CS139 LECTURE NOTES
PART |
SECTIONS 1 THRU 21

PRELIMINARY VERSION

BY

J. EHRMAN

Y74

$3.00

1. INTRODUCTION

These notes are meant to provide an introduction to System/3&) which
will help the reader to understand and to make effective use of the
capabilities of both the machinery and some of its associated service
programs. They are largely self-contained, and in general the reader should
need to make only occasional reference to the "System/360 Principles of
Operation" manual (IBM File No. 8360-01, Form A22-6821), and to the
"Operating System/360 Assembler Language" manual (IEM File No. S360-21,

Fom C28-651k4).

A digital computer can be considered from a variety of viewpoints; for
convenience we will mention five possible ones, each of which treats the
inner workings of the computer in successively less detail. To an engineer
concerned with the design of its logical circuits, a computer might be
considered basically a collection of devices for controlling and ordering
the flow of electrical impulses. At another level a person concerned with
methods to be used to make these logical circuits perform certain operation8
such as division might treat a computer as a collection of registers, switches,
and control mechanisms which, when provided with the appropriate data, are
to perform a series of steps leading eventually to the computation of a
quotient. At the next level one might consider the basic operations of a computer
to be those operations which perform a single arithmetic operation, a
simple data movement, or a test of a single piece of data. Another viewpoint
(typical of "higher-level languages" such as FORTRAN, ALGOL, and PL/l)
is to consider that the basic operations of interest are the movement of
blocks of data, the evaluation and assignment of mathematical expressions,
and the control of counting and testing operations. At yet another level,
as in certain applications such as traffic or production simulation, data
reduction, and network analysis, the computer is considered as a device

which accepts information in a form which closely approximates that of the

1-1

problem under consideration, ead produces output directly applicable to
that problem.

Each of these ways of viewing a computer is of course not especially
distinct from its neighbors. In this treatment we will be primarily concerned
with the middle level, namely that of considering the basic operations, or
instructions, that we want the computer to perform to be single arithmetic
or logical operation*, simple data trensmission operations,. etc. We will
from time to time have occasion to consider the canputer from "neighboring”
viewpoints: in some circumstances it will be useful to know some details of
the internal sequencing of operations sueh as multiplication and division;
at other times it will be convenient to consider instructions to the machine
which will perform operations in a larger context than that ordinarily
considered.

This level of programming which will be our primary concern is usually
known as "machine language" programming; however, since the process of
actually getting the desired instructions into the computer requires the
aid of a number of other programs, the first of which is called an assembler,
the terms "assembler language" programming or "assembler coding" are also
used. Thus the service program of most concern will be the Operating
System/360 Assembler; other f)rograms of interest will be the Linkage Editor
and the Resident Supervisor, each of which will be considered in the

appropriate context.

2. BINARY AND HEXADECIMAL NUMBERS

System/360, like most other digital computers, makes heavy use of
binary numbers for internal arithmetic. Because digits in a base two
representation can take on only the values 0 and 1, it is relatively simple
to build a mechanical or electrical device which represents the digit. For
example, a 1 digit may be represented by the presence or absence of a
current through a given circuit component or by the presence of a positive
or negative voltage at some point. Because facility with the use of binary
numbers 1is fundamental to an understanding of-the basic operation of
System/360, it is useful to summarize the properties of the binary number
representation. For the time being, all numbers will be assumed to be integers.

In base ten, when we write a number such as 1735 we mean the quantity
1x 10% + 7x 102 + 3 x 10" + 5 x 10°.

That is, each digit position as we move to the left is weighted by another
power of the base, ten. Similarly, when in binary arithmetic we write the

number 11010 we mean
1x2* +1x2°+0x2%2+1x2+0x2°

which of course is not the same as what is meant by the decimal number
11010, where powers of ten are understood. In fact, the binary number 11010
is the representation (in the number system with base two) of the decimal
number 26, which is obtained simply by performing the sum in the above
example.

To clarify which base is intended when we write numbers, it will be
convenient to attach a "subscript" at the right end of the number to

indicate the base being used:

2610

110102, 110 = 1ag,

lOlO 8 10 .

10102, 10002

As the decimal numbers being represented become larger, the number of
binary digits required becomes larger also.

Thus,

99910 = 11111001112.

It is therefore convenient to find a more compact notation for binary
numbers. If we consider groups of four binary digits at a time, the possible
decimal values that can be represented run fram zero to fifteen, If we then
choose to represent each of these groups by the digits 0, 1, 2, 3, 45, 6,
7, 8 9, A, B, C, D, E, F, we can establish the following table of correspondences:

Binary Digits Decimal Value Base 16 Digit
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

TABLE I.

Hexadecimal, Decimal, and Binary Digits

2-2

We will call the base sixteen digits in the third column hexadecimal
digits, and will generally use them in situations when we have occasion to
refer to binary numbers. As before, a "subscript'" of 16 will be used to

indicate that the given set of digits is to be understood to have base 16:

2610 = 110102 = lA1e, 2616 = 1001102 = 3810, 110 = 1z = 1i6,
1010 = 10102 = A;g, 1002 = 810 = 816, 10010 = 6416 = 11001002.

Converting numbers between binary and hexadecimal representations can
be seen to be quite simple: to convert a hexadecimal number to binary,
simply substitute for each hexadecimal digit the four binary digits it
represents; to convert a binary number to hexadecimal, group the binary digits
four at a time starting from the right, and substitute the corresponding
hexadecimal digit. For example:

DBBis = 1101 0101 10112, (hexadecimal to binary)

11 1110 1002 = 3EBi6. (binary to hexadecimal)

In the second of these examples it was assumed that two extra binary

zero digits could be added at the left end of the number without affecting

its value; thus we can write

1lig = 100012 rather than 0001 00Qlz.

Conversion between decimal and hexadecimal representations is somewhat
more cumbersome, but if a conversion table such as the one in the Appendix
is not available, the following method is usually sufficient for hand

calculation.

In the positional notation we are accustomed to using, a string of
digits d_ @ .. .dad dad is the representation in some base D of the
n nil 2 1 O
number X:

doD® + d;Dt + asp® + . . . + 43D .

X
Il
r\/jz
o
WE
-
Il
=

2-3

Suppose we want to comvert from this representation in bare D to the

representation in a new base B!

X = i kak = boB® + byB' + baB® 4+ ... 4+ mel.
k=0

The known quantities are the old and new bases D and B, emd the digits a
of the old representation; them to find the digits bk in the new representation,
the following scheme is used.

Divide X by B; save the quotient, end the remainder is bo. That this

is so can be seen from the definition of the quotient end remainder:
X = Remainder + BX Quotient = bo + BX [by + baB + bsB® + ... + mem-l]-.

Divide the saved quotient by B; save the new quotient, and the new remainder
is b1. Continue this process until a zero quotient is obtained, and the
successive remainders are the digits bo, b1, . . . bm; note that they were

obtained in order of_increasing significance.

Examples
1. Convert 1910 to base 2.
4 2 1 0
2)19 2)9 2% 2)2 2)1
—— -5 - 2 0

bo =1

by =1 ba= 0 bs =0 be=1

Hence, 1910 = 10011lz.

2. Convert 100050 to base 16. (Note that the conversion arithmetic is

done in base 10.)

62 3 0
16)1000 16)62 16)3
ggg 48 0
bo = by = 1F or Eis bz =3

Hence 100010 = 3E8;6.

2-k

Convert 62710 to base 9.

6 7 0
9)627 9)69 NT

621 63 0
bo = 6 by = 6 bz =7

So that 62710 = T669.

Convert T766s to base 7. (This is simple once you've memorized the
multiplication table in base 9, which is the base used for the

conversion arithmetic.)

108 13 1 0
T)766 7)108)13 L
162 103 0

bo = & by =5 ba =5 b = 1

Thus 766s = 1554, .

This can be done in more roundabout (but comprehensible) fashion by

converting to base ten first and then doing the arithmetic in decimal, :

T669 = T x 8l + 6 xy+ 6 =567 +54+ 6 =62T0

89 12 1 0
7627 7)89 712 (o
623 _84 0
bo = & b1 =5 bz _Is5- bz = 1

So that Té6s = 15547 again.
Convert 1413s to base 10. This is most simply done by expanding the
positional notation:

14135 = 1x 125 + 4 x 25 + 1 X 5 + 3 = 23310.

Alternatively, using the fact that 1010 = 20s in base 5 arithmetic,

43
201513 2 0
130 20)53 20)2
113
110 _40 0
bo = 3 by = 3 b = 2

giving 14135 = 23330.

2-5

6. Convert 3E816 to base 10. 1In this case it is usually simplest to use
the positional notation used earlier:

3E8;6 = 3 x 16% +14x 16* + 8x 16°,
and then this sum can be evaluated in decimal. Thus we find
381 = 3 X 256 + 14 x 16 + 8 = 768 + 224 + 8 = 100030,

This type of conversion is considerably simpllfied by the use of the
table of multiples of powers of 16 in Table II or (for small numbers)
by the use of the conversion table.

Discussion of binary arithmetic -- addition, subtraction, multipli-
cation, and division -- will be deferred until later.

We will use several abbreviations reqularly: a bit will mean a
binary digit, and we will use_hex as short for hexadecimel.

L e

Hex

x16*

Digit x1 X167 x16> x16* x16° x168 x167
1 1 16 256 4 096 65,536 1,048,576 16,777,216 268,435,456
2 2 32 512 8,192 131,072 2,097,152 33,554,432 536,870,912
3 3 48 768 12,288 196,608 3,145,728 50,331,648 805,306,368
4 4 64 1024 16,384 262,144 L 194,30k 67,108,864 1,073,741,824
5 5 80 1280 20,480 327,680 5,242,880 83,886,080 1,3%2,177,280
6 6 96 1536 24,576 393,216 6,291,456 100,663,296 1,610,612, 736
7 7 112 1792 28,672 458,752 7,340,032 117,440,512 1,879,048,192
8 8 128 2048 32,768 52k ,288 8,388,608 134,217,728 2,147,483,648
9 9 144 230k 36,864 589,824 9,437,184 150,99k, 9kk 2,415,919, 104
A 10 160 2560 40, 960 655, 360 10,485, 760 167,772,160 2,684,354 ,560
B 11 176 2816 45,056 720,896 11,534,336 184,549,376 2,952,790,016
C 12 192 3072 49,152 786,432 12,582,912 201,326,592 3,221,225,472
D 13 208 3328 53,248 851, 968 13,631,488 218,103,808 3,489,660,928
E 14 22k 3584 57,344 917,504 14,680,064 234,881, 02k 3,758,096,38k4
F 15 240 3840 61,440 983,0k0 15,728,640 251,658,240 4, 026,531,840
TABLE II.

Multiples of Powers of 16

3. STRUCTURE OF SYSTEM/360

It is usual to describe the structure of most digital computers in
terms of four major components: memory, arithmetic, control, and input-
output units. It should be understood that an actual machine may not
have components which can be separately identified in this way, but that

for conceptual purposes it is possible to think of them as distinct units.

=1 Memory

Unit ,
2
M Zbés
Arithmetic Input-Output
Unit Instructions Unit
N 7
\ ;q
“\C, 7/
\01]2&1‘ V)(J,go'\)
N 02 g&
N Control O

= - Unit <

Figure 3.1 Structure of a Typical Computer

The solid arrows in the figure represent schematically the possible paths
of data flow among the various units, and the dashed arrows indicate the
flow of control signals. As indicated, the instructions for the control
unit are contained in the same memory as the data used by the arithmetic and
input-output units; this property is what gives modern digital computers
their flexibility and power -- the computer can, on the basis of certain
computed results, modify the instruction sequences which control the way it
will treat other data.

In-the System/360 computers many of the functions performed by the
control and arithmetic units use the same internal components, so that it
is easier to make no special distinction between the two and simply call

the combination the Central Processing Unit, or CPU.

3-1

Memory Date

Unit
1(’
Instructions Input-Output
and Data Unit
i .7

-

CPU |- - =0

Figure 3.2 Structure of System/360

- These units will be described in varying detail: the memory and
arithmetic unit are of major concern to the machine language programmer;
certain features of the control unit will be examined closely while others
will be ignored for the time being; the input-output unit, which is simply
a term which collectively denotes devices such as card readers, printers,
magnetic tape units, etc., will be described only as necessary to make use
of the computer in certain elementary ways.

The terminology introduced here is by no means fixed in the literature
and everyday usage of the computing profession. For example, it is common
to refer to magnetic drums as memory devices even though they are accessed
through what we have called the Input-Output Unit. What we will call
"memory" can be more accurately described by calling it the High-Speed
Random Access Magnetic Core Memory, but the economy of a single term is
apparent.

Memory

The basic unit of data in System/360 is a group of eight bits called
a byte. The bits in a byte are by custom numbered from 0 to 7, beginning
on the left with the numerically most significant digit. The definition
of the "left" side of a byte will become clear shortly.

11110 |1 [0 o] 11 0
0O 1 2 3 + 5 6 T

Figure 3.3 A byte containing the 8 binary digits 11010010

3-2

The memory unit is arranged so that it will hold a certain number of bytes
in such a way that each byte may be accessed as rapidly as any other. The
bytes may be considered to be individually numbered in order, beginning at

zero; the number associated with each byte is its address or location in

the memory unit. The memory may be thought of as a linear string of bytes

arranged in order of increasing addresses.

'address
701 702 703 704 5 706 707 708 709
i byte |byte |byte |byte |byte |byte [|byte [|byte]byte ;

Figure 3.4 A portion of memory

Many of the machine instructions which refer to bytes 'in memory"
(which is an abbreviation for "in the memory unit") actually refer to a
group of consecutive bytes. In such a situation the group, or "operand",
is always addressed by referring to its leftmost member, namely the byte
with the lowest address in the group. Furthermore, certain instructions
require that the address of a group of bytes (which, as stated, is the
address of the leftmost byte) also be a multiple of the length of the
group: the possible values for these instructions are 2, 4, or 8, and in
such cases it is usual to refer to the groups of bytes whose addresses and
lengths satisfy this condition as half'word, fullword, and doubleword data,

respectively.

BE7 OE8 89 8EA 8EB 8EC 8ED 8EE 8EF 8F0 8F1 8F2 8r3

k- halfword—|- halfword—s§e halfword— |«halfword—je- halfword-k- halfword- |
I « fullword - I <« fullword - . < fullword - |

I « doubleword - '

Figure 3.5 A portion of memory

3-3

Note that if (for example) a halfword operand (that is, a group of
two bytes whose address is divisible by 2) were specified for some operation,
and the address of that 16-bit operand were 8EAis, then bit 0 of the byte
at 8EBe would be considered to follow immediately after bit 7 of the byte
at 8EAi;g. It is in this sense that bit 0 is taken to be the 'leftmost'
bit of a byte: 1t follows (for certain operations) immediately after bit 7
of the byte at the next lower memory address.

The data contained in bytes or groups of bytes in memory can be
manipulated in many different ways, depending on the intentions of the

programmer. These will be discussed later.

Central Processing Unit

There are three things in the CPU of interest to the programmer: the
general purpose registers, the floating-point registers, and the Program
Status Word. There are sixteen general purpose (or simply general) registers,
numbered from zero to fifteen, each one of them being 32 bits (or 8 hex
. digits or 4 bytes or 1 fullword) in length. They are represented schematically

-in the figure below.

|(. 32 bits numbered 0 to 31 -l
0 31

Figure 3.6 A Single General Purpose Register

RO

R2 R 3

R4 RS

R6 RT

R8 R9

R10 R1l
Rl2 R13
R14 R15

Figure 3.7 General Purpose Registers

3-4

Figure 3.7 is arranged with the registers in pairs, the left being
an even-numbered register and the right being the next higher odd-numbered
register. This 1is because certain of the machine operations (such as
shifting, multiplication, and division) require the use of a pair of
registers, and in such cases it is always such an even-odd numbered pair.
We will have many occasions to refer to the general registers, so that it
is convenient to introduce a short notation: we will write Rn to refer to
general register n, so that RO means register 0, R14 means register 14,
and so on.

The presence of floating-point registers in the CPU is an option for
certain models, but we will assume that the user of the machine we are
discussing writes his programs for a computer that includes the floating-
point feature. There are four floating-point registers, each 64 bits (or
16 hex digits or 8 bytes or 1 doubleword) in length. They are numbered
0, 2, 4 and 6.

«~ 64 Dbits =-»

FO
F2
F4
F6

Figure 3.8 Floating-Point Registers

In certain circumstances the floating-point registers are used to
contain operands 32 bits long, in which-case they use only the left half of
the register, and the rightmost 32 bits of the registers are ignored; this
will be discussed in the chapter on floating-point arithmetic. As in the
figure above we will use the abbreviations FO, F2, Fi, and F6 to refer to
the four floating-point registers.

In many cases it will be easier to use the term "register" for either
a general purpose register or a floating-point register; which is meant

will be clear from the context of the discussion.

3-5

The Program Status Word (or PSW for short) is not of direct concern in
mos: programming applications, so that we need not be concerned at present
with examining it in detail. The PSW is a double-word (and hence it 1is
actually a Program Status Doubleword, but nobody really cares about the
difference) which indicates in a compact form certain important details of
the operation of a program in the System/360 CHU.

System Mask Key AMWP Interruption Code ¢
0 T8 1112 15 16 31
?ILC cC Pﬁ;’s o Instruction Address ;
32 33 34 35 36 39 4O 63

Figure 3.9 Program Status Word

The various pieces of the PSW (which resides in the CPU, not in memory,
and is therefore pretty much inaccessible) will be explained in various
contexts later. For the present, however, the items of interest lie in the
rightmost 32 bits: the portions denoted "IIC" (Instruction Length Code),
"CC" (Condition Code), and "Instruction Address" (which we will abbreviate
"IA") are the parts of the PSW which will be treated in most detail. The
Condition Code indicates the result of certain operations (e.g., that a sum
is negative) and the two bits of the CC can be tested by certain instructions.
This right-hand portion of the PSW will be of more interest than the first
32 bits for most of the following discussion; the IIC and IA will be dis-
cussed in the next section. The reader is cautioned that there will be
omissions in the discussion of the PSW until the treatment of interruptions,
where the subject will be covered in greater detail.

Input-Output

The process of data transmission between the memory and external devices
such as card readers, printers, card punches, magnetic tapes, magnetic drums,
disc files, etc., is handled in System/360 by channels. These are capable of

transmitting bytes of data in such a way that the CPU can continue with the
execution of a processing program at the same time that the channel is
moving information to or from a different area of memory. The problems
involved in synchronizing the transmission of such data with its use by

the processing program in the CPU are quite complex and will be avoided for

the time being, but will be touched upon later during the discussion of
interruptions.

4. INSTRUCTIONS (I)

As was indicated in the diagrams of the "structure" of a computer in
the previous section (Figs. 3.1 and 3.2), the instructions obeyed by the
computer are held in memory along with the data to be processed. Imstructicus
in System/360 can be 2, 4, or 6 bytes long, depending on what the placement
of the data to be operated on happens to be, and on what the instruction
causes to be done with the data. Instructions are always aligned so that
the leftmost byte is on a halfword boundary:- that is, an instruction
address must always be divisible by two. Otherwise, it doesn't matter, for
instance, that a 4-byte instruction begins halfway between two fullword
boundaries.

The actual process of performing the instructions in a program may be

visualized as in the following figure.

FETCH > DECODE EXECUTE

A\ I

Figure 4.1 Instruction Cycle

In the "Fetch" portion of the cycle, the CPU causes the instruction
in memory which begins at the byte whose address is contained in the rightmost
2k bits of-the PSW (the Instruction Address or IA) to be brought into the
CPU and placed in an internal holding register where it may be examined.
Though this internal register is not accessible to the programmer, we will
from time to time make reference to it, so we will simply call it the
Instruction Register, or IR for short. There is a simple way for the CPU
circuits to know the length of an instruction and therefore how many bytes

to bring from memory; this will be explained at the end of this section.

4-1

To complete the Fetch portion of the cycle, the CPU adds the length in bytes
of the instruction now in the instruction register to the IA in the BW, so
that it will contain the address of the next instruction to be fetched when
the current instruction has completed its execution. This means of course
that instructions are packed tightly in memory; there are no leftover bytes
between instructions.

To decode the instruction, the CPU examines the bit pattern of the bytes
in the IR to see what action is intended. Since (1) the bytes were brought
from memory and (2) the memory contains both data and instructions, it is
quite possible that the bytes brought to the IR were intended by the programmer
to represent data and not instructions. The CPU, however, has no way of
knowing this in advance; it simply goes to the memory address given in the
IA portion of the PSW and puts those bytes into the IR to be interpreted as
an instruction. If this is what was intended, well and good (remember that
in the beginning of Section 3 it was noted that the ability to treat instruc-
tions as data is what gives a computer its power); otherwise strange things
can occur. Because not all of-the possible bit patterns in the IR represent
"legal" instructions (i.e., actions the CPU can actually perform), the
decoding mechanism can occasionally detect a confused situation before too
much damage has been done, and cause the appropriate remedial actions to be
Initiated.

Assuming that the bytes in the IR do indeed contain a valid instruction,
some further actions may be necessary before the decoding is completed, such
as the calculation of addresses of data to be operated on during the "Execute"
portion of the cycle.

It is during this final‘execution phase that the actual operation is
performed. The operation may be a simple one which could, for example,
cause the contents of one general register to replace the contents of
another, or it may involve many intermediate steps of complicated logic or
arithmetic. If no errors are detected during the execution phase (such as
attempting to divide something by zero), the CPU then begins the cycle again
by returning to the "fetch" portion of the cycle. It should be noted that

the time required for all this is very small even for a relatively slow
computer: the entire cycle takes only millionths of a second, so that with
this tremendous rapidity it is possible to perform calculations far too
laborious to be done by hand.

The instructions which can be executed by the System/360 CPU can be
grouped into five general classes:

1) Register-to-Register (RR),

2) Register to Indexed Storage (RX),

3) Register-to-Storage (RS),

4) Storage-Immediate (SI),

5) Storage-to-Storage (SS).
The letters RR, RX, RS, SI, and SS are abbreviations which will be used
regularly to indicate the class of instructions being discussed; the specific

instructions belonging to each class will be treated in later chapters.

RR instructions are always two bytes long.

RR Operation Register
Code Specification
0 78 15
RX, RS, and SI instructions are always four bytes long.
Rx Operation Register Addressing
— Code Specification Syllable
0 78 15 16 31
RS Operation Register Addressing
- Code Specification Syllable
0 78 15 16 31
ST Operation Immediate Addressing
- - Code ~ Operand Syllable
0 78 15 16 31
The RX and RS instruction formats differ only in the interpretation
given by the CPU to the bits in the "Register Specification” byte.
S8 instructions are always six bytes long.
ss l Operation Register Addressing Addressing
_— Code Specification Syllable Syllable
0 78 15 16 31 32 b7

Figure 4.2 Instruction Formats

4-3

It can be seen that the operation code, which specifies what action
is to be performed, occupies the first byte of the instruction. The second
byte contains information necessary to the details of the execution of the
instruction; 1its interpretation differs for instructions in the wvarious
classes. For all instructions except RR instructions an addressing syllable
is used by the CPU to compute the address of an operand in memory; this
process will be discussed in the next section.

The first two bits of the operation code contain the information which
tells the CPU how many bytes are needed from memory to obtain the complete
instruction. Since a minimum of two bytes per instruction must always be
fetched, the CPU can check these two leading bits to tell how many more
bytes are required. The bit patterns aré¢ as shown in the figure below;
the xxxxxx is meant to indicate the remaining six bits of the eight-bit

operation code.

00xxxxxX lexxxxxl 10xxxxx%x 1Ixxxxxx

RR Rx RS,SI SS

Figure 4.3 Bit Patterns for Each Instruction Type

Thus if the first two bits are 00 the instruction is two bytes long;
if the bits, are 01 or 10 the instruction is four bytes long; and if the bits
are 11 the instruction is six bytes long. Before proceeding with the
decoding phase of the instruction cycle, the CPU places the number of pairs
of bytes in the instruction in bits 32 and 33 of the PSW (namely in the
position labeled "Instruction Length Code"). If an error is detected during
the decoding or execution of the instruction, and if the PSW at the time of
the error i1s saved somewhere, then the programmer can determine (by
examining the IA and IIC) what instruction caused the error. (This is of
course precisely what is done; we will note for now that if the IIC were
not saved, it would not be possible to determine the exact location of the
offending instruction, since the location of the next instruction to be
executed is what appears in the PSW and the length of the bad instruction is
variable. This is a subject with many ramifications, to be covered later.)

4-4

5. ADDRESSING

To refer to items in memory such as data or instructions, the programmer
must usually make use of one of the general purpose registers. This is due
to the way the CPU uses the information in an "addressing syllable", which

always occupies a halfword in memory.

Base Register Dieol .
Specification isplacemen
"'5"4- bitS ————— S, “g. 12 bits >

Figure 5.1 Structure of an Addressing Syllable

The 4-bit field at the left of the addressing syllable contains a single hex
digit which can take values from 0 to 15, and which specifies a general
purpose register. The 12-bit field in the rest of the addressing syllable

contains a number called the displacement which can take values from 0 to 4095.

To generate the address or' an operand, the CPU does the following:

Step 1) The 12«bit displacement is put at the right-hand end of a
24-bit internal register called the Memory Address Register
(abbreviated MAR), and the leftmost 12 bits of the MAR are

cleared to zeros;

Step 2a) If the base register specification digit is not zero, then
the rightmost 24 bits of the general purpose register
specified are added to the contents of the Memory Address
Register, and carries out the left end of the MAR are
ignored (the register used is called the base register);

Step 2b) If the base register specification digit Ei_zero, nothing
is added to the MAR (so that RO cannot be used as a base
register).

At this point the quantity in the MAR may be used as the address of an

operand in memory. However, if the instruction is of type RX, a further

5-1

step called an indexing cycle is needed. The second byte of an RX-type
instruction (labeled "Register Specification" in Fig. 4.2) contains two
bpit fields, the second of which is called the index register specification:

= 0Op Code—-+-+-14 bits —>€—4 bits —=»e—————16 bits ———>

To be Index
O1XXKKXX Described Register Addressing
vy : Syllable
Later Specification
0 78 11 12 15 16 o

Figure 5.2 RX Instruction Showing Index Register Specification

Step 3) If the instruction is of type RX,_and tke 4-bit index
register specification digit is not zero, then the right-
most 24 bits of the general purpose register specified by
the index register specification digit are added (again
ignoring carries out the left end) to the contents of the MAR.
The resulting quantity in. the MAR is called the effective address.

(Binary arithmetic will be discussed in detail in Section 7. For the
following examples, it should be sufficient to note that 0 + 0 = 0;
0+1=1+0=1; 1+ 1=0 and carry 1. These examples go into
considerably more detail than is necessary for a working understanding of
addressing, and the arithmetic is Jneluded just for the sake of completeness.
Since addressing will reappear in several later places, don't worry about
absorbing all the fine points immediately.)

Examples

1. Suppose the addressing syllable of an SI-type instruction is [L011§001011010101]
in binary (or in hex) and suppose that the contents of general
purpose register 1lljp 1is
1100 0111 0011 1110 1001 0000 1010 1111 in binary (or CT3EQOAF in hex).

Then the effective address of the instruction is (giving both binary

and hex):
0000 0000 0000 0010 1101 0101 000215 displacement
+ 0011 1110 1001 0000 1010 1111 + 3EQOAF base (from RI11)
0011 1110 1001 0011 1000 01002 3E936416

5-2

Suppose the addressing syllable of the same instruction is .
Then the effective address is 0004681e, since RO cannot be used for
a base.

Suppose an RX-type instruction is R4380A37§468) , and that the
contents of R7is 1234567816 and the contents of R10 is FEDCBA98:e.

(Note that the base register specification digit, namely 7ie,

means that R7 will be used. The instruction chosen for this and
the next two examples would, if execu'ced %y the CPU, cause the
contents of the byte at the memory loce~ina given by the effective

address to replace the rightmost byte of RO.) Then the effective

address is
0000 0000 0000 0100 011C 1009 000468 displacement
+ 0011 0100 0101 0110 0111 1009 + 245678 base (from RT)
0011 0100 0101 1010 1110 QOCO 3L5AE0
1101 1100 1011 1010 1001 100C + DCBAg% index (from R10Q)
+ 0001 0001 0001 0101 0111 Clilge 11157 78 15 effective address

(The carry out the left end is ignored.)
Suppose an RX-type instruction is ﬁﬁB;OOi:i468§_and t&t the contents

of register 7 is as in example 3. Ta 3 the eifective address 1is

0000 0000 0000 0100 0110 1000 200468 displacemant
+ 0011 0100 0101 0110 0111 1000 + _ Ab5678 base
0011 0100 0101 1010 1110 00002 F45AKC - effective address

Suppose an RX-type instruction is f43307§0§468 § and that the contents

of register 7 is as in example 3. Then the effective address 1is

0000 0000 0000 0100 0110 1000 000468 displacement
+ 0000 0000 0000 0000 0000 0000 i- 000000 base
0000 0000 0000 0100 0110 1000 000LE8
+ 0011 0100 0101 0110 0111 1000 + 345678 index
-0011 0100 0101 1010 13110 00002 355AE016 effective address

In this example the values of the base and index register specification
digits were interchanged from those in example k4, so that the indexing
cycle was required in example 5 to compute the same effective address.
Or-the smaller models (30, 40, and 50) of the System/360 series, extra
time is required to perform this additional arithmetic, so that in

some cases it may be worth trying to avoid unnecessary indexing cycles.

5-3

T

In a situation where only one register is used in the calculation of
the effective address (as above, where the base register specification
digit was 0 and the index register specification digit was 7) it is

customary to speak of that register as the base register, even though

it may be the index register in an RX-type instruction. This allows

us to refer to this addressing scheme as a base-displacement addressing

technique.

The effective address in the MAR can have a number of uses, the
primary one being to address operands in memory; it is also used for shifting
and branching (which will be discussed later). However, three further
observations may be made about effective addresses which will be used to
refer to data in memory.

First, the presence of 2k bits in the MAR means that a System/360
computer has the capability of addressing 2%* or 16,777,216 bytes. Now it
will almost always be the case that the model being used will have a
smaller memory, since memory is one of the more expensive parts of the
computer. Thus, suppose (for example) we are programming for a machine with
2'® = 1000016 = 6553610 bytes of memory, and use an instruction which
generates an effective memory address-which is larger than 1000016. Since
this effective address cannot refer to anything accessible to the CPU, some
sort of error-recovery procedure must be initiated; this error condition is

known as an addressing exception, and causes a program interruption to

begin the error-handling sequence.

Second, it was noted in the earlier discussion of the memory that
certain instructions which operate on groups of bytes such as fullwords
require that the address of the leftmost byte be divisible by the length
(in bytes) of the operand. If this condition is not satisfied, another
error condition known as a specification exception is recognized. For
example, the RX-type instruction (58 LoJO} 123] specifies that a fullword

operand is to be transmitted from memory and placed in Rh. Since the

effective address for this case is 0001231s, the proper (i.e., leftmost)
byte of the fullword is not being addressed, so that a specification
exception is recognized during the execute portion of the instruction cycle,

and a program interruption will initiate the error-recovery sequence.

5-4

Third, because the only part of the memory which can be referred to
without the use of a base register is the area with addresses 0 to 4095,0=FFFie,
the programmer will almost invariably be required to refer to operands in
memory with the help of a base register. (One might think that he need
only fit his program into those first 4096 bytes and then not have to worry
about all this base-register trouble, but that area of memory and more will
usually be occupied by the routines which provide error handling, input-
output operations, and the like; it's called "The System". So we just have
to live with it.) This means that if we are to address a byte in memory
at address Q, there must be a base register available (that is, one of
registers 1 to 15) which contains a number between Q and 0-4095, since we
could then generate an effective address of Q by using a displacement
between 0 and 4095. If there is no such number in a register, then the

byte at Q is not addressable. Thus, if all the general registers contain

zero, only the first Log6 bytes of memory are addressable! Usually what
must be done is to place some constant in a register which then allows us
to address the desired region of memory; that is, that register then provides

addressability for that region. However, if the constant itself is in

another portion of memory which is not currently addressable, we are back
to where we started, needing another constant to address the first constant.
In fact, it is possible for the CPU to be executing instructions in a
portion of memory, and the instructions cannot address themselves!

(Remember that the IA is in the PSW, not in a register.) Fortunately,

there are simple solutions to the problems of addressing, and these will

be the subject of several later discussions.

5-5

6. TWO'S COMPLEMENT REPRESENTATION

Up to now we have discussed the binary representation only for positive
numbers, in which it was implicit that any positive integer may be preceded
by an arbitrarily long string of zero digits, which are then ignored. The
representation of negative numbers requires further consideration. To use
a practical case, we will illustrate the discussion by using whole numbers
of length 32 bits, corresponding to the length of a fullword in memory and
of a general register.

To begin with, suppose all of the binary digits of the number being
examined are taken to be the rightmost 32 bits of any positive integer.
Then

0 is represented by 00000000i¢,
1 is represented by 0000000116,
130 is represented by 000000826,
271 is represented by 800000006,
2721 is represented by FFFFFFFF;¢,
27241 is represented by 0000000116, and so on.

Thus, if the number is less than 272 its value can be correctly held

in the 32 bits we have made available, and if it is greater than or equal to
232, some significant bits are lost off the left end. (That is, the value
of the number is represented modulo 232.) There are machine instructions
which allow the CPU to perform addition and subtraction with operands of

this form; -such arithmetic (modulo 232) is called logical arithmetic.

Hence we call this the logical representation of binary numbers, where all

the bits of the operand are interpreted as having "positive weight". (A
"negative weight" for a digit will appear later in discussing negative
numbers.)- That is, if the 32 bits are (from right to left; note that this

temporary scheme is the reverse of the numbering convention introduced

earlier) bo, b1, . . . bzo, bz1, then the value X represented by the digits
bi is 31
X = E bi 21. (logical representation)
i=0

6-1

This representation is the most c-on way to interpret a string of bits.
There are several representations used for numbers which can assume both
positive and negative values, the most common of which are the sign-magnitude,
one's complement, and two's complement representations. Since the last of
these representations is used for most integer arithmetic in System/360,

we will investigate its properties in detail. Actual arithmetic using

binary numbers will be covered in subsequent sections.

The two's complement representation (the name will be explained shortly)
of a positive integer x is (if x satisfies 0 £ x £ 231-1) simply the usual
binary representation with the least significant digit at the right-hand
end; and is the same as the logical representation. The upper limit of
2°%-1 is chosen because it is the largest-integer which can be represented
using 31 binary digits; the remaining 32nd digit at the left-hand end is
zero, and will be used for the sign digit. The two's complement representation
of a negative integer x which satisfies -2 £ x £ -1 is the following:
the leftmost bit is now set to 1 to indicate that the number is negative,
~and the remaining 31 bits are aet to the binary representation of the
positive integer 2** + x, which satisfies 0 £ 2™ + x g 23-1. In effect
we have done the following: if x 18 positive, the sum Zbiél.gives the
value of x, because the leftmost bit, being zero, does not contribute to
the suwm. If x is negative, the sum of the rightmost 31 bits is 2! + x and
the leftmost bit is always a one, so that we can combine these to obtain

30
x = -2°%bx + E bi 2i . (2's complement)
1=0

This formula 1s almost the same as that used for the logical representation
except that the leftmost bit (bsi) contributes negatively to the sum --
that is, has "negative weight". We will occasionally call the two's
complement representation, where positive and negative numbers are allowed,
the arithmetic representstion.

The relationship between the logical and two's complement representation
is quite simple, which may be seen by rewriting the above sum for X:

30
X = 475 + E biai i
1=0

6-2

If b31 is zero, the logical and two's complement representations give the
same value, and x = X. If bsy is one, then X = x + 2 X 23t = x 4+ 272,

272 in the logical

But because we can only represent numbers less than
representation, x + 2°2 for positive x is the same as X, with the extra bit

being lost. Thus, for 0 £ X < 272.1 and -2°' < x £ 27%-1, we have

X = 2°2 + x (modulo 232).

(The above equation is the original source of the term 'two's complement”.
In the earliest computers it was customary to treat such fixed-point
numbers as fractions -- the representation was the same as the one just
deseribed, except that the "binary point" (the binary equivalent of the
decimal point) was assumed to lie just to the right of the sign bit rather
than at the right-hand end of the number. The equation giving the relationship
between logical and arithmetic representations was then written X = 2 + x,
so that the representation of a negative number was obtained by finding its
complement with respect to two.)

The actual calculation of the binary two's complement representation
of a negative number can be somewhat cumbersome. If the previous rule is
followed, we must calculate the binary representation of the positive
quantity 2> + x for some negative x, and the conversion can be tedious.
It turns out, however, that getting 2%t 4 by calculating(231 - 14+ %) +1
is relatively simple, because the representation of 2.1 is 31 one-bits.
Since x is negative, 2°*-1 + x = 2°*-1 -|xf. Thus the magnitude of x is
subtracted from a string of 31 ones. But wherever‘lxl has a one bit, the
resulting difference bit will be 0, and vice versa. Thus the subtraction
need not be done: simply change each bit into its opposite (namely the
result of subtracting it from 1), and we have 2.1 -lx]. (The result

is called the one's complement of |x|.) Then add 1 in the rightmost

position to get 27t 4 x, set the leftmost bit to 1, and there it is. And
since |x| when treated as a 32-bit number always has a leading zero digit,
we can include the treatment of the sign bit in the following two-step

prescription.

Given Y: find the two's canplement represqntation of -Y.

1) Take the one's complement of Y (change all 0 digits to 1 and
all 1 digits to 0).
2) Add a 1 digit in the low-order (rightmost) position, and
ignore carries out of the leftmost position.
To illustrate this process, consider the following two examples in
which the arithmetic is done with eight binary digits for the sake of

simplicity.
1. Find the two's complement representation of -2.
1) Representation of +2: 0000 00102
2) One's Complement: 1111 1101
3) Add one: +1

1111 11102

2. Find the two's complement of +75.
1) Representation of +75: 0010 1011z

2) One's Complement: 1101 0100
3) Add one: +1
1101 01012

The above prescription also works in the opposite direction, which

can be seen from the following example.

Find the 8-bit two's complement of 1111 1110s.

1) One 's Complement: 0000 0001
2) Add one: +1
0000 00102

which is the binary representation of #. Thus the two's complement of the
two's complement of a number is the original number.
There are two unusual cases which arise in the two's complement

representation: the complement of zero and of the largest negative number.

1. Find the 8-bit two's complement of 0000 00002.

1) One's Canplement: 1111 1111
2) Add one: +1
(carry one) 0000 ooo00

6-4

To the 8-bit accuracy chosen, the result is zero, and the carry of a 1 bit
out the left-hand end is lost. Thus the negative of zero is still zero,
which is a mathematically satisfying result; there is no such quantity as a

negative zero, which can be the case in some other representations.

2. Find the 8-bit two's complement of 1000 00002.
1) oOne's Complement: 0111 1111
2) Add one: +1
1000 00002
It can be seen in this case also that the complement of the
number is the same as the original number.

Thus we see that the two unusual cases which arise during complementation
are those for which all the bits except the sign bit are zero, and it is
found that the complemented result is the same as the original operand.

For a zero operand this is desirable, but for the negative case we have a
situation in which there is no corresponding positive value available for
a representable negative value. Such a situation is described by saying
that we have generated an overflow condition -- that is, the result is too
large to fit into the number of bits allotted for it. Overflow will be
treated in more detail in the following section on two's complement arith-
metic. We will note in passing that the number of quantities with negative
representation is the same'as the number of quantities with positive
representation, since the non-sign bits of the number may be chosen arbi-
trarily. It is sometimes said that the set of negative values in the two's
complement representation has one more member than the set of positive
values; what is meant is simply that the largest negative magnitude 1is

larger by one than the largest positive magnitude.

6-5

Decimal Value 32-bit Two's Complement Representation

0 0000 000016

1 0000 000116

256 0000 010016

5000 0000 138816
2147483647(27+-1) TFFF FFFF1e
-21474836U8(-271) 8000 000016
-2147483647(-21+1) 8000 00011e
~5000 FFFF ECT816

-256 FFFF FFOO1e

-2 FFFF FFFEie

-1 FFFF FFFFie

Figure 6.1 Examples of Two's Complement Representation

As was mentioned earlier, it 1is implicit in the representation of
positive numbers that an arbitrary number of zero bits may be added onto
the left end of a number without affecting its value. For example, the
8-bit and 16-bit representations Bfiﬁm decimal value +9 are 0000 10012
and 0000 0000 0000 10012, respectively. Similarly, the 8-bit and 16-bit
two's complement representations of -9 are 1111 0lllz and 1111 1111 1111 0lllz,
respectively. Thus, for numbers which can be correctly represented in a
given number of bits, the correct representation using a larger number of
bits is found by simply duplicating the sign bit toward the left as many
places as desired. This process is called sign extension.

