CS-115

PROGRAMMERS MANUAL
FOR
A COMPUTER SYSTEM FOR TRANSFORMATIONAL GRAMMAR

by
Joyce Friedman
Thomas H. Bredt
Robert W, Doran
Theodore S. Martner
Bary W. Pollack

This research was supported in part by the United

States Air Force Electronic Systems Division, under
Contract F196828-C-0035.

STANFORD UNIVERS ITY COMPUTER SCIENCE DEPARTMENT
COMPUTATIONAL LINGUISTICS PROJECT
AUGUST 1968

AF - 36
Ccs - 115

PROGRAMMERS MANUAL

FOR

A COMPUTER SYSTEM FOR TRANSFORMATIONAL GRAMMAR

by

Joyce Friedman*

Thomas H. Bredt
*¥%

Robert W. Doran
Theodore S. Martner

Bary W. Pollack

* . . .
Present-address: Computer and Communication Sciences Department
The University of Michigan, Ann Arbor, Michigan

** .
Present address: Department of Mathematics

City Universitys, London, ENGLAND

Abstract

This volume provides programming notes on
a computer system for transformational grammar.
The Emportant ideas of the system have been
presented in a series of reports which are listed
in Appendix B; this document is the description
of the system as a program. Tt is intended for
programmers who might wish to maintain, modify

or extend the system.

PROGRAMMING CREDIT

The principal programmers for each set of programs are listed below.

MAIN =~ Friedman and Martner

Free-field input/output - Doran

Trees - Doran and Friedman

Grammar input - Bredt, Doran (PSGINN), Friedman

Phrase-structure generation - Bredt, Friedman, John H. Gilman,
Alan C. Tucker

Lexical insertion - Bredt

Analysis - Doran and Friedman (CXIN),
an early version by Doran)

and Martner (ANTEST - replacing
Restrictions - Pollack
Structural change - Bredt, Friedman, Barbara Jackson

Complex symbol operations - Friedman

Control program - Pollack

ii

Table of Contents

Page

1. IntroducCtion o « o o o o ¢ 4 e e e e e e e e e e e e e . 1-1
2. Subroutine Structure e e e e e e e e e 2-1
2.1 Main program . « « « ¢ ¢ 4 4 4 e e e e e e e e 2-1

2.2 Free field input-outputo . .. 2-1

2.3 TrEeS v v v v v v e e e e e e e e e e e e e e e 2-2

2.4 Grammar input e e e e . 2-2

2.5 Phrase structure generation 2-3

2.6 Lexical insertion . . « « ¢ v v 4 v v 0 v . .. 2-3

2.7 RAnalysis « ¢ ¢ ¢ v v e i e v e e e e e e e e e e 2-4

2.8 Restrictions . « « v ¢ v v vt i e e e e e e e 2-5

2.9 Structural change« « ¢ .+« o . . o .o 2-6

2.10 Complex symbol operations 2-6
2.11 Control program . « « « & o ¢ ¢ ¢ 4 4 4 44 e .. 2-7

3. Subroutine Descriptions, < ., . 3-1

.1-1
.2-1

3.1 Main program
3.2 Free field input-output
3.3 Trees

¥
.—l

b1
-5-1
.6-1

3.4 Grammar input

3.5 Phrase structure generation
3.6 Lexical insertion

3.7 Analysis

.8-1
.9-1
.10-1
.11-1

3.8 Restrictions

3.9 Structural change

3.10 Complex symbol operations
3.11 Control program

F W W W W W 88 W W
D
'_l

Lo COMMON BlockS . . + v + v v v v v e e e e e e ey,

]
]

Y
|,—I

5. BLOCK DATA Subprograms

iii

Table of Contents (Continued)

6. Possible Extensions

6.1 Rule features

6.2 Tree pruning

6.3 n-ary features

6.4 Restrictions on skips .« .. =+« « .« . |

6.5 Analysis of skips

Appendices

A. Formal Syntax for Transformational Grammar

B. Reports on the Computer System for Transformational
Grammar . .« « « « st et e 4 e e e e e e e e e e

iv

6-1
6-1
6-5
6-6
6-7
6-7

B-1

= W W -
= N

F
W

WV W W W W W e
= IS ;
=)

-
'_J

9093@0)00030)0)-\1
@O N O = WD D

%
Vo)

.8.10
9.1

J11.1
.11-2
.11.3
3.11.4
3.11.5

A AN DS RS RN IR U G I G R G R GV G U SV G VIR G Y]

N

Table of Figures

Schematic Program Structure .

Example of Printed Tree Output"

Listing of Punched Tree Output
Macro-Flow Diagram of Expansion, Order
Initialize

Sburoutines Called by TRANIN

Storage of Transformations

Finding a Structural Analysis and Restriction

Pointer
Sample Use of ANNEX and ANPAR
Syntax of Restrictions
Table of Allowable Arguments
Subprogram Call/Result Table
COMMON Blocks for Restrictions
Sample Run
Truth Tables for RESTST
RESTST: Table of Arguments and Results
RESTUN: Table of Arguments and Results
RESTPR: Sample Output
Definition of Relations
Storage for Structural Changes
CPCOM, SYNCM
Block Data Statements
Stack
Terminal Symbols
Syntax for SYNCHK.

