
$3.00

CS139 LECTURE NOTES

PART |

SECTIONS 1 THRU 21

PRELIMINARY VERSION

BY

J. EHRMAN

= TT

A ad Car
- 7 EI DEEE Cl. *

1. INTRODUCTION

These notes are meant to provide an introduction to System/360 which

will help the reader to understand and to make effective use of the

capabilities of both the machinery and some of its associated service

programs. They are largely self-contained, and in general the reader should

need to make only occasional reference to the "System/360 Principles of

Operation" manual (IBM File No. 8360-01, Form A22-6821), and to the

"Operating System/360 Assembler Language" manual (IBM File No. 8360-21,

Fom C28-651k).

A digital computer can be considered from a variety of viewpoints; for

convenience we will mention five possible ones, each of which treats the

inner workings of the computer in successively less detail. To an engineer

concerned with the design of its logical circuits, a computer might be

considered basically a collection of devices for controlling and ordering

the flow of electrical impulses. At another level a person concerned with

methods to be used to make these logical circuits perform certain operation8

such as division might treat a computer as a collection of registers, switches,

and control mechanisms which, when provided with the appropriate data, are

to perform a series of steps leading eventually to the computation of a

| quotient. At the next level one might consider the basic operations of a computer

to be those operations which perform a single arithmetic operation, a

simple data movement, or a test of a single piece of data. Another viewpoint

(typical of "higher-level languages" such as FORTRAN, ALGOL, and PL/1)

1s to consider that the basic operations of interest are the movement of

blocks of data, the evaluation and assignment of mathematical expressions,

and the control of counting and testing operations. At yet another level,

as in certain applications such as traffic or production simulation, data

reduction, and network analysis, the computer is considered as a device

which accepts information in a form which closely approximates that of the

1-1

problem under consideration, end produces output directly applicable to

that problem.

Each of these ways of viewing a computer 1s of course not especially

distinct from ite neighbors. In this treatment we will be primarily concerned

with the middle level, namely that of considering the basic operations, or

instructions, that we want the computer to perform to be single arithmetic

or logical operation*, simple data tremsmission operations,. etc. We will

from time to time have occasion to consider the canputer from "neighboring"

viewpoints: 1n some circumstances 1t will be useful to know some details of

the internal sequencing of operations such as multiplication and division;

at other times it will be convenient to consider instructions to the machine

which will perform operations in a larger context than that ordinarily

considered.

This level of programming which will be our primary concern 1s usually

known as "machine language" programming; however, since the process of

actually getting the desired instructions into the computer requires the

aid of a number of other programs, the first of which 1s called an assembler,

the terms "assembler langusge" programming or "assembler coding" are also

used. Thus the service program of most concern will be the Operating

System/360 Assembler; other programs of interest will be the Linkage Editor
and the Resident Supervisor, each of which will be considered in the

appropriate context.

1-2

2. BINARY AND HEXADECIMAL NUMBERS

System/360, like most other digital computers, makes heavy use of

: binary numbers for internal arithmetic. Because digits in a base two

; representation can take on only the values 0 and 1, 1t 1s relatively simple

to build a mechanical or electrical device which represents the digit. For

example, a 1 digit may be represented by the presence or absence of a

current through a given circuit component or by the presence of a positive

or negative voltage at some point. Because facility with the use of binary

numbers 1s fundamental to an understanding of-the basic operation of

System/360, it 1s useful to summarize the properties of the binary number

representation. For the time being, all numbers will be assumed to be integers.

In base ten, when we write a number such as 1735 we mean the quantity

| 1x 10° + 7x 10% + 3 x 10% + 5 x 10°.

That 1s, each digit position as we move to the left 1s weighted by another

power of the base, ten. Similarly, when in binary arithmetic we write the

number 11010 we mean

| 1x 2% +1x2°+0x2%+1x2" +0x 2°

| which of course 1s not the same as what 1s meant by the decimal number
| 11010, where powers of ten are understood. In fact, the binary number 11010

1s the representation (in the number system with base two) of the decimal

number 26, which is obtained simply by performing the sum in the above

example.

To clarify which base 1s intended when we write numbers, it will be

convenient to attach a "subscript" at the right end of the number to

| indicate the base being used:

| 2610 = 110102, 110 = 1g,

i 1010 = 10102, 10002 = 830.

2-1

As the decimal numbers being represented become larger, the number of

binary digits required becomes larger also.

Thus,
99910 = 11111001112.

It 1s therefore convenient to find a more compact notation for binary

numbers. If we consider groups of four binary digits at a time, the possible

decimal values that can be represented run fram zero to fifteen, If we then

choose to represent each of these groups by the digits 0, 1, 2, 3, 4, 5, 6,

7, 8,9, A, B, C, D, E, F, we can establish the following table of correspondences:

Binary Digits Decimal Value | Base16 Digit

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 10 A

1011 11 B

1100 12 C

1101 13 D

1110 14 E

1111 15 F

TABLE I.

Hexadecimal, Decimal, and Binary Digits

2-2

We will call the base sixteen digits in the third column hexadecimal

digits, and will generally use them in situations when we have occasion to

refer to binary numbers. As before, a "subscript'" of 16 will be used to

indicate that the given set of digits 1s to be understood to have base 16:

2610 = 110102 = 1lh1s, 2616= 1001102 = 3810, 110 = 1a = lig,
1010 = 10102 = Ag, 1002 = 810 = 81g, 10010 = 6l16 = 11001002.

Converting numbers between binary and hexadecimal representations can

be seen to be quite simple: to convert a hexadecimal number to binary,

simply substitute for each hexadecimal digit the four binary digits it

represents; to convert a binary number to hexadecimal, group the binary digits

four at a time starting from the right, and substitute the corresponding

hexadecimal digit. For example:

D5Bie = 1101 0101 10112, (hexadecimal to binary)

11 1110 1002 = 3EBi6. (binary to hexadecimal)

In the second of these examples 1t was assumed that two extra binary

zero digits could be added at the left end of the number without affecting

its value; thus we can write

1116 = 100012 rather than 0001 OOQlz.

Conversion between decimal and hexadecimal representations 1s somewhat

more cumbersome, but 1f a conversion table such as the one in the Appendix

1s not available, the following method 1s usually sufficient for hand

calculation.

In the positional notation we are accustomed to using, a string of

digits d_ d . . .d dd 1s the representation in some base D of the
n nl 2 1 O

number X:

n

k

X =) 4,0" = do” + dyD* + d2D® + . . + aD
k=0

2-3

Suppose we want to convert from this representation in bare D to the

representation in a new baseB:

X =) b, B" = boB® + by Bt + bgB® + coo+ b B' N
k=0

The known quantities are the old and new bases D and B, amd the digits a.
of the old representation; then to find the digits bk in the new representation,

the following scheme 1s used.

Divide X by B; save the quotient, end the remainder is bo. That this

is so can be seen from the definition of the quotient and remainder:

X = Remainder + BX Quotient = bo + BX [b1 + b2B + baB2 +... + bE.
Divide the saved quotient by B; seve the new quotient, and the new remainder

1s by. Continue this process until a zero quotient 1s obtained, and the

successive remainders are the digits bo, ba, . . . by; note that they were
obtained in order of_increasing significance.

Examples

1, Convert 1910 to base 2.

4 2 1 0

2)19 2)9 2) 2)2 2)1
bo =1 —5 58 2 2© by =1 b2=0 b3z=0 bg=1

Hence, 19:0 = 100115.

2. Convert 100010 to base 16. (Note that the conversion aritimetic is

done 1n base 10.)

62 3 0

16)1000 16762 16)3
A (bo = by = 14 or Eis bz = 3

Hence 100010 = 3EB;6.

an

3. Convert 62710 to base 9.

69 7 0
9)627 9)69 9)7

621 63 0
bo = 6 by = 6 bp = 7

So that 62710 = T7669.

4, Convert T6bs to base T. (This 1s simple once you've memorized the

multiplication table in base 9, which 1s the base used for the

conversion arithmetic.)

108 13 1 0

; 7) 766 7)108 7)13 71
762 103 0

bo = I bi = 5 ba = bs = 1

; Thus 766s = 1554,.

This can be done 1n more roundabout (but comprehensible) fashion by

converting to base ten first and then doing the arithmetic in decimal,:

: T66s = Tx 81 + 6 x vy + 6 = 567 + 54 + 6 = 62710

89 12 1 0
| 7627 7)89 712 71

623 _84 0
bo = L bi = 5 bo _I5= bz=__1

| So that T6bs = 15547 again.
5. Convert 14135 to base 10. This is most simply done by expanding the

positional notation:

14135 = 1X 125 + 4 Xx 25 + 1 x 5 + 3 = 23310.

Alternatively, using the fact that 100 = 20s in base 5 arithmetic,

43 5
20)1513 0)

130 20)143 20)2
: 113

5 110 _40 0
bo = 3 bi = 3 bo = 2

giving 1%13s = 233;0.

2-5

6. Convert 3E816 to base 10. In this case it is usually simplest to use

the positional notation used earlier:

3816 = 3 x 16° +14x 16* + 8x 16°,

and then this sum can be evaluated in decimal. Thus we find

381g = 3X 256 + 14 x 16+ 8 = 768 + 224k + 8 = 100030.

This type of conversion 1s considerably simpllfied by the use of the

table of multiples of powers of 16 in Table II or (for small numbers)

by the use of the conversion table.

Discussion of binary arithmetic -- addition, subtraction, multipli-

cation, and division -- will be deferred until later.

We will use several abbreviations regularly: a bit will mean a

binary digit, and we will use hex as short for hexadecimal.

2-6

Hex |

EE x16
1 1 16 256 L, 096 65,536 1,048,576 16,777,216 268,435,456

2 2 32 512 8,192 131,072 2,097,152 33,554,432 536,870,912

3 3 48 768 12,288 196, 608 3,145,728 50,331,648 805,306,368

4 4 64 1.024 16,384 262,144 L, 194, 304 67,108,864 1,073, 741,824

5 5 80 1280 20,480 327, 680 5,242,880 83,886,080 1,34%2,177,280

6 6 96 1536 24,576 393,216 6,291,456 100,663,296 1,610,612,736

No 7 T 112 1792 28,672 458,752 7,340,032 117,440,512 1,879,048,192

= 8 : 128 2048 32,768 520,288 8,388,608 134,217,728 2,147,483,648
9 9 144 2304 36,864 589,824 9,437,184 150,994, ghh 2,415,919,104

A 10 160 2560 40, 960 655, 360 10,485,760 167,772,160 2,684,354560

B 11 176 2816 45,056 720, 896 11,534,336 184,549,376 2,952,790,016

C 12 192 3072 49,152 786,432 12,582,912 201,326,592 3,221,225,L472

D 13 208 3328 53,248 851, 968 13,631,488 218,103,808 3,489,660,928

FE 14 224 3584 57,344 917,504 14,680, 06k 234,881, 024 3,758,096,384

F 15 240 3840 61,440 983,040 15,728,640 251,658,240 L, 026,531,840

TABLE II.

Multiples of Powers of 16

| PRE }La Yor,

A : ' Sih
i i aor TL

mL ath

3. STRUCTURE OF SYSTEM/360

It 1s usual to describe the structure of most digital computers in

terms of four major components: memory, arithmetic, control, and input-

output units. It should be understood that an actual machine may not

have components which can be separately identified in this way, but that

for conceptual purposes it 1s possible to think of them as distinct units.

Unit]
2

Arithmetic Input-Output
Unit Instructions Unit

Ny ’
\ /
“NC /

~\ OZ ao 7
No Control G -
~~ Unit “ =

Figure 3.1 Structure of a Typical Computer

The solid arrows 1n the figure represent schematically the possible paths

of data flow among the various units, and the dashed arrows indicate the

flow of control signals. As indicated, the instructions for the control

unit are contained in the same memory as the data used by the arithmetic and

input-output units; this property 1s what gives modern digital computers

their flexibility and power -- the computer can, on the basis of certain

computed results, modify the instruction sequences which control the way it

will treat other data.

In-the System/360 computers many of the functions performed by the

control and arithmetic units use the same internal components, so that it

1s easler to make no special distinction between the two and simply call

the combination the Central Processing Unit, or CPU.

3-1

Memory Datq
Unit |.

\ | |

Instructions Input-Output
and Data Unit

| 7

Figure 3.2 Structure of System/360

- These units will be described 1n varying detail: the memory and

arithmetic unit are of major concern to the machine language programmer;

certain features of the control unit will be examined closely while others

will be ignored for the time being; the input-output unit, which 1s simply

a term which collectively denotes devices such as card readers, printers,

magnetic tape units, etc., will be described only as necessary to make use

of the computer in certain elementary ways.

The terminology introduced here 1s by no means fixed in the literature

and everyday usage of the computing profession. For example, it is common

to refer to magnetic drums as memory devices even though they are accessed

through whatwe have called the Input-Output Unit. What we will call

"memory" can be more accurately described by calling it the High-Speed

Random Access Magnetic Core Memory, but the economy of a single tem is

apparent.

Memory

The basic unit of data in System/360 is a group of eight bits called

a byte. The bits in a byte are by custom numbered from 0 to7, beginning

on the left with the numerically most significant digit. The definition

of the "left" side of a byte will become clear shortly.

IHDEIERD
0 1 2 3 5 6 7

Figure 3.3 A byte containing the 8 binary digits 11010010

3-2

The memory unit 1s arranged so that it will hold a certain number of bytes

in such a way that each byte may be accessed as rapidly as any other. The

bytes may be considered to be individually numbered in order, beginning at

zero; the number associated with each byte 1s its address or location in

the memory unit. The memory may be thought of as a linear string of bytes

arranged 1n order of increasing addresses.

&eaodress
T0102 703 Ok 705 706 TOT 708 709 .

Figure 3.4 A portion of memory

Many of the machine instructions which refer to bytes 'in memory"

(which is an abbreviation for "in the memory unit") actually refer to a

group of consecutive bytes. In such a situation the group, or "operand",

1s always addressed by referring to its leftmost member, namely the byte

with the lowest address 1n the group. Furthermore, certain instructions

require that the address of a group of bytes (which, as stated, 1s the

address of the leftmost byte) also be a multiple of the length of the

group: the possible values for these instructions are 2, 4, or 8, and in

such cases 1t 1s usual to refer to the groups of bytes whose addresses and

lengths satisfy this condition as half'word, fullword, and doubleword data,

respectively.

BET OE8 8r9 O8EA 8EB O8EC 8D 8EE S8EF 8F0 8F1 8F2 8rF3

k- halfword—f halfword—sj- halfword—s Jhalfword—fe halfword-sk- halfword-s|
« fullword -— « fullword — , ¢« fullword — |

I « doubleword - | |

Figure 3.5 A portion of memory

3-3

Note that if (for example) a halfword operand (that is, a group of

two bytes whose address 1s divisible by 2) were specified for some operation,

and the address of that 16-bit operand were 8EAig, then bit 0 of the byte

at 8EByjg would be considered to follow immediately after bit 7 of the byte

at 8BAjg. It 1s in this sense that bit 0 is taken to be the 'leftmost'

bit of a byte: 1t follows (for certain operations) immediately after bit 7

of the byte at the next lower memory address.

The data contained in bytes or groups of bytes in memory can be

manipulated in many different ways, depending on the intentions of the

programmer. These will be discussed later.

Central Processing Unit

There are three things in the CPU of interest to the programmer: the

general purpose registers, the floating-point registers, and the Program

Status Word. There are sixteen general purpose (or simply general) registers,

numbered from zero to fifteen, each one of them being 32 bits (or 8 hex

. digits or 4 bytes or 1 fullword) in length. They are represented schematically

in the figure below.

32 bits numbered 0 to 31

0 31

Figure 3.6 A Single General Purpose Register

RO.

R2

R4

RS IE"

Figure 3.7 General Purpose Registers

3-4

Figure 3.7 1s arranged with the registers in pairs, the left being

an even-numbered register and the right being the next higher odd-numbered

register. This 1s because certain of the machine operations (such as

shifting, multiplication, and division) require the use of a pair of

registers, and in such cases 1t 1s always such an even-odd numbered pair.

We will have many occasions to refer to the general registers, so that it

is convenient to introduce a short notation: we will write Rn to refer to

general register n, so that RO means register 0, R14 means register 14,

and so on.

The presence of floating-point registers in the CPU 1s an option for

certain models, but we will assume that the user of the machine we are

discussing writes his programs for a computer that includes the floating-

point feature. There are four floating-point registers, each 64 bits (or

16 hex digits or 8 bytes or 1 doubleword) in length. They are numbered

0, 2, 4, and 6.

«~ 64 bits =

F2

Fé

SE |S—0

Figure 3.8 Floating-Point Registers

In certain circumstances the floating-point registers are used to

contain operands 32 bits long, in which-case they use only the left half of

the register, and the rightmost 32 bits of the registers are ignored; this

will be discussed in the chapter on floating-point arithmetic. As in the

figure above we will use the abbreviations FO, F2, Fh, and Fo to refer to

the four floating-point registers.

In many cases 1t will be easier to use the term "register" for either

a general purpose register or a floating-point register; which 1s meant

will be clear from the context of the discussion.

3-5

The Program Status Word (or PSW for short) 1s not of direct concern in

mos: programming applications, so that we need not be concerned at present

with examining it in detail. The PSW 1s a double-word (and hence 1t 1s

actually a Program Status Doubleword, but nobody really cares about the

difference) which indicates in a compact form certain important details of

the operation of a program in the System/360 CHU.

System Mask Key AMWP Interruption Code
0 78 1112 15 16 31

$ 1ic | CC | rogren] Instruction Address |
32 33 34 35 36 39 HO 63

Figure 3.9 Program Status Word

The various pieces of the BSW (which resides in the CPU, not1n memory,

and 1s therefore pretty much inaccessible) will be explained in various

contexts later. For the present, however, the items of interest lie in the

rightmost 32 bits: the portions denoted "ILC" (Instruction Length Code),

"CC" (Condition Code), and "Instruction Address" (which we will abbreviate

"IA") are the parts of the PSW which will be treated in most detail. The

Condition Code indicates the result of certain operations (e.g., that a sum

1s negative) and the two bits of the CC can be tested by certain instructions.

This right-hand portion of the PSW will be of more interest than the first

32 bits for most of the following discussion; the IIC and IA will be dis-

cussed 1n the next section. The reader is cautioned that there will be

omissions in the discussion of the PSW until the treatment of interruptions,

where the subject will be covered in greater detail.

Input-Output

The process of data transmission between the memory and external devices

such as card readers, printers, card punches, magnetic tapes, magnetic drums,

disc files, etc., is handled in System/360 by channels. These are capable of

3-6

| transmitting bytes of data in such a way that the CPU can continue with the

execution of a processing program at the same time that the channel 1is

moving information to or from a different area of memory. The problems

involved in synchronizing the transmission of such data with its use by

the processing program in the CPU are quite complex and will be avoided for

the time being, but will be touched upon later during the discussion of

interruptions.

3-7

Kms tog. ru
ER
rs ern Fa

4, INSTRUCTIONS (I)

As was indicated in the diagrams of the "structure" of a computer in

the previous section (Figs. 3.1 and 3.2), the instructions obeyed by the

computer are held in memory along with the data to be processed. Instructions

in System/ 360 can be 2, 4, or 6 bytes long, depending on what the placement

of the data to be operated on happens to be, and on what the instruction

causes to be done with the data. Instructions are always aligned so that

the leftmost byte 1s on a halfword boundary:- that 1s, an instruction

address must always be divisible by two. Otherwise, 1t doesn't matter, for

instance, that a b-byte instruction begins halfway between two fullword

boundaries.

The actual process of performing the instructions 1n a program may be

visualized as 1n the following figure.

mH]A |

Figure 4.1 Instruction Cycle

In the "Fetch" portion of the cycle, the CPU causes the instruction

in memory which begins at the byte whose address 1s contained in the rightmost

2h bits of-the PSW (the Instruction Address or IA) to be brought into the

CPU and placed in an internal holding register where it may be examined.

Though this internal register 1s not accessible to the programmer, we will

from time to time make reference to it, so we will simply call it the

Instruction Register, or IR for short. There 1s a simple way for the CPU

circuits to know the length of an instruction and therefore how many bytes

to bring from memory; this will be explained at the end of this section.

:

|

To complete the Fetch portion of the cycle, the CW adds the length in bytes

of the instruction now in the instruction register to the IA in the PSW, so

that 1t will contain the address of the next instruction to be fetched when

the current instruction has completed its execution. This means of course

that instructions are packed tightly in memory; there are no leftover bytes

between instructions.

To decode the instruction, the CPU examines the bit pattern of the bytes

in the IR to see what action 1s intended. Since (1) the bytes were brought

from memory and (2) the memory contains both data and instructions, 1t 1s

quite possible that the bytes brought to the IR were intended by the programmer

to represent data and not instructions. The CPU, however, has no way of

knowing this in advance; 1t simply goes to the memory address given in the

IA portion of the PSW and puts those bytes into the IR to be interpreted as

an instruction. If this 1s what was intended, well and good (remember that

in the beginning of Section 3 it was noted that the ability to treat instruc-

tions as data 1s what gives a computer its power); otherwise strange things

can occur. Because not all of-the possible bit patterns in the IR represent

"legal" instructions (i1.e., actions the CPU can actually perform), the

decoding mechanism can occasionally detect a confused situation before too

much damage has been done, and cause the appropriate remedial actions to be

Initiated.

Assuming that the bytes in the IR do indeed contain a valid instruction,

some further actions may be necessary before the decoding 1s completed, such

as the calculation of addresses of data to be operated on during the "Execute"

portion of the cycle.

It 1s during this final‘execution phase that the actual operation is

performed. The operation may be a simple one which could, for example,

cause the contents of one general register to replace the contents of

another, or 1t may involve many intermediate steps of complicated logic or

arithmetic. If no errors are detected during the execution phase (such as

attempting to divide something by zero), the CPU then begins the cycle again

by returning to the "fetch" portion of the cycle. It should be noted that

hop

the time required for all this 1s very small even for a relatively slow

computer: the entire cycle takes only millionths of a second, so that with

this tremendous rapidity 1t 1s possible to perform calculations far too

laborious to be done by hand.

The instructions which can be executed by the System/360 CPU can be

grouped into five general classes:

1) Register-to-Register (RR),

2) Register to Indexed Storage (RX),

3) Register-to-Storage (RS),

4) Storage—-Immediate (SI),

5) Storage-to-Storage (SS).

The letters RR, RX, RS, SI, and SS are abbreviations which will be used

regularly to indicate the class of instructions being discussed; the specific

instructions belonging to each class will be treated in later chapters.

RR instructions are always two bytes long.

RR Operation Register
Code Specification

0 78 15

RX, RS, and SI instructions are always four bytes long.

Rx Operation Register Addressing
— Code Specification Syllable

0 T 8 15 16 31

— Code Specification Syllable

0 7 8 15 16 31

—_— - Code ~ Operand) Syllable

0 T 8 15 16 31

The RX and RS instruction formats differ only in the interpretation

given by the CPU to the bits in the "Register Specification" byte.

S58 1nstructions are always six bytes long.

as Operation Addressing Addressing
— Code Specification Syllable Syllable

0 78 15 16 31 32 bey

Figure 4.2 Instruction Formats

4-3

| EE Bi

It can be seen that the operation code, which specifies what action

1s to be performed, occupies the first byte of the instruction. The second

byte contains information necessary to the details of the execution of the

instruction; 1ts interpretation differs for instructions in the various

classes. For all instructions except RR instructions an addressing syllable

1s used by the CPU to compute the address of an operand in memory; this

process will be discussed in the next section.

The first two bits of the operation code contain the information which

tells the CP how many bytes are needed from memory to obtain the complete

instruction. Since a minimum of two bytes per instruction must always be

fetched, the CPU can check these two leading bits to tell how many more

bytes are required. The bit patterns aré as shown in the figure below;

the xooxxx 1s meant to indicate the remaining six bits of the eight-bit

operation code.

RR Rx RS,SI SS

Figure 4.3 Bit Patterns for Each Instruction Type

Thus 1f the first two bits are 00 the instruction 1s two bytes long;

1f the bits, are 01 or 10 the instruction 1s four bytes long; and if the bits

are 11 the instruction 1s six bytes long. Before proceeding with the

decoding phase of the instruction cycle, the CP places the number of pairs

of bytes in the instruction in bits 32 and 33 of the PSW (namely in the

position labeled "Instruction Length Code"). If an error is detected during

the decoding or execution of the instruction, and 1f the PSW at the time of

the error 1s saved somewhere, then the programmer can determine (by

examining the IA and IIL) what instruction caused the error. (This is of

course precisely what 1s done; we will note for now that 1f the IIC were

not saved, 1t would not be possible to determine the exact location of the

offending instruction, since the location of the next instruction to be

executed 1s what appears in the PSW and the length of the bad instruction 1s

variable. This 1s a subject with many ramifications, to be covered later.)

4-4

5. ADDRESSING

To refer to items in memory such as data or instructions, the programmer

must usually make use of one of the general purpose registers. This is due

to the way the CPU uses the information in an "addressing syllable", which

always occupies a halfword in memory.

Base Register Disp] ‘
Specification tsplacemen

welt Pits-————-5,«a— 12 bits =

Figure 5.1 Structure of an Addressing Syllable

The 4-bit field at the left of the addressing syllable contains a single hex

digit which can take values from 0 to 15, and which specifies a general

purpose register. The 12-bit field in the rest of the addressing syllable

contains a number called the displacement which can take values from 0 to 4095.

| To generate the address or' an operand, the CPU does the following:

| Step 1) The 12«bit displacement is put at the right-hand end of a

2h-bit internal register called the Memory Address Register

(abbreviated MAR), and the leftmost 12 bits of the MAR are

cleared to zeros;

Step 2a) If the base register specification digit 1s not zero, then

the rightmost 24 bits of the general purpose register

specified are added to the contents of the Memory Address

Register, and carries out the left end of the MAR are

ignored (the register used 1s called the base register);

Step 2b) If the base register specification digit 1s zero, nothing

1s added to the MAR (so that RO cannot be used as a base

register).

| At this point the quantity in the MAR may be used as the address of an
]

operand 1n memory. However, if the instruction is of type RX, a further

5-1

;

step called an indexing cycle is needed. The second byte of an RX-type

instruction (labeled "Register Specification" in Fig. 4,2) contains two

b-pit fields, the second of which is called the index register specification:

«Op Code—+-+-4 bits —>€—4 bits —»<———16 bits NSE
To be Index |

O1xxxxxx Described Register Addressing
co Syllable

Later Specification

0 T C 11 12 15 16 31

Figure 5.2 RX Instruction Showing Index Register Specification

Step 3) If the instruction is of type RX, and tte h-bit index
register specification digit 1s not zero, then the right-

most 24 bits of the general purpose register specified by

the index register specification digit are added (again

ignoring carries out the left end) to the contents of the MAR.

The resulting quantity in. the MAR 1s called the effective address.

(Binary arithmetic will be discussed in detail in Section 7. For the

following examples, it should be sufficient to note that 0 + 0 = 0;

0+1=1+0=1; 1+ 1=0 and carry 1. These examples go into

considerably more detail than 1s necessary for a working understanding of

addressing, and the arithmetic is jneluded just for the sake of completeness.

Since addressing will reappear 1n several later places, don't worry about

absorbing all the fine points immediately.)

Examples

1. Suppose the addressing syllable of an SI-type instruction is §1011§00101101010

in binary (or |] Eh) in hex) and suppose that the contents of general
purpose register 1ll;g 1S

1100 0111 0011 1110 1001 0000 1010 1111 in binary (or CT3EQ0AF in hex).

Then the effective address of the instruction 1s (giving both binary

and hex):

0000 0000 0000 0010 1101 0101 0002D5 displacement
+ 0011 1110 1001 0000 1010 1111 + 3BQ0AF base (from Rll)

0011 1110 1001 0011 1000 01002 3E930%16

5-2

2. Suppose the addressing syllable of the same instruction is joju68].
Then the effective address is 00046816, since RO cannot be used for

a base.

3. Suppose an RX-type instruction is {1.3 0A] T1468 § , and that the
contents of R7 is 1234567816 and the contents of R10 is FEDCBA98:s.

(Note that the base register specification digit, namely Tis,

means that R7 will be used. The instruction chosen for this and

the next two examples would, if execu'ced 'y the CPJ, cause the

contents of the byte at the memory loce~ioa given by the effective

address to replace the rightmost byte of RO.) Then the effective

address 1s

0000 0000 0000 0100 O11C 1000 000468 displacement
+ 0011 0100 0101 0110 0111 1000 + 245678 base (from RT)

0011 0100 0101 1010 1110 Q2GCO 3LU5AEO

1101 1100 1011 1010 1001 100C + TOR index (from R10)+ 0001 0001 0001 0101 0111 Clilg 11157 570 15 effective address

(The carry out the left end is ignored.)

L. Suppose an RX-type instruction 1s ih sgoof 76 and t&t the contents
of register 7 is as in example 3. Ta 3 the eifective address 1s

0000 0000 0000 0100 0110 1000 200468 displacemant
+ 0011 0100 0101 0110 0111 1000 + _3h5678 base

0011 0100 0101 1010 1110 00002 S45HAEC effective address

5. Suppose an RX-type instruction is §4+3§07f§0i468§ and that the contents

of register 7 is as in example 3. Then the effective address 1is

0000 0000 0000 0100 0110 1000 000468 displacement
+ 0000 0000 0000 0000 0000 0000 1- 000000 base

0000 0000 0000 0100 0110 1000 000468

+ 0011 0100 0101 0110 0111 1000 + 345678 index
-0011 0100 0101 1010 1110 00002 345AEO,1¢ effective address

In this example the values of the base and index register specification

digits were interchanged from those in example 4, so that the indexing

cycle was required in example 5 to compute the same effective address.

Or-the smaller models (30, 40, and 50) of the System/360 series, extra

time 1s required to perform this additional arithmetic, so that in

some cases 1t may be worth trying to avoid unnecessary indexing cycles.

5-3

In a situation where only one register is used in the calculation of

the effective address (as above, where the base register specification

digit was 0 and the index register specification digit was 7) 1t 1s

customary to speak of that register as the base register, even though

it may be the index register in an RX-type instruction. This allows

1 us to refer to this addressing scheme as a base—displacement addressing
technique.

The effective address in the MAR can have a number of uses, the

| primary one being to address operands in memory; 1t 1s also used for shifting

i and branching (which will be discussed later). However, three further
observations may be made about effective addresses which will be used to

refer to data in memory.

First, the presence of 24h pits in the MAR means that a System/360

! computer has the capability of addressing 224% or 16,777,216 bytes. Now it
will almost always be the case that the model being used will have a

smaller memory, since memory 1s one of the more expensive parts of the

] computer. Thus, suppose (for example) we are programming for a machine with

. 21% = 1000016 = 6553610 bytes of memory, and use an instruction which

generates an effective memory address-which is larger than 100001. Since

this effective address cannot refer to anything accessible to the CPU, some

| sort of error-recovery procedure must be initiated; this error condition 1is
known as an addressing exception, and causes a program interruption to

| begin the error-handling sequence.
Second, 1t was noted in the earlier discussion of the memory that

certain instructions which operate on groups of bytes such as fullwords

require that the address of the leftmost byte be divisible by the length

(in bytes) of the operand. If this condition 1s not satisfied, another

error condition known as a specification exception 1s recognized. For

example, the RX-type instruction specifies that a fullword

operand 1s to be transmitted from memory and placed in Rk. Since the

effective address for this case is 00012316, the proper (i.e., leftmost)

byte of the fullword is not being addressed, so that a specification

exception 1s recognized during the execute portion of the instruction cycle,

and a program interruption will initiate the error-recovery sequence.

5-4

Third, because the only part of the memory which can be referred to

without the use of a base register is the area with addresses 0 to 4095,0=FFFis,

the programmer will almost invariably be required to refer to operands in

memory with the help of a base register. (One might think that he need

only fit his program into those first 4096 bytes and then not have to worry

about all this base-register trouble, but that area of memory and more will

usually be occupled by the routines which provide error handling, input-

output operations, and the like; it's called "The System". So we just have

to live with 1t.) This means that 1f we are to address a byte in memory

at address Q, there must be a base register available (that 1s, one of

registers 1 to 15) which contains a number between Q and Q-4095, since we

could then generate an effective address of Q by using a displacement

between 0 and 4095. If there is no such number in a register, then the

byte at Q 1s not addressable. Thus, 1f all the general registers contain

zero, only the first L0og6 bytes of memory are addressable! Usually what

must be done 1s to place some constant in a register which then allows us

to address the desired regionof memory; that is, that register then provides

addressability for that region. However, if the constant itself is in

another portion of memory which 1s not currently addressable, we are back

to where we started, needing another constant to address the first constant.

In fact, it 1s possible for the CPU to be executing instructions in a

portion of memory, and the instructions cannot address themselves!

(Remember that the IA is in the PSW, not in a register.) Fortunately,

there are simple solutions to the problems of addressing, and these will

be the subject of several later discussions.

5-5

. I Capen

- Coy . Hira

REL RA I

. LTR RRPURE
SO Tee WM a

. aor Rh

6. TWO'S COMPLEMENT REPRESENTATION

Up to now we have discussed the binary representation only for positive

numbers, 1n which 1t was implicit that any positive integer may be preceded

by an arbitrarily long string of zero digits, which are then ignored. The

representation of negative numbers requires further consideration. To use

a practical case, we will illustrate the discussion by using whole numbers

of length 32 bits, corresponding to the length of a fullword in memory and

of a general register.

To begin with, suppose all of the binary digits of the number being

examined are taken to be the rightmost 32 bits of any positive integer.

Then

0 1s represented by 00000000,¢,

1 1s represented by 0000000116,

130 is represented by 00000082;¢,

231 is represented by 8000000016,

272.1 is represented by ¥FFFFFFF,g,

2°24] is represented by 0000000lis, and so on.

Thus, 1f the number is less than 2°% its value can be correctly held

in the 32 bits we have made available, and if it is greater than or equal to

27% some significant bits are lost off the left end. (That is, the value

of the number 1s represented modulo 27%) There are machine instructions

which allow the CPU to perform addition and subtraction with operands of

this form; -such arithmetic (modulo 272) 1s called logical arithmetic.

Hence we call this the logical representation of binary numbers, where all

the bits of the operand are interpreted as having "positive weight". (A

"negative weight" for a digit will appear later in discussing negative

numbers.)- That is, if the 32 bits are (from right to left; note that this

temporary scheme 1s the reverse of the numbering convention introduced

earlier) bo, bi, . . . Db30, bzi, then the value X represented by the digits

bi 1s 31

X > b, ot, (logical representation)
1=0

6-1

|

This representation is the most c-on way to interpret a string of bits.

| There are several representations used for numbers which can assume both
positive and negative values, the most common of which are the sign-magnitude,

one's complement, and two's complement representations. Since the last of

these representations is used for most integer arithmetic in System/360,

| we will investigate its properties in detail. Actual arithmetic using
binary numbers will be covered in subsequent sections.

The two's complement representation (the name will be explained shortly)

| of a positive integer x 1s (if x satisfies 0 £ x £ 2°t.1) simply the usual
| binary representation with the least significant digit at the right-hand

end; and 1s the same as the logical representation. The upper limit of

271.1 is chosen because it is the largest-integer which can be represented

using 31 binary digits; the remaining 32nd digit at the left-hand end is

| zero, and will be used for the sign digit. The two's complement representation
of a negative integer x which satisfies -2°* £ x € -1 is the following:

the leftmost bit 1s now set to 1 to indicate that the number 1s negative,

and the remaining 31 bits are aet to the binary representation of the

positive integer 2°* + x, which satisfies 0 g 2* + x £ 2°1-1. In effect

we have done the following: if x is positive, the sum mb,2" gives the
| value of x, because the leftmost bit, being zero, does not contribute to

the sm. If x is negative, the sum of the rightmost 31 bits is 2° + x and

; the leftmost bit 1s always a one, so that we can combine these to obtain

| x = -2° bs; + > bi ot : (2's complement)

This formulas 1s almost the same as that used for the logical representation

except that the leftmost bit (bsi) contributes negatively to the sum --

| that 1s, has "negative weight". We will occasionally call the two's

complement representation, where positive and negative numbers are allowed,

the arithmetic representstion.

The relationship between the logical and two's complement representation

1s quite simple, which may be seen by rewriting the above sum for X:

| 30

| | X = #3 + > bat.
| 1=0

| 6-2

If b31 is zero, the logical and two's complement representations give the

same value, and x = X. If bsp is one, then X = x + 2 X 2°t = x + 27%,

But because we can only represent numbers less than 272 in the logical

representation, XxX + 272 for positive x 1s the same as X, with the extra bit

being lost. Thus, for 0 £ X £ 272.1 and -2°% < x § 27-1, we have

X = 2°2 + x (modulo 27°).

(The above equation is the original source of the term 'two's complement’.

In the earliest computers 1t was customary to treat such fixed-point

numbers as fractions -- the representation was the same as the one just

deseribed, except that the "binary point" (the binary equivalent of the

decimal point) was assumed to lie just to the right of the sign bit rather

than at the right-hand end of the number. The equation giving the relationship

between logical and arithmetic representations was then written X = 2 + x,

so that the representation of a negative number was obtained by finding its

complement with respect to two.)

The actual calculation of the binary two's complement representation

of a negative number can be somewhat cumbersome. If the previous rule 1is

followed, we must calculate the binary representation of the positive

quantity 2° + x for some negative x, and the conversion can be tedious.

It turns out, however, that getting 231 4 by calculating (27% - 1 + x) +1

1s relatively simple, because the representation of 231-1 is 31 one-bits.

Since X 1s negative, 221.1 + x = 2°11 -§x§. Thus the magnitude of x is

subtracted from a string of 31 ones. But wherever x] has a one bit, the
resulting difference bit will be 0, and vice versa. Thus the subtraction

need not be done: simply change each bit into its opposite (namely the

result of subtracting it from 1), and we have 2°t-1 - |x|. (The result
1s called the one's complement of |x].) Then add 1 in the rightmost
position to get 271 Xx, set the leftmost bit to 1, and there it 1s. And

since |x| when treated as a 32-bit number always has a leading zero digit,

we can 1nclude the treatment of the sign bit 1n the following two-step

prescription.

6-3

Given Y: find the two's canplement representation of -Y.

1) Take the one's complement of Y (change all 0 digits to 1 and

all 1 digits to 0).

2) Add a 1 digit in the low-order (rightmost) position, and

ignore carries out of the leftmost position.

To illustrate this process, consider the following two examples 1n

which the arithmetic 1s done with eight binary digits for the sake of

simplicity.

1. Find the two's complement representation of -2.

1) Representation of +2: 0000 00102

2) One's Complement: 1111 1101

3) Add one: +1

1111 11102

2. Find the two's complement of +P.

1) Representation of +P: 0010 1011a

2) One's Complement: 1101 0100
3) Add one: +1

1101 01012

The above prescription also works 1n the opposite direction, which

can be seen from the following example.

Find the 8-bit two's complement of 1111 1110a.

1) One 's Complement: 0000 0001

2) Add one: +1

0000 00102

which 1s the binary representation of +. Thus the two's complement of the

two's complement of a number 1s the original number.

There are two unusual cases which arise in the two's complement

representation: the complement of zero and of the largest negative number.

