-

Gould MPX-32TM
Release 3.3
Technical Manual

Volume I

December 1986

Publication Order Number: 322-001551-200

TMMPX-32 is a trademark of Gould Inc.

=2 GOULD

Electronics

This manual is supplied without representation or warranty of any kind. Gould Inc.,
Computer Systems Division therefore assumes no responsibility and shall have no liability
of any kind arising from the supply or use of this publication or any material contained
herein.

PROPRIETARY INFORMATION

The information contained herein is proprietary to Gould CSD and/or its vendors, and its
use, disclosure or duplication is subject to the restrictions stated in the Gould CSD
license agreement Form No. 620-06 or the applicable third-party sublicense agreement.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the
Government is subject to restrictions
as set forth in subdivision (b) (3) (ii) of
the Rights in Technical Data and Computer
Software clause at 52.227.7013

Gould Inc., Computer Systems Division
6901 West Sunrise Boulevard
Fort Lauderdale, FL 33313

MPX-32 is a trademark of Gould Inc.
CONCEPT/32 is a registered trademark of Gould Inc.

Copyright 1986
Gould Inc., Computer Systems Division
All Rights Reserved
Printed in U.S.A.

HISTORY

The Gould MPX-32 Release 3.2 Technical Manual, Publication Order Number 322-001550-
000, was printed September, 1983,

Publication Order Number 322-001550-100 (Revision 1, Release 3.2B) was printed March,
1985.

Publication Order Number 322-001550-101 (Change 1 to Revision 1, Release 3.2C), was
printed December 1985.

The Gould MPX-32 Release 3.3 Technical Manual Volume I, Publication Order Number
322-001551-200 (Revision 2, Release 3.3), was printed December 1986.

This manual contains the following pages:

Title page

Copyright page

iii/iv through xvii/xviii
1-1 through 1-62

2-1 through 2-164

3-1 through 3-37/38
4-1 through 4-20

5-1 through 5-35/36
6-1 through 6-25/6-26
7-1 through 7-16

8-1 through 8-12

A-1 through A-3/A-4

iii/iv

&

CONTENTS

Page

CHAPTER 1 SYSTEM DESCRIPTION
1.1 Naming Conventions « e e e e v ¢ o o ceseesene 11
1.1.1 Communications Region . evoieeeeeereceeteeessssoonnns .o 141
1.1.2 Task Service Area (TSA) cvv v v e v cheeserenen S B |
1.1.3 Entry Variables «.cieeeeeesnocsssscsoscsaosssasososccanses 1-1
1.1.4 System Modules and Interrupt Handlers00000es cresee e 1-2
1.1.5 Common System Subroutines e v ¢ s s v e veeennncnnn ceseen e 1-2
1.1.6 SYStEM MBCTOS ¢ v v o e e oo s evensosescnscncnsescsssnsossass 1-2
1.1.7 System Task Load Module FileS v v v e v v v e vseneneennsoaess 1-2
1.1.8 Batch Task Load Module and Executable Image Files....... cees 1-2
1.1.9 System Permanent Files « e v e eeveeneeann feee et oo 122
1.2 Scheduler - IOCS INterface oo eeeesseesessasoonassssssansss cees e 1-3
1.3 Scheduler - Task Termination Interface «.ooeeeeesens teeeessnnsssess 1-13
1.3.1 EXit Task e e oo evveeoonseees eveneaves ceecssseensanns 1-13
1.3.2 Abort Task. s eeeeseessonanoncescns ce et ecsesetenssnas 1-14
1.3.3 Delete Task o v e v eveoeesssessoscsasscsssssssasacscsnas 1-16
1.4 Scheduler-Debug Interface Ce e et essees s eea e ssann 1-17
1.4.1 Entry Point 1 - Startup o o v e v v v vvseossassnsonasosnnonnss 1-18
1.4.2 Entry Point 2 - Restart e v v 4 o & s ceesesnaas s e e s e ssens s 1-19
1.4.3 Entry Point 3 - Trap/Break «es s es. P B 8
1.4.4 Entry Point 4 -User Break Exit s o v et evenennnncennecesnns 1-19
1.4.5 Entry Point 5 - Abort cees et seseancas cenane eees. 1-19
1.5 Task INLerTUPtS . e v e vttt ittt eeeenenesossecssssncssnsscnsscsss 1-20
1.6 Send/Receive Facilities ittt esteseerteceeteet et aenan 1-23
1.6.1 Receiving Task Services « e vesonevs o N chesass s e 1-24
1.6.2 Sending Task Services .« ... Cesesssssence cers s aees eos 1-25
1.7 Device Address Specificationeeeseeeeecesssssssasssesassssas 1-37
1.8 CPUScheduling ¢ eeeeesseresecenncons st e eessee st esesecenennn 1-39
1.9 FAT/FPT and Blocking Buffer Allocation v cvovevennn. sessesencennns 1-43
1.10 Indirectly Connected Interrupts e v o v e e st et e e v eececancssassnncsses 1-44
1.11 Miscellaneous System MacCros «...soeessvescsvescscea tseeneseneee 1-47
1.11.1 MBACK it itrsssessesossscsssssans ceeeesesenasen 1-47
1.11.2 MCALL tiieveenenns ceerensaan cetecesensassssenss 1247
1.11.3 I 1 O] Ce e s eeaaan 1-48
1.11.4 MDFCB tetettieeensseonossesanonssssasassssnnsssss 1-48
1.11.5 MDFCBE t.iveseseeccesenssnssasecassssassocss e 1-49
1.11.6 MEIR ittt tiiiiteeenenssennnnenans ceseene eeeess 1-50
1.11.7 MFCBEXP i ittt ittt eeeneeecncescoansnssasessns .. 1251
1.11.8 MFWRD tiieveenneenes et eceereann ceceraseas eese. 1-51
1.11.9 MINIT., . eieeveeennns Ch e e ettt ene 1-52
1.11.10 MJINITX ieeervennnn s st s esscessarreanna Ceerenaas 1-52
1.11.11 MIOFF 4ttt teseneseenooncnosnsans cer e cerees . 1-53
1.11.12 MJIONN...... s e e s ee st senn Che s ece e eeees 1253
1.11.13 MJIPUOFF &t iieennneenesn ceesesa e e ess. 1-53
1.11.14 MIPUODN L i s sttt s teeeeneensseseeonosassscsnaasnass 1-53

1.15 I U I
1.16 MIVC ¢iitieeeernoocsosonsasonnnscscs
1.17 MKILL ot evoeeeerssacsoocssoscsosesns
1.18 MMODT tieeeeeesoecssonsscnssesenss
1.19 MOPEN & .ieeeseesonssosososnosoonsas

l.zl M'RTRNQ.....ll..l.......'..."...l
J11.22 MSHUT...coeeeeenenen ceecsecereeses
JA11.23 MSPAD . sttt serocascensososncnnases

1.25 MSVCPZ vttt eveeeenesososscsssseanson
MSSVCT ittt eeeeeeorenconssseessnonss
1.27 MSVCTZ ittt tettteeecncncnnnns ceeeee
1.28 MTRAC .t iiirereorscenccoccssonsonnssnse
1.29 MTRPINT ¢ ittt teeneeeeenocsonsennsns
1.30 MaTYPE. .ttt eeeeeenncsnnnns cecensoas
1.31 MUSHUT i eeieroeesccosssonscsnsns
1.32 MXIR Y
1.33 DCADATA ittt eteensscssssssnsses
1.34 DCAINIL. s e ettt eesecsceosocassanson
1.35 DCAINIZ. et vt eevseceoscasscsnsnsscns
11.36 L 71 2 (N)
1.37 IBANIT ¢eeeeecececoccoonsosooccccasns

[P P TP T TP T e ol e N S T Sy Sy
L] .

PP PR P P S P P PR S PR PR P A S P T
t—l
N
o

CHAPTER 2 - SYSTEM TABLES AND VARIABLES

o

.
W=

AP A SV PR PR Y, i INU Y. NE)
S AN O

NN NN RN RN -

NNNNNNNNNNN[\)NNNNNNNNNNN
. o o

NOUVMAEAEWNHFOWVONOW

.

Memory Layout . . v.eeeeeeeossssosonosoonscscsess
Communications Region ¢ v e vivvereerosscsnesencss
Allocated Resource Table (ART) v v vvvienesnnsnes
Blocking Buffer Control Cells v v v e e e vvneecncnssoces
2.4.1 Blocking Buffer Head Cells « v v v e 0 e e e v

Caller Notification Packet (CNP) v v v et e v e eecoesee .o

Channel Definition Table (CHT) e v vttt eeveeneososans
Controller Definition Table (CDT) v vt et evscensssososes
Device Context Area(DCA) tvesvesesescsasssssons
Device Type Table (DTT) tvevseveveesssscacnnosnas
Directory Entry Table M.DN.TEQ) v e ceeeaseoanoonss
Dispatch Queue Area «.c.cevoeeeeeeseacsccncscccns
Dispatch Queue Entry (DQE) v v et vveveevscsscasosas
Dispatch Queue Address Table (DAT) e cveveeecensosns
File Assignment Table (FAT) ¢ c v veerseesscncacsones
File Control Block (FCB)evseseeseonseossssocacanes

File Pointer Table (FPT) ¢ vt et v e evoenasacsssssnnnens

I/O Queue (IOQ)ENEIY o everevessssossasenssesane
MKEY Entry Format ¢ .o v vt eesonennenne

MPRICTFormat e e v v v e v e veennnne ceececanoes ceeens
Map Image Descriptor List (MIDL) ¢ v v s v veeesescsncas

Memory Allocation Table (MATA) .. viveieeresncnanns
Memory Attribute List MEML) . v v vvevennn teseaenan

Memory Pool Management eeeeeesecen ceeesane

Memory Resident Descriptor Table (MDT) .o vvvvneean
Message or Run Request Queue MRRQ). . cevvvennenn
Module Address Table e o e v e e v v v e n e ceceeess e
Mounted Volume Table (MVT) v viveisnevensocnnnans

1.20 MRTNA ittt eeesessosesossssnssons

1.24 MSVCP t i it teeeeonsassoocnenssassssas

® e 0 60000 00 00

® o 0 0 9 00 00 0

® 8o e 0280000000

ooooooooooooo

® o 6 0000000

e % e 00000 00

e e ¢ e o

e & o o o

.
.
. e
® o 2 062 90 000 00
e o o 0
.