Length of Representation Representation of +l Representation of -1
8 bits Olie FFie
16 bits 00011e FFFFi1e
32 bits 0000 000lie FFFF FFFFie
64 bits 0000 0000 0000 0001:¢ FFFF FFFF FFFF FFFFig

Figure 6.2 Examples of Sign Extension

Sign extension will appear later in the discussion. of instructions which
perform shifting, and which do arithmetic with halfword operands.

6-6

7. TWO'S COMPLEMENT ARITHMETIC

Arithmetic operations on numbers in a binary representation are a
basic capability of almost all computers. Though the details of the number
representation may vary slightly from one machine to another, the methods
for performing additions, subtractions, multiplications, and divisions
remain nearly the same for all machines. Thus the discussion which follows
will be slightly more general than would be necessary if only one
particular model of the System/360 series were being discussed.

We have already used some examples of binary addition in the treatment
of addressing, 1in which the addition was straightforward. The rules for

the addition of binary digits are summarized in the following short table.

+] o1
oflol1
O, carry 1

The addition of numbers in the logical representation is the most straight-
forward, since the bits are all numeric digits and do not represent signs.
Thus the only unusual condition to observe in such an addition is whether
or not a carry occurs out of the leftmost position, which would indicate
whether the resulting sum is or is not representable by the number of bits
available. In the two's complement arithmetic representation, the addition

is performed in the same way, but the result is interpreted somewhat

differently. (1) All bits of each operand are added, including sign bits,
and carries out the left end of the sum are lost. (This is the same as for
logical addition.) (2) If the result cannot be correctly represented

using the number of digits available, an overflow condition is said to have
occurred. Note that overflow is possible only when adding operands of like
sign: adding numbers with opposite sign always produces a representable
result (or, as is often said, the result is in range). When an overflow

occurs, the sign of the result is always the opposite of the sign of the

7.1

two participating operands.
detect overflow is somewhat simpler,

The actual method 'used on most machines to

since the sign-change detection would

require remembering the signs of both operands for comparison against the

sign of the sum.

In practice,

the adding circuits need only note that the

carries into and out of the sign bit position disagree, to be able to detect .

overflow:
differ,

of the number to be subtracted.

an overflow has occurred.

that is, if the carries out of the two leftmost bit positions

Subtraction is performed in the machine by adding the two's complement

That is, A-B is calculated using A + (-B),

where (-B) is the two's complement of B. A few examples using 8-bit
arithmetic will illustrate the methods of addition and subtraction.

1.

5-3:

3-5:

25-(-17):

(-17)-25:

=17-(-25):

67-(-93) :

(-93)-6T:

-128-(-93):

0000 0101
-0000 0011

00000011
-0000 0101

0001 1001

-1110 1111

1110 1111
-00011001

1110 1111
-1110 0111

0100 0011
-1010 0011

1010 0011
-0100 0011

1000 0000
-1010 0011

becomes
(carry lost)
becomes
(no carry)
becomes
(no carry)
becomes
(carry lost)
becomes
(carry lost)
becomes
(no carry)
becomes
(carry lost)
becomes

(no carry)

1-2

0000 0101
+1111 1101

0000 0010

0000 0011

+1111 1011

1111 1110

0001 1001
+0001 0001

0010 1010 .

1110 1111
+1110 0111

1101 0110

1110 1111

+0001 1001

0000 1000

0100 0011
+0101 1101

1010 0000

1010 0011

+1011 1101

0110 0000

1000 0000
+0101 1101

1101 1101

210

=210

42,0

-42,0

810

-9610 (overflow)

9610 (overflow)

-3510

9. 3-3: 0000 0011 becomes 0000 0011
-0000 00112 +1111 1101
(carry lost) 0000 0000 = 0
The above examples illustrate addition and subtraction and give the
expected results. However, there is one case in which the method as given
above fails to detect correctly the presence or absence of overflow, and

this occurs when the maximum negative number is being subtracted from

something.
10. 1-(-128) 0000 0001 becomes 0000 0001
-1000 0000 +1000 0000
(no carry) 1000 0001 (no overflow found)
11. -1-(-128): 1111 1111 becomes 1111 1111
-1000 0000 +1000 0000
(carry lost) 0111 1111 (overflow indicated)

In each of these two last cases the overflow indication is incorrect.
This is because the process of taking the two's complement of the maximum
negative number has already generated an overflow condition. To see how
‘the computer can still use the overflow detection scheme described above,
it is worth examining in slightly more detail the actual addition process
in the machine. (The next paragraph may be omitted by those uninterested
in such details.)

Remember that the two's complement of a number is found by inverting
each bit of the number and then adding a one in the low-order position. It
is very easy to build circuits which invert bits; similarly, the addition
of a 1 bit to the low-order position is also easy, for the following reason.
Each digit position of the adder circuits must add the corresponding bits
of the two input operands and the carry-bit from the next lower-order

bit position.

bit n from A bit n from B

Y 7

Adder position n
I

Carry from Adder
position n-1

Carry bit to Adder
position n+l

7

AY)

Sum bit n

7-3

In the lowest-order position of the adder there of course can be no carry
from a lower-order bit position; 1f an identical adder circuit is used,
however, the carry input is still there, and can be used to insert the 1 to be
to be added to the low-order position. Thus subtraction is simply a matter
of passing the second operand B through a bit inverter which forms the one's
complement, and then activating the low-order carry input to the adder to
add the 1.
Thus we arrive at the following rule:
Subtraction is performed by adding the one's complement of
the second operand and a low-order one to the first operand.
It is easy to demonstrate that the correct algebraic result is obtained
by simply adding all the bits of the operands in the two's complement
representation as though they were logical operands. Since the logical

representation X corresponding to an integer x satisfies (assuming 32-bit

operands) X = 22 4+ x (modulo 232L then the sum of two operands X and Y
is N
(x +Y) =22 4+22 4 (x +y) (modulo 2°%) = 22 4+ (x + y) (modulo 23).

Thus the arithmetic and logical sums give the same binary result; the bits
are just interpreted differently for each representation.

One further observation may be made concerning the addition and
subtraction of numbers in the logical representation. From the examples
given above it can be seen that if the second operand is logically smaller
than or equal to the first (see examples 1, 4, 5 7,9, and 11) then there
will be a carry out of the leftmost bit position. It may be seen in
examples 2, 3, 6, 8, and 10 that if the first logical operand is logically
smaller than the second operand subtracted from it, there is no carry out
of the left end. 1In these latter cases we have in some sense generated a
"negative" logical answer, since the result is not correctly represented
to the given number of bits. A number of examples illustrating these cases
will be given later, when the instructions for logical arithmetic are

discussed.

7-4

There is a simple pictorial representation of the two's complement
representation which is helpful in seeing what happens when two such
numbers are added or subtracted. The circle is visualized as having 272
points on its circumference, arranged as indicated. Arithmetic values are

on the outside of the circle, logical values on the inside.

©
R_ 930

If we begin at 0 and add 1 to a number, we will move around the
circle in a counter-clockwise direction until 23'-1 is reached. When 1 is
added again, we reach -2 and an overflow condition exists. Continuing
to add 1 then brings us back to 0. It can be seen that adding a positive
number to or subtracting a negative number from an existing number (say, A,
as on the circle) causes us to move in a counter-clockwise direction. If
in moving in this direction we go past the point labeled -231, an overflow
occurs. Similarly, adding a negative number to or subtracting a positive
number from an existing number (say, B, on the circle) causes us to move
in a clockwise direction; and if the motion carries us past the point

labeled- -231, we again have an overflow condition.

7-5

8. BINARY MULTIPLICATION AND DIVISION

Before we discuss the actual machine instructions which perform
multiplication and division using integer arguments, it will be useful to
examine a few simple illustrations of the basic method used by typical
computers to form products and quotients of binary numbers. A detailed
understanding of the methods is of course not necessary to be able to use
the corresponding instructions, but will help in remembering a number of

conventions that these instructions require;

Multiplication

To illustrate the method used in multiplication, let us first work an
example in decimal arithmetic. Suppose we have a "machine" with registers
which will hold j-digit decimal numbers, which we will assume are positive.
Iet the numbers to be multiplied by 126 and 213. First of all, since we
are multiplying two 3-digit numbers, the product will be either 5 or 6
digits long. Thus if we are to be able to correctly represent it, the
product register must be at least 6 digits long. Since we assumed the

number registers were 3 digits long, it appears that we need a double-length

register (or a pair of registers connected in some way) to hold the
product. So we will assume there is a 6-digit register somewhere, the
right and left halves of which will hold an ordinary 3-digit number. pNow
let us examine the way in which we normally form such a product, as when
working with pencil and paper. By taking the product of the multiplier and
each of the multiplicand digits in succession, we generate a series of
partial products which must be properly
aligned and then added. (Note that we are

multiplier 126
HiEpL using the terms "multiplier" and"multiplicand”
multiplicand x 213 , . . .
E— in the reverse of their normal meaning; this
partial 1328 is done so as to be consistent with the
roducts

procu 252 terminology used in other descriptions of
product 26838 System/360.) This manual process can be

8-1

broken down even more, by writing the sequence of operations in a different

way.
initial register contents 000 213
add multiplier to upper end +l§§
that's 1 time 126 212
add multiplier +126
that's 2 times 252 211
add multiplier +126
that's 3 times 378 210
shift right 1 place 037 821
add multiplier +126
that's 1 time 163 820
shift right 1 place 016 382
add multiplier +126
that's 1 time 142 381
add multiplier +126
that's 2 times 268 380
shift right 1 place 026 838

We place the multiplicand in the right half of the double-length
register and clear the left half to zero. Then by examining the rightmost
digit of the multiplicand we know how many times to add the multiplier
to the left half of the double-length register. When the rightmost digit
has been counted down to zero, the partial product of that digit and the
multiplier has been added to the accumulating result. Then the entire
double-length register is shifted to the right one digit position, at which
time the zero digit at the right-hand endis lost and a zero digit is inserted
in the vacated position at the left. The process of adding the multiplier
and counting down on the multiplicand digit then continues until the proper
partial product has been added to the accumulated result. This process is
repeated for as many steps as there are multiplicand digits. When completed,
the result in the double-length register is the product, and all the
multiplicand digits have been shifted off the right-hand end. The main

8-2

points to observe are that (1) the multiplicand is placed in the right half
of the double-length register, (2) the left half is initially cleared to
zero, (3) the multiplier is added to the left end depending on the multipli-
cand digit at the far right, and (%) the decimal point of the result (that
is, the position of the least significant digit) is at the right-hand erd

of the double-length register, because the number of right shifts was the

same as the number of digit positions in a single-length register.

The above example omits one rather important detail which is not
actually necessary to an understanding of the basic process. (These two
paragraphs concern technicalities, and may be skipped with little loss of
continuity.) When the multiplier is being added to the left half of the
double-length register, it is possible that an overflow can occur. If the
multiplicand had been 219 rather than 213, the first partial product
(126 x 9 = 1134) would have been too large to hold in the three digits
provided. Thus provision must actually be made for an extra digit at the
leftmost end of the register. This extra digit can be thought of as
hidden from the user of the registers, since when the right shift is
performed at the conclusion of each cycle, the contents of this "overflow
digit" position move into the leftmost digit of the double-length product
register. Since the example was carefully contrived to avoid the necessity
of worrying about this detail, the presence of a zero digit at the left end
after the right shift is seen simply to be an-indication that there was no
overflow in the formation of the partial product. The assumed presence of
this extra digit position will be useful in the discussion of division.

This small but annoying difficulty can also be handled by having the
extra "digit position"™ attached after the rightmost digit of the double-
length register. Then instead of adding and then shifting, we could first
shift and then add. Thus the extra digit position will hold the number
of times the multiplier is to be added. However, the additions of the
multiplier must then be realigned so as to add to the second, third, and
fourth digits of the double-length register rather than the leftmost
three. Either way, the whole business is a necessary nuisance. (These
comments will of course apply to the binary multiplication example which

follows.)

8-3

The above scheme, when used for multiplying binary numbers, is
conceptually very easy to implement since a test of the rightmost bit
determines in simple yes-no form whether or not the multiplier is to be
added -- no counting of additions is required. To illustrate this, suppose
we have y-digit binary numbers and registers and wish to multiply 001102
by 010012 to obtain a 10-bit product in a double-length register. Then the
sequence of steps shown below indicates the method.

00110 multiplier (in separate register)

Initialize 00000 01001 multiplicand in right half of
double-length register

Step 1: rightmost bit = 1, 00110 01001
add multiplier

Shift right 1 00011 00100 (1 bit lost)

Step 2: rightmost bit = 0, 00001 10010
no add. Shift
right 1

Step 3: rightmost bit = 0, 00000 11001
no add. Shift
right 1

Step 4 rightmost bit = 1, 00110 11001
add multiplier

Shift right 1 00011 01100 (1 bit lost)

Step 5: rightmost bit = 0, 00001 10110 final product = 1101102 = 530
no add. Shift
right 1

It is most important to observe that the product is really a double-
length number, and not simply two single-length numbers stuck end to end.
If we were to consider the contents of the left and right halves of the
double-length register as ordinary single-length two's canplement operands,
we would find the result in the right, or low-order half, to be negative!
Since the product (which was computed from two positive numbers) must be
positive, it can be seen that the need for a double-length register means
that no special significance can be attached to the low-order result, unless
it is known in advance that the product is correctly representable in a

8-4

single register. The leftmost bit of the right-hand register is therefore
not a sign bit -- it has positive weight in the double-length result.

In the example above, the two operands were purposely chosen to be
positive so as not to introduce any problems with signs. Since the operands
actually used may be positive or negative two's complement integers, there
are other steps which must be taken to find the correctly signed product.
For all practical purposes, however, we may assume that the CPU performs the
multiplication by using the magnitudes of the operands, and then complements
the double-length result if a sign-bit analysis of the original operands
indicates that the result is negative.

It is also common in modern computers to gain speed by considering
not the rightmost single bit of the multiplicand (as on the IBM 7090), but
to consider the rightmost two bits (IBM 7094), three bits (Burroughs 5500),
or even four bits (larger models of Sys&mJ360).This of course brings us
back to a situation similar to that in the decimal example, where the
proper multiple of the multiplier must beaded to the left end of the
developing product. In these cases, where the arithmetic can be considered
to be of base 4, 8, or 16, the "proper multiple" is of course not found by
counting down by ones on the multiplicand digit, but by having the internal
circuits generate the proper factor in a very much smaller number of steps.
This serves to increase the speed of multiplication considerably, since
then a separate addition is not required for each 1 bit detected in the

multiplicand.
Division

Division works the same as -multiplication, only backwards. Instead of
adding onto the high-order half of the accumulating product, we subtract;
instead of counting down in the rightmost digit position, we count up;
instead of shifting right, we shift left. As before, an example using
'decimal arithmetic will illustrate the process.

Since we start with a dividend and divisor and wish to find a quotient

and remainder which satisfy the equation

dividend = quotient x divisor + remainder,

8-5

it 1s apparent that the dividend must be a double-length number. Again
supposing that the basic register length is three decimal digits, another
requirement becomes apparent: since (a) the quotient, to fit in a register,
can be at most three digits long (that is, not exceeding 999) and (b) the
remainder must be less than the divisor, we must not have a dividend larger
than

999 X divisor + (divisor - 1) = 10°xdivisor - 1.

(The factor of 10 is the base raised to the number of available digits.)
Since multiplication by 10° in this example is equivalent to shifting left
three places, the above relation means that if the division is to produce
a valid'quotient, the high-order half of the dividend must be less than
the divisor. (If for instance the divisor were 456, then any dividend not
smaller than 456000 = 10°x456 would require a 4-digit quotient; if the
dividend is not greater than 455999 = 10' X456 - 1, the the quotient can
be held in the three digits allotted. Note that the three high-order
digits, h55, are now less than the divisor.)

Suppose we want to divide 162843 by 762. In ordinary long division,

we would do the following sequence of steps. At each step we determine

21% how many multiples of the divisor can be subtracted
7622152h 3 from the leftmost part of the dividend, and enter that
TI0BY number as the quotient digit. When the subtraction
-%8%3 process has been completed, the remainder, from which
2286 no further subtractions can be made, is 537, and the

537

quotient is 213. Just as a check, we find that
762 x 213 + 537 = 162843. On a machine, the process is almost identical.

Using the above scheme of decimal registers, the division works as follows:

8-6

162 843 High-order part of dividend smaller than divisor,

762 division may proceed.
1 628 430 Shift dividend left once; save leftmost digit in an
=762 "overflow digit" position. Since dividend 2 divisor,
0 866 431 subtract, and count up at right end.
_:Zég dividend 2 divisor; subtract again
0 104 432 dividend < divisor; no subtraction
1 o4k 320 shift dividend left again
=762 dividend 2 divisor; subtract and count up
0 282 321 dividend < divisor; no subtraction
2 823210 shift left for last time-
-762 dividend 2 divisor; subtract
2 061 211 subtract and count up by 1
762 dividend 2 divisor; subtract
1 299 212 subtract and count
-T762 dividend 2 divisor; subtract
537 213 dividend now < divisor; stop

As the successive digits of the quotient were developed, they appeared
at the right hand end of the double-length register, and were shifted left
as the division progressed. Thus at the completion of the division, the
quotient is to be found in the right half of the register pair, and the
remainder, from which no further subtractions could be made, is in the left
half.

As was the case for multiplication, binary division is simplified by
the fact that at most one subtraction need be made for each quotient digit
generated. To illustrate, consider this example using a five-bit divisor
and a ten-bit dividend. Let the dividend be 0000111011~ = 59;0, and let the
divisor be 001102. Note that the two halves of the double-length dividend
are not two five-bit numbers stuck end to end: the leftmost bit of the
right half of the dividend is not a sign bit (with negative weight) but an
arithmetic digit (with positive weight). The quotient and remainder,

however, are ordinary (i.e., signed two's complement) five-bit numbers, so

that when the division is complete the proper results are found in each
register . This leads to the: following scheme.

1. Shift the dividend left once. If the high-order (left) part
of the dividend is not smaller than the divisor, an illegal
division is being attempted.

2. Shift left one bit position. If the high-order part of the
dividend is greater than or equal to the divisor, subtract
the divisor from the dividend and insert a 1 bit in the
rightmost digit position. Otherwise do nothing.

- 3. Return to step 2 until a total of 5 shifts has been done
including the shift of step l.” (For 32-bit operands this

cycle repeats 3ltimes.)

00011 10110 shift left once
(00110) dividend < divisor, OK to continue
00111 01100 shift left once (second time)
00001 01101 subtract divisor, insert 1
00010 11010 shift 'left once (third time)
dividend < divisor; no subtraction
00101 10100 shift left once (fourth time)
dividend < divisor; no subtraction
01011 01000 shift left once (fifth and last time)
00101 01001 subtract divisor, insert 1.

Thus the remainder 001012 = 5310 in the left half, and the quotient 01001z = 9ie
in the right half are as expected.

The example given assumed a positive dividend and divisor; if either
is negative some further steps are necessary. The division can be thought
of as proceeding with the magnitudes of divisor and dividend, and afterward$
the quotient is made negative if the signs of the divisor and dividend
differed, and the remainder is made negative if the dividend was negative.

As in the case of multiplication, there are techniques used for speeding
up the division process which are used on some models of System/360.EMelc
details are of concern only to the machine designer, so that the programmer

can think of division as proceeding through the simple steps shown above.

8-8

9. ASSEMBLER LANGUAGE

As was indicated in the introduction, the service program which will be
of most use in setting up instruction sequences for execution by the machine
is the Assembler. The collection of conventions and rules established for
use of the Assembler is known simply as Assembler Language, even though
there is no resemblance to what we usually mean by the term "language".

Before describing some of the basic conventions used in communicating
with the Assembler, it may help to consider first the overall process of
running a machine-language program on the computer. This process may be
broken down into five major parts, as follows: (1) job initiation, (2) assembly,
(3) linkage editing, (4) execution, (5) job termination.

1. Job initiation will usually involve the checking of the job information
provided by the programmer, such as charge number, time and page estimates,
and so forth, as required by the particular computer installation. T[f these

details are acceptable, then preparations are made for the execution of a

series of job steps, which in this case will include assembly, linkage
editing, and execution.
2. The assembly step is represented schematically in Fig. 9.1. The

Assembler is a processing program (a previously prepared set of machine

instructions) which is placed in the memory of System/360 and is allowed

to begin execution.

System/360
Source Program in
Assembler Language L-------=: Assembler
Program
q\ ‘-!=--.~

Library of Macro- ﬁ ;%xi'am
Instruetions, etc. ng
el B

Figure 9.1 Simplified Schematic of Assembler Processing

9-1

The Assembler reads the statements (to be described shortly) of the programmer's

Assembler Language program, processes them -- possibly with the help of some
pre-stored data in the library of macro-instructions (also to be described
later) -- and eventually produces as its output an object module, which will
usually be written onto some storage device such as a magnetic drum or disk.
(The object module may also be punched on cards, so that a programmer could
then have his program in both its original form and in its assembled form.)
Usually the programmer will want a program listing, which is printed output
giving the source program and pertinent details of the Assembler's processing,
along with indications of any errors detected by the Assembler.

3. The linkage editing step is shown schematically in Fig. 9.2. The
Linkage Editor, like the Assembler, 1is a processing program which is placed

in memory and allowed to begin execution.

System/360
Object Module(s) ‘ -
from previous <1 Linkage Loed
Assembly step(s) Editor Modul
7~

l Library of l
Object Modules

Figure 9.2 Simplified Schematic of Linkage-Editor Processing

The Linkage Editor reads the object module (or modules; cases in which

several may appear will be described later) and combines it with other object
modules that may be necessary for proper program execution. The output
produced is the completed program and is called the load module, which is
written onto a storage device for later use. A printed listing of information
pertinent to the link-edit step may also be produced.

9-2

L. The execution ptep requires that the load mpdule produced by the
Linkage Editor be placed in (or "loaded" into) memory, in such a way that
it will execute correctly (aessuming, of course, that the programmer has
made no blunders!). An essential feature of this process is relocation,
details of which will be treated in several later sections.

I System/360

Resident
Supervisor

Printed Outpuﬁ
from Program

J Relocated
Program

Figure 9.3 Simplified Schematic of Program Loading and Execution

When the program has been loaded and relocated, the Resident Supervisor
tfénsfers control to the program (that is, sets the Instruction Address to
the address of whatever instruction was specified as the one with which
execution is to begin). Tﬁé—program then performs whatever processing

was specified by the programmer, and when it is finished returns control
to the Supervisor (that is, sets the IA to an agreed-upon value so that
the Supervisor may continue processing the next job).

5. When the Supervisor program has regained control it performs any
necessary "cleaning-up" operations such as noting the amount of time used
by the job, -the number of pages printed, and so on. If more jobs are to be
done, the Supervisor reverts to step 1 (Job Initiation) and the entire
cycle repeats.

The brief description of job processing given above will help in under-
standing same of the constructs necessary to the writing of a correct
Assembler Language program, since certain of them apply during each of the
assembly, link-edit, and execution steps and must be used with the different

steps in mind.

9-3

A program is prepared for the Assembler in the form of statements
punched on cards. Statements are of four general types: comment statements,
machine instruction statements, assembler instruction statements, and
macro-instruction statements. Comment statements are used by the programmer
to insert explanatory material in the program so that it will be easier to
read and understand the program listing. Machine instruction statements
contain instructions which the computer may execute during the execution
step of the job. Assembler instruction statements contain information of
use to the assembler during the assembly step; these can be as simple as a
statement specifying that four blank lines are to be left in the program
listing, or can be more complicated such as a statement which informs the
Assembler that it may assume certain registers may be used as base registers.
(This latter case will be treated in detail in Section 12.) Finally,
macro-instructions provide a convenient means for specifying sequences
of statements (all four types are allowed) inwhich various parts of the
specified sequence can be changed to suit the needs or desires of the
programmer. We will see later that the ability to process macro-instructions
- 1s a very powerful and useful feature of the Assembler Language.

The Assembler provides a number of other capabilities which considerably
simplify the programmer's task. For example, we saw in Section 5 that a'
typical machine instruction might consist of 8 hexadecimal digits. Rather
than having to remember that the operation code 4316 causes a byte to be
transferred from memory to the right-hand end of a general register, a
mnemonic operation code is provided which gives an easily-remembered

abbreviated description of what the operation code does. In the above case,
the mnemonic is. IC, which stands for. ";nsert Character", character in this
case being synonymous with byte. Another useful feature is that the
Assembler allows us to specify information in a variety of forms: as decimal,
hexadecimal, and binary numbers, as strings of characters, as arithmetic
expressions, and so on. Thus we will find that if we want to designate
register 15 for some use, we can use the decimal number 15 instead of having
to use the hexadecimal digit F, which is what may eventually appear in the

instruction itself. A third and most important feature of the Assembler

9-4

is the provision for symbols which may be used by the programmer to name
places in memory. Thus, if a program needs to make reference to a fullword
area in memory which contains a particular piece of data, the Assembler
will permit the programmer to name the fullword and then to make references
to the data by using the name. A discussion of symbols and certain aspects
of their use will be given in the next section. In the remainder of this
section we will give some examples of statements, and define or illustrate
terms which will be used in describing statements.

In general, statements occupy columns 1l through 72 of a card, with column
12 having a special meaning: if column 72 is not blank, it means that the
next card is to be considered as a continuation of the card with the
non-blank character in column 72, in such a way that column 16 of the second
card is considered to follow immediately after column 71 of the first.
(These numbers are actually under the control of the programmer, who may
specify with an assembler instruction statement that other card columns are
to be used for the start and end of a statement. The numbers given are
simply the usual ones which the Assembler will assume are to be used if it
is not told otherwise.) (It is a common error for beginning programmers to
punch characters in column 72 unintentionally, so that the next statement
is processed in an unexpected way.) Columns T3 through 80 are ignored by
the Assembler when it processes the statement, and may be used for identifi-
cation or sequencing information.

A comment statement is identified by the presence of an asterisk (*)
in column 1. Any information desired may appear in columns 2 through 71.
An example of a comment statement appears below, as it would be punched

on a card.

9-5

[HI=

NAME or [JoN |

AND COMMENTS

NAME OPERATION UDPERAND COMMENTS

NAME loregarion | OPERAND

33333333[3)03333(3(3333M33333[F33QA3R3333

COMMENT IOERTIFICATION SEQRENCE

0c¢
7 afaftn 12 13 vefshis 17 v 1 20f21 2223 24 25l 72 2829 20
11

UIRRRRINEE- RRURBERRIIRERY |

]
Beasanaajalsaaadaloansalagnass BT sysTEM/ 360 4(44444|144444|444444 444444844

55555555/5(55555/5555555555805

IRRRRRAR ItRRRR I RRRRIARREIIRRAR

99999949739
1345610

"~

5556586666556666668556666&5531r66868556656685685636656688585666&5666666666666666

99599B99999999999999999sssssssssssssbssssksses9999999999999999

10 1112 13 14|15]16 17 18 19 20|21 22 23 24 25[26 27 2!2930'31 32 73 34 35{36 37 38 39 40[41 42 43 44 45146 47 48 49 50{S1 52 53 54 5 |56 57 56 59 61 |61 62 63 64 65 6667 63 83 70 X
Q9

= @

988899
nUBWT

® oo

yl
Figure 9.4 A Comment Statement

The machine instruction statement, assembler instruction statement,
and macro-instruction statements each have four parts called_fields. They

are respectively the name, operation, operand, and comment fields; of these,

an entry in the operation field must always be present, and for certain
types of statements entries in some of the other fields may or must be
omitted. If there is a name field entry in the statement, it must begin
with a non-blank character in column 1; it is terminated by the first blank
column after column 1. If no name field entry is desired, column 1 must
be left blank. After the name field, and separated from it by one or more
blank columns, comes the operation field entry; it ends with the first
blank-column after the start of the -operation field. After the operation
field entry and separated from it by one or more blank columns comes the
operand field entry which, like the name and operation field entries,
terminates (except for one unusual case to be described later) with the
first blank column detected after the start of the operand field. The
rest of the card is treated as comments (that is, it is ignored) by the
Assembler, and does not influence the processing of the statement (unless,

of course, the comment field extends into column 72 indicating a continuation

9-6

ohﬁi]ﬁnaouuuonucﬂiﬁllo]oann 00po0jooco0j0000OC[00000[00000/00000[000000|0(00000000
3132 33 34 35[36 37 38 39 40|41 42 43 44 45[46 47 48 49 50|51 52 53 54 55[55 57 56 59 6|61 62 63 64 6 |66 67 66 69 JO V' [72{13 14 15 16 17 18 78 §0)
AR RR IR R IR R IR R R IR R R IR R R IR R R R RER R IRER R R
222222222122208212B2222|12222212202222222)22222122222(22222{2222222222|222221222222)2122222222

333(33333/33333]33333133333|3333/333333(3(33333333
ST‘B\I‘BE‘?D ASSEMBLER. CARD 51855 55|55555|555555|555555555

TITTI0 1770000011111t 1na(ni11tnnae
BsssssssclslclsscsiaseasajoacasgssansasaagsBacessasssssss/saassssasssss883(88s8ss(sjssasssss

on the next card).

Note that with the exception of the name field, no

requirement is made regarding the columns in which the other three fields

must start; they simply end with a blank column.

This allows what are

called free-field statements, 1in which the programmer may arrange the
information on the cards of his program as he desires, with the only

restriction being that the fields appear in the proper order.

The figure below illustrates a machine instruction statement in which

entries in all four fields appear,

and which if executed in a program would

cause the contents of general register T to be replaced by the contents'

of general register 3.

will be discussed later.)

(The particular form of the operand field entry

* [43ab &7 FR3d RE | l I |

P
(SN

-\‘.'

-
LOug
H

LAl

EiME CPERATION [Qeranof] AND COMMENTS

I | | | |

il | |
H NAME Eg ﬂ)pgn S"\v “I ﬂ

1§17 operaTION COMMENTS

OFPERATION OPERAND COMMENTS

SOENTIFICATION SEQUENCE

goc00cONEE0C000

122345678
IBEARE R
222222222

B3333333!3

ofoooclo00ccin0060(00000{00000(30000,00000{000001G0000

— D €2

IRRRRIIIRRRRII RS
2221212

33333

IRRRRIY:RREI

22222

IRRARIIRRRRIIERRE
22222

33333

IRRRRIIERRRIIRERR
222222
433333

444444

22222

30033
18444

22222
33330
4444404 e

2222222221

33303

22222122222)122222
33333

44444

3333333333 33333133333

44444

aa8fadaals sysTdM/250 4

STANDARD ASSEMBLER CARD 5

55555855558555(5

66660

555551555555 5555555555

<

60666666

k=l

G6666/666666666CJ6666cCL6L6066C6/6660666666
11111
88888

39999

66666
11111
88888

o

65666
11111
88888

1111 11@71117 7717777777%7777777777777777777
L EXE

99999

1111111007

88888888|8/88238388 888888888888586888882386888/388838

30999 $9999/9999[199909/99099/99999/9999999999/99999/999999

999995843l5
123456710
1_iu6459_‘

mnnunmwnmmmnnnnwmnnnmnnnuﬁnunmmﬂuu«awuuwmmﬂnuJﬁﬂuﬁwggggg%%%%%%%
2222222
3333333
44444404
55555355
6666666
1117171101

8888888

00000000
7374 75 76 17 78 14 80|
RRRRRRR
22222222
33333333
44444448
55555555
66666666
11711111
88888888

99999999

73747576 77 78 79 8¢

G510 112 13 1401516 17 18 19 20j21 22 23 24 25126 27 28 28 30{31 32 33 34 35{26 57 33 39 4091 42 43 44 4D{AE 47 43 <9 50[S) 52 53 54 55|58 57 58 50 60{51 62 63 64 65(56 87 68 69 70 N[

Figure 9.5 A Machine Instruction Statement

An assembler instruction statement (in which the name and comment

field entries are omitted)

blank lines in the program listing is given in the following figure.

which would cause the Assembler to leave four

5-6%

—

/’" [SPACE 4 | L N\

NAME OPER OPERAND AND COMMENTS
NAME OPE lATION I L OPERlAND I l |COMMENTS|
NAME CPERATION OPERAND | COMMENTS | 1 maamseane sememe
s0o000000)0 MMFI'NMOMUO0!.”00000000000'00000Ml]000000000000!00000000000OWOGNMO
1234567 8/9/10 101213 1[1S1617181920 222 25 24 25 45 27282030 3{32 33 34 35 3632 38 39 48 41 42 43 44 4548 J 1 46 40 50 51|52 33 54 35 o 57 38 59 666 626364 63 64 67 66 48701 [2|73 74 IS 77 28 79 o0
IRRRRRRRIIIIRY RIS IRRRRIIRRRRY RERRRERRRE ARRRR IRRREI ARRRE RERRARRRRE ERRERIIREE! M 1111111

2222222202[02222(222222p2222p222222222922222[22222p2222p222222222322222[2222 |d32000002

33333333(3(333033(33333(33333133333(33333(33333(33333(33333(3333333333[333353(333333[333333333

QA adaajdlaanagsladdasaaaaa IBM svysTEM1360 4444440 4444444444 (4lAh444444

55555555|(555551 (555555555555 STANDARD ASSEMBLER CARD 555555555555555555 |5155555555
sssssnseleeeee 6/66666666666666666666666666[66666p6666p6666866666666666666 |GB6666666
77777777'77,.7777777771777771717717777777777777777777777777717717771777717777777771i
$88888332888808(688088(838238880888/383828(888088(38888808888/38888/80888(8808808/088888(8/3888888¢

99998989/999999(9199999999999999999999999999(99999P99999999999999999999(9999 99999999
1234567

0 1192 13 14 1156 17 1619 20 21|22 23 24 25]26 27 28 28 30 3132 33 34 35 36 3| 38 39 40 471 42 43 U 43 46 |01 46 49 30 552 53 54 55 56 |51 59 39 60 §1 p2 63 64 65 6§ 6166 69 76 71 An7a 1677 8 0 /

(o]

L]
M 6509

/,_-______'.___

Figure 9.6 An Assembler Instruction Statement

Finally, an example of a macrd-instruction statement in which only the

operation field entry appears is given below.

= IR - =
, mETURA | | | | I | | | N\
/ NAME OPERATION .| OFERAND ANDD COMMENTSE i{g
L I | | | I | -
NANE OPERATION | | OH OPERAND COMMENTS !
NAME OPERATION OF:ER_‘ALY‘JD CO:MMENTE! SEMENCE
gocooooociolooocojeicocceiocBPclocooojooo0o{occocio0000{o0000{06000(00000[00C00{00000O0[0[C0000000
123456 16910 N/12[13 14151017 18 18]20121 22 23 2425 26 27 28 28 30 31 32 33 34 35 36 37 38 3) 40 4142 43 44 45 46 47 48 49 5G 5152 53 54 55 56 57 56 59 60/ 61 62 63 54 65 66 67 6l69 W N 2 © PR IEELY

111111111111 Tttt 1ttt 1ttt pt 1t~ 11ttt 1ttt 111 1pi111 111114111111

222222222122222|2122222|122222|22222|22222[22222|122222[22222[22222[22222[2222222222RPR2222222

333333333p33333333333313333~333333~3B333383333333333(333333333383~3333333333333333

444444440004444444444444844 IBM sysTEm/360 Wa444444444444444alaa444444

=

55555555/555555/5;55555[5@555[STANDARD ASSEMBLER CARD 555555555555555555895555555 | |

66666666(666666(6/66666(66666/66666[66666{56666{66666{66666(66656/66666{66666/666666/6(66666666
rinrnrniprrnap it A rIp A r I r i 1111117 .Z‘
88588088/8(98888(8(56888(588388/803888/88888/868808(888858(88888(8680886(88888(88883(888888/8(88888883
99999999’9999999999]‘%28999{;’9999 9999P994

W 1234567091912 4115167181920 223 24 25 2627282930 313233 34 350363738 39 40 4 4243 44 45 {6 47 49 4950 5152 53 54 95 56 3159 59 po 614263 64 85 6567869 VM2 3 4 B 6 71 16 V4N
\N wK €509
. - - ——— — - R - R e —————

Figure 9.7 A Macro-Instructfon Statement

9-8

10. SELF-DEFINING TERMS AND SYMBOLS

In using the Assembler Language, two constructs of importance are
self-defining terms and symbols. Each has a value; in self-defining terms
the value is inherent in the term, whereas values are assigned to symbols
by the Assembler (under control of the programmer, of course).

There are four types of self-defining terms: decimal, hexadecimal,
binary, and character; the value of each is aiways taken to be positive.

A decimal self-defining term is simply an unsigned string of decimal
digits. 12345, 98, and 007 are examples of decimal self-defining terms.

The size of a decimal self-defining term is limited by the fact that 24 bits

are allotted by the Assembler to hold its value; hence a decimal self-

defining term must (a) contain 8 or fewer digits and (b) be less than or equal to
2%*.1 = 16777215.

A hexadecimal self-defining term is written as the letter X, an
apostrophe, a string of up to 6 hexadecimal digits, and a second apostrophe.
X'123456', X'FACED', and X'O01B7' are examples of hexadecimal self-defining terms.
As above, the value of a hexadecimal self-defining term must be at most
2%4.1 = X'FFFFFF'.

A binary self-defining term is written as the letter B, an apostrophe,

a string of up to 24 binary digits, and a second apostrophe. B'110010°,
B'0001', and B'1111111100001100*' are examples of binary self-defining terms,
Because 24 bits are allotted for the value of self-defining terms, at most
24 digits may be specified between the apostrophes. Note also that the
value of the term is assumed positive even though the leftmost position
contains a one bit.

A character self-defining term is written as the letter C, an apostrophe,
a string of up to three characters (except for two cases to be described

momentarily), and a second apostrophe. Thus, C'A', C'...', and C'A B' are

10-1

valid character self-defining terms. The third example, in which a blank
appears, is the exception to the rule mentioned in Section 9 that the operand
field is terminated by the first blank column after it starts: if the
blank 1is part of a character string as in a character self-defining term,
it doesn't count. The two unusual cases which arise in character strings
concern the apostrophe and the ampersand. It is clear that if apostrophes
areto be used to delimit the character string, some mesns must be found
to get an apostrophe i{nt@ theecharactermpsérings a n d h a s a
special use in macro-instructions which will be treated later.) The
technique used in the System/360 Assembler Language is to represent an
apostrophe (or ampersand) in a character string by a pair of apostrophes

(or ampersands) —— a character self-defining term containing a single
apostrophe (or ampersand) would therefore be written C'''' (or C'&').
This can lead to cryptic constructs such as C'''''"''' and C'&Md&&', but

they are valid character self-defining terms.. The problem now arises as

to how a value is assoclated with character self-defining terms; it is

clear that this will depend on the internal representation assumed for

- characters. In System/360 the conventional representation is called the
Extended Binary Coded Decimal Interchange Code, or EBCDXC, or even EBCD,

for short. Each character is represented internally by a single byte --

two hexadecimal digits -- as indicated in Table III. Note that the characters
$, #, ande are considered to be letters in the Assembler Language. This
will have bearing on the definition of symbols, which will be discussed
shortly.

10-2

Character Representation Character Representation Character Representation

blank 40 C C3 T E3

. 4B D c4 U E4

(4D E c5 Vv E5

+ 4E F cé W E6

& 50 G cT X ET

$ 5B 3 c8 Y ES

* 5C I c9 Z E9

) 5D J D1 0 (digit) FO

- 60 K I2 1 Fl

61 L . D3 2 F2

) 6B | M D4 3 F3

TB N B 4 F4

e C p (letter) D6 5 ™

' 7D P D7 6 F6

= TE Q D8 7 F7

A cl ‘R D9 8 F8

B c2 S E2 9 F9
Table III. EBCDIC Character Representation

Thus the value associated with the character self-defining term C''

is the same as that of the hexadecimal self-defining term X'40', the binary
self-defining term B'1000000', and the decimal self-defining term 6k,
Which type of term is chosen by the programmer is largely a matter of

context; certain types will be more natural than others in some places.

In practice, we will find that decimal self-defining terms are used so

extensively that it 1is easy to forget that any other type of self-defining,

term of the same value could be used as well.

In the previous section, Fig. 9.5 is an example of an instruction in

which the operand field entry contains the decimal self-defining terms 7 and 3.

10-3

Symbols are a somewhat more intricate matter, even though their use
will be seen later to be as. simple and natural as the use of self-defining
terms. A symbol is a string of from one to eight letters or digits, the
first of which must be a letter. (Remember that $,@, and # are "letters"
to the Assembler.) No special characters are allowed (namely "(",")",
M, MAM Mg e eyt Mg and " " (blank)) . The

following are all valid symbols.

A AGENTOO7 A1B2C3Dk
#235 goex APPPLEXY
JAMES KSF@ PRURIENT
$ 746295 WPNKA - ZYZYGY99

The following are not valid symbols, for the reasons given.

$7462.95 (decimal point not allowed)
BPND/007 (no division sign allowed)
SET G (no blanks allowed)
235# (does not start with a letter)
CHARACTER (too many characters)

+ TEN*FIVE (contains the special character *)
C'WPNKA' (no apostrophes allowed)

Symbols have the following six attributes: value, relocatability,
length, type, scaling, and integer. Of these, the first three will be our
main concern, and the last three will be discussed later.

