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PREFACE

This report consists of notes prepared for Arplied Mathematics 206b—-

< at Harverd University in the Bpring term of 1965 and Lomputer Science .

208 at Stanford University in the Fall quarter of 1966 and 1967. They

do not pretend to-be more than lecture notes; tmpexticoular, no attempt

has been made to expand outlines and remarks into full sentences. In

spite of the’ deficiences and Whe incompleteness Df-the-notes, students

seem to 11nd them useful. For this reason, they are reprinted as a

technical report.

Mendelson's Introduction to Mathematical Logic, van Nostrand, 1964,

was used as a supplementary text for the course. The formal treatment
of the propositional calculus here is primarily a commentary on the test
and is therefore incomplete.

Two sections of the notes are reprints of material written by others.
The section on the Infinity Lemma is a translation by Anthony Sholl of
a chapter of Konig's Theorie der Graphen, Chelsea, 1950, which is other-
wise unavailable in English. Also included is the chapter "A very
elementary system L" reprinted with minor chenges from Hao Wang's A

Survey of Mathematical Logic, Science Press, Peking, 1963.
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COMPUTER SCIENCE 208

FOUNDATIONS FOR COMPUTER SC1ENCE

The short title for this course is "Foundations for
Computer Science". A longer and more accurate title would

be "Foundations of Mathematics for Computer Scientiscus:

an introduction of logic, set theory, algorithms and >omputa-

bility."

Historical background

The historical background for a combined study of
logic, algorithms and computation can be said tc date back
to 1666 and to Leibnitz.. who dreamed that some day philo-
sophical and mathematical arguments could be avcided by

calculation. He envisaged a universal characteristic, "a

general method in which all truths of the reason would be
reduced to a kind of calculation. At the same time this
would be a sort of universal language or script, but infi-
nitely different from all those projected hitherto; for the
symbols and even the words in it would direct the reason;
and errors, except those of fact, wonld be mere mistakes in
calculation." 1Instead of disputing, men would simply calcu-

late.



This dresm, in a much more sophisticested form, wes
shsred by Hilbert at the turn of this century. Hilbert
emphasized that mathematics should be treated as @ formal
system, sbstructed from ite mesning. The study of the formel
systen was celled metsmathematics, or proof theory. One of
the main problems of the Hilbert program was the decision
proolem--the problem of finding a genersl method to determive
if a given mathematical statement is true. The mathemstical
problem would be expressed in terms of the formsl system, and
a purely mechanical procedure would determine if the conclusion
was in fact a theorem of the formal system. At the time it
did not occur to anyone that this would be impossible, slthough
clearly the problem was difficult.

These hopes were destroyed by the work of Godel, Turing
and Church, who showed that it wes impossible to find such
genersl methods, even in quite restricted areas. (There are
some very simply stated unsolvable problems.) Thus, the
situation is that in the 1930's, 10 to 20 years before the
hardware is resdy, tefore the introduction and widespread
use ~f modern high-speed computing machines, the dream of
using mechanical methods to solve all of mathematics is
shattored.

The reaction to these discoveries waa violent. Von
Neumann is said to hyve received word of Godel's results whilc
lecturing on logic He read the messege, remsrked "Gentlemen,
I have nothing further to say," left, and never returned ¢ ‘tr. »

to that class or to his work on logic and set thecry



The discouragement because of the negative results on
solvability has also been reflected in the actual use of
computers. In the development and application of computers,
the emphasis has been on numerical methods. This, of course,
13 primarily because of the rapid development of computers
during the war, in response to a need for numerical computa-
tion, for ballisties, for atomic enersy But it also reflects
the tremendous discoursgement of logicians by the great
unsolvability results. As we shall see, it is not until the
late 1950's that the question of using computers to apply
decision procedures where they do exist, and of working out
partial procedures in other cases is seriously considered.

Our treatment of logic, algorithms, and computation
will be from both the negative and positive points of view.

