
(DOCHPS>CHAFI~r2.~LS;20, 20•JU~·72 14:12 JGM ;

22 JUN 72

MPS LO

Janes G. Mitchell*

Xerox Palo Alto Research Center*
3180 Por~cr Drive

Palo Alto, CA 9h30h
(ll.l5J lJ.93 .. 1600

Stanford ~esearch Institute
333 Ravenswood Avenue
Menlo ParK, CA 9~025

(415} 326-6200

A MODEL FOR MPS PROCESSES AND ENVIRONMlNTS
Mitchell

MPS 4.0
22JUH 72

PAGE l SliI/XFAF:C

This meno atteMpts to fornaliz~ the notio~s of process, process
control s~ates. inter-process control transfers, context, and
naning environnents for processes.

PROCESSES:

(Processes} A process has the following attributes:

(Control)

control(S) is a pair (pc, status) consisting of a
control pointer into some body of code associated with
the process and a value de.notir.g ~~e status of s 1 chosen
irom the list in the branch labelled s~ates below.

(Context)

conceotuallY, the context tor a process 1s the set of
Objects which tne program can access oy sir.pie names.
Since we view an activation record for a procedure, for
instance, as a compound objec~ whose components
correspond to tne local vari~bles of the procedure, it
is convenient to view the context of a process s simply
as a vector of ''references 11 t,o ob Jee ts Whose conoonents
can be acc~ssed bY simple identifiers in the source
program.

An element of the context is a pair {CA~ IND), where CA
is the addr~ss o! an object wnose semantics natches S's
requirements for the ocject specified bY the context
slot, and IND. i! one. implies indirection {take tne
value of ~he object to wnich CA points as the CA for
this entry).

The only way a process can touch any object is via the
contex~ vector. This includes ~ne d~ta objects called
ports Which are used for all contrcl transfers, and the
context vector itself (which must te accessed as a data
structure for replacing context ent,:ries, .for instance).

Accessing an object via a contex~ er.try whose CA value
is NIL is not currently defined. ·t.ut it. would be nice if
it would ~~nerate a signal.

(Ports) A oort is siMPlY a plug anct a socket for forMing a
control connection fro~ the port•s orocess to another. A port
has no state in its own rir,ht. The attributes of a port are
t,ne !011owin~:

(Owr.er) we denote the ownin~ process of a port Q bY
owner(Q).

A i·:<JDf;L TOE i·:?S PPOCr ... SS!:..S AND l:::;\!I~WNr·tr:wrs
Mitctell
SHI/XPAFtC

MPS h.O
22 JUN 72

PAGE 2

('I o) I f a p or t ~; i .s :1 o t. c on n e c t e d , we s a y T c (c) = N i l ; i f Q
is conn~c~ed to ano~~er port~·, we say TolQ>=Q'.

Note th~~ th~re is no renuire~ent that To(To(Q));Q.

Of course, To(Q)=Q is perfectly valid.

A confi~uratio:1 i3 ju.st a set of processes.

we \..'oUl'-1 like to arranse things so t.r·iat a i>.·ell•behaved
confi~:l~ration c,~n n~vr~ its corts interconnectf'd and its
prcces~~s startea i~ anv order.

COhTEXT Of A PROC~SS:

I t i 0 HH' 1 s sun e d th a t the cot: text v e c tor is physic a 11 y
attached to ~he data structure wnich contains the variables
for the i~ r ~ c es s •

Th~re are a r1unber of distin~uished e~tries in every orocess's
context {entries nnr~ed witn a * are considered dynanic and
must be set ~henever a new i~carnation of a process is
ere et ted) :

(SYSTEM) systen transfer structure for access to system
f~cilities; this is a co~nonent of every process's context,
altnougn it does no~ have ~o have tne same value in them
all.

(H~TUFi~)* Poi~~Pr to port over Which con~rol will leave if
S P. E T tJ H ~i 5 ,

(FiNrING}* Ifs is Pendin~(Q), then ~he PENDING entry
point·s to Q.

