 144
2723k 4

224 HH#
225 itHGHHN
P22hH R4
22T HHKH#
P?R i #H
229 1 H#4 4
QAN HHRHHHR
231 s hAN4H
232 144 4n
PRERES. T X
234t 1HH
235144

! 2344

i 23T #H#
234w ay

r—r— r— r— r— - - r—

—

—
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23 HUUK#H#
240D s H B #
241 k4
242 H B4
243 2HHERBEA
244 it #H
245 s HHERY
266 HHHH
24T Hu#
248 11t #
249 H #
25D ik
P51 tHHAHHY
PSP HAKHNYE
253 s HHH
254 1 ##
255 Hip b
256 HHRRUH
2OTHii#HA
253 hHHEN
2594 HH#
26D K HH
26 T H#
262 24#
2RI HHH
264 H A4 HR
265 it #E
266 Hith
26T ##
268 Huhu
260 KHHHRY
2T HBHRN
2TV itk
272 ##u4
2T3sh##n
2T4:H4H
275144
215 Hi#
21T Hhnnn
2TR:tif#Y
210 4444
2RO S HH
2R3Lukd#
DR2:HAHKRY
PAEEE LT N T
28B4 HHAH
285 HkH#
2836 HHH
287 44
29844
2RO 4t
rae R Y T3]
291 SH MR
292 :#4#
293 : 44
2G4 H 44K
2A5 L HUHHAY
296 I HHHHHY
29T #H4#H
298 1 H HH 4
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283444
30T 44
EIS B
R02 s HHE
EDERR T3 37
304 : HHHH
INSHHGH
306 4#
ADT R RHH
AIRIHUHHHEH
3VC 1 HHHHY
31C s #kpd
31 :HipH
312 2H# 4B
313k
3l4 44
315444
316 f/fH#H
LT :HHRH
31 HHHER
31G: #4
B2 HHBAR
321 HHHGHE
322 HAdHE -
323 :HH#uH
324 s HHEHH
325 : 444
3262 H#
327 #
328 :#
329:
3352
TCTAL RESOURCE CYCLES USED = 2512
AVERAGE RESGURCFS USFD PER TIME STEP
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It is interesting to compare the time required for a parallel sort
with time which world be required to run the same sort sequentially. At
the ith stage of the initial process of splitting the file into subfiles,
there are 2i-1 files to be split; waéver, some of these are already of

length 1 and thus are not split. To simplify, we consider the case where

n=2m. Then
log.n . log,n-1 ,
i§§ ol o igg ot = ptogen=l _ M, o 1 stages.

At any given merge stage the subfile pairs must be merged sequentially,
ané the time taken for all these merges is proportional to the sum of the
lengths of the méfged subfile pairs, i.e., to the length of the original
file. Since there are loggn merge stages, the time taken merging is

proportional to nloggn, i.e.

Tsequential = %} + ki (n-1) + k; n 10g2n

If we assume that the proportionality constants are the same for both

sequential and parallel operation we can compare times for files of

length 4, 8, and 16.

N Tpar Tseq
L 121 166
8 2kl 450
16 L8) 1122

It should be noted “hat the assumption that the proportionality
constants are equal for sequential and parallel cases implies either that
the sequential machine has a faster cycle time or that the sequential pro-
gram is coded more effeciently, since the constants ko, kl’ and k2 themselves

represent considerable concurrent operation.
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Sort - Comparison of Relative Processor Speeds

When all processor speeds were equal the time to sort a four record
file was 121 cycles. 678 processprhcycles were used. When the relative
processor speeds were varied in a ratio reflecting the speeds of correspon-
ding operations on existing computers, the same computation took 159 cycles,
using a total of 897 processor cycles. In the first case the execution time
for all processors was one cycle. In the second, the fastest processor
operated at one cycle while others were slower. To obtain a true comparison
of the two cases, one ought to set the execution time in the first case to
the mean of a%; the execution times in the second computation. An approxi-
mation to this is obtained by averaging the execution times for each node in
the graph program (rather than for each node executed). The sverage will be
off by the degree to which the mean execution time of nodes executed repead-
edly weighted by number of repititions differs from the mean time for nodes
in the graph.

The mean execution time of nodes in the sort program (based on pro-
cessor speeds used in the second case) is 1.275 cycles. It is not necessary
to rerun the program with all processor speeds equal to 1.275, since the same
effect can be achieved by scaling the case of all processor times = 1 cycle.
The equal processor speed case then gives a time of 121 x 1.275 = 154 cycles

and a total number of processor cycles used of 678 x 1.275 = 860 cycles.

115



Summagx

To understand the effects of relative processor speeds we must com-
pare cases where the relative speeds of different operations vary to cases
where they are all the same. For a precise comparison we should set the
processor execution time in the second case to the weighted mean of the

execution times in the first case

execution time of node ni

Z

L T where 1 .
niG Yni * Tni ni

T:

nfeGYni Yns # times node n, is executed
during the computation
To simplify we make the assumption that the above mean is well approximated

by the unweighted mean

Tl Y e where N = number of nodes in graph program

Certain nodes are "dummy" nodes (i.e. they never execute)
always nodes with time = 1 we exclude them in calculating Tl . (in MERGE

nodes 1, 2, e.g) Then for the sort program

l=1+1 -
T 37 1.297

Using this to scale a run where ’21 =1 all nisG ve have
i

Constant Speed Varied Speed
Time 121 x 1.297 = 157 cycles 159 cycles
Total Cycles 678 x 1.297 = 879 cycles 897 cycles

This indicates that relative processor speeds are not too important.
As a further experiment a new set of relative processor speeds ¢Jni)

was chosen so that the unweighted mean would be the same as for the first

set, i.e. such that
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n?EG Tn. = n?sG On.
i i i

1

However, the set On

i

was such that the variance was slightly larger i.e.

11.81 for {on }

1

T7.41 for {rn }

i

This was done by reducing the time for A, length from two cycles to one and

increasing v — to three cycles to compensate for the possibility that v

and — (route select .7 and route select .11) were executed more often

than A and length, the change was reversed, i.e.,

As length

Vo

—_—

3

1

The variance is 11.81 for this case also.

For the first case the time was 156 cycles and the total processor

cycles used was 893.

In the second case the computation took 162 cycles using 901 processor cycles

TIME
157
159
156
162
162 - 156
183
183
183
183 - 156

PROCESSOR CYCLES

879
897
893
901
6/159
992
992
992
27/169

3.77 percent

17 percent

TABLE k4

Constant speed

Variable speed

Var. speed - higher var. I

Var. speed - higher var. II

901 - 879 = 22/990 = 2.22 percent

Var = 49.60

Var = L49.60

Var = 49.60

992 - 879 = 113/936 = 12.1 percent
117



Tur

SORT - 4 Record File Variable Processor Speeds

o -~

T RN

PKOCESSUR RESUURCE USAGE

4

NV H WD

% se ee e8 %0 e

B Hau#

QINMRE

10 hhaHH

1l:hdnd

12 #8un

LAz ahtutht

laz whu ¥
LOunnndhntndg
Lo hht Mt Hanhl
L7 hbkntknnunis
LBz WUt ISR
LOs whunHRRAKA
2O SHUGSRHRHRNRIY R
2l nhuurnpnpd
22 HUNRHA
2ALhHRHRERR
24 Anttnming

2V HAHHERRH
2EIHHBHHNERH
2T hhERRKRKH
2BIHHHUN KRN
POShARHENR RN
EREEEEXIRIEIETY ¥ Y]
Sl iRk nnann#
32:HARKRRARRRAH
B3 hhSHARRUNA
3G nHHRARRHNN
IS HHEHBRAH

36 hhtiunh i

3Tz hnbntkt

RN 23233

39: hhwunkbnh
GO HAKRIARHUBNAY
Glz:hannwnktdhans
L2 hAHKRRRARY
IR IR XIT R
GG hERRIY

4S5 hhnkFran¥nn
YRR YIS Y RS T
QT hAutnhRRBaRbERN
LB hhuRbHARRRHA
GO HARHURNRANRAR
SO:nénbrbERNRYE
SL: hhALENRREEN
S2:hHRKkuBRN
Sk nnitd
S4:hhrunn
SS5:HHAHAH
SO6:hARNARRN

ST hhh bttt Raknn -
SBIHHRMIRENRER

Fig. 27a
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SIhhNREHRAG
6N 4 HkniENR

6l ihnnpa#
6G2Lhhhhtentttan
bAT hhinftnungss
CLIHURABRAYRIBRARHR
65 HhUHLHRARANRR
66: ki hht Rnint
OTHAHKBEBRRAR
6B hhhubREHRN
6 hAKKHERE

TI hhaKAUEH
Tl:wbubtink
T2:Huh#
T3:héks

14 th

152 #H&

T6swuw

TThith

T18:nuk

T9: h kit

BOsuhnk
Blinann

B2 whHuhtn -
83:hduur
Baskennt#
BS5cnira

B :hfink

8T:hi4

88:Hpk

89: 44

GisuH

Qlihay
92:Huntk
CERE X T XN ]

94 hH¥

95: 4 hn

GHIHH

ST#unns

VB BRAY

CORNF T3]
10O smab u#t
10l hhnag
1CP2 #4444

103 hitny
104z u b4
105:hhk
1C6:44#
1(T: ##
178:84n
109 nthinn
L1 HREH
111z hubu
112 :kH#%
11324
114wtk
115 d4ng
l1loswktbuin .
117 hbnbk
119 w688
119



L19:Hahn
120 anr#

1212 kER
122 2 Hth#
L23sut
124: %4
125 Ha#
126 t#itiikdi
127 tnntt
128 a##
12904k
13n24n
131 HKuH
132 ubin#
1332Hukhni
134 huntiy
13S5shann+
136 4HK4
DEYAEFTEY
138:#4hs
139:u#u
1an: b é
14144
1422044
ISR F TR T
144 nku s
145wt
T46:Hub#
1474 h
148 #4444
149 uit ¥
150 hshunn
1Sl khtun
LS52:uun#d
1532 héke
1S4z nin#
155 H4¢
1562 H4%
1574 i
158:#
159¢ 4
160:
161: ‘ ,
TOTAL RESOCURCE CYCLES USED = 897 ¥ UTILIZATIGN = 2
AVERAGE RESCURCFES USED PER TIME STEP = 6 MAXEMUM = 14
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SORT - L4 Record File Variance I

