
.: ·.~ 

/ ·.;.:·-· ~- :.-'._..,, / . 

I 

Inter-Office Memorandum 

To MPL group Date April 21, 197 2 

From Butler Lampson Location Palo Al to 

Subject New control transfer mechanism Organization PARC 

1. Introduction 

This memo describes the current state of a new design for MPL inter­
module transfers of control and frame allocation. The goals of the design: 

1) Clear separation of control transfer from determination of the 
context in which the new module will run. 

2) A single control transfer mechanism which can model all existing 
mechanisms (port call, procedure call, signal). 

3) Ability to connect any kind of exit from a module with any ·kind of 
entry. 

Other desirable properties which seem achievable within the general 
framework described below but need further thought: 

4) Accessible facilities for specifying the context of a module in 
arbitrary ways. 

5) Accessible facilities for specifying signal propagation paths. 

6) Conventions for displaying the current control state. At the moment 
we only understand how to do this well for procedure calls (using a 
backtrace) • 

2. Control transfers 

Control always enters a module through an inport, which simply consists 
of a transfer location. Since inports cannot be moved freely, additional 
information can surround the inport, i.e. the input can be imbedded in a 
record. We will call fields of this record other than the transfer 
location parameters. 

When control enters through the inport, the registers are set up in a 
standard way and a transfer is made to the transfer location. 

Control always leaves a module through an outport, which is simply a 
pointer to the inport through which control is to enter the new module. 

The primitive for control transfer is 



NEW CONTROL TRANSFER MECHANISM 
Butler Lampson 
April 21, 1972 
Page 2 

xfer (o, i, a) 

wnere o is the outport, i is a pointer to the inport through which control 
should be returned, and a is a pointer to the arguments. In general the 
module doing the xfer must first construct the return inport. 

Normally the transfer location of an inport is an address in the static 
storage of the context being entered, and there is one parameter which is 
an address in the module to which control should go. The location of the 
inport itself provides a second parameter whose interpretation depends on 
the type of transfer. Note, however, that the basic transfer mechanism 
does not know that this is the standard way of using it. 

3. Describing the control state 

A procedure-based language like Lisp has a very nice way of describing 
the control state, called a backtrace. In the present imperfect state of 
our understanding of inter-module control transfers, we have no chance for 
such a clean mechanism. Some improvements on the present chaotic situation 
do seem to be possible, however. 

The basic entities which are related by control transfers we will call 
contexts; there is a one-to-one correspondence between contexts and 
inports. We will require that every context contain the following things 
(normally declared to the compiler, which leaves information about their 
location in the code segment for the context) : 

1) an owner outport. These are expected to define a tree called the 
owner tree. The owner outport specifies the target for control faults 
(i.e. the context which will get first chance at the resulting signal). It 
has no other function except to guide display of the control state. 

2) a signal path outport which specifies where a rejected signal should 
go next. Perhaps this specification can be overridden by the catch phrase 
which does the rejection. 

3) a list (possibly empty) of key outports (see the discussion of links 
below). 

4) possibly a return outport. If coptext A has a return outport which 
points to context B, then B is A's caller. The list of contexts obtained 
by following the chain of return outports starting from A is the return 
chain segment based on A. If A is not anyone's caller, its return chain 
segment is a return chain and corresponds to a stack in the present 
implementation. 

A context which does not have control may also have a current outport, 
which is the one over which it has just given up control. 



NEW CONTROL TRANSFER MECHAlHSM 
Butler Lampson 
April 21, 1972 
Page 3 

I 

If context A has an outport P which points to context B, A is connected 
to ~£1. E_. If Bis also connected to A by Q, and both P and Q are either 
key or current, the P and Q form a link between A and B. This definition 
is intended to characterize certain familiar relationships among contexts 
such as the producer-consumer relation. It is not clear how well it does 
this. 

All this apparatus gives us three ways of displaying the control state 
of a computation, i.e. the current relationships among the contexts. 