A-symbol acquires a value by virtue of its appearance as the name
field entry in a statement of an appropriate type. The relocatability
attribute depends on several factors, one of which will be mentioned shortly;
-we usually say simply that a symbol is relocatable or absolute (not
relocatable). The length attribute of a symbol depends on the type of

statement in whose name field the symbol appears. We will give a number

of examples of the use of symbols in statements which are typical of actual
programs. The reader should bear in mind that these are simply examples and
that the instructions described here will be covered in detail later.

10-4

Symbols are mainly used as names of places in memory. In Fig. 9.5
the symbol L#AD is the name of the location at which the instruction (whose
mnemonic is ILR) begins. In the machine instruction statement

GETCENST L 0,k(2,7)

the symbol GETC@NST is the name of another machine instruction which loads
a fullword from memory into general register 0. In the assembler

instruction statement
TEN DC F110!

TEN is a name for a fullword area in memory into which the assembler will
place'the integer constant 10. In the macro-instruction statement

EXIT RETURN (14,12),T

the symbol EXIT is the name of the beginning of the macro-instruction. It
is clear that no symbol can be given a value in a comment statement.

Two further questions will be discussed in this section: how do
symbols get their values, and of what real use are they anyway? A
partial answer to the second question is that their use greatly simplifies
the programming task, and we will be in a position to appreciate this
soon. To answer the first question, it is useful to examine briefly the
pertinent part of the assembly process.

When a program is ready to be assembled, one of the first steps the
Assembler must perform is the assignment of a relative origin (or starting

location). In the discussion of job processing it was mentioned that at'
the beginning of the execution step the user's program (in load module
form) had to be loaded into memory. Now it will almost invariably be the
case that the programmer has no a priori knowledge of where the Supervisor
program will begin loading his program, and in fact the place where it
begins may change each time the program is run. Thus, during the assembly
'step, the best that the programmer (and therefore the Assembler) can do is
assign a relative origin for the program which will act as an assumed
location for the beginning of the program. (The program must of course be
written so that it will work correctly even if the assumed relative origin
differs frem the actual origin assigned by the Supervisor.)

10-5

Using this assumed origin as the initial value of the Location Counter

(which we will abbreviate LC), the Assembler begins scanning the statements
of the source program. As each statement is read, the assembler determines
(a) whether a symbol appears in the name field, and (b) the length of the
area in memory which will be occupied by the instruction. If there is a
symbol, the value assigned to it will (except for one unusual case) be the
value of the LC at that time. The LC is then incremented by the length
just computed. For example, suppose the value of the LC was TB61s when the
statement given in the first example above was scanned. Then the value of
the symbol GETCHNST would be TB6is, and because the instruction whose
mnemonic is L is an RX-type instruction of length 4 bytes, the IC is
incremented by four and will be TBAig when the scan of the following
statement is begun. In this way the Assembler scans all the statements of
the program and assigns values to all symbols appearing as name field
entries. It should be noted that there are other methods for assigning
values to symbols, but the method described is what will most often be
used, and that there are also assembler instruction statements which allow
the programmer to change the value of the Location Counter. This usual
method of symbol definition provides the simplest definition of a
relocatable symbol: suppose the relative origin is changed by some fixed
amount; if the value of the symbol changes by the same amount, then that
symbol is relocatable. We will see later that it is also possible to
define symbols whose values either do not change or which change in
different ways. (The reader should also note that there is a definite
difference between the LC, which is maintained by the Assembler program in
the course of processing the statements of the source program, and the
Instruction Address in the PSW, which gives the location in memory of the
next instruction to be executed during the execution step of the program.
They are not at all the same.)

After this brief discussion of how symbols get their values, we turn
to the question of their utility. Suppose we want to write an instruction
which will load the integer constant ten into RO (remember that this is an

abbreviation for general register 0). Suppose also that we also know that

10-6

some other general register will contain an address which will provide
addressability for the fullword area of memory containing the constant.
Then we could calculate what the exact displacement would have to be and
write the instruction with the base and displacement given explicitly.
If, for example, these were 6 and 4ECie respectively, we could write
(the details of writing the operand field will be discussed in the next

section)
L 0,X'4EC'(0,6)

If, however, the fullword area containing the constant were given the name
TEN (as in the example earlier), we could write instead

L 0, TEN

and let the Assembler figure out what base and displacement to use. To do
this the Assembler needs only to be informed of the address it should
assume will be in register 6 (the method will be discussed in Section 12),
and the calculation of the displacement will be done for us. It may seem
that this is a relatively small return for so much effort; it can be seen,
however, that if the program 'is modified slightly so that the constant no
longer lies in exactly the same position relative to the assumed given base
address, then all imtructions which refer to the constant must have their
displacements recalculated. (It is of course implicit in this discussion
that (a) no program works just the way we want it to on the first try, and
(b) even if it did we'd think of some changes to make before we got done
with it. If this were not so we could dispense with assemblers and be
content with producing programs consisting of strings of hexadecimal

digits -- but even those who programmed the earliest machines that way are
agreed that assembly languages are an improvement.) Thus the main function
of the Assembler will be to provide a convenientmeans for writing and
modifying a given program and getting it to execute correctly, by performing
many of the details of the programming process for us.

10-7

11. INSTRUCTIONS (II), MNEMONICS AND OPERANDS

In this section we will consider some of the problems of writing actual
machine instructions, using a number of instruction formats and giving some
simple example6 of actual code sequences. The use and detail6 of the
functioning of the individual instructions-will be the subject of many
later discussions, so no effort should be made to memorize the mnemonics,
operation codes, or deseriptions of any of the instructions at this point.

Mnemonics provide a short abbreviation for a descriptive word or phrase
which designates the action of each operation code. They may range from
something as simple as "A" meaning "Add", to "BXIE" meaning "Branch on Index

‘Low or Equal". To simplify the presentation, we will discuss each class of
instructions separately, and sometimes give examples of how they are written.
A number of abbreviations such as ri, s2, I, etc. will be explained as we

go along.

RR Instructions

Instructions of RR format are given in Table IV; several things should
be noted about the instructions listed there. First, not all of the
available digit combinations between 0016 and 3Fis (in the columné labeled
"opcode") are used as actual operation-codes. Second, all of the instruction6
in the second column refer to the floating-point registers, the uses of
which will be described in detail later. (The floating-point instructions
operate on data in a format which is interpreted differently fream the
integer representations discussed in Section 6.) Third, two of the instructions
(namely SSK and ISK) are not normally available to the programmer and their

descriptions will therefore be deferred (they are called privileged operations).

11-1

Ppeode Opcods
{ex) Mnemonic Instruction Lhex;) ﬁMnemonic Instruction

oh SPM Set Program Mask 20 LPDR Load Positive
05 BAIR Branch and Link 21 INDR Load Negative
{ 06 BCTR Branch on Count 22 LTDR Load and Test
- QT BCR Branch on Condition 23 LCDR Load Ccmplement
08 88K Set Storage Key 2L HDR Halve
09 IsK Insert Storage Key 28 LDR Load
OA Sve Supervisor Call 29 CDR Compare
27 ADR Add Normalized
1 10 LPR Load Positive 2B SDR Subtract Normalized
11 INR Load Negative 2c MDR Multiply
12 LTR Load and Test 2D DDR Divide
13 LCR Load Complement 2F AWR Add Unnormalized
| 1k NR Logical AND 2F SWR Subtract Unnormalized
15 CIR Compare Logical - 30 LPER Load Positive
16 grR Logical fR 31 LNER Load Negative
| 17 XR Exclusive @R 32 LTER Load and Test
118 IR Load 33 LCER Load Complement
19 CR Compare 34 HER Halve
1A AR Add 38 LER Load
{ 1B SR Subtract 39 CER Compare
1c MR Multiply 3A AER Add Normalized
{ 1D DR Divide 3B SER Subtract Normalized
118 ALR Add Logical 3C MER Multiply
{1 1F SIB Subtract Logical 3D DER Divide
% 3E AUR Add Unnormalized
b 3F SUR Subtract Unnormalized
TABLE IV.

RR Instructions

¥Yor all but two of the RR instructions, the two operands of the operand

fleld entry in a machine instruction statement must be written in the form

i, rz

where the operands ri and rz will be described shortly. The exceptions,
which have only a single operand in the operand field entry, are SEM (in
which case the operand is written in the form p;) and SVC (in which
cege it is written in the form I).

To explain the meaning of the notation "ri,r2", it is perhaps useful

to refer to the example of a machine instruction statement in Fig. 9.5, in

11-2

which the operation and operand fields were IR 7, 3". (It was noted in

the description of the figure that exscution of this instruction would cause

the contents of R7 to be replaced by the ¢ontents of R3.) 1In this case,

" is "7" and "rz" ig "3". In fa et thecguent ities vooord vz oxust simply

T

'ij‘

be absolute (i.e., non-relocatable; expressions of value less than 16; a

more formal definition of the term ¢ ¢ ression” will be given shortly.

Thus, we could just as well have written IR X'7',B'11' in this
example. For RR instructions, the values of the expressions in the operand
field are placed by the Assembler inte two adjacent hexadecimal digits,
called operand register specificaticon digits, in the second byte of the
instruction (which was labeled "Register Specification" in the first diagram

of Fig. 4.2), as in the following figure.

Operation
Code
C 78 11 12 15

ry ro

Figure 11.1 BRR Instruction Showing Register Specification Digits

The subscripts on the quantities "ri" and "rz2"

are simply a way to distinguish
which operand is being referred to; in general we will find that using the
terms "first operand", '*second operand", etc. in a consistent manner will
help in remembering what actions are being performed by each instruction.

We would therefore say for most of the RR instructions that the operand ri
specifies the register containing the "first operand". It will become
apparent that the word "operand" is used here in two different senses: as
part of the operand field entry of some instruction statement, an operand is
an expression which will eventually be-translated by the Assembler into

some part of an instruction; we also call an operand one of the quantities
in a register or in memory which at execution time participates in the given
operation. The difference is not terribly important but can be confusing,
and which is meant will normally bhe c¢lear from context. Thus the operands

(first meaning) in the operand field entry of the instruction IR 7,3

are T and 3, whereas at execution time the operands (second meaning) of the

11-3

IR instruction will be found in general registers 7 and 3. Using Table IV
to find that the operation code corresponding to the mnemonic IR is 186,
the two-byte instructionwhich would be assembled from the statement as
given would be [B8]73] in hexadecimal.

For the case of the SIM instruction the digit labeled r2 in Fig. 11.1
is ignored when the instruction is decoded; and for the SVC instruction,
the entire second byte of the instruction is occupied by an 8~bit number
which is specified by the absolute expression "I", as indicated above,

Thus SPM 1% and svc 255 are acceptable forms of each instruction,
in which decimal self-defining terms are used for the operand field entries.

Before discussing RX format instructions, we will discuss in more
detail the complexities of what is meant by an "expression". Since most of
the material of the next several pages will be illustrated in fairly simple
examples to be given later, it is not important that some of these conventions
of Assembler Language remain unclear for now.

An expression is an arithmetic combination of terms (and we will also
give a definition of the term "term") which can be evaluated by the Assembler
to produce a meaningful value for the operand. Mathematical operators allowed
‘include +, =, *, and /, indicating addition, subtraction, multiplication,
and division respectively; the rules used in performing these operations are
described below: The quantities used as the basic elements of an expression

are terms, which can be one of the five following items:

a self-defining temm (absolute);
symbol (absolute or relocatable);
Location Counter Reference (relocatable);

literal (relocatable);

(VR N N o]

Symbol Length Attribute Reference (absolute).

EBach of the latter three will be described later. An expression using a
gymbol and a self-defining term is GETCENST+X'LA' and an expression
using only self-defining terms is X'12'+C'.'-B'1010001'+7 which the
reader -can verify to have the value 1910.

To illustrate the definition of an absolute symbol (up to now we
have i1lustrated only the use of relocatable symbols), we will make brief
mention of the EQU assembler instruction: the assembler instruction statement

"symbol FQU expression" gives to the symbol in the name field the attributes

11-b

(including value and relocatability) of the expressionin the operand field.
Thus the statement

ABSk25 EQU Lo5

serves to define an absolute symbol with value 42510. (This is the unusual
case mentioned in Section 10 where ths value of the symbol is not the value
of the IC when the symbol was encountered.)

Parentheses in an expression may be used, as in ordinary mathematical
use (and as in algebraic procedural languages such as FORTRAN, AIGOL, and
PT/l) to indicate groupings. As one might suspect, an expression may not
contain two operators in succession; a less familiar restriction is that an
expression may not begin with an operator, sc that -5+ABSY25 is invalid,
whereas O-5+ABSh25 is correct. (The maximum number of terms allowed and the
maximum level of nesting of parentheses in an expression both depend on the
size and sophistication of the Assembler; we will simply mention an upper

limit of 16 and 5 respectively, corresponding to the OS/360 Assembler.)

___Expressions

With these notational matters more or less in hand, we can now state

the rules for evaluation of expressions.

1. FEach term is evaluated to fullword accuracy, namely 32 bits. The

relocatability attribute of each term is noted.

2. Parenthesized subexpressions are evaluated first, and the resulting
value used in computing the value of the rest of the expression.
Thus in the expression (X'100'+2¥(ABS425-420))+1 (where ABSU25 is
assumed to have been defined as above), the value of (ABS425-420)

would be evaluated first.

3. As is the case in procedurallanguages, multiplications and divisions
are done before additions and subtractions. Thus the value of the
expression just given would be evaluated as (X'100'+(2%(5)))+l and
not ((X'100'+2)*(5))+l. Note that relocatable terms or subexpressions

may not occur in multiply or divide operations.

Operations are performed in left-to-right order. Thus 5%2/4 means
(5%2)/4, not 5%(2/4).

Multiplications yield a 32-bit result which'is the low-order half of
the double-length product; thus significant bits can be lost if the

product is too large.

Division always yields an integer result; remainders are discarded.
Thus 5*2/4 has the value 2, and 5*(2/4) has the value 0. Division by

zero is permitted, with the result simply being set to zero.
Negative quantities are carried in standard two's complement representation.

When the expression has been completely evaluated, it is truncated to
the value contained in its rightmost 2l bits, which is then considered
(as was noted for self-defining terms) to have a positive value, even

though the bits dropped off may have all been ones.

The relocatability attribute of the result 18 found as follows: if
there is an even number of relocatable terms appearing in the expression
in such a way that they are paired (that is, they appear with opposite
signs) so that a change in the relative origin assigned to the program
has no effect on the value of the expression, then the expression is
absolute. If there is one remaining unpaired term not directly

preceded by a minus sign, then the expression is relocatable and has

the relocatability attribute of the unpaired term. (Numerous examples

will be given later, so don't worry if this seems obscure at present.)

After this somewhat lengthy digression, we return to the problems of

writing actual machine instructions by noting that the machine instruction

example at the beginning of the chapter could have been written

LAD IR C'45'-(7*X'2436') +ABSh25¥BI111 ' -235,18/(Q-Q)+3

though the gain in clarity is not obvious. A somewhat more reasonable usage

might be as illustrated in the following sequence of statements.

RT QU 7
R3 EQU 3
IfAD LR RT, B3

Note that there is a difference between (1) the_notational convenience"R7"
(meaning general register 7) introduced in Section 3, (2) the definition of
an absolute_symbol RTtohave the vaiue 7, and (3) the use of the symbol as
an operand in the operand field entry »f & machine instruction where the use
of register T is indicated. The above example is entirely equivalent to

the two below.

ZPRCH EQU 3 R7 EQU 3
ZILCH EQU T R3 FEQU
L#AD IR ZILCH,Z@RCH IYAD LR R3,R7

Just to show that programming with RR instructions is in fact quite
simple, suppose that at some point in a program we wish to add the contents
of R2 to th, subtract the contents of R9 from the sum, and leave the result
in RO; the following three statements (whose properties will be discussed

later) would suffice:

IR 0,2 M@VE CYNTENTS $F R2 T¢ RO
AR 0,1% ADD C@NTENTS ¢F R14
SR 0,9 SUBTRACT C@NTENTS §F RO

RX Instructions

RX instructions are given in Table V. As was the case in Table IV,
not all of the available digit combinations are used as actual operation
codes; and all of the instructions in the right-hand column again refer to
operations on the floating-point registers and will be discussed later.
None of the RX instructions is privileged, and the format of the operand
field entry is the same for each. It should be kept in mind that RX
instructions always refer to memory in some way. Referring to Fig. 11.2,
we see that four quantities are to be specified -- the operand register
specification digit ri, the index register specification digit x2, the base
register specification digit bz, and the displacement d2. (We are again
entering on a fairly technical discussion, the details of which need not be
assimilated at this point, since many later examples will be given in

illustration of the various possibilities.)

11-7

Opcode r1 X2 b2 dz
0 78 1112 15 16 19 20 31

Figure 11.2 RX Instruction Showing Register Specification Digits

Opcode Opcode
(hex) Mnemonic Instruction (hex) Mnemonic Instruction
4o STH Store 60 STD Store
41 LA Load Address 68 LD Load
k2 STC Store Character 69 CD Compare
43 IC Insert Character 6A AD Add
Ly X Execute 6B SD Subtract
L5 BAL Branch and Link 6C MD Multiply
L6 BCT Branch on Count 6D DD Divide
L7 BC Branch on Condition 6E AW Add Unnormelized
48 LH Load 6F SW Subtract Unnormalized
Lo CH Compare
4A AH Add 70 STE Store
LB SK Subtract 78 IE Load
Le MH Multiply 79 CE Compare
LE CVD Convert to Decimal TA AE Add
Lp CVB Convert to Binary 7B SE Subtract
50 ST Store 7C ME Multiply
5L N Logical AND 7D DE Divide
55 CL Compare Logical T8 AU Add Unnormalized
56) Logical #R TF su Subtract Unnormalized
57 X Exclusive ¢R
58 L Load
59 C Compare
5A A Add
5B S Subtract
5C M Multiply
5D D Divide
5E AL Add Logical
5F SL Subtract Logical

TABIE V.

RX Instructions
There is quite a variety of ways in which the operand field entry of an

RX-type machine instruction statement may be written, but they all eventually

must yield values for the four needed quantities. Rather than give all the

11-8

forms for the operand field entry immediately, we note first that it is of

the general form
r1,<address specification>

where <address specification> will be discussed shortly. The operand register
specification digit ri is formed according to the same rules given above .
for the ri1 and rz digits of RR instructions: it must be an absolute expression
of value less than 16.

Suppose first that we wish to specify explicitly the values assigned
to X2, be, and dz: this is done by writing the second operand (namely

<address specification™>) as

dz(x2,b2) -

For example, the instructions in examples 3, 4, and 5 of Section 5 (page 5-3)
could be written (giving both the assembled form and the operation and

operand field entries of the machine instruction.statement) as in Fig. 11.3.

[13]oa] 7]L68] IC 0,X'468' (10,7)
(L300 7]L468) Ic 0,1128(0,7)
(43]o7]0[%88] Ic 0,1128(7,0)

Figure 11.3 RX Instruction with Explicit Operands

In the last of these three examples, we could have written the second operand
as 1128(7) and the Assembler will give the omitted item (the base register
specification digit bz) the value zero.

As was mentioned in the discussion-of addressing in Section 5, the use
of the index register specification digit xz when the base register specification
digit bz was intended can lead to programs which function more slowly,
though correctly. By specifying only the base digit when no indexing is
intended, the program is both more efficient and more easily understood --
the second of the above examples, where we could have written 1128(,7) also,

is therefore preferable to the third.

11-g

&

The utility of the Assembler becomes more apparent when we consider
all the forma in which the seemd operand of an RX instruction may be written;
these are given in FMg. 11.4 below.

Explieit Address Implied Address
dz(x2,b2) s2(x2)
da(x2)
da(,b2) 82

Figure 1ll.b Address Specification in RX-Type Instructions

In the three cases where an explicit address is desired, eachof the

quantities da, x, and b2 (where specified) must be an absolute expression;
xgandbg, 1ike ri1, must have value less than 16, and d2 must have value
lees than or equal to 40950 = FFFig. Rote that the second and third forms
ofexplicit address implicitly specify bz = 0 and xa2=0,respective&y, as
indicated previously .

Inthe twocasee where an implied address is desired, the quantity sa

may be either an absolute or arelocatable expression of value less than 2%,
This means that we may write imstructions such as I. O,ANSWER and leave
it tothe Assembler to compute the proper base and dieplacement; how this
is done will be discussed in the next section. For the moment suppose that
the Assembler has sufficient information so that the instruction IC 0,BYTB
is translated into [W3JOO[7[WRB] as in Fig. 11.3. Then if the index register
to be used is R0, the instruction IC O,BYTE(10) would be translated
into [GIEITRE) -

This is the- same instruction used in example 3 in section 5;the
example given there was simply meant to illustrate an address celeulation
at execution time rather than (as above) the method used by the Assembler
to specify the base and index digits. We will find that the moet cemmon
'means -of address specification in simple programs is through the use of
implied addresses, where the Assembler computes the proper displacement for us.

To give a simple example of a sequence of statements which increment

by one the fullword integer stored in memory in an addressable area

11-10

named by the symbol N, we could use the following:

L O,N I$AD FRIM N INT¥ RO
A O0,fNE ADD INTEGER C@NSTANT 1
ST O,N SIfRE RESULT BACK AT N

where it is assumed that an addressable fullword area named #NE which
contains the integer constant +1 has been defined in the program. We will

see later that there are several ways to define such constants.

RS and 8I Instructions

" The RS-type and SI-type instruction6 listed in Table VI are somewhat
varied both in application and in the ways in which the operand fields are
specified. Note that there are nine privileged instructions: 8B8M, LPSW,
WRD, RDD, SIf, TIf, HIf, TCH, and “Diagnose", for which there is no mnemonie.

Opcode Cpcode
hex) Mnemonic Instruction (hex) Mnemonic Instruction)
80 8SM Set System Mask 90 STM Store Multiple §
82 LPSW Load PSW 91 ™ Test Under Mask
83 Diagnose 92 MVI Mwe
84 WRD Write Direct 93 s Test and Set
85 RDD Read Direct ok NI Logical AND
86 BXH Branch on Index High 95 CLI Compare Logical
87 BXLE Branch on Index Low 96 g1 Logical fR
or Equal 97 XI Exclusive ¢R
88 SRL Shift Right SL 98 M Load Multiple
89 SLL Shift Left SL
-8A SRA Shift Right S 9C SIf start I/$
88 SIA Shift Left S 9D T1¢ Test I/ 4
8c SRDL Shift Right DL 9E HIP Halt I/p {
8D SLDL Shift Left DL - 9F TCH Test Channel
8m SRDA Shift Right D
8F SLDA Shift Left D
TABLE VI.

RS and SI Instructions
(For Shift Instructions, S = Single, L = Logical, D = Double)

Since the operand fields of RS and SI instructions cannot be deseribed inas
uniform a way as was possible for R instructions, the details will be left

11-11

to the discussion of the individual instructions.A simple example of an 8I
instruction is MVI . FILAG,O which would cause the byte named FIAG
(which is assumed to be addressable) to be set to zero.

88 Instructionb

The instructions of SS type are given in Table VII. There are no
privileged SS instructions. As was the case for the B8 and SI instructions,
discussion of the operand field formats will be deferred. The last six

instructions in the right-hand column are decimal instructions, which operate

Opcode Opcode

(hex) Mnemonic Instruction - (hex) Mnemonic Instruction
D1 MVN Move Numeric F1 Mve Move with Offset
e MVC Move F2 PACK Pack
D3 MVZ Move Zone ¥3 UNPK Unpack
DU NC Logical AND
»% CIC Compare Logical F8 ZAP Zero and Add
D6 gc Logical @R F9 CP Compare
DT XC Exclusive @R FA AP Add
k) o] TR Translate FB Sp Subtract

1 oo TRT Translate and Test FC MP Multiply

" IE ED Edit FD Dp Divide

DF EIMK Edit and Mark
TABLE VII,

ss Instructions

ondatawhich is stored in a different format (called packed decimal) from
that described earlier for fixed-point integers in two's complement
representation; decimal instructions will be treated later. An example of
an 98 instruetion which would cause five bytes'to be moved from a memory area
named ARBA to an area whose first byte is named FIBLD is

MVC FIELD(5),AREA .

To conclude this short presentation of the instruction repertoire of
System/360,asumary is given in the figure below of same of the overall '
characteristics of the instructions as they depend on the first four bits
of the operation code. As was illustrated in Section 4, the first two bits

determine the type and length of the instruction. The second pair of bits
determines (depending on the instruction type) the operand length or the

general functions performed by the instructions.

Second Bit Pair

First B
it Pair 00 01 10 11

00 Branching and Fullword Fixed- Floating- Floating-
(RR) Status Switching Point and Logical | Point Long | Point Short
01 Halfword Fixed- Fullword Fixed- Floating- Floating-
(RX) Point and Branching Point and Logical Point Long | Point Short
10 Branching, Status Fixed-Point,
(RS, Switching, and Logical, and

SI) Shifting Input/Output

11 Logical Decimal
(ss)

Figure 11.5 General Instruction Classification

A closer examination of a complete table of operation codes reveals a great
deal of symmetry in the specification of the codes used for similar functions.
For example, the four instructions which perform the Logical AND operation
(namely, NR, N, NI, and NC) all have operation codes in which the second hex
digit is 4 and the first hex digits differ by multiples of 4 (namely, 1k,5%4,
94, and D4). Since we will make reference to instructions slmost entirely by
use of mnemonics, these details are only of passing interest for our purposes.
The reader who is interested in a broader discussion of these topics --
collectively known as system architecture -- should consult the IBM Systems
Journal, Vol. 3, Nos. 2 and 3, and the IBM Journal of Research and Development,
vol. §,No. 2.

1i-1%

12. ESTABLISHING AND MAINTAINING ADDRESSABILITY

In this section we will give an exposition of some simple methods for
providing addressability for a program, and how the Assembler makes use of
some programmer-provided information to calculate displacements. Rather
than give a set of rules and show how they work, we will start with what we
want and work backwards to some techniques which can be used to get it.

One particular instruction is central to the discussion, namely BAILR.
For the time being we will be interested -only in the situation where we
write BAIR 13,0 (so that the second operand register specification
digit rz2 is zero). The effect of this instruction when executed is to
replace the contents of general register ry by the rightmost 32 bits of the
PSW: the ILC, CC, and Program Mask occupy the leftmost byte of the register,
and the rightmost 24% bits contain the value of the IA (which will be the
address of the instruction following the BALR, because the IA is incremented
by the instruction length (2 for BALR) during the Fetch portion of the
instruction cycle). This is one solution to the problem posed at the end
of Section 5, where addressability was first discussed; the BAIR instruction
gives us a way to find out where in memory a program is located.

Suppose that the following short sequence of statements is part of a
program which is in memory and ready to be executed, and assume for the
moment the Supervisor has relocated the program so that the first instruction

(the BAILR) happens to be at memory location 5000;g.

Location Name Operation Operand

5000 BALR 6,0

5002 BEGIN L 2,N LgAD CENTENTS ¢F N INTP R2
5006 A 2,fNE ADD C@NTENTS @F ¢NE

500A ST 2,N STYRE CENTENTS ¢F R2 INT$ N
--- twenty-two additional bytes of instructions, data, etc. ---

502k N DC F'8' FULIWPRD INTEGER 8

5028 #NE DC F'S FULIWPRD INTEGERI

Figure 12.1 A Simple Program Segment

12-1

Some explanation of the items in the examplé may be helpful. The instructions
L, A, and 8T respectively (1) put the contents of a fullword from memory
into a general register (i.e., Load the register), (2) Add the contents of
a fullword area in memory to the contents of a register, and (3) replace
the contents of a fullword area in memory with the contents of & general ,
register (i.e., STore the register). The IC statements, which are treated
in the next section, are meant simply to provide two fullword areas of
memory with names "N" and "@NE" which contain the fullword integer values
desired; we have arbitrarily set the contents of the fullword at N to the
integer 8 even though in an actual program any value might be possible.
All of these instructions will be covered in detail later.

When the program has begun and after-the BAIR has been executed, R6
will contain xx00500236, where xx stands for two hex digits whose values
are of no concern at the moment. To determine the proper displacement for
the L instruction at 500216, we can use the Imown contents of R6 (since
the xx digits are ignored in address computations) to compute a displacement
of 502416 - 500216 = 022)6; then the assembled machine instruction (using
the operation code 58 for the mnemonic L) should be [58]20{6]022). Then
when the instruetion is executed, the computation of the effective addpess
yields 022 + 005002 = 005024, which is what we want. If we continued in
this fashion for the rest of the instructions, we would find that the
following "assembled" quantities in the indicated locations would give the

desired results.

Location Assembled Contents Original Statement
5000 0560 BAIR 6,0
5096 58206086 BEGIN L 2,0 2,0
500A 50206022 ST 2,N
5024 00000008 N Dc F'8
5028 00000001 fNe Dpc F'L

Pigure 12.2 Simple Program Segment with Assembled Contents

So far, so good: we have constructed a sequence of statements which
will give a desired result if it is placed in memory at the right place.
It is natural to ask at this point what would happen if the program had
been put elsewhere by the Supervisor. So, assume that the same program

segment begins at 84E8:s, as in the figure below.

Location Statement
84E8 BAIR 6,0
8L4EA BEGIN L 2,N
8LEE A 2,0NE
8LF2 ST 2,N
--- the same 22 bytes of odds and ends ---
850C N DC F'8r
8510 @NE DC Fr1

Figure 12.3 Same Program Segment, Different Memory Location

Now, the contents of R6 after the BALR is executed would be xx0084EA;g. To

access the contents of the fullword at N, using R6 as a base register, the
-- necessary displacement isl 850C - 8LEA = 0221¢ (as before!) and the dis-

placement necessary in the A instruction is 8510 - 84LEA = 026;¢. Thus

the assembled program would appear as in the figure below.

Location Assembled Contents
84E8 0560

8LEA 58206022

8L4EE 5A206026

8hro 50206022

850¢C 00000008

8510 00000001

Figure 12.4 Same Program Segment with Assembled Contents

The identical assembled program would be used in each case to perform the
desired calculation. It therefore appears that so long as the same fixed
relationship is maintained between the various parts of -the program segment
(namely that there be 22 bytes between the ST instruction and the fullword
named N, and that N and ¢NE name areas that fall on fullword boundaries, the

segment could be placed anywhere in memory and still execute correctly.

12-3

This is because the displacements of the three RX-type instructions were
calculated on the assumption that at the time the program is executed
there would be an address in R6 (namely the address of fhe L instruction
named BEGIN) which could be used for a base address. Indeed, we could
have assumed that the program began at momory location zero (even though
an actual program would not be placed there) because the contents of R6
after the BAIR would then be xx000002 and the displacements would be
calculated exactly as before. 1In the first example, the actual origin of
the program segment was 500016; we could by chance have assigned that value
as a relative origin in the program and had the values of the Assembler's
Location Counter correspond identically to the actual locations later
assigned by the Supervisor to each instruction. In that case, we would
need to inform the Assembler that the quantity to be used as a base is
500216, and that it would be found in R6 at execution time. Similarly, in
the second example, the relative origin would be 84E816, and the contents
of R6 that the Assembler should assume in order to calculate the correct
displacements would be 84EA1s. If the value of the actual origin is
assigned to the relative origin by the programmer, and if the Assembler
knows that the contents of R6 at execution time will-also be the value of
the symbol BEGIN , then the correct displacements will be found.' However,
in each of the above examples, the computation of the displacements actually
depended not on a knowledge of the actual locations of the instructions
at execution time, but only on their locations relative to one another and
on the value assumed to be available for addressing purposes. Thus, the
technique used is to assign a relative origin for the program, and then to
give some value relative to that relative origin which may be used for
computing displacements; although this seems. complicated, we will find it
quite simple in practice.

The assembler instruction which provides this information is the
USING instruction. It is written

where s is a relocatable or absolute expression (usually just a symbol.
will be used) whose magnitude is less than 2%%, and r1 is an absolute

expression of value less than 16 which specifies the register to be used as
a base. (As usual, there is more to using USING than has been stated here,
but we will use this simplified explanation for the time being.) Thus, the
statement USING BEGIN,6 would inform the Assembler that register 6 may
be assumed (for purposes of computing displacements) to be a base register
which will contain the value of the symbol BEGIN . We could rewrite the

sample program segment to include the USING statement as in the figure below.

BALR 6,0
USING BEGIN,6
BEGIN L 2,N
A 2, NE
ST 2,N
N DC F'8t
aNE DC Fr1

Figure 12.5 Program Segment with USING Instruction

= If the relative origin assigned by the programmer is zero, the value of the
symbol BEGIN is 2, and the values of the symbols N and ¢NE are 2416 and
2816 respectively. To complete the addressing syllable of the ST instruction,
the Assembler need only note tha-t the difference between the value of the
symbol N and the wvalue that the USING instruction specifies will be present
in R6, is 2k - 2 = 22;4; this is the required displacement. It should be
noted at this point that the value provided by the USING statement must
allow the Assembler to compute a legal displacement. 1If the calculation
yields a negative value or one greater than 4095, the location referred to
by the-symbol in question is still not addressable, and further steps would
have to be taken.
Two important features of the program segment in Figure 12.5 should

be noted. First, the USING instruction does absolutely nothing about

actually loading a value into a register; it merely tells the Assembler

what to assume will be there when the program is executed. Second, if the

BAIR instruction had been omitted, there is no guarantee when the program
is executed that the correct effective addresses will be computed. The

example below will help to illustrate this.

12 -5

Suppose an error had been made in punching the 'card with the L

instruction, such that it appeared
BEGIN L 6,N LfAD CYNTENTS ¢F N INTP R2

(the first operand was incorrectly punched as 6 instead of 2). The
assembled program would then appesr as in Figure 12.6, assuming a relative

origin of 0 had been assigned to the BAIR instruction.

Location Assembled Contents Statement
0 0560 BAIR 6,0
USING 2EGIN,6
2 58606022 BEGIN L
6 5A206026 A 2,’121@ \
A 50206022 ST 2,N
2k 00000008 g DC F'8!
28 00000001 NE DC F'S

Figure 12.6 Sample Program Segment with Erroneous Statement

It is apparent that thfs program will assemble correctly, as did the one

in Figure 12.5, since all quantities are properly specified. However, at
execution time, things go rapidly awry. Suppose again that the actual
location assigned by the Supervisor to the BAIR is 500016, so that when the
L instruction is executed, R6 contains xx00500216. Now, the L instruction
transmits a fullword from the memory location at the effective address given
by the second operand into the register specified by the first operand,
'which in this case is R6. When the effective address of N is being calculated,
R6 will contain the correct base address; but when the execution of the L
instruction is camplete, the contents of R6 will have become 000000081g, and
not xx005002. When the next instruction is executed, the effective address
calculated is 2616 + 81 = 00002E1¢ and not 502816, which is where the
desired operand is to be found. In this case, the generated effective
address is not divisible by 4, so that it refers to the incorrect byte of
the required fullword operand; hence a specification exception occurs, and
remedial action can be initiated immediately. This does not by any means
imply that at any time we have the misfortune to destroy the contents of a

base register that the CPU will be able to detect the error. Indeed, if
the contents of the fullword at N had been the integer 2 instead of 8, then
the effective address would have been computed to be 2 + 26 = 2816, which
is a perfectly acceptable address for a fullword. The subsequent instructions
would thus have gone their way, adding the contents of the fullword at
memory location 2816 to R2, and storing the result at location 2hig, which
is obviously not what is intended. It is partly a matter of chance as to'
how much further damage such a program error can cause when the program is
executed; indeed, when the CPU finally (if it ever) detects an error, all
evidence pointing to the offending instruction may have been lost (R6 may
have been changed several times!), making error tracing difficult. Thus
the programmer must take care to insure the integrity of the contents of
registers being used for base registers, -since the Assembler makes no checks
for instructions performing operations on registers.designated in USING
instructions as base registers. This warning should not be taken lightly;
the errors caused by mishandling base registers are among the most
destructive of program continuity and the most difficult to find.

There is one further method in common use for establishing addressability,
which is simply to require that when "control" reaches a certain point in
the program (where a specified instruction is about to be executed), an
agreed-upon address be in an agreed-upon register. Thus if the program
segment used in the above examples were part of a larger program, we could
then require that at any time that control reaches the statement named
BEGIN, the actual address of that instruction must be in R6. Then the BAIR
could be omitted, and the USING instruction would specify that R6 may still
be assumed to contain the correct value. The problem of how one part of a
program knows where the others are, so that it can pre-load the correct
address into the agreed-upon register, will be discussed later; the solutions
to this problem are basic to the use of subroutines, which is an important
programming topic.

In many of the following sections we will have occasion to examine
short segments of coding which illustrate the use of various instructions.
Rather than indicate explicitly the assignment of a base register and its
contents, we will assume that each segment is part of a larger program in
which addressability has been taken care of. We will also assume that all
symbols used have been defined and are addressable, and that the base register

is different from any registers used or changed in the example

12-7

13. CONSTANTS, STORAGE AREAS, AND LITERALS

In several places in the preceding sections we have made occasional
use of the DC assembler instruction to indicate that a constant was to be

constructed and placed in the program by the Assembler
"Define Constant").

(DC is a mnemonic for
In this section we will elaborate on the definition of
constants and describe a technique which simplifies their use.

As indicated in'some of the examples given previously, the DC instruction
may have name, operation, operand, and comment field entries, of which the
operation and operand field entries are mandatory.

entry is optional,

Since the comment field

its use will be ignored in the following discussion.

Rather than give all the rules for defining constants immediately, it is

- perhaps simpler to examine a few simple cases which illustrate the principles
involved.

The statement DC F'8! defines (as stated in a number of earlier

examples) a fullword integer constant of value 810 placed on a fullword

boundary. That is, four items have been specified:

(1) the value of the constant (in this case +810)

(2) the type of internal representation to be used for the given
value (in this case two's complement integer);

(3) the length of the-constant (in this case four bytes); and

(%) the alignment in memory of the constant (in this case on a
fullword boundary) .

Because the Assembler does no placing of data in memory, it is probably

difficult to see at present how a given sequence of four bytes can be placed,
after processing by the Assembler, Linkage Editor,
on proper boundaries.

and Resident Supervisor,

We will see that there are a few simple conventions

which make this easy to accomplish. Some other types of conversion we will

13-a

discuss here, and the letters which specify/the types/are Character (C),
Binary (B), Hexadecimal (X), Helfword Integer (H), and Address Constant (A).
The first three of these were encountered in the treatment of self-defining
terms, and their use in the DC instruction is quite similar.

For the larger System/360 Assemblers, the operand field entry may
consist of a number of operands which. are separated by commas; however, for
most of the cases which will be of interest, a single operand will suffice.
There are four parts to an operand: (1) a duplication factor, (2) a letter
specifying the type of representation, (3) modifiers, and (4) the value of
the constant or constants. Of these only the second (type) and fourth
(value) are required, as in the example above where, F'8' was specified.
The duplication factor is a relatively simple concept which will be treated
shortly. There are three types of modifier, namely length, scale, and
exponent, of which anly length will be treated here. Because there is an
important relatiomship between boundary alignment and the' use of a length
modifier, we will diseuss the techniques tied to obtain the proper alignment
of constants and data.

When the relative origin is specified by the programmer at the start
of his program, the Assembler checks whether the value given is exactly
divisible by eight; ¥ not, it is 'rounded up" to the, next larger multiple
of eight, which is then used as the relative origin of his program. Thus
the Assembler insures that the program begins with the most restrictive
possible boundary aligment. Then if a constant is defined which must fall
on some particular kind of word boundary, the Assembler need insure only that
1t Location Counter be divisible by the proper power of two (that Is, by
2, 4, or 8) at the locatlon of the leftmost byte of the constant. The
Linkage Editor and Resident Bupervisor 'must then respect this assumed
alignment for the beginning of the program;'ﬂﬂs ensures ﬁhat data and
Instructions will fall on the proper boundaries when ‘the program is finally
loaded into memory for execution. We will of course assume that this is
exactly what happens in the rest of our discussion; some of the implications
of this method of handling programs will be treated in later discussions
which give more details of the processes of linkage editing and loading.

13-2

We must now investigate what it is that the Assembler actually does to
ensure that its Location Counter is indeed divisible by the desired quantity.
Suppose in some program that after @& sequence of instructions has 'been
processed the value of the IC is 12Eig, so that if another machine instruction
were assembled at this point it would begin on a halfword boundary between
two fullword boundaries (recall that instruction addresses need only be
divisible by 2). Suppose also that the next statement is not a machine
instruction statement but is D¢ F'8 instead. To assemble the four
bytes representing the constant (namely 0000000816) beginning at 12Eie would
be incorrect, since an instruction which referred to the constant might
require that its memory address be on a fullword boundary. To avoid such
an erroneous situation, the Assembler will automatically skip enough bytes
to obtain the desired boundary alignment. Thus in this simple example the
LC would be increased to 1301s before the fullword constant is assembled
into the program, and the LC would have a value of 1341 after the constant
is processed rather than the value of 1321 which would be the case if no
automatic alignment had been performed. An automatic alignment is not

performed in the following circumstances:

1) it isn't needed (that is, the LC happens by chance to fall on
the desired boundary); or

2) the type of constant specified doesn't call for it (which is
the case for types C, B, and X); or

3) a length modifier is present.

