MPX-32 ™

System Tables and Tasks

- Revision 3.5

Technical Manual Volume |

April 1990

322-ER1551 -500
I O

Limited Rights

This manual is supplied without representation or warranty of any kind. Encore
Computer Corporation therefore assumes no responsibility and shall have no liability of
any kind arising from the supply or use of this publication or any material contained
herein.

Proprietary Information

The information contained herein is proprietary to Encore Computer Corporation
and/or its vendors, and its use, disclosure, or duplication is subject to the restrictions
stated in the standard Encore Computer Corporation License terms and conditions or
the appropriate third-party sublicense agreement.

Restricted Rights

Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause
at 252.227.7013.

Encore Computer Corporation
6901 West Sunrise Boulevard
Fort Lauderdale, Florida 33313

™ MPX-32 is a trademark of Encore Computer Corporation
® CONCEPT/32 is a registered trademark of Encore Computer Corporation
Copyright © 1990 by Encore Computer Corporauon

ALL RIGHTS RESERVED
Printed in the U.S.A.

C

History

The MPX-32 Release 3.2 Technical Manual, Publication Order Number 322-001550-
000, was printed September, 1983.

Publication Order Number 322-001550-100, (Revision 1, Release 3.2B) was printed
March, 1985.

Publication Order Number 322-001550-101, (Change 1 to Revision 1, Release 3.2C)
was printed December, 1985.

The MPX-32 Release 3.3 Technical Manual Volume I, Publication Order Number
322-001551-200, was printed December, 1986.

Publication Order Number 322-001551-300, (Revision 3, Release 3.4) was printed
January, 1988.

Publication Order Number 322-001551-400, (Revision 4, Release 3.4U03) was printed
October, 1989.

Publication Order Number 322-001551-500, (Revision 5, Release 3.5) was printed
April, 1990.

This manual contains the following pages:

Title page

Copyright page

iiifiv through xxv/xxvi

1-1 through 1-69/1-70

2-1 through 2-206

3-1 through 3-60

4-1 through 4-27/4-28

1 through 5-31/5-32

1 through 6-25/6-26

1 through 7-17/7-18
1 through 8-14

9-1 through 9-29/9-30

10-1 through 10-6

A-1 through A-3/A-4

5-
6-
7-
8-

iiviv

C

Contents

Page

Documentation CONVENLIONS..............ccvvninicniineccnenencsissssseeseseessesessaenes xxiii
1 System Description

1.1 Naming CONVENONS......ccocecverreeenrerreesenreeseestessesansssessosassssessessesssesnsesassnes 1-1

1.1.1 Communications REGIONccceeeeveereevercerererenrieneenneenreeeenreeseennns 1-1

1.1.2 Task Service AT€a (TSA)eeeeeeeeeeeceeeeeeecerereeeeeeennansseseeeennes 1-1

1.1.3 Entry Variablesccoiivieniinniinninenninneecninnieceeecessieesseessecsssessnsenns 1-1

1.1.4 System Modules and Interrupt Handlers........cccoceeeuieeuennccncnncnn. 1-2

1.1.5 Common System SubTOUINESccouererruererecrrervecreersersuecseesecnes 1-2

1.1.6 SyYStEIM MACTOS....cccceeerueecneraneeesreeseessneesnsecsenessesssesesssessssssassanaassns 1-3

1.1.7 System Task Load Module Files.......cccceeveieecinnnnnncennncnnnennnee. 1-3

1.1.8 Batch Task Load Module and Executable Image Files............... 1-3

1.1.9 System Permanent Filesccccceceriienveieniennceennceecnreeenreeesneecsnens 1-3

1.2 Scheduler - IOCS INtErface.......cccoceeermeeeeruecrererennenaenesseseessenuessessessesaenns 1-4

1.2.1 I/O INIHALON c..eoueeeinencieieeeesentetcneencseeassaessenaeessesseeseesnennnes 1-4

1.2.1.1 Wait I/O POStPIOCESSINGcocvvruerurrenrirnneseesecssessaceseecaces 1-4

1.2.1.2 No-wait I/O POStProCESSINgccceeeeeeerueernueeccseeecneeesnenns 1-4

1.2.1.3 No-wait I/O Completion Task Interrupt Service............. 1-4

1.2.1.4 No-wait I/O Restrictions for System Services 1-5

1.3 Scheduler - Task Termination Interface.........ccccoeeevcereverveccvecnneenunnnnee. 1-15

13,1 EXit TaSK...coooviieeiiercnnencnseneesenscetcnneesessensossesseensessesseesesssenes 1-15

1.3.1.1 Outstanding I/O (EXit) ..cccoeeereerenurnierinrecrernecrceneeseeruenenae 1-15

1.3.1.2 Messages in Receiver Queue (EXit).....ccccevuererceeereecnnnne 1-15

1.3.1.3 Outstanding Run Requests (EXit) ..c..ccocveeeniiceinieacnnanns 1-15

1.3.1.4 Run Requests in Receiver Queue (Exit).....ccccceeveeennnee. 1-15

1.3.1.5 Task Abort Receiver (EXit)....ccccovvereeeersneneeeeeeserrneneeeees 1-15

1.3.1.6 Files (EXit)..cccccerurrirnensernencnuenenressesaecsensssassessessessessassassanne 1-15

1.3.1.7 Resources (EXIL)cccceeerieeererrrencessssraneeserssnaseseesesssssnsasaes 1-15

1.3.2 ADOTT TaSK ...covuruiniiriirinnicieninienicseeteaessensssesensnsesnsssesacsssesnsens 1-16

1.3.2.1 Asynchronous ADOTtc.cccevereeereeneeseeruecnnseesseesseeseenne 1-16

1.3.2.2 Synchronous ADOITScccccereerruecreeneeraecvesssecssasessennes 1-17

1.3.3 DEIEte TasK ...cccerinrirenenuccunsinsunsenccsecsessenssnsscsnsssascssssnsessassesasssanes 1-18

1.3.3.1 Asynchronous Deleteccceceeveveervenerrenccerencenraeseenaenanne 1-18

1.3.3.2 Synchronous Deletes.......ccceeveeenieruenenrenenuenrenecsenrensenne 1-18

14 Scheduler-Debug Interface........ccoeeiievenenreencinnsinreenceesencneennecnseeeseeennens 1-19

141 Design GOals......cceieeecnuieienirrcnrenissenaesceesesesuessosesseeseessessessssnanes 1-19

MPX-32 Technical Volume | v

Contents |

vi

1.5

1.6

Page

1.4.2 Debug Entry POIntS......cccoceeeerveeceeseeeneeesteneccnessercesseessseasonesensens 1-19
1.4.3 Task INteIrupt StatUs......cocevirrensenrissesinrinsessisusesissssessssscsssseseane 1-20
1.4.4 TSA Stack Pushdown Level Interpretation...........ccceevverececeenneene 1-20
1.4.5 Exit from AIDDB MOdE........cccceerrunsenerunsesuiesossereesssseesessaesananses 1-20
1.4.6 Entry Point 1 - SaIt-UP ...ccccceereeriirensensensensensaccrssaessassscessessessassns 1-20
1.4.6.1 AIDDB Activated with User Task......ccccccceeceerceeenaccaanne 1-20

1.4.6.2 AIDDB Activated by Load and Execute SVC.............. 1-21

1.4.7 Entry Point 2 - ReSEIVedcovuvvmuivinennnniniucnecnennnenecceeeenes 1-21
1.4.8 Entry Point 3 - Trap/Break.......ccccovcevveeeenvenemescrnarsrensesnesserceesneens 1-21
1.4.9 Entry Point 4 - User Break EXit.......cccovevivirnninnncnrnncnnenccinncnne 1-21
1.4.10 Entry PoInt 5 - ADOTT.....cccoeininvenresenenecenaesieeencsecesescenessessesanes 1-21
1.4.10.1 Wait I/O Operation Status on Abort Receiver 1-21
1.4.10.2 No-Wait I/O Operation Status on Abort Receiver......1-22
1.4.10.3 File Status on Abort Receiver Entrycccccceeveerceenene 1-22
1.4.10.4 Inhibit of Abort Receiver Entry.......ccccoveeeueevveccneeecnnnnn. 1-22
1.4.10.5 Re-use Of ADOTt RECEIVETcunrveervemereeneresnrssmsssneees 1-22

Task INTETTUPLSoovurecuerneneienenessnncsessascssesanesessassssossassasssssssasssaasssssssassnn 1-23
1.5.1 Task INterrupt PrIOTItIEScccueruerurseecseesesessscsssassnscasssaseseesnnnes 1-23
1.5.2 Task Interrupt ReCEIVETS.......ccccenuernierenernueserresanseeransnenseresseracans 1-23
1.5.3 Task Interrupt Schedulingcccecceeeeeeireneercerucereennecneeseecrersaens 1-23
1.5.4 System Service Calls from Task Interrupt Levels........cccccceeenee 1-23
1.5.5 Task Interrupt Context StOTAZEcccerereereercccrarserconeeasaresassaaees 1-23
1.5.6 Task Interrupt Level Gatingcoceieeccrenscntcnnencsscnsenseeseesanaae 1-24
1.5.7 User Break Interrupt RECEIVETSccvuevuirenternccnnsenraenenseccseesneans 1-24
1.5.8 User End-Action RECEIVETScvurrueeerirenernsscnsesaeccseeesseeseeranans 1-24
1.5.9 User Message RECEIVETS.....cccecuenereecreereeraeneeraenecsseeseessesecesaeanans 1-25
1.5.10 User Run Receivers “ ceesutesaesteestesssesasesnnne 1-25
1.5.11 User AbOIt RECEIVETS....coceveruiruiniirresininsnscsaescssssassesssesessssssensnns 1-26
Send/Receive FaCilitiesccceuiruicccrencneiruenissenanceceessnsssnesseasseesesssensesens 1-27
1.6.1 Receiving Task SEIVICES.......eurmmrrrnrssemsunesssssnssanssssssssssssosens 1-27
1.6.1.1 Establishing Message and Run Receiver Capability.....1-27

1.6.1.2 Execution of Message and Run Receiver Programs1-27

1.6.1.3 Obtaining the Passed Parameters..........ccceuvveveneereeninenes 1-28
1.6.1.4 Exiting the Receiver Program..........ccccceeveeeveeeeneeeseecnnens 1-28

1.6.1.5 Waiting for the Next Request........cccoeveeveeeecreereeeseennenne 1-29

1.6.2 Sending Task SEIVICES......ccoeveerivrruirerrenrscnsssscsncsaessesneeesneseenes 1-29
1.6.2.1 Sending the ReqUESt......ccceevevuenrerrnneacseeraeseresensaesaeesaessenne 1-29
1.6.2.2 Waiting for Request Completion.........cccccceveeveenreeruennne. 1-30

1.6.2.3 End-Action Processing.......ccceeeeveecscrusserseesaeesersascneenaanne 1-30

1.6.2.4 Parameter Send Block (PSB).....cc.ccooveevveecrrensseeerenecnnnee 1-30
Contents

Contents

Page

1.6.2.5 Parameter Receive Block (PRB)ccccvvevevveeercnneeecnnne. 1-36

1.6.2.6 Receiver Exit Block (RXB).....cccocveerireeenueeeceseneeccsnnenes 1-37

1.6.2.7 Message or Run Request Queue Entry (MRRQ).......... 1-38

1.6.2.8 Messages and Run Request Services Summary............ 1-41

1.7 Device Address SPeCIfiCationc.ccoceevuieeccecsueseescesessseeceseeaesseasaaesnnes 1-42
1.8 CPU SCheQULINGcoverursiinrinrininrinsinanisscssissiscsssssscssessesscsnsssssssssssssnns 1-45
1.8.1 EXecution PriOMItIEScccccererurnrrececrsuceresnueneesaeneesseeeeseesseasaesnns 1-45

1.8.2 Real-Time Priority Levels (1 t0 54).....covivvinvuenveenuennnecccecennennne 1-45

1.8.3 Time-Distribution Priority Levels (55 t0 64)...cccceevevvuerceeeseanne 1-45

1.8.4 Priority MigratiOn.......ccccceeeeerreenecneeseereeseeseseensesseesaesseeseessasesens 1-45

1.8.4.1 Situational Priority Increments.........cccceeveeneerieeacnecanenn. 1-46

1.8.5 Time-Quantum CONtIOlS.......cccceverurreerrrerrecereesecnraecreessaseesaeesenanne 1-46

1.8.6 State Chain Management...........cccceeeereereeruereeneeseeceereessessaasaesnns 1-46

19 FAT/FPT and Blocking Buffer Allocation.........cccceceecerveerenvuenrurcecnneennes 1-48
1.9.1 FAT/FPT ATRA...cucoueeeneceennnrinseinseaeessansessesassssesessnsssaessasssennes 1-48

1.9.2 Blocking Buffer ATea.......cccoceveenineeciennencrcnnneneneeseessesancnnscnens 1-48

1.10 Indirectly Connected INtEITUPLS......cccoeviruereererursieresesssrusscecescesesseeaeneene 1-49
1.10.1 Connect Task to Interrupt Service (M.CONN).....cccceeveerrerecnne. 1-49

1.10.2 Disconnect Task from Interrupt Service (M.DISCON)............ 1-49

1.10.3 Indirectly Connected Task Linkage Table (ITLT).................... 1-49

1.10.4 Indirectly Connected Task Linkage Block (ITLB)................... 1-50

1.10.5 Indirectly Connected Interrupt Program (H.ICP)...................... 1-52

1.11 Miscellaneous System MACTOSccccvcemruescerunseccsesscssessuesasessesssssassssones 1-53
L1111 MBAGCK ...iiiiiintnetininsncssisesssssssesssesssssenssssesesssssessenses 1-53

L1122 MICALL.....iiiiiierectisaessnncsassessensssssssssensssssssnssssossassessesassssnsas 1-53

LL11.3 MLCLSE ..uiiieieicnecneesesesessssessssasssssessssssossesssssesssesssssssssassasnnes 1-54

1.11.4 MDECB.....coiiiiiineirnnineinnsssiessssassssssssssssssessossassssssesasessassassses 1-54

1.11.5 M.DFCBE.......ccccccevuvninuinuervrasrassssencces reestsnestsassnaesateseesasasnanns 1-55

L.11.6 MLEIR......cuoieeieinnccneecnnesessssssassesssssssessasessassssnsssssssssassesssen 1-56

L.11.7 MEFCBEXP.......coviineninenrrcssnensessssessessessasssssssassessessassssseasens 1-56

1.11.8 MFWRD......ciriirinenienineeensenssseraesssseseseesassessssssessssaessssssnnen 1-57

LI1.9 MINIT ...cviriniicinnnsnisnscsssssnssnsssessessossssssacsssssssssssssassssnsen 1-57
111,10 MUINTTX ...ccioreneeenenancsecneesnensesssassssssessasassssssssssssessssessassassasanes 1-58
L11.11 MUIOFF .uiiiiniiinsinnnsssssssssssssssssenesessasssssasssssassasessessessaesaassssnnes 1-58
L1112 MUIONN ..iictrniteeseseeseesesessssssasesssesessesssasnsssassssessasansessassnsen 1-58
1.11.13 MUIPUOFF.......c.coviiiininnnisninesnsancssassoscosssssssssessssnsossessessesesnsas 1-58
1.11.14 MUIPUONouveererercrneresnesessssssssssssassassssssssssessessssessssessessoses 1-58
1.11.15 M.IPURTN.......coecereevecvanes teenesesansansasesteassnerassssssenaesasessesatessanes 1-59
L1116 MUIVC..iiiininentsnissenasssonssssssssesessassssssssssssssssssasssosasssanees 1-59
L1117 MUKILLoouiiniicnccstencaeennesasscasesesssssessesssessssssssssnssseencas 1-59

MPX-32 Technical Volume | vii

Contents

viil

1.12

2.1
22
2.3
24
25

2.6
27

Page

L1118 MLMODT.......ooiiriiincneenncenecaenesesncesesssnaessssnassessesesasaseaseas 1-59
1.11.19 MLOPENuciiiiiriinrneetnnensinstsiessncnsssnsnssssssesssnsssesesssssnesses 1-60
1.11.20 MLRTNA...cuoirritininininsstesecncassesatesssssssesssssssssssssesssssessasnes 1-60
1.11.21 MLRTRNcoririreesiesteennsreecsseesssessesssssesasssessssasssesnssssassesaesesans 1-61
1.11.22 MLRTRNOS......cconirininininsicnrsenrasssssessssssncsssssessosssseesssssssasnsases 1-61
L.11.23 MLSHUTccouririneirnneenennentsessessenasssensesesussassessensessessessasaassanes 1-61
L.11.24 MLSPADeeereeeereneenueeeseesesseassssssssesassassessessossasassassssssannas 1-61
L1125 MLSVCP ..uietretrnneeeneceesnesesstenesssssesessessssaseesessassessassassassns 1-62
L1126 MLSVCP2iiiirintieeteeeseseessseseessssssssessensesssneeseensassasees 1-62
L1127 MLSVCT ..eeeeteenesecteeeteeessenesessesessesassestessesessassasnssseasees 1-63
L1128 MLSVCT2 ... evreeeirencenteeeuesseeseanesssesnsssesasensasasssssssssessaesaasns 1-63
L.11.29 MLTRACoiintiiniininneiesscsssasssssssssassssssssesssssssessonsessasns 1-63
1.11.30 MLTRPINToouviiriiriinnieneniaiesseneenssssssessnsesasssessosessasaessansassasses 1-63
L1131 MLTSAD ...coiitereenenreeenesssssessessessessssessansasessessessasasssasassaasaanes 1-64
L1132 MLTYPE ...eirieteeneeneet e reencsesesstenessesnessssassssssnsssseanes 1-64
1.11.33 MUUSHUTciirrieieeenteereeetensessessesssssaesnessessessasssssssssasssanans 1-64
1.11.34 MLXTR...cciiiiiinenninintinnentsnsncenssaesssasssessessossssensessensesesssasssnassns 1-64
1.11.35 DCADATAL.....ccotrtirieirintnneneneeseenssessssessesseseosessessesssssssssanes 1-65
1.11.36 DCAINIL....uiiiiniiininninenistecsnisaesesessssssssesscsessasassassnassannes 1-65
1.11.37 DCAINID......couviiieniernninaeneencencsnesnsessaesssasnasssssssessassessassassennes 1-66
L1138 HMP.INTTccveeeeecenieraenenrecsessensesessessessessssessessessasassessassasnsanns 1-66
L1139 IB.INITcucouinenineinneseenennssssnesseassssnssnsssenesnsssassasessessessasssesaanes 1-66
Extended MPX-32 MAaCTOSccceenneensirseecseasssssassasssassssssasssaassassssasssasans 1-67
1.12.1 MBR_DBG (Calls to System Debugger) Macrocccceeeueenn 1-68
1.12.2 MBR_DSCT (DSECT Data Separation) Macroccecceeuneen. 1-68
1.12.3 MBR_ENT (Extended Code Routine Entry) Macro................. 1-68
1.12.4 MBR_INIT (Module Initialization) Macrocccceceeeervnveerennnes 1-68
1.12.5 MBR_SSCT (System Code Separation) Macro......cccccceeeueeueanne 1-69

System Tables and Variables

OVETVIEW ...cuveneereeneneinnrnanesansessesssacssessssessesssssesssssssessestsssssasesssssasssesassasnnes 2-1
MemOTY Layout........ccoviininniiniinriiccncseissscsssscssesssesssssesssssseessssans 2-4
Communications REZION.......c.ceuv ccviinirennensencsninincesnasenessansesesasessaneassans 2-6
Allocated Resource Table (ART)coeeeeveeierireernnrecsrecseceseeesneessseessnes 2-34
Blocking Buffer Control Cells.........cccceccrueecceurvnee reesssasssenesaaasnne 2-36
2.5.1 Blocking Buffer Head Cellsccocveeeveneenenrennencreneenecrensaenseenns 2-37
Caller Notification Packet (CNP)c.ccovueerrerreeneenreirneeressnessnessaessssessanes 2-38
Channel Definition Table (CHT)ccccceeevereeeerrecieerrenrecseesseressssnecnns 2-39
Contents

RN

N
w

Contents

Page

2.8 Controller Definition Table (CDT)...uccuieevveenieenintrenenrnecssnnreeesssseessnns 2-41
2.9 Device Context Area (DCA)....cciveeiiirrecrireerecsreesessssssseseesesssssssnsssnes 2-43
2.10 Device Type Table (DTT)...cccouvviininvinininirinncninniineeneesssesscssacsseees 2-45
2.11 Directory Entry Table (M.DN.TEQ).....c.ccccevuviernirneninsenrnecrnessensecsncene 2-46
2.12 DispatCh QUEUE ATEA.....cccecrurrrrruerressieressreseesssesssssssssssessessasessasessasssnsse 2-48
2.13 Dispatch Queue Entry (DQE)cccovuvumimnnininiinincniieeniinnccsnenecncaees 2-48
2.14 Dispatch Queue Address Table (DAT)....cccocveciiivenirrenninsenncnnincesacsnces 2-63
2.15 File Assignment Table (FAT) ..ccccivvuiniinnnnninnieciinnieninieecssencsecenne 2-64
2.16 File Control BIOCK (FCB)uveeeuiuerereirireeesesenssesssssssssssessssasssssnssessases 2-67
2.17 File Control Block (8 Word Compatible Mode)ccccoveeerreereeenaecncene 2-75
2.18 File Pointer Table (FPT)cccoveiiienrienrieniesreecnressseesseecsssesssassssssssssseses 2-82
2.19 1/O Queue (TOQ) ENITY ...cueruiorirerineieneeeieneenieseseseestensessensassesesnnes 2-83
220 MKEY Entry FOmat........cccccovieiininimnninennennciniesesscesececssecncescsnssscenees 2-89
221 M.PRIJICT FOIMALcconeieniennennenreeseecsaeseessesesssasssesssssssssseesssssssnssssesssases 2-89
222 Map Image Descriptor List (MIDL)ccccccnvenvinsinvunsecnsensueccesnecseesecne 2-90
2.22.1 Halfword MIDL EDtries........ccocccceeerreenrercnecnsensserseecsseessacsaeassaces 2-90

2.22.2 Fullword MIDL EDLTIEScccerverrierieerienesensrenesseeessanesssasasssassenns 2-91

2.23 Memory Allocation Pointer List (MPTL)......ccccoveevienvenrveennrernreeneecrnenn. 2-92
224 Memory Allocation Table (MATA)....ccoieireneerercceneeereeeceeeennees 2-93
2.25 Memory Attribute List (MEML)......ccccviiiinicrenienncnreeneeeressaecnnesssessesanns 2-94
2.25.1 Halfword MEML FOrmaL...........ccceveereerseeseenrseceesseeesssessssessassnnes 2-94

2.25.2 Fullword MEML FOImatc.ccceeveeevecrneeruensaecaesaeesesesssessassanes 2-95

226 Memory Pool Management.........ccoereeneerneirennecnnecsseessscssesessassseseseseseene 2-96
2.27 Memory Resident Descriptor Table (MDT)ccceceveeceeeniecrneeseeseecsnnae 2-99
2.28 Message or Run Request Queue (MRRQ)....cccevveciinernrennecnsennnccceeseesnnens 2-99
2.28.1 Remote Messaging Request QUEUEc.ccceevuinervucnncceniencnnee. 2-101

2.29 Module Address Tableccceeeeneereenienreesrecieesecsaesssecnessseesssessssesaes 2-103
2.30 Mounted Volume Table (MVT).......ueorevceerrrneeenereeesenreesssesecssssenees 2-103
2.31 Physical Shared Memory Table (PSM)ccccccervenrenenreeniescscrancaeseannes 2-105
2.32 Resource Create BIOCK (RCB) ...cccovveeiieneeenninenirecnsereessssesesssssesessnns 2-107
2.33 Resource Inquiry Table (ML.RIQ)cccccereenenrinrenenreesennncneeseenseeseennes 2-109
2.34 Resource Logging Block (RLB)cccceereevenvecennuestenueneeesercncesaeesessannns 2-110
2.35 Resource Requirement Summary (RRS) Entries......cccccecceveeveeceeencnnn. 2-111
2.36 Shared Memory Table (SMT).....ccoierenireenenereenenrenenseesseeseeseesnessaens 2-117
2.37 Spooled File Data SIrUCIUTES.......coceureeereassesenesecioreraeseessssasssssasassassasaas 2-120
2.37.1 J.SSIN Run ReqUESL.....ccccccervieeneeriaionnenecenaeesinnsssnsssassssssaannes 2-121

2.37.2 J.TSM RUN REQUESLcvevererrrncrernrecneseserssesesssesessesesesesssesesenes 2-121

2.37.3 J.SOEX RUN REQUESL.....ccocerereeniaearercenreraccareseesassncosseessosesnne 2-122

2.37.4 J.SOUT Run ReqUESL.....cccceeeieimiereirrieriereenaeesssessassrasasseasssesens 2-123

2.38 System Master Directory (SMD)coeieenieeistnensnissstasssansssssssannnas 2-124
MPX-32 Technical Volume | Ix

Contents

2.39
240
241
242
243
2.44
245

2.46

247

Page
Task Service AT (TSA) ..uuciieereeneeereeereeeseresseeesseecssesssssssssessssnenes 2-126
Terminal Line Buffer.......cocovvinininninnnninnninniininnncninennenenecnncens 2-140
TIMET TADIE ...cocvieeiiceiinenniecninnecneentene s sasesseesssestsssessssesesstessseessans 2-141
Type Control Parameter BIock (TCPB)........c.cocevureesenerensesnessessereses 2-143
Unit Definition Table (UDT)cccovieriercrrinrececnrnsnceseresensscssensaeesscssenes 2-145
Volume Assignment Table (VAT)....oinieninnnninnncnsennnnnecnscnseesssenns 2-148
Disk Resident Resource Descriptors (RD)cooeveverenncnrnsicnscinenanes 2-149
2.45.1 Resource Descriptor (M.RDCOM).......ccovrevirecernuencnessnneranenes 2-150
2.45.2 Resource Descriptor Space Definition (M.RDSPD).............. 2-154
2.45.3 Bad Block Descriptor (M.BB.DEQ)ccccecerurveeeneceeneeccnnes 2-155
2.45.4 Descriptor Allocation Map Descriptor (M.DM.DEQ)........... 2-155
2.45.5 Descriptors Descriptor (M.DD.DEQ).......cccccecveeruerruecuencucanne 2-155
2.45.6 Descriptor Map (DMAP) Deallocation File Descriptor
(MLBD.DEQ) ...ccceenirrunsimrunsuinacssisssssasssssssessosseseosssssssssesssssssssonas 2-156
2.45.7 Directory Descriptor (M.DLDEQ)ccccconvenvirunrcncnscnicnucnne. 2-157
2.45.8 File Descriptor (M.FLDEQ).......ccccecceuinuenerinnenuerussenseeesaencnne 2-158
2.45.9 Memory Partition Descriptor (M.ME.DEQ).......ccccccceevrueneen. 2-159
2.45.10 Space Allocation Map Descriptor M.SM.DEQ) 2-160
2.45.11 Space Map (SMAP) Deallocation File Descriptor
(MLBS.DEQ) ...ccoirrecsrensosacsasccsssssssssasssessessassassnsessessasssssassnses 2-160
2.45.12 Volume Descriptor (M.VO.DEQ).......cccceeerevmrererencunsersecransaces 2-162
2.45.13 Segment Definitions (RD.SEGDF)........cccccevererererrurnereceeennns 2-164
2.45.14 User Area (RD.USER).......cccceevervmnuerscnrenneirescones eeveaesesaeaeeas 2-165
Disk Resident STUCIUTESccccccvenierunriecereesinsenssessassesasesesnsssseassnsesens 2-165
2.46.1 Volume FOrmat........coccevecrirncesernseisssisssissssssessssssassasessesssesase 2-166
2.46.2 Load Module SITUCLUTE........cocerverurnrenssoraesucsnsssnssessassasescssasesens 2-167
2.46.3 Load Module Preamblecccccveeversenrunsiressucscssansscsscssacenses 2-167
2.46.4 Executable Image STuCture..........occceveeesvirnecuercsicsnseenenens 2-175
2.46.5 Executable Image Preambleocuvveieiveinenninnncnicncsnencnncne 2-176
2.46.6 Shared Executable Image StIUCIUTEcccocerrereenrecsreesanecnnns 2-182
2.46.7 Shared Executable Image Preamble..............coeuuenenrenenennnnne. 2-183
2.46.8 Shared Image DeSCIIPLOrS.......ccceueerueerenseruerisensiseeneeconcssesconene 2-189
2.46.9 COFF Load Module Structure..........cccceeeiruecveeccerancseescscneeness 2-190
2.46.10 COFF Executable Image Preamblec.ccccoeivvinencinnccnenann. 2-191
2.46.11 COFF Shared Image Preambleccovvneivinnnnnnncncncsencosenne 2-198
Internal J.VEMT SHIUCHUTES.....ccoceuiruerenvicnecsensessssensessssessesassassessassassassns 2-204
2.47.1 Newboot Macro Offsets (M.BO.EQU).......cccccevvurccvernccrnucnnee 2-204
2.47.2 Disk Parameter Table StrucCturescoceeeevreeverersuesreescesacenen 2-205
2.47.2.1 Disk Parameter Table Offsets (M.DPT).................. 2-205
2.47.2.2 Disk Parameter Table Format (SJ.VFDPT)............ 2-206

Contents

Contents

Page
3 System Task Descriptions

3.1 Swap Scheduler Task (J.SWAPR)....ccccoivvninvninnininniiiinninnecnssnesnnes 3-1
3.1.1 J.SWAPR ProCessing........ccccceceeuereceeeecinesueseneisessesuecseraesssacsncenes 3-4