Page
1-2
5.3-5
3.3-6
3.4-5
3.4-8
3.4-29
3.4-32

3.7-9
3.7-12
3.8-10
3.8-11
3.8-12
3.8-13
3.8-1k4
3.8-17
3.8-18
3.8-19
3.8-20
3.8-22
3.9-4
3.11-24
3.11-25
3.11-27
3.11-28
3.11-29

1. INTRODUCTION

This Manual is written by and for programmers. Its purpose is to
make the code of the computer system for transformational grammar more
readily understandable to programmers who wish to maintain and use the
system, or to modify and extend it. Section 2 is a short outline of
the subroutine structure of the system. It is followed in Section 3 by
more detailed descriptions of the subroutines. Sections 4 and 5 are
listings of the COMMON blocks and BLOCK DATA statements, respectively.
Section 6 discusses possible extensions to the system.

The programs are written in FORTRAN IV for the IBM 360/67 compiled
under FORTRAN H, OPT=2, under O.S. There are approximately 9000 lines
of FORTRAN code; the compiled code, with storage areas, requires ap-
proximately 300,000 bytes of storage.

The inputs to the system consist of

1. a grammar (described by the formal syntax of AF-24¥)
2. a one-line driver for the MAIN program (see Section 2.1)
3. input trees or skeletons (see 2.3 and 2.5).

Extended examples are given in AF-33 (CS-108).

A simplified schematic diagram of the basic structure of the system
is given in Figure 1.1. Arrows go from calling routine to called sub-

routine.

* References on the system are listed in Appendix B below.

1-1

(3ndgno
TT® J03
pPaTTeo v

| JOWITA

DATddV

R

IDOVIL

(sanyonayg weaBo.y HIjeWSYDS ' SINTTJ)

ATddVL | -

NVOS

(.ﬁ.&ﬁ
TTe 103
peTTeo)

<

3]

Nz VK

1-2

Programming Conventions

Input/Output

Almost all of the input to the system is handled by the free-field
input/output package (FREEIO). The Or;ly exception to this is the al-
ternative fixed-field tree input format. Likewise, most of the output
is handled by FREEIO, with exceptions in certain cases of tabular
debugging output and fixed-field trees.

Error messages

A uniform convention for error messages is used throughout the

system. The standard form is

ERROR. Subroutine name. Message
Messages of the form

WARNING. Subroutine name. Message

are occasionally issued when a strong possibility of error exists, but
an internal correction has been made.

OQutput files

System output is written on several different logical units. 4

minimum output for a standard run is placed on unit 6. Unit 7 contains

additional general output useful for a more detailed study of the run.
Units 8, 9 and 10 contain output for programmers concerned with

ANALYSIS, RESTRICTIONS, and CONTROL, respectively.

1-3

2. SUBROUTINE STRUCTURE

In this section we list the subroutines of the system. For each

subroutine a brief discussion is given of its role. Further discussion

of each subroutine is given in the corresponding parts of Section 3.

2.1 Main program

'Routine

MAIN

2.2 Free field input-output

Routines

Entries

FREAD(@NE)

INITLZ

FROUT(ISTART,L1,...,L6)

KOUTWD (WPRD , LENGTH)

EXPND(KTS ,WARD
LENGTH)

KEYPUT

LNGAUT

/ CNSTCM/
/ FCSTCM/

Type
main

R*8

SR

R*8

2-1

Role
MAIN reads the directions for the
current run. The input is in the form

SMaTn {3 3 ((n) (S0) (TRAN)

Role

Free-field read. Returns a word or
special character.

Initializes FREAD, KAUTWD and /MAINCM/ .

Free-field output of KSUMP from ISTART
on.

Returns an abbreviated word to FREAD

Expands an abbreviated word to a
long word.

Puts abbreviated words into KSUMP,

Outputs table of abbreviated words
and long words.

INTEGER*2 constants.

REAI*8 constants

2.3 Trees

Routine

Entries

TRIN

TROUT(NQ1,NQ2)

/z/

FTRI(ARG)

FTRIN(FTREE, TREE,CLIST,
MTREE,MCLIST,KA,KB,
ISTART, FWORD)

FTROUT(TOP,PJ)

2.4 Grammar input

Routine

Entries

INIT

GRAMIN

PSGINN

PSGSMP

PSGOUT

LEXIN

PRELEX

Type

SR

SR

I*x2

I*2

SR

Type

SR

SR

SR

SR

SR

SR

2-2

Role

Inputs fixed-field tree

Outputs TREE starting at node NQl .
If NQ2 = -1, outputs the number
for each node.

Short, miscellaneous block data,
includes NS, NERROR.

Calls FTRIN with arguments for
input to TREE if ARG = 1, or
for addition to CHTREE if ARG = 2

Inputs free-field tree. Returns
pointer to root of tree.

Free-field output of subtree
headed by TOP. PJ = 1 punches
output.

Role

Initializes everything.

Reads in the phrase structure,
lexicon and transformations.

Inputs phrase structure rules.
Expands, orders, and stores them.

Puts expanded phrase structure
rules into KSUMP.

Outputs tables of the phrase
structure rules.

Reads in a lexicon - calls PRELEX.

Reads in the prelexicon.

