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1« INTRODUCTION TO CIL 1

1 INTRODUCTICN TO CIL

This report is a manual for the proposed Compiler Implementation
Language, CIL. It 1is not an expository paper on the subject of
compiler writing or compiler-compilers. The language definition may
changje as work progresses on the project.

1.1. Easic_features_of CIL

The Coapiler Implementation Langyuage is designed for writing
compilers tfor the IBM 360 computers. The heart of the system is a
procedure oriented ALGOL~1like lanyuaye with expressions, assignment
statements, iterative statements, etc. However the basic data types
of the languaje are those of the IBM 360 - byte, halfword integer,
'segyuence of 1 to 256 bytes, etc - while the basic operations on
these types of data are also those of the 360. This should allow the
compiler writer to have more fteeliny for the code generated by the
metaconspiler and thus make it possiple to write more efficient
compilers. -

In addition, the followiny features are provided to facilitate.
compiler writing:

1. Scanpner_ _definitions. A <compiler writer declares the source
langquage symbols (reserved words, operators, format of
identifiers, etc.) in a scanner definition. From this the
metacompiler builds an efticient scanner which, at compile-
time, will read a source proyram, break it up into these
symbols and pass them one at a time to the compiler itself.

The scanner definition has been designed to handle most of the
existing languages. It has however been restricted so that
efficient scanners can be built. Should it be necessary, the
compiler writer can inspect the string of characters making up
any symbecl and/or switch to a character-by-character scan, in
which case he may form his own symbols.

Z. Atoms. A hash-coded iaternal dictionary of all source language
' symkols is kept current as a source program is read by the
scanner. This dictionary is used to replace each symbol by a 16

kit representation called an atom. It is this atom that is
passed to the compiler by the scanner. The «compiler
automatically uses these fixed length atoms instead of the
variable-length source language symbols. In this report,

"source language symbol" and "atom"™ are used synonymously.

3. Production_language_(PLj. This is a sublanguage for performing
the syntax analysis of source programs. It consists of "Floyd
productions", each of which attempts to match certain symbols
with the top symbols of a last-in-first-out (LIFO) stack. When
a match occurs, "actions" in the production change the stack
and cause "semantic routines" to be called in order to process
the symbols matched.

4. Structured types. A programmer can define his own structured




1. INTRODUCTION TO CIL 2

types; these are sejuences of components, analogous to the
WIRTH and HOARE records. In order to save space, several
alternates can be declared for each component. Once defined,
variables of a structured type can be declared in the same wvay
as usual variables are declared.-

difference is in the way the records are accessed. No upper
bound on the number of records need be given. The records
themselves may have a structured type (see (4) above).

Records of a dict are chained to records of the internal
dictionary (see (2) apbove) to provide fast searches of records
‘based on source language identifiers.

6. Multiple coreloads. A compiler can consist of any number of
coreloads, which are executed 1in a fixed order. Thus, both
single-pass compilers and compilers which perform sophisticated
transformations and code optimization can be written.

7. Code__generation. This 1is the most important addition to the
language. Our code gJeneration system (CGS) 1is based on
Feldman's "code bracket" scheme {Comm. Of the ACM, Vol. 9, Jan.
1966] . The purpose is to give the compiler writer a high-level
language for generating IBM 360 machine language. The compiler
writer should be familiar with the IBM 360 data types and the
instruction set. However he <can leave register allocation,
storage allocation, generation of instructions, conversion of

runtime operands, etc. To the systen.
The basic features of this system are:

A. CODEAREAS and DATAAREAS. A compiler vwriter may generate
code into any number of CODEAREAS (read-only storage at
- runtime) and may use any number of DATAAREAS (read-vrite
storayge). This ability to use different CODEAREAS (ore for
each subroutine, say) and DATAAREAS (one for the variables
associated with each subroutine,say) simplifies the
compiler writer's task. Most problems connected with
addressing code or data in these AREAs are handled by CGS.

Ba Register descriptions. CGS maintains register
descriptions describing the runtime state of the IBM 360
registers after tne last-generated instruction has been
executed. CGS pertorms some local code optimization with
the help of the register descriptions. The descriptions
may also be tested and changyed by compiler writer.

C. DESCRIPTORS. DESCRIPTORS are used to describe runtinme
variables in terms of the basic data types of the IBM 360,
such as byte, haltword integer and fullword integer. The
runtime address ot a variable is described by a CODE or
DATAAREA number and an offset into the AREA. The
DESCRIPTOR can also indicate up to two levels of indirect
addressing and/or subscripting. The DESCRIPTOR also
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1. INTRODUCTION TO CIL 3

contains information such as whether the value is in a
register, whether it is a constant, etc.

D. Storage allocation and initialization. Primitives exist
for allocating storage 4in CODE or DATAAREAS for runtime
variables. Problems or correct alignment and the like are
handled by CGS. In certain cases the allocated storage can
be initialized.

E. Code brackets. In yeneral, any statement or expression
may appear between tne code brackets YCODE (" and %)v,
This 1indicates that the statement or expression is to be
executed at runtime. The operands of the statement or
expression must be DESCRIPTORS (of runtime variables),
constants, or variables declared to be valid at runtime.
For example, suppose D1 and D2 are DESCRIPTORS of an
integer variakle and an array element, respectively. Then

execution of

CODE( FOR D1 = 1 UNTIL 10 DO D2(D1) = 5)

would generate code to set the first 10 elements of the
array to 5.

When a code-bracket statement 1is executed, code is
generated 1into the current CODEAREA as specified in the
statements or expressions within the code brackets, and
the register descriptions for that CODEAREA are changed to
describe the new runtime state of the registers. CGS also
automatically yenerates code for any necessary conversions
between data types.

All the additional features or CilL need not be used. For example,

1« An interpreter could pbe written without the use of the code
generation system; a first pass could put the program in an
intermediate form and a second pass could then interpret it.

2. Production language need not be used; any type of syntax
analyzer can be proyrammed using the normal ALGOL-like
ccnstructs of the languaye.

3. The language can be used for writing "normal" prograns.
Throw out the scanner definition, PL, and CGS and an ALGOL-
like language remains. The basic data types of the 1language
and the operations on them are those of the IBM 360 computer;
this high-level languaye just provides a convenient tool for
using then.

1.2. Houw_to read this_report

best way to get acjyuainted with the language is to read the
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program examples in Appendix C. You will find that CIL is basically
an ALGCL - like procedural language. Then read Sections 2 through 10
which describe this procedural lanjuage and its normal use. Skip
over references to the scanner detinitiom, PL or CGS. Finally, read
the three additional sections 12 (on the scanner definition), 13(on
PL) and 14 (on CGS). -

1-3. Acknowledgemeunts

Shelden Becker, Lee Erman, Gary Goodman, Lockwood Morris, Jim Cook
and Christiana Riedl have all programmed or are programming parts of
the system. All of them have contributed to the language and this
manual. Thanks also go to Jerry Feldman for his useful thoughts on
the sukbject.
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2. TERMINOLOGY AND NOTATION 5

2. TEBEMINOLOGY AND NOTATION

2.1. Definitions

Metacompile time is the time J4ucing which a compiler - or any
program written in CIL - is peing compiled.

Compile__time is when a source program is being compiled by a

compiler written in CIL.
«untime is when a compiled source projram is being executed.

A source_program is a program Written in a source language.

‘Source_lanjuaje reters to the language for which a compiler has been

written in CIL.

<.2- Syntax_notation

Backus Normal Form (BNF) with some modifications will be used to
descrikte the syntax of this progyramming language. Syntactic class
names (nonterminal symbols) are enclosed in angular brackets "<" and
">", while the symbols of the 1languaye (terminal symbols) are
reprresented by themselves. A production consists of a left part,
which 1is always a syntactic class name, followed by the metasymbol
wi:=m", fcllowed by a right part - one or more syntactic class nanes
or terminal symbols. It indicates tuat the syntactic class given by
the left part consists of tnose strinys of symbols described by the

right part. Thus the groductions

<identifier> z2:= <letter>
<identiifier> ::= <identitier> <letter>
<identifier> ::= <identifier> <digit>

indicate that an identifier consists of a letter or another
identifier followed by a 1letter or digit. In other words, an
identifier 1is a letter followed by zero or more letters or digits.
As an ablbreviation, the metasymbol "|" is used to write the above
three rroductions as

<identifier> ::= <letter> | <identifier> <letter>
| <identitier> <digit>

Thus "|" is used to separate right parts of productions vhose left
parts are the same.
The following modifications to BNF have been introduced to

rrovide a clearer syntactic description.

1. The right part of a production may be partly described by a
comment enclosed in guotes. Thus we write

<string> 2:= ' "sejuence of 1 to 256 EBCDIC characters" !
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2. In order to prevent misinterpretation, the source symbols "<" and
“>" will always be enclosed in quotes. Thus we write

<relation> ::= <expression> K" <expression>

3. Sguare brackets are used to enclose optional entities. For
exanfple,

<factor> ::= { <unary op>  <primary>
is eguivalent to

<factor> := <primary> | <unary op> <primary>
4. The nonterminal symbol <empty> represents the empty string.