1. Find the 8-bit two's complement of 0000 00002.

1) One's Canplement: 1111 1111

2) Add one: +1

(carry one) 0000 0000

6-4

To the 8-bit accuracy chosen, the result 1s zero, and the carry of a 1 bit

out the left-hand end is lost. Thus the negative of zero 1s still zero,

which is a mathematically satisfying result; there 1s no such quantity as a

| negative zero, which can be the case in some other representations.

| 2. Find the 8-bit two's complement of 1000 00002.

1) One's Complement: 0111 1111

2) Add one: +1

1000 00002

It can be seen 1n this case also that the complement of the

| number 1s the same as the original number.

Thus we see that the two unusual cases which arise during complementation

are those for which all the bits except the sign bit are zero, and it 1s

found that the complemented result 1s the same as the original operand.

For a zero operand this is desirable, but for the negative case we have a

situation in which there 1s no corresponding positive value available for

a representable negative value. Such a situation 1s described by saying

| that we have generated an overflow condition -- that 1s, the result 1s too
large to fit into the number of bits allotted for it. Overflow will be

treated in more detail in the following section on two's complement arith-

| metic. We will note in passing that the number of quantities with negative

| representation 1s the same'as the number of quantities with positive
| representation, since the non-sign bits of the number may be chosen arbi-

trarily. It 1s sometimes said that the set of negative values in the two's

| complement representation has one more member than the set of positive
] values; what 1s meant 1s simply that the largest negative magnitude 1s

| larger by one than the largest positive magnitude.

:

Decimal Value 32-bit Two's Complement Representation

0 0000 000016

1 0000 000X1ie

256 0000 010016

5000 0000 138816

2147483647(2°*+-1) TFFF FFFFie
-2147483648(-2°1) 8000 000016

-2147483647(-2°*+1) 8000 000lie

-5000 FFFF ECT81e

-256 FFFF FFOO1e

-2 FFFF FFFE16

-1 FEFE FFFFie

Figure 6.1 Examples of Two's Complement Representation

As was mentioned earlier, 1t 1s implicit 1n the representation of

positive numbers that an arbitrary number of zero bits may be added onto

the left end of a number without affecting 1ts value. For example, the

8-bit and 16-bit representations of the decimal value +9 are 0000 10012

and 0000 0000 0000 10012, respectively. Similarly, the 8-bit and 16-bit

two's complement representations of-9 are 1111 0Olll2 and 1111 1111 1111 Ollla,

respectively. Thus, for numbers which can be correctly represented in a

given number of bits, the correct representation using a larger number of

bits 1s found by simply duplicating the sign bit toward the left as many

places as desired. This process 1s called sign extension.

Length of Representation Representation of +1 Representation of -1

8 bits Olie Fie

16 bits 000116 FFFF16

32 bits 0000 000lis FFFF FFIFFi16

64 bits 0000 0000 0000 00013¢ FFFF FFFF FFFF FFFFi6

Figure 6.2 Examples of Sign Extension

Sign extension will appear later 1n the discussion. of instructions which

perform shifting, and which do arithmetic with halfword operands.

6-6

7. TWO'S COMPLEMENT ARITHMETIC

Arithmetic operations on numbers in a binary representation are a

basic capability of almost all computers. Though the details of the number

representation may vary slightly from one machine to another, the methods

for performing additions, subtractions, multiplications, and divisions

remain nearly the same for all machines. Thus the discussion which follows

will be slightly more general than would be necessary 1f only one

particular model of the System/360 series were being discussed.

We have already used some examples of binary addition in the treatment

of addressing, in which the addition was straightforward. The rules for

the addition of binary digits are summarized in the following short table.

el ods

BBEBB 0, carry 1

The addition of numbers in the logical representation 1s the most straight-

forward, since the bits are all numeric digits and do not represent signs.

Thus the only unusual condition to observe in such an addition 1s whether

or not a carry occurs out of the leftmost position, which would indicate

whether the resulting sum 1s or 1s not representable by the number of bits

available. In the two's complement arithmetic representation, the addition

1s performed in the same way, but the result is interpreted somewhat

differently. (1) All bits of each operand are added, including sign bits,

and carries out the left end of the sum are lost. (This 1s the same as for

logical addition.) (2) If the result cannot be correctly represented

using the number of digits available, an overflow condition is said to have

occurred. Note that overflow 1s possible only when adding operands of like

sign: adding numbers with opposite sign always produces a representable

result (or, as 1s often said, the result is in range). When an overflow

occurs, the sign of the result 1s always the opposite of the sign of the

7.1

two participating operands. The actual method used on most machines to
detect overflow 1s somewhat simpler, since the sign-change detection would

require remembering the signs of both operands for comparison against the

sign of the sum. In practice, the adding circuits need only note that the

carries into and out of the sign bit position disagree, to be able to detect

overflow: that 1s, 1f the carries out of the two leftmost bit positions

differ, an overflow has occurred.

Subtraction 1s performed in the machine by adding the two's complement

of the number to be subtracted. That is, A-B is calculated using A + (-B),

where (-B) is the two's complement of B. A few examples using 8-bit

arithmetic will 1llustrate the methods of addition and subtraction.

1, 5-3: 0000 0101 becomes 0000 0101
-0000 0011 +1111 1101

(carry lost) 0000 0010 = 230

2. 3-5: 00000011 becomes 0000 0011
-0000 0101 +1111 1011

(no carry) 1111 1110 = =210

3. B-(-17): 0001 1001 becomes 0001 1001
-1110 1111 +0001 0001

(no carry) 0010 1010 . = k2i0

4, (-17)-25: 1110 1111 becomes 1110 1111
-00011001 +1110 0111

(carry lost) 1101 0110 = -k2jo

5. =17-(-25): 1110 1111 becomes 1110 1111
-1110 0111 +0001 1001

(carry lost) 0000 1000 = 8i0

6. 67-(-93): 0100 0011 becomes 0100 0011
-1010 0011 +0101 1101

(no carry) 1010 0000 = -9610 (overflow)

7. (-93)-67: 1010 0011 becomes 1010 0011
-0100 0011 +1011 1101

(carry lost) 0110 0000 = 9630 (overflow)

8. -128-(-93): 1000 0000 becomes 1000 0000
-1010 0011 +0101 1101

(no carry) 1101 1101 = -3510

7-2

9. 3-3: 0000 0011 becomes 0000 0011

-0000 00112 +1111 1101

(carry lost) 0000 0000 = 0

The above examples illustrate addition and subtraction and give the

expected results. However, there 1s one case in which the method as given

above fails to detect correctly the presence or absence of overflow, and

this occurs when the maximum negative number 1s being subtracted from

something.

10. 1-(-128) 0000 0001 becomes 0000 0001
-1000 0000 +1000 0000

(no carry) 1000 0001 (no overflow found)

11. -1-(-128): 1111 1111 becomes 1111 1111
-1000 0000 +1000 0000

(carry lost) 0111 1111 (overflow indicated)

In each of these two last cases the overflow indication 1s incorrect.

This 1s because the process of taking the two's complement of the maximum

negative number has already generated an overflow condition. To see how

‘the computer can still use the overflow detection scheme described above,

it 1s worth examining in slightly more detail the actual addition process

in the machine. (The next paragraph may be omitted by those uninterested

in such details.)

Remember that the two's complement of a number 1s found by inverting

each bit of the number and then adding a one in the low-order position. It

1s very easy to build circuits which invert bits; similarly, the addition

of a 1 bit to the low-order position 1s also easy, for the following reason.

Each digit position of the adder circuits must add the corresponding bits

of the two input operands and the carry-bit from the next lower-order

bit position.

bit n from A bit n from B

Carry bit to Adder]. | . Carry from Adder
position n+l = { Adder position n position n-1

7-3

In the lowest-order position of the adder there of course can be no carry

from a lower-order bit position; 1f an identical adder circuit 1s used,

however, the carry input is still there, and can be used to insert the 1 to be

to be added to the low-order position. Thus subtraction 1s simply a matter

of passing the second operand B through a bit inverter which forms the one's

complement, and then activating the low-order carry input to the adder to

add the 1.

Thus we arrive at the following rule:

Subtraction 1s performed by adding the one's complement of

the second operand and a low-order one to the first operand.

It 1s easy to demonstrate that the correct algebraic result 1s obtained

by simply adding all the bits of the operands in the two's complement

representation as though they were logical operands. Since the logical

representation X corresponding to an integer x satisfies (assuming 32-bit

operands) X = 272 + x (modulo 22), then the sum of two operands X and Y

1s h

(x + Y) = 272 4 272 4 (x + y) (modulo 272) = 272 4 (x + y) (modulo 2-2),

Thus the arithmetic and logical sums give the same binary result; the bits

are just interpreted differently for each representation.

One further observation may be made concerning the addition and

subtraction of numbers in the logical representation. From the examples

given above 1t can be seen that if the second operand 1s logically smaller

than or equal to the first (see examples 1, 4%, 5, 7, 9, and 11) then there

will be a carry out of the leftmost bit position. It may be seen in

examples 2, 3, 6, 8, and 10 that if the first logical operand is logically

smaller than the second operand subtracted from it, there 1s no carry out

of the left end. In these latter cases we have in some sense generated a

"negative" logical answer, since the result 1s not correctly represented

to the given number of bits. A number of examples illustrating these cases

will be given later, when the instructions for logical arithmetic are

discussed.

7-4

There 1s a simple pictorial representation of the two's complement

representation which 1s helpful in seeing what happens when two such

numbers are added or subtracted. The circle is visualized as having 272

points on 1ts circumference, arranged as indicated. Arithmetic values are

on the outside of the circle, logical values on the inside.

530

2 ~a

x A |
530

231_7 27 +1

-23 dh —¥ 32.

323°
B Y

~ ~p30

If we begin at 0 and add 1 to a number, we will move around the

circle in a counter-clockwise direction until 27-1 is reached. When 1 is

added again, we reach -2°% and an overflow condition exists. Continuing
to add 1 then brings us back to 0. It can be seen that adding a positive

number to or subtracting a negative number from an existing number (say, A,

as on the circle) causes us to move in a counter-clockwise direction. If

in moving 1n this direction we go past the point labeled 27%, an overflow

occurs. Similarly, adding a negative number to or subtracting a positive

number from an existing number (say, B, on the circle) causes us to move

in a clockwise direction; and 1f the motion carries us past the point

labeled- 2° we again have an overflow condition.

7-5

i RETALIATING
(I. Ow

TR

8. BINARY MULTIPLICATION AND DIVISION

Before we discuss the actual machine instructions which perform

multiplication and division using integer arguments, 1t will be useful to

examine a few simple illustrations of the basic method used by typical

computers to form products and quotients of binary numbers. A detailed

understanding of the methods 1s of course not necessary to be able to use

the corresponding instructions, but will help in remembering a number of

| conventions that these instructions require;

Multiplication

To illustrate the method used in multiplication, let us first work an

example 1n decimal arithmetic. Suppose we have a "machine" with registers

which will hold j-digit decimal numbers, which we will assume are positive.

Let the numbers to be multiplied by 126 and 213. First of all, since we
| are multiplying two 3-digit numbers, the product will be either 5 or 6

digits long. Thus 1f we are to be able to correctly represent it, the

product register must be at least 6 digits long. Since we assumed the

| number registers were 3 digits long, it appears that we need a double-length
register (or a palr of registers connected in some way) to hold the

product. So we will assume there is a 6-digit register somewhere, the

| right and left halves of which will hold an ordinary 3-digit number. Now
| let us examine the way in which we normally form such a product, as when

working with pencil and paper. By taking the product of the multiplier and

| each of the multiplicand digits in succession, we generate a series of
partial products which must be properly

aligned and then added. (Note that we are

] multiplier 126 using the terms "multiplier" and'multiplicand”
multiplicand 2 213 in the reverse of their normal meaning; this

partial 0 1s done so as to be consistent with the
products 252 terminology used in other descriptions of
product 26838 System/360.) This manual process can be

8-1

broken down even more, by writing the sequence of operations in a different

way.

initial register contents 000 213

add multiplier to upper end +126

that's 1 time 126 212

add multiplier +126

that's 2 times 252 211

add multiplier +126

that's 3 times 378 210

shift right 1 place 037 821

add multiplier +126

that's 1 time 163 820

shift right 1 place 016 382

add multiplier +126

that's 1 time 142 381

add multiplier +126

that's 2 times 268 380

shift right 1 place 026 838

We place the multiplicand in the right half of the double-length

register and clear the left half to zero. Then by examining the rightmost

digit of the multiplicand we know how many times to add the multiplier

to the left half of the double-length register. When the rightmost digit

has been counted down to zero, the partial product of that digit and the

multiplier has been added to the accumulating result. Then the entire

double-length register 1s shifted to the right one digit position, at which

time the zero digit at the right-hand endis lost and a zero digit is inserted

in the vacated position at the left. The process of adding the multiplier

and counting down on the multiplicand digit then continues until the proper

partial product has been added to the accumulated result. This process 1s

repeated for as many steps as there are multiplicand digits. When completed,

the result in the double-length register 1s the product, and all the

multiplicand digits have been shifted off the right-hand end. The main

8-2

points to observe are that (1) the multiplicand is placed in the right half

of the double-length register, (2) the left half is initially cleared to

zero, (3) the multiplier is added to the left end depending on the multipli-

cand digit at the far right, and (4) the decimal point of the result (that

1s, the position of the least significant digit) 1s at the right-hand erd

of the double-length register, because the number of right shifts was the

same as the number of digit positions in a single-length register.

The above example omits one rather important detail which 1s not

actually necessary to an understanding of the basic process. (These two

paragraphs concern technicalities, and may be skipped with little loss of

continuity.) When the multiplier 1s being added to the left half of the

double-length register, it is possible that an overflow can occur. If the

multiplicand had been 219 rather than 213, the first partial product

(126 x 9 = 1134) would have been too large to hold in the three digits

provided. Thus provision must actually be made for an extra digit at the

leftmost end of the register. This extra digit can be thought of as

hidden from the user of the registers, since when the right shift is

performed at the conclusion of each cycle, the contents of this "overflow

digit" position move 1nto the leftmost digit of the double-length product

register. Since the example was carefully contrived to avoid the necessity

of worrying about this detail, the presence of a zero digit at the left end

after the right shift 1s seen simply to be an-indication that there was no

overflow in the formation of the partial product. The assumed presence of

this extra digit position will be useful in the discussion of division.

This small but annoying difficulty can also be handled by having the

extra "digit position" attached after the rightmost digit of the double-

length register. Then instead of adding and then shifting, we could first

shift and then add. Thus the extra digit position will hold the number

of times the multiplier 1s to be added. However, the additions of the

multiplier must then be realigned so as to add to the second, third, and

fourth digits of the double-length register rather than the leftmost

three. Either way, the whole business is a necessary nuisance. (These

comments will of course apply to the binary multiplication example which

follows.)

8-3

The above scheme, when used for multiplying binary numbers, 1s

conceptually very easy to implement since a test of the rightmost bit

determines 1n simple yes-no form whether or not the multiplier 1s to be

added -- no counting of additions is required. To illustrate this, suppose

we have y-digit binary numbers and registers and wish to multiply 001102

by 010012 to obtain a 10-bit product in a double-length register. Then the

sequence of steps shown below indicates the method.

00110 multiplier (in separate register)

Initialize 00000 01001 multiplicand in right half of
double-length register

Step 1: rightmost bit = 1, 00110 01001
add multiplier

Shift right 1 00011 00100 (1 bit lost)

Step 2: rightmost bit = 0, 00001 10010
no add. Shift

right 1

Step 3: rightmost bit = 0, 00000 11001
no add. Shift

right 1

Step 4: rightmost bit = I, 00110 11001
add multiplier

Shift right 1 00011 01100 (1 bit lost)

Step 5: rightmost bit = 0, 00001 10110 final product = 1101102 = 5Uj0
no add. Shift

right 1

It 1s most important to observe that the product 1s really a double-

length number, and not simply two single-length numbers stuck end to end.

If we were to consider the contents of the left and right halves of the

double-length register as ordinary single-length two's canplement operands,

we would find the result in the right, or low-order half, to be negative!

Since the product (which was computed from two positive numbers) must be

positive, 1t can be seen that the need for a double-length register means

that no special significance can be attached to the low-order result, unless

1t 1s known in advance that the product 1s correctly representable in a

8-4

single register. The leftmost bit of the right-hand register 1s therefore

not a sign bit -- 1t has positive weight in the double-length result.

In the example above, the two operands were purposely chosen to be

positive so as not to introduce any problems with signs. Since the operands

actually used may be positive or negative two's complement integers, there

are other steps which must be taken to find the correctly signed product.

For all practical purposes, however, we may assume that the CPU performs the

multiplication by using the magnitudes of the operands, and then complements

the double-length result if a sign-bit analysis of the original operands

indicates that the result 1s negative.

It is also common in modern computers to gain speed by considering

not the rightmost single bit of the multiplicand (as on the IBM T7090), but

to consider the rightmost two bits (IBM 7094), three bits (Burroughs 5500),

or even four bits (larger models of System/360). This of course brings us

back to a situation similar to that in the decimal example, where the

proper multiple of the multiplier must beaded to the left end of the

developing product. In these cases, where the arithmetic can be considered

to be of base 4, 8, or 16, the "proper multiple" is of course not found by

counting down by ones on the multiplicand digit, but by having the internal

circuits generate the proper factor in a very much smaller number of steps.

This serves to increase the speed of multiplication considerably, since

then a separate addition 1s not required for each 1 bit detected in the

multiplicand.

Division

Division works the same as -multiplication, only backwards. Instead of

adding onto the high-order half of the accumulating product, we subtract;

instead of counting down in the rightmost digit position, we count up;

instead of shifting right, we shift left. As before, an example using

'decimal arithmetic will illustrate the process.

Since we start with a dividend and divisor and wish to find a quotient

and remainder which satisfy the equation

dividend = quotient x divisor + remainder,

it is apparent that the dividend must be a double-length number. Agailn

supposing that the basic register length 1s three decimal digits, another

requirement becomes apparent: since (a) the quotient, to fit in a register,

can be at most three digits long (that 1s, not exceeding 999) and (b) the

remainder must be less than the divisor, we must not have a dividend larger

than

999 X divisor + (divisor =- 1) = 10°xdivisor = 1.

(The factor of 10° is the base raised to the number of available digits.)

Since multiplication by 10° in this example 1s equivalent to shifting left

three places, the above relation means that 1f the division 1s to produce

a valid'quotient, the high-order half of the dividend must be less than

the divisor. (If for instance the divisor were 456, then any dividend not

smaller than #56000 = 10°x 456 would require a l-digit quotient; if the

dividend 1s not greater than 455999 = 10' X456 - 1, the the quotient can

be held in the three digits allotted. Note that the three high-order

digits, 455, are now less than the divisor.)

Suppose we want to divide 162843by 762. In ordinary long division,

we would do the following sequence of steps. At each step we determine

213 how many multiples of the divisor can be subtracted

762) 1628 J from the leftmost part of the dividend, and enter that
105k number as the quotient digit. When the subtraction

2854 process has been completed, the remainder, from which
2286 no further subtractions can be made, 1s 537, and the

537 quotient is 213. Just as a check, we find that

762 x 213 + 537 = 162843. On a machine, the process 1s almost identical.

Using the above scheme of Jecimgl registers, the division works as follows:

8-6

162 843 High-order part of dividend smaller than divisor,

762 division may proceed.

1 628 L430 Shift dividend left once; save leftmost digit in an

_=762 "overflow digit" position. Since dividend 2 divisor,

0 866 L431 subtract, and count up at right end.

_=762 dividend 2 divisor; subtract again

0 104 L32 dividend< divisor; no subtraction

1 O44 320 shift dividend left again

_=T62 dividend 2 divisor; subtract and count up

0 282 321 dividend < divisor; no subtraction

2 823210 shift left for last time-

_-162 dividend 2 divisor; subtract

2 061 211 subtract and count up by 1

7162 dividend 2 divisor; subtract

1 299 212 subtract and count

_=762 dividend 2 divisor; subtract
537 213 dividend now < divisor; stop

As the successive digits of the quotient were developed, they appeared

at the right hand end of the double-length register, and were shifted left

as the division progressed. Thus at the completion of the division, the

quotient 1s to be found in the right half of the register pair, and the

remainder, from which no further subtractions could be made, 1s in the left

half.

As was the case for multiplication, binary division 1s simplified by

the fact that at most one subtraction need be made for each quotient digit

generated. To illustrate, consider this example using a five-bit divisor

and a ten-bit dividend. Let the dividend be 0000111011~ = 59:0, and let the

divisor be 001102. Note that the two halves of the double-length dividend

are not two five-bit numbers stuck end to end: the leftmost bit of the

right half of the dividend is not a sign bit (with negative weight) but an

arithmetic digit (with positive weight). The quotient and remainder,

however, are ordinary (i.e., signed two's complement) five-bit numbers, so

8-7

that when the division is complete the proper results are found in each

register . This leads to the following scheme.

1. Shift the dividend left once. If the high-order (left) part

of the dividend is not smaller than the divisor, an illegal

division 1s being attempted.

2. Shift left one bit position. If the high-order part of the

dividend 1s greater than or equal to the divisor, subtract

the divisor from the dividend and insert a 1 bit in the

rightmost digit position. Otherwise do nothing.

3. Return to step 2 until a total of 5 shifts has been done

including the shift of step 1.” (For 32-bit operands this

cycle repeats 3ltimes.)

00011 10110 shift left once

(00110) dividend < divisor, OK to continue

00111 01100 shift left once (second time)

00001 01101 subtract divisor, insert 1

00010 11010 shift 'left once (third time)

dividend < divisor; no subtraction

00101 10100 shift left once (fourth time)

dividend < divisor; no subtraction

01011 01000 shift left once (fifth and last time)

00101 01001 subtract divisor, insert 1.

Thus the remainder 001012 = 530 in the left half, and the quotient 0100lz = 9ie

in the right half are as expected.

The example given assumed a positive dividend and divisor; 1f either

1s negative some further steps are necessary. The division can be thought

of as proceeding with the magnitudes of divisor and dividend, and afterward?

the quotient 1s made negative 1f the signs of the divisor and dividend

differed, and the remainder 1s made negative 1f the dividend was negative.

As in the case of multiplication, there are techniques used for speeding

up the division process which are used on some models of System/360. These

details are of concern only to the machine designer, so that the programmer

can think of division as proceeding through the simple steps shown above.

8-8

9. ASSEMBLER LANGUAGE

As was indicated in the introduction, the service program which will be

of most use 1n setting up instruction sequences for execution by the machine

1s the Assembler. The collection of conventions and rules established for

use of the Assembler 1s known simply as Assembler Language, even though

there is no resemblance to what we usually mean by the term "language".

Before describing some of the basic conventions used 1n communicating

with the Assembler, it may help to consider first the overall process of

runninga machine-language programon the computer. This process may be

broken down into five major parts, as follows: (1) job initiation, (2) assembly,

(3) linkage editing, (4) ‘execution, (5) Job termination.

1. Job initiation will usually involve the checking of the job information

provided by the programmer, such as charge number, time and page estimates,

and so forth, as required by the particular computer installation. If these

details are acceptable, then preparations are made for the execution of a

series of job steps, which in this case will include assembly, linkage

editing, and execution.

2. The assembly step 1s represented schematically in Fig. 9.1. The

Assembler 1s a processing program (a previously prepared set of machine

instructions) which 1s placed 1n the memory of System/360 and 1s allowed

to begin execution.

. | System/360 |
Source Program in ;

Assembler Language "Assembler ft > Object
“1 pn | Module |i ogram | |

Library of Macro- oSh
Instructions, etc. ng |

TN

Figure 9.1 Simplified Schematic of Assembler Processing

9-1

The Assembler reads the statements (to be described shortly) of the programmer's

Assembler Language program, processes them -- possibly with the help of some

pre-stored data in the library of macro-instructions (also to be described

later) -- and eventually produces as 1ts output an object module, which will

usually be written onto some storage device such as a magnetic drum or disk.

(The object module may also be punched on cards, so that a programmer could

then have his program in both its original form and in its assembled form.)

Usually the programmer will want a program listing, which 1s printed output

giving the source program and pertinent details of the Assembler's processing,

along with indications of any errors detected by the Assembler.

3. The linkage editing step 1s shown schematically in Fig. 9.2. The

Linkage Editor, like the Assembler, 1s a processing program which 1s placed

in memory and allowed to begin execution.

System/360 | |
Object Module(s Cl |

fram previous 2 > Linkage | __} | oad
Assembly step(s Editor N |_Module

| J Printed

| Iibrary of | 4 Listing
Object Modules

Figure 9.2 Simplified Schematic of Linkage-Editor Processing

The Linkage Editor reads the object module (or modules; cases in which

several may appear will be described later) and combines it with other object

modules that may be necessary for proper program execution. The output

produced 1s the completed program and 1s called the load module, which 1is

written onto a storage device for later use. A printed listing of information

pertinent to the link-edit step may also be produced.

9-2

Lt. The execution ptep requires that the load mpdule produced by the
Linkage Editor be placed in (or "loaded" into) memory, in such a way that

it will execute correctly (assuming, of course, that the programmer has

made no blunders!). An essential feature of this process is relocation,

details of which will be treated in several later sections.

System/360 | |

Load +] Resident |

Module NN Supervisor |: Printed Output

La] Relocated LE | from Program

I Program | ny |
Figure 9.3 Simplified Schematic of Program Loading and Execution

When the program has been loaded and relocated, the Resident Supervisor

transfers control to the program (that 1s, sets the Instruction Address to

the address of whatever instruction was specified as the one with which

execution 1s to begin). The program then performs whatever processing
was specified by the programmer, and when it is finished returns control

to the Supervisor (that 1s, sets the IA to an agreed-upon value 80 that

the Supervisor may continue processing the next job).

5. When the Supervisor program has regained control 1t performs any

necessary "cleaning-up" operations such as noting the amount of time used

by the job, -the number of pages printed, and so on. If more jobs are to be

done, the Supervisor reverts to step 1 (Job Initiation) and the entire

cycle repeats.

The brief description of job processing given above will help in under-

standing some of the constructs necessary to the writing of a correct

Assembler Language program, since certain of them apply during each of the

assembly, link-edit, and execution steps and must be used with the different

steps 1n mind.

9-3

ccs

A program 1s prepared for the Assembler in the form of statements

punched on cards. Statements are of four general types: comment statements,

machine instruction statements, assembler instruction statements, and

macro-instruction statements. Comment statements are used by the programmer

to insert explanatory material in the program so that it will be easier to

read and understand the program listing. Machine instruction statements

contain instructions which the computer may execute during the execution

step of the job. Assembler instruction statements contain information of

use to the assembler during the assembly step; these can be as simple as a

statement specifying that four blank lines are to be left in the program

listing, or can be more complicated such as a statement which informs the

Assembler that 1t may assume certain registers may be used as base registers.

(This latter case will be treated in detail in Section 12.) Finally,

macro-instructions provide a convenient means for specifying sequences

of statements (all four types are allowed) in which various parts of the

specified sequence can be changed to suit the needs or desires of the

— programmer. We will see later that the ability to process macro-instructions

+ 1s a very powerful and useful feature of the Assembler Language.
The Assembler provides a number of other capabilities which considerably

simplify the programmer's task. For example, we saw in Section 5 that a'

typical machine instruction might consist of 8 hexadecimal digits. Rather

than having to remember that the operation code 4316 causes a byte to be

transferred from memory to the right-hand end of a general register, a

mnemonic operation code 1s provided which gives an easily-remembered

abbreviated description of what the operation code does. In the above case,

the mnemonic is. IC, which stands for."Insert Character", character in this

case being synonymous with byte. Another useful feature is that the

Assembler allows us to specify information in a variety of forms: as decimal,

hexadecimal, and binary numbers, as strings of characters, as arithmetic

expressions, and so on. Thus we will find that if we want to designate

register15 for some use, we can use the decimal number 15 instead of having

to use the hexadecimal digit F, which 1s what may eventually appear in the

instruction itself. A third and most important feature of the Assembler

9-4

1s the provision for symbols which may be used by the programmer to name

places 1n memory. Thus, 1f a program needs to make reference to a fullword

area 1n memory which contains a particular piece of data, the Assembler

will permit the programmer to name the fullword and then to make references

to the data by using the name. A discussion of symbols and certain aspects

of their use will be given in the next section. In the remainder of this

section we will give some examples of statements, and define or 1llustrate

terms which will be used in describing statements.

In general, statements occupy columns 1 through 72 of a card, with column

72 having a special meaning: 1f column 72 is not blank, 1t means that the

next card 1s to be considered as a continuation of the card with the

non-blank character in column 72, in such a way that column 16 of the second

card 1s considered to follow immediately after column 71 of the first.

(These numbers are actually under the control of the programmer, who may

specify with an assembler instruction statement that other card columns are

to be used for the start and end of a statement. The numbers given are

simply the usual ones which the Assembler will assume are to be used 1f it

1s not told otherwise.) (It 1s a common error for beginning programmers to

punch characters in column 72 unintentionally, so that the next statement

is processed in an unexpected way.) Columns 73 through 80 are ignored by

the Assembler when it processes the statement, and may be used for identifi-

cation or sequencing information.

A comment statement is identified by the presence of an asterisk (*)

in column 1. Any information desired may appear 1n columns 2 through 71.

An example of a comment statement appears below, as it would be punched

on a card.

9-5

—_

| i roared | Sal —— COMMENTS He
oocoooocjoloolalnigooocjooocodcgHOocoo@o000/00000/00000[00000[00006{00000[000000|0j00000000

5345 6 7 alin 2 sl mmr ns 87 2090 081303 1.400 8004052535551 5 50 es 722.20 88BERR thA
| s3333333fslasasalisaalasassnaafaRasaslazalianassssnslasagssssshasaahanaaaharaas
| Besaesaquesaguessailin ILRI sysTEM/ 360 4144444(44444(444444 4444448444| ssssssssssssisssssssily STE ASSEMBLER. GARD 315555 5(55555(555555|555555555
| DE 0 A A A ed 66666666| RRRRRRRRRRR RRR RARE RRR RRR LR ERR (RARE RRRE i RRRE (RARE [RRERI RRRER i RRRREREI

EERE Sh A eH RA ett A SE EI A

! Figure 9.4 A Comment Statement

The machine instruction statement, assembler instruction statement,

and macro-instruction statements each have four parts called fields. They

are respectively the name, operation, operand, and comment fields; of these,

an entry in the operation field must always be present, and for certain .

types of statements entries 1n some of the other fields may or must be

omitted. If there 1s a name field entry in the statement, it must begin

with a non-blank character in column 1; it 1s terminated by the first blank

column after column 1. If no name field entry 1s desired, column 1 must

be left blank. After the name field, and separated from it by one or more

blank columns, comes the operation field entry; it ends with the first

blank-column after the start of the -operation field. After the operation

field entry and separated from it by one or more blank columns comes the

operand field entry which, like the name and operation field entries,

terminates (except for one unusual case to be described later) with the

first blank column detected after the start of the operand field. The

rest of the card 1s treated as comments (that is, 1t 1s ignored) by the

Assembler, and does not influence the processing of the statement (unless,

of course, the comment field extends into column 72 indicating a continuation

; on the next card). Note that with the exception of the name field, no

: requirement 1s made regarding the columns in which the other three fields

must start; they simply end with a blank column. This allows what are

| called free-field statements, 1n which the programmer may arrange the

| information on the cards of his program as he desires, with the only

| restriction being that the fields appear in the proper order.

The figure below illustrates a machine instruction statement in which

| entries in all four fields appear, and which if executed in a program would

| cause the contents of general register 7 to be replaced by the contents
| of general register 3. (The particular form of the operand field entry

| will be discussed later.)

Sn EE ENTH NAME TT) OPERATION |hit]tbPER4T COMMENTS

HHL OPERATION | _ OFERAND COMMENTS IOENTIFICATION SEQUENCE
| 00G00C00[0C0C0000o0clo00GI0000/00000060C0/000000000000000)50000/00000j000000080000009122456 7 81900101213 11506 17 12 19 20{21 22212: {25 212823 30 3132 33 34 35[35 37 38 29 20[4) 42 43 44 45{46 47 48 49 5051 52 53 54 5556 57 58 59 606? 62 63 64 65/66 67 68 63 70 N(72|734 1576 77 18 18 BO |

SLUR CALL ARE (RRR (RAIL IAN AAA (NRRMIARRE (NERY AL INRRR (ARAN LIRR |
EEL EEA O00 JAA SAU AAU AU OO ROH USE SAAN Aas noH333333a3besssapliesinassssiis vraasssaths Doha assssssssdsassssssssansssssass || :

| MPP) A fT systdM/2s0 NARRRN ARAL IARRA HERRERA
| PIIBIESIISUISLSE0590) STANDARD ASSEMBLER CARD [555555/55555/5555555(55555555]assassins PeETEsLe FEGCEle CECE 0 Eh 666666|66666/666666(6/66666666| EEE J TI AEE St MESES Ast MEER Sth IE Ae id

| EE Ee A At ae sed tee‘ossssssllsosslslssnsoosslsansslsonollssalslsDaslssoasssssslsssasssssslssssssalissssss |
123 45¢6 708 G10 1112 13 14)15]16 17 18 19 20{21 22 23 24 25126 27 28 29 30{31 32 33 34 3L{6 37 33 39 40[9) 42 4 44 4DjAR 47 43 <9 5D]51 52 53 54 35/58 57 58 59 6O|51 62 £3 64 £5[58 67 68 G70 N[I2[I3 7475716 717 78 79 8 /
omwedso oo LL LLoo

Figure 9.5 A Machine Instruction Statement

| An assembler instruction statement (in which the name and comment

| field entries are omitted) which would cause the Assembler to leave four

blank lines in the program listing is given in the following figure.

|

9-1

0 [7wane| orn IEE OP ERAND AND COMMENTS 1]

I L _
i |L_____wame| | oPEfaTion OPERAND COMMENTS

| goooodoo0igooac(ojooo0o0ioo000j8eRRO|0B000/00000[0000C0000DR/0000COI000C0CIO0000/000000(0/080C6000123456 7 8]9[10 11213 0[151617181820 220232423 4 20229303(3233M358P7 III 40 1424344 4546 41 46 49 50 5152 33 34 33 35 57 385966 61 62 61 64 635 67 66 RMN HUERLRERL)

IRRRRRBRIAIARE ARIBIEREERIIEEEER 1111111111111 1111g1111p111111111f41111171111 M1 1111111

| 22222222202222|2022222p2222p222222222222222|22222p2222p22222222222222[2222 22200090
| 33333333(3(33303(3133333(133333{33333(33333(33333(33333(33333[33333/133333(33333(333333 33333333
}

A44444440440404000 044440040444 IBM svYysTEM1360 AA44440 4444844444 (444h444444

55555555|555551|5(55555H555555% STANDARD ASSEMBLER CARD 5(5555565555555555 [5]55555555
. y

~ |65568666(666666(6/66666H66666666666666066666/66666p6666p666666666666666(6666 86666666

| rrzzzrzziI nappa apa Ir apna nr ran nnn nnn 1111 A777777771|
sss8888B0i880088Bj608288/8B8206/8 0088838 883/8808088/88888{880888/38888/88888{88888(38083888(slas8s8s8s

99998988/999999(9199999P999999999999999999999(99999P99999999999999999999[9999 999999994
\ 123456 7 89801213 M15)6171819202222324252627282930 313233 34 3536 3138 39 40 4742 43 U43 46 (M1 46 49 30 552 53 54 35 56 [51 59 39 60 61 2 63 64 65 6§ 616668 76 |] ~~ 76 76 77 78 72 ¢

mM 6509

Figure 9.6 An Assembler Instruction Statement

Finally, an example of a macrd-instruction statement in which only the

operation field entry appears 1s given below.

= IL EO RE NNNEHERA HE HE I
/ IName| OPERATION| : OP ERAND ANDD COMMENTS I

IH | | | | | |] !
| Name || | operation] | BH EH 2222 oPERano 2000000020900 comments 00 | [00}

8000000000000 000TH CAC OG000000000600E/00000[000000000000000/00008/000000I0M00000D0 !123456 769010NMR2MMBICITIBIG201212223 24252602728 2930313233 MM I50 37383040 A142 43 44 4546 47 48 4956 515253545556 5758 59 60 61626364C566 6788|6320N12 1B 4 B 6 11 61M)

1111111111111 1111111111111 t111pttt~gp111141111 11111111 1p1111 {1111147411111

22222222|2122222|2|122222(22222(122222(22222|122222(2222222222|122222(22222|122222R22222RPPR2222222

33333333BB3333333333331333[3~333B33~33333333333333333|333338333333~3333333333(333333 |
444444440 0A4444444444444844 IBM sysTEM/360 1W444484444444444404J44444444 |

—_— Cd

55555555/555555/555555/5@555] STANDARD ASSEMBLER CARD 555555055555555555455555555| |

66666666(6(66666/6/66666(66666/66666/66666/66666[66666/66666/66656/66666{66666/666666/6/6666668686

BREE ERR EER REE RR ERR RI RRR RI RRR RRR RR IRR RR RR ERR RRR RRR RII RRR RAR RR RIVIRRRRERE, 3 |
|

© |sesagedBie8Ba88/888888/8888B/8B8888{8888886888/88888(38B8088/888858(88888/88888{8988838(8]38888883
i |
I 199999999°999999P99929D88999'!999999999P9999999999P9999999999999999999999999999999999¢9 |

123456708010 R2VMGT])TNIN 2021 2223 24 25 627282830 312334 354163738 39 40 4] 4243 44 45 46 47 49 4950 515253 54 85 56 315959 0 61626364BE 6B 67EB6Y WM| fi3 vw 13 6 71 6 19 IN
BI...J. UU me SNem J

Figure 9.7 A Macro-Instructfon Statement

9-8

10. SELF-DEFINING TERMS AND SYMBOLS

In using the Assembler Language, two constructs of importance are

self-defining terms and symbols. Each has a value; in self-defining terms

the value 1s inherent in the term, whereas values are assigned to symbols

by the Assembler (under control of the programmer, of course).

. There are four types of self-defining terms: decimal, hexadecimal,

binary, and character; the value of each is always taken to be positive.

A decimal self-defining term 1s simply an unsigned string of decimal

digits. 12345, 98, and 007 are examples of decimal self-defining terms.

The size of a decimal self-defining term is limited by the fact that 24 bits

are allotted by the Assembler to hold its value; hence a decimal self-

defining term must (a) contain 8 or fewer digits and (b) be less than or equal to
2°41 = 16777215.

A hexadecimal self-defining term is written as the letter X, an

apostrophe, a string of up to 6 hexadecimal digits, and a second apostrophe.

X'123456', X'FACED', and X'001B7' are examples of hexadecimal self-defining terms.

As above, the value of a hexadecimal self-defining term must be at most

224.1 = X'FFFFFF'.

A binary self-defining term 1s written as the letter B, an apostrophe,

a string of up to 24 binary digits, and a second apostrophe. B'110010",

B'O001', and B'1111111100001100' are examples of binary self-defining terms,

Because 24 bits are allotted for the value of self-defining terms, at most

2L digits may be specified between the apostrophes. Note also that the

value of the term 1s assumed positive even though the leftmost position

contains a one bit. |

A character self-defining term 1s written as the letter C, an apostrophe,

a string of up to three characters (except for two cases to be described

momentarily), and a second apostrophe. Thus, C'A', C'...', and C'A B' are

10-1

valid character self-defining terms. The third example, in which a blank

appears, 1s the exception to the rule mentioned in Section 9 that the operand

field 1s terminated by the first blank column after it starts: 1f the

blank 1s part of a character string as 1n a character self-defining term,

it doesn't count. The two unusual cases which arise in character strings

concern the apostrophe and the ampersand. It 1s clear that 1f apostrophes

are to be used to delimit the character string, some means must be found

to get an apostrophe intd theecharactrerpsérmgs a n d h a s a

special use in macro-instructions which will be treated later.) The

technique used in the System/360 Assembler Language is to represent an

apostrophe (or esmpersand) in a character string by a pair of apostrophes

(or ampersends) —— a character self-defining term containing a single

apostrophe (or ampersand) would therefore be written C''!'' (or C'&k').

