
(DOCMPS)DOCRDNTI~E.NLS;29. 2l•MAR•72 20:33 WHP ;

MPS Ru~time Reference Manual

ll AUG 72

MPS 10.0

James a. Mitchell*

Xerox Palo Alto Research Center*
3180 Porter Drive

Palo Alto, CA 9h304
(415) lJ.9.3-1600

Stanford Research Institute
333 H~vens~ood Avenue
Menlo Park, CA 9h025

(h.l.S) ,326-6200

MPS Runtime Reference Manual
Mitchell
SRI/XPAPC

MPS 10,0
ll AUG 72

PAGE l

This document describes the impleMentation of the Modular
Programnin~ System. It is intended for use by the implementors
of MPS, and contains the !ollowin~ sections:.PBS;.LBS=l;

The allocation of registers in the MPL run-time environment:
(registers)

The l~yout of the fixeG part Of a dseg: (dseg)

The layout of the system dseg transfer vector and the ilobal
fixed tables used in MPS: (sysdseg)

The machinery which supoorts function call/return, both
compiler generated code and the run-time support code:
(functions}

The machinery which supports ports and port calls (portcalls)

~he description of MPL Object modules, includin~ the code and
symbol table information blocks: (modules)

Format of the Object code block in an MPL module: (code)

Structure oi the symbol table information in an Object module
as constructed bY the MPL compiler: (syrnbols)

The implementation of SIGNALs: (si~nals)

The teMporary string facilities provided for bootstrapoing MPS:
(strings)

The free storage package used for the HEAP; (fsp)

An overview of the process bY which the MPS is bootstrapped
into existence initially: (bootstrao)

(registers).Pqs;.LBS=l; ~egister Assignments: MPL definition8 for
r~gister assignments can be found in (mps,mplregs,l:wn) and can
be lNCLUDt'd.

O:NULMSG holds the null message for PORT system

l:Al first scratch ac

2:A2 scratch ac 2

2:1-~S result stack pCJinter

3:A3 scratch ac J

4:Ah scratch ac 4

5:A.) scratch ac s

MPS Runti~e ~e!erence Manual
Mitchell
SHI/XPAFC

6:A6

?:RP

lO:M

ll:S

12:P

l3:C

llL:D

lS:LB

l6:SJ

l7:SD

scr~tch a.c 6

record pointer (!or field variables)

stack mark (fraMe pointer)

stack Pointer

pointer to recent PORT

code se~ment

data se~rnent

link base register

for syste:m JSP's

system data segment

MPS 10.0
ll AUG 72

PAGE 2

(dseg).PBS; Dse~ Layout: MPL definitions f6r the fixed part of a
dseg are given ootn as record declarations and as a set of
displace~ents (compile-ti~e constan~s) in (mps,processdefs,l:~n)
which can be used as an INCLUDE file.

Base of frame

o: FakeExtLoc: ADDR SYSUFL(SD) to catch stack underflow

l: FakeHetWrd: z HetLoc pointer to HetLoc in tnis word

2: FakeOldM: WOP.D 0 fake oldf pointer

3: FakeSysWord: WORD o head of enable list, if any

~ies to stack segment, code segment, this data se~nnt itself,
ar.d owner's Jsg

4: segNUMs: XWD dse~num,cse~num

.s: Bases: ZWD dsegbase,cse~base absolute adaresses

6: Stackse~: ADDH stackbase se,.mented address

State

7: statepc: z pc value for process

10: StateM: z base of current stack frame

ll: states: z top o! stack

MPS Runtime Reference Manual
Mitchell
SRI/XPARC

call/Return machinery

MPS 10.0
ll AUO 72

PAGE 3

12: LncPtr: z Rettoc used to provi~e not-in-memory traps

l.3: P.etLoc:
absolute}

XCT ZSeginCore (MOVE C,bases ; Bases

14:

l.S:

MOVS n.c load code base register

JRST @•2(5) start at Exttoc word in frame

(sysdseg).PBS;.LBS=O;Systen Dseg Transfer Vector Area
: at the moment there is no MPL INCLUDE file for these
definitions; ~owever. the vector is declared in mplrun, and a set
o! the declarations appears in nucleus.

% ••• biggest index used so far -· 1563 3

%return code%

sysrtn=hOB %simple returns%

sysdrtn=l24B %deallocation returns%

%call trap cell%

fnt= 42B

%stack overflow%

sysovr= 448 %overflow on frame allocation%

sysov2= 468 %overflow from within body of code3

sysov3= 50~ 3overflOW on AOBJP of local call%

3alloca.tion3

xma.ke= j2B %make array%

xmkstr= 54B 3make strin~%

%p.rocesses3

create= 568 %create process%

destroy= 608 %destroy process%

run= 628 %run process%

MPS Runti~e Ref ~rence Manual
Mitchell
SRI/XPARC

stop= 6hB 3atop process%

pshenv= 66R %push environment%

popenv= ?OB %pop environment%

%ports%

msgtra.p= 728

pen~in~fauit= 7~3

portcall= 76B

%signals~

sig=lOOE

s1~port=l02B

sigprocess=lOILt3

err=l52B

errrirocess=l568

ctunw=l06B %catch phrase unwind for exit%

ctunw~106A %catch phrase unwind for exit%

resume=llOB 3 ''return" from signa.13

prcpsi~=ll28 %propagate signal%

joinbotn=ll~B %Join PORT and PORT%

joinproc=116B

joinvar=l20B

jointo=l22B

bine3=l26B

% numter of ar!uments checkin~ I

MPS 10.0
11 AUG 72

PAGE IL

toofewargs=l30B % caller supplied too few arguments ~

toomanyar~s=l32B 3 caller supplied too many arguments 3

MPS Huntine Reference Manual
Mitchell
SRI/XPAPC

MPS 10,0
11 AUG 72

PAGE 5

unbcunctfn=l34H ~ calls on unresolved fn descrintors come
through here %,

undefinedsignal=l36B % all signal variables are initiallY
bound to this signal code %;

% binding and other !aults associated with control %

undefinedsignal=l36B 3 all signal variables are initially
bound to this code %,

seg!ault=l40B ~ segment out of VM fault %,

badportcall=l42B % system called code for invalid port call
~.

controlfault=l4ilB % port call on a non-active process 3,

reso1utionfau1t=lh6E % port call on an unccnnected port %,

portretrY =l50B 3 pc of a process which stopped because of
a resolution or control fault points here for retry of the
port call ~;

% fixed tables 3

xwdtab=laoa

argcheck=200B

(functions).PBS; MPS function Calls

function returns, ar~uMents, and local variaoles are s~ored on
a stack.