2.4 Grammar input (continued)

Routine Type
Entries

NUMNAM(FWORD , ARG) "2
NAMEIN (FWORD, ARG)

LEXSMP SR

LEXOUT

-TRANIN SR

TRANSU

-~

2.5 Phrase structure generation

Role

Returns the number for the feature
FWORD. Stores FWORD as the name of
the contextual feature with the
number ARG.

Copies the lexicon into KSUMP.

Outputs the internal tables for the
lexicon.

Reads in the transformations.

Outputs the table of transformations.

Role

Routine Type
Entries

GEN SR

IFIND (M, N) I*2

IAFIND(I) R*8

NSRCH (N) I%2

2.6 Lexical insert ion

Routine Type

Entries

LEXINS SR

2-3

Generates a directed random tree,

Subroutine for GEN. Returns 1,
0, -1 if M must, may, or cannot
dominate N . IFIND(N,N)=1 .

Called by IFIND. Returns I, if

I is a terminal symbol. Otherwise,
returns position of first rule which
expands I

Called by IFIND. Returns position

of last rule which introduces sym-
bol N, 0 if none.

Role

Does lexical insertion.

2.6 Lexical insertion (continued)

Routine

Type

Role

Entries

LSRCH(CATNY ,N@DE,WSRD, TCS)

TSRCH(CAT,NADE)

CSTEST(NUDE,M,N)

SIDEFF(NODE,N)

cscpMP(M,N, IND)

2.7 Analysis

Routine

Egtrieg

CXIN(KDUMMY)

SLFEAT (KDUMMY)

ANALIN(KDUMMY)

ANATHU(T)

————, 8 e »

SR

I*2

I*x2

Type

"2

I*2

I*x2

2-4

Finds entry of category CATN{
suitable for insertion at N{DE
which has complex symbol TCS and
WORD (if non-blank).

Searches tree for lexical category
(cAT) - returns node number in NODE.
Returns NODE = 0 if there are
none. Keep calling, TSRCH keeps
searching.

Returns number of compatible complex
symbol if complex symbol N is suit-
able for insertion at N@DE which
already has complex symbol M

Does side-effects for each contextual
feature in complex symbol N

Compatibility test for -omplex symbols.
If M or N > 0 they are node num-
bers. If M or N < 0, they - -
complex symbol numbers, If IND - |,
use nondistinctness test. If IND = 2,
use inclusion-l test, If IND = 3
return pointer to compatible complex
symbol found for node M,

Role

Reads in a complex symbol and returns
its number. If KDUMMY = 1, the
complex symbol is first expanded by
the redundancy rules.

Reads in a contextual feature and
returns its number.

Reads in a structural analysis and
returns its number.

Writes out the internal representa-
tion of structural analysis I.

2.7 Analysis (continued)

Routine Type Role
Entries

CSSUMP _ Copies a complex symbol into KSUMP,
CSOUT Outputs the interval tables for

complex symbols.

ANTEST(TRANN¢,TREETP,ANAIN¢) I*1 Evaluates the structual description
of transformation TRANNY or the
structural analysis ANAINY in the
subtree headed by TREETP.

- ANRTES (P@SN) I*1 Tests restrictions on the node as-
signed to PPSN. If PPSN > 0,
test complex symbol also.

ANRUNS(PﬂSN) - Sk Unsets restrictions on node P¢SN.
‘ Also sets NUMNGD and ANNGDE to zero.
NEXT(HERE, TP ,SIGN) SR Resets HERE to the next node after
HERE.

2.8 Restrictions

Routine Type Role
Entries

RESTIN(@NE) I*2 Reads restriction . or
restriction > ; returns its number.

RESTST(I,PPSN) I*1 Tests and sets restriction designa-
ted by I or CREST. If PPSN = 0
resets the restriction first.

RESTUN(I,PPSN) SR Unsets restriction I . If
PPSN = 0, sets CREST = I and
completely resets restriction I

RESTPR(I) SR Outputs tables for restriction I
I = 0 outputs all.

GTPKEN(SYM) SR Returns a token, i.e.,, a logical
operator or condition.

/RESTCM/ Constants and storage.

2-5

2.9 Structual change

Routine Type

Entries

CHANIN LR

CHANTY

CHANPU

ELEMOP (NWHRD,NQ1,NQ2) SR

ERASE(NQ2)
SUBSE(NQ1,NQ2)
ATADE(NQ1, NQ2)
AFIDE(NQ1, NQ2)"
ARIAE(NQ1,NQ2)
ALESE(NQ1,NQ2)
ARISE(NQ1,NQ2)
SUBST(NQ1,NQ2)
ADRIS(NQ1,NQ2)
ADLES(NQ1,NQ2)
ADIAD(NQ1,NQ2)
ADRIA(NQ1,NQ2)
ADFID(NQ1,NQ2)

CHANGE(ID,CNRNUM) SR

2.10 Complex symbol operations

Routine Type

Entries

REDRUL(M) I*D

CSPP(TYPE,A,N,M) I*2

2-6

Role

Reads a structural change and returns
a pointer to it.

Tidies up after all changes read,

Outputs the table of structural
change.

Applies operator NWPRD to arguments
NQl, NQ2 .