[

TCT1 PROCESSUR RESOURCE USAGE

e

r_
XL
e o
=
*
=
*

QIRRHH
1IN HHEH
ISR IX2Y
124844
L3 HHuYARERRES
: LAz RAEKRHAHHARN
ICRE LI EX TN Y
LOSHRHUWHRAEAR
VLT:HuEHGERHBBRARY
1B usdNtulE
19 4##4uR
2OIHHKHBHRA
FARE X XSS Y Y
P2HHRHUNHH
23HEHRRHRH
2USHHKRHHSIA
PS5 HHHURRBAHHN
2ELHANRISHHREY
2T HHdunntREHYHARY
28IHEAAHAANHINE
2OLHRBYULHRREHAHN
' IV HERRAREARH
o I udyHnphany
VR YT ET T
EREE RS Y TS
i 3acuHansH
. EERE L LEL L
36t HANRIR Y
, 3T hhRARARAHNA
g . ARHHURAAERIHHY
- IV HEH bR
GYSHARURREN
Hl1sHhnhtal
. L2IHBHHRUBHHN
— - LATHRABHEHRNIH
. QUIHARGHRUEDHIUHH
GOCHEHKHRNHEHHUY
GOTHREARARKIRAY
— GTIHANBHUR BN H
LGARIHHHBAUGHYNY
RS T EET RS 2
; SOIBUAHKUNH
|- Sleuntdpsn
S2:HAHHFN
‘ S3:HHnenual
| SGiBHNHARBRANAN
— SHIHUAHNNREHHS
Sthedttupidgii
STeudddbnnt
S5Q: 486444

r— r r r,ﬁl-;

e

Fig. 27b
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SITUHRBABBENNY
6O EHANARNRANY
OLERHARNERNNRNRESY
G2 IRURRHRHNNENN
OALHNKKARNANRUN
GLIHRUNNNBNNY
ESCHRHEENNNAU
GOLHHRNRURRAY
6T HUHNRRAN
68 HARHAH
69 HiH#
TOs###H
Tl 4#
T2 /b
T34k
T4 Hi#
TS s # 4B
T6: #iH
TT:HERH
T8 HH##
T hBhuk#
BOSHABHA
Bl:Hini#
B2:HMhu# -
83 HHHHM
Bashbi#
85 : ##H
BOH#H
8T s##
B8 :###
ROHAHRAN
QN HUHAK
9l s HR#
Q2 s H##
93 #H
QL HuHH#
95 s H¥N#
CI X311
QT HH#AN
LR 3 2330
O HANH
100 s #Wk#
101 z#its#
102: 448
103 :4#%
'1010 SH#
105 ###
106 #¥nt#
107 H#HR
1N8:#N4H
109: ##4
110 ##
IS EE 3131
112: #4844
LI3:HNNAEN
L14:#HE#S
115 ####N
1162 ##HMN
1174884
118:4Ké4




] 117 4k4
; 1202 44
121 : 4%
122 chH4
1234 14
-— 124cubaud
1253 # 44
126444
12744
129/ idn
: 1234444
L_ 13D Hiudnd
131 s #Hud a4
137 94044
133 :nun¥
- 134cifid 4y
135 néit it
136 Han
L_ 13744
138 :44
133444
L4 s HHHK
- 141 :d/44 -
147 241t R
143 Hu#
l44s un
145 9844
1458 H#in
147540444

—

—n

- L4R:hud gH
. 14qc sty ud
g 15 s ks
(- 151 s ektn

152: 6444
g 15k
L_ 15444

155 #
: 150 4
j © 157
- 159
) TCTAL RESOURCFE CYCLES USED = R33 Z UTILIZATION = 2
f AVFRAGE RESOUKRCES USFD PER TIME STEP = 6 MAX IMUM = 14
L _ _
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—
[
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-
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SORT - 4 Record File Variance II

107 PROCESSCR RESOURCF USAGE

A
1
2
3
4
5
A
7

#

*
.
.
H
»
-
-
.
-
.
-
.
-
.
.

R ARBRRR

iR #

10:tyss

11:Huuy

12444 #

12 H#n#

14z HHd#
15:Hut A

L6 HHH#

1T HHBHENARHEN
LB:HHNEHRHHAK
19:HANRAAAHYY
2OsHHRRRANHYEAY
2L HARBHRARHIN
2P HUHHHYRE B U
PACHAHRRRUNARKHRH
QHERAERRHHARY
2S5 HHUHBRY
QOHARRBHEY

2T HEHHERAY
2OHHRKAHAN
2A:nMHUBARHR

AV HRHHRHKH
BLIHARHERANRY
B2 HRHAARBHUAA
KEREZEY IS RESS S
BLIHNHBHBRHURNEY
BSCHHAURKBARUAN
BOTHRANKHANNH
FTIHHSRRHAH

3 IHNRAANKN

BT HUUARARHY

LIS HBRARUN

Gl HhBnnub
G2HHKRHREH
GIATHAHUARNERAEA
GO HHUARNRRHHAN
G5 HAURURRWHEY
LOTHARRHAHA
GTHHNNHY
LBIAARRUNNNNN
GITHEHABURENH
SO:4HNRNRUNDUHEY
SLIHNKRUMRBAN RN
S2IHRAHRRANNKEH
SATHULHRNBHRN
SHIhARARARUR
SOCHRHAKRKARN
SO6:HURARNRHY

ST HRRARH
SRINAKHRY

Fig. 27¢
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SOLHERHKHRNH
ONIHARRKRHAHINE
OL2HHARRRERANH
G2 HHNARRNNY
OISHARANERAY
GLIHHARNH

OS T HARRHBHERH
COELHKRARURURRH
CTIHAHARRHABABANH
CBIHARRAARRHNAR
COALHAHERRURHANE
TO:HEEREKRHBHR
TLHHRARNRN

T2 hhluinu#
TITHARHBHAEN

T4 HHRRH#H

TS HHRY

Toitn#h

TT:h4

T8 44k

TOs#H##

BOHA#

Bluu#

B2 :#uR

B3:Hi#Y

B4 it
BOSLHAKHAY
B6:HHNUH

BT :sHunt#
BR:HHHH

BG s H H#

9N RiH

Q1 :H##

Q2:#4

CERE-J |
Q4 : H#tH
S L HAHH#
Q6 HARHE
QT s Hith
Q8 : i H#
9Q: ##
100444
101 :Han#

SLFERTTTYT
RDERNITET]
BEIERTITT

105: #hud
106 :#4#
107 : # #4
128 : 444
109: 44
L1D:##
L1144
112 HHH##
113:nb##
114sHudH
L15: ###
116: 4%
V17cHAks
118 ##H##
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IRCEF ¥ YT
120 HA###

ERVAREIYYT
122444 #
123: 44
124 4 #4#
125: 8 #8
126:4##
12744
128: 44#
129 R #tuk#
130 ### ks
131 444
132 : 484
133:#4
134444
135 #iik#
136 hin4ni
137 ik itn
138 : #uttia
139:kinb
140 s #u# -
141 :#un
142 ###
14344
14444
1454 kE#H
146 Huitthh
147 :H#urH
14R:HEHSY
149 H#4#
15N 44
1S) s ##H#
15244k i
153 wtniay
1S4z hukup
155 #AuH#
156:n44#
157 :##u4
158 : ###
159 #44#
160 ##
161 :#
162: %
163:
164:

TOTAL RESAOURCE CYCLES USFD = ‘901 ¥ UTILIZATION = 2
AVERAGE RESOURCES USEN PER TIME STFP = 5 MAXIMUM = 14
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SORT - 4 Record File, Processor Speed Variance = L9

o7 PROCESSOR RESOURCE USAGE

A
1
2
3
4
5
O ##
7

L

RREEERRER

BIHHRY

Q:HAHN

LOs# k¥

L1z #nun

12: ###4

L3 HuMkHE

lacs #uh#

LS HARKUENEHY
Lo BiHARRUNES
INAR I TEE T TS
LB #ANURERBHNY
19 #uiRtRARNR
QO HARKHEHUHRUHGH
VARE T 2132377
22 HARERH
23S HHURHBRHY
24 HAURRHKRER
2SIHHRKHEEYE
26 HUHKEKHR
CT:HRHARAHKY
2B HHRHUHURRY
2O HANRBARHKARERY
BOHHBUHANBEHNHN
L2 HHHRRRHREARBE
32 HARBRAHRAHY
EERR 2 ¥ 13332
34 HARK KUY
ELRE Y TTN ¥ T 3
O HANEHERY
BT HAHNKERS
38 HANUHBERN
39 HHRAHRIY
GO HEHHHHA
QLI HHHRRYH
L2 RHARAHIR
LITHREARUBSHH Y
L4 HERRNHARRESH
GSTHANHHRHNH
LOTHBHENRKBH
4T REBKRY
GBI HHHRURHRAH
QOLIHARRHARBHRARURH
SO HARKNHBKU#AN
SLIH#RUHHNRRRRRR
S2: HHRERHREHE
SIS HHRRAREY
SLIHHAREREN
SS: HENHHHIHY
SO HUHNEHNRSE
ST HAHRHBHY
SB:H##EHERY

Fig. 27d
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SO HENMANEHY

60 #HHNMH
OLIHNNKER
OS2 HRRRHNRH

O3 HUNNAURRUNLS
CLIHARHANRNMAY
OS:HARHRENRY
OO HENHAREN
OTH##NN#N

OB HAHNRNRARNY
OO HUHUNNURANRRNHN
TO: HRERBHHNRRAN

CTLRARENNRRRAEY
T2 HARKKNRRAN
T3 HHNRHARS
Ta:HARNKHRR
TS HENNUIUN
TO: HUNNANNR
Ieat 231331313
T #HRRHNNN
TO: hURKNRAY
SO H#NR#Y
Blea#aN
B2 HHEWN -
83: 44
84 Hik
B85 ###
86 ###H
BT H#HiH
88:H#H#H
89 HHMK
QO HUKRKHY