A length modifier allows the programmer to specify the exact length of
a constant, and is written immediately following the letter which specifies

the data type, in the form .

In

where n is either an unsigned decimal self-defining term, or a positive

absolute expression enclosed in parentheses. For example, the statements
DC FL3'8' and DC FL(2*Lk-5)'8!

would both cause the constant 0000081 to be assembled beginning at the

value of the LC when the IC statement was encountered; no boundary alignment

13-3

is performed. Because alignment is automatic only when the length is implied

(that is, no length modifier is given), the two statements
DC F'8! and DC FLA4'8!

while defining the same constant may give different results since the former
is automatically aligned and the latter is not. (As usual, there 1is '
occasionally a little more to the use of a length modifier than is stated
here, but what has been omitted, namely, bit-length specifications, will be
of no importance or interest until later.)

One further effect of automatic boundary alignment occurs when a
symbol appears as the name field entry in a DC assemblef instruction statement.
Suppose as before that the value of the IC is, 12E1g when each of the following

statements is encountered.

IMPLIED DC F'8'
EXPLICIT DC FL4'8!

Figure 13.1 Implied and Explicit Length Specifications

Because no boundary alignment is performed in the latter case it 1is clear
that the value of the symbol EXPLICIT will be 12E;s. In the former case,
however, two bytes must be skipped by the Assembler to achieve the required
boundary alignment Implied by type F. Since we will want to be able to
refer to the constant by using the symbol IMPLIED, it is also clear that it
should have the value given to the location of the leftmost byte of the
constant, namely 1301g. Thus if a symbol is to be defined, it is given its
value after bytes are skipped to achieve boundary alignment. In fact, a
general rule may be stated: the Assembler will never automatically assign
the value of a symbol to the location of skipped bytes. (The programmer can
find ways to do so if he is so inclined.) This includes the case where a
byte must be skipped to ensure that an instruction begins on a halfword
boundary. When bytes are skipped to achieve alignment of a following
constant.or instruction, the Assembler will insert zeros into the bytes

skipped.

13-4

We are also in a position now to describe the length attribute of a
symbol, which was first mentioned in Section 10. If a symbol appears in
the name field entry of a DC instruction, then the length attribute of the
symbol is the length in bytes of the first constant assembled. (Cases where
more than one constant may be assembled will be treated shortly.) Thus in
the examples in Figure 13.1, both symbols have length attributes of 4; and
in the machine instruction statement given in Figure 9.5 the length attribute
of the symbol LPAD would be 2, since IR is an RR-type instruction of length
two bytes.

A duplication factor (sometimes called a multiplicity, replication, or
repetition factor) specifies the number of times the constant is to be
duplicated, and is written immediately preceding the letter which specifies
the constant type. It may be either an unsigned decimal self-defining term,
or a positive absolute expression enclosed in parentheses. For example,
the statements DC 3F'8' and p ¢ (5/2+1)F'8" are equivalent
to writing the statement DC F'8' three times in succession. And
because more than one operand may (for the larger Assemblers) be written
in the operand field entry of a DC instruction, we could also achieve the
same result by writing pC F'8',F'8',r'8 . There is still one more
way of defining multiple constants (again, for the larger of the Syétem/360
Assemblers) which we will mention after discussing some of the other types
of constants which will be of use in future examples.

The type H constant is quite similar to type F, in that two's
complement integer conversion is specified. The only difference is in the
default values assumed for length and alignment, which assign a halfword
integer to two bytes aligned- on a halfword boundary. Thus the statement

DC H'-10' would cause the constant FFFbi16 to be assembl . and
placed on the next available halfword boundary. If an explicit length is
given, there is no difference between constants of types H and F, so that

F13'8" and HL3'8! are for all practical purposes identical
operands.

The following discussion deals with numerous technical matters in a
fairly loose way -- rather than give explicit rules at once we will continue
to use examples to illustrate the problems involved. The rules will be

summarized in a short table at the end of the'‘section.

13-5

‘The three useful constant types €, X, and B differ from F and H in that
no default values are assumed for either length or alignment. For example,
the five bytes required to store the constant generated by the statement

DC C'12345! will be placed by the Assembler at the next availeble
address given by the current value of the IC. If a particular boundary
alignment is desired, extra steps must be taken which will be described later
in this section. The method of writing such constants is, as might be guessed,
the same'as for writing character, hexadecimal, and binary self-defining
terms, except that the limitations on length and value are different. In
the case of self-defining terms, the value of the tem was restricted to
being less than 224, whereas much longer constants can be defined with the
DC instruction. Thus one can define constants in statements such as in

Figure 13.2 below.

TITLE DC C'THIS IS a IfNG CHARACTER C@NSTANT'
DIGITS DC X'8462AFCBE9T5310"

Figure 13.2 Examples of Character and Hexadecimal Constants

In the discussion of data converted according to types F and Hit was
reasonable that the resulting binary numbers should be placed with the
least significant digit at the right-hand end of the desired storage ares;
and that the sign bit should be extended to the left. In all the examples
given, the constants were small enough to fit safely in the allotted space.
The problem may arise as to what should be done if (1) the constant is too
small to occupy fully the number of bite allocated for it by the length
specification (whether an explicit length modifier or the default length is
used), or if (2) the constant is too large to fit in the allotted space.
Some examples of such cases are given in Figure 13.3, along with the
constants actually stored by the Aasembler. The rules used to determine

the final values of the constants are given below.

13-6

Constant Assembled Constant Assembled
too large Value too Small Value
~‘65537 000116 H'2! 000216
FL1'-300' Dlye FL1'-6! FAie
CL3'SMITH' E2D4C916 CL3'S’ E24040; 6
XL2'56789" 678916 X'56789" 05678916
BL1'100100100" 001001002 B'101! 000001012

Figure 13.3 Examples of Truncated and Padded Constants

For all of the constants on the left, some part of the true value must be
truncated to make it fit into the allotted space, since a length is specified
in each case. For all the constant types we are discussing except C, excess
information is dropped at the left end of the constant, and the rightmost
portion is what 1is eventually assembled; for character constants the excess
is trimmed off the right end, as may be verified in the example above. Note
that the special rules concerning the apostrophe and ampersand in character
self-defining terms also apply to character constants.

For the constants on the right side of Figure 13.3, the opposite
situation occurs: in each case the space allotted (either explicitly or
implicitly) is more than is required to hold the significant bits of the ,
given. constants. For the examples of types H and F, the assembled value is
simply the rightmost part of an indefinite-length representation in which
the sign bit has been extended to the left; this is as has been customary
up to now. In the character example, the single letter "8" has been padded
with two blanks (with EBCDIC representation %0i16) on the right side to fill
out the constant to the required three bytes. The last two examples in the
right column require further explanation. As was mentioned earlier in this
section, no default lengths are assumed for data of types C, X, and B; the
general rule is that in the absence of any limitations, the Assembler will
use Jjust enough bytes for the constant to ensure that no information is lost,
and no more. Thus the lengths of the constants in Figure 13.2 are 33 and 7
bytes respectively (these also are the length attributes of the symbols

TITLE and DIGITS); no information has been lost, and no padding was required.

13-7

In the Last two examples in Figure 13.3 some padding with zeros was required
et the left end of the constemts to fill out the partially-specified byte.
Before discussing literals and the definition of storage areas, weWwill
introduce another type of constant which is'of great use and broad applicability
In Assembler Language programming: this is the type A, or address, constant
(sometimes abbreviated "edeon™). An address’ constant is written differently
from the other types we have considered, since the constant is delimited by
parentheses rather than apostrophes, as in A(10). The utility of address
constants 1s a consequence of the fact that the constent may be any expression,
absolute or relocatable. The latter case of course requires umsay other
considerations having to do with processing by the Linkage Editor and
Resident Supervisor, so for the time ueing we will restrict our attention
to cases where the constant in an address constant is an absolute expression.
The A-type constant is similar to F-type constants in that a length of
four bytes and a fullword boundary alignment are implied; thus A(10) and F'10'
are equivalent operands, as are AL#(10) and FL4'10' . A major
difference lies in the ability to specify constants such as A(X'l2E')
and A(C’ ') (which are the same as F'302' and F'64' respectively), in
'which the use of such expressions may greatly simplify the programming task.
In particular one may define constants using operands such as A(ABS425)
where the symbol ABS4Y25 may have been defined in an EQU statement (as in
Section 11) to have some particular value. Though the utility of such
constructs 1s not apparent now, we will see through later examples that
clarity and simplicity can be gained through their use.
One further facility is provided by the larger System/360 Assemblers
for conversions of types A, F, and H: the value specified may actually be
a sequence of values separated by commes (and no blanks), as in D¢ F'8,8,8'
which, as was indicated earlier, is equivalent to DC 3F'8! and
D¢ F'8',F'8',F'8' . TWhich one is used is largely a matter of taste and
convenience; for example, it is simple to specify a group of constants by
the use of a statement such as TABLE DC F'1,2,3,+,5,6,7,8,9,10
where each generated constant is a fullword integer aligned on a fullword
boundary. In all such cases where multiple constants are specified, the
symbol in the name field entry (in this example, TABLE) is given a value

13-8

and length attribute associated with the first constant generated.

not possible to specify multiple values in constants of types B, C,

It is
and X.

The short table in Figure 13.4 summarizes some of the rules given above

for writing operands in IC instructions.

summarized in the Appendix.

The complete set of rules is

Maximum | Implied Implied Value 1is Delimiter | Truncation, | Multiple

Type | Length | Length | Alignment | Specified by Used Padding on | Values?
H 8 2 halfword | decimal digits '' left yes
F 8 L fullword | decimal digigs '' left yes
A 4 L fullword | any expression () left yes
B 256 * none binary digits vt left no
C 256 * none characters re right no
X 256 * none hex digits v left no

(* the implied length is the minimum number of bytes required to

contain all the given information)

Figure 13.% Summary of Rules for Certain DC Operands

It often occurs that a storage area is needed in a program which need

not be initialized to some value by the use of a DC instruction.

facility is provided by the DS

("Define Storage')

which is almost identical in use to the DC instruction.

writing the operand field entry are the same,

specification of a value is optionai.
s F'8¢

The rules for

Thus the statements DS F

This

assembler instruction,

with the exception that the

and

will both cause the Assembler to reserve a four-byte area on a

fullword boundary, but no constant will be assembled, even though one is

specified in the latter case.

Statements—-such as DS

C'MESSAGE'

will

reserve an area whose length is computed by the Assembler from the length

of the given constant (7 bytes), but there will be no constant assembled

into the reserved area.
such as
STPRAGE

DS 100F

which reserves one hundred aligned fullwords and assigns to the symbol

13-9

Large blocks of storage may be reserved by statements

STPRAGE the location of the first. Note elso that the two statements
AREA1 DS 8oc and AREA2 DS CL80

both define storage areas of length 80Dbytes, but the length attributes of
the symbols AREAl and AREA2 are 1 and80 respectively, which may be of
interest in a program. Note in the former of these cases that in the absence
of either a constant or an explicit length, an implied length of one byte

is assumed for the C-type specification; the same is true for types B and X,
so that DS B and Ds X would both cause a single byte to be
reserved.

One special case arises in the use of the DS instruction when a duplication

factor of zero is specified. In such a case any necessary boundary alignment
implied by the type is performed, and then, if a name field symbol is present,
the adjusted value of the IC is assigned to its value and its length
attribute is determined from the operand; no space is reserved. Thus a I8
instruction with duplication factor zero can be used to force a boundary
alignment which would not be available otherwise. For example, the two sets
of statements

WORD DS OF and Ds OF

DC C'W@RD' WPRD DC c 'WRD'

both serve to define a four-byte character constant on a fullword boundary
addressed by the symbol WERD, which would not in general have been the case
if DC C'WGRD' or DC CL4'WERD' had been specified. Note that

DC A(C'WgRD') is incorrect: because the operand in parentheses must
be an expression, and because C'W¢RD' contains more than the allowed
maximum of three characters which is required by the rules for forming self=-
defining terms, the expression which-forms the value for the address constent
is invalid.

If a duplication factor of zero is used in a DC instruction, it behaves
just as would the corresponding DS instruction. When bytes are skipped to
perform alignments implied by DS statements, the Assembler does not put zeros
in the skipped bytes.

This brings us finally to the subject of literals: It often occurs in
programs that some constant must be defined which is used only as a constant.

13-10

In the sample program segment in Figure 12,1, the two quantities in the
fullwords named N and @m are both defined by DC instructions, but it is
implicit in the use of the symbol "$NE" that the contents of that fullword
should retain the integer value +1 throughout execution of the program. It
is of course possible to use constructions such as EIGHT DC F'5!

in a program, but this cannot be of much help in making the program easier
to read or understand, particularly if some part of the program stores data
of varying values in that area. The Assembler provides a simple and
convenient means for simultaneously defining constants and referring to them,
through the use of literals.

" A literal is a special kind of symbol, where the value of the contents
of the storage area referred to by the literal is contained in the literal
iteelf. A literal is written as an equal sign (=) followed by an operand
which conforms to the rules for operand field entries in DC instructions.

The following are examples of literals.

=F'1’ =C' LYNGLITERAL' =BL2'111101"
=H'1' =CLT' BLANK' =X'T765432A"
=A(1) =F'1,2,3,4 =AL3(5,X'D7'/C'.")

Literale may be used in most places where symbols are permitted, with the

following exceptions:

(1) a literal is a term which may not be combined with other terms

(thus IC 0,=F'1'+3 is illegal);

(2) an instruction may not store or modify a literal (thus ST T7,=F'1!
is illegal);

(3) a literal may not be specified in an address constant (about which
more later) (so that A(=F'l') is illegal);

(4) multiple operands may not be specified, but multiple values may;

(5) the duplication factor may not be zero;

(6) the alignment of the data described in the literal is that implied
by the constant type (so that L 2,=X'2B' will probably cause a

specification exception).

13-11

To illustrate the use of a literelin ,a program segment, we eould
rewrite the example in Figure 12.1 in the form given in Figure 13.5 below.

BAIR 6,0
USING BEGIN,6
BEGIN L 2,N
A 2,=F'1'
2,N
ll_ll____m___l'_
N DC 8

Figure 13.5 Sample Program Using a Literal

In this cese the programmer has been relieved of the duty of defining a
constant and creating a symbol by which to refer to it, as was the case
previously. For this gain in ease of referring to constants there is a
corresponding loss in the precision with which one may specify exactly where
the constant is to be located, since this must now be determined by the
Asgembler (a small amount of control is left to the programmer). As literals
are encountered by the Assembler in the course of scanning the source program,
-a separate internal table -- called a literal pool -- is formed which
containg all the literals encountered, with duplicates eliminated. This
allows the programmer to make liberal use of literals with some small assurance
that he will not generate an excessive number of constants. These are placed
in the program at an appropriate location, and the Assembler then computes
the required displacements which allow the constants to be addressed. We
will use literals in many places throughout this presentation, and it should
be borne in mind at all times that a literal is a special symbol, and not a
plece of data, e storage area, or a value, which are common misconceptions
in the use of literals.

We have now covered enough basic material to be able to examine many of
the instructions of System/360 in the context of actual programs. In the
next several sections we will discuss the use of the general registers for
a variety of purposes, and give some examples of program segments which
illustrete typical uses of the instruction set.

13-12

14. GENERAL REGISTER SHIFTING AND DATA TRANSMISSION

In this section we will discuss the instructions which cause data to
be transmitted among the general purpose registers, between the registers
and memory, and within the individual registers themselves. Some of the
instructions will be treated in detail,- since they are the first of the RS
type to be examined.

A notational convenience will be introduced here: because we will
often have need to use the phrase "general purpose register r1" where r1
indicates the value supplied for an operand in the operand field entry of a
machine instruction statement, we will use the abbreviation "Rr1" instead.
Thus if ri has the value'5, the register being referred to is R5.

We will first examine the instructions which transmit data between the
GPRs and memory. The most important of these are the L (Load) and ST (Store)
instructions, which were encountered in several earlier examples. Both are
of type RX; both require the effective address to be divisible by 4, so that

the use of a fullword operand is indicated. The instruction

L r1,d2(x2,b2)

causes the fullword second operand to replace the contents of Rri. The
original contents of Rry are lost, and the contents of the fullword area in
memory remain unchanged. As a reminder, the term "operand" was used here
to mean the data referred to at execution time by the effective address,
which was computed from components of the instruction determined during
assembly fram the second operand in the operand field entry of the instruction
statement. As mentioned before, which meaning of the word "operand" is

intended will usually be clear from context.

14-1

For example, to set the contents of R9 to zero we could write
L 9,=F'0’
and to set it to the maximum negative number,
L 9, =F'-2147483648"

would suffice.
The inverse operation ST is written explicitly as

ST ri,dz2(x2,b2)

and causes the contents of Rry to replace the contents of the fullword wrea
of memory at the effective address of the second operand. ' The contents of
the register are unchanged, and the original contents of the fullword area
of memory are lost. For example, to duplicate at B the contents of the
fullword at A, we could write

L O,A
ST 0,B

and to exchange the contents of the fullwords at A and B, we could write

L 1,B L O0,A L O,A L 0,A
L O,A or L 1,B or L 1,B but , ST 0,B
sT 0,B ST 0,B ST 1,A not L o,B
ST 1,A ST 1,A ST 0,B ST 0,A

where we have assumed that Rl is not being used as a base register. The

use of L and ST in situations where indexing is desired will be treated
later. Both of these instructions are subject to interruptions due to
specification and addressing errors, which were mentioned in Section 5; one
further interruption may be caused by memory-protection, en optional feature
available on System/360 which allows some degree of supervision over the

areas of memory acceaeible to a given program. We will exsmine memory
protection in more detail when interruptions are discussed.

It is occasionally necessary or desirable to be able to transmit
information between memory and several registers. This can be done with a

sequence of L or ST instructions, as in

L 1,A ST 1,B
L 2,k or ST 2,B+4
L 3,A8 ST 3,B+8

1h-2

If the number of registers is large, however, this can be cumbersome and
slow, and it is more convenient in many cases to use the IM (Load Multiple)
and SIM (Store Multiple) instrugtions. Each of these is an RS-type
instruction for which three operands must be specified in the operand field

entry, as follows:
IM (or STM) ri,rs,dz(bz)

where the components of the assembled instruction are pictured in Figure 14.1.

operation
code

0 78 1112 15 16 19 20 31

ri rs ba dz

Figure 14.1 Components of an RS Instruction

As usual, ry and rs must be positive absolute expressions of value 15 or
less, and the base and displacement may be given explicitly or left for the
Assembler to compute from the value of a symbol or other relocatable
expression. The meanings of the register specification digits in the STM
instruction are as follows: beginning with Rry, transmit the registers in
order of increasing number to the successive fullwords in memory which start
at the effective address of the second operand, until Rrz has been transmitted.
If r3 is equal to ri, only one register is transmitted. If rz is less than
r1 then Rri through R15 will be transmitted, followed by RO through Rrs;
thus RO may be considered to follow after R15, so that the general registers
"wrap around" from the highest to lowest numbered. The LM instruction
follows the same rules except that the registers are loaded in sequence from
successive fullwords in memory.

For example, IM 2,6,=5F'0' would cause the contents of R2, R3,
R4, RS, and R6 to be set to zero. Similarly, STM 0,15,SAVE would
cause the contents of all sixteen registers to be stored beginning at SAVE,
which could be defined in a statement such as SAVE DS 16F which
ensures that the proper boundary alignment will be specified for the second

operand address. Ifwe assume that Rl contains the address of a list of

14-3

four fullword constants, we could load them into R7 through RL0 by executing
the statement IM 7,10,0(1) and if we assume that R13 contains the
address of a register save area, then STM 1k4,12,12(13) would store
R14, R15, RO,...R12 in successive fullwords, beginning with the fourth
fullword of the area. These last two example8 1illustrate certain conventlons
commonly used in communicetingwith subroutines, which will be treated in |
detail later. As a final example, suppose we wish to exchange the contents
of RO through RT, as a block, with the contents of B8 through Rl15. We could

then write
STM 0,15,8AVE g 8,7,SAVE
IM 8,7,8AVE or I M 0,15,SAVE
SAVE Ds 16F -SAVE DS 16F

One small but important detail in this example should be noted: one of the
general registers must have been specified as a base register so that SAVE
could be addressed. The STM and LM instructions wilwork correctly, since
the calculation of the effective address is performed before the execute phase
of the IM instruction cycle begins. When execution is completed, however, the
base register has been changed, so either the Assembler must be informed that
the base register is changed, or the correct value must be put back into
the original base register.

The transmission of halfword data between memory and registers is
somewhat more complicated, because a halfword requires only half of a general'
register. The relevant instructions, IH (Load Halfword) and STH (Store
Halfword) are similar to L and ST; both are RX instructions, and the operand
field entry is written the same way. STH is the simpler of the two: the
rightmost 16 bits (the right half) of Rri replaces the helfword at the
effective eddress of the second operand, and Rry remains unchanged, If the
contents of the register represent an integer too large to be correctly
represented as a 16-bit two's complement integer, some significance is lost;
no indication is made that the halfword in memory may not have the desired
value. (An example illustrating this will be given shortly,) Conversely,
when data is being transmitted from memory to a register by the LH Instruction,
it is reasonable to assume that the programmer wants to perform some arithmetic
.operations on the value transmitted, so that the data should occupy the entire

1hb

register with the least significant bit at the right-hand end. To give a
correct representation in the 32-bit register, the sign bit of the 16-bit
halfword operand must therefore be extended to the left to occupy the left
half of the general register. One may visualize this process as taking
place in two steps,. The halfword operand is brought from memory and placed
in the Memory Data Register (MDR), which is an internal register used for
communicating between the CPU and memory. The leftmost bit of the halfword
is duplicated to the left by 16 positions, providing a 32-bit representation
of the original 16-bit two's complement operand. The resulting 32 bits
are then transmitted to the designated general register. Though none of
the models of System/360 use the MDR inprecisely this fashion, we will find
that the descriptions of many instructions can be simplified considerably
by supposing it to take an active part in the handling of data passing
between memory and the CPU. Note that there is also an instruction with
mnemonic MDR; we will indicate which is meant if there is a possibility of
confusing the two. Thus the statements LH O,=H'1' and 1 O,=H'-1!
would cause the contents of RO to be set to 00000001~6 and FFFFFFFFig
respectively. As long as the value of the halfword operand X involved
satisfies -2%X < 2% it can be correctly represented in 16 bits and will
therefore be correctly transmitted by LH and STH instructions. If this is
not the case, situations such as those illustrated in the next two examples
can arise.

Suppose the sequence of instructions given in Figure 14.2 is executed.
The contents of the registers is given in the comments field of the instructions;
the notation C(RO) means "contents of RO", and X'n' means the same thing as

nis, as in the definition of hexadecimal constants.

L O,B C(RO)=X"00010001"
STH O0,A C(A)=X'0001"
LH 1,A C(R1)=X"'00000001"

A D S H
B DC F'65537!

Figure 14.2 Loss of Significant Digits when Using STH

2

14-5

The contents of RO and Rl are different because the quantity in RO being
stored by the second instruction is too large. Amore awkward result is

illustrated in Figure 1h4.3.

L 0,=F'65535" C(RO)=X"'0000FFFF"
STH O0,A C(A)=X'FFFF"
IH 1,A C(RL)=X'FFFFFFFT'
A D H

Figure 1%.3 Loss of Significant Digits when Using STH

In this case the result in Rl has a different aign and considerably different
magnitude from the original operand. From these two examples it is clear
that the programmer who chooses to use halfword data must exercise care to
be sure he understands what can happen when storing or loading such quantities.
Two further instructions used for transmitting data between the general
registers and memory are IC (Insert Character)’and STC (Store Character).
(IC was used in the addressing examples in Section 5.) The operand field
- entry is written in exactly the same form as for L and ST, and no particular
boundary alignment is required for the address of the second operand, since
the data being moved in this case is contained in a single byte.
The instruction STC ri,dz(x2,b2) causes the rightmost byte of
- Rry to replace the byte at the effective second operand address. The inverse
operation is called "Insert Character' rather than "Load Character", because
the specified byte from memory is placed in the rightmost 8 bits of the
register without disturbing the remaining 24; no sign extension is performed.
Ae an example, the instructions below can be used to reverse the order of
the two-characters in the character constant at X and place the result at Y.
IC 0,x
STC O
IC 0,X+
STC O

X DC C'AB'
Y Ds CL2 BEC@MES C'BA'

14-6

Occasionally when memory space 18 at a premium it is convenient to use e
single byte to contain a small integer constant; its value may be placed in

a register using the following instruction sequence.

L 1,=F'0! CLEAR REGISTER
IC 1,LITLCYN INSERT CENSTANT
LITICN D C FLL'53!

None ofthe instructions discussed up to now has had any effect on the
Condition Code (CC). We now turn our attention to five RR-type instructions
which transmit date among the general registers, four of which can change the
value of the CC. The instructions are IR (Load Register), IIR (Load and Test
Register), LCR (Load Complement Register), INR (Load Negative Register), end
LPR (Load Positive Register). The IR instruction was used in the machine
instruetion statement in Figure 9.5; it is the one instruction of these flve
which does not set the CC. The operand field entry, as noted in Section 11,
is written ri,r2 and the action of each instruction is summarized in

Figure 14.4 below, Note that rz need not differfran ri.

Instruction Action CC Values
IR C(Rry) « C(Rrz) not set
LTR C(Rry) <« C(Rrz) 0,1,2
LCR C(Rry) « -C(Rrz2) 0,1,2,3
LPR C(Rr1) « |C(Rrz)] 0,2,3
INR ¢(Rr1) « -|C(Rra)| 0,1

Figure 14,4 Action of Certain General Register Instructions

The meanings of the CC settings are given below.

cc Meaning
0 Result is Zero
1 Result is Negative
2 Result is Positive
3 Result has Overflowed

Figure 14.5 Condition Code Settings

14-7

As can be seen from Figure 14.4, the actions of IR and LTR are identical
except that LTR also sets the CC. It 1s notiuncommon to test the contents
of a register by writing an instruction such as LTR 4,4 which has no
effeet other then to set the CC, which may then be tested by & Bl or BCR
instruetion, which will be discussed later, 'For the other three instructions,
the arithmetic operations are those implied by a 32-bit twe's complement ,
representation; thus overflow can occur during execution of LCR or LFR only

-231, and no overflow can occur

if C(Rrz) is the maximum negative number,
during execution of INR because all representable positive values have a
corresponding %we's complement representation of their negetive values.

The following short instruction sequence illustrates possible uses of the

instructions.

IM 2,3,=F'1,0' C§R2;=l, C(R3)=0, CC NgI SET
IR 17,3 C(R7)=0, CC NgT SET

IR 2,2 Cc(R2)=1, cCC=2

INR 1,7 C(RL)=0, CC=0

ICR 4,2 C(R4) =-1, CC=1

LFR O,k C(RO)=+1, cc=2

LNR 5,2 C(R5) ==1, CC=1

- Figure 14.6 Example of Use of Certain RR Instructions

Two common errors for beginning programmers are to eonfuse the IR and L
instructions, and to try to use an "STR" instruction to "store" one register
into another. By substituting L for IR, one can occasioually generate
voding errors which are undetected by the Assembler: for example, L 5,8
is 8 valid instruction referring to location 8 in memory, which is probably
not the programmer's intention. As an aid to remembering the difference
between related inetructions of differing types, note that almost all of the
RR instructions end in the letter "R", and the RX, SI, or RS instructions
end in other letters,

The shifting instructions to be described next &re more interesting,
8in¢¢ they allow the programmer to manipulate data in more varied ways then
the instructions deseribed up to now. All of the eight shift instructions
are RB-type; they differ from IM and 8™ in the important respect that the
rs register spacificetion digit (see Figure 14.b) is ilgnored when the

1438

instructions are executed, and thus the operand field entry for shift

instructions is written
r1,dz2(bz2)

with the rs operand omitted. For all of the shifting instructions, the
number of bit positions to be shifted is determined fromthe low-order six
bits of the effective address; this allows for the specification of shift
amounts between 0 and 63 inclusive. The simplest shifting instructions are
SRL (Shift Right Logical) and SLL (Shift Left Logical); we will examine
these first.

The basic operation in shifting is the unit shift, in which each bit
moves to the right or left by one binary digit position; the vacated bit
position on the left or right end is handled differently for logical and
arithmetic shift instructions. For the logical shifts, the vacated bit
position is always set to zero, and any bits shifted off the opposite end
are lost and ignored; for arithmetic shifts this is true only at the right
end. Thus, if the contents of R8 are 8765432116 and the instruction

- SLL 8,1 is executed, the result in R8 will be OECA864216. Note that we
could have written SLL 8,1(0) also, because the explicit use of 0 a6
a bese register specification.dig3.t causes no base register to be used in
the calculation of an effective address. Again supposing R8 to contain
8765432116 and R3 to contain B2F3A2BS16, execution of the instruction
SRL 8,16(3) would cause the contents of R8 to be shifted right
x0xxxB516+1016 = 0516 (modulo 401¢) bit positions, leaving O43B2A191e a6
the result.

For a simple example of the use of the single-register logical shift
instructions, suppose we have a large table of data, where each entry is
8ix byte6 long and is aligned on a halfword boundary. Suppose also that the
first three bytes contain character information of some sort, and the
remaining three bytes are to contain a 2k-bit two's complement integer value
associated with the characters. We want to load and store the integer value
into and from RS, where it will be used for some purpose in the program.

Now it is clear that L and ST cannot be used, since it is not possible to
obtain the proper alignment of the operand in memory; similarly, IH and STH
handle only two of the three bytes. A simple solution is to pack the integer
value so that its rightmost eight bits occupy the first byte, and the

14-9

leftmost 16 bit6 occupy the second and third bytes. Suppose RS contains
FFFA620B1g, and R12 contains the address of the first byte of the particular
6-byte data entry under consideration. Then the sequence of instructions
below can be used to peck the number into memory. (The letters XXYYZZ are
meant to represent the hex digits of the three characters in the da-ta entiy.)

STCc 5,3(0,12) C(DATA ENTRY) = XXYYZZOB=ww=

SRL 5,8 C§R5) = OOFFFAG2

STH 5,4(0,12) C(DATA ENTRY) = XXYYZZOBFA62
To show that the desired value can be correctly retrieved, we execute the
inverse instruction sequence.

IH 5,40,12) C(R5)=FFFFFA62

s 5,8 CéRS}nFFEAGEOO

IC 5,3(0,12) C(R5)=FFFA620B

This example also illustrates a situation where the need for efficient
use ¢f memory apace outwelghs the extra time required to access and store
the needed value. If the data entry were expanded to eight bytes, with the
characters ocoupying the first three bytes and the associated value in the
last four, then simple L ‘and ST instructions could be used, with a considerable
increase in speed (an approximate factor of 3) for thia segment of code.
8uch considerstions may be qﬁite important for programs which progess large
emounts of data -- the example typifies what is called the trade-off’ between
space and epeed. We will see a number of examples where the expenditure of
memory space may result in increased processing speeds.

We could also have arranged the data so that the three-byte integer
value occupied the first three bytes of the data entry, and the characters
oocupled the last three byte6. The integer value would then be stored in
memory- with its bits in the -proper arithmetic sequence; the instructions
needed to load the value into R would be as follows, assuming thet the data
entry conteined FAGROBXXYYZZ.

IH 5,0(0,12) C§R5 =FFFFFA 62
sL 5,8 C(R5) =FFFa 6200
Ic 5,20, 12) C(R5)=FFFA620B

It is apperent that the particular arrangement of the data in memory may
dependon the programmer's inclinationa, as well @8 on considerstions of
ease. of programming or speed of execution.

14-10

The double-length logical shift instructions SLDL (Shift Left Double
‘Logical) and SRDL (Shift Right Double Logical) work in exactly the same

way as SLL and SRL except that a pair of registers is shifted.

The register

specified by the first operand (Rri) must be an even-numbered register;

otherwise a specification exception will occur.

register is the low-order half of the double-length register pair,

The next higher numbered

with bits

shifted out the right end of Rri entering the left end of Rri+l, and vice

versa.

pairs in Figure 3.7.)

To illustrate a trivial application of these two Instructions,

(This is one of the reasons for showing the general registers in

suppose

we wish to reverse the order of the halfwords at A and A+2, where A is on

a fullword boundary.

the desired task.

LH 2,A
SRDL. 2,16
LH 2,A+2
SLDL 2,16
ST 2,A

LH 2,A L
SRDL 2,16 STH
LH 2,A+2 SRL
SRDL 2,16 STH
ST 3,A

b
)
2

2,A
2,A
2,1
2,A

2

6
+2

Then each of the following code sequences will perform

(The third and fourth examples illustrate that when the data happen to be

aligned in a particular way, there may be simpler ways to arrive at the

same

result.)

To take a less trivial example,

suppose that in a certain

application we need to access some integer data which has been packed so

that four positive integers fit into a fullword, as shown in Figure 14.7.

1st integer

9 bits lond

2nd integer
b pits long

3rd integer
13 bits long

4th integer
6 bits long

0

8

9

12 13

25 26

Figure 14.7 Four Integers Packed in a Fullword

31

A sequence of instructions which unpacks the integers and places them in
the fullwords labeled FIRST, SEC¢ND, THIRD, and F¢URTH, follows; assume that

R9 contains the address of the data word.
binary contents of RO and Rl:
and D;

C,

The " .

14-11

is simply to indicate the boundary between RO and RL.

The comment statements give the
the bits of the integers are labeled A, B

X represents a bit whose value is unknown, and 0 is a 0 bit.

L 0+0(0,9) GET DATA FULLWORD
AAAAAAAAABBBBCCCCCCCCCCCECDDDDOD L XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

SRDL 046 SHIFT OFF 6BITYS
000000AAAAAAAAABBBBCCCCCCCCCCCCC. DDDDDDXXXXXXXXXXXXX XX XX XXX XXXXXX

SRL 1,26 MOVETORIGHT END Of R1
000000AAAAAAAAABRBBCCCCCCCCCCCCC,000000000000000000000000000DDDDD

ST 1,FOURTH STORE FOURTH INTEGER

SRDLOGy13 SHIFTO F F138BITS
00000000000C0000000AAAAAAAAABRBB.CCCCCCCCCCCCLN000000000000000000

SRL 1¢19 MOVE TO RIGHT END OFR1
0000000000000000000AAAAAAAAABBBB.0000000000000000000CCCCCCCCCCCCC

ST

1e THIRD

SROLO r 4 ‘
* 00000000000000000000000AAAAAAAAA.BBBB0000000000000000000CCCCLCLCC

ST
SRL

0oFIRST
.28

STORE THIRD INTEGER
SHIFTOFF 48ITS

STOREILISTINTEGER FROMR]
POSITION SECONDINTEGER

® 00000000000000000000000AAAAAAAAA,00000000000000000000000000008BB8

ST

19SECOND

STORE SECOND INTEGER

Another code sequemce to do the same task is:

L 2+=F10? GET A 0 CONSTANT FOR CLEARING RO
L 1,0(0,9): GET DATA FULLUORD

LR 0¢2 CLEAR RO

SLOL 049 A SHIFT 9 BITS INTO RO

ST OsFIRST STORE F IRST I NTEGER

LR 002 CLEAR RO

SLtDL 0,4 SHIFT 4 BITSINTOR O

ST 0, SECOND

LR 0,2 CLEAR RO

SLDL 0,13 SHIFT13BITS INTORO

ST 0y THIRD STORE THIRD INTEGER

SRL 1,26 REPOSITIONFOURTM INTEGER
ST 1,FOURTH STORE FINAL VALVE

In this example the

S8RL 1,26

replaces the LR and 8LDL used in the

firet three steps, because [t results in less coda and slightly faster

execution.

The OV@rall raving is quite small, but the ehoice serves es an

example of a small econamy which, if applied in severul key places in a large

program, could result in significant savings,
T h e arithmetic shift instructions are almost identical to the logical
shift instructions, with the differences being in the setting of the CC and

the treatment of the sign bit.

The instructions aie SIA (8hift Left

1k-12

Arithmetic), SRA (Shift Right Arithmetic), SLDA (Shift Left Double Arithmetic),
and SRDA (Shift Right Double Arithmetic). On right shifts, the sign bit is
duplicated in the vacated sign position after each unit shift; thus the
arithmetic integrity of the shifted operand is maintained. To illustrate
the difference between logical and arithmetic shifts, suppose a right shift
of two places is performed on a register containing FFFFFFFG;e:

L 0,=F'-8! L 0,=F'-8'

SRL 0,2 SRA 0,2
After the logical shift, C(RO)=3FFFFFF21e, and after the arithmetic shift,
C(RO)=FFFFFFF21¢ . the SRL and SRA instructions will
leave identical results in the register shifted; SRA will set the CC but
SRL will not.

register pair is shifted.

For positive operands,

The instruction SRDA is similar to SRA except that an even-odd

For arithmetic left shifts, the situation can be a little more complicated.
When an operand is shifted left there is the possibility that one or more
(1)

indicating an overflow if any bit shifted

significant bits will be lost.
(2)
out of the bit position just to the right of the sign is different from the

This situation is detected by retaining

.the original sign bit, and

sign bit. The following code sequence would produce the results indicated.
L 0,=F'-8' C(RO)=FFFFFFF8, CC UNCHANGED
SRL 0,2 C(RO)=3FFFFFF2, CC UNCHANGED
SIA 0,4 C(RO)=TFFFFF20, CC SET TO 3,{VERFLHW

Condition Code settings produced by the arithmetic shift instructions are

given in Figure 1%4.8.

Instructiopn CC = Q cc =1 cCc =2 cCC =3
SIA Result=0 | Result<O | Result>0 | Overflow
SRA Result=0 | Result<O | Result>0 | Impossible
SLDA Result=0 Result<O Result>0 Overflow
SRDA Result=0 | Result<O | Result>0 Impossible

Figure 14.8 CC Settings after Arithmetic Shifts

14-13

A CC value of 3 1is not possible after the SRA and 8RDA Instructions. Note
that because the result tested for CC settings for SLDA and SRDA is a
double-length operand, these instruetions provide a simple means for testing
whether both registers contain zero: both SRDA 0,0 and SLDA 0,0
will set the CC to zero if RO and Rl contain zero.

An important characteristic of the arithmetic shift operations Is that
they provide g simple means for multiplying by positive and negetive powers
of two. Since the bite of anoperand shifted left by a unit shift appear
with a weight (in the swm forming the value of the operand) which has increased
by two, we can see that 8o long ae no overflow occurs, an arithmetic left
shift of n places corresponds to multiplication by 2". Similarly, for a unit
right shift each bit heas a weight which has decreased by two, so that an
arithmetic right shift of n places corresponds to division by 2", Because
such a "division" can appear to produce fractional results, we must examine

what happens when bit8 are lost; consider the two following code sequences.

L 3,=p'5! C(R3) = 00000005
SRA 3,1 C(R3) = 00000002
L 3,=F's5! C(R3) = FFFFFFFB = -5
SRA 3,1 ¢(R3) = FFFFFFFD = -3

As we might have expected, the lost bit in the first case simply results in
the fractional part of 5/2 being lost, so that the result is simply 2. In
the second case the result is-3,not -2; this is because the truncation of
the fraction part of a number in the two's complement representation has the
effect of always forcing the result to the next lower integer value.

As a simple example, suppose we wish to truncate the integer in R9 to
the next algebraically lower multiple of 16, unless it is already a multiple
of 16. - Roth of-the following code sequences achieve the desired result.

SRA 9,4 SRL 9,4

SIA 9,k SLL 9,4
The logical shifts can be used because whatever bit is shifted out of the
sign position by the SRL instruction is put back by SLL. If a CC setting
is desired to indicate the status of the result, then the first code sequence
must beused; if not, the second is preferable because 'it will operate
slightly faster, because the CPU need not bother with duplicating the sign

bit nor checking for overflow.

14-14

To conclude our discussion of shifting, we will re-examine the problem
of unpacking the data contained in the fullword pictured in Figure 14.7,
on the supposition that the four integers are in signed two's complement
representation rather than the unsigned logical representation assvmed

before. The following code segment stores the four signed integers as

required.
L 0,0(0,9) GET DATA WCRD
SRDA 0.6 SHIFT 6 BITSINTCOR1
SRA 1,26 EXTEND TO RIGHT
ST 14FOURTH STORE FULLWORD RESULT
SRDA 0,13 SHIFT OFF 13MUREBITS
SRA 1,19 SHIFT WITH SIGN EXTENSION
ST 1,THIRD STORE SIGNED RESULT
SRDAOGY4 SHIFT OFF LAST 4BITS
ST OsFIRST STORE CORRECTFIRST INTEGER
SRA 1,28 EXTEND SECOND INTEGER
ST 1,SECOND STORE FINAL RESULT

Because the number of positions to be shifted by any shift instruction
is determined from an effective address, the number of shifts can be
specified at execution time. For example, SLL 9,0(4) will shift R9
by an amount determined by the iightmost six bits of the contents of RL.