5. A sequence of one or more symbols, all belonging to the syntactic
class <x>, can be written as <<x> 1list>. If they are to be separated
by a terminal symbol, then this terminal symbol directly precedes
the word "“list". Thus

<kasic decl> ::= <basic typge> <<Kidentifier> ,list>

is exactly equivalent to

<tasic decl> ::= <basic type> <id list>

<id 1list> ::= <identifier> | <id 1list> , <identifier>
and

<integer> 1= <<digit> list>

is.eguivalent to

<integer> 1:= <digit> | <integer> <digit>

6e If;a nonterminal appears more than once in a production, the
occurrences may be numbered so that they can be identified in the
semantic discussion. Thus we write

<for list> ::= <expressionl> UNTIL <expression2>

7. The symtactic classes <specfunc> and <specproc> denote special
function designators and special procedure calls respectively. The
syntax of these <specfunc>s and <specproc>s 1is always given in
boxes. For example,

[ ettt R ]
| PUSH ( <stack identifier> [ ,<exp>]) |
L e e o o e e e ——— o > 2 "> 7, 7, S ot Vo T o . o v F]



{
]

e

— r— r— r— r— r—

r—

2. TERMINOLOGY AND NOTATION

2.3. Syntactic_entities

(with corresponding
numbers)

<action>

<actual fparameter>
<add op>

<altered value>
<alternate selector>
<arith type>
<assignment runstate>
<assignment statement>
<kasic symbol>

<kasic type>

<tasic type dec>

<begin guoted>

<bit>

<bit integer>

<bit op>

<bits type> -
<case statement)>
<char segqguence>
<char set>
<character>

<class dec>

<class name>
<classlat dec>
<closed cond runstate>
<closed cond state>
<clcsed iter state>
<closed runstate>
<closed statement>
<code statement>
{component>
<component id>
{component selector>
{compcnent specifier>
<compcnent variable>
<compound runstate>
<compound statement>
<ccnstant>
<constituent>
<ccntrol runstated>
<control statement>
<corelocad>

<coreload description>
<dec integer>
<declaration>
<delimiter>

<DESCER destination>
<destination>

<dict declaration>
<dict designator>
<dict identifier>
<digit>

<EBCLIC char>
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<EBCDIC or hex>
<empty>

<end gquote>

{exp>

<expr>

<exfpression>
<tactor>

<tormal parameter seg>
<function designator>
<global declaration>
<go to op>

<hex char>

<hex integer>
<hexit>

<identifier>
<indirect reference>
<int dec>

<int declaration>
<int identifier>
<integer>

<label>

<label definition>
<left part>

<letter>

<long reald>

<keyword component>
<main stack dec>
<metasymbol>

<mult op>

<new value>

<number selector>
<old value>

<open cond runstated>
<open cond state>
<open iter stated>
<open runstate>
<open statement>
<pass>

<pass number>

<PL declaration>

<PL identifier>

<PL int>

<PL label>

<PL subprogram>
<pointer cons>
{pointer type>
<pointo type>
<{positional component>
{preprocessor>
<primary>

<procedure body>
<procedure call>
<procedure control>

<procedure declaration>

<procedure heading>
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<procedure runcall> 14.0.7
<production> 13.8
<{program> 4.
<guote def> 12.5
<guote pair> 12.5
<real> 5.3
<register name> 14,401
<register no> 18,421
<relational op> 8.2
<reserved def> 12.4
<reserved word> 12.4
<right part> 13.8
<runlabel definition> T4.0. 4
<runexp> 14.5.1
<runiactor> 14.5.1
{runprimary> 14.5.1
<runstate> 14.6
<scale factor> 5.3
<scanner def> - 12.
<scanner id> 3.2
<set definition> 12.3
<sign> 5.3
<simple variable> 7.1
<source id> 12.4
<source language symbol>3.4
<source symbol> 13.3
<stack identifier> 3.2
<stack declaration> 6.2
<stack designator> 7.1
<statement> 9.
<storage alloc> 6.2
<string cons> 5.3
<string type> 5.1
<struct exp> 8.3
<structure definition> 5.2
<structured type> 3.2
<structured type dec> 6.1
<sukbyte designator> 7.1
<substring designator> 7.1
<symb> 13.8
<symkbol> 13.7
<symbol-label> 13.7
<{synonym> 3.2
<synonym def> 12.2
<synonym pair> 12.2
<type dec> 6.1
<table declaration> 6.2
<table designator> 7«1
<table identifier> 3.2
<termind> 12.4
<type> Se.
<type specifier> 6.3
<unary og> 8.2
<unscaled real> 5.3
<variatle> 7.1
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3. THE BASIC ELEMENTS OF THE LANGUAGE

3. 1. Basic_symbols, comments and pace

o v ot e s A s e

Syntax
<kasic symbol> 1:= <letter> | <digit> | <delimiter>
<letter> :=A )] B | C|D}J}E}FYGY{H]TI { | K

} LI M) NP OJPIQIRYIS]T

U v w iy X1 YL 2 1 8
<kit> =0 11
<digit> 2= 0§ V)1 2) 31415167178 ] 9
<hexit> 2:=<diyit> } A § B | C} D } E| F
<delimiter> =t |- *x /)~ =) 2

B RS N T T O I T

! l'(" ‘ H)" ’ "(-:!l ] ll)-_-"

- | M~<® ] madn | o=

L1 3 4 /% | %/ | s/ | %%

<EBCLIC char> ::= Many EBCDIC character except space"

Semantics: Letters are use for torming identifiers and reserved
words. Digits are used in forming numbers and identifiers. Bits and
hexits are used in forming constants. The meaning of delimiters will
be given at the appropriate place in the sequel.

Except in a PL subproyram and a scanner definition, a comment
of the form

/* "any sequence of characters not including "x/n nw x/

hay appear anyvwhere. It is the ejuivalent of a single space,
Changing to a new card or line has no significance. Outside of
strings, spaces have no meaniny except for the following rules:

1. At least one Space must separate two adjacent identifiers,
<source language symbol>s (cf Section 3.4), integers or reserved
words. '

2. A space may not separate two characters of a delimiter,
identifier, integer, reserved word or source language syabol.

This section has defined the characters used in vriting a
compiler in CIL. This does not preclude the use of other characters
or the use of these characters in a different vay in a source
language for which a compiler is being written.

—— . e et e e s




3. THE BASIC ELEMENTS OF THE LANGUAGE 10

<identifier> ::= <letter> | <identifier> <letter>
] <identifier> <digit>

<integer> 1:= KKdigit> list>
<component id> ::=<identirier>

<dict identifier> ::=<identifier>

<int identifier> ::=<identitier>

<label> s:=<identifier>

<scanner id> ::=<identitier>

<stack identiiier>::=<identifier>
<structured type> ::=<identifier>
<synonym> 1:=<identifier>

<takle identifier>::=<identifier>

-{pass number> <integer> "between 1 and 25"

e
‘e
1]

Semantics: Integers have their conventional meaning as decimal
numbers. Identifiers have no innerent meaning but serve to identify
variables, labels, procedures, structure types, and scanner
detinitions. They may be chosen freely except that they may not also
be reserved words of the lanjuage (cf Section 3.3). In addition,
several identifiers are already implicitly declared by the systen.
They may be declared in a program, but this precludes their use as
system identifiers (cf Appendix B). Note that the letter & may be
used in an identifier. Many system identifiers begin with & and it
would be wise to refrain from using & in this way.

The =same identifier cannot bpe used to denote two different
quantities except when these Juantities have disjoint scopes as
defined by the declarations of the program {cf Sections 6 and 4.2).

The recognition of the detinition of a given identifier (but
not a component identifier -cf Section 7) 1is determined by the
following rulesa.

Step 1. It the identifier is defined by a declaration of a
quantity or structure type, or is standing as a label within a
procedure embracing the occurrence of the identifier, then it
deénotes that guantity, structure type, or label.

Step 2. Otherwise, if the lidentifier is a formal parameter of a
Frocedure embracing the occurrence of the identifier, then it
stands for that formal parameter.

Step 3. Otherwise, 1if the identifier is defined by a
declaration of a quantity or structure type or by its standing
as a label within a pass embracing the occurrence of the
identifier, then it denotes that guantity, structure type, or
label.

Sterp 4. Otherwise, 'ir the identifier is defined by a
declaration of a gquantity or structure type in a global
declaration valid in the pass (or global declaration) embracing
the occurrence of the identifier, then it stands for that
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3. THE BASIC ELEMENTS OF THE LANGUAGE 11

quantity or structure type.

Step 5. Otherwise, it the identifier was declared as a
<synonym> in a scanner detinition, then it stands for the
corresponding source language symbol.

If any single step could lead to more than one definition, then the
identification is undefined.

3. 3. Reserved words

The following reserved words may not be used as identifiers.
ALT ANT
BACK BEGIN BITAND BITEXOR BITOR
EYTE BYTES BYTE2 BYTE3 BYTE#4
CASE CCDE CODEAREA CONTENT CORELOAD
DATAAREA DEC DELETE DICT DO DWF DYNAMIC
ELSE END ENDCASE ENDPASS ENTER
FOR FRCM FWF FWI
GC GOIF GOIFNCT GOTO

HWI

IF IN

LOOK

MAIN

NOT

CF OF

PASS PASSES POINTER POP PROCEDURE PRODLANG PUSH
KEM RETUEN RUNTIME

SCANNEEK STACK STATIC STRING STRUCTURE
SUEBYTE SUBSTR SYNTAX

TABLE TALLY THEN TO

UNTIL

WHILE

&C

3.4. Source_language symbols

Syntax:
<source languagye symbol> ::= <synonym>
| % <KEBCDIC char> list>

Semantics: A source langjuage symbol is a sequence of characters
defined in a scanner definition to be a delimiter or reserved vword
of the language for which a compiler is being written. One refers to
the BYTE2 atom for a source lanjuage symbol either by preceding it
by a dollar sign, or by using a synonym for it (cf Section 12.2). No
space may separate the dollar siyn trom the character 1list or the
characters in the list themselves and a space must follow the last
character.
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4. STRUCTURE OF A PROGRAM

Syntax:

<grogram> $:= BEGIN | <<declaration> ;list> ]
L <<statement> ;list> ] END

<frogram> ::= BEGIN <coreload description>

. <<scanner def> list> ]

. <<jlobal declaration> list> ]
<<pass> list>

END

Semantics: The first definition ot a program is for the usual
ALGOL-like [froyram consistin; of declarations (cf Section 6) and
statements (cf Section 9). fhe second must be used for programs with
multiple passes or programs which wuse a scanner or production
language.