QL HH##HM
AR 1333
Q3 HHMHK
QG M
95: Hu#
96 HH#
9T HAK
98 HiH
99 #HH

100: ###

LOL s w#

102 ##

103 ##wn

104 Hituu#

105 ##unH

106 ###

LOTz #¥M

108: ##

109: ###H

L1O H##NNY

L1l #udn4

L12: ####H

L1132 ¥##N

1l ###

115 ###

L1662 ##n

L1T7s##%

118 #u#4
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119 ###4
120 ###
121 ##
122 ##
123 ###
124z ##k##
125 ####
126 #i##H
127 #4#
128:##
129 ####
130 #E##HH
L3L: ##ui#
132 #8444
L33 #ui#
134: ###
135: #it#
136:###4
137 #i#
138 ##4
139: ###
140 ###
IESER T
142: ##
1432 ki#
la4: Huuun
LaS: Hiupn
146 ###4
L4T: #u#
l48: ##
L49: #Hup
150 ##bHiH
151 #udus
152 Hu#un
LS3: ##a#
1542 444
155: #4#
156 ###
LS5T7: ###
158 ###
159: ###
1602 ###
161 ##
L62:##
163 ##4#4
164 ###is
16S: #ith#
166 #Hi#
16T ##4
168:##4
L69: ####
LTO HEHNHH
L71: #untg
L72:#44n#
L7344
174 ###
LTS5 ##4
176 8##
L77: ###
178 #un

-
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179: ###

180: ###

181z #4#

182: #

183:#

184:

185: o L
TOTAL RESOURCE CYCLES USED = = 992 % UTILIZATION. = 2
AVERAGE RESOURCES USED PER TIME STEP = 5 MAXIMUM = 14
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MATRIX MULTIPLICATION PROGRAM

The matrix multiply program consists of eight graph procedures. The
program is written as a procedure to be called from another graph program.
In the simulations which were run, a dummy procedure, whose only active node
was the matrix multiply procedure, represented the other program.

The basic algorithm used is to split off each row of the first matrix
and to take the scalar product of this row with each column of the second m
matrix. Thus, if we are multiplying a m by 1 matrix by a 1 by n matrix,
each row of the first matrix must enter into a scalar product with n co-
lumns of the second. Furthermore, each column enters into a scalar product
m times. The procedure was written to execute with the maximum amount of
parallelism aththe expense of storage for row and column vectors. Hence,
the row vectors are each copied n times rather than being recycled after
each multiplication. The same is done for column vectors, they are copied
rather than looped around the graph.

The row vectors are split off the first matrix by the firsi.-rest node.

The null test and not nodes provide a boolean which causes a copy of the

second matrix to be made for each row except the last (since the rest of
the matrix is null for the last row). In order to provide m rather than
m-1 copies of the second matrix, the edge linking node 4 to node 9 is ini-
tialized to true. The value true thus appears m times on this edge. Each
copy of the second matrix is converted from row form to column form by the
procedure COLS., At the same time n copies of the corresponding row vector
are produced by the procedure N COPIES. Since the n rows and columns
appear on the input edges to the scalar product procedure at the same time,
the n x 1 multiplications of the scalar product can be done in parallel.

For n x n matrices then, the number of operations per step is proportional
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LOOP

CONTROLy

FIRST
REST
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MATRIX MULTIPLY (MAIN PROCEDURE)
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LOOP
CONTROL
8
NULL
TEST
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6
L
T
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3
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PRODUC
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to n2, while the time to execute the procedure is proportional to n, or in
general, to the number of rows in the first matrix.

Since both COLS and N COPIES bracket their outputs, the inputs to
SCALAR PRODUCT are both matrices; &hese are unbracketed into their con-
stituent vectors by SCALAR PRODUCT which then uses two subprocedures to
compute the scalar product of each pair of vectors. SPA unbrackets each
vector and multiplies the elements of each pair together. The output is

bracketed to produce a vector whose elements are the products of the ele-

ments of the input vectors. The elements of this vector are summed by

SPB l.e., SPA produces the vector (ail’ blj’ P bgj’ ceees aizbgj) -
’ y b f thi t
SPB produces the scalar kél aik k3 rom is vector.

SCALAR PRODUCT invokes n copies of SPA simultaneously, once for each
vector pair whose scalar product is to be computed. Each copy of SPA per-
forms its & multiplications in parallel. Thus, for an n by n matrix, n2
multiplications are performed in parallel.

The procedure COLS turns a matrix stored in row form into a matrix of
columns. The input is an m by n row matrix. The subprocedure COLS 1 un-
brackets the matrix to form m row vectors. It then splits‘off the first
element of each row vector and puts it on the first output edge. The
remainder of each vector is put on the second oufput edge. Bracketing of
the outputs produces a vector of length m on the first edge and a m by n-1
matrix on the second edge. The matrix is recycled through COLS1 by COLS
until the last element is taken from each row vector. This results in no
output on the second edge of COLS1l, and thus terminates COLS with n column
vectors of length m on its output edge. Bracketing of these vectors pro-

duces an n by m matrix of columns.
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MATRIX MULTIPLY CALLING PROCEDURE

Fig. 29

SCALAR PRODUCT PROCEDURE

Fig. 30
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PROCEDURE SPA (FIRST- HALF OF SCALAR PRODUCT)

Fig. 3la
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PROCEDURE SPB (SCALAR PRODUCT SUMMATION)

LOOP
CONTRO

Fig. 3Ib

136



-

(ml

-y

Since the first element can be split off each row vector in parallel,

the execution time for COLS depends only on the number of invocations of
COLS1 and thus proportional to m, the column length.

The procedure N COPTES produces n copies of a vector, where n is g
parameter to the procedure. The length of time taken for its execution
is directly proportional to n.

The procedure TWO COPIES MATRIX is necessary since use of the
primitive node for copying a vector on a matrix would simply produce tvwo
copies of the pointef vector whose elements point to the row vector of the
matrix and wou}d not duplicate the rows themselves. Since the row vectors
are duplicated in parallel, the procedure takes a fixed time independent
of the size of the matrix. (Provided that the time to execute the primi-

tive node for two copies vector is independent of vector size)

Simulation Results

The matrix multiply program was run on n by n matrices ranging in
size from 2 by 2 to 6 by 6. There are n3 multiplications required, and
the program does n2 of them at a time. This can be seen very dramatically
in the figures 36-38 which show multiply processor usage for 2x2, 3%3, and
hxh matrices. Multiplication executes in one cycle so there are exactly n
cycles during which multiplication occurs.

: The total processor usage for the matrices on which the progran was
run is shown in figures 39-43. 1In these runs the execution time for all
processors is one cycle. As can be seen, the time required for the pro-
gram is proportional to n, while the amount of computation per cycle
increases approximately as n?. The results of these runs are shown in

Table 5. If £t is the time required for the computation, then t=kln+k

137



PROCEDURE: COLS

LOOP™
CONTROL,

Fig. 32

PROCEDURE: COLS 1
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PROCEDURE: TWO COPIES OF A MATRIX

2
COPIES
VECTOR

Fig. 33
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PROCEDURE: N COPIES (OF A VECTOR)

() (n)

LOOP
CONTROL,

2
COPIES

Fig. 34
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From the times required we have kl=19,k0=lh, so that the time required to
multiply two n by n matrices is given by
(1) t = 19n + 1L cycles

The program was run on the same matrices with a four cycle multiplica-
tion time and all other processors executing in one cycle. The multiplier
and total processor use for the 3x3 matrix is shown in figures L4 and L5.
The effect of four cycle multiplication on all the matrix sizes is summa-
rized in Table 5. 1In this case, we can calculate the new kl and ko, and
we get

t = 19n + 17 cycles

The valug»of kl is unchanged because the n multiplication steps are
independent, i.e., the initiation of the second set of n2 multiplications
does not depend on the termination of the first set.

In an earlier version of the matrix multiplication program, TWO COPIES
MATRIX used a loop control node rather than an identity node. That version
of the procedure is shown in the following graph. Since loop control is an
s-node, only one copy of the node can execute at a time, so that the exe-
cution time for the procedure was proportional to the number of rows in the
matrix being copied. And since this procedure is in a loop whose execution

time is proportional to n, the execution time for the earlier version of

2 .
. the program was proportional to n . The execution times were:

2

n t At ATt

2 5k

3 7 23

i 102 25 2

5 129 27 2

6 158 29 2
1k



which give the equation
(2) t = n° + 19n + 1k

Both identity and loop control executed in one cycle; the only
difference was that the first node could execute in parallel. Equations
(1) and (2) illustrate the kind of major differences in program behavior

which are brought about by essentially trivial programming changes.
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— PROCEDURE: TWO COPIES OF A MATRIX
(SEQUENTIALIZED VERSION)

—

Fig. 35
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RESCURCE USAGE OF TYPE MATRIX MULTIPLICATION

;f 2 X 2 MATRICES MULTIPLIER USAGE

P e et et P e e P
o~NOCVMEPALVWN,OOVONOWVS
6 46 84 80 0 s & o

90 66 40 o9 00 &0

.

31 4duf -

36 HHKN

49:

50:

51:

52: .