As was the case for the use of relocatable symbols which named areas of
memory, the Assembler will compute displacements and assign bases for
absolute expressions. If we write the sequence of statements given below,

the instructions would be assembled as indicated in the right-hand column.

USING 6,2

A EQU 10
SLL 9,12 . 89902006
SLL 9,12(0) 8990000C
SLL 9,A 89902004

Thus we can vary the number of shifts at execution by placing appropriate
values in R2. We will find that there are relatively few occasions where
an absolute expression will be used as the first expression in a USING

instruction.

14-15

15. CONDITIONAL BRANCHING

In this seection we will discuss two branch instructions whose use is
fundamental in almost all. programs. The ability to choose alternative
courses of action in a program depending on computed results is one of the
most distinetive feature6 of & computer, and we will make use of these
instructions in most of the remaining program examples. We will examine the
conditional branch instructions before continuing our treatment of general
register operations, since we will then be able to give more extensive and
realistic semple programs to illustrate the points involved.

Because the Condition Code is contained in a two-bit field of the FPSW,

“the possible values which may be assumed by those two bits are 0, 1, 2, and
3. To test for one of these values, either BC or BCR is used; both are
called “Branch on Condition" instructions, with BC being of type RX and BCR
being of type RR.

If the con&ion for branching is not met (and how this is determined
will be discussed shortly) no action is taken and execution simply proceeds
to the next sequential instruction following the BC or BCR.

If the branching condition is met, the branch address must be determined.

For the BC instruction, +the branch address is the same as the effective
address computed as usual from the base, index, and displacement fields of
the instruction; for the BCR instruction, the branch address is given by

the rightmost 24 bits of the general register specified by the rz digit of
the instruction vnless rz is zero, in which case no branch ever occurs. To
complete the execution of the branch instruction, the IA portion of the PSW
is replaced by the branch address. The next instruction to be fetched will
therefore come from the location specified by the branch address. Branch
instructions are also called "jump" and "transfer" instructions, ip the sense

that a jump is made, or control is transferred, to the branch address.

15=-1

Whether the bremsh condition is met or not is detemmined Wy exomiming
the bits of the register speeification digit ry. Because this €igit does
g0t refer to Rry, but s treated simply as a bit pattern (celled a mesk)) W
vill revrite the opsrund field entries as my,da(xe,b2) o8 my,ra2 for
the RX and RR cases respectively. Thue we can Write B 7,4(8,2) aud
BCR 9,4 in which the mesk fields are Olllz end 1001z respectively. At
execution time,.match ig made between the 1 bite of the mmsk and the value
of the CC, as indicated in Figure 15.1

Instruction Bit | Mesk Bit Value | CC Value Matched |
8 8 0
9 L 1
10 2 2
11 ' 1 3

BCR 07 {m | ra

BC ~“7“'ll1'xzrbal da

value of bit: |BIGIBIL

tests for CC=3
tests for CC=2
——p tegts for CC=1
——eeep L@@ t8 for CC=0

Figure 15.1 Mask Bits and Corresponding CC Values

If the CC has a valuevhichmatches a 1 bit in the mssk field, the byemehing
condition is met; if the CC has & value which matches & 0 bit in the wuhuk,
the branching condition ix not met, and no branch oeeurs. Thus in tiwe
exsmples given above, the BC instruction would branch unless the CC hed walus
0; and the BCR would brenchifthe CC had value 0 or 3. Further examples
are given below.

15-2

1) Branch to X if C(R12)=0.

ITR 12,12 SRA 12,0
or

BC 8,X BC 8,x

2) Branch to X if C(RO)#0.

LTR 0,0 SIA 0,0
or

BC 6,X BC 7,X

(Note that the CC cannot have value 3 after LTR.) In both of the above examples

the use of LTR is shorter and faster.

3) Multiply C(R5) by 4 and branch to X if the result does not overflow.
sIA 5,2
BC 14,x

L) Branch to the address contained in R14.

BCR 15,1k (preferred)
or

BC 15,0(0,14) (slower)
or

BC 15,0(14) (slowest)

Since the CC must have a value which matches a bit in the mask, the branch

alwaysodeurs; this is called an unconditional branch.

5)Place -C(R2) in R8 and branch to X if the result is negatives
ICR 8,2
BC 5,X

It is not sufficient to use a mask of 4 since the result will also be

negative if overflow occurs.

6) A positive nonzero fullword integer at N is to be shifted right

a8 many places as necessary to insure that its rightmost bit is nonzero.

a) 8aift left into R4 until R5 has been vacated:

L 5,N GET INTEGER
L L =F'0’ CLEAR Rh
SHIFT SLDL b1 SHIFT LEFT
LTR 5,5 TEST RS
BC 7, SHIFT BRANCH IF N@T ZER$
ST LN STPRE RESULT

15-3

b) 8hift right, testing "lost" bits:

L . LN GET INTEGER
SHIFF . SRDL 4,1 BHIFT RIGHT
LTR 5,5 TEST SIGN §F RS
BC 10, SHIFT BRANCH IF NgT -
subL 4,1 MJVE BIT BACK
ST LN ST$RE RESULT

Note that this latter example would work for negative integers also if
arithmetic shift instruetions were used.

This last pair of examples illustrates a_loop —- a sequence of insthruetions
which 1isrepeated as meny times as is necessary to obtain a desired eendition.
Loops are such a common aspect of progremming that special branch instruetions
are provided in System/360 which greatly faeilitate the coding ol’c‘ loops
without either examining or testing the CC; these will be treated in scms
detail later.

We noted in example 4% above that a mesk with all 1 bits provides wa
unconditional branch (remember that we could have written BCR X' ,14
and BCR B'1111', 14 also), since the branch condition must always b
met. There are occasion&when it is useful to be able to execute an instruetien
withazero mask field. Thus B 0,X and BCR 0, any as well
@8 BCR any,0 have no effect; they are sometimes called "no-operstion"
instructions, and the Assembler attually provides mnemonics for their
specification. The instructions NPP s and NPPR r are treated
by the Assembler as being the seme as BC O;s and BCR O,r
respectively.

An important use of "no-operation" instruetions is in obtaining a
desired boundary aligmment for a particular instruction. For example, we
may wish that en imstruction such as BAIR 14,15 be followed by an
aligned fullword comstant such as an address constent; exsmples of just this
sort of usage will be illustrated in the treatment of subroutines. Since
BAIR is an RR instruction, we must simply insure that its address lies
between two fullword boundaries. In a small program it is easy for the
programmer to determine the location of the BAIR simply by counting, and if
it falls on s fullword boundary he can insert a N§PR O ‘ instruction just'
before it. However, if the program is large, or if any changes must be made

in the code preceding the BALR, it becames difficult to know whether the
NPPR should be used or not.

To relieve the programmer of this worry, the Assembler provides an
instruction CN¢P(COHdﬁﬁDn8L No-Operation) which ensures the desired alignment.
The operand field entry of a oNgP instruction is written b,w where
b and w are absolute expressions; b may have values 0, 2, 4 and 6, and wmﬁy
have values % and 8. No name field entry is permitted. The second operand,

w, specifies the boundary type relative to which alignment is to be performed,
and b specifies the desired byte relative to that boundary, as described in
Figure 15.2. The Assembler inser“s from 0 to 3 NPR's to force the LC to

the desired boundary.

Instruction Alignment Performed

CNgP 0,4 Beginning of a fullword

CNgP 2,4 Middle of a fullword

CNgP 0,8 Beginning of a doubleword

CNgP 2,8 Second half'word of a doubleword
CNgP 4,8 Middle of a doubleword

CNgP 6,8 Fourth halfword of a doubleword

Figure 15.2 CNPP Alignments

To achieve the alignment desired in the current example, we would write

CNgP 2,4 ALIGN T$ MIDDLE $F W@RD
BALR 1k4,15 TW@-BYTE INSTRUCTIfN
DC A (ANYTHING) N§ INTERVENING BYTES

Note that we could not write

DS OH
BALR 14,15
DC A (ANYTHING)

because the alignment to a half'word boundary forced by the DS is automatically

performed by the Assembler for instructions, so that the BALR could still

15-5

fall on a fullword boundary; the Assembler would then fill the two bytes
between the BAIR and the address constant with zeros (remember that A-type
constants have an implied fullword alignment). Similarly, we could not

write
BALR lh,l5
S OF
C A{ANYTHING)

since the BALR could again fall on a fullword boundary, leaving two bytes
between it and the constent which would be skipped by the Assembler; the
contents of the skipped bytes at execution time may be arbltrery, since
the Supervisor does not clear the area into which a program is about to be
loaded,

Before continuing with our discussion of arithmetic instructions, one
important feature of the use of branch instructions should be noted. Due
to a peculiarity in the design of System/360, invalid branch addresses
(namely odd ones) are not detected at the time that it is found that the
branching condition is met, but only when the address is presented, as the
IA portion of the PSW, at the next instruction fetch cycle. The error is
duly detected and a specification interruption results, but the IA now
contains the invalid address rather than the address of the instruction
which attempted the illegal branch. This means that there is no direct way
to tell where such an error was caused, and therefore that such errors in &
program are correspondingly more difficult to detect. The programmer must
exercise caution in specifying branch addresses in order to avoid this

particular error.

15-6

-y

00s
o1s
02#
03%

04*
05+
06*
07+

08*
09*
OA%
0B+

oCx*
oD%
OE>
OF*

10*
11%
12%
13

14%
15%
16%
17%

18%
19%
IA*
18%

1C*
1C%*

1ex

iF*

16,

32
48

64
80
96
112

128
144
160
176

192
20%
224
240

256
272
280
304

320
336
352
368

384
460
416
432

448
464

480
496

1
17
33
49

65
81
91
113

128
145
161
177

193
209
225
241

257
273
28S
305

321
337
353
369

38'5
401
417
433

449
465
481
497

2
18
34
50

66
82
98
114

130
144
162
178

194
210
226
242

250
274
290
306

322
338
354
317¢

306
402
418
434

450
466
482

498

3
3
19

35
51

67
83
99
115

131
147
163
179

195
211
227
243

259
275
291
307

323
339
355
371

387
403
419
435

451
467
483
499

'y

4
20
36

'+ 52

o)
°

84
100
116

132
148
164
180

196
212
228
244

260
276
292
308

324
340
356
372

388
404
420
436

452
460
484
506

5

5
21
37
53

69
ab
101
117

133
149
165
181

197
213
229
245

261
271
293
309

325
341
357
373

389
405
421
437

453
469
485
501

&
6

38
54

70

102
it8

134
150
166
A82

198
214
230
246

262
278
294
3io

326
342
358
374

390
406
422
438

454
470
486
502

7

7
23
39
55

71
87
103
119

135
151
167
183

199
215
231
247

263
279
295
311

327
343
359
375

391
407
423
439

455
471
487
503

136

168
184

© 200

216
232
240

264
280
296
312

320
344
360
376

392
408
424
440

456
472
488
504

25

41
57

73

105
121

137
153
169
185

201
217
233
249

265
281
297
313

329
345
361
377

393
409
425
44-r

457
473
489
5G5

A

10
26
42
58

74
90
106
122

138
154
170
186

202
218
234
250

266

282

298
314

330
346
362
378

394
410
426
842

458
475

490

506

11
27
43
s9

75
91
107
123

139
155
171
187

203
219
235
251

267
283
299
315

331
347
363
379

395
err

- %27

443

459
475
491
507

C

12
28
44
60

76
92
108
124

140
156
172
188

204
220
236
252

268
284
300
316

332
348
364
380

396
422
428
444

460
476
492
508

13
29
45
61

77
93
109
125

141
157
173
189

205
221
237
253

269
285
301
317

333
349
365
381

397
413
429
445

461
477
493
so9

3

78

110
126

142
158
174
190

206
222
238
254

270
286
302
318

334
350
366
332

398
414
430
446

462
478
494
510

F

15
31

63

79
95
111
127

143
159
175
191

207
223
239
255

271
287
303
319

335
351
367
383

415
431
447

463
%719
99
211

209
21e
22%
23%

24%
25%
26%
27¢

28%
29%
2A%
28%

2C*
20%
2E*
ZF*

30%
31#
32¢
33

34
35+
36%
371*

38+
39%
3A%
3B%

3C»
30%
3E*
3Fx

S51¢
528

$6C

576
592
608
624

€4C
656
612
688

104
12C
736
752

768
184
80¢C
816

832
848
864
88C

856
912
928
944

S6C
S7¢
992
1008

513
529
545

561

577
593
609
€25

641
657
673
689

705
721
t37
153

769
185
801

817

833
849
865
881

897
913
S2$

545

961

s77

993
1C€0S

314
530
546
562

578
594
610
626

642
658
674
690

706
722
730
t54

770
786
802
818

834
850
866
882

898
914
930
946

962
97s
994
101C

515
531
547
563

579
593
611
627

643
659
675
691

017
723
739
155

771
787
803
819

835
851
867
883

899
915
$31
947

963
979
995
1011

516
532
548
564

580
596
612
628

644
660
676
692

708
124
740
756

772
788
804
820

836
852

868
884

900
91&
932
948

964
980
996
1012

517
533

549
5605

581

597
613
629

645
661
6717
693

709
725
741
757

773
789
805
821

837
853

869
885

901
917
933
949

965
981
997
1313

518

534
550
566

582
598
614
630

646
662

678
694

710
726
742
758

774
790
806
822

838
854
870
886

902
918
934
950

966

982

998
i0l4

519
535
551
567

583
599
615
631

647
663
679
695

711
727
743
759

775
791
807
823

839
855
871
887

903
919
935
951

967
983
999
1015

520
536
552
568

584
600
616
632

648
664
680
696

712
728
744
760

776
792

808

824

840
856
872
888

904
920
936
952

968
984
1000
1016

521
53t
553
569

585
601
617
633

649
665
681
697

713
729
t45
161

77
793
809
825

841
857
873
889

905
921
937
953

969

3985
3001
1017

522
538
554
570

586
602

618
634

650
666
682
698

714
730
746
762

778
794
810
826

842
858
874
890

906
922
938
954

970
986
1002
to 18

523
539
555
571

587
603
619
635

651
667
683
699

715
731
147
763

779
795
811
8§2¢

843
859
8715
891

907
923
939
955

971
987
1003
1019

C

524
540
556
572

§88
604
620
636

652
668
684
700

716
732

748
T64

780
796
812
828

844
860
a’76
892

908
924
940
956

972
988
1004
1020

c

525
541
557
573

589
605
621

637

653
669
685
701

717
733
749
765

781

797
813
829

845
861
877
893

9C9
925
941
957

973
989
10C5
1621

E

526
342
558
574

590
606
622
638

654
670
686
702

718
734
750
T66

782

798
814
830

846
862

878
ag94

910
926
942
958

974
990
1006
i022

527

559
575

591
607
623
639

655
671
6nR7
to3

719

751
767

703
799
815
831

847
863
879
895

911
927
943
959

975

991
1007
1023

40%
41%
42+
43%

44%
45%
46%
47%

48%
49%
4A%
4B%

4C*
40%
4E*
4F %

50%
51%
52%
53%

54%
55%
56%
57%

58%
59%
S5a%
5%

5C*
SD*
S5E*
S5F%

1024
1040
1056
1072

1088
1104
1120
1136

1152
1168
1184
1200

1216
1232
1248
1264

1280
1296
1312
1328

1344
1360
1376
1392

1408
1424
1440
1456

1472
1488
1504
1520

1025
1041
1057
1073

10893
1105
1121
1137

1153
1169
1185
1201

1217
1233
1249
1265

1281
1297
1313
1329

1345
1361
1371
1393

1409
1425
1441

1457.

1473
148S
1505
1521

102¢
1042
1058
'1074

1090
1106
1122
1138

1154
1170
1186
1202

1218
1234
1250
1266

1282
1298
1314
1330

1346
1362
1378
1394

1410
1426
1442
1458

1474
490
1506
1522

1027
1043
1059
1075

1091
1107
1123
1139

1155
1171
1187
1203

1219
1235
1251
1267

1283
1299
1315
1331

1347
1363
1379
1395

1411
1427
1443
1459

1475
1491
1507
1523

1028
1044
1060
1076

1092
1108
1124
1140

1156
1172
1188
1204

1220
1236
1252
1268

1284
1300
1316
1332

1348
1364
1380
1396

1412
1428
1444
1460

1476
1492
1508
1524

1029
1045
1061
1077

1093
1109
1125
114l

1157
1173
1189
1205

1221
1237
1253
1269

1285
1301
1317
1333

1349
1365
1381
1397

1413
1429
i445
l4a6l

14177
1493
1509
1525

1030
1046
1062
1078

1094
1110
1126
1142

1158
1174
1190
1206

1222
1238
1254
1270

1286
1302
1318
1334

1350
13606
1382
1398

1414
1430
1446
1462

1478

1494

1510
1526

7

1031
1047
1063
1079

1095
1111
1127
1143

1159
1175
1191
1207

1223
1239
1255
1271

1287
1303
1319
1335

1351
1367
1383
1399

1415
1431
1447
1463

1479
1495
1511
1527

1032
1048
1064
1080

1096
1112
1128
1144

1160
1176
1192
1208

1224
1240
1256
1272

1288
1304
1320
1336

1352
1368
1384
1400

1416
1432
1448
1464

1480
1496
1512
1528

1033
1049
1065
1081

1097
1113
1129
1145

1161
1177
1193
1209

1225
1241
1257
1273

1289
1305
1321
1337

1353
1369
1385
1401

1417
1433
1449
1465

1481
1497
1513

1529

1034
1050
1046
1082

1098
1114
1130
1146

1162
1178
1194
1210

1226
1242
1258
1274

1290
1306
1322
1338

1354
1370
1386
1402

1418
1434
1450
1466

1482
1498
1514
1530

1035
1051

1067

1083

1099
1115
1131
1147

1163
1179
1195
1211

1227
1243
1259
1275

1291
1307
1323
1339

1355
1371
1387
1403

1419
1435

1451

1467

1483
1499
1515
1531

1036
1052
1068
1084

1100
1116
1132
1148

1164
1180
1196
1212

1228
1244
1260
1276

1292
1308
1324
1340

1356
1372
1388
1404

1420
1436
1452
1468

1484
1500
1516
1532

1037
1053
1069
1085

1101
1117
1133
1149

1165
1181
1197
1213

1229
1245
1261
1277

123
1309
1325
1341

1357
1373
1389
1405

1421
1437
1453
1469

1485
1501
1517
1533

E

1038
1054
1070
1086

1102
1118
1134
1150

1166
1182
1198
1214

1230
1246
1262
1278

1294
1310
1326
1342

1358
1374
1390
1406

1422
1438
1454
1470

1486
1502
1518
1534

1039
1055
1071
1007

1103
1119
1135
1151

1167
1183
1199
1215

1231
1247
1263
1279

1295
1311
1327
1343
1359
1375
1391
1407

1423
1439
1455
1471

1487
1503
1519
1535

=V

60%
61%
62%
63%

64%
65%
66%
67%

68%
69%
€A%
6B*

&C*
60%
6E*
6F %

70%*
71»
12%
13%

T4%
15%
16%
171+

18%
19%
1A%
7B8#

7C*
D%
TE*
1Fs

1536
1552
1568
1584

160¢C
161¢€
1632
1€468

1664
1680
1696
1712

1728
1744
1760
1776

1792
1800
1824
1840

1856
1872
1888
1904

152¢
193¢
1952
1968

1984
2000
2016
2032

1537
1553
1369
1585

1601
1617
1633
1649

1665
1681
1697
1713

1729
1745
1761
1777

1793
1809
1825
1841

1857
1873

1889
1505

1921
1537
1953

1969.

1685
2001
2017
2033

1538
1554
1570
1586

1602
1618
1634
165C

1666
1682
1698
1714

1730
1746
1762
1778

1794
1810
1026
1842

1058
1874
2890
1906

1922
1938
1954
1970

1986
2002
2018
2034

1539
1555
1571
1587

1603
1619
1635
1651

1667
1683
1699
1715

1731
1747
1764
1779

1795
1811
1827
1843

1859
1875
1891
1907

1923
1939
1555
1971

1987
2003
2019
2035

1540
1556
1572
1588

1604
1620
1636
1652

1668
1684
1700
1716

1732
1748
1764
1780

1796
1812
1828
1844

1860
1876
1892
1908

1924
1940
1956
1972

1988
2004
2020
2036

1541
1557
1573
1589

1605
1021
1637
1653

1669
1685
1701
1717

1733
1749
L7065
1781

1797
1813
1829
id4s

i8ol
L8717
1693
1909

1925
1941
1957
1973

1989
2005
<021
2037

1542
1558
1574
1590

1606
1622
1638
1654

1670
1686
1702
1718

1734
1750
L766
1782

1798
1814
1830
1846

A862

1878
1894
1910

1926
1942
1958
1974

1990
2006
2022
2038

1543
1559
1575
1591

1607
1623
1639
1655

1671
1687
1703
1719

1735
1751
1767
1783

1799
1815
1831
1047

1863

1879
1895
1911

1927
1943
1959
1975

1991
2007
2023
2039

1544
1560
1576
1592

1608
1624
1640

1656

1672
1638
1704
1720

1736
1752
1768
1784

1800
1816
1832
1848

1864
1880
1896
1912

1928
1944
1960
1976

1992
2008
2024
2040

1545
1561
1577
1593

1609

1625
1641

1657

1673

1689

1705
1721

1737
1753
1769
1785

1801

1817

1833
1849

1865
1881
1897
1913

1929
1945
1961
1977

1993
2009
2025
2041

1546
1562
1578
1594

1610
1626
1642
1658

1674
1690
1706
1722

1738
1754
1770
1786

1802
1818
1834
1850

1866
1882
1898
1914

1930
1946
1962
1978

1994
2010
2026
2042

1547
1563
1579
1595

1611
1627
1643
1659

1675
1691
1707
1723

1739
1755
1771
1787

1803
1819
1835
1851

1867
1883
1899
191s

1931
1947
1963
1979

1995
2011

2027
2043

1548
1564
1580
1596

1612
1628
1644
1660

1676
1692
1708
1724

1740
1756
1772
1788

1804
1820
1036
1852

1868

1884
1900
1916

1932
1948
1964
1980

1996
2012
2028
2044

1549
1565
1581
1597

16 13
1629
1645
1661

1677
1693
1709
1725

1741
1757
1773
1789

1805
I.821
1837
1853

1869
1885
1901
1917

1933
194S
1965
1981

1997
20 13
2029
2045

1550
1566
1582
1598

1614
1630
1646
1662

1678
1694
1710
1726

1742
1758
1774
1790

1806
1822
1838
1854

1870
1886
1902
1918

1934
1950
1966
1982

1998
2014
2030
2046

1551
1567
1583
1599

1615
1631
1647
1663

1679
1695
1711
1727

1743
1759
1775
1791

1807
1823
1839
1855

1871
1887
1903
1919

1935
1951
1967
1983

1999
2015’
2031
2047

sV

80%
81%
82%
83%

84%
85%
86%
87*

88*
89%
8A%
8B*

8Cc*
80*
8E*
8F*

0¥
91%
S2%
93%

Q4%
S5%
96 %
g2%

og¥
99«
SA%
38¥*

SC*
SD*

SE*

gF ¥

2048
2064
2080
2096

2112
2128
2144
2160

2176
2192
2208
2224

2240
225¢
2272
2288

2304
2320
2336
2352

2368
2384
2400
2416

2432
2448
2464
2480

2496
2512
2528
2544

2049
2C65
2C81
2€91

2113
2129
2145
2161

2171
2193
220S
2225

2241
2251
2213
2289

2345
2321
2337
2353

2369
2385
2401
2417

2433
2449
2465
2481

2497
2513
2529
2545

2050
2066
2082
2098

2114
2130
2146
2162

2178
2194
2210
2226

2242
2258
2274
2290

2306
2322
2338
2354

23710
2386
2402
2418

2434
2450
2466
2482

2498
2514
2530
2546

2051
2067
2083
2099

2115
2131
2147
2163

2179
2195
2211
2227

2243
2259
2215
2291

2307
2323
2339
2355

2371
2387
2403
2419

2435
2451
2467
2483

2499
2515
2531
2547

2052
2068
2084
2100

2116
2132
2148
2164

2180
2196
2212
2228

2244
2260
2276
2292

2308
2324
2340
2356

2312
2388
2404
2420

2436
2452
2468
2484

2500
2516
2532
2548

5

2053
2069
2085
2101

2117
2133
2149
2165

2181l
21917
2213
2229

2245
2261
2271
2293

2309
2325
2341
2357

2373
2389
2405
2421

2437
2453
2469
2485

2501
2517
2533
2549

6

205%
2074
2086
2102

2i18
2134
2150
2166

2182
2198
2214
2230

2246
2262
2278
2294

2310
2326
2342

2358

2374
2390
2406
2422

2438
2454
2470
2486

2502
2518
2534
2550

2055
2071
2087
2103

2119
2135
2151
2167

2183
2199
2215

2231.

2247
2263
2279
2295

2311
2327
2343
2359

2375
2391
2407
2423

2439
2455
2471
2487

2503
2518
2535
2551

2056
2072
2088
2104

2120
2136
2152
2168

2184
2200
2216
2232

2248
2264
2280
22386

2312
2328
2344
2360

2376
2392
2408
2424

2440
2456
2472
2488

2504
2520
2536
2552

2057
2073
2089
2105

2121
2137
2153
2169

2185
2201
2217
2233

2249
2265
2281
2291

2313
2329
2345
2361

2377
2393
2409
2425

2441
2457
2473
2489

2505
2521
2537
2553

2058
2074
2090
2106

2122
2138
2154
2170

2186
2202
2218
2234

2250
2266
2282
2298

2314
2330
2346
2362

2378
2394
2410
2426

2442
2458
2474
2490

2506
2522
2538
2554

2059
2075
2091
2107

2123
2139
2155
2171

2187
2203
2219
2235

2251
2267
2283
2299

2315
2331
2347
2363

2379
23985
2411
2427

2443
2459
2475
2491

2507
2523
2539
2555

C

2060
2076
2092
2108

2124
2140
2156
2172

2188
2204
2220
2236

2252
2268
2284
2300

2316
2332
2348
2364

2380
2336
2412
2428

2444
2460
2476
2492

2508
2524
2540

2556

D

2061
20171
2093
21C9

2125
2141
2157
2173

2189
22C5
2221
22317

2253
2269
2285
2301

2317
2333
2349
2365

2381
2397
2413
2429

2445
2461
2477
2493

25C9
2525
254}
2557

E

2062
2078
2094
2110

2126
2142
2158
2174

2190
2206
2222
2238

2254
2270
2286
2302

2318
2334
2350
2366

2382
2398
2414
2430

26446
2462
2478
2494

2510
2526
2542
2558

F

2063
2079
2095
2111

2127
2143
2159
2175

2191
2207
2223
2239

2255
2271
2287
2303

2319
2335
2351
2367

2383
2399
2415
2431

2447
2463
2479
2495

2511
2527

. 3
2543

2559

(62

AO®
Al¥*
A2*
A3*

A4%
A5%
A6%
AT*

A8*
AS*
AA%
AB*

ACx
AD*
AEx*
AF*

BO*
Bl
B2*
B3

Bé&*
B5%
B6*
BT*

Be*
B9+
BA®*
8B8*

8Cx
80*
BE*
BF*

n

ST \CI \C \)

2561
2577
2593

2609

2625
2641
2657
2673

2689
2705
2121
271317

2153
276S
2185
2801

2817
2833
2849
2865

2881
28S7
2913
2529

2645

2561
2917

2993

3009
3025
3041
3037

2562
2570
2594
2610

2626
2642
2658
2674

2690
2706
2722
2738

2754
27170
2786
2802

2818
2834
2850
2866

2882
2898
2914
2930

2946
2962
2978
2994

3010
3026
3042
3058

2563
2579
2595
2611

2627
2643
2659
2675

2691
2707
2723
2739

2755
2771
2187
2803

2819
2 835
2851
2867

2883
2899
2915
2931

2947
2963
2979
2995

3011
3027
3043
3059

2564
2580
2596
2612

2628
2644
2660
2676

2692
2708
2724
2740

2756
2772
2788
2804

2820
2836
2852
286%

2884
2900
2916
2932

294%
2964
2980
2996

3012
302%
3044
3060

5

2565
2581
2597
2613

2629
2645
2661
2677

2693
2709
2725
2741

2157
2773
2789
2805

2821
2837
2853
2869

2885
2901

2917
2933

2949
2965
2981
2997

3013
3029
3045
3061

6

7

25662567 25¢6 8
2582 2583 2584
2598 2599 2600
261426152616

2630
2646
2662
2678

2694
2710
2726
2742

2758
2774
2790
2806

2822
2838
2854
2870

2806
2902
<918
2934

2950
2966
2982
2998

3014

3030

3046
3062

2631
2647
2663
2679

2695
2711
2727
2743

2759
27715
2791
2807

2823
8 3
2855
2871

2887
2903
2919
2935

2951

2567
2983
2999

3015
3031
3047
3063

2632
264%
2664
2680

2696
2712
2728
2744

2760
2776
2792
2808

2824
9 2840
2856
2872

2888
2904
2920
2936

2952
2968
2984
3000

3016
3032
3048
3064

2569
2585
2601
2617

2633
2649
2665
2681

2697
2713
2729
2745

2761
2777
2793
2809

2025
2841
2857
2873

2889
2905
2921
2937

2953
2969
2985
3001

3017
3033
3049
3065

A

2570
2586
2602
261%

2634
2650
2666
2682

269%
27 14
2730
2746

2762
2778
2794
2810

2826
2842
2858
2874

2890
2906
2922
2930

2954
2970
2906
3002

3018
3034
3050
3066

2571
2587
2603
2619

2635
2651
2667
2683

2699
2715
2731
2747

2 763
2779
2795
2811

2827
2843
2859
2875

2891
2907
2923
2939

2955
2971
*2907
3003

3019
3035
3051
3067

2572
250%
2604
2620

2636
2652
2668
2684

2700
2716
2732
2748

2764
2780
2796
2812

282%
2844
2860
2876

2892
2908
2924
2940

2956
2972
2988
3004

3020
3036
3052
3068

2573
2589
2605
2621

2637
2653
2669
2685

2701
27 17
2733
2749

2765
2781
2757
28 13

2829
2845
2861
28717

2893
2909
2925
2941

2957
2973
2989
3005

3021
3037
3053
3069

2574
2590
2606
2622

2638
2654
2670
2686

2702
2718
2734
2750

2766
2782
2798
2814

2830
2046
2862
207%

2094
2910
2926
2942

2958
2974
2990
3006

3022
3038
3054
3070

2575
2591
2607
2623

2639
2655
2671
2687

2703
2719
2735
2751

2767
2783
2799
2815

2831
2047
2063
2879

2095
2911
2927
2943

2959
2975
2991
3007

3023
3039
3055
3071

co*
Cl*
Ca*
C3x*

Cax
C5%
Cé*
Crs

ca*
C9*
CA»
CB*

cc*
CD*
CE*
CF*»

Co=
D1*
D2*
D3#

D4*
D5*
D6*
D7*

cgx*
DI*
DAx
Ce=*

ccx
DO*
DeE*
CF#

3072
3088
3104
3120

3134
3152
3168
3184

3200
3216
3232
3248

3264
3280
3296
3312

3328
3344
3360
3376

3392
3408
3424
3440

3456
3472
3488
3504

3520
3536
3552
3568

3073
3089
3105
3121

3137
3153
3149
3185

3201
3217
3233
3249

3265
3281
3291
3313

3329
3345
3361
3377

3393
3409
3425
3441

3457
3473
3489
3505

3521
3537
3553
3569

3074
3090
3106
3122

3138
3154
3170
3186

3202
3218
3234
3250

3266
3282
3298
3314

3330
3346
3362
3378

3394
3410
3426
3442

3458
3474
3490
3506

3522
3538
3554
3570

3075
3091
3107
3123

3139
3155
3171
3187

3203
3219
3235
3251

3267
3283
3299
3315

3331
3347
3363
3379

3395
3411
3427
3443

3459
3475
349 1
3507

3523
3539
3555
3571

3076
3092
3108
3124

3140
3156
3172
3188

3204
3220
3236
3252

3268
3284
3300
3316

, 3332

3348
3364
3380

3396
3412
3428
3444

3460
3476
3492
3508

3524
3540
3556
3572

3077
3093
3109
3125

3141
3157
3175
3169

3205
3221
3237
3253

3269
3285
3301
3317

3333
3349
3365
3381

3397
3413
3429
3445

3461
34717
3493
3509

3525
3541
3557
3573

3078
3094
3110
3126

3142
3158
3174
3190

3206
3222
3238
3254

3270
3286
3302
3318

3334
3350
3366
3382

3398
3414
3430
3446

3462
3478
3494
3510

3526
3542
3558
3574

3079
3095
3111
3127

3143
3159
3175
3191

3207
3223
3239
3255

3271
3287
3303
3319

3335
3351
3367
3383

3399
3415
3431
3447

‘3463

3479
3495
3511

352.7

. 3543

3559
3575

3080
3096
3112
3128

'3144
3160
3176
3192

3208
3224
3240
3256

3272
3288
3304
3320

3336
3352

3368

33 84

3400
3416
3432
3448

3464
3480
3496
3512

3528
3544
3560
3576

3081
3097
3113
3129

3145
3161
3177
3193

3209
3225
3241
3257

3273
3289
3305
3321

3337
3353
3369
3385

3401
3417
3433
3449

3465
3481
3497
3513

3529
3545
3561
3577

A

3082
3098
3114
3130

3146
3162
3178
3194

32 10
3226
3242
3258

3274
3290
3306
3322

3338
3354
3370,
3386

3402
3418
3434
3450

3466
3482
3498
3514

3530
3546
3562
3578

3083
3099
3115
3131

3147
3163
3179
3195

3211
3227
3243
3259

3275
3291
3307
3323

3339
3355
3371
3387

3403
3419
3435
3451

3467
3483

- 3499

3515

3531
3547
3563
3579

3084
3100
3116
3132

3148
3164
3180
3196

3212
3228
3244
3260

3276
3292
3308
3324

3340
3356
3372
3388

3404
3420
3436
3452

3468
3484
3500
3516

'3532
3548
3564
3980

3085
3101
3117
3133

3149
3165
3181
3197

3213
3229
3245
3261

3277
3293
3309
3325

3341
3357
331713
3389

3405
3421
3437
3453

3469
3485
3501
3517

3533
3549
3565
3581

3086
3102
3118
3134

3150
3166
3182
3198

3214
3230
3246
3262

3278
3294
3310
3326

3342
3358
3374
3390

3406
3422
3438
3454

3470
3486
3502
3518

3534
3550
3566
3582

3087
3103
3119
3135

3151
3167
3183
3199

3215
3231
3247
3263

3279
3295
3311
3327

3343
3359
3375
3391

3407
3423
3439

‘3455

3471
3487
3503
3519

3535
3551
3547
3583

EQ*
El*
E2%
E3*

E4*
ES*
E6*
ET*

E8#
E9*
EA®
EB*

EC*
ED*
EE*
EF*

FOx
Fl=
F2%
F3s

F4*
F5%
F6*
F1s

F8+
F9*
FA*
FB¥

FCe
Fos
FE*
FFe

3584
3600
3616
3632

3648
3664
3680
3696

3712
3728
3744
3760

3776
3792
3808
3824

3840
3856
3872
3888

3904
3920
3936
3952

3968
3984
4000
4016

4032
40648
4064
408 ¢

1

3585
3601
3617
3633,

3649
3665
3681
3697

3713
3129
3745
31761

3777
3793
3809
3825

3841
3857
3873
3889

3S05
3921
3937
3853

3969
3$85

4001
4017

4033
4C4S
4065
4081

3584
3602
3618
3634

3650
3666
3682
3698

3714
3730
3746
3762

3778
3794
3810
3826

3842
3858
3874
3890

3906
3922
3938
3954

3979
3986
4002
4018

4034
4050
4066
4082

3587
3603
3619
3635

3651
3667
3683
3699

3715
3731
3747
3763

3779
3795
3811
3827

3843
3859
3875
3891

3907
3923
3939
3955

3971
3987
4003
4019

4035
4051
4067
4083

4

3588
3604
3620
3636

3652
3668
3684
3700

3716
3732
3748
3764

3780
3796
3812
3828

3844
3860
3876
3892

3908
3924
3940
3956

3972
3988
4004
4020

4036
4052
4068
4084

5

3589
3605
3621
3637

3653
3669
3685
3701

3717
3733
3749
3765

3781
3797
3813
3829

3845
3861
3877
3893

3909
3925
3941
3957

3913
3989
4005
4021

4037
4053
4069
4085

3590
3606
3622
3638

3654
3670
3686
3702

3718
3734
3750
3766

3782
3798
3814
3830

3846
3862
3878
3894

3910
3926
3942
3958

3974
3990
4006
4022

4038
4054
4070
4086

3591

3607
3623
3639

3655
3671
3687
3703

3719
3735
3751
3767

3783
3799
3815
3831

3847
3863
3879
3895

3911
3927
3943
3959

3975

3991
4007
4023

4039
4055
4071
4087

3592
3608
3624
3640

3656
3672
3688
3704

3720
3736
3752
3768

3784
3800
3816
3832

3848
3864
3880
3896

3912
3928
3944
3960

3976
3992
4008
4024

4040
4056
4072
4088

3593
3609
3625
3641

3657
3673
3689
3705

37121
3737
3753
3769

3785
3801
3817
3833

3849
3865
3881
3897

3913
3929
3945
3961

3977
3993
4009
4025

4041
4057
4073
4089

3594
36 10
3626
3642

3658
3674
3690
3706

3722
3738
3754
3770

3786
3802
3818
3834

3850
3866
3882
3898

3914
3930
3946
3962

3978
3994
40 10
4026

4042
4058
4074
4090

3595
3611
3627
3643

3659
3675
3691
3707

3723
3739
3755
3771

3787
3803
3819
3835

3851
3867
3883
3899

3915
3931
3947
3963

3979
3995

4011

4027

4043
4059
4075
4091

3596
3612
3628
3644

3660
3676
3692
3708

3724
3740
3756
37172

3788
3804
3820
3836

3852
3868
3884
3900

3916
3932
3948
3964

3980
3996
4012
402 8

4044
4060
4076
4092

3597
3613
3629
3645

3661
3677
3693
3709

3725
3741
3757
3773

3789
3805
3821
3837

3853
3869
3885
3901

3917
3933
3949
3965

3981
3997
4013
4029

4045
4061
4077
4033

3598
3614
3630
3646

3662
3678
3694
3710

3726
3742
3758
3774

3790
3806
3822
3838

3854
3870
3886
3902

3918
3934
3950
3966

3982
3998
4014
4030

4046
4062
4078
4094

F

3599
3615
3631
3647

3663
3679
3695
3711

3727
3743
3759
3775

3791
3807
3823
3839

3855
3871
3887
3903
3919
3935

3951
3967

3983
3999
4015
4031

4047
4063
4079
4095

16. FIXED-POINT ARITHMETIC INSTRUCTIONS

In this section we will discuss the instructions which perform fixed-
point two's complement arithmetic in the general purpose registers; the

relevant instructions are tabulated in Figure 16.1.

Mnemonic Type Instruction
AR RR Add Register
A RX Add
ALR RR Add Logical Register
AL RX Add Logical
AH Rx Add Half'word
SR RR Subtract Register
CR RR Compare Register
S Rx Subtract
C Rx Compare
SIR RR Subtract. Logical Register
CLR RR Compare Logical Register
SL RX Subtract Logical
CL Rx Compare Logical
SH RX Subtract Halfword
CH RX - Compare Halfword
MR RR Multiply Register
M Rx Multiply
MH RX Multiply Halfword
" DR RR Divide Register
D RX Divide

Figurel6.1 Fixed-Point Arithmetic Instructions

l6-1

There are severel instructions missing from the table which one might

expect to find: thereareno logical balfwerd instructions, there is no
"Divide Halfword", snd there are no instructions for performing multiplication
and division with logical operands. It is possible, however,to compute
logical products and quotients using availeble instructions.

The operations of the add and subtract instructiens are straightforward
and are summarized in Figure 16.2below. Remember that the logical add and
subtract produce the seme result as the arithmetic add and subtract insiructions
except that the CC i8 set differently. For the bhalfword operations, we may
assume (as in the discussion of IH in Section 14) that the second operand is
brought from memory to the MIR,extended to a fullword, end then used for the
indicated operation. The notation "FW2" means the fullword operand at the

effective memory address in the RX instructions, and"HW2" means the same
for halfword operands.

