A R P A ‘Nz'rwcm(
NG 5139

INFORMATION CenTer

COMPUTER-AUGMENTED MANAGEMENT-SYSTEM
RESEARCH AND DEVELOPMENT,
OF AUGMENTATION FACILITY

D. C. ENGELBART and
STAFF OF AUGMENTATION RESEARCH CENTER

Stanford Research Institute

Distribution of this document is unlimited. It may be released to the Clearing-
house, Department of Commerce, for sale to the general public.

This research was supported by the Advanced Research Projects Agency of the
Department of Defense and was monitored by D, Stone, RADC (EMBIH), GAFB,
NY 13440 under Contract No. F30602-68-C-0286.

When US Government drawings, specifications, or other data are used
for any purpose other than a definitely related government procure-
ment operation, the government thereby incurs no responsibility nor
any obligation whatsoever; and the fact that the government may have
formulated, furnished, or in any way supplied the said drawings, speci-
fications, or other data is not to be regarded, by implication or other-
wise, as in any manner licensing the holder or any other person or
corporation, or conveying any rights or permission to manufacture, use,
or sell any patented invention that may in any way be related thereto.

RADC-TR-70-82
Final Report
April 1970

COMPUTER-AUGMENTED MANAGEMENT-SYSTEM
RESEARCH AND DEVELOPMENT
OF AUGMENTATION FACILITY

Stanford Research Institute
F30602-68-C-0286
Effective Date of Contract: 10 April 1968
Contract Expiration Date: 10 April 1970
Amount of Contract: $1,515,222
Program Code Number: 8D30

Contractor:
Contract Number:

" Principal Investigator:
Phone:

Project Engineer:
Phone:

Dr. D. C. Engelbart
415 326-6200 Ext 2220

D. Stone
315 330-2600

Sponsored by

ADVANCED RESEARCH PROJECTS AGENCY
ARPA Order No. 0967

Distribution of this document is unlimited. It may be released to the Clearing-
house, Department of Commerce, for sale to the general public.

The views and conclusions contained in this document are those of the authors
and should not be interpreted as necessarily representing the official policies,
either expressed or implied, of the Advanced Research Projects Agency or the
U.S. Government.

ROME AIR DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
GRIFFISS AIR FORCE BASE, NEW YORK

ABSTRACT

This report covers two years of research in a continuing program in
the Augmentation Research Center (ARC) of the Information Sciences
Laboratory of Stanford Research Institute, supported by ARPA and RADC
under contract F30602=68=C=0286.

Some of the work reported was also supported by ARPA and NASA
under Contract NAS1=7897.

The research reported is aimed at the development of on-line computer
ailds for inereasing the performance of individuals and teams engaged
in intellectual work, and the development of techniques for the use
of such aids. The report covers hardware and software development,
applications in several areas relating to management of a community
of workers who use on-line aids and to information management for
such a community, participation in the ARPA computer network, and a
summary of plans for the continuation of the research,

PREFACE

The research descriped in this reporv represents conceptual, design,
and development work by a large number of people; the program has
been active as a coordinated team effort since 1963, The research
reported here was a cooperative team effort involvineg tne entire ARC

Staff. The following is an alphabetical listine of the current ARC
staff:

Geoffrey H., Ball, Walter L. Bass, Vernon R, Baughman, Mary G.
Caldwell, Roberta A. Carillon, David Casseres, Mary S. Church,
william 8. Duvall, Douglas C. Engelbart, wWilliam K, English, Ann
R. Geoffrion, Martin L. Hardy, Jared M. Harris, J. David Hopper,
Charles H. Irby, L. Stephen Leonard, John T. Melvin, N. Dean
Meyer, Janes C, Norton, Bruce L. Parsley, wWilliam H. Paxton, Jake

Ratliff, Barbara E. ROW, Martha E. Trundy, Edward K. Van de Riet,
John M. Yarborough.

The following former ARC staff members alsc contriouted to the
research? '

Donald I. Andrews, Roger D. Bates, David A. Evans, Stepnen R,
levine, Stephen H. Paavola, Helen H. Prince, Jons F. Rulifson,
Elmer B. Shapiro, F. K. Tomlin.

PUBLICATION REVIEW

This technical report has been reviewed and is approved.

(j\‘/({(k’t’: < /%;(-

RADC Project Engineer

iii

TECHNICAL EVALUATION

The Augmentation Research Center (ARC) is a community of
about 28 researchers, supported by several different contracts
since 1963, in which all the research activity is aimed at
(1) exploring the possibilities for augmenting the performance
of intellectual work with the help of real-time computer aids
and (2) the experimental development of computer aids and
augmentation systems.

All the researchers within the ARC do as much of their work
as possible at display consoles (depending on console avail-
ability and whether a specific task can appropriately be done
at a console)., Thus they serve not only as researchers but
as the subjects for the analysis and evaluation of the augmenta-
tion systems that they are developing.

Consequently, an important aspect of the augmentation work
done within the ARC is that the techniques being explored are
implemented, studied, and evaluated with the advantage of
intensive everyday usage within a coordinated working environ-
ment that is compatible with the particular techniques being
studied. This strategy, called '"bootstrapping," is a key con-
cept in much of the ARC design philosophy.

The focus of the augmentation is on '"text' manipulation,
where text is defined as strings of characters, mathematical
equations, programming statements, line drawings, columns of
figures, etc. A powerful set of commands allow instantaneous
composition, editing, copying, printing, analysis, calculation,
etc, through interaction via a TV display, binary keyset, key-
board, and display pointing device.

The system is successfully used at the ARC in all phases
of daily activity including: program writing and debugging,
report preparation and printing, conducting meetings and demon-
stration, project management, note taking, etc., At least part
of the success of the system is due to the dedication and zeal
with which the ARC personnel use and develop it.

@/‘/l"r - ,\%‘:ﬁ—‘gﬂ
DUANE L. STONE ‘
Technical Evaluator

CONTENTS

ABSTR‘CT..'....'..'I.....'........0."..'.'.........0.1

pREFAcE.........'.................'.'.......C'.'....iii

TECHNICAL EVALUATION BY SPONSORsseeeescesscsscccsacosaV
LIST OF ILLUSTRATIONS.......O.‘....l...D..Q....."O..ix

I

INTRODUCTIONuOOUO.C..coo...0-..0.0.0‘0.00000.000.1

II MANAGEMENT SYSTEM..'....I..."‘.0........'..0.0‘..S

A

B,

C.

I1I
A,
B,
C.
D.

Management=Information OperationSceesscscesscseed
1' Introduction.n.'.‘QQOIQOQOOOOQQOOQQOOOOQO.‘!S
2' Project Costs'.QOOOQQu'oclctnooacoulonnoconcs
3. ACtiVi%y Pllnning ‘nd Statusoul.vvcoi00000032

orglnization studiesollti...ll...'l.'..'.l'l!036
1. on.Line communitYCOOOQQOOIOOOOQO00000'0001037
2., EXxperiments on Internal

Activity SULrUCtUr@, . eeeecsvsnccnssnccnnosnansll
3. Observations From Study
of On-line Community..........o--.-......-.h?

Team Augmentation and Dialogue SUPPOrtlecesseeeb0
1, Recent EffOrtS.ccecscccscccrscsscerssssseseed0
2. Future Aprroaches to Team Augmentation,ees 50

HARDWARE SYSTEM....C......'.'.'.'.'Q......l...‘s?

Intrountion......'........'..................57
The Computer Facility.seeceeccooosccocscesnnsseed?
MOdifica‘ionﬂ in ProgTCSSouo-o.-.o---o--ootooaéz
Notes on System Design and Reliabilityeescesesb6

Iv sorTwARE SYSTEM‘."..‘.‘.I......Il.’.'.0........77

A.

IntroductionNeccsscececsccccccoscsscssesccsnnnecel?
Timesharing SYStem...-...---....-....-......-.80
CompilerS.....-'.-.oo..-.--.--.o--uoc---..o.-.52
Response StUdieS,csecvvcecesvccsvecsnntcancnosesedll
The On-~line SyStem, NlSeceoosososcsossscsnesnsell¥
ARPA c°mputer Ne‘work........'......'........119
NLS Utility SUDSYSteM,sesecvocsancsrtoscseneslld

v FUTURE pLANS.l..'.C..OO.Qo.a.'....t'.'lll.olllllz7

Ao
B.
Ce
D.
E,

General....‘.........'........'..'........"‘lz?
shifts in Emphasis.'..........'..'......‘I..llz?
Transfer O0f ReSUlVUSccescscecrcscscosencsaccsneesl?’
short=Term and Long~Term GOalSsecscescococoealll
Selected Plans Under (Other Sponsorshipeecsseesl3l

GLOSSARY....'.......'..'............"..........‘...133
REFERENcEs......‘..........."-'....'.....'...‘....'135
BIBLIOGRAPHYQ.......‘....'..'..........‘.‘........'.13?
Appendix A: USER FEATURES OF NLS AND TODASecesesresl3d9
Appendix B: DIALOGUE SUPPORT SYSTEM (DSS)eeeesesseelb?
Appendix C: REFERENCE MANUAL FOR

PERIPHERAL EQUIPMENT...OQOOCO.....0....163

Appendix D: TECHNICAL DESCRIPTION OF

NLS/TODAS IMPLEMENTATION.OOO-QO...O.Q00199

DD Form lh?j..'.....'....I....l....'....‘.'.......00269

vii

Fig,
Fig,
Fie.
Fie.
Fig.

Fig.

Fie.

Fie.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fie.

I1-1
11-2
I1-3
I1-4
11-5
1I-6

II=-7
I1-8

I1Ie9

II-10
II-11

II=12

II=13

II=-1k
II~15

II=16

ILLUSTRATICNS

A Brancn of File HISCOecseseconsrsocncnssoncseal
A Branch of File HISCOseeeecrsvosvssncacncnanes?
A Branch of File HISCO«escosvonoscccsvasscncacs?
A Branch o0f File HISCO.esesvectocescvetsrsacnes?
A Branch of File HISCO.esesssocecsesocsosasesell

Initial View of File HISCU
Upon Entry Vll Link.IOQt..lo.t......l'.i'.l..QlO

A Branch of File C0STS, showing
Entries for L-Week ACCOUNULINE PErioaSsssescessld

Same as Fig., II-7, but ExXpanded to Show
weekly Entries.....0.".0.'.ll.t.nl.......‘l...13

Same as Fig. II-¢ btut for a Different
pranch of File C0STS Showing Lata for a
Differen‘ Pro1ect/.....0.'...CO...I..Q..'.I..'.I“

A Branch of File CUSTS showing combined
Data for all ARC Projects................-....lu

Initial view of File COSTS
upon Entry via Link....".....‘.""I....‘i...lé

Same as Fig, II=11 but with Litferent
VIEWSPECS to Show Contente-=Analyzer
Patterns Stored in First Statement

Of File..'.0.'.......'.l0-0....'..'-....‘.‘...16

View of File COSTS with Content Analyzer

in Operation, Showing Data for 0Only a

Single week (This is done by using tne

first pattern appearing in square brackets

ln Fig' II-lal)..0‘0...0.0.00ll'l'....io...l..lé

Same as Fig II=~l3, but After a User Has
Inserted Ccunmulative Totals in the CCluMNS,eesesld

View of a User's File pirectory, showing
FirSt'LeVel Statements Only.-......-......e...20

game as Fig. II-15 but with all
Levels Displayed.o.'ocooocuo-|.ooo.oo...ococonzo

ix

Fig.

Fig.

Fi‘-

Fie.

Fig.

Fig.

Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

I11-17

11-18

1I-1%

II-20

II=21

I1I=22

11-23

II=2)

II-25

1126

II=27

I1=28

II=29

1I=30

Part of a File Containing Informetion
on ARC Personnel (Not all levels
avre sno"n.).Q.l.".'l"'l....._‘..0.'._.0.0.'l.lbel

A View Obtained by Jumping to One of tne
Statements Shown in Fig., Il1=17 and
Opening an Additional Level.ccsccssesssscnscsa2l

A View Obtained by Jumping to the Last
Statement Shown in Fig. II=16, with -)
no change in VIEWSPECSessceccosscescsccsnsvancse2?

content~Analyzer Patterns Stored in the
Personnel=Information File (Each set of
square prackets contains one pattern,

used to search for hidden "tagas" in _
Sttf:ements bix1 t‘he £ile.)Q!.l.'.'.l.....‘.....l.22 ’

View Obtained by Using Content Analyzer
t0 Select Entries in Personnel=Information
File that Are Tagged for "Hardware',,.eeesessell

View Obtained by Using Content Analyzer
10 Select Entries in Personnel-Information
File that Are Tagged for "Software" . ceseecesseesld

Part of an On~line Cost LEstimate for use
inaproposal.l....'......"..'......lb'.....‘.zé
Part of an On-Line Cost Estimate for Use
inaproposa*'.'......l’..l'..‘l.'.....'....-.zé

Part of an On-line Cost Estimate for Use
inaProposal.‘..'k.."..“.'Q'.v.l."........'....027

View of g Portion of the Purcnase-orde
Processing Flle, showing contentis of
IndiVidual StatementS....-....-...............27

View of a Portion of the Purchase=-Order
Processing File, Showing outstanding orders
lLocated in a Separate Branch == Upper Part

of Screen Shows a Branch Containing .
Content-Analyzer PatternS....-................30

A Content=Analyzer Pattern for Searching ,
in the Purchaae-order Fileooccoot00-000.000-0030

View Generated by a Search on tne Pattern
shown in Fig. Il=28cesceevesccecesronccnseasnsnesell

Task Milestone Chart from File UPLANeececoosene3b

Fig.

Fie.

Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

II-31

II=32

III-1
III=-2
III-3
III-4

Ive2

IV=3

IV=L

IVe5

IVeé

IVe?

Top=Level View of ¥Kile UMEET, Showing
Accumulation of Notes from a Series of
Meetings in a Sinﬂle Fileoicoo".0-'.0.‘0.0..035

Views of Consocles in Use ,
in 'ﬂhe ARC Work Areaﬁ'o....’....'00'.‘..0....039

XDS9UO COMDULQP FaCility.....................-50
Special Levices ChannNel,ceccecesocsocecasassnnsessy
special Devices Channel with External Core....oi

Network Interface Construction,
Showing Mounting Systems for Circuit
Arrays and MUltipleX Switchtl-.o.onltooocou'.o72

current System: Average ana 8C=rercent

Lelays for NL3 Input-Feedback and

File-Reference Tasks =-=- Users Etgually

DiVided Between NLS and TODAS--..-.--...:.i.-.g?

Percentage of Time Spent in various
Systen Functions == Users Equally Divided
Between NLS and TOLAS.'-oo'o--o-o-.-aoo--ooco-90

System with and wWithout «NL: Distripution

of Delay Times (in Seconds) for KNLS
File~-Reference Tasks == 3 NLS Users,

3 TODAS Users, 1 OTHER UB€@resecsavcscaseasssnneslO0

System With QNL and New Drums: Average

and s0=Percent Times for NLS Input-rFeedback

and Flle=Reference Tasxks wWith 1 OTHER User

and Remaining Users Evenly Divided

pbetween NLS and TODASsseosecescesconconncsasnealO2

current System Witn Various CrPU Speeds

Relative to Current System CFU: 80=-Percent

Times for NLS File=Reference Taskxs =~-= Users
Equally Divided Between NLS and TODAS.seeseeslOl

Current System With Various Core Sizes:
80=pPercent Times for NLS Fileeireference

Tasks =- Users Equally Divided Between

NLS and TODASOOC....'.D...I......'0...'....0.105

System With (NL and New Drums, with and

Wwithout IDS: 80=Percent Times for NLS
File-Reference Tasks == 1 OTHER User,

Remaining Users Equally Divideaqa

Between NLS and TODAS.ceeevrcessonccesensssneasall?

xi

Fig, IV=8

Fig. IV=9

System With QNL and New Drums, with and

Without IDS: 8Q0=Percent Times for Sequence

of 3 Input=Feedback Tasks and 1

File-Reference TasSk =- 1 OTHER User,

Remaining Users Equally Divided ,

Between NLS and TODAS........-..--.-..--.....106

Logical Organization Oof NLSeecevesoesvencscnaslll

xii

Ao

B,

I INTRODUCTION

General

The Augmentation Research Center (ARC) is a community of about 28
regearchers, supported by several different contracts, in which
21l the research activity is aimed at (1) exploring the
possibilities for augmenting the performance of intellectual work
with the help of real-time computer aids and (2) the experimental
development of computer aids and augmentation systenms,

Several different coordinated research activities have been
developed, sponsored by different contracis, to pursue the various
aspects of this augmentation research. The aspects reported here
are:

{1) The Management System Research Activity, which has been
supported by RADC under this contract.

(2) The development, operation, and maintenance of a real-time
computer=display system, including both hardware and software
aspects and participation in the ARPA computer network
experiment, This has been supported by ARPA and RADC under
this contract, and by ARPA and NASA under Contract NAS1-7897,
The facility is dedicated solely to the ARC's activities,

All the researchers within the ARC do as much of their work as
possible at display consoles (depending on console availability
and whether a specific task can appropriately bpe done at a
console), Thus they serve not only as researchers but as the
subjects for the analysis and evaluation of the augnentation
systems that they are developing.,

Consequently, an important aspect of the asugmentation work done
within the the ARC (for instance, of the RADC=supported Management
Systems Research) is that the techniques being explored are
implemented, studied, and evaluated with the advantage of
intensive everyday usage within a coordinated working environment
that is compatible with the particular techniques being studied,

This strategy, called "bootstrapping," is a Key concept in much of
our design philosophy.

on=Line Ald Systems in the Augmentation Research Center

This section very briefly describes the two major augmentation
systems available to workers in the Augmentation Researcn Center,
These systems are the On-Line System (NLS) and the
Typewriter=Oriented Documentation=Aid System (TODAS).

Appendix A is a more complete description of the user features
of these systems; the reader who is not already acquainted witn

Sec, I

INTRODUCTION

1.

ARC'S research will find that this appendix proviaes a useful
background for the main body of the report,

In addition, Appendix D gives a detailed description of .
NLS/TODAS implementation.

The On=Line System (NLS)

NLS, as currently implemented, is essentially a highly

"interactive, display-oriented text~manipulation system.

NLS is intended to bve used on a regular, more or less full=tinme
basis in a time=sharing environment, by users who are not
necessarily computer professionals. The practices and
techniques developed by users for expleoiting NLS are as much a
subject of research interest as the development of NLS itself,

a. Structured Text

All text handled by NLS 1s in "structured=statement" form.
This special format is simply a hierarchical arrangement of
"statements," resembling a conventional "outline" form,

A 8tatement is simply a string of text, of any length;
this serves as the basic unit in the ceconstruction of the
hierarchy. Each parsgraph and headine in this document
is an NLS statement,

b. Use of the Systen

The cregtion of new text material as content for a file is
achlieved by typing the new material on a keyanrd undger any
ot several possible NLS commands,

The study capabilities of NLS constitute its most powerful
and unusual features, The following is a brief, condensed
description of the operations that are possiole,

The process of moving from one point in an NLS file teo
another, which corresponds to turning pages in hard copy, is
called "Jumping." A very large family of "Jjump" commands
allows the user to specify locations in the file in a numvper
of ways == e.g,, by specifically identifying 2 statement or
by specifying a structural relationship to some other
statement,

The NLS content analyZer permits automatic searching of a
file for statements satisfying some content pattern

Sec, I

INTRODUCTION

2.

3.

be

5
2

specified by the user, The pattern is written in a svecial
language as part of the file text.

A large repertoire of editing commands 18 proviaded for
modification of the text in a file,

The Typewriter=-Oriented Documentation=Aid System (TODAS)

TODAS i3 a text=handling system designed as a "typewriter"
counterpart to NLS. TODAS can be operated from a Teletyne or
any other kind of hard-ceopy ternminal, includine terninals
linked to the AKC timesharing computer facility (an XDS 940
with special hardware) through acoustic couplers and ordinary
telephone lines (as opposed to NLS, which requires microwave
transmission to0 achieve the necessary bpandwidth for displayvs).

Output Facilities

The facilities for producing hard=copy output from NLS/TODAS
files include a2 line printer, a paper-tape=~driven typewriter,
and the Graphics~Oriented Document Output System (GODOS).

The line printer, because of its speea of operaticn, is the
routine means of producing hard copy for use within ARC. 1Iv
is used heavily by all NLS/TODAS researchers,

The paper=tape typewriter is used for producing
report=quality typing, such as this reportv. As it is
relatively slow and irnconvenient, it is not normally used
except for final output of material to be nublished.

GODOS produces magnetic tape which is then turned over to an
out=of-house facility where it is run on Stromberg=-Carlson
microfilm equipment to produce frames of microfilm (or
microfiche) corresponding to pages of full~size hard copy.
The advantage of this system is tnat it can handle drawings
produced in NLS files by means of the NLS graphics
capability. GODOS is still in the experimental stage and
has not been used extensively,

This Report as an Example'of NLS/TODAS Capability

The following discussion may be taxken as a very rough
indication of the power of NLS and TODAS as apprlied to a single
specific proplem =~ namely, the writing, editing, and
production of this reporu,

The above descriptions of NLS and TODAS were produced by

Secs I
INTRODUCTION

modification, using NLS, of the more detailed descriptions in
Appendix A,

The entire task of modification, including formattine,
insertion into the body of the report, and all other
details, required about half an hour of work by an NLS user
who was already familiar with the contents of the
descriptions, If the Jjob had been done by someone wWho wWas
not familiar with the material (but who was familiar witn
NLS) it might have taken fifteen minutes longer.

The original description was written for an earlier report
and then kept available as an NLS/TODAS file in antvicipation
of future opportunities for using it,

Indeed, a considerable amount of the material in this report
was developed by modification of existing files, and we may
expect the new material generated for tnis report to continue
in use as a collection of NLS/TODAS files for as long as it can
be updated to reflect current reality.

TODAS was used primarily for the task of entering new
material into on-line files. <Considerable portions of the
material were put on line by a secretary using 10DAS,
working from handwritten material and from recorded
dictation,

~ Finally, we may note that the writing of this report, using NLS
and TODAS throughout, was achieved under considerable time
pressure by a team consisting of about a dozen peoprle, all of
vhom were doing other important work at tne same tine,

our

II MANAGEMENT SYSTEhM

Management System Research Activity has involved three major

areags of concentration. In practice these areas overlap

con

siderably, so that there is an integrated research effort on manyv

phases of management technique and theory that imoinge upon the
operation of ARC., For purposes of description, however, we discuss

eac

The

A

h area of concentration as if it were an indecendent effort,

three areas are:

(1) Management=-Information Overations == research on tecnniques
for using management information in the ARC environment, including
the development of computer aids for the storage and manipulation
of such information

{2) oOrganization Stuaies =- research on the ARC on~line community
of workers and experimentation with organization structure and
planning methods in the on=line community

(3) Team Augmentation and Dialogue Support==- research on
augmenting a tegm or community of intellectual worxers by means of
systems that support the intellectual dialogue of the tean,

Management=Information Operations
l. Introauction

In accordance with our usual strategy, wWe have pursuea our
investigation of management=-information operations by using NLS
and TODAS to develop and provide aids for management of tne AKC
on=line community.

There gre many areas of potential application for on=line aids;
Wwe have chosen those which appear to pbe most useful
operationally for experiments with the development of oneline
aids,

This section gives detailed descriptions of several
applications that have bheen developea, illustrated with
photographs of the NLS display screens tc sSnow sequences of
information=manipulation operations. A familiarity with the
basics of NLS is assumed; Appendix A is intended to provige tne
necessary information about NLS.

In following the deseriptions, it is wortn keering in mind that
the speed with which NLS serves its users is an important part
of its utility. The pnotographs indicate transitions that
normally take only one or two seconds, Tnis speed lenas great
power and flexibility to the relgtively simple service
functions performed by NLS,

Sec. II

MANAGEMENT SYSTEM

2,

Project Costs

The most obvious area for application of on=line aids.to
management within ARC is project cost accounting. Considerable
WOork has been done on the development of several
cosv=information files and of techniques for their use.

a. Cost Records

The Institute's accounting system provides ARC with detailed
cost records for the various "SRRI projects" (i.e.,
individual contracts) being carried out in ARC.

The primary inputs to SRI's system are (l) weekly time
cards reporting hourly charges to various projects by
individual staff members, and (2) none-labor costs charged
directly to projects, including actual charges to
projects and commitments {(unconmpleted orders).

For each SRI project, the accounting system computes
dollar ¢costs based on actual salary data for each staff
member's hours charged, adds payroll burden and overhead
anhounts at current rates, combines these costs with
non=labor totals, adds appropriate fees, and totals all
such charges each week on a cunmulative basis.

current charges are reported to ARC each week on the
Project Status Report,

We need frequent and rapld access to project cost summary
data for operational use, with less reference to
lower=level details, except as the costs are first
checked for reasonableness and accurscy, Therefore we
decided to start by putting summary data on=line at ARC,
AS needed in the future, we can add more levels of
detail,

File HISCO

We first constructed a cost=history file for 1968=1969
costs on SRI projects ESU 7101 (RADC Contract
F30602«68~C=0286) and ESU 7079 (NASA Contract NAS
1=-7897). This file is called HISCO.

We decided that the elements of HISCO would include the
following for each of the two projects, on the basis of
L=week accounting periods (as used by SRI's accounting
systenm):

Sec., II
MANAGEMENT SYSTEM

(a) Salary

(b) Burden

(c) overhead

(d) Total cost

(e) Fee

(£) Total charges,

See Figs, II-1l, II-2, and II=-3., Each of these figures
shows a display of one branch of the file, containing
the information for a specifiec project and year,

We also needed a section showing combined salary costus
and combined total charges for all of our projects
(see Figs., II=4 and II=-5). We put these costs in
separate pranches of the file, The last branch shows
total costs for botn projects combined. We
retroactively studied existing records for all 1963
data and Kept up the 1369 costvs every 4 weeks,
entering the new data by hand,

We experimented with the use of graphic representations
by entering charts in HISCO., These charts showed the
cumulative cost trends for each project in a separate

- branch of the file,

We established links between tabular data and chart
projections, This made it quite easy to refer to both
formats alternately.

The use of graphics in HISCO mave some indicaticn of
the usefulness of such linking, but the existing
package has limitations in the form of a few bugs and
capacity that makes its use of marginal value, Work is
currently under way t0 improve this capability. we
also need local hard-copy OutbPut to make thege
features of real value,

"HISCO was a testing ground for the first version of the
NLS calculator package. AS the file was updated, cost
data were entered into new statements, and the calculator
Was used to check the cost data and to determine the
total ARC project costs,

&

FIGURE II-1 A BRANCH OF FILE HISCO

FIGURE II-2 A BRANCH OF FILE HISCO

FIGURE II-3 A BRANCH OF FILE HISCO

FIGURE [I-4 A BRANCH OF FILE HISCO

FIGURE II-5 A BRANCH OF FILE HISCO

FIGURE [I-6 INITIAL VIEW OF FILE HISCO
UPON ENTRY VIA LINK

10

Sec.,

II

MANAGEMENT SYSTEM

This employed the ADD, SUBTKACT, MULTIPLY and DIVIDE
capabilities and used the four holding registers,

The calculator package has an 'INSERT' command that
inserts the current contents of the calculator's
accunulator inte the file text as indicated oy a bug
selection, Work with HISCO indicated that a 'replace'
conmand would be very desirable,

The usual way of accessing HISCO was via pre=established
links from other working files whenever the user had a
question about recent costs, The VIEWSPECS in the link
usually caused HISCO to be brought in witn only
high=level statements on display, showing only the
headings for project name, combined salary, total
charges, and total ARC costs (see Fig, II=6).

The user could then select the project he was
interested in (by the command JUMP TO ITEM) open up an
additional level for viewing, and see colunn headings
and numerical data (Figs. II-l, II=2, ana II-3),

Then he could Jjump down through the accountine
periods to the one he was looking for.

If he was making a calculation (pernaps already
started in the file he was workineg in before he
linked to HISCO}, he could then call the calculator
and add, subtract, multiply or 4iviae by any of tne
numbers in HISCO., His previous calculations while
in the previous file would remain intact,

If finished with HISCO, he could then return to tne
previous file (by the command JUMP TU FILE RETURN)
and continue with the calculation, having found in
HISCO the input number or numbers he was lookingz
for.

Such a sequence occurs very fast, ixperience with
HISCO seems to prove the value of having a simole
calculator built into NLS, where it is instantly
available when needed and can interact directly with
data in an NLS file,

De8k calculators are available for most peobple who
need %o do basic arithmetie work, but when one is
looking throush extensive files for inputs to
calculations, the conventional calculator is not

11

Sec, 1I1I

MANAGEMENT SYSTEM

nearly as useful as this on-~line version,

sSummary: AS an arena for experimentation, HISCO proved
very valuable, Operationally, it was useful from time to
time but revealed a need for more frequent updating of
the summary data. Our experience with HISCO led to the
development of & redesigned cost~history file called
cosTs,

File COSTS

This file is updated weekly, with Lh-week and cumulative
summaries, ‘ :

The COSTS file is referred to frequently, because the
weekly inputs now show trends with considerable
sengitivity.

We decided that the elements most useful vo us for this
Year are the following:

{a) salary costs
(b) Total personnel costs
(c) Nonelabor costs
(d) Total costs
(e) Total charges with fee
(f) Balance remaining
See rigs, 1I-7, Il-d, and II~-9. Figures II=-7 and II=-38
show the same branch of the file with different
VIEWSPECs; Fig. II-3 dieplays one more level than Fig.
II=7, and this level shows the weekly data. Figure
II«9 shows the weekly data for another project.
We also decided to include funding information showing
current totals, unfunded totals, and total contract
amounts in the categories cost, fee, and total,

we use separate obranches for each project and for total

ARC project costs (Fig. II-10). The skeleton format for
the file was set up in advance for the entire year of

1970.

12

FIGURE II-7 A BRANCH OF FILE COSTS, SHOWING
ENTRIES FOR 4-WEEK ACCOUNTING PERIODS

FIGURE II-8 SAME AS FIGURE II-7, BUT EXPANDED
TO SHOW WEEKLY ENTRIES

13

FIGURE II-9

FIGURE II-10

SAME AS FIGURE II-8, BUT FOR A

DIFFERENT BRANCH OF FILE COSTS
SHOWING DATA FOR A DIFFERENT

PROJECT

A BRANCH OF FILE COSTS SHOWING
COMBINED DATA FOR ALL ARC PROJECTS

14

Sec.

11

MANAGEMENT SYSTEM

our approach was to create @ Separate statement for
each week, one level below the "total" statements for
each L=~week period, For the second week of 1970
(which is in the first accounting veriod) the
statenent starts with a 2<]1 and then, proceeding
across the line, shows the amounts listed above in six
columns (Figs. II=8 and II=Y).

Before entering any actual data, the first topelevel
branch (containing some 70 statements) was copied
within the file at the same level four or five tines.
Then each blank branch simply had the project nanme
headings inserted for the project using that branch,
We Keep one extra blank format branch available in
case any new projects should arrive,

Like HISCO, COSTS is usually reached through a link from
some other working file, perhaps while a study of
near=future costs is in progress, or from an ongoing
proposal cost estimate. Again the file is usually
entered with only the top=level 8Statements or project
headings showing (see Fig. II=1ll).

If a particular project is of interest, that branch is
selected and another level opened for view., The
second level shows period~by=-period subtotals in each
cost category (Fig. II-7). If weekly data are
desired, another level is opened by changing the
VIEWSPECS (Fig. II-6) and a particular week is
selected by the command JUMP TO ITEM.

The statement for each week has the week ending
date as its name, The reason for this is not only
80 that the statement for a particular week can be
accessed by the JUMP TO NAME command using the
ending date, but also so that the date may
optionally be suppressed from the display. NLS has
the capablility of suppressing all statement names
from the display.

The normal way of looking at the file is with
names suppressed; thus the dates do not clutter
the display; however, a user who needs %0 know
the ending date for a particular week can see it
by executing a single commang,

To access the information for another project within
CO0STS, one executes JUMP TO RETURN twice to see the

15

FIGURE II-1t INITIAL VIEW OF FILE COSTS
UPON ENTRY VIA LINK

FIGURE 1I-12 SAME AS FIGURE II-11 BUT WITH
DIFFERENT VIEWSPECs TO SHOW CONTENT-
ANALYZER PATTERNS STORED IN FIRST
STATEMENT OF FILE

16

Sec. II

MANAGEMENT SYSTEM

. b

topeleve]l statements again (Fig. II=ll),

One can nove very quickly and accurately througn a file
that is set up in this fashion, even without any
familiarity with the information it contains,

The primary function of COSTS is to show a consistent
week~by=week progression of costs for each project by
category, The file can also be used for study purposes,
tarough the use of contente=agnalyzer patterns, some of

which are stvored in the header statement (see Fig. II=-12,

which is the same as Fig. II-11l but with different

VIEWSPECS). Any other patterns can be created as needed,

This allows a user to extract special categories of
information from the file very quiekly. For example,

& user may. easily create a display showing all project

costs for the eighth week of 1970, for each ARC
project. It is also possible to output such a
"filteredq" display via a line printer, thus obtaining
hard copy of a special=purpose extract from the total
file,

The content analyzer is helpful when using the calculator
on all the data for one week, project by project, to find

total ARC charges by category.

When only one week's data are displayed, one canh add
items down each column and insert the answer in the
"ARC total" space, One can then clear the
accumulator, and add down the next column. This is
done very rapidly through bug selection of input

numbers and keyset entry of commands == ADD, ADD, ADD,
ADD, INSERT, CLEAR, ADD, ADD, ADD, ADD, INSERT, CLEAR,

and so forth.

Figures II-l3 and II~llL are beforesafter photos of
this process.

The COSTS file is now operationally useful to us, and we
expect it to be useful for future experimentation with
automatic processing techniques,

Estimates

Proposals

Another use of the system is in creating proposal cost

17

FIGURE II-13 VIEW OF FILE COSTS WITH CONTENT
ANALYZER IN OPERATION, SHOWING DATA
FOR ONLY A SINGLE WEEK. This is done by
using the first pattern appearing in square
brackets in FIGURE II-12.

FIGURE II-14 SAME AS FIGURE II-13, BUT AFTER A
USER HAS INSERTED CUMULATIVE TOTALS
IN THE COLUMNS

18

Sec, 11
MANAGEMENT SYSTEM

estimates., We first estimate the amount of effort
required for the proposed work, To estimate the cost of
this effort, we make reference to various on=-line files,
The estimating process typically proceeds along the
following lines.

Personnel Costs

The estimator loads a special file, maintained by
himself, which is a directory to all of his other
files and perhaps to a few files belonging to other
people, Figures II~-15 and II-16 are two displays of i
user's file directory. In Fig. II=-15, only
firstslevel statenents are snown; these are used for
estaolishineg categories, In Fig. II-16, another level
is shown, containing the actual directory listings in
each category.

This "file directory" contains links to each of tne
files that it lists. In the present case the files
probably would be cost histories, versonnel
listings, previous special studies of costs, and
other administrative information.

He 10ads a previous cost estimate, makes a working
copy of it, changes the heading to reflect tne name of

- the new proposal estimate, and eliminates the amounts

from the 0ld4 estimate,

This produces 3 blank cost estimate format. JIf any
items from the old estimate are inappropriate, they
are easily deleted; new items are easily added as
separate statements. Wwhen the format is ready, it
is output as a new file.

He can tnen load a file that lists names of people in
the group and some projection of expected additions,
Figures II-17, II-18, and II-1l9 show portions of such
a file,

Using this personnelelisting file, he obtains
information about labor categories, A branch
containing content=analyzer patterns is kept in the
file, These can be easily reached by Jjumping to a
link whieh causes all the patterns to te displayed
(Fig. II=20), .

Each pattern will select some particular

1¢

.

L
L

el

FIGURE 1I-15 VIEW OF A USER'S FILE DIRECTORY,
SHOWING FIRST-LEVEL STATEMENTS ONLY

e
e
o

FIGURE II-16 SAME AS FIGURE II-15, BUT WITH ALL
LEVELS DISPLAYED

20

FIGURE II-17 PART OF A FILE CONTAINING INFORMATION
ON ARC PERSONNEL. Not all levels are shown.

FIGURE II-18 A VIEW OBTAINED BY JUMPING TO ONE OF
THE STATEMENTS SHOWN IN FIGURE II-17
AND OPENING AN ADDITIONAL LEVEL

21

L
o
e
i
.

’%%%ig

;

FIGURE II-19 A VIEW OBTAINED BY JUMPING TO THE LAST
STATEMENT SHOWN IN FIGURE II-18, WITH
NO CHANGE IN VIEWSPECs

FIGURE II-20 CONTENT-ANALYZER PATTERNS STORED IN
THE PERSONNEL-INFORMATION FILE. Each
set of square brackets contains one pattern, used
to search for hidden ‘“‘tags”’ in statements in the
file.

22

Sec, II
MANAGEMENT SYSTEM

tategory of statements from the file. Fror
example, the estimator will need to know which
people have the status of Senior Professional,

He selects the appropriate pattern with the
command EXECUTE CONTENT ANALYZER, and then
Jumps on a 1ink which turns on the content
analyzer, starting the search at the
peginning of the branch containing personnel
listings and restricting the search to that
branch.

This produces a display snowing only the
l1isting of senior professionals in the group.
This set of statements can then be
transferred to the new proposal cost estimate
file,

Other patterns can be used to extract sets of
statements according to other criteria -- for
example, all the hardware or software people
in the group (¥Figs. l1I=21 and II=22),

Thus the estimator can select, by labor category,
representative people who may be involved with the
proposal; as he selects them, he can transfer their
names and the information that goes with them to the
file where he is building up his estimate,

At present we do not keep individual - salary
information on line, although we could do this if
we added some Ssecurity measures, Calculations for
the average salary category, based on the specific
people contemplated, are made off-line at present,

These average Salary anounts are inserted into the
on=line cost estimate, The calculator is used to
nmultiply numpers of manemonths times average
salaries per month to determine total salary costs
per labor category and overall direct labor totals,
All of this is achieved within the actual file that
will pecome the finished estimate,

The payroll burden and overhead rates are checked for
currency and inserted into the estimate, using the
calculator to apply them to the direct labor, At this
point the labor portion of the estimate is completed,

23

FIGURE II-21

FIGURE 1I-22

VIEW OBTAINED BY USING CONTENT
ANALYZER TO SELECT ENTRIES IN
PERSONNEL-INFORMATION FILE THAT
ARE TAGGED FOR “HARDWARE"

VIEW OBTAINED BY USING CONTENT
ANALYZER TO SELECT ENTRIES IN
PERSONNEL-INFORMATION FILE THAT
ARE TAGGED FOR “SOFTWARE"

24

Sec. II
MANAGEMENT SYSTEM

Non=Labor Costs

A typical estimate will involve some travel coste,
some consultant costs, and some report costs, Data
supporting the cost of consultants may be checked by
reviewing current consultants' costs by project and vy
consultant. These are Kept in a separate file and
reached through a link for review, The data may be
copied into the estimate if some of the information is
of use,

Revort production costs are estimated using current
Institute schedules, which are baseq primarily on the
number of pages expected in the end product. These
computations can be made using the calculator, and the
existing cost factors from the last proposal, checked
for current applicability. '

In addition, there may oe plans to add equipment in
the proposal. In this case, the estimator will use an

. equipment study written in another file by the people

involved in hardware design.

The equipment costs contained in the special study
are summarized in total and reached by a link. The
special Sstudy can be viewed and updated as
appropriate and can pe copied to g0 with the
proposal as an appendix or used later for back up,

In this fashion, various information is gathered from
various files and transferred into the developing cost
estimgte, Figures II-23, II-24, and II=25 show
various pnortions of a completed on=line cost estimate
as actually used for a recent ARC proposal,

working Forecsasts

Operational Use of Estimates

AS the project progresses, proposals and estimates can
2150 pe used as guides for management of the project.
It i3 useful to forecast the expected project costs on
either a four-week period or monthly basis.

This can be done by creating a new file using the type
of format that the COSTS file uses, We insert total
figures from the cost estimate, using the calculator
t0o determine average rates and specific estimated

25

LINE COST ESTIMATE

PART OF AN ON

-23

FIGURE 1I

FOR USE IN A PROPOSAL

-

e

o
-

o
0

i
o |

LINE COST ESTIMATE FOR

USE IN A PROPOSAL

PART OF AN ON

-24

FIGURE II

26

FIGURE 1I-256° PART OF AN ON-LINE COST ESTIMATE FOR
USE IN A PROPOSAL

FIGURE II-26 VIEW OF A PORTION OF THE PURCHASE-
ORDER PROCESSING FILE, SHOWING
CONTENTS OF INDIVIDUAL STATEMENTS

27

Sec, 11I

MANAGEMENT SYSTEM

[

amounts, and insert answers into the file as it
builds. This month-by-month estimate: can be reached
through a link from working cost files, from the
original estimate, or any other file where the
question of monthly estimated project costs may arise,

Purchase=order Processing

In making an estimate of costs for new equipment being
constructed at ARC, reference to previous cost information
is very useful, e have constructed a
purchase-order/requisition processing file which contains a
separate statement for each item purchased for the past two

years

at ARC. Figure II-26 shows a portion of this file,

Each statement contains the following information about

(1)

(2)
(3)
(k)
(5)
(6)
(7
(8)

(9)

each purchase:

Total price
This is entered as the statement nanme,

At present this is not used as an NLS name, but as a
way of eliminating information from the screen at

Will, keeping a consistent location in columnar form

for such totals.
Description of itenm
vendor |
Numper of units purchased and price per unit
Purchase Requisition number
Date requisition sent
Purchase Order number when order is placed
Date order is placed | |

Project or account cnarged

{10) Date order is received

(11) Wwhen the order is completed, it is marked with the
special code #comp#. This can be detected by a
content=analyzer pattern.

28

Sec. II

MANAGEMENT SYSTEM

d.

All outstanding orders are contained at a second leve)l under

‘a single branch (see Fig, II=27)3 therefore the distinction

between outstanding and completed orders is easy to see just
by reference to level, To reduce clerical error, ve
consider an order completed when the #comp# pattern is
inserted and the statement is moved to its alphapetical
position on the top level.

This file can pe Ssearched using the content analyzer in some
interesting ways. we can ask for all items purchased from a
particular vendor on any particular project and see only
those, If we wonder about the unit price of a thermal wire
stripper, model 2W-1l, we can quickly get that information.
If we wonder what we purchased on PR AQ8927, tnat comes
gimply by executing a content analyZer pattern specifying
the number, We can see all outstanding orders charged to a
particular project quickly, Figure 1Ie28 shows a
contenteanalyzer pattern that has been temporarily written
into the file, for finding any entries pertaining to orders
for relays under Project 7101, Figure Il-29 shows a view
generated by using this pattern.

This file is useful, then, from a project-administration
standpoint, from the standpoint of following a purchase

requisition from the order stage through completion, and
also for providing backup information for cost estimates,

This f£ile can also be used as a tickler file by inserting
a pattern in the "outstanding requisitions" branch which
shows the date we feel we should follow up on the order.
Each day one can ask for all those items that have the
current date as g follow=up date,

This file is Kept upeto=date by the secretary of the
hardware group, who is most involved with requisitioning.
She does this updating entirely with TODAS.