Two m~chine re~isters are reserved for addressing the stack,
a tcp•of-~tack pointer S and a frame pointer F.

The ptac~ has the !011owing appearance:

S> (tenporaricsj
(loc~l variables} • K words

M) old ~

return link

Old S)

savect return (inter-segment calls)
[arguments) - m worcts

The stack is associ~ted with the currently executing
process (docrnos,processes,:>

MPL declarations for a stack frame, both from the ooint of

MPS Runtine Ref~rence Manual
Mitchell
SRI/XPARC

MPS 10.0
ll AUG 72

PAGE 6

view of the frame pointer and from the point of view of a
pointer to the saved return word are contained in tne MPL
INCLUDE file (mps,processdefs,l:wn).

The function call F(al, ••• , aN) results in the following code:

Same segment

---------·--PUSH S,,al
• • •

PUSH s.aN
AOBJP S,©SYSOVJ(SD)
PUSHJ S,t;NT~Y(C)

SUB S, X\iWTAB+N

Other se~ment

-------------}
J ·- same: push arguments
J

XCT @SUBR(D)
PUSHJ S,@SU6R+l(D)

J -- same: delete ar~uments

XWDTAB is ~lobal and in a fixed location.

XWDTAB{j] contains XWD j+J,j+J.

For inter-segment calls, the cells SUBH(DATA) and
SUBP+l(DATA) contain:

ADDR RJ£TLOC
ADDH XENTRY(C)

The entry (F) PROCEDURE(pl, ••• , pM) compiles ~ne following
cooe:

XENTHY: nHRZ Al,@O(S)
XCT ARGCHECK·X~DTAB-M(Al)
MOVS D,,C

ENTRY: PUSH S,M
XCT FNT(SD)
ADD S,XWDTAB+K-3
JUMPGE S,@SYSOVR(SD)

ARGCHECK is ~lobal and in a fixed location.

AP.GCHEGK[O] contains PUSH S,LOCPTR(D).

APGCHECK[-j] contains JSP SJ,@TOOFEWARGS.

ARGCHECK{j) contains JSP SJ,@TOOMANYARGS.

The register SD contains the address of the system data
segr:"Lent.

FNT(SD) contains MOVE M,S or a jump to the system if
currently tra~in~ procedure calls.

SYSOVR(SD) contains a jump to system code to handle stack
overflow.

MPS ~untime Reference Manual
Mitchell
SRI/XPARC

MPS 10.0
ll AUG 72

PAGE 7

K is the size of the stack frame for F's local environment.

Tne statement RETURN como1les the following instruction:

JRST @SYSRTN(SD)
where SYSRTN(SD) points to HTNCOD
RTNCOD: MOVE RS,S

MOVE S,M
MOVE M, 0 on
J~ST @•l(S)

The register RS <currently = A2, see REGISTERS above) is used
by the ca11er to retrieve the results.

Returns with multiPle results use the same system code.
j

The results are pushe~ in reverse order.

RETURN(rl, r2, ••• rn) results in

PUSH s,rn
• • •
PUSH s,r2
PUSH s,rl
JR 5 T t~ SYS RT N (SD)

on the calling side, x ~ p(: ml, ro2, ••• mn) resu1~s in

• • •
SUB S,XWDTAB
POP RS,x
POP RS,rrtl

• • •
POP RS,'1n

If tne lt1s's would endanger the results on the stack (e.g.
(f()J), then life becones more complex. The code for this
case is

SUB S,PS

MOVEM s,mrcell % mrcell is a compiler-allocated temporary
%

MOVE S,RS

POP'S Using s

ADD s,fn.,nJ

ADD s,rnrcell

MPS Runtime Reference Manual
Mitchell
SRI/XFARC

MPS 10.0
11 AUG 72

PAGE 8

Thi~ scheme protects the results by moving the stack eointer
over the1n and allows the caller to acce~t anY initial segment
of the multiple results, (I.e. if tne rou~ine returns ~
results an~ you on1y want the first 2, then you need onlY
store the first two.)

Multiwora scalars of length n are treated liKe n sin~le word
scalars.

In addition, there are some global data structures associat~d
with the function Nachinery.

Each link~~e (static data) segment contains a few words of
descriptive information:

SASES: XWD LBASE,CBASEj Linkage and code base addresses
LOCPTP.: ADDR RETLOC; Pointer to return routine

RETLOC: XCT ZSeginVM ;abSClUte address of cell in ~lobal
t~ble

MOVS D,C
JRST ~"2(5); P.eturn through saved actua1 link

There is a elobal table with one entry for each instance of a
code-aa.ta p~ir:

ZSe~InVM is a two-word cell containing in its first word
either

MOVE c.BASES (BASES an absolute address), or

JSP SJ,@Se~Faul~(SD) if the code se~ment associated
with the data se~ment is not swapped in.

The second word of each entry is used to save the BASES
a~dress when the J~P instruction occupies the first word,
and the segment number of the associated co1e segment (or
possibly a link chainin~ all the entries £or one code
segment to~ether).

Times for function calls using this scheme:

Total local call/return is about 29 microseconds.

Total exter~al call/re~urn is about 45 ~icroseconds.

!hese times are £or calls wi~h no ar~umcnts. For n woros of
arg~, add 3.9 * n for PUSH'ing before the call.

(port,calls) • PBS;

MPS port call machinery

MPS Runtime R~ference ManUAl
Mitchell
SRI/XPAFO

Format of a port:

MPS lO.O
ll AUG 72

PAGE 9

port: ZWD port,objectport % pointer to object port to
which connected and to myself (absolute addresses) I

ms£: XWD 400000.0
the null message 3

3 message buffer (initially contains

dser,rtr: ADDR dsegaOdr % dsegaddr is tne absolute address
of the dsei: in which the port resides %

star~up: JPST ~statePCCLB) % usect bY portca11 machinery to
resume the process to which this port belongs 3

MPL declaration~ for ports are contained in the INCLUDE file
(mp~ 1 processdefs,1:wn).

code !or (lhs ·~1 'PORT ' (portname ('. message} f'l ctchp) •);

In-line code:

The in-line code produced depends on

(a) Whether the portname 1s local, and

(b) wnether the PORT call is in an expression.

If the portname 1s not local, tnen the address of the port
is calculated and saved. lf it is local, tnen it can
~i~PlY be aadressed a1rect1y.