1) Return chains can be displayed linearly; such a display is called a 
back trace. 

2) Backtraces may be connected in pairs by links. If the links arise 
from producer-consumer relations the resulting display has a pleasing two­
dimensional structure. 

3) Contexts without return ports can be displayed according to their 
position in the owner tree. This is especially convenient when the tree 
arises from a maze search. 

4. Storage allocation 

To make the new control mechanism more glamorous by association, we are 
simultaneously introducing a wonderful new allocation scheme for procedure 
frames. This scheme does not use a stack but instead allocates each frame 
with a general storage allocator. Acceptable efficiency is (hopefully) 
obtained by two tricks. 

1) Frame sizes are quantized in some convenient way (perhaps increments 
of 10%) so there will not be too many different ones. 

2) A list of free blocks of each frame size is kept. When a new frame 
of size n is ncedeq, list n is first examined to see if it is non-empty. 
If so, the frame can be obtained inunediately (in two instructions). If 
not, a more expensive, but hopefully infrequently used procedure must be 
invoked. Freeing a frame requires nothing more than splicing it onto the 
proper list. This also requires two instructions, and only the first of 
them needs to know which list is involved. By putting this instruction in 
the -1 word of the frame, we reap two benefits: 

1) It is not necessary to keep track of the frame size; 

2) More elaborate deallocation procedures can be spliced in by 
replacing the instruction with a call to some suitable routine. 

An unresolved problem is how to prevent frames from existing without 
any references to them, or conversely, references without any frames. A 
reference count scheme adds some cost to most xfers, in return for which it 



NEW CONTROL TRANSFER MECHANISM 
Butler Lampson 
April 21, 1972 
Page 4 

gives no new capabilities but only an error check. Maybe this is not a 
real problem. 

5. Inport types 

The basic xfer mechanism is the same for all control transfers. The 
actions required inside each module to allocate or free storage, establish 
context and keep track of arguments, depend on what the programmer wrote, 
however. Thus a return, a procedure entry and a port call all have quite 
different internal bookkeeping. These differences are accornodated by the 
code which is executed within a module before a trans!er and by the code at 
the transfer location. The transfer interface itself is the same for all 
types of transfer, so that any one can be connected to any other. 

It is, however, necessary to be able to go from an inport to a 
description of the context {see below} to which it corresponds. This is 
done by a function which takes an inport and rummages around in the 
structure to which it points. 

By the description of a context we mean: 

1) The code segment for the context; 

2) The program location within that segment; 

3) A list of typed pointers to the records which contain the variables 
accessible in the context. Unfortunately this is not very well defined and 
needs further thought; 

4} The owner, signal path, key, return, and current outports defined in 
section 3. 

6. Examples 

In this section we will see how to model ports, procedures and signals 
using the ideas developed above, and in the next section we will see how to 
encode these models on the l~. 

Notation: if an inport has transfer location tl and one parameter p, 
we write it as (p,tl}. We assume that a frame can be given control (i.e. 
can be a transfer location} and that it then sets up the context it knows 
about and sends control to the first parameter of the port addressed by o. 

A port is a pair (inport, outport). The inport is (procret, process), 
where process is the frame for the process which owns the port, and procret 
is global code which transfers to the pc saved in the process frame. The 
frame 'gets control' when the inport is used; it sets up the context and 
sends control to procret, which sends it to process.pc. The outport, of 



NEW CONTROL TRANSFER MECHANISM 
Butler Lampson 
April 21, 1972 
Page 5 

course, is a pointer to the connected inport. Then portcall (port, msg) is 
just 

process.pc + retloc; 

xfer (port.out, address (port.in), msg); 

retloc: o.out + i; 

The argument pointer is in a. If desired, it can be stored in a 
message buffer associated with the port. The port through which control 
returned can be identified by its address, which is in o. 

This sequence sets up the context for the process which owns the port. 
If the caller is some other process, it will have to do some more work to 
set up its own context. An example of this is given in section 7. 