This can lead to cryptic constructs such as C'''''''' and C'&MW&&&', but

they are valid character self-defining terms.. The problem now arises as

to how a value is associated with character self-defining terms; it is

— clear that this will depend on the internal representation assumed for

- characters. In 8ystem/360 the conventional representation 1s called the

Extended Binary Coded Decimal Interchange Code, or EBCDXC, or even ECD,

for short. Each character 1s represented internally by a single byte --

two hexadecimal digits -- as indicated in Table III. Note that the characters

$, §, and@ are considered to be letters in the Assembler Language. This

will have bearing on the definition of symbols, which will be discussed

shortly.

10-2

blank 40 C C3 T £3

. 4B | D cé U E4

(4D E C5 \ ES

+ AF F C6 W E6

& 50 G CT X ET

$ 5B H c8 Y ES

* 5C I C9 Z EQ

) 5D J D1 0 (digit) FO |
-. 60 K Ie i Fl

/ 61 L D3 2 F2

’ 6B | M D4 3 F3
4 TB N D5 4 F4

e TC § (letter) D6 5 FS

TD Pp D7 6 Fo |
= TE Q D8 7 FT

A cl 'R D9 : F8
B C2 S E2 9 Fo

Table III. EBCDIC Character Representation

Thus the value associated with the character self-defining term C''

is the same as that of the hexadecimal self-defining term X'bO', the binary

self-defining term B'1000000', and the decimal self-defining term 64,

Which type of term 1s chosen by the programmer 1s largely a matter of

context; certain types will be more natural than others in some places.

In practice, we will find that decimal self-defining terms are used so

extensively that 1t 1s easy to forget that any other type of self-defining,

term of the same value could be used as well.

In the previous section, Fig. 9.5 is an example of an instruction in

which the operand field entry contains the decimal self-defining terms 7 and 3.

10-3

rea

Symbols are a somewhat more intricate matter, even though their use

will be seen later to be as. simple and natural as the use of self-defining

terms. A symbol 1s a string of from one to eight letters or digits, the

first of which must be a letter. (Remember that $,@, and # are "letters"

to the Assembler.) No special characters are allowed (namely "“(",")",

"et, UST, Meno monn wn nnn ong and "" (blank)). The

following are all valid symbols.

A AGENTOO7 A1B2C3Dh4

#235 goex APPPLEXY

JAMES KSF@ PRURIENT

$ 746295 WPNKA ZYZYGY99

The following are not valid symbols, for the reasons given.

$7462.95 (decimal point not allowed)

BPND/ 007 (no division sign allowed)

SET Gf (no blanks allowed)

235# (does not start with a letter)

CHARACTER (too many characters)

, TEN*FIVE (contains the special character *)

C'WPNKA' (no apostrophes allowed)

Symbols have the following six attributes: value, relocatability,

length, type, scaling, and integer. Of these, the first three will be our

malin concern, and the last three will be discussed later.

A-symbol acquires a value by virtue of 1ts appearance as the name

field entry in a statement of an appropriate type. The relocatability

attribute depends on several factors, one of which will be mentioned shortly;

we usually say simply that a symbol 1s relocatable or absolute (not

relocatable). The length attribute of a symbol depends on the type of

statement in whose name field the symbol appears. We will give a number

of examples of the use of symbols in statements which are typical of actual

programs. The reader should bear in mind that these are simply examples and

that the instructions described here will be covered in detail later.

10-4

Symbols are mainly used as names of places in memory. In Fig. 9.5

the symbol IFAD is the name of the location at which the instruction (whose

mnemonic is LR) begins. In the machine instruction statement

GETC@NST L 0,4(2,7)

the symbol GETCNST is the name of another machine instruction which loads

a fullword from memory 1nto general register 0. In the assembler

instruction statement

TEN DC F'10!'

TEN 1s a name for a fullword area in memory into which the assembler will

place'the integer constant 10. In the macro-instruction statement

EXIT RETURN (14,12),T

the symbol EXIT 1s the name of the beginning of the macro-instruction. It

1s clear that no symbol can be given a value 1n a comment statement.

Two further questions will be discussed in this section: how do

symbols get their values, and of what real use are they anyway? A

partial answer to the second question 1s that their use greatly simplifies

the programming task, and we will be 1n a position to appreciate this

soon. To answer the first question, 1t 1s useful to examine briefly the

pertinent part of the assembly process.

When a program 1s ready to be assembled, one of the first steps the

Assembler must perform 1s the assignment of a relative origin (or starting

location). In the discussion of job processing 1t was mentioned that at’

the beginning of the execution step the user's program (in load module

form) had to be loaded into memory. Now it will almost invariably be the

case that the programmer has no a priori knowledge of where the Supervisor

program will begin loading his program, and in fact the place where it

begins may change each time the program is run. Thus, during the assembly

'step, the best that the programmer (and therefore the Assembler) can do 1s

assign a relative origin for the program which will act as an assumed

location for the beginning of the program. (The program must of course be

written so that 1t will work correctly even 1f the assumed relative origin

differs frem the actual origin assigned by the Supervisor.)

10-5

Using this assumed origin as the initial value of the Location Counter

(which we will abbreviate LC), the Assembler begins scanning the statements

of the source program. As each statement 1s read, the assembler determines

(a) whether a symbol appears 1n the name field, and (b) the length of the

area in memory which will be occupied by the instruction. If there is a

symbol, the value assigned to 1t will (except for one unusual case) be the

value of the LC at that time. The LC 1s then incremented by the length

just computed. For example, suppose the value of the LC was TBbie when the

statement given in the first example above was scanned. Then the value of

the symbol GETCOHNST would be TB616, and because the instruction whose

mnemonic 1s L 1s an RX-type instruction of length 4 bytes, the IC is

incremented by four and will be TBAis when the scan of the following

statement is begun. In this way the Assembler scans all the statements of

the program and assigns values to all symbols appearing as name field

entries. It should be noted that there are other methods for assigning

values to symbols, but the method described is what will most often be

used, and that there are also assembler instruction statements which allow

the programmer to change the value of the Location Counter. This usual

method of symbol definition provides the simplest definition of a

relocatable symbol: suppose the relative origin 1s changed by some fixed

amount; 1f the value of the symbol changes by the same amount, then that

symbol is relocatable. We will see later that 1t 1s also possible to

define symbols whose values either do not change or which change in

different ways. (The reader should also note that there 1s a definite

difference between the LC, which 1s maintained by the Assembler program in

the course of processing the statements of the source program, and the

Instruction Address in the PSW, which gives the location in memory of the

next instruction to be executed during the execution step of the program.

They are not at all the same.)

After this brief discussion of how symbols get their values, we turn

to the question of their utility. Suppose we want to write an instruction

which will load the integer constant ten into RO (remember that this 1s an

abbreviation for general register 0). Suppose also that we also know that

10-6

some other general register will contain an address which will provide

| addressability for the fullword area of memory containing the constant.

| Then we could calculate what the exact displacement would have to be and
| write the instruction with the base and displacement given explicitly.
| If, for example, these were 6 and 4ECig respectively, we could write

| (the details of writing the operand field will be discussed in the next

| section)

L 0,X'4EC'(0,6)

If, however, the fullword area containing the constant were given the name

TEN (as 1n the example earlier), we could write instead

L 0, TEN

and let the Assembler figure out what base and displacement to use. To do

this the Assembler needs only to be informed of the address it should

assume will be in register 6 (the method will be discussed in Section 12),

and the calculation of the displacement will be done for us. IL may seem

that this 1s a relatively small return for so much effort; it can be seen,

however, that if the program 'is modified slightly so that the constant no

longer lies 1n exactly the same position relative to the assumed given base

| address, then all imtructions which refer to the constant must have their

displacements recalculated. (It 1s of course implicit in this discussion

that (a) no program works just the way we want 1t to on the first try, and

(b) even 1f 1t did we'd think of some changes to make before we got done

with 1t. If this were not so we could dispense with assemblers and be

content with producing programs consisting of strings of hexadecimal

digits -- but even those who programmed the earliest machines that way are

agreed that assembly languages are an improvement.) Thus the main function

| of the Assembler will be to provide a convenlentmeans for writing and
modifying a given program and getting it to execute correctly, by performing

| many of the details of the programming process for us.

10-7

11. INSTRUCTIONS (II), MNEMONICS AND OPERANDS

In this section we will consider some of the problems of writing actual

machine instructions, using a number of instruction formats and giving some

simple example6 of actual code sequences. The use and detail6 of the

functioning of the individual instructions-will be the subject of many

later discussions, so no effort should be made to memorize the mnemonics,

operation codes, or deseriptions of any of the instructions at this point.

Mnemonics provide a short abbreviation for a descriptive word or phrase

which designates the action of each operation code. They may range from

something as simple as "A" meaning "Add", to "BXIE" meaning "Branch on Index

‘Low or Equel"”. To simplify the presentation, we will discuss each class of

instructions separately, and sometimes give examples of how they are written.

A number of abbreviations such as ri, sg, I, etc. will be explained as we

go along.

RR Instructions

Instructions of RR format are given in Table IV; several things should

be noted about the instructions listed there. First, not all of the

available digit combinations between 0016 and 3Fie (in the column6 labeled

"Opcode") are used as actual operation-codes. Second, all of the instruction6

in the second column refer to the floating-point registers, the uses of

which will be described in detail later. (The floating-point instructions

operate on data in a format which 1s interpreted differently from the

integer representations discussed in Section 6.) Third, two of the instructions

(namely SSK and ISK) are not normally available to the programmer and their

descriptions will therefore be deferred (they are called privileged operations).

11-1

Ppeode Opcods
fex Mnemonic Instruction (hex) _ Mnemonic Instruction

| Ob SPM Set Program Mask 20 LPDR Load Positive
1 05 BALR Branch and Link 21 ILNDR Load Negative
{ 06 BCTR Branch on Count 22 IMTDR Load and Test
1 OT BCR Branch on Condition 23 LCDR Load Ccmplement
08 SBK Set Storage Key 2U HDR Halve

| 09 ISK Insert Storage Key 28 LDR Load
| OA SVC Supervisor Call 29 CDR Compare
| 2A ADR Add Normalized
{ 10 LPR Load Positive 2B SDR Subtract Normalized
[11 LNR Load Negative 2¢ MDR Multiply
12 LTR Load and Test 2D DDR Divide
13 LCR Load Complement 2F AWR Add Unnormalized

| 14 NR Logical AND 2F SWR Subtract Unnormalized
15 CIR Compare Logical . 30 LPER Load Positive

| 16 Or Logical #R 31 LNER Load Negative
| 17 XR Exclusive ¢R 32 LTER Load and Test

| 18 IR Load 33 LCER Load Complement
1 49 CR Compare 34 HER Halve
{1A AR Add 38 LER Load
{ 13 SR Subtract 39 CER Compare
{ iC MR Multiply 3A AER Add Normalized
: iD DR Divide 3B SER Subtract Normalized
{ 18 ALR Add Logical 3C MER Multiply
{ 1F SIB Subtract Logical 3D DER Divide
| 3E AUR Add Unnormalized
1 3F SUR Subtract Unnormallzed

TABLE IV.

RR Instructions

Yor all but two of the RR instructions, the two operands of the operand

Pleld entry in a machine instruction statement must be written in the form

I'y,ra

where the operands ri and rz will be described shortly. The exceptions,

which have only a single operand in the operand field entry, are SPM (in

which case the operand is written in the form py) and SVC (in which

cage it is written in the form I).

To explain the meaning of the notation "ri,r2", it is perhaps useful

to refer to the example of a machine instruction statement in Fig. 9.5, in

11-2

which the operation and operand fields were “IR 7,3". (It was noted in

the description of the figure that exgeution of this instruction would cause

the contents of RT to be replaced by the contents of R3.) In this case,

"ri" is "7" and "rz" is "3". Infact, tlerguent ities ro and rz must simply

be absolute (i.e., non-relocatable; expressions of value less than 16; a

more formal definition of the term “¢ ¢ regsion” will be given shortly.

| Thus, we could just as well have written IR X'7',B'11’ in this
| example. For RR instructions, the values of the expressions in the operand

field are placed by the Assembler inte two adjacent hexadecimal digits,

called operand register specificaticn digits, in the second byte of the

| instruction (which was labeled "Register Specification" in the first diagram

of Fig. 4.2), as in the following figure. .

| G 7 8 11 12 15

| Figure 11.1 RR Instruction Showing Register Specification Digits

| The subscripts on the quantities "ri" and "rz" are simply a way to distinguish
which operand is being referred to; 1n general we will find that using the

terms "first operand", '*second operand", etc. in a consistent manner will

help in remembering what actions are being performed by each instruction.

We would therefore say for most of the RR instructions that the operand ri

specifies the register containing the "first operand". It will become

| apparent that the word "operand" is used here in two different senses: as
part of the operand field entry of some instruction statement, an operand 1S

| an expression which will eventually be-translated by the Assembler into

| some part of an instruction; we also call an operand one of the quantities
| in a register or in memory which at execution time participates in the given

| operation. The difference is not terribly important but can be confusing,

| and which is meant will normally be clear from context. Thus the operands

(first meaning) 1n the operand field entry of the instruction IR 71,3

| are T and 3, whereas at execution time the operands (second meaning) of the

11-3

IR instruction will be found in general registers 7 and 3. Using Table IV

to find that the operation code corresponding to the mnemonic IR is 1816,

the two-byte instructionwhich would be assembled from the statement as

given would be in hexadecimal.

For the case of the SPM instruction the digit labeled ra in Fig. 11.1

1s ignored when the instruction 1s decoded; and for the SVC instruction,

the entire second byte of the instruction is occupied by an 8~bit number

which is specified by the absolute expression "I", as indicated above,

Thus SFM 1k and sve 255 are acceptable forms of each instruction,

in which decimal self-defining terms are used for the operand field entries.

Before discussing RX format instructions, we will discuss 1n more

detail the complexities of what is meant by an "expression". Since most of

the material of the next several pages will be illustrated in fairly simple

examples to be given later, 1t 1s not important that some of these conventions

of Assembler Language remaln unclear for now.

An expression 1s an arithmetic combination of terms (and we will also

give a definition of the term "term") which can be evaluated by the Assembler

to produce a meaningful value for the operand. Mathematical operators allowed

‘include +, ~-,*, and /, indicating addition, subtraction, multiplication,

and division respectively; the rules used in performing these operations are

described below: The quantities used as the basic elements of an expression

are terms, which can be one of the five following items:

a self-defining term (absolute);

a symbol (absolute or relocatable);

a Location Counter Reference (relocatable);

a literal (relocatable);

a Symbol Length Attribute Reference (absolute).

Each of the latter three will be described later. An expression using a

symbol and a self-defining term is GETCHNST+X'LA' and an expression

using only self-defining terms is X'12'+C'.'-B'1010001'+7 which the

reader —can verify to have the value 1930.

To 1llustrate the definition of an absolute symbol (up to now we

have illustrated only the use of relocatable symbols), we will make brief

mention of the EQU assembler instruction: the assembler instruction statement

"symbol EQU expression" gives to the symbol in the name field the attributes

11-4

(including value and relocatability) of the expressionin the operand field.

Thus the statement

ABsk25 EQU Lh25

serves to define an absolute symbol with value 42510. (This is the unusual

case mentioned in Section 10 where the value of the symbol 1s not the value

of the IC when the symbol was encountered.)

Parentheses in an expression may be used, as 1n ordinary mathematical

use (and as in algebraic procedural languages such as FORTRAN, ALGOL, and

PL/1) to indicate groupings. As one might suspect, an expression may not

contain two operators in succession; a less familiar restriction is that an

expression may not begin with an operator, sc that -5+ABSY25 is invalid,

whereas 0-54ABS4Y25 is correct. (The maximum number of terms allowed and the

maximum level of nesting of parentheses 1n an expression both depend on the

size and sophistication of the Assembler; we will simply mention an upper

limit of 16 and 5 respectively, corresponding to the 03/360 Assembler.)

___ Expressions

With these notational matters more or less in hand, we can now state

the rules for evaluation of expressions.

1. Each term is evaluated to fullword accuracy, namely 32 bits. The

relocatability attribute of each term 1s noted.

2. Parenthesized subexpressions are evaluated first, and the resulting

value used in computing the value of the rest of the expression.

Thus in the expression (X'100'+2%(ABSL25-420))+1 (where ABSL2S is

assumed to have been defined as above), the value of (ABS425-420)

would be evaluated first.

3. As 1s the case in procedurallanguages, multiplications and divisions

are done before additions and subtractions. Thus the value of the

expression just given would be evaluated as (X'100'+(2%(5)))+1 and

not ((X'100'+2)*(5))+l. Note that relocatable terms or subexpressions

may not occur in multiply or divide operations.

11-5

Li, Operations are performed in left-to-right order. Thus 5%2/h means
(5%2)/4, not 5%(2/4).

5. Multiplications yield a 32-bit result whichis the low-order half of

the double-length product; thus significant bits can be lost if the

product 1s too large.

6. Division always yields an integer result; remainders are discarded.

Thus 5%2/% has the value 2, and 5%(2/4) has the value 0. Division by

zero 1s permitted, with the result simply being set to zero.

T. Negative quantities are carried in standard two's complement representation.

8. When the expression has been completely evaluated, it is truncated to

the value contained in its rightmost 24 bits, which is then considered

(as was noted for self-defining terms) to have a positive value, even

though the bits dropped off may have all been ones.

9. The relocatability attribute of the result 18 found as follows: if

there 1s an even number of relocatable terms appearing in the expression

- in such a way that they are paired (that 1s, they appear with opposite

signs) so that a change in the relative origin assigned to the program

has no effect on the value of the expression, then the expression 1s

absolute. If there 1s one remaining unpalred term not directly

preceded by a minus sign, then the expression 1s relocatable and has

the relocatability attribute of the unpaired term. (Numerous examples

will be given later, so don't worry if this seems obscure at present.)

After this somewhat lengthy digression, we return to the problems of

writing actual machine instructions by noting that the machine instruction

example at the beginning of the chapter could have been written

LPAD IR C'45'-(7*X'2A36" }+ABSL25*B'11111 '-235,18/(Q~-Q)+3

though the gain in clarity 1s not obvious. A somewhat more reasonable usage

might be as 1llustrated in the following sequence of statements.

RT EQU 7

R3 EQU 3

IAD LR RT, R3

11-6

Note that there is a difference between (1) thenotational convenienceRT"

(meaning general register 7) introduced in Section 3, (2) the definition of

an absolute symbol RTto have the vaiue 7, and (3) the use of the symbol as

an operand in the operand field entry »fa machine instruction where the use

of register T is indicated. The above example 1s entirely equivalent to

the two below.

ZPRCH EQU 3 R7 EQU 3

ZILCH EQU 7 R3 EQU 7

L#AD IR ZILCH,Z@RCH IAD LR R3,R7

Just to show that programming with RR instructions 1s 1n fact quite

simple, suppose that at some point 1n a program we wish to add the contents

of R2 to Rlk, subtract the contents of R9 from the sum, and leave the result

in RO; the following three statements (whose properties will be discussed

later) would suffice:

IR 0,2 M@VE C@NTENTS @F R2 T@ RO

AR 0,14 ADD C@NTENTS @F R1h

. SR 0,9 SUBTRACT C@NTENTS ¢F RC

RX Instructions

RX 1nstructions are given in Table V. As was the case 1n Table IV,

not all of the available digit combinations are used as actual operation

codes; and all of the instructions in the right-hand column again refer to

operations on the floating-point registers and will be discussed later.

None of the RX instructions 1s privileged, and the format of the operand

field entry 1s the same for each. It should be kept in mind that RX

instructions always refer to memory in some way. Referring to Fig. 11.2,

we see that four quantities are to be specified -- the operand register

specification digit ri, the index register specification digit Xz, the base

register specification digit bz, and the displacement dz. (We are again

entering on a fairly technical discussion, the details of which need not be

assimilated at this point, since many later examples will be given in

illustration of the various possibilities.)

11-7

0 7S 1112 1516 19 20 31

Figure 11.2 RX Instruction Showing Register Specification Digits

Opcode Opcode

hex Mnemonic Instruction (hex) Mnemonic Instruction
40 STH Store 60 STD Store
41 LA Load Address 68 LD Load

h2 STC Store Character 69 CD Compare
43 IC Insert Character 6A AD Add
Li EX Execute 6B SD Subtract

45 BAL Branch and Link 6C MD Multiply
L6 BCT Branch on Count 6D DD Divide
L7 BC Branch on Condition OE AW Add Unnormalized
48 LH Load 6F SW Subtract Unnormalized
Lo CH Compare
4A AH Add 70 STE Store

4B SK Subtract 78 ILE Load
Le MH Multiply 79 CE Compare

-| 4B CVD Convert to Decimal TA AE Add
Ly CVB Convert to Binary TB SE Subtract
50 ST Store TC ME Multiply
54 N Logical AND TD DE Divide
55 CL Compare Logical TE AU Add Unnormalized

56 g Logical OR TF su Subtract Unnormalized
57 X Exclusive fR
58 L Load

09 C Compare
5A A Add

5B S Subtract

5C M Multiply
5D D Divide

5E _. AL Add Logical
5F SL Subtract Logical

TABLE V.

RX Instructions

There 1s quite a variety of ways in which the operand field entry of an

RX-type machine instruction statement may be written, but they all eventually

pust yield values for the four needed quantities. Rather than give all the

11-8

forms for the operand field entry immediately, we note first that it 1s of

the general form

ri ,<address specification>

where <address specification> will be discussed shortly. The operand register

specification digit ri is formed according to the same rules given above

for the ri and re digits of RR instructions: it must be an absolute expression

of value less than 16.

Suppose first that we wish to specify explicitly the values assigned

to x2, ba, and dg: this is done by writing the second operand (namely

<address specification)as

| da(x2,b2) -

For example, the instructions in examples 3, 4, and 5 of Section 5 (page 5-3)

could be written (giving both the assembled form and the operation and

operand field entries of the machine instruction.statement) as in Fig. 11.3.

. | 43]0A] T]H68 IC 0,X'468" (10,7)

+3100] 7]468) IC 0,1128(0,7)

| 4+3]0T7jof46s)| IC 0,1128(7,0)

Figure 11.3 RX Instruction with Explicit Operands

In the last of these three examples, we could have written the second operand

as 1128(7) and the Assembler will give the omitted item (the base register

specification digit bz) the value zero.

As was mentioned in the discussion-of addressing in Section5, the use

of the index register specification digit xz when the base register specification

digit bz was intended can lead to programs which function more slowly,

though correctly. By specifying only the base digit when no indexing 1s

intended, the program 1s both more efficient and more easily understood --

the second of the above examples, where we could have written 1128(, 7) also,

1s therefore preferable to the third.

11-g

The utility of the Assembler becomesmore apparent when we consider

all the forma in which the second operand of an RX instruction may be written;

these are given 1n Mg. 11.4 below.

ixplicit Address Implied Address

dz2(x2,b2) s2(x2)
d2(xz2)

da(,b2) 82

Figure 1ll.4 Address Specification in RX-Type Instructions

In the three cases where an explicit address 1s desired, each of the

quantitiesda, x2, and ba (where specified) must be an absolute expression;
xgand bg, like ri, must have value less than 16, and dg must have value

lees than or equal to 409510 = FFFig. Rote that the second and third forms

of explicit address implicitly specify baz = 0 and xa=0,respective&y, as

indicated previously.

“ Inthetwo cases where an implied address 1s desired, the quantity sg

may be either an absolute or arelocatable expression of value less than al

This means that we may write instructions such as I. O,ANSWER and leave

1t tothe Assembler to compute the proper base and dieplacement; how this

1s done will be discussed in the next section. For the moment suppose that

the Assembler has sufficient information so that the instruction IC O,BYTB

is translated into_[¥3]00]7[%28] as in Fig. 11.3. Then 1f the 1ndex register
to be used is R10, the instruction IC 0,BYTE(10) would be translated

This 1s the- same instruction used in example 3 1n section 5;the

example given there was simply meant to illustrate an address celculation

at execution time rather than (as above) the method used by the Assembler

to specify the base and index digits. We will find that the moet ceommon

'means -of address specification in simple programs 1s through the use of

implied addresses, where the Assembler computes the proper displacement for us.

To give a simple example of a sequence of statements which increment

by one the fullword integer stored in memory in an addressable area

11-10

g named by the symbol N, we could use the following:

| | L O,N LPAD FRM N INT RO

| | A O,fNE ADD INTEGER C@NSTANT 1

| ST O,N STYRE RESULT BACK AT N

: where it is assumed that an addressable fullword area named NE which
contains the integer constant +l has been defined in the program. We will

| see later that there are several ways to define such constants.

| RS and 8I Instructions

~The RS-type and SI-type instruction6 listed in Table VI are somewhat

varied both in application and in the ways 1n which the operand fields ere

specified. Note that there are nine privileged instructions: S8M, LPSW,

| WRD, ROD, SIP, TI, HIf, TCH, and “Diagnose”, for which there is no mnemonic,

| | Opcode Cpcode
| hex) Mnemonic Instruction hex Mnemonic Instructio .

| | 80 SSM Set System Mask 90 STM Store Multiple |
82 LPSW Load PSW QL T™ Test Under Mask

| 83 Diagnose o2 MVI Mwe
84 WRD Write Direct 93 TS Test and Set |
85 RDD Read Direct oh NI Logical AND

oo 86 BXH Branch on Index High 95 CLI Compare Logical

| 87 EXILE Branch on Index Low 96 oI Logical dr
or Equal 97 XI Exclusive @R

88 SRL Shift Right SL 98 IM Load Multiple
| 89 SLL Shift Left SL |

8A SRA Shift Right S 9C SIf start I/#

8B SLA Shift Left S 9D TIf Test Ef| 8c SRDL Shift Right DL IE HIP Halt I/p |
| | 8D SLDL Shift Left DL ° OF TCH Test Channel

| ar SRDA Shift Right D
| 8F SLDA Shift Left D

| TABLE VI.

| RS and SI Instructions

oo (For Shift Instructions, S = Single, L = Logical, D = Double)

oo Since the operand fields of RS and SI instructions cannot be deseribed in as

uniform a way as was possible for RK instructions, the details will be left

11-11

to the discussion of the individual instructions.A simple example of an SI

instruction is MVI . FILAG,O which would cause the byte named FLAG

(which 1s assumed to be addressable) to be set to zero.

58 Instruction

The instructions of SS type are given in Table VII. There are no

privileged SS instructions. As was the case for the R8 and SI instructions,

discussion of the operand field formats will be deferred. The last six

instructions in the right-hand column are decimal instructions, which operate

Opcode Opcode
(hex) Mnemonic Instruction hex) Mnemonic Instruction

D1 MVN Move Numeric F1 MV Move with Offset
mR MVC Move F2 PACK Pack

1 D3 MVZ Move Zone F3 UNFK Unpack |
Di NC Logical AND
5 CIC Compare Logical F3 ZAP Zero and Add
D6 gc Logical fR F9 CP Compare
DT XC Exclusive fR FA AP Add
DC TR Translate FB SP Subtract
DD TRT Translate and Test FC MP Multiply

"DB ED Edit FD DP Divide

DF EDMK Edit and Mark

TABLE VII,

ss Instructions

ondata which 1s stored in a different format (called packed decimal) from

that described earlier for fixed-point integers in two's complement

representation; decimal instructions will be treated later. An example of

an 88 instruetion which would cause five bytesto be moved from a memory area

named ARBA to an area whose first byte is named FIELD is

MVC FIELD(5),AREA .

To conclude this short presentation of the instruction repertoire of

System/360,asumery is given in the figure below of same of the overall

characteristics of the instructions as they depend on the first four bits

of the operation code. As was illustrated in Section &, the first two bits

| 11-12

determine the type and length of the instruction. The second pair of bits

determines (depending on the instruction type) the operand length or the

general functions performed by the instructions.

| Second Bit Pair
First a

Bit Pajr | ~~ 00 | 01 | 10 11.

00 Branching and Fullword Fixed- Floating- Floating~-
(RR) Status Switching Point and Logical Point Long Point Short

01 Halfword Fixed- Fullword Fixed- Floating- Floating-

(RX) Point and Branching Point and Logical Point Long Point Short

10 Branching, Status Fixed-Point,
(RS, Switching, and Logical, and
SI) Shifting Input/Output

11 Logical Decimal
(ss)

Figure 11.5 General Instruction Classification

A closer examination of a complete table of operation codes reveals a great

deal of symmetry in the specification of the codes used for similar functions.

For example, the four instructions which perform the Logical AND operation

(namely, NR, N, NI, and NC) all have operation codes in which the second hex

digit is 4 and the first hex digits differ by multiples of 4 (namely, 1k,5k4,

ok, and Dt). Since we will make reference to instructions slmost entirely by

use of mnemonics, these details are only of passing interest for our purposes.

The reader who 1s interested 1n a broader discussion of these topics —-

collectively known as system architecture -- should consult the IBM Systems

Journal, Vol. 3, Nos. 2 and 3, and the IBM Journal of Research and Development,

vol. 8, No. 2.

Li-1%

. EA EON
wre an r -

RR

: B _ eA .

hi
A

-

A
bs

)

,

a

i

.

Fe

Es

+

4

5

Li

5.

i

a

}-

‘

.

|

|

i

12. ESTABLISHING AND MAINTAINING ADDRESSABILITY

In this section we will give an exposition of some simple methods for

providing addressability for a program, and how the Assembler makes use of

some programmer-provided information to calculate displacements. Rather

than give a set of rules and show how they work, we will start with what we

want and work backwards to some techniques which can be used to get it.

One particular instruction is central to the discussion, namely BAIR.

For the time being we will be interested -only in the situation where we

write BAIR 13,0 (so that the second operand register specification

digit ra is zero). The effect of this instruction when executed 1s to

replace the contents of general register ri by the rightmost 32 bits of the

PSW: the ILC, CC, and Program Mask occupy the leftmost byte of the register,

- and the rightmost 24 bits contain the value of the IA (which will be the

address of the instruction following the BALR, because the IA 1s incremented

by the instruction length (2 for BALR) during the Fetch portion of the

instruction cycle). This is one solution to the problem posed at the end

of Section 9, where addressability was first discussed; the BAIR instruction

gives us a way to find out where in memory a program 1s located.

Suppose that the following short sequence of statements 1s part of a

program which 1s 1n memory and ready to be executed, and assume for the

moment the Supervisor has relocated the program so that the first instruction

(the BALR) happens to be at memory location 5000i¢.

Location Name Operation Operand

5000 BALR 6,0
5002 BEGIN L 2,N LPAD CONTENTS ¢F N INTP R2
5006 A 2,fNE ADD C@NTENTS ¢F ONE
500A ST 2,N STPRE CYNTENTS ¢F R2 INT N
-—— twenty-two additional bytes of instructions, data, etc. —--—-

5024 N DC F'8' FULIWPRD INTEGER 8
5028 @NE DC F'S FULIWPRD INTEGERI1

Figure 12.1 A Simple Program Segment

12-1

Some explanation of the items in the example may be helpful. The instructions

L, A, and BT respectively (1) put the contents of a fullword from memory

into a general register (i.e., Load the register),(2) Add the contents of

a fullword area in memory to the contents of a register, snd (3) replace

the contents of a fullword area in memory with the contents of a general ,

register (i.e., STore the register). The IC statements, which are treated

in the next section, are meant simply to provide two fullword areas of

memory with names "8" and "@NE" which contain the fullword integer values

desired; we have arbitrarily set the contents of the fullword at N to the

integer 8 even though in an actual program any value might be possible.

All of these instructions will be covered in detail later.

When the program has begun and after-the BAIR has been executed, R06

will contain xx00500236, where xx stands for two hex digits whose values

are of no concern at the moment. To determine the proper displacement for

the L instruction at 500216, we can use the known contents of R6 (since

the xx digits are ignored in address computations) to compute a displacement

of 502k;6 - 500216 = 02216; then the assembled machine instruction (using

the operation code 58 for the mnemonic L) should be [58]20[6[022]. Then
when the instruction1s executed, the computation of the effective address

yields 022 + 005002 = 00502%, which is what we want. If we continued in

this fashion for the rest of the instructions, we would find that the

following "assembled" quantities 1n the indicated locations would give the

desired results.

Location Assembled Contents Original Statement

5000 0560 BAIR 6,0

366% 5A206026 BEGIN L 2 2,1
500A 50206022 ST 2,N

5028 00000001 gE DC FL

Figure 12.2 8imple Program Segment with Assembled Contents

12-2

So far, so good: we have constructed a sequence of statements which

will give a desired result if it 1s placed in memory at the right place.

It 1s natural to ask at this point what would happen 1f the program had

been put elsewhere by the Supervisor. So, assume that the same program

segment begins at 84E8:1g, as in the figure below.

Location Statement

8LE8 BAIR 6,0
84EA BEGIN L 2,N
84EE A 2, NE
8hF2 ST 2,N

-—— the same 22 bytes of odds and ends —---
850C N DC Fg!

8510 ONE DC F'l'

| Figure 12.3 Same Program Segment, Different Memory Location

Now, the contents of R6 after the BALR is executed would be xx0084EA;g. To

access the contents of the fullword at N, using R6 as a base register, the

-- necessary displacement is 850C - 84EA = 02216 (as before!) and the dis-
placement necessary in the A instruction is 8510 - 84EA = 02636. Thus

the assembled program would appear as 1n the figure below.

Location Assembled Contents

84E8 0560

84EA 58206022

8LEE 54206026
8LF2 50206022

850¢C 00000008
8510 00000001

Figure 12.4% Same Program Segment with Assembled Contents

The identical assembled program would be used in each case to perform the

desired calculation. It therefore appears that so long as the same fixed

relationship 1s maintained between the various parts of -the program segment

(namely that there be 22 bytes between the ST instruction and the fullword

named N, and that N and JNE name areas that fall on fullword boundaries, the

. segment could be placed anywhere in memory and still execute correctly.

12-3

This 1s because the displacements of the three RX-type instructions were
calculated on the assumption that at the time the program 1s executed

there would be an address in R6 (namely the address of the L instruction
named BEGIN) which could be used for a base address. Indeed, we could

have assumed that the program began at momory location zero (even though

an actual program would not be placed there) because the contents of Rb

after the BAIR would then be xx000002 and the displacements would be

calculated exactly as before. In the first example, the actual origin of

the program segment was 50001s; we could by chance have assigned that value

as a relative origin in the program and had the values of the Assembler's

Location Counter correspond identically to the actual locations later

assigned by the Supervisor to each instruetion. In that case, we would

need to inform the Assembler that the quantity to be used as a base 1s

500216, and that it would be found in R6 at execution time. Similarly, in

the second example, the relative origin would be 84E81s, and the contents
of R6 that the Assembler should assume in order to calculate the correct

displacements would be 84EA;g. If the value of the actual origin is

assigned to the relative origin by the programmer, and 1f the Assembler
knows that the contents of R6 at execution time will also be the value of

the symbol BEGIN , then the correct displacements will be found.' However,

in each of the above examples, the computation of the displacements actually

depended not on a knowledge of the actual locations of the instructions

at execution time, but only on their locations relative to one another and

on the value assumed to be available for addressing purposes. Thus, the

technique used 1s to assign a relative origin for the program, and then to

give some value relative to that relative origin which may be used for

computing displacements; although this seems. complicated, we will find it

quite simple 1n practice.

The assembler instruction which provides this information is the

USING instruction. It 1s written

USING 8,1

where s 1s a relocatable or absolute expression (usually just a symbol.

will be used) whose magnitude is less than 2%, and r1 is an absolute

12-4

expression of value less than 16 which specifies the register to be used as

a base. (As usual, there is more to using USING than has been stated here,

but we will use this simplified explanation for the time being.) Thus, the

statement USING BEGIN,6 would inform the Assembler that register 6 may

be assumed (for purposes of computing displacements) to be a base register

which will contain the value of the symbol BEGIN . We could rewrite the

sample program segment to include the USING statement as in the figure below.

BAIR 6,0
USING BEGIN,6

BEGIN L 2,N

A 2, NE
ST 2,N

N DC F'8T

ANE DC Fl

Figure 12.5 Program Segment with USING Instruction

- If the relative origin assigned by the programmer 1s zero, the value of the

symbol BEGIN is 2, and the values of the symbols N and NE are 2416 and

2816 respectively. To complete the addressing syllable of the ST instruction,

the Assembler need only note tha-t the difference between the value of the

symbol N and the value that the USING instruction specifies will be present

in Rb, is 2k - 2 = 2234; this is the required displacement. It should be

noted at this point that the value provided by the USING statement must

allow the Assembler to compute a legal displacement. If the calculation

yields a negative value or one greater than 4095, the location referred to

by the-symbol in question 1s still not addressable, and further steps would

have to be taken.

Two important features of the program segment 1n Figure 12.5 should

be noted. First, the USING instruction does absolutely nothing about

actually loading a value into a register; it merely tells the Assembler

what to assume will be there when the program is executed. Second, if the

BAIR instruction had been omitted, there is no guarantee when the program

1s executed that the correct effective addresses will be computed. The

example below will help to illustrate this.

12 -5

Suppose an error had been made in punching the 'card with the L

instruction, such that it appeared

BEGIN L 6,N ILHAD CENTENTS gF N INTP R2

(the first operand was incorrectly punched as 6 instead of 2). The

assembled program would then appesr as in Figure 12.6, assuming a relative

origin of 0 had been assigned to the BAIR 1nstruction.

Location Assembled Contents Statement

0 0560 BAIR 6,0
USING BEGIN,6

2 58606022 BEGIN L aL0 5A206026 A 2, Pub
A 50206022 ST 2,N

2k 00000008 p DC F'8!28 00000001 NE DC F'S

Figure 12.6 Sample Program Segment with Erroneous Statement

It 1s apparent that thfs program will assemble correctly, as did the one

in Figure 12.5, since all quentities: are properly specified. However, at

execution time, things go rapidly awry. Suppose again that the actual

) location assigned by the Supervisor to the BAIR 1s 500036, so that when the

L instruction is executed, R6 contains xx005002:¢. Now, the IL instruction

transmits a fullword from the memory location at the effective address given

by the second operand into the register specified by the first operand,

'which in this case 1s R6. When the effective address of N 1s being calculated,

R6 will contain the correct base address; but when the execution of the L

instruction is camplete, the contents of R6 will have become 000000081g, and

not xx005002. When the next instruction 18 executed, the effective address

calculated is 263i + 816 = 00002E;¢ and not 502816, which is where the

desired operand 1s to be found. In this case, the generated effective

address is not divisible by 4, so that it refers to the incorrect byte of

the required fullword operand; hence a specification exception occurs, and

remedial action can be initiated immediately. This does not by any means

imply that at any time we have the misfortune to destroy the contents of a

12-6

base register that the CPU will be able to detect the error. Indeed, if

: the contents of the fullword at N had been the integer 2 instead of 8, then
the effective address would have been computed to be 2 + 26 = 2816, which

is a perfectly acceptable address for a fullword. The subsequent instructions

: would thus have gone their way, adding the contents of the fullword at
memory location 2816 to R2, and storing the result at location 2416, which

| is obviously not what is intended. It 1s partly a matter of chance as to'
how much further damage such a program error can cause when the program 1is

| executed; indeed, when the CPU finally (i1f it ever) detects an error, all
evidence pointing to the offending instruction may have been lost (R6 may

have been changed several times!), making error tracing difficult. Thus

| the programmer must take care to insure the integrity of the contents of
registers being used for base registers, -since the Assembler makes no checks

for instructions performing operations on registers.designated in USING

instructions as base registers. This warning should not be taken lightly;

| the errors caused by mishandling base registers are among the most
; destructive of program continuity and the most difficult to find.

