<{DOCMPS>DOCRUNTIME,NLS;29, 21=MAR=72 20:33 WHP ;

MPS Runtime Refererce Manual
11 AUG 72

MPS 10.0

Janes G, Mitchells

Xerox Palo Alto Research Center#
3160 Porter Drive
Palo Alto, CA 2430k

(L15) L93-1600

Stanford Research Institute
333 Ravenswood Avenue
Menlo Park, CA 94025

(L15) 326=6200

MPS Runtime Reference Manual MPS 10,0

Mitchell ‘ 11 AUG 72
SRI/XPAFC PAGE 1

This document describes the implementation of the Modular
Programrning System. It 1s intended for use by the implementors
of MPS, and contains the {following sections:.PBS;,LBS=1;

The allocation cf registers in the MPJL run-time environment:
(registers)

The layout of the fixed part of a dseg: (dseg)

The layout of the system dseg transfer vector and the glopal
fixXed tables used in MPS: (sysdseg)

The machinery which supvports function call/return, both
compiler generated code and the run=~time support code:
(functions)

The nachinery which supports ports and pert calls (portcalls)

The description of MPL opject modules, including the code and
symbol table information blocks: (modules)

Format of the obhject code block in an MPL module: (code)

Structure of the symbol table information in an object module
as constructed by the MPL compiler: (synbols)

The implementation of SIGNALs: (signals)

The temporary string facilities provided for bootstrapping MPS:
(strinegs)

The free storage package used for the HEAP; ({sp)

An overview of the process by which the MPS is bpootstrapped
into existence initially: (bootstrarv)

(registers).PRS;.LBES=1; Register Assignments: MrL definitions for
register assignments can be found in (mps,mplregs,l:wn) and can
be INCLUDE'd.

O:NULMSG holds the null message for PORT system

1:A1 first scratch ac
2:1A2 scratch ac 2
2:RS result stack pointer
3:A3 scratch ac 3
LeAl scratch ac U

5:A5 seratch ac 5

MPS Runtirme keference Manual , MPS 10,0

Mitchell
SRI/Z/XPAFC

13:¢C
14:D
15:LB
16:8J
17:SD

11 AUG 72
PAGE 2
scrateh ac 6
record pointer (for field variables)
stack mark (frame pointer)
stack pointer
peinter to recent PORT
code segment
data segment
iink base register
for system JSP's

system data segnment

(dseg) . PBS; Dseg Layout: MPL definitions for the fixed part of a
dseg are given toth as record declarations ancg as a set of
displacements (compile=time constanus) in (mps,processdefs,l:wn)
which can be used as an INCLUDE f£ile.

Base of frame

O: FakeEXtLoc: ADDR SYSUFL(SD) to catch stack underflow

1: FakeketWrd: Z RetlLoc polnter to ketloc in this word

2: FakeOldM: WORD O fake oldF pointer

3: FakeSys¥Word: WORD 0 head of enable list, if any

Ties to stack segment, code segment, this data segnnt itself,
ard owner's Jdsg

h: SegNuns: XWD dsegnum,csegnun
5: Basges: 'ZWD dsegbase,csegbase absolute adaresses
é: StackSeq: ADDR stackbase segmented address
State |
¢ Staterc: Z pc value for process
10: StateM: 7 base of current stack frame

1l: States: Z top of stack

MPS 10.0

MPS kuntimne Reference Manual
Mitcnell 11 AUG 72
SRIZ/XPARC PAGE 3

Call/Return machinery

12: LocPtr: Z Retloc used tO provide not=in=-memory traps

13: Petloc: XCT ZsegInCore {MOVE C,bases ; Bases
absolute)

1l MOVS D,C load code base register

15 JRST &=2(8) start at ExtLoc word in frame

(syscseg) .PES;.LBS=0;5ysten Dseg Transfer Vector Area

: at the nmoment there is no MPL INCLUDE file for these

.
definitions; nowever, the vector is declared in mplrun, and a set

of the declarations appears in nucleus,

%eeeblggest index used so far == 1568 %

*return code?
sysrtn=40B %simple returns%

sysdrtn=124B %deallocation returns%
%call trap cell#

fnt= L2B

%stack oversflows

sysovr= LYB %overflow on frame allocation%
sysov2s 468 %overflow fron withiﬁ pody of code%
sysov3=z 508 %overflow on AOBJP of local callk
%allocation%
Xnakes 528 %make array%
Xmkstr= 5)B %make strine%
%prccesses%
creazte=z 56B %create process?
destroy= é0B %destiroy process?

run= 628 %run process#

MPS Runtime Reference Manual MPS 10,0
Mitchell 11 AUG 72
SRI/XPARC PAGE L
stop= 64B %Stop process%
pshenv= 66B %push environment%
popenvz TOB %pop environment%
%ports#
msgtrap=s 728
pendingfault= 7L3
portcall= 76B
%signals% |
sig=1005
sieport=1028
sigprocess=104B
errs152B
errport=1su4e
errprocess=1568
ctunw=106B %catch phrase unwind for exit%
ctunw=106R %catch phrase unwind for exit%
resume=110B %"return" from signal%
prcpsig=1128 %propagate signal’
wJoinsk
Joinboth=114B %Join PORT and PORT%
Jeirproc=116B
Joinvar=120B8
jointe=1228
bind=126B
% nunrer of arguments checking %
toofewargs=1308 % caller supplied too few arguments %

toomanyargs=1323 % caller supplied too many arguments %

MPS Runtirme Raference Manual MPS 10,0
Mitchell 11 AUG 72
SRI/XPARC PAGE 5

~

unboundfn=13is5 % calls on unresolved fn descrintors come
through here %,

undefinedsignals136B % all signal variables are initially
pound to this signal code %3

% binding and other faults associated with control %

undefinedsignal=1368 % all signal variables are initially
bound to this code %,

segfault=140F % segment out of VM fault %,

badportcall=li2B % system called code for invalid port call
%, :

controlfault=14LB % port call on a non-active process %,
resclutionfault=1kéB % port call on an unccnnected port %,
portretry =150 % ©pc of a process which stopped because of
a resolution or control fault points here for retry of the
port call %;

% fixed tables %
Xwdtab=1k0B
argcheck=200B

(functions).PBS; MPS Function Calls
Function returns, arguments, and lécal varianles are stored on

a stack.