On the one hand, we will try to give a clear description of
the limits of what cannot be computed, or solved by computation.
On the other hand, we will investigate the areas in which

computation can, either partially or completely, succeed.
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Intreduction to the Fropositional Calculus

We begin informally, introducing the propositional
calculus with its usual &pplication tc sentences, by means
of truth-table definitions for its .onnectives. (Later, we
shall treat the propositional calculus as ~ furmal system,

and show by means of soundness and completeness proofs that

the informal system is correctly and sdequately described
by the formal one.)

In the informal treatment th: basic 'wits are
sentences, statemenis, or propositions. These are gtomic
indivisible units, and are declsrative statements which

edmit to being either true or false. 7 is a prime. Hervard

University is in Cembridge, Msssachusetts. L is en odd

number. These basic units are combined by means of copnec-
tives to form new compound seritences. If 4 1is an odd

number, then 7 is 8 prime. Harvard 15 in Cambridge if

and only if 7 is a prime. The truth or falsehcod (briefly,

the truth-value) of the resulting combination then depends
only on the truth-v.lues of the component scntences, and
not un any internsl relation between them. Same two compound

sentenc:s. Consider mlso: Socrstes is s man. All men are

mortal. No conclusion in the prcpositiorrl calculus.

Socrates is 8 man. 1f Socrates is a man, then Socrates is

mortal. Conclusion in the propositional calculus.
If we interpret the elements of the propositional

calculus as sentences, we will wish also tc interpret the



~onnectives as English words «: phrascs There is a corre-
spondence between the connectives and the words not, ang,
or, if ... then, end 1f and oniy if. wh.ch are usually
used as translations. But th: meaning of ' he connectives
is @ defined meaning, not subject to the various alternative
readings which are available fcr the corresponding words.
-I. some cases, the meaning of the connectives may appear
urnatural, relative to the corresponding English, but since
the connectives are precisely defined, rno real damage can
result.

The elementary or atomic statements of the propositional

cs.culus are denoted by the statement letters p, q, T, Pys

Qs Ty o--e - The two truth-values are falsehood, denoted
by '0' or by 'F', and truth, denoted by ‘1' or by T' .
In general, no confusion arises from using numerals to denote
the truth-values, and it is more convenient for computation
However, in proofs, the ietters ‘T and *F' will be used.

The connectives. Atomic sentences are combined into

compound sentences by means of the coanectives.

Negatioa.

There is one singulary connective, noit, which

corresponds to negation The negation of p 1s usually

' iV ] t i

written 'p' or '-p' or or '~pi . 1ts value,

P
which depends only on the value of p 1is given by rhe truth-

table



w0 1

-p 1 O

That is to say, ~p is true if p i: false, and ~-p 1is
false if p is true.

While '-p' is generally resd ‘not p', it 1s, of
course, not true that we form the negztion of a sentence in
English simply by prefixing the word -not’ . '7T ig not s
prime' is the negation of '7 is a prime’ The word ‘'not’
is thus placed within the sentence. To obtain a uniform
method of translation of -p 1in termrs of p we mey use

it is not the case that p ', it is not the case that 7

iz & prime.
There are four binary connectives, also defined by

truth-tables.

Conjunction.

The truth-table for conjunction, p and q 1is

(pA) 0o O 0 1

(p A q) 1is true only when both p is true snd g is true.

(pAq) is also written 'p & g', and 'p - g snd 'pq'



p A q is the conjunction of p and q; p and q are the

conjuncts of the conjunction.

Disjunction.

Alternation or disjunction is the first of the
operations for which the departure from English usage
requires comment. 'p V q' 1s true if p 1is true, or if
q 1is true, or if both p and q are true (the inclusive

or). The truth-table is thus:

[
[

(pVe O 1

Frequently in English, & disjunction using or 1is intended
to exclude the case in which both disjuncts are true. To
expre3s that case in tke notation of the propositional

calculus, it is necessary to write a more complex statement:
(pVva - (-(pAa) for example

that is, to exclude specifically the case in which both p
and q are true. The notation ‘V' for alternation 'vel’

as opposed to ‘'aut' (the exclusive or). p and q are

the disjuncts of the disgjunction (p V q)



Comment on the form of the truth-table.