Entries for specific changes. IBM
operations are also done by ELEM¢P,
but do not have individual entries.

Performs the structural change of
transformation ID using the
CNRNUM-th analysis found by ANTEST.

Role

Returns the number of the complex
symbol obtained on expansion of
complex symbol M using the redun-
dancy rules.

If TYPE = 1 returns pointer to new
complex symbol created by doing
operation A on complex symbols N
and M If TYPE= 2 returns value
of test A on complex symbols N, M ,

2,10 Complex symbol operations (continued)

Routine Type
Entries,
CSEXCH (N, M) I*2 |
CSEQ(N,M)
{CSINCl(N,M)
CXINC1(N,M)
CSINC2(N,M)
CSNDST (N, M)
{CSMERG(N,M)
MERGEL(N,M)
CSMERR (N, M)
CSERAS (N, M)
CSSAVE (N, M)
2.11 Control program
Routine Type
Entries
CPIN SR
CANTRL SR
SCAN (DMY) I*2
SCAN1(DMY) I*2
TRACE(TN@ , TIM, ANFG) SR
TAPPLY SR
APPLY1(TNG) SR
APPLY(TND) SR
OUTTRN SR
APPLYI(TNY) SR

2-7

Role

. Sets up calls to tests and operations

in CSgP.

Role

Inputs a control program. Check
syntax.

Interprets the control program.

Inputs next symbol and generates
token.

Inputs next symbol and generates
token.

Generates TRACE output,
Invokes a transformation.
For IN-transformations,
General

Outputs the list of tranformations
which have applied.

When inside an IN construct.

2.11 Control program

(continued)

Routine Type
Entries

SYNCHK L*x1

RECOG I*1

APPLYG(GNP) SR

/ ceepm/
-/ SYNCM/

2-8

Role

Checks syntax of the control program.

Generates token and recognizes
symbols.

Invokes transformations of group
GNO.

Storage.

Storage.

3. SUBROUTINE DESCRIPTIONS

In this section we describe individually each subroutine of the
system, The reader will immediately notice that the level of detail in
the program descriptions varies greatly. In general, where the program-
ming is straight-forward we have simply described inputs, internal
storage, and outputs, On the other hand, when more complicated algorithms
are involved we have gone into considerable detail in order to fry to

make the programs easy to follow.

3.1 Main program

The subroutines.of the system may be combined in various ways by
changing the main program (MAIN) . The current main program is given

below. It accepts an input in the form

prro} () (e

$MAIN{FTRIN LEX

})(TRAN)

The program first reads in a grammar. Then a tree is read by TRIN

or FTRIN . The integer n controls the number of times this tree
will then be use5; If GEN is specified, the input is treated as a
skeleton to be expanded by the generation routine GEN (which then
calls the lexical insertion program (LEXINS)) . If LEX is specified,
the input is assumed to be a complete phrase structure tree and lexical
insertion is called directly. If TRAN is specified, the transforma-
tions will then be applied.

After n (or 1 if n is not specified) iterations a new tree

is input. The program terminates when there are no more inputs.

5.1-1

MALN PROGRAM

READ I (WHETHER TU CALL FTRIN CR TRIN),
ITERATIONS FOR GEN, CALL TO GEM, LEX, CONTRL.
IMPLICIT INTEGER®2 (£-1)
CCMHMON /Z/ LAHK NXXXgNSSy NSy NAND ZNOR, NANDDR y NERROR
REAL%8 LANKyNXXXyMSS NS, NAND ,NDR , NANDOR
SCOMAON /TREECHY/ FTREEZTFEEZCLIST MTREE ¢ MCLISTy NCODE
REALXH FTREE(4%())
INTEGRER#®2 TREE (475 496) yCLIST(40C) yMTREEZMCLISTWNCODEL(LG)
COMMIN/S KELLW/FISK[Lv]cKEngkL]ST TSKELTyMSKLST

D:I\l-"h CI12vCt 49 '\\
N /L FrdntLve- !

INTEGER%*2 leFL(Z-\,6)1SKLIST(2”G)1ISKFLT'MSKL51

CCHMON JTSCM/
1 AMALWIDZCSLIST(4,2000) o AMALPT(500) yANALWP(20CC)9 ANALSTH(200 (),
2 TEMPLAN(22ZC)y SLCTRT(AGCC) JANALTP, S LCTTP,CSFF7CSFPD e ENALWT
REAL*R ANALWD{273)

COMMON/MAINCHM/ CHRTR,KSUMF,ISUMP, NCHQTR

REAL*8 CHRTRLSUMP(2(:()

CCMMON/ IRDCM/ NUMyISPEC,0ORDFLyMUMFL

LOGICEL*1 ORDFL+NUMFL .
REAL®S IMAIN/* ¢MAINY /G ZFTRIN/*FTRINY/LZTRIN/YTRINY/,

1 ZGEN/O'GENY/,7LEX/'LEX"/y7TRAN/'TRAN' /3 FREAD

INTEGER 22 ONE/1/

N1l=1

N2=-~1

N2 =2

WRITE(H,1T77%1)

NERRNR=1

CALL GRAMIN

CSFSAV=CSFRPT - | *

C WE MHAVE THZ $, IF IT ISN'T US, QUIT NOW,
IF (CHRTR NE. ZMATIN) STOP

c Rt s, MAIN T ckdoiolt SUBROUTINE etk S s 3 e
o MAIN PRIGRANM FOR TESTING GEN - 360/67 - 7/1016/-

C VERSINN FAR TESTING GEN - T1 8/18/67

c INPUT CARD SEQUENCE '

o INITIALIZATION TS DOND BY GRAMIN

C P5Gy LEXICON, AND TRANSFORMATIONS ARE READ IN ARBITH.:
C ORDER RY GRAMIN _ .

o GRAMIN RETURNS VHEN 3 IS READ.