Two machine registers are reserved for addressing the stack,
a tep~of-stack pcinter S8 and a frame pointer F.

The stack his the fcllowing appearance:

> {tenporaricsj
{local variaples] = K words
M> old M

return 1link
saved return (inter-segment calls)
{arguments] = m words

old S

The stack is associated with the currently exXecuting
process (docmos,processes,:)

MPL declarations for a stack frame, both from the peint of

MPS kuntinme Reference Manual MPS 10,0
Mitchell 11 AUG 72
SRI/XPARC PAGE 6

view 0f the frame pointer and from the point of view of a
pointer to the sgaved return word are contained in tvne MPL
INCLUDE file (mps,rrocessdefs,l:wn).

The function call Flal, «se, aN) results in the following code:

Same segment Othey segment
PUSE S§,al J
PR] == same! push argunents
FUSH 8,aN]
AOBJP 5,E5YSOV3(SD) XCT @3SUBR(D)
PUSHJ S,ENTEY(C) PUSHJ S5,&SUBR+1(D)
SUB S,XWDTAB+N] == same: delete areuments

XWDTAB is gzlobal and in a fixed location.
XWDTAB![J] contains XwD 3+3,3+3.

For inter=-segment calls, the cells SUBR(DATA) and
SUBR+1 (DATA) contain:

ADDR RETLOC
ADDR XENTRY(C)

The entry (F) PROCEDURE(pPl, .ee, PM) compiles the following
code:

XENTRY: HRRZ Al,Q0(S)
XCT ARGCHECK~XWDTAB=M(AL)
MOVS D,C
ENTRY: PUSH S,M
XCT FNT(SD)
ADD S,XWDTAB+X=3
JUMPGE S,@SYSOVR(SD)

ARGCHECK is global and in a fixed location.
ARGCHECK /O] contains PUSH S,LOC?TR(D).
APGCHECK(~=J] cont;ins JSP SJ,eTOOFEWARGS.
ARGCHECX[J] contains JSP SJ,@TOOMANYA?GS.

The register SD contains the address of the system data
segnent,

FNT(SD) contains MOVE M,S or a jump to the system if
currently tracing procedure calls,

SYSOVRI(SD) contains a Jjump to’system code to handle stack
overflow,.

MPS Runtime Reference Manual MPS 10.0
Mitchell 11 AUG 72
SRI/XPARC PAGE 7

K is the size of the stack frame for F's local environment.
The statement RETURN compiles the following instruction:

JRST @SYSRTN(SD)
where SYSRTN(SD) points to RTNCOD
RTNCOD: MOVE RS,S

MOVE S,M

MOVE M,O0 (M)

JRST @=1(8)

The register RS (currently = A2, see REGISTEKS above) is used
by the caller to retrieve the results.

Returns with multiple reswlts usfe the same system code.
The results are pushed in reverse order,
RETURN(rl, r2, ... 'n) results in
PUSH S,rn

PUSH 8,r2
PUSH S,rl
JRST ASYSRTN(SD)

On the calling side, X ¢ p(: ml, m2, ..., Mn) results in

ee e
SUB S,XWDTAB
POP RS,X
POP RS,ml

.0

POP RS,nn

If the lhs's would endanger the results on the stack (e.2.
{£()]), then life becomes more comple¥, The code for this
case isg

SUB S,RS

MOVEM S,mrcell % mrcell is a compilef-allocated temporary
" .

MOVE S,RS
POP's using S
ADD S,(n,.,n!

ADD S,nmrcell

MPS Runtime keference Manual ‘ MPS 10.0
Mitcnhell 11 AUG 72
SRI/XPARC PAGE 8

This scheme protects the results by moving the stack rointer
over them and allows the caller to accept any inatial segnent
of the multiple resulits, (I.2, 1if tne routine returns i
results anéd you only want the first 2, then you need only
store the first two.)

Multiwora scalars of length n are treated like n single word
scalars.

In addition, there are some global data structures associated
with the function rnachinery.

Each linkage (static data) segment contains a few words of
descriptive infermation:

BASES: XWD LBASE,CBASE; Linkage and code base addresses
LOCPTR: AVLR RETLOC; Pointer to return routine

RETLOC: XCT ZSegInVM jabsclute address of cell in global
table

MOVS D,C

JRST @=2(S8); Return through saved actual link

There is a global table with one entry for each instance of a
code~gata pair:

Z8egInVM is a two=-word cell containing in its first wvword
either

MOVE C,BASES (BASES an absolute address), or

JSP SJ,&3egFaulu(Sp) if the code sezment associated
with the data segment is not swapped in.

The second word of each entry is used to save the BASES
address when the JSP instruction cccuries the first word,
ard the segment number oi the associated code segnent (or
possibly a 1link chaining all the entries for one code
segment together).
Times for function calls using this scheme:
Tetal local call/return is about 29 microseconds.
Total exXternal call/return is about §5 microseconds.

These times are for calls wiih no arguments. For n wordgs oi
args, add 3.9 # n for PUSH'ing before the call.

(porvcalls) .PBS;

MPS port call machinery

MPS Runtime Raference Manual ’ MPS 10.0

Mitehell 11 AUG 72

SRI/XPARC PAGE 9
Format of a port:

port; ZWD port,objectport % pointer to obJect port to
which connected and to myself (absolute addresses) %

mnse ! XWD 400000,0 % message buffer (initially contains
the null message %

dsegptr: ADDE dsegaddr % dsegaddr is tne absolute address
of the dsez in which the port resides %

startvup: JR3T @sStatePC(LB) % used by portcall machinery to
resume the process to which this port belongs %

MPL declarations for ports are contained in the INCLUDE file
(mps,processdefs,l:wn).

code for [lhs ‘'«] 'PORT '(portnanme (', message] ('l ctchp] ');
In-line code:

The in=-line code produced depends on

{a) wnether the portname is local, and

(b) wnether the PORT call is in an expression.
If the portname is not local, tnen the address of the port
is calculated and saved. I1f it is local, then it can
simply be addressed directly.
If the PORT call is used in an expression, then control
must reenter the process over tUjle sane port and there nmust
be a non-null messaze waiting in the port or an appropriate
trap is causedq.

