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PREFACE

This report consists of notes prepared for Applied Mathematics 206b—-

< at Harvard University in the Bpring term of 1965 and Computer Science,

"208 at Stanford University in the Fall quarter of 1966 and 1967. They |

do not pretend tobe more than lecture notes; tn—pewxticular, no attempt

has been made to expand outlines and remarks into full sentences. In

spite of the’ deficliences and ¥he incompleteness Df-the-notes, students

seem to 11nd them useful. For this reason, they are reprinted as a

technical report. -

Mendelson's Introduction to Mathematical Logic, van Nostrand, 1964,

was used as a supplementary text for the course. The formal treatment

of the propositional calculus here is primarily a commentary on the test

and is therefore incomplete.

Two sections of the notes are reprints of material written by others.

The section on the Infinity Lemma is a translation by Anthony Sholl of

a chapter of Konig's Theorie der Graphen, Chelsea, 1950, which is other-

wise unavailable in English. Also included is the chapter "A very

elementary system L" reprinted with minor changes from Hao Wang's A

Survey of Mathematical Logic, Science Press, Peking, 1963.
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COMPUTER SCIENCE 208

FOUNDATIONS FOR COMPUTER SCIENCE

The short title for this course is "Foundations for

Computer Science”. A longer and more accurate title would

be "Foundations of Mathematics for Computer Scientisus:

an introduction of logic, set theory, algorithms and >omputa-

bility."

Historical background

The historical background for a combined study of

logic, algorithms and computation can be said tc date back

to 1666 and to Leibnitz.. who dreamed that some day philo-

sophical and mathematical arguments could be avcided by

calculation. He envisaged a universal characteristic, "a

general method in which all truths of the reason would be

reduced to a kind of calculation. At the same time this

would be a sort of universal language or script, but infi-

nitely different from all those projected hitherto; for the

symbols and even the words in it would direct the reason;

and errors, except those of fact, would be mere mistakes in

calculation." Instead of disputing, men would simply calcu-

late.
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This dream, in a much more sophisticsted form, wes

shared by Hilbert at the turn of this century. Hilbert

emphasized that mathematics should be treated as o formel

system, abstracted from its meaning. The study of the formal

system was called metamathewatics, or proof theory. Ome of

the main problems of the Filbert program was the decision

proolem--the problem of finding a genersl method to determise

if a given methematical statement is true. The mathematical

problem would be expressed in terms of the formal system, and

a purely mechanical procedure would determine if the conclusion

was in fact a theorem of the formal system. At the time it

did not occur to anyone that this would be impossible, slthough

clearly the problem was difficult.

These hopes were destroyed by the work of Godel, Turing

and Church, who showed that it wes impossible to find such

general methods, even in quite restricted areas. (There are

some very simply stated unsolvable problems.) Thus, the

situation is that in the 1930's, 10 to 20 years before the

hardware is ready, btefore the introduction and widespread

use ~f modern high-speed computing machines, the dream of

using mechanical methods to solve all of mathematics is

shattered.

The reaction to these discoveries was violent. Von

Neumann is said to hyve received word of Godel's results whilc

lecturing on logic He reed the message, remarked "Gentlemen,

I have nothing further to say," left, and never returned ¢ ‘tr.=

to that class or to his work on logic and set thecry



The discouragement because of the negative results on

solvability has also been reflected in the actual use of

computers. In the development and application of computers,

the emphasis has been on numerical methods. This, of course,

i3 primarily because of the rapid development of computers

during the war, in response to a need for numerical computa-

tion, for ballistics, for atomic energy But it also reflects

the tremendous discouregement of logicians by the great

unsolvability results. As we shall see, it is not until the

late 1950's thot the question of using computers to apply

decision procedures where they do exist, and of working out

partial procedures in other cases is seriously considered.

Our treatment of logic, algorithms, and computation

will be from both the negative and positive points of view.

On the one hand, we will try to give a clear description of

the limits of what cannot be computed, or solved by computation.

On the other hand, we will investigate the areas in which

computation can, either partially or completely, succeed.

3
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Intreduction to the Fropositional Calculus

We begin informally, introducing the propositional

calculus with its usual &pplicstion tc sentences, by means

of truth-table definitions for its connectives. (Later, we

shall treat the propositional calculus as ~ furmal system,

and show by means of soundness 8nd completeness proofs that

the informal system is correctly and sdequately described

by the formal one.)

In the informal tirestment thz basic "writs are

sentences, statements, or propositions. These are gtomic |

indivisible units, and are declarative statements which

admit to being either true or false. 7 is a prime. Harvard

University is in Cambridge, Massachusetts. L is sn odd

number. These basic units are combined by means of connec- |

tives to form new compound sentences. If 4 1s an odd |

number, then 7 is a prime. Harvard 1s in Cambridge if

snd only if 7 is a prime. The truth or falsehcod (briefly,

the truth-value) of the resulting combination then depends

only on the truth-v.iues of the component sentences, and

not un any internal relation between them. Same two compound

sentenc:s. Consider also: Socrates is 5 man. All men are

mortal. No conclusion in the prcpositiorrel calculus.

Socrates is 8 man. If Socrates is a man, then Socrates is

mortal. Conclusion in the propositional calculus.

If we interpret the elements of the propositional

calculus as sentences, we will wish also tc interpret the



~onnectives as English words =: phrases here 1s a corre-

spondence between the connectives and the words not, ang,

or, if ... then, and if and oniy if. wh.ch are usually

used ss translations. But th: meaning of ‘he connectives

is a defined meaning, not subject to the various alternative

readings which are available fcr the corresponding words.

.I. some cases, the meaning of the connectives may appear

urnatural, relative to the corresponding English, but since

the connectives are precisely defined, no real damage can

result.

The elementary or atomic statements of the propositional

ca.culus are denoted by the statement letters p, q, rT, Py»

Qs Tye ooo The two truth-values are falsehood, denoted

by '0' or by 'F', and truth, denoted by ‘1' or by 'T' .

In general, no confusion arises from using numerals to denote

the truth-values, and it is more convenient for computation

However, in proofs, the tetters ‘T° and ‘FF will be used.

The connectives. Atomic sentences are combined into

compound sentences by means of the connectives.

Negation.

There is one singulary connective, mot, which

corresponds to negation The negation of Pp 1s usually

written 'p' or ‘-p’ or ™p' or ‘~p' . Its value,

which depends only on the value of p is given by the truth-

table

p)



v5 0 1

-p 1 O

That is to say, -p is true if p i: false, amd =~-p is

false if p is true.

While '-p' is generally read ‘not p', it is, of

course, not true that we form the neg:+ion of a sentence in

English simply by prefixing the word not’ . '7 is not a

prime' is the negation of '7 is a prime’ The word ‘not’

is thus placed within the sentence. To obtain a uniform

method of translation of -p in terrs of p we may use

{it is not the case that p ', it is not the case that 7

is a prime.

There are four binary connectives, also defined by

truth-tables.

Conjunction.

The truth-table for conjunction, p and q is

P ¢ 1 © 1

q c O0 1 1

(pAgqg) 0 Oo 0 1

(p Aq) is true only when both p is true and gq 1s true.

(p Aq) is elso written 'p& q', and 'p cq sand 'pq' .

6



pA q is the conjunction of p and gq; p and q &re the

conjuncts of the conjunction.

Disjunction.

Alternation or disjunction is the first of the

operations for which the departure from English usage

requires comment. 'p V q' 1s true if p is true, or if

q is true, or if both p and q are true (the inclusive

or). The truth-table is thus:

P Oo l O00 1

qQ co 0 1 1

(p V q) oc 1 1 1

Frequently in English; 8 disjunction using or is intended

to exclude the case in which both disjuncts are true. To

express that case in the notation of the propositional

calculus, it is necessary to write a more complex statement:

(pVvaq « (-(pA aq) for example

that is, to exclude specifically the case in which both p

and q are true. The notation ‘V' for alternation 'vel'

as opposed to taut! (the exclusive or). p and q are

the disjuncts of the disjunction (pV q) .

7



Comment on the form of the truth-table.

It is more usual to write truth-tsbles using columms

rather than rows for the values of the propositional variables.

The truth-table for (p V q) is thus ususlly written

p qa (PVYaQ

T T T

F T T

T F T

F FT F

The two forms are, of course, equivalent and either form is

acceptable. The . one I sm using makes somewhat more trans-

parent the isomorphism with Boolean algebra, and in addition,

seems easier to use.

Conditional.

The conditional p> gq resd if p then q might

be said to depart even farther from common nonmsthematical

usage, since it is defined by the table:

p O 1 0 1

q ¢ 0 1 1

p=2q 1 O0 1 1

8



It is true: if p is false, or if q 1s true. It seems

clear that 'if p then q ' should be true if both are true,

and should be false if p is trve and q is false. The

case, p false, q true, must be true in order that

PA q>q always be true, regardless of the truth-value of

P . Besides, otherwise the vrlue is independent of the

value of 1p, which is very uninteresting. The remaining

case in which p> q 1s held to be true when the antecedent

p end the consequent q are both false, can be ergued on

the basis that an even integer should not be taken as a

ccunterexample to if x is odd, then XZ is odd, nor an

occasional absence of smoke as a denial of the statement,

if there is smoke, there is fire. The conditional thus

defined is called the material conditional, to distinguish

it from other possible conditional relationships, as, for

example, that of cause and effect.

Bicorditional.

The final common binary connective to be defined is

the biconditional 'if and only if', p#® q . Its truth-

table is

P oO 1 0 1

q O~0 1 1

pPEq 1 0 O00 1

0



pE®E q is true if p snd q have the same truth-val.is,

otherwise it is false.

Nonconjuncticn, nondisjurction.

There are two binary connectives which are only

occasionally used, but which are interesting because each

alone suffices, by compound use, to express all of the

connectives given above. These are nonconjunction (Sheffer

stroke) and nondisjunct:on (joint denial).

P oO 1 oo 1

q oOo oOo 1 1

pla 1 1 1 o0

(dq) 1 0 0 0

Exercise

Work out negation and conjunction for Sheffer stroke. Play

with relations between connectives.

10



Application of propositional calculus

to arguments in natural lenguage.

The original application, or st any rate one early

apy lication, of the propositional calculus was in treating

arguments of the following type:

If Jones is a communist, Jones i: un atheist.

Jones is an atheist.

.. Jones is a communist.

let p be Jones 1s a communist. let q be Jones is an

atheist. Then the premises of tle argument are

r=>4q

and

q.,

and the conclusion is

P -

But (p ©Dq) A q does not logically imply p . Therefore

the argument is invalid. (Work out with truth-tables.)

For some good examples of applications to mathematics,

see Rosser, Logic for Mathematicians, McGraw-Hill, 1953.

il



Avpume:nts can be given to show that the indiscriminate

application ur tu propositional calculus can lead to usbsur-

dities in philosopt.ic argumente. Frofessor Stevenson of

Harvard gave 8 presentation to the philosophy club there in

which he sitempted to show that logic w&i not a fit subject

for teaching to undergraduates. He pointed out, for example,

that the compound statement, "If I pound on this desk at

11 o'clock, Widener Libra-y will fall down,” can be proved

to be valid, since its antecedent ic false. Consider also

the following discussion. A If Reagan is elected,

Celifornia will be a better place to live, B. That's false.

A. You have just asserted that Reagan will be elected.

Or "If iv rains, I wear & raincoat” hence "If I doen't wer

a raincoat, it doesn’t rain.” Such matters will nct « ncern

uc here.

1



Figure 1

negation not p -p ~p P 0 1 7 is a prime.
| Pp —P -p 1 © 7 is not a prime.

conjunction p and gq (p Aq) conjuncts p 0 1 OO 1 7 {1s a prime.
| Pq qQ 0 0 1 1 11 is an even pumber.

HM EE —————— Sf —
P*q (p A q) 0 (0) 0 1

Pé&q

disjunction p or q (pV q disjuncts (pVegd 0 1 1 1

conditional if p then gq (p Dq) antecedent 1 0 1 1 if 7 is a prime,consequent then 11 is an odd number.

biconditional p iff gq (p= q 1 0 0 1

nonconjunction not both p amd QP | ¢ Shaffer stroke 1 1 1 ©

- poodisjunction neither p nor q piq Joint denial 1 0 0 ©



DEFINITION: The symbols ~, A, V, 3, end = (we exclude

now snd { ) will be called propositional

connectives.

DEFINITION: (informal) A statement form of the propusitional

calculus 1s an expression built up from the state-

ment letters bp, gq, I, Pyr -o- by sppropriete

application of the propositional connectives.

Notation: We use A, B, ... es variable: over statement forms

and p, q, ... 8s statement letters {Mendelson uses @, 5,

for variables over statement forms, and p, gq, ... for letters.)

DEFINITION. ststement form

1. Any statement letter is a statement form.

© If A and B are statement forms, so are

(-a), (AAB), (AVB), (A>B), sand

(A= B) .

5. Extremsl clause

Comments on extremal clause:

i. Only those expressions are statement forms which

are determined to be so by means of (1) and (2).

2. C is a statement form 1f and only if there is a

finite sequence A, A,, .-« A (n > 1) such

that Al -C, and if 1 <1i<n, Al is either

Hd :



a statement letter or is 8 negation, conjunction,

disjunction, conditional or biconditional constructed

from previous expressions in the sequence.

3. An expression is a statement form if and only if

it can be shown to be 8 statement form on the basis

of clauses (1) and (2).

4. The only statement forms nre those given by (1)

and (2).

5. An expression is a statement form if and only if

it is so by virtue of (1) and (2).

Note: Excludes (A{ B) .

Also excludes infinite case, (A) \ A) Vv A) cer

Parentheses

Note that under this definition AVY B is not a

stetement form because there are no parentheses.

While & statement form must, by definition, have

parentl eses associated with each of the connectives, con-

ventions are usually made about abbreviated forms with fewer

parentheses. If the parentheses are omitted, according to

some rule, the expression is treated as if it were the state-

ment form of which it is an ebbreviation.

Standard conventions for the restoration of omitted

parentheses are the following:

1. Outer parentheses sre omitted.

2. Associate trom the left for any one connective.



3. The connectives are ordered: =~, A, V, 3, & |

From L to R they each apply Lo the smallest

possible scope. pV -q DOr ®p thus sbbreviates

(((pV(-Q))2r) ® p)

Dot notations

In sddition to the conventions about omitted parentheses,

there are several dot notations in use. These tend to strengthen

the associsted connectives, that is, to move them to the right

in the ordering given. Whitenead and Russell (Principia Math-

ematica), Church, end Quine ell have slightly different con-

ventions. Examples:

Mess F(((pDg" 2 1) Dp OD (21)

| JY eDere>dap ®DOwm qOr

Church PI (21x) 3. (p2q)2 (p31)

In general, it seems best in an informal t:eatment to avoid

the use of dots by the use of parentheses; however, one should

be aware that these conventions exist and that they difier .

from one snother slightly.

16



Evaluation of a Statement Form

75 far we have given truth-table definitions for the

connectives which have given us a means of evaluating, i.e.,

finding the truth-value of, sny expression with one connective.

This method can be extended step by step to obtain an evalu-

ation for any statement form, since the form is built up by

individual spplications of the connectives.

Thus, for every assignment of truth-values to the

statement letters of a statement form, there corresponds a

truth-value for the statement form.

Example:

(P22 (@2n)>{(p>2q = (qa>r))

Thus, each statement form determines a truth-function (a

function frcm truth-values to truth-values) (ff: (0, 1)" —

(0, 1)), reoresented by the truth-table. For n distinct

statement letters, there are o" assignments of truth-values
n

to the letters (columns), and thus 2° truth-functions.

Formats for truth-tsbles

p O01 0101

q 0011 0011

r 0000 1111

=p 1010 1010

-pVqg 1011 1011

=pVaq>r 0100 1111

: 17



usual form: pVYq ®@ qVop

D 3 pPvg VP TVETQaVEP

F F F F i
T x T T
¥ T T T N
T 1 T T T

Quine's format: (~pVq)>2r

TTT TT

TLTT TT

LTL oo T1

TL TI TT

Tre Ld

JL TT IX

ITLI TG

TIL TTI LL

Tsutologies (Wittgenstein)

DEFINITION: A statement form which is always true, regard-

of the truth-values of its statement letter,

is called a tautology.

(In the truth-table of a tautology, the bottom

row contains only 1l's .)

Example (axiom 3):

((~q2~p) 2 ((~q>2p)>q))

DEFINITION: If (AD B) is a tautology, then A logically

inplies B .

jee



If (A® B) is a tautology, then A is

logically equivalent to B .

[Note that by reading the horseshoe as "if...

then" and the symbol '®' as 'if and only if’

we have reserved the words implies and equivalent

for statements in the meta language.|

Examples of tautologies

Pp V ~p

P 8 ~~ D

pNq logically implies p.

pA (p> q) logically implies gq .

p>q end ~p V : are logically equivalent.

DEFINITION: A is a contradiction if A is false for all

possible truth-value assignments to its state-

ment letters.

DEFINITION. A is satisfiable if A is true for some

truth-value assignment.

From the definition of tautology, it is immediately

clear that the truth~tables provide an effective method for

deciding for any given statement form, whether or not it in

a tautology.



We now prove some theorems about tautologies.

THEOREM 1.1: If A and (AD B) are tautologiee, so is B

PROQF:

Suppose there is some assignment of truth-value to

the statement letters of B which makes it false. Then

there is an assignment to the letters of A smd B which

makes B false end A true. (Since every assignment makes

A true.) But then this assignment makes (A= B) false.

But this is impossible because (A= B) is a tautology.

THEOREM 1.2: (Substituti>n in a tautology yields a tautology.)

If A is a tautology containing the statement letters

Py» Por +0 Py, and B arises from A by substitution of

the statement forms Ay ceo A for Pys Por «ov» 1

throughout, then B 1s a tautology.

PROOF:

Consider any assignment tc the statement letters of

Ass vse A . It gives en assignment of truth-values to

Ay» “rey A SBY Xyy -eep Xo. Then the truth-value of B
is the same as the value of A under the assignment of the

x, to the Py But since A is a tautology, this value
is T . But this was true for any assignment to the state-

ment letters of B . Hence B is a tautology.

20



REMARKS:

However, it we begin with a statement form which is

not a tautology, we can, by substitution, obtain a tautology.

This is true with only one exception (that is, except when

the statement form is a contradiction).

THEOREM 1 3: (Equivalence Theorem)

If C' arises from C by substitution of B for

one or more occurrences of A, then

(1) (As 8B) © (csc'))

is a tautology. Hence, if A is logically equivalent to

B, then C' is logically equivalent to C .

PROOF:

Consider any assignment of truth-values to the state-

ment letters of (1). If under the assignment A and B

have different truth-values, then (1) is true, by the truth-

table for the conditional. If they have the same truth~values,

then C end C' will have the same truth-vaslues.

The final statement follows, by the definition of

logically equivalent, and Theorem 1 1.

2l



Example 1,

Would you believe pq V pr V qrs ® pg VY pr tT But

pq VprV gre epg VorV(qgrs A (pV p)) [where 'e' means,

temporarily, has same value for all truth assignments],

because pVpal and AA]l «A.

epg V pr V pqrs V pqrs because BA (CVD) « (CAB) VY (DAB)

«pq V pars V pr V prqs rearranging.

«pgV pr because AV (AAB) oA.

Example2.

(p2q) 2 ((r2q) 2 (pV r>24g))

«pVgq V (rvq V (pVr Vv q))

by AB eo ~AVB

«(Aq V (rAq V (pVr) Vv gq

AVBeAASB

e»(pAq V (rAq V (pVr) Va

BeB

»((pVr)Aqg VqVpVr

(AVB)ACeoe(AAC) V (BAC)



o{(((pVr)Vae A (qVvq)) V pVr

«{(pvVr)VgqVvVyVr

«1

What is a truth assigmment? Usually say a truth

assigment JT to the letters of a formula A, i.e., if A

has & statement letters (pgs coe Pp) each py is replaced

by 0 or 1 . Will write JA= 0 or 1 as value of A

under truth assignment J .

A truth function f is a mapping f: (O, 1)" -+ (0, 1) .

Every statement form of n letters generates by its

truth-table an ne-ary truth function, cbvioualy.

THEORIM 1.4:

Zvery truth function of n variebles is generated by

some statement form with n statement letters.

PROOF: (by construction)

Let f(x, ..., x ) be a truth function. We can
1 n |

express this function by a table giving the value of the

function as the last line.

xy 0101 ... Ql0l1
x, 0011 ... O00ll

X3 C000 1111

xX, 0000 1111

e.g. f 1011 0010

23



There are 2° columns, n rows. (Explain.
n n

For 1 <i<?2 let C, =A Ll! where U., is P, or
’ 17 73=1 7 J J

th th -

~ Py accord.ng as the entry in Jj row, i column is

1 or O. let D = VC, whzre k ranges over only those

columns in which ff is true. Then ff is truth function

corresponding to D . For, if T is any assignment to

(p,» ches P,) then there is a corresponding -~olumn k of

the above table such that IC = 1 and IC, = 0 (i # k) .

If f is true at TJ then row f, column k is 1; so

Cy is a disjunct of D; so ID =1. If f is false at

Y, then row f, column k, is 0; =o Cx isn't disjunct

of D; so ID =0.

This completes the proof except when the truth function

is identically false. The construction then produces nothing.

Take D as P, A P, -

Example:

Xy 0101

Xn 0011

f 1101

= D.D. DV
D=7p,p5 VPiPy VPP,
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NORMAL FORMS IN THE PROPOSITIONAL CALCULUS

DEFINITION: A literal is a statement letter or the negation

of a statement letter.

fotation

8 and ¥ are used as variables over the signed

statement letters p and P Ir 2 is p, then 3 is

P . If a is P, then ¥ ie p .