There 1s one further method in common use for establishing addressability,

which is simply to require that when "eontrol" reaches a certain point in

the program (where a specified instruction 1s about to be executed), an

agreed-upon address be in an agreed-upon register. Thus if the program

| segment used 1n the above examples were part of a larger program, we could

| then require that at any time that control reaches the statement named
| BEGIN, the actual address of that instruction must be in R6. Then the BAIR

could be omitted, and the USING instruction would specify that R6 may still

be assumed to contain the correct value. The problem of how one part of a

program knows where the others are, so that it can pre-load the correct

address into the agreed-upon register, will be discussed later; the solutions

to this problem are basic to the use of subroutines, which 1s an important

programming topic.

In many of the following sections we will have occasion to examine

short segments of coding which illustrate the use of various instructions.

J Rather than indicate explicitly the assignment of a base register and its

contents, we will assume that each segment 1s part of a larger program in

which addressability has been taken care of. We will also assume that all

symbols used have been defined and are addressable, and that the base register

1s different from any registers used or changed in the example

12-7

pa

13. CONSTANTS, STORAGE AREAS, AND LITERALS

In several places 1n the preceding sections we have made occasional

use of the DC assembler instruction to indicate that a constant was to be

constructed and placed in the program by the Assembler (DC 1s a mnemonic for

"Define Constant"). In this section we will elaborate on the definition of

constants and describe a technique which simplifies their use.

As indicated in‘'some of the examples given previously, the DC instruction

may have name, operation, operand, and comment field entries, of which the

operation and operand field entries are mandatory. Since the comment field

entry 1s optional, its use will be ignored in the following discussion.

= Rather than give all the rules for defining constants immediately, 1t 1s

- perhaps simpler to examine a few simple cases which illustrate the principles

involved.

The statement DC F'8! defines (as stated in a number of earlier

examples) a fullword integer constant of value 810 placed on a fullword

boundary. That 1s, four items have been specified:

(1) the valueof the constant (in this case +810)

(2) the type of internal representation to be used for the given

value (in this case two's complement integer);

(3) the length of the-constant (in this case four bytes); and

(4) the alignment in memory of the constant (in this case on a

fullword boundary).

Because the Assembler does no placing of data in memory, it 1s probably

difficult to see at present how a given sequence of four bytes can be placed,

after processing by the Assembler, Linkage Editor, and Resident Supervisor,

on proper boundaries. We will see that there are a few simple conventions

which make this easy to accomplish. Some other types of conversion we will

13-a

discuss here, and the letters which specify/the types/are Character (C),

Binary (B), Hexadecimal (X), Halfword Integer (H), and Address Constant (A).

The first three of these were encountered in the treatment of self-defining

terms, and their use in the DC instruction 1s quite similar.

For the larger System/360 Assemblers, the operand field entry may

consist of a number of operands which. are separated by commas; however, for

most of the cases which will be of interest, a single operand will suffice.

There are four parts to an operand: (1) a duplication factor, (2) a letter

specifying the type of representation, (3) modifiers, and (4) the value of }

the constant or constants. Of these only the second (type) and fourth

(value) are required, as in the example above where, F'8' was specified.

The duplication factor is a relatively simple concept which will be treated

shortly. There are three types of modifier, namely length, scale, and

exponent, of which only length will be treated here. Because there is an

important relationship between boundary alignment and the' use of a length

modifier, we will digeuss the techniques tied to obtain the proper alignment

of constants and data.

. When the relative origin is specified by the programmer at the start

of his program, the Assembler checks whether the value given is exactly

divisible by eight; 1f not, it is 'rounded up" to the, next larger multiple

of eight, which 1s then used as the relative origin of his program. Thus

the Assembler insures that the program begins with the most restrictive

possible boundary aligmment. Then if a constant is defined which must fall

on some particular kind of word boundary, the Assembler need insure only that

Ite Location Counter be divisible by the proper power of two (that Is, by

2, 4, or 8) at the locatlon of the leftmost byte of the constant. The

Linkage Editor and Resident Bupervisor 'must then respect this assumed

alignment for the beginning of the program; this ensures that data and
Instructions will fall on the proper boundaries when ‘the program is finally
loaded into memory for execution. We will of course assume that this is

exactly what happens in the rest of our discussion; some of the implications

of this method of handling programs will be treated in later discussions ;

which give more details of the processes of linkage editing and loading.

13-2

We must now 1nvestigate what 1t 1s that the Assembler actually does to

ensure that its Location Counter 1s indeed divisible by the desired quantity.

Suppose in some program that after a sequence of instructions has 'been

processed the value of the IC is 12Fi1s, so that 1f another machine instruction

were assembled at this point it would begin on a halfword boundary between

two fullword boundaries (recall that instruction addresses need only be

divisible by 2). Suppose also that the next statement 1s not a machine

instruction statement but is DC F'8' instead. To assemble the four

bytes representing the constant (namely 000000081) beginning at 12Eie would

be incorrect, since an instruction which referred to the constant might

require that its memory address be on a fullword boundary. To avoid such

an erroneous situation, the Assembler will automatically skip enough bytes

to obtain the desired boundary alignment. Thus in this simple example the

LC would be increased to 1301s before the fullword constant 1s assembled

into the program, and the LC would have a value of 13416 after the constant

is processed rather than the value of 13216 which would be the case if no

automatic alignment had been performed. An automatic alignment is not

performed in the following circumstances:

1) it isn't needed (that is, the LC happens by chance to fall on

the desired boundary); or

2) the type of constant specified doesn't call for it (which 1s

the case for types C, B, and X); or

3) a length modifier 1s present.

A length modifier allows the programmer to specify the exact length of

a constant, and 1s written immediately following the letter which specifies

the data type, 1n the form .

Ln

where n 1s either an unsigned decimal self-defining term, or a positive

absolute expression enclosed in parentheses. For example, the statements

DC FL3'8! and DC FL(2*4-5)'8!

would both cause the constant 0000081¢ to be assembled beginning at the

value of the LC when the DC statement was encountered; no boundary alignment

13-3

1s performed. Because alignment 1s automaticonly when the length is implied

(that is, no length modifier is given), the two statements

DC F'8 and DC FLA4'8!

while defining the same constant may give different results since the former

is automatically aligned and the latter is not. (As usual, there 1is |

occasionally a little more to the use of a length modifier than 1s stated

here, but what has been omitted, namely, bit-length specifications, will be

of no importance or interest until later.)

One further effect of automatic boundary alignment occurs when a

symbol appears as the name field entry in a DC assembler instruction statement.
Suppose as before that the value of the IC 1s, 12Bi1¢ when each of the following

statements 1s encountered.

IMPLIED DC F'8'

EXPLICIT DC FL4'8

. Figure 13.1 Implied and Explicit Length Specifications

Because no boundary alignment 1s performed in the latter case 1t 1s clear

that the value of the symbol EXPLICIT will be 12E1g. In the former case,

however, two bytes must be skipped by the Assembler to achieve the required

boundary alignment Implied by type F. Since we will want to be able to

refer to the constant by using the symbol IMPLIED, it 1s also clear that it

should have the value given to the location of the leftmost byte of the

constent, namely 1301¢. Thus if a symbol is to be defined, it is given its

value after bytes are skipped to achieve boundary alignment. In fact, a

general rule may be stated: the Assembler will never automatically assign

the value of a symbol to the location of skipped bytes. (The programmer can

find ways to do so 1f he 1s so inclined.) This includes the case where a

byte must be skipped to ensure that an instruction begins on a halfword

boundary. When bytes are skipped to achieve alignment of a following

constant.or instruction, the Assembler will insert zeros into the bytes

skipped.

13-4

We are also 1n a position now to describe the length attribute of a

symbol, which was first mentioned in Section 10. If a symbol appears in

the name field entry of a DC instruction, then the length attribute of the

symbol 1s the length in bytes of the first constant assembled. (Cases where

more than one constant may be assembled will be treated shortly.) “hus in

the examples in Figure 13.1, both symbols have length attributes of 4; and

in the machine instruction statement given in Figure 9.5 the length attribute

of the symbol LOAD would be 2, since IR is an RR-type instruction of length

two bytes.

A duplication factor (sometimes called a multiplicity, replication, or

repetition factor) specifies the number of times the constant 1s to be

duplicated, and 1s written immediately preceding the letter which specifies

the constant type. It may be either an unsigned decimal self-defining term,

or a positive absolute expression enclosed in parentheses. For example,

the statements DC 3F'8! and p c¢ (5/2+1)F'8" are equivalent

to writing the statement DC F'8! three times in succession. And

~ because more than one operand may (for the larger Assemblers) be written

in the operand field entry of a DC instruction, we could also achieve the

same result by writing DC F'8',F'8',r'8? . There is still one more

way of defining multiple constants (again, for the larger of the System/360
Assemblers) which we will mention after discussing some of the other types

of constants which will be of use in future examples.

The type H constant 1s quite similar to type F, in that two's

complement integer conversion 1s specified. The only difference is in the

default values assumed for length and alignment, which assign a halfword

integer to two bytes aligned- on a halfword boundary. Thus the statement

DC H'-10" would cause the constant FFFb6ig to be assembl . and

placed on the next available halfword boundary. If an explicit length is

given, there 1s no difference between constants of types H and F, so that

FL3'8! and HI3'8! are for all practical purposes identical

operands.

The following discussion deals with numerous technical matters in a

fairly loose way —- rather than give explicit rules at once we will continue

to use examples to illustrate the problems involved. The rules will be

summarized in a short table at the end of the'‘section.

13-5

te

‘The three useful constant types C, X, and B differ from F and H in that

no default values are assumed for either length or alignment. For example,

the five bytes required to store the constant generated by the statement

DC C'12345! will be placed by the Assembler at the next available

address given by the current value of the IC. If a particular boundary

alignment 1s desired, extra steps must be taken which will be described later

in this section. The method of writing such constants 1s, as might be guessed,

the same'as for writing character, hexadecimal, and binary self-defining

terms, except that the limitations on length and value are different. In

the case of self-defining terms, the value of the tem was restricted to

being less than 22%, whereas much longer constants can be defined with the
DC instruction. Thus one can define constants 1n statements such as in

Figure 13.2 below.

TITLE DC C'THIS IS a L¢NG CHARACTER C@NSTANT'
DIGITS DC X'B462AFCBYT5310°

- Figure 13.2 Examples of Character and Hexadecimal Constants

In the discussion of data converted according to types F and Hit was

reasonable that the resulting binary numbers should be placed with the

least significant digit at the right-hand end of the desired storage area,

and that the sign bit should be extended to the left. In all the examples

given, the constants were small enough to fit safely 1n the allotted space.

The problem may arise as to what should be done 1f (1) the constant 1s too

small to occupy fully the number of bite allocated for it by the length

specification (whether an explicit length modifier or the default length 1s

used), or 1f (2) the constant 1s too large to fit in the allotted space.

Some examples of such cases are given in Figure 13.3, along with the

constants actually stored by the Aasembler. The rules used to determine

the final values of the constants are given below.

13-6

Constant Assembled

too Large Value too Small Value |

~‘65537 000116 H'2! 000216 |

FL1'-300' Dig FL1'-6' Fhe |

CL3'SMITH' E2DUC91 6 CL3'S! E2040,¢

XL2'56789" 676916 X'56789" 05678916

BL1'100100100" 001001002 B'101"' 000001012

Figure 13.3 Examples of Truncated and Padded Constants

For all of the constants on the left, some part of the true value must be

truncated to make it fit into the allotted space, since a length is specified

in each case. For all the constant types we are discussing except C, excess

information 1s dropped at the left end of the constant, and the rightmost

portion 1s what 1s eventually assembled; for character constants the excess

1s trimmed off the right end, as may be verified in the example above. Note

that the special rules concerning the apostrophe and ampersand in character

} self-defining terms also apply to character constants.

For the constants on the right side of Figure 13.3, the opposite

situation occurs: in each case the space allotted (either explicitly or

implicitly) 1s more than 1s required to hold the significant bits of the ,

given. constants. For the examples of types H and F, the assembled value is

simply the rightmost part of an indefinite-length representation in which

the sign bit has been extended to the left; this 1s as has been customary

up to now. In the character example, the single letter "$8" has been padded

with two blanks (with EBCDIC representation 401g) on the right side to fill

out the constant to the required three bytes. The last two examples in the

right column require further explanation. As was mentioned earlier in this

section, no default lengths are assumed for data of types C, X, and B; the

general rule 1s that in the absence of any limitations, the Assembler will

use just enough bytes for the constant to ensure that no information 1s lost,

and no more. Thus the lengths of the constants in Figure 13.2 are 33 and 7

bytes respectively (these also are the length attributes of the symbols

TITLE and DIGITS);no information has been lost, and no padding was required.

13-7

In the Last two examples in Figure 13.3 some padding with zeros was required
et the left end of the constants to fill out the partially-specified byte.

Before discussing literals and the definition of storage areas, weWill

introduce another type of constant which i1s'of great use and broad applicability

In Assembler Language programming: this 1s the type A, or address, constant

(sometimes abbreviated "edeon"). An address’ constant is written differently

from the other types we have considered, since the constant 1s delimited by

parentheses rather than apostrophes, as in A(10). The utility of address

constants 1s a consequence of the fact that the constent may be any expression,

absolute or relocatable. The latter case of course requires usy other

considerations having to do with processing by the Linkage Editor and

Resident Supervisor, so for the time uwelng we will restrict our attention

to cases where the constant in an address constant 1s an absolute expression.

The A-type constant 1s similar to F-type constants in that a length of

four bytes and a fullword boundary alignment are implied; thus A(10) and F'10'

are equivalent operands, as are AIL4(10) and FIL4'10' . A major

difference lies in the ability to specify constants such as A(X'l2E')

and A(C’" ') (which are the same as F'302' and F'64' respectively), in

'which the use of such expressions may greatly simplify the programming task.

In particular one may define constants using operands such as A(ABS425)

where the symbol ABS425 may have been defined in an EQU statement (as in

Section 11) to have some particular value. Though the utility of such

constructs 1s not apparent now, we will see through later examples that

clarity and simplicity can be gained through their use.

One further facility is provided by the larger System/360 Assemblers

for conversions of types A, F, and H: the value specified may actually be

a sequence of values separated by commes (and no blanks), as in DC ¥'8,8,8!

which, as was indicated earlier, is equivalent to DC 3F'8' and

Dc r'8',F'8',F'8' . Which one is used is largely a matter of taste and

convenience; for example, 1t 1s simple to specify a group of constants by

the use of a statement such as TABLE DC F'1,2,3,+,5,6,7,8,9,10!

where each generated constant is a fullword integer aligned on a fullword

boundary. In all such cases where multiple constants are specified, the

symbol in the name field entry (in this example, TABLE) is given a value

13-8

EE

and length attribute associated with the first constant generated. It 1s

not possible to specify multiple values in constants of types B, C, and X.

The short table in Figure 13.4 summarizes some of the rules given above

for writing operands in DC instructions. The complete set of rules 1s

summarized in the Appendix.

| Maximum Implied Truncation, | Multiple
Type| Length | Length | Alignment | Specified Db Used Padding on | Values?

H 8 2 halfword | decimal digits '' left yes

F 8 L fullword | decimal digits '' left yes

A 4 L fullword any expression () left yes

B 250 . * none binary digits Pot left no

C 256 * none characters - right no

X 256 * none hex digits Pot left no

(* the implied length is the minimum number of bytes required to
contain all the given information)

Figure 13.}t Summary of Rules for Certain DC Operands

It often occurs that a storage area 1s needed in a program which need

not be initialized to some value by the use of a DC instruction. This

facility is provided by the DS ("Define Storage') assembler instruction,

which is almost identical in use to the DC instruction. The rules for

writing the operand field entry are the same, with the exception that the

specification of a value is optionai. Thus the statements DS F and

DS F'8! will both cause the Assembler to reserve a four-byte area on a

fullword boundary, but noconstant will be assembled, even though one 1s

specified in the latter case. Statements—-such as DS C'MESSAGE' will

reserve an area whose length 1s computed by the Assembler from the length

of the given constant (7 bytes), but there will be no constant assembled

into the reserved area. Large blocks of storage may be reserved by statements

such as

STORAGE DS 100F

which reserves one hundred aligned fullwords and assigns to the symbol

13-9

STYRAGE the location of the first. Note also that the two statements

AREA] DS 8oc and AREA2 D8 CI8O

both define storage areas of length 80bytes, but the length attributes of

the symbols AREAL and AREA2 are l and 80 respectively, which may be of

interest in a program. Note in the former of these cases thatIn the absence

of either a constant or an explicit length, an implied length of one byte

is assumed for the C-type specification; the same is true for types BE and X,

so that DS B and Ds X would both cause a single byte to be

reserved.

One special case arises in the use of the DS instruction when a duplication

factor of zero is specified. In such a case any necessary boundary alignment

implied by the type is performed, and then, if a name field symbol is present,

the adjusted value of the IC 1s assigned to its value and its length

attribute is determined from the operand; no space is reserved. Thus a IS

instruction with duplication factor zero can be used to force a boundary

alignment which would not be available otherwise. For example, the two sets

~- of statements

WORD DS OF and Ds OF
DC C'W@RD' WORD DC c 'WERD'

both serve to define a four-byte character constant on a fullword boundary

addressed by the symbol WPRD, which would not in general have been the case

if DC C'WHRD' or DC CLL'WPRD' had been specified. Note that

DC A(C'W@RD') is incorrect: because the operand in parentheses must

be an expression, and because C'WPRD' contains more than the allowed

maximum of three characters which 1s required by the rules for forming self=-

defining terms, the expression which-forms the value for the address constant

1s invalid.

If a duplication factor of zero 1s used in a DC instruction, it behaves

just as would the correspondingDS instruction. When bytes are skipped to

perform alignments implied by DS statements, the Assembler does not put zeros

in the skipped bytes.

This brings us finally to the subject of literals: It often occurs in

programs that some constant must be defined which 1s used only as a constant.

13-10

In the sample program segment in Figure 12,1, the two quantities 1n the

fullwords named N and PNE are both defined by DC instructions, but it is
implicit in the use of the symbol "#NE" that the contents of that fullword

should retain the integer value +1 throughout execution of the program. It

1s of course possible to use constructions such as EIGHT DC E'S!

in a program, but this cannot be of much help in making the program easier

to read or understand, particularly 1f some part of the program stores data

of varying values in that area. The Assembler provides a simple and

convenient means for simultaneously defining constants and referring to them,

through the use of literals.

"A literal 1s a special kind of symbol, where the value of the contents

of the storage area referred to by the literal 1s contained in the literal

lteelf. A literal 1s written as an equal sign (=) followed by an operand

which conforms to the rules for operand field entries 1n DC instructions.

The following are examples of literals.

=F'1’ =C' LYNGLITERAL' =BL2'111101"

- =H'1! =CL7' BLANK' =X "7654324"

=A(1) =F'1,2,3, 4" =AL3(5,X'D7'/C'.")

Literals may be used in most places where symbols are permitted, with the

following exceptions:

(1) a literal is a term which may not be combined with other terms

(thus IC 0,=F'1'+3 is illegal);

(2) an instruction may not store or modify a literal (thus ST T7,=F'1!

1s 1llegal);

(3) a literal may not be specified in an address constant (about which

more later) (so that A(=F'l') is illegal);

(4) multiple operands may not be specified, but multiple values may;

(5) the duplication factor may not be zero;

(6) the alignment of the data described in the literal is that implied

by the constant type (so that L 2,=X'2B' will probably cause a

specification exception).

13-11

Po illustrate the use of a literelin,a program segment, we could

rewrite the example in Figure 12.1 in the form given in Figure 13.5 below.

BALR 6,0
USING BEGIN,6

BEGIN L a,N
A 2,=F]!

oonSTB
N DC Fa!

Figure 13.5 Sample Program Using a Literal

In this cage the programmer has been relieved of the duty of defining a

constant and creating a symbol by which to refer to it, as was the case

previously. For this gain in ease of referring to constants there 1s a

corresponding loss in the precision with which one may specify exactly where

the constant 1s to be located, since this must now be determined by the

Assembler (a small amount of control is left to the programmer). As literals

- are encountered by the Assembler in the course of scanning the source program,

-a separate internal table -- called a literal pool -- 1s formed which

contains all the literals encountered, with duplicates eliminated. This

allows the programmer to make liberal use of litersls with some small assurance

that he will not generate an excessive number of constants. These are placed

in the program at an appropriate location, and the Assembler then computes

the required displacements which allow the constants to be addressed. We

wlll use literals 1n many places throughout this presentation, and it should

be borne 1n mind at all times that a literal 1s a special symbol, and not a

piece of data, a storage area, or a value, which are common misconceptions

in the use of literals.

We have now covered enough basic material to be able to examine many of

the instructions of System/360 in the context of actual programs. In the

next several sections we will discuss the use of the general registers for

a variety of purposes, and give some examples of program segments which

1llustrete typical uses of the instruction set.

13-12

14. GENERAL REGISTER SHIFTING AND DATA TRANSMISSION

In this section we will discuss the instructions which cause data to

be transmitted among the general purpose registers, between the registers

and memory, and within the individual registers themselves. Some of the

instructions will be treated in detail,- since they are the first of the RS

type to be examined.

A notational convenience will be introduced here: because we will

often have need to use the phrase "general purpose register ri" where ri

indicates the value supplied for an operand in the operand field entry of a

. machine instruction statement, we will use the abbreviation"Rri" instead.

Thus 1f ri has the value'5, the register being referred to is Rb.

We will first examine the instructions which transmit data between the

GPRs and memory. The most important of these are the L (Load) and ST (Store)

instructions, which were encountered 1n several earlier examples. Both are

of type RX; both require the effective address to be divisible by 4, so that

the use of a fullword operand is indicated. The instruction

L r1,dz2(x2,b2)

causes the fullword second operand to replace the contents of Rri. The

original contents of Rry are lost, and the contents of the fullword area in

memory remaln unchanged. As a reminder, the term "operand" was used here

to mean the data referred to at execution time by the effective address,

which was computed from components of the instruction determined during

assembly from the second operand in the operand field entry of the instruction

statement. As mentioned before, which meaning of the word "operand" 1s

intended will usually be clear from context.

14-1

For example, to set the contents of RO to zero we could write

L 9,=F'0'

and fo set it to the maximum negative number,

L 9, =F'-21474836L8"

would suffice.

The inverse operation ST 1s written explicitly as

ST ri,da2(x2,bz)

and causes the contents of Rrp to replace the contents of the fullword erea

of memory at the effective address of the second operand. ' The contents of

the register are unchanged, and the original contents of the fullword area

of memory are lost. For example, to duplicate at B the contents of the

fullword at A, we could write

L O,A
ST O,B

and t0 exchange the contents of the fullwords at A and B, we could write

L 1,B L O,A L O,A L O0,A

L O,A or L 1,B or L 1,B but , ST 0,B
sT O0,B ST 0,B ST 1,A not L O,B
ST 1,A ST 1,A ST O,B ST O,A

where we have assumed that Rl 1s not being used as a base register. The

use of L and ST in situations where indexing 1s desired will be treated

later. Both of these instructions are subject to interruptions due to

specification and addressing errors, which were mentioned in Section 5; one

further interruption may be caused by memory-protection, en optional feature

available on System/360 which allows some degree of supervision over the

areas of memory acceaelble to a given program. We will examine Menory

protection in more detail when interruptions are discussed.

It is occasionally necessary or desirable to be able to transmit

information between memory and several registers. This can be done with a

gequence of L or ST instructions, a8 1n

L 1,A ST 1,B
L 2,A+4 or ST 2,B+k
L 3,A48 ST 3,B+48

14-2 |

If the number of registers 1s large, however, this can be cumbersome and

slow, and it is more convenient in many cases to use the IM (Load Multiple)

and SIM (Store Multiple) instrugtions. Each of these is an RS-type

instruction for which three operands must be specified in the operand field

entry, as follows:

IM (or STM) ri,rs,d2(b2)

where the components of the assembled instruction are pictured in Figure 14.1.

EnEC
0 78 1112 15 16 19 20 31

Figure 14.1 Components of an RS Instruction

As usual, ry and rs must be positive absolute expressions of value 15 or

} less, and the base and displacement may be given explicitly or left for the

Assembler to compute from the value of a symbol or other relocatable

expression. The meanings of the register specification digits in the STM

instruction are as follows: beginning with Rry, transmit the registers in

order of increasing number to the successive fullwords in memory which start

at the effective address of the second operand, until Rrs has been transmitted.

If r3 1s equal to ri, only one register is transmitted. If rz is less than

r1 then Rry through R15 will be transmitted, followed by RO through Rrs;

thus RO may be considered to follow after R15, so that the general registers

"wrap around" from the highest to lowest numbered. The LM instruction

follows the same rules except that the registers are loaded in sequence from

successive fullwords 1n memory.

For example, IM 2,6,=5F'0! would cause the contents of R2, R3,

Rk, R5, and R6 to be set to zero. Similarly, STM 0,15,SAVE would

cause the contents of all sixteen registers to be stored beginning at SAVE,

which could be defined in a statement such as SAVE DS 16F which

ensures that the proper boundary alignment will be specified for the second

operand address. Iwe assume that Rl contains the address of a list of

14-3

four fullword constants, we could load them into RY through R10 by executing
the statement IM T7,10,0(1) and 1f we assume that R13 contains the

address of a register save area, then STM 14,12,12(13) would store

R14, R15, RO,...Rl12 in successive fullwords, beginning with the fourth

| fullword of the area. These last two example8 illustrate certain conventions

| commonly used in comunicatingwith subroutines, which will be treated in |
detail later. As a final example, suppose we wish %0 exchange the contents

of RO through RT, as a block, with the contents of R8 through R15. We could

then write

STM 0,15,8AVE gm 8,7,SAVE

IM 8,7,SAVE or I M 0,15,SAVE
SAVE Ds 16F -SAVE D8 16F

One small but important detail in this example should be noted: one of the

general registers must have been specified as a base register so that SAVE

could be addressed. The STM and LM instructions wilwork correctly, since

the calculation of the effective address 1s performed before the execute phase

_ of the IM instruction cycle begins. When execution is completed, however, the

base register has been changed, so either the Assembler must be informed that

the base register 1s changed, or the correct value must be put back into

the original base register.

The transmission of helfword data between memory and registers 1s

| somewhat more complicated, because a halfword requires only half of a general

register. The relevant instructions, IH (Load Halfword) and STH (Store

| Halfword) are similar to L and ST; both are RX instructions, and the operand
field entry 1s written the same way. STH is the simpler of the two: the

rightmost 16 bits (the right half) ofRri replaces the helfword at the

effective #ddress of the second operand, and Rry remains unchanged, If the

contents of the register represent an integer too large to be correctly

| represented as a 16-bit two's complement integer, some significance is lost;
no indication is made that the halfword in memory may not have the desired

| value. (An example illustrating this will be given shortly,) Conversely,

when data 1s being transmitted from memory to a register by the LH Instruction,

| 1t 1s reasonable to assume that the programmer wants to perform some arithmetic

| operations on the value transmitted, so that the data should occupy the entire

hb

register with the least significant bit at the right-hand end. To give a

correct representation in the 32-bit register, the sign bit of the 16-bit

halfword operand must therefore be extended to the left to occupy the left

half of the general register. One may visualize this process as taking

place in two steps,. The halfword operand is brought from memory and placed

in the Memory Data Register (MDR), which 1s an internal register used for

communicating between the CPU and memory. The leftmost bit of the halfword

1s duplicated to the left by 16 positions, providing a 32-bit representation

of the original 16-bit two's complement operand. The resulting 32 bits

are then transmitted to the designated general register. Though none of

the models of System/360 use the MDR inprecisely this fashion, we will find

that the descriptions of many instructions can be simplified considerably

by supposing 1t to take an active part 1n the handling of data passing

between memory and the CPU. Note that there is also an instruction with

mnemonic MDR; we will indicate which 1s meant 1f there 1s a possibility of

confusing the two. Thus the statements LH O,=H'1l' and LH O,=H'-1"

would cause the contents of RO to be set to 00000001~6 and FFFFFFFF;g

respectively. As long as the value of the halfword operand X involved

satisfies -2%%sX< 2% it can be correctly represented in 16 bits and will

therefore be correctly transmitted by LH and STH instructions. If this 1s

not the case, situations such as those illustrated in the next two examples

can arise.

Suppose the sequence of instructions given in Figure 14.2 1s executed.

The contents of the registers 1s given in the comments field of the instructions;

the notation C(RO) means "contents of RO", and X'n' means the same thing as

nis, as 1n the definition of hexadecimal constants.

L O,B C(RO)=X'00010001"
STH O,A C(A)=X'0001"
LH 1,A ¢(R1)=X'00000001"

A D S H

B DC F'65537!

Figure 14.2 Loss of Significant Digits when Using STH

14-5

| The contents of RO and Rl are different because the quantity in RO being

stored by the second instruction is too large. Amore awkward result is

| illustrated in Figure 14.3.

IL 0,=F'65535" C(RO)=X'O00OFFFF"
STH O,A C(A)=X'FFFF'
IH 1,A C(R1)=X'FFFFFFFF'

A D8 H

lL | Figure 14.3 Loss of Significant Digits when Using STH

In this case the result in Rl has a different aign and considerably different

magnitude from the original operand. From these two examples it is clear

: that the programmer who chooses to use helfword data must exercise care to

be sure he understands what can happen when storing or loading such quantities.

| Two further instructions used for transmitting data between the general

registers and memory are IC (Insert Character) and STC (Store Character).

; (IC was used in the addressing examples 1n Section 5.) The operand field

~~ entry is written in exactly the same form as for L and ST, and no particular

| boundary alignment is required for the address of the second operand, since

3 | the data being moved in this case 1s contained in a single byte.
1 The instruction STC 1ri,dz2(xz2,bz2) causes the rightmost byte of

| - Rry to replace the byte at the effective second operand address. The inverse

| operation 1s called "Insert Character' rather than "Load Character", because

| the specified byte from memory is placed in the rightmost 8 bits of the

: register without disturbing the remaining 24; no sign extension 1s performed.

Ae an example, the instructions below can be used to reverse the order of

] the two-characters in the character constant at X and place the result at ¥.
N IC 0,x

= STC O,Y+l
IC 0,X+l

X Dc C'AB'

| Y Ds CL2 BEC@MES C'BA'

14-6

Occasionally when memory Bpace 18 at a premium it is convenient to use e

single byte to contain a small integer constant; its value may be placed in

a register using the following instruction sequence.

L 1,=F'0! CLEAR REGISTER
IC 1,LITICPN INSERT C@NSTANT

LITICGN DC FL1'53!

None ofthe instructions discussed up to now has had any effect on the

Condition Code (CC). We now turn our attention to five RR-type instructions

which transmit date among the general registers, four of which can change the

value of the CC. The instructions are IR (Load Register), IUIR (Load and Test

Register), LCR (Load Complement Register), INR (Load Negative Register), end

LPR (Load Positive Register). The IR instruction was used in the machine

instruction statement in Figure 9.5; it is the one instruction of these flve

which does not set the CC. The operand field entry, as noted in Section 11,

is written 1ri,r2 and the action of each instruction is summarized in

Figure 14.4 below, Note that rz need not differfran ri.

LR C(Rry) « C(Rrz) not set

LTR C(Rry) « C(Rrz) 0,1,2

LCR C(Rry) « -C(Rrz2) 0,1,2,3

LPR C(Rr1) « |C(Rrz2)] 0,2,3

LNR C(Rr1) « -|C(Rr2)| 0,1

Figure 14,4 Action of Certain General Register Instructions

The meanings of the CC settings are given below.

CC Meaning

0 Result 1s Zero

1 Result is Negative

2 Result is Positive

3 Result has Overflowed

Figure 14.5 Condition Code Settings

14-7

As can be seen from Figure 14.4, the actions of IR and LTR are identical

except that LTR also sets the CC. It 1s notjuncommon to test the contents

of a register by writing an instruction such as LTR 4,4 which has no

effect other then to set the CC, which may then be tested by & BC or BCR

instruction, which will be discussed later, 'For the other three instructions,

the arithmetic operations are those implied by a 32-bit twe's complement ,

representation; thus overflow can occur during execution of LCR or LFR only

if C(Rrz) is the maximum negative number, 2°, and no overflow can occur

during execution of INR because all representable positive values have a

corresponding two's complement representation of thelr negstive values.

The following short instruction sequence illustrates possible uses of the

instructions.

IM 2,3,=F'1,0' o(R2)L, C(R3)=0, CC NgT SETIR 7,3 C(R7)=0, CC N§T SET
ITR 2,2 C(R2)=1, cCC=2
LNR 1,7 C(R1)=0, CC=0
ICR L,2 C (R4) =-1, CC=1

LFR 0,4 (rots cc=2LNR 5,2 C (RS) ==1, CC=1

= Figure 14.6 Bxemple of Use of Certain RR Instructions

Two common errors for beginning programmers are to confuse the IR and L

instructions, and to try to use an "STR" instruction to “etore" one register

into another. By substituting L for LR, one can occasionally generate

ooding errors which are undetected by the Assembler: for example, L 5,8

is 8 valid instruction referring to location 8 in memory, which is probably

not the programmer's Intention. As an aid to remembering the difference

between related instructions of differing types, note that almost ell of the

RR instructions end in the letter "R", and the RX, SI, or RS instructions

end in other letters,

The shiftifig instructions to be described next are more interesting,

dinéé they allow the progrémmer to manipulate data ln tore varied ways that

the instructions described up to now. All of the eight shift instructions
are RS-type; they differ from IM and SIM in the important respect that the

rs register spacificetion digit (see Figure 14.b) is ignored when the

1438

instructions are executed, and thus the operand field entry for shift

instructions 1s written

r1,dz(bz2)

with the rs operand omitted. For all of the shifting instructions, the

number of bit positions to be shifted is determined fromthe low-order six

bits of the effective address; this allows for the specification of shift

amounts between 0 and 63 inclusive. The simplest shifting instructions are

SRL (Shift Right Logical) and SLL (Shift Left Logical); we will examine

these first.

The basic operation in shifting 1s the unit shift, in which each bit

moves to the right or left by one binary digit position; the vacated bit

position on the left or right end is handled differently for logical and

arithmetic shift instructions. For the logical shifts, the vacated bit

position is always set to zero, and any bits shifted off the opposite end

are lost and ignored; for arithmetic shifts this 1s true only at the right

end. Thus, if the contents of R8 are 8765432116 and the instruction

~ SLL 8,1 1s executed, the result in R8 will be OECAB6421¢. Note that we .
could have written SLL 8,1(0) also, because the explicit use of 0 ab

a base register specification.dig3.t causes no base register to be used in

the calculation of an effective address. Again supposing BR8 to contain

8765432116 and R3 to contain B82F3A2B516, execution of the instruction

SRL 8,16(3) would cause the contents of R8 to be shifted right

xx0xxxB516+1016 = 0516 (modulo 401g) bit positions, leaving O43B2A19i1e a6

the result.

For a simple example of the use of the single-register logical shift

instructions, suppose we have a large table of data, where each entry is

gix byte6 long and is aligned on a helfword boundary. Suppose also that the

first three bytes contain character information of some sort, and the

remaining three bytes are to contain a 24-bit two's complement integer value

associated with the characters. We want to load and store the integer value

into and from RY, where it will be used for some purpose in the program.

Now it is clear that L and ST cannot be used, since 1t 1s not possible to

obtain the proper alignment of the operand in memory; similarly, LH and STH

handle only two of the three bytes. A simple solution is to pack the integer

value so that its rightmost eight bits occupy the first byte, and the

14-9

leftmost 16 bit6 occupy the second and third bytes. Suppose BS contains

FFFA620B1g, and R12 contains the address of the first byte of the particular
| 6-byte data entry under consideration. Then the sequence of instructions

below can be used to peck the number into memory. (The letters XXYYZZ are

meant to represent the hex digits of the three characters in the da-ta entiy.)

| sTC¢ 5,3(0,12) C(DATA ENTRY) = XXYYZZ0B--w=

SRL 5,8 Ed = QQFFFAG2STH 5,4(0,12) C(DATA ENTRY) = XXYYZZOBFA62

To show that the desired value can be correctly retrieved, we execute the

inverse instruction sequence.

LH 5,4(0,12) C(R5)=FFFFFAGR

SLL 5,8 (BrrrIC 5,3(0,12) C(R5)=FFFA620B

This example also illustrates a situation where the need for efficient

use of memory apace outweighs the extra time required to access and store

the needed value. If the data entry were expanded to eight bytes, with the

characters ococupying the first three bytes and the associated value in the

| last four, then simple L ‘and ST instruetions could be used, with a considerable

increase in speed (an approximate factor of 3) for thia segment of code.
Such considerations may be quite important for progrems which prosess large
amounts of data -- the example typifies what is called the trade-off’ between

| space and speed. We will see a number of examples where the expenditure of

| memory space may result in increased processing speeds.

We could also have arranged the data so that the three-byte integer

| value occupled the first three bytes of the data entry, and the characters

occupied the last three byte6. The integer value would then be stored in

memory- with 1ts bits in the -proper arithmetic sequence; the instructions

needed to load the value into RS would be as follows, assuming thet the data

entry contained FAGROBXXYYZZ.

| IH 5,0(0,12) ol rmssL 5,8 C(R5)=FFFA 6200
IC 5,2(0, 12) C(R5)=FFFAG20B

It 1s apparent that the particular arrangement of the data in memory may

dependon the programmer's inclinationa, as well @8 on considerations of

ease. of programming or speed of execution.

14-10

The double-length logical shift instructionsSLDL (Shift Left Double

Logical) and SRDL (Shift Right Double Logical) work in exactly the same

way as SLL and SRL except that a pair of registers is shifted. The register

specified by the first operand (Rri) must be an even-numbered register;

otherwise 4a specification exception will occur. The next higher numbered

register 1s the low-order half of the double-length register pair, with bits

shifted out the right end of Rri entering the left end of Rri+l, and vice

versa. (This 1s one of the reasons for showing the general registers in

palrs 1n Figure 3.7.)

To illustrate a trivial application of these two Instructions, suppose

we wish to reverse the order of the halfwords at A and A+2, where A is on

a fullword boundary. Then each of the following code sequences will perform

the desired task.

LH 2,A LH 2,A L 2,A IH 2,A
SRDL 2,16 SRDL 2,16 STH &,A LH 3,A+2
LH 2,A+2 IH 2,A+2 SRL. 2,16 STH 2,A+2
SLDL 2,16 SRDL 2,16 STH 2,A+2 STH 3,A
ST 2,A ST 3,A

© (The third and fourth examples 1llustrate that when the data happen to be

aligned in a particular way, there may be simpler ways to arrive at the

same result.) To take a less trivial example, suppose that in a certain

application we need to access some integer data which has been packed so

that four positive integers fit into a fullword, as shown in Figure 14.7.