3.1.1.1 Dispatch Processing.........cccceecererveereerurceensecsseecuensassucenee 3-5

3.1.1.2 Inswap ProcCessingc.ccuccvvveversunrenecnnnecsnenucnsessenenns 3-5

3.1.1.3 Shared Memory Request (SISHR) Processing 3-5

3.1.14 No Memory Available (NOMEM) Processing............ 3-5

3.1.1.5 Outswap Processing..........cecceverenuiresreursinunsssseesecsseceens 3-6

3.1.1.6 I/O Error Handling Processing..........cccceeeuerrueerucreraeanne 3-8

3.1.1.7 Initialization ProCessingcccccecerecervecruecrierneccsenenae 3-8

3.1.2 J.SWAPR Internal Subroutines.........ccccceeveeeecceseeecereccuenssecsaeaenes 3-9

3.1.3 J.SWAPR Memory Request Functions.........cccecceeeeevercencecucenee 3-10

3.1.3.1 Memory Expansion Requestccccccecermeceiencenennne. 3-11

3.1.3.2 Memory Deallocation Request........ccccceveeruecveereecennnes 3-11

3.1.3.3 Inswap Request (Memory Roll-in)cccccerueeennneee. 3-11

3.1.3.4 Change in Task Status Request.........cococuveverricununnnne 3-11

3.1.3.5 Shared Memory Include Request........ccceccvuerucruennene. 3-11

3.1.3.6 Exit CONAItioNS......cccevererereererereseseneeeereseenssasseseneenensans 3-12

3.1.4 Managing Swap Space Entries........c.cccvvirinnsccnnsicsssvcnncsncnnes 3-12

3.1.5 SWAap CONteXt ATCA.....ccoviereeriirumsrsasesesssssesasssessessseeessesssssssssasses 3-13

3.1.6 Swap Activity Tableccceoverruenecirnerererninicnacseesessuensesseseenaesaenes 3-14

3.1.7 Shadow Memory Outswap Tablescccoeveencnnresenecrecsenuenes 3-14

32 Terminal Services Manager Task (J.TSM)cccocciveninieennsierecsscnscennnns 3-16
3.2.1 Functional DeSCTIPHON......cccceeuerrreeneesortesaesessassasssssarssssasensensens 3-16

3.2.2 Operational Designcocevenienvininrersiensiecssencesensssseeseesssssasssenne 3-16

3221 Base Level ...ttt nene 3-16

3222 Message Level.....ininninnniiienicninncneienecenenasanne 3-17

3.2.2.3 End Action Level.......nnninnnncnnnnnennnenceceessennes 3-18

3224 Break Level....ininicncininininninnisninencesssssesseanne .3-19

3.2.2.5 ADOTt LEVEL....cuuierieriieineenecaenreneesenaenecneesesasnssnaones 3-19

3.2.3 Data SITUCKUIES...c..coceererrrrencessennescseasssnssassnssnssssseesssssssssessassnaeses 3-19

3.2.3.1 Terminal Context Area (TCA) Table.......c.ccveeenuuuue... 3-21

3.2.3.2 Nested Context Area (NCA) Table......ccccceveevueceenuanee 3-34

3.2.3.3 TSM Procedure Call Buffer (TPCB)......ccccccceveeuecucnnes 3-35

3.2.4 Intertask COMMUNICAtONScccerererecrereesrsrsaencresnconseseesessessasnens 3-35

3.2.5 TSM Command Line Recall and Edit (CLRE) Processing....... 3-35

33 System Mount Task (JJMOUNT)ccoieiovineeneneeneeneesecsessecsaesecessessans 3-38
3.3.1 Run Request INtETTACEceeervuereiicennnnnrecncenenesecssenesaresscssancnsees 3-38"

3.3.1.1 Formatted Mount REqUESLScccccerercvernseecrerccseacananne 3-38

MPX-32 Technical Volume | xi

Contents

Page

3.3.1.2 Unformatted Mount REqUESLSccccceverruereesernnerrenene 3-39
3.3.1.3 Formatted and Unformatted Dismount Requests.......3-39
3.3.2 Mount Messages and REqUESLSc.cccvvereirninicnnennnsessensessennes 3-39
3.3.3 Checks on Mounted VOIUMEScccoverenierinnscesircsescerunsecsuenns 3-40
3.3.4 Dismount Messages and Requestsooveinvinniinccnnecnncnnene. 3-42
3.3.5 Error Status RetUIMc.coceuciericeiiniiiecnenininncanenecssensesesessanes 3-43
34 Multiprocessor Recovery Task (JLUNLOCK)cccocvvivnineininsensenssennnes 3-43
341 SHUCHUTE ..uevererreneesnesesacsuesesesssssesaesesssssssssssessossessssessessessossasases 3-43
3.4.2 Entry Conditions.........ccceeeseceeruesiececcscsessesacscosesasssesesessessesscesse 3-43
3.4.3 EXit CONAItiONScccovvervinnrrernercesucesunesenssessssessensssceseesacssasossesessses 3-44
3.4.4 Multiprocessor RECOVETYcouuviinininsiinrinunsinsunssisnisessessseessenas 3-44
3.4.5 Error Status REtUIM c...cucieiiuinninuiniieinnneniensenneinecssecssecessseanes 3-45
3.5 System Spooled Output Tasks (J.SOUT and J.SOEX)......ccccoevrerucunee. 3-46
3.5.1 Functional Description........ e e n s tenenn 3-46
3.5.2 Operational DESigNcccccvereecurrrerrsesuessersssacsessassseessssassseesesensone 3-46
3.5.2.1 J.SOEX Message ReCEIVET.......ccccerereecerrurareereeneenuenne 3-46
3.5.2.2 Call Back INformation..........cecceeecrccnreeceerurnrensensennacenne 3-48
3.5.2.3 Return Statuscverernenieicicceniiiesesssesesesessens 3-49
3524 BIeak RECEIVET coooueveuueeeememsesnsesesmsnennneenenennesesssssssssene 3-50 ()
3.6 Online Help Facility......ccccocvvieninininnnnnnnsssnsieninsnsncscsnsisssscsssssessesassacsns 3-50 -y
3.6.1 Online Help Tasksccccoeeerireereniencrunsescsninsssensesisassessenconsasessssns 3-50
3.6.1.1 HELP Task ..cccoccrverineenuncnruescrnsanssmssesessesssiosssssesossces 3-51
3.6.1.2 JHLP Task.... . eeeseesesneesessesseneaserasstenseasnaenes 3-51
3.6.1.3 HELPT Task....cccccouenerincinenninernrnensecsscesnsssecessessensane 3-54
3.6.2 Data SITUCLUTES.....oeruerereesrsssssssasssssssssscssessssasssnsssnsssssassssassssssassss 3-54
3.6.2.1 Terminal Context Area (TCA)......ccocereevemruecruearreennns 3-55
3.6.2.2 Topic Name Table List (TNTL).....cccceeceeeeveiesuncnnnanns 3-59
3.6.2.3 Keyword List (KWLI)....ccccoceeerreninrrerenrernnseecunsacrnnnas 3-59
3.6.2.4 Positional Information List (PILI)cccceeuverrereccnennnn. 3-59
3.6.2.5 Print Screen Audit Trail (PSAT)...ccccceeveverrerenrecvennees 3-59
3.6.3 Interfacing J.JHLP with Other Tasks......cccccecerererrsueseesenarsencuenes 3-60
3.6.3.1 Sending Message Requests Via the Interface............ 3-60
4 system Generation Task Description
4.1 Task Structure and Functional Organization...........cccecececeneerueceeruesercnenns 4-1
42 SYSGEN COMPONENLS....cccevuereererssrsacssscossassassasssesssesssssasssossessssssssassnss 4-14
4.2.1 DID and DTT Definitions......cccccoeeserersecuerensceseesessasssesassssesscssases 4-14
42.1.1 Device TYPE TabIEcooereeerererrresrerereasesssensaessensensanes 4-15 O

xil Contents

Contents

Page
4.2.12 Device ID Tableccccovurevimninieniieirineecrenseeeseianeeessesssaessnenns 4-16
4.2.2 SYSGEN SCANNET.......coceeeirrirenrnerrerneresesessessessessessessessesaessasaes 4-17
4.2.2.1 Directive Definition List......ccccccceeveeruerveenreencneeruenennan. 4-19
4.3 Table BUIldINg.....cocemiriininrrineinnininiiiinirisininesissesesssssesssessesssessssones 4-20
4.3.1 System Tables.....cccoviinnininnrirnieniniunneinennecseessesreesrsesssessssssasassas 4-20
4.3.1.1 Tables Referenced in SYSGENccccceevierineevennnenne 4-20
4.3.2 Internal Tablescocovievierieninrunnenrinseeinnineeeceennieneesesaeseesseannes 4-21
4.3.2.1 SYSGEN Internal Tablesccceceererreruereereereereeseanenne 4-22
44 Handler and Module Loading and Initializationccccceeeeeeveeecieirenanne 4-24
4.5 SYSGEN Load Map DeSCTiPiONnSccoeeeveeereenreecresseesseesssesssasssasssaenes 4-25
4.6 Special ConsSidETations........ccccveerueerueserereereessacsaeessessassseessesseeessessasessasans 4-25
4.6.1 MAPTGT/MAPHOST ROULNES......ccceruernerruecrrenrereenueseensesernens 4-25
4.6.2 Special Case ACHVALON......cccerueurueerervereneerueseesessesseraeseesasssaeesens 4-25
4.6.3 SYSINIT Loading.......coreerereeeereneerruenuneesneseesessessessessessessensossanees 4-26
5 Batch Task Descriptions
5.1 CALALOETeveerereeneinreccntnraeenessaessasssesssesaessesssaestasssssessnssssssssssssaesssassaasses 5-1
5.1.1 INrOUCHON.....cccirieierieransscrsesrienesenesaesnsoneesaensessessessasssasnsansssnansns 5-1
5.1L1.1 EXit CONAItiONS ...ccueeuereereeruereerseseeesersansaeeessaessesssasasnns 5-1
5.1.2 Processing REGIONS.....cc.covivieverreneineenseeeenienienerceneeneesseseeseesssanes 5-1
5.1.2.1 X REZION....uiiiiiriiretreiecnteeeseneenesenaeesensesesnesssssannes 5-2
5122 M REZION.ucuiiieieteeeneeeneneneeraeseessessesssesessesssesassnsassnes 5-2
5.1.2.3 C REZION...ucuiiiiiiiccinerarcnneneseeneesesacesesaessessansessasas 5-2
5.1.3 SYMTAB EDITIES ...cocvevuinerenecarenaerersansersreseessessessesssesnsssasssassassss 5-4
5.1.3.1 Linkback ENtries......cccccererrurreerueceerseeeaeneenensuessanssaseannnes 5-4
5.1.3.2 Segment (Module) Entry.......coccevenvenruencecieenvenceeenen. 5-4
5.1.3.3 Defined Entry Point.........ccccecerueverccrrsersuesencerseenansesnnnnes 5-5
5.1.3.4 Common Entryeeeieneeneeceinieeeneeeeeeneeesseesseessneesnes 5-6
5.1.3.5 Section ENMYccieeveinccnninenenteeencnneeseneessessessssnenses 5-6
5.1.3.6 Program Name.......ccccceeerrrcenerrenrenersueseneesensessassassassasnas 5-7
5.1.3.7 Control ENMTYccceureeicieneecenneccnesneeseesesssesssesssssasssassasnnes 5-8
5.1.3.8 B REZION..uueiriitctinininctcnintssescsnsesecsaessanssssesnes 5-8
5.1.4 Load Module StruCHUTE.......cccectererererversenseraeenserseseesessesaessesaesaennen 5-9
5.1.5 Symbol Table Output Format........cccceeeeereerererreerenrensenrassensassanne 5-10
5.1.6 Object Language........cocceeeueecernincerecsenescesesneseseesssasesessessessassanns 5-10
5.1.6.1 Object Module Records.........cccererrueeruecraerreecseessaenans 5-11
5.1.7 Object COMMANGSccererirreerienenuecreesnasessesssesaesassacesssasssssssessaans 5-11
5.1.7.1 ADbsolute Data......cccvreeenerrenruereenenceseeneneesensseeseenns 5-11
MPX-32 Technical Volume | Xiii

Contents

xiv

52

Page

5.1.7.2 Program OTigiN......cccccereevrerueererserceenseneecsessessecsnceeessens 5-12
5.1.7.3 Absolute Data Repeat........cccceveeerrererceicseesrecnseeesaessnees 5-12
5.1.7.4 Transfer AdAIEss......ccceereerereicreenserneneecsessaereeseesaassanas 5-12
5.1.7.5 Relocatable Data........c.ccccerererneeerreieneiecreecceecseeceseenas 5-12
5.1.7.6 Program Name..........cccceverucrrrerrunserucnnererscnaene RN 5-13
5.1.7.7 Relocatable Data Repeatccccecceereeecrenennrenaenneenns 5-13
5.1.7.8 External Definitionccccevevuerececrnenrerceeseesenassanenns 5-13
5.1.7.9 Forward Referencecccceveeeererrecseesuenensesneseessaanen 5-14
5.1.7.10 External Reference.........cocceecveercrerenrerceecrecesesecsnsessnnes 5-14
5.1.7.11 Common Definitionccccceverveereerecrenieesersecsnesnnssancnes 5-14
5.1.7.12 Common Referencecceverrenrreceeceeeneenreceseeenaens 5-15
5.1.7.13 Datapool Reference..........cecuervuervurccvecveeneecserrseencseeneens 5-15
5.1.7.14 Escape to Extended Functions..........cccceevueereesueenunennne. 5-15
5.1.7.15 Common OTiZiNccccocereeerreerseessereesuessasssassasessasaaes 5-16
5.1.7.16 Object Terminationccceeeereereereeceereeseesessessacansases 5-16

5.1.8 Extended Object Commandscccceeeereerereeeesiecnsenecnaececesennees 5-16
5.1.8.1 Section Definition.......c.cceeeeeveeeveenvecrecriensaecrneseeessaessans 5-16
5.1.8.2 Section OTigiN.......coceieienreessisessesesneisisessesessssesassees 5-17
5.1.8.3 Section Relocatable Reference........cococeeeeneeerecsuenneanas 5-17
5.1.8.4 Section Transfer AAressccceveeerenrecreeruenseesaenne 5-17
5.1.8.5 Section External Definition.........c.ccceeeveeecenrereerenenene 5-18
5.1.8.6 Section External Reference.........ccccccevuemerveereerucarennnn. 5-18
5.1.8.7 Section Forward Reference........cccceevveeereecrccreencennnes 5-19
5.1.8.8 Large Common Definitionccccoveerececeneseneesnensenaenas 5-19
5.1.89 Large Common OTigincccceceverirernescesesvenconenccsencnes 5-19
5.1.8.10 Large Common Reference.......cccecevuevereeneccscnccernas 5-20
5.1.8.11 Debugger Information...........ccceueeeecverescnsesssceneaneseee 5-20
5.1.8.12 Object Creation Date/Time.......ccccocereeruecererecreeseacennne 5-21
5.1.8.13 Product Identification Information Leader.................. 5-22
5.1.8.14 Multiple Datapool Reference..........cccoevuercccernccneceanes 5-22

5.1.9 Assembler Instructions and Generated Object Commands 5-22
AIDDBouioiceineieneneseiiseesseseesssssssssssassessassassessassassasssssssessessansssaasanses 5-25
5.2.1 The AIDDB EnvVirOnmentcccccceeeecuesuerecsessessaecsessessesssasaassans 5-25
5.2.2 EDIY POINLScoceiriinienenrennicsnneisaenscsssessessssstesasssssasssassasassaassessacs 5-26
5.2.2.1 Entry Point 1 - Start-Up......ccccereerereeerenrereesessecasesennes 5-26
5222 Entry Point 2 - Reserved.........oeveveeveneereeccccnennenaanae 5-27
5223 Entry Point 3 - Trap/Break Receiver..........cccceeueruenue 5-27
52.24 Entry Point 4 - M.BRKXIT Receiver.........cccceuerunene 5-27
Contents

/- /\)
N

Contents

Page
5.2.2.5 Entry Point 5 - Abort Receiver........cceveeeveereenvecrennne. 5-28
5.2.2.6 Entry Point 6 - User Overlay Load Courtesy Call5-28
523 HEXEC CallS..cccoiiieinrironininionirinnestsiscsscsnsssssessesssenssnsesssaseses 5-29
52.4 HREXS Callscciiioinieieneeirienenenaeseseesssssssasssesessesssssesasssassennes 5-29
5.2.5 File Code USage......cccovirremrrerrrinrensuresecssensscssacensesasssasssesssosssaone 5-30
5.2.6 TSA REfErBNCEScouvuiviiurinriieitianiniiestsnescsscnesacsesaensessennes 5-31
5.2.7 Communication Region References.......cccccecceecveveeevenceencuenanenn. 5-31
5.2.8 Dispatch Queue Entry (DQE) References........cccceeeueeeeeveenueneennne 5-31
6 System Trace
6.1 INOQUCHON «...eieiiinrinrntrceesttnsetessensessesessaeeteessesssssssesssasneesssessessnens 6-1
6.2 Trace Type 1 - Task ACHVALON.......covuerteererereerrerreenreeneesseenessessaessansans 6-3
6.3 Trace Type 2 - Task Termination.........cccceccecereercerenrcnueneesnesieresseesueseerensen 6-4
6.4 Trace Type 3 - Dispatch CPU t0 TasK......cccceruereeneenreenerseenersreensneennes 6-5
6.5 Trace Type 4 - Task Relinquishes CPU.........cccccovuviniininnnninnnninvensccnnenes 6-6
6.6 Trace Type 5 - Queue /Ot caennes 6-7
6.7 Trace Type 6 - End /Ot 6-8
6.8 Trace Type 7 - Interrupt/Trap Handler Entry.......ccccceveeneenricneecunnruennes 6-9
6.9 Trace Type 8 - Interrupt/Trap Handler Exit.......cccccocervuenruenneccenncennnnns 6-10
6.10 Trace Type 9 - MLSHUTuociiiiianinnicnicnncsaensessseessnesssessasssesssssens 6-11
6.11 Trace Type 10 - MLOPENcuiiinimincenecnnnenncnoneenensesnsssssesssssessessens 6-12
6.12 Trace Type 11 - M.IOFF or BEL.......cocoivimiinincnrinienecneeneensensaenns 6-13
6.13 Trace Type 12 - M.IONN or UEL.......cccconierrnieineeeenenareneeseeseenennens 6-14
6.14 Trace Type 13 - MLCALL........ccoininrinicnininnneessnssssstsscssssseessssens 6-15
6.15 Trace Type 14 - SVC TYPE 1....uuiiciniiciiecnenecencnenceseseeaecseeseennenas 6-16
6.16 Trace Type 15 - M.RTRN or M.RTNA.........oieinieneaenntceencnreeneenaes 6-17
6.17 Trace Type 16 - Inswap Taskcccovueiriiirnniincsnsnineiicnscsssnene 6-18
6.18 Trace Type 17 - Outswap TasK......cccceverreereerreneenrensenseerssesseenesssessesnens 6-19
6.19 Trace Type 18 - Dispatch IPU Taskcceccereirnerrnnnsecrcccnsecnsenscecssecenens 6-20
6.20 Trace Type 19 - Relinquish IPU Task.......ccccceecreeveneruecenanseareeseesesennans 6-21
6.21 Trace Type 20 - RESEIVEQ.....ccceiviruiiiniensecinnenesieseneesaessenasnsaessesseesaans 6-22
6.22 Trace Type 21 - Mobile Event Trace 1ccocceeeevenenvcncnceneereenecreenanns 6-22
6.23 Trace Type 22 - Mobile Event Trace 2c.ccovevivcvuencrceenennenscneesennens 6-23
6.24 Trace Type 23 - SVC TYPE 15..uuiiiriiiccnccnnineneeeeseentenesaceesesenaes 6-24
6.25 Trace Type 24 - SVC TYPE 2...uuceiircireiiriecrnincnnesaeseseesessessessessesasssanns 6-25

MPX-32 Technical Volume | xv

Contents

xvi

System Initializers and Builders

7.1
7.2

73

7.4

1.5

Introduction.......ccccceeeecruennene crteertesatesessasestessasesesasans ceestesststsaneassnasse 7-1
SDT LOAGET...cuivinriinannisainisensiiesissssnssssnsesessassssscsssssssessssnsensssssssessassnces =4
7.2.1 Activating........... reesesaestesstsnsssssens reereresnensenes cevesresstasasesnssane w.7-4
7.2.2 Required INPutccccceererervsnnueisesssnsscnsssnecanens seessressnasssesssssssessass =4
7.2.3 Processing cesereesassnseasenne ceeerstee et et et e et s s esasesaesratsnanaes 7-4
7.2.4 Results......cccoeeveerverneane enressenaenas ceeeeseassassnaaas ceteesassatseaaeenasaees 7-4
The DBOOT Program SeCHON.......cccceeruierverenceruecrurreescassasessesssessanesseans . 1-5
7.3.1 ACHVALNEG....ccocieeirrnereenenseesssacarssanesssessesssesssessasssnsssssssasssasssassnnsase 7-5
7.3.2 PrOCESSING ..ccuceirecerinreriiecnnennessssescseesssssesnenenes reeeeteentenenensans 7-5
The SYSINIT Program SeCHONccceeveeeereeesneasecsssaessesscnsasssaesnsassnnsaas 7-5
7.4.1 Activating.......c..ceceecne cereeestssaesssssesnsssssans cesrtesnenesnaianene crereseraeene 7-5
7.4.2 Processingcceeceeuerercsesverccsssnee cvenens ceeereesaseassrnsenens reeerasessasnens 7-5

74.2.1 Memory Inmahzauon SR ORRRPRRRPRRPRRRY £)

7.4.2.2 System Date and Time................... ceseseceseeestseseesusennaes 7-7

7.4.2.3 Disk Start-up Final Initializationcccceueuu... ceeennas 7-8

7.4.24 Tape Start-up Final Initializationccceceeeeveererneenanns 7-8

7.4.2.5 Master SDT.....coeivenenvicsininsccnseneneenes ceessensenennenee weeees 19
7.4.3 Autodisk Subroutine.........ccccceeverueeceraneene creernane ceereesneeranneaesanes 7-13
7.4.4 Memory Disk................ reesasassensene creesessessnseneassennseraesnanes veeee?-15
Online RESTARTcoineninicnncnninenrenssscsasnsssncnsns cersssnsesnsesaons wereee 1-16
7.5.1 Activating.............. cersessentsssnsnsans reesssesseanens ceesensnenanenans cereranereeens 116
7.5.2 Required INPULcccvvveriireerirrineensenseoreessenacssessssnceseesnsssessaessases 7-16
7.5.3 PIOCESSING .cooviruereranuestesusssssnnensssessssssssassesessessasasassassasnsssassassasns 1= 10

Internal Processing Unit (IPU)

8.1

8.2

OVEIVIEW ..ccuvereeceeeneeneseesaessaaon cercneenesneenes cevesenseaesnnas cevsreessens ceeenrenareseennes 8-1
8.1.1 IPU - Memory Interface crersesenstessstssesnesasenessnane cereenresnnesanes 8-1
8.1.2 TPU - CPU Interface.......cccoeeerueneruevenueveeseenee ceevsennetesaeeasessasnens ...8-1
Task Scheduling and EXECULION.........cccuevcercreceineentnraeseneessesneseesessasassasans 8-2
8.2.1 Task BiaSiNg ...ccccccrrrrruenesectnrensennsscsecnssesssessaessssasssnssassassensasensesse 82
8.2.2 Standard CPU/IPU Scheduling.........cccceeurueee crerssesesesnasesanssennans 8-3

'8.2.3 Optional CPU/IPU Scheduling..................... ceernnanane veeeenene veeeene8-3

8.2.4 Standard Scheduling of IPU-Biased Tasks.......ccccceceveruceurrerrennenes 8-3
8.2.5 Optional Scheduling of IPU-Biased Tasks....... cerrstsatereseassannes 8-3

Contents

®

Contents

8.3

8.4
8.5

8.6

8.7
8.8

Page
8.2.6 Scheduling Unbiased Tasks......cc.ccovevierininneinininnecnicninncinennnne 8-4
8.2.7 Scheduling CPU Only Tasks.....cccceererrureinsenseninscecneneesensnesnnnne 8-4
8.2.8 IPU Task EXECULON....cccceriierieerearnreeanecresssaessaesssnesssaseesanessnsenses 8-4
IPU Executive Module DeSCIIptOncocevuiseiseninsrisesenseissesseeseesanssas 8-5
8.3.1 Entry Point 1 - IPU EXECULVEc..coreereerneerueeneeesseecsnesseessaessanenne 8-5
8.3.2 Entry Point 2 - Undefined IPU InsStructioncceceeeevuerencencnnen. 8-5
8.3.3 Entry Point 3 - Memory Parity EITOr........ccccccceneuemrennernenrecnneen. 8-5
8.3.4 Entry Point 4 - Nonpresent MemoTy.......ccccceeerruererecereneeccneeccsensens 8-5
8.3.5 Entry Point 5 - Undefined Instruction........c.ccccceeceeneeeneeeceeereeennnn. 8-5
8.3.6 Entry Point 6 - Privilege Violationccccceceeveeeveeeveienernreenrenencen. 8-5
8.3.7 Entry Point 7 - Map Faultcccnenninnininnininninnnnncnncnnnneas 8-6
8.3.8 Entry Point 8 - SVC Trap Handlerccocoveevvinvnniinsincnncnnncnnens 8-6
8.3.9 Entry Point 9 - Arithmetic Exception Trap Handler 8-6
8.3.10 Entry Point 10 - Privilege Mode Haltccccoceveevinceneianennneneenne 8-6
8.3.11 Entry Point 11 - Address Specification........ccceeeeceecuenruerrvencenenne 8-7
8.3.12 Entry Point 12 - Cache Fault.........ccccoovuevcienienceenvencrneencecnennne. 8-7
8.3.13 Entry Point 13 - Machine Check......c.cccevueneevrreneerennienenceereenn 8-8
8.3.14 Entry Point 14 - System Check.....cccceveevravrnniininncenenscrcceienanes 8-8
8.3.15 Entry Point 15 - Power Fail Trap......cccccecenverreeneenneseenneecenanne 8-9
8.3.16 Subroutine S.IPU1 - Perform Stack Pushccccccceevivievennnnnnenas 8-9
8.3.17 Subroutine S.IPU2 - IPU Initializationc.cccccevevervcescecescrncenes 8-9
8.3.18 Subroutine S.IPU3 - Terminate IPU Execution.........cccceceeueunee 8-10
8.3.19 Subroutine S.IPU4 - Generate IPU History Buffer................... 8-10
IPU Auto Start Trap Processor - HIPUAS..........cooviiinvnnennenennaceneen. 8-11
IPU Task Scheduler - H.CPU/H.CPU2.coeveervcnuenennscneneneennenenee 8-11
8.5.1 Entry Point 1 - Field IPU Halt........cccoevimeeeineneneenreerrerenraenenne 8-11
8.5.2 Entry Point 2 - Schedule IPU Biased Tasks......c.ccccceereeeeernennas 8-12
8.5.3 Entry Point 3 - Schedule Unbiased Tasks........ccceeerercereneccunane 8-12
8.5.4 Subroutine S.CPU1 - Link Task to IPU Request State 8-12
8.5.5 Subroutine S.CPU2 - IPU Eligibility Test........c.ceceeereerervecvennens 8-12
IPU Accounting Module DeSCriptions..........ccececcereesecescesvesecescsseneenseses 8-13
8.6.1 Entry Point 1 - Field Interval Timer Interrupt........cccccceceeveenee. 8-13

8.6.2 Subroutine S.IPUIT1 - Perform Accounting After IPU Trap....8-13
8.6.3 Subroutine S.IPUIT2 - Perform Accounting Before

Starting IPU......ccuciiicinnccniincnisniesiacisesssneessesssccssessncssssacanes 8-13
IPU SYSGEN DITECHVEScccoreruienirrensenressecstessesassncessosasessescssosssessesases 8-13
SVCs Executable by an IPU.......coroinieninnrieenicnenecnenaeseceessessennes 8-14

MPX-32 Technical Volume | xvii

Contents

xviil

Page
Converting Modules for Extended MPX-32

9.1 General INfOrmMAtioNcovuiviniecinseneicisesseinessaessessesstsssessessasssssassssesasses 9-1
9.2 Programming Considerations..........cocceeeererreeueeseecuensesseeseesoessessessacesesnces 9-2
9.3 Macros for Extended MPX-32.........coovrvirrnenrneciereneenessseseseeseaessessaasans 9-3
9.3.1 MBR_BL - Branch and Link Macro.......ccccceceeruenurereruenerancraesanes 9-4
9.3.2 MBR_BU - Branch Unconditional Macrocccceeeeruenrerscesvensans 9-7
9.3.3 MBR_Bxx - Conditional Branch Macrocccecveeenerecneeruennn. 9-9
9.3.4 MBR_DBG - Calls to System Debugger Macroc........ 9-11
9.3.5 MBR_DEF - Identify Linkage Symbols Macro........c.cceceruerueenes 9-11
9.3.6 MBR_DSCT - DSECT Data Separation Macroc..couune... 9-11
9.3.7 MBR_ENT - Extended Code Routine Entry Macro.................. 9-12
9.3.8 MBR_EXT - Identify External Linkage Symbols Macro.......... 9-12
9.3.9 MBR_INIT - Module Initialization Macro........ccccecceeeeeeeneennenns 9-12
9.3.10 MBR_OFFS - Offset Mode MacCro.......ccccceeeuvmeerrrmeersveeessneenenns 9-13
9.3.11 MBR_REL - Relative Mode MacCro.....ccccueeeeeeieeneeeneenererenseneenes 9-13
9.3.12 MBR_SSCT - System Code Separation Macro.......c..ccceerveuneene 9-13
9.3.13 MBR_TRSW - Transfer Register Status Word Macro............. 9-14
94 Macro Assembler and Extended MPX-32.........ccovvveevircenrernnrueseencenane 9-15
9.5 Macro Assembler Directives for Extended MPX-32ccoovveerueenned 9-15
0.5.1 OPTR DITECHVEuceurreenecnreraerenneensencssesassnssssssosessessesesssessssassases 9-16
0.5.2 OPTS DITECHVE...ccucouieinecrereisnissessensesnseessssessssnssssessssnsssssaesasans 9-16
0.5.3 OPTT DITECHVE......cccvrreeceeruenrerneraeeseesaessessasonssessssasesssassasasssassaases 9-16
0.5.4 SDEF DITECHVE......cccerentrrueirnivrnineeresaceneeeaesesniesssessessassessssnsns 9-17
0.5.5 SEXT DITECHVE.....ccocerintermerennireenseiesionsssnsesseneosssssessassasasssssssanes 9-17
0.5.6 SORG DIIECHVE....cccoveiiruesinrnirssniescnscnnsssssecssssssssssssssssssssssnsnnes 9-19
9.5.7 SSECT DITECHVE ..ccuceirceicerranrinninensisasssesssessesssssensescsssasnssns 9-19
9.5.8 SSECT FLG_MPX DIIECtiVecccerenveicuesenerncssesasassesassesasanosenns 9-20
9.6 Macro Assembler Options for Extended MPX-32........cccccouevecnvecenne. 9-25
9.7 Macro Assembler Errors and Aborts for Extended MPX-32................ 9-25
9.8 Extended MPX-32 EXamPIES......ccocerrrereureceseesarcneceesessnessnseesnsnssnsssases 9-25
9.8.1 Nonextended SVC (H.NONEXT)cccecevenrereescererencacseraesaeneenne 9-26
9.8.2 Extended MPX-32 SVC (H.EXTMOD).......cccceceecnreruenuereesenneane 9-27
9.8.3 Assemble Assignment for Extended MPX-32 SVC.................. 9-28
9.8.4 JH.32_E File Sampleccccoeeevecuersenueneecenneesenscuroresssesasssassaenes 9-29
9.8.5 JCL for Compressing the Extended MPX-32 SVC................... 9-29