C THEN o..

C

C..

50 1‘2

C IT IS US. NOW IS IT TRIN OR FTRIMN FOR TREES?

NGEN = 1 -
KKTREE = 9

KKTRAM = 2

KKGEN = 2

CHRTR = FREAD{ONE)

IF (CHRTR LEQ. ZFIRIN) GO TO 4
IF (CHRTR LFQ. ZTRIN) GO TO B
G T0 9
4 KKTREE = 1
C NOW LOOK FIR GEN FACTOR 0OR MARKERS FUR CALLS TO GEM, LEXINS, CONTPL .
8 CHRTR = FREAD(ONE) "
9 IF (NUMEL) GOTO 14
IfF (ISP2C. NE. ~) GOTO 15 :
10 IF (CHRTR LEQ. ZGEN) GO TO 11
IF (CHRTR LED.~ 2ZLEX) GO TO 12
IF {CHRTR .E2. ZTRAN) GO TC 13
WRITE (6,1805) CHRTR

GO TO 8
C REMIMPER T CALL GEM
11 KKGEN = 1
GO TO 8 .
C PEMINDER T7 CALL LEXINS
12 IF (KKGEN JNE, 1) KKGEM = 2
GO TO 8

C KEMINDER TD CALL CONTRL

13 KKTRAN =1
GO 10 3

14 NGEN = CHRTR -
GO 719 8

15 CSFRPT=LSFSAV .

©IF (KKTREE JEN. O) CALL TRIN

IF (KKTREZ .EQ. 1) CALL FTRI(ONE)
SAVLSFE = CSFRPT
IF (ORDFL) RETURN
TFINERZIORGNE.") WRITE(6y16(%) NERROR .
NERROR=)

CO 2. I=1,MTREE
FISKZL(TI)=FTREE(])
DO 27 K=1,56 .
24 ISKELLT K)=TREE(I,K)
ISKELT=4TREE
DO 3, T=1,MCLIST
3 SKLIST(I)=CLIST(I)
MSKLST=ACLIST

3.1-3

3.2 Free field input-output

A full description of the free-field input/output subroutine

package is given by R. W. Doran in AF-1k4 (CS-79) to which the reader

is referred. These programs are independent subroutines and may be

used outside of the present system.

3.2-1

3.3 Trees

COMMON/TREECM/FTREE, TREE, CLIST,MTREE, MCLIST
REAL*8 FTREE (400) .
INTEGER*2 TREE(400,6),CLIST(400), MTREE,MCLIST

Example

T/T\

/P\ H
G
+F
Fooo Ly
FTREE TREE CLIST
col. 2 3 L 6
1]|s 0 1 3 o 1|2
2 |B 1 5 5 0] 2]5
3 | E 5 6 6 03|k
4y | H 1 0 O o4k
51]D 1 8 9 o0|s5]6
6 | C 2 0 o o|6]7
71| F 3 0 0 107
8 1¢G 5 0 0 0|8]3
MTREE=8 | 918

MCLIST=9

3.3-1

Discussion

FTREE is a list of the labels of the nodes of the tree. The numbering
of the nodes is arbitrary except that the root of the tree is always node 1.
TREE is a six-column array parallel to Q@QTREE. Columns 1 and 5 are used
for work-space. Col. 2 is a pointer to the parent of the node (0 for the
root). Cal. 6 is a pointer to the complex symbol attached to the node (in
CSLIST), or 0 if none. Notice that the format thus allows complex sym-—
bols to be attached to any node of the tree. Columns 3 and 4 point to the
first and last positions in CLIST which contain the daughters of the node,
CLIST gives the daughters in left-to-right order. MTREE is the current
length of FTREE and TREE; MCLIST is the current length of CLIST.

The format is a compromise between case of search and ease of change.
The list of node names in FTREE allows a quick search for a particular
node name. The entries in TREE and FTREE need not be contiguous and CLIST
likewise can be expanded without recompression. (The example shows CLIST
as it might look after various changes have taken place).

The COMMON block /SKELCM/ is structured like /TREECM/ ; in the
common block /CHANCM/ FCHTRE, CHTREE, CHCLIS, NCHT, NCHCL correspond

to FTREE, TREE, CLIST, MTREE and MCLIST

ﬂ

Block data /Z/ contains a few miscellaneous parameters used in
the system. The most important of these are NSS and NS which both
continue the sentence symbol 'S' and NERROR which can be used to
communicate an error pondition. Some of the other parameters in /Z/

are no longer used.

3.3-2

External formats

The system has both fixed field and free field external representa-
tions for trees. TRIN and TROUT are the fixed field input and output

routines; FTRIN and FTROUT are the corresponding free field routines.