It is more usual to write truth-tsbles using columms
rather than rows for the valuer of the propositional variablese.

The truth-table for (p V q) is thus usually written

p a (PVQ

T T T
F T T
T F T
F T F

The two forms sre, of course, equivalent and either form is
acceptable. The one I em using makes somewhat more trans-
parent the isomorphism with Boolean algebra, and in addition,

seems eagier to use.

Conditional.

The conditional p>q resd if p then q might
be said to depart even farther from common nonmsthematical

usage, since it is defined by the table:




It is true: if p 1is felse, or if q 1is true. It seems
clear that 'if p then q ' should be true if both are true,
and should be false if p is trve and q 1is false. The
case, p felse, g true, must be true in order that

PA g2 g always be true, regardless of the truth-value of
P . Besides, otherwise the value is independent of the
value of p, which is very uninteresting. The remaining
case in which p > q 1is held to be true when the antecedent
p end the consequent q are both false, can be asrgued on
the bzsis that an even integer should not be taken as a

ccunterexample to if x is odd, then x2 is odd, nor an

occasional absence of smoke as a denial of the statement,

if there is smoke, there is fire. The conditional thus

defined is called the material conditional, to distinguish
it from other possible conditional relationships, as, for

example, that of cause and effect.

Biconditicnal.

The final common binary connective to be defined is
the biconditional 'if and only if', p® q . Its truth-

table is




p®Eq is true if p and q have the same truth-valu:,

otherwise it is false.

Nonconjunction, nondisjurction.

There are two binsry connectives which are only
occasionally used, but which are interesting because each
alone suffices, by compound use, to express all of the

connectives given above. These are nonconjunction (Sheffer

stroke) and nondisjunct:on (jcint denial).

p 0 1 o 1
q o 0 1 1
plqd 1 1 1 o

(bdg 1 0 0 0

Exercise

Work out negation and conjunction for Sheffer stroke. Play

with relations between connectives.

10



Application of propositional calculus

to_arguments in natural language.

The original spplication, or st any rate one early
apLlication, of the propositional calculus was in treating

arguments of the following type:
If Jones is a communist, Jones is un atheist.
Jones is an atheist.

Jones is a communist.

let p be Jones is a communist. let q be Jones is an

atheist. Then the premises of the argument are

p34q
and
q,
and the conclusion is
P -

But (p Dq) A q does not logically imply p . Therefore
the argument is invalid. (Work out with truth-tables.)
For some good examples of applicetions to mathemstics,

see Rosser, Logic for Mathematicians, McGraw-Hill, 1953.

1l



Avpumesnts can be given to show that the indigcriminate
application ur ' propositional calculus can lead to ubsur-
dities in philosopt.ic arguments. Frofessor Stevenson of
Harvard gave s preseutation to the philosophy club there in
which he etitempted to show that logic wor not a fit subject
for teaching to undergraduates. He pointed out, for example,
that the compound statement, "If I pound on this desk st

11 o'clock, Widener Libra~y will fall down,“ can be proved
to be valid, since its antccedent ie false. Consider also
the following discussion. A If Resgan is elected,
Cslifornia will be a better place to live, B. Thet's false.
A. You have just asserted that Reagan will be elected.

Or "If it rains, I wear & raincoat” hence "I I den’t weur

a raincoal, it doesn’t rain.” BSuch matters will nct ¢ ncern

us here.

e



i

Degation not P P ~p P 01 7 is a prime.
‘ P P - 1 O 7 is not a prime.
conjunction p and g (pAg conjuncts P 0O 1 O 1 T {is a prime.
Pq q 0 0 1 1 11 is an even pumber.
Pta (pAgg 0 © O 1
P&aq
ais ion p or q (pV q daisjuncts (pvVeg © 1 1 1
conditional if p then q (p Dq) antscedent 1 0 1 1 4if 7 1is a prime,
consequent then 11 is an 0dd number.
biconditional p iff g (p=q 1 0 0 1
nonconjupction not both p ad QP | @ Shaffer stroke 1 11 0

poodisjunction  neither p nor 4q plq Joint denial 1 0 0 O



DEFINITION: The symbols ~, A, ¥V, 3, and = (we exclude

now l and | ) will be called propositional

connectives.