9.8.6 JCL for SYSGENing an Extended MPX-32 Operating
SyStemccvevcrnenenvincnnes et s bbbt brssbes s a e aae bR e st 9-29
Contents

O

Contents
Page
10 RTOM Interval Timer

10.1 General INfOrmationccecveeeceeereenreenreesressseneseesesseseseessssssseesssnssssesnses 10-1
10.2 SYSGENINE RTOM.......cooviiviininrinnnininininsisisisissssscsnssssssssssossssesseses 10-1
10.3 Frequency Rate of the Interval Timer.......ccccevinninninninnnnncinncincnecnane 10-2
10.4 Controlling the Interval Timer.......ccccceveneenrcrinnnricrinccniinesrenneeeeeenes 10-3
J L0 BT 25 <: 10 o) (- J ST 10-4
10.5.1 Example 1: Enabling and Reading the Timer........c.ccceeeueenne 10-4
10.5.2 Example 2: Reading the Timer.......ccoccccvvnrnininrincniccncncnncnns 10-5

A System Tables and Variables.................ccereeeeesssesssosemeeeeseessssssn A-1

MPX-32 Technical Volume |

xix

List of Figures

Figure Page
1-1 Scheduler - IOCS Interface - IOCS I/O SVC Processing Overview 1-6
1-2 Scheduler - IOCS Interface - IOCS No-Wait I/O Postprocessing Overview1-7
1-3 Scheduler - IOCS Interface - IOCS Initiate I/O Procedure..........ccceceveencevennnnene 1-8
1-4 Scheduler - IOCS Interface - IOCS Postprocessing Procedurecccceceeenence. 1-9
1-5 Scheduler - I/O Interrupt Interface OVEIVIEW.......cocvvuineinenrieneinininncnnennnisenanes 1-10
1-6 Scheduler - I/O Interrupt - Interface, Procedures..........coceeceeevennennuencuenrecaneenne 1-11
1-7 Scheduler - I/O Interrupt Interface, Re-entrant Subroutines...........ccccceeeeeeenene. 1-12
1-8 Pre-emptive System Service List Entry Header Formatcccoccvvievinccnennane. 1-13
1-9 I/O Overview from User Request to I/O Completecocoevivciniiicniiinncnen. 1-14
2-1 /O Table LinKages.......cccererrueruiruininsuerunseisrenumssissesessessesssesssessossessessssssesssssessses 2-87
2-2 Handler Tables and Corresponding Hardware..........c.cocceeenievennencnsenrncccncnnes 2-88
2-3 Memory Pool Diagram.........cciicienincnsinnnsanissesssssonssssessesssssssssessssssessssessss 2-98
2-4 Spooled File Data StIUCIUTIESceveverreinsenrisnessissesisiosissesssssessessoisssssssssssens 2-120
2-5 TSA SHIUCHUIC.....coceuriirririririerisisiissiissesessesssise st sssssssesssssasssssssssssesess sassnsnsons 2-127
3-1 System Swap SChEUIET ..ottt ca e ssees 3-1
3-2 Mapping of Candidate Task’s TSA (an OVEIVIEW)ccceevuecueerierneneerenvursecssessensas 3-2
3-3 Mapping of a Candidate Task During ROII-0UL........c.cccerruereenvrrneenerneneeenseccarannns 3-3
4-1 SYSGEN Output File FOImatccccccrveviricirienensensuesecssessesssesssessessssseessesseness 4-27
5-1 General Table ATEacccceverervenirreriinenersssinsesesncesessssesssssesnssssssessssesssssesassassasssns 5-3
5-2 Sample SoUrCe LiStNE ...ccccccreeneereinseirsennrensnssnessesseessaessessseesasssssssasssesssasssasssansns 5-23
5-3 Sample Object Code DUMDPccocerecrierienserniennneeeseresrecserecsesenssessesssssasesaessaesns 5-24
7-1 Components and Functions in Boot from an SDT.........cccccccevnveneerveneereccrenannns 7-1
7-2 Components and Functions in Boot from IOP Console........ccccccoueieerucneccnencenc. 7-2
7-3 Components and Functions in Boot from Online RESTART...........ccccccenuennee. 7-3
9-1 Adaptive Sequence Generated By a Branch and Link From a
' Nonextended to an Extended MPX-32 Module for Extended MPX-32............. 9-5
9-2 Adaptive Sequence Generated By a Branch and Link
From Extended to a Nonextended MPX-32 Module........ccccoueceerveneeveecrnccaeanees 9-6
XX Contents

List of Figures

Figure
9-3 Adaptive Sequence Generated By an Unconditional Branch

From Nonextended to an Extended MPX-32 Module........cccceeeeeneenee.
9-4 Adaptive Sequence Generated By an Unconditional Branch

From Extended to a Nonextended MPX-32 Module.......ccccceceeveeenenen.
9-5 Adaptive Sequence Generated By a Conditional Branch

From a Nonextended to an Extended MPX-32 Module......................
9-6 Adaptive Sequence Generated By a Conditional Branch

From an Extended to a Nonextended MPX-32 Module.........ccuuuuueeeen.

MPX-32 Technical Volume |

Page

xxi

List of Tables

Table

1-1

2-1
2-2

3-1

4-1
4-2

8-1
9-1

10-1

xxil

Page

Device Type Mnemonics and COdESccccuvueceeerereniersnecrecnssecnceseresessncecasesaesens 1-44
Special Control FIagscccceverreceeereesrentessercnsesesaresesessesssessasosssesasessessssessassnnes 2-70
Special Control Flags (8-WOrd FCB)......ccccuvviniveminvenneneesennnecnniesensesanseeeseseenees 2-78
Memory Request Function Codes for JSWAPRcccocvievnincninrnenneenennene 3-11
SYSGEN Overlays - Overview of Function§ .. 4-2
SYSGEN Loading SEqUENCE........ccootierienieenecieniaeitiniereeneeeseeseenscsasessseesessnsanns 4-3
TPU TTAP SIIUCLUTE ...ceeeueereerreerecenserasessessessnesessessessesssssessaesassssassessesssassessassaassasse 8-2
Conditional Branch Macros for Extended MPX-32.......cccccoeveenenicirnruereccrersnenes 9-9
RTOM Frequency Rates and Jumper Addresses......oeneencnnnneneecsenneceensennnes 10-2
Contents

Documentation Conventions

Conventions used in directive syntax, messages, and examples throughout the
MPX-32 documentation set are described below.

Messages and Examples

Text shown in this distinctive font indicates an actual representation of a
system message or an example of actual input and output. For example,

VOLUME MOUNT SUCCESSFUL

or

TSM>!ACTIVATE MYTASK
TSM>

Lowercase Italic Letters

In directive syntax, lowercase italic letters identify a generic element that must be
replaced with a value. For example,

$NOTE message

means replace message with the desired message. For example,
S$NOTE 10/12/89 REV 3

In system messages, lowercase italic letters identify a variable element. For example,

BREAK ON : taskname

means a break occurred on the specified task.

Uppercase Letters

In directive syntax, uppercase letters specify the input required to execute that
directive. Uppercase bold letters indicate the minimum that must be entered. For
example,

$ASSIGN Ifc TO resource

means enter $AS or $ASSIGN followed by a logical file code, followed by TO and a
resource specification. For example,

SAS OUT TO OUTFILE

In messages, uppercase !etters specify status or information. For example,
TERMDEF HAS NOT BEEN INSTALLED

MPX-32 Technical Volume | xxiii

Documentation Conventions

Brackets []
An element inside brackets is optional. For example,
$CALL pathname [arg]
means supplying an argument (arg) is optional.

Multiple items listed within brackets means enter one of the options or none at all.
The choices are separated by a vertical line. For example,

$SHOW [CPUTIME | JOBS | USERS]
means specify one of the listed parameters, or none of them to invoke the default.

Items in brackets within encompassing brackets or braces can be specified only when
the other item is specified. For example,

BACKSPACE FILE [[FILES=] eofs]

indicates if eofs is supplied as a parameter, FIL= or FILES= can precede the value
specified.

Commas within brackets are required only if the bracketed element is specified. For
example,

LIST [taskname][,[ownername] [, pseudonym] |

indicates that the first comma is required only if ownername and/or pseudonym is
specified. The second comma is required only if pseudonym is specified.

Braces { }

Elements listed inside braces specify a required choice. Choices are separated by a
vertical line. Enter one of the arguments from the specified group. For example,

[BLOCKED={YIN}]
means Y or N must be'supplied when specifying the BLOCKED option.

Horizontal Ellipsis ...

The horizontal ellipsis indicates the previous element can be repeated. For example,
$DEFM [par] [, par] ...

means one or more parameters (par) separated by commas can be entered.

XXiv Documentation Conventions

7N
N

Documentation Conventions

C Vertical Ellipsis

The vertical ellipsis indicates directives, parameters, or instructions have been omitted.
For example,

$DEFM SI,ASSEMBLE,NEW,OP

$IFA $OP ASSM

means one or more directives have been omitted between the $DEFM and $IFA
directives.

Parentheses ()

In directive syntax, parentheses must be entered as shown. For example,

(value)

means enter the proper value enclosed in parentheses; for example, (234).

Special Key Designations

The following are used throughout the documentation to designate special keys:

[<ctrl> control key
({ <ret> or <CR> carriage return/enter key
} <tab> tab key
<break> break key
<bck> backspace key
 delete key

When the <ctrl> key designation is used with another key, press and hold the control
key, then press the other key. For example,

<ctrl>C

means press and hold the control key, then press the C.

Change Bars

Change bars are vertical lines (|) appearing in the right-hand margin of the page for
your convenience in identifying the changes made in MPX-32 Revision 3.5.

When an entire chapter has been changed or added, change bars appear at the chapter
title only. When text within figures has changed, change bars appear only at the top
and bottom of the figure box.

MPX-32 Technical Volume | XXV/XXVi

C 1 System Description

1.1 Naming Conventions

MPX-32 software and documentation use the following naming conventions for
system components.

1.1.1 Communications Region

Names of variables within the MPX-32 communications region are prefixed by the
characters "C.". The general form is C.x where x is a string of one to six characters.

1.1.2 Task Service Area (TSA)

Names of variables within the TSA associated with each task are prefixed by the
characters "T.". The general form is T.x where x is a string of one to six characters.

1.1.3 Entry Variables

Names of variables within table and file entries consist of characters which identify
the table or file and the variable. The general form is x.y where x consists of two to
four characters which identify the table and y consists of three to six characters which
identify the variable. Table or file name prefixes (x) are as follows:

MPX-32 Technical Volume | 1-1

Naming Conventions

ART
CDT
CHT
DAT
DCA
DFT
DQE
DTT
FCB
FPT
ICB
10Q
JOB
MEM
MEML
MIDL
MQ
MVT
PRB
PSB
RCB
RD
RLB
RRS
RXB
SMD
SMT
TCA
TCP
UDT
VAT

Allocated Resource Table
Controller Definition Table
IOP Channel Definition Table
Dispatch Queue Address Table
Device Context Area

Disk File Assignment Table
Dispatch Queue Entry Table
Device Type Table

File Control Block

File Pointer Table

Interrupt Control Block

1/0 Queue Entry

Job Table

Memory Allocation Table
Memory Attribute List

Map Image Descriptor List
Message or Run Request Queue Entry
Mounted Volume Table
Parameter Receive Block
Parameter Send Block
Resource Create Block
Resource Descriptor

Resource Logging Block
Resource Requirement Summary Entry
Receiver Exit Block

System Master Directory Entry
Shared Memory Table
Terminal Context Area

Type Control Parameter Block
Unit Definition Table

Volume Assignment Table

1.1.4 System Modules and Interrupt Handlers

Names of system modules and interrupt handlers are prefixed by the characters "H.".
The general form is H.x where x is a string of one to six characters. Entry points in
system modules are identified by the module name, followed by the entry point’s
numeric identifier. Entry point names are of the general form H.x,n, where n is the
numeric entry point identifier.

1.1.5 Common System Subroutines

Common system subroutines are subroutines contained within modules intended for
use by other modules. Their names are prefixed by the characters "S.". The general
form is S.xn, where x is the one to four character module identifier and # is the
subroutine numeric identifier. For example, S.EXECI is the first subroutine in the
H.EXEC module.

System Description

Naming Conventions

(1.1.6 System Macros

Names of nonbase mode system macros are prefixed by the characters "M.". Names
of base mode system macros are prefixed by "M_". The general form is M.x or M_x,
where x is a string of one to six characters for nonbase mode or one to fourteen
characters for base mode.

1.1.7 System Task Load Module Files
Names of system task load module files are prefixed by the characters "J.". The
general form is J.x, where x is a string of one to six characters.

1.1.8 Batch Task Load Module and Executable Image Files
Names of system batch task load module files are identical to the names of the tasks
contained on the files.

1.1.9 System Permanent Files

Names of system permanent files not containing load modules are prefixed by the
characters "M.". The general form is M.x, where x is a string of one to six characters.
M.ERR, M.CNTRL, and M.KEY are examples of system permanent files.

MPX-32 Technical Volume | 1-3

Scheduler - IOCS Interface

1.2 Scheduler - IOCS Interface

1.2.1 /O Initiation

A task issues an SVC to enter IOCS. I/O services for pretransfer processing are then
executed at the software priority level of the requesting task. Once the I/O request is
initiated (or queued for initiation), an H.LEXEC entry point is called to report the event
to the CPU and swapping scheduler:

Entry Point Event

H.EXEC,1 interactive input starting
H.EXEC,2 terminal output starting
H.EXEC,3 wait I/O starting
H.EXEC4 no-wait I/O starting

1.2.1.1 Wait I/O Postprocessing

A return is made to IOCS from H.EXEC,1, 2, or 3 only when the I/O request
completes. Post transfer processing may then occur at the software priority level of
the requesting task.

1.2.1.2 No-Wait I/O Postprocessing

A return from H.LEXEC,4 is made immediately after recording the no-wait I/O event.
Since IOCS also makes an immediate return to the user task, no-wait I/O post transfer
processing occurs as a task interrupt service.

1.2.1.3 No-Wait /O Completion Task interrupt Service

When the I/O handler interrupt service routine fields a completion interrupt for a no-
wait I/O request, it calls the executive subroutine S.EXEC4 to report the event. The
I/0 queue entry associated with the call is then linked to the task interrupt list in the
DQE of the task that made the I/O request. When the scheduler attempts to dispatch
control to the task, it finds that a task interrupt is outstanding. Task interrupts are
inhibited during execution of any system service for a task. No task interrupt is
honored while a higher priority task interrupt is active. When the task interrupt is
honored, control is transferred to the IOCS routine specified in the pre-emptive system
service header of the I/O queue entry. Post transfer processing then occurs at the
software priority level of the requesting task. When postprocessing of the no-wait I/O
request is complete, the task interrupt service is exited by a call to S.EXEC6 or
H.EXEC,12.

System Description

Scheduler - IOCS Interface

(. / 1.2.1.4 No-Walt /O Restrictions for System Services

Post transfer processing for a no-wait I/O request is processed as a task interrupt. Task
interrupts are not honored while the task is executing in a system service

(PC .LE. TSA address). An exception is made for a task that is in a wait for any no-
wait I/O completion state. A task interrupt generated by the completion of no-wait
I/O is honored if the task is in the wait for any no-wait I/O completion state. A
system service that wants no-wait I/O can issue a series of no-wait calls followed by a
wait-for-any call. Be careful that all outstanding calls are completed appropriately.

MPX-32 Technical Volume | 1-5

Scheduler - I0CS Interface

IOCS FROM SVC
CONSTRUCT
ENVIRONMENT
FORI1/0
INITIATION
>
INMATE /0
WAITI/0 NO-WAITI/0
TN
\\/"'
POST \
TRANSFER COMPLETE
PROCESSING /
M.RTRN M.RTRN
RECONSTRUCT TO TO
INITIATION USER USER
ENVIRONMENT
T1002
Figure 1-1 -~
Scheduler - IOCS Interface - IOCS I/O SVC Processing Overview (}/

System Description

C

Scheduler - IOCS Interface

IOCS TASK INTERRUPT
FROM SCHEDULER

POST

COMPLETE

PROCESSING /

RETRY

RECONSTRUCT
INITIATION

USER
NO - WAIT

/ H.EXEC, 12 \

ENVIRONMENT I/O SERVICE \ /
° NO RETURN
° CONTINUE TASK AT
° POINT OF INTERRUPT
OR CONTINUE
INITIATE IOCS FROM SVC TO WAIT FOR ANY
110 EXIT USERNO - WAIT I/0 COMPLETION
1/0 SERVICE
/ H.EXEC, 12 \ S.EXEC6
NO RETURN NOQ RETURN
CONTINUE TASK AT CONTINUE TASK AT
POINT OF INTERRUPT POINT OF INTERRUPT
OR OR
CONTINUE WAIT FOR ANY CONTINUE WAIT FOR ANY
1/ O COMPLETION 1/ O COMPLETION
T1003
Figure 1-2

MPX-32 Technical Volume |

Scheduler - IOCS Interface - IOCS No-Walit I/O Postprocessing Overview

Scheduler - IOCS Interface

INITATE /O
PROCEDURE

FROMWAIT 1/0 SVC,
; OR FROM NO - WAIT
TASK INTERRUPT

BEI

HANDLER
ENTRY
POINT 2

...........

H.EXEC, 1 H.EXEC, 2 H.EXEC, 3 / H.EXEC, 4 \

'NTES:S;NE Tgﬁq,“g:# WAIT1/0 NO - WAIT1/0
STARTING STARTING
STARTING STARTING
RETURN AFTER
EVENT RECORDED
RETURN WHEN
1/0 COMPLETE

TO I0CS
POINT OF CALL

T1004 |

Figure 1-3
Scheduler - IOCS Interface - I0CS Initiate 1/0 Procedure

1-8 System Description

®

Scheduler - IOCS Interface

FROM WAIT 1/ O SVC,
OR FROM NO - WAIT

TASK INTERRUPT
POST TRANSFER

PROCESSING

NO ERROR
7 Y 'Y
ERROR ERROR
UNRECOVERABLE
AUTOMATIC
RETRY
OPERATOR a
INTERVENTION
REQUIRED
—
RETRY COMPLETE
ISSUE INOP RETURN RETURN
MESSAGE
TO IocS TOI0CS
i} POINT OF CALL POINT OF CALL
?2 A R
T1005
Figure 1-4

Scheduler - IOCS Interface - IOCS Postprocessing Procedure

MPX-32 Technical Volume |

Scheduler - I0CS Interface

OPTIONAL PROCESSING
REPORT AS
EVENT REQUIRED

STANDARD IPROCESSING
@H ENTRY — AS
PROCEDURE REQUIRED

1/0
INTERRUPT
LEVELS

&
PPN
Y'Y Y

RETURN TO ANY PRE-EMPTED

LOWER LEVEL INTERRUPT .
S.EXECS5
RETURN TO INTERRUPTED TASK
OR PERFORM CONTEXT SWITCH
TO HIGHER PRIORITY CANDIDATE
FOR CPU CONTROL
SOFTWARE™
PRIORITY [—
TASK :
T1006
Figure 1-5 .
Scheduler - I/O Interrupt Interface Overview ()

1-10 System Description

Scheduler - IOCS Interface

START

UNBLOCKED
WITH LEVEL

ENTER

ACTIVE

y

INCREMENT
INTERRUPT

GLOBAL
COUNT

y

PROCESSING
AS REQUIRED

FOR THIS
LEVEL

S.EXEC1
REPORT EVEN
INTERACTIVE
INPUT
COMPLETE

REPORT EVEN

COMPLETE

S.EXEC3 S.EXEC4

REPORT EVENT REPORT EVENT
WAITI/O NO-WAITI/0
COMPLETE COMPLETE
v
SET BLOCKED,
DEACTIVATE
LEVEL

S.EXEC5
STANDARD
INTERRUPT

EXIT

PROCEDURE

T1007

Figure 1-6

Scheduler - /O Interrupt - Interface, Procedures

MPX-32 Technical Volume |

1-11

Scheduler - IOCS Interface

INTERRUPT SERVICE
ROUTINES
X3=
ADDRESS OF svC
SCRATCHPAD TSA PUSH
DOWN
: LEVEL
: 22 WORD
INTERRUPT : SCRATCH-
CONTEXT : PAD
BLOCK !
22 WORD :
SCRATCH- ;
PAD :
X3 =
ADDRESS OF sve
SCRATCHPAD
MONITOR
S SERVICE
: X3=
S.EXECX : ADDRESS OF
: SCRATCHPAD
USE X3 AS L
SCRATCHPAD
INDEX
TRSW RO
CETURN M.RTRN
T1008
Figure 1-7

Scheduler - /O Interrupt Interface, Re-entrant Subroutines

1-12 System Description

N s

Scheduler - IOCS Interface

0 String Forward Address
1 String Back Address
2 Priority
3
4 PSD Word 1
5 PSD Word 2
6
7
T1009
Figure 1-8

Pre-emptive System Service List Entry Header Format

MPX-32 Technical Volume |

1-13

Scheduler - IOCS Interface

/O Request Processin

Service interrupt Processing

1-14

/0 Overview from User Request to V'O Complete

System Description

User Task J r Service interrupt
/O Request
H.IOCS Device Handler Device Handler EP1
. OPCODE EPS - OPCODE Processor Service Interrupt Processing:
OPCODE Processing: Processing | EP2- 1/ Startup Error Retry, Staws (Externals Blocked)
BE! Processing to Link Posting, Issue CO/SIO
1/0 Queue to COT g
Check /O Compiete ﬁ
Notify Executive Notify Executive of
of /O Initiation 170 Complete
(Level Active)
H.EXEC,n S.EXEC,n
H.EXEC,1: Interactive Input ;
H.EXEC,2: Terminal Output :'3:2;3 rmm
HEXEGLA NoWak 0 soxecs: watio
No-Watt 'O Al Other /O
Retum Suspend
To User Task Post VO Processing
User Task
[ooeaww
User Task Scheduled
(Via Task interrupt
Service FPR
No-Wait VO)
§.10Cs1
/0 Post Processing:
Post Status To FCB,
Device INOP Messages
Data Moves, Deallocate
/0 Queue and OS Buffer
as Required
User Task
T1010
Figure 1-9

Scheduler - Task Termination Interface

1.3 Scheduler - Task Termination Interface

Three types of task termination are provided in the MPX-32 system: exit, abort, and
delete task execution.

1.3.1 Exit Task

1.3.141

1.3.1.2

1.3.13

1.3.14

13.1.5

13.1.6

1317

The exit task service is called by a task that needs to terminate its execution normally.

Outstanding 1/O (Exit)
If an exiting task has outstanding I/O, further exit processing is deferred until all
outstanding 1/0 is complete. Any user end-action routines associated with no-wait I/O
which completes while a task is exiting result in a task abort.

Messages in Receiver Queue (Exit)
All outstanding messages sent to an exiting task are unlinked from the message
receiver queue and treated as complete with abnormal status.

Outstanding Run Requests (Exit)
A task attempting to exit with outstanding no-wait run requests (with call back) for
other tasks is aborted.

Run Requests in Receiver Queue (Exit)

If an exiting task has requests in its run receiver queue, the current run request is
terminated and the appropriate status is posted in the run request parameter block. If
any additional run requests are queued, a new copy of the task is activated.

Task Abort Receiver (Exit)

A task abort receiver is not processed on task exit.

Files (Exit)
All open files associated with a task are automatically closed during task exit
processing.

Resources (Exit)<

All resources associated with a task are automatically deallocated during task exit
processing.

MPX-32 Technical Volume | ~1-15

‘Scheduler - Task Termination Interface

1.3.2 Abort Task

The abort task service is called by a task that needs to terminate its execution
abnormally. It is also initiated by the system when a task encounters a system trap
condition, such as undefined instruction, privilege violation, nonpresent memory, or
by a system service because of a parameter validation error. This service is
asynchronously initiated by another task or by operator communications. If the
OWNERNAME restriction is set in T.ACCESS, only a task of the same owner name
can initiate the abort.

1.3.2.1 Asynchronous Abort

1-16

When a task needs to abort another task it calls the asynchronous abort service. If the
OWNERNAME restriction is set in T.ACCESS, only a task of the same owner name
can initiate the abort. The task to be aborted is in a ready-to-run state or one of the
following wait states:

1. Waiting for execution signal;
* timed suspend
* message receive
® run request receive
* interrupt receive

2. Waiting for resource:

* device

¢ disk space

* memory

* memory pool
3. Waiting for operation complete:

* interactive input

* low speed output

* any no-wait I/O

* wait /O

® any no-wait message

* wait message

* any no-wait run request

* wait run request
If the specified task to be aborted is waiting for an execution signal, an abort request
bit is set in the DQE. The DQE is unlinked from its current state queue and linked to

the ready-to-run list at its current priority. When it is selected for execution by the
CPU scheduler, the abort request processing then proceeds for the aborting task.

System Description

‘

TN

\\\,/

Scheduler - Task Termination Interface

If the specified task is waiting for a resource or operation complete, the abort
requested bit is set in its DQE. The task remains linked to its current list, and abort
processing does not proceed until outstanding operations are complete and the task is
ready to run.

1.3.2.2 Synchronous Aborts

When the currently executing task encounters an abort condition, the abort bit is set in
the DQE. The CPU scheduler then processes the abort request. The following is an
outline of synchronous abort processing.

Outstanding I/O — If the aborting task has outstanding I/O, further abort processing
is deferred until all outstanding I/O is complete. End-action routine execution is
inhibited, and task abort status is reflected in the FCB.

Messages in Receiver Queue — All outstanding messages sent to an aborting task
are unlinked from the message receiver queue and treated as complete with abnormal
status.

Outstanding Run Requests — If the aborting task has outstanding run requests
(with call back) for other tasks, further abort processing is deferred until completion of
all such requests. End-action routine execution is inhibited, and task abort status is
reflected in the run request block.

Run Requests In Receiver Queue — If the aborting task has requests in its run
receiver queue, the current run request is terminated and the appropriate status is
posted in the run request parameter block. If any additional run requests are queued, a
new copy of the task is activated.

Abort Receiver — If the aborting task has an abort receiver, control is transferred to
it. All outstanding operation or resource waits have been completed, and all no-wait
I/O or no-wait run requests (with call back) have been completed when the abort
receiver is entered. End-action routines associated with no-wait operations that
completed while the abort request was outstanding have not been executed. Status
bits reflecting this are posted in the appropriate FCBs and PSBs. Any files open when
the abort request was received remain open on an abort receiver entry. Any resources
allocated when the abort request was received remain allocated when the abort
receiver is executed.

Open Files — If the aborting task has no intercepting abort receiver, all files open
when the abort request was encountered are automatically closed.

Resources — If an aborting task has no intercepting abort receiver, all previously
allocated resources are deallocated and the task is no longer active in the system.

MPX-32 Technical Volume | 1-17

Scheduler - Task Termination Interface

1.3.3 Delete Task

~ The delete task service is called by the system for a task that encounters a second

abort condition during processing of an initial abort request. This service is
asynchronously initiated by another task or by operator communications. If the
OWNERNAME restriction is set in T.ACCESS, only a task of the same owner name
can initiate the task delete request.

1.3.3.1 Asynchronous Delete

When a task needs to delete another task of the same owner name, it calls the
asynchronous delete service. The task to be deleted can be in a ready-to-run state or a
wait state, such as wait for execution signal, wait for resource, or wait for operation
complete. In any case, the delete task bit is set in the DQE, and the task is linked to
the ready-to-run list or to the memory request queue for inswap. An exception is
made for a task already in the memory request queue. In this case, the task is not
linked into the ready-to-run queue until memory scheduler processing is complete.

1.3.3.2 Synchronous Deletes

1-18

When the currently executing task encounters a delete condition, the delete task bit is
set in the DQE. The CPU scheduler then processes the delete request. The following
is an outline of synchronous delete processing.

AN

Outstanding I/O — Delete processing causes all outstanding 1/O to be terminated C)
(killed). N

Messages in Recelver Queue — All outstanding messages sent to a task being
deleted are unlinked from the message receiver queue and treated as complete with
abnormal status.

Outstanding Run Requests — If the task being deleted has outstanding run
requests for other tasks, any call back is ignored.

Run Requests in Receiver Queue — If the task being deleted has requests in its
run receiver queue, the current run request is terminated and the appropriate status is
posted in the run request parameter block. If any additional run requests are queued, a
new copy of the task is activated.

Abort Recelver — Abort receivers are not processed for tasks being deleted.

Open Files — Files associated with a task being deleted are not automatically
closed.

Resources — All resources associated with a task being deleted are deallocated,
and the task is no longer active in the system.

O

System Description

Scheduler-Debug Interface

1.4 Scheduler-Debug Interface

1.4.1 Design Goals

The structure of the scheduler-debug interface is dictated by the following major
design goals:

* AIDDB can be associated with a task at task activation time, or subsequently
associated with a terminal task when the break key is pressed. AIDDB can also be
associated with a task dynamically through a system service call.

* When a task that has AIDDB associated with it is executing, two methods of
entering AIDDB are provided: the executing task encounters a previously set
AIDDB trap instruction, or the terminal operator presses the break key.

* Entering AIDDB mode by a trap or break is allowed during execution of software
(task) interrupt receivers like message, end action, and break.

* AIDDB intercepts any task aborts, automatically enters the AIDDB mode, and
informs the operator of the abort reason.

* System entry into the abort receiver is soft (outstanding I/O requests are completed,
and files remain open and allocated). This allows the operator to correct and
proceed from the environment that caused the abort condition.

1.4.2 Debug Entry Points

AIDDB has five entry points. These entry points are reflected by the halfword address
table (HAT) at the beginning of the AIDDB program. When AIDDB is loaded, the
address of the AIDDB HAT is stored in T.DBHAT in the TSA. The first word of the
HAT contains the number of AIDDB entry points. Subsequent words contain the
address of the individual AIDDB entry points. The entry points provided are:

Entry Point Description
debug start-up
reserved
trap/break
user break exit
abort

N H W =

MPX-32 Technical Volume | 1-19

Scheduler-Debug Interface

1.4.3 Task Interrupt Status

To determine the status of task interrupts, AIDDB examines a byte (DQE.ATI) in the
dispatch queue entry. When AIDDB is entered, DQE.ATI contains the definition of
all active task interrupts.