® e 0o 0000 00 o o o o

s e e 0 00 00 . »
. * s 00 . s 0 0 »
® e s 00 0 00 . L)
©e s o s 0 00 0 . . e
e o 2 00000000 0 0
L) ® o2 0 0 00 0
LI e 0 0 000 0
® s 0 0 0 0 * o 0 0 0 0

ooooooooooooo

. o s . o s 0

L) s s 0 e 0

% 0 0 0 00 000 .
L) .o o0 .

ooooooooooooo

1-53
1-54
1-54
1-54
1-54
1-54
1-55
1-55
1-55

. 1-56

1-56

. 1-56

1-57
1-57
1-57
1-57
1-58
1-58
1-58
1-59
1-59
1-59
1-60

L

PP UWWHWWAW
FOVONdONWVE&

2.42

Resource Create Block (RCB) vt veveececesosnscsccscssasacsesenss 2-87
Resource Inquiry Table (MRIQ) « ¢ e e veeeesoeosccnsssassssssssess 2-89

Resource Logging Block (RLB). cveveveesescnnas cetecscssesnscaes 2290
Resource Requirement Summary (RRS) Entries. e o coeeeecseescsccesss 2-91
Shared Memory Table (SMT) ...veuene ceeenn ceestecsseseseseses 2297

Spooled File Data StrUCtUrES « e s e e s e v essoossssscssccsscssscsssss2-100
2.33.1 JSSINRUNReqUESt e eeeeveeececcccsesscocnsesesssssa2=101
2.33.2 JTSMRUNRequest «.veeenesceceeecocscccnnnns cess..2-101
2.33.3 J.SOEX Run Request v veeeeesoceeees ceesens ceeeseeess2-102
2.33.4 J.SOUT Run Request «v.ovveeees ceecetcetetsessenaeas 2-104
System Master Directory (SMD) . v e e v eeeeesossssasscsscsscssocees 2-105
Task Service Area (TSA) c et eveevscnncesses 2 L1 |
Terminal Line Buffer «coeceeeeeeececccssecsccccctsoscccscccocnns 2-118
Timer Table e e s v sesseesoesssossssseccscsssesconsosssssssssssl=119
Type Control Parameter Block (TCPB) e v v s et vseceoesssesonnoasessa2=121
Unit Definition Table (UDT) v v veeeesessccsecssossossossanssnsssss2l22

Volume Assignment Table (VAT) cccveeeenn cessssessesasssasensss2-125
Disc Resident Resource Descriptors (RD) . v e evevvenneeenn ceesceness2-126
2.41.1 Resource Descriptor M.RDCOM) i veettneesncencnnsnns .2-128
2.41.2 Resource Descriptor Space Definition (M.RDSPD) . e v v e v soseo2-132
2.41.3 Bad Block Descriptor MBB.DEQ) «veeeescencseseasessss2-134
2.41.4 Descriptor Allocation Map Descriptor (M. DM DEQ) esees2-134
2.41.5 Descriptors Descriptor (M.DD.DEQ)« e e essessssessscssssss2-134
2.41.6 Descriptor Map (DMAP) Deallocation File

Descriptor (M.BD.DEQ)...... cecesennn 2 §)
2.41.7 Directory Descriptor (M.DI.DEQ). e s e e essesoesscsscssesss2-136
2.41.8 File Descriptor MJFILDEQ) ¢« et e s e veesesssoscoccoascnncans 2-137
2.41.9 Memory Partition Descriptor M.MME.DEQ) +.cvvveeenne ese..2-138
2.41.10 Space Allocation Map Descriptor M.SM.DEQ) +eeeeeseaesss.2-138
2.41.11 Space Map (SMAP) Deallocation File

Descriptor (M.BS.DEQ) v v v evse et sescsesssensenen eeee2-139
2.41.12 Volume Descriptor (M.VO.DEQ) s et eseeeeens cescesssasens 2-140
2.41.13 Segment Definitions (RD.SEGDF)0c... ceseesennn oeee2-142
2.41.14 User Area (RD.USER) ceeteseceseenns 2-142
Disc Resident Structures. « e e e ccceeeesesceeoenas seves s ceaveas 2-143
2.42.1 Volume Format «.eeeeeeeeeeresooecnccccccns ceeeeeso2-144
2.42.2 Load Module Structure ...cceeeececcaees B 2 £}
2.42.3 Load Module Preamble « ... cee e cescsenasrsose . .2-146
2.42.4 Executable Image Structureccceceveecccesccccsess2=152
2.42.5 Executable Image Preamble ceessencecess2-153
2.42.6 Shared Executable Image Structurecccveeeee ceeeeeess2-158
2.42.7 Shared Executable Image Preamble ceseccseasesess2=159
2.42.8 Shared Image Descriptors «c.ceeceeeeeeecens ceeecccssesss2-164

CHAPTER 3 - SYSTEM TASK DESCRIPTIONS

3.1

Non O.S. Resident Swap Scheduler Task (JLSWAPR). v o v eeeeeesnssesess 3=1

3.1.1 J.SWAPR Processinge.cceeceeececcecsscccocnsossssscccscs es 3-5
3.1.2 Selection of Outswap Candidates « e e v v o .. secessesacs ceeee 317
3.1.3 J.SWAPR Internal Subroutings « «'v e v et e s svveeesosossssssss 3=9
3.1.4 J.SWAPR Memory Request Functions. ... eveeeeeensncscns 3-10
3.1.5 Managing Swap Space Entries e eeceeeevesossocccocccccnsns 3-12
3.1.6 Swap Context Area..ceeeeesssscsscsccsasssssssssssans 3=13
3.1.7 Swap Activity Table « ot et v eeeeereeerenesesaseccseneees 3-14

vii

3.2

3.3

34

3.5

3.1.8 Shadow Memory Outswap Tables ¢ e s s vveeceecsssccsceesass 3=14
Terminal Service Manager Task (J.TSM) s s s e et et vrenececoancsssssss 3-15
3.2.1 Functional Description ¢ cvceeessecccecosssccssssenscsa 3-15
3.2.2 Operational Design « « e e e c e e eeeescsecccesncocconsasess =15

3.2.2.1 BaselLevel s ovevreceeencsccenscssacccssnnsees 3=16
2 Message Level coveeecceccsecsccnssnnnensess 3=16
3 End ActionLevel ccceerennieeeeeenenenseness 3-17
4 Break Level .o ii i iieniiiieeeeeenencaans .. 3-18
5 AbortLevel oo i eieeeseeenanececnsssncssesss 3-18
3.2.3 DataStructures ¢ . ceceeeeeereoeccececocnsccoccncssssss 3-18

3.2.3.1 Terminal Context Area (TCA) Table «ecvveesesass 3-19
3.2.4 Intertask Communications. .o eeeeevosnsssssssssessessss 3=26
System Mount Task (JMOUNT) ¢t eeeveessesescsacssecsessssscness 3=26
3.3.1 Run Request Interface «...veeeeceeneccssonnssnsssnsss 3-26
3.3.1.1 Formatted Mount Requests « c v e s v eevensessseess 3-26
3.3.1.2 Unformatted Mount Requestsc.veveeneeeses 3-27
3.3.1.3 Volume Dismount Requests « ¢ c e e v eeeeeeeeensees 3-27
MoUNt MesSSages « o e s e oo v sseocecossssccsssssssscessss 3=27
Formatted Volume Clean-up ¢ vceceeeeessscoscennsssssssss 3-28
Volume Dismounting e e e e s e e ceeeeeeececonsccnosasassosss 3=-30
Error Status Return . .ceeeeeeesseccesccnocenssesssess 3-30
iprocessor Recovery Task (JJUNLOCK) v eevereeseocecnscesseses 3-30
StTUCEUrE ¢ e e e e eveeveoccssscsocscssonocsscsssossnsscses 3=31
Entry Conditions e eeeeeressocsoccosassososcsssssssses 3=31
Exit Conditions «.eceseecnececncscsccsccnsssssasnsnss 3-31
Multiprocessor ReCOVery ..o ooeeeevsoccscccesssssonssses 3=31
3.4.5 Error Status Return ¢ oo et eeseeersceeesecccvonsesssnsnes 3=33
System Spooled Output Tasks (J.SOUT and J.SOEX) seveeseencssasssss 3=33
3.5.1 Functional Description ¢« cveeees oo eeccssscsscssssnssess 3=33
3.5.2 Operational Design e s e e e e v e veeeescccccsncccosccsssoss 3=34

3.5.2.1 J.SOEX Message RECEIVET e e e v ccevesnnsocesesss 3=34
3.5.2.2 Call Back Information. .. ccveeeeeececreerenses 3-36
3.5.2.3 Return Status. .. ceeeceeeenecseccnccnnnscees 3=37
3.5.2.4 Break Receiver v eveeececescecsesnsscccccsess 3=37

.
.

W AN W W
* o
Leadiind .
N EWN

h <
PPz LLLL
WN -

uuyu

L)
>

CHAPTER 4 - SYSTEM GENERATION TASK DESCRIPTION

4.1
4.2

4.3

viii

Task Structure and Functional Organization « e e e e e eeesvevessssscssass 4=1
SYSGEN COmponents «coeseeeecsssessccscccscsosssosssassssccssss 4-8
4.,2.1 DID and DTT Definitionseceeeseeeeesssesosssessssssasees 4-8
4.2.1.1 Device Type Table v ceeeeerereecsascnscncsnass 8429
4.2.1.2 DeviceIDTable ¢ coeeeeeeceeeeccensssssnns .. 4-10
4.2.2 SYSGEN SCABNNET e e sseeeesssesssosssosnsssassscasasass 4=11
4.2.2.1 Directive Definition List. .o eveeencenoeeenees 4-13
Table Building 4-14 ,
4.3.1 System Tables ¢t eevveeeersosesoeeassnsansenncecsnceees O4-14
4.3.1.1 Tables Referenced in SYSGEN . .. v e veeeerreeeess 4-15
4.3.2 Internal Tables e e e v eeesssscecccsesesssasssasassasasas 8416
4.3.2.1 SYSGEN Internal Tables ¢ eovsveesevoevenaeaees 4-17
Handler and Module Loading and Initialization 4-18
Special Considerationsccce0eee e ecoeesecsscasssesseesssennn 4-19
4.5.1 MAPTGT/MAPHOST ROULINES « + e et s eeveenneonascceneess 4-19
4.,5.2 Special Case Activation «.eeeeeerteteeverioossnsocncnsns . 4-19
4.5.3 SYSINIT Loading s e veeeeeeececcococosnossossncsssssssssss 04-19