TRIN and TROUT, fixed-field tree I/0

TRIN and TROUT(I,J) input and output trees to and from the internal
format described above. The external format is immediately readable and
readily punched. output may be printed or punched and may begin at any
selected node of the tree. A substitution feature allows subtrees to be

treated separate%y.
Figure 3.3.1 gives an example of the printed output of TROUT(1,0) .
Figure 3.3.2 is a listing of cards produced by TROUT(1,1) . The input

to TRIN is the same as the output of TROUT(1,1) .

Basic external format

The basic format is a representation in which the daughters of a
node in field L appear in field I+l . The first (left-most) daughter
is in the same card as its parent. Daughters to the right appear on

lower cards. Thus

A B C
D E F
G
H
3.3-3

represents the tree

N

Q1
| S

Substitution feature

A potential difficulty in the basic format is that the depth of a
tree may exceed the maximum number of fields allowed. A substitution
feature avoids this by replacems © . = cummy node by a subtree. This

is indicated by the use of a substitution card with XXX in the first

field and the dummy node in the second. Thus, the input cards

EXAMPLE
A B C
D E F
G
H
XXX G
S B C
D
(blank)

represent the tree

BASE 25 IS THE AUTO THE CONVEYANCE THAT THE HORSeE NAS AT THAT TIME
SS

+

s PRE Q
NP DET ART THE
PSAR ADM
N NCM NCT
NU SG
AUX AUXA TNS PRES
VP BE
PRED NP OET ART THE
PSAR AOM
N NCM NCT
NU SG
SSs +
S NP OET ART THE
PSAR AOM
N NCM NCT
NU SG
AUX AUXA TNS PST
VP BE
PREO NP OET ART OEM WH
THAT
NBR
PSAR AOM
N NCM NCT
NU SG
TIM ™ AT
NPI OET ART OEM THAT
NBR
PSARAOM
TIME
NU SG
+
+
+ Q THE ADM NCT SG ° PRES BE THE AOM NCT SG + THE AOM NCT SG PST BE WH
THATNBR ACM NCT SG AT THATNBR AOM TIME SG + +

Figure 3.3.1 Example of Printed Tree Output

BASE 25 IS THE AUTD THE CONVEYANCETHAT THE HORSE WAS AT THAT TIME

Ss +
S PRE Q
NP DET ART THE
PSAR ADM
N NCM NCT
NU SG
AUX AUXA TNS PRES
VP BE
PRED NP DET ART THE .
PSAR ADM '
N NCM NCTY
NU SG
SUBOY
+
XXX SUBO1
$$S +
S NP DET ART THE
PSAR ADM
N NCM NCY
NU SG
AUX AUXA T N S PSY
VP BE -
PRED NP DET ART DEM WH
THAT
NBR
PSAR ADM
N NCM NCTY
NU SG
TIM ™ AT
. NPI DET ART DEM THAT
NBR
PSAR ADM
TIME
NU SG
+

BLANK

FIGURE 3.3.2 LISTING OF PUNCHED TREE OUTPUT

The ony restriction on the use of the substitution feature on input
is that a unique name be given to the dummy node for which the subtree
is to be substituted. Substitution will be made only for the first occur-
rence of that name.

In output, substitution is made for all occurrences of the sentence
symbol which occur at or beyond the field MAXSS . Thus, MAXSS should
be set, on the basis of the grammars being processed, so that the maximum
depth of a kernel trée does not exceed MAXJ - MAXSS, where MAXJ is
the number of fields. If MAXSS is set too high to avoid overflow,
substitution will be made for the rightmost field. For the MITRE
Junior grammar the values of MAXSS = 5 and 13, for punch and print

respectively, are acceptable for all but a few trees.

Alternative formats

Jane Robinson's PARSE program* uses an output format for binary
trees in which the first daughter appears to the right and the second
daughter, if any, appears below. Robinson's trees contain numbers asso-
ciated with each node and the lines of the tree are put in. A simple

example is the tree

R10
//
WHY R20
\
us2 GO

D

*¥ J. Robinson, Preliminary codes and rules for the automatic parsing
of English, RAND RM-3339-PR, 1962.

3:3-7

which is output as 1108 *¥%x (0130

R10 WHY

*

*

1107 KRR 9327 XRNK 9321
R2Q Us2 DID
* *

* *

* 2005

* HE

*

¥*

1001

GO

F. Blair* uses an input form which is inverse to ours since the
rightmost daughter occurs on the highest card. His input is free field

except that all daughters of a given node must begin in the same column.

As an example, the tree
R////A\\\

7N A

F

\
G

\
E!E

can be input as

* D. Lieberman, Design of a grammar tester, and F. Blair, Programming of
the grammar tester, in D. Lieberman, Ed. Specification and Utilization
of a Transformational Grammar, AFCRL-66-270, 1966.

3.3-8

This limited use of free field seems to us to be no easier to punch
than fixed field. Its major advantage is that, since his program is in
LISP, atoms.of arbitrary length can be used. Blair's output 1is the

standard LISP S-expression form.

Discussion of the format

The printed version of this format is easy to read; it seems to us
at least as intuitive as the alternatives discussed above. It is not
hard to punch an input tree directly from the graphic representation,
although it may be easier to use coding sheets.