DEFINITION: A statement form is in disjunctive (conjunctive)

normel form if it is a disjunction (conjunction)

consisting of one or more disjuncts (conjuncts)

each of which is a conjunction (disjunction) of

one or more literals (abbreviated d.n.f., c.n.f.).

DEFINITION: In speaking of a d.n.f. (c.r.f.] we refer to the

disjuncts (conjuncts) as clauses.

THEOREM 1.5: Every statement form is logically equivalent

to a statement form in d.n.f.

Every statement form is logically equivalent to one

in c.n.f.

PROOF: |
For the d.n.f.: Corollery to the proof of Theorem 1.4.

That is,



(1) eny contradiction is logically equivalent to

pA P,

(2) 4if it is not a contradiction, then its truth-

table has at least one 1 . The alternation

of the Ch corresponding to the 1's in the

truth-table is equivalent to the original form,

ard is in disjunctive normal fom.

For the c.n.f.: The d.n.f. of

- \ V ,.. VA is A A, A

- ’ v Vv saa \'4A ear AVA, A,

A eqv ~(A, v A)

eqv. ~A AAA oes A~A
A

eqv. B, B, A... A B

eqv. c.n.f.

DEFINITION: The full disjunctive normel form (f.d.n.f.) of

@ statement form A 1s 8 logically equivalent

statement form which is in d.n.f. and in which

1. in each clause every letter of A eccurs

exactly once; and

2. no two clauses contain precisely the same

literals (no duplicates).
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THEOREM 1.6: Every non-contradictory (non-tautologous)

form haz a f£.d.n.f. (f.c.n.f.) which is unique to within

order.

PROOF:

The construction for Theorem 1.5 in fact produced a

f.d.n.f. and f.c.n.f. It is unique to within order since

- any form having different clauses will have different truth-

tables.

Algorithm for Obtaining Disjunctive Normal Form

l. Eliminate unwanted connecti.es.

2. Push negation all the way in.

3. Multiply out the conjunctions.

METHODS for obtaining f.d.n.f.:

1. The truth-table method given by the proof of the

theorem.

2. Suppose A is any non-ccntraction. Put into

d.n.f. using equivalences. Then if any clause

A is missing a letter, sa Pp, replace A by

(pV p) & A, . This becomes p& A, V pé& A, -
Eliminete duplicates and any pp's and repeat

until £.4.n.f. is obtained.

Methods for obtaining f.c.n.f. are analogous (dual).

4



Exanples:

r= q

d.n.f. p \'4 G

pq V 2a V pq V Pq |

f.d.n.f. pa V pa V pq

(pa V pa

(p V p3)(a Vv pa)

PVPpVYaavriia’ad

(pV aa Vp)

(pVapVa

(pV rpVr)

prYrpVrr

pr V rp

not Just r

p®~p

a contradiction.

No f.d.n.f.; f.c.nf. pA p okay.

COROLLARY 1 7: An f.d.n.f. with n letters is a tautology

if and only if it nas 2" clauses.
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PROOFS:

l, By the truth-table argument.

2. Suppose the clause par 1s missing. Then the

truth-value assignment Ol0 will mekd A false.

On the other hand, if all clauses appear, there

is one which is true for any assignment.

3« By factoring, by the use of equivalences and the

distributive law, we cen reduce to p V p which

is a tautology.

THEOREM 1.8: A necessary and sufficient condition that a

c.n.f. form # be a tautology is that in every clause of the c.n.f.

rat: at least one letter appears both negated and unnegated.

PROOF: Assume A is a tsutology. Let A' be a c.n.f. of

A. It is identically true. Hence every clause must be

identically true. But a clause Ay is an alternation of

literals and hence can be identically true iff some one

letter occurs both negated and unnegated.

THEOREM 1.9: Dual stetement for d.n.f.: A n.s.c. that a

d.n.f. d.n.f. be a contradictior is that in every clause some letter
contra-

diction occurs both negated and unnegated.

PROCF: Dual to the above.
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Decision methods in the Propositional Calculus

We have shown that for any statement form of tre

propositional calculus we can test whether or not it 1s

always true, (identically true), i.e., whether or not it is

8 tautology. Theat ic to say, we have a decision procedure

for the propositional calculus Tne decision procedure is

effective and general.

By effective we mean, roughly, that there is a purely

mechanical way of carrying out the method, which does rot

require the exercise of ingenuity. (Church)

Bygeneral, we mean that the method spplies to every

problem in the class. Note that the class of problems is

infinite.

Restated: The decision problrm for the propositional

calculus is the problem uf deciding effectively for any given

statemert form, whether or not it is a tautology.

Decision methods

1. Truth-table.

3. Quines (resolution) method Form & tree, sub-

stitute at each level O or 1 for one letter.

As the substitutions are made, evaluate by the

following rules.

ZC



~ 0 el] OANA CO « C

~1e0 1 ANA] OF Ae~A

OVAeA 02 A el l= AeA

1 VAel ASD QQ es~A

Continue uatil either some branch comes to O =--rot tautology,

or all + 0 ne 100 oly

Example 1

(pq Vopr) 2 (a= r

Subst for p TT
r> (g 5 r) q>(q & 1)

Subst for gq \L /\
rer ror 1 r

Subst for r /\ VAVAN
Example 2

ab V ac V bcd ab V ac

Subst for =a

c Vbéd Rc »Vbcd Db

Subst for b INcg c¢ cVcadpgc O20 1 1

Subst for ¢

1 1 0=0 1&1

Bavis-Putnam slgoritim

Tests a ¢ n.f. for contradicticn.

Step 0: May assume no clause contains P and P . Any such

clause can be removed (if all, then net contredictionm).



ona-literal -clause rule

are clauses yes
(p) ana (7) contradiction
both present

is A yes eliminate all occurrences of
present ¥ and all clauses containing P

no not

anything left contradiction

affirmative negative rule

~

P present eliminate all clauses
Pp not "containing p

=

y is contradiction

De sp. itting rule

now both p or

§ occur

suppress all clauses suppress all clauses

A containing p A, containing p contradiction
ro ifr A and A, are



Example 1.

(» @{q, r)(p)(7)

which is:

~(p2q) A (@g@r) 2 (p>1r))

by OLCR:

(ps, @)(q)(p)

(a) (q)

* contradiction

Example 2.

(a) (a) (a 9)

both contradictions

THEOREM t.10: DPavis-Putnam procedure works.

PROOF:

Note that there is a dual procedure for testing if

d.n.f is e tautelegy.
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Dunham'shiimiratlon .neorem

THEOREM: let A be the d. nu. tf tomuld

Vv Vv2a \'; Vv 2a V CV Af Vv prev vp VC
i 1 r : m

where the |:2ter p QOcS LGU Gd .dr 1h A (1 = 1, ~. , nt,

B, (¢ = 1, .. ., m> or (, sant Were, for ail A AB, 1s

a contradiction L=t A’ be

A A A og N v \4
A, VY ... VDA Vv DA vV ~~ VUuyA VpB. V . VpB VCPAY PR, pT PR WR, TBE Pon

Then A is a tautology if snd only 1f A" 1s a tautology.

PRCOF:

Every clause of A 15 also a clause of A, so if

A' is 8 tautology; sO 1s A Thus 1t 1s only necessary to

prove that it A 1s & taJdtoiopy, th=n so 18 A° We prove

this by showing that there 1: 20 acsigrment Of truth-values

to the letrers of A which makes A true and A false

\ A
Case 1. p_1sPp -

Then

A eqv. PGA VV AV V a)
) ! n

V pia Vi V Vor Vo
1 ¢ 4!

1 equ | Vv CV VA \% VAAT eq Ay "1 1+ 1 "

\ pH VOR VR DOV
L %

Reproduced from
best available copy



Let all the letters of A be (p, VIREEY P,) and suppose

the truth-valuc assignment (a, 81s coop a) makes A true,
A' felse,

case la ss is O

Then (0, 81, oop . ) makes A true, A' false,

herice (By Vv _.. V B) VC false. This is sosurd.

Case lb. a is 1 .

Then (1, 815 oes 2) makes A true, A false,

hence (A, V ... VA VY C true and (A, Vi... VA Vv

A V... VA) VC false. Hence it must make A, true
i+1 n i

and C fa-se But then, since A sand C do not contain

p, (0, a, a) also makes A true snd C false. But

since A is a tautology (0, VERRY 0) must make

\B, V ... V B) true. But it is net possible to make both

A and (B V ... V B) true, since to do so would make

AB, true for at legst one Jj, contrary to hypothesis.
Hence this case is s«lso impossible.

Cease 2 3 is p

By symmetry.

EAINHAM'S METHOD

For each letter p in the d.n.f. formula A, circle

the eccurrence of A in clause \ iff A also contains a



v

clause PB, such thet AB, is not a contradiction. Delete
all clauses “-.- contain uncircled literals. Erase circles

and repeet until at some step no clause is deleted. If there

are no clauses 12ft, A 18 not s tautology. If the d.n.f.

formule A' remsins, then A 1s s tautology iff A‘ is a

tautology.

REMARK: To contrast with other methods, take pq V Pq v Pa
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AN AXIOM SYSTEM FOR THE PROPOSITIONAL CALCULUS

NOTA BERE: These lectures are intended ss comments on

Section 4, Chapter 1 of Mendelson. They are in no sense

complete, but are intended to assist in reading the text.

They do not replace the text, which is essential.

Reasons for wanting to construct a formal system:

l. To be used later in quantificstion theory.

c. There sre interesting subsystems of the

propositional calculus.

3. For a simple illustration as sn introduction

to the basic notions of formel systems.

Formal Theory

1. Countable set of symbols. (Normally constructed

from a finite set of symbols.)

2. re-read J0MMuLLe (vrs). This must be etfcetive.

5. Axioms. If effective then an axiomatic theory.

Example of a non-axiomatic theory would be to

take as axioms the theorems of ile first-order

predicate calculus.

L. ~ *« of inference. Again effectively decidable.



Proof

Decidablevs undecideble theories

The formal exiomatic theory L for the propositional calculus

primitive symbols

wire

if A, B, and C_ are any wifs of L, then the

following sre axioms of L

Al (AD (BDA)

a2. ((AD (BCH) DO (iA2B: DO (ADC)

A, ((~BD~A) OD ((~BDA DB) |

Remarks: Negation occurs only in A3. The system with

ax:oms Al and A2 is caliad the positive implicetiunal

calculus and is decidable (Arnold Schmidt). achems, |

schemata (schemas). We omit parens. es abbreviation. :

Rule of inference MP. Note that with mere rules of

inference we could have fewer axioms In particular, with }

a substitution rule we could have 8s finite sxiom set. |

Frove that the s<t of axioms is effective, 1i.e.,

L 18 aI. axiomatic theory.

Note now tha* the axioms are al. tautclogies.

lo show that L 1g in fact the system we want, we B

wi.. prove the following metatheorems. (def.)

.. Soundness. Every theorem isa tautology.

(Verify thai sc far okay, sll sxioms are tautologies.)

ble



2. Completeness. Every tautology is a theorem.

5, Consistency. For nowf A, both A and ~A

are thecrems of L .

Absolute consistency. Some wf A is not a theorem

of L. (Por if the system does not have negation, we

cannot prove consistency as defined above.)

Absolute completeness (supersaturation). If we add

spother schema, which is obtained froma statement form

tnat 4s not a theorem, the result is inconsistent. (Exer:ise.)

Prior to proving the main metatheoremswe will want

some theorems.

LEMMA 1.7:

Heuristic argumer+*

This is 8 proof schema, not a proof.

Note tliat the comme .is on the right are not part of

the proof.

They can ne et: ctlvely recovered from the rroofl.

Note that AZ is not used.

.

DEDUCTION AND THE DEDUCTION THEOREM

Definition of dedactien.

Three prop=rties or the notion of conse quence.

Property (1) does not slways hold...in particular

if there is a substitution rile of inference.
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Note that not every line of a deduction is a tautology.

Deduction theorem  Herbrand.

Exampi~-c of usefulness. Prove coroilary 1.9ii. Lemma 1.10a

Proof of the deduction theorem.

Fema r= anly axioms Al and A2 are used in proof plus MP.

constructive

Mote IWMMA | i. -- Tt 1s essentia: to the proofs of the main

rs tthe Or=ms

PRCP 1 .. Every theorem 1§ & tautology soundness

Proof by irduction on the lines of & proof.

PROP 1 13 Fveiy tautology is a theorem of L = complete-

Ne Ss

Needs.

LEMMA 1 1°?

Note that tre object 1s Lot to show that A’ is true

LOOEr the hypotheses.but that A’ 1s provable from the

"YY DALNRESES

Let A be a -! Land let Pp» +» Py ve the state-

ment letters o° 4rring in A. For a given assignment of

truth-values to Pv os Py» let Py re Py if Py tages

“hie value TT; and let Py be ~ Py if p, takes the value

F le+ A pe A, 1f A takes the value 1 under the

a:signment; lev A' be ~ A if A takes the value F .

Ther. Pos Ce Py - A
PROOF

Ld



Alternative Axiomstizations of the Propositional Celculus

Pi: p2(a>p)

pD(g>r) 2 ((p2q 2 (p37)

(((@q2f) Of) 2p)

or: (~~pDO~gqg) DO (qg>p) [This is Lemme 1.10d
Exercise 42,1]

Rules of inference

MP

SUBST: From A to infer 8 Al .

Note now the necessary redefinition of a deduction.

Fach line is: a hypothesis

or a variant of an axiom

or is inferred by MP from twc preceding lines

or is inferred py SUBST from a receding line,

where the variable substituted for does not

occur in the hypotheses.

Example of violation: 7

Pp (hypothesis)

pF ~0p (subst)

PO~Pp deduction theorem

All tautologies are axioms.
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Historical Notes

Prcpositional Calculus

Quine, Preface to Methods of Logic, "Logic is an old subject,

and since 1879 it has been a great one."

Frege Begriftsschrift 1879

Po: p22 (qa 2p)

p-(a2r) 2. (pDq) DO (p27)

(p2(aDdr)) 2 qO(pDr)

(pDq) OD (~ag>D~p)

~~pPp

po~~p

Rules of inference are MP and SUBST.

Exercise: Discuss the independence of the axioms.

Frege's work wus not known to Whitehead end Russell wren ther began.

Later they were perhaps the first to appreciate its significance.

Use of axiom schemata: von Neumann 1927

Use of all tautologies as axioms: Herbrand 1930

P, Wajsberg 1930 P, fukasiewicz 1930 (from Po )
has constant f no constants

The



rrege 8 notation

(~ A judgement

= me A B=2A ~(B & ~ A)
hes

condirinnal stroke .

MP as on.y rule of inference (but in fact SUBST is

needed)

trom

1A and — A to infer — B
-—= B

aA ~ A

—'\ RO~A ~BE&~Aa) 1ie., ~(BA&A)
|

j——— A ~ BDA BAA

“-—

rommm — A ~(3 3 ~ A) ~(~ BY ~ A) BAA

a:

Not~ trat he has implications end pegations (only).

3



fn. argument “The number 20 can be

/ / represented as the sum
f—r—¢ (a) (Va) & (a) Any memben nes

—0—¢ (a)

TT.a scope =sr '
x (a)

HEEPS€ B (a, e)

rr X (a) there are x's (Ta)Xx(a)

hh



First-order Predicate Calculus

Introduction:

Irn the 7 ropositional calculus we dealt with logical

inferences sling statement letters (whish rerresented senten-

es ws unbroken units) ana the logical connectives. But,

as ve wolnut:d ou., even the simple classirel syllogismwas

beyond the scope of that system.

Irn. the firs -order predicate calculus (cr functional

calculus) we desl with the internal structure of sentences,

using symbols tor properties or relations, and ror expressions

such as gll, sny, soue.

Consider the example:

l. There is a man who is physician {tu everyone.

2. Everyone has some physician.

It 1s easy to sez that logically 2 follows from 1. However,

the argurent lies outside the scope of the propositional

co.culus. It is just this sort of argument for which the

predicate calculus is suited. It can be expressed as:

coy) (Bx) F(x, y)

v(x, y) standc for x__ 13 physician to y « The existential

guant tier (Ex) means Liere 1s some Xx, and the universal

quantifier (vy) means for all y . The argument is valid,

I tor an arbitrary binary ~clstion F, and for an
arbitrary set as the renge of the individual variables x

ond y
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The formal system of the propositional calculus was

designed to catch as theorems all the universally true state-

ments or tautologies. For the predicate calculus we similarly

wish to have as theorems all the statements which are valid,

that is which are true in every non-empty universe. In proving

completeness, we will show that all such valid wffs are

theorems.

Formal development cf the predicate calculus

(Note that the system to be developed here differs from

Mendelson's and is essentially a subset of it. Mendelson include:

individual constants and function letters.) The system we

present here is the pure first-order predicate calculus.

Primitive symbols:

Individual verieblec: Xx, ¥; Z) X;» ¥;» 215 Xo one

Predicate letters:

. 1 1 1 1

J-adic: J, ad, Ww, rl, ol, m, rl, sen

(For each Jj, ar infinite number of

j-adic predicate letters.)

Connectives: ~ 2, ()

Metalanguage: A, B, ... for w.fs.

Xs ¥y» 2 for variables.

LW



Atomic formula:

If F' is a predicate letter and X, , X, 5 easy X
i i, i, i

are individual variables (not necessarily distinct), then

Fy (x, y eens X; ) is an atomic formula.
1 rn

Convention

Superscrints on predicate letters may be omitted,

since it is always clear from the context in any wff what

the supercoripts must be. In the formule

F, (x, x.) po F(x)

it is clear that the two predicate letters are in fact distinct.

Although it is more usual to then use different letters:

F, (x, x5) 2 Fy(x,)

Well-ficrmed formulas

>. Every atomic formule is a wft .

~. If A and B are wtfs, and y is a variable,

then (~ A), (A> B), ani ((y)A) ere wffs .

Comment: Note that we do not require that ¥y

occur (free) in A .

3. Extremal clause.

Note that the rules for a wff are effective.
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Pure first-order predicate calculus

first-order: no quantification over predicate letters.

pure: no individual constants, no function symbols.

(Hence the only terms are variables.)

predicate calculus: no nonlogical axioms (as opposed to a

"first-order theory").

Definition

In the expression ((y)A)

(y) is a universal cuantifier

A is the scope of the quantifier (y)

Alternate notation: (Vy)

Conventions

Parentheses omitted as before.

The scope of a quantifier is to be taken ss smell as

pcssible. In (y)A V B the scope of the quantifier is A .

Definition: (3x A stands for ~(x.) ~ A

(3x {) or (Ex nN iz an existential quantifier

AVE stands for (~ A) © B

AASB stands for ~(A © ~ B)

AZ} for (ADB)A (BD A)
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Free and bound variables

Definition: A particular occurrence of the individual variable

x, in A is » bound occurrence if x, is the

variable of the quantifier (x) or if it is

within the scope of a quantifier (x,) . Other~

wise, the occurrence is free.

Definition: A varieble is bound in A if it has at least

one bound occurrence in A . Similarly, free

in A.

Remark: A vesiable may be both bound and free

in A.

Definition: If A 1s a wff and Xs and x, are variables,

then X, is said to be free for x, in A iff

ne free occurrences of Xx, lie within the scope

of any quantifier (xy) . |

Informally: If we substitute x, for free x, through-

out A, then xy is never captured by a quanti

fier (x4) . Note also that (Bx) is ~xy)~

Substitution convention

A(x, y eee Xg ) is used to denote a wff which may
lL n

have some of x, , ..., x, free . Then Ax, g seey x, )
1 n 1 n

4g



is the result of substituting x, for Xx, at all of the

free occurrences of Xe

Examples:

If A(x,, x) is A, (x5) Vv A, (x,)

then Alx,, x) 1s A, (x.) Vv A(x)
YV .and A(x xy) is A(x] Ay (x,)

Axjom schemata

If A, B, end C are wffs, and x and y are vari-

ables, then the following are axioms:

1. AD (BDA)

2. (AD(BD2C)D>((aADB)D (ADC)

3. (~BD~A)D((~B2DA) OB)

bh. (x) A(x)DA(y)

if y is free for x in A(x) .

5. (x}(a 2B} D (AD (x)B)

if A contains no free occurrences of x .

Remarks: {x)A D A is a special case of Axiom 4, Verify validity.

Rules of inference

1. Modus ponens. (MP) From A and (ADB) tn infer B.

(i.e., B is a direct consequence of A and ADB.)

2, ‘Jjeneralization. (GEN) From A to infer (x)A .
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Remark: 2 (CEN) cannot be rephrased as an axiom

AD (x)A

since this would give

A(x) DO (x)a(x)

or

(x) (A(x) 2 (x)A(x))

i.e.

(v) (ly) 2 (x)A(x))

Take A(x) as "x i8 8 prime”.

Remark: We say x is generalized on.

Violations for Ak, AS:

(x) @)F (x, ¥) D @y)F(y, ¥) Ee her

(x) (F, (x) 2 F,(x)) 2,(x) 2 (x)F,(x)) r. even
F, even square

o.k.:

(x) ((@y)G,(v) = a, (x)) 2(@y)e(y) D (x)uy(x))
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THEOREM 2.1: Every wff A which is an instance of a tautology

(of the prop. calc.) is a theorem. And it may be proved using

ory axioms Al-3, and MP.

PROOF: A arises irom a tautology W by substitution. By

the rompleten=ss of L (the propositional calculus, WwW.