- Summary on the systematic Use of Project Cost Files

One by one each of these files might bve interesting. As a
combination, Qquickly available t0 many users, their utility
seems renmarkable,

A cost study, as discussed above, can rely on all
“previous project costs as recorded in the system and can
draw on those files for inputs, One can draw on the
personnel roster file by labor category, work interest or
as extended into a skills inventory,

29

FIGURE M-27

FIGURE 1I-28

VIEW OF A PORTION OF THE PURCHASE-
ORDER PROCESSING FILE, SHOWING
OUTSTANDING ORDERS LOCATED IN A
SEPARATE BRANCH—UPPER PART OF
SCREEN SHOWS A BRANCH CONTAINING
CONTENT-ANALYZER PATTERNS

A CONTENT-ANALYZER PATTERN FOR
SEARCHING IN THE PURCHASE-ORDER
FILE

30

FIGURE II-29 VIEW GENERATED BY A SEARCH ON THE
PATTERN SHOWN IN FIGURE II-28

31

Sec, II

MANAGEMENT SYSTEM

We can browse through the purchase=order file, reflecting
the current or previous coats per item, we can link to
activity=planning files to see which people are involved
with various ongoing tasks and to see on what tasks we
are contemplating certain equipment purchases. «e can
link to proposal cost estimates for month=py=month cost
projections,

These files can be accessed in any order, from any
direction, at any time, with only a few keystrokes by the
user., They are also accessible remotelv through the use of
TODAS, thereby giving mobility to the user with less load on
the sysien.

our main objective in making cost studies is to arrive at
801id sets of projections or other answers as quickly and
effectively as possible., Direct on-line access to input
information is extremely nelpful,

3. Activity Planning and Status

.,

D

Introduction

Section II~B~2 describes the experimental establishment of a

TODAS Development Activity and discusses its method of
operation., One facet of TODAS work is the extensive
experimental use of on-line files a8 aids in conducting
meetings and formulating plans, <This section gives sone
details on the construction and use of these files,

“Planning and Status Files for TODAS Develooment Activity
File UPLAN '

The planning file for the TODAS Development activity
contains a branch with comments on how to use the file, a
branch for content=analyzer patterns, and a oranch
containing actual task plans.

The task=planning oranch has, as substatements, task
categories which include documentation plans, teaching
plans, design plans, META plans, and inactive task
plans., The levels under these categories contain
separate task plans, such as "TODAS REFERENCE GUIDE
DEVELOPMENT," “"USER BXPERIMENTS RELATED TO TODAS," and
"TEXT MANIPULATION SYSTEMS BIBLIOGRAPHY."

Each task branch contains comments by the task

32

Sec,

II

MANAGEMENT SYSTEM

leader on the following:

(1) Description of the task, with linke® to other
working files used in its developnment

"{2) comments on tne relationship of the task to
other ARC tasks

(3) Estimates of people involved (with levels
of effort and timing)

(4) Status comments

UPLAN is linked to from another file called UMEET
(described pelow), which is used for on-line note=-taking
during meetines of the TODAS group. Portions of UPLAN
¢an be temporarily copied into UMEET for use during
meetings.

UPLAN contains a blank task format in a separate branch,
Whenever a new task is added, tnis oranch is copied into
the appropriate planning areg (such as documentation
plans). Then the name of the task is inserted as a
heading along with the initials of the task leader.

Certain items in this file are useful in content-analysis
Searches, The most useful are the initials of people
involved in tasks, the milestones, the estimates, and the
status, To make contenteanalysis searches more
consistent, asterisks are placed pefore such itenms,

with an agppropriate pattern, one can tnen asx a
question such as "what is the involvenment of a
particular person in this activity?" task by task.

All pbranches with estimates containing the specified
initials and an asterisx will then be shown. The sanme
branches show expected levels of effort.

Since this is the only information 4qisplayed on the
screen, it is relatively easy to see potential
conflicts in the allocation of a person's time between
tasks for this activity or to make a hard copy of this
displayed information on the line onrinter,

The content analyzer can alsc return statenments
commenting on the status of tasks, sc that a quick survey
of all such comments can be made, This is particularly
useful for coordination of several tasks and for

33

Sec. II
MANAGEMENT SYSTEM

preparing for neetings of the group,

When many people try to updgte the same file, serious
problems are created, This is a well=-known situgtion
(discussed further in Appendix B). If two people are
both working on the file, one person's work may pe
lost when someone else Wwho has been using the file
writes his copy back out on the disc, Therefore we
tried to introduce a conventioen where people place a
signal of some sort in the f£ile when it i3 in use,

This procedure was not well used, probably because
people were generally in too much of a hurry.
Therefore, some work was lost, We found that it was
easier, with the present file=handling limitations, to
have research assistants do the updating on the file,
gathering information from various people as needed.

Part of the description for a task involves the
specification of significant milestones, if possible,
The task leader has to have some idea of important
milestones quring the progress of the work and nmust
develop some feeling for whether these milestones are
occurring within the resources expected to be allocated
to the task.,

We tried an oneline taskeplanning chart, showing
10eweek periods where milestones could pe marked for
each task. Milestones were indicated py showing an
NLS name for each milestione statement (see Fig.
11-30). Therefore, viewing this taskeplanning chart
on a display, we could "JUMP TO NAME", selecting one
of the milestone points on the chart, and a
description of the milestone and its relationship to
the task would then be displayed. A "JUMP TO RETURN"
brought back the planning chart.

This shows some pronise of being useful in the
future, hut some refinements in display techniques
and milestone selection are necessary before it can
become operational.

Another use of the content analyzer is to search for
entries made "since or pefore" a certain date, or for
entries made by certain people. This makes it easy to
see who has been updating the file recently, and what
they have done to it,

3L

FIGURE II-30

FIGURE II-31

TASK MILESTONE CHART FROM
FILE UPLAN

TOP-LEVEL VIEW OF FILE UMEET,
SHOWING ACCUMULATION OF NOTES
FROM A SERIES OF MEETINGS IN A
SINGLE FILE

35

Sec. II
MANAGEMENT SYSTEM

This is of less importance for a person who is
updatang his own file, for he probably remembpers
the kinds of things he has chaneed, Wwhen many
people work on the same file, it is nelpful to know
who has been changing it and in what areas they
have been working.

File UMEET

Ve

created a separate file called UMEET for plans and

noves from the TODAS activity meetings.

This file is similar to the UPLAN file in fornmat.
On-=line note~taking by & research assistant, as
practiced in the user systenm and software groups, has
proven quite useful for recording important parts of
discussions during meetings. The on=line note taker
has not been a distracting ainfluence in meetines; in

‘fact, she has contriouted at times, She is available

for finding information in the file and for recording
special ideas in other files upon request during the
meetings. .

Meetings are conducted with hard-copy agenda
distributed bvefore each meeting. The on=line

.-notetaker has an on=line version of the same agenda in

tront of her, As the discussion proceeds, she makes
her notes right in the on-line agenda,

Items left for discussion in following meetings, or
as special questions to pe resolved before the next
Meeting, can be marked by the note-taker and
retrieved from the file for later study.

Wwhen the neeting is completed, the notes are condensed
to & meaningful summary, distributed to the
participants, and displayed on a bulletin board. In
other words, the agenda for a particular meeting is
developed, during the meeting, into minutes of the
meeting. A copy of the unaltered agenda is also kept,

Successive meeting agenda and minutes are Kept in one
file (see Fig. 1I-31). This permits us.to search for
discussions of various topics and to receive answers
in chronological order,

36

Sec.

11

MANAGEMENT SYSTEM

B,

Organization Studies

our organizational studies nave centerea on two topics. The firstu
of these is the study of the "On=Line Community" == our own AKC
group seen as a unique examnple of a small, close community of
workers who make intensive use of on-line computer aids ain their
daily work.

The second area of concentration has pbeen the implementation of
two eXperiments on organization structure and planning methods in
such a comnunity.

l. On=Line community

our study of the On=Line Community is descrioed here in terms
of the total working environiient of the group and tne
structuring of staff roles wWwitnin the group..

a. Environment

We consider the total working environment,. for purposes of
this study, to consist of the physical environment and the
"user environment." The latter is a general term intended
10 indicate the existence, availability, and performance of
the numerous on=line aids used by the group.

Physical Environment

We have changed the pasSic work room or laborstory
configuration fronm isolated one=-man offices and a remote
shop and computer/work room 10 one=man offices opening
directly onto an open, courtyard~like work area, We still
use a remote shop and computer room due to puilding
layout restrictions, Tne conscles were moved out of the
offices into this central working area. We have put in
separate lighting circuits so we can turn off lights in
different parts of the room, reducing reflections on the

~displays, Wwithin the work area, the consoles can easily
pe regrouped to permit users to work cooperatively,

one effect ¢of this was to change the personal
interaction pattern dramatically, simply by increasing
the amount of interaction.

A Second effect was to permit much more effective
utilization of the display facility; tne faciiity is
much more "available" than it otherwise would have
been,

37

Sec.

I1

MANAGEMENT SYSTEM

within the general work area, the consoles (which are
of several different designs offering different
advantages) are set up in varying configurations, witn
differing arrangements for lighting, Sseating,
proximity to other consoles, etc. In general, the
individual configurations can be quickly and flexibly
altered as various needs arise., As a result, an
individual who is about to start a working session at
a console has a considerable choice of ate
condivions., Figure II-32 shows four views of consoles
in the work areg, in actual use for various modes of
work.

A gurther modification to the physical environment was
the addition of light movable partitions, for visual
privacy. These are low enough so that a person, when
sitting, does not see otner people working but can, by
standing or moving his chair two or three feet, contact U
or 5 other people working at consoles, Most people
apparently prefer to partition off only the front of
their work svations, Prartitions are rarely moved into
positions completely surrounding the work stations. when
seclusion is wanted, people tend to work in the Herman
Miller experimental office, which is isolated from the
general work area by high partitions,

The Herman Miller office has also become the place
where the system is demonstrated to visitors,
vVisitors have the feeling that they are inside the
working environment, and no one else is bothered by
the visitors' presence,

We have adopted the practice of holding some types of
meetings in the Herman Miller area around one or two
displays, with a research assistant taking on=line notes,

We have found that display viewing is difficult, and
multiple=participant access te the system ineffective,
with neetings of more than three or four people,

on the basis of our experiences with such meetings, we
are now redesigning the conference facility (see Sec,
II=C=2=4). ;

We have found that it is highly desirable to make use of
the system both night and day. Night access to our work
area is inconvenienced to some extent by the existing

Security megsures, particularly when we wisn to work with

- 38

FIGURE II-32 VIEWS OF CONSOLES IN USE IN THE ARC WORK AREA

39

Sec.

I

MANAGEMENT SYSTEM

non=SRI personnel, such a8 consultants. A much more open
and accessible working envaironment would be greatly
preferred. '

We see great practical utility in having a maximally
flexible physical envirenment, Each time we have
increased the flexibllity of the environment, work
interaction has increased without any damaging
inecrease in social interaction,

User Environment

During these two years we have provided a useful, thougn
8till evolving, on~line text editing and file
manipulation system, NLS. This system provides new tools
for perscnal and group use, Appendix A describes NLS in
considerable detail from a user's point of view,

Appendix D 18 a technical description of nNLS.

We have also developed the Typewritere=Qriented
Documentation-Aid System, TODAS (see appendix A). This
provides some of the same features as NLS out can be used
remotely by people not physically in the facility. TODAS
will produce considerably less lcad on the timesharing
system than NLS. We have experimented with remote use of
TODAS using portable typewriter terminals with acoustic
couplers, The resulting mobility, with direct access to
all of our files, shows interesting vossivilities for
team collaboration, together or .physically remote,

with the introduction of TODAS, We have provided more
opportunity for people %0 interact with the ARC files
from their offices, although some of the processes are
slower., There has not yet been widespread use of
TODAS, but this will change with improvement in
service cavacity of the system and addition of new
features to TODAS, Availability of several
30=character/second typewriter terminals will also
greatly increase the value of TODAS.,

Staft Functions and Activities within ARC

Activities we hgve identified as basic include the
followings

(1) Hardware

(2) Software

LO

Sec, II

MANAGEMENT SYSTEM

2.

(3) Management System Research

(4) User System Research

{5) ARPA Network Participation

(6) Operational Management of ARC,

Staff functions for each activity involve the
specification, design, implementation, documentation,
evaluation, and maintenance process as new systen
features are added,

A8 we hire hardware and softiware people, research
assistants, and secretaries, our policy has been that a
person's capabilities must 20 peyond any narrow
specialization. A highly skilled systems programmer nust
have additional background before he can pe used eftectively
in this group.

We need people who are capable of both long= and snort=-
range planning, rparticipating in gocal and subgoal settiing,
and contribputing to tne the qgesign, implementation, anig
other processes,

For most ARC work it is important that people be primarily
oriented toward designing and building tasks and less toward
contemplative and reflective ones, However, gince our work
mixes both research and development modes We must pe
capable of acting in either capacity at different stages in
the implementation of any given task, It is also a
requirement that reople have the ability to focus on
different levels of the endeavor, alternating moqes
frequently as the needs arise,

EXperiments on Internal Activity Structure

We conducted two experiments on the use of augmented methods
for plannineg work, These experiments were conducted with a
newly established group, the TODAS development group, and with
a Well=establisned, fairly tigni~knitv group, the software
group,

4l

Sec, II
MANAGEMENT SYSTEM

&, TODAS Development Activity Planning

A part of ARC user systenm research involves the
specification, design, implementation, teaching, use, and
evaluation of new features peing added to TODAS as related
t0 anticipated ARC and ARPA Networx needs,

The TODAS planning experiment was initiated along these
lines:
We first developed a strategy for use as the group formed

and for encouragine it to make further plans directed
toward ARC and TODAS=related goals. The steps considered

necessary for the group were:

(1) Identify both internally and externally generated
goals _

(2) Agree on structure and mode of operation of the
TODAS group, with the following features:

{a) A group representive reporting to the ARC
Manager and to external activities

{p) A team approach to tasks and planning, with
one leader for each task

(c) Investigation of decision techniques.

{(3) plan tasks for the group and for the indiviuals
in the group (including tasks already in progress,
where applicable), We were to do this according to

the following outline:

(a) Build an easily visible collection of task
alternatives, to be modified as appropriate after
analysis and review.

(p) Identify and use the skills in the group,
Securing other needed skills if not available in

the group.

{(e) Estimate participants' level of effort and the
timing involved, assessing the net effect of the

compined plans,

(4) Meet periodically to review progress, usually
every two weeks,

he

Sec, II
MANAGEMENT SYSTEM

Meetings were intended to be open to interested
staff of ARC, with use of an arfreed upon format,

Special discussion meetings (and other forms of
communication) for "help" when special problen
situations arose were also anticipatea.

{S) Maintain a TODAS "information center" on=line ana
off=line, The basic files were the followineg:

(a) File FD: File Directory for TODAS=oriented
linka, This file also contains links to TODAS
group participants' personsl file directories and
links to the fcllowing files:

(b) File UMEET: Meeting plans and notes
(c) File UPLAN: Task plans and status notes

(6) Communicate status of TODAS work to tne ARC
Manager and the ARC staff.

Having determined this strategy, appropriate initial
participants were contacted and the group was
establisned, :

The group started having meetings and developed a Neeting
strategy that contained tnhe following elements:

(1) A "facilitator,' whose role includes the iollowing:

(2) Preparation of tne meeting plan, with inputs from
the rest of the group

(b) Guidance during the meeting to ensure that all
important items are discussed

(c) providing an orderly way for new or unexpected
items to be discussed as appropriate, or deferred,

This role was rotated among the membersnip of the
group from nmeeting to meeting, depending on the
expected agenda sSubjects,

(2) A "process watcher," whose role involves attention
to processes in operation during the meeting. This
includes verbal and nonverbal interactions between
people, decision processes, etc,

Sec, 11
MANAGEMENT SYSTEM

{3

This was done to give the participrants added insight
about less obvious features of the meeting.

This role was rotated among the membership of the
group from meeting to meeting, depending on the
expected agenda subjects.

An on=line note taker, whose role includes the

following:

(L)
(5)
(6)
(M

(8)
{9

(a) Distribution of the meeting plan and preparation
of the meeting notes outline before the meeting

(b) Careful recording of important discussions and
points made during the meeting

(c) rRetrieval of needed information from one-line
files during the meeting

(d) sSummarizing the meeting notes and distriputing
them after the meeting

The role of the on=line note=-taker was filled by two
research assistants on an alternating basis. This
provided flexipbility and ensured that an experienced
notve=taker was available for each meeting.
Information gained at these meeting was valuable to
the note~=takers in their other day-to-day work.

Regular participants

Invited specialists

A meeting plan and agenaa

Relevant documents produced on=line by any member
Distribution of documents was arranged before each
meeting. Documents included descriptions of design
changes in TODAS, drafteé of teaching documents, etc,

Tentative plan for tvhe following meeting

An evaluation of the utility of the meeting,

by

Sec,

II

MANAGEMENT SYSTEM

NOtes from meetings were Kept on an evolutionary basis as
separate branches in one file, UMEET, and also in harad
copy for distrivbution to all members and to a bulletin
board. '

Planning

wWe made an easily accessible listing of tasxks in progress
and under consideration, in a separate file called UPLAN

(described above in Sec, II=A=3=-0), which can be modified
by individual task leaders or by research assistants.

This file helpea increase the extent to whicn meetings
were used %0 evaluate and redesign tasks, instegad of
to report information that would not be changed by
group interaction,

It facilitated tne exchange of reportorial
information ocutside the meetings, when individuals
could give their full attention to the file,

It was also available during meetings for
reference or moedificatvion.

Another use of the file was to communicate information
to people not directly involved in the activity, i.e.,
the ARC Manager and others in ARC.

Most of the planning dealt with scheduling and patterns
for necessary interaction bvetween tasks and task leaders,

The short=term goals appeared firm enough that we chose
not to divert our resources to longer=term goals while
this activity was starting.

Interaction

Since this group included people who were involved with
other ARC activities such as software, the Network
Information Center, and Management Science Research
(MSR), it explored some interaction between activities,

It also provided an opportunity for the activity members
to be involved in a smaller group thnan the ARC as a
whole, This changed the group dynamice considerabdly.

The process of identifying internally generated goals
stimulated exploration of personal needs of the mempers

L5

Sec. 1.
MANAGEMENT SYSTEM

0f the group to increase solidarity, mutual liking,
understanding, respect, and the desire to cooperate,

Although social interaction initiated at early
meetings was beneficial in developing a cohesive
working group, progress evaluation at various times
indicated that it could then be more effectively
continued outside of group meetings tc allow more
focus on the primary group tasks related to TODAS.

b, Software Activitvy Planning

The software activity is airected toward the design and
implementation of new systen software features,

stravegy

This was the second experiment, follewing the initial
results of the TODAS experiment descripbed above, In the
two years of the contract, the scftware group has
progressively become more integrated into the total ARC
functioning and has doubled in size., One result is that
more tasks that depend upon each other are being
perforned concurrently. The need for each member of the
software group to be aware of the progress and design
-modifications of the tasks undertaken by every other
member of the group has increased significantly as the
Size of the group has grown,

Preplanning by the MSR and group management team included
those feagtures found to be most useful from the TODAS
activity experinment,

It recognized the existence of leadership
responsipilities already in effect, and formalized
then, :

The same meeting format was used as for the TODAS group.
We found immedately that there was mere interest in task
discussion and plan reformulation and less interest in
social interaction and group process than in the TODAS
group, AS g result, changes made in the planning
procedure simplified the documentation to include only
essential elements needed for communication by the group
‘Members, We also went through the process of listing all
current and planned tasks in one consistent format in a
file called SOFTP, This resulted in a preliminary
iisting of 30 critical and separate tasks, with truly

4é

Sec, II

MANAGEMENT SYSTEM

Ce

distributed task leadership.
Leadership

Leadership was minimal at the group level, and sufficient
because of high motivation to complete tasks on schedule.
The strongest leadership was at the task level.

This experiment is still in progress., Llonger=range goal
and task planning, witn petter integration with other ARC
activity planning, are currently being developed.

summary Comnents on rPlanning Experiments

Active community teamwork, warm human relationships, and
good work attitudes are necessary for our organization to
function effectively, We must encourage and develop
feelings of trust and common goal appreciation so that our
people can work closely together over a long period of time,
with so much of themselves open to0 view t0 others and witn
such interrelated and challenging tasks to be undertaken,
We found that the TODAS group benefited from the initial
energy spent on interpersonal relationships, although there
Was eventually more effort applied to these factors than ve
founq useful for task accomplishment., A careful balance
between application of social and work-oriented energy is i
necessity,

Although the TODAS experiment was not successful in all
respects, it was an experiment where the particular people
involved stgnd a better cnance of succeeding in a future
experiment with a reoriented group.

software meetings were judged by particivants and outside
observers as extremely efficient and effective in meeting
predeternined gocals. While little attention was paid to
interpersonal variables, group morale was strengthened by
the meeting procedure, Uncertainties in task definition andq
individual responsibilities were clarified. The feedback
Was reported to be useful rather than either flatterineg or
critical. This, again, was a chnance for the particivants to
be involved in a smaller group than ARC., This contributed
to the higher morale,

We feel that the techniques developed for meeting and task
planning and for oneline note=taking will be useful as they
evolve in future activity planning. We need to learn nore
about realizing the potential of improved interpersonal

L7

Sec., II

MANAGEMENT SYSTEM

3.

relationships in ARC, while expending only a reasonable
amount of effort in doing so.

Observaticns From Study of On=Line Community

L X3

b.

Use of Public Files

The use of public files containing the work of many
individual people seens to be well accepted by the group,

Far more communication potential exists in this environment
than has yet been realized, although some people have
started in some interesting ways.

Qur need for development of a Dialogue Support System is
clear,

Work habits of the oneline community staf? aléo need
development 8O that they can use the pover of existing
fegtures and information in the systemn,
Now 1s the time for further work on methodology and
procedures for use of the system, with the continued
parallel evolution of tne system itself,
System Dependence by the Group

A8 we augnment, we find that it seens less desirable to use
econventional tools for many tasks.

This 18 a problem to pe resolved for good use of resources
and for the purpose of not overlooking appropriate
conventional tools where they can still be very effective,

The various ways that information now gets into the systen
areg

(1) Direct:
(a) On=line NLS or TODAS use by originator:
Entry of nevw material

Duplication and/or modification of existing
information

(p) oOn=line NLS or TODAS note~taking at discussions

18

Sec, II
MANAGEMENT SYSTEM

{2) Indirect:
{a) Transcription sources:
Handvwritten
EXternal documents
stenographie dictation
Recordings
Individual use of dictaziﬁg equipment
Tape recordings of grour meetings
(b) Tradscription processes:
Direct NLS use
Direct TODAS use

Paper tape

We are working toward a better gssessment of which tools
are most appropriate for the various tasks to pe performed

in ARC.

C. Miascellaneous Observations

This i3 a workworiented group. MOSt people wWOork long hours,
usually at an intense rate, little time is spent not

actually working.

There are mgny nore work oppoftunities for the group and for
most individuals than there are resources == in terms of

both time and funds.

Group snd personal WOrk management involves many

difficult choices of tasks to be performed, postponed, or

dropped,

The group frequently sets goals at higner levela than it is

likely to attain.

This is partly because we want the new features that will
nake the system more powerful; we are users of our own

results,

L9

Sec, II

MANAGEMENT SYSTEM

Sometimes, also, we overassess the potential power of the
system, forgetting that it still has limitations,
particularly in the area of consistently good service
levels, This problem is getting a great deal of
attention, however,

The interrelatedness of the on-line community tasks makes
planning very aifficult, oput obviously more necessary.,

C. Team Augmentation and Dialogue Support

Oour efforts in management research have peen centered on the
attempt to developing a more closely integrated, participatory way
of organizing people, efforts, and resources toward specific goals
than is provided by classical management theory,

Toward this goal, we are currently focusing our attention on the
problem of improving the management of a working
systen=development team, using our own organization as the subject
of experimentation, This invelves two facets of augmentation ==
namely, individual augmentation and team augmentation,

1.

Individual augmentation is simply our continuing effort to
provide ways of improving the working capability of individual
nembers of a tean,

Teanm gugmentation involves the development‘ot improved means
for coordinating the efforts of individuals gnd for integrating
their individual contributions into coherent team action,

Recent Efforus
A portion of our recent MSR effort has been invested in

formulating a "team=augmentation" approach, The initial
emphasis is strongly oriented toward the means for

- communicating and collaborating effectively on issues embedded

within a complex and evolving problem domain,

An important facet of this approach nhas been a preliminary

study for a "pialogue support System" (DSS) == a 3pecial systenm
of coordingted features which could support the communication
and integration of col;aborative dialogue among team members,

Appendix B is a more detalled discussion of this

formulation, as extracted from the PhD thesis of David A.
Evans (see Ref, 1).

50

Sec, I1

MANAGEMENT SYSTEM

2.

Future Approaches to Team Augnentation

Experimentation with roles, record-keeping conventions,
collaboration procedures, decision=-making practices,
documentation, etc, will ve a rich domain for exploratory MSk
WOrkKe

The following discussion of fast editing and puplication,
"super=documents," and augmented conferencing gives a view of
some features needed for team augmentation.

a. Fast Editing and Publication

Our already fast editing techniques will continue to evolve,
and we plan to concentrate early upon automatic production,
from our on=line files, of hard copy having a very flexible
compogition of text, diagrams, tables, equations, footnotes,
and indices,

The design of harde=copy formatting conventions must be
related directly to the way in whicn the associated file
material can be studied and manipulated on=line,

b. "Super=Documents"

We have been doing research leading to the development and
praduction of very large, very complex documents containing
numerous sections whose details are highly interdependent,
These documents will be subject to frequent updating. This
will involve further work on techniques for creating and
using special indices, footnoves, reader=supportive
comments, cross-references, etc.

We currently have quite powerful techniques for aiding an
individual or a small report=writing team to produce
documents of the usual researchereport size and complexity.
Part of our approach Lo team augmentation will be the
expansion of these techniques to allow for much greater
scope and complexity in documents and much more fluiaqg
interaction among the team members who create thenm,

A team tackling a complex system=development project must
provide itself with the highest possible visipility over its
working environment == i,e,, over the following factors:

Planning: plans, contingency alternatives, resource
commitments, status, criticisms

51

Sec. II

MANAGEMENT SYSTEM

C.

Design: designs, design principles, constraints,
estimates, analyses, supportive data, relevant needs and
‘possibilities

Operation: roles, task definitions, assignments,
policies, operational procedures and conventions.

We intend to develop and keep up %o date a large, detailed,
highly crosse=referenced and wellw-indexed "“super=document"
that contains just such a desc¢ription of our own
project=team activity. our techniques for facilitating its
modification and republication will be under constant
evolutionary pressure.

Ccollaborative Use of On-Line File Systenms

on=line access by collaborators to each other's files, as
provided by a number of today's time=sharing systems, leaves
nuch to ve desired in supporting effective dialogue,

An effective dialogue=support system is essential to teanm
augnentation. Hand in hand with the "super=-document"
facility descriped gbove must go some such ability as the
followine: :

Any teamn member at a display console can study swiftly
any portion of the super=document's structured files,
Qur current system is fairly good for this purpose, but
not yet adequate for dialogue study.

Whenever he wishes =« as though he were pencil=marking
his private draft with marginal comments, underlines,
encircled passages, arrows, etc., == he can introduce
"comments" that are freely sprinkled with expliecit
references to any specific item (e.g. any character,
word, graphic entity, or expression) within anyoody's
prior entry, (Note:t the term "comment" is used nere and
in the following discussion in a very broad sense == a
comment is any entry which in some way points to a
previous entry.)

This commenting capability must be managed by the
computer 80 that it does not matter if other peovle
are simultgneously scanning the same material or
affixing comments to the same itenms,

when creating a comment entry, he needs flexible aids
and methods for arranging interspersed or concurrent

52

Sec.,

I

MANAGEMENT SYSTEM

display of the referenced passages, for designating
the explicit entities he wishes to reference, and for
suspending operations temporarily while he checks
related material,

gconversely, he needs a way of seeing any comments that
reference a passage he is inspectine.

Categories might pe defined by authorship, date of
creation, text content, or 3ssigned membtership in
predefined categories.

He also needs a great deal of control over this,
however; much of the time he will not want to see
any comments, or only comments falling into certain
categories,

He also neeas considerable contvrol over the way the
system displays the comments that he wants to see
== in specified portions of the screen, in
full=tvext or condensed form, etc,

He needs the ability to set up "annunciator calls" to
various people, or sets of people, to request their
dpecial attention (at some level of priority) to a given
commens,

All of the interactive=dialogue entries immediately
pecome partv of the super=~document, imposing a potentially
very complex comment network ("network" because commentis
can refer to comments in indefinite extension).

It will be hard to keep track of the relationships
among these comments and the sSubstantive records about
which the dialogue is oriented,

Their relaticnships need never be ambiguous, but
consider the proolem of trying to study such a
structure to determine where we now stand in our
developments and discussion, especially wnen it is
the record of a complex systemsdesign process and
the interactive dialogue among very active people,

This is about the most difficult central challenge in
effectively augnenting & team =-- that of developing
computer aids, working methods, ete, to allow a
Skilled person 1o be highly effective in digesting the
content and implications of such g record, and to

53

Sec. II

MANAGEMENT SYSTEM

d,

develeop a substantive nextestage design or plan that
integrates the dialogue contributions.

Essentially similar techniques are required to
augment any individual's central intellectual
capability for synthesizing the next stage of
development in a plan or design, To the extent
that we are successful with this, we should be adle
to offer strong gulidance for capability
augmentation over wide ranges of individual and
team activities,

Cconference Augnmentation

There is great potential value in direct augmentation of
conferences and meetings. When people are gathered together
10 consider a proposal or argument, or to collavorate
actively on a problem, there are many possibilities for the
development of techniques and facilities to make their work
more effective,

There i8s a wide range of possicle approaches to
conference augnentation.

At one extreme, each participant would be an
experienced NLS user and would have his own console;
sophisticated facilities would be provided for
"linking" the consoles in various ways to augment
communication,

At the other extreme, there would be only a single
console with a special operator; special techniques
for integrating the NLS facility, the operator, and
the conference participants into a working systenm
Wwould be needed,

Between theSe tLwo extrenes, a variety of intermediate
approaches is poassiple,

For any of these approaches, a central problem is the
developnment of conference procedures and the organization
of onsline informgtion; both procedures and information
structures must be developed in such a way a8 to gain the
greatest possible advantage from the computer facility,

This development of conference procedures and

informgtion structures should be done experimentally,
under actual usage conditions,

5L

Sec, II
MANAGEMENT SYSTEM

We have already experimented with augmenting meetings
by having one person operate NLS as an oneline
notewtaker, where all participants can see the display
(see Sec, II~A=3-Db),

On the basis of recent experience, we plan to provide petter
facilities for groups of people werking together at consoles
and for small meetings where conscles are not available for
everyone (or where not all participants are NLS users),

This will permit experimentation with intermediate
approaches lying between the two extremes described above.

The facility will consist of a meeting room equipped with
projection TV, several appropriately designed consoles,
and furniture designed so that three or four people may
work at the consoles with ten or so less active
participants,

55

A

B.

III HARDWARE SYSTEM

Introduction

This section reviews the current status of the ARC computer
facility and describes the hardware development that has been done
during the course of this contract.

The first part oriefly describes the computer facility,
ineluding both the computer as leased from XDS and the special
equipment that has been added by ARC.

The second part discusses modifications and improvements to the
faeility that have been planned and are now in progress,

The tnhnird part presents some comments on feztures of the systen
design and discusses some of the reliability and maintenance
experience, Because of 1ts unique design, the display systenm
is emphasized, A summary of maintenance costs for the
display-tenerabor and television porticens of the system is
includedq,

The Computer Facility

The cenfiguration of the ARC conmputer facility has pneen relatively
Stgble over the past two years, There have been some peripheral
additions, in particular the ARPA Network interface and an
external core system; these are dlscussed below.

The current facility is shown in Figs. III=-1 and III=2.

1.

The Leased computer

Figure IXI~- 1 is a block dizgram of the facllity as leased fronm
XD8.

A central processor with timesharing hardware operates from a3
64K memory in L banks with 24-bit words and a cycle time of 1.8
microseconds.

On channels sharing memory access with the CPU are 3 magnetic

tape Arives, a paper-tape station, and conmunications equipment

for 16 Teletypes.

A second memory buss provides direct access to memory for the
RADS (Rapid Access Devices, i.e., drums) and the non=XDS3
portion of the facility, designated "Special Devices Channel"
in Fig. III-1l.

There are three drums on the system, operating from a common

controller and accessing memory through an XDS device called
a Direct Access Commmunications Channel (DACC), Each drum

57

8¢

16 TELETYPES

|
|
[
|
!
1
|
|
|

TTY

CTE-N

CTE-N

r

TNGC

CONSOLE
TTY
CENTRAL
ok T T
EQUIPMENT SHARING
HARDWARE
16 K 16 K 16 K 16 K
CORE GORE GORE CORE
MAM MAM MANM MAN
DAGC MIC
SPECIAL
DEVICES
GHANNEL

RAD ;
]— CONTROL 1 RAD

]

RAD 4

FIGURE III-1

XDS940 COMPUTER FACILITY

MAG.

TAPE

MAG. TAPE WAG.

CONTROL TAPE

MAG.

PAPER TAPE

TAPE

STATION

TA-5919-3

69

Mouse
. T.V. Monitor (\T
— DisC i DISC "
CONTROL 1 FILE 5 C.R.T. T.V. Camera . L D Keyset
’ ! [_\éeﬂ'i’ﬂ
|
| : T T
DISPLAY DISPLAY | | | I
= CONTROL —‘ GENERATOR |I | 1 - |I :
! ' | | - camera | | |
: | ~] CONTROL [_ | I
) | : . AND [: 12 Stations {
DISPLAY DISPLAY I | -] PATCH =
— N : PANEL | |
CONTROL - GENERATOR : I — — i I
To_| EXECUTIVE || ‘ : : l :
mic CONTROL ; ! | !
| | i
v o |
— NETWORK Ly ARPA Network
INTERFACE l'—l -
INPUT
— DEVICES
CONTROL
LINE
S PRINTER . | PRll_lzl':lrlIEER
CONTROL

TA-7101-3

FIGURE [11-2 SPECIAL DEVICES CHANNEL

Sec. III

HARDWARE SYSTEM

2.

has a capacity of 500,000 24~bit words, a transfer rate of
120,000 words per second, and an average latency of 17
milliseconds.

special Devices Channel

Figure III-2 is a block diagram of the portion of the facility
that has been put together by ARC. The following sections
describe the major units.

&,

b.

Coe

Executive Gontrol

The executive control provides an interface to the 940
through the Memory Interface Connection (MIC). It acts as a3
multiplexer that allows gsychronous access to cere vy any of
the 6 devices connected to it.

The executive control decodes computer input/output
instructions and passes them along as signals to the
various devices, It accepts interrupts from the devices,
synchronizes them, and passes thenm along L0 the computer,

It aceepts addresses and requests for memory access from the
various devices, determines relative priority among thenm,
and synchronizes their accegs to 940 core,

The executive control includes extensive debugging and
monitoring aids, It allows the monitoring of data and
addresses for any 8selected device and permits "offeline”
operation of any of the devices.

Disc File systwvenm

The disc file system consists of a Bryant Model L4061 dise
file and associated controller, The system has a capacity
of 32 million words, an average access time of 185
milliseconds, and a data transfer rate of 43,000 words per
second, A relatively simple field modification will double
the present capacity,

The disc controller was designed and built by Bryant to
interface with the executive control, sSpvecifications for
the controller were developed jointly by Bryant, Project
GENIE at UC Berkeley, and SRI.

Display Systenm

The display system consists of twe identical subsystenms,

60

Sec. III

HARDWARE SYSTEM

d.

each with a display controller, a display generator, and 6
high=resolution S5~ineh CRTS. A closed=circuit television
system carries d4isplay images from the CRTS to television
monitors in the working ‘area,

The display controllers were designed and built at SRI,
They access and process "command tables" that are resident
in 940 core. ‘

A command is roughly associated with a user and points to
a "display list" in the user's core space, The display
list in turn points to buffers containing actual display
instructions (commands to the display generator to
produce images).

The display controller handles all core accessing,
including memory mapping for the user's core space, It
passes the display instructions along to the display .
generator.,

The display generators and CRTS were purchased from Tasker
Instruments to SRI's specifications, They have general
character and vector cavabilities,

Presentations for egch of the 6 CRTs are generated
sequentially, and unblank signals from the display
controllers select one or more of the CRTS at a given
time.

A high-resolution (875=line) closed=circuit television
system transmits display pictures from each GRT to a
television monitor at a corresponding worke-station console,
(Figure II=32 shows several worke-station designs,)

Input Device Control

In addition to the television monitor, each work station has
a keyboard, binary keyset, and mouse, Appendix A descrinpes
the use of these devices.

The state of these input devices is read by the input device
controller at a preset interval (about 30 milliseconds) and
written into a fixed table in 940 core,

Bits are added to information from the keyboards,
keysets, and mouse switches to indicate when a new
character has been received or when a switch has changed
stgte during the sample period, A new charactver or

61

Sec, III

HARDWARE SYSTEM

Co

b &

switeh change causes an interrupt to pe issued at the engd
of the sample pericqd.

Mouse coordinates are digitized by an A/D converter and
formatted by the input device controller as bteanmeposition
instruections to the display generator, A user progran
may include the mouse coordinates, as written by the
input device controller, as part of a display list, This
allows the mouse position Lo be continually displayed
without attention from the CFU,

Line Printer

The line printer is a 96=character drum printver leased fronm
Data Products Corporation (Model M600~1llA). With the 96
characters, printing speed is 340 lines per minute.

The line printer controller processes print buffers of
arbitrary length (single line bpbuffers are normally used)
that have been set up in core by a controlling progran,
operation of the printer controller is descrived in Apvendix
Ce

Network Interface

The network interface provides communication tetween the 940
and an Interface Message Processor (IMP) on the ARPA
computer Network, The interface operates from message
buffers in 940 core., Messages Lo the Network are read by
the interface from these puffers and transmitted to the IMP,
Similarly, messages received from the IMP are written into
buffer space in 9LO core, Instructions from the 94O enable
the systenm for receiving messages and control the sending of
messages, A "linked-puffer" scheme permits flexible memory
allocation,

Operation of the network interface is desgrived in nore
detail in Appendix C, The interface message processor and
its communications protocol are discussed in detail in Ref,
2.

C. Modifications in Progress

Two modifications to the facility that will provide significant
improvement in service are now being implemented. These are an
external core system and faster drums, In addition, an accurave
clock system is being added,

62

Sec, III

HARDWARE SYSTEM

1.

External Core Systen

The external core system has been completed and will be
integrated into the facility in the near future,

The primary purpose of this core system is to provide storage
for display regeneration. Display buffers are presently in
"frozen pages" in 940 core == a significant factor in limiting
system response, since thay take up 8space that could otherwise
be used for swapping. (See Sec. IV for a discussion of factors

. affecting response.)

Figure III-3 shows the speclal devices channel as it w#will be
recontigured when the core system is integrated.

The inter=-core controller cdntrols tranbter of data between
external core and 940 core. It has two modes of operation:

(1) A block transfer mode allows the transfer of blocks
of uUp to 2048 words between any two locations in the two
cores, (Note that transfer can be between two locations
in the same core.)

{2) A short transfer mode allows the transfer of short,
fixed~length buffers between fixed locations in 940 core
and external core, This mode is easier to set up than
the block transfer, and requires fever memory accesses
for control., It will be used for such functions as
transferring single characters or other control
information between the tLwo core systems.

The operation of the interecore controller is descrioed
in more detail in Appendix C. .

The external core itself currently consists of a single
32,000=-word bank with access switching to allow access by up
to eight devices, Provisions are included in the design for
expansion to 16 devices and two core banks of 64,000 words
each, The core cycle time is 1,5 microseconds and the word
length 1is 24 bits.

The interface to0 external core has been designed so that

it is identical te the interface to 940 core (through the
Executive Control). A device may be simply plugged into

either core systenm,

A8 shown in Fig. III-3, we will initially be operating both
display systems, the network interface, and the line printer

é3

Display Controller 1

Display Controller 2

64

Network Interface

Line Printer Controller

TA-7101-4

] DISC] DISC
CONTROL FILE
— CLOCK
EXECUTIVE | |
CONTROL
| INTERCORE EXTERNAL
CONTROLLER [] CORE
INPUT
- DEVICES
CONTROL
FIGURE 111-3 SPECIAL DEVICES CHANNEL WITH EXTERNAL CORE

Sec, III

HARDWARE SYSTEM

‘20

3.

from external core, These are the devices that need
constant burffers for relatively lone periods and therefore
require frozen pages when operating from 940 core,

Faster Drums

From the systenm response studies (see‘Sec. IV) it 18 apvarent

‘that a primary factor in response is the swapping bandwidth,

To improve response (and add more users), we are.in the process
of replacing the XDS 4drums with Univec FH-L32 druns.

These drums rotate at 7200 RPM, giving a transfer rate of
365,000 words per second (as compared to 120,000 for the
present drums) and an average access time of about 4
'milliseconds,

In addition, we are formatting the new drums in a way that
will allow a page transfer to begin at any position on the
drum., Since a 2048-word page fills two=thirds of a bvand,
this will give an average page transfer time of about 8
milliseconds.

The interface for the drums will be designed and built by ARC.
It will connect to the 940 through a second Menmory Interface
tonnection (MIC), replacing the current RAD=DACC combination
shown in Fige. III=-1l.

Clock Systen

An accurate clock system is being added to assist us in systenm
measurenents,

This clock systen providea‘two types of time information ==
absolute gnd relative =« that are written into fixed
locations in 940 eore at regular intervals,

Apsolute time consists of binary representations of year,
month, day, hour, minute, and second.

Relative time information consists of a single 2i-bit
number, incremented and written into core every 100
microseconds.

The longe=term drift on the clock will be less than 1 second
in 250 days. '

A more complete description of the clock system is given in
Appendix C.

65

Sec., IIl1

HARDWARE SYSTEM

. De NOtes on System Design and Reliability

1.

Display Systenm

The display system in use is somewhat unusual in that it uses
central disvlay=-generating equipment and a closed=-circuit
television system to distribute images to the working area,
This approach to a display system was chosen on the bvasis of
cost and flexibility. A description of the system and of
considerations that went into its design is given in an earlier
report (Ref. 3).

We now have considerable experience in operating this systenm
and are still very pleased with the basic approach, but we have
had some problems with the component equipment involved.

The closed=circuit television system offers several distinct
advantages over other means of producing displays at a work
station.

The system is extremely flexible as to the location and
degign of working consoles, since only a television
monitor and a video line are required to present the
display at each console, This allows freedom to
experiment with different types of consoles (Ref. L) and
10 move consoles agbout without cabling problems,

The video signal is inverted tec provide a black=on=white
diaplay. This presentation is usable in higher anmbient
light condaitions than the usual brighteon=-dark
presentation, and flicker in the display imare (due to
low generation rates) is much less noticeable to the
user.

With proper adjustment of the television camera, a
significant storage time can be obtained on the vidicon
surface, This greatly reduces the flicker effect that is
present in the original CRT presentation. with this
systen we f£ind it possible to regenerate displays at
about 20 cycles per second,

Maintenagnce features are another significant advantage,
The display equipment at the actual work station is quite
simple, consisting of only a television monitor which can
be replaced by a spare for maintenance.

The display~genersting equipment, which requires more

66

Sec. III
HARDWARE SYSTEM

The
oth

complex maintenance and repairs, is located centrally in
the computer room, This makes it very easy to maintain
an uncluttered office environment in the working area,

Furthermore, since there is not a fixed one=to=-one
relationship between display=generating equipment and
work stations, when a portion of the display system is
down for repairs the working consoles that remain
operative may be freely selected on the basis of current
needs.

Having two identical display systems, from display
controller through actual moniteors, has been g major
factor in maintaining up=-time in spite of the
unexpectedly high level of maintenance required on the
systen,

use of video to distribute display images offers several
er possibilities that we have not yet fully exploited,

For the television monitor on which the imaee is
presented, a wide range of accessory equipment is
commerciglly avallable, For example, we have used
high~quality projection television at the Fall Joint
computer Conference in 1968 and at the ASIS Conference in
1969, It is possiple to use multiple TV monitors or
intermediate~size projection equipment for smaller
groups, This will be a major factor in the
team=gugmentation work to be carried out under the next
contract,

The video capability offers additional flexipility in the
images that may be used on the sereen, For exanple, in
the conferences mentioned above, live TV pictures of the
people and equipment involved were freely used, mixed
with the computeregenerated image. This, again, will be
a significant factor in team collaboration at a distance
where pictures of the people involved can be used, either
nixed or inserted with the computer-generated image,

Another use of the video that will become inereasingly
important is the viewing of microfiche documents, Many
systems are now available and more are coming on the
market for the storage, retrieval, and viewing of
mierofiche on closed=circuit television.