9 bits lond 4 bits long 13 bits long 6 bits long

0 8 9 12 13 25 26 31

Figure 14.7 Four Integers Packed in a Fullword

A sequence of instructions which unpacks the integers and places them 1n

the fullwords labeled FIRST, SEC@ND, THIRD, and FPURTH, follows; assume that

R9 contains the address of the data word. The comment statements give the

binary contents of RO and Rl: the bits of the integers are labeled A, B

C, andD; X represents a bit whose value is unknown, and 0 is a 0 bit.

The" . " is simply to indicate the boundary between RO and RL.

14-11

L 09y0(0,9) GET DATA FULLWORD

 AAAAAAAAABBBBCCCCCCCCCCCUCDDDDDD XXXXXXXXXXXXXAXXXXXXXXX XXX AXXXXXX

SRDL Q+6 SHIFT OFF 6 BITS

% QO0O0O00O0AAAAAAAAABBBBCCCCCCCCCCCCC.DDDDDDXXXXXXXXXXXXXXX XX XXX XXX XXX
SRL 1926 MOVE TORIGHY END Of R1

* O0O000OO00OAAAAAAAAABBRBBCCCCCCCCCCCCC.00000000000000000000000000DDDDDD
ST 1, FOURTH STORE FOURTH INTEGER

SRDLGy13 SHIFTO F F13BITS

* 0000000000000000000AAAAAAAAABRBB.CCCCCCCCCLCCLNNO0000000000000000
SRL 1019 MOVEYO RIGHT END OFR1

® (0000000000000000000AAAAAAAAABBBB.0000000000000000000CCCCCCCCCCCCC
ST Le THIRD STORE THIRD INTEGER

SROLOr 4 SHIFT OFF 48BITS
* 00000000000000000000000AAAAAAAAA,.BBBB0000000000000000000CCCCLLLCC

ST 0.FIRST STOREILISTYINTEGER FROMR1

SRL 8.28 POSITION SECOND INTEGER
* 00000000000000000000000AAAAAAAAA,0000000000000000000000000000RRBS8

ST 19SECOND STORE SECOND INTEGER

Another code sequence to do the same task 1s: |

1 2,%F10° GET A 0 CONSTANT FOR CLEARING RO
_ L 1,0(0,9): GET DATA FULLUORD

LR 0+2 CLEAR RO

SLOL 0,9 | . SHIFT 9 BITS INTO RO
SY OsFIRST STORE £ IRST I NTEGER

LR Oe2 CLEAR RO

SLDL 0.4 SHIFT 4 BITSINYORO
ST ~~ 0, SECOND
LR 0:2 CLEAR RQ
SLDL 0,13 SHIFT13B ITS INTORO
ST 0, THIRD STORE THIRD INTEGER

SRL 1,26 REPOSITIONFOURTH INTEGER
ST 1,FOURTH STORE FINAL VALVE

In this example the 8RL 1,26 replaces the IR and BLDL used in the
firet three steps, because [t results in less coda and slightly faster

execution. The Overall raving is quite small, but the choice serves es an

example of a small economy which, if applied in severul key places in a large

program, could result in significant savings,

T h e arithmetic shift instructions are almost identical to the logical

shift instructions, with the differences being in the setting of the CC and
the treatment of the sign bit. The instructions aie SLA (8hift Left

oT 1h-12

Arithmetic), SRA (Shift Right Arithmetic), SIDA (Shift Left Double Arithmetic),

and SRDA (Shift Right Double Arithmetic). On right shifts, the sign bit is

duplicated in the vacated sign position after each unit shift; thus the

arithmetic integrity of the shifted operand 1s maintained. To illustrate

the difference between logical and arithmetic shifts, suppose a right shift

of two places is performed on a register containing FFFFFFFGig:

L 0,=F'-8' L 0,=F'-8'
SRL 0,2 SRA 0,2

After the logical shift, C(RO)=3FFFFFF21e, and after the arithmetic shift,

C(RO)=FFFFFFF21¢. For positive operands, the SRL and SRA instructions will

leave identical results in the register shifted; SRA will set the CC but

SRL will not. The instruction SRDA is similar to SRA except that an even-odd

register pair 1s shifted.

For arithmetic left shifts, the situation can be a little more complicated.

When an operand 1s shifted left there 1s the possibility that one or more

significant bits will be lost. This situation is detected by (1) retaining

the original sign bit, and (2) indicating an overflow if any bit shifted

out of the bit position just to the right of the sign is different from the

sign bit. The following code sequence would produce the results indicated.

L 0,=F'-8' C(RO)=FFFFFFF8, CC UNCHANGED
SRL 0,2 C(RO)=3FFFFFF2, CC UNCHANGED
SIA Ob C(RO)=TFFFFF20, CC SET TO 3,@VERFLAW

Condition Code settings produced by the arithmetic shift instructions are

given in Figure 14.8.

SIA Result=0 | Result<O | Result>0 | Overflow

SRA Result=0 | Result<O | Result>0 | Impossible

SLDA Result=0 | Result<O | Result>0 Overflow

SRDA Result=0 | Result<O | Result>0 Impossible

Figure 14.8 CC Settings after Arithmetic Shifts

14-13

A CC value of3 1s not possible after the SRA and S8RDA Instructions. Note

that because the result tested for CC settings for SLDA and SRDA is a

double-length operand, these instruetions provide a simple means for testing

whether both registers contain zero: both SRDA 0,0 and SLDA 0,0

will set the CC to zero 1f RO and Rl contain zero.

An important characteristic of the arithmetic shift operations Is that

they providead simple means for multiplying by positive and negetive powers

of two. Since the bite of en operand shifted left by a unit shift appear

with a weight (in the sm forming the value of the operand) which has increased

by two, we can see that so long ee no overflow occurs, an arithmetic left

shift of n places corresponds to multiplication by 2". Similarly, for a unit

right shift each bit has a weight which has decreased by two, so that an

arithmetic right shift of n places corresponds to division by 2%, Because
such a "division" can appear to produce fractional results, we must examine

what happens when bit§ are lost; consider the two following code sequences.

L 3,=F'5! C(R3) = 00000005
SRA 3,1 C(R3) = 00000002

L 3,=F'«5' C(R3) = FFFFFFFB = -5
SRA 3,1 C(R3) = FFFFFFFD = -3

As we might have expected, the lost bit in the first case simply results in

the fractional part of 5/2 being lost, so that the result is simply 2. In

the second case the result 1s-3,not -2; this is because the truncation of

the fraction part of a number in the two's complement representation has the

effect of always forcing the result to the next lower integer value.

As a simple example, suppose we wish to truncate the integer in R9 to

the next algebraically lower multiple of 16, unless it is already a multiple

of 16. - Roth of-the following code sequences achieve the desired result.

SRA 9,4 SRL 9,4
SIA 9,4 SLL 9,4

The logical shifts can be used because whatever bit is shifted out of the

sign position by the SRL instruction is put back by SLL. If a CC setting

1s desired to indicate the status of the result, then the first code sequence

must beused; if not, the second is preferable because 'it will operate

slightly faster, because the CPU need not bother with duplicating the sign

bit nor checking for overflow.

14-14

To conclude our discussion of shifting, we will re-examine the problem

of unpacking the data contained in the fullword pictured in Figure 14.7,

on the supposition that the four integers are in signed two's complement

representation rather than the unsigned logical representation assumed

before. The following code segment stores the four signed integers as

required.

L 0,0(0,9) GET DATA WCRD

SRDA 0.6 SHIFT6 BITSINTCR1

SRA 1,26 EXTEND TO RIGHT

ST 1,FJURTH STORE FULLWORD RESULT

SRDA 0,13 SHIFT OFF 13MOREBITS

SRA 10190 SHIFT WITH SIGN EXTENSION

ST 1, THIRD STORE SIGNED RESULT
SRDAOs4 SHIFT OFF LAST 4BITS

ST Oy FIRST STORE CORRECTFIRST INTEGER

SRA 1,28 EXTEND SECOND INTEGER

ST 1,SECOND STORE FINAL RESULT

Because the number of positions to be shifted by any shift instruction

) is determined from an effective address, the number of shifts can be

specified at execution time. For example, SLL 9,0(%4) will shift R9

by an amount determined by the iightmost six bits of the contents of Rk.

As was the case for the use of relocatable symbols which named areas of

memory, the Assembler will compute displacements and assign bases for

absolute expressions. If we write the sequence of statements given below,

the instructions would be assembled as indicated in the right-hand column.

USING 6,2
A EQU 10

SLL 9,12 . 89902006
SLL 9,12(0) 8990000C
SLL 9,A 89902004

Thus we can vary the number of shifts at execution by placing appropriate

values in R2. We will find that there are relatively few occasions where

an absolute expression will be used as the first expression in a USING

instruction.

14-15

EEEEE—E—B——.

B ha tLe
.. . EE +e

15. CONDITIONAL BRANCHING

In this section we will discuss two branch instructions whose use 1s

fundamental 1n almost all. programs. The ability to choose alternative

courses of action in a program depending on computed results is one of the

most dlstinetive feature6 of & computer, and we will make use of these

instructions in most of the remaining program examples. We will examine the

conditional branch instructions before continuing our treatment of general

register operations, since we will then be able to give more extensive and

realistic sample programs to illustrate the points involved.

Because the Condition Code is contained in a two-bit field of the FSW,

“the possible values which may be assumed by those two bits are 0, 1, 2, and

3. To test for one of these values, either BC or BCR is used; both are

called “Branch on Condition" instructions, with BC being of type RX and BCR

being of type RR.

If the con&ion for branching is not met (and how this is determined
will be discussed shortly) no action is taken and execution simply proceeds

to the next sequential instruction following the BC or BCR.

If the branching condition is met, the branch address must be determined.

For the BC instruction, the branch address is the same as the effective

address computed as usual from the base, index, and displacement fields of

the instruction; for the BCR instruction, the branch address 1s given by

the rightmost 24 bits of the general register specified by the rz digit of

the instruction vnless rz 1s zero, in which case no branch ever occurs. To

complete the execution of the branch instruction, the IA portion of the PSW

1s replaced by the branch address. The next instruction to be fetched will

therefore come from the location specified by the branch address. Branch

instructions are also called "jump" and "transfer" instructions, ip the sense

that a jump is made, or control is transferred, to the branch address.

15-1

Whether the bremeh condition is met or not is detemined by examining
the bits of the register speeification digit ry. Bucause this igit does

got refer to Rri, but is treated simply as a bit pattern (cslled= mask), we
will rewrite the operand field entries as m;,ds(Xe,b2) emd my,rz for
the RX and RR cases respectively. Thus we can write BC 7,4(8,2) aud

BCR 9,4 in which the mask fields are 0Olllz and 100lz respectively. At

execution time, match 19 made between the 1 bite of the mask and the value

of the CC, as indicated in Figure 15.1

Instruction Bit | Mesk Bit Value | CC Value Matched |
8 8 0

9 L 1

10 2 2

11 | 1 3 |

wn [07 {m | ra

value of bit: [BIWJB[1]

| | Ly» tests for CC=3
| tests for CC=2

| -» tests for CC=1tests for CC=0

Figure 15.1 Mask Bite and Corresponding CC Values

If the CC has a valuevhichmatches a 1 bit in the mesk field, the bremehing

condition is met; if the CC bas a value which matches a 0 bit in the wsuk,

the branching condition is not met, and no branch oeeurs. Thus in tie

exsmples given above, theBC instruction would branch unless the CC hod value

0, and the BCR would branchifthe CC had value 0 or 3. Further exauples

are given below.

15-2

1) Branch to X if C(R12)=0.

LTR 12,12 or SRA 12,0
BC 8,Xx BC 8,X

2) Branch to X if C(RO)#0.

LTR 0,0 or SLA 0,0
BC 6,X BC 7,X

(Note that the CC cannot have value 3 after LTR.) In both of the above examples

the use of LTR 1s shorter and faster.

3) Multiply C(R5) by 4 and branch to X if the result does not overflow.

STA 5,2

BC 14x

4) Branch to the address contained in R14.

BCR 15,14 (preferred)

or

BC 15,0(0,14%) (slower)

- or

BC 15,0(14) (slowest)

Since the CC must have a value which matches a bit in the mask, the branch

alwaysodeurs; this is called an unconditional branch.

5YPlace -G(R2) in R8 and branch to X if the result is negatives&

ICR 8,2

BC 5,X

It 1s not sufficient to use a mask of 4 since the result will also be

negative if overflow occurs.

6) 1A positive nonzero fullword integer at N is to be shifted right

a8 many places as necessary to insure that its rightmost bit 1s nonzero.

a) Saift left into R4 until R5 has been vacated:

L 5,N GET INTEGER

L L =F'0’ CLEAR Rh
SHIFT SLDL 4,1 SHIFT LEFT

LTR DD TEST RS

BC 7, SHIFT BRANCH IF N@T ZERJ
ST hon STYRE RESULT

15-3

- b) 8hift right, testing Most" bits:
| L = LN GET INTEGER :
oo SHIM? SRDL 4,1 BHIFT RIGHT

LTR 5,5 TEST SIGN $F BS
BC 10, SHIFT ~~ BRANCH IF NgT -
SIDI 4,1 MPVE BIT BACK

| ST 4,N ST@RE RESULT

Note that this latter example would work for negative integers also if

arithmetic shift instructions were used.

This last pair of examples illustrates aloop —— a sequence of instruetions

which 1srepeated as meny times as is necessary to obtain a desired gendition.

Loops are such a common aspect of progrsmming that special branch instructions

3 | are provided in System/360 which greatly faeilitate the coding of loops
without either examining or testing the CC; these will be treated in sums

detail later.

We noted in example 4 above that a mesk with all 1 bits provides wn

unconditional branch (remember that we could have written BCR X'p y 14

~~ and BCR B'1111', 1k also), since the branch condition must always bs
| met. There are occasion&when it is useful to be able to execute an instruetion

with azero mask field. Thus BC 0,X and BCR 0, any as well

| as BCR any,0 have no effect; they are sometimes called "no-operstion"

instructions, and the Assembler actually provides mnemonics for their

specification. The instructions NgP s and NPR are treated
| by the Assembler as being the seme as BC O;s and BCR O,r

| | respectively.
An important use of "no-operation” instructions is in obtaining a

| desired boundary aligmment for a particular instruction. For example, we

| oo may wish that an imstruction such as BAIR 14,15 be followed by an
aligned fullword constant such as an address constent; exémples of just this

| sort of usage will be illustrated in the treatment of subroutines. Since

| BAIR 1s an RR instruction, we must simply insure that 1ts address lies

between two fullword boundaries. In a small program it 1s easy for the

; programmer to determine the location of the BAIR simply by counting, and if

| | it falls on 8 fullword boundary he can insert a N@ER 0 : instruction just’

! before 1t. However, if the program is large, or if any changes must be made

15.4

in the code preceding the BAIR, 1t becomes difficult to know whether the

N@PR should be used or not.
To relieve the programmer of this worry, the Assembler provides an

instruction CN@P (Conditionsi No-Operation) which ensures the desired alignment.

The operand field entry of =a CNP instruction is written b,w where

b and w are absolute expressions; b may have values 0, 2, 4 and 6, and w may

have values ¥ and 8. No name field entry is permitted. The second operand,

Ww, specifies the boundary type relative to which alignment is to be performed,

and b specifies the desired byte relative to that boundary, as described in

Figure 15.2. The Assembler inseris from 0 to 3 NPPR's to force the LC to

the desired boundary.

—

Alignment Performed

CN@P o,k4 Beginning of a fullword

CNP 2,4 Middle of a fullword

CNPP 0,8 Beginning of a doubleword

CNPP 2,8 Second half'word of a doubleword

CNP 4,8 Middle of a doubleword

CN@P 6,8 Fourth halfword of a doubleword

Figure 15.2 CNgP Alignments

To achieve the alignment desired in the current example, we would write

CNP 2,k ALIGN T¢ MIDDLE $F W@RD

BALR 14,15 TW)-BYTE INSTRUCTION

DC A (ANYTHING) Ng INTERVENING BYTES

Note that we could not write

DS OH

BALR 14,15

DC A (ANYTHING)

because the alignment to a half'word boundary forced by the DS 1s automatically

performed by the Assembler for instructions, so that the BALR could still

15-5

fall on a fullword boundary; the Assembler would then fill the two bytes

between the BAIR and the address constant with zeros (remember that A-type

constants have an implied fullword alignment). Similarly, we could not

write

BALR 14,15

DS OF

DC A(ANYTHING)

since the BAIR could again fall on a fullword boundary, leaving two bytes

between 1t and the constent which would be skipped by the Assembler; the

contents of the skipped bytes at execution time may be arbitrary, since

the Supervisor does not clear the area into which a program is about to be

loaded,

Before continuing with our discussion of arithmetic instructions, one

important feature of the use of branch instructions should be noted. Due

to a peculiarity in the design of System/360, invalid branch addresses

(namely odd ones) are not detected at the time that it is found that the

branching condition 1s met, but only when the address 1s presented, as the

IA portion of the PSW, at the next instruction fetch cycle. The error is

duly detected and a specification interruption results, but the IA now

contains the invalid address rather than the address of the instruction

which attempted the 1llegal branch. This means that there is no direct way

to tell where such an error was caused, and therefore that such errors in a

program are correspondingly more difficult to detect. The programmer must

exercise caution 1n specifying branch addresses in order to avoid this

particular error.

15-6

0 1 2 3 4 5 6 7 Co 9 A 8 C 0 £ F
| 9

00s e 1 2 3 4 5 6 7 : 25 10 11 12 13 14 15
 Ol% 16 17 18 19 20 21 22 23 24 26 27 28 29 30 31

: 023% 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
03* 48 49 50 51 vy. 53 54 55 56 57 58 s9 60 61 62 63

C4* 64 65 66 67 6% 69 70 71 72 73 74 75 76 77 78 79
05% 80 81 82 83 84 ab ab 87 88 89 90 91 92 93 94 9s
06% 96 91 98 99 100 101 102 103 104 105 106 107 108 109 110 111

07% 112 113 114 115 116 117 it8 119 120 121 122 123 124 125 126 127

08x 128 128 130 131 132 133 134 135 136 137 138 139 140 141 142 143
09% 144 145 144 147 148 149 150 151 152 153 154 155 156 157 158 159

~~ OA% 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
0B% 176 177 178 179 180 181 A82 183 184 185 186 187 188 189 190 191

0C* 192 193 194 195 196 197 198 199 ° 200 201 202 203 204 205 206 207

OD#* 20% 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
GE*> 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
OF ¥ 240 241 242 243 244 245 246 2477 240 249 250 251 252 253 254 255

> 10% 256 257 250 259 260 261 262 263 264 265 266 267 268 269 270 271
= 11% 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

12% 280 28S 290 291 292 293 294 295 296 297 298 ' 299 300 301 302 303

13% 304 305 306 307 308 309 3io 31 1 312 313 314 315 316 317 318 319

14% 320 321 322 323 324 325 326 327 320 329 330 331 332 333 334 33%
15% 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
16% 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367

17% 368 369 37¢C 371 372 373 374 375 376 377 378 379 380 381 382 383

18> 384 38'5 306 387 388 389 350 391 392 393 394 395 396 397 398 399 |
19% 400 401 402 403 404 405 406 407 408 409 410 err 422 413 414 41%
1A% 416 417 418 419 420 421 422 423 424 425 426 527 428 429 430 431

18% 432 433 | 434 435 436 437 438 439 440 44-1 842 443 444 445 446 AR)

1C* 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 $63
10% 464 465 466 467 460 469 470 47% 472 473 474 475 476 477 478 &%79

1E% 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 G99
1F% 496 497 49§ 499 500 501 502 S03 504 SG5 506 507 508 S09 510 511

C 1 2 3 4 3 o} 7 8 9 A 5 C C E F

20% -) ¥ 513 314 515 516 517 518 519 520 521 522 523 524 525 526 527 .
21% 528 529 530 531 532 533 534 535 536 53t 538 539 540 541 342 543 \
22% 544 545 546 5477 548 549 550 551 552 553 554 555 556 557 558 559
23% $6C 562 562 563 564 565 566 567 568 569 570 571 572 573 574 575

24% $576 577 518 579 580 581 582 583 584 585 586 587 S88 589 590 591
45% 592 593 594 593 596 597 598 599 600 601 602 603 604 605 606 607

26% 608 609 610 611 612 613 6l4 615 616 617 618 619 620 621 022 623
27% 624 €25 626 627 628 629 630 631 632 633 634 635 636 637 038 639

28% €4C 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
29% 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
ZA% 612 673 674 675 676 677 678 679 680 681 682 683 684 685 686 6R7

<B% 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 to3

rin 104 705 706 1017 708 709 710 711 712 713 T14 715 716 717 718 719
20% 12C 721 722 723 124 725 726 727 728 729 730 731 732 733 134 7 3 3

2E¥ 736 t37 730 739 740 141 742 743 744 t45 746 147 748 749 750 751

ZF% 752 53 t54 155 156 757 758 759 760 161 762 763 764 765 766 767

= 30% 768 169 176 771 772 773 774 775 776 777 778 779 780 781 782 703

ny le 184 185 186 71877 788 189 790 791 792 793 794 795 796 797 798 799
32¢ 80C 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815

33 81é 817 818 819 820 821 822 823 824 825 826 82t 828 829 830 831

34% 832 833 834 835 836 837 38 338 839 840 641 842 843 844 845 846 847
35% 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863

36% 864 865 866 807 868 869 870 871 872 873 874 8715 a’b6 877 878 879
31% 88C 881 882 883 884 885 886 887 888 889 890 891 892 893 a9%4 895

38% 8956 897 898 899 900 901 902 903 904 905 906 907 908 9C9 910 911
39% 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927

3A% 928 52S 930 931 932 933 934 935 936 937 938 939 940 941 942 943

38% 944 $45. 946 947 948 949 950 951 952 953 954 955 956 957 958 959

3C» S6C 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975

30% S7¢€ S717 97s 979 980 981 982 983 984 385 986 987 988 989 990 991
3E* 992 993 994 995 996 997 99¢& 999 1000 3001 1002 1003 1004 1085 1006 1007
3F* 1008 1€09 101C 1011 1012 1313 i0l4 19015 1016 1017 tol8 1019 1020 162i i022 1023

o 1 2 3 4 5 6 7 8 9 A 5 C D E F

40% 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

41% 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
42% 1056 1057 1058 1059 1060 1061 1062 1063 064 1065 1046 1067 1068 1069 1070 1071
43% [072 1073 '1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1007

44% 1088 108% 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103

45% 1104 1105 1106 1107 1108 1109 110 11121 1112 1113 1114 1115 1116 1i17? 1118 1119

46% 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

47% 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

48% 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
49% 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 11719 1180 1181 1182 1183

4A* 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199

4B%* 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

4C* 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231

40*% 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1240 1247

4E* 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 12598 1259 1260 1261 1262 1263

4F¥ 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

> 50% 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1263 1294 1295
WW 51% 1296 1297 1298 1299 1300 130i 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

52% 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
53% 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

54% 1344 1345 [346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359

55%« [360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

56% 1376 1371 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391

57% 1392 [393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

58% 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
59% 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439

5A% 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455

5B% 1456 1457. 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5C% 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
50% 1488 14851490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

5e* 15%04 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519

SF% 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

C 1 2 3 4 5 6 7 8 9 A 5 C 0 = =

60% 1536 1537 1538 1539 1540 1541 1542 1543" 1544 1545 1546 1547 1548 1549 1550 1551

61% 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
62% [568 1369 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583

63% 1584 158% 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

64% 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 16 13 1614 1618
65% 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631

66% 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

67% 1646 1649 165C 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

68% 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1671 1678 1679

69% 1680 1681 1682 1683 1684 1685 1686 1687 1638 1689 1690 1691 1692 1693 1694 1695

EA¥* 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711

6B* 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

6C* 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743

60% 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759

6E* 1760 1761 1762 1764 1764 176% 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775

6F% 1776 1777 1778 1779 1780 178i 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

= 70% 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807

&~ Tl* 1800 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1.821 1822 1823
72% 1824 1825 1026 1827 1828 1829 1830 1831 1832 1833 1834 1835 1036 1837 1838 1839

13% 1840 1841 1842 1843 1844 1d45 1846 1047 1848 1849 1850 1851 1852 1853 1854 1855

74% 1856 1657 1058 1859 1860 1861 A862 1863 1864 1865 1866 1867 1868 1869 1870 1871
5%¢ 1872 1873 1874 1875 1876 i877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887

76% 1888 1889 2890 1891 1892 1693 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
77% 19004 105 1906 1907 1908 1909 1910 1911 1912 1913 1914 191s 1916 1917 1918 1919

78% 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
79% 193€ 1637 1938 1939 1940 194%F 1942 1943 1944 1945 1946 1947 1948 1194S 1950 1951
TA% 1952 1953 1954 1655 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967

78% 968 1969. 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

7C+ 1984 1685 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
iD% 2000 2001 2002 2003 2004 200% 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

TE* 2016 2017 2018 2019 2020 202i 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031

Fs 2032 2033 2034 2035 2036 20317 20386 2039 2040 2041 2042 20473 2044 2045 2046 2047

G 1 2 3 4 5 6 I 8 9 A B C D E F

80% 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063

81% 2064 2C65 2066 2067 2068 2069 207G 207F 2072 2073 2074 2075 2076 2071t 2078 2079
82% 2080 2C81 2082 2083 2084 2085 2086 2087 2088 208% 2090 2091 2092 2093 2094 2095

83% 2096 2€97 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 21€9 2110 2111

84% 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127

85% 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143

86% 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159

8% 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

88% 2176 2177 2118 2179 2180 218L 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191

89% 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 22C5 2206 2207

8A* 2208 2205S 2210 2211 2212 2213 2214 2215 2216 22171 2218 2219 2220 2221 2222 2223

8B% 2224 2225 2226 2227 2228 2229 2230 2231. 2232 2233 2234 2235 2236 2237 2238 2239

8C* 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
80% 225€ 2251 2258 2259 2260 2261 2202 2263 2264 2265 2266 2267 22683 2269 2270 2271

BE* 2272 2213 2214 2215 2276 2271 2278 22719 2280 2281 2282 2283 2284 2285 2286 2287

Fx 2288 228% 2290 2291 2292 42293 2294 2285 2296 2291 2298 2299 2300 2301 2302 2303

2 90% 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319

WW 91% 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
S2% 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351

93% 2352 2353 2354 2355 2356 23571 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

S4% 2368 2369 2340 2371 2312 2373 234 2375 2376 23717 2378 2379 2380 2381 2382 2383
S5% 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2394 2397 2398 2399

96% 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415

92% 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

S8% 2432 2433 2434 2435 2436 24371 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
99% 2448 24649 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
SGA% 2464 2465 2466 24671 2468 2469 2470 2471 2472 2413 2474 2475 2476 2477 2478 24179

98% 2480 2481 2482 2483 2484 42485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

9C* 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 25C9 2510 2511
SD* 251lc¢ 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527

SE* 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
gF¥ 2544 2545 2546 25471 2548 2549 2550 2551 2552 2553 2554 2555 2556. 2557 2558 2559

G 1 2 3 4 5 6 T 8 9 A B C D E F

AO* 2560 2561 2562 2563 2564 2565 2566256T 2568 2569 2570 2571 2572 2573 2574 2575
Al* 2516 2577 2570 2579 2580 2581 2582 2583 2584 2585 2586 2587 250% 2589 2590 2591

A2%2 592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607

A3% 2508 2609 2610 2611 2612 2613 261426152616 2617 261% 2619 2620 2621 2622 2623

A4%2 6 2 4 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639

AS5%2 56 44 2641 2642 2643 2644 2645 2646 2647 264% 2649 2650 2651 2652 2653 2654 2655

A6%2 6 56 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671

AT%2 6 72 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

AB%* 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 269% 2699 2700 2701 2702 2703

AS%2 7 04 2705 2706 2107 2708 2709 2710 2711 2712 2713 2714 2715 2716 2111 2718 2719

AA* 272C 2121 27122 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2135

AB%*2 7 36 27317 2738 2739 2740 <&¥41 2742 2743 27144 2745 2746 2747 2748 2749 2750 2751

AC* 2752 27153 2754 2755 2756 2757 2758 2759 2160 2761 2762 21763 2764 2765 2766 2767
AD® 2768 2776S 27170 2771 2772 2713 2714 271715 2776 2777 2778 27719 2780 2781 2782 2183

AEX 2784 2785 2786 2187 2788 2789 2790 2791 2792 2793 2794 2795 2796 27ST 2798 2799

AF¥* 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

> BO* 2816 2817 2818 2819 2820 2821 2822 2823 2824 2025 2826 2827 282% 2829 2830 2831
ON Bl¥ 2832 2833 2834 2835 2836 2837 28382 8 3 92840 2841 2842 2843 2844 2845 2046 2047

B2* 234% 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2063
B3* 2864 2865 2866 2867 286% 2869 2870 2871 2872 2873 28T4 2875 2876 2877 207% 2879

B4% 23380 2881 2882 2883 2884 2885 2806 2887 2888 2889 2890 2891 2892 2893 2094 2095
BS5% 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911

B6% 29012 2913 2914 2915 2916 2917 £918 2919 2920 2921 2922 2923 2924 2925 2926 2927

BT7% 2028 2929 2930 2931 2932 2933 2934 2935 2936 2937 2930 2939 2940 2941 2942 2943

B8* 2044 2$45 2946 2947 294% 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B9% 296C 2S61 2962 2963 2964 2965 2966 296T 2968 2969 2970 2971 2972 2913 2974 2975

BA* 2976 2ST7T 2978 2979 2980 2981 2982 2983 2984 2985 2906 ‘2907 2988 2989 2990 2991

BB* 29002 2993. 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

8C* 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023

BD%* 3024 3025 3026 3027 302% 3029 3030 3031 3032 3033 3034 3035 3036 3037 13038 3039

BE* 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 305s

BF* 3056 3037 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

0 1 2 3 4 5 6 7 8 9 A ‘8 c 0 £ F

co* 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
Cl* 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103

C2% 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119

C3* 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

C4% 3134 3137 3138 3139 3140 3141 3142 3143 '3144 3145 3146 3147 3148 3149 3150 3151

C5% 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167

C6% 13168 3149 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183

C7+% 3184 3185 3186 3187 3188 3169 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

C8% 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215

C9% 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231

CA* 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247

CB* 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

cc* 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279

CD* 3280 3281 3282 3283 3284 3235 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295

CE* 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311

CF* 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

>

 DO%# 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
Dl* 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359

D2* 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370, 3371 3372 3373 3374 3375
D3*+ 3376 3377 3378 3379 3380 338lL 3382 3383 33 84 3385 3386 3387 3388 3389 3390 3391

D4* 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D5% 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423

D6% 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439

D7* 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

DB* 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
D9% 3472 3473 3474 3415 3476 34771 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487

DA* 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 - 3499 3500 3501 3502 3503

CB* 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3510

cC* 3520 3521 3522 3523 3524 3525 3526 352.7 3528 3529 3530 3531 '3532 3533 3534 3535

DD* 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DE* 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3547
CF* 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3%80 3581 3582 3582

0 1 2 3 4 5 6 7 8 9 A B c 0 E F

EO* 3534 3585 3584 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599

El* 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E2% 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631

E3% 3632 3633, 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

E4* 3643 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
ES* 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679

E6% 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695

E7* 3696 3697 3693 3699 3700 3706 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

E8+ 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727

E9% 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743

EA® 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759

EB* 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 37174 3775

EC* 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791

ED* 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807

EE®* 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823

EF* 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

© FO* 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 A
* Fl® 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 ;

F2%x 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887

F3® 3388 3839 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903

F4* 3904 3505 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F5% 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935

F6% 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951

F7* 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

F8* 3968 3969 3979 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F9* 3934 385 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999

FA* 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 40 10 “40ll 4012 4013 4014 4015

FB* 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

FC® 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FOS 4048 4C49 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063

FE* 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079

FF* 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 40S3 4094 4095

16. FIXED-POINT ARITHMETIC INSTRUCTIONS

In this section we will discuss the instructions which perform fixed-

point two's complement arithmetic 1n the general purpose registers; the

relevant instructions are tabulated in Figure 16.1.

AR RR Add Register
A RX Add

ALR RR Add Logical Register

AL RX Add Logical

AH Rx Add Half'word

SR RR Subtract Register

CR RR Compare Register

S Rx Subtract

C Rx Compare

SIR RR Subtract. Logical Register
CLR RR Compare Logical Register .

SL RX Subtract Logical
CL Rx Compare Logical

SH RX Subtract Halfword

CH RX - Compare Halfword

MR RR Multiply Register
M Rx Multiply

MH RX Multiply Halfword

" DR RR Divide Register
D RX Divide

Figurel6.1 Fixed-Point Arithmetic Instructions

16-1

There are severel instructions missing from the table which one might

expect to find: there are no logical bhalfwerd instructions, there is no

"Divide Helfword", and there are no instructions for performing multiplication

and division with logical operands. It is possible, however, to compute

logical products and quotients using sveilsble instructions.

The operations of the add and subtract instructiens are straightforward

| and are summarized in Figure 16.2 below. Remember that the logical add and

subtract produce the seme result as the arithmetic add and subtract instructions

except that the CC i8 set differently. For the halfword operations, we may

assume (as 1n the discussion of IH in Section 14) that the second operand 1s

brought from memory to the MIR, extended to a fullword, end then used for the
indicated operation. The notation "M2" means the fullwerd operand at the
effective memory address in the RX instructions, and "HW2" means the same

for halfword operands.

)
SR C(Rry) « C(Rri)-C(Rrz 0: Result is zero
A C(Rry) « C(Rry)+C(FW2) 1: Result is< 0
S C(Rry) « C(Rry)-C(Wz2) 2: Result is> 0
AH C(Rry) « C(Rry)+C(HW2) 3: Overflow
SH! C(Rry) « C(Rry)-C(HW2)

SLR C(Rry1) « C(Rry)-C(Rr2) 1: Nonzero result, no carry
AL C(Rry) « C(Rry)+C(FW2) 2: Zero result, carry
SL C(Rry) « C(Rri)-C(FW2) 3: Nonzero result, carry

Figure 16.2 Fixed-Point Add and Subtract Instructions

The CC settings in the rightmost column apply to all the instructions 1n the

game part of the table. It is useful to note several aspects of the CC

settings for the logical instructions, which depend on whether a carry occurs

out of the leftmost position of Rri, and whether the resultis zero. By

referring to the examples in Section T, we can see that

(1) a CC setting of zero 1s possible for AL and AIR only if both

the first and second operands are zero.

16-2

or

(2) it is not possible to have a CC setting of zero for SL and SLR,

because after the one's complement of the second operand and a

low-order 1 bit are added to the first operand, a carry must have

occurred 1f the result 1s zero.

Suppose we wish to store at ANS the sum of C(X) and C(Y), unless the

result is negative, 1n which case we must also add C(Z) and subtract 2:

the instruction sequence

L 5 ¢ X

A 5,Y C(RS) = CX) + C(Y)
BC 11,ST BRANCH If NOT NEGATIVE

A Sel ADDC(Z)
SH Se=H!2? SUBTRACT2

ST ST 59ANS STORE- ANSWER

will calculate the required quantity. Note that ST 1s used both as a symbol

and as an instruction mnemonic; no confusion is possible, since the Assembler

identifies the instruction only by 1ts appearance as an operation field entry.

Suppose we want to compute the sum of the first n odd numbers, where

the positive integer n ds stored as a halfword integer at N;. consider the

following instruction sequence.

LH 34N GET N

LM 6999=F'0432491,1"° LOADROH6-RGW | THOs291l0l
ADDUPA R 698 ADD ODD INTEGER TO SUM IN R6

AR Be 7 NEXT ODD INTEGER IN R8

SR 3,9 DECREASE N BY1

BC 7,ADDUP BRANCH N-I TIMES

ST 69 SUM STORE RESULT

One feature of this example 1s that all calculations inside the loop (third

through sixth instructions) are done using RR instructions; this technique

1s occasionally useful 1n programs where processing speed 1s important, and

enough registers are available to allow all operands to be carried there

instead of in memory. The example is of course mathematically nonsensical

because we have expended all this effort to calculate n® where a multiply
instruction would have sufficed.

To give another simple example of the use of some of these instructions,

suppose we wish to canpute NEWST@CK fram the formula

NEWST@CK = @LDSTPCK + RECEIPTS - SALES

16:

where all quantities are fullword integers small enough to guarantee that oo

no overflows occur. Both sets of statements below compute the desired

result.

L 230LDSTOCK L 2 30LDSTOCK
A 2yRECEIPTS AL 2yRECEIPTS
S 29 SALES SL 2,SALES
ST 2 NEWSTOCK ST 2 yNEWSTOCK

The compare instructions are useful in testing the relative magnitudes

of two operands; the results of the comparison are indicated in the CC

| setting as shown in Figure 16.3.

| | Operations CC Settings
CR

| C 0: Operand 1 = Operand 2
| CH 1: Operand 1 < Operand 2

CLR 2: Operand 1 2 Operand 2
C L

Figure 16.3 cC Settings for Compare Instructions

| The CC cannot be set to 3 as a result of a compare instruction. It can be
seen for the CR, C, and CH instructions that the CC setting 1s the same as

would result from performing SR, S, and SH instructions with the same

operands, assuming that no overflow occurs. In fact, this 1s how the

| comparison 1s done by the CPU -- a subtraction 1s performed internally and
the CC 1s set to reflect the sign and the magnitude of the difference, which

would have been placed back in Rry for the subtract instructions. Further

analysis of the original operands is required in the CPU if the internal

result overflows. The logical-comparisons do not give the same results as

arithmetic comparisons, since numbers in the logical representation are

| always considered to be positive. The following instruction sequence may
help to illustrate the differences.

16-4

LM 09y39=F*'1,09-19-214748364717"
CR l.¢ 3 cc = 2
CLR 1.3 CC = 1

CR Oy2 cc = 2

CLR Oy2 CC = 1

CR 2¢3 cc = 2

CLR 293 CC = 2

LPR 443 ClR4) = X'T7FFFFFFF'yCC = 2

CR 443 cc = 2

CLR 443 cc = 1

C Oy=F'1" cc = 0

CL 2y=F1+2°0 cc = 2
CH l1,=H!S"? CC = 1
CH ly=F1t51 cc = 0

The last of the statements 1n the above example 1s a programming error that

occasionally occurs; note that the Assembler gives no indication of the

conflicting data types implied by the instruction and the operand.

As an example of the use of a compare instruction, let us recalculate

the sum of the first n odd integers using a different scheme than before.

_ L H 49=H']1? C{R4) - ACCUMULATED SUM
LR Tv4 C(R7) = COUNT OF ADDITIONS

TEST CH 79N COMPARE COUNT TO C(N)

8C 8, STORE BRANCH IF N TERMS ADDED

LR Os7 COMPUTE NEXT ODD INTEGER

AR 040 COUNT + COUNT

AH Oy=H']? ADDl9 GIVING NEXT ODD TERM

AR 440 ADD TERM TO suUM
AH Te=H'1? INCREMENT COUNTBY 1

8C 15, TEST BRANCHT OSEE IF FINISHED

STORE ST 44 SUM STORE RESULT

This example is rather cumbersome, but yields the desired result; we will

see that there are many ways to perform-the same computation with varying

degrees of elegance. It 1s worth noting that programming is often as much

an art as a science, since many different programs of varying effectiveness

can be written to achieve a given objective; an important part of learning

to program 1s understanding where efficiency can be increased.