4.1. Ccreload description

Syntax:
<coreload description> ::= <<coreload> list>
<coreload> $:= CORELOAD <Kinteger>

<<pass number> list>

Semantics: The coreload description indicates how storage is to
ke allocated to the passes of a compiler. The coreloads must be
numbered (by the <integer>) in ascending order, starting with 1. At
compile time, 1initially all the passes associated with coreload 1
are in core, and the first pass listed is executed. Upon execution
of a CALLPASS statement (cf Section 9.6) which refers to a pass in a
different coreload, the new coreload is brought into core. The
passes in the previous coreiload may not be referred to again.

-

4.2. Global declarations

Syntax:
<global declaration> ::= PASSES <integerl> <integer2>
) <<declaration> ;list>

| PASSES <integer!> RUNTIME
<<declaration> ;list>

| RUNTIME <<declaration> ;list>

Semantics: A global declaration declares identifiers (and their
attributes) which are to be used globally in

a) passes numbered <inteyer!> through <integer2>;
b) passes <integert!>, <inteyer!> + 1,..., and at runtime;
c) at runtime only.

The following restrictions are placed on identifiers declared in a
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global declaration
a) no identifier may be a reserved word (cf Section 3.3);
b) the same identifier may not be declared in two global
declarations which have a pass in common. Thus
PASSES 1 4 BYTE A,B
PASSES 2 3 BYTE B,C
is illegal;
c) an identifier must be declared before it can be used.
Declarations themselves are discussed in Section 6.
Examples:
PASSES 1 2 BYTE A,B,C; POINTER P
PASSES S RUNTIME STRING X
RUNTIME BYTE Y; FWI A,B
4.3. Passes
Syntax:
{pass> ::= PASS <pass number> [<PL subprogramd]
{ <<aeclaration> ;list> ]
{ <<statement> ;list> ]
ENDPASS
Semantics: A pass is a logical unit - a subprogram. Section 9.6
discusses the statements which control the order of execution of
passes. When a pass begins, it no PL subprogram is present, the
first statement in the list is executed. If a PL subprogram is

present, execution begins with the tirst production in it.
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S. VALUES, TYPES AND CONSTANTS

A variable is a symbolic representation of a quantity that may
assume different values . The vaiue ot a variable is always the one

most recently assigned to it. Each variable has a type which defines
the class of values that the variabple may represent.

Types fall into two classes: pasic_types - which are the basic,
elementary types in thke lanyuaje - and structured types - which are
ordered sets of one or more basic types and possibly other
structured types. Structured types are defined by the programmer in
a structure definition.

The number of bytes each ditferent type of value uses in the
IBM 360 and the aliynment of these pytes in memory are discussed 1in
Section 11. Section 5.1 describes the basic types in the language,
Section 5.2 structured types and the structure definition. Constants
are descrikted in Section 5.3.

Syntax:

<type> ::= <pasic tjype> | <structured type>

5. 1. Basic types

Syntax:
<tasic type> ::= <bits type> | <arith type>

| <pointer type> | <string typed>

“°"
ve

We 4l W=

BYTE | BYTEZ2 | BYTE3 | BYTE4Y
BYTES ( <integer> )

HWI | FPWI | FWF | DWF | DEC
POINTER

POINTEE ( <<pointo type> listd> )
STRING ( <integer> )

<kits type>

<arith type>
<pointer type>

<striny type>

<bits type> | <arith type> | POINTER
<strinyg type> | <structured type>

<pointo typed>

Semantics: The types BYTE, BYTEZ2, BYTE3 and BYTEY are
essentially abbreviations for BYTES(1), BYTES(2), BYTES(3) and
BYTES (4), respectively. Note however the different alignment
properties (cf Section 11).

The following table lists the values that may be associated
with a variable of each basic type.

type Value

BYTES {<integer>) sejuence ot 8*<integer> bits
( 0 < <integer> <= 256)
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HWI IBM 360 Haltword Integer: 16 bits
( between -2*%*%15 and 2*%15-1)
FWI IBM 360 FullWord Integer: 32 bits
( petween -2%%*31 and 2%%31-1)
FWF IBM 360 .Fullword Floating point number:
32 bits
DWF IBM 360 DoubleWord Floating point number:
64 bits
DEC DECimal number of 1 to 31 digits plus sign

STRING {<integer>) segjuence of <integer> EBCDIC characters
{ 0 < <integer> < 256)
POINTER reterence to some value (24 bit address)

When referring to the value pointed at by a variable declared
as FEOINIER, it 1is necessary to indicate what type that value has.
This can be done at the point of referral (cf Sectiom 7.3), or in
the declaration itself through the 1list of <pointo type>s. For
exanmgle, -

POINTER A A may point at any value.
PCINTER (FWF) B B may only point at values
of type FWF.
POINTER (FWF HWI)C C may point at values
of type FWF and HWI.

Hierarchy _of _types. It 1is sometimes necessary to perform
automatic conversion of values. For example, if one adds an FWI
value to an FWF value, the FWI value must first be converted to
floating point form. The hierarchy of type precedences is:

DWF
FWF
DEC
FWI
HWI
BYTES

S.2. Structured values_and tjpes

Syntax:
<structure definition>
s:= STRUCTURE <structured type>
( <<constituent> ,list> )

<constituent> ::= <componentd>
| <constituent> ALT <component)>
<component> 1:= <type> <component id>

| <component id> (<<constituent> ,list>)
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Semantics: A structure definition defines a new structure named
<structured type>. A structured value is a set of constituents -
which at any instant of runtime are values with basic types and
fossibly cther structured tjypes. Each constituent consists of a
singyle component or it consists of a set of alternative components
separated by the reserved word ALT . This is used mainly to save
space. Only one of the alternative comfponents may be in use at any
time, and it is the responsibility of the programmer to know which

cne is being used.

The name of each component is the component id. This name is
used to refer to that component of the structured type. The
conmponent id may be any valid ideatirier which is not a structured
type; the only rule to bpe rfollowed 1is that, when referring to
components and subcomponents ot a structured value, the metacompiler
must be able to uniguely determine what is meant. See Section 7.2
tor tull details.

Note that a _component may itself contain subcomponents. If a
structured type is used as the type of some component, this
structured type must have been previously (statically) declared.

while not necessary, it maj; be useful for the programmer to
know how storage is allocated to components. This is discussed in
Section 11.

Examples:
1. STRUCTURE SUBSCK ( BYTE AREA, BYTE3 OFFSET, POINTER 3)
A value of type SUBSCR consists ot

. a) a BYTE value named AREA , followed by
b) a BYTE3 value named OFFSET , followed by
c) a POINTER value named 5.

2. STRUCTURE D1 (BYTE KIND ALT HWI B, C (BYTE C1, POINTER C2),
SUBSCR D, SUBSCR E)

A value of type D1 consists ot

a) EITHER a BYTE value named KIND

or a halfword integer named B, followed by
k) a value named C. C itselr consists of

1) a BYTE value named C1 tollowed by

2) a POINTER value named CZ.

C is followed by
d) a vaiue, named D, of structured type SUBSCR
e) a value, named E, of structured type SUBSCR
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5.3. Cconstants

Syntax:
<constant> ::= <integyer> | <hex integer>

| <pit integer> | <dec integer>
| <real> | <long real>

| <loyical cons>

| <striny comns> | <pointer consd>

| <synonym> | <int identifier>

! <<Khexit> 1list>
B ' <<Kpit> list> !
<integyer> D

<unscaled real> [ <scale factor> ]
<real> L
?
a
0

b

<hex inteyer>
<kit integer>
<dec integer>
<real>

<long real>
<string cons>

[ T T T I T 1}

"seyuence of 1 - 256 EBCDIC

aracters® ¢

o0 () 03 B0 e s es 08
48 33 48 se 08 8e 88 00

(=Y

<fointer cons>

i

<integer> . <integer> | <integer> .
<integer>

E <sign> <integer>

+ ] -

<unscaled real>

.

<scale factor>
<sign>

IR T}
nw e

Semantics: Integers, ~reals and 1long reals are interpreted
according to the conventional decimal notation. A scale factor
denotes an inteyral power of 10 which is multiplied by the unscaled
real preceding it. A dec intejer is an integer of 1 to 31 digits
which will be represented in packed decimal notation.

A string constant is a sejuence of 1 to 256 characters,
enclosed by the string gquote * ¢ ", Within the seguence, the string
gquote itself is to be represented by tvo adjacent string quotes. The
number ot characters in the string is called the 1length of the
string.

Each hexit in a hex integyer represents 4 bits in the |usual
manner. Both hex integers and pit integers are right adjusted in
their field, with leading zero pits added if necessary (see below).

The pointer cons 0 fails to point to a value.

A synonym denotes the atom‘corresponding to the source language
symbol associated to the synonym in a <synonym def> of the scanner
suklanguage (cf Section 12.2).

An int identifier is a BYTEZ2 coanstant. The actual value is
assigned by the metacompiler (see Section 6.4).

Each constant has a unijue type, as defined by the following
list. It should be noted that any necessary conversion of constants
is done at metacompile time when possible.
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<censtant> <type>
<integer> HWl if less than 65536. FWI otherwise
<hex integer> BYTES (1), where if there
are J hexits, 2*I >= J > 2*I-2
<bit integer> BYTES (1), where if there
are J bits, 8*I >= J > 8%*I-8
<dec integer> DEC
<real> FWi
<long real> DWI
<{string cons> STRING (<integer>)
<rointer cons> POINTER
<synoanym> BYTE2
<int identifier> BYTEZ2

In addition, the following system identifiers for constants can
used.

TRUE _ BYTE1 (=X'FF')

FALSE BYTE1 (=X'00")

Examples:

<{constant> examples

<integer> 1 - 23 325678

<hex integer> X'0a X*B32A? X'FFFFFFFF?

<bit integer> B'0110¢ B*10010010000?

<dec integer> 32 100D 1357312389D

<real> 3. -50 32.031 3.E-20
" <long real> 2.7182818284590452353L .3E-1L

<string cons> 'STRING* 0! '*1* is the string

consisting ot a single apostrophe.
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6. DECLARATIONS

Declarations serve to determine the scope of identifiers and to
define permanent properties of them (type of value that may be
associated with them, structure). Generally, a number of bytes are
allocated to each identitier “(depending on the type) to hold the
value associated with it. See Section 11 for full details.