Bit Meaning
0 reserved
1 active end action interrupt 1 (DQE.AEA1)
2 active debug mode interrupt (DQE.ADM)
3 active user break interrupt (DQE.AUB)
4 - active end action interrupt 2 (DQE.AEA)
5 active message interrupt (DQE.AMI)

6-7 reserved

1.4.4 TSA Stack Pushdown Level Interpretation

For all AIDDB entry points except restart, the context associated with the most
recently interrupted task level is contained in T.CONTXT. Nested levels of task
interrupt are contained in the TSA stack. Unless one of the task interrupt levels (other
than DQE.ADM) is active, the TSA stack is empty on entry to AIDDB. If task
interrupts are active, the context storage in the TSA is in reverse order of priority. For
example, highest priority is the most recent. In the active task interrupt bit
assignments, bit zero is the lowest priority.

1.4.5 Exit from AIDDB Mode

When AIDDB is executing (regardless of the entry point) the task is in the AIDDB
mode. The AIDDB mode is exited by calling one of the following H.EXEC entry
points:

Entry Point Description
H.EXEC,22 go to specified task context
H.EXEC,23 run user break receiver

1.4.6 Entry Point 1 - Start-up

This entry point is entered in one of two methods: AIDDB is activated with the user
task, or the user task issues an SVC call to load and execute AIDDB.

1.4.6.1 AIDDB Activated with User Task

1-20

The program activation service thai runs for the task being activated detects that
AIDDB is to be activated with the task. After the task is loaded, a special service is
called to load AIDDB. Once AIDDB is loaded, the service stores the normal start-up
registers and PSD in an AIDDB context block in the TSA (T.CONTXT). The service
then adjusts the stack in the TSA to enter AIDDB at the AIDDB start-up entry point.
When AIDDB is entered the stack is empty, AIDDB mode is set, and T.CONTXT
contains the user task start-up registers and PSD.

System Description

C

A
J

Scheduler-Debug Interface

1.4.6.2 AIDDB Activated by Load and Execute SVC

When the user task issues a load and execute AIDDB SVC, the system service loads
AIDDB, stores the user’s registers and PSD in T.CONTXT, sets AIDDB mode, and
adjusts the TSA stack for entry at AIDDB’s start-up entry point.

1.4.7 Entry Point 2 - Reserved

1.4.8 Entry Point 3 - Trap/Break

This entry point is entered when a hardware break or M.INT is received by the user
task being debugged. It is also entered when a trap SVC is executed. On entry,
T.CONTXT contains the interrupted context, and the AIDDB mode task interrupt flag
is set.

1.4.9 Entry Point 4 - User Break Exit

This entry point is executed when the user task being debugged executes a break exit.
A user task being debugged can only execute its break receiver by giving a break
command to AIDDB. AIDDB in turn calls HEXEC,23. Nommal break receiver entry
is reserved for AIDDB use when AIDDB is associated with a task. When AIDDB'’s
user break exit entry point is entered, T.CONTXT contains the most recent level of
pushdown from the TSA stack. The number of pushdowns in the TSA stack varies
based on the number of active task interrupts like message and end action.

1.4.10 Entry Point 5 - Abort

This entry point is executed when an abort request is received for the user task and no
user abort receiver has been specified. When the abort is received, the user task
context is in T.CONTXT of the TSA. If a task interrupt like message or break
receiver was in effect when the abort request was received, the TSA stack is at the
associated level of pushdown. Otherwise, the TSA stack is empty.

1.4.10.1 Wait I/O Operation Status on Abort Receiver

When the abort receiver is entered, any wait I/O operation is completed first. If an
abort request is received for a task with wait I/O outstanding, abort processing is
deferred until the wait I/O is complete. A service is provided by operator
communications to terminate (kill) outstanding I/O requests associated with the
specified task. When an 1/O request is terminated, appropriate status is posted in the
FCB.

MPX-32 Technical Volume | 1-21

Scheduler-Debug Interface

1.4.10.2

1.4.10.3

1.4.104

1.4.105

1-22

No-wait I/0 Operation Status on Abort Receiver ‘ @

When the abort receiver is entered, all no-wait I/O operations is complete. If an abort
request is received for a task with no-wait I/O outstanding, abort processing is
deferred until all no-wait I/O requests are complete. User end-action routine
processing is inhibited for no-wait I/O completions when the task is aborting. Task
abort status is posted in the FCB.

File Status on Abort Receiver Entry

All user files remain open on entry to the task abort receiver.

Inhibit of Abort Receiver Entry

If an abort condition is detected during abort processing for a previously detected
abort condition, all outstanding I/O is terminated, no status is posted, abort receiver
entry is inhibited, resources are deallocated, and the task is removed from the system.

Re-use of Abort Receiver

Privileged tasks can re-establish an abort receiver from within an abort receiver,
allowing privileged tasks to enter their abort receiver more than once. Unprivileged
tasks are aborted if an attempt is made to re-establish this receiver.

System Description

C

Task Interrupts

1.5 Task Interrupts

In addition to the 64 levels of execution priority available for task execution, the
MPX-32 scheduler provides a software interrupt facility within the individual task
environment.

1.5.1 Task Interrupt Priorities

Individual tasks operating in the MPX-32 environment can be organized to take
advantage of the task unique software interrupt levels. Each task in the MPX-32
system has six levels of software interrupt:

Level Priority Description

reserved for operating system use
AIDDB

break

end action

message

normal execution (run request)

NH W =0

1.5.2 Task Interrupt Receivers

An individual task is allowed to issue system service calls to establish interrupt
receiver addresses for both break and message interrupts. The AIDDB interrupt level
is reserved for system use by tasks running in AIDDB mode. The end-action interrupt
level is used for system postprocessing of no-wait I/O, message, or run requests. It
also executes user-task specified end-action routines. The normal execution level is
used for run request processing and general base level task execution.

1.5.3 Task Interrupt Scheduling

Task interrupt processing is gated by the MPX-32 scheduler during system service
processing. If a task interrupt request occurs while the task is executing in a system
service, the scheduler defers the interrupt until a return is made to the user task
execution area.

1.5.4 System Service Calls from Task Interrupt Levels

A task can utilize the complete set of system services from any task interrupt level. It
is prohibited, however, from making a wait for any no-wait completion call
(M.ANYW) from an end-action routine. It is illegal to issue an I/O request on any
FCB that is busy or has postprocessing outstanding.

1.5.5 Task Interrupt Context Storage

When a task interrupt occurs, the scheduler automatically stores the interrupted
context into the TSA pushdown stack. This context is automatically restored when
the task exits from the active interrupt level.

MPX-32 Technical Volume | 1-23

Task Interrupts -

b
1.5.6 Task Interrupt Level Gating (J

When a task interrupt occurs, the level is marked active. Additional interrupt requests
for that level are queued until the level active status is reset by the appropriate level
exit system service call. When the level active status is reset, any queued request is
processed.

In addition, the following services can inhibit higher priority task interrupts:

M.ASYNCH resets the asynchronous task interrupt mode back to the default
environment :

M.DSMI disables the task interrupts for messages sent to the calling task

M.DSUB deactivates the user break interrupt and allows user breaks by the
terminal break key to be acknowledged

M.ENMI enables task interrupts for messages sent to the calling task

M.ENUB activates the user break interrupt and causes further user breaks by the
terminal break key to be ignored

M.SYNCH causes message and task interrupts to be deferred until the user makes a
call to M.\ANYW, M. ASYNCH, M.EAWAIT, or M.\WAIT. Any
deferred task interrupts are processed when a lower level task interrupt
calls the M.AANYW, M.LEAWAIT, or M.WAIT services.

1.5.7 User Break Interrupt Receivers

A task can enable the break interrupt level by calling the M.BRK monitor service to g
establish a break interrupt receiver address. The level becomes active as a result of a

break interrupt request generated either from a hardware break or from an M.INT

service call that specified this task. When the break level is active, end action,

message, and normal execution processing is inhibited. The level active status is reset

by calling the M.BRKXIT monitor service to exit from the pseudointerrupt (break)

level

1.5.8 User End-Action Receivers

When a task issues a no-wait I/O, send message, or send run request, a user-task end-
action routine address can be specified. If specified, the routine is entered at the end-
action priority level from the appropriate system postprocessing routine. When the
end-action level is active, processing at the message or normal execution level is
inhibited. The level active status is reset by calling the appropriate end-action service:

End-action Type End-action Exit Service
1/0 H.IOCS,34
Send message M.XMEA

Send run request M.XREA

1-24 System Description

Task Interrupts

All types of user end-action exits provide a return or a continue-wait for any option.
An interrupt exit normally returns to the interrupted context. A task can issue a series
of no-wait request calls followed by a wait for any completion service call from the
base level. This wait service (M.ANYW) places the task in an interruptive wait state,
allowing the execution of postprocessing and end-action routines associated with the
no-wait call. The retumn or continue wait end-action exit options allow the exiting
end-action routine to retumn to the point following the wait for any call or to continue
the wait for any state.

Note: A task is prohibited from making a wait for any service call from an end-
action routine.

1.5.9 User Message Receivers

1.5.10

A task can enable the message interrupt level by calling the M.RCVR system service
to establish a message interrupt receiver address. The level becomes active as the
result of a message send request specifying this task as the destination task. When the
message level is active, normal execution processing is inhibited. On entry to the
message interrupt receiver, register one contains the address of the queue entry
(MRRQ) in memory pool. The receiver can call a service M.GMSGP to store the
message in a user receiver buffer. No-wait I/O is permitted with the M.WAIT service.
After appropriate processing, the message interrupt level can be reset by calling the
M.XMSGR system service to exit from the message interrupt receiver.

User Run Receivers

User run receivers execute at the normal task execution (base) level. The cataloged
transfer address is used as the run receiver execution address. The run receiver
mechanism is provided by the system to allow queued requests for task execution with
optional parameter passing. When a run request is issued, the task load module name
is used to identify the task to be executed. If a task of that load module name is
currently active, the run request is queued from the DQE of the specified task. If the
specified task is not active, it is first activated. When a task begins execution as the
result of a run request, register one contains the address of the run request queue
entry. The receiver can call a service M.GRUNP to store the run parameters in a
user-receiver buffer. After appropriate processing, the run receiver task exits by
calling the M.XRUNR system service. Any queued run requests are then processed.

MPX-32 Technical Volume | 1-25

Task Interrupts

1.5.11 User Abort Receivers

User abort receivers execute at the normal task execution (base) level. The user task
establishes an abort receiver by calling the M.SUAR monitor service. If an abort
condition is encountered during task operation, control is transferred to it. On entry,
any active software interrupt level is reset, all outstanding operations or resource waits
are complete, and all no-wait requests were processed. End-action routines associated
with no-wait requests that completed while the abort was outstanding were not
executed. Status bits reflecting this are posted in the appropriate FCBs and PSBs.
Any files opened or resources allocated when the abort condition was encountered
remain opened and/or allocated when the abort receiver is executed. The TSA stack is
clean, and the context when the abort condition was encountered is stored in
T.CONTXT. When the abort receiver is entered, register six contains a status byte
reflecting task interrupt status when the abort condition was encountered.

Bit Meaning if Set

24 N/A

25 N/A

26 user break interrupt active
27 end action interrupt active
28 message interrupt active

The standard exit service is used to exit from an abort receiver. If another abort
condition is encountered while a task is in an abort receiver, the task is deleted.

1-26 System Description

Send/Receive Facilities

1.6 Send/Receive Facilities

MPX-32 provides both message and run request send/receive processing. Run request
services allow a task to queue an execution request (with optional parameter pass) for
another task. Message services allow a task to send a message to another active task.
The services provided for use by the destination tasks are called receiving task
services. Those provided for tasks that issue the requests are called sending task
services.

1.6.1 Receiving Task Services

1.6.1.1 Establishing Message and Run Receiver Capability

Establishing Message Receivers — To receive messages sent from other tasks, a
task must be active and have a message receiver established. A message receiver is
established by calling the system service M.RCVR, and providing the receiver routine
address as an argument with the call.

Establishing Run Recelvers — Any valid task can be a run receiver. Although a
set of special run receiver services are provided, in the most simple case they are not
needed. The run receiver mechanism is provided by the system to allow queued
requests for task execution with optional parameter passing. The cataloged transfer
address is used as the run receiver execution address. The task load module name is
used to identify the task to be executed. If a task of that load module name is
currently active and is a single-copied task, the run request is queued until the task
exits. If a task of that load module name is currently active but is not a single-copied
task, the load module is activated (multicopied) to process the request. If a
multicopied task is waiting for a run request, the task number is used to activate the
load module to process the request. When a single-copied task exits, any queued run
requests are executed. If a run request is issued for a task that is not currently active,
the task is activated automatically.

1.6.1.2 Execution of Message and Run Receiver Programs

Execution of Message Receiver Programs — When a task is active and has a
message receiver established, it can receive messages sent from other tasks. A
message serit to this task causes a software (task) interrupt entry to the established
message receiver.

Execution of Run Receiver Programs — When a valid task is executed as a result
of a run request sent by another task, it is entered at its cataloged transfer address. A
run receiver executes at the normal task execution (base) level.

MPX-32 Technical Volume | 1-27

Send/Receive Facilities

1.6.1.3 Obtaining the Passed Parameters

Obtaining Message Parameters — When the message receiver is entered, register
one contains the address of the message queue entry in memory pool. The task can
retrieve the message directly from memory pool or call a receiver service (M.GMSGP)
to store the message into the designated receiver buffer. If the M.GMSGP service is
utilized, the task must present the address of a five word parameter receive block
(PRB) as an argument with the call.

Obtaining the Run Request Parameters — When the run receiver is entered,
register one contains the address of the run request queue entry in memory pool. The
task can retrieve the run request parameters directly from memory pool or call a
receiver service (M.GRUNP) to store the run request parameters into the designated
receiver buffer. If the M.GRUNP service is utilized, the task must present the address
of a five word parameter receive block (PRB) as an argument with the call.

1.6.1.4 Exiting the Receiver Program

Exiting the Message Receiver — When processing of the message is complete, the
message interrupt level must be exited by calling the M. XMSGR service. When
M.XMSGR is called, the address of a two word receiver exit block (RXB) must be
provided. The RXB contains the address of the return parameter buffer and the
number of bytes (if any) to be retumed to the sending task. The RXB also contains a
return status byte to be stored in the parameter send block (PSB) of the sending task.
After message exit processing is complete, the message-receiver queue for this task is
examined for any additional messages to process. If none exist, a retumn to the base
level interrupted context is performed.

Exiting the Run Receiver Task — When run request processing is complete, the
task uses either the standard exit call (M.EXIT) or the special run receiver exit service
(M.XRUNR). If the standard exit service (M.EXIT) is used to exit the run receiver
task, no user status or parameters are retuned. Only completion status is posted (in
the scheduler status word) of the parameter send block (PSB) in the sending task.
After completion processing for the run request is accomplished, the run receiver
queue for this task is examined, and any queued run request causes the task to be re-
executed. If the run receiver queue for this task is empty, a standard exit is
performed.

1-28 System Description

Send/Receive Facilities

If the special exit (M.XRUNR) is used to exit the run receiver task, the address of a
two word receiver exit block (RXB) must be provided as an argument with the call.
The RXB contains the address of the return parameter buffer and the number of bytes
(if any) to be returned to the sending task. The RXB also contains a return status byte
to be stored in the PSB of the sending task. After completion processing for the run
request is accomplished, the exit control options in the RXB are examined. If the wait
exit option is used, the run receiver queue for this task is examined for any additional
run requests to be processed. If none exist, the task is put into a wait state, waiting
for the receipt of new run requests. Execution of the task does not resume until such
a request is received. If the terminate exit option is used, any queued run requests are
processed. If the run receiver is empty, however, a standard exit is performed.

1.6.1.5 Waiting for the Next Request

In addition to the wait options described under the previous section, Exiting the
Receiver Program, a special message-wait call is provided. When operating at the
base execution level, a task that has established a message receiver can invoke a
service call (M.SUSP) to enter a wait state until the next message is received.

A task can also make use of the M.ANYW service from the base software level. The
M.ANYW service is similar to M.SUSP. However, the M.SUSP wait state is ended
only on receipt of a message interrupt, timer expiration, or resume. The ML ANYW
wait state is ended upon receipt of any message, end-action, or break software
interrupt.

1.6.2 Sending Task Services

1.6.2.1 Sending the Request

Message Send Service — A task can send a message to another active task that has
a message receiver established. The sending task must identify the destination task by
task activation sequence number. When the send message service (M.SMSGR) is
called, the address of a parameter send block (PSB) must be provided as an argument.
The PSB format allows for the specification of the message to be sent, any parameters
to be returned, scheduler and user status, and the address of a user end-action routine.
No-wait and no call back mode control options are also provided.

Send Run Request Service — A task can send a run requsst to any active or
inactive task, identifying the task by load module name or task number if the task is
multicopied and waiting for a run request. When the run request service (M.SRUNR)
is called, the doubleword-bounded address of a parameter send block (PSB) must be
provided as an argument. The PSB format allows for the specification of the run
request parameters to be sent, any parameters to be returned, scheduler and user status,
and the address of a user end-action routine. No-wait and no call back mode control
options are also provided.

MPX-32 Technical Volume | 1-29

Send/Receive Facilities

1.6.2.2 Waiting for Request Completion

Waiting for Message Completion — A message can be sent in the wait or no-wait
mode. If the wait mode is used, execution of the sending task is deferred until
processing of the message by the destination task is complete. If the no-wait mode is
used, execution of the sending task continues immediately after the request is queued.
The operation in progress bit in the scheduler status field of the PSB is examined to
determine completion. A sending task issues a series of no-wait mode messages
followed by a call to the M(ANYW system wait service. This allows a task to wait
for the completion of any no-wait mode messages previously sent. The completion of
such a message causes resumption at the point after the ML ANYW call.

Waiting for Run Request Completion — Waiting for a run request completion
follows the same form and has the same options as waiting for message completion.

1.6.2.3 End-Action Processing

Message End-Action Processing — User-specified end-action routines associated
with no-wait mode message-send requests are entered at the end-action software
interrupt level when the requested message processing is complete. Status and return
parameters are posted as appropriate. When end-action processing is complete, the
M.XMEA service must be called to exit the end-action software interrupt level.

NS

Run Request End-Action Processing — Run request end-action processing
follows the same form and has the same options as message end-action processing.
The only difference is that the M.XREA service is used instead of M.XMEA.

1.6.2.4 Parameter Send Block (PSB)

The parameter send block (PSB) describes a send request issued from one task to
another. The same PSB format is used for both message and run requests. The
address of the PSB (word bounded) must be specified when invoking the M.SMSGR
or M.SRUNR services, but is optional when invoking the M.PTSK service.

When a load module name is supplied in words O and 1 of the PSB, the operating
system searches the system directory only. For activations in directories other than
the system directory, a pathname or RID vector must be supplied.

When activating a task with the M.SRUNR or M.PTSK service, the value specified in
byte 0 of PSB word 2 (PSB.PRI) is used to determine the task’s execution priority.
This value overrides the cataloged priorities of the sending and receiving tasks an the
priority specified in the PTASK parameter block. However, priority clamping is used
to prevent time-distribution tasks from using this value to execute at a real-time
priority, and real-time tasks from executing at a time-distribution priority. Values iiat
can be specified in PSB.PRI are 1-64 (to be the task priority), zero (to use the base
priority of the sending task), and X'FF’ (to ignore the PSB priority field).

System Description

Send/Receive Facilities

A PSB can be specified as a parameter for the M.PTSK service, along with the
required task activation (PTASK) block. The PTASK block also contains a priority
specification field. The PSB priority value always overrides the PTASK block priority

value.
0 7 8 15 16 23 24 31
Word 0 | Load module or executable image name (PSB.LMN) or zero if activation
(or task number (PSB.TSKN) if message or run request to multicopied task)
1 | Load module or executable image name, pathname vector, or RID vector
if activation (or zero if message or run request to multicopied task)
2 | Priority Reserved Number of bytes to be sent (PSB.SQUA)
(PSB.PRI)
3 | Reserved Send buffer address (PSB.SBA)
4 | Return parameter buffer length Number of bytes actually
in bytes (PSB.RPBL) returned (PSB.ACRP)
5 | Reserved Return parameter buffer address (PSB.RBA)
6 | Reserved No-wait request end action address (PSB.EAA)
7 | Completion Processing User status Options
status (PSB.CST) start status (PSB.UST) (PSB.OPT)
(PSB.IST)
Word 0
Bits 0-31 Load module or executable image name — contains characters 1

through 4 of the name of the load module or executable image to
receive the run request or

Task number — contains the task number of the task to receive
the message or the task number of the multicopied load module
or executable image to receive the run request.

Word 1
Bits 0-31 Load module or executable image name — contains characters 5
through 8 of the name of the load module or executable image to
receive the run request, or zero if the message or run request is
sent to multicopied load module or executable image.
Word 2
Bits 0-7 Contains the priority at which the receiver task is expected to be

activated. Valid values are 1-64, zero, (for base priority of the
sending task) and X’FF’, which generates activation priority
based on a combination of values that can be specified during
task activation.

MPX-32 Technical Volume | 1-31

Send/Receive Facilities

1-32

The following tables show how the priority of a receiver task is determined when
activated with M.SRUNR or with M.PTSK.

When Activating with M.SRUNR

Cataloged
Priority of Priority Activates
Send Task Receive task in PSB Receive task at
1-54 1-54 0 Send task cat. priority
1-54 55-64 0 55 (time-dist. clamp)
55-64 1-54 0 54 (real-time clamp)
55-64 55-64 0 Send task cat. priority
* 1-54 1-54 PSB priority
* 1-54 55-64 54 (real-time clamp)
* 55-64 1-54 55 (time-dist. clamp)
* 55-64 55-64 PSB priority
* * X’FF’ Receive task cat. priority
* not specified
When Activating with M.PTSK
Cataloged
Priority of Priority in '
Send Receive PTASK Activates
Task task block PSB Receive task at
1-54 1-54 0 0 Send task cat. priority
1-54 55-64 0 0 55 (time-dist. clamp)
1-54 * 1-54 0 Send task cat. priority
1-54 * 55-64 0 55 (time-dist. clamp)
55-64 1-54 0 0 54 (real-time clamp)
55-64 55-64 0 0 Send task cat. priority
55-64 * 1-54 0 54(real-time clamp)
55-54 * 55-64 0 Send task cat. priority
* 1-54 0 1-54 PSB priority
* 1-54 0 55-64 54 (real-time clamp)
* 55-64 0 1-54 55 (time-dist.clamp)
* 55-64 0 55-64 PSB priority
* * 1-54 1-54 PSB priority
* * 1-54 55-64 54 (real-time clamp)
* * 1-54 X'FF PTASK block priority
* * 55-64 1-54 55 (real-time clamp)
* * 55-64 55-64 PSB priority
* * 55-64 X’FF’ PTASK block priority
* * 0 X’FF’ Receive task cat. priority

* not specified

System Description

C

Send/Receive Facilities

Bits 8-15

Bits 16-31

Word 3

Bits 0-7

Bits 8-31

Word 4

Bits 0-15

Bits 16-31

Word 5

Bits 0-7

Bits 8-31

Word 6

Bits 0-7

Bits 8-31

MPX-32 Technical Volume |

reserved

Number of bytes to be sent — specifies the number of bytes to
be passed (0 to 768) with the message or run request.

reserved

Send buffer address — contains the word address of the buffer
containing the parameters to be sent.

Return parameter buffer length — contains the maximum number
of bytes (0 to 768) that may be accepted as returned parameters.

Number of bytes actually returned — set by the send message or
run request service upon completion of the request.

reserved

Return parameter buffer address — contains the word address of
the buffer where any returned parameters are stored.

reserved

No-wait request end-action address — contains the address of a
user routine to be executed at a software interrupt level upon
completion of the request.

Send/Receive Facilities

Word 7

Bits 0-7 Completion status — contains completion status information
posted by the operating system as follows:

Bit Meaning if Set
0 operation in progress (PSB.OIP)
1 destination task was aborted before completion of
processing for this request (PSB.DTA)
2 destination task was deleted before completion of
processing for this task (PSB.DTD)
3 return parameters truncated — attempted return
exceeds return parameter buffer length (PSB.RPT)
4 send parameters truncated — attempted send exceeds
destination task receiver buffer length (PSB.SPT)
5 user end-action routine not executed because of
task abort outstanding for this task (can be examined
in abort receiver to determine incomplete operation)
(PSB.EANP)
6-7 reserved

System Description

Send/Receive Facilities

(v Bits 8-15

Processing start (initial) status — contains initial status

information posted by the operating system as follows:

Bit

Meaning if Set

N - O

L W

10

11
12
13

14
15

Bits 16-23

MPX-32 Technical Volume |

normal initial status (PSB.IST)
message request task number invalid (PSB.TSKE)

run request load module or executable image name not
found (PSB.LMNE)

reserved

file associated with run request load module or
executable image name does not have a valid
load module or executable image format (PSB.LMFE)

dispatch queue entry (DQE) space is unavailable for
activation of the load module or executable image
specified by a run request (PSB.DQEE)

an I/O error was encountered while reading the
directory to obtain the file definition of the

load module or executable image specified in a run
request (PSB.SMIO)

an I/O error was encountered while reading the

file containing the load module or executable image
specified in a run request (PSB.LMIO)

memory unavailable

invalid task number for run request to module
or executable image in RUNW state

invalid priority specification. An unprivileged
task can not specify a priority which is higher than
its own execution priority (PSB.PRIE).

invalid send buffer address or size (PSB.SBAE)
invalid return buffer address or size (PSB.RBAE)

invalid no-wait mode end action routine address
(PSB.EAE)

memory pool unavailable (PSB.MPE)
destination task receiver queue is full (PSB.DTQF)

User status — defined by the destination task.

Send/Receive Facilities

Bits 24-31

Options — contains user-request control specification as follows:

Bit Meaning if Set
24 request is to be issued in no-wait mode (PSB.NWM)
25 do not post completion status or accept return

parameters. This bit is examined only if bit 24 is
set. When this bit is set, the request was issued
in the no call back mode. (PSB.NCBM).

1.6.2.5 Parameter Receive Block (PRB)

The parameter receive block (PRB) is used to control the storage of passed parameters
into the receiver buffer of the destination task. The same format PRB is used for
message and run requests. The address of the PRB must be presented when the
M.GMSGP or M.GRUNP services are invoked by the receiving task.

0 78 15 16 23 24 31
Word 0|Status (PRB.ST) lParameter receiver buffer address (PRB.RBA)
1{Receiver buffer length (PRB.RBL) Number of bytes actually received
(PRB.ARQ)

N

Owner name of sending task, word one (PRB.OWN)

W

Owner name of sending task, word two

S

Task number of sending task (PRB.TSKN)

Word 0

Bits 0-7

Bits 8-31

Status — contains status as follows:

Meaning if Set
normal status
invalid PRB address

invalid receiver buffer address or size detected
during parameter validation (PRB.RBAE)

no active send request (PRB.NSRE)
receiver buffer length exceeded (PRB.RBLE)
reserved

(V]
Hoew N.-olgf.

Parameter receiver buffer address — contains the word address of
the buffer where any returned parameters are stored.

System Description

O

Send/Receive Facilities

(., / Word 1

Bits 0-15 Receiver buffer length — contains the length of the receiver
buffer (0 to 768 bytes).

Bits 16-31 Number of bytes actually received — set by the operating system
and is a maximum equal to the receiver buffer length.

Words 2 to 3
Bits 0-63 Owner name of sending task — set by the operating system to
contain the owner name of the task which issued the parameter
send request.
Words 4
Bits 0-31 Task number of sending task — set by the operating system to

contain the task activation sequence number of the task which
issued the parameter send request.

1.6.2.6 Receiver Exit Block (RXB)

The receiver exit block (RXB) is used to control the return of parameters and status
TN from the destination (receiving) task to the task that issued the send request. It is also
(used to specify receiver exit options. The same format RXB is used for both
messages and run requests. The address of the RXB must be presented as an
argument when either the M.XMSGR or M.XRUNR services are called.

0 7 8 15 16 23 24 31
Word 0 | Return status Return parameter buffer address (RXB.RBA)
(RXB.ST)
1 | Options Reserved Number of bytes to be returned
(RXB.OPT) RXB.RQ)
Word 0
Bits 0-7 Return status — contains status as defined by the receiver task.

Used to set the user status byte in the parameter send block
(PSB) of the task which issued the send request.

Bits 8-31 Return parameter buffer address — contains the word address of
the buffer containing the parameters which are to be retumed to
the task that issued the send request.

MPX-32 Technical Volume | 1-37

Send/Receive Facilities

Word 1
Bits 0-7 Options — contains receiver exit control options as follows:
Value Meaning
0 wait for next run request (M.XRUNR).
Return to point of task interrupt (M.XMSGR)
1 exit task, process any additional run requests.
If none exist, perform a standard exit (M.XRUNR)
not applicable for M. XMSGR
Bits 8-15 reserved
Bits 16-31 Number of bytes to be returned — contains the number of bytes

(0 to 768) to be returned on a message or receiver run exit.

1.6.2.7 Message or Run Request Queue Entry (MRRQ)

The message or run request queue entry (MRRQ) is generated by the system to
process a send request. After the MRRQ has been generated by the send service, it is
attached to the appropriate queue slot in the DQE of the destination task. When the
receiver program is entered, R1 contains the address of the MRRQ in memory pool.
The receiver program can reference the MRRQ directly, without issuing a M.GRUNP
or M.GMSGSP service call. The same format MRRQ is used for both messages and

run requests.
0 7 8 15 16 23 24 31
Word 0 | String forward address (MQ.SF)
1 | String backward address (MQ.SB)
2 | Priority MQPR) | Address of parameter send block (PSB) (MQ.PSBA)
3 | Task number of sending task (MQ.TNST)
4 | Sending task owner name word one
5 | Sending task owner name word two
6 | Passed parameter quantity in bytes Return parameter buffer length
or number of bytes of storage space in bytes or number of actual
MQ.PPQ) return parameters (MQ.RBL)
7 | Completion status-- | Initial status-- User status-- Options--
PSB format PSB format PSB format PSB format
MQ.CST) (MQ.IST) (MQ.UST) (MQ.OPT)
8-9 | End action PSD (MQ.EAPSD)
10 | Parameter area pointer (MQ.PPTR)
11 | Reserved
n | Variable length storage area for passed and returned parameters

System Description

®

Send/Receive Facilities

Word 0

Bits 0-31

Word 1

Bits 0-31

Word 2

Bits 0-7

Bits 8-31

Word 3

Bits 0-31

Words 4-5

Bits 0-63
Word 6

Bits 0-15

Bits 16-31

Word 7

Bits 0-15

Bits 16-23

Bits 24-31

MPX-32 Technical Volume |

String forward address — contains the address of next entry of
top-to-bottom list.

String backward address — contains address of next entry in
bottom-to-top list.