! N

/

CHAPTER 5 - BATCH TASK DESCRIPTIONS

(

5.1 CATALOGER...:.scevoens e eseeccsesessentssesesesesessasenss 5=1
5.1.1 Introduction e e e e e e e vt eeseeeecssoccssscsssssonscsnces D=1
5.1.2 Processing REgiONS ¢ c v ot seeesssesevessoccsssasssnssses D=1
5.1.2.1 XREGION ¢ et vvveeesecssessocssssasscsscsnes =2
5.1.2.2 MREGION ¢ e v e vt veenescencssceescscscosasaes D=2
5.1.2.3 CREgION ¢ttt ettt eessncessssssocccsscosssnses D=2
5.1.2.3.1 SYMTABENtriesS eeeeeessvsecceeases 5-4
5.1.2.4 BREgION coeerieeteeeresesenncncnsssececess 57
5.1.3 Load Module StTUCtUrE + o v v eeveveveosssssscsscsocncssesss 5-8
5.1.4 Symbol Table Output Format.coeeeeeeeeeccecnceceses 3-8
5.1.5 Object Languageecece.. I 2
5.1.5.1 Object Module Records e « s e s e eeeeesosassscsesss 5=9
5.1.5.2 Object Commands «eveesososeccccccesssessss 2-10
5.1.5.2.1 Absolute Data ¢ eeeeeecesesaceccess. 5-10
5.1.5.2.2 Program Origin e« e ceeceeeesesceess. 5-10
5.1.5.2.3 Absolute Data Repeat..scaceeeeeeees 5-10
5.1.5.2.4 Transfer Address «..cceeeeveeesees. 5-10
5.1.5.2.5 Relocatable Data ¢« cveeceeeeassnneess 5-11
5.1.5.2.6 ProgramName . c s e e v eessecceeeesss 5-11
5.1.5.2.7 Relocatable Data Repeat eees 5-11
5.1.5.2.8 External Definition....c.cceeeeeeeess 5-11
5.1.5.2.9 Forward Reference...cccccoeveeeess 5-12
5.1.5.2.10 External Reference ..eeceeceeecveees 5-12
5.1.5.2.11 Common Definition «ceeeeersveesnaes 5-12
(5.1.5.2.12 Common Reference «..eeeeeseeessss 5-13
, 5.1.5.2.13 Datapool Reference ¢ veeeeeeeecseees 5-13
) 5.1.5.2.14 Escape to Extended Functions « c v e e e eoo 5-13
5.1.5.2.15 CommonOrigin ccceeeeeececccnecees 5-13
5.1.5.2.16 Object Terminationcccveeees 5-13
5.1.5.3 Extended Object Commands e+ ceceeeeeeeeeceases 5-14
5.1.5.3.1 Section Definition ..ccceeeeeeceees. 5-14
5.1.5.3.2 Section Origin v cveeeeeveeceneeeess 5-14
5.1.5.3.3 Section Relocatable Reference 5-14
5.1.5.3.4 Section Transfer Address «ceceeeeeee. 5-15
5.1.5.3.5 Section External Definition......v..... 5-15
5.1.5.3.6 Section External Reference.....cvoo.. 5-15
5.1.5.3.7 Section Forward Reference . . ¢ e v v oo oo 5-16
5.1.5.3.8 LLarge Common Definition .. .ccccvev.. 5-16
5.1.5.3.9 Large Common Origin.e..cccceeeeeees 5-16
5.1.5.3.10 Large Common Reference....ceeeeee. 5-17
5.1.5.3.11 Debugger Information e e e e v e e v ev oo 5-17
5.1.5.3.12 Object Creation Date/Time..cvseeess. 5-18
5.1.5.3.13 Product Identification

InformationLeader....ccceeeeeeeesscesscesss 5-19
5.1.5.3.14 Multiple Datapool Referenceeeveeveeeo. 5-19

5.1.5.4 Comparison of Assembler Instructions
with Generated Object Commands « « v e e cveooesoees 5-19
5.2 Macro Assembler «ceceeeeenene e YA
5.2.1 GeneralInformation ¢« e e v eveeeeectonesscoosssssscsoesess 5=22
5.2.2 DIireCtives e oo evveesessosssssssssssscsscsssassscssscsee =22
5.2.2.1 SSECT Directive «eeeeeeseeessecessssescoscsss 923
(5.2.2.2 FLG MPX SSECT DIrCLIVe « v v v v vensnnsnnenenens 523
5.2.2.3 OPTR Directive e e v eveveseecssesossssscossesses 5-25

ix

4 OPTS DIirectivVe e ececececesccosssoscsoscocsonoses
5 OPTT DIirectiVe e csoeeeeecssccsccscessaosesoses
.6 SDEF DIirectiVe e ccececececscccecccssoscssscsnaes
7 SEXT DITectiVe e eoeeecececcosccscscsossssccssscse
5.2.2.8 SORT DIirective ¢ ceeeeevecscccscsacsscsscssosnsssas

523 OPtiONS v v vevesoceocsseccsnesssosassesssseassssssssoscs
5.2.4 Errors and AbDOTtS c e e e e e s e o e s oesoescscscscscosossossosnas

5.3 MPXDB ¢ttt etencoosecsnsssssossssossssscsosssssssssssssoscssscees
1 The MPXDB ENVITONMENE oot e to v v eececsossosooccscsssosnss
2 ENtryPointS..sececeecesosscsseccscossssssscccsncssssscsas

5.3.
5.3

3 1 Entl‘ypOiﬂtl-Stal‘t-Up..........-.............
3 2 Entl”yPOintz-Restal‘t.........................
5.3.2.3 Entry Point 3 - Trap/Break Receiver «vcoeeeesoceane
3.2.4
3.2.5

Entry Point 4 - M\ BRKXIT Receiver «oeescesosoases
Entry Point 5 - Abort Receiver «.cveeeeessscssenne
533 HEXECCalS teveeveoocsassscsssnsosssssscsscscscassssans
534 HREXSCallseeeeeeeesossassscsossssssssssssosnnansa
53.5 FileCodeUsage.......... ceeeecacen Ceeeecenasecaaans .. 5-34
5.3.6
5.3.7
5.3.8

WWNNHFFHFVOVVOOODOANAONUNWU

\ﬂ\ﬂ\ﬂ\ﬂ\ﬂ\ﬁ\ﬂ\ﬂ\‘ﬂ\ﬂm\.ﬂ\ﬁ\ﬂ\ﬂ\ﬂ\ﬂ
WWWWUWUWHRNRNNNNNNNDNDNN

1
W]
&

TSA REfEreNCes « o v e ceeoveseescscsssscsssanessassssses D=35
Communication Region References « ccceeeeeeecescsesceeees 5-35
Dispatch Queue Entry (DQE) References «ceeseesescscasssess 5-35

CHAPTER 6 - SYSTEM TRACE

Trace Type 1 - Task Activation «ccvveeeeeesnenscoescsoscssscnasans
Trace Type 2 - Task Termination e e s e s s eeeeecsescecesscsssssnssaae
Trace Type 3 - Dispatch CPU to0 Task ¢ ceveeeeescssseocssssssssssns
Trace Type 4 - Task Relinquishes CPU ¢t vt e et eeernesesssoscssssssns
Trace Type 5 -QuUeue I/O i vvenvneescnsesesscsessssssssssnoas
Trace Type 6 -ENd /O ¢ v vttt eenesoesscoosnsecssseasssssesosnonns
Trace Type 7 - Interrupt/Trap Handler ENtrY «.veeeceecesoeocccasonns
Trace Type 8 - Interrupt/Trap Handler EXit ¢ vceeesescacrcocococoaes
Trace Type 9 -M.SHUT .. ittt eeeeeeecsssosocscasccssnnsse
Trace Type 10 -MOPEN ...ttt ietieeeeececnssssosssccssssasns
Trace Type 11 -MJOFF or BEIl ¢ vt v eeeeeeocoosssssssssosssosssssse
Trace Type 12 -MJIONNOr UEL. ¢ it tveeerteeecsacesocecsacoanssns
Trace Type 13 =M CALL &t ittt eeeesscecessrssnssssosssnsassas
Trace Type 14 -SVC TYPE 1l ceeeeeeeeecssocoossoscsasasnssscscans
Trace Type 15 -M.RTRNoOorM.RTNA ..ttt iirseosscsosscconssns
Trace Type 16 -Inswap Task v e oo oot eeeonssoscsscecsosonsssssssas
Trace Type 17 - Outswap Task. .. eeeeoeessossssacacosososssasssas
Trace Type 18 - Dispatch IPU Task s ccvececessscasessscssesossssss
Trace Type 19 - Relinquish IPU Task ¢« ceeveeeeeeeeeesosecoscennnnns
Trace Type 20 -ReServed ¢ v e e e e e v essosececoscscssassscsncasssss
Trace Type 21 - Mobile Event Trace 1 v oveveveeeeecencecccncnncens
Trace Type 22 -Mobile Event Trace 2 ¢ v v v e et teeseeosoccccessosanne
Trace Type 23 -SVC TYPE 15 .t vt e teeteeocscecasacsooonansssnonss
Trace Type 24 = SVC TYPE 2 v v veeossceoscssssscssscsscssasnsnsssse

o o o
[L |
NoNn & W

O\O\O\?\O\O\O\

o o o
U

bW N

L
SEUWUNFOVOVONOOATWVMPASEWNEFO

0\0\0\?\0\0\0\

]
NNRNNNNNF R

N N e e e N A AN AN AN AN
.

NNRN NN e e e b b b
VMEWNNHFOOVONOAUVMESEWNH-OW®

0\0\0\0\0\?\0\0\0\0\

CHAPTER 7 - SYSTEM INITIALIZERS AND BUILDERS

7-1 SDTLOGdBl‘...........-....................... ooooooooooo ..7-4
7.1.1 ACtivating...............-...............-.....--.-.. 7'&

012 Requiredlnputl......l.....'......... ® ® & 5 0 0 0 0 00
Jd3 Processing «vveceeeericcttciccestiesssssacsansenns PN
1.4

Nd

. Resultsc0. ceecnsncns cesssecscssessencen e oo
7.2 The DBOOT Program Section «..eeeeeeccsorssessscssscesasssscecss
7.2.1 Activating e« oo eeeersveeceneeccetseccconcsssscossconnsces
7.2.2 Processing « e v eoeeeeecnencssescesassecsancsscocossnses
7.2.2.1 Pl ittt eeeeeeeeeseoscssssonconosssscssessss
7.3 The SYSINIT Program Section « e s v eeeeeecersoceecoossss Secencsanns
7.3. Activating ¢« e e et v veeevesccssncnsns

7

N =

3
3. Processing « ¢ e cee e ceeeense ceececsscssnsnenceessreen
7.3.2.1 Memory Initialization « e e oveveeeecens ceseccsnsan
2 SystemDateand Time o+ ceeeeecececccccnconocne
3 Disc Start-up Final Initialization « c e e e eeeennen.
A Tape Start-up Final Initialization...cceeeeeceeeeens
5 Master SDT v eveeneesseessssoccocconcsccccesss
7.3.2.5.1 Tape Boot Loader....... ceecesncscns
7.3.2.5.2 SYSINIT - Phase I Initialization
7.3.2.5.3 SYSINIT - Phase II Initialization

7.3.3 Autodisc Subroutine cesecsessases ceeecectennse s
7.3. Floppy DisC SUPPOTt + v e et e e eeevvsecoocssssssssscoossss
7.3.5 Memory DiSC e e s e eveossesssssssscsssnsesscsscssscsasncss

7.4 On-lineRESTART ® 0 0 8 9 0 0 0 PP P 000N P N 000 e ® e 0 0 00 0 0 0
7.4.1 Activating c e e ot eeeccesosssssssssssssssssscscsocsssocas
7.4.2 RequiredInput v e e v eeeneneneenne ceressecee tecocccsas
7.4.3 Processing « « cooovsessecescecccoscscsccocoocnsssssasncsascs

CHAPTER 8 - INTERNAL PROCESSING UNIT (IPU)

8.1 Overview.l..'.I'..I.ll...... ® & ® 0 0 0 0 ® 0 & 8 0 0 0 0 0 0 0 0 0 00

8.1.1 IPU - Memory Interface «.eeeeeeveeens e
IPU—CPUInterface..I....l.."..'l.'.....Q........."
Schedulingand Execution ..ccceeeecereccccncsccces cessecnen