As another example, suppose we wish to force the value of the integer

in R6 to be a multiple of 8, in such a way that if it is not already so,

the next higher multiple of 8will be chosen. This would be required of the

16-5

—

| relative origin assigned to a program: the Assembler chooses the next

higher multiple of 8if the programmer assigns a relative origin which is

not already a multiple of 8. Consider the following segment of code.

SR T, 7 CLEAR R7
| SRDL 6,3 SHIFT 3 BITS INTO R7

LTR 1,7 SEE IF THE BITS ARE ZERO
BC 8,A BRANCH IF YES
A 6,=F*'1" IF NOT, ADD 1 TO R6

A SLL 6,3 MULTIPLY BY 8

First, note that we have cleared RT by subtracting it from itself -- this

| 1s the fastest and simplest way to do so and will be used generally except

in situations where the condition code must not be set. In such circum-

| stances, an instruction such as L T,=F'O! might be used, though

there are other ways which are sometimes more efficient. Second, we can

use a shift instruction to divide by 8, and since a double-length shift

| 1s used, the "remainder" bits shifted into the three high-order bit

positions of R7 are not lost, which would be the case of SRL 6,3 had

| been used. The BC instruction branches only if the remainder bits are all

| ~ zero —— that is, if the number in R6 was already a multiple of 8. The same

| "calculation can be done more simply:

| A T,=F'T" FPRCE CARRY IF PPSSIBIE
| SRL 7,3 DRYP @FF 3 BITS

SIL 6,3 MULTIPLY BY 8

where 1n this case the presence of any 1 bit in the three rightmost bit

| positions of the original number cause a carry into the 2° bit position
(that 1s, bit 28 of R6); the result is the same as before except for the

final CC setting.

; To 1llustrate the use of logical arithmetic, suppose we are required to

| perform additions and subtractions on 8-byte integers: double-length integers

| too large to fit in a single fullword. Such operations are infrequently

required, but an examination of the methods used provides insight into the

| properties of some of the pertinent instructions. Double-length integers

will occasionally be encountered as products and dividends. Consider first

the problem of finding the two's complement of such a number. Since we

know that the two's complement can be found by adding a low-order 1 bit to

16-6

the one's complement of the number, we might proceed as in the following

example, where the number to be complemented'is stored beginning at ARG.

By C(RO,Rl) we mean the contents of the double-length register formed by

RO and Rl.

L Oe=Ft-—-1"

LR 1,0 C(RO,R1) ISALL 1BITS

S 04 ARG 1*'S COMPLEMENT OF HIGH-ORDER PART

S 1,ARG+4 1*'S COMPLEMENT OF LOW-ORDER PART

AL ly=F'1" ADD LOW-ORDER 1 BIT

BC 12,4NC BRANCH IF NO CARRY
A Oy=F'1? ADD CARRY BIT TO RO

NC s TM O0y1lyARG STORE” COMPLEMENTED RESULT

DS 0D ALIGN ON DOUBLEWORD BOUNDARY

ARG cc FLB8'12345617876543211"

The AL instruction in the fifth statement must be used rather than A

because the high-order bit of Rl is not a sign bit, but an arithmetically

significant bit with weight 23; if a carry out'of Rl occurs, it must be

detected and propagated into the low-order bit of RO, since there 1s no

——provision for having this done automatically. The same calculation 1s

performed by the following code sequence, but in a less direct and obvious

way.

LM Os 1yARG GET DOUBLE-LENGTH OPERAND

LCR CyO0 COMPLEMENTHIGH-CRDERWORD
LCR 1,1 COMPLEMENT LOW-CRDER WORD

BC 84 X JUMP IFC(R1)= o

S NDy=F1*1"? SUBTRACT]1 FROM RO
X STM Oy19ARG STGRE RESULT

DS on ALIGN

ARG ~~ DC FLB*'G8B76543456789"

In this case, we use the first LCR instruction to form the two's complement

of C(RO) immediately; that 1s, we have already added a low-order 1 bit to

the one's complement of C(RO). The following LCR complementsthe low-order

32 bits and sets the CC. Now if C(R1) had been zero, its one's complement

would be all 1 bits, and adding a low-order 1 bit would cause a carry out

the left end of Rl. For any other bit pattern, no such carry would have

16-7

occurred, and we must correct C(RO) by subtracting 'off the low-order bit

added during the execution of the first ICR.

At this point it should be evident what we must do to add two double-

length integers; we will simply write a code sequence without further

explanation.

LM Osl,A GET A

AL 1,B+4 ADD LCW ORDER PARTS

BC 12,NC BRANCHIFNO CARRY

A Qe=F"'1"? PRCPAGATECARRYRBIT TO HIGH-ORDER PART
NC A 0,3 AD DHIGH-0ORDERPARTS

s TM Os1,C STCRE DOUBLE-LENGTHSUM

C DS 0 RESERVEB BYTES, ALIGNED

B DC FLB1222333444555"

A ‘DC FLB8'BBBTTT666555!

Subtraction 1s performed in the same way, except that the condition code

setting after the first subtraction will require explanation.

LM Os1,A GET FIRST OPERAND

SL 1,B+4 SUBTRACT LCW-ORDER PART OF SECOND GPERAND

BC 3,CAR BRANCH’ IF THERE'S A CARRY

~ S Qy=F*1? REDUCEC(RO)BY1L (BORROW)
CAR S OsB SUBTRACT HIGH-GRDER PART OF SECOND OPERAND

STM N0sy1,4C STCRE DOUBLE-LENGTH DIFFERENCE

C DS D

B DC FLR™ 123456787654321"°

A cc FL8'2345676898765432"

In performing a subtraction, the one's complement of the second operand and

a low-order 1 bit are added to the first operand. If a carry occurs out of

the high-order bit position, then the result 1s correctly represented; if

a carry does not occur, then the resultcannot be correctly represented,

in the sense that we have tried to generate a "negative" integer in the

logical representation. Hence we must "borrow" a 1 bit from the next highest

bit position, which accounts for the subtraction of F'l'if the branch

condition is not met. It may be helpful to review the examples in Section 7

to clarify the cases of"overflow" in the logical representation.

Multiplication and division work essentially in the manner described in

Section 8. Except for MH, a double-length register is required for product

16-8

and dividend, and the various operands are placed in the expected registers

before and after the operation.

For the multiplication instructions MR and M, the ri digit must be even;

as was the case for the double-length shift instructions, the even-numbered

register 1s the high-order half of an even-odd register pair, with the next

higher odd-numbered register being the low-order half. The multiplicand is

placed in the odd-numbered register, and the multiplier is the second operand.

The product replaces the original contents of the pair of registers. Thus,

the following instructions will produce the indicated results.

MR 2.7 C{R24yR3} = C(R3)®=C(R7)

MR 0,1 C{RO4R1}) = C{R1)*C{R1)

MR 6,8 CIR8,RI)= C(RBI*C(RI)
M 4,X ClR4yR5)= C(RS)*C{X)

M 12y=F 932° C{R12,R13) = C{R13)*%932

LR 544 MOVE MULTIPLICAND TORS

MR 444 C{R4,R5) = C(RS)}*C(R4)

The last two instructions illustrate a situation'where we wish to square the

integer in Rt -- the LR is required to place the operand into the odd-

numbered register; note that we could have used MR 4,5 also, giving

C(R5)*C(R5). The presence of the multiplier in the even-numbered register

does not cause it to be lost when that register 1s cleared at the beginning

of the multiply sequence, since the multiplier must be moved internally to

a separate register in the CPU; we can visualize the multiplication taking

place after the multiplier has been moved to the MDR.

It 1s important to remember that the product generated by the M and MR

instructions is 64 bits long. If we were to perform the following sequence

of instructions (note that 65536 -2%°)

L lL,=A(X'100007") C(RL) = 65536
MR Oy1 SQUAREIT

ST 1s PRCDUCT

PROECUCTCc s F

we would find that the fullword stored at PRPDUCT was zero and that C(RO) = 1;

and 1f we executed the instruction sequence (note that 32768 = 213)

16-¢

L 1y,=A{X*10000") C(Rl) = 65536
M Vy=A(X*'8000" IMULTIPLYBY 32768

ST 1,PRCDUC T

we would find that C(PRPDUCT) = -2°1. There are thus two situations the

programmer should be aware of: first,that the size of the product may be

such that it overflows the low-order register, and second, that whether or

not the high-order register contains significant bits, the leftmost bit of

the low-order register is nota sign bit, but contains an arithmetically

significant digit.

The MH instruction produces a single-length result, which is the low-

order 32 bits of the product of C(Rry) and the half'word'second operand.

Because only a fullword result is retained, ri need not be even, and a

specification exception will occur only 1f the effective address of the

halfword operand is odd. Because fewer shifts and adds are needed during

multiplication, some small economies may be achieved by the use of MH,

particularly on the smaller models of System/360. Thus, MH 5,=H'100’

is a simple way to multiply the contents of R5 by 100. If X and Y are both

~~ halfword operands, their product may be found by writing

LH 9,X

MH 9,Y

and R8 is undisturbed. And to square the halfword integer n atN we

could write

LH 6,N
MH 6,N

Note that because both operands are halfwords of at most 15 significant bits,

the product will fit in a single register; the only halfword whose magnitude

requires 16 bits (namely -21°) when squared yields 22° which requires only

31 bits. We note in passing that none of the multiply instructions affect

the condition code.

-As an example of the use of a multiply instruction, suppose we want to

calculate A = B + G * D, where all quantities are fullword integers, and it

1s assumed that all results are small enough so that no overflows occur.

16-10

L 746 CRT) j= C(G)
+ 69D C{R64RT7) = Gx]
a 748 C(R7) = B+Gx*D
SH 714A STCRE RESULT

Note that we have used the letters A, B, G, and D to denote both the names

of fullword areas of memory and the names of the contents of these areas;

this usage 1s typical of procedural languages, where little distinction 1s

made between the name associated with an area of memory, the contents of

the area, and the value associated with the contents. We will explore such

considerations further after more data representations have been discussed.

. As a second example of the use of multiply instructions, suppose we

wish to compute the sum of the cubes of the first n integers, where n 18

stored in the fullword at NBR. We will assume that n is a small enough

positive integer that the sum 1s representable in a single fullword. The

quantity k will be the index in the sum n

2,
k=1

SR 5¢5 SUM CARRIED INRS

L 4y=F 1° K CARRIEDINR 4

RPT LR 1,4 C(R1)= K

MR Oyl C{ROyR1) =K*K

VR Oy 4 C(ROyR1) = KCUBED

AR 591 ACCUMULA’TESUM

A 4e=F11" IMCREMENT K

C 4s NBR COMPARETO UPPERLIMIT

BC 124RPT BRANCHIF K NO TBIGGER

ST 5,SUWN STORE SUM OF CURES

A slightly different version'of the same program which counts from n down

to 1 follows.

SR 545 INITIALIZESUMTO ZERO

L Gy=F1'1! C{(R6)= 1,USEDAS CONSTANT
L 44N3R INITIALIZE K TOC(N3R)= N

RPT LR le4 CRL)= K

MR Nn, 4 C(RO,R1) = Kx*K
MR O+4 C{RO4R1)= K CUBED

AR 5v1 ADDTO SUM

SR 446 DECREMENTK BY1

BC 2+RPT RRANCHIFKSTILL POSITIVE

ST 59 SUN STORE RESULT

16-11

Division is always performed using & double-length @ividend and remainder.

As was the case for the fullword multiply instructions, the ry digit must

be even, and specifies the register pair containing the?. dividend; “he CC is

unaffected. As indicated in Section 8, the quotient replaces the iow-order

half of the dividend in the odd-numbered register, and the remainder replaces

the high-order part of the dividend in the even-numbered register; If a ,

valid quotient cannot be computed, a fixed-point divide exception occurs.

For example, to divide the double-length number in (R8,R9) by the number in

R13, we can write DR 8,13 and to divide the same number by 10 we

could write D 8,=F'10' . To illustrate the use of a divide instruction,

suppose we want to compute the product of C(A) and C(B), and force the result

to the next largest multiple of 29 if it is not already a multiple. We will

assume that the product 1s small enough-that a fixed-point divide exception

will not occur when dividing by 29, and that the final result is contained

in a single fullword.

L 3A C(R3) = C(A) |
Nv 2 si C{R2,4R3) = C{A}*C(3) |
U 2y=F 297 QUCTIENT IN #3

BN LTR a? TEST REMAINDER IN R2
2G Egiivy | RRANCH IF C(R2) IS ZERO
A 2a=Ft1+ INCREASE QUOTIENT BY 1

MPY 4 2y=F 1290 FORM CORRECT HULTIPLE OF 29

ST 34 RESULT STCRE PROPER RESULT

As a final example of division, suppose there 1s a positive integer at

N which we want to divide by 10, and then store a rounded quotient at Q.

This means that if the remainder is Sor larger the quotient must be

increased by 1.

L © TN GE-TNA SLCW=CRDERPART 0 FOIVINEND
SP eb CLEARHIGH-0ORDERPART OFDIVIDEND

1) 64=F%10" DIVIDE BY 10
C by=F 5? CCMPARE REMAT NOER TQ 5

2C 4 ,0KAY ERANCHIFSMALLERT HAN 5

A T,=f01" CTHERWISE ROUND UP

OKAY ST 740 STCRERCUNDED RESULT

Suppose now that the integer at N might be negatlve; it is apparent that the

instruction sequence above will not work correctly, for two reasons.

16-12

First, the 1nitial value of the dividend would not have a correctly extended

sign bit for negative arguments; second, because the sign of the remainder

1s always the same as the sign of the original dividend, the compare

instruction would always (when C(N) 1s negative) cause the following branch

instruction to transfer control to @KAY independent of the magnitude of the

remainder. To obtain a correctly represented dividend 1t 1s simplest to

use the SRDA instruction, as shown.

L l,=F*1" SETUP ROUNDINGBIT

L 69 N C(R6) = CIN)
SRDA 6,32 CIR6yRT) = 64—BIT DIVIDEND

BC 11,01V JUMP IF NON-NEGATIVE DIVIDEND

LCR 1,1 CTHERWISES E TROUNDOFF TO - 1

CIV D 69y=F'10" DIVIDE B-Y 1 O

LPK 6496 ABSOLUTE VALUE OF REMAINDER
c 69=F'5" CGMPARET OO 5

BC 4 y OKAY BRANCH IF SMALLER THAN 5

AU Ty1 A DDCORRECTLY-SIGNEDRQOUNDOFF

O KAYST 1,Q STORE ROUNDED QUOTIENT

We note that a simple check may be made to insure that a fixed-point

© divide interruption does not occur: if the inequality

| C(Rry) | < 1/2 | second operandi

1s satisfied, the quotient can be computed correctly.

16-13

. Ex Thos "3

3

K

e

A

]

.

4

\

b

;

y

K
;

Al

I
4

i]

1]
i

3

!

i

E

}

14

L

In

b«

i i

4

4
¢

r.

A

£]

a

i
I:

k
3

]
4

L
A

17. LOGICAL OPERATIONS ANC INSTRUCTIONS

The basic capabilities of a computing system are derived from the many

interconnections of basic circuits which perform simple logical functions.

Some of these same functions may also be performed on operands in memory and

in the general registers through the use of logical instructions, though

thelr applications are of course different. We will discuss some of the

instructions which perform logical operations and give a few simple, example6

of their use; other important uses of logical operations will be treated

when some of the SI instructions are examined.

Although it 1s not what we usually would consider a logical instruction,

the LA (Load Address) instruction 1s classified as such, and has many and

varied uses in System/360 programming. It is a very simple RX-type instructian:

the effective address replaces the contents of Rri, with the high-order byte

being set to zero. Thus, for example, a positive integer n between 0 and

4095 can be placed in a register by executing an LA r,n instruction,

where the index and base digits are implicitly zero and the displacement

contains the constant n. Instead of writing L 2,=F'1' which requires

8 bytes (4 for the instruction and 4 for the constant), or LH 2,=H'l!

which-requires 6 bytes, we can write either LA 2,1 or A 2,1(0,0)

which requires 4 bytes and less execution time, because no memory access is

required. Also, because LA does not affect the CC we can clear a register

without disturbing a CC setting which may be required at a later point in

the-program. For example, suppose we wish to add C(A) and C(B)' and clear

the result to zero 1f it overflows, without changing the CC setting. The

two instruction sequences which follow perform the desired task.

L OsA L OeA
A 0,8 A 0.8

8C 14457 BC 14ST
LA 0,0 L Ce=F'0"

ST ST 0+ANSHKER ST ST O09 ANSWER

17-1

Because the LA instruction computes an effective address, it also

providet & simple way to increment the content6 of a register bye small

positive amount. For example, LA h,17(0,4) will increase the

contents of R4 by 17, if the original contents'of RY are between -17 and
224.18, This restriction is of course due to the fact that the high-order

byte of the register into which the result is placed will be #8t to aero;

thus the use of LA for incrementing registers is usually limited to cases

where the quantity being incremented is an address or reasonably small

integer. For example, suppose we want to perform the shifting operation

described in example 6 of Section 15, where it was required that the fullword

at N be shifted right enough places so that its rightmost blt Is a 1 bit;

we will also require that the halfword at CPUNT contain the number of

positions shifted.

L 4oN GET INTEGER

L 3y=F'-1° INITIAL SHIFT COUNT

SHIFT SRDL 4,1 SHIFT A BIT INTORS

LTR 5¢5 TEST SIGN OF RS

LA 3,1(0,3) INCREMENT R3 BY 1

~ BC 104 SHIFT BRANCH IF RS NOT NEGATIVE

SLDL 491 MOVEBITBACKINPLACE

ST %9N STORE SHIFTED INTEGER

STH 3+.COUNT STORE SHIFT COUNT

By setting the shift count to -1 initially, we guarantee that the correct

value will be in R3 when we exit from the loop; the first time the ILA

instruction 1s executed, the result will be zero and the setting of the

leftmost byte to zero 1s what we want. The placement of the LA instruction

between the LTR and the ensuing BC was done to show that no adverse effects

are caused; one would normally place the LTR just before the BC becauge the

relation between the two 1s then clearer to anyone reading the program,

A third use of the LA instruction, and possibly the most important, 1s

in generating addresses for actual operands 1n memory. For example, we may

require the address of same operand to be in a given register during the

execution oa segment of code. Suppose we want to add three integers, and

branch after all additions are completed to N@ERR if no overflow occurs, and
to ERR1 1f one or more overflows occur. Let the integers be stored in

successive fullwords beginning at Q.

17-2

LA 9 3 NOERR SET BRANCH ADDRESS FOR NO ERRORS
L 2+Q GET FIRST INTEGER

A 2+Q¢4 ADD SECOND INTEGER

BC 14,0K1 BRANCH IF NO OVERFLOW

LA 9,ERR1 SET BRANCH ADDRESS FOR 1 OVERFLOW

0K1 A 29Q+8 A DD THIRD INTEGER
BCR 1449 BRANCH IF NO OVERFLOW

BC 15,ERR] BRANCH, SOME ADDITION OVERFLOWED

It should be noted that the instruction with a mask digit of 15 could also

be written BC 1,ERR1 without affecting the operation of the code,

since the i1netructicm 1s reached only 1f the branching condition for the

immediately preceding instruction is not met; by specifying a mask of 15 it

1s clear that the branch must always be taken. There 1s one important

assumption underlying the use of the two LA instructions: the instructions

named NPERR and ERRl must be addressable, since the LA instruction will

simply perform the address computation specified by the base and displacement

assigned by the Assembler. As mentioned earlier, we are assuming that all

symbols (and expressions 'such as Qt8) are 'addressable and that the appropriate

-- base register information has been established elsewhere in the program.

It 1s occasionally easy to forget that the symbols used in LA instructions

must be addressable, since no reference is being made to any memory
location -- only an address 1s being generated, and no checks for the

validity of that address are made.

We will give a number of examples later where the IA instruction can

be used to give-the effect of indexing for instructions for which indexing

1s not actually possible, namely RS, SI, and SS instructions.

The three logical operations provided by System/360 are AND, OR, and

EXCLUSIVE OR. These are relations between pairs of bits, which produce a

result depending only on the values of the two bits participating 1n the

operation. The effect of the three operations is gwnin the figure below.

~ oT MEE [eToT™
du :
EEE. tot BEE

AND OR EXCLUSIVE OR

Figure 17.1 Logical Functions 1in System/360

17-3

on,

In the first case, the result bit is 1 only 1f the first AND the second

operand bits are 1; 1in the second case the result bit is 1 if either the

first OR the second operand bits (or both) is 1; and in the last case, the

result bit 1s 1 1f either the first OR second operand bits 1s 1, EXCLUSIVE

of the case where both are 1. Henceforth we will abbreviate EXCLUSIVE OR

by XOR. For the instructions listed in Figure 17.2, the operands are fullwords;

however, the result of the operation 1s obtained by matching the corresponding

bits of each word, with no interactions between neighboring bits. A few

examples will help to clarify this. As before, "M2" means the fullword

second operand specified by the effective address.

NR RR C(Rry) «C(Rri) A C(Rrz) 0: all result bits
N Rx C(Rry) «C(Rryi)A C(FW2) are zero

1) RR C¢(Rry) « C(Rr1) v C(Rrz) 1: result bits are
¢ RX C(Rry) «C(Rry) v C(FW2) not all zero

XR RR C(Rry) « C(Rry) ® C(Rrz)
X RX C(Rry) « C(Rry) ® C(FWz)

Figure 17.2 Logical Instructions

Suppose C(R4) = 012345671, and C(R9) = EDA96521l16. Thenif the

instruetions indicated are executed, the final contents of RY will be as

shown below the instruction.

NR 4,9 gr 4,9 XR 4,9

0121452156 EDABE56T16 EC8A2046,6

To see 1n more detail how these results are obtained, we will examine the

fourth hexadecimal digit of each case in binary form in the figure below.

3 | oo1l 3 | oo1L 3 | oou
A 9 A 1001 v9 | v1001l @ 0 &@ 1001

1 0001 B 1011 A 1010

| AND | OR EXCLUSIVE OR

Figure 17.3 Examples of Logical Operations

17-4

sg

One important use of the N and NR instructions is for "masking"

operations in which it 1s desired to 1solate or extract portions of a word.

For example, suppose we wanted only the third of the four positive integers

packed in the data word illustrated in Figure 14.7. This could be done by

shifting as follows:

L 0+DATAWORD GET INTEGERS
SRL O96 DROP OFF FOURTH ONE
SRDOL 1,13 MOVE THIRD INTO RI
SRL 1019 POSITION FOR STORING
ST 1+ THIRD

or as follows:

L OyDATAWORD

SLL Os13 DROP OFF FIRST AND SECOND INTEGERS

SRL 0219 DROP OFF FOURTH, POSITION FOR STORING
ST Os THIRD

(If. the integers were allowed to have negative-values as well, the SBL

instructions would be replaced by SRA.) However, the followlng instruction

" sequence using a logical AND 1s considerably faster:

L 1+DATAWORD AAAAAAAAABBBBCCCCCCCCCCCCCDDDDDD
N 1 s MASK 0000000000000CCLCCCCCCCCCCLCO00000
SRL 146 0000000000000000000CCCCCLCCCCCCC
ST 1 THIRD STORE DESIRED INTEGER

DS OF ALIGN TO FULLWORD BOUNDARY
MASK D C X*0007FFCO®

First, note that the DS OF 1s required to insure that MASK falls on

a fullword boundary -- type X constants have no implied alignment. Second,

the mask hee 1 bits only in those positions which correspond to the bits

(labeled "C") of the third integer in the data word. When the N instruction

1s executed, all of the bit positions in which the mask 1s zero will be set

to zero, since a 0 bit ANDed to any other bit gives a zero result. In all

of the mask's bit positions which are 1 bits, the result 1s the same as the

original bit from the data word, because a 1 bit ANDed to any other bit

gives a result identical to that bit.

To illustrate the use of a logical §R instruction, suppose we want to

store a new value for the third integer into the proper part of the data word.

17-5

We can do this by shifting the various pieces into place:

L O+DATAWORD GET INTEGERS

S R D L0Qeb MOVE FOURTHINTO R1

L Os NEWTHIRD GET NEW VALUEOF THIRD INTEGER
SRDL 0913 MOVE IT IN WITH FOURTH

L 0,DATAWORD GET INTEGERS AGAIN

SRL O0pl9% DROP OFF THIRD AND FOURTH
SRDCOs13 MOVE FULLWORD INTOR1

ST 1sDATAWORD STORE NEW DATAWORD

Alternatively, we can use the logical AND and ¢R to do the same:

L 0,LATAWORD GET INTEGERS

N 0, MASKA CLEAR SPACE FOR THIRD

L 1s NEWTHIRD GE? NEW VALUE OF YHIRDINTEGER

SLL 16 SHIFT INTO PROPER POSITION

OR 001 0R* IWO PLACE

ST 0s DATAUORD STORE NEW DATAWORD

DS OF

MASKAD C X°FFF8003F*

In this case, the N causes all the bit positions into which the third

integer will be placed to be set to zero. The {rR instruction then forms

the logical OR of all the bits of RO and Rl. Since the only bits in Rl

which may be 1's are in the 13 positions corresponding to the space provided

in the word in RO, and because the result of ORing a 0 bit to any other bit

1s the value of the other bit, the effect 1s to insert the new value of the

third integer in its proper position 1n RO. This of course assumes that the

contents of NEWTHIRD is a positive integer of at most 13 significant bits;

1f not, an instruction such as N 1,MASK should be inserted before

the dR to insure that no extraneous bits are ORed into RO.

The-X and XR instructions are used mainly for inverting the value of a

bit or a group of bits: it can be seen from Figure 17.1 that the result of

XORIng a 0 bit to any other bit is to leave it undisturbed, and the result

of XORinga 1 bit is to invert it from 1 to 0 or vice versa. Thus, for

example., we can form the one's complement of the number in RT by subtracting

it from a word of all 1 bits, or by executing X T,=F'«1" which does

the same thing. We can rewrite the example above to use an X instruction

(though in a somewhat roundabout way) as follows:

17-6

L 09s DATAWORD GET INTEGERS
0 Os MASK SETTHIRDSPACETO 1 BITS
X 04 MASK NOW SET THEM TO ZEROS
L 1+NEWTHIRD ETC

SLL 146 ETC

N 1 MASK BE SURE THERE ARE- NO EXTRA BITS

OR Os1 ETC |

ST 0+ DATAWORD

DS OF

MASK OC X*0007FFCO?

As another example of the use of the XOR function, suppose we agaln want

to force the integer in R9 to be the next larger multiple of 8 if it is not

already a multiple of 8; consider the following code sequences.

A TeuFe70 FORCE CARRY SF ANY 1 BITS

N T9sF*-8? SET LAST 3 BITS TO ZERO

This is the fastest method, but space is required for the constants.

LA Os7 C{RO) = 7

AR 9,0 FORCE CARRYIF ANY 1 BITS
OR 9,0 FORCETHE THREE BITS TO1'S

XR 9:0 NOW SET THEM TO ZERO

In terms of space required, this method is superior to the ones illustrated

previously.

We will find that the logical operations have considerable use 1n

examining and manipulating individual bits 1n memory, particularly through

the use of certain SI-type instructions. As a final example, suppose we

are required to shift the integer contents of R6 (assumed nonzero) left so

that the first significant bit is immediately to the right of the sign bit,

and store at NPRM the number of positions-shifted.

SR 8,8 SET SHIFT COUNT TO ZERO

SHIFT SLA 6+1 SHIFT LEFT ONEBITPOSITION

8C 1,FINIS IF OVERFLOW, JUMP
LA 8+1(0,8) INCREMENT SHIFT COUNT

SC 159 SHIFY TRY AGAIN

FINIS SRA 6,1 REPOSITION

X 6DIGIT RESTORE THE LOST BIT

ST 8,NORM STORE SHIFT COUNT

NGRM DS F

DIGITD C X*40000000°

17-7

In this case we shift left until the overflow indicates that & bit different
| fram the sign bit has been shifted out of bit pgsition 1. The right shift

moves everything back, but instead of restoring the lost bit, extends the

sign bit into the sceond bit position of REG fromwhich the most significant

bit was just lost, Sinee the sign is known to be the opposite of the lost

bit, the X operation inverts the second bit to give the desired result.

17-8

18. LOOPING, INDEXING, AND SIMPLE ARRAYS

Much of the power of a digital computer derives from its ability to

execute sequences of statements repetitively until some condition has been

satisfied. Programming with loops 1s therefore basic to most programs of any

size and complexity; we will examine in this section several instructions which

simplify the coding of loops, and sane typical uses involving arrays of data.

As a simple example which will be used to 1llustrate sane of the basic

principles, suppose there 1s a string-—-- a one-dimensional array —-- of 80bytes

beginning at STR and ending at STR+79 which contains character data in the

EBCDIC representation. We are required to scan the string and replace all

special (non-alphanumeric) characters by blanks: specifically, any character

with representation less than C'A' (referring to Table III, it can be verified

that this is equivalent to 19310=X'Cl') should bereplaced by C'', which has

- representation X'40', so that letters and digits will be unchanged.

First, consider the following code sequence, which performs the desired

processing in a straightforward but rather clumsy way.

SR 0,0 CHARACTERS INSERTED INTC R Oo

LR 1,0 CHARACTER COUNT I NRl,y INITIALLY ©0©

LA 29CA? ClRZ) = X*0C00Q00C1L®

LA 3,C* 0 C{R3) = X*00000040°*

LA 44STR FIRST bYTE ACODRESSI N R 4

GETChAR IC 0,0(0,54) GETBYTEFROMSTRING
CR 0,2 CUMPARE TOLETTER'A?

BC 10 +0OKAY BRANCH IFLETTERGRDIGIT
STC 3,0(0,4) - OTHERWISE REPLACEBYA BLANK

OKAY LA 491(044) INCREMENT CHARACTER ADDRESS BY1
CA 1y1(0,1) INCREASE CHARACTER COUNTBY1

C l,=F*80°¢ CUMPARETOS8 0
BC 49 GETCHAR bRANCHIF LESS THAN 80 TO DO MORE

STR cc CLBO'THIS IS*80)BYTES-TOyBE(SCANNED+FCRASPECTAL=CHAR#

We will see later that this particular problem can be solved more efficiently

in a variety of ways. For the time being, note that the character comparisons

are made 1n the rightmost bytes of registers 0 and 2, and that the address of

18-1

the byte to be examined is regularly incremented in BY after being initialized

to the location of'the first character. The branch instruction at the end of

the loop must branch 1f C(Rl)is less than 8not if it is less than or equal

to 80, since the final test in the latter case would cause the byte at STR+80

to be examined and possibly changed.

A second version of this program which makes use of the indexing capabilities

of the IC and STC instructions follows.

SR 0,0 CLEAR RO FOR CHARACTERS FROM STRING
LR 1,0 iNLTIALLZE INCEX TO0

CL LA J.C 1 CiR32 = pLANK AT RIGHTY END

GETCHAR IC 0, STR{1} Gal CHARACTER FROM STRING
C C.=A{C%A®) CuriPAile vO LETTER "AY

STC 3287R{1) ALPeACe wY ZLANK oo
CKAY LA i192{0,12 slncritnNT INDEX BY 10

C Le=r80" CUbPARE 70 UPPER LIMIT
| gC 49GZTCHAR orANCH IF NOT CONE

A trivial difference in this version is that the fullword containing the

EBCDIC representation of the letter A 1s now 1n memory, specified by the literal

=A(C'A") rather than in R2 as before: note that =F'193' and =A(X'Cl') would

give identical results. The addressing of the byte to be examined is now

computed using Rl as an index register. The first time the instruction named

GETCHAR is executed, C(RL)=0 and the effective address generated will be the

actual relocated address of STR, assuming that the necessary base register(s)

have been set up correctly. On the last execution of the IC instruction,

C(R1)=79 and the last byte of the string will be inserted into RC for

examination. When the LA instruction named PRAY 1s executed, C(R1l) will be

increased to 80, the branching condition for the final BC instruction will

not be met, and control will pass to the following instruction.

To 1llustrate another use of indexing, consider the example of Section 17,

where three integers at Q are to be added; in this case, however, after the

sum 18 complete a branch to NGERR is to be taken if no overflows occurred, to .

FRRL if exactly one overflew occurred, and to ERR2 if two.

SR ls1 SET OVERFLOWCGUNT TO ZERO

L 0,Q bel FIRST INTEGER

A 0,Q+4 ADU SECOND

BC l4,A1 BRANCH| F N O CVERFLOW

LA 194(0,1) INUICATE ONE COVERFLOW

Al A 0,Q+8 ALU THIRD INTEGER
8C l45A2 BRANCHIFNO OVERFLOW.

LA 194(0,1) INOLCATEA NGVERFLOW

A2 BC 15,8{1) BRANCHINTO BRANCH TABLE

E 8C 15+ NOERR O—ERRUR BRANCH

8C 15,ERR1] l-EKROR BRANCH
BC 15,ERR2 2-ERRUR BRANCH

When the instruction named AZ 1s reached, Rl contains four times the number

'of overflows. This number 1s used as an index 1n computing the effective

address of the BC instruction at A2, which will be B, B##, or B38; the

appropriate branch instruction will then cause control to be transferred to

the desired location. Note that B need not be on a fullword bouudary; the

index in Rl must simply be incremented by % to account for the length of the

BC instructions. Such branch tables often provide a fast and effective way

- to route control to different parts of a program.

We will now consider the Branch on Count (BCTIR and BCT) instructions,

which simplify counting operations such as thosein the above example. As .

was the case for the BCR and BC instructions, the branch address 1s obtained

either from Rrz for BCTR (unless rz=0, in which case no branch can be taken)

or from the effective address for BCT. In this case, after the branch

address 1s canputed, the branching condition 1s determined by first algebraically

reducing the contents of Rr; by one, and then branching unless C(Rry)=0.

Note that the CC 1s unchanged and has no effect on the branching condition.

We-can rewrite our first'example to use a BCT by working backwards along

the string of characters from STR+79 to STR, which also allows the use of

the same quantity both as an index and a counter.

SR 0,0 CLEAR RO

LA 1,80 SETRLTONU MB E ROF PASSES

CA 2:C'A? CIRZ) =LETTER A

LA 34C 0 CER3) = BLANK

NEXT IC 0¢STR=-1(1) GETCHARACTER
CR 2+0 CUMPARE*A°TO CHARACTER

8C 12 sOKAY BRANCH IF SATISFACTORY

STC 3,STR-1(1} UTHERWISE BLCT IT OUT

CKAY BCT 1s NEXT CUUNT DUWNS8 YL1,JUMPIFN OT ©

18-3

The use of the expression STR-1 in the second operands of the IC and STC

instructions 1s dictated by the fact that the possible values of C(R1l) run

between 80and 1, rather between 0 and T9 as before. This can be thought

of as reflecting a difference in the enumeration of the bytes in the string:

if we number them from 0 to 79they would be addressed STR(1), and if the

| bytes weenumbered (in perhaps a more natural fashion) fram1 to 80, they

| must be addressed STR-1(1). On the final pass through the loop, C(Rl)=1;

when the BCT instruction is executed, C(R1) is reduced to zero, the branching

condition is not met, and control passes to the next sequential instruction.

One immediate gain 1n program efficiency can be seen simply by counting the

instructions inside the loop: we have reduced this number from seven to five,

which will give approximately the same ratio in processing speeds.

- The BCT and BCTR instructions are especially useful in situations where

a certain number of passes through a loop 1s, needed, and no special attention

must be paid to indexing quantities, To illustrate several uses of these

instructions, consider the following variations on some examples from previous

~ sections.

(1) The fullword at NBR contains a positive integer n; compute the sum of

the cubes of the first n integers,

L 4s NBR C(R4) = INDEX $K*', INITIALLY N
SR 595 INLTIALILE SUM YO ZERO |

NEXT LR Le% CIR1) = K | |

MR Os1 KK | | | | |
MR 0v4 K CudtD. |
AR 591 ADY TU SUM I
BCT 49 NEXT VECREASE K BY 1. LOOP
ST 59 SUM STURE SUM oo

(2) The halfword at N contains a positive integer n; store at NSQ the sum

of the first n odd integers.

SR 0:0 CLEARSUMTC ZERO

- Lh leN GET N FRUM MEMORY
LCCP LA 2¢90(191) (CUUNT+COUNT)IN R2

BCTR2. 0 2 *¥ CUUNT =~ 1

AR 0.2 Avbfus UM

BCT 1,L00P REVUCE COUNT A N D BRANCH

ST 0yNSQ

18-4

Because n is contained in a halfword integer, we may use the LA instruction

to compute (n + n) in one step, since the result 1s known to fit in the

rightmost 24 bits of R&. The following BCTR instruction cannot branch, since

r2 = 0; hence the only effect 1s to reduce C(R2) by one, as required.

(Remember that the k-th odd integer is 2k-1).

(3) Find the two's complement of the double-length integer stored at ARC.

LM Oy 1,ARG GET VUUBLE~LENGTH NUMBER
LCR 0,0 COMPLEMENT HIGH=-CRDER PART
LCR lel COMPLEMENT LCW~CRDER PART
BC 8.X BRANCH IF“ C ARRYOUTOFRIL

- BCTR 0,0 OTHERWISER EDUC ECLROIBY 1

X STM Oy 1+ARG STURE CUMPLENMENTED RESULT

This is identical to the example in Bection 16 except that the BCTR replaces

Ss O,=F'l" and thus the CC setting may be different when the SIM is

executed. The BCTR instruction with rg=0 may be used in this fashion anywhere

in a program; it 1s shorter and faster than subtracting a constant 1 from

memory, but has the possible disadvantage that the CC is not set.

. As a further example of the use of the BCT instruction, we present

below two examples of program segments which store the cubes' of the integers

from 1 to 10 in a table of ten successive fullwords, the first of which 1s

labeled CUBE.

LA 4,10 C{R4) = NUMBER TO BE CUBED

MULT LR 3+4 MUVE IT TOR 3

MR 293 SWUARE IT

MR 2ev4 AND CUBE X T
CR ly 4 SET UP INDEX IN Rl

Sti 1,2 MULTIPLYBY 4 FORFULLWORDLENGTH
ST 39CUBE=~4{ 1) .STUREIN CORRECT TABLE POSITION
BCT 49 MULT BRANCH SACK 9 TIMES

In this case we have used the integer argument being carried in RY to index

the desired word in the table; since the table entries are fullwords, the

index must be multiplied by four for successive items, which 1s why the SLL

is used. Because the first entry in the table corresponds to 1 cubed, the

expression 1n the operand field of the ST must be CUBE-4 so that the address

of each entry will be correctly calculated'. Another method of doing the same

calculation 1s as follows.

| 18-5

nad

LA 1,CUBE+0#%*4 ADDRESS UF FIRST TABLE ENTRY |
LA 29CUBE+9%4 ADURESS UF LAST TABLE ENTRY

LA 3,1 C{R3) = NUMBER T0 BE CURED
MULT LR 553 MUVE MULTIPLICAND

MR 493 SWUARE |
MR 493 Cust |

ST 5:0{(0,1) STurte IN TABLE
LA 3,1{(093) INCREMENT NUMBER TO BE CUBED
LA l94(0,1) INCREMENT TABLE ACDRESS

CR 1,2 CuMPARE TO ENC ACODRESS

BC 12 MULT sRANCH BACK IF NGT PAST END OF TABLE

In this case an explicit address in the ST instruction 1s used, rather than

an implied address as 1n the first method. This is because the loop termination

condition 1s determined from address arithmetic rather than from tests on any

of the quantities being calculated in the loop; we will see that cases often

arise where 1t 1s convenient to perform such addressing calculations explicitly,

rather than rely on the Assembler to assign all bases and displacements. The

"index" of the entries in the table may be thought of as running from 0 to 36

in steps of 4.