DEFINITION: (informal) A statement form ot the propusitional
calculus is an expression built up from the state-
ment letters p, q, I, Py oo by sppropriate

arplication of the propositional connectives.

Notation: We use A, B, ... es variablei over statement forms
and p, q, ... 8s statement letters {Mendelson uses @, 5,

for variables over statement forms, snd P, g, ... fcr letters.)

DEFINITION. statement form
1. Any statement letter is a statement form.
2. If A and B are statement forms, so are
(-a), (AAB), (AVB), (A>B), end
(A = B)

5. Extremsl clause

Comments on extremal clause:

|

i. Only those expressions are statement forms which

are determined to be 50 by means of (1) and (2).
2. € 1is a statement form 1f and only if there is s
finite sequence A

o Bor me An (n > 1) such

that An -C, @and if 1< i<n, A1 is either



a statement letter or is & negation, conjunction,
disjunction, conditional or biconditional constructed
from previous expressiong in the sequence.

3. An expression is a ststement form if and only if
it can be shown to be 8 statement form on the basis
of clauses (1) and (2).

4. The only statement forms are those given by (1)
amd (2).

5. An expression is a statement form if and only if
it is so by virtue of (1) and (2).

Note: Excludes (A ¢ B) .

Also excludes infinite case, ((A1 v AQ) v Aj) cen .

Parentheses

Note thet under this definition A VY B 1is not a
stetement form because there are no parentheses.

While & statement form must, by definition, have
parentr eses associated with each of the connectives, con-
ventions are usually made about abbreviated forms with fewer
parentheses. If the parentheses are omitted, according to
some rule, cthe expression is treated as if it were the state-
ment form of which it is an sbtreviation.

Standard conventions for the restoration of omitted
parentheses are the following:

1. Outer parentheses sre owitted.

2. Associate trom the left for any one connective.



3. The connectives are ordered: =~, A, V, 3, & .
From L to R they each apply L0 the smallest
possible scope. p V -q DO r ® p thus sbbreviates

(((p V(<) r) = p)

Dot notations

In sdditlon to the conventions about omitted parentheses,
there are several dot notations in use. These tend to strengthen
the associsted connectives, that is, to move them to the right
in the ordering given. Whitehead and Russell (Principia Math-
emstica), Church, end Quine sll have slightly different con-

ventions. Examples:

PM #3.3 F(((®>3a 2 1) 2k 2 (g2r))

'-p-q.:-r::gpnbn QO r

Church P2 (@3 r) 2. (p2q)2(p>21r)

In general, it seems best ‘n an informal t:eatment to avoid
the use of dots by the use of parentheses; however, one should
be aware that these conventions exist and thst they difier

from one snother slightly.

16



Evaluation of a Statement Form

7> far we have given truth-table definitions for the
connectives which have given us s means of evaluating, i.e.,
finding the truth-value of, sny expression with one connective.
This method can be extended step by step to obtain an evalu-
ation for any statement form, since the form is built up by
individual spplications of the connectives.

Thus, for every assignment of truth-values to the

statement letters of a statement form, there corresponds a

truth-value for the statement form.

Example:
p2@2r))>2{(p24q 2 (q>r))

Thus, each statement form determines a truth-function (a
function frcm truth-values to truth-values) (f: (0, 1)n -
(0, 1)), reoresented by the truth-table. For n distinct
statement letters, there are 2" assignments of truth-values

n
to the letters (columns), =nd thus 22 truth-functions.

Formats for truth-tables

p Ol01 0101
0011 0011
r 0000 1111

-p 1010 1010
-pVgq 1011 1011
~pVYq>r 0100 1111

7



usual form: pVaqg ® qVp

P PVag QVPpPp rVeTagVvep
F F F F 7
T T T T
F T T T 7
T 1 T 1 T

Quine's format: (~pV q)>r
STTT TT
TITT TT
LTLd T1
TLTI TT
T Iy L4
TITT I L
I1TLI T&
TLTI L L

Tsutologies (Wittgenstein)

DEFINITION: A statement form which is always true, regard-
of the truth-values of its statement letter,

is called a8 tautology.