If ~he POHT call is used in an expression, then control
must reenter the process over the same port and there must
be a non-null messa~e waiting in the port or an aporopriate
trap is causetj.

The following is a detailed description of the in-line code
produced.

First, it may be necessary to save certain re~isters on the
s~ack if the ?ORT call is part of a cornolex expression
b~in~ evaluated.

Message value is lo~ded into re~ister Al.

If the portna~e is local then

Load register p with ~he connection word from the port,

JSP 5J.~PORTCALL(SD)

I! there is a catch phrase, produce code for it here.

MPS Runt1~~ Reference Manual
Mitchell
SRI/XPARC

Else (portnaMe not local}

Load address of port.

MPS 10.0
ll AUG 72

PAGE 10

Load register P witn the connection word from the port.

If the PORT call used in expression then push port
adrtress on stack so that can check later.

Push D register so can restore later.

This is necessary because m~y be doing PORT call for
some other process, which means D not eoual to LB.
system co1e for port calls sets D to LB when starts up
process, so when control cones back to this Process
will not have proper value in n.

JSP SJ,@PORTCALL(SD)

I! there 1s a catch Phrase, produce code for it here.

Pop stack to D re~ister.

If the POH~ call used in expression, then POP stack to
register ~a that can test later to ensure that control
has returned over same.port. (Hegister RP is used for
this currently).

If the ?ORT call value was to be loaded 1nto some
register other ~han Al, then ~eve it.

New restore any registers which were saved initially.

If the PO~T call was not used in an expression, then done.

Else, must check port and message.

HHRZ P,P to make P = address o! port.

If portname was local then CAIE P,portaadr

~lse CAME P,HP co~pare to address which was savea on
stack.

JSP SJ.~PENDINGFAULT(SD) to indicate that control did
not return over sarae port that left.

CAMN ac,NULMSG coMoare ~essage to null message.

JSP SJ.~MSGTPAP<SD) to indicate that port call returned
null messaF.e.

If there was a catch phrase, tnen produce (nonjumping)

MPS Runtime Reference Manual
Mitchell
SRI/XPAHC

MPS 10.0
ll AUG 72

PAGE ll

JUMP instruc~ion here wnich addresses the start o! the
catch phrase coae,

Finally, MOVEM NULMSG.PortMessa~eBuffer to indicate that
the nesaage has oeen "removed" tor use in the exoression.

code in MPLRUNTIME:

portcallX: riLRZ A2,P % must ensure that port belon~s to
process in control %

CAME LB,~segptr(A2) ~ comoare controlling dseg address and
dseg addr to which subject port belon~s %

JUMPA BadPortcall(SD) % comb out if not equal %

MOV~M s,states(tB) save stack pointer of subject orocess

MOVEM M,stateM(LB) save fra~e pointer

MOVEM SJ.StatePC(L8) save program counter

MOVSM P,CP) make object port connected to subject port

HR~Z LB,dsegptr(P) be~in startup of object process by
getting base of his dseg.

XCT Rettoc(tB) %move Bases into register c (and checK for
code segment not-in-memory)

MOVE D,LS load D register (=LB contents)

MOVE M,StateM(LB) load frame pointer

MOVE s,stateS and stac~ pointer for object process

JRST startup(P) fire up tne object process

(modules).PRS;

<code) MPS Object Code Format: MPL declarations for the blocks
in an object module may be found in the INCLUDE file
(rnps,~oauledefs,l:wn).

An MPS object code file consists of a series of blocks, each
carrying length and type information.

The first word Of a block i~ XWD TYPE,LENGTH.

The TYPE is one of the followin~ codes:

O - empty space

MPS Runtime Reference Manual
Mitchell
SRI/XPARC

l - code

2 •.hash table

3 - symbol data

4 - name table

5 - structure table

MPS 10.0
ll AUG ?2

PAGE 12

The LENOTH is the number of words in the block, including
the heaaer word.

LENGTH=O is an error, except that TYPE=LENGTH=O
signifies the end of the file,

The rest of the block (LENGTH·l words) is interpreted
accordin~ to TYPE.

The first block in the file always contains the code for a
module.

The first few words o! the code block contain information
for the MPS loader.

word l contains a zero if this is a DATA module;
otherwise

word 1 left ~alf contains

the displ~cement of the first instruction of tne code
segoent aft~r the initialization cooe (i.e. the
procedures),

word l right half contains

the displacement of the first instruction of the
process body (i.e. after the procedures).

word 2 left half contains

the displacement of the first of the literals (i.e. the
word following the actual code).

~ord 2 right half coniains

the size of the data seg~ent.

word 3 ri,ht half contains

hash index for module name.

wcrd 4 is the entry for the initialization code.

MPS Runtime Reference Manual
Mitchell

MPS 10.0
11 AUG 72

PAGE 13 SRI/XPARC

Tnig is a procedure of one ar~ument (the number of
woros of arguments passed to_ the CREATE operation).
These ar~u~ents hAVe been stored into tne first worcts
of the data seg~ent. I! the count is incorrect then
tnere Will be a trap ~o the system like that for a
procedure call with the incorrect nuMoer of ar~uments.

The code itself follows.

The cede assumes that the CODE base r~gister is loaded
with the origin of the file, i.e. the address of the
T~PE,LE~GTH word of the code block.

Unlike the situation in LlO, all subsequent words in the
code area are genuine instructions.

Liter~ls follow the code.

Every module also has a hash table block, a block of semantic
entries, a block of name strings. and a block Riving
structural information relating the object code to the so11rce
stat~ents.

A type 2 block (hash table) has an extra word following the
LENGTh word Which contains in its left and right halves,
re~pectively, the following:

The left value. x, is the size in woras of the i~dex
por~ion of the ha~h table which follows,

The right value, h. is the number of hasn table entries
in the block beyond the index portiion of the table.

These two v~lues ~re required by any routines using
symllO to access the tables because the routine settbl
needs to be told x and h as its second and fourtn
arguments, respectively.

Let m be the value in the rient half of the 286 header;
then m, x. and h are related as

m = 2 + x + 2*h
i.e., M includes the two header words, the nuMber of
index wor~s, and the hash entries (Which currently
require two woras each).

All rel~tive links between the hash table and the name and
semantic olocKs are relative to the first da~a word of the
block; this is word l in ~he se~antic atid name blocks, and
were 2 in the hasn table blocK.

The for~at of semantic entries is described in
(DuCMFS,DOCSYM,).

MPS Runtime Reference Manual
Mitchell
SRI/XPARC

MPS 10,0
ll AUG 72

PAGE 14

A type 5 (structure) block contains a s~quence of words of
the forn XWD lc,,bytes.