Corrections_?nd modifications to a tree are very simple to make.

An interesting by-product of the form is that a small set of card
types can be used to obtain all the trees possible within a given gram-
mar. For the IBM Core Grammar* a set of 42 basic card types wou.d
suffice to give all the possible kernel trees. About ten additional
card types would suffice to take advantage of the substitution feature
for embedded sub-trees. Additional punching would be required only for

input of lexical items.

IROUT

Output of trees is controlled by the two parameters of TROUT (I, J)
The first parameter controls the starting point of the output. If I=1
the entire tree will be output, preceded by its title and followed by
the terminal string. If I is not 1, the éub—tree headed by node
number I will be output. This feature can be useful in testing trans-

formations, with I set in turn to each of the nodes of the proper

*P. Rosenbaum and D. Lochak, The IBM Core Grammar of English, 1Ibid.

3.3-9

analysis. If I is negative, an error indication is given; if O,
SNIL is output; if greater than MIREE, it is reset to 1
The parameter J controls the punch option and numbering. If
J= 0 the tree is printed only; if JH= 1 it is printed and punched
offline; if J = -1 each node name will be preceded by the node number.
The parameters are protected so that the call is essentially by

value.

TRIN
For input by TRIN the tree must be preceded by a title card. The
first card must have a node in field 1 . The format is 1246 . The

tree is terminated by a blank card.

Conversion of decks

Conversion to this format of trees in another format is simple.
They can be read in by the old input routine and then punched out by

TROUT(1,1) . The output deck is ready for input to TRIN .

Error checks

If TROUT is called with I negative, an error (301) results,

In TRIN error 210 occurs when the dummy node for which a substitu-
tion is to be made cannot be found in the tree. A final check on the
input tree detects trees in which the root is not the sentence symbol
(error 90), or which have multiple roots (error 9%). Otherwise the
routine assumes that the input tree is good. It is therefore recommended
that TRIN be immediately followed by a call to a checking routine to

verify that the tree is in fact a correct tree of its grammar.

50 5-10

The programs are set up for 6-character words. If 8-character
words are desired, the format statements, as well as the values of MAXSS
and MAXJ must be changed. In the case of a-character words, it would
be desirable to use the full 80-column“card, so the format statements
must be changed accordingly. The word BLANK can then no longer be writ-

ten on the final blank card as it is in the T72-column version of TROUT(l,l).

FTRIN, FTRI, and FTROUT, free-field tree I/0

Free-field tree inputs are primarily used to read into /TREECM/
and /CHANCM/ . To avoid the necessity for specifying all the parameters
in these cases, FIRI can be used. FTRI(l) <calls FTRIN with the
correct parameters for reading a tree into /TREECM/ . FTRI(2) calls
FTRIN to add a tree to CHTREE in /CHANCM/ .

FTRIN(FTREE, TREE, CLIST, MTREE, KA, KB, ISTART, FWORD) reads a
free-field tree into a block strutured like /TREECM/ in which KA is
the maximum size of FTREE and TREE, and KB the size of CLIST .
If ISTART = O, an entire tree will be read, if ISTART = 1, FWORD
will be taken as the root of the tree.

In the FTRIN code a single subtree is stored using a recursive
algorithm with a pushdown. KNPUSH(I) contains a pointer to the parent
of the Ith level of the subtree in array TREE and the daughters of
this parent so far found are from MPUSH(KMPUSH(I)) to MPUSH(KMPUSH(I+1)-1).
The recursion is depth first and whenever it is known that all the daughters
of a given node have been found they are dumped into CLIST . Substitution
is done by finding the node to be substituted for (pointers to terminal
nodes are stored in NODES(50)) and then initializing the pushdown by

retrieving the left sisters of the substituted node and placing them on

5.3-11

the pushdown. The substituted sub-tree is then expanded until a period
or comma is encountered whence the right most sisters of the substituted
node are retrieved from CLIST and then all of the new list of daughters
stored back in CLIST . This causes waste space in CLIST and TREE,
but there is no waste space if there is no substitution.

FTROUT (TOP,PJ) outputs the subtree of TREE which has root TOP
PJ = 1 causes it to also punch the output. The code for FTROUT is a
- very simple recursion. KMPUSH(I) tells us where in TREE the Ith

level of the tree is and. KNWPUSH(I) points to the daughter of KMPUSH(I)

in CLIST with which we are dealing.

-

3.3-12

3.4 Grammar input
This section discusses the input routines for grammars and for the

three components of a grammar.

INIT, initialization

Subroutine INIT initializes everything in the system, including

the free-field input routine. It is called by GRAMIN .

GRAMIN, grammar input

GRAMIN first initializes the system by calling INIT and then
reads in a grammar, Since each of the major components begins with an
identifying word and ends with $END, GRAMIN is able to read either
a full grammar or just one or two components. @RAMIN returns when it

encounters the order $ which ends the grammar, leaving the ordar

itself to be read by the MAIN program.

PSGINN, phrase structure grammar input

PSGINN reads compactly written context-free phrase structure rules
from the input stream, expands and orders them and stores them in the

rule storage area /PSGCM/ .