Syntax:
<declaration> <{structure definition>
<type dec>

<int declaration>
<table declaration>
<dict declaration>
<stack declaration>
<main stack dec>

<procedure declaration>

[ 2]

-

6.1« Basic_and structured type declarations

Syntax:

<type dec> ::= <basic type dec>
<structured type dec>

<tasic type dec> <

: basic type> <<identifier> ,list>
<structured type dec>

<structured type> <<identifier> ,list>

Semantics: Basic and structured type declarations serve to
associate a type with identifiers. Only values of that type may be
assigned to the identifiers. The structured type mnust have been
previously (statically) declared.

Examples:

F&I A,B,C -

POINTER (SUBSCR) D (see Section 5.2 for the structure
definition for SUBSCR).

SUBSCR E,F,G

6.2. Table, dict_and_stack_declarations

Syntax:
<table declaration> ::= <storage alloc> <type> TABLE <integer>
<table identifier>
| STRING TABLE <table identifier>
= <<string cons> ,list>

<dict declaration> - ::= <storage alloc> <type> DICT <integer>
<dict identifier>

<stack declaration> ::= <storage alloc> <type> STACK <integer>
<stack identifier>
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= MAIN STACK <stack identifier>

<main stack dec> :

<{storage alloc> ::= STATIC | DYNAMIC | <empty>

Semantics: Table, dict and stack declarations all serve to
associate a seyuence of data records of type <type> with the table,

dict or stack identifier. Tne dirterence is only 1in the way the
records are added, deleted or accessed. See Sectiomn 10.0 for full

details:

A table is a 1linear sejuence c¢f records. Records are
usually accessed throujh pointers to them and by the operations
LCOK and ENTER. They may however be accessed exactly like a one
‘dimensional ALGOL array.

A dict 1is also a sejyuence of records, these records are
however list-structured zror tfast searches based on source
language symbals. Records may be added to or deleted from the
dict. They may also be taxen off the chain which 1list-
structures them. The type of the dict records must be a
structured type. Further, the structured type, say T, nust
btegin as follows:

STRUCTURE T (BYTE NAMS1, POINTER NAMEZ2, ...

Here, the «component ids are not important; only the fact that
the first two components are a BYTE and a POINTER. The reason
for this will become clear when Section 10.2 on LOOK and ENTER

is read.

A stack is a LIFO (last-in-first-out) stack. Records may
ke added and deleted in the customary manner.

<storaye alloc> indicates how storage is to be allocated to the
sequence. It STATIC or <empty>, <integer> gives the maximum number
of records in the table, dict or stack. These records will be
contiguous. If DYNAMIC, <integer> detines the number of coantiguous
records in a "block". Storaje is initially allocated to one block of
records; extra blocks are added as the need arises while the program
is teing executed. :

Each pass which uses production language must have a stack to
communicate between the production language and semantic language.
This stack is specified by a <main stack dec>. The stack identifier
in the <main stack dec> must pe a previously declared STATIC stack.
In addition, the type of the stack records must be a structured
type, say S, which begins as follows: '

STRUCTURE S (BYTE2 NAME1, BYTE< NAME2, BYTE2 NAME3, ...

Here, the «component ids are not important; only the fact that the
first three components are BYTEZ guantities. See Section 13.6. .

1
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Examples:

SUBSCR TABLE 200 A
DYNAMIC D1 DICT 50 B
STATIC D1 STACK 100 C
MAIN STACK C

6«3 procedure_declarations

Syntax:

<frocedure declaration> ::= PROCEDURE
<procedure heading> ; <procedure body>
} <type> PROCEDURE
<procedure heading> ; <procedure body>

<rrocedure heading> ::= <identitier>
L ( <Kformal parameter seg> ;list>) ]
<formal rarameter segy>
::= <type specifier> <<identifier> ,list>
<type specifier> $3= <type> | BYTES | STRING
| <type> TABLE | <type> DICT
I <type> STACK

<rrocedure body> $:= <statement>
| BEGIN | <<type dec> ;list> ]
L <<statement> ;list> ] END

Semantics: A procedure declaration associates a procedure body
with the identifier immediately tollowing the symbol PROCEDURE. A
proper procedure (case 1 above) is invoked by a procedure statement
{cf Section 9.7) and a function ( typed procedure - case 2 above) by
a tunction designator (cf Section 8.1) or a procedure statement.

The procedure heading also describes the formal parameters and
their types. All formal parameter identifiers in a formal parameter
segment are of the same indicated type. The type specifiers BYTES
and STRING specify formal parameters whose corresponding actual
farameters at a call point are BYTES(I) and STRING(I) for some
integer I. It is more efficient to indicate the number of bytes if
it is constant for all calls of the procedure or function.

The value to be returned by a function is indicated by
assigning it to the function identifier.

Examples:

FEOCEDURE LOOKLAB (BYTEZ ATUM; POINTER P);
/% 1COK IN SYMBOL TABLE SSYMB FOR THE SOURCE SYMBOL "ATOMY WHCH
IS A LABEL. RETURN THE ADDRESS OF THE RECORD IN P.*/
BEGIN P = LOOK(SSYMB,ATONM) ;
WHILE P -»= 0 DO BEGIN IF P.TYPE = LABEL
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THEN RETURN;
P = LOOK(SSYMB,P)

END

6. 4. Int declarations

Syntax
<int declaration> 1= INT <<identifier> ,list>

Semantics: In production language an INT is a nonterminal or
INTernal symbol used to help parse tahe programe In order to allow
the semantic portion of a compiler to test the main stack and to
gprovide more communication petween syntax and semantics, the int
declaration has been provided. Each identifier declared as INT is a
BYTEZ constant - the actual value being assigned by the
metacompiler. It may be used anywhere a constant may be used (cf
Secticn 13).



|
L

r

7. VARIABLES AND INDIRECT REFERENCES 23

7. VARIAELES AND INDIRECT REFERENCES

In Secticn 5 we described thne ditferent types of values possible. In
Section 6 we indicated now these types could be associated with
identifiers. We now describe how -one references the value associated
with an identifier - either to use it or to change it.

Syntax:
<destination>. ::= <variable> | <indirect reference>
<DESCR destination> ::= <destination> "of type DESCRIPTOR"

<simple variable>
<component variable>
<identitier>

<variable> 1=
|
| <table designator>
|
|

<simple variabled> HH

<dict designator>
<stack designator>
| <substring desiynator>
- | <subbyte designator>

<component variable>::= <simple variabled.<component selector>

<indirect reference>::= CONTENT( <POINTER expr>
L <pointo type> ])
| <variable> . <component selector>

<table identifier> ( <expression> )
<dict identifier> ( <expression> )
<stack identifier> ( <expression> )
LO } LY J L2 ] L3} L4 | RO | R1 | R2
<substring designator> ::= SUBSTR ( <destination>

, <expression> [ , <expression> ] )
<sukbyte designator>::= SUBBYTE ( <destination>
, <expressiocn> [ , <expression> ] )

<table designator> ::
<dict designator> ::
<stack designator> ::

|

<component selector>::= <<compoment id> .list>
| <<number selector> .list>

<number selector> 3= <inteyer> [ -~ <integer> ]

7-.1. Simple_variables

A table desiynator denotes a record of a table. The expression is
evaluated, assiyned to an internal integer variable I (say), and the
Ith record is chosen. The value I must be greater than 0 and, if the
tacle is STATIC, less than or ejual to the number of records
declared.

The time necessary to calculate the address of a record T(I) is
directly proportional to the number of the block in which the record
resides.

The usual way of accessing table records is through the LOOK
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and ENTER commands and throujh POINTER variables which point at the
records. If these commands are used, tne following restriction is
placed on the used of table designators: the value of I must always
select an already-existing record; if not, an error may result. This
is not checked at runtinme.

If ENTER, LOOK and DELETE are not used, then the table is
actually a one dimensional arraye. It it is declared DYNAMIC, then it
may have any number of records. Thus, if a value I is used but there
are not as yet I records in the table, enough blocks of records are
added to yield I of then.

A dict designator denotes a record of a dict. This works
exactly like a table designator.

A stack designator references a stack record. The expression is
evaluated, assigned to an internal integer variable I, and the 1Ith
record from the top of the stack is chosen. Thus, if S is a stack,
S{0) refers to the top record, S(1) the first from the top, etc. If
a pass has a main stack, then the system identifiers L0,...,L4 refer
to the top main stack record,..., 4th record from the top of the
rain stack, before matching ot the last production began, while
RO,R1, AND R2 refer to the current top, 1st and 2nd records of the
main stack, respectively.

A substring designator denotes a sequence of characters of the
stringy <destination> the first expression is evaluated and assigned
to an internal integer variable I. 1 then selects the position in
the <variable> of the startiny cnaracter of the sequence. The first
character has position 0. Thus we have 0 <= I < declared length of
the striny variable. The second expression is evaluated and assigned
to an internal integer variable J. J is then used as the length of
the selected sejguence. I+J must pe less than or equal to the
declared 1lenygth of the string variable. The default value for the
second expression is (lengta or string variable -I).

A subbyte designator denotes a sequence of bytes of a BYTES

variable or indirect reference. The semantics are the same as those
of substring designators.

7.2. Component variables and_selectors

A component variable references a component of some structured
variakle. The first syntactic entity in a component variable is a
simple variable, which chooses the particular structure from which
the <component is to be taken. Tais is followed by a period and a
component selector, which picks out the desired component. There are
two methods for this - naminy the component, or indicating its
positicon by a sejuence of numbers.

A. Naming__the_component. The component selector is a sequence
cf component identifiers, separated by periods. The first is
the name of a component of the structure. If there is only one
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component identifier, tnen the desired component has been
tcund. If there are more, then the first must name a component
which itself has subcomponents. The second name picks out the

desired subcomponent, etc. As an example, consider the
declarations

STRUCTURE SUBSCR (BYIE AREA, BYTE3 OFFSET, POINTER S):
STRUCTURE D1 (BYTE KIND ALT HWI B,

C (BYTE C1, POINTER C2),

SUBSCk D, SUBSCR E);
D1 Aa;

To pick out component B of A use A.B .
To pick out cowmponent C1, use A.C.C1 .
To pick out component S ot component D of A, use A.D.S .