(o]
[
N

8.2 s

[\
~

2.1 Task Biasingeseeeeeeeeeens i P
2.2 Standard CPU/IPU Scheduling « vt e cveveveesecececcscncoanns
2.3 Optional CPU/IPU Scheduling v .o cveveecenesesesonss cecenan
2.4 Standard Scheduling of IPU-biased Tasks ¢+ osevveecen sessecen
2.5 Optional Scheduling of IPU-biased Tasks «.eeeeeeeeaceeeencas
2.6 Scheduling Unbiased Tasks «vveeeerececesccccccosns
2.7 Scheduling CPU Only TaskS e e s e s e s s e sss sescesesscessanens
.2.8 IPU Task Execution «.eceeeeeeeceneoccecccccens

8.3

C

Executive Module Description ceceacecnn cecccsnsssaas oo
Entry Point 1 - IPU Executive « ¢ v ccceveen.n
Entry Point 2 - Undefined IPU Instruction ...cceceeeensn

\JJ\AU\M\H\A.\N\A\N\A\A\AU
.
ROV OSNONUVMESEWN -

S Entry Point 3 - Memory Parity ErTor ¢ ccveeeeeeveccssscsnnas
e Entry Point 4 - Nonpresent MEMOTY « c s s cesssevcssocosnncsas
3. Entry Point 5 - Undefined Instruction.....ccoceeeeneeecenee
3. Entry Point 6 - Privilege Violation...c ..., cesecctnoneenans

EntryPoint 7-MapFault o vieeeereececnconcnns ceenen
Entry Point 8 -SVC TrapHandler ...cc0veveeececesss cees e

Se Entry Point 9 - Arithmetic Exception Trap Handler............ .
.3.10 Entry Point 10 - Privilege Mode Halt
S.11 Entry Point 11 - Address Specification....cceeeeeeirieeeeeeenn
J3.12 Entry Point 12-Cache Fault.eeeeeeeeeesensescscons
3.3 Entry Point 13 -MachineCheck «eveevvereconssecncnns

NN SN SNNSNSNSNSNSNNSNNNYN
U L 2 o Tt T e S O O N |

b =
NOWVUVDONNNAAVVUVVUV VKBS S

IR I NI U U e e e
NN oOVvUVUVUVUVVNESLERERFEFRFUWUUWMWMAUNDNNEREE

D OO DODODPOPODODPOPOPOPOOOODODODOPOODOODO®MD D

8.3.14 Entry Point 14 - System Check «.:vevsvcececcecsssossosesss. 8-8
8.3.15 Entry Point 15-PowerFail Trape.cceeeceecccececcscceessss 8-8
8.3.16 Subroutine S.IPU1 - Perform Stack Push...ceeceeeeseccessess 8-8
8.3.17 Subroutine S.JPU2 - IPU Initialization .c..ccceeeeeeveenceess B9
8.3.18 Subroutine S.IPU3 - Terminate IPUExecution....cececeeeeesss 8-9
8.3.19 Subroutine S.IPU4 - Generate IPU History Bufferc..... 8-9
8.4 IPU Auto Start Trap Processor - HIPUAScccveececsssasseees.s 8-10
8.5 IPU Task Scheduler - HLCPU/H.CPU2ctteceacscceccncessassss 8-10
8.5.1 Entry Point 1 -FieldIPUHalt....cccveeeeceeeseeneeeeesss 8-10
8.5.2 Entry Point 2 - Schedule IPU Biased Tasks «ccoeseeseoeseesass 8-11
8.5.3 Entry Point 3 - Schedule Unbiased Tasks «ceecosesssseceeeses 8-11

8.5.4 Subroutine S.CPU1 - Link Task to IPU Request
' State i et eeceeecceccrsessscsnesssscccscccsesnsenssss 8-11
8.5.5 Subroutine S.CPU2 - IPU Eligibility Test +.ecceceeeeeeeesss. 8-11
8.6 IPU Accounting Module Descriptions « ..o ceveeeeeerescoesseessnses 8-1
8.6.1 Entry Point 1 - Field Interval Timer Interrupt.....c.c.veee.e.. 8-1

8.6.2 Subroutine S.JPUIT1 - Perform Accounting After IPU

TrOGP e eeeevsoscecassassssosenasccasosasossasscssaneas 8-12

8.6.3 Subroutine S.IPUIT2 - Perform Accounting Prior
toStartingthe IPU . . i ceeieeersereeesosecceassasensss 8-12
8.7 IPUSYSGEN Directives «eeecescossosssssescsssscsssssssassssss 8-12
8.8 SVCs Executableby anIPU s s v e v eveeenssnosecssessasssscsnss 8-12

APPENDIX A SYSTEM TABLES AND VARIABLES CROSS-REFERENCE A-1

xii

—

¢

Ve

v
N

b b b et e b
VOO & W

pRERREY
NOOWVMEWN -

u\',qu
WN =

& &
1 (R
N -

\‘n\n\n
W N

NN
Ll
WN =

FIGURES

Scheduler - IOCS Interface - IOCS I/O SVC Processing
OVEIVIBW ¢ ¢ s e v e ssnseesssnssscscsosscssssscosssccsocscsssssaseess 1=l
Scheduler - IOCS Interface - IOCS No-wait I/O Postprocessing

OVEIVIBW ¢ e et e evveoooesecscssocssosscsscsascecsscsosscssssasssss 1=5
Scheduler - IOCS Interface - IOCS Initiate I/O Procedureceo0veeecesen 1-6
Scheduler - IOCS Interface - IOCS Postprocessing Procedure ceeaes .. 1-7
Scheduler - 1/O Interrupt Interface OVErview «..ceesveesesvssoessssesss 1-8
Scheduler - 1/O Interrupt - Interface, Procedures «..ecseeecececscsceeees 19
Scheduler - 1/O Interrupt Interface, Re-entrant Subroutines...eceeveesse. 1-10
Pre-emptive System Service List Entry Header Format...... cecons ceees 1211
I/O Overview from User Request to I/O Complete «cveveeeveeeennnsnns 1-12
[/OTable LiNkages « e s v o e seseesescscscscsossoancnses ceeees cecens 2-71
Handler Tables and Corresponding Hardwarecccveeeecoceosnscees 2-72

Memory Pool Diagram ... eeeeecssecccoosscccscscccscosncnnccss
MPX-32 Map Structure for CONCEPT/32 e ceeeescoavscsanssocsssees 2-99
Spooled File Data Structures « c e e e e e v eveeseececoccessoccacnses
TSA SITUCLUTE oo vt eeeveoeeccccasosonoocascsensns
Disc Resident Resource Descriptor Table e e et ceescecanscneas 2-127

System Swap Scheduler s A
Mapping of Candidate TASK's TSA (an overview) « v e oo e o eeneoenecoaseae 3-2
Mapping of Candidate Task During Roll-out .. et i ittt neennnnses 3-3

SYSGEN Overlay Structure and Functions ...cceeeescescccccccccanses 84-2

SYSGEN Output File FOormat e o o s c e e eeevessesesssccocsssscssssass . 4-20
General Table ATea + .o ceeseecececossoccnconcnsns cercccnsencns .ee 5-3
Sample Source Listing...ccceeeeeen e 2 A
Sample Object Code DUMP ¢ et cecveeosseecccscscccnssssassn ceees 5-21
Components and Functions in Boot fromanSDT ... ccceeeeeenenen. -

L] 7 l
Components and Functions in Boot from IOP Console ¢ e ecvsvesseccscnces 7=2
Components and Functions in Boot from Online RESTART . . v eenveeees 723

TABLES

Special Control Flags « e eeveeeecneneenneeecennns ceeenne
Device Status (2000 Level) Nonextended I/O. et v v e v v e ennes ceeenenees 2-62

Memory Request Function Codes for J.SWAPR . .ttt ittt eeesennneeesss 3-11

IPU Trap StruCtUTE ¢ ¢ ¢ ¢ e e e oo s v oo onsens ceetesesaan cecesssessssses B2

xiii/xiv

«

Documentation Conventions

Notation conventions used in directive syntax and message examples throughout this
manual are described below.
lowercase letters

In directive syntax, lowercase letters identify a generic element that must be replaced
with a value. For example,

IACTIVATE taskname

means replace taskname with the name of a task. For example,
IACTIVATE DOCCONV

In messages, lowercase letters identify a variable element. For example,
BREAK ON:taskname

means a break occurred on the specified task.

UPPERCASE LETTERS

In directive syntax, uppercase letters specify a keyword must be entered as shown for
input, and will be printed as shown in output. For example,

SAVE filename

means enter SAVE followed by a filename. For example,
SAVE DOCCONYV

In messages, uppercase letters specify status or information. For example,
taskname,taskno ABORTED

*YOUR TASK IS IN HOLD. ENTER CONTINUE TO RESUME IT

Braces { }

Elements placed one under the other inside braces specify a required choice. You must
enter one of the arguments from the specified group. For example,

counter
startbyte

means enter the value for either counter or startbyte.

XV

Brackets []

An element inside brackets is optional. For example,
[CURR]

means the term CURR is optional.

Items placed one under the other within brackets specify you may optionally enter one of
the group of options or none at all. For example,

base name
progname
means enter the base name or the program name or neither.

Items in brackets within encompassing brackets specify one item is required only when
the other item is used. For example,

TRACE [lower address [upper address]]
means both the lower address and the upper address are optional, and the lower address
may be used alone. However, if the upper address is used, the lower address must also be
used.
Commas between multiple brackets within an encompassing set of brackets are semi-
optional; that is, they are not required unless subsequent elements are selected. For
example,

M.DFCB feb,LFC [, [a]l,[b1,[c1,[d],[e]]
could be coded as

M.DFCB FCB12,IN

or
M.DFCB FCB12,IN,,ERRAD

or

M.DFCB FCB13,0uUT,,ERAD,,PCK

Horizontal Ellipsis ...
The horizontal ellipsis indicates the previous element may be repeated. For example,
name [,namel...

means you may enter one or more name values separated by commas.

xvi

(.

4
LN
//I\\

Vertical Ellipsis .

The vertical ellipsis specifies directives, parameters, or instructions have been omitted.
For example,

COLLECT 1

LiST

means one or more directives have been omitted between the COLLECT and LIST
directives.

Numbers and Special Characters

In a syntax statement, any number, symbol, or special character must be entered as
shown. For example,

(value)

means enter the proper value enclosed in parentheses; e.qg., (234).

Underscore

In syntax statements, underscoring specifies the letters, numbers or characters that may
be typed by the user as an abbreviation. For example,

ACTIVATE taskname

means spell out the directive verb ACTIVATE or abbreviate it to ACTI.
RESET

means type either RESET or RST.

In examples, all terminal input is underscored; terminal output is not. For example,

TSM > EDIT

means TSM > was written to the terminal; EDIT is typed by the user.

Subscript Delta A

A subscript delta specifies a required space. For example,

EDT > STO,TSSPGM
_—__A_—_

means a space is required between O and T.

xvii/xviii

C

CHAPTER 1
SYSTEM DESCRIPTION

1.1 Naming Conventions

To assist in the identification of system components, the following naming conventions
are used in MPX-32 software and documentation.

1.1.1 Communications Region

Names of variables within the MPX-32 communications region are prefixed by the
characters "C.". The general form is C.x where x is a string of one to six characters.