Priority — contains the priority (1 to 64) of this request.
Address of parameter pend block (PSB) — contains the logical

address of the PSB in the address space of the task which
initiated the request.

Task number of requesting task — contains the task activation
sequence number of the task which issued the request.

Send task’s owner name.

Passed parameter quantity — contains the number of bytes sent
to the destination task.

Return parameter buffer length — contains the length in bytes of
the return parameter buffer in the task which issued the request.

Scheduler status — contains status information to be posted in
the scheduler status field of the PSB upon request completion.
See PSB format.

User status — contains status as defined by the destination task.

Options — contains user request control specifications as
follows:

Bit Meaning if Set !
24 request is in no-wait mode
25 request is in no call back mode (no wait, no status,

no return parameters)

Send/Receive Facilities

Words 8-9

Bits 0-31

Word 10

Bits 0-31

Word 11

Bits 0-31

End action PSD (words 1 & 2) (post processing service PSD).

Pointer to variable length parameter area.

Reserved

System Description

O

Send/Receive Facilities

1.6.2.8 Messages and Run Request Services Summary

The following table lists the message and run request services provided by the
MPX-32 system.

Run Request Message
Services Services Function
Receiver Services:
N/A M.RCVR recvaddr - Establish receiver address

M.GRUNP prbaddr

M.XRUNR rxbaddr
or M.LEXIT

N/A

M.GMSGP prbaddr

M.XMSGR rxbaddr

M.ANYW timel or

Get parameters

Exit receiver

Wait for receipt of next

M.SUSP taskno, timel message
Sender Services:
M.SRUNR psbaddr M.SMSGR psbaddr Send request
M.ANYW timel M.ANYW timel Wait for any request
M.EAWAIT timel completion
M.XREA M.XMEA Exit user end action

service

Ar ent Description

recvaddr address of receiver

prbaddr address of parameter receive block (PRB)
rxbaddr address of receiver exit block (RXB)
psbaddr address of parameter send block (PSB)
taskno contains zero

timel contains zero if indefinite wait, or contains a

negative number of time units to be used as a wait
time-out value

MPX-32 Technical Volume | 1-41

Device Address Specification

1.7 Device Address Specification

1-42

Deyvice addresses are specified using a combination of three levels of identification:
device type, device channel/controller address, and device address/subaddress.

A device may be specified using the generic device type mnemonic only, which will
result in allocation of the first available device of the type requested. Device type
mnemonics are listed in Table 1-1.

A second method of device specification is achieved by using the generic device type
and specifying the channel/controller address which results in allocation of the first
available device of the type requested on the channel/controller specified.

The third method of device selection requires specification of the device type
mnemonic, channel/controller, and device address/subaddress. This method allows
specification of a specific device.

Examples

Type 1 - Generic device class:
ASSIGN OUT TO DEV=M9

In this example, the file associated with logical file code OUT is allocated to any 9-
track tape unit on any channel.

Type 2 - Generic device class and channel/controller:
ASSIGN OUT TO DEV=M910

In this example, the file associated with logical file code OUT is allocated to the first
available 9-track tape unit on channel 10. The specification is invalid if a 9-track
tape unit does not exist on the channel.

Type 3 - Specific device request:
ASSIGN OUT TO DEV=M91001

In this example, the file associated with logical file code OUT is allocated to the 9-
track tape unit 01 on channel 10. The specification is invalid if unit 01 on channel
10 does not exist or is not a 9-track tape..

GPMC/GPDC devices are specified in keeping with the general structure as defined.
For instance, the CRT at subaddress 04 on GPMC 01 whose channel address is 20
would be identified as follows:

ASSIGN OUT TO DEV=TY2004

A special device type, NU, is available for null device specifications. Files accessed
using this device type generate an end-of-file upon aitempt to read and normal
completion upon attempt to write.

System Description

g

O

Device Address Specification

Assignment of logical file codes to the operator console is achieved through usage of

the device type CT.

A description of device selection possibilities is constructed as follows:

Disk

DC

DM
DMO8
DMO0801
DM0002
DF
DF04
DF0401

Tape

MT

M9
M910
M91002

Card Equipment

CR
CR78
CR7800

Line Printer

LP
LP7A
LP7A00
LP7EAQ

MPX-32 Technical Volume |

any disk except memory disk .
any moving head or memory disk
any moving head disk on channel 08
moving head disk 01 on channel 08
memory disk 02 on channel 00

any fixed head disk

any fixed head disk on channel 04
fixed head disk 01 on channel 04

any magnetic tape

any 9-track magnetic tape
any 9-track magnetic tape on channel 10
9-track magnetic tape 02 on channel 10

any card reader

any card reader on channel 78
card reader 00 on channel 78

any line printer

any line printer on channel 7A
line printer 00 on channel 7A
serial printer A0 on ACM channel 7E

Device Address Specification

Table 1-1

Device Type Mnemonics and Codes

Device

Type
Code

00
01
02
03
04
05
06
08
0A
0B
oC
0D
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
N/A

Device

Type
Mnemonic

CT
DC
DM

SES9ZTIINTIEEEY

S

U4

Device Description

operator console (not assignable)
any disk unit except memory disk
any moving head or memory disk
any fixed head disk

any magnetic tape unit

any 9-track magnetic tape unit*
any 7-track magnetic tape unit*
any card reader

any line printer

any paper tape reader-punch

any teletypewriter (other than console)
operator console (assignable)
floppy disk

null device

communications adapter (binary synchronous/asynchronous)

available for user-defined applications
available for user-defined applications
available for user-defined applications
available for user-defined applications
available for user-defined applications
available for user-defined applications
available for user-defined applications
available for user-defined applications
available for user-defined applications
available for user-defined applications
line printer/floppy controller (used only with
any nonfloppy disk except memory disk

SYSGEN)

* When both 7- and 9-track magnetic tape units are configured, the designation must be
7-track.

System Description

CPU Scheduling

1.8 CPU Scheduling

The MPX-32 CPU scheduler allocates CPU execution time to active tasks. Tasks are
allocated CPU time based on execution priority and execution eligibility. Execution
priority is specified when a task is cataloged into the system. Execution eligibility is
determined by the task’s readiness to run.

1.8.1 Execution Priorities

The MPX-32 system provides 64 levels of execution priority. These priority levels
are divided into two categories. Real-time tasks operate in the priority range 1 to 54.
Time-distribution tasks operate in the priority range 55 to 64.

1.8.2 Real-Time Priority Levels (1 to 54)

Real-time tasks are scheduled on a strict priority basis. The system does not impose
time-slice, priority migration, or any other scheduling algorithm that interferes with
the execution priority of a real-time task. Execution of an active real-time task at its
specified priority level is inhibited only when it is ineligible for execution (not ready
to run). Execution of a real-time task can always be pre-empted by a higher priority
real-time task that is ready to run.

1.8.3 Time-Distribution Priority Levels (55 to 64)

For tasks that execute at priority levels 55 to 64, MPX-32 provides a full range of
priority migration, situational priority increment, and time-quantum control.

1.8.4 Priority Migration

The specified execution priority of a time-distribution task is used as the task’s base
execution priority. Each time-distribution task’s current execution priority is
determined by the base priority level as adjusted by any situational priority increment.
The current execution priority is further adjusted by increasing the priority by one
level whenever execution is pre-empted by a higher priority time-distribution task, and
decreasing the priority whenever the task gains CPU control. The highest priority
achievable by a time-distribution task is priority level 55. The lowest priority is the
task’s base execution priority level.

MPX-32 Technical Volume | 1-45

CPU Scheduling

{4
1.8.4.1 Situational Priority Increments '(J

Time-distribution tasks are given situational priority increments to increase program
responsiveness. The effect of situational priority increments is to give execution
preference to tasks that are ready to run after having been in a natural wait state. A
task that is CPU bound migrates toward its base execution priority. Situational
priority increments are invoked when a task is unlinked from a wait-state list and
relinked to the ready-to-run list.

Situation Priority Increment
Terminal input wait complete Base level + 2
I/O wait complete Base level + 2
Message (send) wait complete Base level + 2
Run request (send) complete Base level + 2
Memory (inswap) wait complete Base level + 3
Pre-empted by real-time task Level 55

1.8.5 Time-Quantum Controls

Two time-quantum values can be specified at system generation. If these values are
not specified, system default values are used. The two quantum values are provided
for scheduling control of time-distribution tasks.

The first quantum value (stage 1) indicates the minimum amount of CPU execution

time guaranteed to a task before pre-emption by a higher priority time-distribution TN
task. The stage 1 quantum value is also used as a swap inhibit quantum after inswap. '
The second quantum value represents the task’s full-time quantum. The difference
between the first and second quantum values defines the execution period called
quantum stage 2. During quantum stage 2, a task is pre-empted and/or out-swapped
by any higher priority task. When a task’s full time-quantum has expired, it relinks to
the bottom of the priority list at base execution priority.

Time-quantum accumulation is the accumulated sum of actual execution times used by
this task. A task’s quantum accumulation value resets when the task voluntarily
relinquishes CPU control; for example, suspend, wait I/O, etc.

1.8.6 State Chain Management

The current state of a task, such as ready to run or waiting for I/O, is reflected by the
linkage of the dispatch queue entry associated with the task into the appropriate state
chain. The state queues are divided into two major categories: ready to run and
waiting. The ready-to-run category is subdivided by priority, with a single queue for
the real-time priorities and a separate queue for each of the time-distribution priority
levels. The waiting category is subdivided according to the resource or event required
to make the task eligible for execution.

1-46 System Description

CPU Scheduling

MPX-32 Technical Volume |

MPX-32 State Queues

Ready-to-Run Queues

Current CPU task (in execution) — CURR
Current IPU task (in execution) — CIPU
IPU requesting state — RIPU

Real-time priority levels (1-54) — SQRT
Time-distribution priority level 55 — SQS55
Time-distribution priority level 56 — SQ56
.Time-distribution priority level 57 — SQ57
Time-distribution priority level 58 — SQS58
Time-distribution priority level 59 — SQ59
Time-distribution priority level 60 — SQ60
Time-distribution priority level 61 — SQ61
Time-distribution priority level 62 — SQ62
Time-distribution priority level 63 — SQ63
Time-distribution priority level 64 — SQ64

Pk o ot e
PON—COVIENOANE WL

Wait Mode Operation Queues

15. Wait mode interactive input — SWTI
16. Wait mode I/O — SWIO
17. Wait mode send message — SWSM
18. Wait mode send run request — SWSR
19. Wait mode low speed output

(not implemented) — SWLO

Execution Wait Queues

20. Suspended waiting for message interrupt,
timer expiration, or resume — SUSP

21. Waiting for run request or timer expiration
— RUNW

22. Operator hold, waiting for continue — HOLD

Wait for Any Operation Complete Queue

23. Waiting for completion of any no-wait I/O,
no-wait message, no-wait run request, or any
message interrupt or break — ANYW

Waiting for Resource Queues

24, Waiting for disk space — SWDC

25. Waiting for peripheral device — SWDV
26. Reserved

27. Waiting for memory — MRQ

28. Waiting for memory pool — SWMP

1-47

FAT/FPT and Blocking Buffer Allocation

1.9 FAT/FPT and Blocking Buffer Allocation O

During the task allocation process, separate areas are reserved in a task’s TSA for
FAT/FPT pairs and blocking buffers. The size of each area is fixed for the duration of
a task’s execution. The size of the FAT/FPT area limits the number of file codes that
a task can have allocated concurrently. The size of the blocking buffer area limits the
number of file codes assigned to blocked devices or files that a task can allocate
concurrently. The number of entries in each area is established as follows.

1.9.1 FAT/FPT Area

Nonshared task — one FAT and FPT entry for each cataloged assignment, plus one
entry for each TSM assignment that does not override a cataloged assignment, plus
the number specified on the cataloger FILES directive.

Shared task — the number specified on the cataloger FILES directive.

1.9.2 Blocking Buffer Area

Nonshared task — from the assignments resulting from merging cataloger and TSM
assignments, one buffer for each ASSIGN; plus one buffer for each ASSIGN to a
magnetic tape or disk unit on which the unblocked option is not specified, plus one
buffer for each ASSIGN plus the number specified on the cataloger BUFFERS
directive.

Shared task — the number specified on the cataloger BUFFERS directive.

N
C

Cataloger and TSM ASSIGN directives are modified by the addition of an unblocked
specification as follows:

ASSIGN lfc TO file BLOCKED=N
The following cataloger directives are added:

FILES number — number specifies the maximum number of dynamically allocated
file codes that a nonshared task can allocate concurrently. It specifies the maximum
number of file codes that a shared task can have allocated concurrently.

BUFFERS number — number specifies the maximum number of dynamically
allocated file codes assigned to blocked files or devices that a nonshared task can
allocate concurrently. It specifies the maximum number of file codes assigned to
blocked files or devices that a shared task can allocate concurrently.

FILES and BUFFERS override parameters are specified in the parameter task
activation (M.PTSK) system service. These parameters allow addition of TSM FILES
and BUFFERS directives if required by a future "!oad and go" capability.

1-48 System Description

Indirectly Connected Interrupts

(1.10 Indirectly Connected Interrupts

1.10.1

1.10.2

1.10.3

An indirectly connected interrupt is an interrupt that is associated with an MPX-32
task. When the interrupt occurs, the associated task is resumed. An interrupt is
declared as indirectly connected at system generation (SYSGEN) time. This
declaration causes SYSGEN to generate an indirectly connected task linkage block
(ITLB). The ITLB is permanently associated with the specified interrupt level, but
only becomes associated with an MPX-32 task when the M.CONN system service is
invoked. A task can be disconnected from an interrupt level by invoking the
M.DISCON system service.

Connect Task to Interrupt Service (M.CONN)

The M.CONN system service associates an MPX-32 task with an external interrupt
that was declared at SYSGEN as indirectly connected. When called, M.CONN is
presented the priority level of the interrupt and the task activation sequence number of
the task. The task number is first validated to ensure that it is currently active and has
either the same owner name as the calling task, or the owner name of the calling task
is privileged or is not restricted from access to tasks of a different owner. If so, the
M.CONN service next checks to see if the specified task is already connected to an
interrupt. DQE.ILN in the DQE contains the interrupt priority level if the task is
already connected. If the task is not previously connected, the M.CONN service
searches the indirectly connected task linkage table (ITLT) to find the linkage block
(ITLB) associated with this interrupt. If one exists and is not already connected, the
DQE address of the task being linked is stored in word one of the ITLB to reflect the
linkage. DQE.ILN in the DQE is set to contain the interrupt priority level.

Note: The task is automatically disconnected from the interrupt on abort, delete, or
exit.

Disconnect Task from Interrupt Service (M.DISCON)

The M.DISCON system service disconnects an MPX-32 task from an external
interrupt it had previously been connected to. When called, M.DISCON is presented
the task activation sequence number of the task as an argument with the call. If the
specified task is not connected to an interrupt, DQE.ILN in the DQE is equal to zero
and the request is ignored. Otherwise, DQE.ILN contains the external interrupt
priority level. M.DISCON uses this priority level to locate the linkage block (ITLB)
in the linkage table (ITLT). The DQE address (word one of the ITLB) is cleared to
mark the level as disconnected. DQE.ILN is cleared in the DQE of the specified task.

Indirectly Connected Task Linkage Table (ITLT)

The indirectly connected task linkage table (ITLT) is a variable length table built by
SYSGEN. It contains an entry for each interrupt specified as indirectly connectable.
An entry is called an indirectly connected task linkage block (ITLB) and is 24 words
in length. The address of the ITLT is contained in C.ITLT. The number of entries in
ITLT is contained in C.NITI. Both C.ITLT and C.NITI are initialized by SYSGEN.

MPX-32 Technical Volume | 1-49

Indirectly Connected Interrupts

1.10.4 Indirectly Connected Task Linkage Block (ITLB) O

An entry in the indirectly connected task linkage table is called an indirectly
connected task linkage block (ITLB). An ITLB is 24 words long and is used to
associate an external interrupt with an indirectly connected task.

0 31
Word 0 Priority level [DATAW X'YY’]
1 DQE address of indirectly [DATAW 0]
connected program
2 Old PSD word one [DATAW 0]
3 Old PSD word two [DATAW 0]
4 New PSD word one [GEN 1/1, 12/0, 19/W($+2W)]
5 New PSD word two [GEN 1/1, 14/0, 1/1, 1/0, 1/0, 14/0]
6 Increment global interrupt [ABM 31,C.GINT]
count instruction
7 Save register instruction [STF RO,$+9W]
8 Branch and link to ICP routine [BL ICP]
9 Address of register save area [LA X2, $+7TW]
for SEXECS call
10 0Old PSD for S.EXECS call [LD R6, -8W])
11 Reserved . \"
12 Deactivate interrupt [DAI X'YY’] ~
13 Branch back for S.EXECS call [BL S.EXINT]
14-15 Reserved for future use
16 - 23 Register save area
Word 0
Bits 0-31 Priority level — set by SYSGEN to contain the priority level of
the associated interrupt.
Word 1
Bits 0-31 DQE address of indirectly connected program — contains the
dispatch queue entry (DQE) address of the task to be resumed on
occurrence of this interrupt. Initially set to zero by SYSGEN.
Initialized by M.CONN system service.
Words 2 to 3
Bits 0-63 Old PSD — contains the old PSD slot of the interrupt control
block. Used to store the PSD associated with the interrupted
context. Initially set to zero by SYSGEN. The dedicated
interrupt location (I'VL) is initialized by SYSGEN to contain the
address of word two of the ITLB. C

System Description

Indirectly Connected Interrupts

Words 4to0 5

Bits 0-63

Word 6

Bits 0-31

Word 7

Bits 0-31

Word 8

Bits 0-31

Words 9 to 13

Words 14 to 15

Words 16 to 23

MPX-32 Technical Volume |

New PSD — contains the new PSD slot of the interrupt control
block to be used on occurrence of this interrupt. Causes
execution to begin at ITLB word 6 in privileged mode,
unblocked state, with old map status retained.

Increment global interrupt instruction — contains an add bit in
memory instruction to increment the global interrupt count.
Execution begins at this location when the associated interrupt
occurs. It must be the first instruction executed in ICP. This
location is initialized by SYSGEN to contain an ABM
31,C.GINT.

Save registers instruction — contains a store file instruction to
save all eight registers in words 16 to 23 of the ITLB. This
location is initialized by SYSGEN to contain an STF R0,$+9W.

Branch and link to ICP routine — executed after the register save
instruction on occurrence of the associated interrupt. Transfers
control to the single-copied ICP routine. This location is
initialized by SYSGEN to contain a BL ICP.

Branch back for S.EXINT call returns control to this location
after S.EXEC14 is called in the ICP routine. Set-up is made for
exiting the interrupt; then control is transferred back to ICP for
the S.EXECS call.

reserved for future use

register save area

1-51

Indirectly Connected Interrupts

1.10.5 Indirectly Connected Interrupt Program (H.ICP)

The indirectly connected interrupt program (H.ICP) is a single-copied routine that
processes all indirectly connected external interrupts. It is entered in blocked,

1-52

unmapped mode with the end address (+1W) of the linkage block

(ITLB) in RO. The

global interrupt count is incremented within the ITLB and the registers from the
interrupted context are stored in words 16 to 23 of the block. When H.ICP is entered,
it checks ITLB word one to verify connection of the interrupt to an MPX-32 task. If
the interrupt is not connected, it is ignored and H.ICP transfers back to the ITLB to

exit the interrupt.

When ITLB word 1 contains a valid DQE address, H.ICP performs the following

checks to determine if the task resumption time can be optimized:

* is the task a real-time task

* does the task have any system action requests or task interrupts
* is the task outswapped

* are interrupts nested

* is context switching inhibited

* can the task run in the CPU

pending

If the task meets these checks, its resumption can be optimized and dispatched directly

from H.ICP.

If the task does not meet the checks, S.EXEC14 links the task to the ready to run

queue. The task then exits the interrupt level via S.EXECS.

System Description

7Y

Miscellaneous System Macros

(, 1.11 Miscellaneous System Macros

1.11.1 M.BACK

This macro backspaces the current address of a blocked file by the specified number of
file or record marks.

Calling Sequence
M.BACK addr,[R] [,num]

addr is the FCB address
R specifies record. If not specified, the default is file.

num is the number of record or file marks to be backspaced. The number
specified must be word scaled, for example, one word for one record. If not
supplied, the current contents of register four are used.

1.11.2 M.CALL

This macro generates a supervisor call instruction. If code has been assembled with
an MPX-32 PRE file, interrupts are unblocked by default (SVC ’6’ call). If code has
. not been assembled with an MPX-32 PRE file, interrupts are blocked by default (SVC
(’0’ call). Each of the three standard MPX-32 PRE files contain the symbol

- MPX_SVC. This symbol is set to 6 so MPX-32 uses the optimized M.CALL macro,
which increases the performance of MPX-32. Defaults can be overridden with the
state parameter on individual macro calls.
Calling Sequence

M.CALL name,num|,state]

name is the name of a system module
num is an entry point number (1,2,3,...) within the system module

state is the state of processing:
RETAIN generates an SVC 0’ call with blocked interrupts

UEI generates an SVC ’6’ call with unblocked interrupts

MPX-32 Technical Volume | 1-53

Miscellaneous System Macros

1.11.3 M.CLSE @

1.11.4

This macro marks a file closed to subsequent service. An end-of-file (EOF) mark can
be written and a rewind can be performed.

Calling Sequence
M.CLSE addr,[EOF],[REW]

addr FCB address
EOF specifies an end-of-file mark is to be written
REW specifies the file is to be rewound

M.DFCB

This macro creates a file control block (FCB). It also sets the appropriate parameters
and specifications that are common to I/O requests issued for the file.

Calling Sequence
M.DFCB label.lfc,[count),[addri],[addr2],[addr3],

[NWTL[NER],[DFIL[NST],[RAN]
[ASCIBIN],[LDRINLD],[INTIPCK],[EVNIODD] [,556,800]

Y
label is the ASCII character string to be used as the symbolic label for the \k_/
address of the FCB
Ifc is the 1- to 3-character ASCII string to be used as the logical file code
in the FCB
count is the transfer count in bytes
addrl is the data transfer address
addr2 is the error return address
addr3 is the random access address expressed as the hexadecimal block
number (zero origin) relative to the base of the random access file
NWT is the no-wait I/O specification indicator
NER is the inhibit peripheral error processing indicator
DFI is the inhibit data formatting indicator
NST is the inhibit status testing indicator
RAN is the random accese mode indicator
ASC or BIN s the forced ASCII or forced binary mode specification for read or
punch operations performed when the file code for this file is assigned
to a card reader ‘
LDR or NLD s the skip leader or do not skip leader specification when the file code >
for this file is assigned to a paper tape reader/punch device @

System Description

Miscellaneous System Macros

1115

INT or PCK s the interchange or packed mode specification when the file code for
this file is assigned to a magnetic tape device

EVN or ODD is the even or odd parity specification when the file code for this file is
assigned to a magnetic tape device

556 or 800 is the 556 or 800 BPI tape density specification when the file code for
this file is assigned to a magnetic tape device

M.DFCBE

This macro creates an expanded file control block (FCB). It also sets the appropriate
parameters and specifications that are common to I/O requests issued for the file.

Calling Sequence

M.DFCBE label,lfc,[count],[addrl],laddr2],[addr3],
[NWT],[NER],[DFI], [NST], [RAN],
[ASCIBIN],[LDRINLD],[INTIPCK],[EVNIODD],[556,800]

[addr4),[addr51,[addr6]

label is the ASCII character string to be used as the symbolic label for the
address of the FCB

Ifc is the 1- to 3-character ASCII string to be used as the logical file code
in the FCB

count is the transfer count in bytes

addrl is the data transfer address

addr2 is the wait I/O error return address

addr3 is the random access address expressed as the hexadecimal block
number (zero origin) relative to the base of the random access file

NWT is the no-wait I/O specification indicator

NER is the inhibit peripheral error processing indicator

DFI is the inhibit data formatting indicator

NST is the inhibit status testing indicator

RAN is the random access mode indicator

ASC or BIN s the forced ASCII or forced binary mode specification for read
operations performed when the file code for this file is assigned to a
card reader

LDR or NLD is the specify skip leader or do not skip leader specification when the
file code for this file is assigned to a paper tape reader/punch device

MPX-32 Technical Volume | 1-55

Miscellaneous System Macros

INT or PCK is the interchange or packed mode specification when the file code for
this file is assigned to a magnetic tape device

EVN or ODD is the even or odd parity speciﬁcatiori when the file code for this file is
assigned to a magnetic tape device

556 or 800 is the 556 or 800 BPI tape density specification when the file code for
this file is assigned to a magnetic tape device

addrd4 is the no-wait I/O normal end-action service address
addrs is the no-wait I/O error end-action service address
addr6 is the user-supplied blocking buffer

1.11.6 M.EIR

This macro is called by the resident system module’s initialization entry points at
entry. It stores RO for later recall by M.XIR, the initialization entry point exit macro.

Calling Sequence

M.EIR

1.11.7 M.FCBEXP

This macro defines a file control block (FCB) to be used for an execute channel
program request.

Calling Sequence

M.FCBEXP label,lfc(, [cpaddr],[tout], [PCP],INWI], [NST],
[ssizel,[sbuffer], [nowait],[nowaiterror],[waiterror],[psize],[ppciadr]

label is the ASCII string to use as the symbolic label for the address of the
FCB

Ifc is the logical file code, word 0, bits 8 to 31 of the FCB

cpaddr the logical address of the channel program to be executed

tout a time-out value specified in seconds

PCP specifies physical channel program

NwI specifies no-wait I/O request

NST specifies status checking not requested

ssize the size of the user-specified sense buffer

sbuffer the address of the user-specified sense buffer

nowait normal no-wait end-action return address

1-56 System Description

Miscellaneous System Macros

1.11.8

1.11.9

nowaiterror no-wait end-action error return address
waiterror wait end-action error return address
psize size of PPCI status buffer to use
ppciaddr PPCI end-action address

M.FWRD

This macro advances the current address of a blocked file by the number of file or
record marks specified.

Calling Sequence
M.FWRD addr, [R] [,num]

addr is the FCB address

R specifies record. If not specified, the default is file.

num is the number of record or file marks to be advanced, one word for one
record.

M.INIT

This macro initializes device handler parameters through entry point eight. The code
generated by this macro is executed by SYSGEN and overlayed.

Calling Sequence
M.INIT label,[NOP][,SPAL1, [SPA2]...[,SPA15]]

label is the entry point truncated label; for example, MTO for magnetic tape
handler. This argument must be three ASCII characters. The first two
represent the device mnemonic and the third is zero.

NOP specifies that TD 2000 level device status testing is not to be performed

SPA1-SPA15 are the SPA parameters to be initialized. A maximum of 15 parameters
can be specified.

Usage:
M.INIT MTO,,SPAl,,SPA3

When placed as the last source statement in the device handler, this macro provides
the necessary code to initialize the handler. The HAT must be modified to specify
entry point eight and an additional entry must be made in the table (ACH MT00.8).

MPX-32 Technical Volume | 1-57

Miscellaneous System Macros

1.11.10 M.INITX ((}/

This macro is called by the handler initialization macros to combine basic instruction
and commands with priority levels and device addresses for later execution within the
handler. When this macro is called, RS must be preloaded with the properly
positioned priority level or device address.

Calling Sequence

M.INITX cmd,mask

cmd is the basic instruction or command

mask is a mask which is ORed with command

1.11.11 M.IOFF
This macro generates a block external interrupt (BEI) instruction that prevents the
CPU from sensing all external interrupt requests generated by the I/O channel and
RTOM.

Calling Sequence
ML.IOFF

1.11.12 M.IONN ()
N
This macro generates an unblock external interrupt (UEI) instruction that causes the

CPU 1o sense all external interrupt requests generated by the I/O channel and RTOM.

Calling Sequence
M.IONN

1.11.13 M.IPUOFF
This macro causes the IPU to be put offline in software by setting bit C.IPUOFF.

Calling Sequence
M.IPUOFF

1.11.14 M.IPUON
This macro causes the IPU to be put online in software by resetting bit C.IPUOFF.

Cailing Sequence
M.IPUON

1-58 . | System Description

C

C

Miscellaneous System Macros

1.11.15 M.IPURTN

This macro allows an IPU executable system module to return to the caller with
registers preserved. The system service performs a register pop-up, except for those
registers to be preserved, and returns to the location specified by the saved program
status word (PSW).

Calling Sequence
M.IPURTN regn [,regn]...

regn is a list of register numbers (0 to 7) identifying the registers to be preserved
through the register pop-up. Any register not specified is not preserved.

1.11.16 M.IVC

This macro connects a handler entry point to an interrupt vector location.

Calling Sequence
M.IVC num,addr

num is the register number containing the interrupt level

addr is the handler entry point address label

M.KILL
This macro disables the CPU Halt Trap Processor (H.IPHT) and halts the system.

Calling Sequence
MKILL addr

addr is the address of a 4-character ASCII crash code

1.11.18 M.MODT

This macro builds an entry in the module address table.

Calling Sequence
M.MODT addr,num

addr is the address label of the module’s HAT table

num is the module number

MPX-32 Technical Volume | 1-59

Miscellaneous System Macros

1.11.19 M.OPEN

This macro controls gating. If code has been assembled with an MPX-32 PRE file,
context switch inhibit is reset and an SVC ’3’ call is issued only if a scheduling event
occurred while M.SHUT was in effect. If code has been assembled without an
MPX-32 PRE file, context switch inhibit is removed by issuing an SVC ’3’ call with
each M.OPEN call. Each of the three standard MPX-32 PRE files contain the symbol
MPX_SVC. This symbol is set to 6 so MPX-32 uses the optimized M.OPEN macro,
which increases the performance of MPX-32.

These processing states can be altered on a call by call basis by specifying the state
parameter.

Entry Conditions

Calling Sequence
M.OPEN ([state]

state specifies the state of processing:

RETAIN retains original functionality of the M.OPEN call that
removes the task context switch inhibit state set by M.SHUT
by issuing the SVC ’3’ call.

FAST provides the optimized state of resetting context switch
inhibit and issuing the SVC ’3’ call only if a scheduling
event occurred while M.SHUT was in effect. The optimized
M.OPEN cannot be used in mapped out tasks.

1.11.20 M.RTNA

1-60

This macro provides the facility to return to the caller from a system module to an
address other than that specified by the saved PSW. It is used primarily for denial
returns. It operates like the M.RTRN macro. The interrupt handler tests for the
presence of an address specification in the parameter and replaces the saved program
status word (PSW) if an address is found.

Calling Sequence
M.RTNA addr,regn [,regn]...

addr is the register number of the register containing the address where return
control resumes

regn is a list of register numbers (0 to 7) identifying the registers to be preserved
through the register pop-up. Any register not specified is not preserved.