Initially the Pi~DING en~ry will point to a port
11 d e c 1 ;\ re d " J t c v r; o i 1 e ti. n e c a.11 e ·J . t, he pr o c e s s ' s R E T U R N
port: the nrocess's control poin~er is i~itialized from
in!or~ation ootained at conpile ti~e also.

(CATCH)* The innermos~ catch phrase to be called if a
signal is passed to s.

(SlGyATH)* pointer to ~he process to which si~nals which
are not caught oy s should ~o.

ln ~he fol1owinr list of ~llowable orerations on context
vectors, Ctx Stl~ds 1or ~ pointer to ~ con~ex~ vector. i for
an integer value, ana x for an arbitrary value.

NPwc~x ~ copycontext(Ctx);

A MCD?L FOt<~ t1PS pt,JCESS!.:S /\~~D E~VH~o~;Mf·2~JTS
Mitcnell
SiH/XPAPC

x '" xeadCont;~xt.r-:ntrY (Ctx, i);

DelcteContext~ntry,Ctx, i);

Set the i'th context entry ~o ~IL.

DeleteCon~ext{Ctx);

P.t<OCt;SS CCTT201.. S'.i't..T.l~S:

{States} T~e possible states of a procesR are:

MPS h..O
22 JUN '72

PAGE 3

(~) penctinr(~): Pending on port Q~ i.e. control last left
by ~ successful call through port Q.

This incl\Jdes the case of one process startinR another,
Which is jus~ a c~ll an a syste~ facili~y (over a port
of course)

~hen a process is created, it is initially in state
:?(STAHT) where Sj~APT is a. distinguished port. used as the
inport for a function or the starting point for a
processe

(P) Runnin~.

At most one.proc~ss can be in state Hat a ti~e.

(RESUMABLE)

~recess can be started bY control over any one of its
ports· or by a START operation directej at the process.

(Transitions) The transitions between the possible states of a
pro c e s s a re re p re s en t e fJ in t tl e f' o l .Low in g di a ~ r a. m :

ftW~1\TO: Pending(O) Running Resumable

_______ .. _, __ ___ ________

p (0) : NULL control entry on Q Invalid

F.: port call on i; NULL Signal

generation

RESUMABLE: port call or. Q START(process) NULL

A :·W l' U.. T 0 x M PS t' PO C E ~~ SES A ~rn ES V I h 0 :; i': ·F: N T S
Mitcnell
Shl/XPP.FC

INTE~-PROCE3S CONTROL TP.h~l~:H'EH;:;:

MPS 4,0
22 JUN 72

PAGE b.

?ort c~11s: the !Ollo~in~ MPS orccedure describes port call~:

(Po.rtca:Ll} ?~oc::~'.DUhE (nort, outpara:ilist);
r F p or t • c1 ... : n e r ~ s :- ii E :~ u:n: o F. (l r~ v a l i u P or t c a l l , nor t) ;

(ch e c d. ;:, u .i. t. s) Du t~ ~ (1 ni 1 1 o op until no n rob le:: s with
the c o :-1 tr o l tr e. n :1 :> r

(f o r 1-< t-.: t r y } B i ' .. 1 I:~
II (Ot)jectr:crt .,. port.To) = NIJ...

:n .. gn~il <- Reso1ut.ionfau1 t..:
EXIT FcrRetrv;

L-iL;
Reso1vePort(o~j~ctPort, port); !note that
PortCall aoec tnis and not xfer.
Obj~~~?rocess ~ Ob~ec~~ort.o~ner:
H~ !;OT Penc1in'! (Object.Process, Object-Port)

T H b: }~ B L Lr Hi
s12na1 ~ controlYau1t;
EXIT FoX'Retry;

L:·rn;
EXIT Checkfaults;

END F0r?etryj
1 generate sicnal and an~icipate control resumption
Via hfSUM~ or pert

inparamlis~ ~ SIGNAL(signal. port);
IF outpara~lis~ ~ NIL ThEN RETURN (inparamlist);

.r: ~rn c n e c k F .1. ult s ;
inparanlist ~ xfer{port., ObjectPort, outparanlist);
!basic control t;ansier
~ETURN (in~aramlis~);

E ~~ D • Po r' t. C a 11

~l cte:

If a oort. is connectP.d to itself, tnen its ownin~
process in~eoiatelv rezains contrpl as if the port call
had not o~currea at all.