Now .iodify the proof of W by masking throughout the same

csucstitutions as were used in obtaining A from W. (For

statement letters which occur in the proof which do not

occur in W, put arbitrary new wffs . (This is necessary

pecause we 2id not include propcsitional variables in our

formulaticn of the first-order predicate calculus.)) Then

the result is a proof of A (because of the use of axiom

schemata). It uses only Al-A3 and MP.

TPFOREM:  b (y) ~ Aly) = ~ (Ey)A(y)

PROOF : pE~~7p Tautology (by

completeness of L )

lb (y) ~A(y) = ~~ (y) ~A(y) By the theorem above.

F (vy) ~ Aly) =~ (E¥)A(y) By definition of (Ey) .
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CONS ISTENCY

THEOREM: The first-order predicate calculus is consistent,

(i.e., there is no wff A such that 2 anda pb ~A j.

PROOF:

1. Deine a mapping h of the set of wfrs of “he

predicate calculus into the set of wifs .{ the

propositional ~elculus:

Let h(A) be the wff obtained from A by

i. deleting quantifiers and variables,

together with associated commas and

parentheses, and

ii. replacing distinct predicate letters

by distinct statement letters.

2. If | A of the predicate calculus, then | L h(a) .

Axioms msp into tautologies. Al-A3 obviously.

Me inte (A DA), AS into ((A DB) => (A DOB)) .

MP and GEN preserve tautologies.

3, h(~4) is ~h(A) .

«+» if both - A end - ~A in the predicate

calculus, we would have by (2), - h(A) and

IF ~n(A) in L, which contradicts the consistency

of L.
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DEDUCTION THEOREM (see also Mendelson 2.5)

Definition: A deduction of B from a set I' of wffs 1g

a finite sequence of wffs By, LN aeey By of

which B_ is 3 and for each 1 either

1. B. is an axion

or <» BB ils a member of T

or 5. B, results from B, snd B (3, Kk < 1) by
1-P

or bh, B, results from B, (J < i) by GEN subject

to the restriction thet no variab’e free in any

wff in [ 1s generalized upon.

Definition: If there is a deduction of BEB from [, we

write T[ - B .

LEDUCTION THEOREM

If I, A lB then rans.

PROOF: Consider a deduction of B from [, and A:

r, A By

3, |

By

 B

5k



Induz+tion Bypntuesis: T += AT B, for 811 1 <h

To show: 't AD B, .

Case I. By is sn sxiom.

Lb B, 2 (A> B) Al.

b~ B, Axiom.

HF ADB MP.
h

Cease 1I,. B, is A.

rk A2A Instance of

tautology.

Case Ug. B, el.

2 >r + By (AB)

+ 8,

oo)aoe,

Case III. B, arises from B, and B, by MP. 8, is

B3 => B, - Continued on next page.

29



I = £2 (ns > B Induction nypothesis

rk AD B Induction pypothesis

Poko s TROD DAS By) 2 {A> B)) Axiom

[orm it -on) 2 (AR) MP

Taste LU. a avices from £, by GEN. 3 is (x)B, .

Tk AT by

= 2)(AD B,. By GEN ( x rot
free ir I)

Pe (x) {(a28 YD (AD (8)B) Axiom5S ( x not
K kK

free in A)

I = AD (x) B, MP

Trerelvre, if I, A + #, 4+hen | - ADB. q.e.d.

Note thes wid oo dn oporap. chic. we had that if T A then

tor any #Y [, a. 0 b- A thic no longer follows

aaned date lv. Chat ap be rroved,)

x |
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USEFUL THEOREM SCHEMATA

For any wffs A and B:

1. (y) -A(y) = ~ (Ey)A(y)

2. (x,)(xp)A D (x,) (x,)A

3. (x)(2 OB) = {{x)A DO (x)B)

Lk. ‘x)(A DE) DO ((E<)A > (Ex)B) Comments:
- Note validity

5. (x)(A A B)=® (x)A A (x)B - Note movaments of
quan:ifiers in

| and out

7. If A(x) end A(y) are similar

(xjA(x) = (y)A(y)

8. If A(x) and A(y) are similer

(Ex)A(x) = (Ey)A(y)

9. If x not free in A

Am (x)A

10. If x not free in A

A® (Ex)A

#11. If x not free in A

(x)(A DB) = (AD (x)B)

oT



#12. If x net Ia. :

(xY(B 2A) = [/vv)5 DA)

13. (x(n = B) = Tox)a = (xR)

*]1E. (x) = IF4

16. It x per oe ad

*17. If x nov free in A

AD {EEA)) = (Bx )ih Bix,

nx ov [(FxIR) = {Ex)(A Vv B)

A ? fa. p oy .by ({x)A Vv (rar 2 x){a Vv E)

<Q. ‘x(a r= DO ((ExJA A (E¥)B)

The re © eet 0 ahs ure lett ar exercises. Proof of 16,

Cy Ty rma 4 owiil oo liow. These schemata ave used frequently and will

cero foros te ty 0 rircied roamber, VIZ 6).
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16. If x not free in A, ((x)B(x) 2 A) = (Ex)(B(x) 2 A)

Proof:

Left to right: 1. (x)B(x) > A Hyp

2. ~(Ex)(B(x) 2 A) Hyp

3. ~~x) ~ (B(x) 2 A) 2, Abbreviation

he (x)(B(x) A ~ A) 3, by tautologies, &
replacement thm

5. B(x) A~A 4, Axiom4 and MP

6. B(x) 5S, tautology

7. (x)B(x) 6, GEN

8. A 1, 8, MP

9. ~A 5, “autology

10. AA ~A 8, 9, tautology

11. (x)B(x) DA, ~ (Ex)(B(x) = A) F AA ~A 1 - 10

12. (x)B(x) 2 A FF ~ (Ex)(B(x) 2 A) 2 (AA ~A) 11, deduction thm

13. (x)B(x) © A | (Ex)(B(x) 2 A) 12, tautology

i. | (x)B(x) © A> (Bx)(B(x) 2 A) 13, deduction thm

Right to left: 1. (x)B(x) Hyp

2. B(x) 1, Axiom 4 snd MP

3. ~A Hyp

4. ~(B(x) 2 A) 2, 3 taugology

5. (x) ~ (B(x) 2 A) GEN

6. (x)B(x), ~A = (x) ~ (B(x) 2 A) 1-5

7. (X)B(x) F ~ AD (x) ~ (B(x) D A) 6, deduction thm

8. (x)B(x) F (Ex)(B(x) DA) DA 7, taut., def.

9. (x)B(x), (Ex){B(x) 2A) I A 8, MP

10. b= (Ex)(B(x) 2 A) © ((x)B(x) © A) deduction theorem

SF ((x)B(x) 2 A) = (Ex)(B(x) © A) 14, 10 by taut.
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6. + (y,) «+. (y IADA

PROOF:

(tt) A

Jo by dedart ior theorem.

Let Alx srioe Prom Alx,) by substituting x. for all

free OUCUrrerncen OLX, a

Definition: It x; and x, are distinct, then Ax) and

Alx are similar iff x, is free for x, in

A(x.) snd A(x,) has no tree occurrences of x
Intuitively:

Ce If Ax.) oan Ax sre similar, then | (x) A(x) =

Ky x.

PROOF:

(0) SIVRSE IRIE - Ax) GEN

(2) (x JAlx) = (x) A(x) AS and MP

(4) KAR) iy (x Jax) Simiiarly
Jo Ax) = ) po > A7) (x, X.) (xy) A(x) A, (A, A A)

Theorem 2.1, Def. of

= . MP twice.

£00
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8. Will follow trivially from equivalence theorem.

Conjunction Rule A,B | AAB

Disjunction Rule

ADC, BDD, AVE |} CcvVvD

Proof by 2.1.

9. If x not free in A then - AE (x)A

(1) ADA Theorem 2.1

(2) (x)(a 2 A) GEN

(3) AD (x)A AS and MP

(4) (x)AD aA Al

(s) A= (x)A (3) (4) def. of =, and conjunc~
tion rule.
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EQUIVALENCE THEORFM

If BR is a wf subformula (or sub-wff) of A and A' {is the

result ol replacing zero or more occurrences of B in A by

a wif R' and if every free variable of B or B' which is

bound in A accurs in the list Yys Yor sees Yy then

Foe) oo (vy) (BEB) D (AE AY)

PRODI: 1 ipndnc tian on the number n of connectives and

quantitiers in A .

Basis: n = 0 .

Then A must be an atomic formula, hence

either 0 occurrences are replsced or B is A,

It 0 occurrences, then reduces to CO (A= A) .

I B is A, then reduces to (v;) veo (v,)
(A =B") ODO (A=18Y) ©
Induction:

We now have n> 0 snd B 8 proper part of A .

Acsume true for all wffs A with less than n

connectives and quantifiers.

Coren: le Ads ~ Do

2. A is (DDE).

. A is (xb

62
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~age 1. A' is ~0D' .

F (y,) -- (y)(B=B) D(D =D) Ind. hyp.
- (pep) D>(~D=~D") Theorem 2.1

a (v;) cee (¥,) (3&3) D(~D= ~D') Theorem 2.1and MP

which is the desired result.

Case 2. A' is D' DE' .

b (yy) +. (y)(B=3") DO (D =D") Ind. hyp.

b (vy) +. (y)(B=3N D(E = EY) Ind. hyp.
(pwDp') (E=E')D((DDE) = (D'DE"))

tautology

A = (yy) «ee (v,)(B=B) D (a= A') tantologyand MP

Case 5. A' is (x)D' .

F (5) +e. (y)(B=B) 2 (D =D)

EF (iy) +. (yy) (3=B) DO (D =D] GEN

(vy) «ee (3) (BEB) DO (x)(p =» DY) Ax 5 and MP
: by hyp. Xx

not free in

(y;) +o (3)(B = B")

F (x)(@ =D) D((x)D = (x)D) ©

A (vy) cor (y,) (B «p') DO ((x)bD= (xD*) taut. and MP
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Corollary Replacement Theorem

A, B, A', B' as above. If | (B®B') then | (Aw A").

Ir (R=P) and |} A then oar.

Corollary Change of Bound Veriasble

If (x)B(x) is a sub-wff of A and B(y) is similar

to B(x) end A' results from A by replacing one or more

occurrences of (x)B(x) by (y)B(y),

Then I A= A' .

PROOF: By ©, und replacement theorem.
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PRENEX NORMAL FORM (PNF)

Note: needed for Completeness Proof to follow.

Note: use as lemmas the usefu’ theorem schemata which are starred.

Definition: A wff C 1s in prenex (normal form)if C 1s

(Q (Qy,) +0 QJM
1 p )

where: (1) Yi» Yor sve» Y,. are distinct individual
vbls., r > 0, which occur in NM,

(2) each (Qy,) is either (v,) or (Ay,),
and (3) M is a quentifier-free wff .

M is called the matrix of C; (Qv,) cee (Qv,)

the prefix.

Definition: A quantifier (Qy) in e wff is said to be

initial if both

(1) (Qy) occurs at the left, or is preceded

only by other quantifiers,

(2) the scope of (Qy) extends tc the end of

the wff .

Corollary: A TNF is a wff in which all quantifiers ere

non=-vacuous and initial.
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THEOREM: For any wit ( there is a wff c® in PNF such

thet F Cs C°.

Note: PNF can be defined sno as to oe unique.

PROOF: use Church's proot--it gives uniqueness byworking on

first quantitier not initially placed, provided we use alphabetically

earliest possibility when making changes of bound variables.

Procedure:

Let C be written without abbrevistions other than

existential quantifiers. Starting from left, pick out first

non-initial quantifier (Qx) . If there is one, it must be

in a wff part of C of one of the forms in column (1)

(1) (2)

~(x)B (ex) ~ B aw

~(Ex)B (x) ~B ©
AD (x)B (x) (A DB) x not free in A a)
(x)B D A (Ex)(B DA) |x not free in A (9

AD (Ex)B (Ex) (A 2 B) x not free in A @

(kx)B DA (x)(B DA) x not free in A B)

The wfts in (2) are equivalent to those in (1), provided x

ic not free in A. If x is free in A use changeof bound

variable to a variable not free in A nor occurring in B .

Then use replacement theorem.

If quantifiers are not distinct, delete first (Qv,)

by (Wy lw)as (@)a by @, QQ. Delete (a) for vy,

not in M. 66



PROOF of termination: By considering the number of connectives

not within the scope of the left-most non-initial quantifier and

the number »f non-initial quantifiers.

PROOF of | C =C°. By the lemmas and the replacement theorem,

and transitivity of’ = .

Comment: A PNF may contain free variables.

But we can always find closed C' in PNF such that

F ce | cr.

C' is the closure of C .

Remarks on PNF:

Actuslly need not remove A and V Ybut can use

AV (Ex) (Ex)(A V B) x not free in A

AV (x)B (x)(A V B) "

AA (x)B (x)(A A B) X

AA (3x)B (3x) (A » B) "

tixamples:

(x)(F(x) 2 (y)(G(x, y) D~ (2)H(y, 2)))

(x)(¥) (F(x) (G(X, y) D~ (2)H(y, z)))

OO (PI (F(x) =v (6x, y) D (2) ~ H(y, 2z)))

(x)(y) (F(x) © (3z)(6(x, y) =~ Hy, z)))

(x) (¥) (Fz) (F(x) = (G(x, y) D~ Hy, z)))
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F(x, ¥) O (@y([Fy(y) 2 (Ix)F,(x) DO Fy(y))]

(Bw) (2) (Fy (x, ¥) 2 (Fy(w) O (F(z) O Fy(w)))

Example with V , A,
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A VERY ELEMENTARY SYSTEM W

(Hao Weng)

A Burvey of Mathematical Logic, Science Press, Peking, 1963.

(Distributed by North-Holland Publishing Co., Amsterdam.)

The system W contains a single two-place predicate

(a dysdic relation) R, three constant nsmes 1, 2, 3 of

individuels, and the variables x, y, z, etc. If R holds

between x and y, we can write R(x, y). The axioms cf

W are as follows:

Al. There are exactly the three things 1, 2, 3:

(2) (x =1Vx=2Yx=3)

&lA282£381¢53

A2. R is irreflexive:

(x) ~ R(x, x)

A. R ia many-one:

(x) (¥)(z) .R(x, y) & R(x, 2) 2 y = 2

M: R is one-many:

(x) (y)(z) .R(y, x) 8 R(z, x) Py = 2

AS.

AS,

R(1, 2)
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The concepts of model and satisfiability can be defined

thus:

Definition 1. An axiom system is satisfiable if there

exists a model or interpretation of the system. An interpre-
tation of an axiom system is ar. assignment of meanings to the

undefined terms of the system according to which all the

axioms are true.

In particular, a model of the system W is determined

by: (a) a (non-empty) domain D of objects; (b) a rule

that associet~s each constant name wiil: a thing in D; (c) a

relation R¥ us the model of R; (4d) a rule of interpretation

telling us, for any objects a and b in D, whether R*

ho'.ds be%wecn them, and therefore, derivatively, for any state-

ment, whether it is true or false; (e) the fact that the

statements Al-A6 come out true according to (a)-(d).

It is Quite easy to find a model for W . Take the

domain D ars consisting of three persons, Chang, Li, and Yang,

sitting around a round table with Chang immediately to the

right of Li, associating them with 1, 2, 3, respectively, and

interpret the relation R as holding between two persons a

and b if and only if a sits immediately to the right of

b . It can be checked that all the axioms Al-AS come out true.

In fact, we can take an arbitrary domain D with three

objects 1%, 2%, 5% which represent 1, 2, 3, respectively,

and obtain a model for the systemW by choosing a relation

R* auch that R* is true of the pairs (1%, 2%), (2%, 3¥),

(3%, 1%), and false for the remaining six pairs. As a result,
we do ney even have to use eny concrete interpretations for

W . We can say abstractly that the following matrix definea

a model for W ,

R 1 2

1 - + -

2 - - +

31 + -  -
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We come ncw to the femilier ncticn of isomorphism.

Thus, two models of W sre isumorchic (or essentially the

same) if there existsa one-to-one correspondence betwee:1 the
two domains such that the first model of the relation R holds

between two objects of the first domain if and only if the

other model of the relation R holds between their images in

the other domain. It tollows the! z statement is true in one

model if and only if it is true in the other, For instence,

any two models for W, which hoth setisfy the matrix given

above, are isomorphic. In general, an axiom system may contain

a number of technical terms which stand for properties, rela-

tions, and operations. In twe isomorpric models of the systems,

all these should correspond so that, for example, if fy and
£5 stand for s same functor and 8,0 o, correspond to ays
b,, then £, (ap by) must correspond to £,(e,, b,) This
condition on models for the technical terms is equivalent to

the requirement that any statement of the system is true in

one model if and only if it is true in the other. We can,
therefore, give the definitions:

Definition 2. Two models of an axiom system 8 are

said tc be isomorphic if there exists a one-to-one correspon-

dence between the two domains and eny stalement of § is true

in one model if and only if it is true in the other.

Definition 3. An axiom system S is categorical if

end only if every pair of models of S is isomorphic.

It is not hard to see that the system W, determined

by AlL-A6, is categoricel. In fact, by straightforward combin-

atorial considerations, we can see that all models of W

satisfy the matrix given above. Thus, by Al, the domain of

each model of W consists of exactly three objects (say)

1%, 2%, 3% . Therefore, there are nine ordered pairs of the

objects of that domain. For each of these pairs, R may

either hold or not. Hence, we have 2” possible interpretations
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of the relation R which would all satisfy Al. By A2,

R(1%, 1%), R(2*, 2%), R(3*, 3%), must all be false.

Therefore, there are only 26 (229/27) possible interpretations
of R satisfying both Al and A2. Of these 64 possibilities,

only 27 satisfy also A3, because, by A3, if R holds of the

pair (1, 2) then it cannot hold of (1, 3), and so on. By

similar considerations,we see easily that of the 27 remaining

possibilities, only 18 satisfy slso Ak, 2 satisfy Ab and AS,

and only one satisfies A4-A6. This interpretation of R that

satisfies all the axioms Al-A5 1s determined by the matrix

- already given: R is true for the pairs (1%, 2%), (2%, 3%),

(3%, 1%), and false for the six remeining pairs. Hence, W

Ba is categorical.

Thus, it is clear that edditionel axioms serve, in

general, to reduce the number of permissible distinct interpre-

tations for a system. When we add enough axioms to reduce

the number of interpretations to one (up to isomorphism),we

have a categorical system. But if we add any more axioms

which would eliminate also the last interpretation, the resulting

system would not be satisfiable according to Df. 1.

In fact, once we assume Al, the problem of finding

additional axioms to obtain a categorical and satisfisble

system is pretty trivial. For example, instead of A2-Ab, we

can use directly the f>llowing:

Al*. R is true of the pairs (1, 2), (2, 3), (3, 1)

and false for the six remaining pairs consisting of 1, 2, and 3.

Al end Al¥ determine the same interpretation as Al-A6.

Or, we can choose any one of the other possible interpretations

of R by using some analogous axiom in place of Al*. Then

we would have in each case a different system, which is again

categorical.

If we omit from W the names 1, 2, 3, then we can no

longer state the sxioms Al and A6, althoughwe can still keep

the axioms A2-A5. In place of Al, we can use:
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Al'. There exist only three distinct thangs: (Ex) (Ey)

(Bz) (W)(x # yo yA z&xfza (W=xVweyVws=2)).

But nothing resembling AS car. be expressed in the new system.

The system determined ty Al' and AZ-AT can egain be shown to

be categorical) and complete; the lack of anything like AG is

compensated by the decrease in expressing power caused by the

omission of the names 1, 2, 3.

Furthermore, if we use insteed of the reletion symbol

R a function symbol £f, then we can replace A2-AD by the

following:

Ast, f(y) = f(z) Dy ez.

The system determined by Al'-A>' is essentially the

same as the system determined by Al' ard A2-A5; in the new

formulation, A% and AS become absorbed into elementary logic

and notational conventions.

Since W has a model, W is satisfiable.

Definition 4, A system is said t: i+ complete if every

proposition (closed wif) Pp in the syst2m is either provable

or refutseble; in other words, for every p, either p or

~p 1s a theorem.

From Df. 3 and Df. ., we can prove: .

Theorem 1. Every categorical system is complete. |

If a system is not complete, there is a proposition

p ir the system such that neither p nor ~ p is a theorem.

Hence by Th. 10 given below in §7,¥ there exists one model in

which p is true and one model in which p 1s {else. These

two models cannct be isomorphic. Hence, the system cannot be

categorical. E

%¥Theorem 10. A system formulated in the predicate calculus
without equality is consistent iff it is satisfiable. (Skolem,
Herbrand, Godel.)
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Since W is categorical, it is complete.

One may also regard the choice of s model as the con-

struction of a sort of truth definition for the system under

consideration, specifying the propositions which are true

under the interpretation. In fect, in every case we require

that all theorems must be true in the model and that for every

proposition p, either p or ~p but not both must be true.

Hence, when a system is complete, the theorems must coincide

with the true propositions. It follows that for a complete

system; a decision procedure for provability also yields a

decision procedure for truth, and(conversely)

Definition 5. A decision procedure for provability

(truth, validity) of an axicmatic system is an effective

method by which, given any proposition of the systems, we

can decide in a finite numb:r of steps whether it is provable

(true, valid).

In the case of the system W which has only one model,
we can easily give at once a decision procedure for both truth

and provability. Thus, after eliminating "A “, " > #

"(Ex)" in familier manner, we can characterize all propositions
of the system W:

(1) If e end b are numbers among 1, 2, and 3,
then Rab and a = Db are (atomic) propositions;

(11) If p and gq are propositions, so are ~ p
and (p Vg) .