In most of the programming examples we have examined 1n which loops

} were used to perform some iterative task, the termination condition depended
on some kind of counting ouperation. More specifically, many such applications

require that some quantity be established as an index whose value is changed

regularly by an increment, compared to sone comparand, and a branch then be

made depending on some condition established by the comparison. Note that the

term "index" as used here 1s meant only to indicate the variable quantity which

controls or determines completion of the loop; it may or may not be related

to a quantity to be used as an index (that 1s, specified by an index register

specification digit) in an RX instruction, as in the two examples above which

compute a table of cubes. In the first illustration, the index of the loop-

(in R4)is also used (in Rl)to index the ST instruction; in the second illus-

tration, the index of the loop is the address contained in Rl, but no indexing

is performed in any of the RX instructions. The increment may be a negative

quantity, in which case it might be more appropriate to call it a decrement;

rather than try to use names to distinguish the sign of the quantity to be

added to the index, we will assume that the increment can be positive or

negative.

For the Branch on Count instructions, the quantities involved are all

implied by the instruction: the index is in Rri, the increment is -1, the

18-6

comparand 1s zerc, and the condition for branciaing is inequality. As might

be inferred from the preceding examples, this somewhat restricted set of

possibilities is often insufficient to enable the programmer to code a loop

effectively. Because loops are such a crucial part of many programs. the

System/360 instruction repertoire conatnine “he BXH {Bransh on Index High) |
and BXLE (Branch on Index Low or Eoual) instructions to facilitate coding

of loops. As was the case for BOT and BCIE, noth of these instructions provide
the three functions of incrementation, comparison, and conditional branching,

but with much greater flexibility.

Both BXH and BXIE are RS-type instructions requiring two register

specifications digits ri and rs, as indicated in Figure 14.1. Like the STM

and IM instructions, the use of registers other than Rr; and Rrz may be

implied, but in a less simple way. The index is always in Rri, and the

increment 1s always in Rrsz. The comparand is contained either in Rrx+l

(1f r3 1s even) or in Rrxs (if rz is odd), That is, if WC write BXLE 0,4, NEXT

then the index is in RO, the increment is in R4, and the comparand is in RS,

whereas if we write BXLE '0,5,NEXT the index is again in RO, but both

the increment and the comparand are in RS. There is a simple notational

device which illustrates the fact that the comparand is always contained in

an odd-numbered register (if rz is even, the comparand is in Rrs+l, and if

rs is odd, the comparand is in Rraz): we will write RraV1 to indicate that the

register containing the comparand may be determined by ORing a 1 digit into

the rs digit. Thus BBV1 refers to RY, and R9V1 is the same as RY. The

operation of BXH and BXLE, which is diagrammed in Figure 18.1, is as follows:

the sum of the index and increment 1s computed internally and then compared

algebraically to the comparand. Whether or not the branching condition 1is

met 1s noted -- for BXH this means that the sum is algebraically greater

than the comparand, and for BXLE that the sum is algebraically less than or

equal to the comparand. It is important to observe that the branching

condition 1s not reflected in a setting of the CC but 1s determined internally;

none of BCT, BCTR, BXH, or BXLE change the CC. The sum then replaces

the index, and the branch is taken if the branching condition is met. Note

that because the branch address is comwuted during the "Decode" portion of

the instruction cycle before incrementation takes place, the effective

16-7

address may not be as expected if ri and ba are the same (unless both are

zero, which 1s unlikely since the branch address would have to be less than

4095). Note also that the comparison takes place before the sum replaces

the index; we will give some examples of situations where this 1s important.

The upper portion of the figure below 1s a verbal description of the

execution of BXH and BXLE; the lower portion indicates explicit register

usage by the two instructions.

i

&code;|! |Compute Compare sum Sum Branch
compute| !, & inaas+ | to comparand; replacgs+|condition no |
branch] ! | increment determine index met ? !
address| ! b—— |branch cond.

yes !
Ve

! o N Branch addr
i xecute ws C(IA) i
he ce ve mm nr te i Sn Om = = A be oo om a MDs BB em nom oe oe tts on

TT mmmm EEE TTT

i —— Sl qum > ¢(Rrsvl) ? no
o BXH !

| eg I
Decode} !|C(Rri)+ yes

branch H C(Rrs) Opcode Br. Addr (): (re)
| |

address — Sum yes
BXLE

Sum < C(Rrsv1l) ? no |

Le ee ee a = = = om ne tn be Tn eS ore oo be om ov 0 WB Be Me A or ve 0 = no

Figure 18.1 Operation of BXH and BXLE Instructions

To illustrate the use of BXH and BXLE, consider the example given at

the beginning of this section, where we wish to replace non-alphanumeric

characters by blanks. We will rewrite the code sequence to use a BXLE

instruction.

18-8

LM O0939=F*040,1,79*

Xx CHARACTERS INSERTED INTOROy INDEXINRLyINCREMENTINRZ,
4 ANCCCMPARAND IN R23.

LM 495y=A(CY'A",C?* *)
8 LETTER‘A’ INR4y AND A BLANKI NRS5.

GETCRAR IC 0, STR(1) GET A CHARACTER FROM THE STRING

CR O54 | CUMPARETO LETTERP®A?|N R4
BC 10, ALPHANUM BRANCH IF ALPHANUMERIC

STC SeSTR{1) UTHERWISESTCRE A BLANK

ALPFANUM BXLE 1+2¢GETCHAR INCREMENTANO BRANCH

Note that the values of the index run from 0 to 79; when control reaches the

BXIE instruction, the increment in R2 (namely +1) is added to C(RO), and

because R2 1s an even-numbered register, the sum is compared to the comparand

C(R3). If the sum is less than or equal to 79, the branching condition is

met and control will. be transferred to the instruction named GETCHAR after

the sum 1s placed back in Rl. When control finally passes to the instruction

following the BEXIE, the contents of Rlwill be 80;0.

To give an example where the use of HKIE is perhaps more natural, we

will rewrite the code segment which computes a table ofthe cubes of the

first 10 integers, starting at CUBE.

CA 141 [wsTIALINTEGER=21

LR 87 Cire) =1FOR INCREMENTING N
SR 494 SET INDEXT OZERO

CA 2.4 INCREMENT Q F +4 F O RINDEX

LA 3436 CUMPARAND = 36, INR 3

MULY LR 197 N IN R1

MR Os1l NEN
MR 0,7 N CUBED
ST 1,CUBE(4) STURE IN TABLE

AR 798 INCREASENB Y1

BXLE 4+20MULT INCREASEINDEXBY 4 AND COOP

This segment of code has been written in such a way as to use fewer instructions

inside the loop, at the expense of some extra instructions outside the loop.

The following two code segments perform the same calculation, but are set

up slightly differently.

18-9

LA 191 INITIALVALUE OF N=1
LA 494 SET INCREMENT IN R4 TO 4

LR 214 INITIAL INDEX IN R2 1S 4 ALSO

LA 5,40 CUMPARANUD IN RS = 40

MULT LR 147 C(rld = N

MR 0,1 N SWUARED |
MR Q,7 N LUBED

ST 1,CUBE—4(2) STure IN TABLE

LA T9100, 7) INCREMENT N

BXLE 2+4,MULT CUUNT AND LQAQGP

In this example, the index runs from 4 to 40 in steps of 4, rather than from

0 to 36 as previously. In general there -is no difference between the two

methods, except that the second method can be conceptually simpler: since

the integer N runs from1 to 10 by steps of1, the multiplication by 4 to

account for the lensth of the fullword result wakes it natural to have the

index run from 4 tc 40 in steps of 4. We will. examine some cases shortly

where such considerations are important. The use of the LA instruction can

yield very slightly increased speeds, since 1t 1s faster on some models of

System/360 than an AR instruction; the programmer interested in such details

should consult the instruction timing tables for the particular CPU he is using.

A variation on the above example 1s given below, where the index and comparand

quantities are addresses.

LA 4,CUBE+Q*4 seT INUEX TO INITIAL TABLE ADDRESS
LA 24 INCREMENT = 4 FUGR FULLAMCRDS

AA 3,CUBE+I#4 CUMPARAND = FINAL TABLE ADDRESS
AA 7s1 INITIAL VALUE GF N = 1 |

MULT LR 11,7 N

MR 10,11 SEN

ST 11,0(044) STuke IN TABLE

CA 1+180,7) Le seMeENT N
BXLE 4,2:MULT tau keMENT ADDRESS AND LCOP

To illustrate the use of the BXH instruction, two of the previous code

segments will be rewritten so that the indexing runs in the opposite direction.

LA 7+10 inl T1AL VALUE GF N |

A 8y=Ft-~1" Cid) = =1 FCR INCREMENTING N

LA 44940 Lid IAL INDEX = 40
L. 29=F*"-4" LA ManNT = =4
SK 343 QuitPA<ANL = 0

MLLT CR 1¢7 iN

ME Qe7 IN ¥

MA 047 AE AVE JT

ST lyCuBdEe—41(4) STuke In TABLE

BXH He 29MULT CUuUNT Anu LCCP

18-10

-_

When the instruction following the BXH is reached, the index in RY will be

Zero. In fact, we can use -4 for both the increment and comparand as 1n the

following example.

LA 1410 INITLAL VALUE GFN IS 10

LA 44936 INITIAL INDEX = 36 |
L S5¢=Ft=4? INCKEMENT AND CCMPARAND ARE -4

MULT LR lo 7 iN | |
MR Oy? N SWUAREDU

MR 097 N CUBED | |

ST 1,CUBE(4) STURE IN TABLE

BCTR 790 DECREASE N BY 1 | oo
8 XH 4359:MULT COUNT DOWN AND LQOGCP

In this' case the rs digit is odd, so RraV 1 is the same register as Rrs;

the BXH will increment the index in R¥ by -# and branch until the resulting

sum becomes -4% also, when control will gass to the instruction following.

Some specialized uses of BXH and BXLE may be obtained by various

combinations of register specification digits. For example, suppose the

contents of an odd-numbered register such as RQ is zero. Then the instruction .

BXLE L,9,X will branch to X only if C(RE) is less than or equal to zero;

similarly, BXH L4,9,X would branch to X only if C(R¥)is greater than

zero. Since the BXH and BXIE neither set nor test the condition code, this

technique can be used in situations where a condition code reflecting the

state of the contents of Rk is not available, or the current CC setting must

be undisturbed, or 1f it 1s desirable to avoid using instructions such as

LTR followed by a BC.

Suppose we want to perform the inverse of the BCT instruction, namely

increment a register by +1 and branch. If C(R7)=l and the contents of R2

is some integer greater than zero, then - BH 2,7,X will branch to X

after incrementing C(RZ2) by 1 unless the sum overflows. Similarly, if there’

is some negative integer in R2, BXIE 2,7,X will branch to X so long

as the resulting sum does not exceed +l. If C(R4)=1, the instruction

BXH 5, 4,X will increment the contents of RS by 1 and then branch to X

1f the sum does not overflow; this example 1s instructive because the index

and comparand are 1n the same register. If the canparison was made after

the sum was placed in RH, an equality would always be indicated and the BXH

would never branch. Tricky usage of BXH and BXLE as described above 1s

18-11

| relatively rare, and these instructions find their major use in applications

such as table searching and loop control.

In the examples given up to now of loops involving indexing in an array,

the choice of a method to perform the indexing arithmetic and the selection

of initial and final index values was left open; no formel technique was

described. Since arrays and array processing techniques are heavily used,

we will examine some general methods for handling arrays.

One-dimensional arrays are relatively simple, since each successive

element may be obtained by adding the element length to the address of the |

preceding element. If for example the halfword integers ko, ki, ——- ko are

stored starting at K, then Kk 1s found at K+2n; 1f the array elements were
fullvords or doublewords, the corresponding addresses would be K#in arid Kn

respectively. On the other hand, if ks «.. kg are stored beginning at K, and

the length of a single array element is L, thenk Is found at K+L(n-k).
The required subscript arithmetic should be evident »~ if the lowest-subscripted

element km 1s stored at K, then the location of k (where 1 > m) 18 K+I*{n-m).
(It is also evident that n need not be greater than m; it i's merely customary

to store arrays this way.) An example will help to illustrate this.

~ Suppose an array of fullword integers xs . . . x17 is stored beginning at

X, and we are required to store their sum at T. The lower and upper subscript

bound6 of 5 and 17 are stored at LOWER and UPPER.

SR 00 INITIALIZE SUM

L 1 o LOWER INITIALIZE SUBSCRIPTNe LOWER BOUND =5

A ¥ LR 2+1 INDEX CALCULATED IN R2

S 2+ LOWER (N—-M)
SAC 2.2 4%(N—M)

A 0sX(2) SUM= SUM + X{N)

LA l91(0,1) INCREMENT N BY1

CL 1, UPPER CUMPAREN TO UPPER BOUNC
8C 12,A IF NOT GREATERy BRANCH
ST OT

LGKER)] o F'5¢ LOWER SUBSCRIPT BOUND
UPPER CC Fs11® UPPER SUBSCRIPT BOUND

T cs F

X oC lL3F*1¢ FUR EXAMPLE

Now, suppose that the lower and upper subscript bounds of the elements

forming the required sum do not have known values,. but we still know that xs

18-u

is stored at X. We can include 2 portion of the indexing arithmetic in the

program at assembly time so that it need not be performed at execution time,

namely the factor L*(-m).

SR O:0 INITIALIZE SUM TGC ZERO

| LA 4.4 INCREMENT = ELEMENT LENGTH
L 2s LOWER GeT LUWEST SUBSCRIPT
SLL 292 MULTIPLY BY ELEMENT LENCTH |

L 5yUPPER GET HIGHEST SUBSCRIPT
SLL 592 ¥4 ALSO |

ALC L Qe X—-20(2} ADD AN tLEMENT, CORRECTLY ADDRESSED
BXLE 2+42A0D INCREMENT INCEXAND LOOP

It can be seen if C(LPWER) = 5 and C{UPPER) = 17 that the same result will

be obtained; the first element to be added will be at X-20+(4*5) = Xx, as

desired. The Assembler will of course require that the expression X-20 be

addressable; this requirement 1s sometimes a limitation on the use of this

time-saving technique.

Two- and higher-dimensional arrays present a few further complications,

| which can be handled fairly easily; we will examine two methods for addressing

| array elements. First, it 1s necessary to find some way to reorganize the

rectangular form of an array into a linear arrangement which conforms to the

| machine's natural method of addressing successive bytes 1n memory. A common

method 1s to store successive columns of the array one after another, as

indicated below.

Figure 18.2 Storing an Array in Column Order

| It 1s apparent that any desired arrangement 1s actually possible, and that

a choice-between possibilities must be based on considerations such as

convenience and the time and space required to retrieve a particular element.

For the example above, the arithmetic necessary to retrieve the element 14
is as follows, assuming that aii 1s stored at A: to obtain the address of

| 18-13

the first element in a given column, we need the address A+L¥(j-1)¥2 where

L 1s the element length in bytes, and the factor of 2 accounts for the

presence of 2 elements in each column. Once having obtained that address

the i-th element in the indicated Column is found by adding I*¥(i-1) to the

partially computed address, giving A+I¥(2%(j-1)+(i-1)). The quantity added

to A 1s sometimes called a subscripting function or a mapping function, and

gives the correspondence between the array subscripts 1 and J of a particular

element and the "linear subscript" which gives the difference between the

locations of 34 3 and aii. It can be seen that 1f a column-ordered array
has r rows, the subscripting function is L*(r*(3-1)+(1-1)). For example,

suppose we have an array of fullwords of 5 rows and T columns stored at A,

and wish to store 35 at X, where 1 and j are fullwords stored at I and J
respectively.

L 6y,J ocel COLUMNI NDE XJ
BCTRG6 . O FURMJ - 1

MH 69=H'5" MULTIPLYBY NUMBER OF ROWS

A 691 ADU RUWIND E XI

BCTRG6 , © DECREASEB Vv 1

SLL 6492 MULTIPLY BY ELEMENT LENGTH, 4
L 3,A16) eT Ali, J)

ST 3.X STUREAT «x

I uc F*3? PUSSIBLEV ACUEFCRI

J GC F'6? PUSSIBLEVAL UEFORJ

A 0S 35F SUMEBUDYELSE COMPUTES THE VALUES

Aswas the case for one-dimensional arrays, part of the subscripting arithmetic

can be absorbed into the address of the Jdnstruction which references the

array element. Thus, the address of 34 3 becomes A-L*(r+l)+L*(r*j+1i), and
only the final term need be computed at execution time; the code sequence

above can be rewritten as follows.

L 69J CULUMN [INDEX

MH 69=H'5" ¥(NUMBERO F ROWS)

L 691 + RUw INDEX

SLL 6492 {ALLY*(ELEMENT LENGTH)
L 3.A-4%(5¢]1) (6) CER3) = A(I,4J)

S T 3X STOKEAT X

Figure 18.3 Example of Array Subscripting Arithmetic

18-14

The address A-L*(r+l) can be seen to be the address of the element "apo"

(which may not actually exist) and 1s soaretimes called the address of the

"base element" of the array or (unfortunately) the "base address" of the

array. Since this almost always has nothing to do with a base address to

be used by the Assembler in computing displacements, it is best to avoid the

latter terminology.

In the examples above we have assumed that the subscripts could take

positive values only, and always had a lower bound of 1; this is not a

necessary condition, and if the lower subscript bounds on 1 and j are 10 and jo

respectively, the subscripting function becomes IL¥(r*(j-jo)+(i-io)). In such

cases it is usually more difficult to include the factor -L¥(r-jo+io) in an

expression at assembly time, since the result may not be addressable. We

will adopt the convention that all subscripts run upwards beginning at 1

unless the contrary 1s stated.

A second method of array addressing is useful when processing speeds

are 1mportant, and occasionally also finds application to arrays of irregularly-

spaced or irregular-length data. This involves pre-computing the addresses

of portions of the array, and storing those addresses in a separate table,

For example, suppose the addresses of the elements api, 812, and ais 1in

Figure 18.2 are stored as fullwords at CQIADDR, as indicated in Figure 18.4.

The notation A(x) means "address of x".

Location Contents

CPLADDR A(ar1)

CARRECE J py py ey ey ey poy
CALADIR + 8 Alar)

Figure 18.4 Addressing with Tables of Addresses

The code to store 255 at X might then be as follows.
L 15d vel CJULUMN INDEX

BCTR 7,0 vcbREASE BY 1 FCR INDEXING

SLL 142 Mul TiPLY BY ACDRESS LENGTH = 4

L 69COLADDR(7) Gul AQURESS CF COLUMN J
L 591 blz RUW INDEX 1 |

BCTR 5.0 JeCRiEASE BY 1

SLL 5.2 MULTIPLY BY ARRAY ELEMENT LENGTH = 4
L 3+0(5,6) vEld All)

ST 3X Sure AT X

18 - 15

The main advantage of this scheme is that it avoids the previously required

multiplication by the number of rows. The additional expense 1s In the space

required for the table, and the time required for forming it (either during

assembly or at execution time). As a final example, suppose we want to

store at X the element 355 of a 5~by-5 array of fullwords stored in column
order at A; first we will compute a table of column addresses and store them

at ADDRTAB. We actually compute not the true addresses of the first element

in each column, but that address minus 4, because this then allows us to use

the subscript 1 directly without subtracting 1 during the accessing of the

desired array element. The table contents are shown in Figure 18.5 below,

where the zero subscript indicates the subtraction of one element length

from the address of the beginning of the column.

LH 6 ys NROWS C{R6) = NUMBERGF ROWS
SLL 692 MULTIPLY FOR INDEXING BY ELEMENT LENGTH

LH 5+ NCOLS NUMBER UF COLUMNS IN R5 FCR LOOP COUNT

LA 9,ADDRTAB BEGINNING ADDRESSOF TABLE

LA Oy A—4 ARRAY ADDRESS = (ELEMENT LENGTH)
STALR ST 0,0(0,49) STUREA N ADDRESS IN TABLE

AR 0e6 INCREASE ADDRESS TONEXT COLUMN
- LA 9,4(0,9) INCREASE TABLE ADDRESS TO NEXT WORD

BCT 59+STADR LUUPUNTIL ALL ADDRESSES COMPUTED

NCOLS DC H'S¢ NUMBER OF COLUMNS
NRCWS CC HS NUMBER OF ROWS

ACCRTAB OC SF SPACE FOR ADDRESSES

Location Contents Element Addressed

ADDRTAB A(A-4) 801
+l A(A-4+20) a0z
+3 A(A~44+40) - 80%
+12 A(A-4+60) aos
+16 A(A-L4480) 205

Figure 18.5 Example of Addressing Table Contents

To use this table to perform the desired calculation, we can write the

following code sequence.

18-16

lL 2y1 GET ROW INDEX
L 39d GET COLUMN INDEX

SLOL 242 MULTIPLY BOTH BY 4

L 49 ADDRTAB—-4(3) G E TCOLUMNACDRESS
L 00(244) GET Afl,J)
ST Os X STUREA TX

This segment of code gives much faster access to the desired element; the

subscripting arithmetic (all but the last two instructions) on a System/360

Model 50 requires 18 microseconds, while the same arithmetic as performed in

Figure 18.3 requires 33 microseconds. It should be noted that the faster

example uses the SLDL instruction to take advantage of the fact that the array

elements and the entries in the address table (sometimes called an 'access

table") are of the same length, which might-not be true in general.

In closing this discussion, we will mention that the address table can

be constructed by the Assembler 1f the necessary quantities are known in

advance. The items in the middle column of Figure 18,5 can be used as

operands 1n DC statements remember that in the discussion of A-type constants

(address constants) in Section 13, 'it was stated that the abnstant may be

relocatable. Though we are not yet ina position to be able to discuss how

the correct addresses are eventually placed in the program; We will simply

writea sequence of statements Which generates the same address table at

assembly time. .

NRChS EQU 5 NUMBER CF RCWS

L EQU 4 LENGTHCFARRAYELEMENT

ACLCRTABD cC A{A~-L) ALFIRSTCCLUNMN= 4 | 1
GC A{A+L*x{NROWSI-L) A{SECONDC CCLUMN = 4)
CC A{A+LE{NROCWS*2)=L)} A 2 THIRD CCLUMN =~ &)

CC A{A+Lx{NRUWS*3)=L) ALFUURTH COLUMN = 4)

© cc ACA+LE(NROWS*4)~L) A{FIFTH COLUNN = 4)

The expressions 1n the address constants are written in such a way that

the programmer need only specify the value to be given to NREWS in the first
EQU statement, and the required addresses are calculated by the Assembler.

18-17

ORCAS Linh
SCORRI A |

i

5

rh
fre

/
~
rt

A

3
AL

E .

.

i,

4

:

p

E

i

:

s

A

3

h

‘

1

i

5

k

L}
brs

2
.

=

»

tL —

b

ki

 -

N

E -

1

|

s

|

!

19. SI INSTRUCTIONS

Most of the instructions discussed up to now have referred to data

which was either 1n a register or was to be found in memory at a given

location. One exception we have encountered 1s the IA instructions, in which

the operand to be placed in Rrp was constructed using part of the instruction

itself. In particular, writing statements such as IA 5,12 provides

8 way to place data into a register without an additional memory reference,

which would be required 1f we wrote L 5,=F'12' instead. Instructions

which contain one of the operands of the operation to be performed 1n the

instruction 1tself are called immediate instructions, 1n the sense that an

operend is immediately available. Thus, we could call LA a “Load

Immediate" Instruction in those situations where the base and index register

specification digits are zero, since the immediate operand comes from the

displacement field of the instruction.

The six Instructions to be discussed here make use of an immediate

operand contained in the second byte of the instruction, as denoted by "I"

in Figure 19 .1.

0 a: 15 16 19 20 31

Figure 19.1 SI Instruction Format

In writing SI instruction statements, the first operand will usually be a

relocatable expression; the second operand must be a positive absolute

expression of value less than 296, so that it will fit into a single byte.

The instructions are given in Figure 19.2; the notation "Ci" is meant to

indicate the single character or byte at the effective memory address computed

. from the addressing syllable.

19-1

| Instruction Action CC Set?
Move MVI c(Cy) « Io no

AND NI C(C1) «C(CL)A Io yes

OR PI (C1) «cC(C2)v I= yes

XOR XI (Ci) «C(C1) &® Io yes

Compare CL1 c(C1) : I= yes

Test Under Mask ™ Test Selected Bits of C(Cy) yes

Figure 19.2 SI Instructions

The operation of the first four of these instructions 1s straightforward,

and 1s 1llustrated below.

(1) MvI X,0 sets the byte at X to zero
(2) MVI X,255 sets the byte at X to all 1 bits
(3) MVI X,C'X! puts an EBCDIC "X" at X
(4) NI X,0 equivalent to (1), except CC = 0
(5) PI X,255 equivalent to (2), except CC = 1
(6) #1 X,2 sets bit 6 at X to 1

¥, NI X,253 sets bit 6 at X to 0- (8) x1 X,2 inverts bit 6 at X

It 1s occasionally clearer to use other than decimal self-defining terms;

example (7) could be written NI X,B'11111101" with the bit to be

zeroed immediately indicated. The CC settings after NJ, $I, and XI are

given in Figure 17.2.

The CLI instruction performs a logical comparison between two 8-bit

quantities, which are treated as unsigned integers for the comparison arith-

metic.' The result of the comparison 1s indicated by the CC setting, as given

in Figure 16.3. Thus, the statements below would result in the indicated

CC settings.

CLI =C'A?,X'C1"? CC=0
CLI =X900',0 CC=0

CLI =C* *,8°1000000° CC=0

CLI =X010,X02°¢ CC=1
CLI =CoA?,250 CC=1

CLI =C XYZ C*X'~1 cc=2

CLI =X810,X00°¢ cc=2

It 1s important to remember that the first operand in the comparison canes

from memory. We can rewrite the sample program from Section 18 which blanks

19-2

out the special characters 1n the string at STR by making use of the CLI

and MVI instructions; the latter simply stores the second byte of the

instruction at the first operand address.

LA 1,80 INITIALIZELGOP COUNT

NEXT LA 29STR=-1(1) CONSTRUCT CHARACTER ADDRESS WITH INDEXING
CL1 0(2),CtA* CUMPARE ADDRESSED CHARACTER TUOLETTER®*A?
8C 10,ANUM BRANCHIFNOTLESS THAN ®A®
MV] 0(2),C% °* BLANK OUT IFNON-ALPHANUMERIC

ANUN 8CT 1 NEXT COUNT DOWNANDLCOP

Because SI instructions cannot be indexed, the LA instruction named NEXT

must be used to construct the desired memory address for the character to

, be tested. The CLI instruction compares the eight bits in memory to the

immediate operand C'A', and 1f the byte 1n memory contains a bit pattern .

whose value 1s greater than or equal to 19310, the following BC will branch

around the MVI instruction. If the branching condition is not met, the MVI

stores the bit pattern corresponding to the EBCDIC representation of a blank

into the character string. It can be seen that the use of these two SI

instructions allows considerably simpler coding than in the previous examples

of the same processing.

~ The TM instruction is one of the most useful in the System/360 instruction

set for applications where individual bits must be examined. Because no

means 1s provided for addressing individual bits, data in bit form must be

treated differently. The immediate operand of the TM instruction is used

as a mask to indicate which bits of the addressed byte are to be examined;

wherever a 1 bit appears in the mask, the corresponding bit position of the

memory operand 1s examined, and 'wherever a 0 bit appears in the mask, the

corresponding bit of the memory operand 1s ignored. The result of the

examination 1s 1ndicated in the setting of the Condition Code, as shown in

Figure 19.3.

| CC | Indication -1
0 Bits examined are all zeros or mask is zero

1 Bits examined are mixed zero and one

3 Bits examined are all ones

Figure 19.3 CC Settings after ™ Instruction

19-3

One special case of the TM instruction can arise if the mask specified by i
I is zero (indicating that no bits are to be examined); the CC is simply oo

set to zero. To 1llustrate the use of the TM instruction, consider the

following examples,

1) Branch to MINUS if the fullword integer stored at NUM is negative.

(This technique can be used to avoid having to load a register.)

T™ NUM, X*80¢ TEST LEFTMOST BIT
8C lo MINUS BRANCHIF A 1 BIT

2) Branch to EVEN if the fullword integer stored at NUM is even.

™ NUM+3, 1 TESTRIGHTMOSTBIT O F FULLWORD

8C 8s EVEN BRANCH IF ZERC

3) Branch to MIXED 1f the bits in the byte at B are not all zero or all one.

T™ Bel55 TEST ALL BITS

8C 4oMIXED BRANCH IF MIXED0 AND 1

L) Branch to SMALL 1f the value of the halfword integer at HNUM 1s between

512 and 511.

™ HANUM,X*'FE"* Teol LEFTMOST 7 BITS
BC 9¢ SMALL BRANCH IFA L LOCRL

When used in conjunction with the NI, 01, and XI instructions, TM

provides a simple means of setting and testing yes—no indicators in a program.

For example, suppose we wish to add the three fullword integers stored

beginning at Q, and afterwards branch to NPERR ii’ no overflows occurred and

to ERRPR if one or more overflows occurred.

MVI ~~ FLAG,O SETINULCATOR I-CR NO OVERFLOWS
L 0+Q bel FIRST INTEGER

A OsQ¢4 AD DSECUNDINTEGER

SC l4NEXTA BRANCHIfF NO CVERFLOW

OX FLAG, 1 SETUVERFLOWF L A G'ON*(T O11)
NEXTA A 0sQ¢+8 ADUTHIRD INTEGER

8G 1+» ERROR BRANCH LF OVERFLCWTO ERROR
™ FLAG, 1 UTHERWISE EXAMINE OVERFLOWEFLAGBIT

5¢ 8 NOERR [EFBITWASZERCyNOOVERFLOWS
8c 19 ERROR | FUNEy UVERFLOWCCCURRED

FLAG CS X UVERFLUWFLAGBYTE

. DS 3F INTEGERS JO BE ACGEO

10-4

The ¢1 instruction ORs a 1 bit into the rightmost bit position of the byte

named FLAG, thus setting 1t to & 1. Note that only the rightmost 'bit of the

byte is being used; the other bits might be used to indicate other conditions

detected elsewhere in the same program.

As another representative example of the use of these instructions,

suppose we are required to process a list of n halfword integers stored at

LIST, where the positive nonzero fullword integer n is stored at N. Suppose

that the processing requires that the elements of the list be added together,

except that alternate elements of the list are to be added twice; the right-

most bit of the byte named SWITCH is set to 1 if the first element is to be

added twice.

LA 49LIST INITIAL LISTADDRESSINRA4

L 3sN NUMBER-OF ELEMENTS I N R 3

SR 696 INITIALIZE SUM TC ZERO

LCAC LH 590(044) GET A HALFWORDLISTELEMENTINRS
AR 6¢5 ADD TUOsuwm ONCE

™ SWITCH, 1 TEST SWITCH BIT

BC 8+ONCE BRANCHIFO0y ADO GNLY ONCE
AR 6+5 ADD A SECOND TIME

ONCE LA 492(0494) INCREMENT LIST ADDRESS BY 2
- XI SWITCH,.L INVERT SWITCH BIT

BCT 39L0OAD BRANCHTO GET NEXT ELEMENT IF NOT DONE

Since the XOR of a 1 bit and any other bit inverts the value of the latter,

the XT instruction alternately sets the switch bit to 0 and 1. The TM

instruction examines only the rightmost bit. of SWITCH; the branching condition

will be met if that bit is zero.

A technique which occasionally finds use 1n such an application involves

changing the mask field of a branch imstruction so that italternately

contains B'1llll' and B'0000', causing an unconditional branch to alternate

with a-no-operation. The above code sequence can be rewritten to use such

a technique as shown below.

19-5

L 1oN © GET NUMBER OF ELEMENTS TO BE ADDED
LA 0,2 SET UP INCREMENT OF 2 INRQ
AR 191 2*N

SR 190 2*¥{N-=1)IN R1 = CCMPARAND FOR BXLE LOOP
SR 292 INITIALIZEINDEXINR2TO ZERO
LR 3s2 SAME FOR SUM IN R3

Of BRNCH+1¢X*FQ¢ SET SWITCHFOR SINGLEACOON FIRST PASS
™ SWITCH,1 CHECK SWITCHTO SEE IF SETUPIS CORRECT
BC 8ADD JUMP IF BRANCH HAS BEEN SET CORRECTLY
NI BRNCH+1,X'0F®* OTHERWISE SET UPTO ADD TWICE QN 1ST PASS

ACC AH 3+LIST(2) ADD A TERM

BRNCH BC O.FLIP MASK FI1eLD HERE IS ALTERNATED 8Y XI
AH 3.LIST(2) ADD AGAINIF NECESSARY

FLIP XI BRNCH+14X*FO* INVERT BRANCH MASKBITS

BXLE 2,C.ADD CUUNT AND LCGP

ST 3+: RESULT STURE ANSWER APPROPRIATELY

| There. are several features of this example to be noted. First, the mask
field of the second BC instruction must be addressed at EBRNCH+l rather than

at BRNCH, because the latter is the name of the byte containing the operation

code. Second, the instructions preceding the loop which initialize the mask

field might be necessary because this segment of code may be part of a larger

program which executes it many times, and we have no assurance that the mask

field will be preset correctly. Third, the instructions which manipulate the

mask bits are written in such a way as to leave untouched the index register

specification digit in the second byte of the instruction at BRNCH. This is

necessary because we do not want to insert extraneous bits (thereby causing

indexing to be performed), and because in general there can be information

there which must be unmodified.

The above technique of actually modifying an instruction in memory can

occasionally yield higher processing speeds, but it is not generally considered

a good programming practice for the following reasons:

(a=) the coding tends to be more. difficult to understand, since a

reader cannot tell with any degree of certainty what 1s to be done

by a given instruction 1f 1t 1s subject to modification by other

parts of the program;

(b) checking out the program 1s more difficult, since it is usually

easier to keep track of data (such as at SWITCH in the previous

example) than parts of instructions;

19-6

(c) if it 1s necessary to 'rewrite a portion of the program it may be

difficult to find all the instructions which modify others;

(d) 1f the program must be re-enterable (a property of coding which is

involved 1n multiprogramming appiications and interruption processing,

which will be treated later) such a technique is forbidden.

This might appear to contradict the earlier statements that the flexibility

of a computer 1s derived from its ability to modify the instruction sequences

it executes; by this we simply meant that the program can control its paths

of execution, rather than that it modifies the actual instructions as was

done here. A degree of instruction modification 1s provided by the Execute

instruction, to be discussed later.

To show that the above example need no-t rely on program modification,

we glve two further code segments which perform the same calculation more

rapidly; the first uses two separate add sequences.

L 1+N Stl UP CUMPARAND IN R1 |

BCTR 1,0 N=-1
SLL 1,1 2iN=-2 IN R1 | | |

LA 0y2 INCREMENT IN RO

SR 3 9 3 INITIALIZE SUM TG ZERO |

LR 23 SAE FUR INDEX

™ SWITCH, 1 TEST WHETHER FIRSY TERM ADDS TWICE

8C lo, TRICE BRANCH LF BIT=1, MEANING YES
ONCE AH 3,LIST(2) AULD A TERM ONCE

BXH 2910 NEXT INCREMENT INDEX AND LEAVE LOOP IF DONE
TWICE An 3,LIST(2) ADD A TERN

AH 3.LIST(2) ese lHICE

BXLE 2,0,0NCE INCKEMENT INDEX AND LOOP |
NEXT -- - CONTINUATION CF PROGRAM

The second auds all the terms in one loop and the alternate ones in another.

L 1¢N Gib iN

BCTR 1,0 N=1

_ AR lel CUAPARAND = 2{N-1)

LA 0y2 INCREMENT = 2

SR 393 INETLALLZE SUM TC ZERQ

SR 292 INLTLIALLZE INDEX TO ZERCQ

ACL] AH 3.LISTL2) ADD ALL TERMS ONCE |

BXLE 2.0,AD01 EneX THROUGH ENTIRE LIST

LR 290 NUW SET INDEX TO 2 INITIALLY

AR 0,0 SEI 1iiCREMENT TU 4 FOR ALTERNATE TERMS

™ SWITCH, 1 Stk IF +FiRST TERM ADDS SINGLY

8C 8yADDZ2 BRANCH IF YES
SR 292 utHLrwliobk RESET INITIAL INDEX TO ZERQ

ALLZ AH 3sLISTH2) ADU AN ALTERNATE TERM FCR SECOND VY IME

BXLE 2y0,A0D2 ENCREALNT INECEX BY 4 ANC LCOP

19-1

Eas

This last example is slightly slower than the previous one, because mots |,

branching instructions are executed; in particular, it will not work

correctly if n = l.

The above examples have illustrated the use of logical instructions

mainly for control purposes. Another important application 1s the manipulation

of data in bit form -- that 1s, data which assume only two values. For

example, suppose that part of the record of a person carrying automobile

insurance requires the following yes-no information: (1) age less than 257

(2) male? (3) driver training course completed? (4) married? (5) any

previous claims? (6) assigned risk?: Let the "yes" answers be represented

by 1 bits in the first six bit positions of the byte named STATUS. The

following tasks may be performed by the indicated instruction's.

1) The policy holder has passed his 25th birthday.

NI STATUS,B'01111111’

2) The policy holder has married.

™ STATUS,B' 00010000’
Bc 1, BIGAMY

- P1 STATUS,B' 00010000"

3) The policy holder has submitted a claim; 1f it 1s the first, branch

to TSK, otherwise branch to TSKTSK.

™ STATUS,8¢1000"

BC 1, TSKTSK

BC 15,TSK

4) If the policy holder is single, male, less than 25, and has not completed

a driver training course, branch to HIGHC@ST.

JM STATUSX"30* TEST MARRIED AND TRAINING
BC 7, NEXT |
JM STATUS X*CO'Y TEST AGE AND SEX

8C 1 HIGHCOST IF YOONG MACE, BRANCH
NEXT = —- =

5) If the policy holder is an assigned risk, indicate that he has previou:

claims 1f he also has no driver training.

IN STATUS X%4?*

BC 8¢ NEXT |
1. STATUS, X*20°"

Le 1, NEXT

Ci STATUS,X*8?

Ne Xd =~ = —

19-8

| 6) If the policy holder is married or has completed driver training,

branch to LfRISK.

™ STATUS sMARRIED#+TRAINING
BC 5s LORISK

MARRIEC EQU 16

TRAININGE qq u 32

As a final example of the use of SI instructions, suppose there 1s a

fullword integer stored at I!? which we wish to convert to a character string

of decimal digitswhich can be printed, with the sign of the number preceding

the first significant digit; 1f the number 1s zero, the characters "40"

should be placed at the right-hand end of the character string. 'Since a

fullword integer can be at most 10 decimal digits long, we will reserve 11

bytes for the result at NBR. The conversion is performed according to the

scheme given 1n Section 2.