67

Seec, III

HARDWARE SYSTEM

2,

Maintenance Experience

@

De

General

In general the relianility of the facility has been very
good; the computer up~time has been extremely high. The
reliability of the disc-file system has been fair, We had a
periocd of several months of above-~normal error rate, and 5
days down while clocks were rewritten; however, the troubles
now seem to have been corrected,

One notable exception to this has bveen the line printer,

We originally bought a Potter chain printer which
turned out to have marginal print auality and was very
unreliable, We had great difficulty in gettineg
maintenance from Potter, and we finally replaced tne
unit with a Data Products drum printer, Like the
Potter printer, this has 96 printing characters with
upper= and lower=case alphabet, The print quality 1is
excellent and so far it has been very reliable.

Display Systenm

We have spent more effort on maintenance of the display
system than any other part of the facility; since it is
somewhat unusual, we will discuss some of the proplenms
encountered and summarize the maintenance costs,

One of the basic limitations of the system is the lack of
enough total light on the vidicon surface. This means
that many design factors are marginal, The Tasker CRT=
run at such nigh intensity that their life is relatively
short, This high intensity also causes difficulties in
maintaining gocd focus over the entire image, To oOperate
with these low light levels, the vidicons must be quite
sensitive; since sensitivity drops off with age, they
have a relatively short useful life,

Because the writing speed of the Tasker display
generators is lower than expected, we still have a
flicker problem when all é screens on the system in use
are reagsonably full of text, To aome extent we are able
to compensate for this by careful adjustment of the
vidicon beam current and target, but this adjustment
needs frequent attention. Wwe have considered
longer=persistance vhosphors on the TV monitors ana will
experiment with this in the near future,

68

Sec. III

HARDWARE SYSTEM

Co

In addition to these difficulties there are some basic
weaknesses in the design of the Tasker system and the
television systen,

(1) Tasker systenm

Sockets for circuit cards are not of high quality.
This results in contact-resistance problens,
especially in the analog circuitry.

Deflection eircuitry, with its many adjustments, is so
nard to get at that it is left in a partially
assempled state,

Logic circuits still do not have all pulleup problenms
corrected, resulting in a narrow range on the clock.

The active deflection=-sensing circuit requires
frequent adjustment, ‘

The focus vs, beam position circuits perform very
poorly.

(2) Television System

The preanplifier tubes on the television cameras tend
to be very noisy. These tupes must initially be
gelected for low noise to get really good pictures,
and their life is very short,

We are currently in the process of replacing all of
the preamplifier circuit boards witn a new
s0lidestate circuit now delivered in new GE cameras
of this type, This circuit uses an FET
preamplifier with very low noise and hopefully no
problems in reliability,

controller power supplies are poorly designed and
require too frequent replacement of parts,

Maintenance Coats

The following is a summary of the costs for maintenance of
the display and television systems for the past year. Both
include the frequent "tuning" necessary to maintain good
picture quality. These are the costs for maintaining 6
operating work stgtions, but some effort has been spent on
the equipment not in regular use., Wwe expect this to go up

69

See, III

HARDWARE SYSTEM

3.

about 50 percent when 12 stations are in operation.

TV Systen
Lavor 25,665
Vidicons 3,365
Picture Tubes 895
Preamp Tubes 1,200
All other parts 1,040
Total 32,165
Tasker Systenm
Lavor 7,905
CRT's 3,000
Miscellaneous 200
Total 11,1058

Note: The Tasker system is maintained at a
"ueep-it-going-well-enouzn-co-people-can-work" level, and
it lives with many weaknesses,

Hardware Design and Construction Techniques

&

Logie Design Aids

The wirelist generator program described in an earlier
report (Ref, 3) is still peing used. The input format,
diagnostic aids, and general form of the progran are
essentially the same a8 in the past. 1In the past the
Wwirelist output was used to produce documentation that aided
a technician in hand wiring; now it produces a punched tape
that in turn controls a semiautomatic wire-wrapping machine,
This wire-wrapping service is obtained from a local supplier
and results in more accurate wiring, lower wiring cost, and
!as:er turnaround in going from logic equations to finished
wiring.

Regarding accuracy, no misplaced wires have been found to
dgte, although a very ninor numper of broken wires and
wires shorted to pins have been observed.

The wiring itself costs about 23 cents per wire. Also,
above the cost of running the bdbasic wirelist generator
progranm, there is an additional cost of 20 cents per wire
for preparing the paper tape used to cecontrol the
wire-wrapping machine,

Turnaround time for wire-wrapping is short, typically

less than a week for a design containing L0OO
integrated circuits, 0f course, this is subject to

70

Sec. II1

HARDWARE SYSTEM

De

considerable variation, depending on the work load of
the company performing the wire-wrapping.,

Moat of the general comments in the orevious report
concerning the utility of the wirelist generator progran
still hold.

However, experience has shown the desirability of
maintaining a fairly complete set of logical
schematics, complete with cireuit locations and pin
numbers, in addition to the designer's sketches and
listings provided by the wirelist generator.

The previous report on this contract (Ref, 3)
implied that the sketches and listing were
sufficient for equipment maintenance and
trouble=shooting. This is true as long as the
original designer performs the maintenance, With
the inevitable turnover of personnel that takes
place on a long=-term project, someone other than
the designer eventually becomes responsible for
Keeping a given device operating., Under this
circumstance, a achematic is an invaluaple aid,

construction Techniques

The construction techniques of the most recent units can bpe
seen in Fig, III-4. The hardware implementation consists of
an array of sockets that will directly accept a dual inline
packaged integrated circuit (commonly called & “DIP"), The
arrays of DIPS are mounted perpendicular to the horizontal
plane on the front of the rack in which they are mounted,
The circuit arrays can be pulled out for access, Wiring
connections are made directly to the pins of the sockets,
This scheme has several advantages,

First, the cost is low. The previocus construction
technique used printedecircuit boards for mounting the
integrated circuits. Thus the cost of mounting the
circuits on the poard and the cost of the board itsel?
were incurred.

Second, there is greater flexipility in the location of &
given circuit type, With the integrated circuits mounted
on printedecircuit boards, a complete board consisting of
Up to 12 cirguits would have to be used in cases where
only 1 circuit was actually needed.

71

HADY 10K NExT up 4y

MO piquegy.gysy
& Maony QUL wayyg

FIGURE III-4 NETWORK INTERFACE CONSTRUCTION, SHOWING
MOUNTING SYSTEMS FOR CIRCUIT ARRAYS AND
MULTIPLEX SWITCH

72

Sec, III
HARDWARE SYSTEK

In
bas
des

In

Thirdly, an individual DIP can be removed and replaced,
This is a great aid in the maintenance of a device, A
DIP with a suspect circuit can quickly be removed and
replaced by one that is known to be good,

sddition to the techniques of hardware realization of the
ic logic design, many other details of the hardware
ign are important.

Oone fegture that the hardwgre must provide is some means
0f aceess to both the integrated circuits and the wiring
== this feature is an absolute necessity during initial
checkout and is an aid in later maintenance and changes.

In providing access to the external core, the

multiplex switch posed a particularly difficult

problem, since 3L cables connect to it, In order to

allow easy access to this unit, the mounting systen
- shown in Fig¢. III-4 was developed,.

A very flexible cable is used, with a rather elabcorate
method of strain relief and cable guidance. Although
the original mechanical design was quite expensive,
requiring about 3 months of a design draftsman's tinme,
past experience has shown the difficulry of
maintaining equipment tnat did not have easy access,
To date this deaign cost has been spread over several
units and itvs anticipated use in future units will
reduce the per-unit cost for the design., The expense
of hand=fabricating the parts for a pull-out draver is
estimated t¢ be around $300, wnhich is slightly less
than $1 per socket.

the recent equipment, light=emitting diodes (LEDs) have

been used instead of incandescent lights for panel
indicators. The results have been very satisfying.

The LEDs have a higher initial cost (about 33 each) than
the incandescent lights previously used. The lights,
however, have a limited life while the lifetime of the
LEDsS 1s essentially infinite, This leads to essentially
Zero maintenance and replacement cost for the LEDs,

This long service life also means that the expensive
sockets required by the incandesecent units, in order to
facilitate their replacement, can be eliminated.
Indicators vere mounted simply by drilling holes in the
front panel and retaining the LEDs with RTV silicone

73

Sec. II1

HARDWARE SYSTEM

Ce

rubber.

A further cost saving is effected since tnese lights are
driven directly from the 1logic, saving not only the cost
0f the drivers themselves but also the cost of the extra
sockets and wiring they would require,

The LEDS have a relatively narrow viewing angle and less
intensity than the incandescent lights, but we have found
them entirely satisfactory in use,

Typiecal Construction Costs

A fairly careful study was made of the actual cost of the
ARPA Network interface, This is typical of the type of
control unit that is now veing built,

Hardware and construction == the figures are given on a
peresocket basis. Technician time involved in construction
is includedq,

Frame, connectors, IC sockets, etc. 8$3.50
Mounting hardware 32,00
Computer time 32,40

(preparing wire=-wrapping control
tape, 35 cents per wire and an
average of 6,8 wires per socket)

Integrated circuits (average) 32.00
Wire-wrapping $1,.60
(25 cents/wire and 6,8 wires/socket)
Total hardware and construction 811.50
{per socket)
Total hardware and construcgtion 86900,00
cost for Network interface (600
sockets)
Design

The design cost is expressed in manedays for a design
engineer,

Initial design 10 days

T4

Sec. III
HARDWARE SYSTEM

Preparation of equations
Drawings and documentation
Final assenbly and debug

Total

75

10 days
10 days

20 days

50 days

A,

IV SOFTWARE SYSTEM

Introduction

The central focus of software activity at the Augmentation
ReSearch Center is the evolutionary development of the On=line
system (NLS), and during the contract period this work has
continued in the spirit of bvootstrapping which has been
consciously applied since the project's inception. 1In addition to
RADC funding, this work has received substantial support from NASA
under Contract NAS1-=7897.

The original version of NLS (then called NLTS for On-Line Text
Svestem) resided first in a CDCl60A computer (Refs, 5 and 6); it
was$ later transferred to a CDC3100 orn wnich furtner development
took place (Ref. 7).

The experience and tools developed with the 160A and 3100
systems were then applied to the design and construction of the
present NLS, which provides multieconsole service from an
XDS94LO computer and associated special=purpose hardware,

As has been true throughout its develorment, the On-line Systen
is now peing used principally as an instrument for planning and
engineering its own evolution and as a tocl for composing,
editing, and publishing documents (such as this reporv) for
distribution outside of the (enter,

The operation and evolution of NLS takes place within a riebh
environment of software systems, many of which wWere created
specifically to aid in its developnment,

Most basic to the operation of NLS is the timesharing systenm
(TSS) running on the XDSSi40,

TSS was originally developed by Project GENIE at tne
Berkeley campus of the University of California, bput
responsibility for maintenance of the ARC version presently
lies with the Center itself,

Each user runs NLS as a subsystem of TSS and consequently
has access to other TSS supsystems such a8 the KDF file
system, the QED texte~handling system, and the DDT symbolic
debugeging systenm,

chk done on TSS during the contract period is describped in
Section IV=E.

7

Sec. 1V
SOF{WARE SYSTEM

The evolution of NLS has been facilitated greatly through the
use of an extensive collection of languages and their
respective compilers, most of which wWere developed by ARC
itself, These languages and compilers are discussed in Section
IV'C.

The program code for NLS resides in suych a larege number of
files that compiling, loading, and debuzging the system is a
complex process., To make these operations more manageable, a .
TSS subsystem called NLS UTILTY (not to be confused with the
internal utility routines of NLS itself) has been constructed
during the past year. A description of NLS UTILTY will) be
found in Section IV=G.

During the contract period extensive changes have peen made to
NLS, both in user service features and in internal systen
organization.

Development wasS begun on the Typewriter-oOriented
Documentation=-Aid System (TOLAS), which will make much of the
power of NLS available to users at remote locations through
hard-copy terminals such as Teletypes, Implementation of TODAS
is one of the major steps being taken in setting up the Network
Information Center (NIC) for the ARPA Network,

The ability to examine the contents ©of NLS files has been
enhanced by the implementation of a powerful set of JUMP
commands, including provision for jumping petween files using
file links, (A file link is simply an occurrence of a file
name, properly empedded witnin the text of another file.)

Facilities have been provided to enable the NLS user Lo request
that egch file statement displayed be tageged with the initials
©f the person who last modified that statement along with the
date of modification,

conventions for handling keyset input have been changed so that
the 31 input characters may be interpreted in any of four cases
(lower case, upper case, numbers and special characters, and
VIEWSPECS). The case 18 determined by concurrent input from
the center and left pushbuttons on the mouse (lower case is the
normal case),

‘commands have been added to enable the user tc¢ set any text
entity in a variety of type styles (upper case, lower case,
italic, poldface, flickering, underlined), and the
display=generation routines have been modified so as tc display
texXt in the specified forms,

78

Sec.

v

SOFTWARE SYSTEM

A limited output=processor capablility has been provided so that
programs maintained as NLS text files can pe compiled directly
from NLS (rather than having to be converted to (ED files
first), .

Several other new features have been added to NLS, including
the following:

(1) Vector package =~ a basic graphics capability
permitting the user to0 insert simple line drawings into a
file

{2) Keyword system == g means of information retrievsal
working upon special information inserted in & file, with
user control over categories of information to be retvrieved

(3) Calculator package -- a calculation capability for the
NLS user, providing four storage registers and an
accumulator, ADD, SUBTRACT, MULTIPLY, and DIVIDE operations,
and the ability to select operand numpers from file text and
insert results pack into the f£ile text

(L) Substitute command == causes automatic supbstitution of
one userespecified character string for another, throughout
some usere=gpecified portion of the file

(S§) File cleanup and compaction == automatic
user~controlled correction of certain kinds of systemecaused
errors in a file, and reduction of the storage needed for
the file by means of special garvage~collection methods

(6) output of NLS files to microfilm'(via an out~-of=house
facilivy).

In addition, the overlay structure of NLS has been reorganized
to provide room for growth of the system, and numerous other
interngl system changes have been made to provide improved
service and reliability,

An overview of the current structure of NLS is provided in
Section IV-E, and a more detailed desacription will pe found in
Appendix D.

pescriptions of earlier work on the design and development
of NLS for the XDS940 are contained in Refs. 7, 8, and 9.

Other softwagre developnment activities covered in this report
include preparations for interfacing with the ARPA Network (see

79

Sec,

v

SOFIWARE SYSTEM

Section IVeF), and a simulation study of factors affecting the
response time of the timesharing system when a number of NLS users
are being served (see Section IVe-D),

The Timesharing system (TSS)

The support of new hardware and improved response to the NLS user
are the two main reasons for the expenditure of effort on the
timesharing system (TsS).

l. Disc Support

The Bryaht disc device was recieved in August 1968, This
device has the capability of storing 32 million 2L-bit words,
with the acceptance of tnis device, a fileestorage progran
called KDF was implemented to provide users witn a means of
storing information., The earliest form of KDF operated
essentially independently of tne TSS I/0 nandling system, A
later version was integrated with the TSS system, and made all
accesses to the disc via calls on the supervisor,

During late 1968 and the early months of 1969, the TSS system
vas extensively modified to include scratch disc files. These
files are handled by the same calls on the supervisor as are
the drum files, In this way, the aisc files have the
flexinility of the drum flles as well as freeing the user fron
KDF's restrictions on the number and size of files, Disc
‘scratch files may be used for all the same functions as drum
files, while KDF is used primarily for storage. The disc file
space is pooled by all the users and thus has the additional
advantage of more economical use of this space than is possibple
under KDF., The development of improved garbage-collection
facilities permitted the use of "permanent" scratch files on
the disc for longer-term storage of heavily used files,

2., Magnetic Tape Support

The new TSS developed in late 1968 and early 1969 incorperated
the direct tape I/0 package, which permitted more efficient use
of tape files, The increased speed and efficiency of the tape
files made it more practical to copy information stored under
KDF to magnetic tape, thus protecting this information fron
loss in the event of serious disc failure,

Further work has been done to improve the relianility and speed
of access of tvagpe files, as required by the Archive/Journal
system (see Appendix B). The magnetic tapes serve as the main
storage facility for most of the older or less used files, and

80

Sec, IV

SOFTWARE SYSTEHM

3.

L.

Se

thus relieve KDF of the burden of storing these files.,
External Core

The inter=core controller (ICC) and the external core memory
became available in early 1970. Several supervisor calls have
been written to allow the user to access this device.

7SS allows a user to obtain up to 16 thousand words of
external core memory, and maintains tables which perform a
limited relabeling fupction betvween user=provided addresses
and physical addresses.,

Other calls permit tne user t0 make data transfers via ICC
between external core and 940 memory and vice versa, as well
a8 transfers from one area of external core memory to
another area of external core memory, or from one area of
9L0 memory %o another area of 940 memory.

Other Devices

A vrogram has peen written to vermit the queueing of print
files, This program allows the user to place his file in a
print queue and continue on to other tasks. The queueing
program informs the user of nis filet!'s position in the printer
queue agnd the approximate amount of material to be output
before his file will be completea.

Minor additions and modifications to the TSS system have peen
nmade to support the Data Products printer and several new
Teletype and typewvwriterestyle terminals,

Research on Scheduling Algorithms

The aystem simulation (discussed in Sec. IV=D) has indicated
that system response to0 the NLS user might pe improved by
redesjign of the scheduling algorithm. Toward tnis end, we have
experimented with several modifications to the scheduling
alroritnm, particulary with respect to the assignment of
priorities and the queue=assignment schemes,

one such experiment consisted of gssigning a special queue for
N1LS users, giving them higher priority than other I/0 users or
users who place heavy computational loads on the systen.

This queue measurably improved tne response for the NLS

user, but 80 impaired the response to other users tnat in
some cases it was not possible to run the executive

81

Sec, IV

SOFTWARE SYSTEM

6.

programs.

Since that early trial, we nave implemented a new schenme
that favors NLS users and any other users who are enragged in
frequent but short 1/0 processes, The improvement has not
been as noticeable as with the earlier scheme, but has not
resulted in such severe impairment of service to other
users, This algorithm tends to favor the user who is
engaged in editing text, as oprosed to the user who is doing
a great deal of file manipulation. Another part of this
effort has snown that another queue was not serving a useful
purpose, and this queue has since peen discarded,

General

Much work has been done in restructuring the TSS system to
provide space for accommodating the storage requirements of the
ARPA Neuwork, Several routines have peen rewritten and moved
to the Executive, and others have been moved to norresident
rages, In this way, sSeveral hundred core locations have been
made available for Network use,

Because of the greatly reduced level of effort of Project GENIE
at UC Berkeley, it has become necessary for us to further the
development of TSS essentially independently,

Ce Compilers

1.

Introduction

The development of NLS has been greatly facilitated through the
use of a powerful complement of languages and compilers, most
of which were designed at ARC,

The langugges used range in generality from the NARP
assenbly language throuch a collection of svecial=-purpose
languages (SPL's) unique to NLS implementation.

Having such a flexible set of languages from which to choose
makes it possible to select for each programming task the
language in which the desgsired operations can be expressed
most naturally.

R. NARP
There are a few parts of NLS that can be most conveniently

coded in assembly language (e.g., the data page and the
display-buffer page), and for these the NARP assembly

82

Sec, 1V

SOFTWARE SYSTEM

b,

language 1is used,

Also, for nhistorical reasons, the timesharing system (TSS)
and most of its subsystems (e.g., KDF and DDT) are coded in
NARP.

The NARP assSenmbler is based on another assempbler, AKPAS;
both of these languages were produced by Project GENIE for

‘use in the development of TSS (see Refs, 10 and 1l1l).

MOL9LO

MOLSLO (or simply MOL) is a machine=oriented language for
the XDS9LO and was created by ARC to aid in the programming
of NLS.

MOL combines the flexipility of assembly language with the
alegorithmic clarity of higher=level procedure=oriented
languages. Much of NLS is coaed in MOL,

The original version of MOLSLO is described in Ref, 12,
while this report contains a brief aescription of the
current version.

puring the contract period MOL has been substantially
rewritten to improve its performance and provide new
programming features,

The current MOL compller was produced using the new
version of Tree Meta (descriped below); consequently, the
MUL compiler now generates binary machine code directly
rather than producing assembly=-language code,

AS a result of this change, assembly=-language
instructions are now treated as built-in functions,
whereas previously they were handled using escape
conventions which provided for them to be passed
directly into the output stream without translation,

Optional mechanisms have peen added to facilitate the
writing of reentrant code, using a software stack for
procedure calls and for storage of local temporaries,
The syntax for procedure calls has been modified so that
an entire NLS file link may bve used in place of the
procedure name alone.

The presence of the file link augments g programmer's

83

Sec,

v

SOFTWARE SYSTEM

apility to study a complex system of progranms
occupying several NLS files, by making it very easy
for nim to Jump from a file containing a reference to
some procedure i1nto the file containing the procedure
itself, In compiling a program only the name part of
the file link is used; the rest of the link is treatea
as commentary information, since it is irrelevant to
the compilation process,

Tree Meta

Tree Meta i3 a compiler-compiler developed at ARC; it is
used to produce compilers for MOL and all the
special=purpose lanzuages (and for itself as well),

Section IV=C=2 contains a brief overview of the current
version of Tree Meta, and a more detailed description is
in preparation for release as a separate report,
(Pending publication of the Tree Meta document, a
description more complete than that contained in the
present report can be found in Ref, 8.)

During the contract period, the only major change to the
Tree Meta system was a modification to the basic way in
which compilers produced by Tree Meta generate code,

compilers produced by Tree Meta used to translate a
given source language into assembly language, which
then had to be translated by the NARP assembler to
obtain machine code,

With the new Tree Meta, the compilers generate machine
code directly, thus eliminating one step of the
translation process.

The SPL's

Many of the higher-level operations of NLS are carried
out by programs written in one of a set of
speclal-purpose languages (SPL's), Each of these
languages 1is translated into machine code by a compiler
produced witn the Tree Meta systenm,

Each SPL represents an attempt to formalize a particular
function of NLS, aiming at a syntax appropriate to the
data base and operagtions required for NLS, while at the
sanme time empodying the potential and peculiarities of
the XDSSLO computer.

8L

Sec., 1V

SOFTWARE SYSTEM

2.

The four SPL'S currently in use are the inpute-feedback
language, the structure~manipulation language, the
content-analysis language, and the string-construction
language,

Detailed descriptions of the SPL's will be found in
Appendix D of this report as well as in Ref. 8.

Although extensive changes in the SPL's -are planned for
the near future, no basic conceptual changes were nmade
during the contract period,

Tree Meta: A Compiler-writing System

A compiler-writing system was implemented within the ARC for
use in writing compilers for the MOLS40 language and the
special=purpose languages (SPLs) used in implementing NLS,

The Tree Meta language sllows one to concisely specify the
syntax of a language, in a notation similar to Backus=Naur
Form. Embedded within this syntax specification are rules
and directives descriping exactly nhow the compilaticn of a
program written in the language is to take place,

The Tree Meta compiler reads a textual program written in
the Tree Meta language, and directly produces a binary
machine~language program which is a compiler for tne
specified language, The new compiler is then capaple of
reading a textual program in the specified language and
producing a binary program according to the compilation
rules empocdied in the compiler.

Tree Meta is expressed in its own language, and is thus
self-compiling. The current version has been produced fron
previous, more limited versions by the process of
bootatrapping. .

Tree Meta ha8 proven to be a particularly valuable tool in
system development at ARC, because of the experimental nature
0f the development pbeing done nhere,

Pernaps the most valuable feature of Tree Meta is its eagse
of use, A complete compiler description is contained in a
single text file and is readily edited and recompiled, A
change in a conmpiler can ve tried in two or three minutes,
This allows experimentation that otherwise would be too
time-consuming, and makes the debugging of language
specifications quite fast, This flexibility is very

85

Sec.

v

SOFTWARE SYSTEM

important when a language is being developed ==« as opposed
to having been prespecified and fixed in its cefinition,

The relatively simple Tree Meta notation descrives a

language precisely, and anyone familiar with the notation
can see what the syntax is, The code for the compiler is
also the formal definition of the language to be compiled.

Als0, since the source code for the Tree Meta compiler is
simply a des&cription of the Tree Meta compiler expressed in
the Tree Meta language itself, it is possible to produce a
new version of Tree Meta merely by editing and recompiling
this description,

The Tree Meta System consists of this symbolic description, the
Tree Meta compiler, and a library of support routines in MOL.
The support routines perform functions such as input/output and
symbolestorage operations,

The Tree Meta compller is relatively fast, It compiles itself
in about 30 seconds from about 8 pages of text input. The
compiled program is about 12 thousand words of memory,
including tables and storage areas.

In the formalism of Tree Meta, a compiler consists of (1) parse
rules, which parse the input in a top=-down manner and build a
tree structure, and (2) unparse rules, which then test the tree
structure and produce machine code, The tree consists of
symbols taken from the input, values and flags inserted in the
tree by the parse rules, and nonterminal nodes that correspond
to unparse rules,

The parse rules test the input stream to identify the
constructs it contains,

For example, to test the input stream for an assignment
statement, the following rule called "assign" might be
used.

assign = identifier "e" expression :storef2/;
This parse rule defines an "assiegn" to be an "identitier®
followed by a left~arrow followed by an "expression,”
Where "identifier" and "expression" would ve defined by
other parse rules,

If the input stream is matched py this rule, a node will
be constructed in the tree and tagged with the name

86

Sec.

Iv

SOFTWARE SYSTEM

"stvore,"

This node will have two nodes under it, corresponding
to "identifier" and "expression," respectively.

The unparse rules are executed beginning with the last node
built into the tree., The node names. in the tree determine

which rules will be invoked to compile code from that node

of the tree,

In the exanmple above, the unparse rule named "store" will
test the node for several different forms and output code
depending on the form., A test might ne

[identifier,add/#l,=]]

This test reads as follows: The "store" node must have two
nodes under it, The first node must be an iadentifier, The
second must be a node named "add," which has two nodes under
it. Furthermore, the first node of "add" must be exactly
the same as the first node of "store," This test would bpe
satisfied by input of the fornm

X ¢ X + (anything)
Another test might be
[identifier,add(#1,"1")]
which is the same but with the additional requirement that

the second node of "add" must be the numper "1", This is
checking for input of the form

Y ey + 1
The unparse rule "store" might begin:

store [identifier,add(#*1,"1"])] => MIN »1, H

[identifier,add(«1,-/] 3> 1lda[%2:2] ADM #1, 3

If the test on the first line succeeds, "store" produces a
single memory=increment instruction, MIN, operating on the
memory word addressed by the identifier (the first node of
“store"). Qtherwise, if the second test succeeds, an
unparse rule named "lda" is called with the second node of

"add," as argument in order to produce code 0 load the
A=register. Then an add=-to=memory instruction is produced,

87

Sec, IV

SOFTWARE SYSTEM

3.

agalin overating on the memory word addressed by the
identifier, The rule "store" would then continue by testing
for other forms of expressions, until all legal forms have
been taken care of.

The tree serves as an intermediate form of the nrogram =-=- a
form which facilitates extensive testing by the unparse
rules, and which usually contains no redundant information,
The compiler author determines the forms of the trees
completely when writing the compiler, His ingenuity in
determining the tree forms and compilation schemes is
generally not restricted by the Tree Meta language.

sSympbols (which may be of aroitrary length) are read from the
input and kept in a symbol=storage area where they are
referenced via a hash table, Symools may also be created
and entered into the sympbol=storage area by the compiler,
Each symbol has a 24-bit value as well as 24 attripute bits,
The meanings for most of the atiribute bits may be defined
by the compiler writer, and symbol values and attributes may
be set, reset, and tested during the running of the
compiler,

The output from any Tree Meta generated compiler is a
relocatable binary file, produced in tae proper form for DDT
(the loader and debugging system). This binary file
includes the synmbels from the program, 30 that programs can
be denhugged symbolically.

A Machine-Oriented Language, MOLSL4O

In spite of the quite sophisticated understanding of compilers
and compilerecomnpilers in computer science, assembly language
is still used for the pbulk of system programming.

ARC has ysed 3 machine-oriented language as a replacement for
assembly language in the writing of system programs. The
machine=oriented language, MOL9LO (or simply "MOL") offers the
power of an assembly language while providing the algoritnmic
clarity found only in a higher-level language.

A machine=oriented language is designea to give the
programmer a blocke=structured language with many of the
usual associated feagtures, such as conditional and iterative
statements, subscripting, and arithmetic expressions.

At the same time, the language is designed to reflect the
idiosyncrasies of the actual machine on which the programmer

88

See, IV
SOFTWARE

SYSTEM

is writing his programs, 7To0 this end, special constructs
are incorporated in the language which allow the programmer
%0 have some control over the code which is produced and the
manner in which the central registers are used,

The idea of a Machine-oriented language is not new,

Erwin Book of System Development Corporation first developed
an MOL for the Q=32 and later an MOL for the IEBM 360,

Niklaus Wirth's PL=-360 was an MOL used to implement a
version of ALGOL on the 360,

An MOL for the XDSSLO was a early development of ARC, and
was used in the initial implementation of NLS. A modified
version of this language, developed witn Tree Meta, is the
MOL descriped in this section,

The general design of MOLSLO is actually machine=independent,
only the inclusion of special logical forms and builtein
functions gives the language a specific orientation towards a
particular machine, Tnus it may serve as a basis from which
MOLSs for other machines may be qerived by substitutinx other
logical forms and other built-in functions,

Among the distinguishing factors of any programming language
are the means provided for referencing information and for
controlling the flow o: execution.

In MOL94O tne means for referencing information are as complete
as in an assembly language,

The central registers of the machine are represented as
basic elements in the syntax of the language, Thus ",AR"
stands for the A=-register, ".,ARel" causes a 1 Lo be loaded
into the A-register, and "Xe¢.AR" causes the contents of the
A=register 10 pe stored in location X,

Assignment is made one of the binary operations that can
ocecur in an arithmetic expression.

This allows the programmer to refer to the value of
subexpressions in z very straightforward manner,

For example, one can write "Ke(Jjen)+1l0; or "kelO+jen;"
instead of "jen; ke¢.AR ¢ 103", VWhile poth forms would
result in the same code, the use of assignment as a
binary operator avoids tne explicit reference to the

89

Sec. IV
SOFIWARE SYSTEM

A-register.

An apostrophe followed by a Single character may be used
interechangeadbly with the numerical code for that character,

This can be of great value in clarifying the intent of a
test., For example, assume that the numerical code for a
question mark is lé. Then a test for a question mark may
be made by "s!'?" rather than the less informative "=s1lé6",

The term "literal" will be used to denote a term that can
be either a number or an apostrophe followed by a single
character,

Two modes of referencing information are provided to give
addressing completeness, These modes are similar to the
"left=hand value'" and "right=hand value" concepts found in
CPL and BCPL.

The modes are differentiated py the presence or absence of a
dollar sign in front of the reference., The former will be
called "dollar mode," and the latter "normal mode," The
values referenced by identifiers, literals, and strings in
the two modes are as follows:

(1) Normal Mode

(a) Identifier: contents of the cell whose address is
the value of the identifier.

(b) Literal: the numerical value of the literal

{c) String: contents of the first cell used to hold
the string

(2) Dollar Mode

(a) Identifier: the value of the identifier (i,e,,
the address of a menmory cell)

{b) Literal: contents of the cell whose address
equals the value of the literal

(c) string: the adaress of the first cell used to
hold the string.

The term "value of an identifier" as useda here is equivalent
t0 the left=hand value of an identifier in CPL.

S0

Sec. IV
SOFIWARE SYSTEM

Ind
the

The nme
an ass

Thus if cell 40O corresponds to the identifier k or if k
has been set equal to 400, as in an EQU statement of an
assembler, then the value of K is L1400, It might also be
called the symbol=table value of the identifier,

Notice that the normal mode of an identifier or literal
corresponds to usage in problem-oriented laneuages,

exing and indirection are allowed where appropriate with
above forms,

Indexing is specified by following the reference with an
expression enclosed in square prackets, while indirection
is specified by enclosing the entire reference in square
brackets,
The syntax disallows such dubious constructs as indexing
with a2 literal or indirection with a strine. The
following shows in which cases indexing and/or
indirection are allowed,
(1) Normal mode
(a) Identifier: indexing and indirection
{p) Literal: neither
(c) String: indexing
(2) Lollar mode
(a) Identifier: neither
(p) Literal: indexing and indirection
{c) String: neither,

ans mentioned above make an MOL at least as powerful as
embly language in referencing information, In specifying

the control of activation flow, an MOL is clearly superior,

Flow of activation is determined by the results of logical

tes
tes

TO
the
sho

t8, It is in the clarity of expression of these logical
ts that an MOL is particularly valuable,

facilitate congruence petween program construction and

idiosyncrasies of a given machine, the syntax of an MOL
uld contain constructs that reflect the logical tests

g1

Sec, IV
SOFTWARE SYSTEM

mad

In

spe
cho
sev
the

e possible by the instruction set,

For exanmple, the XDSSLU has an instruction that skips if
the contents of the A-register and the effective address
do not have ones in any corresponding bit positions,
Thus MOLSLO has a logical construct "suml CB sum2" which
is true if and only 4f suml has a one in a common pit
position witnh Sum2,

addition to logical constructs, there must be means to

¢cify the repeated execution of a given statement and the

ice for execution of a particular statement out of

eral. 1he main constructs for repetition in MOLSWO are
LOOP and WHILE statements,

The LOCP statement is pased on a suggestion of Knuth, It
provides the most general possiple form of control of
repetition.

The statement following the word "LUOP" is executed
repeatedly until an "EXIT" statement embedded within
the loop is executed.

Execution of an EXIT statement causes control to leave
the innermost LOOP containing it.

There may he an arbitrary number of EXIT statements
within a LOOP, prlaced arbitrarily, and nested within
blocks to an arbitrary level,

The WHILE statement simply serves as a convenient
alternative way of writing a commonly used form of the
LOOP statement, namely the form with a single EXIT
occeurring at the start of the LOOP,

Selective execution is provided by IF and CASE statements,

The IF statement is tne standard Algol=-like IF with an
optional KLSE part,

Since the 940 uses skip instructions for logical
tests, it is possible to optimize the branches
required if there is no false part and the true part
consists of a single instruction. This is done if the
user writes "DO-SINGLE" instead of "THEN",

The CASE statement corresponds to a special form of the
IF statement in which the cagse is selected for execution

92

Sec., 1V
SOFTWARE SYSTEM

according to the class into which an expression falls,
The syntax is roughly

"CASE" expression "OF" sequence of cases "ENDCASE"
statement

where each case in the sequence consists of one or more
tvests followed by a statement,

A test consists of a binary-relation symbol followed by
the right=hand side of the binary relation., The test is
true if the pinary relation formed by using the
expression at the head of the case as the left-hgnd side
is satisfied.

The first case with a true test is the one executed, 1If
none of the tests are true, then the statement following
"ENDCASE" is executed,

A common use of the CASE statement is in determining the
proper response to a character input from a terminal.

Finally, MOL94O permits the use of machine instructions as
built=in functions. The syntax of such a builtein is
roughly

function~nane address~-reference actual=arguments.

The function name is simply the standard mnemonic operation
code for the instruction,

The address reference is optional; if present, it may be an
identifier, literal, or string, with optional indexing or
indirection,

The actual argumente are also optional; if present, they
consist of a sequence of expressions to ve loaded inte
registers, separated by commas and enclosed in parentheses,

such a built-in function may be used either as a statement
by itself or as a primary in an arithmetic expression,

It should be clear that this allows the programmer complete
access to the instruction set of the machine and gives the
opportunity to produce ss efficient code as could pe done in
assempbly language (where this is deemed necessary).

Experience at ARC has shown that machine-oriented languages are

93

Sec.,

Iv

SOFTWARE SYSTEM

D.

an atiractive medium for systems programming, They permit
efficient code, unrestricted data structures, and complete use
0f the machine instruction set, giving a flexibility usually
associated only with assembly languages, while still providing
the algorithmic clarity of higher=-level languages,

Respronse Studies

We conducted a study of factors affectinrg the response time of the
timesharing system on our XDS94O0 computer, which serves a numper
of NLS qaisplay terminals recuiring very rapid response to user
actions, The method of approach was a highly varameterized
simulation of the timesharing system, which permits experimental
evaluation of various possitle methods of improving systen
response time. A summary of the approach and the results is given
here,

1, Objectives of the study

Although this study was conducted specifically on the
timesharing system in use gt ARC, it is of general interest (1)
because of the unique method of apprcach, which permits easy
implementation of results, and (2) because it may be expected
that systems resembling NLS in some ways will be coming into
more general use in the future., The principal characteristic
of NLS that affects the tehavior of the timesharing system is
its dependence on fast, highly interactive operation of display
terminals, and computer technology is already respending to a
strong demand for this kind of user interface,

1t should be emphasized that we are dealing here with the time
required for the system to respond to individual commands from
interactive users, and not with the system's speed in
performing large numericale-computation tasks.

Interactive display usage for text manipulation, if it is to be
really effective from the user's point of view, requires nmuch
shorter response times than have normally been considered
satisfactory for timesharing systems; in the case of NLS, the
desired response time for a typical command is a fraction of a
second =« delays of more than a second can seriocusly impair the
user's task performance if they occur too frequently., By
contrast, the response of a less interactive system such as

- TODAS, which is not designed around an interactive display, is
considered sgtisfactory if the typical delay in executing a
simple command is no more than a few seconds,

The immediate goal of the current study is to develop an

Sh

Sec., IV

SOFTWARE SYSTEM

2,

3.

understanding of the interrelgted factors affecting the
response time of AKRC'S timesharing system and to identify
possibilities for modifying the hardware and software of the
systenm so as to0 improve the responsiveness of this system,

Approach

The approach taken was to write a simulation of the timesharing
system (TSS) operating on the XDSS40O., The simulation
incorporates the scheduling and swapping algorithms of TSS and
allows changing of parameters o0 represent various facility
configurations and usgges,

This allows an evaluation of the impact of changes in the
hardware configuration, such as faster drums or larger core
memory, as well as the effect of various mixes of user
denands on the response of the systenm,
In addition, the program was written in such a way that with
minor modifications, the simulation of the scheduler and
swapper could become part of an actual timesharing system
moniter. Thus changes in the scheduling and swapping
glgorithms can be tested by simulation and, if they prove to
be valuable, incorporated inteo the gctual systen.
Results

Throughout this Section the number of users is assumed to be

equally divided between TODAS and NLS unless otnerwise stated,

In giving the results of the study, the average and the

80=percent delay times are used rather than the maxinmum,

2. Standard Paraneter values Used for Simulation
Hardware Parameters

Menmory size: 32kpasea, less 7 pages for resident meonitor
and less 1 page for each NLS user (for display buffers)

Drum latencyt 17 msec
Transfer rate: 17 msec
File reference time: 30 msec

CPU speeda: XDS9LO,

95

Sec, IV
SOFTWARE SYSTEM

Software Parameters
Short quantum: 1l/L second
Full long quanium: 1 second.
User Parameters
3 user types: NLS, TODAS, and OTHER
él4 tasks for NLS
32 tasks for TODAS
1 task for OTHER

The task degcriptions for NLS and TODAS are based on
studies of the actual systens,

b. User Types considered in Simulation

In the actual use of the simulation, tnree types of users
were considered.

TWo o0f the types correspond to users of tne two
subsystems NLS and TODAS.

Users of type NLS or TODAS are assumed to be working
steadily and at a relatively rapid pace, but their
work is also assumed to be limited to tasks that do
not require large amounts of computation to complete,

The third type of user is called OTHER, and is assumed to
be working on tasks that consist of large amounts of
computation, Compilation is an example of this kinda of
taak.

one of the main concerns that prompted this study was to
find means to maintain fast response for users of type
NLS, and 10 & lesser degree those of type TODAS, when
users of type OTHER are on the systen,

¢+ Simulation of Current sSystenm

The facility assumed in this simulation has 6LK of core
memory and swapping drums with L.5-megabyte total cavacity.

Two views of the results of this simulation are shown in

96

seconds

DELAY

FILE-REFERENCE
TASKS

AVERAGE

INPUT-FEEDBACK
TASKS -

AVERAGE
80%

2 4 6 8 10

NUMBER OF USERS
TA-7101-6

FIGURE IV-1 CURRENT SYSTEM: AVERAGE AND 80-PERCENT DELAYS

FOR NLS INPUT-FEEDBACK AND FILE-REFERENCE TASKS
—USERS EQUALLY DIVIDED BETWEEN NLS AND TODAS

97

PERCENTAGE

90

80 F

70

50

40

20

10

FIGURE IV-2

SWAPPING

IDLE

SNEAKY WRITES

FILE 1/0

COMPUTING

} ! |

4 6 8 10
NUMBER OF USERS

TA-7101-7

PERCENTAGE OF TIME SPENT IN VARIOUS SYSTEM
FUNCTIONS—USERS EQUALLY DIVIDED BETWEEN
NLS AND TODAS

98

Sec, IV

SOFTWARE SYSTEM

a.

Figs. IVel and 1ve2. For both of these tne number o0f users
is assumed %o be equally divided between types TODAS and
NLS, with no users of tvpe OTHER.

Figure IV=-1 shows poth the averaee and the sO=-percent
delays for NLS inrut-feedback and file-referencing tasks.
In the current system, the data for file referencing
indicate the kind of delay experienced by a user when he
asks the system tc perform an editing function or to
display a different section of nis text, These results
are very consistent with actual experience on the systenm,
In actual use, subjective evaluation leads us to conclude
that the system becomes virtually unusable when the
delays as shown in this figure exceed about 2 seconds,

Figure Iv=2 shows how the time distripution varies as the
number of users increases, It 18 interesting to note
here how quickly the swapping delays become the major
factor in affecting response time and aew small the
delays due to computation time are., Secticn IVeD=3=-f
below goes into more detail on the effect ¢f computation
tinme, .

Addition of the ONL Queue

The simulation was rerun with the addition of a special
queue (QNL) for interactive users, This queue has the
effect of 3s8signing a higner priorty to highly interactive
functions, at the exXxpense of other tasks, Figure IV=3 shows
the (approximate) distributions of delay times for NLS
file-reference tasks with and without QNL, when the systenm
is serving 3 NLS users, 3 TODAS users, and 1 OThEk user,

The improvement resulting from the use of QNL is clear.

with respect to Fig. Iv=3, it is informative to consider
what happens to the single program of tyvpe OTHER in this
situation, It was expected that the use of ONL would
result in sloving the OTHEk program; however, the actual
effect was a slight increase in its execution speed.,

This 138 caused py a decrease in swappine in the systenm
when (NL is used, Since interactive Jjobs are
reactivated more qQuickly, there is a greater chance of
needed pages s8till being in memory, thus reducing the
swapping. The overall effect is an increase in systen
efficiency. ’ ‘

In general, however, tne use of ONL may result in a

99

PERCENTAGE

10

WITH QNL

WITHOUT QONL

1 2 3 4 5
DELAY -—— seconds

FIGURE IV-3 SYSTEM WITH AND WITHOUT QNL: DISTRIBUTION OF
DELAY TIMES (IN SECONDS) FOR NLS FILE-REFERENCE
TASKS—3 NLS USERS, 3 TODAS USERS, 1 OTHER USER

100

Sec, IV

SOFTWARE SYSTEM

€,

slowing of OTHER programs. During a given interval of
time, the programs for OTHER users take up all the systen
resources that are not usea by NLS or TODAS users. When
QNL is included in the scheduline algorithm, NLS and
TODAS users are able to ret better response and thus they
work faster, taking up more of tne system's resources
during a given interval. Thus if tnere is a large number
of interactive tasks, the programs of type OTHER will
receive less time,

Drum Access and Bandwidth

It is apparent from Fig., IV=2 that the major factors
affecting response time are the delay encountered in
swapping ana, to a lesser extent, file input/output, The
obvious way of improvine tnis situation is to provige a
device with higner pandwidth for swapping and file
input/output,

In this study we have not attempted to present general
results relgting response to these factors, 1Instead, we
have taxen as a specific example a particular drum that
could replace the present drums uSed with the 940 systenm,

The current drums have a rotation time of 34 milliseconds
and a transfer time of about 17 milliseconds for a 2K
page of 24=~bit worads, The drums used for comparison have
a rotation time of 8.5 milliseconds and a transfer time
of about 5.7 milliseconds per page,.