1.1.2 Task Service Area (TSA)

Names of variables within the TSA associated with each task are prefixed by the
characters "T.". The general form is T.x where x is a string of one to six characters.

1.1.3 Entry Variables

Names of variables within table and file entries consist of characters which identify the
table or file and the variable. The general form is x.y where x consists of two to four
characters which identify the table and y consists of three to six characters which
identify the variable. Table or file name prefixes (x) are as follows:

ART Allocated Resource Table
CDT Controller Definition Table
CHT IOP Channel Definition Table
DAT Dispatch Queue Address Table
DCA Device Context Area

DFT Disc File Assignment Table
DQE Dispatch Queue Entry Table
DTT Device Type Table

FCB File Control Block

FPT File Pointer Table

ICB Interrupt Control Block

10Q I/0 Queue Entry

JoB Job Table

MEM Memory Allocation Table
MEML Memory Attribute List

MIDL Map Image Descriptor List
MQ Message or Run Request Queue Entry
MVT Mounted Volume Table

PRB Parameter Receive Block

PSB Parameter Send Block

MPX-32, Vol. I
Technical Manual System Description 1-1

RCB Resource Create Block

RD Resource Descriptor

RLB Resource Logging Block

RRS Resource Requirement Summary Entry
RXB Receiver Exit Block

SMD System Master Directory Entry
SMT Shared Memory Table

TCA Terminal Context Area

TCP Type Control Parameter Block
UDT Unit Definition Table

VAT Volume Assignment Table

1.1.4 System Madules and Interrupt Handlers

Names of system modules and interrupt handlers are prefixed by the characters "H.".
The general form is H.x where x is a string of one to six characters. Entry points in
system modules are identified by the module name, followed by the entry point's numeric
identifier. Entry point names are of the general form H.x,n, where n is the numeric
entry point identifier.

1.1.5 Commoen System Subroutines

Common system subroutines are subroutines contained within modules intended for use
by other modules. Their names are prefixed by the characters "S.". The general form is
S.xn, where x is the one to four character module identifier and n is the subroutine
numeric identifier. For example, S.EXEC1 is the first subroutine in the H.EXEC module.
1.1.6 System Macros

Names of nonbase mode system macros are prefixed by the characters "M.". Names of
base mode system macros are prefixed by "M ". The general form is M.x or M x, where x

is a string of one to six characters for nonbase mode or one to fourteen characters for
base mode.

1.1.7 System Task Load Module Files

Names of system task load module files are prefixed by the characters "J.". The general
form is J.x, where x is a string of one to six characters.

1.1.8 Batch Task Load Module and Executable Image Files

Names of system batch task load module files are identical to the names of the tasks
contained on the files.

1.1.9 System Permanent Files

Names of system permanent files not containing load modules are prefixed by the
characters "M.". The general form is M.x, where x is a string of one to six characters.

M.ERR, M.CNTRL, and M.KEY are examples of system permanent files.

, MPX-32, Vol. 1
1-2 System Description Technical Manual

£
w
TN

1.2 Scheduler - I0CS Interface

I/O Initiation

A task issues an SVC to enter IOCS. 1/O services for pretransfer processing are then
executed at the software priority level of the requesting task. Once the I/O request is
initiated (or queued for initiation), an H.EXEC entry point is called to report the event to
the CPU and swapping scheduler:

Entry Point Event
H.EXEC,1 Interactive input starting
H.EXEC,2 Terminal output starting
H.EXEC,3 Wait 1/O starting
H.EXEC,4 No-wait 1/O starting

Wait 1/O Postprocessing

A return will be made to IOCS from H.EXEC,1, 2, or 3 only upon completion of the 1/O
request. Post transfer processing may then occur at the software priority level of the
requesting task.

No-wait I/O Postprocessing

A return from H.EXEC,4 will be made immediately after recording the no-wait 1/O
event. Since IOCS will also make an immediate return to the user task, no-wait I/O post
transfer processing will occur as a task interrupt service.

No-wait I/O Completion Task Interrupt Service

When the I/O handler interrupt service routine fields a completion interrupt for a no-wait
I/O request, it calls the executive subroutine S.EXEC4 to report the event. The 1/0O
queue entry associated with the call is then linked to the task interrupt list in the DQE of
the task that made the I/O request. When the scheduler attempts to dispatch control to
the task, it finds that a task interrupt is outstanding. Task interrupts are inhibited during
execution of any system service for a task. No task interrupt is honored while a higher
priority task interrupt is active. When the task interrupt is honored, control is
transferred to the IOCS routine specified in the Pre-emptive System Service Header of
the I/O queue entry. Posttransfer processing then occurs at the software priority level
of the requesting task. When postprocessing of the no-wait I/O request is complete, the
task interrupt service is exited by a call to S.EXEC6 or H.EXEC,12.

No-wait I/O Restrictions for System Services

Posttransfer processing for a no-wait I/O request is processed as a task interrupt. Task
interrupts are not honored while the task is executing in a system service (PC .LE. TSA
address). An exception is made for a task that is in a wait for any no-wait I/O
completion state. A task interrupt generated by the completion of no-wait I/O is
honored if the task is in the wait for any no-wait I/O completion state. A system service
that wants no-wait I/O can issue a series of no-wait calls followed by a wait-for-any
call. Be careful that all outstanding calls are completed appropriately.

MPX-32, Vol. I
Technical Manual System Description 1-3

10CS FROM SVC

CONSTRUCT
ENVIRONMENT
FOR 1/O
INITIATION

—P
INITIATE 1/O
WAIT 1/0 NO—WAIT I/0
POST
TRANSFER COMPLETE
PROCESSING
M.RTRN M.RTRN
TO TO
USER USER
RECONSTRUCT
INITIATION
ENVIRONMENT
840815A

Figure 1-1. Scheduler - IOCS Interface - IOCS 1/O SVC Processing Overview

System Description

MPX-32, Vol. I
Technical Manual

(

10CS TASK INTERRUPT
FROM SCHEDULER

POST \ COMPLETE
PROCESSING /
RETRY
RECONSTRUCT USER
INITIATION NO-WAIT
ENVIRONMENT 1/0 SERVICE
™
™
™
INITIATE
110 10CS FROM SVC TO
EXIT USER NO-WAIT
1/0 SERVICE

N N

o\ /e \
_/

NO RETURN NO RETURN
CONTINUE TASK AT CONTINUE TASK AT
POINT OF INTERRUPT POINT OF INTERRUPT
OR OR
CONTINUE CONTINUE
WAIT FOR ANY \ WAIT FOR ANY
/O COMPLETION 1/0 COMPLETION

[\
7/

NO RETURN
CONTINUE TASK AT
POINT OF INTERRUPT
OR
CONTINUE
WAIT FOR ANY
1/0 COMPLETION

830663A

Figure 1-2. Scheduler - IOCS Interface - IOCS No-wait 1/O Postprocessing Overview

MPX-32, Vol. I
Technical Manual System Description

1-5

INITIATE I/O
PROCEDURE

FROM WAIT 1/0 SVC,
OR FROM NO-WAIT

TASK INTERRUPT

BEI

HANDLER
ENTRY

POINT 2

H.EXEC, 1 H.EXEC, 2 H.EXEC, 3 H.EXEC, 4

INTERACTIVE TERMINAL WAIT 1/0 NO-WAIT I/O
INPUT OUTPUT STARTING STARTING
STARTING STARTING
RETURN AFTER
v EVENT RECORDED
RETURN WHEN
I/0 COMPLETE

TO 10CS
POINT OF CALL

TN
NS

830664A

Figure 1-3. Scheduler - IOCS Interface - IOCS Initiate I/O Procedure

MPX-32, Vol. I
1-6 System Description Technical Manual

C

FROM WAIT 1/0 SVC,
OR FROM NO-WAIT
TASK INTERRUPT

POST TRANSFER
PROCESSING
NO ERROR
ERROR ERROR
UNRECOVERABLE
AUTOMATIC
RETRY
OPERATOR %
INTERVENTION
REQUIRED RETRY
————>
RETURN
ISSUE INOP
MESSAGE
TO 10CS
POINT OF CALL
—
? A R
A I

COMPLETE
RETURN

TO 10CS
POINT OF CALL

830665A

Figure 1-4. Scheduler - IOCS Interface - IOCS Postprocessing Procedure

MPX-32, Vol. I
Technical Manual System Description

1-7

8-T

uo13diIasa waisAg

]enuew [BO[UL{OG_L
I “IOA ‘2¢-XdWN

-

REX:

O 3deydaju] 3dnaiaju] Q] - 49[NPaYds °G-T aanbi

MITAIBA

V.990¢€8

STANDARD
ENTRY
PROCEDURE

PROCESSING
AS REQUIRED

- -

PROCESSING
AS REQUIRED

/0
INTERRUPT
LEVELS

’ \

/ OPTIONAL
—{ REPORT v
Y EVENT ’

\ ’
| Wpp——
po—————

4 \

/ \
“ ')
\J /
| W ——
fo—————

/ \

/ \
— —
\ ’

\ ’

- ———
pm—————

’ \

’ \
__.(\ ’)___
\ ’

RETURN TO ANY
PREEMPTED
LOWER LEVEL
INTERRUPT

PROCEDURE

\ EXIT

STANDARD

RETURN TO INTERRUPTED
TASK OR PERFORM CONTEXT
SWITCH TO HIGHER PRIORITY

CANDIDATE FOR CPU CONTROL

SOFTWARE
PRIORITY
TASKS

START

ENTER
UNBLOCKED
WITH LEVEL

ACTIVE

v

INCREMENT
GLOBAL
INTERRUPT
COUNT

v

PROCESSING
AS REQUIRED
FOR THIS
LEVEL

S.EXEC2
REPORT EVENT

S.EXEC1
REPORT EVENT

S.EXEC3
REPORT EVEN
WAIT 1/0
COMPLETE

INTERACTIVE TERMINAL
INPUT OUTPUT
COMPLETE COMPLETE

e

S.EXEC4
REPORT
EVENT
NO-WAIT
1/0 COMPLETE

v

A 4

SET BLOCKED,
DEACTIVATE
LEVEL

S.EXEC5
STANDARD
INTERRUPT
EXIT
PROCEDURE

840816A

MPX-32, Vol. 1

Technical Manual System Description

Figure 1-6. Scheduler - I/O Interrupt - Interface, Procedures

1-9

INTERRUPT SERVICE
ROUTINES
X3 =
ADDRESS OF S.EXECX svc
SCRATCHPAD TSA PUSH
DOWN
| LEVEL
' 22 WORD |
INTERRUPT SCRATCH-
CONTEXT I PAD I
BLOCK
22 WORD | |
SCRATCH- |
PAD |
i I
X3=
ADDRESS OF S.EXECX sve
SCRATCHPAD
I o
/ \\
I MONITOR R
| SERVICE
- .
I X3=
S.EXECX | ADDRESS OF
| SCRATCHPAD
USE X3 AS |
SCRATCHPAD I S.EXECX
INDEX
TRSW RO
830666A
Figure 1-7. Scheduler - I/O Interrupt Interface, Re-entrant Subroutines)j