7he ~echani~~ ~arks correctly after ~ny linKage fault is
r.enerated ·..rnether control arrives over t.l"e port or as
the result of a ~~SUME bY sonecne who caught the signal.

froceaure Calls: the followin~ procedure describes procedure
calls:

(Procedurecall) PROC1DDRE(pcrt, outoaranlist);

NewProcess +- CoPYProcess(port.To.owner);

.•
A :·1G U,_ L F CiR I·~ PS Pl·'.OC r:, S 5 r.,3 A ~lD E ~~ V HW!i ;·~E~:T S
Mitcr1ell

MPS h.O
22 JUN 72

PAGE 5 SHI/Xt'ARC

in t; 2. "' : ·t:·,.~ l i 3 t ~ t' o r t c rl. l l (F or t (o /; n e r : N e w Pr o c e s s , To :
port.To), outparanlis~J; !now perforn a normal oort call

RETU~~ (inpa~anlist);

1his cic~~rip~ion of ~he procedure call ~echanism has a
nu~brr cf conse0~ences:

The c~ller is specifyine that a nrccedure call is to be
naoe rJther ~han the callee or the cRllee's inoort
speci±Yin~ it.

The call is a ~wo step ooeratioh involving the
construction of ~ sucsirtiary port over Whicn control
~oes after a copy of the callee is nade. If this n~w
por~ is not constructed1 ~hen the nex~ ti~e the caller
uses tne t'iven port,, it v;ill no 1011ger have owner
Pointiner to the rrotoprocess an·:i t11e copy C'lf the
non-pratoprocess may h~ve altered lots of context
entries"

The callee creates his local variables and enters them
into tis con~ext himself: this is not done for him. It
is assuned tna~ the initial con~~ol pointer points at a
place in his coae bOdY which ~ill make an activation
record for loc~l value3 (this closely models procedures
in nost current Algol~like langua~es).

Possible solutions:

Let t~e incort to ~he callee contain tne Knowledge that
it snecifi~s whe~ner a new cocy of the process named bY
port.10.cwnPr is to oe ~ade. Then simple port calls
would look exactly li~e procedure calls on the calling
side. It nlso could all0w the i~Plenentation of
fORTHA~·li~~ proce~ures Which conceotuallY acquire local
stor~g~ the first, ~i~e they are called and then retain
it thereafter.

This nodel of entry on a port is close to that
prorosed by c,·.n anrj suggests that the "J<no·,..;1edge" in
the inoort couL1 .sinpl~r be tr1e address of some system
f :ic i l:t t.y fer coo Yi nr.: tr1e procedure and ooin ting the
procedure's H~.TURN oort <which is copied as a
co~sequcnce of cocYin~ tne process ??) back at the
c~ller'~ cort. Note that a HETURN operation fron the
callee snould not resolve the caller's port to the
callee's XLTU~N rort since that c~uses the problem
that the caller does not ~ar.t to ~o to the callee
copy which returnca to ni~, but to a new copy.

A MOD~L FOR MPS PROCESSES A~D ~SVIRONMEN:S
Mitchell

MPS LL. 0
22 JUN 72

PAGE 6 SRI/XPAf.:C

Signal Co:1trol:

Nornally ~he SIGPATH con~ext entry is ~l~ered in
conjunction With tne KETU~~ entry. h~en a signal is
g en er ate ct c y a . pro c (' s s , t ':1 e i r1 n e r r". o st c :\Tc H " pro c e au re " is
c a 11 e ct with a. lo c al e , vi r on t; en t cont a. i rd. n g

(a) the si~nal code

(b) the paranlist ~hich ~ccoMpanies the si~nal code

The context Within Whicn the catch ph~ase is executed
includes the part of the co~text of tt2 process in which
the catch phrase lives wnich is accessible to it.

