CDOCMPSOCHAFIERNZ2.8LS320, 20-JUN=T72 14:12 JGM ;

A& MOUVEL FOR PSS PROCESSES AND ENVIRONMENTS
22 JUN 72

MPS L,0

Jares (. Mitchells

Xerox ?Palo Alto Research Centers#
318¢ Porter Drive
Palo Altvo, CA 9L30L
(4l5) L53-1600

Stanford Research Institute
333 Ravenswoocd Avenue
Menio Park, CA 94025

(L15) 326=6200

A MCDEL FOR MPS PROCESSES AND ENVIEONMENTS MPS L.O
Mitchell 22 JUN T2
SKI/XFAFEC PAGE 1

This merno attenpts te fornalize the notions of process, process
control states, inter=-process control transfers, cocntext, and
naning environments for processes.

PROCESSES:
(Processes) A process has the follo&ing attrioutes:
" (control)

control{s) is a pair (pc, status) consisting of a
control pointer into sone pody of code asscciated with
the process and a value denoting the status cof S, chosen
from tne list in the branch labelled States pelow,

.

(Context)

goncenptuzlly, the context for a process is the set of
cbjects wnhich tne program can access by simple names.
Since we view an activation record for a procecdure, for
instance, as a compound object whose components
correspond to the local variables ofi Uthe procedure, it
1s convenient to view the context of a process S simply
as a vector of "references" Lo objects WhoSe conponents
can be accessed by simple identifiers in the source
program.

An element of the context is a pair (CA, IND), where CA
is the address of an ooject whose semantics nmatches §'s
requirements for the opject specified by the context
slot, and 18D, if one, inmplies indirection (take tne
value of the object to which CA poinvs as the CA for
this entry).

The only way a process can touch any object is via the
context vector, This includes the data objects called
ports which are used for all contrel transiers, and tne
context vector itself (which must te accessed as a data
structure for replacing context entries, for instance),

Accessing an obJject via a context entry whose CA value
is NIL is not currently defined, -but it would be nice if
it would generate a signzl.

(Ports) A vort is simoly a plug and a socket for forming a
contirol connection fron the port's process to anotner. A port
has no state in its own right. The attributes of a port are
the following:

(owner) we denote the ownine process of a port Q by
owneri(Q).

A& MODLL FOR MPS PROCE3SES AND ENVIZONHMENTS MPFS 1.0
Mivchrell 22 JUN 72
SRIZXPAKC PAGE 2

(To) If a port ¢ 1s nov connected, we say To(¢
18 connecied to another port w', we say Telor=

Hotle that there is ne reouirenent that To(To(Q))=Q.
0f coufse, To(G)=0 1s perfectly valid.
Sore nore g£1lobal definitions:
A contfiruration is Jjust a set of processes.

wWe would lixe te arrange things so that a8 welle=dbehaved
conficuration can nave 1i1s porus interconnected and ivs
rrccecesses stariveg in any order.

CONTEXT OF A PRCCRSS:
It is NOT a3ssurmed that the context vector is physically

attachned U2 Lhe data Structure wnich contains the variables
for the pronecess,

There are a numper of distinZuished entries in every process's
context (entries marxed witn 2 % are considered dynanic and
must be sev whenever a new incarnation of a process is

greated):

(sysirM) systen transfer structure for access to systen
facilities; this 19 a convonent of every process'!s contexy,
although it does notv have L0 fhave tne sanmne value in them

all.

(RRTUFH)* Pointer to port over which contreol will leave if
S RETUHENS.,
(PENPING)® If S is Pending(©), then the PENDING entry
peints Lo Q.
Initizlly the PelDING entry will point to a port
"declared" at cormoile tine called the process's RETURN
port: the orocess's coentrol pointer 1s initialized fronm
information c¢otained at compile tine also.

(CATCH)% The innermost catch pnrase to be called if a
signal is passed to S.

(SIGPATH)* pointer to the process to which signals which
are not caught py S should go.