(111) If Ha is a proposition, so is (x)Hx .

(iv) There ere no other propositions except those
required by (1) - (111).

Th



: A truth definition 1s simply:
(1) Among the stomic proj sitions, R12, R23, R31,

) l=1,2=2,3=3 are true, all others are

false;

(11) ~p is true if end only if p is false, (p V q)
is true if and only if either p or q is

true;

(141) (x)Hx 1s true if and only if Hl, HZ, H5 are
true.

This truth definition gives a decision method because

for every proposition of W, no matter how complex, we can

always reduce the question of its truth to that of less complex

propositions, in such a way that in a finite number of steps

we arrive at a finite number of atomic propositions which cen

be decided by (1).

Hence, there is a decision procedure for W both for

truth and for provability.

If we delete A6 from W, the resulting system is no

longer complete, but we can easily see that it still has a

decision method for provability.

Theorem2. There exist incomplete axiom systems for

which there sre decision procedures for provability.

Incidentally, the axioms Al and Al' have a different

character from the other axioms in so far as they do not

assert properties of R and f but directly specify their

domain. Such axioms are sometimes called "axioms of limitation”.

Definition. Given an axiomatic theory, e subset X of

the axioms is seid to be independent if some wff in X can-

not be proved from the rest of the axioms.

715



~ - LEdi WE SJ - oe, -

SATGCITABY.7

Relations
vyrySE ——

SL 2leer a———

A Dunery ToL InOT ear cael | .-_ i—————

Dee oTyesats, TUYLOSEL ITAL XCLlr T ee ; )

en ane are neeed, for stot, Le

en 3 * v . : : = : . A A

ED JS TER) SRR A | on oo rv

, B |

NE SEEERAY Yo ben EC Ee TTL. Loa oa '~ - Ad - co. EEE - .

- ‘- - . . iY co . R 5
NY were ts Oat ve «a . - . aN .

.hz Jerieg.an predutt tt WT Ce SE

-~ Ce L- - - . - Lo. 3 ’ [SEE -
AY. TAT LnnC oy Tear, Yeaono ox . 3

wma —— ~ AA ——

ges ol MT, Leen, ow FEC TIoLravl vn That co TT

- -— N - . Zz Lo . em . . yr PIE IR = Nok “oe Teo -
pA ™ hieh4 CXEMDLe, the PEA oe lL. ’ > FOSR WI 1. . .

“ : + “ ha 2 . > ! .. ‘a ) . Ths PopeZ ) “ 5 . RO: ’ ) ) SN EN Le

on & J.re s the get f° al LelUlon Ky Ve © u

, 4 . - yes a + —_— . “» Py ~ - ] oe EE
tre ooint xX Lies Telwoen Lie TOY 0 Rhee ET :

ha ~ . he J po. .- - ~ +, . EY Loe LT - 3
welpt tor oC calli Lo L.unnYn YELET Ll, oo Jey lo hen :

. ) h oo - ’ cs - re

I REPPE Es “1,8 ET ad 51 Toe Ye DOG oo i Tr

sat ox 2na yy 8ve Suman Lelngs nl A. nat Een od

¥ A lavnigoe reiaticr on XO Ic oo oLoolel ont, wnlool
Lt -

tyllel mw oiroferty on ov

charter,ret st LoL
——————EE ec pg er

: : ald” ’ . } . . med r

«i. interryetation of 5 wt? A Ls 8 non-empiy Sev J

g A : “ne interyretation, . a; essignment to cachy Lie QoOm= ih oN _ Le in ve 3- re wa mths, dis-d MS NER Lr - PR ~ - ~
ES —————

' b "mr ier ty t). ; 3 N ~ : . ~~ ~ a \ J

regio vredlnre Letter oA So) an neaXy re.3tlion oi

ny

Reproduced from
best available copy



Exsmple

AL: (x) (F(x) 2 G(x)) 2 ((x)F(x) 2 (x)G(x))

Take domain as the positive integers.

Take F as the property 'x is divisible by &°'

i,e., the set of multiples of 4 .

Take CG as the property 'x is divisible by 2°

i.e., the set of all even numbers.

Then, under the interpretation, A, is true.

Example

A: (Bx)F(x) 2 (Ey)oly)

Then under the same interpretation A, is true.

But under the interpretation which follows, it

is false.

Take D as (0, 1}.

F as the property x =x l.e.,

the ser D = {o, 1} .

G as the property x #x i.e.,

the empty set = {} =# .

Example

Ay: (v)F(x, y)
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Take same domain.

Teke F(x, y) as x<y.

Then under the interpretation A is neither
true nor false--it represents the l-ary relation

(y) (x < ¥)

and is true for x = 1, false ctherwise. Note

that Ay is not closed.

A wff A is satisfiable if there is some interpreta-

tion of A (with non-empty domain D ) and some assignment of

elements of D to the free variables of A which make A

true.

Examples

A is satisfiable.

A, is asatisfiable.

hy is satisfiable (assign 1 to x ).

A wif A is valid if under every interpretation and

avery assignment of elements of the domain D of the inter-

pretation to its free verisbles A is true. (This is eqv.

to previous def.).

Examples

A 1s valid.

A, is not valid.

A is not valid.
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A closed wff is either true or false under

any given interpretation.

COROLLARY A wff A is valid iff ~ A is not satisfisble.

The notion valid corresponds to always true. (No counter-

example).

DEFINITION: The closure of a wff A with free verisbles

Yip ecer Vp is (¥,) I (vy )A .

(Remark: By ® the order of these universsl

quantifiers doesn't mstter.)

COROLLARY A is valid iff the closure of A is valid.

THEOREM (Soundness)

Every theorem of the first-order predicate calculus is

valid,

PROOF: Axioms sre valid.

Rules of inference preserve validity.

(See details on pages 79-81.)

COROLLARY To show A is not a theorem, it suffices to show

A not valid, i.e., ~ A satisfiable.

Validity and Theoremhood

Given a wff A, cuppose we are concerned with whether

or not A is a theorem. If we can prove A, then A is a
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theorem (and is valid). But if we do rot succeed in proving

A, perhaps A is not a theorem. To show that A it noi a

theorem, (since it is possible that neither A nor ~ A is

8 theorem because pred. calc. not complete in that sense) it

suffices to show that A is not valid, that is ~ A is

sstisfiable. By the Godel Completeness Theorem (to be proved)

A is a theorem iff A 1s valid. Hence it will be the case

that either A is a theorem or ~ A is satisfisble. And

while this is not enough to yield a decision procedure, it

will be enough to yield an effective proof procedure. (This

is an alternative proof procedure to the purely syntactic one

already given for all formal theories.)
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Proof procedures anddecision procedures

THEOREM:

In any axiomatic formal theory, there 1s an effective

proof procedure.

PROOF:

1. Reduce countable (finite or enumerable) set of

symbols to finite set by use of subscript 1 as

new symbol. I.e., replace As As» eeey bY

Ay Ags oon (prove unique readability.)
2. Introduce a new symbol called carriage return.

3, Now we could enumerate 211 expressions composed of

the finite set of symbols as follows:

All expressions consgisting of one occurrence

of a symbol.

All expressions consisting of two cccurrences

of symbols.

All expressions consisting of n symbol

occurrences.

4. Now, since wffs are effective, we could redo the

enumeration. ..saving in the list only 2xpressions

which ure wffs (between carriage rcturn symbols).

5. Now, since proofs are effective (axioms are, and

rules of inference are) we can redo the list so

that every string in the list is a proof.
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6. Eventually every proof will occur in our list.

7. A p.our is a proof of its last line.

8. Therefore to find a proof for a given well-formed

formula A we need only construct the list until

at last we come to a proof of A .

9. But, if A is not a theorem, we will never know

that we should give up, hence we will go on forever.
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Details of Soundness Proof

Axioms are valid

Axiom 1. A> (BD A)

To satisfy the negation we must find an interpretation

and an sssignment to the free vbls. which mekes A

true, B true and A false. Clearly impossible.

Axiom 2. (A> (B2>c))2((A=B) 2 (A>)

To satisfy the negation we must have

AD (BDC) true

ADB true

ADC false

hence

A true

C falge

B false

A false

Axiom 3. (~B D~ A) D((~ BDA) DB)

To satisfy the negation must have
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~BO~A true

~ BDA true

B false

hence ~ B true

hence ~ A true

A true

Axiom 4. (x)A(x) DO Aly) y free for x in A(x)

To satisfy the u~gation must have

(x)A(x) true

Aly) false

So suppose d € D essigned to y and ~ A(d) . Then

~(x)A(x) . Note role of proviso on y . Otherwise

there is no free variable in A(y) .

Axiom 5. (x)(A DO B(x))2(A DO (x)B(x)) x not free in A

To satisfy negation must have

(x) (A 2 B(x)) true

A true

(x)B(x) false .. for some 4, ~ B(d)

Hence have ~(A DO B(d)) which contradicts (1) .
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Rules of inference preserve validity

Modus Ponens

ADB

A

B

Suppose A= B, A are valid and B is not valid. ~ B is

satisfied by an interpretation JT with assignment (a,, con d )

to the free variables (xq, cous x) . Then this assignment makes

AS B true (since A> B is valid) hence makes A false, hence

contradicts validity of A .

Generalization

A

(x)A

If (x)A is not valid then for some interpretation J and

some de D, ~A(d) . Hence A not valid.
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Notice that there are now 3 kinds of equivalences:

© I- A= B equivalence

ONE AAR: interprovability
(3 A valid ® B velid  intervalidity

O=0 REPLACEMENT THEOREM

T@=0 SOUNDNESS & COMPLETENESS
(to be proved)

Examples

1.  (x)F{x) »  (Ey)G(y)

since both sides are false

but certainly not:

 (x)F(x) = (By)G(y)

for this is not valid. Take domain {0, 1},

take G(y) as y£vy

take F(x) as x =x .

2.  (x)F(x) ® | (x) ~ F(x)

not | (x)F(x) ® (x) ~ F(x)

Example using the closure of a wif .

Interprovability F(x) = F (x)F(x)
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PROOF:

L to R: Suppuse j= F(x) . Then we construct as proof

of (x)F(x) wes follows:

: | proof of F(x)F(x)

(x) F(x) GEN

R to L: Suppose | (x)F(x) . Then we coustruct a

proof of F(x) as follows:

: | proof of (x)F(x)(x) F(x)

(x)F(x) 2 F(x) Axiom U4

F(x) MP

Intervalidity F(x; valida * (x)F(x) valid

By Corollary sbeve (from definition of valid).

Equivalence

not F F(x) = (x)F(x)

Note: We have proved this if x is not free in F(x) .
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PROOF:

Every theorem is valid (soundness). Therefore it

suffices tc show thet

F(x) = (x)F(x)

is not valid. We construct an interpretation under which it

is not true.

Take D f{0, 1, 2}.

Take F(x) eas a relation (property) which is true for

1, false for 0, 2:

F(0) F(1) F(2)

false true false

(Example might be oddness.)

Take 2 as the sssignment to the free vbl. x .

Then under this interpretation the formula is true iff

F(2) = F(0) A F(1) A F(2)

s0 true under this interpretation.

But now teke 1 as free vbl. Then under the new

interpretation

F(1) = F(0) A F(1) A F(2)

which is false. (Satiafies F(x)  (x)F(x) .) Hence not valid.
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SKOLEM NORMAL FORM

DEFINITION. A wff A 1s in Skolem normel form (SNF) if it

is in closed prenex normal form with prefix

(Byy) -.. (By) (zy) ... (2) . m, n>0

TO BE PROVED.

For every wff A there exists a wff A' in SNF

such that

F Aw | a

and

A valid * A' «valid.

Temporary notation:

—-—

(Ey) for (By) ... (Ey)

>

y for Yio ceo ¥

Aly, ul] to exhibit all the free variables of
the wff A.

— a
let A be (Ey) (v)Bly, u)

— iN A A
A, be (2y) ((w) (Bly, u) 2 F(y, w)) 2 (W)F(y, u))
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where B has v u as its only free vbls, snd F is an

ntl-adic predicate letter not in A .

Show how this will lead to SNF.

LEMMA 1 Fa= A

PROOF:

— KN EN 3
F apllwlag, ws eG, wl 2 wre, wl

Assume given a proof of A; from it wa construct a proof of

A.

Take By, u] es the result of replscing all bound
vbls of Bly, u)] by new vbls. which do not occur in the given
proof. Replace (z, v) throughout the proof by BZ, vw] .

Show the result is a proof.

Instances of Axioms 1, 2, 3, MP and GEN all okay.

Instances of Ax. 4 [(x)A(x) 2 A(w) provided w free for

x in A] all okay since all new quantifiers have new vbls

hence do not have w . Instances of Ax. 5 [ (x){(A= B(x)) >

(A> (x)B(x)) provided x not free in A ] all okay since

H(z, w] has seme free vbls as Pz, w) . Hence, by con-
struction

-— > - -

F (Ey) ((u) (Bly, ul] 2 B*[y, u]) @ (u)B*{y, u]) .

Now, by change of bound variables, the asterisks can be remcved

to give:
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—» a EN A
= (By)((u) (aly, u] 3 Bly, u))=> (uw)Bly, ul)

Let G, ¥v be new:

BOB = G(w) V~ G(w) Theorem 2,1
(prop. calc.)

—> a
(By) (u)(G(w) V ~G(w)) 2 (u)Ely, ull replacement

theorem

a -

(Ey) (a(w) V ~G(w)) > (u)Bly, ul] Theorem 9 and
replacement

— a

G(w) V~ a(w) 2 (Ey)(u)Bly, u] Theorem 17 and
replacement

G(w) Vv ~ G(w) Theorem 2.1

—t --
(Ey) (w)Bly, ul MP

LEMMA 2 F A= | A

Insert to proof of Skolem normal form (Mendelson p. 89).

The following replaces the argument from line 2 "Conversely,

..." to line 8 "... } A, ". The replacement is needed to

avoid use of Rule C and individual constants. To prove:

Fas kA

vhere A is

(By,) ... (By, )(WBly,, --vn ¥, u]
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and Ay is

(By,) ... (By)([(2)(B2 Fy, ..., 37, u)))

2 (WF My, vens vg, 0)

PROOF:

1. For any wffs C, D

(x)6(x) 2 (E(x) 2 D(x) © (XID(x) pag peo cote.

2. (u)B 2 ((u}(z> Py 5 (u)F"'1) Instance of 1,

35. For any wifs C, D

(x)(c(x) @ p(x)) © ((Bx)c(x) @ (Ex)D(x)) Thm. &

be (rd (BD ((u)(B 2 FY) > (uF) cx of 2.

5. (By, )(u)B > (By ((u)(B2 F"*1) 2 (u)r™)
4, instance
of 3, MP,

Repeating steps 4, 5 with Ypo1? cvs Ys Ve obtain

6. (By) ... (Ey )(w)B> (By) ... (B,)((u)(B> FY)

> (2)F*)

Hence, by the hypothesis {~ A and MP

F (By)... (By )((u)(B2 Fh) 2 (u)F*Y)

that is, | Ay
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THEOLEM For every wff A we can effectively find a vff A’

in Skolem normal form such thet | A iff |= A’.

PROOF

1, By previous theorem we car find A® in closed

prenex normal form such that |= A ® }- A° .

2. Now by the construction given abcve we can, at each

step, reduce by cr tne number of existential

quantifiers whicn precede universal quantifiers.

From

a -h
(Ey) (u) B(y, u)

where

> — i NE.§
B(y, vw is (Qz) B"ly, 2, ul

ve get

— -- -d -
(Ey) ((w)(B(y, u) 2 F(y, u)) 2 (u)F(y, v))

which gives

- S

(Ey) (Eu)(B'(y, u, w)) which is

— KN a IN
(Ey) (Eu)(QzXw)B"(¥, u, z, w)

vhere w is new and where the quantifier (w) is

right-most in the prefix of B’ .

95



NOTE THE TRADE-OFF

For each universal we get on new existential.

Hence, for example, IVI becomes ZIV . This is

important in the consideration of redirection classes.

In addition, sincewe plan to use the Skolem normal

form to prove completeness, we need

A valid *» A' valid.

(Mendelson has already proved completeness, hence does not

need this step.)

THEOREM: A wff A is valid in a given non-emply domain iff

1ts Skolem normal form is valid in that domain. A wff is

valid iff its Skolem normal form is valid.

PROOF: Parallels the proof that |~ A ® | A', except that

wherever that proof makes use of a theorem, the present proof

makes use of the fact that the theoremis valid, and wherever

that proof makes use of a rule of inference the present proof

mist instead use the fact that the rule of inference preserves

validity (in an arbitrary non-empty domain).

Example 1 for Skolem normal form

(x) (G(x) = H(x)) 2 ((Ix)c(x) 2 (Ix)H(x])

Put into PNF. Already closed. Working L to R we would get
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(1) (3x) (y) (Ez) . (G(x) 2 H(x)) 2 (c(y) 2 H(z))

But if we chose to pull out the quantifiers in a

different order, we could get SNF immediately:

(2) (3x) (Ty) (z) . (G(x) = H(x)) = (c(z) 2 H{y)) .

To put (1) in SNF

(8x) « (NEF) ((6(x) 2 H(x)) > (G(y) = H(z))) F(x, ¥)))

= (y)¥(x, y)

(8x) (Ey) (Fz) (u) (((6(x) D H(x)) = (G(y) DH(2))) D F(x, ¥))

OD F(x, u)

i.e.

(2x) (8y) (32) (u) (6(x) D 1x D (Gly) D H(z) D F(x, ¥)

OD F(x, u))

N.B. We cannot always obtain SNF directly.

Proof: dV is unsolvable--All other prefixes with

3 quantifiers are solvable,

Example 2 for Skolem normal form

Mendelson, page 389,

(x)(v) (Ez) A(x, y, =z)
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where A 18 a quantifier-free wff with x, y, z as its

only free variables.

Rote: in this case we start with a universal quantifier,

Note: predict that final anawer will have prefix J3IVV

x) (vy) (32) A(x, vy, z) DF(x)) 2 (x)F(x)

where F is new. Now put in PRF:

(@x)(¥)(@)(v) . (A(x, ¥, z) DF(x)) DF(v)

Let this be

(Ex) (y)(3e){v) B(x, ¥, 2, Vv) .

Note that B is a quantifier-free wff. (dz)(v)B has x

and y free.

(@x)(()({32){+) B(x, ¥, 2, Vv) D a(x, ¥)) 2 (y)a(x, y))

where GG 18 new

(3x) Ay) (@z){v)(w) . (B(x, v, 2, v) D&(x, ¥)) D G(x, w)

which is

(Ix) (@y) (Fz) (v)(v) . ((((A(x, ¥, 2) DF(x)) DFlv)) D(x, y)

DO G(x, w))

Note prefix.
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Example 3 for Skolem normal form

(8x) (3y) F(x, vy, z) DO (3y) (Ez) Fly, 2, x)

Put into PNT.

(Ay) (Qu) (v)(w) . Flv, w, 2) DF(y, u, x)

Now need to get closed PNF.

(2) (x) ({@y) (qu) (v)(w . F(v, w, z) DF(y, u, x)

(2)((x)(Zy)(Zu) (v)(w)A 2 6(2)) 2 (2)a(z)

(32) (x) (y) Eu) (VI (w) (x) ((& 2 6{2)) D G(x,))

(82) (3x) (3y) (Au) (v) (w) (x) (x,)

((((A 26(2)) D 6x) D H(z, x)) DH(z, x,))

Or, using the left parenthesis convention

... ADG(z)D G(x, ) 2 H(z, x) D H(z, x5) .
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THE INFINITY LEMMA

There are a group of results which are closely connected

with the famous infinity lemmms, which can be stated thus:

The Infinity Lemma

If there is an infinite sequence Q Qs coe

of disjoint finite sets of ordered pairs of points such

that the first point of each pair in Q, ., (1=1,2, ...)

is the same ag the second point of some pair in Q»

then there is an infinite sequence of points Py LN coe

such that (p,, Pry) belongs to Q,, for every i.

Consider the set of finite paths each of which consists

of a member of Q followed by a member» of Ls and so on.

The set 18 infinite since each member of each Qo» for every

i, occurs as the last edge of some finite path. Hence, there

must be at least one pair (P,, P,) in Q which occurs in
infinitely many finite paths. All these finite paths must

contain as the second edges finitely many (P,, Py) in Q,

and hence there must be some Py such that there sre infinitely
many finite paths which begin with (P, P,) snd are followed

by (P,, Py) . Continuing thus, we get the desired infinite

sequence Py Fo» «ees Which makes up an infinite path.

To emphasize the nontrivial character of the infinity

lemma, consider a case where one point of level one is
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connected to an infinite number of points A, Ass A, coe

on level two such that A, goes to the (i+1)th level. In
such an example, there exists uo infinite path.

Lemma Law of Infinite Conjunction

Let Aly Ass .+« be an infinite sequence of propo-
sitional formulas such that for every n, there is an

assignment of truth-values which makes As A» veey A

simultaneously true. Then there is an assignment which

makes all of As A» ... simultaneously true.