MPX-32, Vol. 1
1-10 System Description Technical Manual

0 String Forward Address
1 String Back Address
2 Priority
3
4 PSD Word 1
(4 5 PSD Word 2
6
7
C; Figure 1-8. Pre-emptive System Service List Entry Header Format

MPX-32, Vol. 1
Technical Manual System Description 1-11

¢I-T

uotydidosa] waisAg

[eNuUBA [EOTUYOS |
I *IOA ‘2¢-XdW

ajerdwo) QI 031 1sanbay Jasn woly M3IAIBAQ OfI °6-T 2Inbi 4

RETURN TO
USER TASK

v8990€8

1/0 REQUEST PROCESSING

USER TASK

1/0
REQUEST

H.10Cs

OP CODE PROCESSING:
(BEI SEQUENCES TO LINK
1/0 QUEUE TO CDT,
CHECK 1/0 COMPLETE)

OP CODE
PROCESSING

SERVICE INTERRUPT PROCESSING

SERVICE INTERRUPT

DEVICE HANDLER EP1

DEVICE HANDLER

NOTIFY EXECUTIVE
OF I/O INITIATION

H.EXEC, n

H.EXEC, 1: INTERACTIVE INPUT
H.EXEC, 2: TERMINAL OUTPUT
H.EXEC, 3: WAIT I/0

H.EXEC, 4: NO-WAIT 1/O

NO-WAIT I/0

ALL OTHER I/0

SUSPEND
USER TASK

EP5 — OP CODE PROCESSOR
EP2 — 1/0 START UP

SERVICE INTERRUPT PROCESSING:
ERROR RETRY, STATUS
POSTING, ISSUE CD/SIO

(EXTERNALS
BLOCKED)

NOTIFY
EXECUTIVE
OF 1/0
COMPLETE
(LEVEL
ACTIVE)

S.EXECn

S.EXEC1: INTERACTIVE INPUT
S.EXEC2: TERMINAL OUTPUT
S.EXEC3: WAIT 1/O

S.EXEC4: NO-WAIT I/O

(S.EXECS ’

POST i/0 PROCESSING

EXECUTIVE

USER TASK
SCHEDULED
(VIA TASK
INTERRUPT
SERVICE FOR
NO-WAIT 1/0)

s.locst1

1/0 POST PROCESSING:

POST STATUS TO FCB,
DEVICE INOP MESSAGES,
DATA MOVES, DEALLOCATE
1/0 QUEUE AND OS

BUFFER AS REQUIRED

‘ USER TASK ’

1.3 Scheduler - Task Termination Interface

Three types of task termination are provided in the MPX-32 system: exit, abort, and
delete task execution.

1.3.1 Exit Task

The exit task service is called by a task that needs to terminate its execution in a normal
fashion.

Outstanding I/0 (Exit)

If an exiting task has outstanding I/O, further exit processing is deferred until all
outstanding I/O is complete. Any user end action routines associated with no-wait 1/O
which completes while a task is exiting result in a task abort.

Messages in Receiver Queue (Exit)

All outstanding messages sent to an exiting task are unlinked from the message receiver
queue and treated as complete with abnormal status.

Outstanding Run Requests (Exit)

A task attempting to exit with outstanding no-wait run requests (with call back) for other
tasks is aborted.

Run Requests in Receiver Queue (Exit)

If an exiting task has requests in its run receiver queue, the current run request is
terminated and the appropriate status is posted in the run request parameter block. If
any additional run requests are queued, a new copy of the task is activated.

Task Abort Receiver (Exit)

A task abort receiver is not processed on task exit.

Files (Exit)

All open files associated with a task are automatically closed during task exit processing.

Resources (Exit)

All resources associated with a task are automatically deallocated during task exit
processing.

MPX-32, Vol. 1
Technical Manual System Description 1-13

1.3.2 Abort Task

The abort task service is called by a task that needs to terminate its execution in an
abnormal fashion. It is also initiated by the system when a task encounters a system trap
condition, such as undefined instruction, privilege violation, or nonpresent memory, or by
a system service because of a parameter validation error. This service is asynchronously
initiated by another task or by operator communications. If the OWNERNAME
restriction is set in T.ACCESS, only a task of the same owner name can initiate the
abort.

Asynchronous Abort

When a task needs to abort another task it calls the asynchronous abort service. If the
OWNERNAME restriction is set in T.ACCESS, only a task of the same owner name can
initiate the abort. The task to be aborted is in a ready-to-run state or one of the three
following wait states:

1. Waiting for execution signal:
. timed suspend
. message receive
. run-request receive
. interrupt receive

2. Waiting for resource:

. device
. disc space
. memory

. memory pool
3. Waiting for operation complete:

. interactive input

. low speed output

. any no-wait I/O

. waitI/O

. any no-wait message

. wait message

. any no-wait run request
. wait run request

If the specified task to be aborted is waiting for an execution signal, an abort request bit
is set in the DQE. The DQE is unlinked from its current state queue and linked to the
ready-to-run list at its current priority. When it is selected for execution by the CPU
scheduler, the abort request processing then proceeds for the aborting task.

If the specified task is waiting for a resource or operation complete, the abort requested
bit is set in its DQE. The task remains linked to its current list, and abort processing
does not proceed until outstanding operations are complete and the task is ready to run.

MPX-32, Vol. 1
1-14 System Description Technical Manual

Synchronous Aborts
When the currently executing task encounters an abort condition, the abort bit is set in

the DQE. The CPU scheduler then processes the abort request. The following is an
outline of synchronous abort processing.

Outstanding I/O

If the aborting task has outstanding 1/O, further abort processing is deferred until all
outstanding I/O is complete. End-action routine execution is inhibited, and task abort
status is reflected in the FCB.

Messages in Receiver Queue

All outstanding messages sent to an aborting task are unlinked from the message receiver
queue and treated as complete with abnormal status.

Outstanding Run Requests

If the aborting task has outstanding run requests (with call back) for other tasks, further
abort processing is deferred until completion of all such requests. End-action routine
execution is inhibited, and task abort status is reflected in the run-request block.

Run Requests in Receiver Queue

If the aborting task has requests in its run receiver queue, the current run request is
terminated and the appropriate status is posted in the run-request parameter block. If
any additional run requests are queued, a new copy of the task is activated.

Abort Receiver

If the aborting task has an abort receiver, control is transferred to it. All outstanding
operation or resource waits have been completed, and all no-wait I/O or no-wait run
requests (with call back) have been completed when the abort receiver is entered. End-
action routines associated with no-wait operations that completed while the abort
request was outstanding have not been executed. Status bits reflecting this are posted in
the appropriate FCBs and PSBs. Any files open when the abort request was received
remain open on an abort receiver entry. Any resources allocated when the abort request
was received remain allocated when the abort receiver is executed.

Open Files

If the aborting task has no intercepting abort receiver, all files open when the abort
request was encountered are automatically closed.

Resources

If an aborting task has no intercepting abort receiver, all previously allocated resources
are deallocated and the task is no longer active in the system.

MPX-32, Vol. 1
Technical Manual System Description 1-15

1.3.3 Delete Task

The delete task service is called by the system for a task that encounters a second abort
condition during processing of an initial abort request. This service is asynchronously
initiated by another task or by operator communications. If the OWNERNAME
restriction is set in T.ACCESS, only a task of the same owner name can initiate the task
delete request. ‘

Asynchronous Delete

When a task needs to delete another task of the same owner name, it calls the
asynchronous delete service. The task to be deleted can be in a ready-to-run state or a
wait state, such as wait for execution signal, wait for resource, or wait for operation
complete. In any case, the delete task bit is set in the DQE, and the task is linked to the
ready-to-run list or to the memory request queue for inswap. An exception is made for a
task already in the memory request queue. In this case, the task is not linked into the
ready-to-run queue until memory scheduler processing is complete.

Synchronous Deletes

When the currently executing task encounters a delete condition, the delete task bit is
set in the DQE. The CPU scheduler then processes the delete request. The following is
an outline of synchronous delete processing.

Outstanding I/O

Delete processing causes all outstanding I/O to be terminated (killed).

Messages in Receiver. Queue

All outstanding messages sent to a task being deleted are unlinked from the message
receiver queue and treated as complete with abnormal status.

Outstanding Run Requests

If the task being deleted has outstanding run requests for other tasks, any call back is
ignored.

Run Requests in Receiver Queue

If the task being deleted has requests in its run-receiver queue, the current run request is
terminated and the appropriate status is posted in the run-request parameter block. If
any additional run requests are queued, a new copy of the task is activated.

Abort Receiver

Abort receivers are not processed for tasks being deleted.

Open Files

Files associated with a task being deleted are not automatically closed.
Resources

All resources associated with a task being deleted are deallocated, and the task is no
longer active in the system.

MPX-32, Vol. I
1-16 System Description Technical Manual

C

C

1.4 Scheduler-Debug Interface
Design Goals

The structure of the scheduler-debug interface is dictated by the following major design
goals:

. MPXDB can be associated with a task at task activation time, or subsequently
associated with a terminal task when the break key is struck. MPXDB can also be
associated with a task dynamically through a system service call.

. When a task that has MPXDB associated with it is executing, two methods of entering
MPXDB are provided: the executing task encounters a previously set MPXDB trap
instruction, or the terminal operator presses the break key.

Entering MPXDB mode by a trap or break is allowed during execution of software
(task) interrupt receivers like message, end action, and break.

. MPXDB intercepts any task aborts, automatically enters the MPXDB mode, and
informs the operator of the abort reason.

. System entry into the abort receiver is "soft" in that outstanding I/O requests are
completed, and files remain open and allocated. This allows the operator the ability
to correct and proceed from the environment that caused the abort condition.

Debug Entry Points

To accommodate the scheduler interface and achieve the MPXDB design goals, MPXDB
is organized into five entry points. These entry points are reflected by an address table
(HAT) structure at the beginning of the MPXDB program. When MPXDB is loaded, the
address of the MPXDB HAT is stored in T.DBHAT in the TSA. The first word of the HAT
contains the number of MPXDB entry points. Subsequent words contain the address of
the individual MPXDB entry points. The entry points provided are:

Entry Point Description

Debug start-up
Debug restart
Trap/break
User break exit
Abort

W=

MPX-32, Vol. I
Technical Manual : System Description 1-17

Task Interrupt Status

MPXDB examines a byte (DQE.ATI) in the dispatch queue entry and determines the

status of task interrupts. When MPXDB is entered, DQE.ATI contains the definition of
all active task interrupts.

Bit Meaning

Reserved

Active end action interrupt 1 (DQE.AEAL)
Active debug mode interrupt (DQE.ADM)
Active user break interrupt (DQE.AUB)
Active end action interrupt 2 (DQE.AEA)
Active message interrupt (DQE.AMI)

6-7 Reserved

nMHEWN~O

TSA Stack Pushdown L evel Interpretation

For all MPXDB entry points except restart, the context associated with the most
recently interrupted task level is contained in T.CONTXT. Nested levels of task
interrupt are contained in the TSA stack. Unless one of the task interrupt levels (other
than DQE.ADM) is active, the TSA stack is clean (empty) on entry to MPXDB. If task
interrupts are active, the context storage in the TSA is in reverse order of priority. For

example, highest priority is the most recent. In the active task interrupt bit
assignments, bit zero is the lowest priority.