In the followins list of 2llowable orerations on context
vectors, Ctx stands for s pointer to a conieXu vector, i for
an integer value, ana X f£Or an aroitrary value,

NewctX ¢ CopyContexXxt(Cix):;

A MCDEL FOR MPS PLIOCESSES AND ENVIKONMENTS MPS L.O
Mivcnell 22 JUN 72
SRI/XPLRC FAGE 3

Setrfontextintry(Cix, i, x};

% € rpeagiontextEntry(ctx, i);

DelctreContextintry(Cix, i}

Set tnhe i'Lh context entry tvo NIL,

A}

DeleteContext{Ctx);

Ps

PrOCESS CONTHOL STATES:
{States) The possible states ©f a process are:

(@

(F)} pPendan

F Pending on port 9, i,e. control last left
by & successi '

)

Ul ¢call through port Q.
7his includes the case of cnc process starting another,
wnich is jusv a ¢all on 3 syaten facilivy (over a port
of course)
when a process i9 created, it is iritially in state
P{START) where S$7TAPT 1s a distinguisned port used as the
inport for a function or the stariaing point for a
precess,

(P) Running.
At most one . process can be in state R at a time,

{RESUMARLE)

Frocess can be started by control over any one of its
ports or by a START operation directed at the process.

{Transitions) The transitions between the possible states of a
process are revresented in the following diagranm:

FRONM\TO: Pending (o) Running Resumable

P(Q)s NULL convrol entry on Q Invaliad

E: rport call on « NULL Signal
generation

RESUMABLE: port call on Q START (process) NULL

A

MODEL rOk MPS FROCESSES hnD ENVIKONIENTS MPS L4.O

Mitcnell 22 JUN T2
SKI/APREC ‘ PAGE 4

INTER=-PROCESS COMTROL TRANSFERS:

Port Calls: the following MPS procedure describes port calls:

(FortCall) PROCEDURE{voOrt, outparaniist);
IF pert.Owner # & THpd kRECR({InvaliaPortiCall, vort);
marevergine (3, gsorul;
(Vheca‘LJt\‘) Do hEGIN } loop until no vroblens with
the cenirol tran:
(Forketry) B
C
o)
jagd

IY (Obje L « port.To) = NIL

‘1}'1—!05—4“

THEN
s51gual ¢« ResolutionFaulv:
FXIT Feorketrv;

ENL ‘

resolvePort(vojectPort, rportv); lnote thatv
PortcCall aces this and not xfer.
Ot jeatProcess « Opliectirort.owner:
IF %0T Pendinz(0ObiectiProcess, ¢bjectPort)
THEN BLGIK
gignal ¢ Contrelrauly;
EXIT ForRetry;
EdDg
BXIT CheckFauylts;
END ForPetry;
! generate siesnal and anticipate conirol resumption
via KESUME or pert
inparamlisty ¢« SIGNAL(Signal, rort):
IV outvparaniist = NIL ThHEN RETURN (inparamlist);
END Cneckraults;
inparanlist « xfer{porv, Objectport, outparamlist):
ipasic control transie '
fETURN (inraramlist);
EXD. Porevcall

Nota:
If a port is connected to itself, tnen its ownine
prccess innegiztely regains control as if the port call
had not occurreqg =2t all.
The mechanianm worxs correctly after ony linkage fault is
fenerated whether conlrol arrives over the port or as
the result of a ®wp3UME by sonecne who caught the signal.

Frocegure Calls: the followinrm procedure describes procedure
cz2lls: .

(Procedurecall) PROCLDURZ({pcrt, outparanlist);

NewProcess « CopyProcess(port.To.Cwner);

A MOULLL FOR mFS FPrGCa59R3 AND ENVEJO“NE?TS MPS L.O

Mitchell 22 JUN 72
SRI/ZKFARC PAGE 5
inuarynlist « portCall{ Pert(Cwner: lNevwProccess, To:

port,T0), outparanlist); lnow perforn a normal port call
RETURY (inparanlist);
END,.

Tris dezeription of wvhe vrocedure c¢all nechanism has a
numter ¢f consenuances:

The ¢casller is ecifying that a nreocedure call is to be
nage rather Ltaa the callee or the callee's innort
speciiying it.

The call 1s a two step oreration involving the
construction of 3 suopsidiary port over whicn control
foes after 3z copy of the callee i5 nade. If this new
DOYrt i8 not consuvructed, then the next tirme the caller
uses tne given portv, it will no longer have Qwner
pointing to tne rrotonrocess znd the copy of the
non~proloprocess may have altered lots of context
entries.