A simpler kind of port which carries its own pc is closer to the spirit 
of the basic mechanism (whether therefore better is unclear) • The inport 
is just (pc, frame) and its semantics is: 

port.in.param + retloc; 

port.in.tl + frame; if necessary 

xfer (port.out, address(port.in), msg); as before 

retloc: port.out + i: 

and the argument pointer is sitting in a. This is O.K., since control only 
comes to retloc through this port. 

Procedures are messier, since storage allocation is involved and the 
call and return are not symmetric. A procedure entry inport is (entry 
point, static storage segment) and a return inport is (pc, frame). Each 
frame has room to store an inport and also keeps track of the static 
storage and perhaps of other context. Then call(link, args) is 

frarne.inport + (retloc, frame); this is the return inport 

xfer (link, address (frame.inport), args); 

retloc: 

At the entry point we have 

makeframe (size) ; 

initializefrarne (static storage segment [,other context]) 

frarne.retport + i; 



NEW CONTROL TRANSFER MECHANISM 
Butler Lampson 
April 21, 1972 
Page 6 

and return(results) is 

freeframe (); 

xfer (frarne.retport, nil, results); 

This is a little shady, since the results will usually be in the frame 
which has just been freed. The proposed fix is to reallocate the frame if 
anything which might demand storage is done during the storing of the 
results. This is quite reasonable, since the compiler knows exactly what 
is happening when it constructs the code_ to accept the results, except for 
the possibility of a fault during the xfer. I am not ·sure what to do about 
that. The alternative is to free the frame after storing the results, 
rather than in the return sequence, and that has its own set of problems: 
ineffeciency, and an unpleasant involvement of the caller in the internal 
business of the called procedure. Of course a garbage collector would take 
care of everything. 

Signals are messier still, because of the binding algorithm embedded in 
their definition and because of the complications of unwinding useless 
frames. We deal first with signals generated by an explicit call of 
SIGNAL. Recall that every context has a signal path outport. The 
algorithm is 

loop: 

PROCEDURE signal (code, msg) 

target + nil 

FOR p + self.returnport, (p.signalpath if code ~unwind else 
p.returnport) WHILE p ~ target DO 

self .signalpath + p.signalpath % bypass p if 

catchprase generates signals % 

CASE offersignal (p, code, msg) 

=resume: RETURN unless code = unwind else error 

=reject: IF code = unwind THEN 

free (p) ; p + self 

% assume catchphrase requesting unwind resets inport 

of anchor context % 

=unwind: target + p:=self 

code + unwind 



NEW CONTROL TRANSFER MECHANISM 
___ Butler Lampson 

April 21, 1972 
Page 7 

ENDCASE 

ENDFOR 

IF p ~ nil THEN xfer (p, nil, nil) % exit to anchor 

context of unwind % 

otherwise propagate signal somewhere else 

Note that this code uses the procedure call machinery twice: once to 
obtain a context in which to run SIGNAL, and once to obtain a context in 
which to run the catch phrase. 

When a linkage fault occurs it also generates a signal. It is 
convenient to make this explicit by providing an intermediary procedure: 

PROCEDURE ControlFaultHandler (o, i, a) 

Signal (Control Fault, (o, i) % or whatever %) 

% a resume means that the transfer should be attempted again % 

free (self .frame) 

xfer (o, i, a) 

and the handler has disappeared from view. 

7. PDP-10 implementation 

We adopt the following convention for the state of the registers 
inunediately after an xfer: 

o in f, the frame pointer 

i and a in their own registers with those names 

the target port [o) in d 

the left half of [o] in tl 

An inport occupies a right half-word and its first parameter is in the left 
half of the same word. 