PROOF: Using infinity lemma,
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Konig's Infinity Lemma

USERWEE

D. Konig, Theorie der endlichen and unendlichen Grarhen, Leipzig, 1936,
(Reprinted by Chelsea, 1950), pages 81-85.

Translated by Anthony Sholl
JIESEE

Thm6: (Unendlichkeitslemma): Let Myr Tp Types be a denumerably
infinite sequence of finite, nonempty, pairwise-disjoint

point sets. The points contained in the union of these sets

are taken as the nodal points of a graph G . If now G

has the property that each point of n,m =1,2,%...) is
connected to some point of =n by en edge*of G, then G
has at least one simple*¥*, infinite path P Pp, Py cess
where P_ (n =1,2,3...) is a point in noe

For the proof of this theorem we shall call a (finite) path in G

an S-path if its (pointe) belong by turns to Nis Rgsoees Ky There
are infinitely many S-paths in G, in fact, with the exception of the

points of Xx» every node of G is the terminus of some S-path. Each
S-path begins with an edge which connects a given point Py in Ty with

a point X, in n, Since there exist only a finite number of such
edges, one of the edges, say FP Ps must occur in infinitely many S-paths.
All of these S-paths contain as their second edges one of the finitely

many edges PX where x belongs to To 5 hence, there must be in
Ts a point Py with the property that infinitely many S-paths which
begin with P,F, also contain PF, . Continuing similarly, one defines
a point FR, in 0 Py in Ter and so on. The process cannot terminate,
and it leads to an infinite peth Py PoPyees of the desired type.

* By on edge of G is meant any path of length one between two nodes
wen path P/P,Py... is simple if for 1 Aj, P, A Py
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The infinity lemma proved here’ lends itself to applications not
only in graph theory - of which we shall give many examples later on ~-

but also in the various mathematical desciplines where often it provides

a useful method for extending cervain results from the finite to the

infinite domain. Three exsmples follow.

The first example concerns kindredship, which, in the form of the

genealogical tree, provides an oid aud well known application of graphs.

We show namely that if one takes as typothesis that mankind will never

become extinct, then there exists some person, alive now, who 18 the

ancestor of an unending line of descendents?)

Let LN be the set of persons alive at this moment; E, the set

of children of members of Ey Eg the set of children of members of
Ess and so on. By the hypothesis atove - and because of the finiteness

of human life - none of the sets Ei» E> Ere. is empty. Since a
given person can have only finitely many children, it follows from the

finiteness of E, that all the sets ES are finite. With each element

in a given set E, let us associate a point so that the set E, and
the point set ns correspond one-to-one (i = 1,2,3,...) 3) We take
the points of these sets rn, @s the nodes of a greph G . A node A

from Mel will be connected by en edge of G to a node B from x
if the person corresponding to the point A is child of the person cor-

responding to point B . Other edges are not admitted. The graph G

so defined and the sets un satisfy the conditions of the Infinity Lemma.
Application cf the lemma yields, therefore, an endless seguence

a,, 8, Bs ne with the property that a. is an element of By and
8,,, 152 child of a, Cousequently, a, is a contemporary person
of the desired type.

(1) This proof, as does the one above of theorem3, uses the axiom of
choice. In most applications of the infinity lemma, however, the use of
the axiom can be avoided. We shali not go into the matter further here.
(2) This says more than the assertion simply that there exists a person,
alive now, who has infinitely many descendents. That goes without saying.
(3) An ind:viduel can belong to more than one of the sets. E, . In that
cese we let anim correspond to different points according as hd is con-
stried as a member of one or another of the “generations” E;; the x,
are then disjoint.
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By a similar consideration, one cen show that the existence of an

endless male line follows from the interminability of the male sex.

Many instances of application of the Infinity Lemma are applications

of an anslogue of the Borel covering thecrem. It seems interesting to

notice, therefore, that from one point of view the Infinity Lemma may be

conceived as the real basis of these "Borelish" theorews. We shall pro-

ceed to reduce to the Infinity Lemma the following theorem of de la Vallee

Poussin which clearly subsumes Borel's theoremas a special case:

let FE be a closed subset of the interval (0, 1) and I,

a set of intervals so coustitated that each point of E is

contained in some one of these intervals. Then there is a

natural number n such that af one partitions (0,1) into 2"

equal subintervals, {hose subintervals which contain a point

of E are (themselves) included in some interval belonging

to the get 1 .

If the theorem were faise, then for each < value of > mn, there

would be at least one subinterval (=, ZH, where m is O or 1, or
2, Or ..., Or ot . 1, which con€aing a point of E and is included
in no interval belonging to 1 . We designate the set of these subinter-

vals by E . With each element of the set E, we associate 8 point in

such a manner that E and the point set n, are in one-to-one corres-

pondence (i = 1,2,3,...) . We take the points of these sets n, as the
nodes of a graph G . A node A from Tal is connected by an edge of
G toa node B from n in case the interval corresponding to A arises
from the interval corresponding to B by bisection; other edges are not

admitted. The graph G so defined and the point sets Ty satisfy the
conditions of the Infinity lemma. Application of the lemma gives the

following result. There exists an endless sequence of intervals,

8,5 a, Bypeee which all
1° Arise from predecessors by bisection;
2° "Contain a point of E

3© "Are included in no interval contained in I .
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Then, however, the pcint a common to the intervals 81s 8, 8y0ee is
contained in no interval which is a member of I . But that is impossible

because by the closure of E, a belongs to E . (This proof makes use

only of the theorem on nested intervals, :.i0t of the Bolzano-Weierstirass

theorem, and it remains valid for the plane, 3-space, etc.).

The third application of the Infinity Lemma is based on the following

so-called Baudet conjecture proved by van der Waerden.

a) If k and ! are two arbitrary natural numbers, then there

is.a number N (which depends on k end {) with the property

thet however one partitions the set 1,2,... N into k pairwise

disjoint parts, one cf these parts contains an (f-termed arith-

metic progression.

We do not prove this theorem here tut show that it is equivalent to the

following theorem:

BY If Xk and ! &8re arbitrary natural numbers and if one parti-

tions the totality of natursl numbers entirely arbitrarily into

k pairwise disjoint parts, at least one of these parts contains

an [(-termed arithmetic progression.

It is clear that PR) follows from J). The converse of ‘this assertion

goes through with the help of the Infinity Lemma as follows. We consider

as the set oN those partitions of the set Zz, = 1,2,...y Nn into k
disjoint parts which are so constituted that none of the < corresponding >

K parts contains an (-termed arithmetic progression; ho is, of course,
finite. If we assume that theorem «) is false, then none of the sets

E is empty. We associate points with the elements of the sets BE in
such a way that the sets E_ and the point sets x are in one-to-one

correspondence (n = 1,2.). A point of mel is connected by an edge
to a8 point , it" the corresponding elements A of E +1 and B
of E stand in the following relation. The partition B of 2. arises
from the partition A of Z .. by the deletion of the number "n+l",
The graph so defined and the sets ny satisfy the conditions of the

Infinity Lemma, which epplied, yields an endless sequence Ass Ay Ass
with the property that, for each

10%



1° A "is an element of E
2° Two numbers which belong to the same block of the

partition A also belong to the same block of the

partition A (therefore also to the same blocks of
Ao Apxr =e) .

If one assigns each pair of naturel numbers to the same cliass if and

only if these two numbers belong to the same block of some partition A
(therefore to the same block of all partitions A_ in which the two

numbers appear) he obtains a partition of the natural numbers into k

disjoint parts < where the blocks of this partition are the "clesses"

cited above > . By theorem 8) one of these blocks contains an f-termed

arithmetic progression. If N is the largest number of this progression

then this sequence must already be contained in some block of the parti-

tion Ay which belongs to the set Ee . This condition contradicts the
definition of the sets E_ . (One sees that this proof of the equivalence
of theorems «) and 8) remains valid when instead of arithmetic progres-

sions other classes of finite sets of numbers are taken inte consideration,

for example for geometric progressions, etc.)

104



BLANK PAGE =



Godel Completeness Theorem (See sisc Church §ih)

THEOREM: Every valid wff of the first-crder predicate

calculus is 8 theorem

PROOF:

A wff is velid iff its Skolem Normal Form is valid,

provable iff its Skolem Normal Form is provable. Therefore,

it suffices to consider oniy formules in Skolem normal form.

Further, we may assume thet the first quantifier is an exis-

tential, since if not, (Ey), where y is new, cen be pre-

fixed.

OUTLINE OF PROOF:

From A we will construct a seguence of formu.:-

Bl» Bs ++. of the propositional calculus such that:

(a; If for some k, Bj V «eo V By is 8 tautology,
A 1s a theourem.

(b) If there ir an assignment of truth-valu:s which

makes ~ Bry ~ Bs ... simultaneously “rue,

then there 1s an interpretationwhich satisfies

~ A, thet is, A is not valid.

(¢) But by (the law of infinite conjunction proved

by) theinfinity lemma, either for some Kk,

By V BL V ...V B, is a tautology (i.e. ~ B,
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&~B & ...&~B iss contradiction) or

there is an assigrment which makes ~ Bj, ~ Bs “oo

simultaneously true.

Thus, to prove the theorem we need only show how to

construct Bj, B)s ... and prove (a) snd (b).
For, by (a)-(¢), A is 8 theorem or A is not ralid,

i.e., A valid = A theorem . Let the given formula A

be

(Ey, ) cee (By) (2) ces (z My, cers Yop Zyr ees z |]

where Yio covs Vp 29 eves 2, BrE all the varisbles of M .

An ordering of m-tuples

We order all m-tuples of natural numbers as follows:

(i, «voy i)

comes before

(ye RE J)

if

) +... +1) < + ve.+ 3CAN CH i) < (3; Joy

or

+ ce. * iz (A. FF ees +(2) (3, 1) = (3; 3)
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and

) - PRI = i 4imp ce Y= dp hs Ska

for some k . Example for m= 3:

{0,0,0)

{0,0,1)

(0,1,0)

(1,0,0)

(0,0,2)

{0,1,1)

(0,2,0)

(1,0,1)

(1,1,0)

(2,0,0)

(0,0,3)

th
Let the k gi'h m-tuple be

(m+n) -tuples

th .
From the k m-tuple we Corm an associated (m+n)-

tuple:
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([x1], [x2], ..., (km), (k-1)n+l, ..., kn)

k=1 m=3 O00 (1 2

2 n=2 ool]3 4

3 0101}5 6

4 10017 8

p. 002 9 10

6 011 ces

motivate by prefix of =v A interpretation in domain natl.

nos.

v L

Definition of By, By, Cs Dy

Let B, be the result of substituting the new
variables:

Xa)? ke) °° lam)’ *(k-)ntl? 2 Yen

LOT Yi» Yor ves Vo Zs ees Zp in M. B is Mlx,,

Xgr Xr Xo xg] .

Let B; be formed from B, by replacing Bl...) by

Pg ) uniformly. I.e., to each atomic formula assign a
unique -tatement letter of the prop. calc.

\'4 sae Vv LdLet Cy be 8, B,

Let D_ be (x) (x,) coe (x, )Cy i.e., the closure

of Cy _ Note that the variables substituted for the z's
are new and distinct.
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(a) Lemma: For every k, f n= A .

Proof by inductior on k .

Basis: | D, = A

a a — >
(1) 3) My; Z) 2 (Ey)(2) My; 2]

argunent:

B(x) 2 (8x) B(x) (x)B(x) 2 B(x)
and prop. calc.
Axiom U4

Bo @y,)(

@y,) (2M > (By) (Fy) (2)M

(By, +o. @y)(2)M> (Fy) (2m

and (A2 B) A(BDC)DADC prop. cale.

and M.P.

(2) (2)MIx,, veey XG 2] DA

(2IMyyy vos v3 212A (1)

(My), oy ys 130) |
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(v) (@Mlyys -eey vps 212 A)
wh --

=. (z)Mly,, cecs Yop12 Xe z) A 4 (no x,
quantifiers)

(2)Mly,, veer Vp Xob 2] DA MP

do this m times.

(2) (x,) ces (x Mix, ceer Xoi Xs eee x 12 A

change of bound variable n times.

(4) (xy) (x,) ces (x Mix, veer Xgi Xpp seep x] DA

argument:

(xy) [(x)) cee (x IM > A] GEN

(x(x) ... (x)M2 (x)A Thm.3 and MP

> ({x)A> (x)B)

(x, )(x,) «coe (x )MDA by Thm. 9

and Replacement
x not free in

A.

Induction Step

Assume | Dy >A and show I~ DOA.

Note that C_ is (¢_; Vv B); D, is (xg) coe (xy)

(Cpy VB
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- Vv oooFoe (xg) eer (pen)? (Gy VX(aee1ymed)
(x. )B,) Axiom 5
oR Noting that

X(k=1)ntl ...

(x) are not
free in C1 .
(They were z-
values, new at
th

Kk m+n~tuple.)

(x) (~ A(x) 2 B(x)) © ((Ex) ~ A(x) = (Ex) B(x))
Theorem 4

(x) (A(x) V B(x)) 2 ({x)A(x) V (Ex) B(x))
by teut. from
Theorem L.

= VvI~ D, (x4) cas (X (110) Cke1 (Ex) by above
s~hema.

tp 2 (0, VA) ilph. change
1. vbl. (m+n) .

b= D> A P.op. calc. and
hypothesis

> VvD, (D,_; A)
ACD, VA)

>

D A

Now “f BJ V ...V B, is a tautology, any instance of

it is a theorem, hence B, Voeao V By is 8 theorem.

But this is C, . But then by GEN, D,_ = (x) ces

(x, JC is a theorem. Hence by the above, and MP,
A is ea theorem.

(bp) Suppose there is some a:ssijynment of truth-values

which makes ~ Bj y ~ By «eo» similteneously true.
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From this (master) assignment we construct an inter-

pretation (in the domain D of the natural numbers)

which satisfies ~ A .

To the q-adic predicate letter F assign a

Q-place relation R; as follows: If Fix coop

x, }) receives true, or is unassigned, in the master

assignment, put (1,, coey i in Ro . Otherwise
(1, cess iy! ¢ Rp . This interpretation makes ~ A
true, hence A false.

Proof: ~A is (yy) cos (v,) (Ez) cee (Ez ) ~M,
Consider an arbitrary m=tuple of elements of D,

say the nl m=tuple. We must show that there

exist other elements of D such that ~M.,

But the KEP (mtn) -tuple gives us the other

elemcnts: (k-l)ntl, ..., kn . For ~B is

true under the master assignment to the Pr(x,

coe Xg)s and the interpretation gives F(i, ...,
Jj) tte same tv as PR(x, coe xy) 3 hence, under
the interpretation ~ M[[kl1], ..., [km], (k=l)

n+l, ..., kn] is true.

Corollary: (Skolem-Lowenheim Theorem) If A is

gsatisfiable, then it is sstisfiable in as denumerable

domain. [By soundness. ~ A not

satisfiable in denumerable domain = = A= ~ A not |

satisfiasble in tay domain.])
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Corollary: (Herbrand Theorem) If A is a wff in

SNF and if B_ (subst. k' (mtn)-tuple) and C. = VE _B
k k i=1"1

are a3 above, then A is #2 theorem iff there is some

k such that Cpe is an instance of a tautology.

Note that this yields a proof procedure.
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Remarks on the Completeness Theorem

Alternative proofs and reasons for this choice.

Constructive. Gives the domain.

Applications.

Examples: Non-theorem

Theorem

Note why this does not yleld s decision procedure.

Proof procedures.

Theorem-proving by computer.

non-SNF: Enumerations.

Consequent complications of proof.

non-PNF: Herbrand Theorem.

Decisicn tables

Reduction to monedic for (Ey) (2,) cee (z)

Solvable prefix cases.

Reduction classes.

Interprovebility of

(x) (y)IM (Ex) (y)M (Ex) (Ey)M

(y) (x)M (Ey) (x)M (Ey) (Ex)M

(x) (Ey)M

(y) (Ex)M

11k



Satisfisbility in a Denumerable Domain D

Remark: By the Skolem Lowenheim Theorem, which followed as

a corollary of the proof of the Godel Completeness Theorem,

a formula A is satisfisble iff it is satisfieble in some

denumerable domain.

Therefore, we consider a way of attempting “o satisfy

a wff A in a denumersble domain: i.e., of trying to fird

an interpretation which makes A true. By the result on

the Skolem Normsl Form we need consider for provability only

formulas of the form  .",) ees (Ey,) (z,) cos (2 IM,
M gqg-free, hence for :.tisfiability only formules of the form

(%) (vy) or) (zy) ooo (20M, M g-free .

In order to satisfy (*) we mist find an interpretation, i.e.,

a denumerable domain and an assignment of relations Lo the

predicate letters of M, such that (*) is true under the

interpretation.

Decision Tables

An example: consider the wif

(x) (Ey)¥

where M is ~ F(x, x) & ~ F(x, y¥) and suppose we wished

11%



to show that this is satisfiable in some denumerable domain.

We must find some relation Rp to correspond to F .

The formula must be true, i.e., for every a € D,

there must be some b « D such that ~ F(a, a) & ~ F(a, b) .

We represent the problem by a Decision Table (Church): As

heading we put first the individual). variables, then the

atomic formulas.

X Fix, Xx F(x

Now for any € D, there must be some b such that:

a b F(a, a) F(a, b)

0 0

Le@ay (a, a) ¢ Ry (a, b) ¢ Ry

EXAMPLE

Satisfiability (in a denumersble domain D ) of

(x)(Ey)-M, where M is a quantifier-free matrix which

contains at most the atomic formulas F(x, x), F(x, y),

F(y, x), and F(y, y) -

x y F(x, x) F(x, y) Fy, x) My, y)

0 1 F(0, 0) F(0, 1) F(1, 0) F(1, 1)

1 2 ——

Suppose M is F(x, x) V P(x, y) . Then -M is -F(x, x)

& -F(x, y) . To satisfy (x)(Ey)-M, we must find some

relation to correspond to F for which the formula is true.
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We need a relation R such that for every element a D

there is some element b D such that (a, a) R and

(a, ®) R.

Using the decision table we can find such a relation:

a b F(a, a) F(a, b)

0 0

0 1 0) 0

1 2 0 0

In this cast it is clear that the empty relation R will

satisfy the formula. Hence, since the negation is satis-

fiable, the formals (Ex)(y)M is not a theorem.
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NAIVE SET THEORY

A set is » collection of objects. Centor: “A jet

is o collection into a whole of definite, well-distinguished

objects of our intuition or of our thought.”

The chjects in the collection are called elsments or

members of the set. x ey for x 1s e memberof ¥ ,
~(x ¢ y- is written x ¢y .

A set x is » subset of y if every member of Xx

is also a memberof yy. xS vy.

To give wu set, list its meniers

x = {0, 1, 2, cool y Or

uss a defining property

y = (x|a(x))

¢

where A(x) 1s a predicate with only x free

y = {x|x is a prime number} .

Unit set or singleton is a set with one member. {3}

Importance of the distinction between member and

subset. x € Aw {x} CA. Example:
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The empLy sek is a set with no wembe.s. fl or [). Fote

that # 14 not the seme as (f). In fact, $e (Pf) .

Also, $C (ff).

Sst equalit,

x=y iff xy and yS x.

Or,

(2)(sex®zey) .

Union snd intersection

x Uys{elz exVeey)

x Ny= (ele exAzeyl

x end y are digjoint iff x Ny =§.

Complements

~Aw (xx ¢ A)

x~A={ylye xAy <A

Theorea: PSAABCSACAUD

Theprem: let ASX, BS X., Then ATSB iff

ANBuiA iff B=AUD ff X~DCX~A iff

ANX~Buf iff (X~A) UB=X.,
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Theorem: Let A, 3, C end X be seis. Then

(8) Xa (X= A) sANX

(vb) (Commutative laws) A UB «BUA

ANBs2NA

(¢) (Associative laws) AU (BUC) = (AUB) UC

| AN(BNC) =)ANDB AC

(d) (Distributive laws)

AN{(BUC)=(ANB) U(ANC) "and
\

AU (BNC)

(e) (Ae Morgan's laws) |

X~ (AUB) = (X~A) N(X~D) ond

X~ (ANB) =» (X~A)U(X~B)

Presfs:

(4) AN(BUC) =(ANB)U (ANC)

xXecAN BUC)® xeA& x e (BUC)

® x¢A & (xeB V x¢C)

® yeh & xcB V xecA & x¢C

® x¢cA NB V xeA NC

ox¢ (ANB) U(ANC
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lhe caraina. numtsr ot a set of rr e€l=Mei's 1S UN Th=

cardins. rumrey of the empty s«<t 1s O

INFINITE SETE

DEFINITION: Two sets A and B are €qulnum-rous (A> bh

it't thelr elements can b= PLU Int2 OLe «fe. 00s

r~cyornderce (1. , there 18 3 2L- One tinction

“ wlth range FEF 8nd aora.r A

DERI! "TION A snd B have tro same cardinal nunuer LUT

A~- . if A~EBE CB and not b- A' CA

Ther, the cardinal number oF A is less "-an

*he cardinal number of EB A - .ard A

cardiual ramuver of A

DEFINITION. (I~dekind, A set is infinite 1f 1* 1s ~q.i-

rumeroas with some proper subs=t of itself

O*rnerwise it 18 finite

LEFINITION A set 1s finite af it is ~mpty or if 1t 1s

cQuUlrumercus with the set {c. Le 2, Cy I 3

of a.l ratural numbe s l=s8 i1han positive

integer no. Otherwise it is infinite

REMARK: The two definitions are equivalent, bur the

proof of their equivalence requires the Axiom

or Croice

CETINITION A set is derumeratle or countat'y infinite af

it 1s equinumerous with the set of all natural

numbers. A denumerable set is §81d 10 nave

cardinaiity >
122
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DEFINITION: A set is countgble if it is finite or count-

ably infinite.

DEFINITION: A set is uncountable (nondenumerable, non-

enumerable) if it is not countable.

THEOREM 1: (Cantor) The set of sll retionsl numbers is

countable.