System Description

O
|

Miscellaneous System Macros

1.11.21 M.RTRN

This macro is the complement of M.CALL and allows a system module to return to
the caller with registers preserved. The system service performs a register pop-up
(except for those registers to be preserved) and retumns to the location specified by the
saved program status word (PSW).

Calling Sequence
M.RTRN regn [,regn]...

regn is a list of register numbers (0 to 7) identifying the registers to be preserved
through the register pop-up. Any register not specified is not perserved.
1.11.22 M.RTRNOS

This macro is used to return control from the task level debugger to the MPX-32
Operating System.

Calling Sequence
M.RTRNOS

1.11.23 M.SHUT

This macro is used to control gating. It results in context switching being inhibited.
This macro should not be used in a user task which is eligible for IPU execution. See
M.USHUT.

Calling Sequence
M.SHUT

1.11.24 M.SPAD

At each register push-down level, 22 scratchpad storage cells are provided for the use
of re-entrant system modules. The scratchpad storage macro, M.SPAD, provides a
convenient means of referencing the current level of scratchpad storage. The M.SPAD
macro performs any memory reference operating on at least a word boundary (LW,
STF, ARMD, DVMW), or any bit in memory operation (TBM, SBM, ABM, ZBM).

Calling Sequence
M.SPAD mnem,reg,spad,index

MPX-32 Technical Volume | 1-61

Miscellaneous System Macros

mnem is an instruction mnemonic defining the operation to be performed

reg is the register number (0 to 7) or bit position (0 to 31) on which the
operation is to be performed, or null

spad is the scratchpad cell number (1 to 22) to be referenced by the operation
index is an index register number (1, 2, or 3) that is used to perform the operation

1.11.25 M.SVCP

This macro establishes any required protect bits in the high order byte of the SVC ’1’
table. A table is supplied containing 16 bit entries aligned on a halfword boundary.
Each entry contains the SVC number in byte 0 and the required protect bits in byte 1.
The following protect bits are defined:

Bit Meaning if Set

0 privileged SVC

1 IPU

2 base mode tasks executable
3-7 reserved

Calling Sequence
M.SVCP addr,num

addr is the address of the data table
num is the number of entries in the table

1.11.26 M.SVCP2

1-62

This macro establishes any required protect bits in the high order byte of the SVC 2’
table. A table is supplied containing 16 bit entries aligned on a halfword boundary.
Each entry contains the SVC number in byte O and the required protect bits in byte 1.
The following protect bits are defined:

Bit Meaning if Set
0 privileged SVC
1 IPU
2 base mode tasks executable
3-7 reserved
Calling Sequence

M.SVCP2 addr,num

addr is the address of the data table
num is the number of entries in the table

System Description

"

Miscellaneous System Macros

1.11.27 M.SVCT

This macro builds one entry in the SVC ’1’ table for each SVC type one defined in
the calling module’s prototype SVC table. Each one word entry contains the address
of the corresponding SVC; i.e., the 20th entry contains the address of the 20th SVC.

Calling Sequence
M.SVCT addr,num

addr is the address label for the calling module’s prototype SVC table
num is the number of SVC entries in the module’s prototype SVC table

1.11.28 M.SVCT2

This macro builds one entry in the SVC 2’ table for each SVC type two defined in
the calling module’s prototype SVC table. Each one word entry contains the address
of the corresponding SVC. For example, the 20th entry contains the address of the
20th SVC.

Cailing Sequence

M.SVCT2 addr,num

addr is the address label for the calling module’s prototype SVC table
num is the number of SVC entries in the module’s prototype SVC table

1.11.29 M.TRAC
See Chapter 6 - System Trace.

1.11.30 M.TRPINT

This macro generates an entry in the trap vector table.

Calling Sequence

M.TRPINT rpl,tcb
rpl is the hexadecimal trap priority level
tch is the address of the trap context block of the user trap handler

MPX-32 Technical Volume | 1-63

Miscellaneous System Macros

1.11.31 M.TSAD

This macro allows resident modules to obtain the TSA address regardless of which
processor they may be executing in.

Calling Sequence
M.TSAD regn [,proc]

regn the general purpose register RO through R7 to which the TSA address will
be returned. :

proc CPU or IPU. Omission of this field indicates either processor may be
executing this macro call.

1.11.32 M.TYPE

This macro types a user-specified message and performs an optional read on the
system console teletype.

Calling Sequence
M.TYPE outaddr,outcnt [, inaddr] [,incnt]

outaddr is the output message address
outcnt is the output transfer count
inaddr is the input message address
incnt is the input transfer count

1.11.33 M.USHUT

This macro is used to inhibit context switching of a user task. It should be used in
user tasks which are eligible for IPU execution. See M.SHUT.

Calling Sequence
M.USHUT

1.11.34 MXIR

This macro is called by the resident system module’s initialization entry points right
before they exit. It decrements the number of entry points in the calling module by
one so the initialization entry point is no longer included, and retumns to the SYSGEN
Processor.

Calling Sequence
M.XIR addr

addr is the address label of the module’s HAT table C

System Description

Miscellaneous System Macros

1.11.35 DCA.DATA

This macro is used within the SYSGEN entry point of F class handlers to reserve
device context area (DCA) space for the number of DCAs specified by the repeat
(REPT) count. During SYSGEN execution, one DCA is initialized for each unit
definition table (UDT) entry containing the name of the handler. The unused DCAs
and the code contained within the SYSGEN entry point are overlayed following
execution.

Calling Sequence
DCA.DATA sbuf [,[xwrds] [,time0,...,timeF]]

sbuf specifies the sense buffer size (bytes) for automatic sense retrieval by
the extended I/0O (XIO) common subroutines following an I/O error
indication

xwrds is the number of extra words to reserve for each DCA. If not

specified, the standard DCA size is used.

time0-timeF specifies the time-out value in seconds for each input/output control
system (IOCS) opcode, hexadecimal O through F; for example, open,
rewind, read, write, etc. If not specified or if zero is specified, no
time out is associated with the I/O request.

1.11.36 DCA.INI1

This macro is used within the SYSGEN entry point of F-class handlers to initialize
areas of the device context area (DCA), controller definition table (CDT) and unit
definition table (UDT) associated with the particular handler. The code generated by
this macro is overlayed following SYSGEN execution.

Calling Sequence
DCA.INI1 hname [,[OPIN] ,[IOQCDT] [,COM]]

hname specifies the handler name, e.g., H.DCXIO for F class disk handlers
OPIN specifies operator intervention is applicable for this handler

IOQCDT specifies I/O queue entries are to be linked to the CDT. If not specified,
I/O queue entries are linked to the UDT. Because many standard handlers
assume I/O queue entries are linked a certain way, this parameter must be
used with caution. This parameter is available to allow users flexibility
when building handlers.

COM specifies the handler interfaces with the XIO common subroutines

MPX-32 Technical Volume | 1-65

Miscellaneous System Macros

1.11.37 DCA.INI2

This macro is used within the SYSGEN entry point of F-class handlers to restore the
working environment within the SYSGEN entry point following any user added
executable code.

Calling Sequence
DCA.INI2

1.11.38 HMP.INIT

This macro initializes multiplexed I/O processor (MIOP) device handler parameters
with entry point eight. The code generated by this macro is executed by SYSGEN
and overlayed.

Calling Sequence
HMP.INIT label

label is the entry point truncated label; for example, ASO for the asynchronous
communications handler. This argument must be 3 ASCII characters. The
first two represent the device mnemonic and the third is zero.

1.11.39 IB.INIT
This macro initializes multiplexed I/O processor (MIOP) device handler parameters
with entry point 8, where R7 contains the controller definition table (CDT) address
and R2 contains the address of the current context block. -

Calling Sequence
IB.INIT

1-66 System Description

Extended MPX-32 Macros

1.12 Extended MPX-32 Macros

The extended MPX-32 macros allow existing user modules and service routines to run
in the extended mode. These macros select the appropriate coding, extended or
nonextended, for a task by testing the state of the Macro Assembler option 16. (For
example, if the MBR_DEF macro is specified, the coding for a DEF or SDEF
directive is supplied depending on the state of option 16.)

The following are extended macros that directly replace the corresponding Macro
Assembler directive:

Macro Assembler Directive

MBR_BEQ BEQ
MBR_BGE BGE
MBR_BGT BGT
MBR_BL BL
MBR_BLE BLE
MBR_BLT BLT
MBR_BNE BNE
MBR_BNS BNS
MBR_BS BS
MBR_DEF DEF
MBR_EXT EXT
MBR_TRSW TRSW

For descriptions of these macros, see the corresponding Macro Assembler directive
description in the MPX-32 Utilities Manual.

The following macros do not have corresponding Macro Assembler directives, and
must be placed within the code that is to operate in the extended mode:

Macro Description
MBR_DBG calls the system debugger
MBR_DSCT directs data into the DSECT

MBR_ENT generates the adaptation sequence required to reference
a routine from a nonextended module

MBR_INIT tests the state of Macro Assembler option 16

MBR_SSCT returns to a local code section in the system section
(SSECT) area after an MBR_DSCT has been specified

MPX-32 Technical Volume | 1-67

Extended MPX-32 Macros

1.12.1 MBR_DBG (Calls to System Debugger) Macro

The MBR_DBG macro calls the system debugger from the target extended module.
This macro references the system debugger extended code entry within the adaptation
code sequence.

Syntax
MBR_DBG <symbol>

1.12.2 MBR_DSCT (DSECT Data Separation) Macro

The MBR_DSCT macro specifies that the following code is data, and directs the data
into the DSECT. All data and variable constants must have been separated for
inclusion in the DSECT section.

Syntax
MBR_DSCT

1.12.3 MBR_ENT (Extended Code Routine Entry) Macro

The MBR_ENT macro generates the adaptative sequence required to reference a
routine from a nonextended module. Each entry point must have an MBR_ENT
macro before the first instruction.

Syntax
MBR_ENT <symbol> Replaces <symbol> EQU $

1.12.4 MBR_INIT (Module Initialization) Macro

The MBR_INIT macro tests the state of option 16. If option 16 is set, MBR_INIT
initializes the code location to SSECT EXT_MPX. This macro is requnred after the
program statement of an extended module.

Syntax
MBR_INIT

1-68 System Description

Extended MPX-32 Macros

(K 1.12.5 MBR_SSCT (System Code Separation) Macro

The MBR_SSCT macro specifies that the following code is executable data, and
returns to a local code section in the system section (SSECT) area after an

MBR_DSCT macro has been specified.

Syntax
MBR_SSCT

Usage:

MBR_DSCT
J.MOUNT DATAD C’J. MOUNT
OPCOM DATAD C'OPCOM
SYS.LFC DATAW X’00AA532A

LFC3 DATAW G’ (3)
J.ATAPE DATAD C’J.ATAPE
LPOOL
MBR_SSCT

MPX-32 Technical Volume |

N N N NN

SEND DATA TO DATA SECTION
SYSTEM MOUNT TASK
OPERATOR COMMUNICATIONS TASK
SYSTEM LFC "?T*’ (H.TAMM)
LFC FOR SYSTEM FCB3 (H.VOMM)
ANSI TAPE HANDLER TASK

RETURN TO CODE SECTION

1-69/1-70

2 System Tables and Variables

2.1 Overview

This chapter contains descriptions and format layouts for the tables and variables used
by the MPX-32 operating system.

The MPX-32 table structure consists of the following categories:

Batch processing data area which contains the following:

¢ Job table

* Link file format (batch SLO and SBO)
* Run request format (J.SOEX)

* Spooled file directories

Executive (H.EXEC) data area which contains the following:

* Central Processing Unit (CPU)
* Dispatch Queue Entry (DQE)
* Dispatch Queue Address Table (DAT)

Input/output data area which contains the following:

* Blocking buffer control cells

* Controller Definition Table (CDT)

* Device Context Area (DCA)

* File Assignment Table (FAT)

* File Control Block (FCB)

* File Pointer Table (FPT)

* 1/O Queue (I0Q) entry

* 1/O table linkages

¢ Type Control Parameter Block (TCPB)
* Unit Definition Table (UDT)

* XIO Channel Definition Table (CHT)

Memory Management data area which contains the following:
* Map Image Descriptor List (T.MIDL)

* Memory Allocation Table (MATA)

* Memory Attribute List (T.MEML)

* Memory pool management

* Physical Shared Memory Table (PSM)

* Shared Memory Table (SMT)

MPX-32 Technical Volume | 2-1

Overview

Resource Management data area which contains the following:

* Allocated Resource Table (ART)

* Device Type Table (DTT)

¢ Mounted Volume Table (MVT)

* Resource Inquiry Table (M.RIQ)

* Resource Requirement Summary (RRS) entries
* Task Service Area (TSA)

Volume Assignment Table (VAT)

Status Management data area which contains the following:
* Caller Notification Packet (CNP)

Terminal Services data area which contains the following:
* Terminal Line Buffer

Volume Management data area which contains the following:

* Bad Block Descriptor (M.BB.DEQ)

* Descriptor Allocation Map Descriptor (M.DM.DEQ)

* Descriptor Map (DMAP) Deallocation File Descriptor (M.BD.DEQ)

* Descriptors Descriptor (M.DD.DEQ)

* Directory Descriptor (M.DI.DEQ) N
* Directory Entry Table (M.DN.TEQ) "/
* DQE Address Table (DAT)

* Memory Partition Descriptor (M.ME.DEQ)

* Resource Create Block (RCB)

* Resource Descriptor (M.RDCOM)

* Resource Descriptor Space Definition (M.RDSPD)

* Resource Logging Block (RLB)

* Space Allocation Map Descriptor (M.SM.DEQ)

* Space Map (SMAP) Deallocation File Descriptor (M.BS.DEQ)

* System Master Directory (SMD)

* Volume Descriptor (M.VO.DEQ)

2-2 System Tables and Variables

Overview

Disk resident structures are:

* Volume format

* Load module structure

* Load module preamble

* Nonshared executable image structure
* Nonshared executable image preamble
¢ Shared executable image structure

* Shared executable image preamble

* Shared image descriptor

The resident system memory layout and utilization structure is described first.

The communications region is described next.

The table formats are then described, arranged in alphabetical order by the table name.

The disk resident resource descriptors are described in alphabetical order after the
tables.

The disk resident structures are described last.

MPX-32 Technical Volume |

2-3

Memory Layout

'
2.2 Memory Layout '
Resident system memory layout and utilization structures are described below.
Entries Table
in Table Address CONCEPT/32
0-1C Not used
20-60 IPU trap vectors
64-7C Not used
80-FC Trap vectors
100-2FC Interrupt vectors
300-6FC CPU scratchpad save area
700-7FC IOCD emulation area
800 Communication Region (C.)
C.TABLES
C.TMCC C.MATA Memory Allocation Table (MEM.)
1 byte/map configured (word bound)
C.NITI C.ITLT Indirectly connected interrupt
24 words/entry (file bound)
C.MPAA Patch area user defined (word bound)
C.SMTN C.SMTA Shared Memory Table (SMT.) variable - N
C.SMTS contains the number of bytes/entry (file bound) K‘ /
C.TENT C.TTAB Interrupt Timer Table (ITT.)
5 words/entry (word bound)
C.ARTN C.ARTA Allocated Resource Table (AR.)
8 words/entry (doubleword bound)
C.MVIN C.MVTA Mounted Volume Table (MV.)
40 words/entry (doubleword bound)
C.RMTM C.RMTA Resourcemark Table (RMT.)
1 byte/entry (word bound)
C.ACTN C.ACTA Activation Table
4 words/entry (doubleword bound)
C.SEQN C.SEQA Sequence Table
4 words/entry (doubleword bound)
C.NQUE C.DQUE Dispatch Queue (DQE.)
58 words/entry (file bound)
C.ADAT+1W | DQE Address Table
1 word/DQE (word bound)
C.CDTN C.CDTA Controller Definition Table (CDT.)
24 words/entry (ward bound)

O

2-4 System Tables and Variables

Memory Layout

C.UDTN C.UDTA

C.DTTN C.DTTA

C.CHIN C.CHTA
C.MPL
C.MIDL
C.SPAD

C.SVTIN C.SVTA
C.SVTA2
C.MIOP

C.MODN C.MODD

Start of resident

code. All programs

are file bound.
C.SBUFA
C.SBUFB
C.SBUF
C.POOL

End of resident

system
C.LOSEND

MPX-32 Technical Volume |

Unit Definition Table (UDT.)
16 words/entry (word bound)

Device Type Table (DTT.)
2 words/entry (doubleword bound)

Channel Definition Table (CHT.)
40 words/entry (file bound)

Master process list
2 words/entry (doubleword bound)

Map image list for operating system
1 halfword/operating system map (doubleword bound)

CPU scratchpad image
256 words (word bound)

SVC Type 1 Vector Table
128 words or user defined (word bound)

SVC Type 2 Vector Table
128 words (word bound)

GPMC Jump Table
16 words (file bound)

Module Address Table
16 words (word bound)

Trap processors

Interrupt processors

1/O processors

System modules:

H.ALOC, H.BKDM, H.EXEC, H.FISE, H.IOCS,
H.MEMM, H.MONS, HMVMT, HREMM, HREXS,
H.SOUT, H.TAMM, H.TSM, H.VOMM

User operating system resident modules and tasks, if any

System debugger (H.DBUG1)

Swapper (H.SWAPR)

I0Q memory pool (doubleword bound)

MSG memory pool (doubleword bound)

Memory pool area (doubleword bound, map block bound)

Logical end of the operating system + 1 byte

User task space

2-5

Communications Region

2.3 Communications Region O

The communications region is an area of main memory reserved for MPX-32 to store
common data. This data is referenced by symbols that are equated to absolute
memory locations. With each symbol is the length of the variable associated with the
symbol. The length is in units, which is also the minimum boundary on which the
variable resides.

Bit variables are contained in a set of contiguous words with the symbol C.BIT or
C.BIT1 equated to the address of the first word. Bit variables are equated to bit
positions relative to C.BIT or C.BIT1. Bit variables are referenced by a combination
of the variable symbol and C.BIT or C.BIT1; for example, TBM C.AFLK,C.BIT.

2-6 System Tables and Variables

Communications Region

Word No. Byte
(Decimal) (Hex)
512-513 800
514 808
515 80C
516-517 810
518-519 818
520-521 820
522-523 828
524-525 830
526-527 838
528 840
529 844
530 848
531 84C
532-533 850
534-537 858
538-539 868
540-541 870
542-543 878
544 880
545 884
546 888
547 88C
548 890
549 894
550-553 898
554-557 8A8
558-560 8B8
561-563 8C4
564-566 8D0
567-569 8DC
570-572 8E8
573-575 gF4
576-578 900
579-581 90C
582-584 918
585-587 924

MPX-32 Technical Volume |

0

15

16 23

24

31

C.DATE

C.CAL

C.INTC

C.TIME

C.LODC

C.SYMTAB

C.PODC

C.SBUF

C.SIDV

C.TMAC

C.EMAC

C.HMAC

C.SMAC

C.TMCC

C.EMCC

C.HMCC

C.SMCC

C.SYSTEM

C.SYPATH

C.PCHFLE

C.TRACE

C.DBGLM

C.SWPRD

C.SWPDEV

C.IREGS

C.ITSAD

C.LOSEND

C.POSEND

C.HLPVOL

C.HLPDIR

C.CIPU

C.RIPU

C.FREE

C.PREA

C.CURR

C.SQRT

C.SQ55

C.5Q56

C.SQ57

C.SQ58

2-7

Communications Region

2-8

Word No. Byte
(Decimal) (Hex)
588-590 930
591-593 93C
594-596 948
597-599 954
600-602 960
603-605 96C
606-608 978
609-611 984
612-614 990
615-617 99C
618-620 9A8
621-623 9B4
624-626 9Co
627-629 9CC
630-632 9D8
633-635 9E4
1 636-638 9F0
639-641 9FC
642-644 A08
645-647 Al4
648-650 A20
651-671 A2C
672 A80
673 A84
674 A88
675-676 A8C
677 A%4
678 A98
679 A9C
680 AAQ
681 AA4
682 AAS8
683 AAC
684 ABO

0

15 16 23 24 31

C.SQ59

C.SQ60

C.SQ61

C.SQ62

C.5Q63

C.SQ64

C.SWTI

C.SWIO

C.SWSM

C.SWSR

C.SWLO

C.SUSP

C.RUNW

C.HOLD

C.ANYW

C.SWDC

C.SWDV

C.SWFI

C.MRQ

C.SWMP

C.SWGQ

C.SPCH

C.TSAD

C.ACTSEQ

C.ADAT

C.BIT

C.CDTA

C.CPRI

C.DQUE

C.DTTA

C.FADR

C.FGONR

C.GINT

C.IDLA

System Tables and Variables

Communications Region

Word No. Byte
(Decimal) (Hex)

685 AB4
686 ABS8
687 ABC
688 ACO
689 AC4
690 AC8
691 ACC
692 ADO
693 AD4
694 ADS
695 ADC
696 AEO
697 AE4
698 AE8
699 AEC
700 AF0
701 AF4
702 AF8
703 AFC
704 B0O
705 B0O4
706 BO8
707 BOC
708 B10
709 B14
710-717 B18
- 718 B38
719 B3C
720 B40
721 B4
722 B48
723 B4C
724 B50
725 B54
726 BS8
727 B5C

MPX-32 Technical Volume |

0

16

23 24

31

C.IDLC

C.ITLT

C.BATSEQ

C.JOBN

C.MGRAN

C.MIDL

C.MIOP

C.MODD

C.MPL

C.MSD

C.MTIM

C.NTIM

C.PATCH

C.POOL

C.SGOS

C.SICTD

C.SMTA

C.ARTA

C.SPAD

C.SVTA

C.SVTA2

C.SWAP

C.SYCS

C.TSKN

C.TSMDQA

C.TTIBT

C.UDTA

C.TTAB

C.MATA

C.MPAA

C.MPAC

C.MPAH

CRMTA

C.EMTA

C.REV

C.DEBUG

2-9

Communications Region

Word No. Byte
(Decimal) (Hex)
728 B60
729 B64
730 B68
731 B6C
732 B70
733 B74
734 B78
735 B7C
736 B8O
737 B84
738 B88
739 B8C
740 B90
741 B9%4
742 B98
743 B9C
744 BAO
745 BA4
746 BA8
747 BAC
748 BBO
749 BB4
750 BBS8
751 BBC
752-759 BCO
760 BEO
761 BE4
762-763 BE8
764-765 BFO
766-767 BF8
768-769 C00
770-771 Co8
772-773 C10
774 C18
775 Ci1C
776 C20

2-10

0 7 8 15 16 23 24

31

C.TDQi

C.TDQ2

C.TDQ3

C.REGS

C.MVTA

C.ACTA

C.SEQA

C.SCDIPU

C.CHTA

C.ETLOC

C.ADMASK

C.IDLA1

C.IDLC1

C.IPUIT1

C.IPUIT2

C.BTIME

C.BDATE

C.TCORR

C.FSSP

C.DPTIMO

C.MDTA

C.MDTE

C.SWPLIM

C.PDQE

C.MPXBR

C.MPXBRD

C.IP00

C.PSDBRE

C.PSDBRX

C.PSDMSE

C.PSDMSX

C.PSDEAE

C.PSDEAX

C.DSECT

C.ADAPT

C.TDEFA

System Tables and Variables

-
{

\
N~

C

Communications Region

Word No.
(Decimal)

Byte
(Hex)

777
778
779
780
781
782
783
784
785
786
787
788-789
790
791
792-793
794
795-797
798-800
801-802
803-804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820

c24
C28
c2C
C30
C34
C38
C3C
C40
C44
C48
c4c
Cs0
Cs8
csC
C60
C68
C6C-C74
C78-C80
C84-C88
C8C-C90
€94
C98
c9C
CAO0
CA4
CAS
CAC
CBO
CB4
CBS
CBC
CCo
cc4
ccs
cce
CDO

MPX-32 Technical Volume |

0 8 15 16 23 24 31

C.SWIOCL

C.CRDUMP

C.HSTADR

C.CDTN C.ITRS

C.SMVTI C.SVIN

C.UDTN C.RMTM

CEMTM C.NOS

CNRST C.MVTN

C.ARTN C.CHTN

C.HIMAP C.SVTN2

C.MDTN C.MDTAV

C.RMS

C.GSLEMC

C.PTRINT

C.BDBUG

C.PET

C.TSMIR

C.TSMIA

C.SBUFA

C.SBUFB

C.IPUAE

C.HLPDQA

C.NODEID

CPSMA

C.RMSS

C.RCASIZ CPSMSIZ

C.DPTRY C.SMAPS

C.BPRI C.DTTN C.FSFLGS C.MODN

C.NITI C.NQUE CRRUN C.SMTN

C.TSMCNT C.TSMPRI | C.TSMTOT | C.TENT

CRMTL C.EMTL C.CONF C.MACH

C.ACTN C.DBTLC C.SMTS C.SEQN

C.IPUHIS

C.SHRHI (C.UNCAHI) C.SHRLO (C.UNCALO)

C.MAXSWP CNLOAD2 | CPDPEND | C.PSMN

C.CDTSIZ C.DFTSIZ C.DTTSIZ C.FPTSIZ
2-11

Communications Region

Word No. Byte
(Decimal) (Hex) 0 7 8 15 16 23 24 31
821 CD4 CIOQSIZ | CDPGPRI | CNFRAME | CMRQLEN
822 CD8 C.MMSG C.MRUN C.MNWI C.GSLEGI
823 CDC C.GSLEPR | C.ADAFL | C.TKILL C.DELTA
824 CEO C.MPXBRN | C.DBMAPS | C.SWAPSZ
825 CE4 C.DTSAVE
826 CE8 C.SHCPU
827 CEC C.SHIPU
828 CFO C.UPDT
829 CF4 C.SWPBUF
830 CF8 C.MRQTMR
831 CFC C.SHBTH
832 D00 C.TABLES
833-864 D04-D80 | C.USER
865 D84 | C.USERVA
866 D88 C.TPVA
867 D8C C.EXEND CFRAME
868 D90 C.SCOFDQ
869 D94 C.CTSAD
870 D98 C.AGE
871 D9C C.EFRPG
872 DAO C.HFRPG
873 DA4 C.SFRPG
874 DA8 C.DFRPG
875 DAC C.MPFRPG
876 DBO C.MPTLA
877 DB4 C.CREGS
878 DB8 C.PTEA
879 DBC CPSTA
880 DCO C.CHTSIZ C.DQESIZ
881 DC4 CRDSIZ C.MPMAC
882 DC8 C.BEGPGO C.ENDPGO
883 DCC C.DMCC CDMAC
884-885 DD0-DD4 | C.BITI
886-887 DD8-DDC | C.SPGOL
888-889 DE0-DE4 | C.COMM

2-12

System Tables and Variables

N
N

Communications Region

(/ Word No. Byte

(Decimal) (Hex) 0 7 8 15 16 23 24 31

890-946 DES-ED4 | Reserved for MPX-32
947 EDS8 Reserved C.TPGOC
948 EDC C.MVTSIZ C.DCASIZ
949 EEQ C.RCBSIZ | C.UDTSIZ | C.DPTSIZ | C.TIQSIZ
950 EE4 C.MRQSIZ | Reserved CPCBSIZ | C.ARTSIZ
951 EE8 C.DETSIZ C.BBFSIZ | C.VATSIZ

952-956 EEC-EFC | Reserved for MPX-32

MPX-32 Technical Volume | 2-13

Communications Region

Byte
(Hex) Symbol

Description

800 C.DATE
808 C.CAL

80C C.INTC

810 C.TIME

818 C.LODC

820 C.SYMTAB
828 C.PODC

830 . C.SBUF

2-14

current date (Gregorian) as input by operator
calendar devices:

Byte Description

current century in binary (C.CENT)
current year in binary (C.YEAR)
current month in binary (C.MONTH)
current day in binary (C.DAY)

WN O

interrupt counter (number of interrupts from zero
which is midnight) used for time-of-day calculations

the system start-up values from C.BTIME and
C.BDATE

the system listed output device used as a default in
operator communications commands:

Byte Description

0-1 ASCII device type code

2-3 ASCII channel number

4-5 ASCII subaddress -
6-7 reserved oo

name of the symbol table file

the system punched output device used as a default in
operator communications commands:

Byte Description

0-1 ASCII device type code
2-3 ASCII channel number
4-5 ASCII subaddress

6-7 reserved

first word contains address of memory pool. Second
word is set by S.MEMMO to the number of words
in memory pool.