The following is a detailed description of the in-=line code
pZ‘Oduced 3

First, it mazy be necessary to save certain registers on the
stack if the PORT call 18 part of a complexXx expression
beiny evaluated,
Message value is loaded into register Al.
If the poriname is local then

Load register P with the conhection word from the port.

JSP SJ,@PORTCALL (SD)

£ there is a catch phrase, produce code for it here.

MPS Runtime Reference Manual ' MPS 10.0
Mitchell 11 AUG 72
SRI/XPARC PAGE 10
Else (portname not local)
Load address of port.

Load register P witnh the connection word from the port.

If the PORT call used in expression then push port
address on stack so that can check later.

Push D register so can restore later,
This 1s necessary because may be doing PORT call for
some other process, which means D not egual to 1B,
system code for port calls sets D to LB when starts up
process, s0 when control cones back to this process
will not have proper value in D.
JSP SJ,@PORTCALL(SD)
If there 1s a catch phrase, produce code for it here,
Pop stack to D register.
If the PORT call used in expression, tnen POP stack to
register so that can test later to ensure that control
has returned over same port., (kegister RP is used for
this currently).

If the PORT call value was L0 be loaded into sone
register other tvhan Al, then move it.

Ncw restore any registers which were saved initially.
If the POKFT call was not used in an expression, then done.
Else, nust check port and message,

HRRZ P,P 10 make P = address of port.

If portname was local then CAIE P,portaadr

Else CAME P,RP compare to address which was saved on
stack,

JSP SJ,QPENDINGFAULT(SD) to indicate that control did
not return over sane port that left. -

CAMN ac,NULMSG compare message 10 null nessage.

JSP SJ,&MSGTRAP(SD) to indicate that port ¢all returned
null messare.

If there was a catch phrase, tnen produce {(nonjumpine)

MPS Runtime Reference Manual MPS 10.0
Mitchell 11 AUG 72
SRI/XPARC PAGE 11

JURP instruction here wnich addresses the start of the

catch phrase code,

Finally, MOVEM NULM3G,PortMessageBuffer to indicate tnat
the ness3age has oeen "removed" for use in the expression.

code in MPLRUNTIME:

portcallX: HLRZ A2,P % nust ensure that port belones to

process in control »

CAME LB,dsegptr{AZ) + compare controlling dseg address and

dseg addr to which subject port belongs %

JUMPA BadPortcall(SD) % bomb out if not equal %

MOVEM S,StateS(LE) save stack pointer of subject process

MOVEM M,StateM(LB) save frame pointer

MOVEM SJ,StatePC(LB) save Program counter

MOVSM P, (P) make object port connected to subject port

HRRZ LB,dsegptr(P) begin startup of object process by
getting bace of his dseg .

XCT RetlLoc(LB) %nove Bases inte register ¢ (and check for

code segment not=-in=nenory)

MOVE D,LB 1load D register (=LB contents)

MOVE M,StateM(L3) 1load frame pointer

MOVE S,StateS and stack pointer for object process
JRST startup(P) firé up the object process

(modules) .PBS;

{code) MPS Object Code Format: MFL declarations for the blocks

in an object module may be found in the INCLUDE file
(mps,moculedefs,l:vn).

An MPS object code file consists of a series of blocks, each

carrying length and type information,
The first word of a block is XWD TYPE,LENGTH.
The TYPE is cone of the following codges:

-0 = empty space

MPS Runtime Reference Manual MPS 10,0
Mitchell 11 AUG 72
SRI/XPARC PAGE 12

1l - code

2 -~ hash table

3 = gymbol data

I = name table

5 = structure table

The LENGTH is the number of words in the block, including
the header word.

LENGTH=0 18 an error, except that TYPE=LENGTH=Q
signifies the end of the file,

The rest of the plock (LENGTH=1l words) is interpreted
accordine to TYPE.

The first block in the filé alvays contains the code for a
module,

The first few words of the code block contain information
for the MPS loader.,

Word 1 contains a Zzero if this 1s a DATA module;
otherwise

Word 1 left half contains
the displacement of the first instruction of tne code
segnent after the initialization code (L.e. the
procedures), ‘

Word 1 right half contains

the displacement of the first instruction of the
process body (i.e, after the procedures).

Word 2 left half contains

the displacement of the first of the literals (i.e. the
word following the actual code).

word 2 right nali contains

the size of the data segment,
Word 3 rieht half contains

hash index for module name.

vwerd 4 is the entry for the initialization code,

MPS Runtire Reference Manusl MPS 10,0
Mitchell 11 AUG 72
SRI/XPARC PAGE 13

This 1is a procedure of one argument (the numoer of
woras of arguments passed L0 the CREATE operaticn).
These areuments have been stored into the first words
of the data segrent. 1If the count is incorrect tnen
there will be a trap 1o the system like that for a
procedure call with the incorrect numper of arguments.

The code itself follows.

The code assumes that the CODE base register is loaded
with the origin of the file, i.e, the address of the
TYPE,LENGTH word of the code block.

Unlike the situation in L10O, all subsequent words in the
code area are genuine instructions.

Literals follow the code.

Every module 2180 has a hash table block, a block of semantic .
entries, 2 block of name strings, and a block giving
structural information relating the object code to the scurce
statments,

A type 2 block (hash table) has an extira word following the
LENGTH word which contains in its left and right halves,
respectively, the following:

The left value, X, 1s the size in words of the index
‘portion of the hash table which follovs,

The right value, h, is thne number of hash table entries
in the block beyond the index portiion of the taple.

These two values are required vy any routines usineg
symll0 to access the tables because the routine settvl
needs to pe told ¥ and h &s 1vs seconda ang fourtn
arguments, respectively.

Let m be the value in the rignt nhalf of the 2B6 header;
then m, X, and h are related as

m = 2 + X + 2%h

i.€., M includes the two header words, the number of
index werdas, and the nash entvries (which currently
require two woras eacn).

All relative 1inks between the hash table and the name and
semantic plocks are relative 1o the first data word of the
block; this is word 1 in vhe semantic and name blocks, and
werd 2 in the hash vtable blocKe.