In addition, the new drums will allow a page transfer to
begin at any point, This means that tne average time to
read or write a2 page will be approximately equal to the
duration of a single revolution,

The effect of the new druns as predictea by the simulation
is very straiking.

A large part of this is due to the consistent completion of
interactive tasks within a short quantum, With slower drums
these tasks often take several short quantae.

Figure Ive=j shows the average and the sO-percent times for
NLS inputefeedback and file-reference tasks for a systenm
with QNL, one OTHER user, and the remaining users evenly
divided between NLS and TODAS.

Notice that the difference between the categories remains

101

DELAY — seconds

| I 1 1 il] |
o File Ref. 80%
o Input Feedback 80%
0 File Ref. Average
1 — o Input Feedback Average
o 1 | | | | | 1
12 14 16 18 - 20 22 24 26 28
NUMBER OF USERS
TA-7101-9
FIGURE 1V-4 SYSTEM WITH QNL AND NEW DRUMS: AVERAGE AND 80-PERCENT

TIMES FOR NLS INPUT-FEEDBACK AND FILE-REFERENCE TASKS
WITH 1 OTHER USER AND REMAINING USERS EVENLY DIVIDED

BETWEEN NLS AND TODAS

102

Sec., 1V

SOFTWARE SYSTEM

relagtively small and constant, This is because both are
being consistently comoleted within a single activation, so

. that the difference in elapsed time is sinmply the difference

f.

Be

h.

in time required to do the actual task,

As the numper of users increases, the delays increase
because of longer queues, Thus the limitineg factor with the
faster drums will be congestion in the aueues and resulting
delays for input=feedoack tasks, rather than the delays for
file~reference tasks, as i1s the case in the current system,

Speed of Central Processor

In view of the very small percentaze of time spent doing
computation, it is interesting to consider tne effect of
varying the speed of the ceatral processing unit (CPU),

Figure IV~-5 shows the 80=percent time feor NLS file=reference
tasks with the current system and CPU's of various speeds.

The difference is small even with a range of L00 to 1 for
CPU Speeds, Clearly, improvement that will benefit a systenm
such as NLS should be sought elsewnere than the CFPU,

Size of Core Memory
Although the XDSSuLO 1is limitea to 64K of 2L=bit words for
core memory, it is interesting to study the effect of adding
more core,
Figure IVeé shows the 80~percent times for NLS
file-reference tasks with the current system agnd various
sizes of core memory,

These results should be considered only as lower bounds,

8ince different scheduling algorithms could be expected to
make better use of a larger memory.

Interactive Display Subsystem (IDS)
From the above discussion, it is clear that the greatest
improvement in system responsiveness results from the use of
faster 4runs,

The limitations of the system with new drums are the
followine:

(1) Long queue lengths resulting in poor response for

103

seconds

DELAY

3 —
2 +— —
1 —
. L 1] |
0 2 4 6 8 10
NUMBER OF USERS
TA-7101-10
FIGURE IV-5 CURRENT SYSTEM WITH VARIOUS CPU SPEEDS

RELATIVE TO CURRENT SYSTEM CPU: 80-PERCENT
TIMES FOR NLS FILE-REFERENCE TASKS—USERS
EQUALLY DIVIDED BETWEEN NLS AND TODAS

104

G0t

seconds

DELAY

J‘/‘/
1 1 1 | I | |

6

FIGURE IV-6

8 10 12 14 16 18
NUMBER OF USERS

CURRENT SYSTEM WITH VARIOUS CORE SIZES: 80-PERCENT TIMES FOR NLS
FILE-REFERENCE TASKS—USERS EQUALLY DIVIDED BETWEEN NLS AND TODAS

20

TA-7101-11

Sec,

Iv

SOFTWARE SYSTEM

inputefeedback tasks

(2) Decreasing number of available pages as number of NLS
users increases (pecause of pages needed for display
puffers),

The interactive display subsystem (IDS) is proposed as a
possible solution to these limitations, It is made up of
the following:

(1) A separate core memory for display buffers so that
the number of available pages remains constant

(2) A separate processor to perform input-feedback tasks.

A single input=feedback "miniprocessor," executing resident
code, should pbe able to service a large number of NLS and
TODAS users, This has the effect of giving virtually
instantaneous response for input feedback, as well as
reducing the load on the main processor,

Since input=feedback tasks are by definition independent of
the contents of the file currently being referenced, the
miniprocessor needs only a small description of the current
command state of the user, Feedback is the same for all
users, so 3 single program will suffice, This program will
be resident in the separate core, so swapping will not be
necessary,

when a user calls for the execution of a file=reference
task, the miniprocesscr passes identifying intformation to
the main processor.

This approach should be applicable to any timesharing systenm
that is concerned with servicing a large number of users for
a small number of interactive progranms,

Flgure IV=7 shows the 80=-percent delay for NLS
file=reference tasks in a system with QNL and new drums,
with and without IDS. There is one OTHER user; the
remaining users are equally divided between NLS and TODAS.

The minimum total elapsed time for & simple editing
operation shows the value of IDS more vividly, (An
"operation" here means the sequence of actions thatv an NLS
user goes through to achieve some desired effect; the
sequence typically includes several actions that require
input feedback and one that requires file reference,)

106

seconds

DELAY

WITHOUT
1DS

WITH IDS

| I | 1

20

FIGURE IV-7

22 24 26 28 30

NUMBER OF USERS
TA-7101-12

SYSTEM WITH QNL AND NEW DRUMS, WITH AND WITHOUT
IDS: 80-PERCENT TIMES FOR NLS FILE-REFERENCE
TASKS—1 OTHER USER, REMAINING USERS EQUALLY
DIVIDED BETWEEN NLS AND TODAS

107

DELAY — seconds

WITHOUT 1IDS

WITH IDS

| | | |

20

FIGURE IV-8

22 24 26 28 30

NUMBER OF USERS
TA-7101-13

SYSTEM WITH QNL AND NEW DRUMS, WITH AND
WITHOUT IDS: 80-PERCENT TIMES FOR SEQUENCE

OF 3 INPUT-FEEDBACK TASKS AND 1 FILE-REFERENCE
TASK—1 OTHER USER, REMAINING USERS EQUALLY
DIVIDED BETWEEN NLS AND TODAS

108

Sec. 1V

SOFTWARE SYSTEM

Figure IV=8 sncows the total 80=percent delays for a
sequence of three input=-feedback tasks and one
file-reference task, in the same system configurations as
shown in Figure 1Iv=7,

with IDS, input~feedback tasks may one assured to be

completed in a quarter of 3 second (for the numbers of
users considered), The curves of Filgure IV=% show the
resulting dramatic improvement in service toc the user,

E. 1ne On=Line System, NLS

1.

2,

Introduction

NLS, as currently implemented, is a highly sophisticated
text=-manipulation system oriented toward one-line use with
disgplays. Its use as an augmentation tool is discusseo in
Aopendix A.

The program is a subsystem of tne timesharing system describped
above, 1Its size is currently about tnirty thousand machine
instructions, of which apout nalf make up the most frequently
used portions. Tne source languages used are MOLYULO and a
collection of special=-purnose languages (SPLs) for cemrand
svecification, content analysis, and strine manipulation,

This section contains an overview cf the organization of NLS, a
discussion of tne relationship of NL3 to the 9Ly timesharing
system, and a brief discussion 0of pessible future developments
in the progran,

Avpendix D contains a more detailed descriptlon c¢f the progran
ang the languages.,

overview
as Introduction

The following is a conceptual overview of the internal
organization of NLS. It 1is conceptual in that the cverlay
structure, forced upon NLS by the limited address space ana
fixed page siZe of the 940, does not always correspond to
this description, Although efficiency considerations have
entered into the actual implementation of NLS, the following
conceptual description may still pe used. It represents the
design philosopny that guided the implementation, and that
philosophy was followed whenever practicabple.

109

Sec. IV
SOFTWARE SYSTEM

b, Logical Organization of NLS
There are three logical levels t0 NLS (see Fig, IVe9),

{l) The command specification level is the highest
contrel level., It does command recognition and handles
the svecification of actual operands., This is the
interactive part of NLS ==~ the part with which a user
always communicates, This level of the system is written
in the input=-feedback SPL.

(2) The second level of control is the command algorithm
level. It contains the algorithms for performing the
various commands, Large parts of this level of the
system are written in the contenteanalysis and
string=construction SPLs.

(3) Utility routines make up the tnird and lowest level
of control. These are the routines that actually change
the data base, perform 1/0, et¢. Each of these routines
is used by several routines on the second level and
sometimes by the first level, The utility routines are
the only part of NLS that is significantly dependent on
the hardware, operating system, or data structure, The
higher levels are all algorithms written with little or
ne consideration for the environment in which they
operate, This lowest level of the system is written in
MOL . '

Command Specification Level

The command specification part of NLS takes inputv from
the user o determine what command is to be executed and
the actual operands for the operation, It then transfers
control to the approprigte place in the second level to
execute the command. Thus, this is the level where
commands and actual operands are specified, but no actual
execution of the commands is done,

The command specification algoritnm of NLS is implemented
38 & large set of nested case statements, The code gets
an input character and tests it in a case statenment,
Which results in some feedback %0 tne user and transfer
of control to the head of another case statement to test
the next character of input.

110

Ittt

COMMAND
SPECIFICATIONS

RECOVERY
INITIALIZE

STRUCTURE GRAPHICS TEXTUAL DISPLAY
EDITING EDITING EDITING CONTROL
STRUCTURE vDB SDB SEQUENCE
MANIPULATION MANIPULATION MANIPULATION GENERATOR

CALCULATOR

OUTPUT
PROCESSORS

i

FIGURE V-9

UTILITY
LIBRARY

LOGICAL ORGANIZATION OF NLS

TA-7101-5

Sec, IV
SOFTWARE SYSTEM

com

mand Algorithms

The second level of control consists of the code that
implements the algorithms for the various commands, This
level consists primarily of calls on utility routines
that access the data files, test the data elements to
determine exactly what should pe done, and call on the
appropriate utility routines to perform the actions
required by the command being executed,

The command algorithm code has been organized into
several divisions vased on the commands tney effect, The
code for each division of commands is further divided
into a part that includes the glgorithms proper and a
part that is more related to (and thus dependent on) the
logical data structure,

There are eight main divisions:
(1) Structure Editing

NLS files have a ring structure, Each element in
the ring represents a statement and its associated
character stiring and/or line drawing. The
character siring itself is stored in a statement
data block (SDB), while the line drawing is storedq
in a vector data block (VDB). Each ring element
contains pointers to its associatved SDB and VDB as
well a8 the information that determines its
position in the ring.

There is a full set of editing commands that
involve the manipulation of the ring structure
alone and do not alter tne contents of the
stgtements (e.g., the "Move Statement" command).
The algorithme for these commands are in this
section, They are inaependent of data structure
and use the structure~manipulation machinery to
actually effect changes in the file,

The structure (ring element) manipulation section
contains the algorithms for altering ring elements
in order to effect structure editing, They are
dependent on the logical data structure, but not on
the physical data structure (utility routines are
used to actually change the physical data).

112

Sec, IV
SOFTWARE SYSTEMN

(2) Text £d4iting

This section contains the algorithms for doing

_ eaiting on the textu of statements, €.2.,, the

"Insert Word" command. These algorithms are
independent of data structure, They use the
content=analysis machinery to determine where
changes should take place, and the
string=manipulation and SDE-manipulation machinery
0 actually effect cnhanges to tne file (through the
use of utility routines).

The content=analysis section (used for locating
textual patterns witnin a string) and the
string=manipulation section are independent of
the physical and logical structures of the file,

The SDB manipulation section, used for sltering
SDB blocks, is nouv dependent on the physical
data structure but is dependent on the logical
data structure,

Grachics kditing

This section contains the algorithms for commands
tnat edit line drawings (e.#., tne "Insert Vector"
command), and is independent of the logical and
physical structures ¢f tne data. This code uses
the VDB manipulation machinery to effect changes to
the file,

The VDB manipulation section, used for altering
vDB blocks8, is dependent on noth tne logical
data Structure and the internal representation
of vectors.

(L) Display Control

NLS has an assortment of controls that pernit a
user to sSpecify which statement is to be displayed
at the top of the screen (the "display=start
statement”) and the selection processes to be used
in determinine which statements of the file will
actually be displayed. ’

(a) Jump and lLink Machinery

The first function 1s implemented in the "jump"

113

Sec., 1V
SOFTWARE SYSTEM

and "link" machinery.

The Jjump machinery is used to select a
display=start statement, A ring of past
display=start statement identifiers and
associated display parameters is maintained
to permit tne NLS user to return to previous
views of his file.

The link machinery is similar to the Jjump
machinery, except that the new displayestart
statement may be in another file, in which
case 3 link stack is used instead of the Jump
ring.

(b} Sequence Generator

once the display=start statement has been
determined, the sequence generator is used to
select statements from the file according to
currently invoked filtering criteria.

The sequence generator uses tne display
parameters, content analysis, and keyword
reorganization when sappropriate, These
facilities are discussed below,

The sequence generator pegins at the
displaye-start statement and goes through the
ring structure of the file, testing each
statement against the filtering criteria and
returning those statements that pass,

For instance, the user may have specified
that he wishes to see only the first two
levels of the ring structure, or only
those statements which meet some criterion
specified by a contente=analyzer pattern
(see pelow).

{c) Disrlay Paraneters
Display parameters controlling the selection
processes of the sequence generator may be set
at any point in the specification of a command,

The user also has at his disposal a set of
display-format control parameters (VIEWSPECS)

11y

Sec, IV
SOFTWARE SYSTEM

for modifying his view of the file,
~{d) content Analyzer

A compiler is used to generate code from text
written in a special high-level user language,
and this code is used to test a statement for
specified content, The content=analysis
language available to the user is a suoset of
the content=analysis SPL mentioned earlier,
which is used for other contenteanalysis code in
the system (e.g., for delimiter identification
in text~-editing commands),.

If content=analysis filtering is veing
invoked, the seguence generator uses the
conmpiled code to test statements that have
passed 3ll of the other criteria,

(e) Keyword Reorganization

A list of statement identifiers is constructed
in response to user selection and weighting of
Keywords (named statements containing lists of
other named statements), This list is savedq
with the file,

If keyword reordering is being invoked, the
sequence generator uses the list in
generating a sequence of statements,
(£) create Display
The set of rdutines called "ereate display" uses
the display=start statement identifier, the
sequence generator, and the display paraneters
to format and construct a display for the user,
(5) Calculator
The calculator division is a group of routines that
effect arithmetic manipulations on numbers stored
in an NLS file, providing the user with on=line
numerical calculation capability.
(6) Processors

The processors are not part of NLS proper, but are

115

Sec. IV
SOFTWARE SYSTEM

activated by NLS as subprocesses of NLS, They use
NLS machinery ~~ primarily the sequence generator
== to provide input from dNlS files.,

Those currently implemented are the MOL
compiler, the SPL compiler, the iree Meta.
compiler, and the Output Processor, which
formats NLS files for hardcopy ocutput to various
devices, .

(7) File 1/0

The file 1/0 division effects file loading and
output,

(8) recovery and Initialization
Routines in this section are executed when NLS is

started up or continued after exiting to the
timeshyring executive,

Utility Routines

The utility=routine level of NLS 1s a collection of
subroutines (wWwritten in MOL) that actually deo things. 1In
a sense the higher two levels merely decide what to do
and in what order, These levels are essentially
independent of the macnine, operating system, file
system, and physical data structure,

on the utility level, data files are cnanged and I1/0
occurs, some ©of the utility routines are used by the two
higher levels to read the current state of the data
files, The higher levels use this information to decide
what to do.

This level contains all routines that actually read or
change data files, interact with the operating system, or
do I1/0 to thne work stations, In this manner all ceode
that is dependent on tne environment (nardware, software,
or onysical data structure) gets put in one place, The
advantages when moving 1o a new machine or when the
environment changes are obvious, - Another consideration
is the nope that a fairly complete library of routines
will be pbuilt up and the subhsequent implementation of s
new command should then ve quite easy,

116

Sec, 1V

SOFTWARE SYSTEM

3.

Relation of NLS to the XDS940 and the Timesharing system (TSS8)

The most significant features of the XDS9uO timesharing systen
that affect NLS and are used by it are programmed operaters,
the file systen, paging, and forks.

'a.

b.

Programmed Operators

Programmed operators (called "POPs") are used extensively in
NLS and the compilers.

By means of a POP, a suproutine may be called just as if
it were a machine instruction.

This means that the address field of the instruction may
be used tO pasSs an argument to the subroutine, resulting
in higher code density.

In addition, for reentrant code, the transfer to a
subroutine as a POP can be executed significantly faster
than the transfer to a normal subroutine.

File systenm

It is important that the time required to carry out an
operation on an NLS file not increase greatly as the file
becomes larger, This requires the ability to access randonm
segments of the file with a delay independent of the
location of the segment in the file, The TSS random file
system makes this possible,

Any block of informgtion in a random file may be referenced

by a system function which is given the file identification,
an address in the file, an address in menmory, and the number
of words to be transferred as arguments,

The address space of the file is proken up into a number of
blocks of fixed length (currently 256 words). Additional
blocks, not in the file's address space (and hence available
only to the system), are used to record the locations of the
file blocks in secondary storage. The first such index
block contains addresses for the first 1lil blocks of
addresses in the file, If higher addresses are used then
additional index blocks may be used, :

Pizing Mechanisnm

The address space of a program on the 94O can consist of up

117

Sec, IV

SOFIWARE SYSTEM

-

to eight pages of 2048 words each. This is not large enough
to hold all of NLS, and necessitates a rather complex
overlay structure. Before this can be explained, a brief
discussion of the paging mechnanism in T7S8S is needed,

Wwhile a program can have only eight pages in its address
space at any one time, it can have up to 63 pages to choose
from. These correspond to the 63 oossible entries in the
job's program memory table (PMT).

Pages may oe made availacle (entered in PuT) in two ways:

(1) Wnen a program is first activated by tne user, the
{up to &) pages making up tne program are placed in the
PMT.

(2) Additional pages may be added to the PMT by the
programn itself.,

To do this, it executes a system function with a file
name as arzument. The named file should contain up to
eight additional pages of progranm,

The system enters tnese pages into the PMT ana returns
indices by which the pages may be referenced., Such an
index into the PMT is called tne "relabeling byte" for
the page.

The relabeling for a program consists of the eignt
relabeling bytes for the pages currently making up the
progran, (Unused pages have tne relabeling oyte set to
Zero.)

A program may read and set its own relabeling oy means of
system functions. This allows the program Lo bring nages
from its PAT into its addaress space by simply putting the
appropriate relabeling bytes into its relabveling.,

For a more detalled discussion of these features the regder
is referred to ref, 13.

Forks

The final feature of the TSS used by NLS is the ability to
create independent processes (calied forks) within a single
Job.

The particular uses of forks in NLS are discussed in

118

See, IV

SOFTWARE SYSTEM

b

Appendix D.
Future Developnments

The short~range extentions of NLS will include both
modifications of existing features and introduction of new
ones, The following is a vpartial list of the possidbilities
currently under consideration,

The graphics capability will have a wider variety of entities
and editing operations.

The calculator will allow several named functions to be
maintained simultaneously ana will be able to produce plots,

It will be possible to split the text area into several
windows, allowing multiple simultaneous views of a file, A
later stage will allow different files in the windows and
croas=£file editing.

Tables will be introduced as special entities consisting of
two=dimensional arrays of strings, with columns either left or
right Jjustified., It will be possible to display subsets of
rows and colunmns.

special features will be added to facilitate the use of NLS in
support of oneline dialogue. These include explicit structures
for backlinks gnd comments,

The Kkeyword system will be replaced by a more sophisticated
retrieval system, including automatic generation of inverted
lists from catalogs, The user will have languages to define,
store, and display sets ¢f catalog entries,

A general interface between NLS snd processors, such as
compilers, will be developed.

A processor will be written which will reconstruct a file in
such a way that statements that are structurally "close" will
al80 be physically close, thus mininizing file I/0 for display
construction,

It will ve possible to have links converted Lo page~number
references in hard copy.

119

Sec.

Iv

SOFTWARE SYSTEM

F.

The ARPA Computer Network

1.

2.

History
TWO prototyve user-program interfaces to the ARPA Netlwork were
written, and were used in primary communications between UCLA
and SRI and opetween SRI and the University of Utah, The first
of these went into operation in late November 1969,

current Status

The permanent Network operating system is now being finished,

‘and will oe operational in April 1970.

The Network monitor will bhe cnaracterized by two different
interfaces, one to be used by persons operating on the Network
using the ARC 940, and the otvher to ve used by programs running
on the 940 and communicating with other hosts on the Network.

To & person on the Network, the 940 will initially appear
{with the exception of certain procedural characteristics)
as it would were he connected to it via an ordinary Teletype
linkage,

The 940 monitor, after dispensing with the procedural
transmissions necessary for establishing a primary 1link,
simply reads characters from tne Network and places thenm
into the Teletype input buffer of an unattached 9L0
station,

In parallel with this operation, it transmits the
contents of that station's Teletype output buffer over
the Network.

The 94O ugser wishing to use another host on the Network must
do 80 either by writing a user program which contains the
necessary monitor calls or by calling a special Network
subsystem (running on the 940) which interfaces to the
monitor and makes the necessary calls for hin,

The monitor calls are designed in such a way that the
programmer may consider the Network to be an input/output
device, Accordingly, calls are provided for the following
functions: : .

(1) OPEN PRIMARY LINK

A primary link is established by calling a systenm

120

Sec, IV
SOFTWARE SYSTEM

function with parameters designating the desired
destination host.

when an attempt is made to open & primary link,
success is indicated by a sKkip return and a file
number (which may be used in successive
transactions for identifying the 1link); failure is
reflected by & non=skip return and an error code,

Assuming a successful return from an OPEN PRIMARY
LINK request, the user may immediately bpegin
transnitting information over the link, using the
input/output functions descriped below,

OPEN PRIMARY LINK 1s a special system call which is
unrelated to the other system commands for opening
files,

CLOSE PRIMARY LINK

CLOSE PRIMARY LINK causes the system to disconnect
a primary link (identified by the file numper
obtained from OPEN PRIMARY LINK) after checking its
validity. A failure in closing the link results in
an illegaleinstruction trap.

CLOSE PRIMARY LINK is a special system call which
is unrelated 10 the the other system commands for
closing tiles,

INPUT/QUTPUT TO PRIMARY LINK

Input/output is handled in the same way as the
other file I/0 on the 940,

The initial Network monitor will perfornm
single~=character output over the Network.
Provision has been made for nmultiple=character
‘output, and it is expected to be implemented
shortly after the initial Network monitor is
operational,

3. Implementation

There are two basic tasks for which the Network monitor nmust be
responsivle; the provision of the I/0 drivers necessary for
using the Network, and the development of a protocol for
host=host communication,

121

Sec. IV
SOFTWARL SYSTEM

The I1/0 drivers have such functions as the following:

(1) 1Initiation of input/output commands to the hardware
interface

(2) Detection of hardware interface errors and execution
of proper corrective or evasive actions

(3) Buffer allocation and manipulation

(LY Correct formatting of messages so far as the IMPs
and the Network are concerned

(5) Detvection of IMP/Network errors and proper error
actvion

(6) Notification of 940 status to the IMP and Network
(7) Initialization and recovery after 940 system crashes

{8) Allocation anc maintenance of links over the
Network, including the handling o©f RFNMs

(9) Maintenance of necessary internal tables pertaining
t0 the Network

(10) communication between the Network and ARC 940 werk
stations.

This includes tne basic system calls required for
input/soutput, the manipulation of Teletype I/0 huffers
when g remote user is connected to the 940 as 2
telephone=line type user, notification of work
stations abhout Neivwork errors, notification of work
stations about illegal requests, ete,

A protocol nas been established whicn hosts must adhere to
in order to communicate effectively.

The monitor must be able to respbnd to this protocol in
order to use the Network.

Although the vrotocol is not yet in final form, some of
the probable areas of concern will be:

(1) opening and eclosing of primary links

(2) Opening and closing of auxilliary (file=transfer)

122

Sec, IV
SOFTWARE SYSTEM

G.

links

(3) Message formatting (hoste=host)

(4) Contrel message decoding and inperpretation
(5) Gommuniéat;on of status.

‘Since the fundamental Network drivers will be static once they
are implemented, they have been integrated into the existing
monitor as efficiently as possible,

The protocol, however, will probably be subject to change for
sone time; therefore, it is being implemented in a less
integrated but more flexible manner.

Among other things, it is peing coded in MOL94O, wniech will
make it easier to debug and modify than if it were coded in
assembly language, ‘

The general implementation approach is to a large extent
dictated by the space restrictions in the 940 monitor,

We have tried to put as little code as possiple in the
resident monitor pages, and a$ much as vossible in a
separate page which may be relaveled in and out of the
monitor's relabeling.

Thus the resident routines in the monitor are mainly the
ones that are necessary for processing interrupts and
certain communications (there are cases when the Neuvwork
code must communicate with gnother page whicn runs in the
same position). The remainder of the Network code, and
buffer space, resides in the separate page,

The NLS UTILTY Subsystem

Manipulation of the large number of files which are directly used
in connection witn compiling, assembling, loading, and debugging
NLS is a significant problem, Accordingly, a subsystem called
“NLS UTILTY" has been written to help handle these files,

NLS UTILTY performs the functions described below for the

symbolic, binary, and coree-image files of NLS and PASSYL (the
output processor).

123

Sec, IV
SOFTIWARE SYSTEM

1. Archiving

All files relating to NLS are permanently stored on the disc
under an archiving systen.

In order for the files vo be accessed, they must be explicity
read from the archives to temporary storage, and any permanent
changes to a file must be recorded by writing the updated

version of the file from temporary storage to archive storage,

NLS UTILTY performs these functions for the user, as well as
ensuring the integrity of files written into archival storacge.

2. Compilation

Subprograms for NLS are written in tnree different programming
languages.

The compilation process is different for daifferent languages,
and there is in somne instances an interaction bvetween one
svmbolic file and another,

The concern tnat an NLS programmer need have with the details
of NLS compilation is minimized by NLS UTILTY,

with NLS UTILTY, any or all of the NLS suoprograms may be
compiled; the compilation results are reported to the user in a
manner wWwhich he designates.,

3. Loading
The loading process for NLS is somewnhat complex,
The unloaded NLS system consists of more than 50 binary files,
and they must pe loaded in a certain order and in a certain
relationshin to each other,
A9 in compilation, NLS UTILTY makes it unnecessary for the NLS
programmer to concern nimself with the peculiarities of
loading.
The loaded system consists of 7 coresimage files,

while the files are closely related, there is frequently value
in loading only one or another of thenm,

For this reason, NLS UTILTY allows a variety of loading
options, including one whien loads the entire system, and one

12y

Sec, 1V
SOFTWARE SYSTEM

which loads a specific tile,

he 1Listing

. Because of the size of NLS, the maintenance of up=to=date
listings is a tedious jobv.

Functions provided in NLS enaple the programmer to produce any
number of listings of any or all NLS symbolic files by a simple
process,

More details on the individual functions and the operation of NLS
UTILTY may pe found in Appendix D.

125

Sec,

v

FUTURE PLANS

A,

V FUTURE PLANS

General

Future directions for work in the ARC will be: influenced by forces
originating both inside and outside the Center,

Forces generated by our cumulative experience in the
development of augmentation systems within the Center indicate
some new directions for our own bootstrapred research effort,

External forces are generated by our participation in the ARPA
Network experiment and by an increased awareness for the need

to communicate with the "outside world" == people outside the

Center who are engaged in relateg work,

The internal forces and those genergted by our Network
participation combine te produce a shift in our internal research
emphasis towards two specific activitiess (1) team augmentation
and (2) the development of g system design discipline, These are
discussed btelow under "Shifts in Emphasis,"

Increased awareness of the need to communicate and interact with
the outaide world will lezd toward the development of a new areg
of specific concern, discussed below under "Transfer of Results,*

The g0als associated with research in team gugmentation, with the
development of a system design discipline, and with the transfer
of results are related to one another within tnhe ARC goal
structure as described pbelow in the section entitled "shorte-Ternm
and Long=Term Goals." ’

In the section "selected Plans Under other Sponsorship," we
discuss the System Developer Interface aActivity (SYDIA), for whicn
we are seeking additional sponsorship. It is intended that this
activity will be the primary effort in the area of the transfer of
results, .

shifts in Emphasis
our nlans reflect a maturing shift in emphasis in our research
work, We plan to shift our emphasis toward two basic activities:

(1) team augmentation and (2) the development of a system design
discipline.

127

Sec, V
FUTURE PLANS

l., Team Augnmentation

wWhereas in the past we have given most of our attention to
augmenting the individual worker, we are now focussing on the
augmentation of a team of collaborating workers, each of whom
is individually augmented.

The high mobility and manipulative capability of a skillegd
"augmented individual" has a unique potential which can be
realized when a number of augmented individuals Jjoin into a
collaborative team, Not only c¢an each individual move very
rapidly through the Jjoint working files to study them, enter
new information, and update 014 material, but this power can pe
amplified by special computer aids, conventions, and skills
that directly facilitate the processes of intercommunication
and coordination.

The contemplated efforts in "team augmentation'" involve
several facevs:

(1) The development of conventions and procedures for
organizing the working records of our plans, designs,
obJjectives, design principles, schedules, etc., 80 as to
give effective mutual "task orientation" to the mempers
of a team by ensuring optimal accessibility of all
information related to the tean's objective,

(2) The special development of a "Dialogue Support
system" to facilitate the rapia evolution of these
working records via diaglogue among members of the design
team.

(3) The development of techniques to facilitate
simultaneous remote collaboration among people at
physically remote on=line terninals (of any sort), by
giving them direct communication with one another,
independent ©of their current individual work interactions
with the computer, This includes provision, where
feasible, for the following:

(a) video ands/or voice intercommunication

{b) Egsy and flexible control of means for
duplicating, at any terminal, all or partv of the
type=out or display from agnother terminal

{c) Ready transfer of control of one terminal's
computer intersction tc another terminal's input

128

Sec. V

FUTURE PLANS

2,

devices,

These techniques will evolve within ARC under conditions of
application to our own coordinated systeme=development work,
and will be applied over a wide range of collaborative
actions, from simple Qquestion=answering facilities to
complex design work invelving intense mutual participation
by the team membpers,

AS applicable techniques become effective within ARC, we
Will explore their use and value for the following:

{1) Support of Network Information Center (NIC) services
such as teaching, questioneanswering, and some types of
query servicing

(2) working collaboration between ARC staff and personnel
at other Network sites

{3) working collaboration between people at remote
Network sites, independent of ARC staff,

Development of User= and Servicee-system Design Discipline

The functional features of the "user system" - the large
collection of computer aids available to an ARC worker == have
evolved with some ingenulty, a greal deal of cut=and-try
experimentation under actugl-usage conditions, and a certain
special orientation offered by our overall research framework,
However, up to now there has been a significant lack of
obJective, methodical engineering design for the overall user

systen,

A user=system design discipline is definitely needed, and we
intend to devote an increasing amount of effort toward
developing such a discipline,

like the user system, the "service systen” == the hardware and
software underlying the features for augmenting users == has
evelved in an ad hoc fashion.

Here there is also a significant need for a system=design
discipline,

A systen=design discipline would have a communicable,
teachable, generally applicable framewerk supportving a
coordinated set of concepts, terminologies, principles,
nethods, and special tools,

129

Sec.

v

FUTURE PLANS

C.

Tranafer of Results

Behind these basic aspects of our work in the ARC (teanm
augmentation and design disciplines) lies an essential feature of
our long=term strategy, namely, the gocal of producing results that
will be of direct value to other groups of system developers =-=- in
particular, to those who will be developing augnentgtion systenms,

This is in contrast to being of direct value to customers who
will want systems for their own direct use (e.g., tO0 augment a
manager, a designer, an editor, or a researcher).

Display terminala, communication channels, and computer service
are destined to pecome both cheap and plentiful, and it is certain
that a very large number of organizations will want to use thenm,
They must rely upon system developers who will need to be capabdle
of the followine:

(1) Analysis of system=usage environments

(2) Design and implementation of a smooth, powerful, and
coordinated system of user aids, conventions, methods, etc.

(3) Training and "education" of new users, many of whom will be
completely unfamiliar with the potential of this new technology

(L) Subsequent monitoring of user performance sc as to
implement the changes necessary to track the evolution of
users'! attitudes, concepts, skills, usage habits, and wants,

Although it is important to stimulate the eventual customers for
augmentation systems, and to make them aware of the potential for
these asystems in their work, we feel that our results should be
directed primarily toward helping system developers, Over the
longer term, we plan to do this by pursuing the following goals:

Ttem 1: Making visible an aavanced, integrated system,
operating in a heavy=usage environment, that can orient system
developers to the available costevglue tradeoffs

Item 2¢ Developing an effective system=design discipline to
aid in developing augmentation systems, whether or not these
systems resemple ours

Item 3¢ Maintgining thorough, highly current, comprehensive
documentation, designed for quick location of relevant mgterial

Item 4: Estagblisning broad~pand communication channels over

130

Sec,

v

FUTURE PLANS

De

E.

which @ dynamic interchange of information can take place, so
that a maximum proportion of our knowledge can be quickly
available in useful form ,

Iten 5: Offering, as a nodel, a complete prototype design of
an augmentation system especially delitned Zor augmenting
system development,

This system would be compatible with the system=design
disciplines described above, and would include techniques
for planning, analyzing, designing, programnineg, debugging,
documenting, and teaching.,

shortv=Term and Long~Term Goals
our approach t© the planned work will be as follows!

{1) Achieve the short-term goals implicit in the teanm
augmentation activity, in the developnent of g system desgign
discipline, and in the tasks ivemized under Transfer of Results
(Section v=C above)

(2) contripute to the long=term goal of directing our results
for maximum benefit to future developers of augmentation
systens,

There is consider;ble overlap between shorteterm and long=tern
goals,

For instance, in the case of the transfer of results, the basic
bootstrapring developnment of techniques within the ARC seems t0
guarantee a very good basic buildup toward Items 1, 2, 3, and §
of Section V=C; our participation in the Network experiment
contributes directly to Item L; and the development of the NIC
service will contribute toward Items 1 and),

Selected Plans Under other Sponsorship

To pursue directly the itemized longe-range goals of Section VeC,
we currently have other plans under consideration, coordinated
with those outlined in this proposal. These plans would be
carried out under other sponsorships

We are formulating plans for what we tentatively call the
Systen Developer Interface Activity (SYDIA). WwWe expect to be
approaching representative candidates during 1970 with
proposals for multiple sponsorship. The initial purpose of the
SYDIA will be t0 develop the following:!

131

Sec, V
FUTURE PLANS

(1) A facllity for an effective interchange of information,
skills, orientation, ete., between ARC and the existing and
potential community of augmentation~system developers

{2) The ability to assist other groups to transfer our
system, or parts eof it, directly into another hardware

environment,

Later, with specific individual funding arrangements, we would
expect t0 begin developing close interchange relationsnips wiun
various system-development group8; hopefully, some groups would
then adopt our augmented techniques for system-development

wWOorke.

132

GLOSSARY

ARC: Acronynm for the Augnentation Reseagrch Center at stanford
‘Research Institute,

ARPA: Acronynm for the Advanced Research Projects Agency.

Augmentation: Used in this report to indicate the extension of human
intellectual and organizational capabilities by means of close
interaction with computer aids and by use of special procedural and
organizational techniques designed to support and exploit this
interaction., '

Center: Another term used for the ARC.

console: AS usSed here, this means specifically a user's control
console for the ARC's On=line System (NLS). The consoles presently
in use consist of a display screen, a keyboard, a "mouse", and a
"Keyset,"

File: As used here, this refers to a unified collection of
information held in computer storage for use with the OneLine Systenm
(NLS) or with TODAS. A file may contain text (nsatural language or
program code), numerical information, graphics, or any combination of
these, Conceptually, a file corresponds roughly to a hard-copy
document,

GENIE: ProJject GENIE, at the University of California at Berkeley,
developed (under .ARPA sponsorship) the timesharing software for the
XDSS4O computer used by the ARC.

GODOSt Acronym for Graphics=-Oriented Document Output System, a means
for converting NLS/TODAS files to microfilm. GODOS is capable of
handling the line drawings produced with the NLS zraphics capability.

IMP: Acronym for Interface Message Processor, a component used in the
ARPA Network,

Keyset: A device conaisting of 2ive keys 0 be struck with the lezft
hand in operating the On=Line System (NLS).

MOL: See MOLSLO,

MOL9LO: A machine-oriented language for the XDS9LO computer, MOL9LO
{or simply MOL) was developed at ARC.

Mouse: A device operated by the right hand in using the On-line
Systenm (NLS). . The mouse rclls freely on any flat surface, causing a
cursor apot on the display screen to move correspondingly.

NASA: National Aeronsutics and Space Administration,

133

GLOSSARY

Network: The planned Advanced ResSearch Projects Agency neiwork of
research computer installations,

NIC: The Network Information Center, to be incorporated in tnhe ARPA
network., The NIC will operate as a computer=assisted library service
for information pertaining to the network, to be used by nelworg
members, and will be operated by ARC.

NLS: See On~Line Systen.

On=lLine System (NLS): This 1s the ARC's prancipal and central
development in the area of computer aids to the human intellect. As
presently constitutead, it is a display-oriented, timeshared,
multiconsole system for the composition, study, and modification of
files (see definition of "file"), A counterpart system, TODAS,
operates from hardecopy terminals such as Teletypes and offers many
0f the same capabilities as NLS.

PASSL: An outpute-processing program used to convert NLS/TODAS files
to harde=copy format for output via one of a number of different
devices,

RADC: Acronym for kome Air Development Center,

SPL: Acronynm for Special=-Purpose Languarge, Specifically, this ternm
is used for the SPL's developed at ARC for use in programming NLS.

SRI: Acronym for Stanford Research Institute

Statenent: The basic structural unit of an NLS/TODAS file., A
statement consists of an arbitrary string of text, plus graphic
information, A file consists of a number of statements in an
explicit hierarchical structure,

TODAS: Acronynm for the Typewriter-Qriented Documentation=Aid Systen.
TODAS i8s a counterpart of N1LS designed to operate from hard=copy
terminals such as Teletypes,

Tree Meta: A compiler-conmpiler system developed at ARC,

Ts8: Acronym for Time-Sharing system, Specifically, the systen
developed by Project GENIE for the XDS9LO computer,

XD8940: The computer facility used by AKC is based upon a Xerox Data
Systems (formerly Scientific Data Systems or SDS) model 940
timsharing computer., '

940: See XDS9L0,

134

REFERENCES

The following is a list of references specificallvy cited in the
report.

le D. A. Evans, "Man/Computer Augmentation Systems for Qualitative
Planning," Ph.D. Theais, Department of Civil Engineering, Stanford
University, Stanford, California (December 1969),

2. "Specifications for the Interconnection of a Host and an IMP,"
Report No. 1822, Contract No. DAHCl5=69=C=0179, ARPA Order No. 1260,
Bolt Beranek and Newman Inc., Cambridge, Massachusetts (May 1969).

3. D. Ce Engelbart, W. K. English, and J. F, Rulifson, "Development
02 a Multidisplay, Time=Shared Computer Facility and
computer=Augnmented Management-System Research," Final Report,
Contract AF 30(602)4103, SRI Project 5919, Stanford Research
Institute, Menlo Park, Californis (April 1968), AD 843 577.

ke D, C. Engelbart, W. K. English, and D. A, Evans, "Study for the
Development of Computer Augmented Management Techniques," Interin
Technical Report RADC-TR=66-98, Contract F30602=68=C=0286, SRI
Project 7101, Stanford Research Institute, Menlo Park, California
(March 1969), AD 855 579,

5. D. C, Engelbart and B, Huddart, "Research on Computer-Augmented
Information Managenent," Technical Report ESD-TDR=65-168, Contract
AF 19(628)=4088, Stantord Research Institute, Menlo Park, California
(March 1965), AD 622 520.

6, We Ko En‘li'h, Ds Cs Engelbart, and B, Huddart, "ComputereAided
Display Control," Final Report, Contract NAS1l=3988, SRI Project
5061, Stanford Research Institute, Menlo Park, California (July
1965), CFSTI Order No. N66=3020L, ,

7. D. C. Engelbart, Ww. K. English, and J. F, Rulifson, "Study For
The Development of Human Intelleet Augmentation Techniques," Interinm
Progress Report, Contract NAS1=590L, SRI Project 5890, Stanford
Research Institute, Menlo Park, California (March 1967).

8. D. Cys Engelbart, wW. K, English, and J. F. Rulifson, "Development
of a Multidisplay, Timeeghared Computer Facility and
Conputer=Augnented Management=-System Research," Final Report,
contract AF 30(602)4103, SRI Project 5919, Stanford Research
Institute, Menlo Park, California (April 1968), AD 843 577,

9+ D. C, Engelbart, "Human Intellect Augnentation Techniques," Final
Report, Contract NAS 1=590L, SRI Project 5890, Stanford Research
Institute, Menlo Park, California (July 1948), CFSTI Order No.
N69=161L40,

135

REFERENCES

10, W, W, Lichtenberger, "ARPASt: Reference Manual for Time Sharing
Assembler for SDS §30," Document ho, R~26, Office of Secretary of
Defense, Advanced kesearch Projects Agency, Washington 25, D. C.
(Revised 2 February 1967).

1l, R. House, D. Angluin, and L. P. Baker, "Reference Manual for
NARP, an Assembler for the SDS SLO," Document No, R=32, Qffice of
Secretary of Defense, Advanced Research Projects Agency, Washington
25, D. C. (Revised 21 November 1968).

1l2. R. E. Hay and J, F. Rulifson, "MOL9JO: A Machine=0Oriented
ALGOL=-Like Language for the SDS 940," Technical Report 2, Contract
NAS 1=590k4, SRI Project 5890, Stanford Rresearch Institute, Menlo
Park, California (April 1968).

13 Re. We Watson, "Introduction to Time=Sharing Concepts," Technical

Progress Report No, 249~-68, Project ~o, 76140, Shell Development Co.,
Emeryville, California (January 1969).

136

BIBLIOGRAPHY

The following is a chronological list of documents published by the
Augmentation Research Center,

De C. Engelbart, "special Considerations of the Individual AS & User,
Genergtor, and Retriever of Information," Paper presented at Annual
Meeting of American Documentation Institute, Berkeley, California
(23=-27 oOctober 1960},

De C. Engelbart, "Augmenting Human Intellectt A Conceptual
Framework," Summary Report, Contract AF 49(638)=1024, SRI Project
3578, Stanford Research Institute, Menlo Park, California (October
1962), AD 289 565.

D, C, Engelbart, "A Conceptual Framework for the Augmentation of
Man's Intellect,”" in vistas in Information Handling, volume 1, D. W.
Howerton and D, C. Weeks, eds,, Spartan Books, Washington, D.C.
(1963) .

D. C. Engelbart, "Augmenting Human Intellectt Experiments, Concepts,
and Possibilities," Summary Report, Contract AF u9(638)=102L4, SRI
Project 3578, Stanford Research Institute, Menlo Park, GCalifornia
{March 1965), AD 6LO 989,

D. C. Engelbart and B, Huddart, "Research on Computer=Augnented
Information Management," Technical Report ESD=TDR=65-168, Contract .
AF 19(628)-4088, stanford Research Institute, Menlo Park, California
(March 1965), AD 622 520,

We K. English, D, C. Engelbart, and B. Huddart, "Computer-Aided
Display Control," Final Report, Contract NAS1-3988, SRI Project
5061, stanford Research Institute, Menlo Park, California (July
1965), CFSTI Order No. N66=3020k,%

We K. English, D. C, Engelbart, and M. L. Berman, "Display=-Selection
Techniques for Text Manjipulation," IEEE Trans. on Human Factors in
Electronics, vol, HFE=8, No. 1, pp. 5=15 (March 1967).