System Tables and Variables

Communications Region

Byte
(Hex)

Symbol

Description

838

840

842
844
846
848

84A

84C

84E

C.SIDV

C.TMAC

C.EMAC
C.HMAC
C.SMAC
C. TMCC

C.EMCC

C.HMCC

C.SMCC

MPX-32 Technical Volume |

the system input device used as a default in operator
communications commands:

Byte Description

0-1 ASCII device type code
2-3 ASCII channel number
4-5 ASCII subaddress

6-7 reserved

total count in halfwords of all E, H, and S memory
modules available

total count of valid E type memory modules available
total count of valid H type memory modules available
total count of valid S type memory modules available

total count of all valid E, H, and S memory

modules configured (less the size of the unmapped
portion of the system debugger if it is present, and any
maps used for static partitions or extended MPX-32)

total count of valid E type memory modules configured
(minus one if swap device is E-class and extended
memory is present in the system, minus any

E-class map blocks allocated for the unmapped portion
of the system debugger, and any E class map blocks
allocated for static partitions or extended MPX-32)

total count of valid H type memory modules configured
(minus any H-class map blocks allocated for the unmapped
portion of the system debugger and any H class map blocks
allocated for static partitions or extended MPX-32)

total count of valid S type memory modules configured
(minus any S-class map blocks allocated for the unmapped
portion of the system debugger and any S class map blocks
allocated for static partitions or extended MPX-32)

2-15

Communications Region

2-16

name of current system image
system pathname prototype

system trace (M.TRAC) control word
debugger load module name
absolute block number of the resource descriptor

MVTE address of the actual swap volume

logical address of the start of register save area in
the TSA for task running in IPU only

logical address of the TSA for the task running in

logical end of MPX-32 (+1B) for the current task
physical end of non-split MPX-32 (+1B)
name of the volume used to store the HELP files

Byte
(Hex) Symbol Description
850 C.SYSTEM
858 C.SYPATH
868 C.PCHFLE patch file name
870 C.TRACE
878 C.DBGLM
/
880 C.SWPRD
of the swap file
884 C.SWPDEV
888 C.IREGS
88C C.ITSAD
the IPU only
890 C.LOSEND
8% C.POSEND
898 C.HLPVOL
- 8A8 C.HLPDIR

name of the directory used to store the HELP files

System Tables and Variables

~

Communications Region

(, Byte

(Hex) Symbol Description

8B8 C.CIPU standard format linked list head cell for all IPU tasks
ineligible for CPU control, waiting in general queue.
C.CIPU is the first of a set of communications region
variables which are contiguous in memory. These
variables, listed in the order that they appear in memory,
are as follows:

C.CIPU
CRIPU
C.FREE
C.PREA
C.CURR
C.SQRT
C.SQ55
C.5Q56
C.SQ57
C.SQ58
C.5Q59
C.SQ60
C.SQ61
C.SQ62
B C.SQ63
(C.SQ64
_ C.SWTI
C.SWIO
C.SWSM
C.SWSR
C.SWLO
C.SUSP
CRUNW
C.HOLD
C.ANYW
C.SWDC
C.SWDV
C.SWFI
C.MRQ
C.SWMP
C.SWGQ
C.SPCH

8C4 C.RIPU standard format linked list head cell for all IPU
‘ tasks ready to run, waiting in general queue

8D0 C.FREE standard format linked list head cell for free entries
in the CPU dispatch queue

8DC C.PREA standard format linked list head cell for CPU dispatch
queue entries that are in the preactivation state

MPX-32 Technical Volume | 2-17

Communications Region

2-18

standard format linked list head cell for the CPU

dispatch queue entry of the currently executing task. This
list can have a maximum of two entries: one for the current
real-time task (if any) and one for the current
time-distribution task (if any). ”

standard format linked list head cell for the list

of ready-to-run real-time (priority level 1 to 54) tasks
standard format linked list head cell for the list of
ready-to-run priority level 55 time-distribution tasks
standard format linked list head cell for the list

of ready-to-run priority level 56 time-distribution tasks
standard format linked list head cell for the list

of ready-to-run priority level 57 time-distribution tasks
standard format linked list head cell for the list of
ready-to-run priority level 58 time-distribution tasks
standard format linked list head cell for the list of
ready-to-run priority level 59 time-distribution tasks
standard format linked list head cell for the list

of ready-to-run priority level 60 time-distribution tasks
standard format linked list head cell for the list

of ready-to-run priority level 61 time-distribution tasks
standard format linked list head cell for the list

of ready-to-run priority level 62 time-distribution tasks
standard format linked list head cell for the list

of ready-to-run priority level 63 time-distribution tasks
standard format linked list head cell for the list

of ready-to-run priority level 64 time-distribution tasks

standard format linked list head cell for
all tasks waiting for the completion of wait mode
interactive (terminal) input

standard format linked list head cell for
all tasks waiting for the completion of wait mode I/O

standard format linked list head cell for all tasks
waiting for the completion of wait mode send message

standard format linked list head cell for all tasks
waiting for the completion of wait mode send run request

Byte
(Hex) Symbol Description
8E8 C.CURR
8F4 C.SQRT
900 C.SQ55
90C C.SQ56
918 C.SQ57
924 C.SQs58
930 C.SQ59
93C C.SQ60
948 C.SQ61
954 C.5Q62
960 C.SQ63
96C C.SQ64
978 C.SWTI
984 C.SWIO
requests
990 C.SWSM
request
99C C.SWSR
9A8 C.SWLO

standard format linked list head cell for all tasks
waiting for the completion of low speed output

System Tables and Variables

.S

Communications Region

standard format linked list head cell for
all tasks that are in an execution suspend mode, waiting
for a message interrupt, a timer expiration, or a resume

standard format linked list head cell for
all tasks that are ineligible for CPU control, waiting for
a run request to be received, or for the expiration of a

standard format linked list head cell for all tasks
that are ineligible for CPU control, waiting for a continue

standard format linked list head cell for all tasks

that are ineligible for CPU control, waiting for the
completion of any no-wait mode I/O request, any no-wait
mode send message request, any no-wait mode send run
request, Oor any message or break interrupt

standard format linked list head cell for all tasks
ineligible for CPU control, waiting for disk space to

standard format linked list head cell for all tasks
ineligible for CPU control, waiting for a peripheral
device to become available

standard format linked list head cell for all tasks
ineligible for CPU control, waiting for memory to become

standard format linked list head cell for all tasks
ineligible for CPU control, waiting for memory pool to

standard format linked list head cell for all tasks
ineligible for CPU control, waiting in general queue

address of the TSA for a CPU or IPU task running in
mapped in mode with its TSA at MINADDR
(for compatibility only)

running count of task activations, used to
form right-most 24 bits of task number when a task
is activated. SYSGEN initializes this word to zero

Byte
(Hex) Symbol Description
9B4 C.SUSP
task request
9C0 C.RUNW
timer
9CC C.HOLD
request to be received
9D8 C.ANYW
9E4 C.SWDC
become available
9F0 C.SWDV
9FC C.SWFI reserved
A08 C.MRQ
available
Al4 C.SWMP
become available
A20 C.SWGQ
A2C C.SPCH reserved
A80 C.TSAD
A84 C.ACTSEQ
A88 C.ADAT

MPX-32 Technical Volume |

address of the DQE address table (DAT)

2-19

Communications Region

C
Byte

(Hex) Symbol Description

A8C C.BIT symbol associated with the beginning of the
bit variables:

Bit Meaning if Set

accounting file lock indicator (C.AFLK)

swap volume is E-class disk (C. ESWAP)
dump real-time tasks on abort (C.FGPM)
indicates user is using CPU scratchpad for his
own needs. IPL alters SPAD locations defined
by SYSGEN. Reset indicates SPAD

locations not defined by SYSGEN are to be
set to zero. (C.SPADOK)

WN-=O

4 list patches indicator (C.LSPT)
5 online restart in progress (C.RSTRT)
6 reserved
7 continuous batch mode indicator (C.SCBT)
8 J.SOUT banner page inhibit (C.SIBP)
9 SSIN device density is 556 (7-track) (C.SIDD)
10 SSIN device parity is odd (7-track) (C.SIDP)
11 inhibit context switching in IPU (C.ICSIPU)
12 task context switch inhibited (C.CSWI)
13 activation from tape (C.TAPACT) o
14 static I0Q indicator (C.PIOQ) ‘)
15 reserved N
16 inhibit magnetic tape mount message
(C.SIMM) :
17 memory error detected by H.IP02 (C.MERR1)
18 memory parity error detected during memory
initialization (C.MERR2)
19 nonpresent memory detected (C.MERR3)
20 module cannot be loaded (C.NOLOAD)
21 SYSINIT active - IPL or restart (C.SYSB)
22 IPU is offline (C.IPUOFF)
23 IPU accounting timer present (C.IPUIT)
24 inhibit operator intervention (C.NOP)
25 reserved for RIE
26 reserved
27 shadow memory configuration error
. (C.SMERR)
28 reserved
29 dual-port disk mounted (C.DPMT)
30 activating tasks specified in the SYSGEN
SEQUENCE directive (C.SEQUEN)
31 reserved for ICS (C.ICS)
32 reserved
33 exclusive ANSI tape drive is configured
(C.ANSI)
34 Development System (C.DEV) ™
35 group swap limit exceeded (C.GSLE) {)/

2-20 System Tables and Variables

Communications Region

¢ ae

(Hex) Symbol Description

Bit Meaning if Set

36 no terminal definition (C.NOTDEF)

37 no ANSI (C.NOANSI)

38 H.PTRACE is present (C.PTRACE)

39 retumns to implicit physical mount
functionality of MPX-32 Revision 3.3
(C.CMIMM)

40 disables public volume dismounts
(C.CMPMM)

41 real-time accounting disabled (C.RTACC)

42 H.IPCL needs to send break to J.TSM
(C.TSMLC1)

43 reserved

44 only the system administrator can
execute the PASSWORD task
(C.SAPSWD)

45 passwords are required (C.PASSWD)

46 SYSTEM is the only valid ownemame
if no M.LKEY file (C.SAONLY)

47 no rollover allowed from MSGPOOL
(CMSGNR)

48 no rollover allowed from IOQPOOL
(C.PIONR)

49 rollover occurred from IOQPOOL
(C.ROLIOQ)

50 rollover occurred from MSGPOOL
(CROLMSG)

51 inhibit write to system volume descriptor
during shutdown process (C.IWSYSV)

52 inhibit volume mounts during shutdown
process (C.IVM)

53 reserved

54 system volume is quiescent (C.SQUIET)

55 read and lock specified (C.RLWU)

56 image down loaded for host (C.IMAGDL)

57 remote task activation allowed (C.REMTSK)

58 all configured memory is physically shadow
memory (C.ALLSHD)

59 allow multiple logins using same owner name
(CMLOGIN)

60 no system volume (C.NOSVOL)

61 mapped out image (C.MAPOUT)

62 inhibit echoing of owner name at logon
(C.NOECHO)

63 system default move TSA (C.TSA)

MPX-32 Technical Volume |

2.1

Communications Region

2-22

Byte
(Hex) Symbol Description
A9%4 C.CDTA address of controller definition table
A98 C.CPRI task execution bytes:
Byte Description
0 current execution priority of currently
executing task (C.CUP)
1 base execution priority of currently
executing task (C.BUP)
2 1/O priority of currently executing task
(C.IoP)
3 state chain index of currently executing
task (C.US)
A9C C.DQUE address of CPU dispatch queue area. The
CPU dispatch queue area is a variable length table
built by SYSGEN. It contains the number of 64-word
dispatch queue entries (DQEs) specified at system
generation time.
AAQ C.DTTA address of device type table
AA4 C.FADR reserved
AA8 C.FGONR reserved N
AAC C.GINT contains the count of all outstanding interrupts N
and traps (except SVC). It is incremented as the first ~
instruction of every interrupt or trap service routine,
and decremented by S.EXECS, the standard interrupt and
trap exit routine.
ABO C.IDLA CPU idle time accumulation value in seconds,
cleared by SYSGEN. This value is incremented when
the countdown value in C.IDLC expires.
AB4 CIDLC CPU idle time countdown value, cleared by
SYSGEN. This value is used to load the interval timer
when there are no tasks ready to run. When a task
becomes ready to run, the interval timer is read and
the value is stored in this word.
ABS C.ITLT address of indirectly connected task linkage table
(TLT). Initialized by SYSGEN.
ABC C.BATSEQ next batch sequence number
ACO C.JOBN maximue:: number of concurrent batch jobs
AC4 machine dependent map granularity

C.MGRAN

System Tables and Variables

Communications Region

Byte

(Hex) Symbol Description

ACS8 C.MIDL address of the list of map registers used by the
operating system

ACC C.MIOP address of first entry of MIOP jump table

ADO C.MODD address of variable length module address table.
Initialized by SYSGEN. The module address table
contains entries in module sequence. Each entry
consists of one word that contains the address of the
entry point transfer list (HAT) of the associates
module.

AD4 C.MPL address of master process list. Length of list in
words is contained in C.NDQE plus one word.
First entry points to C.MSD (hardware requirement).

ADS C.MSD contains map segment descriptor for operating system
(BPIX). It points to C.MIDL (hardware requirement).

ADC C.MTIM number of clock interrupts per second. Initialized
by SYSGEN.

AEQ C.NTIM number of clock interrupts per time unit.
Initialized by SYSGEN.

AF4 C.PATCH system debug patch area

AES8 C.POOL address of memory pool

AEC C.SGOS contains the default SGO size of 32 blocks. This is
included for compatibility purposes only and is not
examined during job processing.

AF0 CSICTD address of MIOP test device status processor,
H.SICTD.

AF4 C.SMTA address of shared memory table area. Size
is determined by SYSGEN SHARE directive.

AFS8 C.ARTA address of allocated resource table

AFC C.SPAD address of CPU scratchpad image

B0O C.SVTA address of variable length SVC 1’ table.

Initialized by SYSGEN. Each entry consists of one
word which contains the address of the service
associated with the SVC number.

B4 C.SVTA2 address of variable length SVC ’2’ table.
Initialized by SYSGEN. Each entry consists of
one word which contains the address of the service
associated with the SVC number.

MPX-32 Technical Volume | 2-23

Communications Region

2-24

Byte

(Hex) Symbol Description

BOS8 C.SWAP contains the swapper’s status and DQE address.

(If bit 0 equals zero, the swapper is active. If bit
0 equals one, the swapper is inactive). Bits 8 through
31 contain the address of the swapper’s DQE.

BOC C.SYCS contains the default SYC size of 32 blocks. This is
included for compatibility only and is not examined
during job processing.

B10 C.TSKN task activation sequence number of currently executing
task

Byte Description
0 contains the DQE entry number of
the currently executing task in the
range of 1 to 255; when word format is
adjusted, it may be used as an index
to the DQE address table (DAT) to obtain
the DQE for the associated task.
The address of the DAT is contained in
C.ADAT. (C.PRNO)
1-3 activation sequence number of currently -
executing task m
B14 C.TSMDQA address of DQE for J.TSM or 0 if J.TSM has exited.
Required for ring processing and message sending.

B18 C.TTBT task timer bit table containing 256 bits.

Each bit corresponds to a C.DQE entry and is accessed
by the DQE entry number (1 to 255). A bit set

in this table indicates the associated DQE has an active
task timer.

B38 C.UDTA address of unit definition table

B3C C.TTAB address of timer table

B40 C.MATA address of memory tables

B44 C.MPAA low address of the patch area

B48 C.MPAC current address of the patch area

B4C C.MPAH high address of the patch area

B50 C.RMTA address of resourcemark table

BS54 C.EMTA address of eventmark table

BS8 C.REV MPX-32 revision and interim revision

B5SC C.DEBUG address location of debugger

System Tables and Variables

Communications Region

(/ Byte

(Hex)

Symbol

Description

B60

B64

B68

B6C

B70
B74
B78
B7C
B80
B84
B88
B8C

C.TDQ1

C.TDQ2

C.TDQ3

C.REGS

CMVTA
C.ACTA
C.SEQA
C.SCDIPU
C.CHTA
C.ETLOC
C.ADMASK
C.IDLA1

MPX-32 Technical Volume |

time-distribution quantum stage one, in interval

timer units. Initialized by SYSGEN. This value is used

to load the interval timer when CPU control is dispatched

to a time-distribution task under one of the following

conditions:

¢ atask is initially selected after activation

e atask is initially selected after the termination of a
voluntary wait state (e.g., wait I/O or timed suspend)

e atask is initially selected after in-swap

e atask is reselected after completion of its full quantum

During the quantum stage one interval, the currently
executing task is not eligible for out-swap, and

may not be pre-empted from CPU control by a higher
priority time-distribution task.

time-distribution quantum stage two, in interval

timer units. Initialized by SYSGEN. This value is
used to load the interval timer when the stage one
quantum for the currently executing task expires. (The
quantum stage two value may be added to the quantum
stage one value to define the full task quantum.)

time-distribution full quantum value, in interval
timer units. Initialized by SYSGEN. This value is the
sum of the quantum stage one and stage two values.

TSA address of current task in the CPU
(for compatibility only)

address of mounted volume table
address of activation table

address of sequence table

schedule IPU routine address

address of channel definition table
address of event trace logic

maximum address bit mask for machine

IPU idle time accumulation value in seconds,
cleared by SYSGEN. This value is incremented when
the countdown value in C.IDLC1 expires.

2-25

Communications Region

Byte

(Hex) Symbol Description

B90 C.IDLC1 IPU idle time countdown value, cleared by
SYSGEN. This value is used to load IPU accounting
interval timer (if present) when there are no tasks
ready to run on the IPU. When a task becomes ready
to run, the IPU accounting interval timer is read and
the value is stored in this word.

B% C.IPUIT1 address of the IPU accounting routine, S.IPUIT1,
which performs accounting functions after an IPU trap
is fielded. Initialized by SYSGEN.

B98 C.IPUIT2 address of the IPU accounting routine, S.IPUIT2,
which performs accounting functions prior to the
starting of the IPU. Initialized by SYSGEN.

B9C C.BTIME the current time (in binary) kept as the number of
100 microsecond units

BAO C.BDATE the current date (in binary) kept as the number of
days since January 1, 1960

BA4 C.TCORR the correction factor (in 100 microsecond units)
which must be subtracted from C.BTIME to get the
correct local time. This value is determined by the
daylight savings and time zone parameters specified
(if any) at IPL. O

BAS C.FSSP file system stack frame pointer -

BAC C.DPTIMO default time-out value applied to dual-processor,
shared volume resource assignments

BBO C.MDTA physical starting address of the memory resident
descriptor table (MDT)

BB4 C.MDTE physical ending address of the MDT

BBS8 C.SWPLIM minimum number of maps to be swapped at any
one time

BBC C.PDQE address of DQE of a partially swapped task

BCO C.MPXBR base registers save area (eight words--one
file each)

BEO C.MPXBRD default logical map address

BE4 C.IPOO address of the A.IPO0 module

2-26

System Tables and Variables

Communications Region

C Bye

MPX-32 Technical Volume |

(Hex) Symbol Description

BES8 C.PSDBRE break entered PSD for base mode task (two words)

BFO0 C.PSDBRX break exited PSD for base mode task (two words)

BF8 C.PSDMSE message entered PSD for base mode task (two words)

Co00 C.PSDMSX message exited PSD for base mode task (two words)

co8 C.PSDEAE end action entered PSD for base mode task
(two words)

C10 C.PSDEAX end action exited PSD for base mode task
(two words)

C18 C.DSECT start address of DSECT for extended MPX-32

C1C C.ADAPT start address of the adapter code region for
extended MPX-32

C20 C.TDEFA address of TERMPART, if present

C24 C.SWIOCL swapper’s IOCL address

C28 C.CRDUMP address of the crash dump routine

C2C C.HSTADR address of the optional CPU/IPU state chain
history buffer

(o C30 C.CDTN number of entries in controller definition table

C32 C.ITRS interval timer resolution, in tenths of microseconds,
as derived from the SYSGEN ITIM directive

C34 C.SMVTI mounted volume table (MVT) index of swap device

C36 C.SVIN number of entries in the SVC ’1’ table.
Initialized by SYSGEN.

C38 C.UDTN number of entries in unit definition table

C3A C.RMTM maximum number of resourcemarks

C3C C.EMTM maximum number of eventmarks

C3E C.NOS number of blocks required for SYSGEN code

C40 C.NRST number of blocks required for restart code

C42 C.MVTN number of entries in mounted volume table

C44 C.ARTN number of entries in allocated resource table

C46 C.CHTN number of entries in channel definition table

2-27

Communications Region

e

Byte
(Hex) Symbol Description
C48 C.HIMAP number of the last map block of logical address
space available to a task
C4A C.SVTN2 number of entries in the SVC ’2’ table.
Initialized by SYSGEN.
c4c C.MDTN total hexadecimal number of entries in the
MDT. This number is larger than the number
specified at SYSGEN time because it includes an
extra 25% for collision resolution.
C4E C.MDTAV hexadecimal number of entries currently available
in the MDT
C50 C.RMS reserved for RMS (two words)
Cs8 C.GSLEMC group swap limit exceeded map count
CsC CPTRINT PTRACE task activation control address
C60 C.BDBUG base task debugger name
C68 C.PET PET patch address table pointer
C6C-C74 C.TSMIR TSM input request head cell
C78-C80 C.TSMIA TSM input active head cell
C84-C88 C.SBUFA first word contains the address of the I0Q
memory pool. Second word is set by SSMEMMO9A
to the number of words in the I0OQ memory pool
C8C-C90 C.SBUFB first word contains the address of the MSG
memory pool. Second word is set by S MEMM9B
to the number of words in the MSG memory pool
C94 C.IPUAE address of the arithmetic exception handler
é\/C98 C.HLPDQA address of DQE for J.HLP. Required for J.TSM
~ C9C C.NODEID RMSS node identifier
> CAO0 C.PSMA address of PSM table
- CA4 C.RMSS reserved for RMSS
% CAS CRCASIZ size of remote context area
* CAA C.PSMSIZ number of context areas
CAC C.DPTRY decimal number of tries to access a dual-port
resource
CAE C.SMAPS number of MAPS used by the system
(i.e., J.SWAPR)
CBO C.BPRI default software priority level at which batch

jobs execute

2-28 System Tables and Variables

Communications Region

Byte

(Hex) Symbol Description

CB1 C.DTTN number of entries in device type table

CB2 C.FSFLGS reserved

CB3 C.MODN entry number of last entry in module address table.
Initialized by SYSGEN.

CB4 C.NITI contains the number of 24-word indirectly connected
task linkage block (ITLB) entries in the indirectly
connected task linkage table (ITLT).

Initialized by SYSGEN.

CB5 C.NQUE number of entries (255 maximum) in CPU dispatch
queue.

CB6 C.RRUN contains the count of memory release events. It
is incremented by H.EEXEC,9 when a memory
scheduler event is reported. It is cleared by the
memory scheduler (swapper) when processing of the
memory request queue begins. It is decremented by the
swapper when memory is deallocated by the swapper.
It is cleared by the swapper before HEXEC,8 is called.
H.EXEC,8 will rerun the swapper if CRRUN is not
equal to zero.

CB7 C.SMTN number of entries in shared memory table

CB8 C.TSMCNT number of currently active TSM devices. Maintained
by J.TSM.

CB9 C.TSMPRI priority default for TSM-activated tasks. Overrides
cataloged priority.

CBA C.TSMTOT number of TSM devices. Initialized by entry point
eight of all terminal device handlers.

CBB C.TENT number of timer table entries

CBC C.RMTL low address of user resourcemark area

CBD C.EMTL low address of eventmark area

CBE C.CONF configuration flags:

Bit Meaning if Set
0 CPU accelerator present (C.CPUACC)
1 IPU accelerator present (C.IPUACC)
2 IPU present (C.IPU)
3 memory-only system (not valid in Revision 2.x
series) (C.MEMNLY)

base code removed (C.NOBASE)

Ada support module present (C.ADA)
shadow memory configured (C.SHMEM)
shadow memory reserved (C.SHRSYV)

SN b

MPX-32 Technical Volume | 2-29

Communications Region

Byte
(Hex) Symbol Description
CBF C.MACH machine type currently in use:
Value Description
0 CONCEPT 32/2000
1 reserved
2 CONCEPT 32/27
3 CONCEPT 32/67
4 CONCEPT 32/87
5 CONCEPT 32/97
6-7 reserved
CCo C.ACTN number of entries in activation table
CC1 C.DBTLC channel address used for system debugger
cC2 C.SMTS shared memory table entry size in bytes
CC3 C.SEQN number of entries in sequence table
CC4 C.IPUHIS address of IPU history buffer
CC8 C.SHRHI interprocessor memory high bound
CCA C.SHRLO interprocessor memory low bound
CcCcC C.MAXSWP maximum swap size in megabytes
CCD C.NLOAD2 SYSGEN error code
CCE C.PDPEND number of public dismounts pending
CCF ~ CPSMN number of entries in PSM table
CDO C.CDTSIZ size of controller definition table in bytes
CD1 C.DFTSIZ size of disk file assignment table in bytes
CD2 C.DTTSIZ size of device type table in bytes
CD3 C.FPTSIZ size of file pointer table in bytes
CDh4 C.1I0QSIZ size of I/O queue entry table in bytes
CD5 C.DPGPRI demand page base priority
CD6 C.NFRAME number of frames in TSA register stack
_Cb7 ~ CMRQLEN length in bytes of the MRRQ fixed header area
CD8 C.MMSG nonprivileged task’s no-waii message count
CD9 C.MRUN nonprivileged task’s no-wait run request count
CDA C.MNWI nonprivileged task’s no-wait I/O count
CDB C.GSLEGI group ID of a task whose group outswap limits

have been exceeded

System Tables and Variables

O

C

Communications Region

hexadecimal priority of a task whose group
outswap limits have been exceeded

control flag for Ada run-time system

number of seconds before an abort becomes a kill
delta value for real-time IPU tasks

number of base registers to load

number of MAPS used by the system debugger
swapfile size in megabytes (halfword)

elapsed time before J.DTSAVE resumes

CPU shadow memory. Starting map block number
in first halfword. Number of map blocks in second
halfword. These fields include any C.SHBTH area.

IPU shadow memory. Starting map block number
in first halfword. Number of map blocks in second
halfword. These fields include any C.SHBTH area.

MPX-32 patch or replacement release
logical address of J.SWAPR’s dedicated system buffer
timer used by J.SWAPR

shadow memory in both CPU and IPU. Starting
map block number in first halfword. Number of map
blocks in second halfword.

symbol equated to the absolute memory location

at which SYSGEN-built tables begin if no user
communication region is SYSGENed. This location
is on a word boundary.

symbol equated to the absolute memory location
where the fixed portion of the user communication region

address of the variable size user region.

This region is defined by the CDOTS directive

to SYSGEN and is on a word boundary. If the CDOTS
directive is specified, the SYSGEN-built tables begin

at the first word location following this user region.

address of the 16 word area reserved for
third party vendor products

address of the end of executable memory

size of each stack frame in TSA non-base
register stack push-down area

Byte
(Hex) Symbol Description
CDC C.GSLEPR
CDD C.ADAFL
CDE C.TKILL
CDF C.DELTA
CEO C.MPXBRN
CE1l C.DBMAPS
CE2 C.SWAPSZ
CE4 C.DTSAVE
CES8 C.SHCPU
CEC C.SHIPU
CFO C.UPDT
CF4 C.SWPBUF
CF8 C.MRQTMR
CFC C.SHBTH
D00 C.TABLES
D04 C.USER
begins.
D84 C.USERVA
D88 C.TPVA
D8C C.EXEND
DSE C.FRAME
D90 C.SCOFDQ

MPX-32 Technical Volume |

CPU/IPU scratchpad offset for task DQE address

2-31

Communications Region

2-32

Byte

(Hex) Symbol Description

D9%4 C.CTSAD logical address of TSA for the current task running
in the CPU

D98 C.AGE virtual time before page considered aged

DI9C C.EFRPG free page head cell for E class

DAO C.HFRPG free page head cell for H class

DA4 C.SFRPG free page head cell for S class

DAS C.DFRPG free page head cell for D class

DAC C.MPFRPG free page head cell for multi processer memory

DBO C.MPTLA physical memory allocation pointer list address

DB4 C.CREGS logical address of the TSA stack for current CPU task

DB8 C.PTEA physical page table entry address

DBC C.PSTA physical page state table address

DCO C.CHTSIZ size of channel definition table in bytes

DC2 C.DQESIZ size of dispatch queue entry in bytes

DC4 CRDSIZ size of resouce descripter in bytes

DC6 C.MPMAC total valid configured multiprocessor memory

DC8 C.BEGPGO number of mapblocks to page out

DCA C.ENDPGO number of mapblocks to stop page out

DCC C.DMCC total configured DRAM (CONCEPT 32/2000)

DCE C.DMAC total available DRAM (CONCEPT 32/2000)

DD(-DD4 C.BIT1 symbol associated with the beginning of

the bit variables:

Bit Meaning if Set

0 inhibit batch messages to all terminals except
system console (C.TERM)

1 inhibit batch messages to system
console (C.CONS)

2 restrict ownername "SYSTEM" from
multiple logons (C.NOSYS)

3 SYSGEN request to run all SYSMAP tasks

with MPX-32 mapped out (C. TSKOUT)
4 system specification for task (C.TSKOFL)
5 no last access update (C.NOLACC)
6 image supports demand page (C.DPGSYS)
7 TSM will exit when not in use (C.TSMXIT)
8 TSM reactivated (C.RACTSM)
9 activate TSM (C.ACTSM)
10 page out to swap file in progress (C.PGOPRG)
11 high priority task is ready to run (C.HIPRI)
reserved

System Tables and Variables

‘S

Communications Region

shared page out queue head cell

string forward address (MAP.SF); 1 HW
string backward address (MAP.SB); 1 HW
number of pages in queue (SPGO.CNT); 1 HW

reserved for COMM-32

total number of pages in the system

size of mounted volume table in bytes

size of device context area table in bytes

size of resource create block table in bytes

size of unit definition table in bytes

size of disk parameter table in bytes

size of terminal input queue table in bytes

size of message or run request queue table in bytes

size of procedure call block in bytes

size of allocated resource table in bytes

size of directory entry table in bytes

size of blocking buffer head cell size in bytes
size of volume assignment table in bytes

Byte
(Hex) Symbol Description
DD8-DDC C.SPGOL
reserved; 1HW

DEO-DE4 C.COMM
DES-ED8 reserved for MPX-32
EDA C.TPGOC

- ready for pageout
EDC CMVTSIZ
EDE C.DCASIZ
EEO C.RCBSIZ
EE1 C.UDTSIZ
EE2 C.DPTSIZ
EE3 C.TIQSIZ
EE4 C.MRQSIZ
EES reserved for MPX-32
EE6 C.PCBSIZ
EE7 C.ARTSIZ
EES8 C.DETSIZ
EE9 C.BBHSIZ
EEA C.VATSIZ
EEB-EFC reserved for MPX-32

MPX-32 Technical Volume |

Allocated Resource Table (ART)

2.4 Allocated Resource Table (ART)

The allocated resource table (ART) is a system resident structure that provides a
central mechanism to control the manipulation of all allocated resources. An entry is
made for a resource when it is allocated, and remains while there are active
assignments to that resource. Shared resources are given an entry in the ART by the
first process to allocate them. The table is linked to each task’s service area file
assignment table (FAT) entry for the respective resource.

When the ART entry is made at assignment, the resource assign count is incremented.
The assign count is decremented when the task deallocates the resource. The resource
is not physically deallocated until the assign count equals zero; the physical
deallocation of the resource is not performed while it is in use.

Other information is kept in the ART when a resource is determined to be implicitly
shared. For files, pointers are kept to indicate the position of writers on the file by the
current end-of-file and end-of-medium positions. These pointers are identified by
relative block number. The current allowable access modes are also noted in the ART
entry when the resource is implicitly shared.

The size of the ART is determined at SYSGEN by the ARTSIZE directive.