The format of semantic entries is described in
(DUCMFS,DOCSYM,).

MPS Runtime Reference Manual MPS 10,0
Mitchell 11 AUG 72
SRI/XPARC . PAGE 1y

A type 5 (structure) block contains a sequence of words of
the fornm XWD lc,,bytes,

The 1c¢ indicates the cdisplacement in the code corresvonding
to the start of a source language statement (SLS).

The bYtes are six bits wide 2nd are used to encode the
structural position of this SLS relative to its predecessor
(cr to the origin if this is the first §LS).

Trhe first byte is treagted specially:

Byte=N, N IN [0,63) == go up N levels in the structure.
In other words, depth in the tree is decreased by N

All subsequent bytes are treated the same, namely:
Byte=0 == stop here.
Byte=sN, N IN [1,63] == take Q=N MOD 16 successors, @ IN
(1,15]), and then go down M=N/1l6 1levels, M IN [0,3]. dhen
g0 Q successors, incremnent position at current deptn by
Q. When go down M levels, M > O, increment depth by Q
and set the position at each new level to 1,
A5 many words are used as necessary to encode the new
position: the lc is simply the Same in each word. Most
conmon relationships can be encoded in a Single word.,
(syrbols) Context usage in MPL(A): MPL declarations for context

usage in object modules, and Synbol type declarations can uve
found in the INCLUDE file (mps,nodulesymdefs,l:wn)..PBS;

CTX pdctx

For module names, procedure descriptors, and directory link
strines,

CTX Xlctx

For first word of external or forward procedure calls ==
not ocutput.

CTX x2ctix

For second word of external or fbrwérd procedure calls ==
not outiput,

CTX lscix

For literal strings.

MPS Runtime Reference Manual MPS 10.0
Mitchell 11 AUG 72
SRI/XPAEKC PAGE 15
CTX metctx
For tokKens and special variables used with MPLMETA.
CTX mpletx
For special use in compiler =~ not output.
CTX pretx
For outermost scope of module,

Currently pdctx=0, Xlctx=1l, X2ciX=2, 1lscix=3, metctx=l,
mpletxz=5, prcixs=é. ‘

The higher numbered contexts are used for
INCLUDE'd modules
procedures
Format of semantic data entries: MPL declarations for the
symbol type field and its possible values can vbe found in the
INCLUDE file (mps,modulesyndefs,l:wn),
in first word of entry
attrioutes =-- 13 bits at position 19
from right to left in the_attribute field
defned == defined id
linked -~ referenced but not yet defined
const == compile=time constant
noout == @0 not output to object file
type(5] == type of the id (see pelow)
word 2 of se holds system info
word 3 of se holds *V
word L of se is used for constval and dirlink
word 5 of se is used for nweords and contix

word 6 of se is used for numarg

MPS Rurtime Peference Manual MPS 10,0
Mitchnell 11 AUG 72

SRI/XPAPC PAGE 16
(symtypres) Types of entries

UNDEF=0 undefined

Senantic entries are initialized to zero, so type is
automatically UNDEF wpnen entry created.

PROCD=1 local procedure

Under prcix

#V is external entry point
(#*V+3 is internal entry point)

@contx holds the context number for local declarations
@numarg = number of WORDS of arguments

If has entry under pdctix
*V is location of procedure descriptor in dseg

This shculd be initialized by CPEATE to hold actual
descriptor, .

May have had entries under XlctX and x2ctX if there were
calls made on the procedure before it was defined., These
entries used to fixup Such calls, then are "deleted" (not
output). '

LAB=2 1label

#V 18 location of first instruction of the statement
following the label.

MWS=3 nultiword scalar
*¥V is loc of first word
@nwords = nunber of words
POKT=h porvs
*V 1s loc of first word
énwords = nunher oif words
SIGCOD=S5S signal code

#V is loc

MPS Runtime Reference Manual MPS 10,0
Mitchell 11 AUG 72
SRI/XPARC ’ PAGE 17

CREATE should initializZe this cell to hold its own
segmented address. All sigpcoa'’s are in the dseg, even if
declared in a procedure,
érwords = number of words
VAR=6 norral identifier
if @S const then tnis is constant and value is in @constval
else *V gives loc of variable
Under metcetx == a special variable for compiler,
#V gives location in aseg. |
Nane indicates which variable,

‘nexttoXen' == pointer to next input token ({(for META).

‘outword' == pointer to word holding next output (for
oUT) .

toutline' == pointer to0 string holdineg next output (for
SOUT)

FIELD=7 4d's declared as FIRLD or in RECORD

if €S const then thils is a constant field and €constval
helds the field descriptor (byte pointer)

else is variable field and #V gives the loc
MODULE=6 names of modules
Under pdctx

if #V # O then this module was INCLUDE'd and *V = context
number for declaraticns in that nodule

else this module name was not INCLUNE'd but has been used
in CREATE or other such statenment

if edirlink # O then module was INCLUD:'d and 2dirlink =
hash of string used to access the module.

If the 1ink contained (dir,file,junk), then the string
will be <dir>file followed by a Zero character.,

XPROC=9 external proceqgure

Under pdctx

MPS Runtine Reference Manual MPS 10.0
Mitchell 11 AUG 72
SRI/XPARC PAGE 18

if @2dirlink # O tnen this name was 1listed in DIRECTORY
and €dirlink = nash of suring containing link fron
directory

The string actuislly contains everything that was
written between the parentheses of the link,

@numnarg = nunber of WORDS of args assumed (or =1 if no
calls actually made)

#V = loc of first word of procedure descriptor in dseg.

CREATE should initialize descriptor to trap if used
b€fore dound.,

Entries under xlectx and X2cix used to fixup cz2lls but not
outpute.

ARRAY=10 statically allocated arrays
*V contains addr of first word of array
RECORD=11 for id used as name of record

envords contains RECORDSIZE (i.e. the number o©f wWords
needed to hold an instvance of this record).

PROCV=12 wvariables declared to pe procedure
#V is loc of first word of descriptor

Where possible (i.e. in dseg) these should be initialized
to trap.