D. C. Engelbarty, W, K. English, and J. F. Rulifsen, "Study For The
Development of Human Intellect Augmentation Techniques," Interin
Progress Report, Contract NAS1-590L, SRI Project 5890, Stanford
Research Institute, Menlo Park, California (March 1967).

J« D, Hopper and L. F. Deutsch, "COPE: An Assembler and On=Line«CRT
Debugging System for the CDC 3100,% Technical Report 1, Contract NAS
1=5904, SRI Project 5890, Stanford Research Institute, Menlo Park,
California (March 1968).

137

BIBLIOGRAPHY

R. E. Hay and J., F. Rulifson, "MOL94O: A Machine=Oriented ALGOL-like
Language for the SDS 940," Technical Report 2, Contract NAS 1-5904,
SRI Project 5890, Stanford Research Institute, Menlo Parx, California
(April 1968),

Ds. C. Engelbart, W, K. English, and J. F. Kkulifson, "Development of 4
Multidisplay, Time=Shared Computer Facility and Computer=aAugnmented
Management-System Research," Final Report, Contract AF 30(602)4103,
SRI Project 5919, Stanford Research Institute, Menlo Park, Californii
{April 1968), AD 8L3 577.

D. C. Engelbarty, "Human Intellect Augmentation Techniques," Final
Report, Contract NAS 1=5904, SRI Project 5890, Stanford Research
Institute, Menlo Park, California (July 1968), CFSTI order io.
N69=16140,#

De Co Engelbart, W. K. English, and D. A., Evans, "Study for the
Development of Computer-Augmented Management Techniques," Quarterly
Progress Report 1, Contract F30602-68=C=-0286, SRI Project 7101,
Stanford Research Institute, Menlo Park, California (October 1948),

De C. Engelbart and We k. English, "A kesearch Center for Augmenting
Human Intellect," in AFIPS Proceedings, Vol. 33, Part One, 1968 Fall
Joint Computer Conference, pp. 395=L10 (Thompson BOOK Co.,
Washington, D.C., 1963).

D. C. Engelbart and Staff of the Augmented Human Intellect Research
Center, "Study for the Development of Human Intellect Ausmentation
Techniques," Semiannual Technical Letter Report 1, Contract NAS
1=7897, SRI Project 7079, Stanford Research Institute, Menlo Park,
California (February 1969).

D. Co Engelbart, W, K. Englisnh, and D. A. Evans, "Stuqy for the
Development of Computer Augmented Management Techniques,' Interinm
Technical Report RADC=TR-49~98, Contract F30602~68=C=0286, SRI
Project 7101, Stanford Research Institute, Menlo Park, California
(March 1969), AD 855 579,

D. C. Engelbart and staff of the Augmented Human Intellect Research
Center, "Study for the Development of Human Intellect Augmentation
Techniques,"”" Semiannual Technical Letter Report 2, contract NAS
1=7897, SRI Project 7079, Stanford Research Institute, Menlo Park,
California (August 1969).

#Note: Reports with AD numbers are available from Defense
Documentation Center, Buildine 5, Cameron Station, Alexandria,
Virginia 22314, 1Items marked with an asterisk mav be obtained from
CFSTI, Sills Building, 5825 Port Royal Road, Springfield, vireginia
22151; cost $3,00 per copy or 65 cents for microfilm,

138

I

Appendix A
USER FEATURES OF NLS AND TODAS

The On-Line System (NLS)

A.

B.

Introduction

NLS, as currently implemented, is essentially a highly
sophisticated text-manipulation aystem oriented primarily
toward on~line use; i.e.,, it is not primarily oriented toward
production of hard copy, although fairly sophisticated
hard=copy formattineg and output are included in the systenm,

NLS is intended to be used on a regular, more or less full=-time
basis in a time=sharing environment, by users who sre not
necessarily computer professionals., The users are, however,
assumed to be "trained" as opposed to "naive," Thus tne systen
is not designed for extreme simplicity, nor for
self=explanatory features, nor for compatibility with "normal"
working procedures,

Rather, it is assumed that the user has spent considerable
time in learning the operation of the system; that he uses
it for a major portion of his work; and that he is
consequently willing to adapt his working procedures to
exploit the possibilities of full=-time, interactive computer
assistance,

Thus the practices and techniques developed by users for
exploiting NLS are as much a subject of research interest as
the developnment of NLS itself,

Section IV of this appendix is a glossary of special NLS/TODAS
terninology.

workestation gonsole

The user sits at a console whose main elements are a display
screen, a typewriter keyboard, a cursor device called the
"mouse," and a set of five Keys operated by the left hand,
called the "keyset,"

The Sscreen is used for displaying text, in various formats.
The top portion of the sacreen (approximately 1/5 of the
total area) is reserved for feedback information of various
kinds: the name of the user command mode currently in
effect, a "register" area used for various kinds of
feedback, an "echo register" which displays the last six
characters typed by the user, and other items which are
explained below,

The Keyboard closely resembles g conventional typewriter

139

Appendix A

NLS/TODAS USER FEATURES

Keyboard, with a few extra Keys for special characters and
control functions, It is used for typing text as content
for a file and for 8Specifying commands, which are given as
tWo= or three=character mnemonics.

The nouse is a roughly box-shaped object, about four inches
on ivs longest side, which is moved by the right hand. It
is mounted on wheels, and rolls on any flat surface, The
wheels drive potenticmeters whicn are read by an A/D
converter, and the system causes a tracking spot ("pug") to
nove on the screen in correspondence to the motion of the
mouse,

The user specifies locations in the displayed text by
pointing with the mouse/bug conbinatien, This eliminates
the need for specifying a location by entering a code of
some kind. Use of the mouse is very easily learned and
soon becomes unconscious,

on top of the mouse are three special control buttons,
whose uses are described pelow,

The Keyset has one key for each finger of the left hand.

The Keys are struck in combinations called "chords," and
each chord corresponds to a character or combination of
characters from the keyvoard, There are 31 possible chords;
peyond this, two of the puttons on the mouse may be used o
conirol the "case" 0f the keyset, giving alternative
meanings to each chord, There agre four nossible cases, for
a totgl of 12k possible combinations.

A simple binary code is used, and has proved remgrkably
easy to learn, Two or three hours' practice are usually
sufficient to learn the most commonly used chords and
develop reasonable speed.

The Keyset was developed t0 increase the user's speed and
smoothness in operating NLS. It was found that users
normally keep the right hand on the mouse, because the
great majority of command oOperations involve a pointing
action; efficient use of the keyboard, however, requires
the use of both hands, and shifting the right hand (and
the user's attention) to the keyboara is distracting ana
annoying if it must be done for each two= Or three=letter
command mnemonic,

Use 0f the Keyset permits the user to Keep his right
hand on the mouse and his left on the Kkeyset,

1h0

Appendix A
NLS/TODAS USER FEATURES

C.

reverting to the keyboard only for entry of long
strings of text (typically five or more characters),

originally, the keyset exactly duplicated the keyboard in
function; in the development of NLS, however, certain
control functions have been made two=-stroke operations
from the Keyset where they would pe three= or four=-sgtroke
operations from the keyboard. Nevertheless, it is still
‘possible to operate all of the features of NLS without
using the keyset; thus the beginner may defer learning
the keyset code until ne has gained some degree of
mastery over the rest of the systen,

sStructured Text

“Text" is used here as a very general term, A "file" of text
(corresponding roughly to a "document" in hard copy) may
consist of English or some other natural language, numerical
data, computer=program statements, or anything else that can bpe
expressed as a structure of character strings. Simple line
drawings can also be included in a file.

All text handled by NLS is in "structurede-statement" form,
This special format is simply a hierarchical arrangement of
"statements," resembling a conventional "outline" form,

Each statement in a file may be considered to possess 3
Ystatement number,” which shows its position and level in
the structure. Thus the first statement in a file is
Statement ‘1; its first substatenment is 1A, and its next
substatement is 1B; the next statement at the same level as
the first is Statement 2; and so forth. Statement numbers
have been suppressed in printing out most of this document,
but are printed out for the remainder of this section as an
example,

la3bla Every statement also bears a "“signature" which
may be displayed on command. The signature is a line of
text giving the initials of the user who created the
statement (or modified it most recently) and the time and
date when this was done,

la3b2 A stagtement is simply a string of text, of any
length; this serves as the basic unit in the construction of
the hierarchy. In English text, statements are normally
equivalent to paragraphs, section and subsection headings,
or items in a list. In other types of text, statements may
be data items, program statements, etc,

1kl

Appendix A
NLS/TODAS USER FEATURES

D.

la3b2a Each paragraph and heading in this document is an
NLS statement, Each statement is indentea according to
its "level" in the hierarchy; this paragrapn is a
substatement of the cone above, which is in turn a
substatement of another statement, A statement ray have
any number of substatementis, ana the overall structure
may have any number of levels,

la3c VNote that when a user creates a file, he may let all of
his statements be firste-level ones, i.e,, 1, 2, 3, elc. In
this case he will not have to consider a nhierarcnical structure
but simply a linear 1list, as is founu in conventional text,

l1a3cl However, many of the features of NLS are oriented to
make use of hierarchy, and the penefits of these features
are lost if hierarchy is not exploited.

la3c2 This is an example of an NLS feature to which the
user must accomodate his methods; however, the experience of
users has been that hierarchical structure very rapidly
becomes a completely "natural" way of organizing text, Many
automatic features of NLS make the structure easy to use:
for example, sStatement numpers are created automatically at
all times and the user need not even pe aware of them, It
is sufficient, when the user creates a statement, to specify
its level relative to the preceding statenent,

Use of the Systen

TeXt manipulation is considered to involve three basic types of
activity by the user: composition, study, and modification. 1In
practice, the three activities are so intermingled as to pe
indistinguishabple,

l. Composition

compositioen is simply the creation of new text material as
content for a file.

In the simplest case, the user gives the command "Insert
Statement" by tyoeing "is"., He then points (with the mouse)
t0 an existing statement; the system displays a new
Statement number which is the logical successor, at the sanme
level, as the statement pointed v0, Tne user may change the
level of this number upward by typing a "u" or downward by
typing a "d"'.

NOTE: Even if no previous statement has been created,

1u2

Appendix A

NLS/TODAS USER FEATURES

2.

the system displays a "dummy® statement at the top of the
text=display area, and the user points to this dummy.

The user then types the text of the new statement from the
keyboard. On the screen, the top part of the textwdisplay
area is cleared and characters are displayed here as they
are typed, When the statement is finished, the user hits a
CA (command accept) button on the keyboard or mouse, and the
system recreates the display with the new statement
zollowing the one that was pointed to.

New mgterial may also be agdded to existing statements by
means of commands such as Insert Word, Insert Text, and
others., Properly speaking, these operationa are
modification rather than composition, and are discussed
below,

Sinmple line drawings may be composed and added to the file
by means of the "vector package." This is discussed in
another section of this repore,

Study

The study capabilities of NLS constitute its most powerful
and unusual features, The following is only a brief,
condensed description of the operations that are possibple,

a. Jumping

NLS files may, of course, contain a great deal more text
than can be displayed on the screen, just as a document
may contain more than one page of text. An NLS file is
thought of as a long "scroll.! The process of moving
from one point in the scroll to another, which
corresponds to turning pages in hard copy, is called
"Jumping." There is a very large family of Jump
commands, .

The pasic Jump command is Jump to Item, The user
specifies it by entering "ji", and then points to some
statenent with the mouse. The selected statement is
moved to the top of the screen, as if the scroll had
been rolled forward.

Most of the Jump commands reference the hierarchical
structure of the text, Thus Jump to Successor brinegs
t0 the top of the display the next statement at the
sane level as the selected statement; Jump to

1u3

Appendix A

NLS/TODAS USER FEATURES

D,

Predecessor does the reverse; Jump to Up starts the
display with the statement of which the selected
statement is a substatement, and so fortn,

The Jump to Name command uses a different way of
addressing statements, If the first word of any
statement is enclosed in parentheses, the system will
recognize it as the "name" of the statement, Then, if
this wora appears somewhere else in the text, the user
may Jjump to the namea statement by pointing to the
occurrence of the name, or by typing the nanme,

This provides a cross-referencing capability whicn
is very smooth and flexiple; the command Jump to
Return will always restore the previous display, so
that the user may follow name references without
losing his place.

It is also possible to Jump tO a statement by typing
its statement nunmber.

View Control

If a file is long, it may be impossiple for the user to
orient himself to its content and structure or to find
specific sections by Jumping tnrough it, The prineipal
solution to this proolem is provided by level control and
line truncation.

Level control permits the user to specify some number of
levels; the system will then display only statements of
the specified level or higher. Thus if taree levels are
specified, only first-, seconde, and thirde=level
statements are displayed.,

Line truncation permits specification of how many lines
of each statement are to be displayed, Thus if one line
is specified, only the first line of each statement will
be displayed,

common usage is to use the first two or three levels in a
file a8 headings deseribing the material contained under
each heading in the form of substatements, Thus the user
may start by looking at a display showing only tne
firste=level statements in the file, one line of each.
This amounts to a table of contents,

He may then select one of these statements and Jump to

1Ly

Appendix A

NLS/TODAS USER FEATURES

Co

de

it, specifying one more level, He will then see more
details of the content of that part of the file, This
process of "expanding the view" may be repeated until
the user has found what he is looking for, at which
point he may specify & full display of the text,

Users soon develop a habit of strueturing files in
such a way that this process will work well. As it
happens, such a structure is usually a good, loegical
arrangement of the material, reflecting the
relationsnips inherent in the content,

The level and truncation controls are designed so that
the necessary specifications may be made with only one or
two strokes of the keyboard or keyset, These controls
are only the most important of a large set of
view-control parameters called "VIEWSPECs." Other
VIEWSPECS control & number of special NLS features
affecting the display format,

Content Analysis

The NLS content analyzer permits automatic searching of 3
file for stgtements satisfying some content pattern
specifiea by the user., The pattern is written in a
special language as part of the file text,

‘content patterns may be simple, specifying the occurrence

of some word, for example, They may also be highly
complex, specifying the order of occurrence of wwo or
more strings, the absence of some text construct,
conditional specifications, etc. Simple patterns are
extremely easy to write; complex ones are correspondingly
nore difficult.

“Xeyword" systen

A "keyword statement" is a named statement which
references other statements in the file by name, in a
special format. The name ¢of the keyword statement is
then understood to be a "keyword" aprlying to the
statements referenced by the keyword statement.

suppose that a file contains a list of Keyword
statements, The user may study this list and select
several Keywords with the kKeyword Select command
(pointing to the keywords with the mouse).

L5

Appendix A

NLS/TODAS USER FEATURES

€,

He may specify a weight from 1 to 10 for each
Keyword; if no weight is specified, a weight of 1
is assumed.

Wwhen the user gives the Keyword Execute command, a
searching/scoring process is executed. Each of the
selected Kkeyword statements is scanned for the names
of statements that it references, Each referenced
statement receives g "score" equal to the weight of
the keyword, If a statement is referenced in more
than one Keyword statement, the scores add.,

when this process is completed, NLS constructs a
display picture showing only the statements tnat have
received nonzerc scores, in order of decreasing
scores,

In other words, each keyword is the name of a statement
thnat defines some category of statements in the file.
when a user selects and weights xeywords, he is
expressing nis interest in certain of these categories,
NLS then displays all of the statements in these
categories, beginning with the "most interesting."

Because the relationships usea in this system are set up
explicitly when a user writes Keyword statements, the
system is very flexible although not highly automated,
It may be regarded as a #eneralizZed method of reordering
some 0f the statements in g file on the basis of
usere-selected criteria chosen frem a supplied 1list (the
kevword statements).

Note that this reordering is on the display, not in
the file proper, The file proper is not affected in
any way, except that the list of selected keywords and
weights 1s saved in the file,

This list may be displayed on command, Individual
keywords may be deleted from the list or their
welghta changed, or the whole 1list can be deleted
on command,

Link Jumping
A "1link" is a string of text, occurring in an ordinary
file statement, which indicates a cross-reference of sonme

kind. It may refer to another statement in the file, or
to a statement in some other file, possibly belonging to

1Lé

Appendix A

NL8/TODAS USER FEATURES

3.

another NLS user, The text of the link is poth
humane-readable and machine~readable, and vhe command Jump
t0 Link permits the user to point to the link with the
mouse gnd immediately see the material referred tvo,

An example of a link is (smith, Plans, longrange:ebtng).

The first item in the link indicates that the
referenced file belongs to a user named smith; the
second is the name of the file; the third is the name
of a statement in the file (a statenent number nay
also be used); and the string of characters following
the colon controls the VIEWSPECS tO0 Set up a
particular view of the material.

The use of interfile links permits the construction of
large linxked structures made up of many files, and
study of these files as if they were all sections of a
single document,

Modification

A large repertoire of editing commands is provided for
modification of files., The basic funciions are Inserv,
Delete, Move, and CopYy.

These functions operate upon various kinds of text entities.
within statements, they may operate upon single characters,

words, and arbitrary strings of text defined by pointing to

the first and last characters,

This set of commands is not restricted to operation
within one statement at a time; for example, a word may
pe moved or copied from one statement to another,

The editing functions also operate at the structural level,
taking statements or sets of statements as operands., A
number of special entities have been defined for this
purpose: for example, a "branch" consists of some specified
statement, plus all of its supstatements, plus all of their
substatements, etc, A branch can be deleted, moved to a nhew
position in the structure, etc.

AS noted above, the modification activity tends to merge, in
practice, with study and composition,

7

Appendix A
NLS/TODAS USER FEATURES

I1

E.

summary

It must be noted that NLS is not a system degigned for general
usage, but a specialized tool designed for a group of people
working on the development of computer aids to numan
intellectual processes, It is for this reason, for example,
that NLS is not really a text-editing system oriented toward
hard=copy production, but ravner something simultaneously more
general and more specialized,

It i8 in the process of manipulating a file ==~ studying it,
making modifications, adding new material as an integrated
process lasting for minutes or nours at a time and havineg a
continuity extending for days, weeks, or even years =-- that the
real benefit of NLS appears.

An NL8 file tends to become an evolving entiuvy, subject to
constant modification, updating, and reevaluation. 1Its
development may have no clearly defined endpoint. It nay
cease 10 exist as a file by being incorporated in another
file, or it may eventually be abandonea; however, it will
probably never pe "finished" in the usual sense of the wordg,

continuous use of NLS teo store iaeas, study them, relate
them structurally, and cross-reference them results in a
superior organization of ideas and g greater abtility to
manipulate them further for special purposes, as the need
arises =~ whether the "ideas" are expressed as natural
language, a8 data, as programming, or as graphic
information.

The Typewriter=-Oriented Documentation=Aid System (TODAS)

TODAS is a textehandling system designea as a "typewriter*
counterpart to NLS. In principle, TODAS can be operated from a
Teletype or any other sort of harde-copy terminal, including
terminals linked %o the 940 through acoustic couplers and ordinary
telephone lines (as opposed to NLS, which requires special
transmission arrangements).

The present implementation allows for the use of Teletyve
Models 33, 35, and 37, Terminet and Execuport terminals (the
latter having a built~-in acoustic coupler), and NLS display
terminals.

Each of these terminals has its own character set, no two sets

peing exactly the same except Teletype Models 33 and 35. AS 3
result, special=character assignments are device=dependent. A

1u8

Appendix A
NLS/TODAS USER FEATURES

TODAS feature allows the user tc redefine characters at will to
suit his immediate purposes,

The primary purpcse of TODAS is for access, within the ARPA
Computer Network, tc the Network Information Center (NIC) operated
by ARC. TODAS will give Network users access to files of
information created either with TODAS or with NLS, since files
created with the two systems are identical in structure and
format,

TODAS has many of the same capabilities as NLS for the
manioulation of text; it giffers from NLS as required by the use
of a "typewriter" device instead of a display. Tne important
differences arise from the fact that TODAS has no analog cursor
device to correspond to the NLS mouse,

For this reason, editing of text within a statement cannoct be
done by means resembling those of NLS, since all of the NLS
editing operands are indicated by the user with the mouse,
TODAS uses two alternative methods.

one is the TODAS "alter" command, which operates very much
like the "modify" command of the GED line=editing systenm
developed by Project GENIE at UC, "Alter" creates a new
Statement to replace the original one, by going through the
original from beginning to end; under user control,
characters are (1) copied from the old statement to the new,
{(2) skipped over, or (3) inserted into the new statement
from the Keyboard.

The other is the TODAS "substitute" command, which allows
the user to specify that a certain string of characters in
the statement is to be found by TODAS and replaced with
another specified string.

At the structural level (where the user wishes to manipulate
statements and sets of statements as units), NLS permits the
user to identify statements by pointing with the mouse; TODAS
requires that statements be identified from the Keyboard,
considerable flexibility is provided in this operation.

The user may identify a statement directly by typing its
statement number or its name; he may also identify it
indirectly by specifying its structural relationship to some
other statement whose number oOr name he knows off=-hand,

Indirect specification corresponds to the use of NLS
commands such as "Jjump to head," "jump to successor,"

1Lh9

Appendix A

NLS/TQDAS USER FEATURES

etec., but with the added feature that relationships may
be concatenated == thus the user may, in a single
operation, specify a complex relationship such as the
successor of the first substatement of the predecessor of
a given statement,

A special TODAS capability not yet implemented in NLS s
"executable text."

A TODAS statement may consist of the suring of characters
that a user would type from the Keyboard to perform some
complex sequence of operations, This statement may then be
executed with a special command, and the resultv will be
exactly as if the user had actually typed these characters,
causing the sequence to0 be carriea out.

The sequence may, in principle, be arbitrarily complex; an
executable statement might, for example, contain tne
following sequence:

(1) Load a file whose name 1is specified elsewnere in the
current file ~

(2) Search this file with the content analyzer, finding
statements with a specified pattern of content

(3) write these statements out in a temporay "buffer"
£ile

{4) Reload the original file

(5) copy the statements in the "huffer" file into a
specified location in the working file.

A special "switch" character may be used in the executable
text. when the switch character is encountered, execution
of the text is interrupted gand control reverts to the
Keyboard, The user then enters part of the control sequence
manually; when he types the sitch character from the
keyboard, execution of the executable statement resumes at
the point where it left off. This features affords ereat
flexipility, since it allows part of the sequence to be
specified ahead of ime and part at "execution time,"

Besides its primary purpose as a Network user's interface to the

NIC,

TODAS is used within ARC as a supplemental tool to NLS.

TODAS can be used conveniently for many tasks that do not

150

Appendix A
NLS/TODAS USER FEATURES

require the rapid display response of NLS, and nas the
advantage of creating significantly less load on the overall
timesharing system, We currently have one clerical worker, wno
is not an NLS user, operating TODAS routinely for entry of
information and for some limited retrieval work,

Additionally, we f£ind TODAS useful for remocte accessing of our
system. We have made TODAS available to selected consultants,
WHhO use home terminals with acoustic couplers, and regular ARC

. personnel occasSionally dc work from their homes by the same
means.

The prototype version of TOUAS went into service in September
19693 a second version, with greatly expanded capabilities, rvecame
operational early in 1970.

IIT output Facility

NLS and TODAS both use the same facilities for producing formatted
hard=copy output from NLS/TODAS files.

The devices in ordinary use at ARC for hard=copy output are a line
printer that proauces upper/lower=case print of adequate quality
for local use, and a paper=tape=driven gutomatic typewriter used
for final output of reproduciple copy for revorts, proposals, etc.

The outpute-processing progranm (known as "PASSL") can be controlled
by the user to a considerable extent., This is done by means of
“directives" empedded in the file text., The directives can ve
used to reset page parameters, control pare numpering, and turn
various format fegtures "on" or "off."

For exgnmple, directives can be used to suppress indentgtion of
statements or change the amount of indentation, to create
"running heads" that are automatically printed at th top of
each page, suppress statement numbers, etc. One of the
directives causes all directives to be suppressed from the
output,

In addition to the line printer and the automatic typewriter,
PASSL can output a file to magnetic tape, appropriately formatted
to darive CRTeto=film conversion equipment for production of
microfilm,

In all cases, the user may elect to output an entire file or only
part of the file. 1In the latter case, he may cause output to
begin at some specified voint in the file instead of at the
beginning, and he may cause the printout to be limited by the sane

151

Appendix A
NLS/TODAS USER FEATURES

IV

kinds of criteria that may be used on tne display =-=- i.e,, conbent
analysis, limited numper of structural levels, etc.

Glossary of Special NLS/TODAS Terminology

BRANCH: A srecified statement, plus all of its supstructure ==
i.e. all of its subsStatements, plug all of thneir substatements,
etC.

BUG: The mark on the screen whicn is moved by the mouse and whicn
is used for selecting (pointing to) entities on the display.

Wwhen the bug is "active," i.e. when a selection can be made, it
aopears as an up=arrow; when it is inactive it appears as a
plus sign.

CHARACTER: Any letter, digit, punctuation mark, svace, tap, or
carriage return; an indivisible envaty.

CHORD: A combination of keys on the Keyset (see KEYSET).

END: The last statement in any branch; specified by specifyineg the
branch.

FILE: A conplete tree structure of statements with a single root
(the origin statement).

FILENAME: The name of a file, It appears as the first word in tne
origin statement of an existing file, and must be supplied by the
user in creating a new file,

GAP CHARACTER: Any space, tab, or carriage return.

GCHAR: Abbreviation for GAP CHARACTER.

GROUP: A subset of a plex, consisting of all branches fron one
specified branch to another, inciusive,

HEAD: The first statement in a sublist,

The head is apecified by pointing to any statement in the
sublist.

INVISIBLE: Any consecutive string of gap characters, bounded by
{out not including) printing characters or the end of a statement
see PRINTING CHARACTER, GAP CHARACTER, STATEMENT,

specitied by pointing to any character in the string. If a

152

Appendix A
NLS/TODAS USER FEATURES

single printing character lying between two invisiples is
pointed to, both invisibles (and the printing character) are
selecved.

KEYSET: The device at the left-nand side of the console. when a
combination of keys (a chord) is depressed on the keyset, the
effect i3 the same a3 striking a key on the keypoard.

KEYWORD: The name of a "Keyword statement,"

KEYWORD STATEMENT: A statement which iists, in a special format,
the names of all statements in the game file that fall into some
arbitrary category.

The "Keyword system" of NLS/TODAS commanas, operating upon
keyword statements, verforms information-retrieval operations
based on the sets of statements defined in keyword statements,

LABEL? A 8tring of text placed in a picture py means of a command
in the vector package,

LEVADJ: The specification of level when a statement, branch, plex,
or group is newly created or moved,

LEVEL: The "rank" of a statement (see STATEMENT) in the hierarchy
of the file (see FILE).

The level is equal to the numper of fields of letters or dizits
in the statement numbers thus Statement 3 is a first-level
statement, Statement Lalog3 is a fifth-level statement, etc.
Level is of great importance in understanding the hierarchical
structure of an NLS file,

MOUSE: The device at the righte=hand side of vne keypoard. Wwhen it
is rolled around on the tabletop, it causes the bug to move
correspondingly.

NAME: If the first word of a statement is enclosed in parentheses,
it is vhe NAME of the statenent.

The command Jump %O Name can then be used to0 place the
statement at the top of the display. This 1s done by entering
the name from the keyboard or Keyset, or by finding an
Occurrence of the name as text on the display and rointing to
it with the bug.

ORIGIN: The f£irst statement in a file; it contains information
about the file, plus any other text the user inserts, It has a

153

Appendix A
NLS/TQDAS USER FEATURES

level of 0, and hence no statement nunmoer,

PATTERN: A string of special=language text in a statement which
may be compiled via the command Execute Content Analyzer, when
compiled, it produces a program that is used by the
content=analyzer feature.

PCHAR: Abbreviation for PRINTING CHARACTER.

PLEXs Another name for a SUBSTRUCTURE, used in command
specifications.

A plex is specified bty pointing to any one of its highest-level
statements.

POINTER: A string of up to three characters which is attached to
some character in the text with the Pointer Fix command,

PREDECESSOR: The statement preceding a specified statement in a
SUBLIST.

- PRINTING CHARACTEk: Any letter, digit, or punctuation marxk.

SOURCE: The statement of which a sSpecified statement is a
substatenent.,

SIGNATURE: Information stored with a statement (and displayed on
command) giving the initials of the user who created the statement
(or most recently modified it) ang the time and date when this
occurred,)

STATEMENT: The basic structural unit of a file of text in NLS.
Formally, it is a string of text and/or pictures which is bvounded
at the peginning py the end of the previous statement or the
beginning of the file, and bounaed at the end by the beginning of
another statement or the end of the file,

Statements are arrangea in a tree structure or hierarchy and
are assigned "statement numbers" which indicate their positions
in the structure. Each statement has a numper, made up of
alternating fields of digits and letters; the number of fields
indicates the "level" of the statement (see LEVEL),

A Sstatement is specified by pointing to any character in the
string.

SUBLIST: The set of all substatements of a specified statement
(not including the substatements of the substatements).

154

Appendix A
NLS/TODAS USER FEATURES

SUBSTATEMENT: A statement "X is called 3 supstatement of anotner
statement "Y" if it is deeper in the structure than "Y," if it
follows *Y," and if there is no intervening nigner=-order
statement, "Y" is called the source of "X," The Statement number
of "X" will be the same as that of "Y" except that it will have
one more field at the end. The value of this field gives its
ordinal position in a "sublist" of the substatements of "Y."

A substatement is sSpecified py pointing to tne source
statement,

SUBSTRUCTURE: The set of all substatements of g specified
statement, plus all their substatements, evc. until no more are
found. The set of all branches defined by statements in the
sublist of a given statement.

SUCCESSORs The statement following a specified statement in a
sublist.

TAIL: The last statement in a sublist.

The tail is specified by vointing to any statement in the
sublist,

TEXT: Any string of characters within a statement, bounded by
{(and including) two specified characters: see CHARACTER,
STATEMENT.,

TRAIL: A set of statements in a file, which can ve displayed
sequentially by using the trail feature.

VECTOR: A line in a picture,

VISIBLE: Any consecutive string of printing characters, vounded
by (but not including) gap characters or the end of a statement:
see PRINTING CRARACTER, GAP CHARACTER, STATEMENT.

Specified by pointing to any character in the string. If a
single gap character between two visibles is pointed to, then
both visibles (and the gap character) are specified.

WORD: Any consecutive string of letters agnd/or digits, bounded by
(but not including) any other types of characters or the end of a
statement: see STATEMENT, '

Specitied by pointing to any character in the string. If a

single character is pointed to which is not a letter or digit
and lies between two words, then botn words (and the single

155

Appendix A
NLS/TODAS USER FLATURES

character) are specified,

156

II

Appendix B
THE DIALOGUE SUPPORT SYSTEM (DSS) AND THE JOURNAL

Preface

For his dissertation study at Stanford University, Dr, David A,
Evans (then an ARC staff member and assoclated witn the Management
Systems Research Activity) developed the case for augmentation of
planning teams,

His thesis (Ref, 1), written with NLS, is over five hundred pages
in length. In it he presents for the planning community a bdroad
descriotion of ARC's augmentation approach, aevelopments achieved
by ARC, and extrarolations relevant to the planning communityv.

As a special case study, Dr. Evans integrated the considerations
and possibilities for the Dialogue Support System, as developed
within the ARC over a number of years and as studied specially oy
Evans under this contract,

Selected extracts from his thesis, slightly condensed, are
included below as a good source of relevant concept material aoout
the DSS. These may be considered as trial design notes; the final
designs for the various parts of tnhe LSS, and their order of
development, are yet to be developed,

Basic Components of the Dialogue Supporuv Systen (0SS)

‘The DSS can be considered to have two basic parts: (1) the

Journal, and (2) a set of NLS features especially designed to
operate on the Journal.

A. The Journal

One of the most dramatic things NLS enaples its user to do is
operate on and maintain extremely "plastic" and malleable
records of his thought and work.

This ever=-changing plasticity is the root of basic difficulties
in extending NLS for dialogue support. When members of s team
are contributing to a plan or design, one of the most important
things is that the "targets" of their contributions renmain
stationary, as if in a diary, or journal. Ironically, the
design of a “"Journal" to maintain stationarye-target records of
the transactions of members of a team proved to be innovative
in the NLS environment, whereas it would be "normal" if we were
dealing with simple pencil and paper.

The Journal is a special repository for NLS files which may bpe

"sent 1o the Journal" and no longer modified, or changed in any
WaY.

157

Appendix B
THE DSS AND THE JOURNAL.

Be.

IIZ
A.

B.

The design objective of the Journal is to provide the basis for
evolution of a diary for a team, sufficiently rich to play the
8ame role as a personal diary plays when used for record
keeping, and as the vasis for composition, reflection, and
extended memory.

Operations Based on Journal Entries

The second component of the DSS 13 a collection of special NLs
features, designed to make the Journal useful as the pasis for
supporting team dialogue,

The Journal provides the team members witn a chronicle of their
contributions to plans and designs. NL3, as extended for use
as part of the DSS, is a vehicle that (for example) enables
team members Lo annotate contributions from others, to call for
specific action, to make synopses of records relevant to
spvecifi¢ issues, and to make contripbutions to the evolution of
plans and designs that are efficiently and appropriately
integrated and connected to the entire record of activity,

At another level, NLS is a vehicle enabling team mempers to
"orowse" in the Journal, to arrive quickly and efficiently at
an understanding of the status of plans and designs tnat are
being documenteaq, monitored, or evolved through the medium of
the DSS.

Interspersed with this and the previous roles, extended NLS
features enable team members to retrieve information from the
Journal, to modify and update this infermation, and to return
it to the Journal without destroying the original
contributions.

Design of Arehitecture for the Journal

Introduction

The boundary between the Journal proper and the NLS features
that support it is not clearly defined, as those features
necessary for servicing the Journal also, indirectly, support
the special DSS features, However, the discussion can bpe
simplified by means of this division,

Stationary Targets

The ideal record system tor dialogue'support'would be sone

large, central, evolving record that would keep track of the
team's activity as team members contributed modifications, new

158

Appendix B
THE DSS AND THE JOURNAL

ideas, new designs, specifications, and so on, over time, e
have only to consider the problems raised by the basic
file~=handling operations of the current NLS %o appreciate the
difficulty of creating such an evolving record of transactions.

In any attempt to use files for dialogue purposes, the first
problem encountered arises from nmultiple access to files., wWhen
a file is strictly the "property" of its author, dealing with
material for which he alone has prime responsibilivy, the file
owner can quite egsily keep track of its developnent,

However, when several individuals maxe active use of 3 file,
it becomes very difficult for the individuals to aveiad
canceling each other's work or otherwise interfering with
each other., They cannot all access the file simultaneously,
and So copies are created; soon there are multiple copies,
each copy containing changes and additions made
independently by various users, It is then impossiple, in
the general case, 0 put these copies back together in such
a way that all the work done on the separate copies is
preservedqd,

The problem is much like trying to hit a moving target in the
dark, and the desired solution is to find some way to make the
target stop nmoving == hence the phrase "stgtionary targets,"
The existing capabilities of NLS and the file=-handling
facilities used by NLS are not adequate for achieving this,

For example, it would be possible with existing capabilities
to give all files a read-only status, so that once a file
was created it could never be modified. This would overcome
many of the problems of multiple access; however, it would
2180 destroy most of the power and userulness of NLS &8s a
tool for manipulating information.

Likewise, it would be possible to give all files a public
read/write status, permitting any member of the team to
medify any f£ile at will. It can be seen that this would
lead to immediate chaos: a team member working on a file
and wishing to make reference to another file would have no
assurance that the referenced file still contained the same
information as when he looked at it last,

The concept of the Journal is a way to create stationary
targets without the crippling effect of a dblanket read-only
pelicy or the anarchy of a blanket public read/write policy.
Files "entered in the Journal" have, in effect, read=-only
status, but numerous capabilities are added to compensate for

159

Appendix B
THE DSS AND THE JOURNAL

this; moreover, the Journal contains only selected files which
are considered to be "ready" to beconme stationary targets,

The Journal

The Journal is a public repository for information of concern
t0 the team of users, A file sent to the Journal becomes a
public record, 1In principle, at least, it cannot in any way oe
altered, or retractred,

The author has '"gone on record” with the statement made oy
the file's content. He may keep a copy of the file entered
in the Journal, and make modifications and corrections in
that copy, but cannot replace the original file in the
Journal by overe-writing it with the revised version. Both
the original ana revised versions may be entered in the
Journal.

A basic Journal function is to provide users with mechanisms
and aids to recognize that "later versiocnsg" in the Journal
have been entered, and to provide users with features to
enable them t0 retrieve and display the multiple versions of
a given file,

In keeping with other (non-computerized) Journals, the only
ordering imposed on Journal entries is chronological.

in NLS, "Journal" becomes a distinct user name, with a status
similar to all other users, '

However, the Journal adds .a second distinct domain of files to
the NLS file universe. Journal files have special featlures,
They are all read=only. They possess Lwo parts == the
text/graphics portions written by their author, and blocks of
data containing information added to the file after submission
%0 the Journal,

The first component is totally frozen: once s file is "sent
10 the Journal" the "maximum" user representation for that
£ile may not be subsequently altered.

But the second conmponent, data blocks, may be changed
through the addition of new data over tinme,

l. Journsl Entries

Although we have been discussing "files" in the Journal, we
~ ahould refer to a module of information in the Journal as an

160

Appendix B

THE DSS AND THE JOURNAL

"entry." From the viewpoint of the NLS file system, an
entry 1s synonymous with a file. However, we wish to
emphasize the notion of collecting information from many
files together into one module, and sending that module to
the Journal as an entry, For this reason, we will persist
with the terminology "entry" rather than "file" when
discussing the Journal from the pointv of view of a user
(contrasted to the viewpoint of the systenm).

D. Sending an Entry %o the Journal

Because of the existence of wwo file universes (regular NLS
£iles, and Journal entries) a user is not compelled to sunmit
all of nis files to public scrutiny.

He may keep his personal collection of files containing nis
notes, plans, special reminders, etc., separate from the
collection of files he supmits to the Journal.

within this personal collection he retains tne option of
controlling read and write access by other users, He may,
for instance, have several files that contain
private/confidential information that is of no concern to
the team as a whole,

However, the decision to submit one of his own files to the
Journal is not totally the prerogative of the user himself,
unless all his files have private status.

Files stored under a given user name, with other than
private status, may be entered to the Journal by any other
user, This is similar to the procedure of having testimony,
or a speech, or other data, read into the (Congressional)
Record.

However, in most cases, Journal entries are submitied by the
user who has the file (or component files) stored under his
name, as part of the standard NLS file universe,

For one user %0 sSubmit another's file to the Journal, he must
first load that file, make a temporary copy, and submit that
copy a8 a Journal entry as if it was one of his own "normal"
NLS files,

Entering a file to the Journal involves the following
operations:

(1) A copy of the file being submitted is made,

161

Appendix B
THE DS8S AND THE JOURNAL

E.

(2) That copy is again copied, by the system, and
fautomatically) written as a new file under the user nane
"Journal." It is given a new name, which is a unique
"Journal Entry Number," and set tC read=only status.

{(3) The user supmitting this file is given a "receipt" by
. the system, indicating that entry to tne Journal has been
successful,

The result is that a "sharshot" ¢of the user's file has been
recorded as a Journal entry. The user nas complete control
over the VIEWSPECS controlling the view and amount of the file
submitted to the Journal, For instance, if he so chooses, the
user may submit only the first level statements in the file,
Or he may submit only selected statements in the file =-- for
instance, only those that satisfy a specific content pattern,
He may, of course, choose to employ no special VIEWSPECS, and
submit the entire file to the Journal. The VIEWSPECs used at
time of entry to the Journal determine the maximum subsequent
view for that Journal entry.

Subsequent readers of the Journal entry may employ all
available VIEWSPECS to help them study the content of the
entry, but are constrained to this "maximum" view. This means,
for example, if a file is submitted to the Journal with a 1-1
VIEWSPEC (i.e., Oonly too level statements, and only one line of
these), subsequent readers can view no more information in that
entry, other tnan the 1=l view, even if he uses a VIEWSPEC such

a8 ALL=ALL (i.e,, all statements, and all lines of each

statement). :

Thus the result of this entry procedure is the creation of a
new read-only file, a stationary target, under the user nanme
Journal, with a unique Journal Entry Number as its name,
Journal Entry linkage Systems

Once we have procedures for submitting entries to the Journal,
the next major need concerns linking the individual stationary

“targets == the Journal entries =~= into a fabric of -

interconnected information,

Interfile 1links may be used to refer to specific locations in a
file from any arbitrary location in another file, The
difficulty in this interfile linkage system is that there is no
way for a user to discover that a particular entity (e.g,, a
specific statement) in the file he is reading is being referred
to by links empedded in other files, or embedded in other

162

Appendix B
THE DSS AND THE JOURNAL

statenents within the same file., 7This basic weakness leads to
indiscriminate deletion or alteration of files,

To solve this problem in the DSS, Journal entries will have
"packlinks." Tnis means that when a link is established in a
file (for instance, a file not in the Journal), a special
marker will oe written automatically by NLS in the appropriate
location of the referent file, indicating that a link is
peinting at that entity.

This marker will give subsequent readers of the referent file a
visual signal that the marked entity is the target of a link in
another file, A new NLS command, JUMP BACKLINK, will make it
possible for the user to jump from the entity in the referent
file "back" to the statement containing the link in the source
file.

There are five cases of file-pair linkages that produce
problens:

(1) Linkage between two standard NLS files, A and B, from A
to B, and file A subsequently becomes a Journal entry,

Problem: The link in A continues to refer o B, and is
unaware ¢of ivhe formation of a Journal entry from B, If B
is deleted, the link points to a non=existent file,

Need: Additional bookkeeping to0 redirect links to the
appropriate Journal entry if B is deleted or otherwise
modified to make the link inappropriate,

{2) Linkage between two standard NLS files, A and B, from A
to' B, and B subsequently becomes a Journal entry.

Problem: The backlink attached to the referent entity in
- B points back to A, and is unaware of the Journal entry
made from A at a later date., If A is deleted after its
copy is sent to the Journal, subsequent efforts to JUMP
BACKLINK on the backlink marker from A in B will yield a
"no such" message,

Need: Additional bookkeeping to redirect the backlink to
the appropriate Journal entry if A is ever deleted or
otherwise modified to make the backlink inapprooriate,
This leads to the concept of indirect linking.

163

Appendix B
THE DSS AND THE JOURNAL

(3) Llinkages between two standard NLS files, A and B, from
A 10 B, and potn A and B subsequently pecome Journal
entries,

combination of problems and needs of Cases 1 and 2,

(4) linkage from a Journal entry to a standard NLS file
that subsequently becomes a Journal entry,

Proolem: Link in the Journal entry is unaware of the
existence of the Journal entry made from B,

Need: Bookkeeping necessary Lo redirect the 1link, if
requested, L0 the appropriate Journal entry if so
requested by the user,

(5) Linkage from a standard NLS file to a Journal entry,
and the standard NLS file subsequently becomes a Journal
enuvry.

Same as Case) except we are concerned with backlinks
rather than links,

F. Other Basic Journal Needs

In our first=pass discussion of Journal architecture and needs,
We should consider two additional general needs, archiving and
cataloguing. ‘

Archiving is necessary because the current system has limited
storage area for files accessible to NLS, The only mass
storage devices presently availavle in the ARC facility are
magnetic tapes, and so, at first, the Journal will have a
sequential archive. All Journal entries have arcnival copies,
The archival system provides a back=up to the colon copy of a
Journal entry in case of disaster, and a large tertiary storage
area for those entries not frequently referenced, that do not
have to be kept continually in colon file storage on the disk,

Major archiving problems arise because of additional data
{(including backlinks) associated with an entry after it is
submitted to the Journal.

Files are allocated a finite number of blocks on a
magnetic tape at the time they are written., Data added
after the entry is made may be written in this "slcp"
area until it is filleda. But from then on, these data
must be stored elsewhere, Only minor problems arise if

164

Appendix B
THE DS8SS AND

THE JOURNAL

the additional data can be stored elsewhere on the sanme
tape, with a link from the original entry to a special
file, elsewhere on that tape, associated with that entry,
containing additional data.