A catch phrase nay do one of ~wo thin~s which affect· the
signal propa~ation:

It m~y allow tne signal to continue propagatin~.
possibly stating the direction whicr1 it is to take
(SIGPATH for the process containinz the catch phrase
de!ir.es the default direc~ion).

It may do a '' non· lo c a 1 11 transfer o £ cont r o 1 into the
body of its con~~inin~ process s via the port on Which S
is penoing. Prior to the ~ctual resuMµtion of s,
another si~nal is passed fron tne point of gener~tion of
the original sign;il. This new signal, called UNWIND,
destroys anY processes which allow it to prooagate.
once it reaches s. the resumption takes place.

During the time it is deciding Which of these two courses
to take, the body of a ca~ch phrase n~Y do any call or
other evaluation wnicn it pleases, rlo\o;ever, all ''backward 0

control transfers (ar.;TU?.::J, SH:i~AL, ~REOh, and EX I Ts wnich
are not local to the bO~/ of the c~~ch phrase) are
interpreted a~ perfor~ed on behalf of s.

PROCEDURES AND PROCESSES AS DIFFERtNT MANifESTATIONS OF THE SAME
PHENOMF.NON

This section explores the sinil~rities bet~een processes and
procedures (in tne traditional sense).

When a proceaure is called in Algol the !ollo~ing events take
Place:

the caller constructs a oarariet~r list

return linkage infornation is allocated in a place
accessible to both the caller and the callee

the caller fills in ~he return inforr.ation

A MOD~L FOR MPS PROCESSES AND ENVIRONMENTS
Mitcnell
SHI/X?ARC

MPS h,O
22 JUN 72

PAGE 7

control oasses to the entry point for the procedure in sone
body of cede

the callee allocates space for local.variables

when the callee is done, ne deallocates tne local variables

-control ~asses bacK to the caller via the return linK
information

the para~eter list is deallocated along with the return
linKage information

In terMs of our model !or processes t~is paradigm can be
restated as

the caller constructs a parameter record

a copy of the callee protoprocess is created: this includes
his contex~ information, and control/status

the callee's RETURN port is resolved back to the port which
5 is using for the "call"

the callee's context is altered to include the parameter
record

control passes to the c~llee

the callee creates an instance O! its activation record

when the C$llee is done, he allocates and constructs a
return r~cora

the callee frees his activation record

control passes back to the caller over the process's RETURN
port and the callee copy is destroyed

PROCESS CREATION:

An instance of a process is nothing More than a (Control,
context) Pair. processes can be created bY conyin~ an a1rea~Y
existing process (however, this is net quite What one would
like, namely copies 01 the data structures createa by th~
process itself -- bU~ see the next para~raph). InitiallY a
~1·ocess is created from sone virgin forM which has usuallY
been established from a file. We Will call such an ooject a
protoprocess: it is not an executable entity, but holds a
place in the na~ir.r. environment and creating a process from it
is a simple operation.

A protnorocess consists of a partiallY initialized context an~

A MODEL FOR MPS PHOCESSES AND ENVlRONM~NTS
Mitchell

MPS U.,O
22 JUN 72

PAGE 8 SHI/XPA~C

initial control infor~ation. lf the recoras created bY the
process for local varinbles, etc. could be created
inderendentlY of or.e another, then nakin~ a cooy of an already
existin~ Process and tne data structures o~ned bY it would b~
a si~ple operation. In general this is not the case: records
cont~in references to other reccras. and hence, truly copYing
a process is equivalent to copying a set of inter-referential
records. I don't thinK we should provide a built in facility
to· do this -- it is a job !or sor'1eone using the system.

Creating a new process s fron sone already existing process or
protcproce3s P is siMPlY a matter of copying the control and
context information for P to s.

PROCESS NAMING ENVIRONMENTS:

compile Time:

The local variables for a process or procedure are those
declared following the header statement for the process,

The following example demonstrates this:

(Exl) PROGRAM (al, bl);
DECLAR~ rl. sl, tl;
body-1
(Ex2) PROGl-tAH (a2, b2);

DECLARE r2, s2, t2;
body-2
END.