@nwords is size of descriptor
STRING=13

*V is loc of pointer io descriptor

Under lsctx

literal string == initiaiized by CREATE

Under other contexts == string variables
ARRAYV=1ll4 array variable {(nolds pointer to array)
REGISTER=1S5 fixed location scalar
SIGVAR=16 signal variable (holds signal code)

UXPROC=17 unreferenced external procedure == not output

MPS Runtine Reference Manual MPS 10,0

Mit¢hell 11 AUG 72

SRI/XPARC PAGE 19
NODENAME=18 symbol used as tree namne in MPLMETA construct

Under metctx.

#V gives location in dseg for name table index when
initialize the parser,

TOKEN=19 synbol used 3s token in MPLMETA cpnstruct
Under metcux.
#V gives location in dseg for token when initialize tne
parsere.
Use of father~=son linking capabilities
The se for the name of the module being compiled is the root
cf the tree,

The hash index for the module name 1s stored in the object
file as described elsewhere in this rfile.,

Imnealate sons of this se are
1) outref XPROC's and literal strings
2) module arguments
3) directory nanes
if directory entry is an INCLUDE, then tree for the
included aegclarations is under the se for the name of the
nodule,
L) variables declared in the module
5) procedure names
6) labels in the body of the nodule
Sons of the procedure name se are
1) formal parameters
2) local declared id's
3) local labels

Records are structured as tree under the se for the record
-nane,

MPS Runtinme Reference Manual MPS 10,0
Mitchell 11 AUG 72
SRI/XPARC ' PAGE 20

The tree structure reflects the structure used in the
record declaration.
(signals),PBS;
significant features
Continucd propagation tnfough dynamic scope until signal
terminated,
Pass message as well as signal code,

Return value as result of signal.

. 8pecial UNWIND signal to allow cleanup.
signal frane

A signal franme contains
a flag set in the return word indicating a signal framne
pointer to the frame whose catch phrases are being eXxecuted
pointer to the process wWhich originated the signal
global name of signal code (segmented address)
signal message
a flag ihdicating whether RESUME is legal for this signal
The signal frame 1is always on the étacx of the process whose
catch phrases are being executed.
Signal propagation and termination
A signal is said to bte terninated when sone catch statement
executes either
a RESUM¥, or
a branch out of the catcn phrase (such as REYTURN or EXIT).
In the first case

the signal frame 1is deleted

MPS Runtime Reference Manual MPS 10,0
Mitchell 11 AUG 72
SRI/XPARC PAGE 21

If a RESUME is legal, then
the process which originated the signal is given control

Else a new SIGNAL is generated indicatineg attempt to resune
after "unresumable" signal.

In the other cases

the stack of the process ternminatineg the signal must be
unwound back to the point where the signal is beineg
terninated,

Before a frame is deleted, a special signal (UNWIND) is
given so that any necessary housekeeping can be performed.

I1f 2 signal is not terminated within a process, then it is
propafated to the creator of that process, 1he s8ignal frane
is deleted from one stack and recrezted on the other.

RESUME statement

RESUME can return a value and thus any sienal (SIGNAL, SIGNAL
PORT, or SIGNAL PROCLSS) can be used in an expression.

If RESUME does not exnlicitly specify a value, then the
special value NULLMESSAGE 18 used. If a signal is used in an
expression and egets back & NULLMESSAGE, then a MESSAGEFAULT
tran is caused.

The same trap occurs when a PORT is useq in an expression
and falls to return a value and when a EMPTY specifies a
pert containing NULLMESSAGH,

It is possible to attach a catch pnrase to the signali to
handle this trap or others.

It will often oe the case that the signazlling program is not
willing to te resumea, To make this explicit and to aliow
the system to intercept illegal attempts to resume, 'EREOR
may be used in vplace of 'SIGNAL. Thus ERROR, ERROK PORT, and

- ERFOR PROCESS all behave lixe tne corresponding SIGNAL
statenents, exXcept control can not return be means of a
RESUME,

Scope of catch pnrase aind propogation of signals

A catch phrase covering a statement list may cc¢cur at the
bgginning of

MPS Kuntime Reference Manual MPS 10,0
Mitchelil 11 AUG 72
SRI/XPARC ‘ PAGE 22

the orogran dody,
a procedure body, or
a block,

Such catch dhrases are enahled throughout the execution of
the statement list, They are automatically disabled when the
statement 1list is completed or left by a branch statement.

A catch phrase wnicn covers a fuhction ¢all or port call is
erabled when controi leaves and 18 disavlied when conturol
returns.

A cateh phrase is never enabled when it is being executed,
In other words, the scope of the catch phrase does not
include the catilch phrase itself, '

Implerentation

A syvsten routine is called to propagate signals,

This routine "calls" the innermost enabled catch phrase with
the signal code, Signal message, and pointer to original
frame as argunents,

The catch phrase is conpiled to use the pointer to access
local variables of the origial frane.

Control returns to the system routine if the signal is to be
propagated beyond tihis frame,

Thus the main problemnm for the system routine is to determine
the entry point of the innermost enabvled catch phrase,

If control left the frame dpy a function or port cazll, then a
catch phrase associated with that call would necessarily be
the innernost one.

The reactivation location for the frame (stored as the
process PC or the return location of the frame above it on
the stack) 15 used to look for the presence of a catch parase
asscciated with the call.

In the PPPlO implemantation, catch phrases always cegin
with a JUMPA instruction wnich branches around the body of
the catch phrase, The systen routine looks for tne
presence of this instruction following at the reactivation
location to determine whether there is a catch phrase with
the call.,

MPS Runtime Reference Manual - MPs 10.0
Mitchell 11 AUG 72
SRI/XPARC | PAGE 23

If there is no catch phrase with the call, then the innermost
enabtied catch phrase 1s associated with a statement list
containing the reactivatvion location.,

To help the system routine £ind the entry point in this case,
all franes contain a pointer to the innermost enaplea catech
phrase which is associated with a statement liste.

If the vointer is %ero, then there are no enabled statement
iist catch phrases.