The callee creates his local variavles and enters then
inte his contexXt hinmself: this is not done for him. IV
is assumed tnat the initial control vointer points at a
Place in nis codae pody which will make an activation
record for local value3d (thls closely models procedures
in most current Algol=-like languages).

Possitle solutions:

Let the inport to the callee contain the Knowledge that
it svoecifies whetlher a new copy ©of the process nared by
rort,70.Cwner is to pe nmade. Then simple port calls
ould locock exXactly like procedure calls on the calling
siqge,. It also could 3ilow the implenentatiion of
FORTRAN=1i¥e procedures wnich conceptually acquire local
Storage the first time tney are called and then retain
it thereafter.

This model of entry on a port is close Lo that
prorcsed by Bwl and suggests that tne "Knowledge" in
tne invport could sainply be the address of some systenm
faciliity for copying the procedure and vointing the
procequre's g*TURN vort (whiech is copied as a
consequence of copyvan® tne process ?77) tack at the
caller's voreu, Not2 that 3 KRETURN operation fron the
callee snould neot resolve the caller's port to the
callee's HeTURN Port since thatl c4uses the preblen
that the caller does not want to g2 Lo the callee
copy which returncd 2 hin, dul L0 2 new copy.

A MOLEL FOR MPS PROCESSES AWD RNVIHUNMENT N MPS L.O .
Mitchell 22 JUN 72
SRI/XPAKC PAGE 6

Signal control:

Nerrmally the SIGPATH context entry is altered in
conjunction with tne ==ETUrY entryv, Wwhen a signal is '
generated bty a process, the innerro3t CATCH "procedure" is
called with a local environrment contzaining

(a) the signal code
{b) the paraniist which accompanies the signal code

The conteXt within whicn the catch phrase 1s executed
includes the part of the conteXt of thrhe process in which -
the catch phrase lives wnich 15 accessivle to it.

A catch phrase nay do one of two thines which affect. the
signal propagation:

It may allow ithe signal to centinue propagatineg,
possibly stating the direction whicnhn it is to take
(SIGPATH for the process containinz the catch phrase
defines the default direction).

It may do a "non-lccal" tiransfer of control into the
body of its containing process S viz the port on which S
is pending, p?Prior to the actusal resumption of S,
anotner signal is passed from tne point of ¢generation of
the original signal. Tnis new signal, called UNWIND,
destroys any processes which allow it to propagate,

Once it reaches §, the resumption takes place,

During the time it is decicding which of these ilwo courses
to tazke, the body of a cailch phrase may do any call or
other evaluation wnicn it pleases, rowever, all "backward"
control transfers (RETURN, $1twAl, EEEOR, and EXITs wnich
are not local to the pouy 0f the catch »hrase) are
interpreted as performed on behalf of S.

PROCEDURES AND PROCKSSES AS DIFFERENT MANIFESTATIONS OF THE SAME
PHENOMENON

This section explores tne sinilerities betwcen processes and
procedures (in the traditional sense),

when a procecure is called in Algol the following events take
place:

the caller constructs a parameter list

return linKage infornation is allocated in a vlace
accessible to both the cailer and the callee

the caller f£ills in the reuvurn inforration

A MCDEL FOR MPS PROCESSES AND ENVIRONMENTS ‘ MPS L.O
Mitcnell 22 JUN T2
SRI/XPARC PAGE 7

control passes to the entry point for the procedure in sone
bedy of ccde

the callee allocates space for local variables

when the czllee is done, he deallccates the local variables

-contrcl passes tackK to the caller via the return link
information

the parameter list is dealloccated zlong with the return
linkage infermation

In terms of our model for processes tpis paradign can be
restated as :

the caller constructs a parameter record

a copy of the callee protoprocess is created: this includes
his context information, and control/status

the callee's RETURN port is resolved back Lo the port which
S is using for the '"call"

the callee's context is altered to include the paraneter
record

contrel passes Lo the callee
the callee creates an instance of its activaticn record

when the callee is done, he allocates and constructs a
return record

the callee frees his activation record

centrol passes back to the caller over the process's RETURN
port and the callee copy 1s destroyed

PROCESS CREATION:

An instance of a process is nothing more than a (Control,
context) pair. pProcesses can be created by covying an already
eXistine process (however, this is nct quite what one would
like, namely copies of the data structures createa by the
process itself == putv see the neXt paragravh). Initially a
rrocess is created from some virgin form which has usually
been establisned from a file. We will call such an object a
protoprocess: it is not an eXecutable entity, but holds a
place in the naning environment and creating a process fron it
is a simple operation.