Storage of phrase structure rules

COMMON/ PSGCM/NSGA1, NSGC, NSGA2, NSGB, KA, KB, KC
REAI*8 NSGA1(200), NSGC(2000)
INTEGER*2 NSGA2(200), NSGB(300), KA, KB, KC

Example

Input

= NP AUX VP,
= ((NEG, AFF))(ADV)TNS.

3.4-1

Expanded form

S =NPAUXVP.
AUX = TNS,
NEG TNS,
NEG ADV 1INS, --
ADV 1TNS,
AFF TINS,
AFF ADV TNS.

Internal form

NSGA1 | NSGA2

NSGB

1 S- 1

/A

o N o =W

3.4

© O 0 N O VW o

NSGC

NP

AUX
VP

NS
NEG
TNS
NEG
ADV
TNS
ADV
TNS
AFF
NS
AFF
ADV
NS

KC

Discussion of internal form

NSGAlL contains left-hand sides of rules.
NSGC contains right-hand sides of the (expanded) subrules,

NSGB(j) contains a pointer to the position in NSGC of the first
word of the jth subrule.

NSGA2(i) contains a pointer to the position in NSGB which points
to the beginning of the first subrule of rule i

KA is the current length of NSGAl and NSGA2
= number of rules + 1

KB is the current length of NSGB
= number of subrules + 1

KC is the current length of NSGC

= total number of words on RHS's + 1

Algorithms for Expanding and Ordering P.S. Rules

Task

To read a set of compactly written Phrase Structure Rules, to

expand, order, and store them,

e.g., the rule Aux = ((NEG,AFF))(ADV)TNS. will be expanded to

AUX = NEG ADV TNS,
NEG 1INS ,
AFF ADV TNS,
AFF TNS ,
ADV TNS ,

TNS

5.4-3

then ordered algebraically to AUX = INS ,
NEG TNS ,
NEG. ADV TNS,
ADV TNS ,
AFF TNS ,

AFF ADV TNS

and then stored as described above.
The overall logic of the program PSGINN is illustrated in Fig. 3.k.1.

The main (numbered romantically) steps are now described.

I/. The expansion of rules was broken down into 2 steps. An
'abbreviated node list" (i.e., a compactly written part of a rule,
e.g., "(PAST, PRES)" in the rule "TNS = (PAST, PRES) is first »f all
scanned and a table of linkages built up and then expanded using the
linkage table. Nodes are stored in array "NODES" and linkages in the
2 dimensional "LINKS" e.g., (NEG , AFF)) (ADV)TINS is firstly converted

into:

NODES LINKS 1.2.3.4
1. . 2345
2. NEG 2 b5

3. AFF 3 45

4, ADV L5

5. TNS 5 0

Every expanded node list may be obtained by chasing pointers until a 0

is found.

3.h-4

ENTER
INITIALIZE

ERROR CONDITIONS

READ & LINK
ABBREVIATED
NODE LIST

_——p— — SKIP TO NEXT RULE

OR EXIT

EXPAND
LINKED
NODE LIST

IT

ORDER & \/ P
STORE > R

R.H.S.s

IIT

Figure 3.4.1 Macro-flow Diagram of Expansion,
Order and Storage Algorithm.

3.4-5

e.g. LINKS(1,2) — NODES(3) = AFF
LINKS(3,1) - NODES(L4) = ADV
LINKS(k4,1) — NODES(5) = TNS

LINKS(5,1) = 0

so ‘AFF ADV TNS' is one of the expanded node lists.

This first linkage section is the most complex. It was found
possible to expand an abbreviated node list using a simulated pushdown
stack, only having immediate knowledge of the character being scanned
at present and the one previous.

There are 2~basic types of linkage between nodes in an abbreviated
node list: -

a/ . A-links as between A and B, A and C of A(B,C)D

b/, B-links as between B and D, C and D of A(B,C)D

A-links are links into parentheses, B links are links out of parenthe-
ses.

The idea of the algorithm of part I is then to scan the abbreviated
node list, when parentheses are opened storing the A-type links for that
level of the pushdown and when closing parentheses fixing the B-type
links. Of course, links are also storad and -fixed when commas or nodes
are encountered.

Nodes are stored linearly in NODES(I) when they are encountered,
INODES points to the last node stored. LINKS are stored in LINKS(I,J),
there being KLINKS(I) links in the Ith row.

The push down is rather complex. IPUSH indicates the level of

operation. At level I the A-links are stored in MPUSH from

3.4-6

e

KMPUSH(I) to KMPUSH(I+1)-1 and the B-links in NPUSH from KNPUSH(I)
to KNPUSH(I+1)-1 . IMPUSH and INPUSH point to the tops of MPUSH and
NPUSH respectively.

KIR holds the character being scanned.

ISPEC indicates the type of the scanned character, ILAST the type

of the previous character scanned.

.we will go through the linkage of our example " ((NM;, AFF))(ADV)INS"
describing what occurs at each stage. The internal configuration of the

system at each stage is illustrated in Fig. 3.4.2.

$tage

The system is initialized as if the last character was a common
(ILAST = 2) and an A-link from the 1lst node (there is no first node,
but a link from the first node indicates the beginning of an expanded
node list) is placed into MPUSH at the IPUSH = 1 level. KNPUSH(1) =

KNPUSH(2) indicates that level 1 of<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>