END.

When an incarnation of Exl is initially created, space
is allocated for al, bl. cl, rl. s1. and tl. Tnereafter
Whenever Ex2 is called (Which is equivalent to creation
followed inmediately by control transfer), a2, b2, ••• ,
t2 are allocated and Wlll be deallocated only when Ex2
6oes a RETUP.N.

The prototype pro~ram froM which a process can be created
is the following:

(Example) PROGRAM (parameter-list);

local-variable-aeclarations;

program-body

EMD.

Any ~athering of many nrogram prototypes in one source file
is siMPlY a way of bindin~ sone contexts before process
creation tir.e and of causin~ one CREATE operation to result

A M00EL FOR K?S FROCi55~~ AND ~~VIROhMiNTS
Mitchell

MPS 4.0
22 JUN 72

PAGE 9 S rt I I !~ ~ t. F C

i~ tnc creation o! a nu~ocr 0£ precesses. stated
oirfcrent~Y. a source ~odUl~ iS a mea~s of bindin~
processes into ccnfi~uratio~s b~fore creation tine.

A local·viriable-declaration may be·

a pro ~ r a ; r~ d e c 1 a r 4. t. ion : t, hi s a l lo .. ,. s A l g o 1 -1 i k e bi n di n f! s
Of conte-xt.

a. n I ~·~ c L u D £ ri e c l d. ~a t. i on : i n c a r n a t. i o :1 s of ~ n Y o b j e c t s
decl::u"'r.c:d in t£1c I~~CLUDE r-~odUle i-il.ll !1ave the same
lifetine as nor~al local variables.

Execution Ti :·~e:

~~e execution ti~e na~ing enviro~Aent consists of a tree
\;'hos~ nodes are processes and instant.iat..ions of data.
1r.octu1es .. 1<iorP than one inst,ance of a r1rocess or data
nodule c~n resi~e at a node of tte ~ree. Also, separate
ir1stances of the sane process may re~ide at different nodes
in the na~ing tree. A given process resides at exactly one
node in the namin~ tree.

The naming environ~ent is not necessarily coupled with the
control or context of processes althou~h it is often
convenient for then to be associatej. All normal bindings
of naMes ~o Ohjects use ~he co~pile time SYMtOl table
associated ~ith a process as the most local information,
and the naning tree as the rext source of na~es.

~e add tne f ollowin~ attributes to those listed above for
processes:

EXAMPLE:

(Parent) ?arent(S} is S's ancestor in the nanin~ tree.

{Sioline.;) Sibling (S) is ;_ process such tL:.'.t
Parent(S}=Paren~(Sibling(S)) or Sitling(S)=NIL

(Child) Child(S) is the 11 iirst" descendant process of S
in the na~1n~ t~ce. The ch1ljren of a process are
well-ordered, and ~he followin~ loop will access all the
inmediate oescenjan~s of ~:

Child• Child(S);
UN Ti L child= ~il L

DO BEG!N
procesn this cnild;
child~ Sibling(child);

END;

................

A MODt.L FOP ~?S PP.OC ES S!.,S A~rn ENV r tW~H!E~rTS
l·~i tcnell

MPS b..O
22 JUN 72

PAGE lO Sf.:IIXPAt--C

Prinitive Oterations for Process Creation ;nj Calling
Procedures:

(CreateFro~File) PROCEDURE(filena~e);

DECLh~E POI~!FR(~O~T) CallinPor~;

a. ~ ;1 ~. P ! n (.f i le n a ;; e) ; l ~a p f i le in to ad d r e s s a b 1 e memory

Callin?ort ~ Proto?rocess(a.InitialPC, a,
self.HeturnPor~~?o); 1Ma~e ~ protorrocess with initial
con~rol fro~ the file and paren~ ~Y caller

RE T tnrn (c a.11 I n port) ; 1 g: iv e b a c k add re s s o ! port by
Which process can be called