PROOF: We can imsgine te be written down in order of magni-

tude, first, all whole numbers, i.e., all numbers with

denominator 1; then all frections with denomingtor 2; then

al. fractions with denominator 3, etc. There arise in this

manner the rows of numbers

1 oz 2 / 4
2 / 2 2? | J J
i 2 2 nd

3 Va by) 3 te
2 b

t ££

If we write down the numbers in the order of succession

indicated by the line drswn in (lesving out numbers which

ere equal to ones vhich have alresdy occurred), then
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every positive raticnal number certainly appears, and only

once. The totality of these rational numbers is thus

written as a sequence

1, 2, 1/2, 1/3, 3, &, 3/2, 2/3, 1/4, ....

(This is Cantor’s first diagonal argument.) If we denote

the above sequence by

r., T, Ts .o

then

o, “Tyr TY.» “Tos r,, eve

is an enumeration of all the rational numbers.

DEFINITION: Power set The power set of a set x is the

set of all subsets of x . F(x)

Ac Px)oAcxe (x|xeA=» xex)

Example: The set {0,1} bas power set ({ ), (0},

(1), €0,1})). Note that for a finite set of

n members the size {cardinal number) of the

power set is 2" .

DEFINITION: We have denoted by Xx, the number of integers.
It is natural to denote by Xo the site of
the power set, that is, the number of subsets

of integers.
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os

THF.OREM: 2% > xX, ;
PROOF:

.ntegers

Z : ‘ y es
subsets : SE

pv 0)

S, 1 O g oan

S 0 1 : 1 if the
integer

Sy 1 i “ is ir thesubset, O
. otherwise.

Now, diagonalize -- construct a set not in the list.

Xx cS: ®x £8
x

THEOREM: Txe set of reals is uncountable.

PROOF : Same. 11st,

Ir, 0 9 i 0 “en

I, 8 1 3 1 ves

IT,
J

tren the diagonal can be modified to give a real which

differs from tne nt? real in the nt? piace,

FN

2 if a'" =

Set. d = (n) «
1 if a £
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The principles Cantor employed had

previously been used for arguments about finite sets. le

was the first to extend them to infinite sets. His work

met with some disapproval and distrust, but his arguments

appeared sound.

But, in 1902, the theory of sets was challenged by

the discovery by Russell of a peradox.

RUBSELL's PARADOX (1902)

With the notetion of naive set theory we can write:

y = (x]x ¢ x)

80 y is the set of all sets which are nut members of

themselves. Is yey?

If yes, then y €¢ y, hence y elx|x {¢ x) hence vyE€y.

If no, then y £y, hence y #lx|x¢ x} hence yey.

What's wr ng?
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AXIOMATIC BET THEORY

A result of the discovery of the paradoxes of naive

set theory wes an ettempt to axiometize set theery. Since

it wa: clesr that te rely on the intuitive netien led to

paracex, the solution appeared to be to state precisely the

axiomatic basis for the theory. The basic preblem appeared

to be that we cannot consider sets which are too big. There

are teveral such axiomatizastiens which so far appear to be

consistent (contradiction-free). The most important of

them ure the system E£-F of Zemelo and Fraenkel. end the

system NGB of von Neumsnn, Goedel, and Barnays. By Godel's

second incompleteness theorem we know that no such system

can be proved to be consistent (without using methods which

are in some sense more powerful than those of set theory.)

Problems with sets which are too big.

So meybe we should start with very amall sets (which

we can understand), and build up slowly in ways that seew

reasonable.

Axioms of Set Theory

The system Z-F below is due to Zermelo and Frases).

(The major alternative NBG (von Neumann, Berneys, and

Gedel) is given in Mendelson. NBG distinguishes between
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| sets (which may be elements), snd glagses (which cannot be

elements)).

Notice that all axioms after the first assert set

existence.

We start with predicate calculus, and introduce ¢

as a nev primitive symbol.

l, Axiom of Extension

| xey2 (W{xew 2 yew

Compare the definition of equality (z){(z e x® z cy). A

set is determined by its elements. That is, if two sets

| have the seme members, then everything true of one is true

of the other.

2. Axigy of Unerdered Pairs

Given sets x and y, {x,y} is a set:

(Bw)(z)(s ew 8 (gx V £=y)]

BNete that ea a special case (x) exists.

) Por any set x, the set of all subsets of x (the

pover set of Xx ) exists.

EYE) xey » (W(vex 2 wez)]

or

(s)E)(x)[x ey ® x€z]
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or

2V Eydy = 22

hy, Axiom of Unions

“2M EyMxYx ey = ‘=Vx oo. & woe 2)]

or

WEY)ly = U,

5._ Ausscnderungsaxiom axiom of cpezificatizn or Subsets)

Giver 4 set 2z and a pred:cae Ax) (or zr VY,

not containing free y, there 18 a g.bset <1 2 containing

a.” and only those sets x s.in *ns*% = x! 1S true

(xAyM xx ey = xcz & pix")

Compare “his w..n *ne naive notion

a TE 2
x = iylafyll

See now this resclves the Russel. paraccx, This gives ithe

null set.

6. Axicm of Infinity

There 1s a set wnich co alas the enp*y set and wnicn,

for every menber ct x, contsinc aisC ‘ne unit set of x

9



(Be) ez & (x)(x ez O (x} ez)!

7. Axiom of Regulsrity (Fundierungsaxiom)

Any nonempty set x contains a set y which is eo

minimal element.

By)(yex) 2 EBy){yex & ~F2)[zex & z ey)

8. Axiom ef Substitution (or Replacement) (Ersetzingsaxiom)

Jf the domein of a 1 - 1 function is & set, sc is

the range. |

Yt A(u, v) 1s a function, i.e.,

x) (Y) (=) (0) ([A(x, y) & Ale, W))2 (x =z) & (y=w))

then, if thers is a set of ell sets u such thet

(Bv)A(u, v), then there is s set of all sets v such that

(Pu)A(u, v) .

9. Axiom of Choice

If x is e set of non-empty disjoint elements, then

the union of x has at least one subset u having one and

only one element in common with each member of x .

x) {((y)()([yex & 2 ¢ x]

S(ww cy & ~(Bw)(wey & wez)l)

Co (Ew) (Pyex DO (Bt) (t=v & teu & tay]

130



The Cartesien product of a non-empty family of non-

empty sets is non-empty.

Axiom of Choice (AxCh)

If «=A, = § is a function defined for all o ¢ x,

then there exists another function f(@) for o ¢ x, and

f(a) e A, 3

This allows us to do an infinite amount of "choosing"

even though we have no property which would define the choice

function and allow us to use Replacement lnatead.

We used AxCh in the Completeness Proof:

(x) (Ty) A(x, y)

then

| (If) (x) A(x, £(¥)) .

The existence of the Skolem function f follows from the

Axiom of Choice.

Alternative Formulations of the Axiom of Choice

l. The Certesisn product of a non-empty {amily of
1}

non-empty sets is non-empty.

2. Given a non-empty cless K of disjoint non-empty

gets there exists a function f with range K such that

f(x) €e x for all members x of K.
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Tris is provable by induction for finite K .

A choice functien. Intuitively, the function f

selects ene element of each member A of K .

3. Well-oxdering principle. Every set can be well-

ordered. A set is well-ordered if every non-empty subset

has a least element.

hb, __. lewms. If X is a non-empty partially-

ordered get such that every chain in X has en upper beund,

then X contains es maximal element.

Axlieg of Choice

Of the axioms of set theory, the AXIOM OF CHOICE

(given a family K of disjoint non-empty set I f£ such

thet f(x) ¢e x for each x in K ) has seemed always to

be less intuitively obvious than the others. Its expression

is more complex end does not seem reducible to more basic

notions. It has not been obvious thet it might not be

either contradictory--or else perhaps derivable from the

others.

In 1939, Godel, in a paper in the Proceedings of the

National Academy of Sciences, followed in 1940 by an orenge-

covered publication, entitled, "The Consistency of the Axiom

of Choice and of the Generalized Continuum Hypethesis with

| the Axioms of Set Theory," generally known as "The Menograph,"

proved that if the other axioms of set theory are censistent,
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then set theory remsinz consistent if the Axiom of Choice

and the Generalized ‘ontinuum Hypothesis are added.

Then, in 1962 63, Psul J. Cohen of the Mathematics

Depsrtment at Stanford University proved another equally

important and interesting result. The Axiom of Choice is

in fact independent. That is, the axioms of set theory, if

consistent, remain so, even if we assume that the axiom of

choice is false. This shows, of course, that the Axiom of

Choice is not a consequence of the other axioms, Further-

more, the continuum hypotheeis is independent from the

Axiom of Choice.

The proof of these results is beyond the scope of

this course. See Peul J. Cohen, Set Theory and the Cortinuum

Hypothesis, W. A. Benjamin, Inc., New York. 1966.

X,
Let c¢ = power of the continuum = 2 .

Continuum Hypothesis

There is no A such that

N<h< 2%,

Godel, 1959. Relative consistency of (AxCh) and GCH.

Cohen, 1963. Independence of AxCh and GCH and of GCH from

AxCh. Cohen believes OCH is false.

PROOFS: by constructing models for the axioms of set theory

which satisfy AxCh, GCH (Godel) violste AxCh, GCH (Cohen).
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Computer Bcience 208

ALGORITHME

DECISION PROBLEM (Entscheidungsproblem): Find an effective

method to determine for eny wff @ of the first-order

predicate calculus whether or not G@ is s theorem.

Suppose we hed 8 suspicion thet this wes impossidle

-=that there was no effective way of doing this; that there

ves no effectively calculable function f which when applied

to a number X representing & would produce 1 if | @,

0 otherwise. How could we prove this?

Notice first that effective or effectively calculable

is a good intuitive notion:

1. Some processes are clearly effective. (Deduction

theorem, truth-tables, etc.)

2. Of other functions we cen certainly say that we

don't know enough sbout them to tell.

But to prove that some function is not effectively

calculeble we must have 8 precise notion. Suppose we meke

some essumption in the form:

THESIS: Every effectively calculsble function is

or

Every effective procecs is i
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vhere the blenk is filled in by some precise notion. Then

ve would be able to prove--1o everyone who accepted our

thesis--thet certain functions are not effectively calculeble.

The proofs will all be relative to the thesis. And.

the thesis itself is not subject to proof since it involves

an intuitive notion. We cannot prove the thesis. But we

can give what is called "the evidence for the thesis”.

Most people accept the thesis to be presented. Notice

that even if you do not, the proofs which will follow are

still proofs--but they must then be qualified as relative

to the thesis.

The THESIS has a number of versions. Perhaps the

strongest evidence for it is that they are all equivalent,

even though they have arisen under quite varied circumstances.

TURING'S THESIS: EVERY EFFECTIVELY CAICULAELE FUNCTION XS

COMPUTABLE: BY A ‘KING MACHINE.

CHURCH'S THESIS: EVERY EFFECTIVELY CALCULABLE (partial)

FUNCTION IS GENERAL (pertisl) RECURSIVE.

MARKOV®S NORMALIZATIUI: PRINCIPLE: Every algorithm in en

alphabet A 1s fully equivalent relative to A te

some normal (Markov) algorithm over A .

Similar, and equivalent, theses can be stated for Post

perme] systems, and for Adefinability.
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| iw asvidence for Church's thesis (Kisepe) :

(A) teuristic evidence

(Al) Every particular effectively calculable functiom,

ed cvery operation for defining s function effectively

fiom other functions, for which the question has been

investigated, has proved to be general recursive.

(A2) The method: for showing effectively calculable

functions to be general recursive are developed to a

degree that it 1s impossible to imagine eny effective

process for evelusting a function which could not be

| transformed b; these methods into a general recursive

definition of th functiea.

(A3) Every attempt 0 get a function outside the class

of general recursive function has either (1) not lead

outside, or (2) given e function which is not effectively

calculable.

(B) Equivalence of diverse formulations

(Bl) As discussed above.

(B2) Stability of each of the notions. The several

formulations of each of the main notions are equivalent.

(To be shown for Turing machines.)

(C) The direct formulation of Turing machines from that

of effective process.
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Lat us first consider informally the criteria which we

wouia expect of an effective vrecedure. We look at the

notion of algorithm, an effective process which always

terminates.

An algorithmis a clericel (i.e., deterministic :ook-

keeping) procedure which cen be applied to gny of a certain

class of symbc.ic inputs, end which will eventually yield,

for each such input, a corresponding symbelic output. We

limit ourselves here to algorithms which take as input

integers (or k-tuples of integers), and whigh output integers.

Well-known exemples of algorithms ares

The sieve methed for finding the n-th prime number. |

ihe Euclidean algorithm for finding the greatest commen |

denominator of x and y .

The following are some essential features of the infermsl |

notion of algorithm (see Rogers):

*1. An algorithm is giver. as a finite set P of

instructions.

*2, There is a computing agent L, frequently human,

which reects to the instructions and carries out

the computation.

*3. There are fgcilities for making, storing, amd

retrieving ateps in a computation.

*4. The sgent L reacts to the imstructions of P

in a discrete stepwise fashion, without using

continuous methods or snalog devices.
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*5. The cemputaties is carri~d ferward deterministically

. ==there are ne random elements to be considered.

It is clear that the motion described contains a strong 3

analogy te the descriptien which could he made of any compu-

tation carried out by a digitel computes. The notion of

Turing machines dates back to 1936,

In sddition to the criteria 1-5 sbove, there are other

possible requirements which we might impose on the notion of

elgorithm. These requirements cencern bounds on space and

time. For exsmple, we might (but do not) require the

following:

6. A fixed bound on the siza of inputs.

7: A fixed bound on the siz. of the set of instructions.

8. A fixed bound on. the amount of storage space avail-

able.

9. A fixed bound on tne length of the computation. :

However, because it is possible to show that many functions

which one would generally agree can be corputed by algorithms

cannot be computed within these restrictions 6-9, these are

not to be taken as part of our informal definition.

By accepting one or mere of €~9, one can define inter-

esting subclasses of funciiens and machines. These are being

increasingly studied.

Even without 6-9, tne petion above does place strong

limitations on the capacity end ability of the comput ing

agent. The agent can be restricted te
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i. Clerical operations suck as

read a symbol

move one symbol at a time backward or forward in

the computation

move backward or forwerd through the instructions

write a symbol

ii. Fixed finite short term memory

111. Fixed finite set of simple rules determining the

operation to perform, snd the next state of the

short term memory.

We now describe the Turing machine, and will claim

(Turing's thesis) that it formalizes the above notion.

Definition of a Turing Machine

Informslly

A Turing machine carries out its operations on a two-

way potentielly infinite tape which is divided into squares:

Fig. 1 (Davie)

By potentially infinite we mean that although the tape is

at any time finite in length. additional squares can slways

pe added at eithc:r the right or left-nuad end of the tapes
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There is & finite set of tape symbols S5,, B,, rev) 8S

called the glphsbet of the machine. (Turing argues convinc-

- ingly ti.at a finite set must suffice, since if the set were
infinite, th re would have to be symbols which differed by

arbitrarily small amounts of printers’ ink, were thus

"arbitrarily close” and hence indistinguishable)

The mechine has a finite set of internal states |

qr 0 Gy And at any given moment the machine 1s said

to be in one of these states. Finslly, there 1s a reading

and writing head which at any moment stands over (scans)

| some square of the tape. \

The machine just described acts only at discrete

: | monehits of time. And it 1s very limited in the acts it can

: perform.

| If at a. time t, the reading head is scanning a

squere containing a symbol 8, end the machine 1s in state

q4 the next action, if any, of the machine is completely
| determined by an instruction set and must be cone of the

| | following: |
- 1. Erase 54 and print - new symbol and change state.

2. Move one square left, change state.

3, Move one square right, change state.

4. Btop. | |

These actions can be represented by quadruples (following

Post, rather than Turing, who used quintuples):

1. 45:8, a,. ( 1 way equal k )
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2. q,5,1q,

> 4q,3;Rq,

4 gbsence of any quadrup!e beginning q,5,

The symbol So 18 taker te represent The bial Thus the

machine always scan: some symbol

The Turing mach ne B8ccepts ar input go marked tape and

begins in state q, scanning the te!s moot symbol Ihe ou’

put is tgken to be the contents of tne tape at the time, 1f

any, wher the machine stops.

Formally:

DEFINITION: A Turing machine T 1s a finite set of quadru-

ples of the above 3 Kinds-- such that no two

juedruples have the same first two symbols

(deterministic)

DEFINITION. The glphabet of T 1s the set of tape symbols

8; whicti appear in th- quadruples of T .

S, = blank =: B

DEFINITION: The internal states of T are the symbols 44

which occur in the quedruples of T7T q is

taken to be the initial state

DEFINITION An instantageous description (complete config-

aration) of T 1s a word such that

i. All symbols but one arc tape eymbels of T
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ii. One state 3ymbol 9 occurs in the

descriptior. but is not tie last symbol

of the description.

DEFINITION: T moves one instantaneous description «a into

another B; ag ga if |

and smong

a_ is B_is_ the quads is

Pe;5,Q Pq 5,Q 94545,

Pq,8,8,Q PS,q,8,Q yB4Re,

Pq, 8, PB4q,S,

PS,q;5,Q Pq,8,8,Q 1;541a,

DEFINITION: T halts at an instsntanecus description «

iff there is no PB such that = T B .

DEFINITION: A computation of T is a finite sequence of

instantaneous descriptions EN) a seep OO

such that q is the left-most symbol of Xs

, 70, for 0<i<nm spd T halts on
a.
m
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Represeatation of intégery

Let 8, be 1 .

PEL forsny m20 .

let 8, ve * , let Tix) vevyg x) be » function.

T computes f Aff with input RK 4 Ry * ... *

T halts only on R948; with RR, = Q and Q is =

Ry fk), Ky» crag k Ry with Ry» R, possibly empty words
consisting of 8,'s only. (Mendelson)

T computes f{ 1ff with input aa ebove T halts

only on @ where (@ )e rk, ey kJ, vhere for any
expression M, (M) is the number of eccurrences of 1 in

M . (Davis)

Examples

| Successor function f(x) = x + 1

Mendelson q,1lq, Bevis q, BBg,

q Sola or none

Exemple

q)ila,

BSoley

| keeps on adding 1 to the left whenever the initial word

starts with 1 |
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Invariance of Turing Machines

We have given us perticular definition of Turing

machant in which we have specified that

the instructions are quadruples of g certain form,

the tape is 2-way infinite,

theve is erasing (i.e., we can overprint sny symbol

with 5, ) and there may be any finite number of

symbols, end

there is only one tape.

Each of these conditions is inessential.

TEOMEN: A T™ with instructions which are quintuples van

compute precisely the same functicns as one whose instruce

tions ere quadruples.

Comment: The two formuletlons are not equivalent in all

senses since, for example, with quintuplec a universal

Turing machine can be constructed with only two states

(Shannon), though not with just one (Shannon); whereas with

quadruples at least three states are required (Aanderas).

However, the differences do not effect the clasa of functions

computed, but all concern measures for minimal machines.

PROOF:

1. Quints to gueds

?

Replace each 98,5, lag by q;S15x34

PRIVEE
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where q, is 8 new stete. Similarly for

1,8 55, Ry,

2- Quads to quints

Replace each q,8,Lay by q;8,5,1ey

5,Rq by 9,545, RF .

But gq ints must move, so replace each

9,8,8,9, by 9;5.;5,lq,

Qy rew and add the ! instructions
|

5,5, Ray for sll B, o

NOTE: Adventage is fewer instructions.

Example: f(x) = 2x Using Davis' convention

q, 1 B R , erase extra 1
a, 1 1'R 9 mark 1 to 1° to indicate "copied"
Qs 1 1 R 9
% 1" 1" R 9, move R to first B end write 1°
Qs B 1" R %
9, B BL q,
q 1" 1" L oq move L until 1 or 1' is

| | : ’
q ! 1" R 9 encountered: go to Qs or 4
QU 1 1 L 3
Qs 1 1 L i move to left-most 1
qs 1" 1' RA GL
4 1" 1 R © now have <' 1' ... } Ray iy sen ) bo
qsB B ve) change 1" 's ~ to 1's
q;, L 1 Lag, gcL to 1° 's and change them
q, 1° 1 Lo) to 1's
4 B re no instruction

Under Mendelson'’s convention we would skip first instruction

and’ use q, for GY -
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Exagple: f(x) =2x in guedriples

yi TRIER

“% 1 1 A 4, 1' R “

vik

GR
CRA BUR
URED

ow Loe

wy Rh

%, 1 L 4

CRE

CRE

% 1% 61%

Ll

wily

4 1' 1 4 4 1 L 4,

THEOREN: A one-way infinite tape suffices.

Comments: Was used by Turing.

Frequently more useful in applications; the

decision problem proof uses them.

| | 7



FROOT: Told the tape,

0-1 1.2 2-3 ;

and modify the program.

THEGIEN: (Weng) Erssing is dispenssble.

Compgmt: Therefore, computers could get by with paper tape.

THEOREM: Two-symbola suffice.

PROOY: Use a suitable encoding.

bab, baab, bassd, ...

or use log, n squares.

THEOMEM: Programmed Turing machines will de, (Wang) .

-— R |

—~ L

& write © |

T(«, n) conditional transfer.

To te done in detail later (S38).
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THEOREM: Two-stetes suffice. (Shannon)

THEOREM: Triples suffice (exercise).

Various extensions: n-tapes; n-dimensional tapes;

Jumps; ete.

A numbering of Turing machines

Since each Turing machine is formally 8 set of gua-

druples, it is possible to assign numbers to them £0 that

ve may refer to the n-th Turing machine. For example, we

might use Godel musbers:

Suppose we assign to each of the symbols which may

occur in a quadruple of some Turing machine a distinct odd

number > 3 . Viet

> 5 TT 9 11 13 1% 17 .