A protoprocess consists of a partially initialized centext and

A MODEL FOR MPS PROCESSES AND ENVIRONMENTS | MPS 4,0
Mitchell 22 JUN 72
SRI/XPARC | PAGE 8

initial control information. If the recoras created by the
process for local variavbles, etc. could ve created
inderendently of one anothner, then nakine a cony of an already
existing process and tne data structures owned by it would ve
& 8irple operation, In general this is not the case:; records
contain references 1o other reccrdg, ana hence, truly copying
a process is equivalent to copying a set ©of inter-referential
records, I don't think we should provide a built in facility
to do this == it is a Jjob for someone using the systen.,

Creating a new process S fron sone already existing process or
protveprocesds P is sinply & matter of copying the control and
context inforration for P to S.

PROCESS NAMING ENVIRONMENTS: .
Compile Time:

The local variables for a process or procedure are those
declared following the header statement for the process,

The following example demonstrates this:

(Ex1) PROGRAM (al, bl);
DECLARE rl, slil, tl;
body=~-1
(Ex2) PROGRAM (a2, b2);
DECLARE r2, s2, t2;
body=2
END.

END.

When an incarnation of EX1 is initially created, space
is allocated for a1, pl, ci, rl, sl, and tl. Thereafter
whenever Ex2 is called (which is equivalent to creation
followed inmmediately by control transfer), a2, D2, ees,
t2 are allocated and will be deallocated ohly when EX2
does a RETURN.

The prototype program from which a process can be created
" is the following:

(Example) PROGRAM (parameter=list);
local=variable=-geclarations;
program=pody

END.

Any gathering of many vnrogram prototypes in one source file
is simply a way of binding some contexts vefore process
creation tine and of causing one CREATE operation to result

A H0UEL FCY MPS FROCEEL=L AND ENVIRDNMENTS . MPS 4.0
Mitchell ' 22 JUN 72
SxI/x¥PLFC PAGE 9

ir vpe creation of 3 nunocer of precesscs., Stated
Gliferently, a source nodule 15 a4 neans of binding
processes into cenfiiguratiocns before creation tine,
A localevariazvle~geclaraticn may be’

geclaration: this allows Algol-like bindines

m

Lext

'Y

DFO?
con

an INCLUDE declarationt! incarnavions of any objiects
declared in tne INCLUDZE nmodule will have the sane
lifetvine as norrmal local variables,

s

Execution Tine:

EXA

)

Yhe eXecution time namineg environfent consists of a tree
whose nodes are processes anld instantiations of data
nodules, More than one insvance of a process or data
rcdule can resicde at a node of the tree, ALsSO, separate
instances of tne szme process Ray reside at different nodes
in the naming tree. A givVen process resides at exactly one
nede in tre naming tree,

The naming enviroennent is not necessarily courled witn the
contrel or context of processes althourn it is often
convenient tor them 1o be asscciated., 411 normal bindings
of names 1o Okjecls use Lhe comnpile time symtol table
associated with a process a8 the most local intornation,
and the naning tree as the next source of nanes,

¥e add tne fcllowing attrinutes to those listed above for
processes?

(Perent) Parent(s) is S's ancestor in the naming tree,

{sicling) siblinz(s) is a process such that
Parent(s)=zrParent{Sidlineg(s)) or Sitlingi{s)=NIL

in the narini trce. The children of & process are
well=crdered, and tvhe feolliowing loop will access all the
inmediate descendants 0f o5t

{Cnild) Child(8) 4is the "7irst" descendant process of 8§
I

-~
-
~
<

c¢hild « Chilid(3);
UNTIL ¢hild=d1L
DO BEGIN
process this cniid;
¢hild ¢ sivlineg(child);
h

MPLE!