Instruction Action CC Settings
AR C(Rr1) (—C(erg-!-C(Rrgg
SR C(Rry) « C(Rry)-C(Rrz 0: Result is zero
A cznrl) « C(Rry)+C(FW2) 1: Result is< 0
S C(Rr1) « C(Rry)-C(FW2) 2: Result is> 0
AH C(Rr1) « C(Rry)+C(HW2) 3: Overflow
SH! C(Rry) « C(Rry)-C(HW2)
ALR ¢(Rr1) « C(Rri)+C(Rr2) 0: Zero result, no carry
SLR C(Rr1) « C(er)-C(Rra) 1: Nonzero result, no carry
AL C(Rra) « C(Rry)+C(FW2) 2: Zero result, carry
SL C(Rry) « C(Rry)-C(FW2) 3: Nonzero result, carry

Figure 16.2 Fixed-Point Add and Subtract Instructions

The CC settings in the rightmost column apply to all the instructions in the
same part of the table. It is useful to note several aspects of the CC
settings for the logical instructions, which depend on whether a carry occurs
out of the leftmost position of Rri, and whether the resultis zero. By
referring to the examples in Section T, we can see that

(1) a CC setting of zero is possible for AL and AIR only if both

the first and second operands are zero.

16-2

(2) it is not possible to have a CC setting-of zero for SL and SILR,
because after the one's complement of the second operand and a
low-order 1 bit are added to the first operand, a carry must have

occurred 1f the result is zero.

Suppose we wish to store at ANS the sum of C(X) and C(Y), unless the
result is negative, in which case we must also add C(Z) and subtract 2:

the instruction sequence

L 5¢X
A SeY C(R5) - C(X) + C(Y)
BC 11,ST BRANCH If NOT NEGATIVE
A Sel ADDC(Z)
SH 59=Ht2? SUBTRACT 2
ST ST 59ANS STORE- ANSWER

will calculate the required quantity. Note that ST is used both as a symbol
and as an instruction mnemonic; no confusion is possible, since the Assembler
identifies the instruction only by its appearance as an operation field entry.
Suppose we want to compute the sum of the first n odd numbers, where
the positive integer n i8 stored as a halfword integer at N;. consider the

following instruction sequence.

LH 34N GET N

LM 6999=F'04291,1"° LOADRO6-=RG W | THO9291,1
ADDUP A R 6,8 ADD ODD INTEGERTO SUM IN R6

AR 8,7 NEXT ODD INTEGER IN R8

SR 3,9 DECREASE N BY1

BC 7,ADDUP BRANCH N-1 TIMES

ST 649 SUM STORE RESULT

One feature of this example is that all calculations inside the loop (third
through sixth instructions) are done using RR instructions; this technique
is occasionally useful in programs where processing speed is important, and
enough registers are available to allow all operands to be carried there
instead of in memory. The example is of course mathematically nonsensical
because we have expended all this effort to calcuiate n® where a multiply
instruction would have sufficed.

To give another simple example of the use of some of these instructions,
suppose we wish to canpute NMﬁﬂﬂbK fram the formula

NEWST@CK — PLDSTPCK + RECEIPTS - SAIES

16-3

where all quantities are fullword integers small enough to guarantee that

no overflows occur. Both sets of statements below compute the desired

result.
L 2,0LDSTOCK L 2,0LDSTOCK
A 2yRECEIPTS AL 2yRECEIPTS
S 29 SALES SL 2,SALES
ST 2+NEWSTOCK ST 2 ¢+NEWSTOCK

The compare instructions are useful in testing the relative magnitudes
of two operands; the results of the comparison are indicated in the CC

setting as shown in Figure 16.3.

Operations : CC Settings I
CR)
C 0: Operand 1 = Operand 2
CH 1: Operand 1 < Operand 2
CLR 2: Operand 1 2 Operand 2
C L

Figure 16.3 CC Settings for Compare Instructions
The CC cannot be set to 3 as a result of a compare instruction. It can be
seen for the CR, C, and CH instructions that the CC setting is the same as
would result from performing SR, S, and SH instructions with the same
operands, assuming that no overflow occurs. In fact, this is how the
comparison is done by the CPU -- a subtraction is performed internally and
the CC is set to reflect the sign and the magnitude of the difference, which
would have been placed back in Rry for the subtract instructions. Further
analysis of the original operands is required in the CPU if the internal
result overflows. The logical-comparisons do not give the same results as
arithmetic comparisons, since numbers in the logical representation are
always considered to be positive. The following instruction sequence may

help to illustrate the differences.

16-4

LM 0+39=F"1,09-14y-2147483647"

CR l.e3 cc = 2
CLR 1.3 cC =1
CR 042 cc = 2
CLR 042 CC =1
CR 243 cc = 2
CLR 243 CC = 2
LPR 443 ClR4) = X'"7FFFFFFF*', CC = 2
CR 443 cc = 2
CLR 443 cec = 1
C Oy=F'1" cc = 0!
CcL 29y=F 1427 cc = 2
CH l,=H*'S" =1
CH ly=F*5¢ cc =0

The last of the statements in the above example is a programming error that
occasionally occurs; note that the Assembler gives no indication of the
conflicting data types implied by the instruction and the operand.

As an example of the use of a compare instruction, let us recalculate

the sum of the first n odd integers using a different scheme than before.

_ LH 4He=H'1" C{R4) - ACCUMULATED SUM
LR Tva C(RT) = COUNT OF ADDITIONS
TEST CH 74N COMPARE COUNT TO C{N)
8C 8, STORE BRANCH IF N TERMS ADDED
LR 0,7 COMPUTE NEXT ODD INTEGER
AR 040 COUNT + COUNT
AH Qy=H*]? ADDl9 GIVING NEXT ODD TERM
AR 4,0 ADD TERM TO SUM
AH Ty=H'"1? INCREMENT COUNTBY 1
8C 15, TEST BRANCHTOSEE IF FINISHED
STORE ST 4,SUM STORE RESULT

This example is rather cumbersome, but yields the desired result; we will
see that there are many ways to perform-the same computation with varying
degrees of elegance. It is worth noting that programming is often as much
an art as a science, since many different programs of varying effectiveness
can be written to achieve a given objective; an important part of learning
to program is understanding where efficiency can be increased.

As another example, suppose we wish to force the value of the integer
in R6 to be a multiple of 8,in such a way that if it is not already so,

the next higher multiple of 8will be chosen. This would be required of the

16-5

relative origin assigned to a program: the Assembler chooses the next
higher multiple of 8 if the programmer assigns a relative origin which is

not already a multiple of 8. Consider the following segment of code.

SR 1,7 CLEAR R7
SRDL 6,3 SHIFT 3 BITS INTO R7
LTR 7 SEE IF THE BITS ARE ZERO
BC 8,A BRANCH IF YES
A 6,=F'1' IF NOT, ADD 1 TO R6
A SLL 6,3 MULTIPLY BY 8

First, note that we have cleared RT by subtracting it from itself -- this

is the fastest and simplest way to do so and will be used generally except
in situations where the condition code must not be set. In such circum-
stances, an instruction such as L T,=F'O' might be used, though
there are other ways which are sometimes more efficient. Second, we can

use a shift instruction to divide by 8, and since a double-length shift

is used, the "remainder" bits shifted into the three high-order bit
positions of R7 are not lost, which would be the case of SRL 6,3 had
been used. The BC instruction branches only if the remainder bits are all
zero -- that is, if the number in R6 was already a multiple of 8. The same

'calculation can be done more simply:

A T,=F'7" FPRCE CARRY IF P@SSIBLE
SRL 7,3 DRYP @FF 3 BITS
SLL 6,3 MULTIPLY BY 8

where in this case the presence of any 1 bit in the three rightmost bit
positions of the original number cause a carry into the 2 pit position
(that is, bit 28 of R6); the result is the same as before except for the
final CC setting.

To illustrate the use of logical arithmetic, suppose we are required to
perform additions and subtractions on 8-byte integers: double-length integers
too large to fit in a single fullword. Such operations are infrequently
required, but an examination of the methods used provides insight into the
properties of some of the pertinent instructions. Double-length integers
will occasionally be encountered as products and dividends. Consider first
the problem of finding the two's complement of such a number. Since we

know that the two's complement can be found by adding a low-order 1 bit to

16-6

the one's complement of the number, we might proceed as in the following
example, where the number to be complemented ‘is stored beginning at ARG.
By C(RO,Rl) we mean the contents of the double-length register formed by
RO and RI.

L Osz.—l'
LR 1,0 C(RO4R1) ISALL 1BITS
S 04+ ARG 1'S COMPLEMENT OF HIGH-ORDER PART
S 1,ARG+4 1'S COMPLEMENT OF LOW-ORDER PART
AL 1y=F*1° ADD LOW-ORDER 1 BIT
B8C 12,NC BRANCH IF NO CARRY
A Qy=F*1? ADD CARRY BIT TO RO
NC s TM 0y19ARG STORE’ COMPLEMENTED RESULT
DS 0D ALIGN ON DOUBLEWORD BOUNDARY
ARG cc FLB8'123456787654321¢

The AL instruction in the fifth statement must be used rather than A
because the high-order bit of Rl is not a sign bit, but an arithmetically

23; if a carry out'of Rl occurs, it must be

significant bit with weight
detected and propagated into the low-order bit of RO, since there is no
--provision for having this done automatically. The same calculation is

performed by the following code sequence, but in a less direct and obvious

way.

LM 0y1,4ARG GET DOUBLE-LENGTH OPERAND
LCR 0,0 CONMPLEMENTHIGH-CRDERWORD
LCR 1,1 COMPLEMENT LOW-CRDER WORD
BC 84X JUMP IFC(R1)=- o
S Ne=F1t1]1"* SUBTRACT1FROM RO

X STM 0y14ARG STGRE RESULT
DS on ALIGN

ARG ~ DC FLB8'9876543456789"

In this case, we use the first LCR instruction to form the two's complement
of C(RO) immediately; that is, we have already added a low-order 1 bit to
the one's complement of C(RO). The following LCR complements the low-order
32 bits and sets the CC. Now if C(R1) had been zero, its one's complement
would be all 1 bits, and adding a low-order 1 bit would cause a carry out

the left end of RL. For any other bit pattern, no such carry would have

16-7

occurred, and we must correct C(RO) by subtracting 'off the low-order bit
added during the execution of the first ICR.
At this point it should be evident what we must do to add two double-

length integers; we will simply write a code sequence without further

explanation.
LM OslsA GET A
AL 1,B+4 ADDLCW ORDER PARTS
BC 12,NC BRANCHIFND CARRY
A Oy=F*1? PRCPAGATECARRYRITTO HIGH-ORDER PART
NC A 0,3 A D DHIGH-ORDERPARTS
s T™ 0ys1,C STCRE DOUBLE-LENGTHS UM
C DS D RESERVES BYTES, ALIGNED
B DC FLB1222333444555!
A ‘DC FLB'BBB8TTT66E6555

Subtraction is performed in the same way, except that the condition code

setting after the first subtraction will require explanation.

LM O0s1,A GET FIRST OPERAND
SL 1,8+4 SUBTRACT LCW-ORDER PART OF SECOND GPERAND
BC 3,CAR BRANCH’IF THERE'S A CARRY

- S Oy=F*1? REDUCEC(RO)BYL(BORROWL)

CAR S C+B SUBTRACT HIGH-GRDER PART OF SECOND OPERAND
STM 0,1,C STCRE DOUBLE-LENGTH DIFFERENCE

c DS D

B8 DC FLR' 123456787654321"

A cc FL8'234567898765432"

In performing a subtraction, the one's complement of the second operand and

a low-order 1 bit are added to the first operand. If a carry occurs out of

the high-order bit position, then the result is correctly represented; if

a carry does not occur, then the resultcannot be correctly represented,

in the sense that we have tried to generate a "negative" integer in the

logical representation. Hence we must "borrow" a 1 bit from the next highest

bit position, which accounts for the subtraction of F'L' if the branch

condition is not met. It may be helpful to review the examples in Section 7

to clarify the cases of "overflow" in the logical representation.
Multiplication and division work essentially in the manner described in

Section 8. Except for MH, a double-length register is required for product

16-8

and dividend, and the various operands are placed in the expected registers
before and after the operation.

For the multiplication instructions MR and M, the ri digit must be even;
as was the case for the double-length shift instructions, the even-numbered
register is the high-order half of an even-odd register pair, with the next
higher odd-numbered register being the low-order half. The multiplicand is
placed in the odd-numbered register, and the multiplier is the second operand.
The product replaces the original contents of the pair of registers. Thus,

the following instructions will produce the indicated results.

MR 2.7 C{R2,4R3} = C(R3)%CI(RT)
MR 0,1 C(RO,R1) = C{R1)XC(R1)
MR §,8 C{R8,4R9) = C(RB)*C{RS)
M 4,x% ClR4yR5)= C(RS)*C{X)

M 12,=F ‘932"’ C{R12,R13) = C{R13)*%932
LR 594 MOVE MULTIPLICAND TORS
MR 444 C{R44RS5) = C(RS)*C(R4)

The last two instructions illustrate a situation'where we wish to square the
integer in Rt -- the LR is required to place the operand into the odd-
‘numbered register; note that we could have used MR 4,5 also, giving
C(R5)*C(R5). The presence of the multiplier in the even-numbered register
does not cause it to be lost when that register is cleared at the beginning
of the multiply sequence, since the multiplier must be moved internally to
a separate register in the CPU; we can visualize the multiplication taking
place after the multiplier has been moved to the MDR.

It is important to remember that the product generated by the M and MR

instructions is 64 bits long. If we were to perform the following sequence
of instructions (note that 65536 -2%€)

L 1y=A(X*10000°%) C(R1l) = 65526
MR 0,1 SQUAREIT
ST 1,PRCDUCT

PROCUCTC s F

we would find that the fullword stored at PRPDUCT was zero and that C(RO) = 1;

and if we executed the instruction sequence (note that 32768 = 2'5)

16-g

L 1,=A(X*'10000") C(R1) = 65536
M Ny =A(X*'83000")MULTIPLYBY 32768
ST 1,PRCOUC T .

we would find that C(PRDUCT) = -2, There are thus two situations the
programmer should be aware of: first,that the size of the product may be
such that it overflows the low-order register, and second, that whether or
not the high-order register contains significant bits, the leftmost bit of
the low-order register is not a sign bit, but contains an arithmetically
significant digit.

The MH instruction produces a single-length result, which is the low=-
order 32 bits of the product of C(Rr1) and the half'word'second operand.
Because only a fullword result is retained, ri need not be even, and a
specification exception will occur only if the effective address of the
halfword operand is odd. Because fewer shifts and adds are needed during
multiplication, some small economies may be achieved by the use of MH,
particularly on the smaller models of System/360. Thus, MH 5,=H'100'
is a simple way to multiply the contents of R5 by 100. If X and Y are both
halfword operands, theif product may be found by writing

LH 9,X

MH 9,Y
and R8 is undisturbed. And to square the halfword integer n at N we
could write

LH 6,N

MH 6,N
Note that because both operands are halfwords of at most 15 significant bits,
the product will fit in a single register; the only halfword whose magnitude
requires 16 bits (namely -2'°) when squared yields 2°°, which requires only
31 bits. We note in passing that none of the multiply instructions affect
the condition code.

-As an example of the use of a multiply instruction, suppose we want to

calculate A = B + G ¥ D, where all quantities are fullword integers, and it

is assumed that all results are small enough so that no overflows occur.

16-10

746 C(RT) ;= C(G)
64D CI{R6,RT) = GxD
7,8 C(R7) = B+G#D
T+A STCRE RESULT

[V I

Note that we have used the letters A, B, G, and D to denote both the names
of fullword areas of memory and the names of the contents of these areas;
this usage is typical of procedural languages, where little distinction is
made between the name associated with an area of memory, the contents of
the area, and the value associated with the contents. We will explore such
considerations further after more data representations have been discussed.
. As a second example of the use of multiply instructions, suppose we
wish to compute the sum of the cubes of the first n integers, where n is
stored in the fullword at NBR. We will assume that n is a small enough

positive integer that the sum is representable in a single fullword. The

quantity k will be the index in the sum n
2. ¥
k=1
SR 545 SUM CARRIED IN RS
L 4y=F 1" K CARRIEDINR 4
RPT LR 194 CtR1)= K
MR Oyl C(RO4R1) =K*K
%R 0y4 C(RO4R1) = KCUBED
AR 541 ACCUMULA’'TE SUM
A 4y=Ft]? IMCREMENT K
C 44NBR COMPARETO UPPERLIMIT
8C 124RPT BRANCHI F K N O TBIGGER
ST SySUWM STORE SUM OF CURES

A slightly different version'of the same program which counts from n down

to 1 follows.

SR 5+5 INITIALIZESUMTO ZERO

L Gy=Ft]t C(R6) = 1,USEDAS CONSTANT
L 44N3R INITIALIZE K TOC(IN3R)= N

RPT LR 1.4 C(R1)= K

M= N, 4 C{RO,R1) = Kx*K

MR Os4 C{RO4yR1) = K CUBED

AR 5y¢1 ADD TO SUM

SR 446 DECREMENT K BY 1

BC 2,RPT RRANCHIFK STILL POSITIVE

ST 5ySUNM STORE RESULT

16-11

Division is always performed using & double-length dividend and remainder.
As was the case for the fullword wultiply instructions, the ry digit must
be even, and specifies the register pair containing the?. dividend; “he CC is
unaffected. As indicated in Section 8, the quotient replaces the iow-order
half of the dividend in the odd-numbered register, and the remainder replaces
the high-order part of the dividend in the even-numbered register; If a ,
valid quotient cannot be computed, a fixed-point divide exception occurs.
For example, to divide the double-length number in (R8,R9) by the number in
R13, we can write DR 8,13 and to divide the same number by 10 we
could write D 8,=F'10' . To illustrate the use of a divide instruction,
suppose we want to compute the product of C(A) and C(B), and force the result
to the next largest multiple of 29 if it is not already a multiple. We will
assume that the product is small enough-that a fixed-point divide exception

will not occur when dividing by 29, and that the final result is contained

in a single fullword.

L ERE) C(R3) = ClA)
M 25 C{R2,R3) = C{A)=C(3)
o 2y=F129? QUCTIENT IN K13
LTR 212 : TEST REMAINDER IN R2
20 Eyiivy BRANCH IF C{R2) IS ZERO
A 2y=F*1¢ ' INCREASE QUOTIENT BY 1
MPY 8 24,5529 FGRM CORRECT “ULTIPLE OF 29
ST 3,RESULTY STCRE PROPER RESULT

As a final example of division, suppose there is a positive integer at
N which we want to divide by 10, and then store a rounded quotient at Q.
This means that if the remainder is 5or larger the quotient must be

increased by 1.

L © TN GE-TNA sLCW—GRNDERPART O FODIVINEND
SR &y 6 CLFARHIGH-0ORDNDERPART OFDIVIDEND
N 69=F110" DIVIDE BY 10
Ly=F 150 CCMPARE REMAT NDER TOQ 5
3C 4, 0KAY ERANCHIFSMALLERT H AN 5
A Te=F0110 CTHERWI SE ROUND UP
OKAY ST 7,0 STCREROUNDED RESULT

Suppose now that the integer at N might be negative; it is apparent that the

instruction sequence above will not work correctly, for two reasons.

16-12

First, the initial value of the dividend would not have a correctly extended
sign bit for negative arguments; second, because the sign of the remainder
is always the same as the sign of the original dividend, the compare
instruction would always (when C(N) is negative) cause the following branch
instruction to transfer control to ¢KAY independent of the magnitude of the
remainder. To obtain a correctly represented dividend it is simplest to

use the SRDA instruction, as shown.

L ly=Ft1? SETUP ROUNDINGBIT

L 64N C(R6) = CIN)

SRDA 6,32 ClR6yRT) = 64—BITDIVIDEND

B8C 11,01V JUMP IF NCN-NEGATIVE DIVIDEND

' LCR 1,1 CTHERWISES E TROUNDOFF T O -1

CIv D 64y=F'10" DIVIDE B-Y 1 O

LPK 646 ABSOLUTE VALUE OF REMAINDER

c b4=F'5° CCMPARET O 5

BC 4 yOKAY BRANCH IF SMALLERTHAN 5

AU 7,1 A D DCORRECTLY-SIGNEDRQUNDOFF
OKAYST 7+Q STORE ROUNDED QUOTIENT

We note that a simple check may be made to insure that a fixed-point

divide interruption does not occur: if the inequality
IC(er) |< l/2| second operandi

is satisfied, the quotient can be computed correctly.

16-13

17. LOGICAL OPERATIONS ANC INSTRUCTIONS

The basic capabilities of a computing system are derived from the many
interconnections of basic circuits which perform simple logical functions.
Some of these same functions may also be performed on operands in memory and
in the general registers through the use of logical instructions, though
their applications are of course different. We will discuss some of the
instructions which perform logical operations and give a few simple, example6
of their use; other important uses of logical operations will be treated
when some of the SI instructions are examined.

Although it is not what we usually would consider a logical instruction,
the LA (Load Address) instruction is classified as such, and has many and
varied uses in System/360 programming. It is a very simple RX-type instructian:
the effective address replaces the contents of Rri, with the high-order byte
being set to zero. Thus, for example, a positive integer n between 0 and
4095 can be placed in a register by executing an LA r,n instruction,
where the index and base digits are implicitly zero and the displacement
contains the constant n. Instead of writing L 2,=F'1' which requires
8 bytes (4 for the instruction and % for the constant), or LH 2,=H'l'
which-requires 6 bytes, we can write either LA 2,1 or A 2,1(0,0)
which requires 4 bytes and less execution time, because no memory access is
required. Also, because LA does not affect the CC we can clear a register
without disturbing a CC setting which may be required at a later point in
the-program. For example, suppose we wish to add C(A) and C(B)' and clear
the result to zero if it overflows, without changing the CC setting. The

two instruction sequences which follow perform the desired task.

L 0,A L 0+A

A 0+8 A 0.8

8cC 14,87 BC 14,ST

LA 010 L 0'=F'0'
ST ST 0,ANSWER ST ST 09 ANSWER

17-1

Because the LA instruction computes an effective address, it also
provide6 & simple way to increment the content6 of a register by a small
positive amount. For example, LA !*,17(0,;") will increase the
contents of Rb by 17, if the original contents'of RY are between -17 and
224.18. This restriction is of course due to the fact that the high-order
byte of the register into which the result is placed will be &8t to aero;
thus the use of LA for incrementing registers is usually limited to cages
where the quantity being incremented is an address or reasonably small
integer. For example, suppose we want to perform the shifting operation
described in example 6 of Section 15, where it was required that the fullword
at N be shifted right enough places so that its rightmost bit %8 a 1 bit;
we will also require that the halfword at CPUNT contain the number of

positions shifted.

L 44N GET INTEGER
L 39=F'—1" INITIAL SHIFT COUNT
SHIFT SRDL 4,1 SHIFT A BITINTORS
LTR 5¢5 TEST SIGN OF RS
LA 3+1(043) INCREMENT R3 BY 1
BC 109 SHIFT BRANCH IF RS NOT NEGATIVE
SLDL 491 ‘ MOVEBITBACKINPLACE
ST 49N STORE SHIFTED INTEGER
STH 3+COUNT STORE SHIFT COUNT

By setting the shift count to -1 initially, we guarantee that the correct
value will be in R3 when we exit from the loop; the first time the LA
instruction is executed, the result will be zero and the setting of the
leftmost byte to zero is what we want. The placement of the LA instruction
between the ITR and the ensuing BC was done to show that no adverse effects
are caused; one would normally place the LTR just before the BC becauge the
relation between the two is then clearer to anyone reading the program,

A third use of the LA instruction, and possibly the most important, is
in generating addresses for actual operands in memory. For example, we may
require the address of some operand to be in a given register during the
execution o a segment of code. Suppose we want to add three integers, and
branch after all additions are completed to N#ERR if no overflow occurs, and
to ERR1 if one or more overflows occur. Let the integers be stored in

successive fullwords beginning at Q.

17-2

LA 94NOERR SET BRANCH ADDRESS FOR NO ERRORS

L 2,Q GET FIRST INTEGER

A 29Q+4 ADD SECOND INTEGER

BC 14,0K1 BRANCH IF NO OVERFLOW

LA 9,ERR1 SET BRANCH ADDRESS FOR 1 OVERFLOW
0Kl A 29Q+8 A DD THIRD INTEGER

BCR 1449 BRANCH IF NO OVERFLOW

BC 15,ERR1 BRANCH, SOME ADDITION OVERFLOWED

It should be noted that the instruction with a mask digit of 15 could also
be written BC 1,ERRl without affecting the operation of the code,
since the inetructicm is reached only if the branching eondition for the
immediately preceding instruction is not met; by specifying a mask of 15 it
is clear that the branch must always be taken. There is one important
assumption underlying the use of the two LA instructions: the instructions
named NPERR and ERRl must be addressable, since the LA instruction will
simply perform the address computation specified by the base and displacement
assigned by the Assembler. As mentioned earlier, we are assuming that all
symbols (and expressions 'such as Qt8) are 'addressable and that the appropriate
-- base register information has been established elsewhere in the program.
It is occasionally easy to forget that the symbols used in LA instructions
must be addressable, since no reference 1is being made to any memory
location -- omly an address is being generated, and no checks for the
validity of that address are made.

We will give a number of examples later where the LA instruction can
be used to give-the effect of indexing for instructions for which indexing
is not actually possible, namely RS, SI, and SS instructions.

The three logical operations provided by System/360 are AND, OR, and
EXCLUSIVE OR. These are relations between pairs of bits, which produce a
result depending only on the values of the two bits participating in the

operation. The effect of the three operations is gwnin the figure below.

0T T

AJO] 1] v] 0] 1 [®
ofoTJo 0 0] 0| L
0] 1 101 111]0
AND | OR EXCIUSIVE OR

Figure 17.1 Logical Functions in System/360

17-3

In the first case, the result bit is 1 only if the first AND the second

operand bits are 1; in the second case the result bit is 1 if either the

first OR the second operand bits (or both) is 1; and in the last case, the
result bit is 1 if either the first OR second operand bits is 1, EXCLUSIVE

of the case where both are 1. Henceforth we will abbreviate EXCLUSIVE OR

by XOR. For the instructions listed in Figure 17.2, the operands are fullwords;
however, the result of the operation is obtained by matching the corresponding
bits of each word, with no interactions between neighboring bits. A few
examples will help to clarify this. As before, "MW2" means the fullword

second operand specified by the effective address.

Mnemonic | Type Action CC Settings
NR RR C(Rr1) « C(Rr1) A C(Rrz) 0: all result bits
N Rx C(Rry) « C(Rry) A C(FW2) are zero
) RR C{(Rr1) « C(Rry) v C(Rrz) 1: result bits are
RX C(Rry) « C(Rr1) v C(FWz) not all zero
XR RR C(Rr1) « C(Rr1) @ C(Rrz)
X RX C(Rr1) « C(Rry) ® C(FWz2)

Figure 17.2 Logical Instructions

Suppose C(RL) = 0123456716, and C(R9) = EDA9652ly6. Then if the
instruetions indicated are executed, the final contents of R¥ will be as

shown below the instruction.

NR L,9 ¢R b9 XR L9
012145211 ¢ EDAB65671¢ EC8A2046, ¢

To see in more detail how these results are obtained, we will examine the

fourth hexadecimal digit of each case in binary form in the figure below.

3 0011 3 0011 3 ' 0011
A9 A 1001 vo v 1001 @9 @ 1001
1 0001 B 1011 A 1010
AND OR EXCLUSIVE OR

|

Figure 17.3 Examples of Logical Operations

17-k

One important use of the ¥ and MR instructions is for "masking"
operations in which it is desired to isolate or extract portions of a word.
For example, suppose we wanted only the third of the four positive integers
packed in the data word illustrated in Figure 14.7. This could be done by
shifting as follows:

L 0+DATANWORD GET INTEGERS

SRL 0e¢6 DROP OFF FOURTH ONE
SRDL 1,13 MOVE THIRD INTO RI
SRL 1519 POSITION FOR STORING

ST 1+ THIRD

or as follows:

L 0yDATAWGRD
SLL 0,13 DROP OFF FIRST AND SECOND INTEGERS
SRL 0+19 DROP OFF FOURTH, POSITION FOR STORING

ST 0y THIRD

(If the integers were allowed to have negative-values as well, the SRL
instructions would be replaced by SRA.) However, the following instruction
sequence using a logical AND is considerably faster:

L 1+DATAWORD AAAAAAAAABBBBCCCCCCCCCCCCCDDDDDD
N 1,MASK 0000000000000CCCCCCCCCCCCCO00000
SRL 146 0000000000000000000CCCCCCCCCCCCC
ST 19 THIRD STORE DESIRED INTEGER
DS OF ALIGN TO FULLWORD BOUNDARY

MASK D C X*0007FFCO?*

First, note that the DS OF is required to insure that MASK falls on
a fullword boundary -- type X constants have no implied alignment. Second,
the mask hee 1 bits only in those positions which correspond to the bits
(labeled "C") of the third integer in the data word. When the N instruction
is executed, all of the bit positions in which the mask is zero will be set
to zero, since a 0 bit ANDed to any other bit gives a zero result. In all
of the mask's bit positions which are 1 bits, the result is the same as the
original bit from the data word, because a 1 bit ANDed to any other bit
gives a result identical to that bit.

To illustrate the use of a logical R instruction, suppose we want to

store a new value for the third integer into the proper part of the data word.

17-5

We can do this by shifting the various pieces into place:

L 0+DATAWORD GET INTEGERS

S R D LOsb MOVE FOURTHINTO R1

L Os NEWTHIRD GET NEW VALUEOF THIRD INTEGER
SRDL 0913 MOVE IT IN WITH FOURTH

L 0,DATAWORD GET INTEGERS AGAIN

SRL 0919 DROP OFF THIRD AND FOURTH
SRDCOs13 MOVE FULL WORD INTOR1

ST 1,DATAYORD STORE NEW DATAWORD

Alternatively, we can use the logical AND and ¢R to do the same:

L 0,DATAWCRD GFT INTEGERS

N 0,MASKA CLEAR SPACE FOR THIRD

L 1+NEWTHIRD GE? NEW VALUE OF YTHIRDINTEGER
SLL 1+6 SHIFT INTO PROPER POSITION

OR 001 *CR* IWO PLACE

ST 0,DATANORD STORE NEW DATAWORD

DS OF

MASKAD C X°FFF8003F*

In this case, the N causes all the bit positions into which the third
_integer will be placed to be set to zero. The ¢R instruction then forms

the logical OR of all the bits of RO and Rl. Since the only bits in Rl
which may be 1's are in the 13 positions corresponding to the space provided
in the word in RO, and because the result of ORing a 0 bit to any other bit
is the value of the other bit, the effect is to insert the new value of the
third integer in its proper position in RO. This of course assumes that the
contents of NEWTHIRD is a positive integer of at most 13 significant bits;

if not, an instruction such as N 1,MASK should be inserted before
the ¢R to insure that no extraneous bits are ORed into RO.

The-X and XR instructions are used mainly for inverting the value of a
bit or a group of bits: it can be seen from Figure 17.1 that the result of
XORing a 0 bit to any other bit is to leave it undisturbed, and the result
of XCRing a 1 bit is to invert it from 1 to 0 or vice versa. Thus, for
example., we can form the one's complement of the number in R7 by subtracting
it from a word of all 1 bits, or by executing X T,=F'-1" which does
the same thing. We can rewrite the example above to use an X instruction

(though in a somewhat roundabout way) as follows:

17-6

L 0sDATAWORD GET INTEGERS

0 O+¢MASK SETTHIRDSPACE TO 1 BITS

X 0¢MASK NOW SET THEM TO ZEROS

L 1.NEWTHIRD ETC

SLL 146 ETC

N 1 9MASK BE SURE THERE ARE- NO EXTRA BITS
OR 01 ETC '

ST 0¢DATANWORD

DS OF
MASK] X*0007FFCO?

As another example of the use of the XOR function, suppose we again want
to force the integer in R9 to be the next larger multiple of 8 if it is not
already a multiple of 8; consider the following code sequences.

A Ty=Fe7? FORCE CARRY SF ANY 1 BITS
N Ty=F*-8°* SET LAST 38BITS TO ZERO

This is the fastestmethod, but space is required for the constants.

LA 0,7 C{(ROY= 7

AR 9,0 FORCE CARRY IF ANY 1 BITS
OR 9,0 FORCETHE THREE BITSTO1'S
XR 9,0 NOW SET THEM TO ZERO

In terms of space required, this method is superior to the ones illustrated
previously.

We will find that the logical operations have considerable use in
examining and manipulating individual bits in memory, particularly through
the use of certain SI-type instructions. As a final example, suppose we
are required to shift the integer contents of R6 (assumed nonzero) left so
that the first significant bit is immediately to the right of the sign bit,
and store at NPRM the number of positions-shifted.

SR 8,8 SET SHIFT COUNT TO ZERO
SHIFT SLA 6y1 SHIFT LEFT ONEBITPOSITION
8C 1,FINIS IF OVERFLOW, JUMP
LA 891{0,8) INCREMENT SHIFT COUNT
scC 15, SHIFY TRY AGAIN
FINIS SRA 6.1 REPOSITION
X 64DIGIT RESTORE THE LOST BIT
ST 8,NORM STORE SHIFT COUNT
NORM DS F

DIGITD C X40000000°

17-7

I3

In this case we shift left until the overflow indicates that & bit different
fram the sign bit has Been shifted out of bit pgsition 1. The right shift
moves everything back, but instead of restoring the lost bit, extends the
sign bit into tha second bit position of RE& fromwhich the most significent
bit was just lost, Sinece the sign 1s known to be the opposite of the lecst
bit, the X operation inverts the second bit to give the desired result.

17-8

18. LOOPING, INDEXING, AND SIMPLE ARRAYS

Much of the power of a digital computer derives from its ability to
execute sequences of statements repetitively until some condition has been
satisfied. Programming with loops is therefore basic to most programs of any
size and complexity; we will examine in this section several instructions which
simplify the coding of loops, and sane typical uses involving arrays of data.

As a simple example which will be used to illustrate sane of the basic
principles, suppose there is a string--- a one-dimensional array -- of 80bytes
beginning at STR and ending at STR+79 which contains character data in the
EBCDIC representation. We are required to scan the string and replace all
special (non-alphanumeric) characters by blanks: specifically, any character
with representation less than C'A' (referring to Table III, it can be verified
that this is equivalent to 193:0=X'Cl') should bereplaced by C'', which has
representation X'40', so that letters and digits will be unchanged.

First, consider the following code sequence, which performs the desired

processing in a straightforward but rather clumsy way.

SR 0,0 CHARACTERS INSERTED INTCR o}
LR 1,0 , CHARACTER COUNT 1T NRly INITIALLY O
LA 24C'A? C(R2) = X*0CoQo00C1"®
LA 3,C* ¢ C{R3) = X*00000040°*
LA 44STR FIRSTBYTE ACDRESSI N R 4
GETChAR 1IC 0,0(094) GETBYTEFROMSTRING
CR 0,2 COMPARE TOLETTER®A?
8C 10 +0KAY ORANCH IFLETTEROGORDIGIT
STC 3,0(0,4) - OTHERWISE REPLACEBY A BLANK
OKAY LA 491(044) INCREMENY CHARACTER ADDRESSBY1
CA 1y1(0,1) INCREASE CHARACTER COUNTB8Y1
C Ly,=F*80°" CUMPARETOS8 0
8C 4GETCHAR bRANCHIFLESS THAN 80 TO DO MORE
STR cC CLBO*THIS «IS*u0)BYTES-TOyBE(SCANNED+FCRASPECIAL=CHAR#H

We will see later that this particular problem can be solved more efficiently
in a variety of ways. For the time being, note that the character comparisons

are made in the rightmost bytes of registers 0 and 2, and that the address of

18-1

the byte to be examined is regularly incremented in B4 after being initialized
to the location of'the first character. The branch instruction at the end of
the loop must branch if C(R1) is less than 8,not if it is less than or equal
to 80, since the final test in the latter case would cause the byte at STR+80
to be examined and possibly changed.
A second version of this program which makes use of the indexing capabilities

of the IC and STC instructions follows.

SR 050 CLEAR RU FOR CHARACTERS FROM STRING

LR 1,0 INITIALLZE ZACEX TO O
. LA 3.C1 ¢ CiR3} = GLANK AT RIGHT END

GETCHAR IC 0,STR{1) UET CRARACTER FROM STRING
C 0,=A({C%*A*) CUmPARE TO LETTER 'A
BC 1C,0KAY JUGP LF NOT LESS THAN X*Clt
STC 328TR{1) REPLACE BY SLANK

CKAY LA 192{0,1) caCucneNT INSEX BY 1
C le=Ftg0" CUMPARE 7C UPPER LIMITY
8C 44GETCHAR orANCH IF NGT CGONE

A trivial difference in this version is that the fullword containing the
EBCDIC representation of the letter A is now in memory, specified by the literal
=A(C'A") rather than in R2 as before: note that =F'193' and =A(X'Cl') would
give identical results. The addressing of the byte to be examined is now
computed using Rl as an index register. The first time the instruction named
GETCHAR is executed, C(Rl)=0 and the effective address generated will be the
actual relocated address of STR, assuming that the necessary base register(s)
have been set up correctly. On the last execution of the IC instruction,
C(R1)=T79 and the last byte of the string will be inserted into RC for
examination. When the LA instruction named ¢KAY is executed, C(R1l) will be
increased to 80, the branching conditioﬁ for the final BC instruction will
not be met, and control will pass to the following instruction.

To illustrate another use of indexing, consider the example of Section 17,
where three integers at Q are to be added; in this case, however, after the
sum 18 complete a branch to N¢ERR is to be taken if no overflows occurred, to .

ERRL if exactly one overflew occurred, and to ERR2 if two.

18-2

SR ls1 SET OVERFLOWCGUNT TO ZERO

L 0,Q LET FIRST INTEGER

A 0,Q+4 ADU SECOND

B8C 14,A1 BRANCH | F N O GVERFLOW

LA 1,4(0,1) INDICATE ONE COVERFLOW
Al A 0,Q+8 AUV THIRD INTEGER

8C 14,A2 BRANCHIFNO OVERFLOW,.

LA 1:4(0,41) INOLCATE A NCVERFLOW
A2 BC 15,B8{1) BRANCHINTOBRANCH TABLE
g 8C 154NOERR O—ERRUR BRANCH

8C 154 ERR1 l—ERROR BRANCH

BC 15,ERR2 2—ERROR BRANCH

When the instruction named A2 is reached, Rl contains four times the number
'of overflows. This number is used as an index in computing the effective
address of the BC instruction at A2, which will be B, B+, or B8; the
appropriate branch instruction will then cause control to be transferred to
the desired location. Note that B need not be on a fullword bouudery; the
index in Rl must simply be incremented by % to account for the length of the
BC instructions. Such branch tables often provide a fast and effective way
to route control to different parts of a program.

We will now consider the Branch on Count (BCTR and BCT) instructions,
which simplify counting operations such as those in the above example. As
was the case for the BCR and BC instructions, the branch address is obtained
eithgr from Rrz for BCIR (unless rez=0, in which case no branch can be taken)
or from the effective address for BCT. In this case, after the branch
address 1s canputed, the branching condition is determined by first algebraically
reducing the contents of Rry by one, and then branching unless C(Rry)=0.
Note that the CC is unchanged and has no effect on the branching condition.
We-can rewrite our first'example to use a BCT by working backwards along
the string of characters from STR+79 to STR, which also allows the use of
the same quantity both as an index and a counter.

SR 0,0 CLEAR RO
LA 1,80 SETRLTUONU M B E RQOF PASSES
CA 2,CHA? CIlk2) =LETTER A
LA 3,C* ¢ CER3) = BLANK
NEXT IC 0,STR-1(1) GETCHARACTER
CR 290 CUMPARE*A*TO CHARACTER
8C 12 ¢OKAY BRANCH IF SATISFACTORY
STC 39STR-1(1} UTHERWIME BLCT IT OUT
OKAY 8CT 1sNEXT CUUNT DUWNS YLl JUMPIFN O T O

18-3

The use of the expression STR-1 in the second operands of the IC and STIC
instructions is dictated by the fact that the possible wvalues of C(R1) run
between 80and 1, rather between 0 and 79 as before. This can be thought
of as reflecting a difference in the enumeration of the bytes in the string:
if we number them from 0 to 79they would be addressed STR(1), and if the
bytes weenumbered (in perhaps a more natural fashion) fram 1 to 80, they
must be addressed STR-1(1). On the final pass through the loop, C(RL)=1;
when the BCT instruction is executed, C(R1) is reduced to zero, the branching
condition is not met, and control passes to the next seguential instruction.
One immediate gain in program efficiency can be seen simply by counting the
instructions inside the loop: we have reduced this number from seven to five,
which will give approximately the same ratio in processing speeds.

- The BCT and BCTR instructions are especially useful in situations where
a certain number of passes through a loop is, needed, and no special attention
must be paid to indexing quantities, To illustrate several uses of these
instructions, consider the following variations on some examples from previous

sections.