(ProtoProcess) PROC£DURE(pc, codebase, parent>;
&nake a orotocrocess wi~h ini~ia1 pc as [iven in the
ccdebase given and Wi~h the specified parent process

DECLARE ?OINTEH(PHOCESS) p;

p ~ Copy?rocess(SK~letonProcess, paren~); 1 make a
mini~al, Vir~in process

p.control ~ pc;

p.Context.?enaing ~ S(p.Re~urnPort); 1 initial state is
Pendin~(HeturnPort)

p.context.CodeBase ~ coaebase;

Startup.To ~ p.ReturnPort;

x!er(Startuo, St2.rtUp, NIL);

RETU~~r (Start.Up.To); l really not necessary since
Startup belor.~s to caller of Proto?rocess

END,

Sa~ple Pro~ra~ Outline:

(a) ROUTINi (-.,a. O,d.);

DECLA~E xa, ya, za;

(al) ROUTI~E (pal, qal);

DECLARE xal, Yal, zal;

A 110D£.1, FG? :1PS F.RDc.:;siSL3 ·A:~ri E?:V!H01~:1iWl'S
Mitchell

MPS 4,0
22 JUN 72

PAGE 11 SHl/XPA?C

bo'jY o! al;

EJ~ D of al.

boa~' of a;

t.Nr~ oi a.

Tne .tolJ.Oi-i:i.nv purpcrt.s t.o oe the code ~enera.~ed by the MPL
co~piler for t~~ sam~le progran above:

Proto-code for a's orotoprocess

(a.Prate)

DECLARE PROCES~ o, POINT~R{PHu6ESS) ap, POINTER(PORT)
caller;

p ~ conyPrncess(Skeleton?rocess. self); !prototype
process descrio~or for a

1 set any cf o's context which is desired

p.Control ~ ~a5EGINS;

xrer(~eturn?ort, H~turnPort, self.inargs);

l 'l'he following looµ handles creat.ion and callini; of
ins'tances of a.

DO BEGIN 1 loco forever

ap ~ CopyFrncess(p, self); lcopy of preset
process descriptor for ~

caller • ~eturnPort.To;

ReturnPor~.To ~ ap.~eturnfort; !so can transfer
control ~o 1p and leave aProto pending HeturnPort.

Xfer(ReturnPort. caller, self.1naris);

1 ~Proto is left pencin~ his HeturnPort and has
cut ni~self out of the con~rol path from the
caller to the instance of a.

END;

Code !or the routine a:

(a.BEGINS)

D~CLARE xa, ya, za, PORT CALLal:

A MODEi FOR M?S PROC~SSES A~D ENVIEONMiNTS
Hi tcr.ell

MPS 4,0
22 JUN 72

PAGE l2 SrlI/XriA~C

CALLal,Owner ~ self;

CALLal.To ~ ProtoProcess(al~roto, al?roto, self);

body of a

cede for dl•s protoDrocess

(a.lPrcto)

DECLAR~ PROCESS ~, POINTE~(PUOCESS) alp, POINTER(PORT)
caller;

p ~ cooy?rocess(SkeletonProcess~ self);

p.Contex~.GLObALS ~ Petu~nFort.To.owner.contex~.tOCALS;
11ocal varia~les of enclosing preear included in context
of any incarnation of al.

P~Control ~ ~alaEGINS;

Xfer(P.eturnPort, ReturnPort, self.inargs);

! The !ollo~ing loop handles creation and calling of
inst.anccs of a.

DO BEGIN l loop forever

alp~ CopyProcess(p, self); !copy of preset
process descriptor for a

caller ~ ReturnPort.To;

Re~urn?ort.To ~ alp.ReturnPort; !so can transfer
controi to alp and leave a~roto pending
ReturnPort.

xfer{HeturnPort, caller. self.inargs);

l alProto is left pendin~ his ReturnPort and has
cut ninself out of the con~rcl pa~h from the
caller to ~he instance of al.

END;

CNie for al

(a 1 d ~ G I ~~ s l 1 c o ct e f o r a l

D~CLARE xal, yal, Zal; nake local record for self.

body of al

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12