The le indicates the displacement in the code corresponding
to the start of a source language statement (SLS}.

The bYtes are six bit~ wide and are used to encode the
structural position of this SL~ relative to its predecessor
(er to the origin if ~his is the first SLS).

T~e first byte is treated specially:

Byte=N. N IN [0,631 -- go up N levels in the structure.
In other words, depth in the trpe is decreased bY N.

All subsequent bytes are treated the same, namely:

Byte=o -- ston here.

Byte=~. N I~ ll,63) -- take Q;N MOD 16 successors, q
(l,151. and then go down M=N/16 ievels, MIN (0,3).
~o Q successors, increment position at current deptn
Q. When ~o down M levels, M > o. increment depth by
and set the position at each new level to l.

As many worcts are usect as necessary to encode the new
position: the le is simply tne same in each word. Most
common relationships can be encoded in a single wora.

IN
when
by
Q

(sy~bols) Cor1text usage in MPL(A}: MPL declarattons for context
usage in object mo~u1es 1 and sy~bol type declara~ions can oe
found in the INCLUDE file (mps.modulesymdefs,l:wn) •• PBS;

CTX pdctx

For module names. procedure descriptors, and directory link
strin~s.

CTX xlctx

For first word or external or forward proce~ure calls -­
not cutout.

CTX x2ctx

For second word of external or forwar~ procedure calls -­
not output.

CTX lsctx

For literal strings.

MPS RuntiMe Ref erenr.e Manual
Mitcnell
SHI/XPARC

CTX metctx

MPS 10.0
11 AUG 72

PAGE 15

For tokens and spec1al variables used with MPLMETA.

CTX mplctx'

For special use in co~piler -- not output.

CTX prctx

For outer~ost scope of module.

currently pdctx=O, xlctx=l, x2ctx=2, lsctx=3, metctx=4,
mplctx=~. orctx=6.

The hi~her numbered contexts are used for

INCLUDE'd modules

procedures

Format of sem~ntic aata entries: MPL decl~rations for the
symbol type field and its possible values can be found in the
INCLUDE file (rnps,moctulesymdefs,l:wn).

in first word of entry

attributes 13 bits at position 19

!rom ri~ht to left in the attribute field

defned defined id

linked referenced but not yet defined

const -- compile-time constant

noout -- do not output to object file

type(SJ -- type of the id (see below)

word 2 of se holds syste~ in!o

word J of se holds *V

word 4 of se is usea for constval and dirlink

word S of se is used for nwords and contx

word 6 of se is used for numarg

MPS Ru~time P.eference Manual
Mitchell
SRI/XPAPC

(~Ymtypes) TYPes of entr1es

UNDEF=O undefined

MPS 10,0
11 AUG 72

PAGE 16

Semantic entries are initialized to zero. so type is
automatically UNDEF wnen entry created.

PROCD=l local procedure

Under prctx

*V is external efltry point

(*V+3 is internal entry point)

@contx holds the conte~t number for local declarations

@numarg = number of wo~DS of arguments

If has entry under pdctx

*V is location of procedure descriptor in dseg

This should be initialized bY CPEATE to hold actual
desc~iptor.

May have had entries under xlctx and x2ctx if there were
calls made on the procedure before it waa defined. These
entries used to fixup such calls, then are "deleted'' (not
output).

LAB=2 label

*V is location of first instruction of the statement
following the label.

MWS=3 MUltiword scalar

*V is loc of first word

@nwords = nu~ber of words

PORT=4 Ports

*V is loc of first word

@nwords = numher of words

SIGCOD=5 signal code

*V is loc

MPS Runtime Reference Manual
Mitchell
SRI/XPARC

MPS 10.0
ll AUG 72

PAGE 17

CREATE ~houl~ initialize this cell to hold its own
segmented address. All s1~coa 1 s are in the dseg, even if
declared in a proce1ure.

@r.words = number o! words

VAR=6 nor~~l identifier

1! @S const then tnis is constant and value is in @constval

else *V gives lee of variable

Under metctx -- a special variable for compiler.

*V gives location in aseg.

Nane indicates which variable.

'nextto~en' -- pointer to next inout token (for META).

•outword' -- pointer to wora holdin~ next output (for
OUT).

•outline' -- oointer to string holding next output (for
SOUT).

FIELD=? id's declared as FIELD or in RECORD

i! ~s const then this is a constant iield and @constval
hclds thP. field descriptor (byte pointer)

else is variable field and *V gives the loc

MODULE=o named of modules

Under Pdctx

if *V # o then this mo~ule was INCLUDE'd and *V = context
number for declarations in that module

else this module name was not INCLUnE'd Dut has been used
in CR~AT~ or other dUCh sta~ement

if @dirlinK # o then module was INCLUD£ 1 d ana @dirlink ;
hash of string usect to access the module.

If the linK cont~1ned (dir,file,junK), tn~n the strin~
will be <1ir>file followed by a zero character.

XPROC=9 external proceaure

Under Pdctx

MPS Runtine Reference Manual
Mitchell
SHI/XPAPC

MPS 10.0
ll AUG 72

PAGE 18

if @dirlink # o tnen this name was listed in DIRECTORY
and Gdirlink = hash of string containing link from
directory

The strin~ actu~llY contains everything that was
written between tJe parentheses of the linK.

@numar~ = number of WORDS of arg~ assumed (or •l if no
calls actuallY made)

*V = loc of first word of procedure descriptor in dsei.

CREATE should initialize descriptor ~o trap if used
before bound.

Entries under xictx and x2ctx used to fixup calls but not
output.

ARRAY=lO statically allocated arrays

*V contafns addr of first word of array

RECOHD=ll !or id used as naMe of record

~nwords contains RECORDSIZE (i.e. the number of words
nee~ed to ho11 a.n instance of this record).

PROCV=l2 variables declared to be procedure

*V is loc of first word of descriptor

Where possible (i.e. in dseg) these should be initialized
to trap.

@nwords is size of descriptor

STH1NG=l3

*V is loc of pointer to descriptor

unaer lsctx

literal string initialized by CREATE

Under other contexts -- string variables

ARRAYV=l4 array variable (holds pointer to array)

REGISTE~=l5 fixed location scalar

SIGVAR=l6 signal variable (holds signal co~e)

UXPHOC=l? unreferenced external proce~ure -- not output

MPS Runti~e P.cf erence Manual
Mitchell
SRI/XPARC

MPS 10.0
ll AUG 72

PAGE 19

NODENAME=l8 symbol used as tree na~e in MPLMETA construct

Under metctx.