Exit from MPXDB Mode

When MPXDB is executing (regardless of entry point) the task is in the MPXDB mode.
The MPXDB mode is exited by calling one of the following H.EXEC entry points:

Entry point Description
H.EXEC,22 Go to specified task context
H.EXEC,23 Run user break receiver

1.4.1 Entry Point 1 - Start-up

This entry point is aécomplished in one of two methods: MPXDB is activated with the
user task, or the user task issues an SVC call to load and execute MPXDB.

MPXDB Activated with User Task

The program activation service that runs for the task being activated detects that
MPXDB is to be activated with the task. After the task is loaded, a special service is
called to load MPXDB. Once MPXDB is loaded, the service stores the normal start-up
registers and PSD in an MPXDB context block in the TSA (T.CONTXT). The service then
adjusts the stack in the TSA to enter MPXDB at the MPXDB start-up entry point. When
MPXDB is entered the stack is clean, MPXDB mode is set, and T.CONTXT contains the
user task start-up registers and PSD.

MPX-32, Vol. I
1-18 System Description Technical Manual

TN
N

MPXDB Activated by Load and Execute (M.DEBUG) SVC

When the user task issues a load and execute MPXDB SVC, the system service loads
MPXDB, stores the user's registers and PSD in T.CONTXT, sets MPXDB mode, and
adjusts the TSA stack for entry at MPXDB's start-up entry point.

1.4.2 Entry Point 2 - Restart

This entry point is executed when MPXDB needs to terminate any outstanding 1/0,
discard any outstanding messages, and clear the TSA stack. An MPXDB restart is
invoked by an MPXDB call to H.EXEC,24.

1.4.3 Entry Point 3 - Trap/Break

This entry point is executed when a hardware break or M.INT is received by the user task
being debugged. It is also entered when a trap SVC is executed. On entry, T.CONTXT
contains the interrupted context, and the MPXDB mode task interrupt flag is set.

1.4.4 Entry Point 4 - User Break Exit

This entry point is executed when the user task being debugged executes a break exit. A
user task being debugged can only execute its break receiver by giving a break command
to MPXDB. MPXDB in turn calls H.EXEC,23. Normal break receiver entry is reserved
for MPXDB use when MPXDB is associated with a task. When MPXDB's user break exit
entry point is entered, T.CONTXT contains the most recent level of pushdown from the
TSA stack. The number of pushdowns in the TSA stack varies based on the number of
active task interrupts like message and end action.

1.4.5 Entry Point 5 - Abort

This entry point is executed when an abort request is received for the user task and no
user abort receiver has been specified. When the abort is received, the user task context
is in T.CONTXT of the TSA. If a task interrupt like message or break receiver was in
effect when the abort request was received, the TSA stack is at the associated level of
pushdown. Otherwise, the TSA stack is clean.

Wait 1/0O Operation Status on Abort Receiver Entry

When the abort receiver is entered, any wait 1/O operation is completed first. If an abort
request is received for a task with wait I/O outstanding, abort processing is deferred
until the wait 1/O is complete. A service is provided by operator communications to
terminate (kill) outstanding I/O requests associated with the specified task. When an 1/O
request is terminated, appropriate status is posted in the FCB.

No-wait I/O Operation Status on Abort Receiver Entry

When the abort receiver is entered, all no-wait 1/O operations is complete. If an abort
request is received for a task with no-wait 1/O outstanding, abort processing is deferred
until all no-wait I/O requests are complete. User end-action routine processing is

MPX-32, Vol. I
Technical Manual System Description 1-19

inhibited for no-wait I/O completions when the task is aborting. Task abort status is
posted in the FCB.

File Status on Abort Receiver Entry

All user files remain open on entry to the task abort receiver.

Inhibit of Abort Receiver Entry

If an abort condition is detected during abort processing for a previously detected abort
condition, all outstanding I/O is terminated (killed), no status is posted, abort receiver
entry is inhibited, resources are deallocated, and the task is removed from the system.

Reuse of Abort Receiver

Privileged tasks can re-establish an abort receiver from within an abort receiver,
allowing privileged tasks to enter their abort receiver more than once. Unprivileged
tasks can establish a one-shot abort receiver, but are aborted if an attempt is made to
re-establish this receiver.

1.5 Task Interrupts

In addition to the 64 levels of execution priority available for task execution, the
MPX-32 scheduler provides a software interrupt facility within the individual task
environment.,

Task Interrupt Priorities

Individual tasks operating in the MPX-32 environment can be organized to take
advantage of the task unique software interrupt levels, Each task in the MPX-32 system
has six levels of software interrupt:

Level Priority Description

Reserved for operating system use
MPXDB

Break

End action,

Message

Normal execution (run request)

e WwWN+HO

Task Interrupt Receivers

An individual task is allowed to issue system service calls to establish interrupt receiver
addresses for both break and message interrupts. The MPXDB interrupt level is reserved
for system use by tasks running in MPXDB mode. The end-action interrupt level is used
for system postprocessing of no-wait I/O, message, or run requests. It also executes
user-task specified end-action routines. The normal execution level is used for run-
request processing and general base level task execution.

MPX-32, Vol. 1
1-20 System Description Technical Manual

C

Task Interrupt Scheduling

Task interrupt processing is gated by the MPX-32 scheduler during system service
processing. If a task interrupt request occurs while the task is executing in a system
service, the scheduler defers the interrupt until a return is made to the user task
execution area.

System Service Calls from Task Interrupt Levels

A task can utilize the complete set of system services from any task interrupt level. It
is prohibited, however, from making a wait for any no-wait completion call (M.ANYW)
from an end-action routine. It is illegal to issue an I/O request on any FCB that is busy
or has postprocessing outstanding.

Task Interrupt Context Storage

When a task interrupt occurs, the scheduler automatically stores the interrupted context
into the TSA pushdown stack. This context is automatically restored when the task exits
from the active interrupt level.

Task Interrupt Level Gating

When a task interrupt occurs, the level is marked active. Additional interrupt requests
for that level are queued until the level active status is reset by the appropriate level
exit system service call. When the level active status is reset, any queued request is
processed.

In addition, the following services can inhibit higher priority task interrupts:

M.ASYNCH Resets the asynchronous task interrupt mode back to the default

environment.
M.DSMI Disables the task interrupts for messages sent to the calling task.
M.DsSUB Deactivates the user break interrupt and allows user breaks by the

terminal break key to be acknowledged.
M.ENMI Enables task interrupts for messages sent to the calling task.

M.ENUB Activates the user break interrupt and causes further user breaks by
the terminal break key to be ignored.

M.SYNCH Causes message and task interrupts to be deferred until the user
makes a call to M.ANYW, M.ASYNCH, M.EAWAIT, or M.WAIT. Any
deferred task interrupts are processed when a lower level task
interrupt calls the M\(ANYW, M.EAWAIT, or M.WAIT services.

MPX-32, Vol. I
Technical Manual System Description 1-21

User Break Interrupt Receivers

A task can enable the break interrupt level by calling the M.BRK monitor service to
establish a break interrupt receiver address. The level becomes active as a result of a
break interrupt request generated either from a hardware break or from an M.INT
service call that specified this task. When the break level is active, end action, message,
and normal execution processing is inhibited. The level active status is reset by calling
the M.BRKXIT monitor service to exit from the pseudointerrupt (break) level.

User End-Action Receivers

When a task issues a no-wait I/0O, send message, or send run request, a user-task end-
action routine address can be specified. If specified, the routine is entered at the end-
action priority level from the appropriate system postprocessing routine. When the end-
action level is active, processing at the message or normal execution level is inhibited.
The level active status is reset by calling the appropriate end-action service:

End-action End-action
Type Exit Service
1/0 H.IOCS,34
Send message M. XMEA
Send run request M.XREA

All types of user end-action exits provide a return or a continue-wait for any option. An
interrupt exit normally returns to the interrupted context. A task can issue a series of
no-wait request calls followed by a wait for any completion service call from the base
level. This wait service (M.ANYW) places the task in an interruptive wait state, allowing
the execution of postprocessing and end-action routines associated with the no-wait
call. The return or continue wait end-action exit options allow the exiting end-action
routine to return to the point following the wait for any call or to continue the wait for
any state.

Note: A task is prohibited from making a wait for any service call from an end-action
routine.

User Message Receivers

A task can enable the message interrupt level by calling the M.RCVR system service to
establish a message interrupt receiver address. The level becomes active as the result of
a message send request specifying this task as the destination task. When the message
level is active, normal execution processing is inhibited. On entry to the message
interrupt receiver, register one contains the address of the queue entry (MRRQ) in
memory pool. The receiver can call a service M.GMSGP to store the message in a user
receiver buffer. No-wait I/O is permitted with the M.WAIT service. After appropriate
processing, the message interrupt level can be reset by calling the M. XMSGR system
service to exit from the message interrupt receiver.

MPX-32, Vol. I
1-22 System Description Technical Manual

User Run Receivers

User run receivers execute at the normal task execution (base) level. The cataloged
transfer address is used as the run-receiver execution address. The run-receiver
mechanism is provided by the system to allow queued requests for task execution with
optional parameter passing. When a run request is issued, the task load module name is
used to identify the task to be executed. If a task of that load module name is currently
active, the run request is queued from the DQE of the specified task. If the specified
task is not active, it is first activated. When a task begins execution as the result of a
run request, register one contains the address of the run-request queue entry. The
receiver can call a service M.GRUNP to store the run parameters in a user-receiver
buffer. = After appropriate processing, the run-receiver task exits by calling the
M.XRUNR system service. Any queued run requests are then processed.

User Abort Receivers

User abort receivers execute at the normal task execution (base) level. The user task
establishes an abort receiver by calling the M.SUAR monitor service. If an abort
condition is encountered during task operation, control is transferred to it. On entry, any
active software interrupt level is reset, all outstanding operations or resource waits are
complete, and all no-wait requests were processed. End-action routines associated with
no-wait requests that completed while the abort was outstanding were not executed.
Status bits reflecting this are posted in the appropriate FCBs and PSBs. Any files opened
or resources allocated when the abort condition was encountered remain opened and/or
allocated when the abort receiver is executed. The TSA stack is clean, and the context
when the abort condition was encountered is stored in T.CONTXT. When the abort

receiver is entered, register six contains a status byte reflecting task interrupt status
when the abort condition was encountered.

Bit Meaning if Set

24 N/A

25 N/A

26 User break interrupt active
27 End action interrupt active
28 Message interrupt active

The standard exit service is used to exit from an abort receiver. If another abort
condition is encountered while a task is in an abort receiver, the task is deleted.

1.6 Send/Receive Facilities

MPX-32 provides both message and run-request send/receive processing. Run-request
services allow a task to queue an execution request (with optional parameter pass) for
another task. Message services allow a task to send a message to another active task.
The services provided for use by the destination tasks are called receiving task services.
Those provided for tasks that issue the requests are called sending task services.