53:

54:
TOTAL RESCURCE CYCLES USEDL = 8 % UTILIZATION =
AVERAGE RESOURCES USED PEFR TINME STEP = 0 MAXIMUM =

1hy
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— r— r— r—

r—

r— r

— r—

r—

RESUURCE USACE CF TYPE
l:
23
33
4:
b1
(3
T3
g3
9:
10:
L1z
123
13:
l4:
15:
lo:
17:
i1v:3
192

203
21L:
223 -
23:
24
25:
26:
21:
283
29
EYVE
31
32:
33:
34:
35:
36:
37:
38 HEdARARAN
392
40:
413
42
G3ZhhkARAKBAR
44
452
463
47:
48:
GIHBARHBREH
50:
51:
52:
53:
54:
55:
S5
57:
58

MULTIPLY PROCESSOR USE
3 X 3 MATRIX MULTIPLY
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593
602
61
623
632
042
653
662
67:
643
69:
703
71z
T2:
13:
TOTAL

RESUOURCE CYCLES USED =

217

AVLRAGCE RESUURCES USED PER TIME STEP

146

3 UTILIZATIUN =

0

MAX IMUM
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6 RESUURCE USAGE UF TYPE MULTIPLY PROCESSOR USE
L 1: 4 X )4 MATRIX MULTIPLY

s 40 0 o

PN~ D0 ~N0THWN
(1]

40 8o 08 44 se e 0

r
b P e e e

r—
p—
m.qo\ldﬂ

" 8 e8 6 o

N -
[ N}

Z1:
222
252
24
25:
26
27:
28:
29:
30:
31:
32:
33:
34:
35:
36
37:
38:
39
40+
41:
42
4332
44 _
45 HERARHEHR SH S4B HIH
462

472

48:

492

SO A S HuRRARBBHRRS
51:

52:

53¢

542

55:
SOSE#HAFBREHRHBHNNIH
57: .
58:

r—

—

r— r—

-

r— r—

1h7



LI NY]

HARRHERRAHARAARY

e

{4208 <3« N« e NS NN
VN WN = O
se oo oo

T63

T7:

782

79:

8(z:

Rl:

82

83:

84:

852

862

27:

88:

89:

90

9l:

92:
TOTAL RESOUKCE CYCLES USED = 64 % UTILIZATION = 3
AVEKRAGE RFSHOURCES USED PER TIME STEP = 1 MAX IMJM = l6
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TOTAL PROCESSUR RESUURCE USAGE

1 #u#

23 ###

32 HAn#

LIaBERH

StHHARH

OHAH

T hit##
BLANARHANN

Q: HAHNARK HE

1O HAnURRE HURY
LLA#RENAH B HA
L2 HASHHHE H#

L3 kARuARRRHH
L4z HuRHHAE NSdHH
15 HAHUHRKHu##H
IR E T TSI
LT HERAHHEHEGH RN
LB: HAARBRE HEAH H#
1O hHHHHRKHBRRRHH
2O HHEHSHRK KRG B
YARE YRS FI TS5
22 HHHSHRRAEY
PESE S Y ET 15 X T

24 hAHHHRE R

2S5 HRH AN Hu #E

20 hHARUHARN HHY

2T HHARABH Y
28 HHRHH#H
29 HA HH#

30 #H#SHERN#Y

3l hRunRRutnn
2 HEHHHY

33 HAKH NN RH

L HARHEE Hu i
IS5 HARAKER Ko ik itti g
O HERHARRNI U Y
3TIHHHSHARHEHA
BBARERUHRRGHR
3O HHHRHERNNAN
LOHERAAERHBHHEH
SR EFYIFYIEIT LY
L2 HHHSHRR NN AN

CABHARBARE H# A5 HH
CAACHERRARAHE Y
LS HRURRHR Y

LOHHRAHEE HE
LT HAHRAH
LGB AAHBHNES
4O HHNERY
SOz ###s
S1:##

52: 4

53:

54:

TGTAL RESCURCE CYCLES USED =
AVERAGE RESOURCES USED PER

466 % UTILIZATION =
TIME STEP = 9

MATRIX MULTIPLICATION «~ 2 X 2 MATRICES

ALL PROCESSORS EXECUTE IN ONE CYCLE

- \n

MAXIMUM =
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Leang

2inds , ALL PROCESSORS EXECUTE IN ONE CYCLE
32 hhhH

GIRBHHHER

SIHHUNHRH

OLHMH

I&X 317

VBSARABRKBH

CRERYYEENEY
LOZKhhhnbnhahntiin

LIz ANARUAERRBANS
Leshhhnhhnian

L3z tinhabintinninin
lazhhhnhnhadNhnn

LS hnandnhandnhhn
LOSANARODRRANNNNARAAEH

LTS hhAARBARRANRKANRRHREY

LBsaahnhhnnhninhiingd

LIS hAANRAARANNAARRNRE
COLHANBBRARANNEAAANRERY
QLU RBHHERRARARRER
QL2SHARKADNAKABREARARH
CInbhhuntnkhhhnhdnriakidng
CHSHNARBARARARNANEARARNEH
COCHhABRBUNNOARRARHANDRIH N
LOShRARAARANOBROEARARBHBH
CISHRHRABRADRARNHAARAA
2UShhRRARAAANNNAANA
CISARARBARNRARBRBANARH
BUShANRhADRRARNANAAH
SLihhnRARNRANKABHANR
32:hnhahhhbunNGRhANARY
S3:AahhAnhhhhhnhhnns
B4 HBARARNNANENRH

35 hANRANNRAAN
3O0ShhAnNAKNANDIR S
BTZHRARBHUHABARANRRHNRAR
SEARAGBAARARANARRABANARD AN
3Vahhhnanbhbinnnd
GUIHhABARhRANNANHAR
GLehhhhNKRARANRAUIN
GLIUBANRRRRNARRANNARBRARSN
Q32 HuhNRRRNBRNNNHRRNARHARR
QL4HNANBANNRANNARRAN
LE5HANRBHEUDRBARARAE

QO hhhhnnhhbhhnhnanni
GTZHARANARBBANBARKARAAURER
GUIURARARANRARNAAARRAHARRNHRARAN
GITHAARRUURADEDANEARABAHARRNRRAHAY
SOLHRBKAARURABABAANNBANHINNAY
SL:UuaNARRNHANNDRHRKERR RS
SLIARBARENBNNANANANGANEAN
SAHHANANRAANANARARONRERARRAARR
SUSHhhnNRHARRRARATARAINUANINS
SSLHRANAUNBAANBRANANNRANGARANRY
SOCHNNBAHERRANBIRABRAERNARERA
STIharhhhanhABARMRARRIARR
SUSHRANHBRHAARBAARANAY
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SOLUhAhhDANALANLhANRRANHH
OQUSARKBARKNRARENNH
CLERANWRNNHOARAADHAHE AR
Goshhhhahnbhhnnbnd
O3 nhhhRinanhnb
Caz hhnathhuni
OS5 hhnbbtidhgY
OO hannknbi
CTenhhhnunbhann
OOz hhANARNH
OIS HHNRH
TU#i
T1:#
123
73:
TLTAL RESUURCE CYCLES USED = 1114

AVERAGE RESUURCES LSED PER TIME STEP =
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2 UTILIZATION =

15

MAX IMUM
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TOTAL PrUCESSUR RESCURCE USAGE 4 X 4 MATRIX MULTIPLICATION
;ﬁ;z ALL PROCESSORS EXECUTE IN ONE CYCLE
3 idn#

GTHHdE Ay

Stratidu#

REX3:]

TiHit##

BrpAnttn dn#

QI piuti s E ##

LOTKAnBARE Ansddite
LlcHdd skt hunntinttn

12: 84t #ats

13:ad) ednttHivvdnn

14z Hnnbdidbh GERERS

1S HithtHAk R BHAKY

ICREFS TS IR Y YN

L7t SRt B u R H
IR F YT IT R IRV ES IR TS

Lz pnnddripnntinddnuintak
QUL HUINHERE AU BHHARFRRRARHE
QLR HUHHSE SR RIHAARHA
QIHRAHRAR AL AU RS RA ARt
QALEALBHRRAE AR BANAN AR B pR N
24IB R R RE RGO RBE I A R R
2OIHEURHNHBEHHRARBBHR B E R BHRH
202 ke r Hn dHBHREH A kn kbt fH An e
QT HARRRRGHERHUAANFHA R REE Y
2O HHANHARKEHEARUBH AR B HN
2OCHARAHERENHNRBERAAHHAR AR
BOLHHASHER KL Rt ttduntinndn sl nnid
LU uBr N R U AR AL AU R RO HH
B2 LHUNBHRBE RO RBRALRHABRRERANNNHAR
BALHSHARKBHRRENBUBE RHRBE R SRR I

342 hAHAARHHRRARHBEHEHANHAYH
3S5:HuanHE L4t RERAHBERRRRERRH
JusHildndat AL R B Hu iRty e

AT RAUBHRE HE NS RBRARRAEHERHHA
EEER VI YIRS RIS TSI 2]
B AU AR HERARREA At it

GO HAR AR HE HHAARVHRHB R
GLIHAENHURRY LE R RN S Hd

KEF I Y IEER LT YRS L EY T
G3AUHR R T SARARI NG
Gaspdnd e s U dREHRFRIRA SRS BURHNRAEH
QO HUNAPRH AT SHAHRIANAHRR G BEHHRAE SHH AR HBRN NN
GO UEP P tE Rt HR AR RS
GT b pilun dUdRanniddtiddrin
AUSHHERHHRRRE HH R unRHdHE#H#

QO HRARN Y SR HE AR BB R E P B el R i W
SULKHNA AR RN AREAA NG AU BUH A RARBAEAHE RS R R
SLiAtut ity Hdpntnnddhrtbnnindint

S2HEHAHRRYNL ARRAHAUAHURE RN SRR
SBIHAAAHHUV AL B HAAABEE B R BHARY

SGIHRBARRERF ABUBHURBHAH L R RARHE R WY

SR HRAHT AL RARABEALERAHE G AR AR RN B R
SCIHIE4HERHL HHRBPEHADE AR ERAR A LA FH AV BB AHARR AR Y
STLA#RAHRHAL HHHASRUBHBAL AV BRI R
SRIHHAAHUh R HHAHHERBEBRE G b4t dn A
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SO AH AR Ak Hdddddnndnrp e ARAAN 481
SO HRARRLHHHABHAARBHBUA AR R RHRA RER R AR HY