A flag in the return word (which is automatically zeroed on
calls) indicates whetiher this pointer has been set., If the
flag is zero, then there are no enabled statement list
catch phrases,

If the sisgnazl is not terminated by the catch phrase, then it
must pe provagated., If this is the last (1.e. outermost)
enabled catch phrase associated with the frame then control
jig simply returned to the system routine. Otherwise, control
is transfered to the innermost cnclosing enabled catch phrase
(which can be determined at compile time since catch phrase
scope is lexical).

signal codes and signal variables

The signal codes name the signal. They occur as tne first
argument of the signal statement and at the head of catch
phrase cages.

There are system defined codes (UNWIND, PORTFAULT, etc.) and
user defined codes,

User defined codes are simnly identifiers, There is no
special declaration for such codes. An identifier used as a
signal cannot be used in other capacities within that
context.

Since signals can be passed petween processes, it must be
possiple to indicate that a signal code .in one process is to
pe the same as another signal code in another process, This
is simply a name binaing problem and is handled by the usual
machinery (i.e, signal codes are pound by tLne sanme
mechanisns that are usea to bind external procedure names).

There are SIGNAT variables wnich can hold signal codes,
(SIGNAL variables are to signal codes as PROCEDURE variables
are to external procedure references).

MPS Runtime Reference Manual MPS 10.0

Mitchell 11 AUG 72
SRI/XPARC PAGE 24
Mise

In those ¢aSes wheare a trap can be caused after control is
returned, svrecial means are required to determine if there
Was a catch phrase associated with the call.

Examples

PENDINGFAULT =~ control did not come back thru the same
port

MESSAGEFAULT == eXpecting message pbut did not get one

In the PDFPLO inmrlementation, these traps are initiated by
inline code following the call (and following the catch
phrase if tnere is one),

The trap is actually a2 call to a system routine which
generates an appropriate signal., If there is a caten
phrase associated with the original call, then it nust be
given a chance to catech this signal. Since the pointer to
the call is no longer available, it is instead stored by
the conpller as the address of a JUMP instruction (which is
actually a NOP) following the system call to produce the
trap., I there is no JUMP instruction follovwing tne systen
call, tnen tnere is no catch phrase with the originazl call.

Since a test for PENDINGFAULT is always followed by a test
for MESSAGEFAULT, there is only one JUMP instruction
produced wnhicii is "shared" by these uvwo, The PENDINGFAULT
systenm routine knows to look past the inline code for the
MESSAGEFAULT test for the JUMP instruction.

(strings) .PBS;

Thils section descripes a string system for MPS which we will
implement, in order to get MF3 off the zrouna.

We intend that it be replaced by something closer to the
proposal in (DGCSTr,) at some future date,

lLanguage syntax and semantics

A variable of type STRING is meant to hold a pointer o a
siring descriptor,

String descriptors are allocated from a "heap", either
autonatically or by system funciions accessible to the
programner. »

A STRING variable gets 3 descraiptor allocated for it on

MPS Runtime Reference Manual MPS 10,0
Mitchell 11 AUG 72
SKI/XPARC . PAGE 25

procedure entry (or process creation), and deallocated on
procedure exit (process destruction).

A dimensioned string, like a dimensioned array. gets
its hody allocated in the same waye. .

Tne automatic zllocator actually assoclates with each
frane or process a list of the storsze allocated for it,
80 the right thing nappens even if g string variable is
subsequently used to hold a pointer to a usere-allocated
descriptor.
Types of strineg descraivptors:

1) Explicit=strineg descrintor

points to block of characters

Fields

Front

first character of text olock which is contained in
this strine

End

first character of text block which follows this
string

Maxend

maximum value for End before overflow this text
block

Pointer
address of text block

Ident
This field is available to hold progran=~specirfic
information. It can be written and read by user
programs and is intended to hold information wnich
will help the program identify the stiring,

2) Implicit=string descriptor
Fields

KHeadFunction

MPS Runtime Reference Manual ' MPS 10.0
Mitchell 11 AUG 72
SKI/XPARC PAGE 26

Descriptor of function used to read characters in
the string. ’
WriteFunction

Descriptor of function used to write characters in
the string.

LengthFunction

Descriptor of function used to find and set the
length of the strineg.

Ident
Same as above,
Oon a read access, the system returns the result of
ReadFunction(Striné, Position}.
On a vwrite access to the stiring, the system calls
WriteFunction(3string, Position, Char),

When the length of the string is requested, the systen
returns

LengthFunction(string, 0).
To set the length of a stiring, the system perforns
LengtnFunction(string, 1, Kcnars).

The LengthFunction is intended as a catch=all for which
additional uses may be found in the future,

There is no special syntax associated with strings.

Assignmnent for strings is defined as sinply copying tne
pointer (o the descriptor.

Mention of a string variable refers to the pointer.
Special action is taken for literal stirings.

For the monent, literal strings may appear only in the
programn, not as initiazlizaticn or parameter values.,

© Functions to pe provided

Where 2 string is listed as an argument, a pointer to a
string descriptor is actually required,

MPS Runtime keference Manual ' MPS 10.0
Mitchell 11 AUG 72
SRI/XPARC PAGE 27
Functions for setting the fields of string descriptors
Makestrpesc(String, Front, End, Maxend, Pointer)
The descriptor pointed to by Straing is made an
exXnlicit-string deseriptor with fields set to the values
passed for the other argunents,

(The Ident field is unchanged by this overation. It is
initialized to zZero when the descriptor is created.)

The primary use of this function will be t0 make a
descriptor which points t¢ a2 tvext body in & private
storage area.

{I'm afraid this will reguire knowledge of how characters
are counted in text blocks.)

MakeImpsStrDesc(String, ReadFecn, wWritefFcn, LengthFecn)
The descriptor pointed to by String is made a ~
implicit=string descriptor with fields set to the values
passed ior the other argunmnents,
(Azain, the Ident field is unchanged,)
SetlescIdent(String, Ident)

The Ident field of the descriptor is set to the given
value,

NumWords ¢ WordsrForBody(Nchars)

Returns count of how many words will be required to hold
the specified number of characters,

Functions for getting info from siring descriptors
From any string descriptor
3STPTyve(Strineg)
STRIdent (String)
STRLast(String)
Returns the index of the last character in the string.
STRLéngth(String)
Returns the current length of the stiring.