*V gives location in ctseg !or name table index when
initialize the parser.

TOKEN=l9 sy~bol used as token in MPLMETA construct

Un6er rnetctx.

*V gives location in dseg for token when initialize the
parser.

use of father-son linkin~ capabilities

The se for the na~e of the module being compiled is the root
of the tree.

The hash index for the module n~me is stored in the object
file as ctescribect elsewhere in this file.

Immeaiate sons of this se are

l) outref XPkOC 1 s and literal strings

2) module arguments

3) directory names

if directory entry is an INCLUDE. then tree for the
inc1u1eu aeclarations is under ~he se for the name of the
module.

~) variables ~eclared in the module

5) procedure names

6) labels in the bo1y of the module

Sons of the procedure name se are

l) formal par~meters

2) local declared id's

3) local labels

Records are structured as tree under the se for tne record
name.

MPS Runtime Reference Manual
Mitchell
SHI/XPA?C

MPS 10.0
ll AUG 72

PAGE 20

The tree structure re£lects the structure used in the
record declaration.

(signals}.PES;

significant fea~ures

continued oropagation through dynamic scope until signal
terJl'lina. te•:i.

Pass mess~ge as well as signal code.

Return value as result 0£ si~nal.

Special UNWIND si~nal to allow cleanup.

Signal frame

A signal £rane contains

a !lag set in the return word indicating a si~nal frame

pointer to the frame whose eaten phrases are being executea

pointer to the process which ori~inated the signal

global name of signal code (segmented address)

signal message

a flag indic~ting whether RESUME is legal for this si~nal

The signal frame is always on the stack of the process whose
catch phrases are beini executed.

Signal proPa~ation a.nd termination

A signal is said to be terninated when some eaten statement
executes either

a kESUME. or

a branch out of the eaten phrase (such as RE~URN or EXIT).

In the iirst case

the signal frame is deleteu

MPS Runti~e Reference Manual
Mitchell
SRI/XPARC

If 4 RESUME is legal, then

MPS 10,0
ll AUG 72

PAGE 21

the process which originated the sign~l is given control

Else a new SIGNAL is ~enerated indicatin~ attempt to resume
after "unresumable" signal.

In the other ca~es

the stack of the proc~ss ter111inating the sir,nal must be
unwound back to the point where the signal is beine
terl'llinated.

Before a frame is deleted, a special signal (UNWIND) is
givPn so that any necessary housekeeping can be performed.

If a signal is not termina~ed within a process, then it is
propa~ated to the cre2~or of tnat process, ihe si~nal trarne
is deleted irom one st~ck and recreated on the other.

RESUME statement

RESUMR can return a va1ue and thus any si~nal (SIGNAL, SIGNAL
PORT, or 3IGNAL PROC~SS) can be used in an expression.

If RESUME does not exn11citly specify a value, then the
speci~l value NULLMESSAG£ 1s usea. If a signal is used in an
expression and ~ets back a NULLMESSAGE. tnen a MESSAGEFAULT
trap is cau.sed.

The same trap occurs when a PORT is uaea in an exoression
and fails to return a value and when a EMPTY specifies a
port containing NULLMESSAG~.

It is possible ~o attach a c~tch phrase to the signal to
handle this trap or others.

It Will often be the case that the si~nalling program is no~
willing to te resumea, To make this explicit and to allow
tne ~ysten to intercect ille~al attempts to resume, 'ERHO~
may be used in olace Of 'SIG~AL. Thus ERROR, E~ROH PORT. and
ERROR PROCESS all behav~ liKe tne corresponding SIGNAL
stateMPnts, except control can not return be means of a
RESUME.

scope of catch phrase and propo~ation of signals

A eaten Phrase covering a statement list may occur at the
be~inning of

MPS Runtime RPference Manual
Mitchell
SRI/XPARC

the oro~ram body,

a procedure body, or

a block.

MPS 10,0
ll AUG 72

PAGE 22

Such catch phrases are enabled throu~hout the execution of
the statement list. TheY are automatic4llY disabled when the
statement list is completed or left bY a branch statement.

A catch Phrase whicn covers a function call or port call is
e~abled ~hen control leaves and is disabled When con~rol
returns.

A cat~h Phrase is never en~bled When it is bein~ executed.
In othPr words, the scope or the catch phrase rtoes not
include the catch phrase itself.

llilPlerientation

A s~sten rou~ine is called to propagate signals.

This routine "calls" the innermost enabled eaten phrase with
the si~nal code, signal message, ano pointer to original
fraMe as a.rgu1f1e1"\tS.

The·catch phrase is compiled to use the pointer to access
local variables of ~he ori~ial frame.

Control returns to the system routine if the signal is to be
propagated beyond this frame.

Tnu~ the main problem for the syste~ routine is to deterroine
the entry point of the innermost enabl~d catch Phr~se.

If control left the fraMe bY a function or port call. then a
catch phrase associ~ted With that call would necessarily be
the innernost one.

The reactivation location for the frame (stored as the
process PC or t,e return location of the frane above it on
the stack) is used to loOK for the presence of a catch pnrase
associated with the call.

In the PDPlO imp1ementationJ catch phrases always cegin
with a JUMPA \nstruction wnich branches around the body of
the catch phrase. The svstem routine looKS for the
presence of this instruction iOllowin~ at the reactivation
location to deterNine wheth~r there is a catch phra~e with
the call.

MPS Runtime Reference Manual
Mitchell
SRI/XPA.RC

MPS 10.0
ll AUG 72

PAGE 23

If there is no catch Phrase with.the call, then the innermost
enabled catch Phrase is associated with a statement list
containin~ the reactivation location.

To helo the system routine find the entry point in this case,
all frames cont~in a pointer to the innermost enaolea catch
phrase wnich is associated with a statement list.

If the pointer is ~ero, tnen there are no enabled state~ent
list eaten phrases.

A flag in the return word (which is automatic~llY zeroed on
calls) indicates whether this pointer has been set. If the
!la~ is zero, then there are no enablea s~atement list
catch Phrases.

If the si~nal is not ter~inated oy the catch phrase, then it
must be Prooagateii. If this is the last (1.e. outermost)
enabled c~tch Phrase as~ociated with the frame then con~rol
i~ simply returned to tne system routine. otnerwise. control
is transfered to the innermost enclosine enabled catch phrase
(Which can be determined at compile time since catch phrase
scope is lexical).