(In the truth-table of a tautology, the bottom

row contains only 1l's .)

Example (axiom 3):

(~q2~p) @ ((~q>27p)>q))

DEFINITION: If (AD B) is s tautology, them A logically

implies B .



If (A® B) is a taulology, then A is
logically equivelent to B .
[Note that by reading the horseshoe as “if...

then" and the symbol '®' as 'if and only if'

we have reserved the words implies and equivalent

for statements in the meta langusge.]

Examples of tautologies

p VvV ~p
P 8 r~ D
p N q logicelly implies p.

pA(p2q) logically implies q .

p>2g end ~p VYV - are logically equivalent.

DEFINITION: A is a contradiction if A 1is false for all
possible truth-value assignments to its state-

ment letters.

DEFINITION. A is satisfisble if A 1is true for some

truth-value assignment.

From the definition of tautology, it is immediately

clear that the truth-tables provide an effective method for

deciding for any given statement form, whether or not it is

s tautology.



We now prove some theorems about tautologies.

THEOREM 1.1: If A sand (AD B) are tautologies, so is B

PROQF: .

Suppose there is some assignment of truth-velue to
the statement letters of B which makes it false. Then
there is an assignment to the letters of A amd B vhich
makes B false end A true. (Since every assigmmcnt makes

A true.) But then this assignment makes (A= B) false.

But this is impossible because (A2 B) is a tautology.

THEOREM 1.2: (Substituti>n in a tautology yields a tautology.)

If A is & tautology containing the statement letters
Pys Pps +os P and B arises from A by substitution of
the statement forms Al, ceey An for 120) pe, coep pn

throughout, then B 1s a tautology.

PROOF:

Consider any assignment tc the statement letters of
A].' veep An . It gives an assignment of truth-values to
Al’ vaep An SBY Xyy -eep X - Then the truth-value of B
is the same as the value of A under the assignment of the
x, to the Py But since A is a tautology, this value
is T . But this was true for any assignment to the state-

ment letters of B . Hence B 1is a tautology.

20



REMARKS :

However, i1 we begin with a statement form which is
not a tautology, we can, by substitution, obtain a tautology.
This is true with only one exception (that is, except when

the statement form is a contradiction).

THEOREM 1 3: (Equivalence Theorem)
If C' arises from C by substitution of B for

one or more occurrences of A, then

(1) ((A=8) > (csc'))

is a tautology. Hence, if A is logically equivalent to

B, then C' 1is logically equivalent to C .

PROOF:

Consider any assignment of truth-values to the stete-
ment letters of (1). If under the assignment A and B
have different truth-values, then (1) is true, by the truth-
table for the conditional. If they have the same truth-values,
then C end C' will have the same truth-values.

The final statement follows, by the definition of

logically equivalent, and Theorem 1 1.

2l



Example 1.

Would you believe pq V p_r vV qrs ® pq V pr T But
pqVPrVqrs epqV prV (qrs A (p V p)) [vhere 'e' means,
temporarily, has same value for all truth assignments],
because pVperl and AALl &A .
epq V pr Vv pqrs V pgrs because BA (C VD) e« (CAB) YV (DA B

«pq Vpars V pr V prqs resrranging.

«pqV pr because AV (AAB) @A .

Example 2.

(p2q =2 ((r2q) 2 (pVr>y4)

epVq V (rVq VvV (pVr V q)

by A2B o ~AVB

«(Pnrqg VY (TAQ) VvV (pVr) Vv q

AVBewAAEB

o(pAq) VvV (rAQ VvV (pVr) Vaq

BeB

e((pYVr)AgQ VqVpVr

(AVBYACeo(AAC)V(BAC)



o (((pVr)vVe) A (QVg)) V pVr
e(pVr)VgqVvyVr

1l

What is a truth assigmment? Usually say a truth
assigment T to the letters of a formula A, i.e., if A
has & statement letters (pl, caey pn) each p,; is replaced
by O or 1 . Will write JA =0 or 1 as value of A
under truth assigmment 7T .
A truth function f is a mapping f£: (0, 1)® = (0, 1) .
Every statement form of n letters generates by its

truth-table an n-ary truth function, ceviously.