However, when the tape is filled, these data have to be
stored on a separate tape. This causes considerable
difficulty when retrieving the entry and its associated data
from the archive, There is no simple solution to this
problem while magnhetic tave i3 the arcnival media. These
problems will not arise with randomeaccess mass=storage
media,

The final basic Journal feature is a catalogue, Obviously, a
Journal reader requires a guide to the contents of the Journal,
and this is provided by the catalogue.

The Journal Cabalogue will have three prineipal parts:
(1) Subject index
(2) Citation list for Journal entries

(3) Keyword lists.

IV Design for Detailed NLS Features to Support DSS

A, Submission of an Entry to the Journal

1,

Entry/Receipt Procedure

when a file is submitted to the Journal, the first
operations are concerned with creating a new Journal entry,
allocating & unique number to that entry, and giving the
sender g receipt. This receipt scknowledges the entry has
been made sucessfully, and supplies the sender with
sufficient information to enable him to locate and retrieve
the entry at a later date., Detalls of this procedure are
1llustrated in the following scenario,

a. Scenario: Entry/Receipt Proecedure

(1) Assume the user, X, has assembled a file (X,Xl) to pe
submitted to the Journal.

(2) He activates the new NLS command "ENTER FILE TO

JOURNAL filename," entering the filename X1, as the
operand for this command.

165

Appendix B

THE DSS AND THE JOURNAL

{3) NLS makes a copy of the file (X,Xl) as a temporary
file, (JOURNAL,T1l), i.e,, under the user name "Journal.,"

{(4) Immediately after making this new file, the systen
checks a special record, containing a "Journal intry
Number," taking notve of the time and date this check is
made., Journal Entry Numbers have the form "NNNJMMY.,"

"NNN" 18 a serial number, in the range 1 to z where 2z
is arvitrarily large,

"J" is tne literal character "J," indicating that the
number refers to a Journal entry.

"MM" 18 the month the entry was subnitted (e.g., 1l =
November).

"Y' is the yvear the entry was submitted (e.g., § =
1969) .

The serial numbers, NNN, are initialized at the start of
each month,

Example: If 4562J119 is the last entry submitted to
the Journal in the month of November, 1969 (indicatinz
that L4562 entries were supmitted in that month), the
next Journal entry would be allocated the numper
1J129.,

Assume that the number in this location at the time of
this particular access was L457J119, and the exact time of
access was 1451:30, on 11/13/69. Once this numper has
been secured, the system updates the latest Journal Entry
Number in this location (to uL57+1 = Ls8).

The system now coples the file (JOURNAL,Tl) to a new
file == a Journal entry with file name §57J119. It
sets the status of this f£ile to public read=-only, and
notes the time and date of completion of making this
Journal entry: 1451:45, 11/13/69.

once this Journal entry has been made, the systenm
returns a message "FILE (X,X1l) ENTERED TO JOURNAL AS
NUMBER 457J119 AT 1u457:u45" to the sender (user X).

This message remains on user X's display until s

command accept (CA) is entered., Entering the CA
releages the file (X,X1l) for normal operations, and

166

Appendix B
THE DSS AND THE JOURNAL

2.

3.

redisplays the file., User X is now free to continue
his normal WoOrk.

Data Assenmbly Procedures at Input Time

The time an entry is submitted to the Journal is an
opportune time to capture data associated with the entry.
The Journal entry procedure will contain additional
operations, in which the system interrogates the user to
obtain an abstract and special descriptor tags for the
entry, The abstract will be used in the Journal catalogue,
Descriptor tags will pe used for retrieval of entries,

Collection Systenm

Partv of the Journal entry system gives the user special aias
for assembling the entry pefore actual suomission. These
are compound operations, combining several simpler ones,
These simpler operations include file nmerging and the
"executable statement" capability.

lLinkages

Special linking features will be added to NLS to support the
DSS neeqs. One ©of the most important classes of these new
features concerns NLS links.

1.

"Link" as an NLS Entity

In the current NLS a link is a simple text construct; it is
not a special entity, in the way that characters, words, and
statements (for instance) are entities,

There is no command DELETE LINK in current NLS. A 1link
may be deleted using the normal DELETE TEXT command,
requiring two bug selections, one at each of the link
parentheses,

A apecial NLS entity "1link" will be added to NLS. This will
be of particular importance in combination with indirect
linking and executable statement operations,

To insert a link, the new command INSERT LINK is used, This
command requests user input of data necessary to construct
the link, and organizes these data in the appropriate syntax
(see below).

167

Appendix B

THE DSS AND THE JOURNAL

2.

New NLS Link Syntax

Qe

De

Additional Link Data

Additional data will be added to the current NLS 1link
construct. Tnese data are (a) link tyve, (o) time and
date the link was first constructed, or last "stamped,"
and (¢) improved resolution to identify link referents.

Link type data are one or more descriptors, being a
simple text name, or collection of names, indicating
membersnip of a class, or classes,

Example: Possible link types would be "footnote,*"
"comment," "rebuttal," "owner=evansg," etc. A link
"owner" could be different from the owner of the file
in which the link resided. The definition of these
typres and their respective mnemonics would be
determined by agreement among DSS users,

A most important addition to NLS links will be the added
power to refer to ANY entity. 1In tne current version of
NLS, a link may point only to statement entities,

With greater resolution for link references, for
instance, a link may be constructed to refer
specifically to another link. This is the pasis for
indirect linking, to be discussed below,

Posgible Syntax for New NLS Link Entity

CTYPE; DATE,TIME> (USERNAME, FILENAME,
LOCENTITY:VIEWSPECS)

TYPE is any number of descriptor mnemonics defining the
type of tvhe link. Each deacriptor would ope delimited by
a comna,

MMDDYY HHHH31SS is the date and time the link was created,
or the date and time the link was last "stamped," in the
format <month, day, year, hour, second).

At any time, the link's owner may initialize the time
and date for the link, using a dateetime "stamping*
command,

USERNAME, FILENAME, and VIEWSPEC have t{he same meaning as
in current NLS links,

168

Appendix B

THE DSS AND THE JOURNAL

3.

LOCENTITY identifies a specific target entity.
Detailed syntax for the LOCENTITY may be arbitrarily
complex., The following example indicates a simple
statement=number syntax.

C. Exanmple

<comm,urg,Evans;09/17/69 0014thl>
(Engelbart,plans,m=Pixi)

TYPE is "comm,urg,Evans"

DATE,TIME 18 "09/17/69 00luysyh"
USEPNAME is "Engelbart®

FILENAME is "plans"

LOCENTITY is "meP" (the marker "p")

VIEWSPECS are xi, meaning display only one line of
top=level statements, and switch on the content
analyzer.

This link refers to the entity with marker "p" affixed
("m=P") in the f£ile ":plans" owned oy user name
"Engelbart." It points from a comment ("comm") that is
urgent ("urg"), and should be prougnht to the attention of
user name "gEvans." The link was last stamped 05/17/69 at
OOlhehk.

New VIEWSPECS for Links

Increased link complexity demands more nowerful VIEWSPECS to
simplify displaying the link construct, so links do not make
the remainder of the text illegible,

Additional VIEWSPECS will be available for totally or
partially suppressing display of the 1link construct. For
instance, the user could control which fields in the link
were displayed at the link's location in a statement (this
VIEWSPEC would apply to the entire display). 1If the link
was to be totally suppressed, an additional VIEWSPEC would
allow the user to control whether or not special "link
markers" were displayed at the link's normal location,

A user would interrogate an individual link marker, to
display the particular link represented by that marker,

169

Appendix B

THE DSS AND THE JOURNAL

e

6.

without displaying all links.
Links Not gmbedded Directly in Text

Because of the "stationary target" conceot and the frequent
need to attach links to existing Journal entries, it will bpe
necessary %0 have a new NLS command to enable a user to
associate an NLS link with any selected text entivy, but
have that link displayed only as an overlay to the file,
rather than an integral part of the normal text, Link
markers, similar to those used for backlinking, will be used
1o indicate the presence of one of these links, New NLS
commands will be available to enable the user to control the
display of the link and markers.

Indirect Linking

once it is possibtle to "aim" a 1link at any arbitrary entity,
such as another link, or at a simple character in a

statement, indirect linking becomes possible., Tne following
example illustrates detailed operation for indirect linking.

Example: The following link is displayed in a statement
of the file (Evans,ddd}: <comm;d>(Engelbart,plans,m=P:),
Note that the date=time field has been suppressed by the
new 1link VIEWSPECS described previously, This link is
embedded in a statement (or branch) constituting &
comment on its DIRECT target.

In the file (Engelbart,plans) there is a marker "p"
affixed to a character just preceding another 1link, as
follows: <P>xX yyy cc <comm;>(Evans,rrr,l2b:w), This
link is a comment on 12pv in the file (Evans,irrr).

Use of the new command JUMP INDIRECT LINK, with the
original link as operand, causes the statement 12b to pe
displayed under the control of VIEWSPEC "w" (all lines of
all statements).

Backlinks

The most important additions to existing NLS linking
features for use in the DSS are the backlink operations.

Backlinking means that a special executavle 1link marker is
deposited in the referent veing pointed atv by a link. Tnis
enables a user, viewing the referent entity, to "JUMP
BACKLINK" and display the entity containing the original

170

Appendix B

THE DSS AND THE JOURNAL

Te

link.

The existence of an NLS link reference to any displayed NLS
entity will be indicated py special backlink markers,
Display of these markers will be under user control in a
manner similar to link markers, descriped previously.

A user may interrogate a backlink marker, to nave data on
the source entity displayed. Execution of the new command
JUMP BACKLINK with a backlink marker as operand displays the
source entity at the top of the display.

Indirect backlinking will also be available., Indirect
backlink Jumping means that a user executes JUMP BACKLINK
INDIRECT, and the system displays the statement containing
the link that points at the source of the backlink marker
entered as the operand for this command.

Remote Linking

The basic concept for remote linking is tnat of attaching
the "head" of a link to its referent entity, followed by
insertion of the link itself in the source entity, remote
from the referent, at some later time.

This may be accomplished by the following steps:

(1) Assigning a temporary marker to yet anotner entity,
"link referent"

(2) Depositing that marker at the appropriate location
in the referent statement

(3) Later, while inserting the basic link construct in
the gsource statement, calling for the referent entity
data to be inserted in the link by using a special INSERT
REFERENT DATA command, entering the referent marker as
operand.

This type of operation depends upon each user having at

least two NLS files open simultaneously. If links and
backlinks are considered to be completely symmetrical, this
procedure may be used interchangeably with tne conventional
INSERT LINK command.

im

Appendix B
THE DS8S AND THE JOURNAL

C.

D.

Copying a Journal Entry

A problem arises when a Journal entry, stored as a colon file,
is copied to a3 new filename, All backlink markers are
retained, out the links generating these markers continue to
refer 1o the original Journal entry, and do not point at the
new file, Thus an additional type of packlink is produced =--
one that has no forward=pointing link associated with it,

These asymmetrical backlink markers make it possiple to jump
to files and entries that referred to the original entry.
They may be deleted if judeged %0 be inapprooriate for the
new file,

At the time the new file is created, the system will
automatically insert a link in the file's header statement,
pointing at the header statement in the Journal entry from
which it has been copied, and depositing a backlink marker in
the header of the Journal entry.

ordered Sets

A set is a3 special new NLS entity =< it is a collection of
other entities (e.g., Of characters, files, statements, links,
other sets, etc.)., The design and implementation of operations
associated with setvs is 3 complex prooblem. The following
indicates what seem to be the most promising possipilities.

An "ordered" set nhas a specified order associated with its
member entities. Sets are given unique names for
identification. For convenience, a set will be attached to a
"parent" file, selected arbitrarily by the user, [Evans,XxxJ
is the set named "XXX" owned by the user name "gvans." Set
names are similar to statement names, exceot they must be
unique over the entire universe of a user's files ~- it is not
possible to have a set named "XXX" associated with the file
$ccc and another set "XXX" assoclated with the file :ddd, if
both t¢cce and $ddd are owned by the same user, However,
different users may own sets with the same name.

l. Admission to a Set
Other NLS entities, including other sets, way be "admittea"
to & set, using the command "ADMIT <entity> TO SET
{setnamed>", and entering the gppropriate operands.

"Entity" is the NLS entity selected or specified by the
user; "setname" ia the name of an existing set -=- the set

172

Appendix B

THE DSS AND THE JQURNAL

2.

to whieh the entity is to be aamitted,

Not only entities, but specific views and specific subsetis
of entities, may be admitted to a set,

Example: The first line of the first two levels of
statements in a file satisfying a ziven content pattern,
may be admitted to a set. The remainder of that file,
unless specifically admitted on another occasion, does
not belong to the set,

Direct and Indirect Use of Sets

There are three modes for using sets: "normal," "direct,"
and "indirect."

“Normal" mode corresponds to normal NLS usage in which the
set entity has the same status as normal NLS entities
(words, characters, etc.).

Thus in normal mode, the command DELETE SET erases the
set whose name is given as an operand. Note that the set
is erased, not the members of the set,

In "direct" mode, operations performed on a set produce
changes in the actual entities admitted to the set.

Example: A (hypothetical) command "DELETE WORD m=-spec IN
SET (evans,X]" 1is entered; "spec" is an NLS marker name,
Upon execution, in direct mode, all words so marked in
the entities that are menmbers of the set [evans,X] will
actually be deleted., That is, they will be deleted in
the same sense as if the user displayed each entity in
the set containing the marker, and manually deleted the
marked word, followed oy the command QUTPUT FILE.

Entities changed through operations performed on sets in
"direct" mode remain changed after the system is returned
to "normal" mode.

In "indirect" mode, operations performed on entities that
are members of a set (by using the set name itself as the
operand) produce changes in those entities ONLY while the
user views them "through" the set.

For instance, if in the previous example the sane

operation was performed in "indirect" mode, the marked
words would not be deleted in the filea containing the

173

Appendix B

THE DSS AND THE JQURNAL

marked entities in question, but would only "appear!" to
be deleted when the viewer was working with the set
{evans,X] controlling the entities he could d4isplay.
This appearance would be negated as soon as the user
returned to display any member=-file in normal mode,

3. Open and closed Sets

ae

be

Closed Sets

A closed sely is one whose membership is specified
explicitly, i.e., there is a finite fully deternmined
mempbership list associated witn the set. For example,
statement entities might be specified by a 1list of NLS
links. There are three types of closed sets; frozen,
unfrozen, and nmixed,

A frozen closed set retains the exact content and

structure of each entity, in the state in which it was

originally admitted to the set. Even if (say) a
member statment is deleted, a "copy" is retained in
the set.

An unfrozen closed set retains g finite membership,
but permits each member entity to adopt its latest
actual state. For example, a whole file, containing

three statements admitted to an unfrozen closed set on

day 1, subsequently undergoes maJjor modifications, If
the set is used as an operand on day 3 (after the

modifications), the file's state at that time is used.,

A mixed set contains entities whose frozen/unfrozen
status is determined individually, In other words, a

set may contain some entities whose original status ia

retained, and some whose status is the latest status
of the entity itself,

Open Sets
An open set is one whose membership is not fixed by
explicit identification of its member entities, but
rather by the aspecification of conditions to be met to
adnit member entities.

For example, an open set's mempership may be determined

by those statements in a given file universe that satisty

& given content pattern,

174

Appendix B

THE DS8S AND THE JOURNAL

L.

On day 1, this may yield a different membership than on
day U4, if modifications were made to files in that
universe during this period.

Set Operations
There are two major and distinct classes of operations
associated with sets <~ operations on sets, and operations

within sets, The distinctions between these classes are
important,

&. Operations on Sets
Operations on sets use entire sets as operands.
Simple Operations on Sets
These operations include the standard NLS operands ==
INSERT, DELETE, REPLACE, etc., in addition to a new
class of commands == get-theoretic operations,
INSERT SET creates a new set,
REPLACE SET makes it possible for a user to make a
ney set as the union of one or more existing sets,
and to simultaneously delete the original setis
{(their names, not members).
DELETE SET erases the set (but not its mempers),
Set=Theoretic Operations on Sets
There will be new NLS commande to enable a user to
perform set=theoretic operations on sets. The
following set-theoretic commands will be available:
UNION, INTERSECTION, COMPLEMENT, and DIFFERENCE, where
each operation has its usual mathematical meaning.
be Operations Within Sets
Operations within sets have entirely different meanings
from operations on sets, and from operations on memper
entities ouvside the influence of the set construct,

When under the control of operations within sets, the
conventional NLS commands take on the following meaning:

MOVE: Change the ORDER of member entities in the set,

175

Appendix B
THE D8S AND THE JOURNAL

E.

DELETE: Kemove the operand=entity from membpership of
the sgset.

COPY: Include the operand=entity once more in the set
mempership (in a different position within the set's
order).

INSERT: Admit the operand-entity to membership in the
set,

REPLACE: Revrlace the member entity selected as operand
with the entity selected. The entity selected as a
replacement may or may not ve a member 0f the set,

EXecutable Statements

An executable statement will be a new text construct, using the
current NLS statement as a basis, NLS commands will be
pre=-specified as a text string in an executable statement,

They will be executed by using the command EXECUTE STATEMENT,
giving the statement number of the statement as operand,

An executable statement will be the neans to effect compound or
concatenated operations, including set operations, The
structure and meaning of the executaple statement fegtures can
best be illustrated by examples.

Example: The following is an executable statement,

(XXX) (evans,sss,l2:x) (Engelbart,plans,2tw) E C CA
{"retrieve "] OR ("Retrieve"] ;3 CA (evans,rrr,:wi) END

(1) By activating the command EXECUTE STATEMENT, and
entering the operand "XXX" (the name of the exegutable
statement), followed by a single CA, the first link
will be executed as if JUMP FILE LINK was used with
that link as its operand.

(2) The user views the file (evans,8ss) with statement
12 at the top of the screen, displaying only the firsv
lines of subsequent top=level statements in the file,
(3) A second CA causes the second iink t0 be executed,
(L) The user views the file (engelbart,plans), with

statement 2 at the top of the screen, displaying all
lines of all statements,

176

Appendix B

THE DSS AND THE JOURNAL

(5) A third CA causes the content pattern ["retrieve)
OR ["Retrieve") to be compiled, automatically followed
by the execution of the last link. Note that the
VIEWSPEC "i" in the last link activates the pattern,

(6) The result is that the file (Evans,rrr) is
searched; all statements containing the text construct
“retrieve" or "Retrieve" are displayed.

Example: The following executable statement illustrates
more complex operations on sets,

(YYY) [DOD] = (ARMYJ UNION [NAVY] 3 [USAJ = (DODJ
INTERSECTION [MIC] ;E C CA ["weavon"] 3 CA

(Nixon, [USAJ,twi) CA DISPLAY:w OUTPUT FILE ':arsenal’
DELETE SET [DOD] AND SET [USAJ END

(1) The command EXECUTE STATEMENT is executed with the
operand YYY, the name of the statement.

(2) A CA causes a new set "DOD" to pe formed as the
union of the two existing sets "army and "navy." This
set will be attached to the file containing the
executable statement,

(3) Another CA causes a Ssecond set, "USA" to ve formed
as the intersection of the two sets "DOD" and "MIC,"

(S) Another CA causes the content pattern "weapon" to
be compiled, immediately followed by execution of the
link transferring control to the first entity
containing the text construct "weapon" in the set
"USA" (which is owned by the user "Nixon").

(5) The system searches all entities in this set, and
diaplays, under VIEWSPEC contol "w" (all lines of all
statements) those statements containing the text
string "weapon".

{6) A final CA causes this collection of entities to
be output as the new file ':arsenal.' Another CA
causes both the sets (as distinct from the set
membership) (USAJ and [DODJ) to be deleted,

Example: The following executable statement illustrates how
the member entities of a set may be displayed.

(ZZZ) DISPLAYsw [HEREANDNOW]/ END

177

Appendix B
THE DSS AND THE JOURNAL

By giving the command EXECUTE STATEMENT with ZZ7 as the
operand, followed by a CA, 2ll entities in the set
"HEREANDNOW" will be displayed, under VIEWSPEC control
"w" (all lines of all statements).

Example: The following 1is an example of simnle "chain
generation" using an executanle statement.

(AAA) ~MARKER=Al CHAIN (evans,ss,l2:gw) (evans,ss,5:gzw
(Engelbart,plans,5:wh) END

By giving the command rXECUTE STATEMENT with the overana
"AAA", followed by a CA, the display starts with an
all~all view cof the brancn starting with statement 12 in
(Evans,:ss), Normal text operations may be performed on
this branch, If a second marker Al is entered, the
all=all view of the branch starting with statement 5 in
{evans,:18s) 1s displayed, and so on,
Here a marker is used as the means to advance the view
along the chain. This permits normal text operations
(requiring CA's) to pe performed at each view along the
chain.
In all examples, the maximum VIEWSPEC operative on any
entity is controlled by the VIEWSPEC assigned to the set
member entity itself at the time it was admitted to the set,
F. Entry Jescriptors
Descriptors will be attached directly to Journal entries,
elther at time of entry to the Journal, or at some later date,
These descriptors will cover at least the following classes:
(1) Subject matter/type of entiry
Examples: comment; message; annouuncement; injunction
(2) Urgency
EXamples: urgent; not urgent
(3) Names of users whose attention is sought
Example: attention: evans, engelbart,

{4L) Author/source of entry

178

Appendix B
THE DSS AND THE JOQURNAL

Ge.

H.

kxample: author: evans;
(5) pate/time of entry to Journal
EXample: entered 9/26/69 1006:30
Interrogation

Commands will be available to enable a user o interrogate a
Journal entry in order %o ask the following types of questions:

(a) Which Journal entries or other files are pointing at the
interrogated entry?

(o) To which sets does the interrogated entry velong?

When interrogating to determine which entries or other files
are pointing at the entry, the user will be able to control the
universe over which the searcnh for these entries is to be
performed.

For instance, the user may ask for only those entries that
point at the interrogated entry, or are attached oy links of a
specified type, from entries of another specified type, that
were made after a specfied date,

Example: Display Journal entries of type "comment' or
"injunction" that are attached with link types "urgent" made
after 8/12/69 %o Journal entry Number XXXXX.

Example: Display those members of the set [evans,XXX/ admitted

%0 the set after 10/L/695.

Miscellaneous New NLS Features

Numerous new NLS features will have a major effect on the
usefulness of the DSS, although they are not designed

exclusively for DSS usage. These features include split
screens, file merging, new VIEWSPECS, and "file history."

l. Split Screen

The "split screen" feature generaliZes the characteristics
of the "freezing" option in the current version of NLS.
with a split screen, the user is able to dilsplay two
different views of the same file, or two different and
independent views of any two files, one on each side of the
screen., He will be able to work with the displayed

175

Appendix B

THE DSS AND THE JOURNAL

3.

information in each "window" as if it was a separate and
independent file, The success of this option depends upon
having more than aone file open for a given user at any given
time, The split acreen will make interfile editing, and
more complex file merging, easy and useful.

File Merging

The split screen and other new features make the capability
for merging any two files to form a third composite file a
necessity, In the current version of NLS, only the simplest
file merging operation =- appending == is possinle, More
useful file merging would include the facility to interlegve
statements in a specified order, and to transfer pictures
from one file to another,

File History

Keeping track of a file's nistory becomes more important in
the Journal and DSS than in current NLS operations, For
this reason a new NLS feature will be added to capture all
necessary identification information from the source file
every time a file is output or copied. This information may
be copied directly from the header statement of the source
file, and written into the header statement of the object
file at the time it 1s created,

Example: The following is an example of a standard file
header,

$XVIII, 9726769 1209:30 DAE;

Here :XVIII is the filename; 9/26/69 1209130 1is the
date and tine the file was last output %o the name

¢XVIII, and DAE are the initials of the file owner,

Suppose the file :XVIII is outpnut to tne new file name
"sCHAP1S",

After the operation is completed, the header of the
object file (:CHAP1l8) reads as follows:

$CHAPl8, 9/26/69 1211l:45 DAE; (evans,XVvIII,:)
9/26/69 1211:L5;

The system nas rewritten the source file's header data

a8 an NLS l1link following the object file's
conventional header data. Note that as later versions

180

Appendaix B
THE DSS AND THE JOURNAL

I.

of :CHAPlY are made, data preceding the rfirst
semicolon changes, With subsequent copy operations,
or output file operations to new filenames, these data
from the file :XVIII will be retained in the new
file's header, along with all records of subsequent
operations.

Cataloguing

A catalogue of a3ll entries in the Journal will oe maintaineq,
providing the main conventional aid for retrieval of these
files, The catalogue will have three main sections: a subject
index, a keyword list, and caitations for Journal entries,

The subJject index contains a hierarchical structure of the
subjects describing Journal entries, with their respective
Keywords attached. A user may scan this index and select
kKeywords attached to the supjects that meet his needs,

The Keyword List will contain keywords (38 used in the
subject index), followed by links pointing at appropriate
citations,

The citation for each Journal entry is stored in tne
catalogue by order of Journal Entry Number, Each citation
will constitute an NLS branch, with the Journal Entry
Number, and link to the cited Journal entry, as the
first-level statement of each branch.

Each such citation branch will contain the entry number,
the source filename, the name of the user submitting the
entry, the date and time when the entry was submitted,
and a list of descriptors for entry.

These data Will be stored in a manner tnat makes then
useful for further NL3 operations., For example, the
data on source filengme is stored in tne fornm of a
conventional NLS link referring to the source file.
Similarly, each catalogue entry contains a link to the
Journal entry itself,

1. Retrieval System Based on the Journal Catalogue

The existing NLS Keyword retrieval system will be extended
for use as the hasic retrieval tool for operations on the
catalogue, The major drawback of the current system is that
lists of citations can be assembled only from within a
single file, :

181

Appendix B
THE DSS AND THE JOURNAL

For the DSS, this system will be modified to operate across
an arcitrary number of files. Such operations, of course,
depend upon other features discussed previously (e.g., file
merging, the capability of having more than one file open at
any instant, etc.).

The standard keyword statement, which currentiy uses
statement names as Keyword arguments, will pe chanzed to use
full NLS links as keyword arguments,

Example:

(key3) This is kKeyword three # (JOURNAL,L135J099,:)
(Journal,lluéJ99,:)

The user will then have the following options:

(1) Assemble the citations derived from a selection of
Keywords from one or more files (which may themselves oe
stored in several catalogue files), as a list in one
file, and use the standard JUMP LINK command to view the
actual Journal entries cited, one by one.,

(2) AsKk for consecutive display of the actual Journal
entries ¢ited, under the control of the VIEWNSPECS in the
keyword referent 1links. Consecutive entries cited would
be displayed as if part of the same file,

This operation could be accomplished by special new
NLS machinery, or by combining the capabilities of
executable statements and indirect linking.

In all cases, all current NLS keyword options, including the
allocation of weights to keywords, will be available,

182

Appendix C
REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

Introduction

This appendix is an addendum to the previous Hardware Reference
Manual, Appendix B of Ref. 3. It consists of a progranmmer's
reference manual for the following equipment:

A line printer (replacing the line-printer description
contained in the previous manual)

An inter=core controller for transfers between 940 core and
external core ("Xcore")

A Network interface connecting the 940 to the ARPA Network via
the Interface Message Processor (IMP)

A precision clockK.,

IT Line Printer

A.

B,

General Information

The printer is a Data Products Model M&0O=1lA with 96
characters and a printing speed of about 340 lines per minute,
It will accomodate paper from 2=1/2 to 18=-1/2 inches in width,
Character spacing is 10 per inch and line spacing is é per
inch. The maximum nunber of characters per line is 132,

The printer is controllea by EOM instructions and a "unit
reference cell" (URC). The URC points to a print puffer
resident in core that contains data and control codes, An SKS
instruction indicates "printer ready" and an interrupt
indicates "end of operation," either normal or error. Error
conditions are detected by the controller and an error code
written in the URC.

The cells immediately following the URC in core are called
"URC+1," "URC+2," etc.

Fixed core assignments for the printer are:

URC 10
Interrupt 211,

EOM and SKS Codes
The EOM codes are:;

20230106 Initiate
20230406 Reset,

183

Appendix ¢

REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

The "initiate" EOM starts the printer with the word and
character designated by the contents of the (URC at the time
the EOM is given,

The printer controller continues to process the printer
puffer until an illegal character or end-oi-bufier code
is read, or until a '"resetv" EOM 18 issued,

An "initlate" EOM given while the printer is pusy is
ignored.

The "reset" EOM immediately terminates all printing and
retwurns the system to a reset statve.

A "resev" EOM given while the printer is disconnected is
ignored.

One SKS code is provided for the printer. The code is

04030106 Skip on ready.

This SKS skips if the printer is ready to begin operation.
If the printer is not ready, an interrupt is issued when it
is made ready.

Cs. Unit Reference Cell
The URC associated with the printer system has the following
format:
o 3 5 8 23
Terror adaress

Bits 6=23 contain the absolute address of the first
character of the line to pe printed (or currently oveing
printed).

Bits 8~23 denote the absolute word address.

Bits 6-7 indicate the character in the word.,

A 00 code is the lefvmost character, The 1l code is
not used but is interpreted as the leftmost character.

After & line has been successfully printed, the address

184

Appendix ¢
REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

D.

in the URC is updated to point to the f£irst character of
the next line,

Bits 0~=3 gre written by the controller with an error code
when errors are detected. Error conditions and codes are
descrived below.

Bits L=5 are ignored by the controller,

Print Buffer

The print buffer is a contiguous sequence of words in core that
is interpreted by the printer controller as three 8-bit
characters per word,

Characters in the print buffer may be either data characters or
conirol characters, ‘

The control characters are:

373
375
376
377
015
035
055

(NOP)
(EQB)
(EOL)
(NOP)
Salft
Shift
Shift

No operation

End of print buffer

End of line

No operation

L0 lower case and lock

%0 lower case for one character
0 upper case and lock,

An EOL or EOB code causes the current line to be printeaq
with any characters already in the line left=justified.

An EOB code generates an interrupt to the computer after
the line is printed and any spacing action has been

completed.

The three case=shift codes are self~=explanatory. They
can appear anywhere within a line of data characters and
cause the indicated case-shift actions.

In addition to the explicit control characters, the first
character in each line is interpreted as a paper-feed code,
These codes are as follows (the word “space" here refers to
line spacing, not the "space" character):

020
021
022
023

Space 1 line
Space 1 line
Space 2 lines
Space 3 lines

185

Appendix ¢
REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

E.

o2 Space L4 lines
025 Space 5 lines
026 Space 6 lines
027 Space 7 lines
000 Space on channel 0 of format tape
Qo1 Space on channel 1 of format tape
002 Space on channel 2 of format tape
003 8pace on channel 3 of format tape
004 Space on channel i of format tape
005 Space on channel 5 of format tape
006 Space on channel 6 of format tape
007 Space on channel 7 of format tape,

The action indicated by the space code takes place before
the line is printed.

TWwo successive spacing operations can be caused by
sending one of the above space codes followed by "end of
line" (376), then another space code,

If no spacing is desired, as when printing the top line
on a page, a no=-op code (377) snould he sent in the first
position of that line.

Channel 1 of the format tape is useq for "top of form."
The number of lines on a page is normally set to 60,

Except for the first character, the print ouffer contains
only printing characters (including space characters) and
control characters., Any other character codes in the print
buffer are considered illegal and cause an error condition,

Print buffers may be as large as desired, but no relocation
mapping is provided. If a buffer is to extend across a page
boundary, the software system muyat ensure that the two pages
are consecutive in memory.

Error Conditions

On the detection of any error, an interrupt is issued and the
error code is written in the URC.

The error codes and conditions detected are:

000 No error

101 Illegal character code
110 Printer not ready

111 Excesgive tinme,

186

Appendix C
REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

Zeros in the error-code bits of the URC after an interrupt
indicate a normal interrupt (printer made ready or EOB).

The 101 code indicates that an illegal character has been
detected in the print buffer.

The 110 eode indicates printer off-line, paper out, or
ribbon failure,

The 111 code indicates that in a normal orinting operation,
excessive time has been required 2or printing a line.

The timer is normally set for 2.5 seconds., This error

indicates printer failures not detected by other printer
error circuits,

187

Appendix ¢
REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

F. Character Codes

The printer character codes are given pelow, The case printed
is determined by the shiftecontrol character,

CODE UPPER LOWER CODE UPPER LOVWER
000 0 oLo - underbar
001 1 oLl | J 3
002 2 o42 K K
003 3 oL3 L 1
ool 4 oul M m
008 5 OLS N n
006 é Oué s} 0
007 7 ou7 P P
010 8 050 4] a
Qll 9 051 R r
0l2 null 052

013] 053 &

o1k ' oS54 * +
015 null 058 null

016 > 056 ; :
o017 null 057

020 space 060 null

021 A a 061 / %
022 B b 062 s s
023 c < 063 T t
o2l D 4 06} u u
025 E e 065 v v
026 F L4 066 W W
027 G £ 067 X X
030 H h 070 Y y
031 I i 071 4 z
032 072

033 . 073 » e
034) J o7k ([
035 null 075 &
036 4 * 076 \ "
037 ? # 077 overbar

188

Appendix ¢
REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

III1 Inter=-Core Controller
A. General

The inter=-core controller controls transfer of data between
external core (often referred to as "Xcore") and 940 core, It
has two modes of operationt

(1) A block transfer mode allows the transfer of blocks of
up to 2048 words between any iwo locations in the two cores,
This transfer can be between tLwo locations in the same core,

(2) A short transfer mode allows the transfer of short,
fixed=length buffers between fixed locations in 940 core and
external core,

Fixed core assignments for the inter=core controller aret

URC, 940 core 53
Fixed transfer address, Xcore 100
Interrupt 215,

B. EOM Instructions
Four EOM instructions are used for the interecore controller,
The EOM codes ares

20230103 Block transtfer

20230203 Xcore 10 940 f£ixed transfer
20230303 940 to Xcore fixed transfer
20230403 Disconnect

The EOM actions are:

Block Transfer == This EOM starts a variablee-lengtih
transfer, The number of words t¢ be tranasferred and the
starting addresses in source core and destination core
are deternined by the contents of three consecutive 940
memory cells starting with the URC. Source and
destination may be in the same core.

Xcore to 940 fixed transfer -~ This EOM initiates a
transfer of a fixed number of words beginning at a fixed
address in Xcore to a locatvion beginning at the URC in
940 core, starting witn the URC address in the 940
computer to a fixed starting address in the external
core,

189

Appendix C

REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

Ce.

The number of worde is determined by 3 card in the
controller and may be set 10 any number between 1 and
7. The number currently used is 3,

940 to Xcore fixed transfer =-=- This EOM initiates &
transfer of a fixed number of words (same number as
above) from 940 core to Xcore, with the same fixed

locations in each.

Disconnect == This EQM terminates any transfer in
progress and places tne controller in the disconnect
state,

Unit Reference Cell

The URC and the next two cells have the following coding when
used to control a block transfer operation:

0 3 5 8 23

t0 001 ¢ ¢ H :

1D I word count
Bits 0-3 contain an identification code, 1If any other code
is detected, the controller disconnects and writes an error
code in the URC.

Bit 5 18 set to 1 if an interrupt is desired at the
conpletion of the transfer cycle.

Bits 8-23 indicate the number of words to be transferred,

Bits L and 6~7 are ignoreaq,

The cell URC+1l contains information relating to the destination
of the transfer, It has the following format:

0 3 56 ‘ 23

1000211 ¢ :
1D a destination address
Bits 0-3 contain an identification code as above,

Bit 5§ specifies the destination core. A 1 indicates
transfer to 940 core and a O indicates transfer to Xcore.

190

Appendix C
REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

Bits 6-23 designate the first address in the destination
core.

The cell URC+2 contains information relating to the source for
the transfer. It has the following format:

0 3 56 23
$0 00 1s 8 2 :
check b source aqdress

Bits 0-3 contain an identificatvion code as above,

Bit S5 specifies the source core, A 1 indicates transfer
from the 940 core and a O indicates transfer from Xcore.

Bits 6=23 designate the first address in the source core,
D. EXit Routine

At the end of any transfer, or when an error is detected, the
exit routine is performed. This routine writes the URC and
then places the unit in its "disconnect" state. The URC is
writven with the following format:

o 23 7 23

] 10 0 0 0 Ot H

error word count

Bitvs 0=2 contain an error code, The errors are reportved as
follows:

Bit O is set to 1 1f any error is detected.

Bit 1 is set to 1 for an error in any of the URC
locations (incorrect ID code detected),

Bit 2 is set to 1 if the controller waited more than 1
millisecond to gain access to the external core,

Bits 3«7 are set to 0.
Bits 8=23 contain the contents of the word=count register

at the end of the transfer. For a successful transfer
this will be O,

191

Appendix ¢
REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

An interrupt is issued at the end of the exit routine if called
for by the URC, or if any error has been detected. No
interrupt 19 issued for the short transfers.

IV Newwork Interface

A.

B.

C.

General

The network interface provides communication between the 94LO
and an Interface Message Processor (IMP) on the ARPA Computer
Network. The interface overates from message buffers in 940
core. A "linked=puyffer' scheme permits flexivle menmory
allocation.

The interface contains two independent logic systems, the input
controller and the cutput controller, The former receives
information from the Network, and the latter sends information
te the Network, .

AS seen by the programmer, these two units are almost
identical in all aspects except the direction of data flow,
Differences between the two are noted in following sections,

The two channels are independent in action, except that they
share the sgme channel into menmory. Thus they cannot make
simultaneous core accesses,

Fixed locations assigned to the Network interface ares

Receive URC 60
Send URC 70
Receive intverrupt 212
sSend interrupt 213.

comnunications with the IMP

Data moving between the Host and the IMP is in the form of
serial bit strings with a maximum length of 8056 bpits and a
maximum rate of one million pits per second.

Details of the communications protocol petween the interface
and the IMP are covered in Ref, 2.

EOM Instructions
EQOM Codes are:

20230104 Host up

192

Appendix C

REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

D.

20230204 Initiate receive
20230304 Initiate send
20230404 Reset,

The "host=up" EQOM resets the "host=up timer." This is a
timer in the interface controlling a signal to the IMP
indicating that the host computer is up., If the timer is
not reset at least once a second, indication is given to the
IMP that the host is down, '

The "initiate receive" EOM enables a "receive" operation,
Subsequent to this EOM, data received from the IMP will be
written in the "receive" pbuffers, The EOM must be given for
each message received, The controller may be left in the
"receive engbled" state indefinitely, waiting for a message
from the IMP.

The "initiate send" EOM initiates a "send" operation. Data
contained in the "send" puffers will be immediately
transmitted to the IMP, A "send" EOM must be given for each
message to pe transmitted.

The "reset" EOM causes both the controllers to immediately
abort any operation in progress and go to the "reset" state,

Linked Buffers

Linked buffers are used for both "send" and "receive" messages,
The format of the linked buffer is as follows:

The first word of the buffer contains the byte count for the
buffer.

If the byte count is zero, the controller goes directly
to the next buffer,

A bloek O0f n bytes to be transmitted will occupy the n/3
core addresses immediately following the byte count,
since there are three 8=-pit bytes in each 24=bit 940
word. When the last byte does not fall on a 540 word
boundary, the action depends on the operation:

In & "send" operation, bytes remaining in the last
word are ignored.

In a "receive" coperation, bytes remaining in the last
word are filled with O's by the controller.

1%3

Appendix ¢
REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

E,

The last word of the buffer contains the absolute address of
the next busfer.

If the last word contains all O's in the address field,
no more buffers are processed and the operation is
terminated.,

The firsty buffer of a "send" or '"receive" mesgsage always begins
2 vords ifter tne "send" or "receive" URC, respectively (there
are two URCS «= see below).

The maximum message length as determined by the IMP is 8096
bits,.

The Unit Reference Cells

There are two URC locations for the interface, one for '"sena"
and one for '"receive.," There are two words at each location,
followed by the first message buffer (see above), The URCS
have the following format:

First word:
01l 2 5 23

A XL R T R X 0 X X N X K K X & KR E L K X 0 & L L X X L B2 L X & L &L & KN X & 2 K L X J
N | : :
(2 X R R X KX L 0 F N & X L K K ¥ N L L K X K 2 K X & B L X L R X B X N E R X 0 K & L K R J

EFN end of data

Bit 0 == Errors This bit is set by the controller when
an error is detected (see pelow),

Bit 1 =~ List full: This bit indicates that the linked
buffers following the URC contain valiad data, Its
interpretation depends on the operation.

on a "send" operation the controller expects to find
this bit a 1, indicating valid data to be transmitteq,

1f the controller finds this pit O when a "send" is
initiated, the "needw=news=list" pit will be set to 1
and a "send" interrupt issued.

Wwhen the "send" operation is completed tha
controller resets this bit to O,

on a "receive' operation the controller expects this
bit to be a 0, indicating that the bhuffers are ready

194

Appendix C
REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

F.

Gb

to receive a message,

If this bit is found to be a 1 when a "receive®
operation is begun, the "neede=newelist bit" will be
set and a "receive" interrupt issued,

This bit is set to 1 by the controller at the
completion of a "receive'" operation,

Bit 2 == Need new list: This bit is set by the
controller to indicate that the Y"listefull" bit was not
correct at the beginning of an operation ,

Bivs 5=23 == End of message: These bits are set by the
controller at the end of a "send' or '"receive" operation,

At the end of the "send" operation these bits point to
the last word of the last buffer transmitted, This is
the zero peinter that terninated the transmission.

At the end of a “"receive" operation tnese bits point
to the last word filled witn data from the received
message.

Bits 3=} are not used.

sSecond word: The second word (URC+l) contains error codes
and is described below,

Interrupts

Two interrupts are used by the controller, one for “send" and
one for '"receive,"

At the normal or error termination of either a "send" or
“receive" operation the respective interrupt is issued,

Errors

Errors are detected by the controller for both '"send" and
"receive" operations, and error codes are written into the
words following the "send" and "receive® URCs respectively.
The *IMP down' error applies to both "send" and "receive," but
is reported a3 a "send" error only.

195

Appendix ¢

REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

“"Receive" errors are reported in the word immediately
following the "receive" URO., The errors and pit locations
in the error word ares '

Bit 19 == Message to0 long: The message has exceeged the

maximum length of 8096 bits,
Bit 20 == IMP does not respond: During the transmission
0f a message the IMP pauses for more than 100
milliseconds between bits,

Bit 21 == List sSpace exceeded: Space in the linked

pugfers has peen exhausted and there are more bits in the

megsage from the IMP,

Bit 23 == IMP was down: Prior to this message the IMP
was down, as indicated by the "IMP=-down" line,

"Send" errors are reported in the word immediately following

the "send" URC. The errors and bit positions are:

Bit 19 =~ Message t00 long: The message has exceeded the

maximum length of 8096 bits.

Bit 20 == IMP does not respond: During the transmission
0f a message the IMP pauses for more than 100
milliseconds between bitrs,

Bit 22 ==~ IMPeready line is downt This error is reported

only when the controller is active =« that is, after a
Ysend" or "receive" EOM has been issued and before the
completion of the indicated operation,

Bit 23 == IMP was down: Prior to this message the IMP
was down as indicated by the "IMP-down' line,

V Precision Clock

A.

General Information

The ARC clock system uses a high=stability Hewlett=Packard
Model 1058 quartz oscillator to drive two accumulators, The
accumulators are:

(1) An absolute~time accumulator with an output of year,
month, day, hour, minute, and second, updated once each
second

196

Appendix C
REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

B.

{2) A relativee-time gccumulator which consists of a 24-bit
pinary counter, This counter is advanced once each
millisecond,

The shorte=term jitter of both the absolute and relative
accumulators is 10 to 20 milliseconds, This jitter is caused
by the variation in the agmount O0f time required to access the
940 core memory.

The error caused by the oscillator drift rate is less than 1
second every 250 days.

The initial setting of the absolute time is gccurate to within
1l second.

The programmer has no control over the operation of this unit,
Time is written in core whenever the system is operative,

Word Formats

The absolute time is written once each second into two words of
the 40 computer.