It is not always necessary to give the complete list of
component ids. Thus, in tne above examples, A.C1 is equivalent
to A.C.C1s The only rule is that the component variable must
unambijuously define a component. A.S Would not be valid, since
it could be either A.D.S Or A.E.S.

B. Numberinj the component. Constituents are numbered from the
left, starting with 1. within a constituent, the alternate
components are similarly numbered. A number selector I selects
the first component of the Ith constituent. Thus we have:

A.1 eguivalent to A.KIND
A.2 equivalent to A.C
A. 2.1 eyuivalent to A.C.C1 .

How would we reference component B? By A.1-~2. Here, the "-2n
specifies the particular altecrnate (the second). In general,

- "I~J" means, the Jth alternate ror the Ith (sub)constituent. As
illustrated above, A.1 is eyuivalent to Al.~1.

- 7-3. Indirect_references

A simple reference

CONTENT ( <POINTER expression> )
references the variable M"pointed at"™ by the POINTER expression.
Thus, using the examples of the preceding section, if PP is a
Fointer variable, then executingy

PP = @ A.KIND; CONTENT(PP) = 3

sets the component A.KIND to 3 (ctf Section 8.2.1). The reserved word
"&C" can be used as an abbreviation for ®CONTENTY.

It is necessary to indicate what type of value is being pointed
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at, by including a <pointo type>. This may of course be done in the
declaration of a FOINTER variable (ct Section 5.1), in which case it
can te left out here. The above example could be written as

PP = @ A.KIND; CONTENT (PP BYTE) = 3

If a POINTER expression points at some structured type value,
then cne can designate a component or subcomponent of that value
exactly as was explained in Section 7.3.

Again, the <pointo type> may be omitted here if it is possible
to determine from the component selector which structured type is
being reterred to. Thus, using the examples of Section 7.2, if there
is pno other structure with a component named C, CONTENT (PP).C could
be used instead of CONTENT (PP D1).C.

As a further simplification - one which should be used often -
if the POINTER exfpression is just a variable, and if the <pointo
type> can be omitted, tnen the contents brackets can also be
omitted. We could thus write PP.C for CONTENT(PP D1).C and PP.C.C2
for CONTENT{PP D1).C.C2.

7-4. Examples

syntactic_entity example
<identifier> A
<table designator> T(I+J)
<dict designator> D (N)
<stack designator> 5 (0)

<substring designator>
<sutbyte designator>
<component variable>

<indirect reference>

SUBSTR(ST,S)
SUBBYTE(SY,5,I)

D(N).C.C2

A.S

CONTENT (P SUBSCR)
CONTENT (P)

CONTENT (P SUBSCR) . ARFA
CONTENT (P) . AREA

&C ( &C (P SUBSCR) .S BYTE)
P.AREA

P.S5.S (P points to a SUBSCR)
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8. EXPRESSIONS

Expressions are rules which specity how new values are computed from
existing ones. These new values are obtained by performing the
orerations indicated by the operators on the values of the operands.
Exgpressions fall into two classes: basic_expressions - those whose
values are of some basic type - and structured_expressions - those
whose values have some structured type. The former we abbreviate
simply by the syntactic class <expression> or <expr>, the latter by
<struct expd>.

Syntax
<exp> <expression> | <struct exp>
<exgr> <expression>

<EOINTER expr>
<STRING expr>
<BYIE expr>
<DESCR exp>

<expr> "with type POINTER"™
<expr> "with type STRING"
<expr> "with type BYTE"
<struct exp> "with type DESCRIPTOR™
| <POINTER expr> "to a DESCRIPTOR™
<exp> "with type &DDRESS"

44 00 84 oo 4% s

<EDLORESS exp>

.
.
It

8.1. Function_designators

Syntax:
<function designator> ::= <identitier>
L ( <<actual parameter> ,list> ) ]

Semantics: A function designator defines a value which can be
cbtained as follows; the identitier must identify a function. The
body of this function is copied, moditied by the actual parameters,
and executed exactly as specified in Section 9.7. The value is the
last value assigned to the tunction identifier during this execution
(undefined if none); its type is the type of the function.

Examples: MAX( X**2, Y)

YCUNGESTUNCLE ( JAMES)

8.2. Basic_exrressions

Syntax
{primary> <constant> | <variable> | @ <variable>
<indirect reference>

<function designator>

<specfunc>

( <expression> )

<primary>

i <primary> ** <factor>

| <unary op> <factor>
{

H oo o |

<factor> 3

<factor>
<expr> <mult op> <expr>

<expression> HH



8. EXPRESSIONS 28

<exprr> <add op> <expr>

<expr> <pit of> <expr>

<expr> <relational op> <expr>
<expr> AND <expr>

<expr> On <expr>

<unary op> 2= + | = | NOT

<mult op> c:= % /| // | REM

<add op> 1= o+ ) -

<tkit op> ::= BITOR | BLATAND | BITEXOR
<relational op> 12T = | A= | MM Nagn | DN nasw

Note that the above syntax is amoijuous. Expressions are evaluated
in a left to right manner, using the precedence of operators given
in Section 8.2.2.

8azlel primaries. The grimaries <constant>, <variable>,
<indirect reterence> and <tunction designator> have already been
discussed. The primary @ <variapnle> yields a POINTER value which is
the address of (a pointer to) tne variable. <specfunc> stands for
"special function designator". See Section 2.2.

8.2.2 precedence of operators. Expressions are evaluated in a
left to right manner, accordiny to the following hierarchy of
cperatcr precedences (parentheses may be used to overide then):

unary + unary - NOT

xk

* / // RiN

binary + oinary -

BITOR BITAND BITEXOR
. = A= < ~K > D

AND

OR

8.2.3 conversion of operands. The following table indicates how
values are converted from one basic type to another when necessary.
Each row I Trepresents tnhe pasic type of a value to be converted,
while each column J represents the type to be converted to. The
table element (I,J) is then a letter of a footnote below which
indicates how the conversion is made. A blank element signifies that
no automatic conversion is pertormed.

RESULT: B H F D F D |4 S

Y W W E W W 0] T

T I I C F F I R

E N I

S T N

CPERAND E G
R

"eesoeoasws - - - - - -
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BYTES A B C C C C I

HWI D - E B E E

Fwl D G - J B E

LCEC E E E - E E

FWF F F F F - E

DWF F F F F F -

FCINTER -

STRING J H
A. It the operand type has tewer bpytes than the resulting type,

Ea

J-

leadiny zero bytes are added; if the operand has more, leading
(lettmost) bytes are discarded until the they bhave the sanme
lengyth.

If the operand 1is BYTE, 1t is considered to be an unsigned
integer. Otherwise the rightmost two bytes of the operand are
considered to be a halfword integer without any other conversion
(the lettmost bit is the siyn).

If the operand has 1,2 or 3 pytes, it 1is considered to be an
unsigned 1integer and 1is chanjed to FWI format. Conversion then
proceeds with this new operand. If the operand has 4 or more
bytes, the rigntmost 4 oytes are considered to be a fullword
integer without any real conversion being performed. Conversion
then proceeds with this new operand.

The HWI (FWI) operand is considered to be a sequence of 16 (32)
bits - that is, a BYTE2 (BYTE4) value. The sign bit is Jjust
another bit in the sejuence. Conversion proceeds with this new
cperand.

Normal conversion. Scome sigyniticance can be lost in the case FWI
to FWF and when the operand is DEC.

Normal conversion with truncation. If the result is to be BYTES,
the orerand is first converted to FWI and then to BYTES.

The rightmost 2 bytes are considered to be a halfword. If the
operand is between -2%¥15 and 2**15-1, the result has the same
arithmetic value as the operand; otherwise not.

If the result has fewer <characters, use only the leftmost
characters of the operand. If the result has more, add blanks to
the right of the operand characters.

The operand is assumed to pe a string value - each byte 1is a
character. Conversion H above is then performed.

The operand characters are considered to be BYTES and the whole
orerand to be a BYTES value; conversion proceeds from there.

8.2.4 arithmetic operators. The tollowing table defines the
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arithmetic operators:

QFEEATOR MEANING

A (identity)
sign inversion

+ A
- A
A **x B exponentiation of A to the power of B
A *x B multiplication
A/ B division
A // B integer division. Defined by
SGN (A*B) * D (ABS (A),ABS (B))
where SGN is defined by
HWI PROCEDURE SGN( FWI X);
IF X < 0 THEN SGN=-1 ELSE SGN=1
and D is defined by
fWwl PROCEDURE D( FWI X,Y);
IF X < Y THEN D=0 ELSE D=D (X-Y,Y) +1
A REM B A - (A//B) ¥ B
A + B addition
A - B subtraction

. With the arithmetic operations, operands of type BYTE, BYTEI1,
BYTE2 are considered as positive integers, while a BYTEY4 operand is
a signed integer (the leftmost oit is the sign). Not all basic type
values are valid operands ot arithmetic operators. Appendix A
contains tables which indicate tne valid operands, the automatic
conversions performed, and the type of the result of each
conkination of operator and operands.

8.2.5 bits operators. The bits operators are BITOR, BITAND and
BITEXOK. They perform bitwise operations on the two operands as
follcws:

A B A BITOR B A BITAND B A BITEXOR B
0. 0 0 V] 0
1 0 1 0 1
1 1 1 1 0

See Appendix A for a list of valid operands, automatic conversions
performed, and for the type of the resulting operand.

8.2.6 relational operators. The relational operators yield the
result TRUE (X'FF) or FALSE (X'00'), depending on whether the
relaticn is true cr not.

If the two operands are arithmetic but have different types,




— o

[ sonnme 4

8. EXPRESSIONS 31

the value with the lowest type precedence (cf section 5.1.2) will
first be converted to the other typea.