RL 8B oq 8 a 5 a

Then the Godel number (gn) of a quedruple is

' 8, r_ i
. - J ~ /

vhere 4a, b, ¢, 4 are the gn of the 4 symbols.

Example:

en(q,S Rey) = 231167713
149



Further, with a sequence M, N,, M af quadruples,

w- ugsociate the gn: . |

8M) andy) End)

where Pr(n) = n-th prime.

The numbering here is not unique since we have not specified

an order for the quadruples. Thus, each TM hes n! gn,

where n 1s the number of quadruples. But given these gn

we can find a unique gn for each Turing machine by simply

taking the smallest of the n! numbers.

Fundamental Theorem of Arithmetic (For proof see Appendix

| to Davis):

Every integer x > 1 can be represented in the form

p, 1p, 2 . pK vhere the p; are unique primes. More-
over, this representation is unique except for the order-of

| the factors. By the Fundempental Theorem, no two of the gn

_ which we have produced are the same.

This gives a mapping of TM into the inlegers. Note

| that given any number we can tell whether or not it is the

| gn of a ™ From these numbers we can then obtain an

onto mapping by assigning 1 to the TM given by the small-

est such gn, 2 to the next (unless some permutstionef

the quads has already been counted), end so on. We shall i

thus speak of the n-th TM assuming that some such serial

numbering has been sdopted.

150



Universal Turing Mschine)

Eech Turing machine appears to correspond to a |

specisl~-purposs digital computer. One of the main results

of Turing's peper was the description of the Universal

Turing Mschine, which in a sense corresponds to a general-

purpose machine. The UTM, given a suitsbly encoded version

of an arbitrary Turing machine T and an input n, produces

the same output as T doee with input n .

Note that the gn of T could be used as the encoding

of T.

Minimal Turing machines

Turing machines can be classified in complexity by
the state-sysbol product (a measure introduced by Shannon).

The following problem then arises: what is the minimal

state-symbol product for a UTM. The current best solution

is due to John Cocke and Marvin Minsky, who have shown that

4 states and 7 symbols suffice. oo

If we allow more than 1 tape, the result cm be

improved. Hooper (1963) proved that 2 states, 3 symbols,

and 2 tapes suffice; likewise that 1 state, 2 symbols, and

4 tapes suffice, even requiring that one of the tapes be a

fixed loop. |
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Regd: Trakhtenbrot

THE HALTING PROBLEM

We ere now in & position to present an unsolvpble

prébles. Note that sn unsolvable problem is actually an

unsolvable clgss of problems.

| HP: Given the number n of a ™ and an input m, does

™ n healt for input m ?

We suppose that there exists such a machine and

derive a contradiction. Let ™, be the machine which

solves the problem. That is, T™, computes the functior

P,° |

1 if ™ halts on m
9, (m,n) =

0 otherwise

We show that given ™ we can effectively constyuct a

™,. which is self-contradictory. |
| 1, We can construct a T™™ which from input n

| produces output wm

2. We construct a TM which on input 11 loops, and

on input 1 halts with output 1 .

3. We then compose (effectively) these two machines

with ™ to produce TM, which has the desired

| property. |
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- - — — fpoes T™M- s 11 Converts we
= no 1 loop 1
m? 1 tol

2!

o,(k) =[1 if TM does not halt on k; t.e., ,(k) fis
undefined.

loops if ™, halts on k, 1.e., ?, (k) is defined.

1 if (2) undefined
¢.(z')

sndefined 9, (2) defined

Converter

q 1R q, on input 11 loops
| | a, 1L q, on input 1 halts with cutput 1

copying machine {Note that this is 8 minor variation

input mn or eon previously given to
output m*m pu

q 1 R gq go right and print *
q B * 9

a * L Gn go L to 1 put 1°
LU 1 1° qs
LLL og

CRI
(continued on next page)
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a Gs 1° R gy gc R to B and print 1
Roy
$1 Rog
x B 1 9,
gq 1 L gq go L to *

3 * La

qs 11 Qs tidy up
| il Roa

BE Lod
LPs 1 L % go back to start.
% 2 R 4

C sition

It is only fair to note that the construction of

™,, in detail requires a proof that eny two TM cen be

composed. I.e., that a new TM can be obtained by using

the output of the first machine as the input to the second.

This cen be carried out formally the details are given in

Davis. What is involved is showing that we can assume

that the second machine begins in the required initial form,

that is, scanning the left-most symbol of the output of the

first machine. This can be proved by the use of a-regular

machines, which always terminste with instantaneous descrip-

tion gq --- where QQ is a state symbol for which there

are no instructions in the first machine.

Effectiveness

Note that the construction of ™, from ™, is
effective--it could be done by a TM.
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Reductions of the halting problem (HP)

General method: Given problem P reduce HP to P.

I.e., show if we could solve P this would give a solution

| to HP . Conclude cannot solve P .

Covering: N b
{s,} (v, } |

a, f(s)

If from a solution to f(a g) one can derive a solution

to a, then {v,} covers (a, ] .

.. if a unsolvable, 80 is b .

Example:

WP for semigroups.

Example:

Decision Problem for 15% order predicate calculus.

Example:

HPB (see below).

N

Example:

Printing Problem |

Examcle:

Blank tspe - Is the TT tape ever blank?

(for later use)
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THEOREM: THE HALTING PROJIEM FOR TM WITH BLANK TAPE IS

UNSOLVABLE.

There is no algerithm (no Turing mschine) which will

decide, given as input the cumeral n whether or not the

n-th T™ halts when started with a blank tape.

PROOY:

REMARK: The proof is of a form which is standard in

proofs of unsolvability. We use the reduction of a known

3 unsolvable problem to the new problem. That is, we show

that a solution to the new problem would yield 3 solution

to a problem which hes no saelution. Therefore, the new

problem is unsolvable.

This proof is therefore important both for the result,

which we will need, and as a simple example of a very important

method.

NOTE: Need first to reduce HP to HP for single numeral

as input. Proved above.

LEMMA: lor any numeral m, we can effectively construct a

T™ which starts with blank tape, and halts with the instsn-

taneous configuration qm where the states of the TM

are only CY qs RETIN end there sre no instructions

beginning q,5 i for any ©i
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PROOF OF LEMMA:

REMARK: Note thst we do not claim that there is

some T which will work for eny ®, but only thet for

ony m there isa TM.

YBLRq, | Uy1100p,

9) BlRq, Ape 1 BBR, 5

In-171RYy

YBa,

PROOF OF THE THEOREM:

Suppose the halting problem for T™ with blank tape

could de sc ved. We can then solve HP as follows:

To decide if ™ halts on input. 'm, form a new TM

by changing each quintuple of ™ as follows:

L | L

25,5, (gla, to Um 2858 1 oe

end adding the atove instructions for the T™ which writes

m on blank tapa. Then the new TM will halt on blank tape

iff T™ halts on input = .

Q.E.D.
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| REMARK: Rote that in this construction, as in those which

¥ill follow, we are using the formulation of TM in terms

of quintuples rather than quedruples. We have previously

given a proof that they are equivalert.
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PARTIAL RECURSIVE FUNCTIONS

Church's thesis: Every psrtially computable function is

partial recursive. (Extended form.)

A partial recursive function is really a recursive

partial function. Pertiel vs. total.

Definition of partial recursive function

A function is pertial recursive 1f it can be obtained

from the initial functions of schemata I, II end 11I below

by a finite number of applications of schemata IV, V end VI.

I. 8(x,) =x, +1

II. 6% (x, ciey x) = 0 Initial functions

IIT. UL(xy, oop X) =X,

IV. Composition If h, gr ---» BB Are partial

recursive, so is the function f defined by

£(x,» coy x.) = h(s, (x5 $c XJ» cep

&, (Xs 0 x ))

V. Primitive recursion If g, h are partisl

recursive, so is the function defined by

£(o,  SPRETRY x) g(x, coep XO)
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rz + 1, Xp sees x) = h(z, £(z, Xp sors x)

Xpp vey XJ)

VI. Minimslizstion If g is partial recursive, so

igs the function f defined by

r(x), very x) - wo lax), oe oy xX. y) = 4] |

"wy is “the least y such that”

£(x,, cory x) is defined to be y, iff

(Xs «ees X 5 ¥y) = 0 and (Vy < y)lalx;, «oop x 3)

is defined and non-zero].

DEFINITION: A partial recursive function is general recursive

(or totel) if it can be defined by I - VI in such

a way that in all applications of VI,

(xy) ..o (x) (Ey) (a(x), resp Xp ¥) =0)

DEFINITION: A (general) recursive function is primitive

recursive (PR) iff it can be defined without

use of schema VI.

160



Example for primitive recursive:

[£,(x, ¥) =x + yI

x

2.x", ¥) = 8(V(x, £,(x, ¥), ¥))

(we write x' for x + 1)

[£,(x, ¥) = xy]

2

£,(0, y) =6°(0, y) = 0

f(x’, y) = £, (B(x, f(x, y), ¥), 0 (x, £,(x, ¥), ¥))
2 .

£,(0, ¥) = 5(6%(y)) = 1

£, (x, y) = r, (0 (x, fy (x, Y), Y), U3 (x, £5 (x, y), ¥))

Not all sc. =. functions (even of 1 varisble) are

rimitive recursive.

As in halting problem proof we diagonalize:

l. We can godel number the PR functions of 1-vbl.:

godel number the symbols (introducing ; ),

then the expressions; can effectively decide

if PR.

Hence we can talk of the xh PR function of

1l=vbl.
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2. Now diagonalige.

Let P_ be the x'° PR fa.
Then P (x) +1 is computable.
But it is nct PR. For suppose

f(x) = P(x) +1 = P (x) for some e .
Then

fle) = P(e) + 1 =P (e)

This argument would not go through

for partial recursive functions:

because could conclude only that P(e) undefined;

for general recursive functions:

because we cannot effectively decidc if general

recursive {step 1 fails).
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We now prove the equivalence of Turing's Thesis and

Church's Thesis by showing first that &ll recur:ive

functions sre machine computable, then that all machine

.computable functions are partiel recursive.

THEOREM: All partial recursive ‘unctions are machine

computable. We shall prove this by giving a series of

machines ending in the very simple SS-machine.

Reference: J. C. Shepherdson end H. E. Sturgis, Computability
of Recursive Functions, JACM, Vol. 1C, No. 2,
April 1963, pp. 217-255.

Also, preliminary version of above:
J. C. Shepnerdson, The computability of partial
recursive functions by forms of Turing machines.
(mimeographed.)

The URM (Unlimited Register Machine)

Infinity of registers each of which can

store any natural number O, 1, 2, . .

Denote by ¢(n) the contents of n™? register.

Instructions:

P(n): (n) =(n) +1

D(n) : {n) = {n) - 1 if (n) £0

6m): (n) =0

C(myn): {n) = {(m

J[k]: Unconditional transfer to line k of program

J(m){k]): Transfer to line k if {m) =O
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| This is 8 very powerful machine; it is therefore
easy to show that every recursive function can be computed.

(Compare proof in Kleene which works directly with Turing

Machines.]

DEFINITION: We say that a partial recursive function f

of n arguments is URM-computed if it is

computed by the URM in the following sense:

For every set of natural numbers X19 Xpy ceey

Xs Ys N (vy £ x, x, YN for 1<1i<n)
there exists a routine Ry(y = £(x,, cosy x ))
such that if (x,), coos (x ) are the initial

contents of registers X12 sres Xo, then ir

£((x,), cou (x )) is undefined the machine

will not stop, if r({x,), cons (x) the

machine will stop with (y) = £({x,), veep (x)
end with contents of all registers 1, 2, ..., N

(except y ) the seme as their initial contents.

THEOREM: Every partial recursive function can be URM-computed.

PROOF:

I. Rely = 8(x))

1. C(x, y) | |

2. P(y)
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1. 6(y)

IV. Composition

Ry(y = £(x,, cae x )) wnere f{ defined by IV

1. Rp (N + 1 = 8, (xs vevy x J)

2.

| m. Re (R+m = g(x, ..0y x ))

ml. Rgym(Y =h(N+1, ..., N+ m))

V. Primitive Recursion

Notetion: Let I be a subroutine. Then rin)

goes through I (n) times and sets (n) =0 .

( I must have single normal exit.)

| rind, 1. J(n)(2l, I, D(n), J(1]
2.

Ry(y = £(x,, cong x )) where f defined by V

1. Rely, &(xg x)), O(N + 1)

2. {R, (N +2 = h(N+ ty A Xop ooo x)
C(N+ 2, y), P(N +1} :

restores 3. C(N + 1, x)
register

x
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VI. Minimelizetion

Ry (y = £(x,, ceey x )) vhere f 4s defined by VI

1. Oy)

3. J(N + 1)[4]), P(y), Jl2]

bh, |

This will loop if ol eee ] 13 undefined.

++ We have for each partial function f a subroutine

The convention regarding subscript N for subroutines

can be extended to instructions: We write

Fy(n), Dy(n), Ogin), Cylm, n), Jl], J(m)(k] .

Reduction of instruction set
EE——t— teats.

The large (6) instruction set of the URM was conve

nient in the above proof. But we can :liminate three of

them:

O(n): 1. J(n)[u)

2. D(n)

Lh.
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Cy (m,n): 1. Oy (nl, Oey (F +1)
| (m)

N+

3. (pe, (m) 1)

Now Jy(m)[k] cen be added and used to eliminate

first Jg(m)[k] and then Iulkl Jy (®) [x] is transfer on
nonzero to Kk

Jg(m) [x]: 1. Jy(m)l2l, J[k] .
2.

Jylkl: 1. Prsp (W +1), Ipep (N + 1)[k]

Thus we have only the instructions

Py (m)

Dy (m)

Jy (m) [k}

where subscript N indicates thet registers beyond N may

be used as workspace end may be altered, but that registers

1 through N are preserved. ‘

We move toward our very restricted finel machine by

now introducing the LRM, Limited Register Mschine. The LRM

has three instructions above, but no longer has an infinite

number of registers. It has a potentially infinite number,

the actual number being controlled by the two additional

instructions
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Fl» |

N—-+KN-1 remove an empty register.

We remove & register (empty or not) by the subroutine

EN. ER 1. P(N)

| THEOREM: All pertisl recursive functions are LA(-couputable..

PROOF | |

~ Teke the URN vhich computes the function andfindthe

saximam instruction subscript NX . Replace all subacripts

by NM. If N> NK, asad initially the instructions

NaN+l, N41 +> K42 00, NeM - 1 = NeM |

end ofl st end N+NH E+ M-1l cogN+ 1 ~ KR.

S0-machings :

The 88-machine is a one-register machine with alpba-

bet {’, *} and three instructiontypes: *°,F' and

dn,my) . 7 at Pare wpite instructions,which.
print a, =’ or a =*% at the right end of the register.

8CD{m,, my) 1s a gogp gpd delgte of the leftmost aymhol,
which eperatesas follows:
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If no leftmost symbol, take next instructien.

If leftmost is 3, delete and go to m
If leftmost is 85 delete and go to mn, .

THEOREM: Every partial recursive functien is computable by

the 8S-machine.

PROOF: (By reducing the LRN to a single register machine

with these instructions.)

The storage medium of the LRM at any time consists

of the contents of N registers:

Introduce the new symbol * and think of memory as

ea single word:

(1) * 2)» ... * (W)

LEMMA: There is a subroutine T which will change the

|

PROOF:

T: 1. PF°, Scp(3, 2)

2. PY, sco(s, 2)

3. ---
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lat ™ be T, ..., T (mn times). Obtain the LIN

operations by bringing the word to be operated on to the

beginning, operating on it, and restoring it to its originsl

position.

| Py(n) ™, Pr, Hn |

Dy (n) 1. ™%, sole, 2]
EP ciate

Jy(n)(x] | 1. P, 8cd(2, 3)
2. T 2, sco(x, kl

5. FP, 8CD[4, 3]

| yh,

Jy(n) x] 1 Jy]
2. °, Tv, scp(k, kj |

3. «ae

R Ml © |

NN 1. TL, scoi2, 2)

. 2.

| Remark: 8CD(w,, =», cen be further weakened to 8CD(m):
| oo Jump on 1, proceed to next if 0 .
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Physical reslizations of 88-mechine

I.

read|head write [head

each head moves after it acts

II. Deck of cards

(1) Add card marked , at top.

(2) AA card merked * at top.

(3) Drew bottom card. If , go to m,.

If * go to n,

If empty go to next imstructien.

while {’, *] suffices, we could also define an s*l

| symbol SS-machine.

THEOREM: Any 88-computadls function is Turing computable.

PROOF:

From 88 M we construct T™ Z which has symbols

% “and ., end slso the blank symbol 84 . Corresponding
to each instruction of m there is a atate of 2:

- %

1 q,
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Corresponding to the configuration of M at instru-

tion m with tape contents (tape), we have Z ir the

configuration 8,9, (tape)s .

Correspondi-g to each instruction of MN, & set of

instructions of 2:

a: pl | 8° right
to first blank

print a
80 left
to first blank

go right 1

Q.°*ja, J=0,1
y 4

%50%:%

RE j=0,1
. 4

UY BoRpe)

. ’

un: 8CD[m,, mn] %%, J=0,1
Wo Sot

J
~,

YnSoRine1

COROLLARY: Every partial recursive function is Turing-
computable.
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The second half of the equivalence of Turing's thesis

and Church's thesis is given by the following theorem.

&

THEOREM: Every (partisl) function computable by a Turing

machine is (partial) recursive.

. II1, Section 5
Reference: Davis, Chapter { IV, Sections 1 and 2)

| Informal Sketch of Preof:

Godel numbers

We have assigned gn to TM .

Review:

> 5 7 9 11

$ $ | $ $ con

R L 85 9 8

gn of an expression

en(a,)

a oon = I po) k
k=1 ©

gn of a sequence of zxpressions

en(i )

My ooo) M_ TT p(k) * .
1

Note: The power of 2 in the gn of an

expressicn is odd. In e sequence it

is even.
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We gave before the special case of expressions which

were TM .

Kleene's T-predicate |

We define a predicate ~~ (z, X;, ---5 Xp» y), i.e.,
»

T (2, x, y), which is to mea: ‘o- given z, X,, ...) X_
and y thet 2 is a gn of a Turing machine Z, and Y

is the gn of a computation of Z beginning with the

instantaneous description q(x, cong x)

. primitive recursive
DEFINITION: A predicate is { partial recursive } according

gs its characteristic function is (true =O,

false = 1).

-_

THEOREM 1: T (2, x, y) 1s primitive recursive.

Proof uses the fact thst bounded minimalization,

Tey<z’ is primitive recursive.
U 4g a primitive recursive function such that if

y 1s the gn of a computation, then Uy) is the output

of the computation.

THEOREM2: let Zo bea TM and Zz, 8 @&n of 25

Then the domain of the function 0" (x) is equal to the
0

-

domain of wT (2, Xx, ¥) . Moreover
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n) > . ‘

BMX) = UyT (25 % 9) -
O

KLEENE YORMAL FORM THEOREM

>

f(x) is partially computable iff 3z such that:

>

£(x) = U(wyr (25 Xx» YI) -

Corollary: Every (partielly) computable function is

(partial) recursive.’
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THEOREM (Post)

There are monogenic normal systems with uns. lvit.e

halting problems.

W1
PROOF (Wang;

Take a Universal SS-machine with n instructicns.

Set up a corresponding MCNCE=N1C ncrmal system Use alpratbet

of SS-machine p.us 2in+l} new symbcls ho. oy Bo,

1) Q= GC

(2) 1 = 1

For each instruction 9 which is p° :
r 3 - Lb

“3 by bin

4) eo = Oe. 4

For each instruction a, which is pt

(5) by = yy

(6) e, = le.|
i 1+-l

For each instruction gq, which is SD.k’

op ~

(7) 50 ®i+1%141

8) b,l - Dy

) - ;
NOTE: Can alsc do fer S:zd'k, m), ty adding be, ~

Pia1%i41
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(9) ©1441 541

(10) ee, —e

Then the 8S-machine halts on input XX; oo x, . This

system halts on the starting word * X)X, oo Xp€ .

PROOF

S8-machine normal system

start XX, coe x, b,x, x, a xe
1*® instruction is PV

XXp ooo x0 XXy vos X,€10541

eb, 1% “on 2s

b, 1% ‘os x00541

th instruction pl

similarly

th

i instruction is 8D(k)

Ox, cee x, b,0x, ces xe,
|

x, ooo Xx ,€10410% 41

&1®e1%a 0 Xp

Dy 1% cos Xo Ciel

Ix, ces Xs b, 1x, vee Xx.

} lx, ves Xx xP

X. ooo X e.b XxX. ie X
2 P k'k2 P

bX, ces % x
page 178



POET CORKRESPONTCENCE PROBLEM

Emil L. Post, A variant of a recursively unsolvable problem,
Bull. A.M.8., Vol. 52, No. 4 (April, 1946), pp. 264-268.

Correspondence problem:

To determine for an arbitrary finite set (g,» g;); |

cee (g,» &) of pairs of corresponding non-null strings
on a, b whether there exist n > 1, 1s «iey i such that

g.8& ..--8. =6¢€.¢' J
1,74 = i 4

Exeaples

1) pairs: (bv, b3)

(sb°, vat’)

. : bah’ = 3.2 ec a'm'm'solution: g, 8,8, b” abd b bab b 5, 88,

2) pairs: (a, bs)

(ba, o)

(a%b, ba)

solution: clearly no solution, since there is

no pair to start with.

References in spplication to ALGOL

Cantor, JACM 9(62), pp. LTT-4T9.

Floyd, CACM 5(62), Pe 526, p. 534.