The format of the first word is:
(o] 78 15 23

H H H H

(I TR PR L DR R LR R R LR SR R 2 X 3 J

month day year

Bits 0=7 contain the month code in straight binary with a
range of 1 to 12,

Bits 8-15 contain the day code in straight binary with a
range of 1 to 31.

Bits 16=23 contain the year code in straight binary with
& range of 9 to 99.

The format of the second word iss

0 78 15 23

(AL L LA 3 L 4 X 4L A L4 A L4 L A4 L2 L A A A Al Al LA X 4 L2 LA X B L A L A 2 J
(I T YT Y LR R R Y R LR Y ALY AR R Y R Y 2 X R X)

hour minuve second

197

Appendix C
REFERENCE MANUAL FOR PERIPHERAL EQUIPMENT

Bits 0«7 contain the hour code written in straight binary
with a range of 0 to 23,

Bits 8-15 contain the minute code written in straight
binary with a range of O to 60,

Bits 16+23 contain the second code written in straight
pinary with a range of 0 to 60,

The relative time is written once each millisecond into a fixed

address, Bits 0-23 contain the relative time in straight
binary code with a range of 00000000 te 77777777 (cctal),

198

1
Il

III

IV

Appendix D
TECHNICAL DESCRIPTION OF NLS

contenis

Introduction......................--.......u-.....2°1

U
A,

A.

Be

c

Ao

B,

D,

%11ity ROULIN®S.cscscsscevreovsncsvcrssssnonsnrensel03
Overlay Systenm In NLSeceseoesccconssessnosncsee03
le Generalecesctcccscccccccsossessocsassssnscesc03
2' Implementation........-....-.......--..-.o.203
NLS Random=File Structure and Handlinf.seesses204
1. General ConsiderationScescsescescccscsnseasss0l
2. File structure................"..........‘205
3. Fille Handlin€eeoecsessccscccssoccccesescees2ll
command specitication........’.....'............217
Command speC1£iClti°n in NLSeeoesncessesonneeall?
l. General.".I........"."....'...'..'...'..217
2., Registers in the Command

Specification Languag@ececccscscanvossensae2l?

3. Entity Character and Entity String;
command Groupa‘.'....................'.....218
L. Command StatCeeeseecsescsosssasccssnnsssneell?
5. command Parsingeccscccceccccessscesccsnnscsceel0
6. Parameter SpecificatioN.esecccscosccesesensees23
Te Subroutine Calls and Parameter PasSiNZe.ee.225
8, Input Machinery..........-..........-.-..-.227
9, Output (Display) MachinerYseecesecsscosnesea230
command Specification in TODASeseecesccsoscsee23l
1l. Command FeedbaCKeosooosososoosccescnosonsneal3lt
2. Input MacChinery.ceesecessesccsssscccscssscssasd3ll
3. Printingecscscccescccsesnccsossveassnsaseeel3b
h. Parameter SpeCificttion....................237
ommand AlROrithMS.ececccceccncessccsssoccocnannses3d
Editing.'..'...............'...............‘..239
1- Text Editing.....'.........'............."239
2. sStructure Editin€ececsccccevecocesscncecsss2hd
3. QOravhics Editing,ceccecescccscosencsrcecseel50
view con‘rol‘.“"........................'...252
1. Jumps Snd Linksooououoltnoot..lto..'ll.l.olkzsz
2. Sequence GeNeratoOl,cecscscccsocscesssssssesld3
3. Display Parameters,cevsececesscocceccscoscnsd5s
Le The User's content ANalyZel'sscsecssssesvesseslbb
S5¢ Keyword SyBteMecsesecsscscssscssssesssacsselbb
6. TeXt Di8PlaYeseecesoncsccscecccsoncsssessecssandb8
c‘lculator....‘...'........"..‘......'......’262
PrOCeSSOrSesccetcccanensscassncscsccnsesoscneslbl
1. File CleaNUPscecsovoscoscscesesescrsconscceeslbl
2, File COMPactiONesecresscnvarovnsscscrsnneaseadb?
3e OUtPUL ProCeBS®0rcacvcresoscstscsroncenncccnsnedlb?
hq Compllers,sesscocenncscoscncscsscncossaseancenslb?

199

Introduction

This appendix gives a technical description of NLS and extends the
overview given in Sec, IV«E of the main body of this report,
covering the utility routines, command specification, and command
algorithms used by NLS.

In addition, the special=purpose languages (SPLs) for command
specification, content analysis, and string construction, which
are used in large sections of NLS, are discussed in some detail,

This appendix assumes that the reader is familiar with NLS from
the user's viewpoint to the level of the NLS's User's Guide,

201

II Utility Routines

The utility routines in NLS fall into two categories, dealing with
the overlay system and with file handling.

A.

The routines in the overlay system provide mechanisms for
changing the collection of pages of code in the address space
of the program; the file=handling routines provide mecnanisms
for referencing and changing the actual data baase,

overlay System in NLS

1.

2,

General

The logical structure of the overlays in NLS is aktree
structure, with the most widely used code residing in the
overlays near the root.

An overlay is confined t0 a single page, in order to make
efficient use of the paging mechanisms of the 910,

Implementation

The overlay structure is implemented through two tables and'
several procedures which use them to manipulate the
relaveling.

For a given page of program, there is 3an entry in each
table, The index of the entries for the page is the same in
both tables and is called the "overlay number" of the page.

One tadble gives the relabeling byte for the page, while the
other gives the overlay number of the parent overlay and the
position in the address space that the page should occupy.

The entries in the second table have a POP code in addition
%0 the other information. 7o relabel in an overlay (and the
overlays above it in the tree), the instruction
corresponding to that overlay in the second table is
executed,

If a call is Lo be made to 3 procedure in another overlay
that occupies the same logical position in the address space
a8 the calling routine, the call is split into two
instructions.

These correspond to the execution of two POPS, the first
0f which "selects the overlay" and the second of which
gives the address to branch to in that overlay.

TWo ¢cells are used in the program to keep g copy of the
relabeling.

203

Appendix Dt

TECHNICAL DESCRIPTION OF NLS

Sec., II: Utility Routines

when an overlay is selected, the overlay tables are
uged 10 update these words without changing the actual
relabeling.

This change is made when the second POP is executed
and after the destination address has peen read,

On a call such as this, the overlay nunmber of the calling
routine, as well as the calling address, is saved on a
stack,

This allows the overlays 10 be restored to their status
before the call when the called routine returns,

The routines that change the relabeling are in the overlay
at the root of the tree, and are thus always available,

In general the root overlay contains utility routines for
basic functions, such as changing relaveling and accessing
elements of the file,

B. NLS RandomeFile Structure and Handling

1.

General considerations

The present format and structure of NLS files was determined
by certain design considerations,

It is desirable to have virtually no limit on the size of
@ file, This means that it is not practical to have an
entire file in core when viewing it or working on i,

A Zoal in the design was to make the time required for
most operations on a file independent of the length of
the file, That is, small operations on a large file
should take roughly the same time as on a small file, 1In
this way the user and the systenm are not penalized for
large files,

The system nad to ineclude graphic statements, and perhars
other forms of data, as well as text,

A8 g result of these considerations, a random=file scheme
was chosen, Each file is divided into logical blocks that
may be accessed in a random order, There are several
different types of blocks, and each type has its own
structure,

204

Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec, II: Utility Routines

2. File Structure

An NLS file 1s made up of a header and up to a fixed number
{currently 66) of l02L-worda file blocks.

e

The Header Block

In each file, there is a header block that contains
information about that particular file,

The heagder block remains in memory while the file is in
use., :

The header includes the following information:

(1) General information regarding the file, such as
the following:

{a) The date of creation of the file

{p) The file owner's user number (identifies the
user who created the file)

(¢) The number of words in the file header block

(4) The initials of the user who last wrote the
file out

(e) The date and time at the laasat writing
{2£) The name~delimiter characters
(g) The average length of statements in characters

{h) The total number of statements generated in
the life of the file,

(2) Status tables for the file blocks,

The first and largest status table is the random file
block status (RFBS) table.

Each entry in the RFBS table corresponds to a
random file block, and indicates the status of that
block, The file header is file block zero. The
numper in the RFBS entry has one of the following
meanings:

205

Appendix D¢

Sec.,

II:

TECHNICAL DESCRIPTION OF NLS
Utility Routines

ZERQ: The block is not sllocated, and does not
existv.

POSITIVE: The block is allocated, and 1s in
menory rather than on the secondary storage
device, The positive number is the actual

starting address for the block.

NEGATIVE: The block is not in core, 1If the
entry equals -1, then the block is allocated,
but has not been initialized, 1In the case of
text blocks, -2 indicates that the block
contains no garbage statement data blocks, and
need not be garbagee-collected, Otherwise the
number is the negative of the used-word count,

A given file block has cnly one type of information,
sSuch as structure or text, There is a separate status
table for each type of file block., These are called
secondary status tables,

An entry in such a table has one of the following
meaningsi

ZERO: The bloeck is not allocated.

NON=ZERO: The value is the block number, that is,
the entry into the RFBS for tnat block,

There are secondary status tabhles for structure, text,
graphics, and keyword types of file blocks., The
internal structure of these different types of blocks
is discussed in the following sections,

The use of Separate status tables avoids references to
absolute locations in the file and reduces the number
0f bits required to specify the location of a
particular piece of information,

Pointers to various elements (structural, textual,
etc.) consist of two fields: a secondary
status~table index and an address giving the start
o0f the elenent relative to the start of the block.
The status table entry contains the number of the
block, from which its absolute address can be
ecomputed,

Fevwer bits are required, since the range of

206

Appendix D: TECHNICAL DESCRIPTION OF NLS

Sec,

II: Utility Routines

secondary status=-table indexes is smaller than the
range of possiple file-block numbers, The greatest
gain from this is in the identifier for a ring
element, since a file can have only eight structure
plocks in the current configuration of NLS.

In spite of this, the use of the separate status
tables is of questionable value.

Value of Avoiding Absolute Addresses:; By avolding
absolute addresses in the file it is possinhle to move
a block t0 a new location in the file simply by
changing & status=table entry, Such a move can be
valuable if the file has become sparse and needs to oe
compacted,

If absolute addresses were used, then all
references to the block would have to0 be changed,
but it can be argued that such a process need only
be done on rare occasions and hence its efficiency
is not cruecial.

Moreover, sufficient backpointers exist so that
the process of modifying references would not bne
difficult (although it might pe lengthy).

Value of Fewer Bits in pPointers: The economy of bits
in pointers is a stronger argument for the use of
secondary status tables, However, the total savings
per ring element (with the current size limits on
files) is only six bits,

Disadvantages of Secondary Status Tables: Space in
the dgta page is used by the tables (which are always
in core) for information that would not be necessary
if absolute addresses were used,

Their use places arbitrary limits on the number of
file blocks of a particular type,

For example, it is possible to exhaust the
structure blocks when the file actually contains
room for more information, If absolute
addresses were used, then blocks of a particular
type could be allocated as needed, with a limit
only on the total number of blocks rather than a
limit on each type of block.

207

Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec. II: Utility Routines

If further consideration confirms that the secondary
status tables should be eliminated, it will not ve a
difficult task because of the methods used for
accessing information in tne files,

These methods are discussed in a later section;
first the remainaer of the file structure nust pe
descrived,

b. FileeBlock Format

Each random file bloek has an eizht-word nheader, Tnis
hesder contains the following:

(1) The checksum of the block

This is computed pefore the block is written, and
verified when the block is read, 1In addition, if
room in core is needed £fOr a block, then any block
in core that has not been changed may be
overwritten without copying it to tne file, The
checksum provides an easy means of testing whether
the block has been changed.

(2) The used-word count (always greater than the
header size)

(3) The block type, to indicate whether the block is
text or structure

(4) In atructure blocks, the freee-list pointer; in
text pblocks, the garbage-collection flag, indicating
whether there are garbage SDBs (statement data blocks)
in the block.

{(5) The secondary status=table index number,

€. Structure Blocks

The internal structure of NLS files is a ring structure
representing a tree structure, Esch node in the ring
corresponds to a statement, and econtains pointers to the
"girst son' (called the sub) and the "first brother"
(called the successor). The last node in a list contains
& flag marking it as the tail and points to the father as
its successor.

The nodes in the ring are kept in foursword ring

208

Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec. II: Utility Routines

elements,

Each structure block contains 254 ring elements, There

can be up to eight structure blocks in a file, but not

all need be allocated,

Each ring element in an allocated block either is

associated with a statement in the structure of the file

or is on the free list for the block.
A free list consists of a chain of pointers, starting
in the block heagder and ending with a zero pointer.
(As used nere a pointver is an address relative to the
start of the block.) The pointers are in the first
word of the foure-word element, and the other three
words are zero,

A free list is entirely contained within a single
block in order to minimize file references,

A ring element associated with a statement contains the
following information:

(1) Flags indicating whether the statement
(a) has a name or not

(b) has been tested against the current
content-analyzer pattern

(c) passed the pattern, if it has been tested
(d) dis the head of its plex
(e) 4is the tail of its plex

{(2) A pointer to the text for the statenment

(3) A pointer to the picture sssociated with the
statement if there is one ~ ’

{§) A pointer to the sub for the statement (or a
pointer to the statement itself if there is no
supstructure)

(5) A pointer to the successor for the statement

209

Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec, II: Utility Routines

d.

(6) The hash of the name of the statement if it has a
nane,

A ring element is pointed to by a permanent statement
identifier (PSID),

This is an ll=pit integer between O and 2047.

The three highworder bits give the structures=block
number (entry into the RSVST table), and the eignht
low=order bits determine the location within the
block.

The PSID of a statement remains unchanged as long as
that statement is in the file, That is, the PSID is
not changed by textual or structural editing of the
file, When the statement is deleted, that same PSID
may later be used to identify a different statement,

Every file has at least one ring element in its
structure, namely the element for the origin statement
{root of the ring, first statement in the file), which
always has PSID zero,

Text Blocks

In addition to the header, a text=type file block is made
Up of an arbitrary number ©f statement data blocks (SDBs)
and an area of free storage.
The free storage area at the end of the file block is
simply a number of words available for use in creating
new SDBs,

An SDB is a variablee-sized block of words with a six~word
hegder,

The header contains the following information:
(1) The number of words in the SDB,
(2) A flag indicating whether the SDB is unused
(Lee. garbage to be collected by the garbage
collector)
(3) The PSID of the statement

(L) The date and the time when the SDB was created

210

Appendix D:

Sec.

TECHNICAL DESCRIPTION OF NLS

II: Utility Routines

and the initials of the user who created it
(5) The number of characters in the statement

(6) The posgition of the first character in the
statement that is not part of the name, (Set to 1
if the statement does not have a nanme,)

The words following the header contain the text of the
statement, three characters per word. The text includes
an end character (code 3778) on each end of the
Statement. The last word is filled to s word bpoundary
with end characters.

The characters in a statement are explicitly numbered,
the first endq chargcter being number zero.

A twoe=word entity consisting of a PSID and a character
count is called a Te-pointer, and indicates a particular
character within the file,

A T=string is a string of text within & single statement,

The texteediting routines make use of T-pointers and
T=strings.

Graphics Blocka and Keyword Block
The format of the information stored in these blocks will

be described in the sections dealing with the vector
package and the keyword systen,

3. File Handling

Core Tables and File Input/output

The random files are read into core by blocks. TwWo pages
in NLS are logically divided into four 1024-word sections
to contain the file blocks, Thua, up to four file blocks

"may be in core at a time. When a file block is

requested, if all four are in use, one block will be
written out, Core blocks may be "“frozen" in, however, 8o
that they will not be removed, \

A single procedure called LODRFB controls all file
input/output (other than file copying). When any routine
wants a block loaded, it calls this procedure with the
number of the desired plock, The block is then loaded

211

Appendix Dt TECHNICAL DESCRIPTION OF NLS
Sec, II: Utility Routines

and its location in memory returned.
The procequre makes use ¢f several tables.

one table inaicates which file blocx is in each
core block (it is called RFIFCR for "random file
index for core blocks"). A zero in this table
means that no file vlock is there, while a positive
number is the random file block number (index to

RFBS),

A second table indicates which of the core blocks
have been frozen. "Frozen" indicates to the file
block loading procedure that the core plock must
not be changed, This is the case if sonme
operation, such as editing, is being performed on
data within the block.

A value in the table of =1 means that the block
is not frozen; this value is incremented by 1
for each reason why the block is frozen.

The algorithm of LODRFB is approximately as follows:

First, a core block is chnosen, A quick scan of the
first table mentioned apove is made to find an
unused block, If all are in use, then a counter is
used to f£ind the next core block that is not
frozen, (If all are frozen tne system aborts,)

The counter provides a simple algorithm for
determining which block should be removed fronm

core,

If the chosen core block contains a file block,
then one of the following things happens:

(1) If the file plock is empty, it is released
t¢ the system and the corresponding status block
is set to indicate that that block is
unallocated,

(2) oOtherwise, the block is written out on the
£file if the checksum has changed, and the randonm
file status block is set to indicate that the
block is on the file agnd not in core,

At this point the desired file block is loaded inte

212

Apprendix D:

Sec.,

TECENICAL DESCRIPTION OF NLS

ITI: Utility Routines

De

Ce

the core block,

If the random file block has not been initialized,
the inditialization is done now. Otherwise the
checksum and file type are checked., An error is
reported if either of these checks fails.

Finally, the random file block status is set to
show that the block is now in core, and the index
for core blocks (RFIFCB) is set to indicate which
random file block is in that core block.

File Copying
The algorithm for copying an NLS file is as follows:

First, the procedure must obtain a core block to do
the copying., RFIFCB is scanned to find a block that
is not used, 1f there is no unused block, then the
first block that 1s not frozen is taken, and the file
block number in it is saved. That block is
checksumned and written out on the output file (in the
proper file block).

Having obtained a block, sll of the allocated file
blocks (except for the one already written in the
event that no core blocks were free) are copied from
one file to the other, This includes the file header.,

Finally, if no blocks were free, the block which was
removed 0 make room for the copy 18 restoreda from the
output file.

Referencing Information in the File

A8 much as possible, information in the file is
referenced indirectly through utility functions., This
ensures that the file structure can be modified with
minimal changes in the system &s & whole.

For each field in the ring element, there are procedures
which, given a PSID as argument, either read the contents
of the field or store g new value into it,

only these procedures need know the actual format of a

ring element. Thus only these procedures need be
changed if that format is modified.

213

Appendix Di: TECHNICAL DESCRIPTION OF NLS

Sec.,

II: Utilivy Routines

There are also procedures for reading and writing
characters in an SDB. This serves both to ensure
flexibility in the format of the SDB and to aveiaq
multiple procedures for prerforming a very common
function.

Because of the lack of instructions for character
manipulation on the 940, a rather elaborate metnod is
used to read characters from a statement,

Before any characters are read, the procedure FECHCl
is called to initialize a work area, It 18 called
with the address of the work area and the direction in
which characters are to be read from the statement,

When calling FECHCl, the first two cells of the
work area must contain a Tepointer for the first
character to be read, A character count of one
indicates the first character of the statement,
FECHC1l will initialize the rest of the work area,
which contains the following:

WORD O: PSID

WORD l: character count

WORD 2: return address for routines reading
characters

WORD 3: instruction to branch indirectly through
the fourth, fifth, or sixth cells of the work
area

WORDS L, 5, and 6 address of code to pass the
first, second, or third character respectively
of the current word of text

WORD 7: address of the current word of text

WORDS 8, 9, and 10: the first, second, and third
characters in the current word of text

WORD 1l: unused

WORD l12: the address ¢f the start of the first
word of text in the SDB,

After the work ares has peen initialized by calling

21l

Appendix D: TECHNICAL DESCRIPTION OF NLS

Sec,

II: Utility Routines

FECHCl, any number of characters may ove read fron
the statement by simply executing a call tc the
second cell of the work area, After returning the
last character of the statement (or first if the
direction of readout is backwards), end characters
{code 377B) will be returned from all subsequent
calls,

The call t¢ the work area places the return

location in the second cell and causes the

instruction in the third cell to be executed, This

results in a branch to a routine which returns the
' next character,

when all the characters from a particular vord
have been read, the next word of text is
unpacked into the appropriate cells in the work
area.

Whenever a character is read, the branch
instruction in the third cell of the work area
is modified so that the next call will result in
a branch to the appropriate routine to read the
next character,

To change position within the statement, change
direction, or read from g different statment, the
work area must be reinitialized by calling FECHC1
again, as described gbove,

Finally, statements may be read in sequence according to
view parameters by means of a group of procedures
collectively called the "“"sequence generator." This is
described in detail in sec, IVeB=2 of this appendix,

It was mentioned above that it would be possible to
eliminate the secondary status tables without an undue

anount of effort.

It should be evident now that this is in fact the case
as § result of the use of functions to reference
information in the file,

It would pe possible to modify the field sizes in the
ring element by simply rewriting the routines that
access the affected fields.

In addition, a simple process could be written to take

215

Appendix Dt TECHNICAL DESCRIPTION OF NLS
Sec, II: Utility Routines

files in the current NLS format and converty them to a
format using absolute addresses for pointers rather
than status tables.

216

III Command Specification
A, Command Specification in NLS
l. General
The command specification section of NLS is implementeaq in
an SPL designed to facilitate its description and
implementation.

The details of this language and its use in NLS are
explained in the following sections.

2. Registers in the command Specification Language

Two types of registers are used by the command specification
machinery: string registers and character registers.

Some of the registers gre used internally in the
implementation of the language, 8some are used as
specialepurpose registers for operations on certain types
of operands, and some are generalepurpose operand and
storage registers,

gonstructs in the inputefeedback SPL allow manipulation
of the string and character registers,

The principal defined operations for string registers
are LOAD and DISPLAY.

The contents of a string register are normally
designated in the SPL as the name of the register
immediately followed by an asterisk («),

A register may be assigned a value by a statement
of the forn

registersname *«* “g" expression,
EXamples of expressions are:

(1) The name of any of the string or character
registers

(2) The designation of a character, such as 8P
for space

{3) The character 0, meaning to set the string
to null

(L) A string of text delimited by T=pointers,

For example, LIT#30 clears the literal input

217

Appendix D: TECHNICAL DESCRIPTION OF NLS
III: Command Specification

Sec.

3.

register, while LIT#s (Bl B2) loads it with the a
text suring.

The contents of a register may be displayed in the
name area by the command of the fornm

"DN(" registerename "s»" n)n,

Thus DN(STN#) causes the contents of the statement
name register to be displayed.

The input character register is normally available to
the SPL programmer as a readeonly register, which
always contains the last character read from the input
string.

The contents of the register may be put inte a
string as described above, or displayed in the text
area by writing DT(C%).

In addition, the input character is implicitly
referenced in the case statement (described in Sec.
III-A=5 of this appendix).
Entity Character and Entity Stringj; Command Groups
The commands in NLS are classified in groups, and with each
group 1s associated a particular entity (such as character,
word, statement, or branch).

with this entity is associated a character called the
"entity character" and a string called the "entity string."

The entity character is programmatically assigned values in
the SPL by the construct

"E#a" character "," string.

This causes the entity character o be set o the value
of the character, and gassigns the value of the string to
the entity string,

Thus "E#sB,BRANCH" sets the entity character to "B" and
the entity string to "BRANOH."

The entity string and entity chiracter are used to provide 2
defgult option in command specification.

218

Appendix Dt TECHNICAL DESCRIPTION OF NLS
Ccommand Specification

Sec.

III:

L.

When the command operation (such as DELETE) has been
apecified, the entity string for the group of the
operation is offered as the type of entity for the
command, The user may accept this oy typing a "command
accept" character (CA) or specify some other entity by
typing the appropriate character,

The actual SPL constructs used to express this use of the
entity string and entity character are presented in a later
example,

Command State

EXcept when a command is being specified or executed, the
user i3 in some command state,

I£f the user begins parameter specification without first
specifying a new command, the command executed will be that
designated by the current command state,

The command state is defined internally by a special
register called the "state register,"

The state register always contains the location of the
nost recently defined command state,

This locatien is in the same format as a return
location placed on the stack in a subroutine call.

The state register additionally contains the command
group of the command state,

The SPL syntax for defining a command state is
"g#s" label ", command=group,

which results in g call to the state defining routine to

be produced by the compiler. The label is defined as

being equal to the address of this instruction.
From the command sState, control passes directly to a
parameter specification point in the program, which acts as
an idle or "wait for next input” point,

control returns to the highest level of the command

parsing code if the character read is not a legitimate
parameter specification character.

219

Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec. IIIt Command Specification

This is one of the most significant features in makineg
the command language efficient and easy to use,

The contents of the state register may he used as an operand
in designational expressions.

Thus, one may programmatically return to the previous
command state by the SPL statvement "GOTO [S]'".

There are Several occasions where this construct is used.

At any time during the command specification, a user
may return to his previous command state by typing a
“command delete® character (CD).,

From the above description of command state, it may
be seen that the action of a command delete is to
reset any parameters entered during the course of
tvhe aportved command and branch to the location
contained in the state register,

If a specification error occurs during the execution
of & command, the command is saborted and NLS is
automatically returned to the previous command state,

5. Command Parsing

The NLS input commands are parsed through the use of nested
case statements,

The depth in the nest of case statements corresponds to
the position of the next character to be regd in the
command input string.,

Thus if a command were gpecified by three characters,
the £irst character would be read by a firstelevel
case statenent, the second by a second-level case
statement, and the third by a thirdelevel case
statenment,

Two features of the case atatement construct in the
inputefeedback SPL make it especially suited for parsing
the command input strings,

The selection criterion for the execution of an
element of the case statement is equality of two
specified characters, one of which appears at the
front of the element, the other of which is implicit,

220

Appendix D: TECHNICAL DESCRIPTION OF NLS

Sec.

III: Command Specification

The implicit character is normally the last
character read from the input string. In addition,
it i8 possible to repeat a case (using a "HEPEAT®
construct) with some character other than the input
character,

In particular, the entity character may be useaq,
This permits the implementation of the command
default option mentioned above,

At the head of the case statement, the entity
string is used to offer a default value of the
command type, If the user types g command
accept, there is an element in the case
statement which is executed and results in
repeating the case statement using the entity
character in place of the input character,

The net effect is the same g8 if the user had
typed the entity character rather than a command
accept,

If none of the tests succeed, then an "ENDCASE"
statement is executed,

Whenever a case statement is executed, an entry is
made on a stack indicating the location of that case
statenent,

A construct in the repeat statement allows the
execution of g previous case statement with a
particular character,

The word REPEAT is followed by an integer indicating
which of the stgcked cases is to be repeated.

Thus REPEAT 2 causes the second previous case
statenent to be repeated,

The integer is in turn followed by a character
specitication in varentheses,

This may be any of the following:
(1) An actual character to be used, such as 8P

(2) 7The entity character (E%)

221

Appendix Di: TECHNICAL DESCRIPTION OF NLS
Sec, III: Command Specification

{3) The next input character, indicated by a
period,

A brief example of code for parsing an NLS~-like command
language is presented here,

It incorporates most of the SPL constructs mentioned in
this section, as well as some not mentioned.

The command language described here allows two groups of
commands, used for text editing and structure editing

respectively.
Four commands are specified:;
Text editing: (initial entity = character)
Insert Character
Insert Word
Structure editing: (initial entity s statenment)
Append Statement
Append Branch
(start) . case
(1) [textedit) dap(€ insert ¢ es») , case

(c) sw#mic,textedit dsp(¢ < insert character)
e#rc,character +parmspec,prmspc =comex,exectr

(W) sweiw,textedit dep(¢ < insert word) e#sy,word
+parmspec,prmspc =conmnex,exectir

(ca) repeat O(ex)
(cd) goto [s]
endcase goto stary
(a) (stredit)/ dsp(< append t es») , case

(8) swaic,svredit dsp(« ¢ append statement)
exus,statement +parmspec,prmnspc =comex,exectr

222

Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec. III: Command Specification

6.

(w) s#siw,stredit dsp(e ¢ append word) e#sw,word
+parmspec,prmspc =comex,exectr

(ca) repeat O(ew)
(cd) goto [s)
endcase goto start
endcase repeat O(,)
Parameter Specification

Paraneter specification is tnat portion of NLS wnich 1is
involved with the selection of operands for commands,

Operands may be specified by selecting locations and
entities in a file, by entry of strings from the keyboard,
or by the naming of pointers with the Keyset and mouse,

Specifications of entities in the file are represented by
one or more entries on a stack, called the specification
stack, (This is independent of the subroutine argument and
return stack.)

There is one entry on the specification stack for each
selection made in parameter specification,

A normal entry on the specification stack (spec stack
for shorv) is called Te=pointer (which consists of a
PSID and a character count).

An SPL construct facilitates the placing of areguments
onto the spec stack. The syntax is

"SPEC(" argument ")",

where an argument can be any of the followings
BUG: Process the most recent command accept as a
bug selection and place the corresponding T=pointer
on the spec stack

P0O8: Load the last bug selection onto the spec
stack.

string register: The action of this command depends
on the register specified, and the contents of the

223

Appendix D: TECHNICAL DESCRIPTION OF NLS

Sec.

II1:

command Specification

registver,

If the register is the number register, then the
numpber string in the register is converted to an
integer and pushed onto the spec stack as the
second werd

If the specified register is the statenment
number register, it converts the string in the
register (assumed to be a statement number) into
a PSID, and pushes it onto the spec stack

In the case of any other register, if the firse
character in the string is a digit, then the
content of the register is assumed to be s
statement number, otherwise, a statement nanme,
In either case the corresponding PSID is pushed
onto the stack,

Number: The integer indicated is pushed onto the
spec stack

Identifier: The value of the identifier is pushed
onto the sgpec stack

(no argument): This causes the spec stack to‘be
cleared of all entries.

A teXtual entity may be specified (effectively) only through
bug selection(s) or with & pointer,

A structural entity may be specified by bug selection(s), a
pointer, or keyboard entry of statement name(s) or
number(s),

In the case where the bug selection or pointer serves as
a text selection whiech indicates a string identifying the
statement to be specified (e.g.,, names, links), the
selected string is moved into a string register and
treated g8 though it were entered from the keyboard,

The algorithms for converting bug selections into T=pointers
are discussed in sec. IV=B=é=c of this appendix.,

A pointer is simply a Tepointer which has been given a nanme
and stored in a table,

It is specified by depressing the right button on the

22l

Appendix D:

Sec.

III:

TECHNICAL DESCRIPTION OF NLS3

command Specification

nouse, and entering the name of the pointer with the
keyset.

When a pointer has been specified, the associated
T=pointer is simply loaded into the internal register
containing the (processed) mouse location, making it
appear as though a bug selection had been made.

A Statement may be selected from the keyboard by typing
either the statement name or the statement nunmber,

A statement number is converted intec a PSID for a
T=pointer by simply running through the ring at each
level (beginning with level 1) until the specified
statenment is reached, or found to be non=existent.

A statement name is converted into a Twpointer by running
through the ring, looking for a statemnt which has a
name, and whose hash is the same as the hash of the nane
being searched for,

In the case where an operand is a textual entity which is
entered from the kKeyboard, there need not be an entry on the
specification stack for it,

Rather, it will go directly into a specified register,
and be used in that form for the command.

It should be noted that the selections of textual
entities in the file are processed during execution of
the command ao that (when appropriate) the textual entitvy
i8s put into a register in the same form it would be in if
it had been entereqa from the keyboard,

subroutine calls and Parameter Passing

The suybroutine call mechanism in the SPL is very similar to
that used by ALGOL. It uses a stack for containing return
information, parameters, and local variables,

Because of the overlay structure of NLS, it 1s necessary
to indicate in a subroutine call not only the address of
the routine being called, but additionally the name of
the overlay in which that routine resides,

The name of the overlay containing the calling routine

is stacked with the return location, so that the
appropriaste overlay may be relabeled in upon return,

225

Appendix D3

TECHNICAL DESCRIPTION OF NLS

Sec. III: Command Specification

There are two types of subroutine calls, which differ in
the return locations placed on the stack,

The return location stacked by a normal suproutine
call is the address of the location following the
calling instruction,

The other subroutine call stacks the return location
of code whieh will return NLS to the previous command
state.,

The format and operation of the stack (and suproutine
call mechanism) are roughly as follows:

The stack is addressed by two pointers, one t¢ the
current base and one t0 the stack Lop.

A suproutine call instruction is always preceded by a
"mark stack" instruction.

The "mark stack" instruction pushes the contents of
the base~of=gtack pointer onto the top of the
stgck, followed by a zero (which will be used by
the actual subroutine call for the return
1ocation);

The tope=of=-stack pointer is incremented
accordingly, and the base=of=stack pointer is set
t0 point to the new top of the stack (which will
eventuglly contain tne return location).

Formal parameters are now loaded onto the top of the
stack,

If an overlay has been specified in the subroutine
call syntax, a cell is set 1o reflect the overlay
containing the procedure peing called,

Note that the actual progranm relabeling is not
changed at this time,

The subroutine call is now executed,
The return location 1s computed.,
This is 3 combination of the calling address and

the name of the overlay containing the
supbroutine call instruction,

226

Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec, ITI: Command Specification

8.

This is true except in the case of the
special subroutine call wnhich returns to the
previous command state,

In the special subroutine call, the contents
of the state variable (which in fact is the
return location for the previous state, as
computed above) are used as a return
location,

The return location is stored in the cell
pointed to by the base-of=-stack pointer,

Finally, the overlay containing the called
procedure is relabeled in if necessary, and a
branch i1s made to the address indicated in the
subroutine call,
The syntax of a subroutine call in the SPL is
("e" / "e") procedure=-nagne ("," overlay=-name / EMPTY),

where " / EMPTY" means the construct before the slash is
optional,

In addition, parameters may be specified by listing them in
square brackets after the call., Individual parameters in
the parameter list are separated by commasd,

The "+" indicates a normal suproutine call, and a "=*"
indicates g special subroutine call which returns to the
previous command state,
If no overlay name is specified, an overlay which is either
the overlay containing the ealling procedure or an overlay
above it in the overlay tree is assumed, and thus no change
is made in the relabeling.
An exagmple of a subroutine call is
+subpat +war2,txtedt(pbl,pl=4) =qdv,txtedt.

Input Machinery

&, Work Station Input from Keyboard, Kevset, and Mouse

Characters are read from the work station by a systen
routine in the following nmanner:

227

Appendix D: TECHNICAL DESCRIPTION OF NLS
IIIs Command Specification

Sec.

De.

Whenever a button on the keyboard, keyset, or mouse
changes state, the TSS I/0 software considers it a
characuer entry, and places the following information
into its input buffer.

(1) The device wnhich caused inout

{(2) A code which is the input itself;
{(a) A character in the case of the keyboard
(b) A code in the case of the Keyset

(c) A down/up and button indication in the case
of the nouse

(3) The mouse coordinates at the time the
character was read

(4) The time (16 millisecond resolution) when the
character vwas read.

A gystem call is then used by NLS for reading tne
characters from the system input buffer, which returns a
character {(and related information as described above) if
there is one, and reports the status of the system input
buffer (empuiy, another character waiting in input buffer,
no character read),

Input Fork

Because ¢of the necessity to read characters from the
systenm input buffer so that it does not overflow == and
more important, to provide a facility to interrupt NLS
while it is executing a long process == a fork is
activated to run asynchronously in parallel with NLS.

This fork may be conceptualized as an independent progran
(called the input fork) which reads characters from the
work station and places them in a programmatic input
buffer to be read later by NLS,

NLS always reads characters from the programmatic
input buffer before reading them from the system, and
when it i8s reading a character from the system, it
checks to ascertain that the input fork is not reading
the sagme character,

228

Appendix D: TECHNICAL DESCRIPTION OF NLS

Sec.

ITI: Command Specification

The input fork additionally has the capability to
interrupt NLS from the process it is currently involved
in, and it does so when it reads an interrupt character
(RUBOUT) from the keyboard,

Since NLS always reads characters passed to it from the
input fork pefore reading those waiting in the systen,
and there is no restriction on where the input fork geis
the characters it will pass to NLS, the input fork may bpe
used to simulate an NLS user,

A 9imple facility is currently provided along this
line, whereby the input fork can read characters from
a file, and (with a minimum of translation ana
interpretation) pass them on to NLS.

This feature is used mostly for merging and
converting sequential files into NLS files.

Ce Character Translation

The Keyset and mouse input requires translation from its
ravw input form to a character which is meaningful to NLS,

The Keyset input is in the form of a number (0=31)
which reflects the kKeys depressed (and released) on
the Keyset.,

This is combined witnh the current state of the left
and middle nouse puttons (which provide a case shifv)
to produce the translated character.

The translation algorithm is roughly as follows:
If both mouse buttons are down (case 3) then this
is a view specification character, so treat
specially.

QOtherwise, use the keyset character as an index
into a table of character values,

This table of character values has three entries
for each possible Keyset value, one for each of
the remaining cases,

The case is then used to determine the correct
table entry as the translated character,

229

Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec, III: Command Specification

Additional translation is done when characters are
entered from the mouse without concurrent entry from the
keyboard or keyset.

This translation simply looks for combinations of
up/down strokes of mouse puttons without intervening
characters, and translates them to specific
characvrers.,

This is used for the command accept, conmand delete,
backspace character, and backspace word characters,

9. Output (Display) Machinery

b.

General

NLS communicates with the user via a display screen
divided into six areas.

Each areg is maintained separately of the others, and
contains a specific type of information.

The organization of the registers on the display screen,
and the format of the registers themaselves, are
parameterized,

There are many paraneters which relate specifically te
certain registers, and some parameters which relate o
all registers. Among the parameters relevant to all
of the registers are:

location on screen

character size and type used in register

display of register on/off
Insofar as possible, these parameters are the display
control words used by the hardware, This minimizes

the software required for controlling the screen
format.

View Areas

Echo Register

The echo register is maintained by the system and
reflects the raw character input to NLS.

230

Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec, III: Command Specification

NLS 1s concerned with this register mainly at
initialization, when it must be set up by a series of
system calls.

(2) VIEWSPEC Area

The view specification (VIEWSPEC) area reflects those
text area view parameters which are not obvious from
looking at the text area.

The VIEWSPEC area is changed by the same routine wnich
changes the view parameters themselves,

(3) Ccommand Feedback Line

The command feedback line is the major feedback
mechanism of the command specification machine,

There are Lwo components in the command feedback line
words which reflect in English the command being
specified, and an arrow which indicates the user's
state in specifying the command (the arrow most
commonly indicates whether the user may specify a new
command or parameters, or whether he is currently
specifying an entity).

There are three possible positions to which a word may
be moved in the command feedback line:

First position: This causes the command feedback
line to be cleared, and the designated word to be
displayed as the first word in the line,

NeXt position: This aprends the designated word to
the end of the command feedback line,

Last position: This replaces the last word in the
command feedback line with the designated word,

The arrow may be pointed to the beginning of the word
in a specified position in the command feedback line,
or it may be turned off.

The SPL construct provided for the manipulation of the
command feedack line is

"DSP(" display=parts ")*,

231

Appendix D:

Sec.,

TECHNICAL DESCRIPTION OF NLS

III: Command Specification

(L)

where the syntax of a display=part is

word / "ES*" / "C" word / "..." word / "e" / nav,

The DSP command rearranges the command feedback line
80 that it is formatted in aceordance with the
display=parts.

The meanings of the display partvs are as follows:

word: A string equal to the text of tne the word is
placed in the indicated position in the command
feedback line

"ES#"3 The contents of the entity string are
displayed in the indicated position in the command
feedback line

<" words The word is placed at the left of the
command feedback line

".se" Word: Replace the last string in the current
command feedback line with the word

"«" : Position the up=arrow to the front of the
command feedback line.

"s% 3 position the up=arrow at the start of the
following string in the command feedback line,

There are three additional intrinsic functions which
are used in relation to the command feedback line,
These are

AF Turn off display of arrowv
AN Turn on the display of the arrow

QM Display question mark beside the arrow,

Name Register

The name register is used for displaying statement
names and arbitrary strings relating to paranmeter
specification.

An SPL function is provided which moves the contents
of an arbitrary string register to the name register,

232

Appendix Dt TECHNICAL DESCRIPTION OF NLS
IIIl: Ccommand Specification

Sec,

Ce

The syntax is "DN(" register "),
(5) Date/Time Register

The date/time register always reflects the date and
time.

It is updated every 10 seconds by a fork (similar to
the input fork in its relation with NLS) whose sole
Job is to read the date and time from the systenm,
place it in a core location, and dismiss itself for 10
seconds.

(6) Text Area

The text areag serves as the user's window into his
file.

what 18 displayea in the text area is a view of the
user's file, subject to certain formats and
reorganization, which is described by a set of
parameters (called view specifications or
VIEWSPECS).

The creation of new views is programmatically caused
by the display SPL construct "DISPLAY("
optional=paraneter "*)",
If there is g paraneter, it is used to deternmine
the PSID of the starting statenment for the view
creation,

The process of creating a view of the file in the text
area is discussed in Sec., IV-R=6 of this appendix,

Literal Feedback

when a literal string is entered as a part of parameter

-specification, it is placed in the text area (beginning

at the top) according to the format of the text area.

The part of the file view which was previously in the
space used py the literal feedback is temporarily
replaced by the feedback.

B. Command Specification in TODAS

The TQDAS command specification system is much simpler than

233

Appendix D:

TECHNICAL DESCRIPTION OF NLS

Sec., III: command Specification

that of NLS, insofar as it does not use the state macnine and
no command state is defined other than the null command RESET.

1.

2.

Command Feedback

The command language input string is parsed py case
statements in a manner similar to NLS.

The command feedback may best be descrived as complex
character echoing, where each command specification
character is reflected by the typing of approvriate words
and the state of the command specification is indicated by
the position of the carriage.

AS in NLS, the user has the apvility to control parameters
relating to the command feedback, including the numper of
characters of each word echoed,

Input Machinery
Much of the NLS input machinery is used by TODAS.
There are, however, some differences:
Because of the asllowance which the system makes for an
interrupt character (RUBOUT), ana the fact that the
systen teletype buffers are larger than the system work
station pbuffers, an input fork is not required.

one may still ve used, however, in special cases such
as sequential file input,

All characters read by TODAS undergo a translation on
input,

This facilitates the effective interfacing of TODAS to
a number of input devices (six different types of
typewriter terminals are currently provided for).

The character translation is accomplished by a
table look-up technique (the table is indexed by
the raw character value).

The result of the lock=up may be a normal text
character, or it may be a special character (which
is indicated by the higheorder bnit),

In the event that it is a special character

234

Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec, III: Command Specification

(command accept, command delete, shift character,
centerdot, etc.), an appropriate action is taken if
necessary. The character may be echoed (as some
previocusly designated character), and it may be
specially flagged as a control character,

There is, in addition to straight character
translation, a facility to define shift characters
which allow devices with restricted character sets
(e.g. upper case only) to work with full character
sets,

Four shift modes are currently defined in TODAS:
Null: No shifting takes place

Mode O: Upperw=case alphabetle characters are
translated to lower case

Mode l1l: lower=case alphavetic characters are
translateda %© upper case

Mode 2: lower= and upper=case alphabetic
characters are translated to control case

TODAS is in one of these modes (as a base mode) at
8ll tines,

The mode may be changed (either temporarily or
permanently) by typing a character which has been
defined as a shift character for the new mode.

There are currently three types of mode=shifting
characters:

Character shift: This causes the following
character to be translated according to the
mode for wnich the shift character has been
‘defined, if it 193 a character which would
normally have been translated in either the
base mode or the shift mode, 1If the
character would not have been translated,
then the shift character is treated as a
normal character,

Word shift: This causes the following word

to be translated subject t0o tne same rule as
given above for character gnift -- i,e,, if

235

Appendix D: TECHNICAL DESCRIPTION OF NLS
III: Command Specification

Sec.

3.

Printing

the next character is translatable, the word
is traslated; otherwise th shift character is
treated as a normal character,

Permanent shift: This causes the base mode
to be changed, and all subsequent characters
are translated according t0 the new mode,

The shifting 1s accomplished in the following
manner:

a permanent shift character is read at any

time, the shift mode is changed and another
character is read normally.

If & worde=shift or character-shift character is
read, the next character is read from the input
string.