THEOREM 1.L:
Bvery truth function of n variebles is generated by

some statement form with n statement letters.

PROOF: (by construction)
Let f(x,, ..., x_ ) be a truth function. We can

1 n
express this function by a table giving the value of the

function as the last line.

Xy 0101 ... Q101
X, 0011 ... 0011
x3 0000 1111
X, Q000 1111
e.g. f 1011 0010

23



There are 2" coluans, n rows. (Explain.)

n
U, where U, is P, or
J=17J J J
. th .th .
~ Pj accord.ng as the entry in J row, i column is

For 1<1i<2% 1et c, =A

1 or O. let D= VCk whzre k ranges over only those
columns in which f 1is true. Then f 1is truth function
corresponding to D . For, if T is any assignment to
(pl, ey pn) then there is a corresponding -~olumn k of
the above table such that TCk =1 andl JC =90 (i F k).
If f is true at T then row f, column k 1is 1; so
Ck is a disjunct of D; so ID=1. 1If f is false at

T, then row f, column k, is 0; so Ck isn't disjunct

of D; so ID=0.

This completes the proof except when the truth function
is identically false. The construction then produces nothing.
Take D as Py A Py -

Example:

Xy 0101
Xo 0011
f 1101

D= ppy VpyPy VPP,

24
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NORMAL FORMS IN THE PROPOSITIONAL CALCULLS

DEFINITION: A literal is a statement letter or the negation

of a statement letter.

Notation

S and ; are used as varisbles over the signed
statement letters p and p . If 8 is p, then Y s

p . If S is EL then ; is p .

DEFINITION: A statement form is in disjunctive (conjunctive)

normsl form if it is a disjunction (conjunction)
consiegting of one or more disjuncts (conjuncts)
each of which is a conjunction (disjunction) of

one or more literals (abbreviated d.n.f., c.n.2.).

DEFINITION: In speaking of a d.n.f. (c.v.f.] we refer to the

disjuncts (conjuncts) ss clauses.

THEOREM 1.5: Every statement Form is logically equivalent
to a statement form in d.n.f.
Every statement form is logically equivalent to one

in c.n.f.

PROOF:
For the d.n.f.: Corollery to the proof of Theorem 1.k,

That is,

S}
N



(1)

(@)

sny contradiction is logically equivalent to
PAD,

if 1t is not a contradiction, then its truth-
table has st lesst one 1 . The alternstien
of the Ck corresponding to the 1's in the
truth-table is equivalent to the original form,

ad is in disjunctive normal form.

For the c.n.f.: The d.n.f. of

DEFINITION:

~A 1is Al v A2 V...V Ah

-A eqv. A1 v A2 V...V Ah

A eqv. ~(A1V cun VAX‘)‘

)

eqv. ~A1A~A2/\ ,,,A~An

. AB A ... A
eqv. B A B, B,

eqv. c.n.f.

The tull disjunctive normel form (f.d.n.f.) of

@ statement form A 1s & logically equivalent

statement form which is in d.n.f. eand in which

1. 1in each clause every letter of A eccurs
exactly once; and

2. no two clauses contain precisely the same

literals (no duplicates).
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THEOREM 1.6: Every non-contradictory (non-tautologous)
form has a f.d.n.f. (f.c.n.f.) which is unique to within

oxder.

PROOF:

The construction for Theorem 1.5 in fact produced a
f.d.n.f. and f.c.n.f. It is unique to within order since
any form having different clauses will have different truth-

tables.

Algorithm for Obtaining Disjunctive Normal Form

1. Eliminate unwanted connecti.es.
2. Push negation all the way in.

3. Muliiply out the conjunctions.

METHODS for obtaining f.d.n.f.:

1. The truth-table method given by the proof of the
theorem.

2. Suppose A 1is any non-ccntraction. Put into
d.n.f. using equivalences. Then if any clause
A is missing a letter, sar p, replace Ai by
(p VP & A, . This becomes p& A, V DA A -
Eliminete duplicates and any pE's and repeat
until f.4d.n.f. is obtained.