LA 2.10 SET UPTOBLANKGUTRESULT AREA

ELANK LA 3¢NBR-1(2) CONSTRUCT BYTE ADDRESS

MV I 0(3),C* °* STOKE BLANKSIN FIRST 10 BYTES

BCT 29 BLANK BRANCHBACKOTIMES

= L loN GET NUMBERTCBE CONVERTED

LPR 1.1 TAKE ITS MAGNITUDE
LA 39sNBR+10 SET UP ADDRESS OF RIGHTMOST ‘DIGIT

CNVTLP SR 0.0 CLEAR HIGH-ORDER REGISTER

0 Qe=F10°" GENERATE A DIGITB YDIVISION
STC 0,0(0,3) STURE THE REMAINDER BYTE

Cl 0(3),C0°" GIVEDIGIT CGRRECJ EBcDIC REPRESENTATION
BCTR3 , 0 MUVE CHARACTERPOINTERLIBYTE TO THE LEFT

LTR 1.1 Stk IF DUNEy QUOTIENT GOES TOZERQO

BC 2,CNVTLP If NOTLEROy GENERATE MGRE DIGITS
MV 0¢3),C¢2 ASSUME SIGN XS+y STORE THAY CHARACTER

T™ NeX*80° CHECKACTUAL SIGNOFARGUMENT

BC 8+ ALLDONE BRANCHIFI TWASINDEED POSITIVE

- MV] 0(3)4C*-1- UTHERWISE PLANT A —SIGNINT H ESTRING
ALLCONE =~ ~ = RESTUF PROGRAM

NBR OS- CL11 OUTPUT CHARACTER STRING

N GS F NUMBER TO BE CONVERTED

19-9

: ST

H

i

20. SS Instructions

As the name implies, Storage-to-Storage instructions work with operands

which are entirely in memory; except for TRT end EIMK, the only reference to

Or use of the general registers by SS instructions 1s for addressing purposes.

This allows considerable freedom in the arrangement of operands in memory,

particularly since the data to be manipulated by 8S instructions may be of

| ‘variable length . Our concern in this section will be with the first nine

Instructions in Table VII, which are listed for convenience in Figure 20.1.

: The remaining SS instructions, which are primarily used for handling data in

pecked decimel format, will be discussed later.

Mvc Move dc OR

MVN Move Numerics NC AND

MVZ Move Zones XC Exclus ive OR

TR Translate CLC Compare

TRT Translate and Tes

Figure 20.1 Some Storage-to-Storage Instructions

All of the above instructions have the format illustrated in Figure 20.2 below,

Operation Length
Code Specification bi dy dao

Byte |
C . 15 16 1920 3132 3536 bh

Figure 20.2 Format of Some Storage-to-Storage Instructions

20-1

Bafore discussing the instructions themselves,wa must examine some of

the detalls involved in specifying the number to be placed. by the Assembler

in the Length Speéificaetion Byte, the second byte of the instruction. As can

be seen from Figure 20.2, five operand-field quantities in all must be provided:

the base and displacement of the address of the first and second operegnde,

and ¢ number which specifies the length in bytes of the date to be manipulated.

To illustrate one way of giving this information, supposewe wish to move 23

bytes from the area of memory beginning at A to the area beginning et B; we

could write MVC B(23),A to perform the task, Note that only t w oO

operands are specified in the operand field entry of these instructions, and

that the number in parentheses iS not an index register specification but

the number of bytes to be moved; it is expected that ‘the Assembler will compute

displacements and asBign bases for us, since we have used implied operand

addresses. There are severe) other ways to specify the length specification

byte; these are shown in Figure 20.3. For an ekplicit length spacification,

the value provided is used; for an implied length, the Assembler will determine

an appropriate value in a way to be described shortly.

| Explicit Length | Implied Length
s1(L),se 51,82

| d1(L, by), 82 da(,bp),82
| e1(L),de(ba) 81,dz(b2)

di(L,b1),d2(ba) d1(,%1),d2(1bz)

Figure 20.3 Length Specification for Some S8 Instructions

To illustrate the writing of an explicit length, suppose we ageih went to

move 23 bytes from AtoB, and we krow that ir RO 18 used as8 base, the

digplacements computed for A andB will be 125;¢ and 47D)g respectively.

Then to achieve the desired result we could write any of the following four

instructions corresponding to the first column of Figure 20.3:

MVC B{23),A

MVE X*'470%(23,9) A
MVC B(23),293(9)
MVC 1149123,9) x*125%(9)

) 20-E

where equivalent decimal and hexadecimal self-defining terms have been used

to specify the displacements di and dz. |

It 1s often the case, however, that one does not want to be required to

specify an explicit length, particularly in cases where the length should be

apparent from the operands involved. For example, 8uppose the symbol B is

defined in a DC or DS statement as in the program segment below.

MVC B,=120C" SET FIELD AT B T¢ BLANKS

BDS cra3

It is apparent that if more than 23bytes were moved by the WC instruction

that the data or instructions following the byte at B+22 could be overwritten;

thus the length should be determined from the first, or receiving, operand

rather than the second. This, in fact, ig what the Assembler does : if no

explicit length 1s given, the length attribute of the symbol or expression

in the first operand 1s used as the length specification. In the example

above it is evident that the length attribute of the symbol B is 23, so that

the correct result 1s obtained. If the first operand 1s an expression rather

-than a single term, the length attribute is determined from the following

rule :

L. The length attribute of an expression is the length attribute
of the leftmost term.

Thus, if’ we wrote MVC BudgX'5'-1,=120C" the length specified would

be 23, whereas if we wrote MVC X'S5'4+B-5,=120C' the length specified

would be 1, because

2. The length attribute of a celf-defining term 1s always 1.

In this example, a knowledge of the bage and displacement to be assigned

when addressing the symbol B (namely 9 and 47Dig) does not give the correct

Length when an implied length is given: MVC X'47D'(,9),A specifies

a length of 1 rather than 23, because X'L7D' is a self-defining term, and

"1d If an explicit base and displacement are given, the length
specification 1s the length attribute of the expression

Written for the displacement.

These rules are summarized in Figure 20.4.

20-3

Form of Address Length
First Operand Specification Specification Length Used

81 Implied | implied length attribute of s; |
g1(L) implied explicit L a

di(,b1) explicit implied length attribute of dy

d1(L,ba) explicit explicit L

Figure 20.4% Determination of Length Specification Byte

Because situations occasionally arise where 1t 1s useful to specify an implied

length with an explicit base and displacement, and the desired length is not

the same as the length attribute of the displacement expression, an alternative

technique 1s provided. We could have written

MVC B-B+X'4TD'(,9),A

nthe example above, and the length attribute of the displacement expression

would then be computed to be equal to the length attribute of' B. Such

constructions are cumbersome, and it is preferable to use & Symbol Length

Attribute Reference, which was mentioned in the discussion cof terme In

Section 11.

A Symbol Length Attribute Reference 1s written a8 an L followed by au

apostrophe followed by a symbol, as in L'B; 1t 1s an absolute term with a

value equal to the length attribute of the symbol. Because symbols cau be

defined 1n several ways, the following additional rules are nesded:

1. The length attribute of a Location Counter Reference {*) is

the-length of the instruction in which 1t appears; thus MyC B(L'*),A

will gssign a length of six.
2. If the symbol was defined in an EQU statement with * or a self-
defining term in the operand field, the length attribute assigned

will be 1.

3. The length attribute of a literal is not defined; thus constructions

such as MVC B(L'=C'RAY'),=C'RAY' are incorrect,

" Thus we can rewrite our simple example above, which uses an explicit base

end displacement, as MVC X'&7D'(L'B,9),A

20-4

Before discussing the various instructions in Figure 20.1, one further

detail must be noted. Because the length specification fits in a single byte,

it may assume one of the 256 possible values between 0 and 255: these

specify lengths between 1 and 256. This somewhat peculiar construction 1s

due to two factors: first, every SS instruction always operates on at least

one byte; second, while all the instructions listed in Figure 20.1 process

data from left to right (in order of increasing addresses), there are other

SS instructions which process data from right to left (in order of decreasing

addresses). In these latter cases, before performing any operations the

CPU must be able to construct the address of the rightmost byte of the operand

string (remember that all operands are addressed at the lowest-numbered

location). It is simplest to do this by adding the appropriate length

specification to the effective address of the operand 1n question, because

there are k+l bytes in a string beginning at location n and extending through

location n+k. Such considerations will normally be of little interest to

the programmer, since he will allow the Assembler to determine the necessary

quantities from the operands provided in the instruction statement. However,

1t 1s sometimes necessary at execution time to compute the number of bytes

to be manipulated, so that the relationship betweenthe actual contents of

the Length Specification byte and the number of bytes involved becomes

important. An illustration of this is given in example (4) later in this

section. Thus, in summary, the Length Specification Byte contains a number

which 1s one less than the number of bytes to be operated on, unless an

explicit length of zero is given, in which case a zero is assembled also.

The following instructions would therefore be assembled as indicated, assuming

the same displacements for the symbols A and B relative to C(R9) as previously.

INSTRUCTION ASSEMBLED FORM

MVC B{23) 4A V2L6 9470 9125

MVC B{l),A D200 947D 9125

MVC B{O),yA 0200 94¢dD 9125
MVC O(L*"%),29(12) 0205 0000 CO1D

MVC 15(L*B—-4,3),8B D212 300F 9470
MVC BeA VZlo6 9440 9125

MVC HIL*HyH)} oH 0200 8008 0008
MVC HEHoH) pH HI D207 8008 8008

MVC HeB—A(493 ,4 0200 9360 9125

MVC TeB~4 D216 9410 9479

MVC B—A+4(G),A uU208 035(9125

e OS CL23

T EQU B

k eEQU 8

20-5

As indicated earlier, the MVC instruction moves the specified number of

bytes from an area whose lowest-addressed byte is at the effective second

operand address to an area starting at the first operand address. There are

no restrictions on overlapping of the two areas, swthat various functions

such as propagating a character through an arca or shiftinglhe bytes iu an

area may be performed as in the following examples; we need only remember

that all SS instructions are executed in such a way that each byteis ztored

before the next byte to be operated on 1s retrieved from memory.

(1) set the 120-byte area beginning at LINE to blanks.

MVI ~~ LINE,C* ¢ STORE EBCDICBLANKAT LINE
MVC LINE€1{L119),1L Ini PROPAGATE THROUGH REMAINING AREA

This requires less storage space than

MVC LINE(120) +=120C* ¢

(because space is required for the literal) but slightly more execution

time.

~ (2) Shift the 80-byte character string beginning at STR to the left; by two

characters, leaving blanks in the vacated positions.

MVC STR(781),STRe2

MVC STR+781{2) ,=C* TWOBLANKSTOEND

(3) Exchange the contents of the halfword integers at A and B.

MVC TEMP, A MUVEATOTEMPORARYLOCATION
MVC AB MUVEB TU A

MVC BoTEMP MUVE OLO CLA) FROM T E M QTO 8

TEMPi s - XL?
A DS H

e DS H

Note that no registers were changedin the above instruction sequence.

(4) R8 and R9 contain respectively the address and length of a message of

less than 120 characters. Move the message to the area named LINE.

BCTR 9,0 DECREASELENGTHBY1LFOR CPU

STC FeMVCH+1 STUREAI LENGTHBYTE OF MVC INSTRUCTION
MVC MVC LINECO),0(8) MUVECORRECTNUMBERGOGFCHARACTERS

20-6

The BCTR is used to reduce the character count from its "true" value

to the value required by the CPU in the execution of the MVC, namely

one less than the number of bytes to move.

The MVN and MVZ instructions work in exactly the same way as MVC, except

that only the rightmost ¥ bits (the "Numeric" postion of a character) and.

leftmost 4 bits (the "gone" portion of a character) arc moved, respectively,

While these two instructions are occasionally useful for other purposes,,

their main applications concern data in packed decimal format. To illustrate

some simple uses, consider the following two examples.,

. (5) Convert the positive halfword integer at N to a string of 5 EBCDIC

characters beginning at NDEC which give the decimal representation of C(N).

LH 1sN GET NUMBERTOB8ECONVERTED
LA 2+5 CUUNT NUMBER OFDIGITS| NR2

X SR 0,0 CLEAR HIGH=CORDER FEGISTER

D Os=F*10°? GENERATE A DIGIT
STC OsNDEC~-112) STOREDIGITIN OUTPUTSTRING
BCT 24X CUUNTANDBRANCHUNTILDONE |
MVZ NDEC{5) o=5X*'FF* ATTACHZONES FOREBCDICREPRESENTATION

NCEC DOS CL5

-Note that we could have used the literals =5C'0' or =5C’'9' in the MVZ

instruction, with the same results.

(6) convert the 5-dlgit decimal number in EBCDIC form at NDEC to a fullword

binary integer and store 1t at M.
A

MVN TEMP 4NDEC RETRIEVENUMERICPORTIONSOGF DIGITS

LA 3s TEMP ADUDRESSUF CURRENTDIGITIN R3

LA 295 NUMBERUOUF DIGITS

SR 0.0 CLEARROF ORDIGITS
LR 1,0 AND R1 FUR NUMBERBEING GENERATED

MULT NH ° 1,=H?*10?¢ MULTIPLY ACCUMULATED PART BY10

iC 0+0{(043) INSERT DIGIT FRCMINPUT¢y NO ZONES
AR 140 ADDTU PARTIAL SUN

LA 351(043) INCREMENTOIGIT AGDRESS
BCT 29 MULT CUUNTA NDLGCP

ST Le M STORE RESULT

TEMP i - XL5%0°" LUNES PRESET TOZEROsDIGITS MOVEDI N

20-7

We note with reference to these two examples that there are instructions

available in System/360 which considerably simplify the conversion of

numbers between binary and decimal forms; they will be treated later.

The logical instructions NC, gc, and XC perform the logical operations

described 1n Figure 17.1 upon two strings of bytes, leaving the result in

the first operand string, and set the CC as in Figure 17.2. Consider the

following examples.

(7) Clear the 120-byte area at LINE to zero.

XC LINE(120), LINE

Note that we could also have used the same technique as 1n example (1)

above; the use of XC 1s usually slightly slower due to the necessity

, for actually performing the XOR operation, but requires less space in

the program.

(8) Branch to YES if the fullword integer at LUMP is zero.

gc LUMP(4) , LUMP or NC LOMP(4), LUMP
BC 8, YES Bc 8, YES

In each case the first and second operands are 1dentical so the only

result of the logical operation 1s to set the CC; no data 1s changed.

This technique 1s useful when a register 1s not free so that performing

the sequence L followed by LTR would be awkward, or when the data is

not aligned; it will usually be slower, however.

(9) Suppose there are two fullwords X and Z in memory which contain Pour

positive integers each, packed as illustrated in Figure 1.7. Replace

the second of the integers in the word at X by the corresponding value

from the word at Z.

MVC TEMP, 2 MUVENEW VALUE TOCTEMPORARY LOCATION

NC TEMP ¢ MASK ELIMINATE ALL BUT SECOND INTEGER | oo
oC Xo MASK SeT ALL BITS T O 1 IN 2D INTEGER POSITION

XC XsMASK NUW SET THEM JO ZERO
oC Xo TEMP INSERT NEW V AL UEINTG WORD AT X

TEMP DS XL4

MASK DC XL4°00780000* MASK BITSFORSECOND INTEGERPOSITION

20-8

The CLC instruction compares two strings of bytes, one byte at a time,
|

until either an inequality 1s discovered or the required number of bytes

has been compared. As was the case for the CLI instruction, the comparison

1s made between unsigned positive logical quantities.

(10) Two positive fullword integers are stored at S and T. Branch to TBIG

if C(T) 1s algebraically larger than C(S).

CLC T(k4),S
BC 2, TBIG

| (11) Two negative fullword integers are stored at S and T. Branch to TNB
1f C(T) 1s algebraically less than or equal to C(S);.

CLC T(4),S
BC 12, TNB

| (12) a list of 100 names and occupations, each contained in a block of 60
bytes, 1s stored beginning at LIST. If any of the blocks matches the

name and occupation at WHP, branch to F@UND.

LA 1,L1IS7 INITIALIZE TO ADDRESSOF FIRST BLOCK

| LA 2,100 SET CUUNTTO NUMBER OF BLOCKSTEST CLC 0(60y1) WHC CUMP ARE BLOCKS

BC 89 FOUNC BRANCHIF BLOCKS ARE EQUAL

| LA 1,60(0,1) OTHERWISE INCREMENT ADDRESS BY 60BCY 24¢ TEST CUUNT DUWN FRCM 100A N D BRANCH

8C 15NOTFOUND NO MATCHING BLOCK W A SFGUND

| The remalning two instructions to be examined are TR and TRT. These
are flexible instructions which can greatly simplify many complex programming

| tasks; they appear complicated when first encountered, but in reality are
quite straightforward in their operation. We will examine TR first.

| Like MVC, the TR instruction moves bytes from the second operand location
to the ffrst operand location, but 1n a less direct way. The operation actually

performs a sort of pseudo-indexing, as follows:

(a) an "argument" byte 1s obtained from the first operand location;

(b) the value of that byte (as an 8-bit logical integer) is used as an

index to access a "function" byte from the second operand location:

the address of the accessed byte 1s the effective second operand

| address plus the value of the argument byte from the first operand;

20-9

(c) the accessed function byte replaces the argument byte frcm the

first operand string;

(d) this process continues until the number of bytes indicated by the

length specification byte has been translated.

For example, suppose the string of 5 argument bytes at P contains X'0201040503',

and the character string at G contains C'ABCDEF'. Then if we execute the

instruction TR P(5),G the final contents of the 5 bytes at P will be

C'CBEFD'. This is easily seen to be the correct result, as follows: the

first argument byte taken from the first operand location 1s 0216; the

function byte at G#X'02' 1s C'C', and this replaces the first byte at P.

Similarly, the fifth and last byte at P is 0316; the byte at G#X'03' is C'D',

which 1s the final byte placed in the string at P. We can use RX instructions

to simulate the action of the TR instruction as follows, where 1t 1s assumed

that the symbols L, Bl, Dl, BZ, and IR have the same values as in the TR

instruction being simulated; rrpurposes of the example, assume that Bl and

B2 have values other than 1 or 2.

¥ TR D1(LsB1) 02482) IS THE INSTRUCTION BEING SIMULATED
LA OeL SET COUNTERINRO TO NUMBEROFBYTES

: SR l.1 SET FIRST OPERAND INDEX T O 0
- SR 2.2 FUR INDEXING TABLE A T2NDOPERANDADDRESS

GETARG 1C 2,01(1,481) GET ARGUMENT BYTE USE AS XNOEX
1C 2902124821) REPLACELITBY FUNCTIONBYTE FROM TABLE
STC 2+:D1(1481) STUREIN STRING ATEFIRSTOPERANDLOCATION
CA Ley1(Qs 1) INCREMENT F | RS TOPERAND INDEX BY 1
BCT QOsGETARG LUUP UNTILL ARGUMENT BYTES ARE PROCESSED

The full power of the TR instruction can be appreciated if we consider

the first example from Sectionl8, where a character string was to be processed

in such a way that all special characters whose EBCDIC representations are

numerically less than C'A' are converted to blanks. py setting up an
appropriate table, the entire process can be done by one instruction, as

follows. The method used toconstruct the 256-byte table is neither elegant

nor general; better ways will be illustrated later.

TR STR{(80),¥BL TRANSLATE ALL SPECIAL CHARACTERS TO BLANK

TeL DC 193C* °° ANYTHING LESS THAN CA’ IS BLANKED

DC C*ABCODEFGH]IY LETTERS A R E UNCHANGED .

OC 1C°* ’ SLANKTHENON-=-PRINTING CHARACTERS BETWEEN
DC C*JKLMNOPQR® PRINT LETTERS AS IS

DC cLae BLANK CUT NON-PRINTING CHARACTERS

DC C*STUVWXYZ2?

DC 6C* BLANKS F O RANYTHINMNG BETWEEN: €*2* A N D C90?

DC C*0123456789% DIGITS PRINT A SIS

DC 6C * TAIL-ENDERS AREBLANKEDT O O

20-10

As a second example of the use of the TR instruction, suppose we want

eventually to print the contents of the fullword at W as 8 hexadecinal digits,

and are required to place the 8 EBCDIC characters representing the digits in

a string starting at HEX. (We will see later that the UNFK instruction does

this more simply.)

L leN GET FULLWORDTOBECONVERTED

LA 2 HEX ADUORESSOF CHARACTER BEING STORED IN R2
LA 3,8 COUNT INR 3

CLEAR SR 0,0 CLEARRO FOR SHIFTING
SLOL 0,4 SHIFT A HEXDBIGITINTCR O

STC 0,0(0,2) STURE INSTRINGA | HE X
LA 291(0,2) INCREMENT CHARACTER ADDRESS BY

8CT 39CLEAR BRANCHUNTIL8 DIGITS ARESTORED

TR HEX{8) ¢4=C%0123456789ABCDEF®* TRANSLATETO EBCDIC

We can also index in the opposite direction, as follows:

L OeW GET FULLWORDTO B E CONVERTED

LA 2s 8 COUNTER ANDINBEXIN R2

SHIFT SRD C 04 SHIFTA DIGI TINTQRI

SRL 1,28 PUSITIUN FOR STORING

STC 1sHEX=1(2) STURE IN CHARACTERSTRING
BCT 29 SHIFT DECREASE INDEXANC SHIFT AGA.LN

~ IR HEX, TAB TRANSLATE DIGITS T OEBCDIC REPRESENTATION

REX DS CL8

TAB OC C*'01234567189ABCOLF"

The TRT instruction 1s identical to TR in the first two steps which

were labeled (a) and (b) above; it is quite different in that the accessed

byte from the table addressed by the second operand does not replace the

argument byte from the first operand string. The accessed function byte is

examined instead, and if it is not zero, (1) it is placed in the rightmost

byte of R2, (2) the address of the argument byte (which caused a nonzero

function byte to be accessed) is placed in the rightmost 24 bits of Rl; the

remaining bits of Rl and R2 are unchanged, and (3) the operation terminates.

The CC 1s set to indicate the conditions tabulated in Figure 20.5.

20-11

CC Setting Indication

0 All accessed function bytes were zero.

1 Nonzero function byte was accessed before the last

argument byte was reached. | oo

2 The nonzero function byte accessed corresponds to Lhe
last argument byte.

Figure 20.5 Condition Code Settings for TRT Instruction

As an example suppose we are to scan a string of 80 characters beginning

at CARD for punctuation in the form of periods, commas, and apostrophes;

when one of them 1s found, a'branch should be made to P, C, or A respectively,

with the address of the character in Rl. If none are found, branch to NYPUNCT.

First', we will write a program segment using CLI instructions.

LA 19 CARD INITIALIZE CHARACTER ADCRESS

LA 21280 NUMBER OF CHARACTERS TO EXAMINE
TESTP CLI 0(l).C*."* CUMPARE TO PERIOD

BC 8¢P BRANCH IF FOUND

CLI O{1),C*,* COMPARE TO CCMMA
8C 8,C BRANCH IF FOUND
CLI O(l),Coree COMPARE T O APCSTROPHE

8C 8A BRANCH IF FGUND |
LA l1:1(0,y1) UTHERWISEINCREMENT CHARACTER ADDRESS BY1
8CT 2+ TESTP CGUNT AND. LGCGCP

8C 15, NCGPUNCT TAKE THE BRANCH IF NONE FOUND

The TRT instruction allows us to do the same processing much more rapidly

but at a cost of more memory space.

SR 242 CLEAR RZ TOBE USED AS AN INDEX

TRT CARD{80),TBL SCANFUR PUNCTUATION

- 8C 8 y NCPUNCT SRANCH IF NONE FOUND

BRCH BC 15:8BRCH(2) USE FUNCTION BYTEASINDEX FUR BRANCH
8C 15,P PERIUD

BC 15,C CUMMA

BC 15,A APUSTROPHE

TEL oC {Ce ?)X*00%,X*04?
DC (CYP *~C?.*=1)X200",X%08"
DC (COP 0CP 0-1)X*00%,X0("
DC {255—-Crerre)xagQe

The three nonzero function bytes are located in the positions of the table

which correspond to the values of the EBCDIC representations of the characters

20-12

being sought; the nonzero values are multiples of bso they can be used to

index the branch instruction at BRCH, which could also have been written

BC 15,%(2) . If the conditional branch to N@PUNCT had been omitted,

the program could have gone into an infinite loop at BRCH.

To give a final example of the use of several of these SS instructions

to process variable-length data, suppose we are given a string of charaditers

at NAMES which contains some unknown number of names separated by commas

and terminated with a period. Our first task 1s to construct a table at

LIST of fullword addresses of the first character of each name; the first

byte of each address will contain the number of characters in the name (which

must therefore be less than 256 letters in length), and when the table 1s
complete the number of names encountered should be stored in the fullword at

NBERWMS. To protect against omitted punctuation or other errors, branch to
LONGNAME if no punctuation is found within 256 characters of the start of
a name.

SR 393 R3 CONTAINS INDEXF O RLIST

LR 293 CLEAR FUNCTICNB Y T ESWITCHINRZ2

| - LA Lys NAMES INITIALIZE SCAN ADDRESS
SCAN LR 491 SAVEINITIAL CHARACTER ADDRESS IN R4

TIRT 0(25641) TRTBSCANFORPERIOD OR COMMA
BC 8s LUNGNAME BRANCHIF SOMETHING FUNNY HAPPENED

ST 4oLIST(3) STURE ADDRESS O FNAME IN LIST

SR 194 CUMPUTE NAME LENGTH

STC LoLIST(3) STOKE LENGTHOF NAME INFIRSTBYTE

LA 3y4(0,3) INCREMENTLIST ADDRESS

LA lel(4,1) MUVE ADDRESSTOSTARTOF NEXT NAME

BCT 29 SCAN BRANCH IFA COMMA WASENCOUNTERED
SRL 3.2 IFPERIUDy NO BRANCH. COMPUTE AND STORE

ST 3 9sNBRNNMS NUMBER OF NAMES FCUND

TRTB8 . OC (CP.)X2Q00%,X*0Ql* FUNCTION = 1 FOR PERIOD
DC (Coy 9=C,9=1)X'00'yX%02°% . FUNCTION =2FQR COMMA
DC 1255-C’ 9?) X¥00° LERU OTHERWISE

NAMES OC CY*BROWNyGREEN yWUNKA yOF STRAND y JONES y SMEDLEY DOE APPLE?
CC C*9DOEsSMITHWICK SUFTNARD y SMITH yDOELFUL yJONES yLURP.?

FLAG. 0S C

NERNMS OS F

LIST DS 50F

20~13

The only unusual feature of the above program segment is in the use of the

function byte as a branching switch; 1f a period 1s encountered, the contents

of R2 will be 00000001ae and the BCT instruction will not branch.

Suppose now that the list of addresses 1s to be sorted so that the names

pointed to will be addressed in alphabetical order if the addresses are taken

in succession beginning at LIST. We will sort by making repeated passes over

the list, making pelrwise comparisons among the names and exchanging addresses

when they are not in order, and terminating when fo exchanges have been meade

on one full pass aver the list.

L 0+ NBRNMS GET NUMBER OF NAMES |
BCTR 040 MINUS1ITOGIVENUMBERUGFCOMPARISONS

START iR 1,0 INI TIALIZE COMPARISGN CCUNTYER
CA 25LIST INITIAL ADDRESSINLISTOF ADDRESSES

MV] FLAG,0 SETFLAG TO SHOW NO EXCHANGES YET

'GETACR L 3¢0(0,42) 1.3} ANADDRESS FROM THE LIST
L 4+4(0,42) AND THE NEXT HIGHERO N E
CLC 0(25643),0(4) CUMPARE THE: NAMES

8C 12 ,NOCEXCH BRANCHIFIN CORRECT ORDER ALREADY
ST 3»4(0,2) UTHERWISE EXCHANGE ADDRESSES IN.LIST

3 ST 490(0,2)
MVI FLAG, 1 INDICATE THAN A N EXCHANGE OCCURRED

NCEXCH CA 294042) = INCREMENT ADDRESS LISTPOINTER

8CT l1,GETADR JUMP TO 00 ANCTHER COMPARISON
T™ FLAG, 1 NUWg SEE'IF ANY EXCHANGES WERE MADE

BC 1, START IFYES BRANCHTO M A KE ANOTHERP A SS

In doing the name comparison above, we have relied on the fact that the

punctuation character at the end of a name has an EBCDIC representation of

smaller value than that of letters -- this state of affairs 1s often expressed

“by saying that special characters are lower in the EBCDIC collating sequence

(Che natural ordering implied by the value of the character) than letters.

Thus "SMITH, " will compare smaller than "SMITHW", and shorter names will

sort ahead of longer ones with the same beginning letters. If two identiaal

names are found, the comparison will either branch on equality and no

exchange will be made, or the inequality will be determined by whatever

the characters in the following name happen to be; the addresses of the

identical names wilstill be adjacent in the sorted list.

Finally, suppose we are required to place the names in alphabetical

order in a string beginning at S@RT, again separated by commas and terminated

with a period.

20-14

L 1sNBRNMS COUNTER FORNUMBER OF NAMES"
i LA 22LIST RZ CUNTAINS ADDRESS OF CURRENT LIST ENTRY
} SR 0.0 ROWILLCONTAINLENGTHCF NAME

LA 4, SORT-1 R4éwliLl HAVE ADDRESS CFQUTPUT NAME

ACRCGUT L 3¢0{(0,2) ot? ADDRESS f£—-RUM LIST
XC 0e0({0,2) VET LENGTHBYTE FROM TABLE

] STC Oy MOVE+1 STUREINM V C LENGTH FIELD
J LA 441(094) MUVEADDRESS T O START OF NEXT NAME

| MCVE MVC 0(0y%),0(3) MUVE NAME INTC CUTPUT A RE A
AR 490 FURM ADDRESSCFFOLLOWING PUNCTUATION

| MV] 0(4),C*,? STURE COMMA AFTER NAME

] LA 294{(0,2) INCREMENT ADCRESS OF LISTITEM
j BCT 1 yADRCOUT Cuuhd, orRANCHTG GET NEXT NAME ADDRESS

MV U{4i,0%,° aPla we on S51 CCMMABY A PERIOD

| In this portion of the program, the punctuation after each name was moved

with the name, but a comma was stored in all cases because the period after

the last name at the end of the original string was likely to appear in a

different position in the final output. Two things should be noted in the

MVC 1nstruction: firs%, the explicit length specification of zero is a

convenlent notation for indicating that the actual length to be used is a

variable quantity to be specified at execution time; and second, since the

- true length of the name 1s stored in the Length Specification Byte, one

additional byte (the punctuation) 1s moved.

20-15

hat XN] a
EI
ETT
i ; LET

FMP

——

| 21. THE EXECUTE INSTRUCTION

The execute instruction is one of the most unusual In the System/360

instruction repertoire, eincc it allows the programmer to specify that the

execution of another instructian should be performed. I§ is en RX-type
instruction with mnemonic EX which works as fellows: |

1. The effective address is computed, and the ry digit of' the EX inetruction
is saved.

2. The instruction at the effective address in memory (called the subject
instruction) is placed in the Instruction Register (IR); note that the

IA in the PSW is unchanged, and still contains the address of the

inetruction folléwing the EX.

3. If the new instructionin the IR is another EX, a program interruption

~ -"occurs; we shall see shortly that there 1s a good reason for this,

4, If the ri digit which wes saved is zero, proceed to step 5. Otherwise,

the rightmost byte of Rri is ORed into the second byte of the IR;

Rr: remains unchanged.

5. The (possibly modified) subject instruction in the IR is now decoded

and executed as 'though 1t were the original instruction fetched from

memory.

First, consider a few examples of the use of EX in which the ri; digit

1s zero, 80that no ORing takes place in the IR.

(1) Store: at C the quantity 2*C(A)-C(B), where A and B are fullwords.

SR ls1 CLEAR INDEX TOO

“CA . 294 INCREMENT =449 LENGTH OF EXECUTED INSTNS

LA 3412 COMPARAND = 12

EX EX 0, INST(1) EXECUTE AN INSTRUCTION

BXLE le24EX INCREMENT BY4AND LOOP

~ INST L Ooh LOAD RO FROM A {4-BYTE INSTRUCTION)
AR 0,0 DOUBLE C{RO) (2-BYTE INSTRUCTION)
NOPR 0 PADDING INSTRUCTION 2~BYTE INSTRUCTION)
S 0,8 SUBTRACT c (8) {4~BYTE INSTRUCTION)
ST 0.C STORE RESULT (4-BYTE INSTRUCTION)

21-1

This program segment performs a simple four-instruction calculation in a

roundabout way; the list of instructions at INST could of course be executed

quite independently of the first five instructions, giving the same result

much more rapidly. It illustrates a way to execute instructions which are

"out-of-line" and not directly in the normal stream of program execution.

(2) Suppose we wish to add three fullword integers stored beginning

at Q, and branch to NOERR, ERRl, or ERR2 respectively if Q, 1, or 2

overflows occur.

SR 212 CLEAR OVERFLOW COUNTER

L 0,Q GET FIRST INTEGER

A Oe Q+4 A DD SECONDINTEGER

BC 144%+8 BRANCH IF NO OVERFLOW
LA 2v4 INDICAYE ONE OVERFLOW

A 0,Q+8 ADD THIRD INTEGER

BC 14,%+8 BRANCH IF NO OVERFLOW

LA 294(0,2) INDICATEANOTHER OVERFLOW
EX Oe¥*+4(2) EXECUY E ABRANCH INSTRUCT TON
8C 15yNOERR O-ERROR BRANCH

8C 15+ ERR] 1-ERROR BRANCH

BC 15,ERR2 2-ERROR BRANCH

In this example, the executed instruction will be one of three unconditional

branches: since this results in the IA being changed, the next instruction

to be executed 'will be located at the branch address, as expected.

(3) Suppose we are required to place in R6 the address of some quantity

in memory, and that the desired address 1s known only to be the effective

address of some RX instruction. To complicate matters, suppose further that

the addressing calculation implied by the RX instruction could make use of

any register but Rlt and R15; we will assume that R15 is currently being

used as a base register and R14 contains the address of the RX instruction

in question. The technique to be used here will be to construct a LA

instruction in memory with the same index, base, and displacement fields as

the RX instruction, and then execute that instruction.

MVC BLDLA(4),0(14) MOVE RX INSTRUCTION TO WORK AREA

NI BLDLA+1,X'0OF CLEAR OLDRIDIGITPOSITION
Ol BLDLA+1,X?60° SETR1IDIGITTO 6

MVI BLDLAX'41" INSERT*LA*OPCODE INTO INSTRUCTION

EX O,BLDLA EXECUTE THE CONSTRUCTED ‘LOAD ADDRESS’

- - R6 NOW CONTAINS THE DESIRED ADDRESS

BLOLA DS 2H 4 BYTES ON HALFWORD BOUNDARY

21-2

The above instruction sequence changes noregisters (even though RO was

avallable) and illustrate6 a technique that can be used when all register

content6 must remain untouched.

More powerful use can be made of the EX instruction when its rp digit

is not zero, implying modification of a part of the instruction placed in

the IR. For example, suppose we wish to move to LINE a message whose address

and length are in R8 and R9 respectively, a6 in example (4) of Section 20.

BCTR 9,0 DECREASE LENGTH SPECIFICATIONBY1
EX 9,MOVE EXECUTE THE MOVE INSTRUCTION

MOVE MVC LINE(O),O0(8) EXECUTED INSTRUCTIONy LENGTH=0

In this case the Length Specification byte is inserted by ORing into the

groper position in the IR, which has been preset to zero by an explicit

length specification of zero in the MVC instruction. An advantage of this

method is that no modification is made of the instruction in storage.

A6 another example, suppose We wish to branch to YES if the rightmost

byte of R3 contains 00011111~.

- EX 3,CLI EXECOTE THE COMPARISON
8C 8yYES RRANCHIF EQUALITY ISFOUND

CLI CLI CHECK, 0 EXECUTED INSTRUCTION

CHECKD C BeoOO11111"? COMPARISON QUANTITY

This could also be done by the following method, which modifies storage

but does not use an EX instruction.

STC 3, TEMP. STORE THE BYTE TO BE TESTED
CLI TEMP oX*1F? COMPARE TODESIRED PATTERN
BC 8s YES BRANCH IF EQUAL

YEMP ~ DS C

(4) Store at T the sum of the contents of registers RO through R10.

LA 11,10 COUNT INR 11

COOP EX 11,ADDER EXECUTE THEADD INSTRUCTION
BCT 11,L00P DECREASE COUNTER AND REGISTER DIGIT
ST OT STORE SUM AT T

ADDER AR 0,0 R2DIGITMODIFIEDIN EXECUTION

21-3

The rg digit of the AR instruction is modified in the IR to contain values

which run from 10 down to 1. In practice it is relatively rare that EX

instructions are used to modify register specification digits 1n executed

instructions.

As a final example, suppose R5 contains tin unknown integer which specifies

a number of bytes to be moved from a string beginning at A to an area whose

address is contained in RT.

LTR 595 CHECK NUMRER OF BYTES T O B E MOVED
BC 12,FINIS EXIT IFNOT GREATER THAN ZERO

LA leA Rl CONTAINS * FROM’ ADDRESS

TEST Cc 5¢=F 1256" SEEIF BYTE COUNT EXCEEDS 256
BC 4yLAST I NOT, DO LAST MOVE
MVC 00256,7),011)MOVE 2 5 6 8YTES

LA 19256(0,1) INCREMENT ‘FROM’ Ay ASS
LA 79256047) INCREMENT *TQO° ony SSS Se=F 1256" DECREASEBYTE COUNT BY 256
BC 7rTEST IFNOT ZERO, TESTFOR FINISH
BC BeFINIS |F COUNTISZERO,ALL DONE

LAST BCTR 5,0 DECREASE BYTE COQUNTBY1 FOR EXECUTE
EX SyLMVC MOVE LAST PART OF CHARACTER STRING

FINIS = - ~-

LMVC MVC 0(0,7),0(1) MOVES LAST ‘PART OF BYTE STRING

The underlined operands in the instructions listed in Figure 21.1

indicate the modifiable portions of each instruction type when it is. the

subject instruction of an EX. The last form of operand field entry far £8

instructions, in which two length Specification Digits are provided, will

be discussed later.

Type Operand

RR Tyre

Rs ri,r3,dz(ba)

r1,d2(hz)

ST di(ba), Iz
SS di(L,by),d2(bz2)

d1(Ly,bz),d2(La,b2)

Figure 21.1 Modifiable Portions of Subject Instructions

21-h

Two final comments should be made concerning the execute instruction.

First, the reason that an EX may not be the subject instruction of an EX (as

stated in step 3 of the description above) .is that it would be possible for

the-CPU to remain in a Fetch-Decode Loop (comprising steps 1 through 4) ir

the EX instruction tried to execute itself, or 1f a sequence of EX instructions

was circular. This is a very awkward situation to get the CPU out of, and

1s avoided most simply by not allowing the execution of Execute instructions.

Second, the EX instruction is sometimes treated as a branch instruction by

saying that 1t causes an unconditional branch to the subjet¢t instruction

followed by an unconditional branch back to the instruction following the

EX, unless the subject instruction is itself a successful branch. This

incorrectly describes the contents of the IA, which remains at the address

of the instruction following the EX, and obscures the method of modificttion

of the second byte of the subject instruction, which 1s occasionally described

only by stating "the instructionis modified, but remains unchanged in memory’.

While the above discussion involving the IR may not describe precisely the

© method used in a given model of System, 360 for handling Execute instructions,
it provides a correct description of the effect of the instruction.

21~5

A