If the two operands are of type BYTES but have different
lengths, leading zero bytes will be added to the shorter one. The
values are considered to be positive integers for the comparison.

If one operand is BYTES and the other arithmetic. The BYTES
value will first be converted to type FWI and an arithmetic
comparison will be performed.

It the two operands have type POINTER the relation must be = or
~+=. The pointers are eyqual only if they are both zero or if they
Foint at the same record.

. If the two operands are string-valued, the comparison is
according to the EBCDIC collatingy sequence. If the lengths of the
operands are different, blank characters are appended on the right
of the shorter until the lengths are the same.

Only those combination of operands suggested above are allowed.

8-2.7 logical operators. Tne operators NOT, OR and AND have the
tollowing meaninys

NOT A IF A = 0 THEN TRUE ELSE FALSE
A OR B IF A -= 0 THEN TRUE ELSE B ~= 0
A AND B IF A = 0 THEN FALSE ELSE B ~= 0

Note that nct only the BYTE values X'FF' and X'00*, but all basic
values except strings may be operands of the logical operators. Zero
means FALSE, anything else means TRUE. Note also that the second
operand, B, is not always evaluated. Thus, constructions like

IF BOINTERVARIABLE AND POINTERVARIABLE.COMPONENT = 3 THEN<..
Are rossible, since if POINTERVARIABLE is zero, the reference to
COMFONENT will not be made. :

8.2.8 catenation. The CAT operator produces a string vwhose
value 1is the characters or the first string operand followed by
those of the second string operand.

8.3. Structure_expressions

Syntax: .
<struct exp> ::= <old value> | <altered value>

| <new value> | <DESCR exp>
<o0ld value> ::= <destination>
<altered value> ::= <destination> ( <component specifier> )
<new value> ::= <structured type> ( <companans
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specifier> )
<component specifier> ::= <<keyword component> ,list>
| <<positional component> ,list>

<keyword component> ::= <component selector> =

| <component selector>
<positional component> ::= <empty>
|
l
|

<exp>

<alternate selector> _
<alternate selector> <exp>
<alternate selector>
( <<positional component> ,list> )
<alternate selector>::= <empty> | -~ <integer>

Semantics: A structure exyression yields a value having sone
structured type. There are taree ways of writing a structure
expression:

1. The value of an <old value> structure expression is just the
current value of the destination. The type must of course be
structured. No space is allocated for the value.

2. The value of an <altered value> is found as follows. Space
is allocated for the new value. The current value of the
destination 1is moved into this space. The components are then
altered as indicated by the component specifier (see below) to
yield the resulting value. The destination must of course be
structured.

3. The value of a <new value> is tound as follows. Space is
allocated for a value of tne structured type. All components
are undefined. The components are then altered as indicated by
the component specifier to yield the resulting value.

There are two ways of specifyiny which components are to be altered
- through keyword components and positional components.

1. A keyword component consists of a component selector (cf
Section 7.2) which selects the component to be altered,
focllowed by an egual siyn, rollowed by an entity to which the
ccmponent is to be chanyed. This entity is either

A. The character "_". This indicates that the component is
"empty”. The meaniny of this will become clear when
Section 9.2 on assiynment statements is read.

B. An <exp>. The <exp> must be assignment compatible with
the component selected. It is evaluated and assigned to
the component, exactly as in an assignment statement.

The components are altered in the crder in which the keyword
components appear (left to right).
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2. When positional components are used, the order and number of
positional components must correspond to the order and number
of constituents of the structured type; the Ith positional
component indicates what to-do with the Ith constituent. The
alternate selector indicates which alternate component of the

consituent to use; an empty alternate selector indicates the
first alternate.

The entities "_" and <exp> appearing in a positional component
have the same meaning as in keyword components (see above). In
addition to these there are two more ways of specifying what is
to be done with the component:

A. If the positional component is empty (not there), the
component is not changjed.

B. If the positional component has the form
<alt€rnate selector> ( <<positional component> ,list> )

then the corresponding component of the structured type
must have subconstituents. This new list of positional
components is handled exactly in the same way.

The reader may have noticed that with <altered value> and <new
value> structure expressions storage must be allocated. Section 9.2
on assignment statements specities in which cases it is the
programmer's responsibility to release this space.

~ Examples: We use the structured types

STRUCTURE SUBSCR (BYTE AREA, BYTE3 OFFSET, POINTER 5);
- STRUCTURE D1 (BYTE KIND ALT HWI B,
C(BYTE C1, POINTER C2),
SUBSCR D) ;
. SUBSCR V1,V2;
- D1 V3,V4;

The following is an <old value>: V1

The following are equivalent exawmples of <altered valueds:
V3( B = _, C.C1 =5, C.C2 = 0)
V3(-~2 - {(5,0).)

The tollowing are equivalent examples of <new values>
L1(D= SUBSCR(0,0,0))
D1(,,SUBSCR (0,0,0))
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9. STATEMENTS

A statement denotes a unit of action. To execute a statement means
to perform this action. Statements are usually executed in segquence,
except when a control or pass commynication statement causes a

change.

Syntax:
<statement> ::= <open statement> | <closed statenment>

= <label definition> <open statementd>
| <open iter state>
} <open cond state>

{open statement> ::

1= <empty>

<lapel definition> <closed statement>
<compound statement>

<assiynment statement>

<closed cond state>

1
}
|
|
] <closed iter state>
|
|
|
i
|

-{closed statement>

<case statement>
<control statement>
<procedure calld>

<code statement>
<spectfunc> | <specproc>

<label definition> ::= <label> :

9. 1. Compound_statements

Syntax:
<compound statement> ::= BEGIN <<statement> ;list> END

Semantics: As in ALGOL, the <compound statement is used to
tracket a seguence of statements.

9. 2. Assignment statements

Syntax:
<assiynment statement> ::= <destination> = <exp>

Semantics: This statement is executed as follows:

1. The address of the <Kdestination> 1is calculated, 1if
necessary.

2. The <exp> is evaluated.
3. The result of (2) is converted and stored - according to the

rules given in the table below - at the address calculated in
(1). Only those combinations ot types of the <destination> and
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<exp> are valid wvhich are indicated in the table below. Those
pairs of destinations and exps which are valid are called
assignment compatible.

The following table indicates how values are converted and
assigned to a destination. Each row represents a possible type of
the destination; each column a possible type of the <exp>. An
element is either blank - which means the combination is not legal -
or is a letter identifyingy a footnote which explains how the
ccnversion and assignment takes place.

Type of
destination Lype of exp
bits arith pointer string structured

_ bits A A A C

arith - A A

Fointer B E

string A B

structured C D

A. The conversion is as explained in Section 8.2.3.
B. No conversion necessary.

C. The value of the <exp> as it is in Bemory is stored in the
<destination> without any conversion (zero bytes are added to the
right of the <exp> if it is too short, or the rightmost bytes are
discarded if it is too long).

D. The <exp> and <destination> must have the same structured type.
The <exp> is evaluated and assigned to the destination. That is,
components of the destination corresponding to "empty"™ components
in- the structure expression (cf Section 7.2) remain unchanged,
all others are assigned the value of the corresponding structure
expression component. Any space allocated in evaluating the
structure expression is automatically released.

E. "empty" components become undefined, and the address of the
resulting value is stored into the destination. If space was
allocated for the evaluated structure expression, it is now the
programmers responsibility to release this space when no longer
needed (cf Sections 7.3 and 9.10).

Examples:

B

SUBSCR (A. KIND=5)
TENT(P) = SUBSCR(A.KIND=5)

CONTENT (P) (A.KIND=3,A.AREA=2,A.0FFSET= )

(¢}

= 0o

L-NelL B -
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9.3. Conditional statements

Syntax:

<open cond state> ::= IF <expression> THEN
<closed statement> ELSE <open statement>
| 1F <expression> THEN <statement>

<closed cond state>
::= IF <expression> THEN <closed statement)>
ELSE <closed statement>
Semantics: These have the same semantics as in ALGOL.

~-Examples:

IF X = Y THEN GO TO L
IF X THEN U=0 ELSE IF Y=0 THEN U=Y

-~

9.4. Iterative_statements

Syntax: In the followinj productions, the letter "J" is to be
systematlcally replaced by the word "open™ or the word "closed”.

<J iter state> ::= FOR <destination> = <expril>
{ STEP <expr2> ]
UNTIL <expr3> DO <J statement>

| WHILE <expression> DO <J statement>

] FOR <POINTER destination>

IN <tord identifier>

{FROM <POINTER expr!> TO <POINTER expr2>]
DO <J statement>

<tord identifier> ::= <table identifier>
‘ ] <dict identifier>

Semantics: The default option for <expr2> is 1. The default
option for <POINTER expr!> and <POINTER expr2> is a<tord identifier>
(1) and a<tord identifier> (N) respectively, if the table or dict
has presently N records.

The statement
FOR I = J STEP K UNTIL L DO <statement>

where I is a destination and J, K and 1 are expressions is
equivalent to the following sSeyuence of statements;

DEST = @I; &C(DEST) = J;
STEPV = K;
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ENDV = L * SGN (STEPV);

AGAIN: IF &C(DEST) * SGN (STEPV) <= ENDV

THEN BEGIN <statement>; &C (DES?)=8C (DEST) +STEPV; GO TO AGAIN
END '

where DEST is an internal POINTER variable and STEPV and ENDV are
internal variables having the same types as K and L respectively.

The statement
WHILE <expression> DO <statement>
is egquivalent to
AGAIN: IF <expression> THEN BEGIN <statement>; GO TO AGAIN END
The statement
FOR P IN TAB FROM P1 TO PN DO <statement>

where P,P1, and PN are pointers and TAB is a table, is executed as
follcws:

DEST = @ P; ENDV = PN; CONTENT (DEST) = P1;
AGAIN: IF CONTENT(DEST) == 0
THEN BEGIN <STATEMENT>;
IF CONTENT (DEST) =-~= ENDV
THEN BEGIN TALLY (TAB, CONTENT (DEST));
GO TO AGAIN
END
END;

where DEST and ENDV are pointer variables.