Methode for obtaining f.c.n.f. are analogous (dual).

a7



Examples:

d.n.ft. 5V G
pa vV 2a VraVpg

f.d.n.f. pa ¥ pa Vv pg

(pa V pa)
(p Vpa)(aVpa)
PVvRPVval@v@’yad
(pvaaVvp
(PYaVa)
(pVripVr)
prVrpVrr
pr v rp

not Just r

PE-D

a contradiction.

No f.d.n.f.} f.c.n.f. pAp okay.

COROLLARY L 7: An f.d.n.f. with n letters is s tautology

if and only if it nas 2" clauses.
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l. By the truth-table argument.

2. Suppose the clause pqr 1s missing. Then the
trutb-velue assignment O0l0 will meké A false.
On the other hand, if all clauses appear, there
is one which is true for any assignment.

3« By factoring, by the use of equivalences and the
distributive law, we cen reduce to p V p which

is a tautology.

THEOREM 1.8: A necessary and sufficient condition that a
c.n.f. form £ be a tautology is that in every clause of the c.n.f.
taut.

at least one letter appears both negated and unnegated.

PROOF: Assume A 1is a tautology. Let A' be a4 c¢.n.f. of

A . It is iientically true. Hence every clasuse must be

identically true. But & clause A, is an alternestion of

i
literals and hence can be identically true iff some one

letter occurs both negated and unnegated.

THEOREM 1.9: Dusl stetement for d.n.f.: A n.s.c. that a

d.n.f. d.n.f. be a contradictior. is that in every clause some letter
contra-
diction occurs both negated and unnegated.

PROCF: Dual to the above.
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Decision methods in the Propositional Calculus

We have shown that for any statement form of the
propositional calculus we can test whether or not it 1s
always true, (identically true), i.e., whether or not it is

@ tautology. Thet iz to say, we have a decision procedure

for the propositional calculus Tne decision procedure is

effective end general.

By effective we mean, rcughly, that there is g purely
mechanical way of carrying out the method, which does rot
require the exercise of ingenuity. (Church)

By general, we mean that the method epplies to every
problem in the class. Note that the class of problems is
infinite.

Restated: The decision problem for the propositional
calculus is the problem of deciding effectively for any given

statemert form, whether or not it is a tautology.

Decision methods

1. Truth-table.
I

2. Pt oir fdon.t it H-, Cr2.3% 5, 1t 19 7 “u.1ology
Cy 0 heorer abave
3. Quines (resolution) method Form a tree, sub-
stitute at each level O or 1 for one letter.

As the substitutions are made, evaluate by the

following rules.

N
@]



~0 el OAA&O « C

~ 1 e0 1ANA ] O% Aee~A
OVAeA 0P Ael 1l AeA
1VAel A2 Q0 e~A

Continue uatil either some branch comes to O =--rot tautology,

or all JUIN Te 1D . 2uleY

Example 1

{(pqVver) 2 _(a=n

TN

Subst for p
r> (g a1 Q> (q & 1)
Subst for gq \ /\
TRT ror 1l r
Subst for r /\/\
Exsmple 2
ab V ac V vcd ab V ac

Subst for =

Subst for b

Subst for ¢

Bavis-Putnam slgorithm

Tests a ¢ n.f. for contradicticn.
Step O: Mey assume no clause contsins P and ; . Any such

clause can be removed (if all, then net contradiction).



ona-literal -clause rule

are clauses

(p) and (§)
both py

yes >— contradiction

eliminate all occurrences of

is p yes | -
present ¥ and all clauses contsining p
no not
‘ anything left contradiction
affirmative negative rule
”»
P 3"‘“""’ | eliminate all cleuses
p not containing p
no
any left | not
v e contradiction
A_\/ sp: 1tting rule
L
now both p or
§ oceur
suppress all clauses suppress all clauses
Al containing p A2 containing p contradiction

\

\____._—.-‘:-::1fAlandA2are




Example 1.