(1) The fullword at NBR contains a positive integer n; compute the sum of

the cubes of the first n integers,

L 4 yNBR G(R4) = INDEX $K*'y INITIALLY N
SR 5¢5 INDTIALIZE SUM YO ZERO
NEXT LR le4 CIR1) = K
MR 0.1 K¥g
MR 0r4 K CuBtkD.
AR 591 ADD TU SUM
BCY 49 NEXT UECREASE K BY 1, LOOP
ST 59¢SUM STURE SUM

(2) The halfword at N contains a positive integer 1n; store at NSQ the sum

of the first n odd integers.

SR 0,0 CLEARSUM TC ZERO
- Lh 1N GET N FRUM MENMORY
LGCP LA 290(191) (CUUNT+COUNT) IN R2
BCTR2 . 0 2 * CLUNT -1
AR 0.2 AVDJUS UM
BCT 1,L00P REVUCE COUNT A N D BRANCH
ST 04NSQ

18-k

Because n is contained in a halfword integer, we may use the LA instruction
to compute (n + n) in one step, since the result is known to fit in the
rightmost 24 bits of R2. The following BCTR instruction cannot branch, since
rz2 = 0; hence the only effect is to reduce C(R2) by one, as required.
(Remember that the k=th odd integer is 2k-1).

(3) Find the two's complement of the double-length integer stored at ARC.

LM Oy 1lyARG GET VUUBLE~LENGTH NUMBER
LCR 0,0 COMPLEMENT HIGH=-CRDER PART
LCR 1,1 CUMPLEMENTLCW~CRDERPART
BC 8.X BRANCH IF“ C A RRYOUTOFRL
- BCTR 0,0 OTHERWISERED U CECS{ROIBY 1
X STM 0y 1,ARG STURE CUMPLEMENTEDRESULT

This is identical to the example in Bection 16 except that the BCTR replaces

s 0,=F'l' and thus the CC setting may be different when the SIM is
executed. The BCTR instruction with r=0 may be used in this fashion anywhere
in a program; it is shorter and faster than subtracting a constant 1 from
memory, but has the possible disadvantege that the CC is not set.

. As a further example of the use of the BCT instruction, we present
below two examples of program segments which store the cubes' of the integers
from 1 to 10 in a table of ten successive fullwords, the first of which is

labeled CUBE.

LA 4,10 C{R4) =NUMBER TO BE CUBED
MULT LR 314 MUVE ITTOR 3
MR 293 SWUARE IT
MR 244 AND CUBE X T
CR ly4 SET uP INDEX IN Rl
SLL 1,2 MULTIPLYBY 4 FORFULLWORDLENGTH
ST 3yCUBE~4{ 1) .STUREIN CORRECT TABLE POSITION
BCT 4o MULT BRANCH 3ACK 9 TIMES

In this case we have used the integer argument being carried in Rl to index
the desired word in the table; since the table entries are fullwords, the
index must be multiplied by four for successive items, which is why the SLL
is used. Because the first entry in the table corresponds to 1 cubed, the
expression in the operand field of the ST must be CUBE-4 so that the address
of each entry will be correctly calculated'. Another method of doing the same

calculation is as follows.

18-5

LA
LA
LA
MULT LR
MR
MR
ST
LA
LA
CR
BC

1,CUBE+0%*4
29CUBE+9%4
3.1

543

493

443
520(0,1)
3,1{(0,3)
1,4(0,1)
1,2
129MULT

ADORESS UF FIRST TABLE ENTRY
ADUKESS UF LAST TABLE ENTRY
C{R3) = NUMBER TO BE CUBRED
MUVE MULTIPLICAND

SWUARE

cude

STUKE IN TABLE

INCREMENT NUMBER TO BE CUBED
INCREMENT TABLE AGDRESS
CUMPARE TO ENL ACORESS
BRANCH BACK IFf NGT PAST END OF TABLE

In this case an explicit address in the ST instruction is used, rather than

an implied address as in the first method.

This is because the loop termination

condition is determined from address arithmetic rather than from tests on any

of the quantities being calculated in the loop; we will see that cases often

arise where it is convenient to perform such addressing calculations explicitly,

rather than rely on the Assembler to assign all bases and displacements. The

"index" of the entries in the table may be thought of as running from 0 to 36

in steps of b,

In most of the programming examples we have examined in which loops

were used to perform some iterative task, the termination condition depended

on some kind of counting operation. More specifically, many such applications

require that some quantity be established as an index whose value is changed

reqgularly by an increment,

made depending on some condition established by the comparison.

compared to some comparand, and a branch then be

Note that the

term "index" as used here is meant only to indicate the variable quantity which

controls or determines completion of the loop; it may or may not be related

to a quantity to be used as an index (that is, specified by an index register

specification digit)

compute a table of cubes.

in an RX instruction, as in the two examples above which

In the first illustration, the index of the loop

(in R4) is also used (in Rl) to index the ST instruction; in the second illus-

tration, the index of the loop is the address contained in Rl, but no indexing

is performed in any of the RX instructions.

The increment may be a negative

quantity, in which case it might be more appropriate to call it a decrement;

rather than try to use names to distinguish the sign of the quantity to be

added to the index,

negative.

we will assume that the increment can be positive or

For the Branch on Count instructions, the quantities involved are all

implied by the instruction:

the index is in Rry, the increment is -1, the

18-6

comparand is zerc, and the condition for branciaing is ineguality. As might

be inferred from the preceding examples, this somevhat restricted set of
possibilit‘ies is often insufficisnt tc enable the programmer to code a loop
effectively. Because loops are such a crucisl part of many programs, the
System/360 instruction repertoive contoins “he EXH (Bransh on Indsx High)

and BXLE (Branch on Index Low or Equal) instruntions to facilitate coding

of loops. As was the case for BCT and RBCIR, hoth of these instructions provide
the three functions of incrementation, comparison, and conditional branching,
but with much greater flexibility.

Both BXH and BXIE are RS-type instructions requiring two register
specifications digits ri and r3, as indicated in Figure 1k.1. Like the STM
and IM instructions, the use of registers other than Rr; and Rrz may be
implied, but in a less simple way. The index is always in Rri, and the
increment is always in Rrs. The comparand is contained either in Rrs+l
(if r3 is even) or in Rrs (if r=z is odd), That is, if WC write BXLE O,k4,NEXT
then the index is in RO, the increment is in Ri#, and the comparand is in RH,
whereas 1if we write BXIE °'0,5,NEXT the index is again in RO, but both
the increment and the comparand are in R5. There is a simple notational
device which illustrates the fact that the comparand is always contained in
an odd-numbered register (if rs is even, the comparand is in Rrs+l, and if
rs is odd, the comparand is in Rrz): we will write RrsV 1 to indicate that the
register containing the comparand may be determined by ORing a 1 digit into
the rs digit. Thus B8V 1 refers to RY, and R9V 1 is the same as Ry. The
operation of BXH and BXLE, which is diagremmed in Figure 18.1, is as follows:
the sum of the index and iIncrement is computed internally and then compared
algebraically to the comparand. Whether or not the branching condition is
met is noted -- for BXH this means that the sum is algebraically greater
than the comparand, and for BXLE that the sum is algebraically less than or
equal to the comparand. It is important to observe that the branching
condition is not reflected in a setting of the CC but is determined internally;
none of BCT, BCTR, BXH, or BXLE change the CC. The sum then replaces
the index, and the branch is taken if the branching condition is met. Note
that because the branch address is comwputed during the "Decode" portion of

the instruction cycle before incrementavion takes place, the effective

18-7

address may not be as expected if ri and bz are the same (unless both are

zero, which is unlikely since the branch address would have to be less than

4095) .

Note also that the comparison takes place before the sum replaces

the index; we will give some examples of situations where this is important.

The upper portion of the figure below is a verbal description of the

execution of BXH and BXIE; the lower portion indicates explicit register

usage by

the two instructions.

i '.
&code;| ! |Compute Compare sum Sum Branch H
compute| !, &indav.+ |to comparand;| (|replacdgs+|condition no |
branch| | “Jincrement determine “| index met 7 '
address| | Y——————|branch cond. |
i lJEB !
] “ !
| Branch addr i
: Execute -éC(IA) |
i |
b o o o e e o - = 0 o o 0 - o - o e o o o " - - J4
a— ---------- - v - A G G B S S SR G G R WD WS WS D G R W G W S G R e e e . -—-"h—-——---—ﬂﬁ:
i ——3sum > ¢(Rrsv1) 2| no
! EXH ' |
]]
Decodef !|C(Rri)+ vyes - !
computel !} . o(Ry " Sum = |
J code Br. Addr. = C(IA
branch {1 (Rrs) & = (18) ‘| ¢(Rry) |
1
address : - Sum yes N |
| BXLE |
| '—————%Sum < C(Rrav1l) ? no '
i i
L !

Figure 18.1 Operation of BXH and BXLE Instructions

Fetch

To illustrate the use of BXH and BXLE, consider the example given at

the beginning of this section,

characters by blanks.

instruction.

We will rewrite the code sequence to use a BXLE

18-8

where we wish to replace non-alphanumeric

LM 0939=F*090,1,79".
X CHARACTERS INSERTED INTOROy INDEXINRLyINCREMENTINRZ,
4 ANCCCMPARAND IN R3.

LM 4’5’=A‘C'A,"C' ')
8 LETTER ‘A’ INR4y AND A BLANK | NRS5.

GETCRAR IC 09 STR(1) GET A CHARACTER FROM THE STRING
CR Os4 , CUMPARETO LETTER'A?|IN R4
BC 10,ALPHANUM BRANCH IF ALPHANUMERIC
STC 59STRI(1) OTHERWISESTCGRE A BLANK

ALPFANUM BXLE 1+2+GETCHAR INCREMENTANG BRANCH

Note that the values of the index run from 0 to 79; when control reaches the
BXIE instruction, the increment in R2 (namely +1) is added to C(RO), and
because R2 is an even-numbered register, the sum is compared to the comparand
C(R3) . If the sum is less than or equal to 79, the branching condition is
met and control will. be transferred to the instruction named GBICHAR after
the sum is placed back in Rl. When control finally passes to the instruction
following the BXIE, the contents of Rlwill be 80i0.

To give an example where the use of HKIE is perheps more natural, we
will rewrite the code segment which computes a table ofthe cubes of the
first 10 integers, starting at CUBE.

CA 741 IWwaTIALINTEGER=1
LR 8,7 Ci{r8) =1FOR INCREMENTING N
SR 494 SET INDEXT O ZERO
CA 2.4 INCREMENT Q F+4 F O R INDEX
LA 3,36 CUMPARAND = 384 INR 3
MULTY LR 1,7 N IN R1
MR Os1 NN
MR 0,7 N CUBED
ST 1,CUBE(4) STURKE IN TABLE
AR 7+8 INCREASENB VY1
BXLE 4+24MULT INCREASEINDEXBY 4 AND COOP

This segment of code has been written in such a way as to use fewer instructions

inside the loop, at the expense of some extra instructions outside the loop.
The following two code segments perform the same calculation, but are set
up slightly differently.

18-9

LA 7,1 INITIALVALUE OF N=1

LA 494 SET INCREMENT IN R4 TO 4
LR 214 INITIAL INDEX IN R2 IS 4 ALSO
LA 5,40 CUMPARANU IN R5 = 40
MULT LR 147 C(kl) = N
MR 0,1 N SWUARED
MR 0,7 N CUBED
ST 1,CUBE—-4(2) STurte IN TABLE
LA T79,1(0,7) INCREMENT N
BXLE 2,4,MULT CUUNT ANUO LOQOP

In this example, the index runs from % to 40 in steps of 4, rather than from
0 to 36 as previously. In general there -is no difference between the two
methods, except that the second method can be conceptually simpler: since

the integer N runs from 1 to 10 by steps of 1, the multiplication by % to
account for the lenzth of the fullword result wakes it natural to have the
index run from 4 tc 40 in steps of 4. We will. examine some cases shortly
where such considerations are important. The use of the LA instruction can
yield very slightly increased speeds, since it is faster on some models of
System/360 than an AR instruction; the programmer interested in such details
should consult the instruction timing tables for the particular CPU he is using.
A variation on the above example is given below, where the index and comparand

quantities are addresses.

LA 4,CUBE+Q*4 >scT INveX TO INITIAL TAELE ADDRESS

LA 294 INCREMENT = 4 FUR FULLANLRDS
AA 3,CUBE+9%4 CUMPARAND = FIMNAL TABLE ADDRESS
AA 741 INITIAL VALUE CF N = 1
MLLT LR 1147 N ’
MR 10,11 R
MR 10,7 ENEN
ST 11,0(0,44) sTuke IN TABLE
CA T1+1{(0,7) LeReEMENT N
BXLE 4,2,MULT LauukKcMENT ADDRESS AND LCOP

To illustrate the use of the BXH instruction, two of the previous code

segments will be rewritten so that the indexing runs in the opposite direction.

LA 7410 Ll T1AL VALUE GF N v
A 8y=Ft~1°" Ci{k3d) = =1 FCR INCREMENTING N
LA 4440 LniTiAL IMDEX = 40
L 29=F*=4"? Ll ManNT = =4
Sd‘t 303 CU&"\PA-‘(AN{J = 0
MLLTY CR L1e? N
MR 0,7 NFN
MA 0,7 NN
ST l,CuBE—41(4) sTuxe In TABLE
AR 7,8 Auu =1 Tu N
BXH 4929MULT CUuNT Anw LCCP

18-10

When the instruction following the BXH is reached, the index in R4 will be
zero. In fact, we can use -4 for both the increment and comparand as in the

following example.

LA 7410 INITLAL VALUE OF N IS 10

LA 4436 INITIAL INDEX = 36

L Sey=Ft=4? INCKEMENT AND CCMPARAND ARE -4
MULT LR 107 N

MR Oy7 N SWUARED

MR 097 N CUBED

ST 1,CUBE(4) STURE IN TABLE

BCTR 790 UDECREASE N BY 1

8XH 4559MULT CUUNT DOWN AND LOGP

In this' case the rs digit is odd, so RraV 1 is the same register as Rrs;

the BXH will increment the index in Rk by -4 and branch until the resulting

sum becomes -k also, when control will gass to the instruction following.
Some specialized uses of BXH and BXLE may be obtained by various

combinations of register specification digits. For example, suppose the

contents of an odd-numbered register such as R9 is zero. Then the instruction .

BXLE 4,9,X will branch to X only if C(R4) is less than or equal to zero;
similarly, BXH 4,9,X would branch to X only if C(R¥) is greater than
zero. Since the BXH and BXIE neither set nor test the condition code, this
technique can be used in situations where a condition code reflecting the
state of the contents of Rt is not available, or the current CC setting must
be undisturbed, or if it is desirable to avoid using instructions such as
LTR followed by a BC.

Suppose we want to perform the inverse of the BCT instruction, namely
increment a register by +l and branch. If C(R7)=l and the contents of R2
is some integer greater than zero, then - BXH 2,7,X will branch to X
after incrementing C(RZ2) by 1 unless the sum overflows. Similarly, if there'
is some negative integer in R2, BXLE 2,7,X will branch to X so long
as the resulting sum does not exceed +l. If C(Rk)=1, the instruction
BXH S,M,X will increment the contents of RS by 1 and then branch to X
if the sum does not overflow; this example is instructive because the index
and comparand are in the same register. If the canparison was made after
the sum was placed in R5, an equality would always be indicated and the BXH

would never branch. Tricky usage of BXH and BXLE as described above is

18-11

relatively rare, and these instructions find their major use in applications
such as table searching and loop control.

In the examples given up to now of loops involving indexing in an array,
the choice of a method to perform the indexing arithmetic and the selection
of initial and final index values was left open; no formel technigque was
described. Since arrays and array processing techniques are heavily used,
we will examine some general methods for handling arrays.

One-dimensional arrays are relatively simple, since each successive
element may be obtained by adding the element length to the address of the
preceding element. If for example the halfword integers ko, ki, -—- ko are
stored starting at K, then kn is found at K#n; if the array elements were
fullvords or doublewords, the corresponding addresses would be K#in arid K+8n
respectively. On the other hand, if ks ... kg are stored beginning at 'K, and
the length of a single array element is L, thenk Is found at K+L(n-4).

The required subscript aritimetic should be evident »~ if the lowest-subscripted
element km is stored at K, then the location of kn (where N > m) 18 K+I*(n-m).
(It is also evident that n need not be greater than m; it i's merely customary
to store arrays this way.) An example will help to illustrate this.

Suppose an array of fullword integers xs , ., . x7 is stored beginning at
X, and we are required to store their sum at T. The lower and upper subscript
bound6 of 5 and 17 are stored at LOWER and UPPER.

SR 0.0 INITIALIZE SUM
L 1 ¢LOWER INITIALIZE SUBSCRIPT Ne LOWERBQOUND =5
A . LR 291 INDEX CALCULATED IN R2
S 29 LOWER {N-M)
SAC 2.2 4%(N—M)
A 0yX(2) SUM = SUM + X{N)
LA 1,1(0,1) INCREMENT N BY 1
N 1,UPPER CUMPAREN TO UPPER BOUNC
8C 12,A If NOT GREATER: BRANCH
ST O, T
LGWER 0C F15¢ LOWER SUBSCRIPT BOUND
UPPER CC F*17°® UPPEK SUBSCRIPT BOUND
T cs F
X cC 13F*]1* FOR EXAMPLE

Now, suppose that the lower and upper subscript bounds of the elements

forming the required sum do not have known values,. but we still know that xs

18-u

is stored at X. We can include 2 portion of the indexing arithmetic in the
program at assembly time so that it need not be performed at execution time,

namely the factor L*(-m).

SR 0.0 INITLIALIZE SUM TG ZERO
LA 4,4 INCREMENT = ELENMENT LENGTH
L 2y LOWER GeT LUWEST SUBSCRIPTY
SLL 242 MULTIPLY BY ELENMENT LENCTH
L 53,UPPER GET HIGHEST SUBSCRIPT
SLL 542 *4 ALSO
ACC L 0o X—=20¢2) ADU AN cLEMENT, CCORRECTLY ADDRESSED
BXLE 2+:49A0D INCREMENT INDEX AND LOOP
ST 0,7 STURE TuTAL

It can be seen if C(LPWER) = 5 and C(UPPER) = 17 that the same result will
be obtained; the first element to be added will be at X-20+(4%5) = X, as
desired. The Assembler will of course require that the expression X-20 be
addressable; this requirement is sometimes a limitation on the use of this
time-saving technique.

Two- and higher-dimensional arrays present a few further complications,
which can be handled fairly easily; we will examine two methods for addressing
é}ray elements. First, it is necessary to find some way to reorganize the
rectangular form of an array into a linear arrangement which conforms to the
machine's natural method of addressing successive bytes in memory. A common

method is to store successive columns of the array one after another, as

indicated below.

aiy aiz ayrsz

v

lall az1 aia aza2 ars azs

azi1 aza2 azz

Figure 18.2 Storing an Array in Column Order

It is apparent that any desired arrangement is actually possible, and that

a choice-between possibilities must be based on considerations such as
convenience and the time and space required to retrieve a particular element.
For the example above, the arithmetic necessary to retrieve the element aij

is as follows, assuming that aii is stored at A: to obtain the address of

18-13

the first element in a given column, we need the address A4I*(§-1)*2 where

L is the element length in bytes, and the factor of 2 accounts for the
presence of 2 elements in each column. Once having obtained that address
the i-th element in the indicated Column is found by adding I¥(i-1) to the
partially computed address, giving A+L*(2%(j-1)+(i-1)). The quantity added
to A is sometimes called a subscripting function or a mapping function, and
gives the correspondence between the array subscripts i and j of a particular
element and the "linear subscript" which gives the difference between the
locations of aij and aii. It can be seen that if a column-ordered array

has r rows, the subscripting function is I*(r*(j-1)+#(i-1)). For example,
suppose we have an array of fullwords of 5 rows and T columns stored at A,

and wish to store a.lj at X, where i and j are fullwords stored at I and J

respectively.

L 6,J el COLUMNIND E X J
BCTR6 . O FURMJ - 1
MH 69=H*5" MULTIPLY B YNUMBEROF ROWS
A 6491 AVDUROWINDE XI
BCTR6 , 0 VECREASEB Y 1
SLL 6492 MULTIPLY BY ELEMENT LENGTH, 4
L 3,A106) GET All,J)
ST 3.X STORE AT x

I uc Fe3e PUSSIBLEV ACUEFCRI

J GC Fr6? PUSSIBLEVALUEFUORJ

A DS 35F SUMEBUDYELSE COMPUTES THE VALUES

Aswas the case for one-dimensional arrays, part of the subscripting arithmetic
can be absorbed into the address of the .instruction which references the
array element. Thus, the address of aiJ becomes A-L*(r+l)+L*(r*j+i), and

only the final term need be computed at execution time; the code sequence

above can be rewritten as follows.

L 69J COLUMN INDEX
MH 69=H'5? *¥{ NUMBER O FRGHWS)
L 691 + ROUw INDEX
SLL 642 {ALL)*(ELEMENT LENGTH)
L 31A-4%(5¢1)(6) CER3) = All,.J)
S T 34X STOKEAT X

Figure 18.3 Example of Array Subscripting Arithmetic

18-14

The address A-L*(r+l) can be seen to be the address of the element "aoo"

(which may not actually exist) and is soretimes called the address of the
"base element" of the array or (unfortunately) the "base address" of the
array. Since this almost always has nothing to do with a base address +to
be used by the Assembler in computing displacements, it is best to avoid the
latter terminology.

In the examples above we have assumed that the subscripts could take
positive values only, and always had a lower bound of 1; this is not a
necessary condition, and if the lower subscript bounds on i and j are io and jo
respectively, the subscripting function becomes I*(r*(j-jo)+(i-io)). In such
cases it is usually more difficult to include the factor -I*(r-jo+io) in an
expression at assembly time, since the result may not be addressable. We
will adopt the convention that all subscripts run upwards beginning at 1
unless the contrary is stated.

A second method of array addressing is useful when processing speeds
are important, and occasionally also finds application to arrays of irregularly-
spaced or irregular-length data. This involves pre-computing the addresses
of portions of the array, and storing those addresses in a separate table,

For example, suppose the addresses of the elements a1, @1z, and ars in
Figure 18.2 are stored as fullwords at CPLADDR, as indicated in Figure 18.4.

The notation A(x) means "address of x".

Location Contents
CPLADDR A(ayy)
CALADIR + 4 A(a12) ai1 | a2y | 212 | a22 | a1z | a=z3
CHLADIR + 8 A(ai=)

Figure 18.4 Addressing with Tables of Addresses

The code to store aij at X might then be as follows.

L 75J vel CJULUMN INCEX

BCTR 7,0 UcCREASE BY 1 FCR INDEXING

SLL 7,2 Mol TiPLY BY ACDRESS LENGTH = 4

L 69COLADDR(7) Gul AODURESS CF COLUMN J

L 591 od RUW INDEX 1

BCTR 5.0 JLCREASE BY 1

SLL 5.2 MULTIPLY BY ARRAY ELEMENT LENGTH = 4
L 340(5,6) vl Allzu)

ST 39X STure AT X

18-15

The main advantage of this scheme is that it avoids the previously required
multiplication by the number of rows. The additional expense is In the space
required for the table, and the time required for forming it (either during
assembly or at execution time). As a final example, suppose we want to
store at X the element a.lj of a 5-by-5 array of fullwords stored in column
order at A; first we will compute a table of column addresses and store them
at ADDRTAB. We actually compute not the true addresses of the first element
in each column, but that address minus 4, because this then allows us to use
the subscript i directly without subtracting 1 during the accessing of the
desired array element. The table contents are shown in Figure 18.5 below,
where the zero subscript indicates the subtraction of one element length

from the address of the beginning of the column.

LH 6y NROWS C(R6) = NUMBER GF ROWS
SLL 692 MULTIPLY FOR INDEXING BY ELEMENT LENGTH
LH 5sNCOLS NUMBER UF COLUMNS IN RS FGR LOOP COUNT
LA 9,ADDRTAB BEGINNING ADDRESSOF TABLE
LA OyA—4 ARRAY ADDRESS = { ELEMENT LENGTH)
STALR ST 040(0,9) STURE A N ADDRESS IN TABLE
AR 046 INCREASE ADDRESS TONEXTCOLUMN
- LA 9,4(0,9) INCREASE TABLE ADDRESS TO NEXT WORD
BCT 5,STADR LUOUPUNTIL ALL ADDRESSES COMPUTED
NCOLS DC H'S5¢ NUMBER OF COLUMNS
NRCk S CcC HS NUMBER OF ROWS
ACCRTAB ©DC S5F SPACE FOR ADDRESSES
Location Contents Element Addressed
ADDRTAB A(A-k) a0y
A(A-4420) aoz
+3 A(A-k4d0) - aox
+12 A(A-4460) a04
+16 A(A-4480) a0s

Figure 18.5 Example of Addressing Table Contents

To use this table to perform the desired calculation, we can write the

following code sequence.

18-16

L 21 GET RUW INDEX

L 39J GET COLUMN INDEX

SLDL 242 MULTIPLY BOTH BY 4

L 49 ADDRTAB—4{3) G E T COLUMN ACDRESS
L 0+0(244) GET Afl,4)

ST 0sX STUREA TX

This segment of code gives much faster access to the desired element; the
subscripting arithmetic (all but the last two instructions) on a System/360
Model 50 requires 18 microseconds, while the same arithmetic as performed in
Figure 18.3 requires 33 microseconds. It should be noted that the faster
aﬁﬁmle uses the SLDL instruction to take advantage of the fact that the array
elements and the entries in the address table (sometimes called an 'access
table") are of the same length, which might-not be true in general.

In closing this discussion, we will mention that the address table can
be constructed by the Assembler if the necessary quantities are known in
advance. The items in the middle column of Figure 18,5 can be used as
operands in DC statements; remember that in the discussion of A-type constants
(address constants) in Section 13, 'it was stated that the abnstant may be
relocatable. Though we are not yet in'a position to be able to discuss how
the correct addresses are eventually placed in the program; We will simply
write-a sequence of statements Which generates the same address table at

assembly time.

ARCWS EQU 5 NUMBER CF RCWS
L EQU 4 LENGTHCFARRAYELEMENT
ACCRTABD ¢ A{A-L) ALFIRSTCOLUNMN =4 . 1
GC A{A+L*{NROWSI—L2 A{SECOND CCLUMN - &)
oC A{ALX{NRCWS%2)=L) A 2 THIRD CCLUMN -~ &)
cc A(A+LXENRUOWS%®3)~L) ALFUURTH COLUMN = 4)
- cc A{A+LX(NRCWS*4)~L) A{FIFTH COLUNMN = 4)

The expressions in the address constants are written in such a way that
the programmer need only specify the value to be given to NR¢WS in the first
BQU statement, and the required addresses are calculated by the Assembler.

18-17

19. SI INSTRUCTIONS

Most of the instructions discussed up to now have referred to data
which was either in a register or was to be found in memory at a given
location. One exception we have encountered is the LA instructions, in which
the operand to be placed in Rry was constructed using part of the instruction
itself. In particular, writing statements such as IA 5,12 provides
8 way to place data into a register without an additional memory reference,
which would be required if we wrote L 5,=F'12' instead. Instructions
which contain one of the operands of the operation to be performed in the
instruction itself are called immediate instructions, in the sense that an
operend is immediately available. Thus, we could call 1A a “Load
Immediate" Instruction in those situations where the base and index register
specification digits are zero, since the immediate operand comes from the
displacement field of the instruction.

The six Instructions to be discussed here make use of an immediate
"

operand contained in the second byte of the instruction, as denoted by "Iz
in Figuwe 19 .1.

operation
Lpzode Iz b1 da
0

78 15 16 19 20 31

Figure 19.1 SI Instruction Format

In writing SI instruction statements, the first operand will usually be a
relocatable expression; the second operand must be a positive absolute
expression of value less than 256, so that it will fit into a single byte.

The instructions are given in Figure 19.2; the notation "Ci" is meant to
indicate the single character or byte at the effective memory address computed
. from the addressing syllable.

19-1

Instruction Mnemonic Action CC Set?
Move MVI C(Cl) « Iz no
AND NI Cc(C1) «C(Ci)A Iz yes
OR @1 c(c1) «c(Cc2)v I= yes
XOR XI ¢(C1) «cC(C1) ® Io yes
Compare CLl c(cy) : Iz yes
Test Under Mask ™ Test Selected Bits of €(Cy) yes

Figure 19.2 SI Instructions

The operation of the first four of these instructions is straightforward,

and 1s illustrated below.

(l) mvr X,0 sets the byte at X to zero
(2) wmvI X,255 sets the byte at X to all 1 bits
(3) MvI X,C'X!’ puts an EBCDIC "X" at X
() NI X,0 equivalent to (1), except CC = 0
(5) ¢I X,255 equivalent to (2), except CC =1
(6) f1 X,2 sets bit 6 at X to 1
(7; NI X,253 sets bit 6 at X to 0

- (8) xI X,2 inverts bit 6 at X

It is occasionally clearer to use other than decimal self-defining terms;
example (7) could be written NI X,B'11111101' with the bit to be
zeroed immediately indicated. The CC settings after NJ, @I, and XI are
given in Figure 17.2.

The CLI instruction performs a logical comparison between two 8-bit
quantities, which are treated as unsigned integers for the comparison arith-
metic.' The result of the comparison is indicated by the CC setting, as given
in Figure 16.3. Thus, the statements below would result in the indicated

CC settings.

CLI =CeA® ,X*'C1? CC=0
cLI =X00',0 CC=0
CLI =C¢ *,B8°1000000° CC=0
CLI =X0]0,X02° cC=1
CLI =C*AY,250 CC=1
cLI =C IXYZ*yCO'X'~1] cc=2
CLI =X¢10,X0Q° cc=2

It is important to remember that the first operand in the comparison canes

from memory. We can rewrite the sample program from Section 18 which blanks

19-2

out the special characters in the string at STR by making use of the CLI
and MVI instructions; the latter simply stores the second byte of the

instruction at the first operand address.

LA
NEXT LA
CL1
BC
MVI
ANUM 8CT

1,80 INITIALIZELGCOP COUNT

2+STR=-1(1) CONSTRUCT CHARACTER ADDRESS WITH INDEXING
0(2),C*A* CUMPARE ADDRESSED CHARACTER TOLETTER®A?*
10,ANUM BRANCHIFNOTLESS THAN ®A®

0(2),C* ¢ BLANK OUT IFNCN=ALPHANUMERIC

1 oNEXT COUNT DOWNANDLCOP

Because SI instructions cannot be indexed, the LA instruction named NEXT
must be used to construct the desired memory address for the character to
The CLI instruction compares the eight bits in memory to the

, be tested.

immediate operand C'A', and if the byte in memory contains a bit pattern .
whose value is greater than or equal to 193;0, the following BC will branch
around the MVI instruction. If the branching condition is not met, the MVI
stores the bit pattern corresponding to the EBCDIC representation of a blank
into the character string. It can be seen that the use of these two SI
instructions allows considerably simpler coding than in the previous examples

of the same processing. -

The TM instruction is one of the most useful in the System/360 instruction

set for applications where individual bits must be examined. Because no

means is provided for addressing individual bits, data in bit form must be
treated differently. The immediate operand of the TM instruction is used
as a mask to indicate which bits of the addressed byte are to be examined;

wherever a 1 bit appears in the mask, the corresponding bit position of the

memory operand is examined, and 'wherever a 0 bit appears in the mask, the

corresponding bit of the memory operand is ignored. The result of the
examination is indicated in the setting of the Condition Code, as shown in

Figure 19.3.

cC

Indication -1

Bits examined are all zeros or mask 1s zero
Bits examined are mixed zero and one

Bits examined are all ones

Figure 19.3 CC Settings after ™ Instruction

19-3

One special case of the TM instruction can arise if the mask specified by
I> is zero (indicating that no bits are to be examined); the CC 18 simply
set to zero. To illustrate the use of the TM instruction, consider the

following examples,

1) Branch to MINUS if the fullword integer stored at NUM is negative.
(This technique can be used to avoid having to load a register.)

™ NUM, X*80° TEST LEFTMOST BIT
8C Ly MINUS BRANCHIF A 1 BITY

2) Branch to EVEN if the fullword integer stored at NUM is even.

™ NUM+3, 1 TESTRIGHTMOSTBIT O F FULLWORD
8C 89 EVEN BRANCH [F ZERC

3) Branch to MIXED if the bits in the byte at B are not all zero or all one.

™ Be255 TEST ALL BITS
8C 4o¢MIXED BRANCH IF MIXED O AND 1

k) Branch to SMALL if the value of the halfword integer at HNUM is between

-512 and 511.
™ HNUM, X*FE* Teol LEFTMOST 7 BITS
8C 9+ SMALL BRANCHIFA L LOCRL1

When used in conjunction with the NI, @I, and XI instructions, TM
I;rovides a simple means of setting and testing yes—no indicators in a program.
For example, suppose we wish to add the three fullword integers stored
beginning at Q, and afterwards branch to I\‘I¢ERR i1’ no overflows occurred and

to ERR¢R if one or more overflows occurred.

MVI FLAG,O SET1INDLCATOR I-CR NO OVERFLOWS
L 0,Q WET FIRST INTEGER
A 0,Q¢4 A D DSECUNDINTEGER
5¢ 14 +NEXTA BRANCHIF NO CVERFLOW
OX FLAG 1 SETUVERFLOWKF L A G'ON* (T O1)
NEXTA A 0.Q+8 ADUTHIRD INTEGER
(2] 1 +ERROR BRANCHLF OVERFLCWT O ERROR
™ FLAG, 1 UTHERWISEEXAMINEOVERFLOWFLAGBIT
5¢c 8 ¢ NOERR IFBITWA SZERCy,NOOVERFLOWS
8C 19ERRQOR | FUNE 9 GVERFLGWCCCURRED
FLAG LS X UVERFLUWFLAGBYTE
C DS 3F INTEGERS JO BE ACGEO

10l

The §I instruction ORs a 1 bit into the rightmost bit position of the byte
nemed FIAG, thus setting it to & 1. Note that only the rightmost 'bit of the
byte is being used; the other bits might be used to indicate other conditions
detected elsewhere in the same program.

As another representative example of the use of these instructions,
suppose we are required to process a list of n halfword integers stored at
LIST, where the positive nonzero fullword integer n is stored at N. Suppose
that the processing requires that the elements of the list be added together,
except that alternate elements of the list are to be added twice; the right-
most bit of the byte named SWIICH is set to 1 if the first element is to be

added twice.

LA 44LIST INITIALLISTADDRESSINRA4
L 3N NUMBER -OF ELEMENTS I N R 3
SR 646 INITIALIZE SUM TC ZERQ
LCAC LH 540(044) GET A HALFWORDLISTELEMENTINRS
AR 645 ADDTUOsuMUONCE
™ SWITCH,1 TEST SWITCH BITY
BC 890NCE BRANCHIFO0y ADO GNLYONCE
AR 645 ADD A SECOND TIME
CNCE LA 492(044) INCREMENT LIST ADDRESS BY 2
XxI SWITCH,1 INVERT SWITCH BIT .
BCT 3,L0AD BRANCHTO GET NEXT ELEMENT IF NOT DONE

Since the XOR of a 1 bit and any other bit inverts the value of the latter,
the XT instruction alternately sets the switch bit to 0 and 1. The TM
instruction examines only the rightmost bit. of SWITCH; the branching condition
will be met if that bit is zero.

A technique which occasionally finds use in such an application involves
changing the mask field of a branch iImstruction so that italternately
contains B'1ll1l' and B'0000', causing an unconditional branch to alternate
with a-no-operation. The above code sequence can be rewritten to use such

a technique as shown below.

19-5

L 14N " GET NUMBER OF ELEMENTS TO BE ADDED

LA 0,2 SET UP INCREMENT OF 2 INRO
AR le1 2%N)
SR 10 2%{N~1)IN R1 = CCMPARAND FOR BXLE LQOOP
SR 292 INITIALIZEINDEXINR2TO ZERO
LR 3,2 SAME FOR SUM IN R3
0Of BRNCH+1X*FO%Y SET SWITCHFORSINGLEACDON FIRST PASS
™ SWITCH,1 CHECK SWITCHTO SEE IF SETUP IS CORRECT
BC 8ADD JUMP IF BRANCH HAS BEEN SET CORRECTLY
NI BRNCH+1¢4XY0F* QTHERWISE SET UP TO ADD TWICE QN 1ST PASS
ACC AH 3,LIST(2) ADD A TERM
BRNCH BC OsFLIP MASK FI1ELD HERE IS ALTERNATED 8Y X1
AH 32LIST(2) ADD AGAINIF NECESSARY
FLIP XI BRNCH+14X*FO* INVERT BRANCH MASKBITS
BXLE 2,C+ADD CUUNT AND LGGP
ST 3+RESULT STURE ANSWER APPROPRIATELY

There. are several features of this example to be noted. First, the mask
field of the second BC instruction must be addressed at BRNCH+l rather than
at BRNCH, because the latter is the name of the byte containing the operation
code. Second, the instructions preceding the loop which initialize the mask
field might be necessary because this segment of code may be part of a larger
program which executes it many times, and we have no assurance that the mask
field will be preset correctly. Third, the instructions which manipulate the
mask bits are written in such a way as to leave untouched the index register
specification digit in the second byte of the instruction at BRNCH. This is
necesgary because we do not want to insert extraneous bits (thereby causing
indexing to be performed), and because in general there can be information
there which must be unmodified.

The above technique of actually modifying an instruction in memory can
occasionally yield higher processing speeds, but it is not generally considered

a good programming practice for the following reasons:

(a-) the coding tends to be more. difficult to understand, since a
reader cannot tell with any degree of certainty what is to be done
by a given instruction if it is subject to modification by other
parts of the program;

(b) checking out the program is more difficult, since it is usually
easier to keep track of data (such as at SWITCH in the previous
example) than parts of instructions;

19-6

(c) if it 1is necessary to 'rewrite a portion of the program it may be
difficult to find all the instructions which modify others;

(d) if the program must be re-enterable (a property of coding which is
involved in multiprogramming applications and interruption processing,

which will be treated later) such a technique is forbidden.

This might appear to contradict the earlier statements that the flexibility
of a computer is derived from its ability to modify the instruction sequences
it executes; by this we simply meant that the program can control its paths
of execution, rather than that it modifies the actual instructions as was
done here. A degree of instruction modification is provided by the Execute
instruction, to be discussed later.

To show that the above example need no-t rely on program modification,
we give two further code segments which perform the same calculation more

rapidly; the first uses two separate add seguences.

L 1sN StT UP CUMPARANE IN R1
BCTR 1,0 N-1

SLL 1s1 2hN=2 IN RL1

LA 02 INCKEMENT IN RO

SR 3 9 3 INITIALIZE SUM Y0 ZERO
LR 2+3 SAME FUR INDEX

™ SWITCH,1 TEST WHETHER FIRSY TERM ADDS TWICE
8cC 1, TWICE BRANCH [F BIT=1, MEANING YES

GNCE AH 3,LIST(2) AU A TERM ONCE

BXH 2904 NEXT INCREMENT INDEX AND LEAVE LOOP IF DONE
TWICE An 3,LIST(2) ADD A TERM

AH 3.LIST(2) ees lHICE

INCKEMENT INDEX AND LOQOP
CUNTINUATION C¥ PROGRAM

BXLE 2,0,0NCE
NEXT - - -

The second auds all the terms in one loop and the alternate ones in another.

L 1N GET N
BCTR 1,0 N-1
AR le1 CUMPARAND = 2{N-1)
LA 0,2 INCKEMENT = 2
SR 393 INFTIALLZE SUM TC ZERQD

SR 22 INLTIALLIZE INDEX YO ZERC

ACL1 AH 3.LIST(2) ADD ALL TERMS ONCE
BXLE 2.,0,A001 fnoeEX THROUGH ENTIRE LIST
LR 290 NUW ScT INDEX TCO 2 INITIALLY
AR 0,0 Skl 1nCREMENT TO 4 FOR ALTERNATE TERMS
™ SWITCH,1 Stk IF FiRST TERM ADDS SINGLY
8cC 8¢ADD2 BRANCH I+ VYES
SR 242 ulTHLRwlob RESET INITIAL INDEX TC ZERQO
ALLZ AH 3,LIST(2) ADU AN ALTERNATE TERM FCR SECOND VIME
BXLE 2+0,ADDZ IvCREdeind INCEX BY 4 ANC LCOP

19-17

Thié last example is slightly slower than the previous one, becsuse mofs |,
branching instructions are executed; in particular, it will not work
correctly if n = L.

The above examples have illustrated the use of logical instructions
mainly for control purposes. Another important application is the manipulation
of data in bit form -- that is, data which assume only two values. For
example, suppose that part of the record of a person carrying automobile
insurance requires the following yes-no information: (1) age less than 257
(2) male? (3) driver training course completed? (4) married? (5) any
previous claims? (6) assigned risk?: Let the "yes" answers be represented
by 1 bits in the first six bit positions of the byte named STATUS. The

following tasks may be performed by the indicated instruction's.
1) The policy holder has passed his 25th birthday.