Signal Codes and SiF:nal Va?'ia.bles

The siRnal code~ name the siKnal. They occur as the first
ar~ument of the signal statement and at the head of catch
phrase cases.

There are syste~ defined codes (UNWIND. PORTFAULT, etc.) and
user de!ined co~es.

user define~ codes are simply identifiers. There is no
special declaration for such codes. An identifier used as a
signal cannot be usea in other capacities within that
context.

Since signals can be passed between processes, it must be
possible to indicate t.nat a signal code .in one proces3 is to
be the sa~e as ~nether 5ignal code in another process. This
is simply a name binaing problem and is handled by tn~ usual
machinery (i.e. si~nal codes are bound by tne same
mechanisms th•t are usea to bind external procedure names).

There are SIGNAL variables Which can hold signal codes.
(SIGNAL variables are to si~nal codes a~ PHOCEDURE variables
are to external proce~ure references).

MPS Huntime Reference Manual
Mitchell

MPS 10,0
ll AUG 72

PAGE 24 SHI/XPAl<C

Misc

In those cases where a trap can be caused after control iR
returned, snecial means are required to determine i! there
was a c4tch phrase associated with the call.

ExaJTiples

PENDINGFAULT -- control did not come· back thru the same
port

MESSAGEFAULT -- expecting message but did not get one

In the PDPlO irn~lementation, these traos are initiated bY
inline code following the ~all (and following the catch
phrase if tnere is one),

The trap is actually a call to a system routine Which
generates an appropriate siinal. If there is a catch
phrase associated with the original call, ~hen it must he
given a chance to catch this signal. Since the pointer to
the call is no longer available, it is instead stored by
the compiler as the adJress of a JUMP instruction (Which is
actually a NOP) following the system call to produc~ th~
trap. If there is no JUMP instruction followin, tne systP~
call, tnen tnere is no catch phr~se with the original call.

Since a teqt for PENDINGFAULT is always followed bY a test
!nr MESSAGEFAULTJ there is onlY one JUMP instruction
produced whi.c l1 is ''sh a.red 11 by these 't,WO. The PEND I NGF A ULT
system routine know~ to look past the inline code !or the
M~SSAGEFAULT test for the JUM~ instruction.

(strings).P.!35;

This section descrioes a strin~ system for MPS which we will
i~plement in order to get M~S off 't,he ~rouna.

We intend that it be reolacect bY 80Mething closer to the
proposal in (DOCST~,) at some future date.

Language syntax and semantics

A variabl~ of type STRING is meant t6 hol~ a pointer to a
string ~escriptor.

String descriptors are allocated from a "heap", either
automatic~llY or bY system functions accessible to the
programmer.

A STRING variable gets a descrio~or allocated for it on

MPS Runtime Reference Manual
Mitchell

MPS 10,0
11 AUG 72

PAGE 25 SRI/X?AP.C

procecture entry (or process creation), and deallocated on
pr6cedure exit (process aestruction).

A diMensionect strinr. like a di~ensioned array, gets
its hody ~llocated in the same way.

Tne automatic alloca~or actually associates with each
frame or proc~ss a list or the stor~~e allocated for i~,
so tne ri~ht thin~ nappens even if a sLring variable is
subsequently used to hold a pointer to a user-allocated
descriptor.

TYpes of string descriptors:

l) Expl1cit-strin~ descriotor

points to block o! characters

Fields

Front

first character of text block which is contained in
this ~tring

End

first character of text block which follows this
string

Maxend

maximum value !or End betore overflow this text
block

Pointer

address of text block

I dent

This field is available to hold program-specific
information. It can be written and read bY user
prograMs and is intended to hold information wnich
will help ~he program identify the string.

2) Implicit-string 6escriptor

Fields

keadFunction

MPS Runtime Reference Manual
Mitchell

MPS 10.0
11 AUG 72

PAGE 26 SHI/XPAP.C

Descriptor of function used to read characters in
the string.

WriteFunction

Descriptor of function used to write characters in
the string.

LengthFunction

Descriptor of function used to find and set the
length of the strine.

I dent -
sa~e as above.

on a read access, the system returns the result of

ReadFunction(String, Position).

on a write access to tne strin~, tne system calls

WriteFunction(String, Posit1on, Char).

When the length of the strin~ is requested, the system
returns

LengthFunction(String, O).

TO set the length of a strin~, the system performs

LengthFunction(String, l, Ncnars).

The tengthFunction is intended as a catch-all for which
additional uses maY be found in the future.

There is ~o special syntax associated with strings.

Assignment for strin~~ is defined as si~PlY copyin~ tne
pointer ~o the descriptor.

Mention o! a string variable refers to the pointer.

Special action is taken for literal strings.

For the moMent, literal strings may appear only in the
pro6r~m, not as initialization or parameter values.

Functjons to be provided

Wnere a strin~ is listed As an argument, a pointer to &
strin~ aescriptor is actuallY required.

MPS Runtime keference Manual
Mitchell
SRI/XPAPC

MPS 10.0
ll AUG 72

PAGE 27

Functions for settin~ the fields Of string descriptors

Makestruesc(String, Front, End, Maxend. Pointer)

The ~escriptor pointed to by String is made an
ex~licit-string descriptor witn fields set to the values
passed for the other arguments.

(The Ident field 1s unchanged by tnis ooeration. It is
initialized to zero when ~he descriptor is created.)

The Pri~ary use o! this f unc~ion will be to make a
descriotor which points to a text body in a private
stora~e area.

(I'M afraid this Will reouire knowledge of how characters
are countea in text blocks.)

MakeimpstrDesc(String. ReadFcn, WriteFcn, Lenr,thFcn)

The descriptor pointed to by String is made a
implici~-~trin~ descriptor with fields set to the values
passed for the other ar~uments.

(Aiain, the Ident field is unchanged.)

SetDesc11ent(string, Ident)

The Ictent field o! the descriptor is set to the Eiven
value.

Numwords ~ wordsForBocty(Nchars)

Returns count of how m~ny words will be required to hold
the specified number of characters.

Functions for getting info from string descriptors

From any string descriptor

STHTYpe(String)

STRident(String)

STRLast(String)

Returns the index of the last character in the strin~.

STRLength(StrinP,)

Returns the current len~th of the string.

The values of STP.Last and STkLength are calculated from

MPS Runti~e ~~ferPnce Manual
Mitchell
S:RI/X?ARC

MPS 10.0
11 AUG 72

PAGE 28

the Values of the Front and End fields for explict type
strings and from the value of LengthFunction for implicit
type strings.