A dseg has two points which can be transfer locations, one for 
procedure entries and one for port entries, more or less: 

•port entries here 



NEW CONTROL TRANSFER MECHANISM 
Butler Lampson 
April 21, 1972 
Page 8 

-3 {d) : movi d,frame 

movi tl,pc 

hrlm i, ~ (f} 

*procedure entries here 

~(d}: movi c,codebase 

;frame is set up by a port call 

;likewise pc. These are the process frame and 
pc 

;railroad switching 

*load additional module-wide base registers here 

jrst ~(tl) ;recall tl has port, param if control enters 
at ~ 

We make use of a trick which encodes a few bits of parameter in jump 
addresses by duplicating the beginning of the code jumped to once for each 
parameter value. We also assume that we keep only one frame pointer and 
that if it is used for pushes or pops the compiler keeps track of how much 
it has moved. 

A procedure call has two in line instructions (plus l/argument): 

... 
push f ,argn 

jsp tl,call [n) 

framestart outport 

call(n]: movi i,-n(f} 

jrst call 

call: hrli d,l {tl) 

movem d,~(i) 

movi a, l (i) 

move f ,@j;1(tl) 

;n is length of argument record 

;opcode = f-start of the frame 

;back up over arguments to get location for 
in port 

;create return inport = (pc,d) 

;and store it 

;set up the argument pointer 

;pick up o 

*These three instructions are the same for all the xfer sequences given 
here. 

move d,¢(f) ;pick up target port [o] 



NEW CONTROL TRANSFER MECHANISM 
__ Butler Lampson 
April 21, 1972 
Page 9 

hlrz tl,d 
\ 
;'\~npack its parameter into tl 

jrst ~(d) 

At the entry point: 
j sp tl, frame [rn] ;rn is the desired frame size 

frame [ml :skipg f,@list[m] ;sec below for frame format 

jsp f ,listempty 

exch f,list[m} 

movem i,¢(tl) ;save i for return 

jrst ~(tl) ;and go to code body 

This assumes that frames are chained together in word ¢, with a header in 
list[rn] for all frames of size m. We also assume that word -1 of the frame 
contains one of the two instructions required to restore it to list {rn]. 
Then a return is 

jrst ret [n) 

ret[n): rnovi f ,-n(f) 

jrst ret 

ret: movi a,l(f) 

xct ~,-l(f) 

exch f,-l(a) 

;n - length of result record +l 

;f + start of frame 

1normally: exch f ,list [rn] 

1finish 
out port 

splicing back frame and pick up 

*and the three standard instructions 

Timing is 33 for call, 22.5 for return or 55 total. The call can be cut to 
one instruction at the expense of about 15 us and pre-emption of the user 
UUO mechanism. 

A port call is quite different, since the state has to be saved in the 
process owning the port. We need one word for the port: {outport, dseg-
3). This word also serves as the inport for the return, which has no 
parameter. There are again two in-line instructions: 

... 



NEW CONTROL TRANSFER MECHANISM 
Butler Lampson 
April 21, 197 2 
Page JO 

push d,argn ;the process has only d, no f 

movi .i, out port ;set up i pointing to return inport 

jsp tl,portcall[n] 

portcall[n]: movi a,-n(d) ;back up over arguments 

jrst portcall 

portcall: move t2, ~{i) ;pick up port 

hrrm a,,0(tl) ;save d 

hrrm tl,l(tl) ;and pc in process change 

hlrz f ,t2 ;extract o from port 

*and the three standard instructions 

Timing is 3lus one way. 

A port call to an external port (one o~ned by a process whose dseg is 
not that of the caller) is messier, since the sequence above sets up the 
wrong context • 

. . . 
push d,argn 

movi i,outport 

jsp tl,xportcall[n] 

xportcall[n]: movi a,-n(f) 

jrst xportcall 

xportcall: movem d,-l(a) ;save d 

movem tl,-.2(a) ;and the pc in the frame 

movi tl,xportret 

and continue from port call +l. Finally on return control will come to 
xportret: 



NEW CONTROL TRANSFER MECHANISM 
Butler Lampson 
April 21, 1972 
Page l] 

move f ,d 

move d,-l(f) 

jrst @-2(f) 

Timing is 45 one way. 


	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11