179



Post's proof of the umsolvability of the eSrrespon-

dence problem began with the unsolvability of the decision

problem for the class of movmal systems on a, b. He

reduced the problem for mormel systems te the correspondence

| problem, hence showing that the ocervespondexce Problem must
be unsolvable. |

We shall .btain the unsolvability of the correspon-

dence problem by reducing the halting problem for SS-machines.

Post Correspppdence Problem

LEMMA: If the 88-mechine M computes the partial function

£(x,, coup x) then there is en 88-machine N°
which

l. halts iff M halts;

2. never has an empty tape, except possibly at

start and end.

PROOF:

Go backto the LRN. The function f can be LRM

computed by a program which begins dy adding a

register (N — N + 1) end storing * in it.

Ends by deleting * and NK - 1. The 88

version of this program will then begin with the

instruction PF° . |
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LEMMA: If the SS-mechine M' computes f as above, we

Can construct an SS-machine MN" which 1. halts

iff M' halts (hence if NM halts) and 2. halts

only on an empty tape.

PROOF: Construct M" from N' ®y replacing any halts by

L : 8cD( Los L ) .

M" of course does not compute a very interesting

function, but it is defined for tie same inputs as
fr.

LEMMA: The halting problem for S8-machines is unsolvedls.

PROOF: By equivalence with TM .

IEMA: The halting problem for 88-machines starting with
blank tape is unsolvable.

PROOF: By equivalence with TM .

LEMMA: The following problem is unsolvable for SS-mechines:

Does S8S-machine starting with blank tape ever get
back to blank tape?

¢

PROOF: By previous )emmas.

1 4,
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PCP (A modification of Dena Scott's proof.)

For any 88-mechine with'line L eee Ly effectively

construct corresponding FCP.

Construction

(Oe, <0)

(le, el)

(eo, el ) for initial instruction

L: PF (Lye, eel.)

L,: F (Le, elel,,,)

L,: 8cp(L,, LJ (L, 00s, oL,)

if Jk add (LyeL,, el,)

L: no instruction no pairs

To prove: PCP has a solution iff M starting with

~ blank tape gets back to blank tape.

PROP: 1. Both words must begin with (e, ek)

2. Both words must end vith (L, el), el) for
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Exesple1

Ly 8co(L,, L,)

Ly: halt

| (Oe, 0)
(1 (0, oly) (Lyee, el) -(Lee eL

(Lele, el.)

ryol ely Olah

Example2

L: £°
LP
Ly : BCD L,, )

Ly: halt >
What does it do on blank tape?

L,: 0

Ly: ol

Ly : 1

Ly: 11

Ly: 1
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Ly: A
L:

Pairs (Oe, 0), (13, 31), (e, el)

(Le, eleL,)

(Lyeie, eL,)
(Lely, ely )

¢ Ly® Oe Loe Os 1e LyeOs le Lye lo ls IL, ele le

ol, eel, €0 eleL, el el el, elelel, lel ol,

lel»

EX “5 z ok
yelelyely

Ir Ly writes, it is followed by tape after L, .
If L, reeds, it is followed by tape before L, «

Rkemple3

1. #°

2. Scd (6, 3]

3. P

rn. Pr

| 5. Bca[6, 3)

6. B8eca(6, 6]
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Ambiguity Problem for Context-free Grammars

Phrase-structure grammars and rewriting systems,

(Vv, T, 8, P) TCV

8eV-T

Context-free grammar.

P: Ao Ael

® a string in V

Example:

i 1

{oe oe 2p ... oe Lox ees X, |n > 0}
i, 1 =n

l. is CF

2. define ambiguity

3. 41s unambiguous

THEOREM: The ambiguity problem for CFG is unsolvable. ‘

PROOF: By reduction of the PCP to the smbiguity problem.
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THE DOMINO PROBLEM

References

Hao Wang, Proving Theorems by pattern recognition - II,
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THE DOMINO PRCBLEM

The domino problem, introduced by Wang in reference

1, is an amusing combinatorial problem which can be very

simply stated and which has some important consequences.

. STATEMENT OF DOMINO PROBLEM

A dominc set is a finite get of Lypes of square

Plates, the dominoes, all of the same size, whose edges are

marked with symbcls (or colors), each plate in a different

manner. There are.,an infinite number of copes (alsc called

dominoes) of each type.

The infinite plane is assumed “0 be ruled into

domino-size squares, and we seek tc assemble the dominces

onto the plane according to the rules:

l. No domino may be refiected or rotated.

c+ A domino must be placed exactly over a square.

2+ The symbcls cn adjacent domino edges must match.

L. Every square must be covered with a domino.

A domino set is said to be sclvable if we car cover the

entire plane in this way.

EXAMPLE

3 5 4

b 3 5
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We can obtain a solution to this set by using the block

A B C

C A B

B C A

Which has on the periphery the symuols

3 5 4

1 1

bp 3

2 2

> 5 4

Since the top edge of the 3x3 block is the same as the

bottom edge, and the left edge the same as the right ~dge,

we can repeat this block in every direction to cover the

entire plane.

The domino problem is the following general problem:

1s there an algorithm (a decision procedure)

by which given an arbitrary domino set P, we cau

decide whether P is solvable?

Berger, 1964. NO.
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DEFINITION: A torus of a dominc set is a rectangle of

Jominos such that

1. adjacent edges have the seme COLlOr

2. the bottom edge is the sar~ as the tcp edge

3, the left elge is the sume ¢' the right edge.

THROREM: Every .e- whica has a torus is solvable.

PROOF: We can cover the entire plane with the torus.

DEFINITION: A solution of a dcmino set is periodic 1f

there is 4 torus 1 such that the sviuticn

can be viewed as made up entirely of copies

of T.

Example:

b ¢ b

J & |&

Note that the e;mple has a torus

b b

a | c | a
b b
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and therefore has a periodic solution. The tcrus, and hence

the periodic solution, used onlv tvo of the three duominces

of the set.

REMARKS:

The definition of periodic does not include all

solutions which ght possitly be considered tc be in some

sense periodic, but is arbitrarily restricted.

1 3 4 3 L

infoe ool
1 1 1 3 4

Solutions:

D| E

- - A

(a) allA (b) aliE (c) BIE
A

E

(a) c¢ (e) A|B|E

A

THEOREM: If rotations and reflections were allowed, the

problem would be trivial, i.e. every set would

have a (periodic) solution.
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PROCF:

b

a | | dL

d

b t

o | d

14 a

THEUREM: A set may have b.th pericdic and ncnpericdic

solutions.

Pf: 1 1 1 i

1 1 1

A B

With either tcrus we get periodic soluticns. Using bcth

we can .btain as many different soluticns as there are

binary infinite sequences (i.e. 29).

PROOF:

Number (the rectangles of squares of) the plane

around the crigin. To fix the origin assign
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And then use

B and :
B

tc build the infinite number cf sciuti. ns. The sclutions

cannot be translated into one an. ther since

o
occurs only at the origin.
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Questions on periodic solvability:

DOES EVERY SOLVABLE SET HAVE A TORUS? (No. Berger

1964)

Subquestion: DOES SOME SCULVABLY SET HAVE SOME SOLU~

TION THAT CONTAINS NO TORUS? (BERGER using Thue, yes. But

cannot eliminate the periodic esluticns.)

THEOREM: (Berger) There exists a dominc set which has a

solution which contains no torus.

THECREM: A set is solvable on the wb>le plane iff it is

solvable in a quadrant.

PROOF: = trivial

[J

single dominos

3X5 blccks

Bu | Hn _

Infini‘e number of levels. Qed by infinity lemma. Note

that this is non-constructive - it does not enabl> us tc

find a solution.
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CONSTRAINEDDOMINO PROBLEMS
igs:

So far we have considered only the unconstrained or

general dominc problem. That is, given a domino set P,

can the plane be filled with the dominoes of P .

One might also consider domino problems which are in

some way constrained:

The origin-constrained problem:

Given a set D =P U Q, can we fill the plane

subject to the restriction that the origin is filled with

a domino of P.

Computation by dominoes

If we consider solutions in an infinite Quadrant and |

require a fixed domino * to occur at the origin, we can

usually find domino sets with unique solutions satisfying

& variety of given conditions.

An example of a puzzle which can be solved with

dominoes is the following.

Find a set of dominoes sucn that if * is

required to appear at the origin, it has a

unique solution in which P and C occur

respectivelyat the prime and composite

squares in the first row.
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The following solution uses 38 dominces and includes

some improvements due to M. Fieldliouse of a scluticn initially

obtained by E. F. Moore and Hao Wang. (Smaller soiutions

are possible). The form of the scluticn is indicated in the

diagram below:

HEERRERBDRRREREnnn

D. Dp. D C >1 Ds Dy Ly Dy 3

Dr ! £2 FD 1
2 : 2

De | G, E, Le 1

D, D, Dy Dy; Dy D, D, Dy, 1
D E. F° GD

p) 3 1 5

D, G, EF I 1p 1 3 5

D. 6G. G. EC
6 2 2 “uW 6

pb Db. Lr Db odedb. D. D. Db. op1 “2 PY» Ds D,y®D, D, D, D, I,

EE F G6 6 »| EE F I1 © G2 Gy D5) Ey 6G 6 I

¢ BE Fr ag Dn

1 " s| ©; Es, FG D, !a. 6 EF ole ¢ E D1 9 Ej s{ “1 & & F Dg

cy a a Be *
1 2 Up By Dgl G, G5, G, ED
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The arrows indicate important signals. The *

indicates that the domino is affected by the initial boundary

condition, and the superscript C indicates that the domino

is transmitting the "number is composite' signal (except that

Dg is absorbing this signal). The dominoes B (which is
used only once) and D, generate the ‘number is composite’

signal.

We assume the left-hand margin is color O, and the

top zolor O . The solution is unique. The 38 dominoes

may be defined as follows:
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0 0 0

2 oO
S1 1 21

1 1 1 21 21 21

of. 2 15" |e 4 B [2]: |] 1 +] 2
32 30 52 26 5% 53

+* ¥* »* +* *

0 D, 3 3 3 p) Dy 23 53 Dy 30 2 Dg 2 7 Dg 2
37 32 32 55 ph) 52

26 26 226 3 3

7 2U 3 3 26

226 2:6 bY 3

SET ETSE i SE1 2 6

27 2b 37 226

37 37 7 2h 2k 24

*

LF FGF TF Ek lh
32 32 2h 7 2h 26

32 27 27 224 224 224

* C Cc Cc Cc | Be

32 226 22 27 224 226

32 T

fk fa)
32 26
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THEOREM: The origin-constrained domino problem ie

unsolvable.

PROOF: Recall: The balting problem for TM starti-, with

blank tape is unsolvable.

Recall: A TM can be restricted to a one-way infinite

tape.

We give a general method which when applied tc any Turning

Machine X produces a corresponding set of dominces Pos

with a distinguished type D such that:

X halts on an initially blank tape ® P has no

solution with DD at the origin.

Plot TM configurations in the plane:

cHIII

} JAN AN AAA ALN LRA WARS |SREERREEEEEENEREEEEN
SEES EEEEEEEEENEEEEEEN

REAGENTS RGN ELUNE,HESEEEEREEEEREAEEEEE
EREEEREARREEEETEEnEN
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We illustrate the method by applying it to a specific

machine X:

9; 505; Ra, 9,5,5,Rqy

L5o50R 45,514,

3505, 19, 959804,

USo5019

P, consists of tne following domino types:
Ee —————— trae

A. Two types for each tape cymbol

Be One type for each permissible kind of scanned square

(state and symbol):

{ S ] i=1yeeay 4 |(1,3) # (4,1)
J = 0,1

C. One type for the next scanned square (symbol and

next state) after a left-shift

[La 8] i =1,3,4 J =0,1

199



D. One type for the next scanned square after a right

shift

[Rq,s, i =1,2,5 Jj =0,1

E. Four types for the initial row and column

[D] for origin

[B] for beginning of tape

[t] for initial row

-

[+] for initial column W

Machine X will halt at step B . We want to color the

dominoes so that the only possible solution is the partial

solution below:
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t

S

L

Q.S

S

5 as. |%5% | 51
1 |

qQ.5
1°21

S B

2 IS S 95,
1 |© 2

1 as. |©
1°0 | #

0

Figure 1
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Let us now describe this domino problem as a prelude

to coloring the dominoes:

The conditions on P
ES

1. origin constraint

[Dloo (£x) [Dw

2e the initial row and initial column are the boundary

2.1 (Dlxy 2 (Blx'y

2.2 ([B] v [tlxy) 2 (t1x'y

2.3 (pl v [=liyx’) 2 [~lyx’

3, the next row above the initial row simulates the initial

configuration
4

¥ 4

35,2 (tlyx 2 ((Ra,S,] v [85] )yx

4. the left or right neighbor of the scanned square at

time y is in part determined by a left or right shift

and embodies information for the scanned square at time

[4

Y -

Notation: [Lq;] for (154,80) Y [L;8,))

[Rq,} for ([Rq,8,] Vv [Rq,S,])
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b.1 (q,8,1xy > [Lg Jxy

for (1,3,k) = (2,1,3),(3,0,4),(3,1,4),(4,0,1)

4,2 [q,8,]xy > [Rq, )x"y

for (i,j,k) = (1,0,2),(1,1,1),(2,0,3)

3. the state and scanned squa.e at time y' are deter-

mined by (La, ) or (Rq, ] at time y . |
——————————

1 [1q;8,lyx> [q;8,lyx" 1 =1,3,b j=o0,

5.2 [Rq, 8, Jyx > [q;8 1x’ i=1212,3 jJ=0,1

6. the tape symbol at time y' and position x is

determined by the tape symbol at (x,y)

6.1 [s;Jyx © (is,] Vv [Rq,S, ] Vv [Rq,5, ] V [Rq,S, ] )yx’
for {i = 0,1

(8;Jyx > (18, v [1q;8;] v [Lqy8,] Vv [Lqy8, 1)yx’
for 1 = (0,1

[q38,Jyx 3 [5]yx’

[9,85yx © ([Rq,8,) v [Ra 5,1 )yx’

[q,80)yx > ([18,] v (Lq,8, ) )yx’

[q,8,lyx > (LS, Iyx'

[a8 Jyx © [8,yx’

[a580]yx 2 (8, Jyx’

7. in each row (8, ) and [1s ] must be distinguished
SERR
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7.1 ([Rq;} Vv [Rq,] v [Ray] v 1g,5,1 Vv [955] Vv (9,8, |

V (q,S,} Vv [s,] Vv [s, xy 2 (Is) Vv {s 1)x y

i . |7.2 (Lay) v [Lag v [1qy) v [a5,1 Vv [q;8,] Vv [45.]
; “x . nVv (LS) Vv [LS 1)x'y 2 [18] v [Ls,) v [=])xy

8. the halting conditions

we have gotten 8.1 by simply excluding the type

8.2 [~]xy > (Iq, ] Vv [Lag] Vv [Lg ])xy
this could be deleted if we had included the condition

that no two types can be assigned to the same place

Argument: These conditicns are sufficient to determine

the colors »n the domino types.

We have not excluded the case in which several dominces occur

at the same place. (1 assures that at least one occurs).

To express this condition we could add an explicit condition:

9. only one type at xy
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How to color the dominces. Each domino gets four colors. ,

We give the colors somewhat unusual names - as shown in

Figure 2.

0 LO R1 Ll

0 L-0 1 L-l

L-1 L-1 1 Ll

1-0 1-1 2-1 3-0

L-0 0 0

2-0 - -0

1-0 3-0 4-0 1-1 3-1 4-1

Ia 14 Iq Iq,C L 3 4o IL as 2-1 L 4 3 L : 40 “5 21 L y5s S 85 S S S,
LO LO LO Ll Ll Il

10 20 30 11 el 1
Rq 1 R R "'Rq. R R1 LL 3 1 L | 4G |

D 1-1 5 R 10 S_ 20 5 R 11 g RB 10 s | ‘
» 0 9 1 1 1

6 10 6 0

5 2

Figure 2
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Let 8 = {Dyseees D_} be a finite set of domino types. |

| i i :
Let F xy = F (x,y) be square (x,y) 1s covered by a domino

of type D, .

Let 8g = {Ljseees D.} k<n bea subset of § to be used
at the origin.

Let R, = {J | 1<3i<nA Dy has on left the same color

D, has on right}.

let T, = {311 <J<nA D, hes on bottcm the same colcr

D, has on top}.
! .

Then we can fill the quadrant with dominoes of the

types in & iff the following ccnditions are met:

Every square has precisely one domino type:

V (F'xy A N\ —Fxy)
i ~ 1lyeee, n J= 1yees, nn

J #1

ghe domino to the right matches correctly:

Frxy > V Fx'y
JER,

A

The domino on top matches correctly:

Flyx o V Fyx’
jeT,
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And the origin constraint can be expressed as:

V roo
1<i1<k |

Buchi's lemma |

A formula EzKz A VxEu¥yMxuy in which K and M

are quantifier-free is satisfiable iff KC A ¥x¥yMxx’y is

satisfiable in the domain of the natural numbers.

PROOF: (An immediate corollary of the completeness proof.)

(We use axiom of choice.)

Since EzKz let a be some object such that Xa .

Let f be the function that gives the u for each x .

| Take the domain fa, f(a), £f(a)),... } closed with respect

to f . Now identify this (by remaining) with {0,1,2,... } .

[In the model we do not nccessarily have x’ # 0 and

x! = yD x=y. Thus do not exclude finite models.]

Now consider the conjuction of the conditions above

KO

(¥x)(Vy)uxx'y

(Vx){Vy Ixy

Thus the condition for the domino set is of the form

(1) KO A Vx¥ydoox'y
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But this ig satisfiable iff the domino set has a sclution.

Hence we cannot determine whether or not it ic satisfiable.

Hence we cannot determine whether or not

Yzik'z v IxVudyMxuy

is a theoren.
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THE DECISION PROBLEM

The decision problem for the first-order predicate calculus.

To find an effective method to determine for an

arbitrary formula of tae first-order predicate calculus,

whether or not it is a tneoren. (Or, equivalently, whether

or not it is satisfiable.)

The classic pribhlem, also known as the ENTSCHEIDUNGS-

PROBLEM was first shown to be unsolvable in 1936 by Church

and Turing. The two proofs were quite diffcrent. Church's

proof uses the undecidability of elementary number theory

(Godel's result). For if we take any undecidable statement,

prefix the conjunction of the axioms for number theory,

and remove function symbols and constants we obtain an expres-

sion of the first-order predicate calculus. If it were

decidable, then number theory would also be decidable, con-

tradicting the Godel result. (In order to make this proof

80 though, we require a finite axiomatization of number

theory. Robinson's system, given in Mendelson, is an example

of such a finite axiomatization.)

Turing's proof is independent ot Godel's result and

uses the ha'ting problem for Turing machines (which in fact

were invented for this purpose). The proof given by Turing

works directly with the Turing machines, without dominoes,

and gives a weak prefix. Amuch less complicated proof by

Bichi along the same lines, gives the E A AEA (satisfi-

ability) result. The method of dominoes was used in the

Kahr-Moore-Wang proof for AJA (satisfiability).
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The unsolvability of the decision problem for the first-

order predicate calculus followsa fcrtiori.

OUTLINE OF THE XAKR-MOORE-WANG (-BERGER) PROOF

OF UNSOLVABILITY OF EAE .

l. The halting problem for IM with blank tape is unsoliablr.

2. The complete configurations of any TM can be represented

by squares in the plane.

3. The graphic representation of the TM can be described

: by a domino set. The conditions on the solvability of

; the dominoes can be expressed in terms of the predicate

calculus. (For the original proof, a diagonal-constrained

solution is used ... there are an infinite number o?

the copies of the TM at any one time. For the unre-

stricted solution there are also an infinite number,

but, their placement on the plane is different. We

demonstrated above the method of the proof in a simpler

case, using the origin-constrained problem, a single

representation of the T™M and settled only for the

A A EAE case.)

4, An expression AEA B (B g-free) can he written

describing the dorino set. Such that AEA B is

satisfiable iff the quadrant can be filled.

5 But AFA B is not satisfiable iff the TM halts. Hence

EAE -B is provable iff TM halts (hy the Godel complete-

ness theorem).
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6. Therefore if EAE were decidable, we could decide the

halting problem.

RECALL: DEFINITION OF A REDUCTION CLASS.

A class C of formulas of the first-order predicate

calculus Is a reduction class, if for every formula

F we can find a formvla F’ in C, such that F

is a theorem if and only if F’ is a theorem.

Example: The class of formulas in Skolem Normal Form is a

reduction class. (Ex)... Ex Ay«+s AyM . This
was proven tafore.)

Note that these methods show that the class IVI is

| a reduction class.

1. Construct the TM which carries out the Herbrand

Expansionfor the given formula F .

2. This TM will halt if and only if the given
formula F is a thecrem.

3. Use the above process to construct a formula
F for that TM. The formulas is satisfiable if

and only if the TM does not halt. Hence, its

negative F’ is a theorem if and only if the

given formula F is a theorem.

Note also that the dyadic predicate calculus has been

shown to be a reduction class. |
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But there are solvable subcases.

' SOLVABLE AND UNSOLVABLE CASES

At this point we have determined all of the prefix-

defined cases of the decision problem: (for provability)

SOLVABLE UNSOLVABLE

AX) eas Ax EYAZ. «se Az AzExAuRy
+ ExAuAzEy

Exeee BX AYeee Ay, (S.N.F.)

| ExAuEy

Thus, we have settled sll prefix cases. For, (1)

) adding a quantifier can never make a case sclvable, and

(2) ExEuEAz follows as the S.N.F. of ExAuEy .

212