Examples:

FOR I = 1 UNTIL B*3 DO A(I) = I

FOR P.X = 10 STEP - 1 UNTIL 1 DO Y(P.Z) = 5
WHILE PA DO BEGIN PA.D=0; PA = PA.P END

FCR P IN SSYMB DO P.KIND = 0;

9.5. Case_statements
Syntax: :
<case statement> ::= CASE <expression> OF <<statement> ;list>
ENDCASE

Semantics: The expression 1is evaluated and assigned to an
internal variable I of type FWI. If I <= 0 or I > (the number of
statements in the 1list), no action is taken. Otherwise, the Ith



9. STATEMENTS 38

statement in the list is executed. If this statement does not cause
control to leave 1it, control then passes to the point beyond the
ENCCASE symbol.

Example:
CASE N OF

¢ =5;
FOR I = 1 UNTIL N DO A(I)=0;
GC TO LAB;

BEGIN Q = 5; FOR I

1]

1 UNTIL ¥ DO A{(I)=0 END

-ENDCASE

9.6. Control statements
Syntax: .
<control statement> <yoto op> <label>

RETURN | SYNTAX | COMPLETE

HALT { ( <integer> ) ]

CALLPASS ( <pass number> )

BEGINPASS ( <pass number> )

-—— -]

<goto op> ::= GO | GO TO | GOTO

Semantics: Execution ot a yoto statement transfers control to
the statement labeled <label>. One cannot jump into or out of a
frocedure or into the statement of an iterative statement.

. The RETURN statement is used only in procedures; it causes the
procedure to return to the point from which it was called.

The SYNTAX statement is wused only if the pass has a syntax
subprogram. It may not be used in procedures. Execution of the
statement causes control to return to the syntax subprogranm
following the last EXEC action executed.

Execution of COMPLETE tells CIL that the program is done. If
CGS was used, the object module for the generated program is
completed and written out. Execution then stops.

Execution of HALT ( <inteyer> ) causes the message " HALT
<integer> " to be printed and execution to halt.

Execution of BEGINPASS causes control to transfer to the
beginning of pass <pass number>, while execution of CALLPASS
transfers control to pass <pass number> at the place where it 1last
executed a BEGINPASS or CALLPASS (if it had never been executed,
control goes to the beginningy of it). The CALLPASS is thus 1like a

coroutine call.
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It the pass being called is in another coreload, that coreload
brought 1into core. Passes in the previous coreload may not be

called again.

9.7 procedure statements

—————— —— — ——— T~ —

Syntax:

<procedure call> ::= <identifier>
L ( <<actual parameter> ,list> ) ]
| <specfunc> | <specproc>

<actual parameter>::= <expression> | <table identifier>
| <dict identifier> | <stack identifier>

Semantics: Execution of a procedure statement is equivalent to

the following process:

A copy is made of the procedure or function body identified by
the identifier in the procedure statement. The actual
parameters of the procedure statement, which mBust agree in
number and order with the tormal parameters of the procedure or
function, systematically replace those formal parameters as
follows:

1« If the actual parameter is a <destination> wvhose type
is the same as the type of the formal parameter, the
address of the <destination> is calculated and assigned to
an 1internal variable, say I, which is different from any
other variable. The indirect reference "SC(I)" then
replaces every occurrence of the formal parameter
identifier in the copy of the procedure body.

2. If the actual parameter is a constant, the comnstant is
converted to the type of the corresponding formal
parameter (this must be possible) if necessary and the
result replaces every occurrence of the formal parameter.

3. If the actual parameter is any basic expression not
covered in 1 or 2, it is -evaluated, assigned to an
internal variable, say J, whose type is the same as the
type of the corresponding formal parameter. The variable J
then replaces every occurence of the formal parameter.

4. If the actual parameter 1is a table, dict or stack
identifier, the corresponding formal parameter must be a
table, dict or stack, respectively, with the same type.
The actual parameter replaces every occurrence of the
formal parameter identitier in the copy of the procedure
body. ’

The replacement of parameters must yield valid expressions and
statements. The modified copy of the procedure body is then



9. STATEMENTS 40

executeda.

It a tunction is executed in this manner, the value it produces
is lost.

<specfunc>s and <specproc>s are calls on special functions and
special frocedures. See Section Z.2.

Examgples:
£JOINREGS (P)

TIME
LCOKLAB( A, PP)
~YCUNGESTUNCLE ( JOHN)

The following <specprocd>s are used to communicate with the
scanner:

Execution of SCAN causes the next symbol to be read f£from the
source language program being compiled. It dis put in location
SCANSYM and on the main stack of the pass in which the SCAN appears
(if applicable). See Section 12.1 tor an exact description.

Execution of the statement CHARMODE causes the scanner to
change its method of scanniny the source program to a character by
character scan. See Section 12.1.

Execution of the statement NOBMODE causes the scanner to scan
the source proyram in normal fasnion. See Section 12. 1.

Execution of SCANNER (<scanner id>) causes the scanner to begin
using the scanner definition named <scanner id> for forming source
language symbols.

9.9. Input-output



¢
1
(-

—

.r.--._\

r—

r—

a—

9. STATEMENTS 41

The I/9 provided is quite primitive. More powerful I/0 may be
added at a later date if necessary.

9.9.1. Input. Section 12.6 explains input procedures when the

normal scanning is performed . (cf Section 9.8). In additiom, the
<{sgecrroc>

reads the next card into the system string variable &INLINE.

9.9.2. Output. Execution of the <specproc>

—— o ———— — ———_— . A~ ————

r |
{ E0UT {( <<expr> ,listd> ) |
Lo e o e e e e e e ——— 3

causes the expressions to be added to the current output line.
Strings are added without conversion. Pointer and bits type
expressions are first converted using the function G&HEXT (see
below), HWI, FWI and DEC expressions are first converted using the
function §&DECT, while FHWF and DWF expressions are first coanverted
using the function SFLPT. When the current output line is filled up
a new one is started, execution ot the <specproc>

-

r 1
1 &0UT |
L J

causes the current line to be written out (if not empty).

Execution of the <specproc>

e o e e e e e e o e e

r
| EOUTDESCR ( <DESCR exp> ) |

L ——— - e e

causes the current output line to be written out and the DESCRIPTOR
to ke written out in a readable fora.

9.9.3. Conversion functions. The tollowing <specfunc>s return a
binary representation of the STRING parameter S:

S can comntain only

<specfunc> S is the characters result is
| eTBIN(S) | binary 0,1 BYTES |
| 21007 (5) 1 octal | 0,.nnr7 BrTES |
| etoEc(s) 1 decimal | 0ye.ehs w1 i
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I —— ——— B

| ETHEX(S) | hexadec. 0O,eee,9,A,00a,F BYTES |

L o o o e e e s e . - ——————— - 4

The result is right-adjusted with leading zeroes if necessary. The
number of bytes 1s the number necessary toc represent the string in
binary. An error message is printed if S contains illegal
charactersa

The following <specfunc>s perform the same function except that
the parameter A is an atom ( BYTE2 representation) of the string S:

The following <specfunc>s are used to convert an internal number to
character form. The result is thus a STRING expression. Below, A
represents an atom ( BYTEZ2 expression).

<specfunc> the STRING result is
e
| EBINT( <expr> ) | <expr> expressed in binary characters |
| - sttt |
| 6DECT( <expr> ) | <expr> expressed in decimal char. |

' - . o ———— —— —————— o~ — " — . — - - - - — - —— — — — > Wi v e i W S ——— v '

] 6FLPT( <expr> ) | <expr> expressed in floating pt. Char.|

| SHEXT( <expr> ) | <expr> expressed in hex characters. i
| o e e e e e e e e e e e e - |
| 60CIT( <expr> ) | <expr> expressed in octal characters. |
| e e - T e e e e —————— |
| STEXT ( A4 ) | striny corresponding to atom A }
e e e e e e e e e e e e e e e e e o e e e o e e e e i i e e P e o J

No conversion is performed on <expr>; it is changed as it stands in
memory.

Examples:

EBINT( B*'11010') is equal to *11010°*
EDECT( B*'11010') is egual to *2b6!
EFLPT( B*'11010') is egual to '2.6 E+01!
SHEXT( B'11010') is equal to '1A!
ECCTT( B'11010') is equal to *32¢
GLCECT ( -3645001) is equal to '-3645001!



r— r— r— r—

r—

— o

r—

r—

e

c—

o

s

9. STATEMENTS 43

9.10. Releasing_storage

If an assignment statement
<POINTER destination> = <struct exp>

(vhere the <struct exp> is not an <old valued) is executed, CIL
allocates storage for the <struct exp> and puts its address in the
<FOINTER destination>. It is then the programmers responsibility to
release this storaye when no lonyer needed (see Section 14.9 for the
special case of DESCRIPTORS). The <specproc>

- ——— o o o > o o o o - -—a

| &ERELEASE ( <POINTER destination> [, <p01nto type> ]) 1

L o e e s e o e e s o e e s e . S -_— —d

releases the storage pointed at by the POINTER and sets it to zero.
The <pocinto type> is needed it the declaration of the POINTER did
not unambigously indicate the data being pointed at.



10. OPERATIONS ON TABLZS, DICTS AND STACKS 44

10. CPERATIONS ON TABLES, DiCTS AND STACKS

This section describes how one adds, deletes and searches for
records 1in tables, dicts and stacks. Each <specfunc> described here
yields a POINTER value - either U or the address of a table, dict or
stack record. Thus they may pe used anywhere a function designator
is used. They may also appear separately like procedure statements,
in which case their value is lost.