The fol1owin~ f unct1ons sinPlY provide access to various
fields of the descriptors.

From explicit-strin~ descriotors

ST~Front(String)

STREno(String)

STRMaxend(String)

STRPOinter(String)

From iMplicit-strin~ descriptors

STRReadFcn(String)

STRWriteFcn(String)

STRLen~thFcn(Strin~)

Functions imple~enting language features

The follo~ing !unctions are needed to implenent string
features Which Will soMedaY be added to the language.

Functions for accessing characters

These two functions are used to implement strin~(expJ as
a left hand side ~n M~L.

NthChartStrin!. Position)

toads the character fro~ the specified position. If
position is not ~1tnin the oounds ot the Strin~·a
speci~l value EOS (End Oi Strin~) is returned.

setNthChar(string, position, Char>

writes the cnaracter at the specified position. If
position is beyona tne end of string, an error is
generated.

functions for strin~ construction

SetStrNUll(String)

Resets the string, i.e. sets End=Front.

MPS Runtine Reference Manual
Mitchell
SRI/XPARC

SetStrLength(String. Nchars)

MPS 10.0
ll AUG 72

PAGE 29

sets the length of the strin~ to Nchars, which must lie
in (O, Maxend-FrontJ.

Appenctstring(To, From)

AppendChar(To, Char)

AppendSUbstrin~(To, Fro~, First, Last)

If First<o, First is taken as o; if Last>STRLast(To},
Last is ta~en as STRLast(to).

AppendBlanks(T~, Count)

Functions for creating and aestroyin~ strings

The lifetime of a declared string is limited to the
lifetime of the scope in which it is declared, In other
words, when a Procedure returns or a process is destroyed
all strings which w~re aeclared in that procedure or
process are automatically deleted,

The following functions provide for the creation of strin~s
whose lifetime is explicitly controlle~ oy the ptoErarnmer.

refstring ~ Makestring()

The function MakeStrin~ returns a pointer to a descriptor
for a null string.

ReleasP.String(refstrin~)

The r~ferenced string is deleteo.

Functions for general storage allocation

There are also some procedures for allocating and
deallocating storage on tne heap. whose use is not limited
to strings.

refblock ~ MakeBlock(n)

Peturns a pointer to a newly created block of n words.
Th~ block is guaranteed to contain only zeros.

Releaees1ock(refblock)

Deletes the referenced olock. As usual, the programmer
is resconsible for ensuring that no pointers to the block
remain.

MPS Runtime Reference Manual
Mitchell
St<I/XPAPC

SplitBlocK(refblcck, n)

MPS io.o
ll AUG 72

PAGE 30

The referenced bloc~ is sPlit. After the operation,
refblock refers to an n•word block consisting of the
!irst n words of the old blocK; the rest of the old blocK
is delet.-ed. I! n is ~rea t.er than the len~th cf the
block, an error occurs.

BlockSize(refblock)

Heturns the length of the blOCK in words.

I=nPlernentation

The RH of the system word of a procedure frame is the head of
a chain of automatically allocated blocks for that procedure.

This includes string ctescriotors and s~ring and array
bodies.

The alloc~tor chains all the blocks it creates through a
pointer in f-1,18:0) of the block.

f-1,l?:lo) is used for the blocK length and (·l,1:351 for
a free flag.

There is a bit in the return word in a frame which is cleared
by PUSHJ and set When the first block is allocated.

The syste~ and return words in the iake frame in a dseg are
useu in the same way £or the automatic storage for the
process.

The compiler ~enerateR a different return instruction for a
proceaure return if it is possible that automatic storage hs
been allocated.

The deallocator must check the bit. since in the future it
rnay be possiole to have automatic storage Which does not
show up explicitly in the declarations.

The DESTROY procedure must check the bit for process
stora~e.

For the moment. the literal strin~s appearing in a progra~
are collec~ed together under a new reserved context in the
symbol table.

The context nu:11ber :i.s 3; thie .. name" is the text of the
literal; the 11 va1ue" is the dseg location for the pointer
to the oescrintor.

When a process is created froM the program. the CREATE

MPS Runtime Reference Manual
Mitchell
SRI/XPAPC

MPS 10.0
ll AUG 72

PAGE 31

procedure 1s resoonsible for allocatin~ ~escriptors and
bodies for the strings. copying their t~xt (Which appears in
tne symbol table) into the body area. and setting up pointers
in the dse~.

The storage allocated in this wav persists for the lifeti~e
of the process just like static strin~ variables.

(fsp) .PBS;

The free stora~e pac~age provides a simPli!iea zone tyoe
storage allocation sys~em,

The followin~ procedures are found in (MPs. FSP,).

MakeZone(zone,size)

The "size" words of storage starting at location ~iven bY the
(virtual ne~ory) ~ddress "zone" is initialized to be a
storage zone. After this has been done tne zone can be used
as a parame~er of the following procedures.

LinY.s used by the free stora~e package are all maintained
relative to the st~rting location of the zone. Thus the zone
may be relocated Without disturbing its use.

Generates the following signal:

BadZonesize -- on FDPlO size must be between 6 and lOOOOOB
words.

node~ Ma~eNode(zone.size);

Returns (virtual memory} ad1ress of node of "size" words of
user stora~e. in the specified zone.

Generates the following signals:

BadNodeSize -- size <= o,

NoRoominzone -- cannot find space !or node of size words.

Return the size in word~ of the node.

FreeNode(zone,node);

Release the storage occupiea by. the node.

SPlitNode(zone,nocte,size);

MPS Runti~e Reference Manual
Mitchell
SRI/XPAP.C

MPS 10,0
ll AUG 72

PAGE 32

Split the specifie1 node into two sections -- the first of
Whicn is a node of size words, the second of which is freed,

(names).PBS;

This section describes how processes. as well as variables and
procedures in theM and the modules from which they were created
are named and accessed.

The fo116wing rules and their consequences apply:

(a) The context in which a system routine is called, alon~
with cor.plete aualification within that context are ooth
required to name a process.

Process naming syntax:

processname ::= (processidJ St•. processid)J

processid. ::= •

If the optional, leadin~ processid is not present (i.e., if
the processname be~ins with a ".") then the context within
Which the name match is to be PPrformed is the root of the
segMent narnin' tree. Otnerwise, tne context within Which
the name is to be matched is the context of the process
Whose dseg address is in tne D register (''whose static data
is current" as opposed to "Which is in control" - the La
register is the address of the dseg of tne process which is
in cont,rol). · ··· ·

(b) Given the segment numoer of a dseg (possibly a stack
se~~ent) - Which MaY be obtained bV coercing a processname.
an cbj~ct in tne dseg can be referred to bY the syntax

objectname ::= prccessname S(' •• ID);

Since a processname must be coMplPtely oualifieo, there is no
ambi~uitY in th~ Meaninr of the .ro•s.