(;1 !) (a.v r) (P) (;)

which is:
~{(p2a) A (@2r) 2 (p21))
by OLCR:
(» @) (p)
(q)(q)
*'contradiction
Exemple 2.

(py @ (p, A (p, QP @

(a) (@) (q q)

both contradictions

THEOREM t.i0: DPavis-Putnam procedure works.

PROOF .
Note that there is a dual procedure for testing if

d.n.f is e tautelegy.
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Reproduced from
best available copy

_Durham's iimiration [neorem

THECKEM: let A be the d. p.t tomala

where the l:-1ter P QOcS LGL Lo.dr 10 A1 (3 =1, -~ , &

Bz (¢ =1y -y m or (O, san1 Where, for il |« AlB' 1s

a contradiction L=t A" be
. v v
vBa v viBa viEs v . viB Ve

Then A 1is a tautology 1f snd only 1f A" 1s a tautology

PROOF:

Every clause of A" 15 also & clause of A, so if
A' is & taatology; so 1s A Thus 1t 1s only necessary to
prove that it A 1s & tadtoiogy, th=n s0 18 Af We prove

this by showing that there i =0 acsigument of truth-values

1o the letvers of A wnicn moukes A *ru~ and A false

. A
Casz 1. p__1s p -

Then
; x V . VAV Vv

A eqv. I\AJ A An)

Vpia VE_ Vv VR OV

1 P I
o egv JA VY VA v v v A

R eq Pl SRR )

v ;(HL ViRV YR



Let all the letters of A be (p, [RE pk} and suppose

the truth-valuc assignment {a, @, o.., ‘k) makes A true,

1!
A' felse.

Cease la s is O

Then (O, a Loy 8 makes A rue, A' false,

1’ k)

hence (B, V ... V Bm) V C false. This is sosurd.

1

Cese 1b. a is 1 .
Then (1, 8y, s ak) makes A true, A false,

Vv .,..V v cos
hence (Al . A VY C true and (Al v v A, v

A V... VA)VCC false. Hence it must make A, true
i+1 n i

and C false But then, since A, and C do not contain

i

ps (0, 8, - nk) also makes Ai true eand C felse. But

since A 1is a tautology (0, a,, ..., Ik) must make

1)
B, V ... V Bm) true. But it is net possible to meke both
A, and (3. V...V Bm) true, since to do so would make

AiBJ true for at least one |Jj, contrary to hypothesis.

Hence this case is &#lso impossible.

By symmetry.

DUNHAM'S METHOD

For each letter p 1in the d.n.f. formula A, circle

the eccurrerice of ﬁ in clause ‘Ai iff A also contains a



clause ;BJ such thet Ai’J is not a contrauiction. Dele'e
a1l clsuses " contain uncircled literals. Erase circles
and repeet until at some step no clause is deleted. If there
are no clauses 12ft, A 18 not s tautology. If the d.n.f.
formule A' remsins, then A 1is 8 tautclogy iff A‘ 1is a

tautology.

REMARK: To contrast with other methods, take pq ¥ pq V pg
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AN AXIOM EYSTEM FOR THE PROPOSITIONAL CALCULUS

NOTA _BERE: These lectures are intended ss comments on
Section L, Chapter 1 of Mendelson. They are in no sense
complete, but are intended to assist in reading the text.

They do not replace the text, which is essential.

Ressons for wanting to construct a formal system:

1. To be used later in quantification theory.

2. There sre interesting subsystems of the
propositional calculus.

3. For a simple illustration as sn introduction

to the basic notions of formel systems.

Formal Thecry

1. Countasble set of symbols. (Normally constructed
from a finite set of symbols.)
Q. meleUone o Commulue virs) This must be etfc¢otive.

3. Axioms. 1If effective then an axiomat,i_c_ theory.

Example of a non-axiomatic theory would be to
take as axioms the theorems of ihe first-order
predicate calculus.

L. “v of inference. Again effectiv<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>