0 7 8 15 16 23 24 31
Word 0 | Resource index Resource descriptor block address
(AR.UDTI). See (AR.BLOCK). See Note 2.
Note 1.
1 | Current access Resource Pointer. See Note 4.
mode (AR.CACM).
See Note 3.
2 | Resource allocation flags DQE index of DQE index of
(AR.FLAGS). See Note 5. exclusive lock synchronous lock
owner (AR.XRL) | owner (AR.SRL)
3 | Number of Number of Number of Number of
active users/alloca- multiprocessor readers currently
assignments tions of requests queued on this resource
(AR.ASSNS) resource for this minus the number
(AR.USERS) resource of writers,
(AR.QUE) appenders,
modifiers and
updaters
(AR.RDRS)
4 | Current EOF position in this file (AR.EOF)
5 | Current EOM position in this file (AR.EOM)
6 | Port number of DQE index of task | Resource reserve count (AR.RCNT)
multiport resource locking a multiport
lock owner resource
(AR.MPID)
7 | Reserved

System Tables and Variables

Allocated Resource Table (ART)

Notes:

1. Resource index corresponds to a UDT index in most cases or to an SMT entry
index when bit 5§ of AR.FLAGS is set.

2. Resource descriptor block address field contains a shared memory table entry
pointer when bit 5 of AR.FLAGS is set.

3. Bits in AR.CACM are assigned as follows (implicit shared use only):

Bit

Meaning if Set

NHWN-=O

-7

read access (RD.READ)
write access (RD.WRITE)
modify access (RD.MODFY)
update access (RD.UPDAT)
append access (RD.APPDN)
reserved

4. Resource pointer is as follows:

Resource

Pointer

Volume

mounted volume table entry pointer (AR.MVTA)

Segment definition Number of blocks in segment definition

Partition
Device

(AR.NBLKS)
shared memory table entry pointer (AR.SMTA)
unit definition table entry pointer (AR.UDTA)

5. Bits in AR.FLAGS are assigned as follows:

Bit

Meaning if Set

@)

=D OO RN
N =
)

—
w

14
15

MPX-32 Technical Volume |

allocated for explicit shared use (AR.EXSHR)
allocated for implicit shared use (AR.IMSHR)
allocated as mount device (AR.MNT)

marked for deletion (AR.DELET)

segment definition (AR.SPACE)

memory partition (AR.PART)

device (AR.DEVC)

entry is active (AR.ACTV)

resource marked for truncation (AR.TRUNC)
reserved

dual-processor resource is being appended by a
task in this system environment (AR.WOWN2)
dual-processor lock is in effect on this

resource (AR.DPLK)

dual-processor resource is being written to by

a task in this system environment (AR.WOWN)
muli:grocessor volume flag (AR.DUALP)

port designation for resource lock owner when
resource is treated as dual processor (AR.PORT). This bit is
used only when the system is SYSGENed to be compatible to a
previous release.

2-35

Blocking Buffer Control Cells

, .
2.5 Blocking Buffer Control Cells @Uv

2-36

Blocking buffer control cells are built by IOCS for blocked files as the file is written
and they become a permanent part of the file. This information is then used by IOCS
as the file is read to unblock individual records within the file.

Blocking Buffer Control Word

0 7 8 15 16 23 24 31
Word 0 | Buffer status. Next read/write address
See Note. ‘

Notes:

Bits in buffer status are assigned as follows:

Bit Status
0 reserved
1 buffer is empty
2 buffer is output active
3 reserved
4 buffer is free to allocate
5-7 - reserved
N
Record Control Bytes _~
0 7 8 15 16 23 24 31
Status bits last record. | Byte count last record. | Status bits this record. | Byte count this record.
See Note 1. BB.BCLR See Note 2. BB.BCTR
BB.SBLR BB.SBTR

For the last record in a block, bytes 2 and 3 -- status bits this record and byte
count this record -- are omitted.

Notes:

1. Bits in this field are assigned as follows:

Bit ~ _ Meaning if Set
0 end-of-file (SB.EOF)
1 - beginning-of-block (SB.BOB)
2 end-of-block (SB.EOB)
3 end of medium (SB.EOM}
4-7 reserved
2. Bits in this field are assigned as follows:
Bit Meaning if Set
0 end-of-file (SB.EOF) l

1-7 _ reserved G

System Tables and Variables

Blocking Buffer Control Cells

2.5.1 Blocking Buffer Head Cells

The DFT.BBA field of the FAT contains the address of the 8 word blocking buffer
head cell. Head cells are built in the TSA. The total number, as well as the address,
of the first head cell are contained in T.BBHCA. The head cell includes the following

information:
0 7 8 15 16 23 24 31
Word O | Status bits (BB.SW). See Note.
1 | Address of first buffer (BB.FIRST)
2 | Address of current buffer (BB.CURR)
3 | Block number in first buffer (BB.FBLK)
4 | Number of Buffer number Reserved
buffers in big being read/
blocking buffers written
(BB.SIZE) (BB.NBUF)
5-7 | Reserved
Notes:

Status bits in BB.SW are assigned as follows:

Bit Meaning if Set

blocking buffer status word (BB.SW)
buffer is empty (SW.EMP)

buffer is output active (SW.OUT)

buffer is in use (SW.BBB)

buffer is free to allocate (SW.FRE)

buffer is allocated by HHBKDM (SW.ALL)
user-supplied buffer is in use (SW.UBB)
reserved for S.BKDM9 (SW.SVC)
read/write address

o

00\ W bW

)
k.

MPX-32 Technical Volume | 2-37

Caller Notification Packet (CNP)

2.6 Caller Notification Packet (CNP)

2-38

N

The caller notification packet (CNP) is the mechanism used by the Resource
Management Module (H.REMM) and the Volume Management Module (H.VOMM)
for handling abnormal conditions that may result during resource requests. All or part
of this structure can be used by a particular service being called. The CNP must be
on a word boundary.

0 7 8 15 16 23 24 31
Word 0 | Time-out value (CP.TIMO)
1 | Abnormal return address (CP.ABRET)
2 | Option field (CP.OPTS). See Note 1. I Status field (CP.STAT). See Note 2.
3 | Actual file size created (CP.FSIZ) l
4 | Reserved (See Note 3.)
5 | Automatic open FCB address (CP.FCBA)
Notes:

1. A bit sequence and/or value used to provide additional information that can be
necessary to fully define the calling sequence for a particular service.

2. A right-justified numeric value identifying the retumn status for this call. N

3. Refer to the individual system service description in the MPX-32 Reference N
Manual Volume I for interpretation of word 4.

System Tables and Variables

Channel Definition Table (CHT)

2.7 Channel Definition Table (CHT)

The channel definition table (CHT) is a system resident structure applicable only to
F-class and extended I/O devices. The CHT is built by the SYSGEN process, one for
each extended I/O channel configured in the system. It serves as a register save area,
contains the interrupt context block associated with extended 1/O protocol, identifies
CDTs linked to the channel, and defines other pertinent channel information.

Word 0-7

0 78

15 16

23 24 31

Register save area (CHT.REGS). See Note 1.

8-9

Old PSD1/old PSD2 (CHT.OPSD)

10-11

New PSD1/new PSD2 (CHT.NPSD)

12

IOCL address (CHT.IOCL)

13

Status address (CHT.STAD)

14

Flag word (CHT.FLGS). See Note 2.

15

Channel spurious interrupt
count (CHT.SPUR)

Channel
interrupt
priority*
(CHT.IPL)

Channel address*
(CHT.CHAN)

16

CDT address unit 0* (CHT.CDTO0). See Note 3.

17-31

CDT address unit 1* (CHT.CDT1). through
CDT address unit 15* (CHT.CDTF). See Note 3.

32

IOP status doubleword (CHT.STDW) (or)
Subaddress Real IOCD address (CHT.RIOA)

(CHT.SUBA)

33

Channel status
(CHT.CHST)

Cont/device status
(CHT.CDST)

Residual byte count
(CHTRBC)

34
35
36
37
38-39

Address of XIO.SUB exit entry point (CHT.EXIT). See Note 4.
Address of H.IFXIO initialization entry point (CHT.INCH). See Note S.
SIO status stored return address (CHT.RTN)

HIO status stored return address (CHT.HRTN)

Reserved for future development use.

* Initialized by SYSGEN

MPX-32 Technical Volume | 2-39

Channel Definition Table (CHT)

2-40

Notes:

L
2.

CHT.REGS must begin on a register file boundary.

Bits in CHT.FLGS are assigned as follows:

Bit Meaning if Set

0 INCH (initialize channel) has been performed

1 status stored response for SIO or HIO instruction

2 SI. routine was called from LI.XIO routine
(common XIO routines)

3 interrupt level was activated by 1Q.XIO routine
(common XIO routines)

4 cache controller (CHT.CAC)

5 SCSI controller (CHT.SCSI)

6-31 reserved

These fields contain the addresses of the CDT entries for controllers connected to
the corresponding XIO channel. Entries for unimplemented controllers are set to

Zero.

CHT.EXIT contains the address of the exit procedure within the common XIO

subroutines.

CHT.INCH contains the address of the initialization procedure used to initialize

the corresponding XIO channel.

System Tables and Variables

N/

Controller Definition Table (CDT)

2.8 Controller Definition Table (CDT)

The controller definition table (CDT) is a system resident structure used to identify
information required by handlers and the I/O processor for a specific controller. The
CDT is built by the SYSGEN process, one for each controller configured on the
system. The CDT identifies devices (UDTs) associated with the controller, the
handler address associated with the controller, and defines other pertinent controller

information.
0 7 8 15 16 23 24 31
Word 0 | String forward address (CDT.FIOQ)

1 | String backward address (CDT.BIOQ)

2 | Link priority Number of Class (CDT.CLAS). | Flags (CDT.FLG2).
(CDT.LPRI). entries in list See Note 3. See Note 4.

See Note 1. (CDT.IOCT).
See Note 2.
3 | CDT index (CDT.INDX) Device type code Interrupt priority
(CDT.DTC) level
See Note 5. (CDT.IPL)

4 | Number units Number requests | Channel number Subaddress of
on controller outstanding (CDT.CHAN) first device
(CDT.NUOC) (CDT.IORO) (CDT.SUBA)

5 | Program number | Interrupt handler address (CDT.SIHA) or controller
if reserved information block (CDT.CIF)

(CDT.PNRC)
6 | Flags UDT address of first device on controller
(CDT.FLGS). (CDT.UDTA)
See Note 6.
7 | /O status TI address (CDT.TIAD)
(CDT.IOST). or
See Note 7. SI address if extended I/O (CDT.SIAD)
8 | UDT address unit 0* (CDT.UTO0)
9-23 | UDT address unit 1* (CDT.UT1) through
UDT address unit 15* (CDT.UTF)

*Initialized by SYSGEN

Notes:

1. Always zero (head cell)
2. Numucr of entries in list (zero if none)
3. Values in CDT.CLAS are assigned as follows:

TCW.type with extended addressing capability

Value Meaning
X'0D’

X'0E’ TCW type
X'0F extended I/O

MPX-32 Technical Volume |

2-41

Controller Definition Table (CDT)

4. Bits in CDT.FLG2 are assigned as follows:

Bit

Meaning if Set

0

1-7

SCSI device (CDT.SCSI)
reserved for future use

5. For example, 01 for any disk, 04 for any tape, etc. Valid device type codes are
listed in Chapter 1 of this reference manual.

6. Bits in CDT.FLGS are assigned as follows:

Bit

Meaning if Set

0
1

W

W

6
7

extended I/O device (CDT.FCLS)

I/O outstanding (set by handler, reset by IOCS)
(CDT.IOU1) _

GPMC device (CDT.GPMC)

initialization (INC) needs to be performed for this
controller (CDT.FINT)

D-class (CDT.XGPM)

used only when IOQs are linked to the CDT. Set when
SIO is accepted by the controller. Reset when I0Q is
unlinked from the CDT or when I/O is reported complete
to IOCS in the case of operator intervention type errors
(CDT.IOUS).

IOP controller (CDT.IOP)

controller malfunction (CDT.MALF)

7. Bits in CDT.IOST are assigned as follows:

Bit

Meaning if Set

N N NHEWN—=O

2-42

10Q linked to UDT (CDT.NIOQ)
multiplexing controller (CDT.MUXC)

use standard XIO interface

16MB GPMC (CDT.XGPS)

cache controller (CDT.CAC)

H.F8XIO has determined if the controller is
pre-8512-2 or not (CDT.CKFL)

controller not pre-8512-2 (CDT.FLOW)
reserved for FMS

System Tables and Variables

C

Device Context Area (DCA)

2.9 Device Context Area (DCA)

A device context area (DCA) exists for each active subchannel and serves as a storage
area for information regarding the subchannel and its operation. The DCAs are
physically located at the end of each device-dependent handler (H.??XIO) and must be
doubleword bounded. The first 33 words of each DCA are identical; however,
additional words can be added to suit the needs of the particular device. The
following represents the first 33 words of each DCA.

0 7 8 15 16 23 24 31
Word 0 | DCA size (DCA.SIZE)
Device address (DCA.UADD) | Reserved
CHT address (DCA.CHTA)
CDT address (DCA.CDTA)
UDT address (DCA.UDTA)
10Q address (DCA.IOQA)
Lost interrupt count (DCA.LINC)
Spurious interrupt count (DCA.SINC)
Total retry count this device (DCARETC)

Flags (DCA.FLAG). See Note 1. Retry count this
request (DCA.RCNT)

O 00 9 O L & W N =

10 | UDT address (DCA.NUDT). See Note 2.
11 | Status word one (DCA.WST1)
12 | Status word two (DCA.WST2)
13 | Number of reserves outstanding (DCA.RESC)
14 | Time-out value opcode 0 (DCA.TIMO). See Note 3.
15 | Time-out value opcode 1. See Note 3.
29 | Time-out value opcode F. See Note 3.
30-31 | Sense IOCD (DCA.SENI)
32 | Sense buffer (DCA.SENS)

MPX-32 Technical Volume | , 2-43

Device Context Area (DCA)

2-44

Notes: ‘ { P

1.

Bits in DCA.FLAG are assigned as follows:

___Bit Meaning if Set
0 interrupts not expected
1 HIO issued at L1.XIO
2 HIO needs to be reissued
3 device rewinding or seeking
4 sense issued without an I0Q
5 device is an XIO magnetic tape
6-15 reserved for common subroutine usage
16-23 reserved for device dependent handler usage

This UDT address is the UDT address of the device for which an SIO or HIO
was issued when a status stored response was generated for this device. It
indicates the need to reissue the I/O request for that device.

Time-out values corresponding to opcodes 0 through F (16 entries).

System Tables and Variables

Device Type Table (DTT)

L 2.10 Device Type Table (DTT)

The device type table (DTT) is a system resident structure used to identify device
types that are configured in the system and their associated controllers. The DTT is
built by the SYSGEN process and its entries are linked to the associated controller
definition table (CDT).

Valid device type codes are listed in Chapter 1 of this manual.

0 7 8 15 16 23 24 31
Word 0 |Device type code Address of first CDT entry of this type
(DTT.COD) See Note 1 (DTT.CDTA)
1 |Number of controller Flags ASCII device mnemonic
entries (DTT.CNT) (DTT.FLGS). (DTT.NAM).
See Note 2, See Note 3.

Notes:

1. For example, 01 = any disk, 04 = any magnetic tape, 08 = any reader card, and
OA = any line printer.
2. Used by job control and cataloger to validate ASSIGN3 statements with bits

(4 assigned as follows:
Bit Meaning if Set
0 entry of device address not legal
1 entry of size or reel ID required
2 entry of reel ID required
3-7 reserved

3. For example, X’4443’ (DC) = any disk; X'4D54’ (MT) = any tape

MPX-32 Technical Volume | 2-45

Directory Entry Table (M.DN.TEQ)

2.11 Directory Entry Table (M.DN.TEQ)

The directory entry table (M.DN.TEQ) contains information pertinent to resources
defined in a directory. Each resource defined in a directory has an M.DN.TEQ
associated with it.

2-46

Word 0-3

~N O W

oo

10
11
12-13
14-15

0 78 15 16 23 24 31
Resource name (DN.IDNAM)

Binary creation date (DN.DATE)

Binary creation time (DN.TIME)

Absolute block number of resource descriptor (DN.DOFF)

Resource ID flags Resource type (numeric value)

(DN.RDFLG). See Note 1. (DN.RTYPE). See Note 2.

Number of entries that collided with this entry (DN.COLCT)

Number of hashes required to locate this entry (DN.HSHCT)

Directory entry flags (DN.FLAGS). See Note 3.

Directory entry index (DN.DIRI)

Owner name of directory entry creator (DN.OWNR)

Filler (DN.FILL)

System Tables and Variables

i\w/

Directory Entry Table (M.DN.TEQ)

Notes:

1. Internal flags reserved for MPX-32
2. Values for DN.RTYPE are as follows:

Value
1

g SRRt E- SRR - NV IR N

14
15
16
17

18

Meaning

volume type (DN.VOL)

resource descriptor description (DN.RESRC)
descriptor map descriptor (DN.DMAP)
space map descriptor (DN.SMAP)

root directory descriptor (DN.ROOT)

system image descriptor (DN.IMAGE)

bad block descriptor (DN.BDBLK)

value for spool file descriptor (DN.SYM)
extra segment definition descriptor (DN.XSEGD)
permanent file (DN.FILE)

permanent directory (DN.DIR)

temporary file (DN.TFILE)

temporary directory (DN.TDIR)

static memory partition (DN.MEM)
dynamic memory partition (DN.TMEM)
device descriptor (DN.DEVC)

resource descriptor for the DMAP bad block
deallocation file (DN.BDMAP)

resource descriptor for the SMAP bad block
deallocation file (DN.BSMAP)

3. Bits in DN.FLAGS are assigned as follows:

Bit Meaning if Set
0 active entry (DN.ACTIV)
1-31 reserved

MPX-32 Technical Volume |

2-47

Dispatch Queue Area

C
2.12 Dispatch Queue Area |

The dispatch queue area is a variable length doubleword-bounded table built by
SYSGEN. It contains a maximum of 255 dispatch queue entries (DQEs). The
address of the dispatch queue area is contained in C.DQUE. The number of DQE
entries is contained in CNQUE. Free DQE entries are linked into the C.FREE head
cell in the standard linked list format. When a task is activated, a DQE is obtained
from the free list and is used to contain all of the core-resident information necessary
to describe the task to the system. Additional (swappable) information is maintained
in the task service area (TSA). While a task is active, its DQE is linked to one of the
various ready-to-run or wait state chains provided by the scheduler to describe the
task’s current status. When a task exits, its DQE is again linked to the free list.

2.13 Dispatch Queue Entry (DQE)

The dispatch queue entry (DQE) contains all of the core-resident information required
to describe an active task to the system. It is always linked to the CPU scheduler
state chain that describes the current execution status of the associated task.

£

2-48 System Tables and Variables

Dispatch Queue Entry (DQE)

Word No. Byte

(Decimal) (Hex)
0 0
1 4
2 8
3 C

4-5 10
6-7 18
8-9 20
10 28
11 2C
12 30
13 34
14 38
15 3C
16 40
17 44
18 48
19 4C
20 50
21 54
22 58
23 5C
24 60
25 64
26 68
27 6C
28 70
29 74
30 78
31 7C
32 80
33 84
34 88

MPX-32 Technical Volume |

Dispatch Queue Entry (DQE) Table

0 78

15 16 23 24 31

DQE.SF

DQE.SB

DQECUP |DQEBUP

|DQeioP |DQE.US

DQE.NUM/DQE.TAN

DQE.ON

DQE.LMN

DQE.PSN

DQE.USW

DQE.USHF

DQE.MSD

DQE.KCTR

DQE.MMSG DQE.MRUN

DQE.MNWI DQE.GQFN

DQE.UF2 DQE.IPUF

DQE.SOPO

DQE.NWIO

DQE.CQC

DQE.SH | DQE.SHF

[DQETFC |DQERILT

DQE.UTS1

DQE.UTS2

DQE.DSW

DQE.PRS

DQE.PRM

Reserved | DQE.TSKF

DQE.PSSF

[DQEMSPN [DQE.MST

DQE.PSSB

DQEPSPR | DQE.PSCT

|DQEILN |DQERESU

DQE.TISF

DQE.TISB

DQETIPR |DQE.TICT

|DQESWIF | DQE.UBIO

DQE.RRSF

DQE.RRSB

DQERRPR | DQERRCT

| DQENSCT

DQE.MRSF

DQE.MRSB

2-49

Dispatch Queue Entry (DQE)

Word No. Byte
(Decimal) (Hex) 0 7 8 15 16 23 24 31
35 8C DQE.MRPR | DQE.MRCT DQE.NWRR DQE.NWMR
36 90 DQE.RTI DQE.NWLM | DQE.ATI Reserved
37 94 DQE.SAIR/DQE.TAD
38-40 98 DQE.ABC
41 A4 DQE.TSAP
4243 A8 DQE.SRID/DQE.PGOL
AC | DQESRID/DQEPGOC | DQE.SRID/Reserved
44-51 BO DQE.CDIR/DQE.CVOL
52 DO | DQEGID | Reserved | DQE.ASH
53 D4 DQE.ACX2
54 D8 DQE.MRQ DQE.MEM DQE.MEMR
55 DC DQE.MRT Reserved DQE.RMMR
56 EO DQE.MAPN DQE.CME
57 E4 DQE.CMH DQE.CMS
58-63 E8-FC Reserved
Byte AN
(Hex) Symbol Description _/
0 DQE.SF String forward linkage address;
Field length = IW;
Standard linked list format;
Contains address of next (top-to-bottom) entry in chain.
4 DQE.SB String backward linkage address;
Field length = 1W;
Standard linked list format;
Contains address of next (bottom-to-top) entry in chain.
8 DQE.CUP Current user priority;
Standard linked list format;
This priority is adjusted for priority migration based on
situational priority increments. Situational priority
increments are based on the base level priority
(DQE.BUP) of the task.
DQE.BUP Base priority of user task;
Field length = 1B;
Used by scneduler to generate DQE.CUP (current priority)
based on any situational priority increments.
DQE.IOP ~ I/O priority;
Field length = 1B;
Initially set from base priority; ,
Used for I/O queue priority. O

2-50 System Tables and Variables

Dispatch Queue Entry (DQE)

(Hex) Symbol Description
DQE.US State chain index for this user task;
Field length = 1B;
Range: zero through X’1E’;
Indicates current state of this task, such as ready-to-run
priority, I/O wait, resource block, etc.

Label Index Task description
FREE 00 DQE is available (in free list)
PREA 01 activation in progress
CURR 02 currently executing task or is pre-empted
time-distribution task in quantum stage one

SQRT 03 ready to run (priority level 1 to 54)
SQ55 04 ready to run (priority level 55)
SQ56 05 ready to run (priority level 56)
SQ57 06 ready to run (priority level 57)
SQ58 07 ready to run (priority level 58)
SQ59 08 ready to run (priority level 59)
SQ60 09 ready to run (priority level 60)
SQ61 0A ready to run (priority level 61)
SQ62 0B ready to run (priority level 62)
SQ63 ocC ready to run (priority level 63)

N SQ64 0D ready to run (priority level 64)

(SWTI 0E waiting for terminal input
SWIO OF waiting for I/O
SWSM 10 waiting for message complete
SWSR 11 waiting for run request complete
SWLO 12 waiting for low speed output
SUSP 13 waiting for timer expiration, resume
request, or message interrupt

RUNW 14 waiting for timer expiration, or run request
HOLD 15 waiting for a continue request
ANYW 16 waiting for timer expiration, no-wait I/O

complete, no-wait message complete, no-wait
run request complete, message interrupt,
or break interrupt

SWDC 17 waiting for disk space
SWDV 18 waiting for device allocation
SWFI 19 waiting for file system

MRQ 1A waiting for memory

SWMP 1B waiting for memory pool
SWGQ 1C waiting in general wait queue
CIPU 1D current IPU fask in execution
RIPU 1E IPU requesiing state

MPX-32 Technical Volume | . 2-51

Dispatch Queue Entry (DQE)

O

Byte
(Hex) Symbol Description

C DQE.NUM DQE entry number;
Field length = 1B;
Used as an index to DQE address table (DAT);
Range: one through "N"(for MPL index compatibility);
Used by scheduler to set C.PRNO to reflect
the currently executing task. This value is also
used as the MPL index. It is used by the scheduler
to initialize the CPIX in the PSD before loading the
map for this task.

DQE.TAN Task activation sequence number;
Field length = 1W;
This number is assigned by the activation service
and uniquely identifies a task.

Note: The most significant byte of this value
is the DQE entry number and is accessible as
DQE.NUM.

10 DQE.ON Owner name;
Field length = 1D.

18 DQE.LMN Load module name;
Field length = 1D.

20 DQE.PSN Pseudonym associated with task; \\)
Field length = 1D; ‘
This parameter is an optional argument accepted by the
pseudo task activation service. It can be used to
uniquely identify a task within a subsystem, such as
multibatch. It contains descriptive information useful
to the system operator or to other tasks within a
subsystem. Conventions used to generate a pseudonym
are determined by the associated subsystem.

A system-wide convention should be used to establish
pseudonym prefix conventions to avoid confusion
between subsystems.

28 DQE.USW User status word;
Field length = 1W.

2C DQE.USHF Scheduling flags;
‘ Field length = 1W;
Used by the scheduler to indicate special siatus
conditions.

2-52 System Tables and Variables

Dispatch Queue Entry (DQE)

Byte
(Hex) Symbol Description

Bit Meaning When Set

00 load protection image requested (DQE.LPI)

01 single copy load module (DQE.SING)

02 task is indirectly connected (DQE.INDC)

03 task is privileged (DQE.PRIV)

04 task has message receiver (DQE.MSGR)

05 task has break receiver (DQE.BRKR)

06 task quantum stage one expired (DQE.QS1X)

07 task quantum stage two expired (DQE.QS2X)

08 in-swap /O error (DQE.INER)

09 wait I/O request outstanding (DQE.WIOA)

10 wait I/O complete before in-progress notification
(DQE.WIOC)

11 inhibit message pseudointerrupt (DQE.INMI)

12 batch origin task (DQE.BAOR)

13 running in TSM environment (DQE.TMOR)

14 task abort in progress (DQE.ABRT)

15 task is in pre-exit state (DQE.PRXT)

16 run receiver mode (DQE.RRMD)

17 wait send message outstanding (DQE.WMSA)

18 wait message complete before link to wait
queue (DQE.WMSC)

19 wait mode send run request outstanding
(DQE.WRRA)

20 wait mode send run request complete before
link to wait queue (DQE.WRRC)

21 debug associated with task (DQE.DBAT)

22 real-time task (DQE.RT)

23 time-distribution task initial dispatch (DQE.TDID)
Set by:
e H.ALOCI1 on activation of T/D task.
o SEXECS1 when task is linked to wait state.
e H.EXEC7 on completion of inswap or other

memory request.
Reset by:
¢ S.EXEC20 on initial dispatch of task after
activation

e Wait state termination
¢ In-swap

24 task delete in progress (DQE.DELP)

25 task abort (with abort receiver) in progress
(DQE.ABRA)

26 abort receiver established (DQE.ABRC)

27 asynchronous abort/delete inhibited
(DQE.ADIN)

28 asynchronous delete deferred (DQE.ADDF)

29 task is inactive (DQE.INAC)

30 asynchronous abort deferred (DQE.AADF)

31 activation timer in effect (DQE.ACTT)

MPX-32 Technical Volume |

2-53

Dispatch Queue Entry (DQE)

2-54

Physical address of MIDL in TSA;

Maximum number of no wait messages
allowed to be sent by this task;

Maximum number of no-wait run requests allowed
to be sent by this task;

Maximum number of no-wait I/O requests allowed
to be concurrently outstanding for this task;

Byte
(Hex) Symbol Description
30 DQE.MSD
Field length = 1W.
34 DQE.KCTR Kill/abort timer;
Field length = 1W.
38 DQE.MMSG
Field length = 1B.
DQE.MRUN
Field length = 1B.
DQE.MNWI
Field length = 1B.
DQE.GQFN

Contains the generalized queue (SWGQ)
function code;

Field length = 1B;

Function codes are queued as follows:

Code Meaning

01 volume resource (QVRES)

02 ART space (QART)

03 mount in progress (QMNT)

04 resourcemark lock (QRSM)

05 reserved for eventmark (QEVM)
06 read wait for writer (QGEN)

07 shared memory table (QSMT)

08 synchronous resource lock (QSRL)
09 mounted volume table (QMVT)
0A dual-port lock (QDPLK)

0B suspend dual-port lock (QSUSP)
0oC debug wait (QDBGW)

0D remote message area (QMSG)

OE remote message event (QSER)

OF remote allocate area (QASMP)

10 remote deallocate area (QDSMP)
11 remote abort area (QAMSG)

12 remote enable/disable area (QOMSG)
13 wait for TSM (QWTSM)

System Tables and Variables

O

Dispatch Queue Entry (DQE)

(Byte

Description

(Hex) Symbol

3C DQE.UF2
DQE.IPUF
DQE.NWIO
DQE.SOPO

MPX-32 Technical Volume |

Scheduling flags;
Field length = 1B;

Bit Meaning if Set

0 enable debug mode break (DQE.EDB)

1 generalized wait queue time-out (DQE.GQTO)

2 task interrupts are synchronized (DQE.SYNC)

3 task is part of a job (DQE.JOB)

4 ACX-32 task flag (DQE.ACX)

5 special arithmetic function requested (DQE.AF)
6 reserved

7 run request terminated (DQE.RRT)

IPU flag byte;

Field length = 1B;

Bit Meaning if Set

0 IPU inhibit flag (DQE.IPUH)

1 IPU bias flag (DQE.IPUB)

2 CPU only (DQE.IPUR)

3 OS execution direction flag (set when PSD

is in user area) (DQE.OSD)

4 base register task (DQE.BASE)

5 Ada task (DQE.ADA)

6 PTRACE debugger task (DQE.PDBG)

7 H.PTRAC task association control bit

(DQE.PTRA)

Number of no-wait I/O requests;

Field length = 1B.

Priority bias only swapping control flags;
Field length = 1B;

SWGAQ state priority-based swapping
swap inhibit due to bit map access
inhibit swap device while accessing MDT

user swap inhibit flag (DQE.USWI)
user swap on priority only flag (DQE.USPO)

Bit Meaning if Set
(1) (DQE.GQPO)
(DQE.BMAP)
? (DQE.MDTA)
1
5-7 reserved

2-55

Dispatch Queue Entry (DQE)

Byte
(Hex) Symbol

Description

40 DQE.CQC

44 DQE.SH

DQE.SHF

DQE.TIFC

DQERILT

48 DQE.UTS1

2-56

Current quantum count;

Field length = 1W;

Used by the scheduler to accumulate elapsed execution
time for the task to compare the level unique

stage one and stage two time-distribution values.

Used by J.SWAPR to swap shadow memory;
Field length = 1B.

Shadow memory flag;
Field length = 1B;

Bit Meaning if Set

task requests shadow memory (DQE.SHAD)
IPU shadow memory requested (DQE.SHI)
IPU/CPU Common Shadow Memory
requested (DQE.SHB).

N -0

Timer function code;
Field length = 1B;

Value Meaning

00 not active N
01 request interrupt N
02 resume program from suspend (SUSP)
queue
03 resume program from any-wait (ANYW)
queue
04 resume program from run-request-wait
(RUNW) queue
05 resume program from generalized
(SWGQ) queue
06 resume program from peripheral device
(SWDYV) queue
07 resume program from disk space (SWDC)
queue

Request Interrupt (RI) level for timer;

Field length = 1B;

Identifies the inte<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>