NI STATUS,B'01111111'
2) The policy holder has married.

™ STATUS, B' 00010000’

Bc 1, BIGAMY

g1 STATUS, B' 00010000

3) The policy holder has submitted a claim; if it is the first, branch
to TSK, otherwise branch to TSKTSK.

™ STATUS,B*10Q0O0*
BC 1, TSKTSK
8C 15,TSK

L) If the policy holder is single, male, less than 25, and has not completed

a driver training course, branch to HIGHCEST.

JM STATUS,X"30* TEST MARRIED AND TRAINING

BC 7, NEXT |
JM STATUSX*'CO0* TEST AGE AND SEX
8C 1y HIGHCOST IF YolNG MACE, BRANCH

NEXT - = =

5) If the policy holder is an assigned risk, indicate that he has previou:

claims if he also has no driver training.

T STATUS,X%4*
gcC 8¢ NEXT
™ STATUS,,X*20"
E¢ 1,NEXT
i STATUS,X*8°*

ANext - = -
19-8

6) If the policy holder is married or has completed driver training,
branch to I¢RISK,

™ STATUS yMARRIED+TRAINING
BC 59 LORISK
MARRIEC EQU 16

TRAININGE o u32

As a final example of the use of SI instructions, suppose there is a
fullword integer stored at I!? which we wish to convert to a character string
of decimal digitswhich can be printed, with the sign of the number preceding
the first significant digit; if the number is zero, the characters "40"
should be placed at the right-hand end of the character string. 'Since a
fullword integer can be at most 10 decimal digits long, we will reserve 11
bytes for the result at NBR. The conversion is performed according to the

scheme given in Section 2.

LA 2.10 SET UPTUBLANKGUTRESULT AREA
ELANK LA 3¢NBR-1(2) CONSTRUCT BYTE ADDRESS
MVI 0(3),C* ¢ STOKE BLANKS IN FIRST 10 BYTES
8CT 2 s BLANK BRANCHBACKOTIMES
L 14N , GETNUMBERTCBE CONVERTED
LPR 1.1 TAKE ITS MAGNITUDE
LA 3+NBR+10 SET UP ADDRESS OF RIGHTMOST ‘DIGIT
CNVTLP SR 0.0 CLEAR HIGH-ORDER REGISTER
0 Oe=Ft]1Q" GENERATE A DIGITB YDIVISION
STC 0,000,3) STURE THE REMAINDERBYTE
Cl 0(3),C*0" GIVEDIGITY CGRRECJ EBCDIC REPRESENTATION
BCTR3 , o MUVECHARACTERPOINTERLIBYTE TO THE LEFT
LTR 1.1 SEE IF DUNEy QUOTIENT GOESTOZERQ
8C 2,CNVTLP IF NOTZERQOy GENERATE MGRE DIGITS
MVI 0(3),C2+¢? ASSUMESIGN XS+y STORE THAY CHARACTER
™ NeX®80°" CHECKACTUALSIGNOFARGUMENT
8C 8ALLDONE BRANCHIF I TWAS INDEED POSITIVE
- MV1] 0(3),Ct—1- UTHERWISE PLANT A —SIGNINT H ESTRING
ALLCONE - - - RESTUF PROGRAM
NBR Os- CL11 OUTPUT CHARACTER STRING
N GS F NUMBER TO BE CONVERTED

19-9

20. SS Instructions

A8 the name implies, Storage-to-Storage instructions work with operands
which are entirely in memory; except for TRT end EDMK, the only reference to
or use of the general registers by SS instructions is for addressing purposes.
This allows considerable freedom in the arrangement of operands in memory,
particularly since the data to be manipulated by 88 instructions may be of
‘varisble length . Our concern in this section will be with the first nine
Instructions in Table VII, which are listed for convenience in Figure 20.1.
The remaining SS instructions, which are primarily used for handling data in

pecked decimel format, will be discussed later.

Mnemonic Instruction Mnemonic Jnstructkon
Mvc Move . e OR
MVN Move Numerics NC AND
MVZ Move Zones XC Exclus ive OR
TR Translate CLC Compare
TRT Translate and Test

Figure 20.1 Some Storage-to-Storage Instructions

All of the above instructions have the format illustrated in Figure 20.2 below,

. Tength
Opeéggetion Specificatioh by dy b2 da
Byte -
e 15 16 1920 3132 3536 47

Figure 20.2 Format of Some Storage-to-Storage Instructions

20-1

Bafore discussing the instructiohs themselves, we must examine some of
the detalls involved in specifying the number to be placed. by the Assembler
in the Length Speaificetion Byte, the second byte of the instruetion. As can
be seen from Figure 20.2, five operand-field quantities inall must be provided:
the base and displacement of the address of the first and second operende,
and e number whieh specifies the length in bytes of the date to be wanipulated.
To 11lustrate one way of giving this information, guppose we wish to move 23
bytes from the area of memory beginning at A to the area beginning et B; we
could write MVC B(23),A to perform the task. Note that only t w o
operands are specified in the opersnd ficld entry of these instructions, and
that the number in parentheses is not an index register specification but
the number of bytes to be moved; it is expected that ‘the Assembler will compute
displacemente and essign bases for us, since we have used implied operand
addresses . There are severkl other ways to specify the length spec¢ificetion
byte; these areshown in Figure 20.3. For an explicit length spacification,
the value provided is used; for an implied length, the Assembler will determine
an appropriate value in a way to be described shortly.

| Explicit Length I Implied Length
s1(L),se 81,682 '
dl(lel);BE dl()b,l;)iea
e1(L),de(ba) 81,dz(b2)
d1(Lyb1),da2(ba) d1(,a),d2{v2)

Figure 20.3 Length Specification for Scme S8 Ihetructions

To 1llustrate the writing of an explicit length, suppose we asgeih went to
move 23 bytes from AtoB, and we krow that ir R9 i8 used as 8 base, the
digplacements computed for A and B will be 125;¢ and 47Dy g reepectively.
Then to achieve the desired result we could write any of the fellowing four
instructions corresponding to the first columnh of Figure 20.3:

MVC BU23),A
MVE X*'470%(23,9) A

MVC B(23),293(9)

MVC 1149123,9) ,X°125%(9)

20-p

where equivalent decimal and hexadecimal self-defining terms have been used
to specify the displacements di and dz.

It is often the case, however, that one does not want to be required to
specify an explicit length, particularly in cases where the length should be
apparent from the operands involved. For example, Buppose the symbol B is

defined in a DC or DS statement as in the program segment below.

MVC B,=120C' ' SET FIELD AT B T BIANKS

-

BDS CcL23

It is apparent that if more than 23bytes were moved by the WC instruction
that the data or instructions following the byte at B+22 could be overwritten;
thus the length should be determined from the first, or receiving, operand
rather than the second. This, in fact, 1§'what the Agsembler does : if no
explicit length is given, the length attribute of the symbol or expression

in the first operand is used as the length specification. In the example
above it is evident that the length attribute of the symbol B is 23, so that
the correct result is obtained. If the first operand is an expression rather

-than a single term, the length attribute is determined from the following

rule :
L. The length attribute of an expression is the length attribute
of the leftmost term.
Thus, if’ we wrote MVC BelX'5'-1,=120C"' ! the length specified would
be 23, whereas if we wrote MVC X'5'+B-5,=120C"' ! the length specified

would be 1, because
2. The length attribute of a aelf—defining term is always 1.

In this example, a knowledge of the base and displacement to be assigned

when addressing the symbol B (namely 9 and 47Dig)doesnot give the correct

Length when an implied length is given: MVC X'k7D'(,9),A specifies

a length of 1 rather than 23, because X'b7D' is a self-defining term, and
M If an explicit base and displacement are given, the length

specification is the length attribute of the expression
Written for the displacement.

These rules are summarized in Figure 20.4.

Form of Address Length |
First Operand Specification Specification ; Length Used
81 Implied implied length &ttribute of s;
81(L) implied explicit L |
di(,b1) explicit implied length attribute of d
d1(L,ba1) explicit explicit L

Figure 20.4% Determination of Length Specification Byte

Because situations occasionally arise where it 1is useful to specify an implied
length with an explicit base and displacement, and the desired length is not
the 5ame as the length attribute of the displacement expression, an alternative
technique is provided. We could have written

MVC B-B+X'47D'(,9),A
nthe example above, and the length attribute of the displacement expression
would then be computed to be equal to the length attribute of' B. Such
constructions are cumbersome, and it is preferable to use a Symbol Length
Attribute Reference, which was mentioned in the discussion of temme In

Section 11.
A Symbol Length Attribute Reference is written a8 an L followed by au

apostrophe followed by a symbol, as in L'B; it is an absolute term with a
value equal to the length attribute of the symbol. Because sywbols can be

defined in several ways, the following additional rules are neaded:

1. The length attribute of a Location Counter Reference {¥*) is
the-length of the instruction in which it appears; thus MvC B(L'*),A
will ggsign a length of six.)
2. Ifi;he*symbol was defined in an EQU statement with * or & self-
defining t'erm%in the operand field, the length attribute assigned

will be 1.
3. The length attribute of a literal is not defined; thus constructiens

such as MVC B(L'=C'RAY'),=C'RAY' are incorrect,

" Thus we can rewrite our simple example above, which uses an explicit base
and displacement, as MVC X'47D'(L'B,9),A

20-4

Before discussing the various instructions in Figure 20.1, one further
detail must be noted. Because the length speéification fits in a single byte,
it may assume one of the 256 possible values between O and 255: these
specify lengths between 1 and 256. This somewhat peculiar construction is
due to two factors: first, every SS instruction always operates on at least
one byte; second, while all the instructions listed in Figure 20.1 process
data from left to right (in order of increasing addresses), there are other
SS instructions which process data from right to left (in order of decreasing
addresses). In these latter cases, before performing any operations the
CPU must be able to construct the address of the rightmost byte of the operand
string (remember that all operands are addressed at the lowest-numbered
location). It is simplest to do this by adding the appropriate length
specification to the effective address of the operand in question, because
there are k+l bytes in a string beginning at location n and extending through
location n+k. Such considerations will normally be of little interest to
the programmer, since he will allow the Assembler to determine the necessary
quantities from the operands provided in the instruction statement. However,
it is sometimes necessary at execution time to compute the number of bytes
to be manipulated, so that the relationship between the actual contents of
the Length Specification byte and the number of bytes involved becomes
important. An illustration of this is given in example (4) later in this
section. Thus, in summary, the Length Specification Byte contains a number
which is one less than the number of bytes to be operated on, unless an
explicit length of zero is givenﬂ in which case a zero is assembled also.

The following instructions would therefore be assembled as indicated, assuming

the same displacements for the symbols A and B relative to C(R9) as previously.

) INSTRUCTION ASSEMBLED FORM
MVC B8{23)4A V216 9470 9125
MVC B{l),A D200 947D 9125
MVC B{O)yA 0200 947D 9125

MVC O(L*%),29(12) D205 0000 CO1D
MVC 15(L'B—4,3)4B D212 300F 9470
MVC BsA V2l6 947D 9125
MVC H{LYHyH) yH 0200 8008 0008
MVC Hi{HsH) yHE K DZ07 8008 8008
MVC HeB—A{ 4G ,4A 0200 9360 9125

MVC TeB~4 D216 947D 9419
MVC B-A+4(9),A V208 035C 9125
€ (ON] cL23

T EQU B
k EQu 8

20-5

As indicated earlier, the MVC instruction moves the specified number of
bytes from an area whose lowest-addressed byte is at the effective second
operand address to an area starting at the first operand address. There are
no restrictions on overlapping of the two areas, wthat various functions
such as propagating a character through an arca or ghifting the bytes iu an
area may be performed as in the following examples; we need only remember
that all' SS instructions are executed in such a way that each byte is ztored

before the next byte to be operated on is retrieved from memory.

{1) Set the 120-byte area beginning at LINE to blanks.
MVI LINE,C* ¢ STORE EBCDICBLANKA T LINE
¥MvC LINE#LULLI9), LENE PROPAGATE THROUGH REMAINING AREA

This requires less storage space than
MVC LINE(120) 4=120C"**

(because space is required for the literal) but slightly more execution

time.

(2) Shift the 80-byte character string beginning at STR to the left; by two
characters, leaving blanks in the vacated positions.

MVC STR(781,STR¢2
MVC STR+78{2) ,=Ct TWOBLANKSTOEND

(3) Exchange the contents of the halfword integers at A and B.

MVC TEMP, A MUVEATOTEMPORARYLOCATION
MVC A,B MUVEBTU A
MVC BsTEMP MUVE OLUO CLA)FROMT E M QT0 8
TENMP i s - XL2
A DS H
e DS H

Note that no registers were changed in the above instruction sequence.

(4) R8 and R9 contain respectively the address and length of a message of

less than 120 characters. Move the message to the area named LINE.

BCTR 9,0 UDECKEASELENGTHBY1FOR CPU
STC GsMVCH+1 STURE AI LENGTHBYTE OF MVC INSTRUCTION
MVvC MVC LINE{O),0(8) MUVECORRECTNUMBEROFCHARACTERS

20-6

The BCTR is used to reduce the character count from its "true" value
to the value required by the CPU in the execution of the MVC, namely

one less than the number of bytes to move.

The MVN and MVZ instructions work in exactly the same way as MVC, except
that only the rightmost 4 pits (the ﬁ@mmri&'postion of a character) and.
leftmost 4 bits (the "gone" portion of a character) arc moved, respectively,
While these two instructions are occasionally useful for other purposes,,
their main applications concern data in packed decimal format. To illustrate

some simple uses, consider the following two examples.,

(5) Convert the positive halfword integer at N to a string of 5 EBCDIC

characters beginning at NDEC which give the decimal representation of C(N).

LH 1N GETNUMBERTOSECONVERTED
LA 2+5 CUUNT NUMBER OFDIGITS | NR2
X SR 0,0 CLEAR HIGH-CRDER FEGISTER
D Os=F*10° GENERATE A DIGIT
STC OsNDEC~-112) STUREDIGITIN OUTPUTSTRING
BCT 29X COUNTANDBRANCHUNTILDONE
MVZ NDEC{S5) y=5SX'FF* ATTACHZONES FOREBCDICREPRESENTATION

- e -

NCEC OS CL5

-Note that we could have used the literals =5C'0' or =5C'9' in the MVZ
instruction, with the same results.
(6) convert the 5-digit decimal number in EBCDIC form at NDEC to a fullword

binary integer and store it at M.
\

MVN TEMP4NDEC RETRIEVENUMERICPORTIONSOGF DIGITS
LA 3.TEMP ADDRESSUF CURRENTDIGITIN R3
LA 2+5 NUMBERUOF DIGITS
SR 0.0 CLEARR OF O RDIGITS
LR 1,0 ANUR1 FUR NUMBERBEING GENERATED
MULT NH ° =H?10¢ MULTIPLY ACCUMULATED PART B8Y10
iC 0+0(0,3) INSERT DIGITFROMINPUTyNO ZONES
AR 1,0 ADDTOPARTIAL SUN
LA 3,1(0,3) INCREMENTOIGIT AGDRESS
8CT 29 MULT CUUNT A NDLOCQOP
ST 1+M STORE RESULT
TEMP T i - XL50¢ LZUNESPRESET TOZERQOsDIGITS MOVEDI N

20-7

We note with reference to these two examples that there are instructions
available in System/360 which considerably simplify the conversion of

numbers between binary and decimal forms; they will be treated later.

The logical instructions NC, ¢C, and XC perform the logical operations
described in Figure 17.1 upon two strings of bytes, leaving the result in
the first operand string, and set the CC as in Figure 17.2. Consider the

following examples.
(7) Clear the 120-byte area at LINE to zero.
XC LINE(120),LINE

Note that we could also have used the same technique as in example (1)
above; the use of XC is usually slightly slower due to the necessity
, for actually performing the XOR operation, but requires less space in

the program.
(8) Branch to YES if the fullword integer at LUMP is zero.

gc LUMP(4),LUMP NC TUME(1), TUMP
BC 8,YES Bc 8,YES

In each case the first and second operands are identical so the only
result of the logical operation is to set the CC; no data is changed.
This technique is useful when a register is not free so that performing
the sequence L followed by LTR would be awkward, or when the data is

not aligned; it will usually be slower, however.

(9) Suppose there are two fullwords X and Z in memory which contain Pour
positive integers each, packed as illustrated in Figure 14.7. Replace

the second of the integers in the word at X by the corresponding value

from the word at Z.

MVC TEMP,2Z MUVENEW VALUE TOTEMPORARY LOCATION
NC TEMP ¢ MASK ELIMINATE ALLBUT SECOND INTEGER ,
oc X e MASK SETALL BIYS T O 1IN 2D INTEGER POSITION
XC Xy MASK NUW SET THEM JO ZEROQO
oc X TEMP INSERTNEWV A L U EINTG WORD AT X

TEMP DS XL4

MA3K DC XL4'00780000* MASK BITSFORSECOND INTEGERPOSITION

20-8

The CLC instruction compares two strings of bytes, one byte at a time,
\
until either an inequality is discovered or the required number of bytes
has been compared. As was the case for the CLI instruction, the comparison

is made between unsigned positive logical quantities.

(10) Two positive fullword integers are stored at S and T. Branch to TBIG
if C(T) is algebraically larger than C(S).
CLC T(L4),s
BC 2, TBIG
(11) Two negative fullword integers are stored at S and T. Branch to TNB
if C(T) is algebraically less than or equal to C(S);.
CLC ™(4),s
BC 12, TNB
(12) A list of 100 names and occupations, each contained in a block of 60
bytes, is stored beginning at LIST. If any of the blocks matches the
name and occupation at WH¢, branch to F¢UND.

LA 1,LIST INITIALIZE TO ADDRESSOF FIRST BLOCK
LA 2,100 SET CUUNT TO NUMBER OF BLOCKS

TEST CLC 0(60,1)yWHC CUMPARE BLOCKS
8C 8, FOUND BRANCHIF BLOCKS ARE EQUAL
LA 1960(0,1) OTHERWISE INCREMENT ADDRESS BY 60
BCY 2+ TEST CUUNT DUWN FRCM 100 A N D BRANCH
8C 15,NOTFOUND NO MATCHING BLOCKW A SFGUND

The remaining two instructions to be examined are TR and TRT. These
are flexible instructions which can greatly simplify many complex programming
tasks; they appear complicated when first encountered, but in reality are
quite straightforward in their operation. We will examine TR first.

Like MVC, the TR instruction moves bytes from the second operand location
to the ffrst operand location, but in a less direct way. The operation actually

performs a sort of pseudo-indexing, as follows:

(a) an "argument" byte is obtained from the first operand location;

(b) the value of that byte (as an 8-bit logical integer) is used as an
index to access a "function" byte from the second operand location:
the address of the accessed byte is the effective second operand

address plus the value of the argument byte from the first operand;

20-9

(c) the accessed function byte replaces the argument byte frem the
first operand string;
(@) this process continues until the number of bytes indicated by the

length specification byte has been translated.

For example, suppose the string of 5 argument bytes at P contains X'0201040503',
and the character string at G contains C'ABCDEF'. Then if we execute the
instruction TR P(5),G the final contents of the 5 bytes at P will be
C'CBEFD'. This is easily seen to be the correct result, as follows: the
first argument byte taken from the first operand location is 02ye; the
function byte at G#X'02' is C'C', and this replaces the first byte at P.
Similarly, the fifth and last byte at P is 0316; the byte at G#X'03' is C'D',
which is the final byte placed in the string at P. We can use RX instructions
to simulate the action of the TR instruction as follows, where it is assumed
that the symbols L, Bl, D1, B2, and I2 have the same values as in the TR
instruction being simulated; rrpurposes of the example, assume that Bl and

B2 have values other than 1 or 2.

¥ TR D1(L¢BL)oD24B2) IS THE INSTRUCTION BEING SIMULATED

LA O.L SETCOUNTERINROTO NUMBEROFBYTES

, SR lel SET FIRST OPERANDINDEXT O o0

SR 2.2 FORINDEXINGTABLEA T2NDOPERA ND ADDRESS
GETARG 1C 2,01(1481) GEYT ARGUMENTBYTEy USE AS XNOEX

 { 2902124B2) REPLACEITBYFUNCTIONBYTE FROM TABLE

STC 2+D1(1481) STUREIN STRING ATFIRSTOPERANDLOCATION

CA 191¢(0,1) INCREMENT F | R S T OPERAND INDEX B8Y 1

B8CT QO +GETARG LUUPUNTILL ARGUMENTBYTES ARE PROCESSED

The full power of the TR instruction can be appreciated if we consider
the first example from Sectionl8, where a character string was to be processed
in such a way that all special characters whose EBCDIC representations are
numerically less than C'A' are converted to blanks. By setting up an
appropriate table, the entire process can be done by one instruction, as
follows. The method used tocomstruct the 256-byte table is neither elegant

nor general; better ways will be illustrated later.

TR STR(80),¥BL TRANSLATE ALL SPECIAL CHARACTERS TO BLANK
veL DC 193C* ¢ ANYTHINGLESS THAN C’A’ IS BLANKED

DC C*ABCDEFGHI® LETTERSA R E UNCHANGED .

oC 7C?* ’ dLANKTHENON-PRINT ING CHARACTERS BETWEEN

DC C*JKLMNOPQR® PRINT LETTERS AS IS

DC cLae ¢ BLANK OUT NON-PRINTING CHARACTERS

DC C*STUVWXYZ?

DC 6C* ¢ BLANKS F O RANYTHING BETWEEN €*2* A N DC90°*

DC C*0123456789% DIGITS PRINTA SIS

DC 6C* * TAIL-ENDERS AREBLANKEDT O O

20-10

As a second example of the use of the TR instruction, suppose we want
eventually to print the contents of the fullword at W as 8 hexadecinal digits,
and are required to place the 8 EBCDIC characters representing the digits in
a string starting at HEX. (We will see later that the UNFK instruction does

this more simply.)

L LoW GETFULLWORDTOBECONVERTED
LA 2. HEX ADUORESSOF CHARACTER BEING STORED IN R2
LA 3,8 CUUNTINR 3
CLEAR SR 0,0 CLEARROFOR SHIFTING
SLOL 0.4 SHIFT A HEXDIGITINTOR O
STC 0,0(0,2) STURE INSTRINGA | HE X
LA 291(0,2) INCREMENT CHARACTER ADDRESS BY1
8CT 39CLEAR BRANCHUNTIL 8 DIGITSARESTORED

TR HEX{8) y=C*0123456789ABCDEF®* TRANSLATE TO EBCODIC

We can also index in the opposite direction, as follows:

L OsW GET FULLWORD TO B E CONVERTED
. LA 298 CUOUNTER A NDINBEXIN R2

SRIFTSRDC 094 SHIFTA DI GI TINTQR1

SRL 1,28 PUSITIUN FOR STORING

STC 1oHEX=1(2) STURE IN CHARACTERSTRING

BCT 29 SHIFT DECREASEINDEXAND SHIFTAGA.LN .

IR HEX,TAB TRANSLATE DIGITYS T OEBCDIC REPRESENTATION
REX DS CL8
TAB oC G*0123456T789ABCOLF

The TRT instruction is identical to TR in the first two steps which
were labeled (a) and (b) above; it is quite different in that the accessed
byte from the table addressed by the second operand does ng_replace the
argument byte from the first operand string. The accessed function byte is
examined instead, and if it is not zero, (1) it is placed in the rightmost
byte of R2, (2) the address of the argument byte (which caused a nonzero
function byte to be accessed) is placed in the rightmost 2k bits of Rl; the
remaining bits of Rl and R2 are unchanged, and (3) the operation terminates.

The CC is set to indicate the conditions tabulated in Figure 20.5.

20-11

CC Setting Indication

0 All accessed function bytes were zero.

1 Nonzero function byte was accessed before the last
argument byte was reached.

2 The nonzero function byte accessed corresponds to uhe
last argument byte.

Figure 20.5 Condition Code Settings for TRT Instruction

As an example suppose we are to scan a string of 80, characters beginning
at CARD for punctuation in the form of periods, commas, and apostrophes;
when one of them is found, a'branch should be made to P, C, or A respectively,
with the address of the character in Rl. 1If none are found, branch to RﬁHHmT.

First', we will write a program segment using CLI instructions.

LA 19CARD INITIALIZE CHARACTER ADCRESS

LA 2+80 NUMBER OF CHARACTERS TO EXAMINE
TESTP CLI 0O(l)eC'.?* CUMPARE TO PERICD

BC 8,P BRANCH IF FOUND

CLI 0{1l)sC*,* CUMPARE TO CCMMA

BC 8,C BRANCH IF FGUND |

CLI O(L)yCoe0 COMPARE T O APGSTROPHE

B8C 84A BRANCH IF FGUND

LA 11(0,1) UTHERWISEINCREMENT CHARACTER ADDRESS 8Y 1

BCT 2,TESTP CGUNT AND.LGGP

8C 15,NOPUNCT TAKE THE BRANCH IF NONE FOUND

The TRT instruction allows us to do the same processing much more rapidly

but at a cost of more memory space.

SR 242 CLEAR RZ2 TOBE USED AS AN INDEX
TRT CARD{80)yTBL SCANFURPUNCTUATION
- 8C 8y NCPUNCT SRANCH IF NONE FCUND
BRCH BC 15,BRCH{2) USE FUNCTION BYTEASINDEX FUR BRANCH
8C 15,P PERIUD
BC 15,C CUMMA
BC 15,A APUSTROPHE
TEBL oC {CP.")X200%,X*04?
oC (CY¥y*—C2'.'~1)X200*¢X*08"
DC (CryvoCro, 01)X*00,X20C?

DC {255-Crrr0)x100"

The three nonzero function bytes are located in the positions of the table

which correspond to the values of the EBCDIC representations of the characters

20-12

being sought; the nonzero values are multiples of 4 so they can be used to
index the branch instruction at BRCH, which could also have been written

BC 15,%(2) . If the conditional branch to NPUNCT had been omitted,
the program could have gone into an infinite loop at BRCH.

To give a final example of the use of several of these SS instructions
to process variable-length data, suppose we are given a string of charadters
at NAMES which contains some unknown number of names separated by commas
and terminated with a period. Our first task is to construct a table at
LIST of fullword addresses of the first character of each name; the first
byte of each address will contain the number of characters in the name (which
must therefore be less than 256 letters in length), and w%en the table is
complete the number of names encountered should be stored in the fullword at
NBRNMS. To protect against omitted puqctuation or other errors, branch to

LﬁMHMME if no punctuation is found within 256 characters of the start of

a name.
SR 393 R3 CONTAINS INDEXF O RLIST
LR 243 CLEAR FUNCTICNB Y T ESWITCHINR2
LA 1+ NAMES INITIALIZE SCAN ADDRESS
SCAN LR 451 SAVEINITIAL CHARACTER ADDRESS IN R4
TRT 00256491) ¢ TRTBSCANFORPERICD OR COMMA
8C 8 ¢ LUNGNAME BRANCHIFSOMETHING FUNNY HAPPENED
ST 49LIST(3) STURE ADDRESS O FNAME IN LIST
SR ls4 CUMPUTE NAME LENGTH
STC LyLIST(3) STOKE LENGTHOF NAME INFIRSTBYTE
LA 3,4(0,3) INCREMENTLIST ADDRESS
LA lell4,1l) MUVE ADDRESS TO START OFNEXT NAME
8CT 29SCAN BRANCHIF A COMMA WASENCOQUNTERED
SRL 3.2 'IFPERIUDy NO BRANCH. COMPUTE AND STORE
ST 3 ,NBRNMS NUMBER OF NAMES FCUND
TRTB8 . OC (CY ") X?00%yX?Ql* FUNCTION = 1 FOR PERIOD
DC {C*y¢~Cro*~1)X'00*yX%02¢ . FUNCTION =2FQRCOMMA
DC 1255-C’ ¢7) X000 ZERU OTHERWISE

NAMES OC C*BROWNyGREEN s WUNKA s OF STRAND y JONES y SMEDLEY y DOE» APPLE®
CC C*yDOE s SMITHWICK » SUFTNARD y SMITH¢DOELFUL y JONES yLURP & ?

FLAG 0s c

NERNMS o0s F

LIST DS 50F

20-13

The only unusual feature of the above program segment is in the use of the
function byte as a branching switch; 1if a period is encountered, the contents
of R2 will be 00000001l1s and the BCT instruction will not branch.

Suppose now that the list of addresses is to be sorted so that the names
pointed to will be addressed in alphabetical order if the addresses are taken
in succession beginning at LIST. We will sort by making repeated passes over
the list, making pairwise comparisons among the names and exchanging addresses
when they are not in order, and terminating when no exchanges have been mede

on one full pass aver the list.

L 09 NBRNNS GET NUMBER OF NAMES ,

BCTR 0,0 MINUSLTOGIVENUMBE RUGFCOMPARISONS
START LR 1,0 INI TIALIZE CCMPARISGN CCUNTER

CA 24LIST INITIAL ADDRESSINLISTOF ADDRESSES

MVI FLAG,0 SETFLAG TO SHOW NO EXCHANGES YET
'GETACR L 3,0(0,2) GET ANADDRESS FROM THE LIST

L 444(0,2) AND THE NEXTHIGHER O N E

CLC 00(256493),0(4) CUMPARE THE: NAMES

8C 12 yNOEXCH BRANCHIFIN CORRECT ORDER ALREADY

ST 3,4(0,42) UTHERWISE EXCHANGE ADDRESSES IN .LIST

ST 440{0,52)

MV FLAG,1 INDICATE THAN A N EXCHANGE OCCURRED
NCEXCHK CA 294(0492) 7 INCREMENT ADDRESS LISTPOINTER

8CT 1yGETADR JUMP TO 00 ANCTHER COMPARISON

™ FLAG,1 NOWy SEE' IF ANY EXCHANGES WERE MADE

8C 1, START IFYES)BRANCHTO M A K E ANOTHERP A S S

In doing the name comparison above, we have relied on the fact that the
punctuation character at the end of a name has an EBCDIC representation of
smaller value than that of letters -- this state of affairs is often expressed
“by saying that special characters are lower in the EBCDIC collating sequence

(the natural ordering implied by the value of the character) than letters.

Thus "SMITH, " will compare smaller than "SMITHW', and shorter names will

sort ahead of longer ones with the same beginning letters. If two identiaal

names are found, the comparison will either branch on equality and no
exchange will be made, or the inequality will be determined by whatever

the characters in the following name happen to be; the addresses of the

identical names witstill be adjacent in the sorted list.

Finally, suppose we are required to place the names in alphabetical
order in a string beginning at S@RT, again separated by commas and terminated

with a period.

20-1k

L 14NBRNMS CUUNTER FORNUMBER OF NAMES’

LA 29LIST R2 CUNTAINS ADDRESS OF CURRENT LIST ENTRY

SR 0.0 ROWILLCONTAINLENGTHCF NAME

LA 4, SORT-1 R4wliLl HAVE ADDRESS OFOUTPUT NAME
ACRCUT L 2+0(0,2) GET ADDRESS f—-RUM LIST

XC 090(0,2) VETLENGTHBYTE FROM TABLE

STC 0y MOVE+1 STUREINM V C LENGTHFIELD

LA 441(04+4) MUVEADDRESS T O START O F NEXTNAME
MCVE MVC 0(0y4),0(3) MUVE NAME INTC CUTPUT A REA

AR 490 FURM ADDRESSCFFCOLLOWING PUNCTUATION

-MVI 0(4)4C*,? STURE COMMA AFTER NAME

LA 294{(0,2) INCREMENT ADCRESS OF LISTITEM

BCT 1 yADRCLT CUunT, SRANCHTCO GET NEXT NAME ADDRESS

AR U{4) 02,0 sePla we oSy CCMMABY A PERIOD

In this portion of the program, the punctuation after each name was moved
with the name, but a comma was stored in all cases because the period after
the iast name at the end of the original string was likely to appear in a
different position in the final output. Two things should be noted in the
MVC instruction: firs%, the explicit length specification of zero is a
convenient notation for indicating that the actual length to be used is a
variable quantity to be specified at execution time; and second, since the

- true length of the name is stored in the Length Specification Byte, one
additional byte (the punctuation) is moved.

20-15

21. THE EXECUTE INSTRUCTION

The exécute instruction is one of the most unusual In the System/360

instruction repertoire, eincc it allows the programmer to specify that the
execution of another instructian should be perfoﬁned. If is en RX-type

instruction with mnemonic EX which works as follows:

1.

is

The effective address is computed, and the r1 digit of' the EX inetruction

© 1s saved.

'!'l‘he ingtruetion at the effective address in memory (called the subject
ingtruction) is placed in the Instruction Register (IR); note that the
IA in the PW is unchanged, and still contains the address of the
inetruction folléwing the EX.

If the new instruction in the IR is another EX, a program interruption

-"occurs; we shall see shortly that there 18 a good reason for this,

If the ri digit which was saved is zero, proceed to step 5. Otherwise,
the rightmost byte of Rri is ORed into the second byte of the IR;

Rry remains unchanged.

The (possibly modified) subject instruction in the IR is now decoded

and executed as 'though it were the original instruction fetched from

memory.

First, consider a few examples of the use of EX in which the r; digit

zero, 80that no ORing takes place in the IR.

(1) Store at C the quantity 2*C(A)-C(B), where A and B are fullwords.

- SR 1,1 CLEAR INDEX TOO
“CA . 2404 INCREMENT =449 LENGTH OF EXECUTED INSTNS
LA 3,12 COMPARAND = 12

EX EX 0, INST(1) EXECUTE AN INSTRUCTION

BXLE 1e2,EX INCREMENTBY4AND LOOP

INST L QoA LOAD RO FROM A {4-BYTE INSTRUCTION)
AR 00 . DOUBLE C{RO) (2-BYTE INSTRUCTION)
NOPR 0 PADDING INSTRUCTION{2~BYTE INSTRUCTION)
S 0,8 SUBTRACT ¢ (8B) {4-BYTE INSTRUCTION)
ST 0.C STORE RESULT (4-BYTE INSTRUCTION)

2l-1

This program segment performs a simple four-instruction calculation in a
roundabout way; the list of instructions at INST could of course be executed
quite independently of the first five instructions, giving the same result
much more rapidly. It illustrates a way to execute instructions which are

"out-of-line" and not directly in the normal stream of program execution.

(2) Suppose we wish to add three fullword integers stored beginning
at Q, and branch to NOERR, ERRL, or ERR2 respectively if 0, 1, or 2

overflows occur.

SR 212 CLEAR OVERFLOW COUNTER

L 0,Q GET FIRST INTEGER

A 0:Q+4 A DDSECONDINTEGER

BC 144%+8 BRANCH IF NO OVERFLOW

LA 2v4 INDICATE ONE OVERFLOW

A 0,Q+8 ADDTHIRD INTEGER

BC 14,%+8 BRANCH IF NO QVERFLOW

LA 294(0,2) INDICATEANOTHEROVERFLOW
EX Qe*+4(2) EXECUY E ABRANCH INSTRUCT ION
8C 15, NOERR O-ERROR BRANCH

BC 15,ERR1 1-ERRCR BRANCH

BC 159ERR2 2-ERROR BRANCH

In this example, the executed instruction will be one of three unconditional
branches: since this results in the IA being changed, the next instruction

to be executed 'will be located at the branch address, as expected.

(3) Suppose we are required to place in R6 the address of some quantity
in memory, and that the desired address is known only to be the effective
address of some RX instruction. To complicate matters, suppose further that
the addressing calculation implied by the RX instruction could make use of
any register but Rt and R15; we will assume that R15 is currently being
used as a base register and R4 contains the address of the RX instruction
in question. The technique to be used here will be to construct a LA
instruction in memory with the same index, base, and displacement fields as

the RX instruction, and then execute that instruction.

MVC BLDLA(4),0(14) MOVE RX INSTRUCTION TO WORK AREA
NI BLDLA+1,X'0F CLEAR OLDRLIDIGITPOSITION
ol BLOLA+1,X'60" SETR1IDIGITTO 6
MVI BLDLAsX'41" INSERT'LA*CPCODE INTO INSTRUCTION
EX 0,BLDLA EXECUTE THE CONSTRUCTED ‘LOAD ADDRESS’
- - R6 NOW CONTAINS THE DESIRED ADDRESS
BLOLA DS 2H 4 BYTES ON HALFWORD BOUNDARY

21-2

The above instruction sequence changes noregisters (even though RO was
available) and illustrate6 a technique that can be used when all register
content6 must remain untouched.

More powerful use can be made of the EX instruction when its r; digit
is not zero, implying modification of a part of the instruction plazed in
the IR. For example, suppose we wish to move to LINE a message whose address
and length are in R8 and R9 respectively, a6 in example (%) of Section 20.

BCTR 9,0 DECREASE LENGTH SPECIFICATIONBY!
EX 9,MOVE EXECUTE THE MOVE INSTRUCTION

- e

MOVE MVC LINE(O),0(8) EXECUTED INSTRUCTION, LENGTH =0
In this case the Length Specification byte is inserted by ORing into the
groper position in the IR, which has been preset to zero by an explicit
length specification of zero in the MVC instruction. An advantage of this
method is that no modification is made of the instruction in storage.

A6 another example, suppose We wish to branch to YES if the rightmost
byte of R3 contains 00011111~,

EX 3,CLI EXECUTE THE COMPARISON

BC 8yYES RRANCHIF EQUALITY IS FOUND
cLI cLI CHECK,0 EXECUTED INSTRUCTION
CHECK D C geoooO11I111" COMPARISON QUANTITY

This .could also be done by the following method, which modifies storage

but does not use an EX instruction.

STC 3, TEMP. STORE THE BYTE TO BE TESTED
CLI TEMP¢X*1F* COMPARE TODESIRED PATTERN
8C 8yYES BRANCH IF EQUAL

YEMP DS

(4) Store at T the sum of the contents of registers RO through RI1O0.

LA 11,10 COUNT INR11

COOP EX 11,ADDER EXECUTE THEADD INSTRUCTION
BCT 11,L00P DECREASE COUNTER AND REGISTER DIGITY
ST O,T STORE SUM AT T

ADDER AR 0,0 R2DIGITMODIFIED IN EXECUTION

21-3

The rz digit of the AR instruction is modified in the IR to contain values
which run from 10 down to 1. In practice it is relatively rare that EX
instructions are used to modify register specification digits in executed
instructions.

As a final example, suppose RS contains tin unknown integer which specifies
a number of bytes to be moved from a string beginning at A to an area vhese

address is contained in R7.

LTR 545 CHECK NUMREROF BYTES T O B E MOVED
8C 12,FINIS EXIT IFNOT GREATER THAN ZERO
LA 14A Rl CONTAINS * FROM’ ADDRESS
TEST c 59=F 912561 SEEIF BYTE COUNT EXCEEDS 256
BC 44LAST I¥ NOT, DO LAST MOVE
MVC 0025647),0tl1)MOVE 2 5 6 8YTES
LA 14256(0,1) INCREMENT ‘FROM’ A [QRESS
LA 79256(047) INCREMENY *'TQ? ADD[QSS
S S5¢=F 256" DECREASE BYTECOUN$ BY 256
BC 7rTEST IFNOT ZERO, TESTFOR FINISH
BC 84yFINIS IF COUNTISZERO, ALL DONE
LAST BCTR 5,0 DECREASE BYTE COUNTBY1 FOR EXECUTE
EX SyLMVC MOVE LAST PART OF CHARACTER STRING

FINIS - - -

LMVC MVC 0(0,7),0(1) MOVES LAST ‘PART OF BYTESTRING

The underlined operands in the instructions listed in Figure 2l.1
indicate the modifiable portions of each instruction type when it ie the
subject instruction of an EX. The last form of operand field entry far £8
instructions, in which two Length Specification Digits are provided, will

be discussed later.

Type Operand
RR I, re
Rx r1,da(xz,ba)
Rs r1,r3,dz2(bz2)
ry,dz(hz2)
ST dl(bl))s_[_%
sS dy(L,b1),d2(b2)
d1(Ly,v2),d2(L2,b2)

Figure 21.1 Modifinble Portions of Subject Instructions

21-h

Two final comments should be made concerning the execute instruction.
First, the reason that an EX may not be the subject instruction of an EX (as
stated in step 3 of the description above) 1is that it would be possible for
the:CPU to remain in a Fetch-Decode Loop (comprising steps 1 through 4) ir
the EX instruction tried to execute itself, or if a sequence of EX instructions
was circular. This is a very awkward situation to get the CPU out of, and
is avoided most simply by not allowing the execution of Execute instructions.
Second, the EX instruction is sometimes treated as a brench instruction by
saying that it causes an unconditional branch to the subjeét instruction
followed by an unconditional branch back to the instruction following the
EX, unless the subject instruction is itself a successful branch. This
incorrectly deseribes the contents of the IA, which remains at the address
of the instruction following the EX, and obscures the method of modificttion
of the second byte of the subject instruction, which is occasionally described
only by stating "the instruction is modified, but remains unchanged in memory'.
While the above discussion involving the IR may not describe precisely the
method used in a given model of System/360 for handling Execute instructidns,

it provides a correct description of the effect of the instruction.

2l5