10.1. QOperations on_tables

Syntax: The syntax of tne ENTER, LOOK, TALLY and DELETE
<specfunc>s is
T eSS
BNTER ( <table identifier> | , <exp> ]) |

r
|
j ——
| LCGK ( <table identirier> { . <component selector> ]|
| ’ <expre551on> |
! [ FROM <POINTER expressioni> ] |
| [ TO <POINTER expressionz2> ]} |
l [ » BACK ]) |
TALLY ( <table identifier> , <POINTER expression> ) |
[l » BACK ]) |

DELETE ( <table identitfier> ,

P e e i

Semantics:

-

ENTER. A new record is added to the table identified. If the

<exp> is present <exp> (which must pe assignment compatible with the
tyre of the table records) is assijyned to this new record; otherwise
its value is undefined. The value of ENTER is the address of the new
record.

LOOK. If the type of the records of the table is a basic type,
the component selector may not appear. A subset of the records is
searched for one which is ejual to <expression>. If the type of the
records 1is a 'structured type, a subset of the records is searched
for one whose component selected by the component selector (default
option is "1-1") is equal to <expressiond>. The comparison is done
according to the rules of Section 8.2.6.

<POINTER
the Ith (default

expression!> must poiat at a record of the table, say
option 1is tne address of the first record).

<EOINTER expression2> must point
Jth (default option is the address

1f BACK 1is missing, the

at a record of the table, say the
of the last record).

records tested are records I,
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I+1,.<-,d, in that order (none if J < I). If BACK appears, records
J,J-1,<..,I are tested, in that order (none if J < I).

If a record is found, the value of LOOK is the address of the
record. COtherwise the value is 0.

TALLY. The POINTER expression must be 0 or the address of a
record of the table identitfied. The value of TALLY has type POINTER
and is given by the following table, assuming the table has N

recordse.

Value if BACK Value if BACK

POINTER expressiom is_not_present is present

(¥] addr. Of record 1 addr. Of record N
addr. Of record 1 addr. Of record 2 0

addr. O0f record N 0 addr. Of record N-1
addr. Of record J addr. 0f record J+1 addr. Of record J-1

(1 <J<N)

DELETE. The POINTER expression must be the address of a record
in the table, say record I. If there are currently N records in the
table, records I, I+1, ... , N are deleted from the table. The value
of DELETE is the value of the new last record - record I-1 (0 if

table is now empty).

10.2. Cperations_on_dicts

Syntax: The syntax of these <specfunc>s ENTER, LOOK, TALLY and
DELE1TE is

T —— - S S Y — - T — —-————— " — > S —— T — " -

T
] ENTIER ( <dict identifier> , <BYTE2 expression>

| [ » <exp> ])

| ENTER ( <dict identifier> , <POINTER expression>
| [ » <exp> ] ) :
i

1 LOOK ({( <d1ct identifier> , <BYTE2 expression> )

|
i
]
|
|
|
|
|
|
|
|
I
|
{
|
|
i
i
i
|
|
[
1
)
|
|
|
i
i
i
|
[}
!
|
!
|
|
i
|
i
|
]
B S |

l ——— - ———— i —— T - - — -~ —— - -

{ LOOK ( <dlct identifier> , <POINTER expression)> )

l
|
]
{
§ TALLY ( <dict identifier> , <POINTER expression> |
| [ + BACK ] ) |
|
|
]

I— - - . —— -

| DELETE ( <d1ct identifier> , <POINTER expressxon) )

[ — - ——— - -

Semantics: As discussed in Section 12 on the scanner
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definition, each compiler automatically uses a hash-coded internal
dictionary SINTDIC to aid in changing from source language symbols
to their internal representations called ATOMs. There is one record
in the internal dictionary for each source language symbol
recognized. By using dicts the compiler writer can use the internal
dictionary to search his own symbol tables efficiently.

In the discussion of dict declarations it was stated that the
structured type of the records must begin with a BYTE component
tollowed by a POINTER component. The first component automatically
contains an internal number identifying the dict. The second
compcnent is used to chain dict records which refer to the same ATOM
to the internal dictionary record for that ATOM. Thus, in order to
tind the record in a dict for an identifier, one only has to search
the -chain bLkased on the internal dictionary record for that
identifier.

Fig. 1, part A shows the record for an ATOM, I, before any dict
records have been chained to it; the second component of the record
Foints to the record. In the same part A it is assumed that the
dicts DICT1 and DICT2 are empty; the other parts of figure 1 will be
used to illustrate the operations on dicts.
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FIGURE_1
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ENTER. A nev record is added to the dict identified. If <exp>
is ©[present, it 1is assigned to the record (it must of course be
assignment compatible with the recora); otherwise the record value
is undefined. The record is then chained to the internal dictionary,

as follows:

1. If the second parameter is a BYTE2 expression, its
value must be an ATOM - that is, the internal representation of
some source language symbol. The new record is inserted in the
chain directly after the internal dictionary record for the
atom. As an example, consider tig. 1, part A. Executing

ENTER(DICTZ2,I)

-would yield fig. 1, part B. Purther execution of
ENTER (DICT1,I)

weculd yield tig. 1, part C.

2. If the second parameter is a POINTER expression, its
value must be the address of some chained dict record (not
necessarily the dict identitied in the ENTER operation.) the
new record is inserted in the <chain after the <chained dict
record. For example, consider tig. 1, part C. If P is a POINTER
variable, executing

P = ENTER( DICT1, DICT1(1))
would yield part D. Further execution of
ENTEK (DICT2, P)

would yield part E.

LOOK. There are two variations:

1. If the second parameter 1is a BYTE2 expression, its
value must be an ATOM. The chain based on that ATOM is searched
for a record in the dict. The value of LOOK is the address of
the first one found (0 if none found). For example, consider
fig. 1 part D. Execution ot

LOOK (DICT2,TI)

yields the the address of the record DICT2(1), while execution
of the same statment but with the configuration of fig. 1 part
E would yield the address of DICT2(2).

2. If the second parameter is a POINTER expression, its
value must be the address of some <chained dict record. The
records after the one addressed and up to the internal

dictionary record are searched for one in the dict specified.
The value of LOOK is tne address of the first one found (0 if
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none found). For example, comsider fig. 1 part E. Executing
LOOK (DICT1, DICT1(1))
yields the address of DICT1{2), while executing
LOOK (DICT1, DICT1(Z2)) or LOOK{DICT1, DICT2(2))

yields the value 0.

with the addition that the records are taken off the <chain before
being deleted.-For example, consider tig. 1 part E. Execution of

P = DELETE( DICTZ2, DICT2(2))

yields the address of record DICTZ2 (1) in P and the configuration in
fig. 1 part D.

10. 3. Qperations_on_stacks

Syntax: The form of the PUSH and POP <specfuncd>s is

— -—— ———— — ——— - s e "

r
| PUSH ( <stack identifier> [ , <exp> ]) i

The value of the record 1is the value of <exp> (which must be
assignment compatible with tne record), if present; othervise it is
undefined. The value of PUSH is the address of the new record.

POP. Executing POP deletes the top record from the stack
identified. If the destination is present, the top record (which
must be assignment compatible with the destination) is first
assigned to the destination. The value of POP is the address of the
new top stack record (0.if the stack is now empty).

Care must be taken when PUSHing and POPing the main stack of a
pass; a semantic routine should not PUSH and POP if it later refers
to the main stack via L0, L1, L2, L3, L4, LS5, R1, R2, or R3.
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10.4. The table &INTDIC.

&INTDIC is the hash-coded INTernal Dictionary used to transforn
source language symbols into atoms. The following <specfuncd>s are
rrovided to allow a compiler writer some access to it.

- - ————— - ————— " —— - - - 1

L 3

| LOOK (GINTDIC, <STRIN& expr> ) ]
|

I

ENTER(SINTDIC, <STRING expr> [ ,<BYTE expr>] ) |

e e

——————————— — -~ - ——— -~ -~ ——— — - N

| ATOM ( <POINTER expr> ) i

' — - — - —

| ATOM ( <STRING expr> ) |
- S et !
§TYPE( <BOINTER expr> ) |

|
i - - - ————— - —— A —— ——— . — ’
|
-

ETYPE( <STRING expr> ) i

- — ——— ————— - ———— - —— —— i —_——" - ——— s won w— v v ]}

-~

LCOK returns the address of the EINTDIC record for the STRING
expression (or 0 if no record for it).

ENTER is executed as follows: 1If no record exists for the
STRING, one is added to &INTDIC. Then the value of the BYTE
expression becomes the type ot the string for the current scanner
definition (c¢f Section 12.1). The default option for the BYTE
expression 1is 0. The value of this <specfunc> is the address of the
§INTLIC record.

ATOM returns a BYTE2 value. 1In the first case, the POINTER
expression must yield the address of an EINTDIC record or a dict
record. The value returned is the ator for the symbol associated
with the record. In the second case, the value returned is the value
assigned to the BYTE2 variable B whean the following statements are
executed:

_P = LOOK (§INTDIC, <STRING exprD) ;

"IF P
THEN B = ATOM (P)
ELSE B = ATOM{ ENTER(6INTDIC, <STRING exprd>) );

&TYPE returns a BYTE value - the type of the symbol (cf Section
12.1) associated with the SINTDIC or dict record pointed at by the
EOINTER expression (case 1) or with the STRING expression (case 2) -

which must already be in &INTDIC.
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11. STORAGE ALLOCATION AND ALIGNMENT OF VALUES

While not necessary, it is often helpful to know how storage is
allocated. In the IBM 360, data must often begin on a halfword,
fullword or doubleword boundary. We define the alignment factor as
follows:

data_must begin on alignment factor is
douklevord
fullword
halfvord
kyte

- N &

In other words, if the alignment factor is i then the address of the
leftmost byte of the data must be a multiple of i . The following
table gives the alignment factor and storage requirement for basic
type values.

Type alignment number of
— ' factor bytes used
BYTE 1 1

BYTE2 2 2

BYTE3 4 (see A below) (see A below)
BYTEY 4 4

BYTES (I) 1 (see B below) I

HWI 2 2

FWl 4 4

DEC to be deteramined later

FWF 4 4

DWF 8 8

EOINTER 4 {see A below) (see A below)
STIRING (I) ’ 1 (see B <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>