If the next character is a shiftable
character, then the shifting is performed,
and the shifted character is tne result.

If the shift character is for a word
shift, then a global parameter indicating
the current shift state is set
accordingly, and will not be reset until a
space 1is read.

If the next character is not a shift
character, it is returned to the front of the
input string and the shift character is
retvurned as & normal character,

printing of a structure in TODAS is analogous to creating a
new view for the text area in NLS, insofar as the same view
specifications are used for interpreting and formatiing the

file.

Three differences are apparent:

The text agrea is of unlimited length, so that a whole
file may be seen in one view. Pagination is perfornmeaq
when a3 long view is created.

TexXt undergoes gn output translation and shifting

236

Appendix D:

Sec,

ITI:

TECHNICAL DESCRIPTION OF NLS
Command sSpecification

which 18 a counterpart of the translation and shifting
done on input.

The user ha® a degree of interactive control over the
view being created, specifically:

- The creation of a view of any varticular statement
may be aborted at any tine,

The creation of the entire view may be abortedq at
any tinme,

Implementationally, formatting routines different fron
those used by NLS are employed.

The output is formatted one line at a time, and the
printing of an entire statement must physically finisn
before the first line of the next statement will be
printed.

This restriction is necessary bdbecause TODAS must
know which statement is currently being typed in
order to respond properly to the user's request to
abort the view of the stagtement,

The same sequence generator is used, but the structure
being printed is searched one branch at g time (except
in the case of trails and keyvord),

Parameter Specification

Paraneter specification differs from NLS in three important

All specitfication must be done via the keyboard.

A "eurrent statement" is defined as an operand at all
tines,

The execution of any command without a specified
operand assumes this statement as an operand.

The current statement is represented internally as a
¢cell containing the PSID of the last statement
addregssed in the successful execution of a command,
It is updated each time a command is successfully
executed,

237

Appendix D: TECKNICAL DESCRIPTION OF NLS
Sec, III: Command Specification

The one exception to this is that during printing,
it is set by the print routines to the PSID of tne
last statement printed.,

Operands (statements) may be addressed relative to each
other in the tree structure of the file.

For example, one may specify a statement which is the
"successor of the down of the tail" of the current
statement == i.e,, the successor of the first
substatement of the last statement in tne same plex at
the same level as tne current statement,

The relative addresses of operands are interpreted as
they are entered by accessing the ring (as necessary).
Any error is reported immediately, and nullifies the
entire address (except in the case of links).

Links are parsed whenever they are referenced in an
address field, and executed immediately after
selection. That is to say, wnen a link is
encountered in an address field, the current
statement is changed immediately to reflect the
value indicated by the 1link,

238

IV command Algorithms

A. Editing

Editing in NLS includes textual, structural, and graphical
modifications to the file,

1.

The textual and structural edlting actions include insert,
move, replace, delete, and ¢opy. These actions may be
performed on textual entities sucn as characters, words, and
visible strings, as well gs structural entities such as
statements, branches, groups, ana plexes,

The graphical editing actions include insert and delete for
vector labels, and insert, delete, move, transpose, and
vertical and horizontal projection for vectors,

Text Editing
a. General Considerations

The process of textuUal editing will be discussed first.
This process basically consists of delimiting the
appropriate substrings, by means of the content-=analysis
SPL, followed by construction of one or more new
statements with the desired modifications. This latter
step is specified by a procedure written in another SPL,
the string=-construction SPlL.

These contenteanalysis and string=construction procedures
are written in such a2 way that in spite of the large
number of combinations of editing actions and textual
entities, there is a single content=gnalysis procedure to
delimit each entity and a single string=construction
routine to perform each action,

This is done by standardizing the way in which a
subpstring is delimited by the contenteanalysis
procedures,

Four pointers are passed to the procedure as
argunents, along with one or two selections made by
the user,

Wwhen the procedure returns, the appropriate substring
is delimited by the pointers in the following manner,

The f£irst and second pointers mark the first and
last characters of the subsatring, respectively.
The third and fourth pointers mark the characters
to the left and right of the substring,
respectively,

239

Appendix Dt TECHNICAL DESCRIPTION OF NLS

Sec.,

Iv:

Command Algorithms

Thus i1f Pl, P2, FP3, and P4 are the arguments, the
characters from the front of the statement up to P3
precede the desired substring, the characters from
Pl to P2 are the substring, and those from PhL to
the end of the statement follow the substring.

A detailed description of the word-delimiter routine is
useful to clarify this process,

There are five arguments; the first is the position of
the user's selection, the remaining are pecinters to pe
used to delimit the actual text of the word in tne
manner described above, The body of the procedure is
simply

al > CH $LD ta3 tab «¢a3 al < CH 8LD fta2 tal ea2

which has the meaning "starting from the selection
{al) scan to the right (>) past a character (CH) and
any number of letters or digitvs (3LD). Set a3 and as
t0 the resulting position (ta3 taS) then move a3 back
(¢#a3) so that it points to the last character of the
word. NoOW reset the search pointer to the selection
(al) and scan to the left (<) to set a2 and ak (ta2
tal «a2)."

Once the substrings have been delimited in the above
manner, new statements are constructed under the control
of procedures written in the stringeconstruction SPL.

The syntax of a statement in the stringe-construction SPL
is as follows:

scstat = "IF" posrelation "THEN" acstat "LLSE" scstat
/

"BEGIN" scstat $("3" scstat) "END" /

"ST" pos "e' pairlist;

The position and position=relation constructs are the
same as in the contente-analysis SPL.

A pairlist is a list of pairs, in this case Separated by
commas.

A "pair" specifies g string of text, usually by giving
two positions whiech delimit the string.

240

Appendix D: TECHNICAL DESCRIPTION OF NLS
Command Algoritnnms

Sec.

Iv:

De

In addition the "pair" can be a constant strine or the
contents of some variable string such as the literal
input register.

The megning of "ST pos ¢ pairlist" is "The statement
pointed to by pos is constructed from the strings
specified by the items in the pairliist.”

Thus, assuming that the pointers have been set as
described above, "ST Bl ¢ S¥(Bl) P3, PL SE(Bl)" would
cause the text froem Pl to P2 to be deleted from the
statement selected py Bl.

The "move" procedure offers a more complex example, The
procedure has ten arguments; al and a2 are the user's
selections, a3 through aé are the pointers associated
with al, and a7 through al0 are the pointers for a2. The
pody of the move routine is

IF SF(al) = SF(a2) THEN BEGIN
IF al < a2 THEN
ST al e SF(al) ak, a7 a8, aé a9, al0 SE(al)
ELSE
ST al ¢ SF(al) a9, al0O ahk, a7 a8, aé SE(al) END
ELSE BEGIN
ST al ¢ SF(al) ak, a7 a8, a6 SE(al);
ST a2 ¢ SF(a2) a9y, alo SE(a2) END

The pair a7 a8 delimits the text to be moved. The
positions a9 and alo will pecome adjacent when the text
from a7 to a8 is moved, The destination of the text
between a7 and a8 is after al and before abé, The reader
should convince himself tnat the apbove procedure does
this in all cases,

Inplementation

The code compiled for string-construction SPL routines
consists mainly of calls to MOL procedures,

At the start of the code for a pairlist there is a call
10 a procedure called BSC (begin string construction) and
at the end of the pair 1list there is a call to ESC (ena
string construction), For the actual items in the
pairlist, procedures are called which append the
appropriate strings onto the statement being constructed,

The BSC procedure must create g new statement data block

241

Appendix D: TECHNICAL DESCRIPTION OF NLS

Sec,

Iv:

Command Algorithnms

(SDB) to hold the text of the statement beine
constructed., Since the final size of the statement is
not known at the time BSC 1s called, the average size of
SDBs in the file is used as an estimate of the number of
words required for the new SDB.

The search for the required amount of room begins in
the file block containing the old sSDB, if there was
one,

If there is not adequate room there, then the
procedure looks for room in the file blocks, starting
with the lowest index numbper,

This ensures that if there is room in a block
already allocated, then that room will be used
rather than causing a new block to be allocated,

The procedure ISROOM is called to deternine whether
there is adequate room in a given file block.

If the block 18 unallocated, then ISROOM returns
TRUE.

If the block is allocated and contains adequate
free 8storage, then such information is held in the
status table, RF&S. This avoids the possibility of
reading a file block only to find that it does not
contain adequate roon,

If the block does not contain adequate free
storage, but does contain garbage SDBs (also known
from RFBS), then ISROOM calls the garbage collector
t0 process the block,

Ggarbage collection involves moving nongarbage
s§DBs to £11) in the gaps occupied by garbage
SDB8 and updating pointers in the ring elements
corresponding to the moved SDBs.

If this produces enough room, then ISROOM returns
TRUE; otherwise it returns FALSE.

After sufficient room has been found by the above
process, the BSC procedure builds a header for tne new
SDB and then sets up a work area for the subsequent
string transfers that will take place during the
construction of the statement, This work area

22

Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec., IV: Command Algorithms

Ce

contains information such as the address of the SDB,
This completes the tasks of BSC, and it returns,

The actual construction of the new statement consists of
aprending characters onto the new SDB,

For those parts of the statement that remain the same,
the text is read out of the old SDB into the new, New
parts of the statement are simply characters from
other sources, such as literal input or other SDBs,

The observant reader will realize that it is possible
to run out of room while appendaing characters,

If this happens, the block is garbage-collected,
If this results in roonm for at least 60 more
characters, then the SDB under construction is
simply moved in with the same file block to make
more roonm,

If garbage collection of the file block cannot
produce that much more room, a location in a
different file block is found that does provide the
required space, The partially constructed SDB is
then moved to this new location,

When all the strings have been appended to the SDB, the
procedure ESC is called to finish the Job.

IV first gets rid of the old SDB for the statement,
then does the pookkeeping %0 establish the new SDB as
the SDB for the statement, This involves updating the
SDB header, the running average length of SDB's, the
pointer in the statement's ring element, and the name
hash for the statement in the ring element.

In addition the '"econtent analyzer pattern tested" flag
for the statement is turned off (see Sec. II=B~2-c of
this appendix).

This completes the construction of a new statement and
our discussion of text editing in NLS,

ContenteaAnalysis SPL

In NLS it is often necessary to anglyze the textual
content of a statement in order to delimit certain
substrings,

243

Appendix D: TECHNICAL DESCRIPTION OF NLS

Sec,

IV:

Command Algorithms

For example, the user may select a word of text for
editing by pointing to &ny character witnin the word.
The actual substring making up the word is determined
by NLS.

A special language, the contenteanalysis SPL, is used for
writing such string delimiting procedures,

Basically, the language provides constructs for
controlling the position of a search pointer in a text
string and saving various positions in order to aelimit
the desired supstrings, (In the discussion of the
content analysis SPL, position refers to a statement
identifier and character number == in other words, a
T=pointer as defined elsewhere,) .

The initial position of the search pointer is often
determined by a selection made by the user., The
positions of such selections are stored in buffers 381,
B2, etc.

Pointers Pl, P2, ... May be used to store positions, The
current position of the search peinter can be stored in
Pn by writing ¢tPn.

Arguments may be passed t0 a content analysis procedure,
Such arguments are either bug selections (i.e. Bn) or
pointers (i.e. Pn). Since the procedure must be able to
Set the pointers to appropriate values, these paranmeters
are called by (simple) name rather than by value, The
formal parameters are Al, A2, etc.

The three forms, Bn, Pn, and An, are the basic ways of
referencing a position., 1In addition, there are uiwo
functione taking a position as argument and yvielding a
position as result, These are SF and 8E, which give the
position of the statement front and statement enq,
respectively, of their argument.

The position of the search pointer can be set by simply
writing any of the above forms to determine a position,
For example, "SF{(Bl)" puts the search pointer at the
first character in the statement first selected by the
user,

The search pointer is also moved by tests for basic text

elements, The basic text elements are strings, single
characters, and character class variables,

24

Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec, IV: Command Algorithms

A string is a sequence of characters delimited by
quote marks (").

If the string matches the sequence of characters
starting at the current location of the search
pointer, then the search pointer is moved to the
next position bpeyond the string and a general flag
is set TRUE.

If, on the other hand, there is only a partial
match, or no match, then the search pointer is not
nmoved and the general flag is set FALSE.

The test for a single character is logically
equivalent to testing for a string of length one, but
is implemented in a more efficient manner. The single
character is specified by preceding it with an
apostrophe,

The implementation of these tests makes use of the
programmed operator (POP) facility of the S540.

For the single character test, the computer
produces a single instruction in which the address
field contains the code for the character and the
rest of the instruction specifies the POP to
perform the test.

similarly, the string test results in an
instruction specifying the number of characters in
the string and the appropriate POP, followed by
words containing the actual string.

The basic text elements of the third type == the
character class variables =-- are also implemented
using a programmed opergtor, The character class
variables zllow tests for any character in a
particular c¢lass. The ¢classes, with their associated
variable names, are as followsi

LD any letter or digit

L any letter

D any aigit

NP any nonprinting character

2y5

Appendix D:

sSec.,

Iv:

TECHNICAL DESCRIPTION OF NLS
Command Algorithms

PT any printing characver
SP space

TAB tab

CR carriage return

CH any character

These tests are implemented in a manner very similar
to the single character test, excepl the address field
of the instruction contgins a class code rather than a
character code,

The successful completion of one of the above tests
causes the search pointer to be moved, The direction in
which it is moved, towards the end of the statement or
the frontv, may also be controlled.

A "»% means scan (move pointer) to the right, or
towards the end, while "<" means scan left.

As mentioned above, the current rosition of the search
pointer can be saved by writing "¢" followed by either Fn
or An,

In addition the value stored in a buffer can be modified
to point to the preceding character, according to the
current scan direction, by writing "e" followed by Fn or
AN, :

The reason for this operation is that when an entivy
has been successfully found the pointer is left
pointing to the character beyoend the entity. Thus to
Save the position of the last character in the entity
it is necessary to write tPnePn,

The remainder of the language simply provides for
building more complex expressions from the basic text
elements presented above,

One of the primary means of doing this is the
arbitrary number operation. The general form of this
is n8én followed by a text expression and has the
megning "from m to n occurrences of the given
expression,"

246

Apprendix Dt TECHNICAL DESCRIPTION OF NLS
Sec, IV: Command Algorithms

Both the upper and lower bounds are optional, with
default vailues of 1000 and O respectively.

This is implemented in the following manner.

The upper and lower bounds and a count,
initislly zero, are pushed on the stack., Then
the test for the expression is repegted until iv
fails, with the count oeing incremented at the
completion of each successful test,

Wwhen the test for the expression does fail, the
current value of the count is checked against
the bounds and the general flag set accordingly,

The other operators, in order of decreasing
precedence, are as follows:

= (minus sign): indicates negation.

After the test for the text exXpression following
the minus sign, the value of the general flag 1is
complemented,

(space): indicates concatenation.

After the test for each element in a sequence of
concatenated tests, the general flag is tested.
If it is false, then the preceding element was
not found and control branches to the location
following the current sequence of
concatenations, If the flag is true, then the
next test in the sequence ias performed.

/ (slash): indicates alternatives,

If the expression on the left of the slash is
found, then control branches beyond the sequence
of alternatives, Otherwise, the search pointer
is reset to its position prior to the test for
the previous alternative and the nextu
alternative in the sequence is tested.

NOT: indicates negation,

Equivalent to minus sign except for lower
precedence, :

247

Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec, IV: Command Algorithms

AND: dindicates logical conjunction.

If the expression on the left of the AND is not
found, then control branches beyond the
expression on the right of the AND. Otherwise,
the searech pointer is reset to its rnosition
prior to test for the left expression and then
the right expression is tested,

Ok: 1indicates logical disjunction.

Like AND except branch if flag true instead of
false,

Any expression built using the above operations may ne
enclosed in parentheses and used as a basic element in
a concatenation,

similarly, any such expression may be enclosed in
square brackets and used as a basic element. The
effect of the square brackets is to "unanchor" the
scan. In other words, as long as the test fails, it
is repeated starting one character tarther along in
the statement until either the statement is exhausted
or the test succeeds. :

Thus ["abc")] is satisfied if tre remaginder of the
statement contgins tne suring "abc'".

Finally, a conditional statement is included in the
language to allow a pattern to pe selected for testing
on the basis of a comparison of positions,

I2 two positions are in different statements, then
all relations between them are false except "not
equal." Othervwlse, the relationship depends on the
character number of the position, For exanple, if
Bl and B2 are in the same atatement, Bl pointing to
character number 3 and B2 to character numper 20,
then Bl 1s less than B2,

This completes the description of the content-analvsis
SPL.

2, Structure kKditing

Like text editing, structure editing consists of a phase in
which the entity to be edited is delimited, followed by the

248

Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec, IV: Command Algorithms

actual editing action,

since the structural entities "branch" anda "plex" are simply
special cases of the group entity, the editing routines all
deal with either a single statement or a group.

The delimiting for the move and delete commands is the sane,

In all cases a group, specified by two PSiD's, is the
£inal entity on which the editing action is performed,

For a branch the two PSID's for the group are set to
the PSID of the selected statenment,

For & plex the PSID's are sget to the head and tail of
the plex of the selected statement,

For a statement, a test is made to ensure that the
statement has no substructure, after which it is
treagted like a branch, (If the statement does have
substructure the command is aborted,)

Finally, if the specified entity is a group, then the
two selected statements are checked to verify that
they do in fact specify a valid group.

ongce the group has® been delimited, the move commands perforn
the following sequence of operations.

First, the destinagtion is checked to make sure it is not
within the speecified group. The command is aborted if it
is,

The group is then removed from the ring structure by the
appropriate changes in pointers and flags in the ring
element ©of the predecessor (ana possibly the successor)
of the group, The group is then reinserted into the ring
in its new location through another set of changes in
pointers and flags. Notice that no text is moved and no
statement identifiers are changed, The only changes are
in the successor and substatement fields and the head and
tail flags of four or five ring elements,

The execution of delete commands naturally results in
greater changes, The group is first removed as in the nove
operation, Then the statements making up to the group are
deleted according to the following algorithm expressed in
MOL.

249

Appendix D¢

TECHNICAL DESCRIPTION OF NLS

Sec, IV: Commana Algorithms

3.

dlegrpl; %start with the first statement in the group®
LOOP BEGIN

WHILE (d2 « getsub(dl)) NOT= A1 DO BEGIN
%dl has substructure%
stosub(dl,dl): %change sub~pointer

S0 that dl no longer apvears to have
substructure®
dl ¢ d2 %more to sub% END;

%when exit the WHILE statement,
d2 equals 4l and has no substructure %

dl ¢ getsuc(dl); %move dl to the successor,
which will be back t0 the "father" statement
when all of its descendents have been deleted%

relst(d2); % release SDB for d42%

frersv(d2); % free ring element for d2%

IF 42 = grp2 DO=SINGLE RETURN END;

%finished when have deleted top statement of last

branch in group%

Note that since the successor of the last statement in g
plex is tne father of the plex, no stack is needed in the
above algorithm. Also note the manner in which the
sub=pointers are modified to guide the traversal of the
group,

AS might be expected, copying a group is more complicated
than deleting one since the structure cannot be modified
during the process,

In very simplified form, the copy group algorithm is as
follows:

Starting at the first statement in the group, if the
statement has substructure, copy that f£irst; then copy
the statement and move to its successor until the last
Statement in the group has been copied,

when the group has been copleda, it is inserted in the
appropriate position in the ring in the same manner as 2
group being moved is reinserted into the ring.

Graphics Editing
Blocks contgining picture information are virtually
indentical to those containing text information. The main

difference is the replacement of statement data blocks by
vector data blocks (VDB'S).

250

Appendix D: TECHNICAL DESCRIPTION OF NLS

Sec,

IV: Command Algorithms

A vector data block is made up of a heagder and an arbitrary
number of lines and labels making up a picture,

The header contains much the same information as is held in
the header of an SDB. 1Instead of character counts, however,
the VDB header contains a count of the number of lines in
the picture,

Following the header is a sequence of two=word buffers, each
representing a line in the picture,

The first word gives the position of one end of the line
relative 10 the lower left=hand corner of the text of the
statenment.,

The second word gives the position of the second end of
the line relative to the first endpoint.

Following the puffers for the lines, each label in the
picture is stored as g position (in the same format as the
first word of g line buffer) gnd a text string.

The current vector package was developed on a trial basis
with a relatively small programming investment, As a result
of this, the only graphic entities available are lines
(vectors) and labels, A more sophisticated graphics systen
has been designed but not yet implemented.

Selection of these entities is handled in the followine
manner.,

Line selection is done by finding the line that minimizes
the difference between the sum of the squares of the
distances from the endpoints of the line to the bug
selection and the square of the length of the line,

This is a practical algoritnam since the nunber of
lines involved is small (under 100).

Label selection is done by finding the label that
minimizes the square of the distance petween the bug
selection and the second character of the lavel,

The "move vector" command will be explained as an example of
vector editing.

This command allows the user to move one end of a line to
& nevw position,

251

Appendix D:
IVv: Command Algorithms

Sec.

TECHNICAL DESCRIPTION OF NLS

When the line is selected, the end that is closer to the
selection is offered as the end to oe moved, The user
May request tc move the other end instead by entering a
backspace character,

The next selection by the user specifies the new location
for the end which is to be moved,

Let end=) be the end specified by the first word of the
line vbuffer, and end=2 pe the end specified by the
second.

If end=-2 is tc e moved, the second word of the puffer 1s
replaced by the vector from end-l to the selecteq
position,

If end=l i8 to be moved, then the secnnd word of the
buffer is replaced by the vector from the selection to
end=2, and the first word is replaced by the vector fron
the lower left corner of the text of the statement Lo the
selection.

The other vector editing commands are implemented similarly.

B. View Control

1.

Jumps and Links

The Jjump and link machinery is used to select statements to
be displayed at the top of the texteviewing area of the
screen. Generally speaking, jumps are made within a file
and links are used either within or petween files, Jumps
may be made relative to the structure of the file, to
specific statements, or relative to the jump or link ring.
Links are t¢ a dynamically determined location in a
particular user's file, and can specify that display
parameters are Lo be set when the link is taken,

The Jjump ring represents the chronological history of the
last five Jjumps made within the current file, xach entry
in the ring contains the PSID ©f the display=start

tatement and a word representing the display parameters,

The link stack represents the last few links that have
been made, and is only updated if the 1link is to a
Statement in another file, The entries in this stack
contain the usert's numper, the file name, the PSID of the
display=-start statement, and a word representing the

252

Appendix D: TECHNICAL DESCRIPTION OF NLS
Command Algorithnms

Sec,

Iv:

2,

display parameters,

code written in the content=analyzer SPL is used to locate
and parse links. The four optional fieldas of the link are:

user nane

file nane

location within the file

display paranmeters,
In parsing a link, those fields which exist are delimited by
pointers, which are subsequently used by routines to effect
the link.
Sequence Generator
The collection of routines known a8 the sequence generator
is used to generate a sequence of statements starting from a
given PSID and governed by the current view parameters,
The sequence generator work areaz is used to maintain
information controlling the sequence, This work area is
updated by the sequence generator whenever it is called,
The Wwork area includes the following:

(1) PSID of current statenment

{2) Maximum and minimum level numbers for statements to
be included in the sequence

(3) current statement's level

(L) Address of Statement Vector Work Area (SVWA)
(5) Address of last cell in SVWA

{6) Address of current last cell used in SVWA.

If statement numbers are being generated, the statement
vector is generated for the statement in the SVWA.

The stzgtement vector is a list of words, starting with

the level of the statement and followed by entries
containing the position of the statement in the

253 .

Appendix Dt TECHNICAL DESCRIPTION OF NLS

Sec.

Iv:

Command Algorithms

corresponding plexes,

For example, if the statement vector contains (k4,1,5,3,2)
then the statement is at level four and has statement
nunber le3b.

once the work area has been initialized, the following
algorithm is used to determine a candidate for the next
statement in the sequence:

If keyword reorganization is being used, tnen the next
PSID can simply be read from a file block.

If a trail is being followed and the current statement
contains the appropriate trail marker followed by the
name of a statement in the current file, then:

If the statement points to itself then the sequence is
terminated by returning a =1;

Othervwise the PSID ©of the statement pointed to by the
trail is returned,

If the current statement has a substatement which is
within the current level bounds, then its PSID is
returned,

If the current statement has a successor statement which
is within the level bounds, then its PSID is returned,

Otherwise, a -1 is returned to indicate tnhe end of the
sequence,

After a candidate statement has been selected in the above
manner, it must be checked against the current
content=analyzer pattern if the content analyzer is in use,
If the analyzer is not being used, then the candidate is
automatically accepted,

Flags in the ring element for the statement indicate
whether the statement has been tested for the current
pattern and whether it passed,

If the statement has not been tested, then the sequence

generator calls the code compliled for the pattern to make
the tesat, This code is similar to that descrived for the
content~=analysis SPL in a previous section, The general
flag 1s set true if the statement passes the pattern, and

254

Appendix D: TEGHNICAL DESCRIPTION OF NLS
IV: Command Algorithms

Sec.

3

falge if it does not,
The process of selecting candidate statements is continued
until (1) a statement passes the pattern or (2) the sequence
is exhausted,

one of the primary uses of the sequence generator is in
determining statements to be displayed,

Display Paraneters
The user has at his disposal two tyres of disvplay
parameters: those which control the selection processes
employed by the sequence generator, and those which control
the format of the display.

The format parameters control such things as the
following:

(1) The number of lines on the screen

(2) The position of various viewing areas on the
screen

(3) The size of the chafacters

{4) whether or not the name, number, or signature of
a statement is displayed

(S) The number of lines per statement which are
displayedq

(6) wWhether or not indenting is used to indicate the
structure of the file

(7) Whether the file is displayed as text or as a
tree (schematic).

The selection parameters control the following:
(1) whether content analysis is used
{(2) Whether keyword reorganization is used
(3) Whether a trail is followed

() whether frozen statenents are displayed

255

Appendix D3
Command Algorithms

Sec,

Iv:

be

5.

TECHNICAL DESCRIPTION OF NLS

(5) Whether the view is limited to only one branch

(6) To what extent the depth into the ring structure
is limited.

With the exception of the display parameters which control
such things as character size and location of viewing areas
on the screen, the display parametvers may be modified at any
point in the specification of a command,

At certain points in tne specification of some commands,
the user is given the opportunity of changing the display
parameters as part of the command. At other times the
user may change them by using Case=3 keyset characters,
which are not interpreted as part of a command
specification, Furthermore, the availabilty of a display
parameter which causes the display to be regenerateqd
allows the user to treat the changing of display
parameters as a pseudo-command. This can be done in the
midst of specifying a normal NLS command.

The User's Content Analyzer

The user's content analyzer 1s essentlally a supset of the
programmer's content=analysis SPL, described elsewhere in
this appendix., It is composed of two parts: a compiler and
the code which is the proauet of the compiler.

The compiler is called py a user command to compile
content=gnalysis code from g "pattern" written as text in
the user's file (the syntax is that of the
content=analysis SPL).

A display parameter then determines whether or not the
sequence generator is to exXecute this code for each of
the stgiements which have passed all other selection
criteria.

If executed, the code scans the given statement
searching for the specified content., If the search is
successful, the statement is displayed; othervise, it
is nov.

Keyword Systen
The keyword system provides a rudimentary form of

information retrieval in NLS. The result of a Keyword
search is a list of PSID's., This list is stored in the

256

Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec, IV: Command Algorithms

kKeyword file bloeck, The following special terms are used in
documenting the keyword system:

hit =~ keyword that has been selected and has nonzero
weight

result == one of the PSID's generated by KEYWORD EXECUTE
a&. Keyword File=Block Format
The keyword data consists of two tables:
The first contains the PSID's of hits and their
welghts, with the PSID in the lower 11 bits and the
weignht in the upper 13.

The second contains the results of the most recent
search as an oragered list of PSID's,

The first few words of the block contain information
regarding the current status of these tables, such as the
following:

(1) Address of start of second table

(2) Address of item in second table last returned by
the sequence generator o create display

(3) Address of last entry in second table
(LY Number of hits.
b. Generation of Resulis

The following algorithm is used to generate a list of
results, given s set of selected keywords,

A table is built with an entry for each result, Each
entry takes two words, the first being the hash for
the nagme of the statement, the second the score for
the result (i.,e., the sum of the weights for all hits
referencing that result). The table is generated in
the following manner,

For each hit, the statement specified by that PSID
is searched for a certain string, which is
currently set to be an asterisk followed oy two
spaces, This search is done by the

257

Appendix D:

Sec.,

TECHNICAYL DESCRIPTION OF NLS

IV: Command Algorithms

content-analyzer PQP that does unanchored scans,
If the string is not found, then the next hit is
considered,

If the string is found, the algoritam then finds
the names in the remainder of the statement., Each
name is copied out of the text into the statement
name register (STN). The algorithm then generates
the hash for the name. This is compared to the
previous entries to sSee if it already occurs in the
table, If it does, then the score is increased bpy
the weight of the current hit; otherwise, a new
entry is created with score equal to the weight of
tnis hit,

After the entries nave been accumulated in the
above manner, the table is sorted according to
score,

The sorted entries are used to produce a list of
results, The results are PSID's, so for the hash of
each entry, the associated PSID must be found by
Searching the ring.

Finglly, the information at the front of the file
block containing the results is updated to show the
new number of results.

This list of PSID's is used by the seguence generator
when keyword reordering is called for by tne user.

6, Text Display

General

The collection of routines known as CREATE DISPLAY is
used 10 display in the text area of the user's screen
those statements which are selected from the current file
by the seguence generator.

The statenent selection process and the format of the
display are under the usger's control by means of
VIEWSPECS and the "viewchange" command,

CREATE DISPLAY 1is called each time the user modifies his
file, changes format parameters, selects a3 new candidate
stagtement for the top of the text area, changes the
statement selection parameters, or explicitly requests

258

Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec, IV: Command Algorithms

D.

that the display be recreated.

A call to CREATE DISPLAY does not imply that the
entire display will be recreated, In fact, as little
is done as possible in order to minimize file /0.

The entire display is reconstructed from the
display=start PSID only in the following cases:

{l1) A change in the display=start PSID (caused by
Jumps, "load file" command, etc,)

(2) Editing involving structural elements larger
tvhan statements

(3) Changes in format paranmeters
(4) Explicit user command recreate display,

For statement-editing display changes, the display is
updated only for those statements which have changed.

The display recreation is guided by the format
parameters, such a8 truncation, and the output of the
sequence generator, which 1s called to find the first
statement in the sequence and for supseguent statements
until (1) the last in the sequence has been encountered,
or (2) the text area of the screen is full,

Implementation Details

The main data areas used by CREATE LUISPLAY are the
following:

{1) The display 1list

(2) The display list reference table (DLRT)

{(3) fThe display buffers.
The entries in the daisplay list are used by the display
hardware and have the form of a word count followed by a
buffer address., The display hardware processes the
specified number of words from the puffer pointed to oy
the entry. '

For each line displayed in the text area, there are two
entries in the display list.

259

Appendix D:

TECHNICAL DESCRIPTION OF NLS

Sec, IV: Command Algorithns

The first points to a one~-word buffer (that is part of
the DLRT entry for that line) that specifies the
position of the start of the line on tne screen,

The second points to & buffer that contains tvhe actual
character string that makes ur the line,

For each line tnere is a foureword entry in the DLRT,
containing information such as the following:

(1) A T=pointer for the first character in the line

(2) The first and last column numbers containing text
in the line (used in bug selection)

(3) The poaition on the screen of the left end of tne
line

(4) Flags denoting such things as the following:
(a) The line is null

{b) The line contains special (nonprinting)
charactvers

(5) A copy of the second display=list entry for the
line (used to restore the display list after
displaying an errer message).

For each PSID whieh is returned from the sequence
generator, a display buffer, DLRT entries, and
display=list entries are created,

on the basis of the above description, the actions of
CREATE DISPLAY should be clear for cases where the entire
text areag is being recreated,

The series of statements determined by the sequence
generator, starting from the statement specified for
the display top, is used to fill the lines of the
display, with the appropriate information peing stored
in the display list, DLRT, and display buffers,

In the case of text~editing changes, the display is only
partially recreated; the process is as follows:

The DLRT and display=list entries for the statements
that were not edited are copied to auxiliary buffers,

260

Appendix D: TECHENICAL DESCRIPTION OF NLS
Command Algoritnnms

Sec,

Iv:

Ce

If the content=gnalyzer flag is off or the edited
statement passes the pattern, then a new display
buffer, DLRT, and display=-list entries are constructea
for it.

when this is completed, the DLRT and display list are
replaced by the auxiliary buffers and CREATE DISPLAY
returns,

Bug Selection

IV is appropriate to consider the problem of converting
selections made by the user to valid character and
statement specifications at this point, since bug
selection makes use of data areas constructed by CREATE
DISPLAY.

Whenever input is read from the user work station, the
coordinates of the bug are saved along with it. In the
case where the input is meant as a selection by the user,
the coordinates must be used to identify a character on
the sereen. The DLRT contains the information required
to do this.

The text area is "homogeneous," in that each line
takes 3 fixed agmount of space vertically and each
character takes a fixed space horizontally.

Thus the coordinates of the selection can be easily
converted to a character and line vrosition in the text
area,

This is only part of the problem, however, since the
selection may be at a character position that does not
contain a character. 1In other words, there are null
areas in the text area and selections in these areas
nust be "rounded” to another position.

This rounding process is done using the information in
the DLRT.

The DLRT has a flag indicating whether a line is
null, These flags are checked and the selection
moved up the secreen until it is on a non=-null line,

The DLRT also specifies the first and last columns

in the line containing a character, On this pasis,
the selection is moved to the left or rightv, if

261

Appendix D: TECHNICAL DESCRIPTION OF NLS
Iv: Command Algorithms

Sec.

C.

necessary, to0 put it on & position containing a
character.

It 18 often the case that bug selections must be
converted to T=pointers for overations such as
editin!.

If the line does not contain any special characters,
which take up more than one character position in the
SDB, the bug selection can pbe converted into a
T=pointer directly from the information in tnhe DLRT.

There is a flag in the DLRT which indicates whether
the line contains any special characters, and a
Tepointer for the first character in the 1line,

If there are no special characters, the character
count for column k is simply K greater than the
count for the first character and is thus
obtainable from the Tepointer in the DLRT entry,

If the line does contain special characters, then the
number of special characters in the line to the left
of the selected character must be determined, Rather
than store this value, it is computed directly from
the SDB for the statement. This amounts to
reformatting the line up to the selected character,

Calculator

The calculator gives the NLS user the ability to perfornm
arithmetic operations usineg numbers salected from the text or
entered from the keyboagrd.

In addition, arithmetic expressions (functions) with named
variables may be evaluated with the aid of a small compiler
puilt into the calculator.

The calculator stores numbers internally in a fixed-length
decimal notation (currently using sixteen digits to the left of
the decimal and seven to the right).

The arithmetic routines work with numbpbers that have been
"unpacked" into an "accumulator," one digit to a word,

The multiplication algorithm will be priefly outlined as an
exanmple,

262

Appendix Dt TECHNICAL DESCRIPTION OF NLS

Se¢.

IVs

Command Algorithms

The multiplicand and the product are in unpacked fornm,

Digits are read cne at a time from the loweorder end of the
multivlier.

The multiplicand is initially "aligned" with the low=order
end of the douple~length partial preoduct, During the course
of the multiplication, they are realigned by "moving" the
multiplicana toward the high-order end of the product,

The first step of the algorithm is to zero the partial
product,

Then, until all the digits in the multiplier have been
processed, the following algorithm is repeatedly executed:

{l) Read, and convert to the equivalent binary number,
up to four multiplier digits at a time, thus forming a
composite multiplier digit.

{2) For each digit in the multiplicand, multiply it
(using the hardware binary multiplication) by the
composite multiplier digit, and add the result to the
corresponding digit in the partial product.

This takes gdvantage 0f the unpacked form to allow
"qigits" in the partial product to take on very large
values, (arries out of the partiagleproduct digits are
propagated only once, at the end of the algorithm.

(3) Realign the multiplicand to the left by the number
of digits read from the nmultiplier,

Now propagate the carries in the partial product to finish
the multiplication.,

The calculator contains a small operator=precedence compiler
for arithmetic expressions,

The compiler produces both code to be interpreted and a sSymbol
table of the variables used in the expression., The symbeol

‘table grows toward higher addresses, while the code grows fronm

the other end of the same block of memory,

when the user asks to evaluate the expression, the program asks
him to supply values for the varlables, The user may fix a
variable to a particular value and tell the program not to
demand a new value for it, when all variables have been given

263

Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec, IV: Command Algorithms

values, the code compiled for the expression is interpreted and
the result transferred to the "accumulator" of the calculator.

For each variable in the expression, the symbol table contains
the following information:

{l) fThe name of the variable (as an A=string, so that it
can be displayed in the command feedback line when the user

is asked to give it a value)
(2) The current value of the variable

(3) Flags indicating whether the user should be asked to
Supply a value for it when the expression is evaluated, and
if so whether it has been given a value during the current

evaluation,

The code compiled for the expression is made up of the
following instruction types:

(1) Push values on the stack

{a) ©Push identifier (specified by the address of the
value to be pushed)

(b) Push constant (the value of the constant follows the
instruction in the code)

(2) perform arithmetic operations witnh values on top of
stack (unary minus, add, subtract, multiply, and divide)

(3) Halt

" The interpreter for the code simply manipulates the stack and
calls the appropriate arithmetic routines,

D. Processors

I

File Cleanup

The file ¢legnup program serves to verify (and perhaps even
restore, with a bit of luck) the internal scundness of an

NLS file,
The program goes through the following stagest

(1) For each structure blockt

261

Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec, IV: Command Algorithnms

Set all the name hashes to0 zero,

Check the free list and mark elements on the free list
by setting their hashes to 1l. '

Verify the used cell count for the block.
(2) For each text block:

Check the free space pointer,

Check each SDB by doing the following:

compare the length given in the first word of the
heagder to the charscter count,

Check that the lagst character is really an end
character,

Check that the name character count is reasonable,

Mark SDB's that pass these tests by "OR"ing 360000008
into first word.

If the SDB fails any of the tests, then move the free
apace pointer up to that point and give up on the rest
of that block.

{3) For each graphics block:
The process is similar %0 the process for text blocks.

At the end of these stages the entire file has bpeen
inspected once., During this a special routine has
handled the loading of file blocks, If at any time there
is a "bad" file plock (i.e., one that contains an error),
it tries to recover by changing the type of the block if
that i8 in error and recalculating the checksum if that
is in error,

File cleanup now continues with a second pass,
(L) ocheck the actual structure of the ring.
start from the origin and work through, not trusting

the head and tail flags. This requires keeping a
stack of father PSID's gnd comparing each successor o

the fgather,

265

Appendix D: TECHNICAL DESCRIPTION OF NLS

Sec.

Iv:

Commanc Algorithms

Mark ring elements that are uged in the structure by
setting their hashes to 2 (£irst making sure that
their names are zero, meaning unused, and not one,
meaning on the free list).

Mark data blocks (both SDB and VDB) of ring elements
in the structure, as used, by changing the top six
bits in the first word to 34B instead of 36B,

Correct errors in head and tail flags if any are
found,

Errors in structure are handled as follows:

If the bad statement is the head of a plex, then
that plex is discardeq,

Otherwise the remainder of the plex is discarded,

This discardineg is done by linkine together good
parts of the ring.

Thus in the first case the father of the bad
statement simply no longer has any 8substructure,

In the other case the last good member of the
plex becomes the tall of tne plex.,

If a statement that has valid structure has a bad data
block associated with it, then a dummy SDB is created
for the statement and file cleanup continues,

Look for "lost" SDB's and ring elements,
Ring elements that still have name hasnes of O are
neither on the free 1list or in the structure. These
are now put on the free list,
8DB's that still have 360000008 in their f£irst word
are not pointed to by any statement. These are now
marked as garbage,
Marks on SDB'S are now erased,

The name hashes for all ring elements in the

stiructure are now recomputed.

This completes the cleanup of the file.

266

Appendix D:
Command Algorithms

Sec,

Iv:

2,

3.

'

TECHNICAL DESCRIPTION OF NLS

File Compaction

The basic objective of the file compactor is to reduce tne
numper of SDB blocks in a file by combining the contents of
these blocks and eliminating resultant empty blocks, In
sddition, empty spaces in the random file are eliminated by
packing the file into centiguous blocks, Structure blocks
are not compactred.

SDB blocks with fewer than a fixed number of unused cells
are not processed == thus compaction for files which need
little or no compacting will be a relatively quick
operation,

Output Processor

The Qutput Processor is used to produce hard copy from NLS
files, The output of this process includes formatted files
for a printer, a Dura typewriter, and a Stromberg=-Carison
microfilm machine,

The format ©f the output is controlled by means of
directives,

These gre paranmneters for numerous variables such a8 page
dimensions, page numbering, and "on/off switches" for a
large set of format options. The user may control these
paraneters by means of special strings of text (i.e.,
output=format commgnds) embedded in the file text. These
command strings, which are also called "directives," are
normally suppressed from the hard=copy output,

A full set of directive default values for each type of
device hgs been established; these vglues may be
overridden oy directives imbedded in the text of the
file.

The Qutput Processor runs as a subprocess of NLS and has one
page == a buffer «- in common with it, This process, like
the compilers, utilizes the statementeselection mechanisms
of NLS to obtain its input data. Thus level clipping,
content analysis, keyword reordering, trails, and so forth
can be used to control what is output via the oQutput
Processor,

- Compilers

The languages developed by ARC for internal use are

267

Appendix D: TECHNICAL DESCRIPTION OF NLS
Sec. IV: Command Algorithms

discussed in the main body ¢f this report, Source code for
any of these languages may be written in an NLS file and
output directly from NLS to the appropriate compiler.

268

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classilication of title, body of abstract and indexing annotation must be entered when the overall report is classilied)

1. ORIGINATING ACTIVITY (Corporate author 2a. REPORT SECURITY CLASSIFICATION
Stanford Research Institute Unclassified
333 Ravenswood Avenue 25 CRoUP
Menlo Park, California 94025 N/A

3. REPORT TITLE

COMPUTER-AUGMENTED MANAGEMENT-SYSTEM RESEARCH AND DEVELOPMENT
OF AUGMENTATION FACILITY

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Final Technical Report 8 February 1968 - 8 February 1970

S. AUTHOR(S) (First name, middle initial, last name)
Dr. D. C. Engelbart and
Staff of Augmentation Research Center

6. REPORT DATE . 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS
8 April 1970 : 284 13
8a. CONTRACT OR GRANT NO. 98. ORIGINATOR'S REPORT NUMBER(S)
F30602-68-C-0286 Final Report
b. PROJECT NO. Project 7101
0967
c. 9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)
4 RADC TR-70-82

10. DISTRIBUTION STATEMENT
Distribution of this document is unlimited. It may be released to the Clearinghouse,

Department of Commerce, for sale to the general public.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
Monitored by Advanced Research Projects Agency
D. Stone AC 315 330-2600 Washington, D.C. 20301
RADC (EMBIH), GAFB, NY 13440

13. ABSTRACT

This report covers two years of research in a continuing program in the Augmentation
Research Center (ARC) of the Information Sciences Laboratory of Stanford Research
Institute, supported by ARPA and RADC under Contract F30602-68-C-0286. Some of the
work reported was also supported by ARPA and NASA under Contract NAS1-7897.

The research reported is aimed at the development of on-line computer aids for
increasing the performance of individuals and teams engaged in intellectual work
and the development of techniques for the use of such aids. The report covers
hardware and software development; applications'in several areas relating to
management of a community of workers who use on-line aids and to information
management for such a community, participation in the ARPA computer network, and
a summary of plans for the continuation of the research.

’

FORM
DD f3*..1473 (Pace) UNCLASSIFIED
S/N 0101.807-6801 Security Classification

UNCLASSIFIED

Security Classification

LINK A LINK B LINK C
KEY WORDS
ROLE wWT ROLE wT ROLE wT
Computer Augmentation
On-Line Interaction
Management Research
FORM
DD 1 NOV 081473 (BACK) UNCLASSIFIED

(PAGE 2)

Security Classification