The values of STRLast and STklength are calculated from

MPS Runtirme Reference Manual MPS 10.0
‘Mitchell ' , 11 AUG 72
SRI/XPARC _ PAGE 28

the values of the fFront and End fields for explict type
strings and from the value of lLengthFunction for inplicit
type strings,

The followine functions sinply provide access to variocus
fields of the gescriptors,

From explicit=string descrivotors

STRFront(String)
STREnd (String)
STRMaxend (String)

STRPointer(string)

From implicit-string descriptors
STRReadFen(string)
STR¥WriteFcn(String)
STRLengthFen(String)

Functions implementing language features

The following functions are needed to implement string
features which will scneday be added 1o the languacge,

Functions for accessing characters

These two functions are used to implenent stringlexp/ as
3 left handa side in MPL.

NthChar(String, Position)
Loads the character fronm the specified position. If
pPosition is not witnin the pounds of the String a
special value EOS (End 0Of String) 1S returned,

SetNthChar(String, Position, Char) |
Writes the character at the specified position. 1If
pPosition is peyond the end of String, an error is
generated.

¥unctions for string construction
SetStryull(Strineg)

Resets the string, i.e. setls End=Front.

MPS Runtime Reference Manual MPS 10,0

Mitchell 11 AUG 72

SRI/XPAEKC PAGE 29
SetStrLength(String, Nchars)

Sets the length of the string to Nchars, which must lie

AppendString ({To, From)
AppendChar(To, Char)
AppendsSubstring (To, From, First, Last)

If First<0, First is taken as 03 if Last>STRLast(To),
Last 1s taken as STRLast(to),

AppendBlanks(To, Count)
Functions for creating and destroying strings
The lifetine of a declared string is linited to the
lifetime of the scope in which it is declared, 1In other
words, when a procedure returns or a process is destroy=d
all strings which were declared in that procedure or
process are automatically deleted,

The following functions provide for the creation of strings
whose lifetime is explicitly controlled oy the progranmer,

refstrine ¢ Makestring()

The function MaKeString returns a pointer to a descraiptor
for a null string.

Releasestring (refstirineg)
The referenced string is deleted.
Functions for general storage allocation
There are also some procedures for allocating and
deallocating storage on the heap, whose use 1s not limited
to strings.

refblock ¢ MakeBlock(n)

Returns a pointer to a newly created block of n words.
The block is guaranteed to contain only zeros.

ReleaseBiock(refblock)
Deletes the referenced vlock. As usual, the programmer

is resrconsible for ensuring that no pointers to tne block
remaine.

MPS Runtime Reference Manual ' MPS 10.0
Mitchell 11 AUG 72
SRI/XPARC PAGE 30

SplitBlock{refblcck, n)

The referenced blcck is split, After the operation,
refblock refers to an n=word bdlock consisting of the
first n words of the o0ld block; the rest of the o0ld bloek
is deleved, If n is greater than the leneth of the
block, an error occurs,

Blocksize(refblock)
rReturns the length of the block in words.
Inplementation

The RH of the syStem word of a procedure frame is the head of
a thain of automatically allocated plocks for that procedure,

This includes string descrintors and sturing and array
bodies.

The allocator chains all the blocks it creates through a
pointer in [=1,18:0] of the block,

[=1,17:18) 1s used for the block lengtin and (=1,1:35] for
a free flag,

There is a bit in the retufn word in a frame which is cleared
by PUSHJ and set when the first block 1s allocated.

The system and return words in the sfake frame in a dseg are
used in the same wWay for the automatic storage for the
process.

The compiler generates a different return instruction for a
procedure return if it is possible that automatic storage hs
been allocated.,

The deallocator must check the bdit, since in the future it
may be possiple to have automatic storage which does not
show up exrlicitliy in the declarations.

The DESTROY procedure nust check the bit for process
storage,

For the mnoment, the literal strings appearing in a progran
are collected together under a new reserved context in the
symbol table,

The context nunher is 3; the "name" is the text of the
literal; the "value" is the dseg location for the pointer
to the descriotore.

when a process is created fronm the program, the CREATE

MPS Runtime Reference Manual MPS 10.0
Mitchell 11 AUG 72
SRI/XPARC PAGE 31

procedure 1is responsible for allocating descriptors and
bodies for the stirinegs, copying their text (which appears in
tne symbol table) into the body area, and setting up pointers
in the dsez.

The storage allocated in this way persists for the lifetinme
of the process Jjust like static strins variables.

The free storage packaie provides a simplified zone type
gtorage allocation systen,

The following procedures are found in (MPS, FSP,).

MakeZone (zone,size)
The "size" words of storage starting at location given by the
(virtual nemory) address "zone" is initialized to be a
storage zZone. After this has been done the zone can be used
as a parameter of tne following proceaures.
Links used by the free storage package are all maintained
relative to the starting location of the zone. Thus the zone
nay be relocated without disturbing its use,
Generates the following signal:

BadZoneSize == on FDPLO size must be hetween & and 100000B
words.

node ¢ MakeNode(zone,size);

Returns (virtual memory) address of node of "size" words of
user storage in the srecified zone,

Generates the following signals:
BadNodesSize =~ size <3 0,
NokoomInZone == cannot find space for node of sizZe words.
NodeSlize{zone,node) ;
Return the size in words of the node.
FreeNode(zone,node)}
Release ﬁhe storare occupiea by the node.

SplitNode(zone,node,size);

MPS Runtime Reference Manual MPS 10.0
Mitchell : 11 AUG 72
SRI/XPARC PAGE 32

Split the specified node into two sections == the first of
whicn is a node of size words, the second of which is freed,

(names) .PES;

This section describes how processes, z2s well as variables and
procedures in them and the modules from which they were created
are named and accessed.

The follewing rules and their consequences apply:

(a) The context in which a system routine is called, along
With complete cualification within that context are poth
required to name a process,

Prbcess naning syntax:

processname :3= [processid]/ &(', processid):
processid := ,

If the optlional, leading processid is not present (i.e., if
the processname begins with a ".") then the context within
which the name match is 10 be performed is the root of the
segment namineg tree, OQtnerwise, tne context within which
the name is to hwe matched is the context of the process
whose dseg address is in the D reeister ("whose static data
is current" as opposed to "which is in control"” = the L3

register is the zdadress of the dseg of tne process which ism_

in conturol).
(b) Given the sesment numoer of a dseg (possibly a stack
segment) =~ which may be oObtained bv coercing a processnahe,
an chject in tne dseg can be referred to by the syntax
objectname ::= prccegsname 3('. .ID):

Since a processnane must be completely aqualified, there is no
anbiguity in the neaning of the .ID!'s.