OL:SHESBERHBRRERNPHHANUE HELARIH B ABR R R BRARS S8
CLIHAAARHUNP HAHBARBRUNBHBHRA SRR BHB ARG U BRI AHRBERAURRRER BB
O3 HUEHAE BHE AR HHRRUABEAUBUABHBRAARBHRE R #
O4IHYHHREH A AV REHEHRHBHE HARAARR R HBHB BB
6S T HHARPHD HEBHHBNAHBHEPRRHNRBRUAR BNV RAH
BOSHARNHEB Y RENHBHRHEHARBERBHARH AR RHHBAHAR R AV UK
CTIREHBH N HEHHBBHALHREBUBHE BB RHERRE B R 4R #
OB RHAH AN R HHHBHABRERARHRERHARU BB URAHBRBRAR AR BB RH
COS HHRHBHHABRE BHBARFHBRREGHA RV L AR A HRAHHBREH
TOIHAHRRHERABBHRBRABBRE AR S B AR RS # S
TL2#HEBHERBRBERBHEH BB B HAABRER AT H
T2 A RHEAHHH BRI ERBBE AR AR BB BRE BB BB HER
TIHHuuRRR B RHBBH R HE S BRI
Tat n4ptH 4k BEHEHREAE HBRB R R BB R BB A BB B R R
TSI HAFAHEBHPHRHHRBBARHBABAR AR
TO Fpdnunndd s gddviduy
AR S TTIIN ST TR TS
TR REFGH IR ARG NAA RO HRRBHHHRHBH
TOs s sundnti dnpntnnidiinis
BOLUHARHEE AR HYH BT FHRBRHEHREAPH Y
LI HANR AU SH AR
B2 Aufdndn A Huanitd
B3 HHARREH HO B Y
84 RuFHBHHRAH A
85 hunitiai At #
BO: FRERERRSEHHHHY
BT H#upundhfins
B8:H4REHH
89 ¢
Qe #
91:
92
TOTAL RESCURCE CYCLES USED = 2196 Z UTILIZATICN = 1%
AVERAGE RESOURCES USED PER TIME STEP = 24 MAXIMUM = 57
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TUOTAL PROCESSUR RESUURCE USAGE _ 5 X 5 MATRIX MULTIPLICATION
WMMHM ALL PROCESSORS EXECUTE IN ONE n«obm
3 ddpd
Grfidudgini
EETEFYEEY
6 44
Trrik#
BehHhuign g 4 :
CEEE TN TN T
LOrHaiBaEREHL Hiddis
V1ot #idn it HAnlSAEY
L2 4 H BN ERE U HY ‘
13440 d 3t A drn it
Lazidnadt bl hE i i 8
LSz HANSHURERAN HUH :
LOh AR R A SRR AHRRN HE
LT G HEHAAERERRR AU E YR Bt
TRIHUIHEBHRE RSy
LOHbnnHd s dn bna v diiddns
QO HHNUHHANERYR4H FF gt b4
QLR ABRHES RN Rty
Q2 AR HARKRLEHEH AR d dR it sl 4
QAHHLBALEHE RRd AT A st d bty 1Y
QL HNA R BT AN B R SR AL B Y
2O nRYnH B e R BRIV R REF R A Al A H
26 HHHLIHHHHBRE AR AL ASBRFHEH A Bt i .
2T ANt Run RiEHHu b inap st dgfspp
CBIBRERHBNAN R R A BB RA G A4 B
2O HNHBH AR A SHBHHAHBER AR SR AR A
BOHArHHAI AL REHE R EAV A S B bR S B H o
BLiuHu AT EARHA R BRI E R YA AR B HBHE BB R HE
B2 HANBUBERENF RERGNARE MHARIHAHRRHRB BB BHUH Y
B3HEHARB N AR HUNBH SHBHBHANH S 8B BN HRH
B U HAHNKRGEREABRAURBUBHRL B AN AR R HHRY
B5:YHPRURSHEAEBUR AL RUBHA YRR ABHRH
BOTHALARBAR B AE AR E AU R R B AR A AN B B #
ST:heHd A b HHRRHRRE HAHBGT B R H AR SHBHRHUHRBRBHE#
BB 4HBH YRR AL KA L SR SB R d b En i
BGHRHU YRR AN RER AR AL HH B ER B A E SR AR B B RH R4
TGO YRR HE HYHRAB B ABERHE AR AL BB BH B H
GLIHHL UL QU BH A G R TS R R BAdi B HBRHA Y
Q2K AR dn duv dadv it oo gt dhd by
GIHRHRAR AL YR HAHBERUR R R R AR R H Y
G4 HBTHRRN RV BHRBRARRBE BRI HIRUUS B BH BB R B Y
GSTHAEHNURHAE AN RRBHHBREEHHA ARSI R AR BB B
LOTHHRHASHNRNHH IR BUE R AR N SR BHE 1Y
GTIEUNS R He R BN AR EHR A Sd gy
CER N RTINS YISV RN TREY Y
GO EHHGUURNBENRE S Syt bl an d
SOt HdbHub Hnirunanetnninpriftdid 48ty
SLHRURARBANBBHAAPRENHBE B HG R A BB BB H B HBAS BB HARHY o
S2:HBhHRUNBE B RFRARIUB AL AL BUSRABBAB R A AHH AR P U N HE BB BHP RNV R #
S uHARKHA HE U BHHAHEEH BN BB g4 #
SGs A HAnREr tughddn ¥ dradbddn b
SO AHEH BB REAHBRSRT BB DA HE BB RE B Y iy
SOTAALHAR BT BH B ARUBEHARUE PRSI BER AR AN B RO AR ARB AN H Y
STLHBUARGH N AR BURRRH R HARA SRR BB BH ARG AR AR BB p B iR n i
SBL UBHNT Rt HARBRIH BRERH LT AP SHHBHBE ABHABGSHH Y R
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r

SO:HURAHAEBHBEANARHARAHBRUARERR R IHH SRR BH R 1Y
OU HANUYHRAHBBAV AR BUBHRBHANBHR B AR AR B

OL: HHBHHURAL HENHBBRAHABAHHAAIHBB AR RAHHHAIHH
C2:HRHUARHMN SR VAN ERHAUGHBAR AR B ARG R AAARNHA BB R B
CBIHUSHNBB AR REARARBABHHHBE AR SRR A RBHBBHRBRBHAB B HHAA ARG R R RN SR
OLIHABRUNRNNHBHERER RSB BRHHR U BB R TE R HE R
OS5 HRHAHGHHHBERIRBHRBHR VAT R A B R RURB BN U A n i
OO HARNEHE RERTHGRAEHHARRELSRAUR BB BUBE BUR BN
OTHHURBREHRABHHBH N ARA G HHE A BB HRHH B U BB RI R #
OB SHHHBERHURBUBRHBHRBHERBHARRB L ARHBEHHURBH AR RRRHC R BH Y
OO HREARRE RERH RSB ARV URRERSALRHBARBREBHRRHRAR R R HER AR R URR N R R BERR R
TOIHRHRARA UL RRBRERBARBRERE SRR BRABERBHRA AR UR AR B
TLIBBHAEHRABRHEHBBHNHBH R R AR AR RRBHABHRUBBRRA R
TR HRARHARHAH AR RUBARAAR A B HAAB IR A RURBRAGRRBRAR AR B Y
TR Hu4H AR R SR BBRG T RRBHBAHBABHUBRHBHRT R R AR A AR R BRAE R R R AP RN
TG HHHRHEB REHHHBAABHEBAAHAUBAARABERHBRA BB HA R BURUBRA B RRRA BB ARG H
TOHARRKHE AT HAAHRBRBUB IR AN BB R RBHRE HRBURRUR R R BRBHBRAHURER UL RBR RN
TOHHBANRBHRERAHRARBARNE RH AR P ARABRAHRBBRBRRBRRAR AR R R B R AN AR
TT:ARARRAARAB RSB BRARRBH AR AR AR R BAR SR A AR B Rd B Rt
TOIHHRBEBE BE RV HABA AR AP HBP A BA B BRBRUBHHRAR AR RHB R R R R
TOLBUHABRRENY HBAAIRH AR BRBHASHBHRANRBHROBHABHRRRBHRR AR B HA BB RBBU R BRABHAV AN
BOHUAAHRBHARBEAHBBABRSBHBERIBARSARRRAB SRR RE N HEUHRBH B AU B H B H
BLIUHENRHB RN UHRHHR RN BRARRBE BB R R BA R BR R HE AR AR HBE R BB AU RO AR
BRIAHARRAHAHSBURABHAAAATHA A YRR AR BRA R AR GRS AR o Rt r R AR U R BRHY
BRI HHAHARNARHHHABBNBHAEHBHE SRR R AR BHB RN BB AR R R Rt
B4z HHRHARG AR RH B BN BB U UG AR AR BR R R BH B R HR R dd oY
BSI AHURAHBRHRBARRHHAR RS HRE RABHBAABRBRBARAARHUBRRHRE RSB R R R AR AR #
BOLHAKRNRRRREHRRERRBARBBRUNHRBAS R HBRBUBBH AR RAY
BTHURRHSR BEHBAEHABH R HANRHH AR BB BO R R BHRARRHBRE BB RARRBHR R AR AR AR R
BB AWERRAL RL WA ABARUAARBRRB BB R RRAREHA B R R
BOHUARBNUHEBHBUBHA BB REAHBEAR LR UNRH R HA BBV H
QOSHHARIARE HH RHRHHNBBHBY HRUBER At HHTH# Y
QL ANHRHARHBBRH AR IR RE BB HIBARAAARHURHBBHAH AR HRREHH
2 VHHRIRH RPN RAR SRR AT AR AR R BN R Y
O3 HARRHBEBHRBHRARHBRBBHRRERBURB RN B AR B RSB Y B #R
QUL HRARHAH R RRAHGRHRBH B RRB AU AR HEH
SScnndAntin it ARt i #
QO HHHHBHRAEARBUHARHUAHBHAHY
OTIHHUNRSBU AR HRBAAANHHERH RS IA R R
QB HHNHABHEHC R AR RERBH B
QO HHHHA4HHH HHHARH LR HH BRI N Ao
LOOAH#Hu HEh HH HRHH B nt#H
LOL:ARuRHAn BHHARARHHHY
INVVARYIESFIRIT S S ]
LO344rRinnhbduiinnt ¥
LOG AR 4HEHRHHRY
105 Handndnnbdtinndid
LOO: it tHhun Ak HuH
107 w##nti e
108:4#
109:#
110:
111:

TOTAL RESOURCE CYCLES USED = 3326 ¥ UTILIZATION = 11
AVERAGE RESUURCES USED PER TIME STEP = 34 MAXIMUM = 91
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TUTAL FRCCESSUR RESGURLE LSALE 6 X 6 MATRIX MULTIPLICATION

linnw

i hhH

3IRANK

LINRRRBRARR

DIRANR

CihbhHn

T R4ER

Bihhnk

FIHRAR

LC hbni

Ll:wnk

12:nht#h

L3shobruhng

la: hbhhihnhhn

LosunuwttharRUHARARRARRE
LOsHbprUEABRERRRFHR

Lizuhunbiavnnuninnn

LB Hanhhnbhituhrhnr

LIswHnnethnnk
cC:hnhhinnnn
AR T Y ISR Y]
C2SRABRARANREKRER
C3IHARRANNABARREH
PURARRHARARRRAARIRARR
COLHARRAAPRARARKARABRERRR
COLRUHRRIBABRANRABRAHPANRRR
PRI HARRRREARRRRRANAARE
CULHURHAARRUNARRRARIRR
COLARRRAARAARARBARRARRARHRRAR
BOSHARKHBABNRRARRHAGHRERH

Bl thnhRRRURARNHARRRIUN

B2 EADRANRRARUARBRERARR
B3ARRAERENAGRAARRHIKR
BL4HUHRRBHRRANRRRARNRRE
BSL4AKRURBARADHARRARKRRBRR
BOLHNRHARRARBROGABRIBRREBRSGRERR R H

AT HhARNRBRBHABARERIBRRHARRRRARARRER
B3OS HAHRGKARRRARBABARARRRERB R IR R
BOIHARBHNNRBUORBRARRABRURRRRBANRER
GO NAHAUNRBRHARRRARRETHBRERIRARA
GLIAARRARDARANRARKRHABRHHRR
Q2RANBBBARRHARRAARATH B FAR
ABCRARKBRAHIHRBRERRRBRANHRARERARE R
QL hABRARRRRARBRBARRAARARARRERY
GSCAANRARAHBRRRAHBRRARRRRBRAGHRR
GO HURRARBHRERRRAGAREHRRIRHHARIR DB AY
GTI:ARKHABRHRRHBARHRERBRNRRE DRI IR
QB AHHRARARBEARERRARRRERRAHBARRAKRARRARRUHE
LOI hhhbhhbRBUhRAbuREHFRBRAHARRBBHAMRR
SOKHNRHRANHRBEBRARARBENRHEABUAARRAARRBRRARERR
ClenwiRbREUBHIHKRRERBANARABHAGRARARAARRARKARE
SC AKHRBEHRBHRRRARARRAARURRRARUREARENF
S3LARRERREARHARRBEARRAR RN RUBANRARBHHA
CLUIRRRRARRARRRHAHARRRABHBERBARBRRY RERFR
SO hhARNANBHNHRRRRABNRBARARHRABRRER IR
SOLHANFBRBFUARBBARARRAHBRRRAGROBAN Y
STSHhURRKRHKARRAAAHBANHARREABRANARHENR
SO ARKHRAHRBOBRARRRARANRKHARNRBARKRFRARRRERR
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SO ARHRERBRBRANRRRRGHEARRAT R AREAAE RRARRARS
GO HARARRBRBRARHBHHRRBE RN B EBRE RARRRRR

CLARRRARRANANARBRRIRBGAGHHRAHANABREHRHARRRR
CLRERRARARRANRAAFHBARRERARGRANFERRGARHRNRRRRR
O3 RANHRRAAARRARARARBABIRARHRRARARRABRBRARERERARRANBRRER
CHSRHNHUARRRARBARABHURIRRRRBRRAFAARARRRRRHBRERRRHBAERRAERARRRRHRRANR GAHR
ESIHBRRBHRRBRARNRAEARRRABAARHEARR AR b v R HURRR
COIhhMRARRANRABRHBARKRERRRERAERB RN RANKARERRRERERR
QT HERRBRABHRRARKRRAARRRA BRI BRI REBUBRABARRARRERRD
CSSRNRHHBHRHABRARKARANHRBBHAAKARRABRABRERARRRERIRERARER AR
I hhRBRARRURRRIRRARIRAARRARARRAERNRARREBANRRRERB IR
TORRARNRRAARBEBFRRARFHIRNRARRARFARPARAARRERIRRBHR AR R RN
TLIAWABRHARHARRAHBRARRABRARRARANRHHRRERHRRBARNNBRARA
12 RNRRARBARHARGUHHARRAABUBKABHANHARAHRRHERRERARRBRRERERRRAR
IBIHKRHERERRRARHRARBAR R AR AR N BARNHARBARERRRRRURRRARRARARRABRABNARRARRRARS
TG RARKURFRERHARBARHRIFRBARARFARHARARRRRRERARRARBRERR BT RBRRRERRDRONRRRA
1S ShhHBRANBRRHRANUBHRH AR BRARAREHRABRRANARRRARNANAAN
TC RO BHHRRABURRARKBHARARRARRAATHRRRRARRARRARRARNRARFARLURRARRRBABANE
TTRhKHANRRARHBRABAHRANRARRARNRU ERRUREGRNRAURREIIRRRAARRARNR
TOIHHRRAREARRARRABNBGARRARRARHANABARRARRROARRRRRBBABARBRARUBRT B OR
TI L HPHRRARRERRRABAARAR AR FARARAAREARGARFRARRRBRHRREARRAHNR
BUOLAAARARBARRRBHRARARANEHHANRIARIRANRANGRANARRRA RO RRUR K BRARR R R R ARN
BlinRRhARRBERERARHRERRRARFANRBAHRRURRARARRRREREABARH
ECTRARARERBHNRNHRBHARRARARBARBBARRRARARRRARRRERNRBERRRARARIRR
BA RUHNBRARURAARARAAFUARREARAANRURAGRERRARABBARARBRRERARARRARRAR
EQ HhhRARHBRAAKARNERABRARHRERAFRRIRRARRBARRARRARRARRERRARERARBERARBRANER
BOIAKARRARHIARRABRABINRIRARBRARE RRIRERRRERRERAARRRORARNFOGRRN HRRERRBRRRR
SEHRABKARNARAHARARAHARHARAARAAARERBRRERRARBNRBURARRRERRIRARERBRRRANRRRRE
CTIABRARARARARHNRRANRRFRARNBEARKAPHAHRBARAFARABRRRBEBRAPRARREBRRRERR R
BELHAKRRARRRABRBANANRRHERARAKHAARAARREERARRRIRERREARBRRARHANARBARRGRER
BILHANhRAARRABEABRHEIRARRRBENRARBRRABRAAHARRARRARRARARURHRRERR AR R R
QUL ARKRHBRRANHHNAURRARRRAGUFFHRAGAGERRAFO AN ARARFBRRFRRRRABRAARRERRIRENS
L :NARARRRARNIRBRARHARARAANABR RN NKRHERRRIRBRRRNRARARGRIRARFNRERRRR
GOLARBARARRERAABRRABARAPRARAARHAH DA RRARANARPRARRERRRERARRBBHENR BRARRARABAR
SAHARRHURRARBRRARRRRAERAUIARH AR BRREAHAHRATARRARARRERRIRRURRR
JU4hABARBRRBRARKHNHARNBAADERAHHE h GRERTHRHHRRRARARBRRRARRAHRRARARIRARRARRR
COLHRRRANARRRARUARARRBABRARRRERRAARRHARBAREREFRAREAAAARBAZIRRARRANARANNRRNNAR
FOIRANNBBRHRBRRRARSERR R LRI ERRABARREARARARARRAREBHRARFHARARRORRERRRRERR ¥
STLARHAHRRRRARGARRAERRRERHNAIBRA LW AEHBHIREARATRRRRAFBRAFHRARARNBRAREBURERANR
CBLHARRRARRRARRARKERRARARRARB AT R AFHTARARRERE NN IRRRRERAPARENERRARRRARR
GO HARHAKRRARHRAHBANHANBAARHAURRGRARRRBRABHRARRAAARHARRARRRAEERRRERRRRR
LCOHuNaBREARARRHARABARHARAARAARRENARRAARARURRRRARARABRARRARARRE RER RURORRRR
LOL:AHRHBRARRARRHARABRAREASRAURUAAREHUARRANHARRRARRRARRIRRARFBARBRRRRANS
LOZSARRARGRARREARHEHP AL ARRBNEHNNNARREBRH AR RRERA AT IRARARHZRERARRRNERE
LOSSHURKAGNHARANRIAHAHPRRRHAFRERIARBGHIRRARRRARRRARAR ARSI AR
LC4: AARNNBARRAARNHRRRRER R NS RRR AR R R AN BRI RRGRARRARARAIARRAR
MO  RAhHBRARARRERBREARRBUBUHARRE AR SHRRARARRRRHARRABAAR
LCO hARRRARRARRRARNARRAFARRHRHNHANRARGRGERARFARKRARAHRAURIRARGPARRERNARRER
LOT AARRURERRAKHARPAREARAHRNHBHRNBRRRUBARARRRRRRRRACHARARIRAERFRBEBANN AR w
LCUL S HABRBRRRARRERRAGERKREARANARARRARRAARYRHAAPRAARESRIRRGRARTARRRBR R RY
LCY AhhHARNHRHRHEREARNEGANARRARARRARRAIARNRHGRABRRERRAARRRRFARIRAR IR
VIO hAsBRRKHBRARGKAAURHARARRHARARRAAARRBARRURRRBRRONARRRRRRAD AR RRR B RN
LLL S hoahRAURRERABARRTRNBRBE RN SN RARARRAUHHARRRRBARERARRERERE ARG
LLC hARNURARFRARNAARARPBIAIHARRARBARPHEARARARBRABARRRARIRRRAR
L1 AuhBARRBERARARRRI AR HHARANANRARBRHDHRRRRRABAERRRBHRARRARS
LLG: hhRARRRRARRBARRHRANFRARAARUBRARARRIUBRRARAAARRARRRR
LLDL AAHAHRRAARRARHRARRREREBARRRHABHARRARABARBIRRINGAR
LIO ARKAKRNAGRRARRANRHAPRRARKANBRRE AR HRHRRRREHGERY
LY/ GinBuRRARRRRARBHFRAARPAARAARRAN CARERHARNERFUD R AR RRUR AR BRBRARRS
LIBSANHRNRRRAREABARRARREARRABRURKFARKANERANBRAN KRR RRARERAVARAR BRFRRRRENAR
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LLO:HBGHBRRRRBERBURRARIRHTGHARA RN ANARRHURHANBREAAN AR AR N AR
L20: AhRnHABHENRERRRARABRARBHARBRARAARNRRERRBABRORRR R RN BRRAARAR G R