-k W W e W e

A MOLLL FOR 425 PROCESSLS AND ENVIRON

HENTS MPS L.O
Mivcrnell 22 JUN 172
SKI/EKPAKC , . ' PAGE 10

Prinitive orverations for Process Creation and Calling
Frocedures:

{Create¥rorrile) PROCEDURE(filename);

DECLAKE POINTER{(PDORAT) CallInForvu;

a ¢ MapIn({filenane); | map file into zddressable memory
Cz2llIin®ort ¢ Protorrocessi{a.lnitialFC, 2,
self.returnrFort.70); lhaxe 2 protoprrocess with initial
control fron the file and parent my caller

RETURN({CallInFrort); | give back agdress of port by
Wwhich process can be called .

WD

(ProtoProcess) PROCIDURE(pC, codebase, parent);
inake a protoprocess with inivial pc as gaven in the
ccdebase zivern and with the specified parent process

DECLARE POINTER(PROCESS) p;

p ¢ CopyProcess(skeletonProcess, parent); | make a
minimal, Virgin process

p.COntrol « oc;

p.Context.?ending ¢ S{(p.ReturnbPort); { initial state is
Pendineg {Revurnbort)

p.Context.CodeBase & codebase;

Startip.To ¢ p.RetyrnbPorey;

xfer(startUo, StartUp, KNIL);

RETURN (StartUp.To); | really not necessary since
StartlUpy bhelongs Lo caller of Protorrocess

END,

Sanple Program QOutline:

(a)

ROUTINE (»a, qa);
DECLARE xa, Ya, 23;
{al) ROUTINE {(pal, qal);

DECLARE xal, val, zal;

A MODEL
Mitchell
SRI/Z/KPAR
BN

The I
conpi
Fr

FUP MPs FrOCZSSE3 Aub ENVIRONNLNTS MP8 L.O
22 JUN 72
PAGE 11

~
A

body of al;
END of al.
boay of a;
o oof a.

sLlovWine nurpSris to ope the code Zenerated by the MFL
ier for tas sSamplie progran above:

oto=code for a's orotoprocess

(aProte)

DECLARE FROCLSS v, POINTER(PRU&ESS) apr, POINTER(PORT)
caller;

P € ConyvProcess(SkeletonProcess, self); iprotolype
process aescripever for a

! set any of p's context wihich is desired
p.Contreol ¢« $abBEGINS:
®fer{return?ort, EKeturnrort, self.inargs);

| The following loop handles creatrion and calline of
insvances of a.

DO BEGIN | locop forever

ap ¢ CopyFrocess(p, seif); lcopy of preset
_ bProcess deacriptor for =

caller « Returnrort.To;

FeturnPort.To « ap.keturnrort; {so can transfer
control Lo 2p and leave aproto pending ReuwurnPorv.

‘

Xfer (Returnrort, caller, self.inaregs);

| aProto is left pencing nis ReturnbPort and has
cut pinmsels out of the control path from the
caller to the instance of a.

END;

Ccde for the routine a:

(aBEGINS)

DFCLARE xa, ya, za, POKT CALLal;

A MOUEL FOR MPS FPROCESSES ANWND ENVINONHMENTS ‘ ' ’ HPS k.0
Mitchell 22 JUN 72
SRI/XPAKC PAGE 12

CALLRYl.Cwner « solf;

CALLal.To « ProtvoProcess{alProto, alProto, self);

body of a

cecde for «1's protorrocess
{alProto)

DECLAR: PROCESS ©, POINTER(PROCESS) alp, POINTER(PORT)
caller;

p ¢ CooypProcess(SkeletonProcess, self);
PeCOn%text.GLOBALS ¢ Eeturnbort.7o.Cwner.Context.LOCALS;
{local varianles of enclosing preear included in context
of any incarnation c¢f ale.

p.Control &« 33l3EGINS;

¥»fer(peturnfort, EReturnPori, self.inargs);

! The following loop handles creation and calling of
instances of a. ’

DO BEGIN | loop forever

alp ¢« CopyProcess{p, self); IcopyY of preset
process descriptor for a

caller « ReturnpPort.io;

‘RevurnPort,To ¢ alp.keturnPort; lSo can transfer
controi to alvp and leave apProto pending
ReturnPorv. ‘

xfer{ReturnbPorv, calier, self.inargs);

! alvroto is left pending his ReturnPort and has

cut hinself out of the contrcl path frem the
caller to the instance of 3al,

END;
code for al
(2138TGINS) | code for al
DECLARE xal, yal, Zal; | nakKe local record for self.

body of al

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12