Module and process names:
A complete TENEX file name 1s a nodule name., A simple
identifier used as & module name must be opound to a TENEX
file name, 7Tne mechanisms for accomplishing this are
(a) at conmpile time:
the directory of a MPL progran contains an entry such as
(ModuleName) (directory,file)

Then any use of Hodulekame i§ equivalent to using the

MFS Funtirie Peference Manual MPS 10,0
Mitcnhell 11 AUG 72
SRI/XPARC _) PAGE 33

TENEX file (directoryd>file with the normal TENEX
conventions on file names and completion of incomplete
file nanes.

(b) at execution tine:

The run=time segment space is accessed to determine if
there exists a process whose name is ModuleName which is
accessinle by the conventions stated below for segment
names, If such a process exXists, a match has been found.
Otherwise, a stack of directory files is searched to map
the module nare to a file name, A directory file is a
sequential text file with entries of tne form

‘ﬁ «ID ') ‘(dairectory',file [',namel')

on separate lines (anything at all can follow the second
right parentnesis).

A directory file 1is searched from line O to the last line
of the file, in order. If no match is found in the nmost
current directcery, the next mest, current directory is
searched until the directery stack is exhausted, at which
time 2 signal (UndefinedModule) i1s generated.)

Files can be pushed onto the directory stack or removed
by the MPL procecures Ne«Directory(STRING filename) and
Removebirectory (3TRING filenane), If the argument Lo
RemoveDirectory is the null string, the directory f£ile on
the top of the directory 3tack is removed; othewise the
named file is deleted from the directory stack, if in it.
NewDirectory puts the name of the file on the too of the
directory stack after first removing any occurrence of
the same name in the stack.

Binding Proedure Nanes

An external procedure p which is not declared as a procedure
variaole and is used in a process X is vound at run=-time when
it is first called from within X. This can be overridden by
an explicit BIND svatenent at any time or by a call on the
system=supnlied procedure BindProcedures{dsegnane).

If there was an entry for o in X's compile=time directory
then p will bpe bound to the procedure in the declared filc,
if an instance of it exists. If no instance of tnhat file
exists, the signal ModulelotlCreated is renerated. If p had
no directory entry in X, tnen the system will attempt to bind
p by f£inding an instalce of a procedure wtih the same nane,
The name is sougnt according to the following algorithm:

(NameSearch):

MPS Runtime Reference Manuail - ~ MPS 10,0
Mitchell 11 AUG 72
SRI/XPARC . PAGE 3l

(a) X's sibline processes are searched for an object named
p of the same type as p in X. If exactly one such is
found, X.o is pouna te it; if more than one such is found,
a2 signal, ArbiguousName is generated.

(b) 1f no mateh for p is found among ¥'s siblings, then X's
parent is searched for a match; if none is found, X's
grandparent is searched, etc. If the root of the segnent
tree is reached without a match, then the signal
kesolutionFault is generated,

Whenever an unbound procedure variabie is called, the
Resolutionrault signal is generated so that the bindang nay
be done by any nrogran willing to catch the signal.

(bootstrap).PRs;

This section eives an overview of the bootvstrapping process by
which the MPS comes into existence, both initially, and later
when MPS exists to bootstrap itself,

The nen~MPS peginning

An 110 prozram {(on the PDP~10) maps into the "botton" of
memory the follewing files:

- MPLNUCLEUS

this program will ve given control after the L10 progran
has finished., It completes the 3job of creating the nPS
environment., It is descrived more fully in the nextu
section.

MPLRUNTIME

this pro¥ram contaims the run=time support code and
systen transfer vector for MPS, The NUCLEUS will help it
L0 set UD the environment.

SEGRUN

This is the segmentation machinery. MPLNUCLEUS will vass
on information given iv aboutl the whereabouts of
MFLMNUCLEUS, MPLKUNTIME, and SEGREUN sO tnat SEGRUN can
initialize the segmet tadles correctly.

The L10 program then zllocates sbace at the "top" of memory
for data segmnents for eacn O0f tne three above MPL prograns.
The addresses of each of the progranms and their data segments
are placed in a fixed place in the MPLNUCLEUS dseg,

A stack segment is also allocated below the data segnents at

MP3 Runtime Reference Manual MPS 10.0
Mitchell 11 AUG 72
SRI/XPARC PAGE 35

the top of memory. IV belongs to MPLNUCLEUS and its address
will be placed in the standard place in MPLNUCLEUS!' dseg.

The MPS pootstrapping NUCLEUS

Control is given to vhe MPLRUNTIME "process" so that it
can initialize the system transier vector, the SD register,
and tne ARGCHECK ana XWDTAE vectors.

All procedure descrintors should either be bound by the
NUCLEUS (which means that it must know all the uses of SEGRUN
trom within MPLRUNTIME and vice versa) or should cause a trap
which the HUCLEUS will translate into a call on the BIND
routines in MPLRUNTIMEL (in this case, the NUCLEUS only needs
to know ahout a few procedure descriptors; all others will
be bound as they are used).

Initaalizing the MPL runtinme package

Initializes the system vector, the ARGCHECK and XWDTAB
vectors.

Initializing the segmentation machinery (SEGrRUN)

SEGEUN can use almost all the normal MPLRUNTIME facilities to
initialize itself. It 18 passea the adaress of a table of
pairs of addresses (fileseg, dataseg) where, if fileseg=0, it
is ignored, and the agssociated dataseg address is taken to be
the address of a stacX segnment, and 1f fllesegs=1l, tnhe entry
mdyrks the enc of the vaple.

creating and starting the MPS debugger (the first true MPL
process)

Once the MPL environment has been establishea, the NUCLEUS
CkEATEs the MPS DEBUGGER, using all the normal MPL
facilities.

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35