Module and process naMes:

A complete TENEX file n~me is a module name. A simple
identifier used as a mo1u1e name must be oound to a ttNEX
file na.me. Tne mechanisms for accomolishin~ this are

(~) at co~pile time:

the directory of a MPL program contains an entry such as

(directory, file)

Then ~ny use of Moduleliame is equivalent to usinE the

MPS P.unti~e Peference Manual
Mitchell
SRI/XPARC

MPS 10.0
ll AUG 72

PAGE 33

TEN~X file (directorY>file with the normal TENEX
conventions on file names and comPlP.tion of incomplete
file nanes.

(b) at execution time:

The run-tiMe se~ment space is accessed to determine if
there ~xist~ a process whose narne is ModuleName which is
accessible bY the conventions stated below for se~ment
names. If such a process exi3ts, a match h~s been found.
Otherwise, a st&ck of dlrectory fil~s is searched to ~ap
the module na~e to a file name. A directory file is a
seQuential text file with entries of tne form

'(.ID') '(directory'.file ['.name}')

on separate lines (anything at all can follow the second
right parenthesis).

A directory file is searched from line o to the last line
0£ the file, in orrter. If no match is found in the nest
current dir~ctory, the next most current directory is
searched until the ctirectcry stack is exhausted, at which
time a signal (Un~efinedModule) is ~enerated. ·

Files can b~ pushed onto the airectory stack or removed
bY the MPL proceaures Ne~D1rectory(ST?ING filename) and
HemoveDirectory(STRihG !ilen~me). If the argument to
ReMOVeD1rectory is the null strin~, the directory file on
the top of the directory stack is removed; othewise the
named file is deleted.from the directory stack, if in it.
NewDirectory puts the name of the file on the too of the
directory stack a!ter !irHt removing any occurrence o!
the s~me name in the stacK.

Binding Proedure Names

An external procedure p Which is not declared as a procedure
variable and is used in a process X is bound at run-~ime when
it is first called fro~ ~ithin x. This can be overridden by
an explicit BIND s~ate~ent at any ti~e or by a call on tne
syst,em-supolied procedure 3indProcedures(dsegna.me).

If there waa an entry for p in X's cornpile-tilile <1irectory
then p will be bound to the proceaure in the declareo file,
if an instance of it exists. If no instance of that file
exists, the si~nal Module~otcreated is ~enerated. If p haa
no directory entrY in X, tnen the system will attempt to bind
p bY finding d.n instance of a procecture wti1 the sa:ne na.:;ie.
The name is sought accordin~ to the following algorithm:

(Namesearch) :

MFS RuntiMe Reference Manual
Mitchell
SRI/XPA?C

MPS 10,0
ll AU3 72

PAGE 34

(a) x•s si~lin~ processes are searche~ for an object named
p of the same type as p in X. If exactly one such is
found, x.~ is oouna to it; if more than one such is found,
a signal. A~bi~uousName is generated.

(b) If no match for p is found arr.ong X's siblings, then X's
parent is searched !or a match; if none is found, X's
grandparent is searched, etc. If the root of the segnent
tree is reached witr1out a match, then the signal
Reso1utionFau1t is generated.

Whenever ~n unbound procedure variable is called, the
Resolutionrault signal is Eenerated so that the binding nay
oe done by any pro~ram willing to catch the signal.

(bootstrap) .P•3S;

This section gives ar. overview of the bootstrapping process by
which the MPS comes into existence, both ini~ially, and later
when ~PS exists to bootstrap itself.

An r,10 pro~ram (on the PDP•lO) maps into the "bottom" of
memory the following files:

MPLNUCLEUS

this pro~ram will be ~iven control after the LlO program
has finished. It complet~s the job of creating the MPS
environnent. It is described more £Ul1Y in the next
section.

MPLRUNTIME

this program contains the run•time support code and
system transfer vector for MPS. The NUCLEUS will help it
to set up the environ~ent.

S~.GRUN

This is the se~mentation machinery. MPLNUCLEUS will ~ass
on information given it about the whereabouts of
MFLhUCLEUS, MPLHUN!IHE. and SEGBUN so that S~GRUN can
initialize the se~met tables correctly.

The LlO prograrn then a.lloca.ttes snace at the "top" of memory
for data se~ments for eacn Of the three above MPL pro~rams.
The addresses of each of the prograMs and their data segments
are placed in a fixed place i~ the MPLNUCLEUS ds~g.

A stack se~ment is also allocated below the dat~ segments at

MPS RuntiMe Reference Manual
Mitchell
SHI/XPARC

MPS 10.0
ll AUG 72

PAGE 35

the top of meMory. It belongs to MPLNUCLEUS and its address
will be Placed in the standard place in MPLNUCLEUS' ~seg.

The MPS bootstrapping NUCL~US

Control is given to 'tlhe MPLHUNTIME "orocess" so tna.t it
can initialize the system transrer vector, the SD reeister,
and tne ARGCH~CK and XWDTAB vectors.

All procedure descriotors should either be bound bY the
NUCLEUS (which means that it ~ust know all the uses of SEGRUN
irom within MPLRUNTIM~ and vice versa) or snould cause a trap
which the NUCLEUS will translate into a call on the BIND
routines in M¥LPUNTIM1 (in this caRe. the NUCLEUS only needs
to know about a few procedure descriptors; all others will
be bound as they are used).

Initializing the MPL runtiMe package

Initializes the system vector, the ARGCHECK and XWDTAB
vectors.

I ni tia.li zinf.': the se~menta. ti on l11achinPry (SEG tWN)

S~GRUN can use almost all the normal MPLRUNTIME facilities to
ini tiali z.e itself. It is pas sea the adaress of a ta,ble of
pairs of aadres~es (fil~se~, dataseg) wnere, if filese.g=o, it
is ignored. and the ~ssociated datase~ address is taken to be
the addres3 of a stacK aegment, ~nd if fileseg=~l, the entry
marks the etlti of the table.

creating and starting the MPS.debugger (the first true MPL
process)

once the MPL environm~nt has been established, the NUCLEUS
C~EATEs the MPS DEBUGGER, using all the normal MPL
fac:ilities.

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35