L2LARAURBHBERHERINARRABERBARHARRAARRHUREREHRERRERHRARURRERRHRR T BB
L22 HHuGuHHBRRARBRRBRARAVRARARANAB RANRRARRNRNRARREARURUNBRARRARA BN
L23: hBARARRARANBRUARRRAEARKBURRAARRBIBARR BB BHA NGB HRRAN
1242HRBRERRARNRBARERADUBHRHBBBHRNRARRRARBHANBRRR AR IR R BERA
L2SRAUNBHRBARNBHBRRNAAB AN BRRAE G RENARAARHAR U

L2OS hhHARRBRARRKUGNHIRHRERNAERKENRRARARA RN R RN
L2TAABBAUBRALRBBRHRHRHARARARSNFRARRUNAN AN R BN

L2B A AnBaRRARERAHNARRIBRARBRBRUBBHARBRABRIRRANKRERKE

L2 RAERHBHEARRRUNHAIRRORERBRNGBRRRARE BN GRN
L3O:HARNNARBRRIRRRERRERHRAERANABBARABARANABRBUNRR R AR AR AR
LALSHARRBRANRARARRBBERNURGARRRREABHARRABARNARRARRERY
L32IHAHRAARKUARARRARRRABHAANBUTRARRAARRBAEHARRAR R RAH

133 :RARARHERRARBARRRUBHRRABHARRBERHARABHBHE NI R

L34 AhRRHRBRRURGARARABBARRARRHBRRRRARABARRABHE
LASCHARBARANRAANRBBUARARHERRBRANBARHEAS

L3O HARHRARURDRRARRBABABURNARRARERRIE
L3ThonARAERHRRARRBBREHRAARARRRIHRURER
L3BHHHRRBABURRARARARAREARBARBRIRH

LAY HRARANUNBEARRHBARRARAGRHANA Y
LaG:nARANRRURIANABRHANERBOEURBHB RN HR Y

L4l AannMALURRHBUBARRRRBARRKBABARAARRR
LA2ZhHHRBHARARARARRRUKARBANRARRA R AR

LA haAHNRRARNARBARBUARRBUARKRARRRB RARKH

laa nhbannhhBRRARRAARRARARAANBARYH

LaSIAhhnRinRARRARURARIHRIR

LAGC I RurnhannnanhnanAliidd

4T hnnunnnniinnis

LaBAAhRHAARRARBRRARAARIRN

LASI hARRHRANBARRAR

LS50 hhnkabnbhbabAf

LSl hanunbnhiannant

LE2:Hhknnnndnninnnnnnnsnp

1S3 iAhtinbhohinunnann

lSazhnnnnprianrnnndnirnhadi

LSS whbRAARAHRURIRA

Lboshiinahun#

157:a%

L58:#

L5932

160
TUTAL RESUURCE CYCLES LSED = 6178 % UTILIZATIUN = 9
AV ERAGE RESUURCES USED PER TIME STepP = 39 MAXIMUM = 104
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RESOURCE USAGE CF TYPE

1:

2

3:

4:

5

6

T2

8:

9:

10:

11:

12:
13
14

15:
16:
17:
18:

19:
20
21
22
23: ~
24: R
25:
26
27:
28:
29:
30:
31:
32:
33:
34:
35z
36
37:
3B AYHHHBUHH
B9 HHURNANNH
GO HHANRNAHEN
GLIHAARANNESH
42
Q3:HANBANRAER
GHHRANNHRRR
ASIHANRRANEH
GO HRHRNRHNH
47:
482
GO HANNRAHAN
SOsHAHRKHBHAH
SLIHHAKRAHER
S22 HHNNNAHEN
532
54:
552
56:
57
582

3 X 3 MATRIX MULTIPLY
(MULTIPLY)
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59:
60:
€l:
62:
63
642
65:
66:
67:
68
€9:
70:
T1i:
12:
73:
T4
75:
16:
TOTAL RESQURCE CYCLES USED = 108 Z UTILIZATION =
AVERAGE RESCURCES USECL PER TIME STEP = 1 MAXIMUM =
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TUTAL PROCESSOR KESCURCE USAGE

11444

2 HHH

3uu4A

GrIHRKERY

StHERHHK

6 HH#H

T:84H#4

AR EEEEE T 2

CREET 2SI T

LOTHAHAHAHBEHAYRH

ISR EFEEEEEE S XY X"

12 Hu R HHRRHY

13444 4hksan44

las HERHANRBHRAKS

1S HAURUNERERIRNHY
LOCRARNKBHANRHBEAEHAHY

LT HRABHRNBRAAANARYREHY

LB HUNH KRB RuBRUA Y Y

LOS BBHRGABYAHURRARUHH
COHHRHHURKRASHY AR UUAHY
QLIAHRRHNREBH AR

Q2T HUBBHAEBHAHAANARGHY
PEREEETI TSN LTI NTY 3

CA HAKHHGHAARRYGHERE A YRS
2OTHRRHNHRHHUYHARAYAY SRR HY
QOTHHURHRUHGHBHENH RSN
QUL HARHRRANHAANHABHUHY
PASE SRR EESEE YT E X

2O HANRHEN R A Y HR Y

B0 HAAHHAARRABHAHANY
EYREYII XY ST TN RS E S
EVSSEE R EENEENERE R ZS T
B3 84R4KAKHARNNERYS

34 HAHAHASYNY 4R Y

35 HaAHHHERHER
BOTHYURAHHEHREHY
BILHEARAARNUN AR AUy 4o
YRR RS E RN ET RSN EE RSN
B9 HYGHYARAUNRHAYHB R GHR YA
GOSHHNKAARAARNAAHBAHRERHY
QLIHARRANRRRNAH AR YA
G2THURRARRYARHENRERY
LR A EES EEEF TR RSS2 R
GO HYUASBHHHRABARARARHIAHASY
GO RHHHRHUHAUSHARAIGHUAR YR RE
GOTHHBHANHSHBURRANAUARENALH
GT UM HUHERHAAN RS R AR
GBI HAKHHAHAGABAHANHA AR UG HY
QL HHHAHHGRHURHRRARHGHAANANRERY
SOCHHNKRRHNHAHBAAHGHRURHARAER B ERA
SLIBURBEHHAHGRUAHHRHLAAH IR R YRR Y
SCIHARBBRURARABHHBAGH AN BEYEH NN
SILHAHHARBEHYGRABAAHRERHH
SGIHAYAHARBAUERIRB AR AHBH
SOIHGUARARAREBEAN A YRHEHA

So: AAHAHBURHURNRANKAAAHARREHEBERY
STIRHUHRUNAHAYHHAURHAA AR RS
SBLUAGHUAURABHBHEHAHAAR ARG RY
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SOLHAHRAUBRRREHAHRRA R ABH YA
COLHAHANURRHEHBAAHRRA Rt HY
CLABHANAHEHANHARHRREH
O HURRUHRREUBHRHHARAH B RS
CALHAHRBUREHHARHAS
CLIHRRAANASEHUNNENEHERY
OSLHRHHHLANHANRUAY
ChRLARBARNNRRUEHHY
OT HHANHHEHYH
OCBLHAABAURHUHHY
COT HAURRHGHY
TOT4HHUEEANEHRY
Tl HududaHRY
T2 HHiHeiH
T73:44
14 #
75:
76
- TOTAL RESOURCE CYCLES USED = 1234 2 UTILIZATICN = 5
AVERAGE RESCURCES USELC PER TIME STEP = 16 MAXIMUM = 31
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TABLE 5

MATRIX MULTIPLY PROGRAM RUN WITH N x N MATRICES

A1l processors execute in 1 cyélé except multiply processor

L
B
L
L

oON V1T & W 0
e N i

=kln+k~-

— r— r— r—

N MV F W
= o= FF

r r— r— 1

—

r—

r— r— r—

Total Processor Cycles Average MAX
52 cycles L66 9 (8.97) 15

1114 15 (15.7) 31
2196 2k (2k.k) 57
3826 3k (35.05) 91
6178 39 104
511 9 15
1234 16 31
2451 26 57
429k 38 91
6895 52 133



Total Resource Usage Calculation

3

Since n” multiplications are required to do a matrix multiplication,

the total number of processor resource cycles used is at least proportional
to nj. If we assume that the total processor cycles is given by
(1) Tot = n3 + 2 -
K3 k2n +kln+kO
then we can use the results of simulations for four different values of n

to find k5, k2, kl, and ko by solving the linear system of equations

3 2 _
nl k5 + nl k2+nlkl + kO = Totl
Sk + nk +nK +k =Tot
n25 37 Py THafy 0 o
n k. +nk +nk + = Tot
55 Hgfp T HgE T Ky 3
nuk5 + nhk2 + nhkl-+kb = Totu

derived by using the values found for total processor resource cycles for
the four values of n.

The values of the preceeding table for n=2,3,4,5 were used to
calculate the ko - kl for the case where multiply time = 4. The valves

of the constants were

ky =22, ky = Lo, k, = 60, ky =19

- These values also satisfy the fifth equation for the case n=c, i.e..

3 2
k3.6 + k2-6 + kl.6 + ko

= 22.216 + 49.36 + 60.6 + 19 = 6895

Thus, the total processor cycles for multiplication of two = by n matrices

when multiply takes four cycles is given by

3

(2) Tot = 22n5 + 49n° + 60n + 19
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Using the values of total processor cycles observed when multiplication

is one cycle gives

1_ _ - -
k3 =19, k, = L6, k, = 5T, ky = 16
So that in this case
3 2
(3) Tot = 19n~ + 46n“ + 60n + 16
165
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FREQUENCY OF EXECUTION OF PRIMITIVE NODES

So far we have only discussed combined processor useage of gll node
types. The simulator output also provides separate statistics for each
processor type. These statisticshcan be used as a guide in setting up a
system with a finite number of processors to determine how many processors
of each type to provide. Table 6 shows the number of processor cycles
used by each primitive node type for the trapezoidal quadrature program.
Since each processor executed in one cycle on this run, the table also
represents the number of executions of each node type except the proce-
dure node. The number of cycles entered for the procedure processor is
the number of cycles the invoked graph procedure requires to complete, so
the figure given in this case is only valid for a system in which the pro-
cedure processor is reserved throughout the computation of the invoked
procedure. For this reason the largest number of cycles is that used oy
the procedure processor. The second largest node type is the two copies
node.

The breakdown into individual node types shown in table & is not as
useful as a less detailed breakdown for three reasons: 1)Since only three
graph programs were investigated the statistics gathered from them are not
representative at that level of detail; 2) Since the primitive nodes im-
plemented in the simulator were chosen arbitrarily, they are not necessarily
representative of the primitive operstions which might be implemernted in an
actudl system; 3) A breakdown into individual operations is userul onl: ror
a pure "functional unit" model where separate processors are used ror eac:h
type of operation. In practice it is unlikely that different processors

would be used for addition and subtraction, for example. It is more likel:r
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TABLE 6

PRIMITIVE NODE EXECUTIONS IN TRAPEZOIDAL QUADRATURE PROGRAM

NODE NUMBER OF CYCLES PERCENTAGE OF TOTAL
1 270 40.7%
2 0 0.0%
3 12 1.8%
4 32 L4.8%
5 0.0%
6 0.0%
T 33 5.0%
8 154 23.2%
9 L5 6.8%
10 9 1.k4%
11 35 5.3%
12 18 2.7%
13 9 1.47%
1k 25 3.8%
15 21 3.2%
16 0 0.0%
17 0 0.0%
18 0 * 0.0%
19 0 0.0%
20 0 0.0%
21 0 0.0%
22 0 0.0%
23 0 0.0%
2k 0 0.0%
25 0 0.0%
26 0 0.0%
27 0 0.0%
28 0 0.0%
TOTAL 663 99.L47%

167



e

that certain primitive operations would be grouped together to be executed
by an arithmetic unit, a data routing unit, etc.

For these reasons I have grouped the primitive nodes into six classes,
the procedure node, arithmetic and “logical nodes, compare nodes, data rou-
ting nodes, vector manipulation nodes, and vector testing nodes. Table 7
gives the percentage of node executions falling into each class for the
trapezoidal quadrature program, a 2 by 2 matrix multiplication, a 6 by %
matrix multiplication and the sort program. It also gives the mean ard

standard deviation in each class for the four programs. The results are

‘shown graphically in fig. U46. The largest number of processor cycles is

used by the procedure node for the reason given above. The procedure

ncde was put into its own class since the execution logic for a procedure
call is sufficiently more complicated than that for the other nodes to
Justify dedicating a special processor to procedures. Procedure processors
might also be used as control processors to direct the execution of nodes
in the invoked graph procedure.

The second largest number of executions fall into the data routing
class, which accounts for more than 1/4 of the executions on the average.
The arithmetic and logical nodes and the two classes of vector operations
taken together each account for about 11% of the executions, while the

comparison nodes are the least used class.
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TABLE T

PERCENTAGE OF EXECUTIONS IN SIX CLASSES OF PRIMITIVE NODES

TRAPEZOIDAL. 2 BY 2 6 BY 6

QUADRATURE MATRIX MATRIX SORT MEAN o}
Procedure (1) 40.7% 54.8 43.3 4b9.0 L6.95 5.7
Arithmetic, 16.8% 9.4 15.4 5.1 11.675 k.7
Logical
(3,4,5,6,7,13,14,24,25)

" Compare (2,15,23) 3.2% 1.3 0.7 2.8 2.0 1.0
Route (8,9,10,11,12,28) 39.4% 20.6 23.3 29.7 28.25 T.2
Vector ~ 0.0% 9.5 10.3 8.9 7.175 1.9
Manipulation

(16,17,18,21,22,26,27)
Vector Testing (19,20) 0.0% 4.3 7.2 4.5 4.0 2.6
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CONCLUSIONS

The simulator and the graph programs described here shnow first of
all that Adams' graphs are a feasible representation in which parallel
algorithms can actually be programmed and that a CPU could be constructed
which uses such a representation. Writing down a graph program is rougnly
equivalent in difficulty to machine language programming for a conventional
computer, however, and the problem of designing a suitable higher level
language which can be translated into an efficient computation graph repre-
sentation is still open.

The simulations also show that the graph representation is able to
take advantag® of opportunities for parallelism at several levels without
conscious effort on the part of the programmer. The square root program
and the matrix multiply are instructive extremes in this regard. Newton's
method for finding the square root is inherently sequential, yet even for
this algorithm a small amount of overlapped execution is possible, and the
computation graph representation produces it. Matrix multiplication, on
the other hand, is capable of highly parallel execution, and straightforward
programming of this algorithm as a computation graph produces parallelism on
the order of ne, reducing computation time to the order of n. Besides the
three programs described here, a number of other programs were written for
the simulator including recursive and iterative factorial programs, SIN
and COS routines and a number of polynomial evgluations. All resulted in
some degree of parallel execution, although no special efforts were made
to produce parallel execution.

The actual speed which could be obtained on an implementation of

thils model could depend very heavily on the amount of overhead or
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bookkeeping required for control of the system. Three sources of overhead
can be distinguished: 1) The computations required to keep track of the
status of nodes in the executing graph, to determine whether they are ready
to execute and to initiate and terminate their execution; 2) The overtead
resulting from the organization ofrméhory into QUEUES; 3) The overhead
caused by the execution of algorithms to allocate shared resources such as
processors and memory. No attempt is made to refect these costs in the
output statistics of the simulator because they are very dependent on
specific hardware implementations. For example, the implementation of
queues used in the simulator requires two memory references to fetch a
data item, one to get the pointer to the head of tha queue and one to get
the data itselfj However, if the head and tail pointers were kept in
registers or in fast storage, the time could be reduced to one memor;
cycle.

The major portion of the execution time of the simulator itself is
spent checking each node to see whether it is ready to execute. If the
model were implemented with a single control processor, it would have to
be much faster than the primitive node processors to provide any degree
of parallelism. However, an implementation which used the procedure
processor to control execution of the nodes in the graph procedure wiich
it initiated could distribute the overhead considerably to allow a greater
;degree of parallelism. The overhead can also be reduced by an efficient
representation of the node edge connectivity of the graph. The connection
matrix representation used here is inefficient in this regard since it
requires the control logic to scan the matrix to find the edges directed
into a node before it can check whether those edges have data on them. An

edge list representation of the graph would be more efficient in this regard.
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Two main questions were studied in the three programs described in
this report: first the dependence on problem size of computation time and
amount of parallelism in execution, and second, the dependence of these
measures on relative processor speeﬁs.

The Trapezoidal Quadrature program, the Sort program, and the Matrix
Multiplication program differ widely in the amount of parallelism which
they allow. The time required to execute the trapezoidal quadrature pro-
gram is proportional to the number of points used. However, the dependence
lies in the generation of the n points for which f(x) is calculated, not
in the calculation of f(x), so that increasing the complexity of the func-
tion being in?ggrated does not increase the coefficient of n in the time
requirel for the quadrature. Rather, it increases the number of values
f(xi) which are being calculated concurrently. The square root procedure
used in the quadrature program is inherently sequential, and its computation
time depends on the value of x. The average number >f nodes in execution
during the square root calculation is 1.7. However, since the gquadrature
program calculated several values of the square root concurrently, it exe-
cuted from 8 to 1L nodes on the average.

The sort program executes in a time proportional to n, the number of
items in the file being sorted. Since the number of operations required is
proportional to n logen, the average number of nodes in execution in this
program is on the order of loggn. The matrix multiplication program, on
the other hand, is highly parallel. Although n5 operations are required
to multiply two n by n matrices, the program executes in a time proportional
to n. Of course, the number of processors required to achieve this time is

on the order of n2, but the algorithm itself is inherently parallel, whereas
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the sort program increases sequentially faster than it increases its
parallelism in the ratio n/logen, and the trapezoidal quadrature is in-
herently sequential, though it allows overlap in the calculation of f(x).
One of the major questions which can be posed in an infinite resource

environment is the degree to which variations in relative processor speeds
affect the computation. In a sequential computation, the time to execute
a program is just the sum of the times to perform each type of operation
weighted by the number of times that operation i§ executed by the program.
In a parallel program we might expect a secondary effect due to delays in
the initiation of a node which is waiting for output from one of its
predecessors. This effect did not show up in my simulations, nowever.
The effects of dqifferent sets of varied processor speeds and of uniform
processor speeds equal to the mean of the varied speeds over thne nodes in
the graph program are virtually identical. Moreover, this held even though
the node execution times are not weighted by the number of times the node
is executed in calculating the mean.

This conclusion should be taken as Qery tentative, since the number
of programs investigated was small. In order to draw even the modest
conclusions that relative processor speeds are unimportant if the mean
execution time is constant for many (not most) programs, one should
investigate a large number of programs written by different programmers
under many different timings. Because of the strong dependence of
irogram behavior on small variations of coding, even this investigation
would not be completely generalizable. Several people have exhibited
programs whose execution time is strongly dependent on small changes
in processor speed.(l)

If the results found here hold more generally, however, they suggest

a method for determining processor speeds in a hardware implementation.
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First, a large sample of actual programs should be collected and the
distribution of primitive node types in this sample should be determined.
Then, in balancing processor speed against the per unit cost of the logic
required, one should attempt to minimize the mean execution time over that

distribution.

(1) E.G. Paul Richards "Parallel Programming" Report No. TO-Bc0-27, Techni-
cal Operations Inc., Burlington, Mass. 1960
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