MPX-32, Vol. I

~ Technical Manual System Description 1-23

1.6.1 Receiving Task Services
Establishing Message and Run Receiver Capability

Establishing Message Receivers -- To receive messages sent from other tasks, a task
must be active and have a message receiver established. A message receiver is
established by calling the system service M\RCVR, and providing the receiver routine
address as an argument with the call.

Establishing Run Receivers -- Any valid task can be a run receiver. Although a set of
special run receiver services are provided, in the most simple case they are not needed.
The run-receiver mechanism is provided by the system to allow queued requests for task
execution with optional parameter passing. The cataloged transfer address is used as the
run-receiver execution address. The task load module name is used to identify the task
to be executed. If a task of that load module name is currently active and is a single-
copied task, the run request is queued until the task exits. If a task of that load module
name is currently active but is not a single-copied task, the load module is activated
(multicopied) to process the request. If a multicopied task is waiting for a run request,
the task number is used to activate the load module to process the request. When a
single-copied task exits, any queued run requests are executed. If a run request is issued
for a task that is not currently active, the task is activated automatically.

Execution of Message and Run Receiver Programs

Execution of Message Receiver Programs -- When a task is active and has a message
receiver established, it can receive messages sent from other tasks. A message sent to
this task causes a software (task) interrupt entry to the established message receiver.

Execution of Run-Receiver Programs -- When a valid task is executed as a result of a run
request sent by another task, it is entered at its cataloged transfer address. A run
receiver executes at the normal task execution (base) level.

Obtaining the Passed Parameters

Obtaining Message Parameters -- When the message receiver is entered, register one
contains the address of the message queue entry in memory pool. The task can retrieve
the message directly from memory pool or call a receiver service (M.GMSGP) to store
the message into the designated receiver buffer. If the M.GMSGP service is utilized, the
task must present the address of a five word Parameter Receive Block (PRB) as an
argument with the call.

Obtaining the Run-request Parameters -- When the run receiver is entered, register one
contains the address of the run request queue entry in memory pool. The task can
retrieve the run request parameters directly from memory pool or call a receiver service
(M.GRUNP) to store the run-request parameters into the designated receiver buffer. If
the M.GRUNP service is utilized, the task must present the address of a five word
Parameter Receive Block (PRB) as an argument with the call.

MPX-32, Vol. 1
1-24 System Description Technical Manual

C

O

Exiting the Receiver Program

Exiting the Message Receiver -- When processing of the message is complete, the

message interrupt level must be exited by calling the M.XMSGR service. When
M.XMSGR is called, the address of a two word Receiver Exit Block (RXB) must be
provided. The RXB contains the address of the return parameter buffer and the number
of bytes (if any) to be returned to the sending task. The RXB also contains a return
status byte to be stored in the Parameter Send Block (PSB) of the sending task. After
message exit processing is complete, the message-receiver queue for this task is
examined for any additional messages to process. If none exist, a return to the base level
interrupted context is performed.

Exiting the Run Receiver Task -- When run-request processing is complete, the task uses

either the standard exit call (M.EXIT) or the special run-receiver exit service
(M.XRUNR). If the standard exit service (M.EXIT) is used to exit the run-receiver task,
no user status or parameters are returned. Only completion status is posted (in the
scheduler status word) of the Parameter Send Block (PSB) in the sending task. After
completion processing for the run request is accomplished, the run-receiver queue for
this task is examined, and any queued run request causes the task to be re-executed. If
the run-receiver queue for this task is empty, a standard exit is performed.

If the special exit (M.XRUNR) is used to exit the run-receiver task, the address of a two
word Receiver Exit Block (RXB) must be provided as an argument with the call. The
RXB contains the address of the return parameter buffer and the number of bytes (if any)
to be returned to the sending task. The RXB also contains a return status byte to be
stored in the Parameter Send Block (PSB) of the sending task. After completion
processing for the run request is accomplished, the exit control options in the RXB are
examined. If the wait exit option is used, the run-receiver queue for this task is
examined for any additional run requests to be processed. If none exist, the task is put
into a wait state, waiting for the receipt of new run requests. Execution of the task does
not resume until such a request is received. If the terminate exit option is used, any
queued run requests are processed. If the run receiver is empty, however, a standard exit
is performed.

Waiting for the Next Request

In addition to the wait options described under "Exiting the Receiver Program", a special
message-wait call is provided. When operating at the base execution level, a task that
has established a message receiver can invoke a service call (M.SUSP) to enter a wait
state until the next message is received.

A task can also make use of the M,ANYW service from the base software level. The
M.ANYW service is similar to M.SUSP. However, the M.SUSP wait state is ended only on
receipt of a message interrupt, timer expiration, or resume. The M.ANYW wait state is
ended upon receipt of any message, end-action, or break software interrupt.

1.6.2 Sending Task Services

Sending the Request

Message Send Service -- A task can send a message to another active task that has a

message receiver established. The sending task must identify the destination task by
task activation sequence number. When the send message service (M.SMSGR) is called,

MPX-32, Vol. I
Technical Manual System Description 1-25

the address of a Parameter Send Block (PSB) must be provided as an argument. The PSB
format allows for the specification of the message to be sent, any parameters to be
returned, scheduler and user status, and the address of a user end-action routine. No-
wait and no call back mode control options are also provided.

Send Run Request Service -- A task can send a run request to any active or inactive task,
identifying the task by load module name or task number if the task is multicopied and
waiting for a run request. When the run-request service (M.SRUNR) is called, the
doubleword-bounded address of a Parameter Send Block (PSB) must be provided as an
argument. The PSB format allows for the specification of the run-request parameters to
be sent, any parameters to be returned, scheduler and user status, and the address of a

user end-action routine. No-wait and no call back mode control options are also
provided.

Waiting for Request Completion

Waiting for Message Completion -- A message can be sent in the wait or no-wait mode.
If the wait mode is used, execution of the sending task is deferred until processing of the
message by the destination task is complete. If the no-wait mode is used, execution of
the sending task continues immediately after the request is queued. The operation in
progress bit in the scheduler status field of the PSB is examined to determine
completion. A sending task issues a series of no-wait mode messages followed by a call
to the M.ANYW system wait service. This allows a task to wait for the completion of
any no-wait mode messages previously sent. The completion of such a message causes
resumption at the point after the M,ANYW call.

Waiting for Run-request Completion -- Waiting for a run-request completion follows the
same form and has the same options as waiting for message completion.

End-action Processing

Message End-action Processing -- User-specified end-action routines associated with no-
wait mode message-send requests are entered at the end-action software interrupt level
when the requested message processing is complete. Status and return parameters are

posted as appropriate. When end-action processing is complete, the M.XMEA service
must be called to exit the end-action software interrupt level.

Run-request End-action Processing -- Run-request end-action processing follows the
same form and has the same options as message end-action processing. The only
difference is that the M.XREA service is used instead of M.XMEA.

(MPX-32, Vol. I
1-26 System Description Technical Manual

Parameter Send Block (PSB)

The Parameter Send Block (PSB) is used to describe a send request issued from one task
to another. The same PSB format is used for both message and run requests. The
address of the PSB (doubleword bounded) must be presented as an argument when either
the M.SMSGR or M.SRUNR services are invoked.

Word O 7 8 15 16 23 24 31
0 Load module or executable image name (PSB.LMN) or zero if activation
(or task number (PSB.TSKN) if message or run request to
multicopied task)
1 Load module or executable image name, pathname vector, or RID vector
if activation (or zero if message or run request to
multicopied task)
Priority Reserved Number of bytes
2 (PSB.PRI) to be sent (PSB.SQUA)
3 Reserved Send buffer address (PSB.SBA)
3 Return parameter Number of bytes
buffer length in bytes actually returned (PSB.ACRP)
(PSB.RPBL)
5 Reserved Return parameter buffer address (PSB.RBA)
6 Reserved No-wait request end action address (PSB.EAA)
Completion Processing User Options
7 status start status (PSB.OPT)
(PSB.CST) status (PSB.UST)
(PSB.IST)
Word O
Bits 0-31 Load module or executable image name - contains characters one
through four of the name of the load module or executable image to
receive the run request or
Task number - contains the task number of the task to receive the
message or the task number of the multicopied load module or
executable image to receive the run request.
Word 1
Bits 0-31 Load module or executable image name - contains characters five

through eight of the name of the load module or executable image to
receive the run request, or zero if the message or run request is sent
to multicopied load module or executable image.

MPX-32, Vol. I
Technical Manual

System Description

1-27

Word 2

Bits 0-7

Bits 8-15

Bits 16-31

Word 3
Bits 0-7
Bits 8-31

Word 4

Bits 0-15

Bits 16-31

Word 5

Bits 0-7
Bits 8-31

Word 6

Bits 0-7
Bits 8-31

Word 7

Bits 0-7

1-28

Priority - contains the priority of the send request (1 to 64). If the
value of this field is zero, the priority used defaults to the execution
priority of the sending task. This field is only examined if the sending
task is not a privileged program.

Reserved

Number of bytes to be sent - specifies the number of bytes to be
passed (0 to 768) with the message or run request.

Reserved

Send buffer address - contains the word address of the buffer
containing the parameters to be sent.

Return parameter buffer length - contains the maximum number of
bytes (0 to 768) that may be accepted as returned parameters.

Number of bytes actually returned - set by the send message or run
request service upon completion of the request.

Reserved

Return parameter buffer address - contains the word address of the
buffer where any returned parameters are stored.

Reserved

No-wait request end-action address - contains the address of a user
routine to be executed at a software interrupt level upon completion
of the request.

Completion status - contains completion status information posted by
the operating system as follows:

Bit Meaning if Set
0 Operation in progress (PSB.OIP)
1 Destination task was aborted before completion of

processing for this request (PSB.DTA)

2 Destination task was deleted before completion of
processing for this task (PSB.DTD)

MPX-32, Vol. I

System Description Technical Manual

C
s

AN
-

Bits 8-15

MPX-32, Vol. 1
Technical Manual

6-7

Return parameters truncated -- attempted return
exceeds return parameter buffer length (PSB.RPT)

Send parameters truncated -- attempted send exceeds
destination task receiver buffer length (PSB.SPT)

User end-action routine not executed because of task
abort outstanding for this task (can be examined in

abort receiver to determine incomplete operation)
(PSB.EANP)

Reserved

Processing start (initial) status - contains initial status information
posted by the operating system as follows:

Bit

N = O

W

10

11
12
13

14
15

Meaning if Set

Normal initial status (PSB.IST)
Message request task number invalid (PSB.TSKE)

Run request load module or executable image name not
found (PSB.LMNE)

Reserved

File associated with run request load module or
executable image name does not have a valid load
module or executable image format (PSB.LMFE)

Dispatch Queue Entry (DQE) space is unavailable for
activation of the load module or executable image
specified by a run request (PSB.DQEE)

An 1/O error was encountered while reading the
directory to obtain the file definition of the load module
or executable image specified in a run request
(PSB.SMIO)

An I/O error was encountered while reading the file
containing the load module or executable image
specified in a run request (PSB.LMIO)

Memory unavailable

Invalid task number for run request to multicopied load
module or executable image in RUNW state

Invalid priority specification. An unprivileged task can
not specify a priority which is higher than its own
execution priority (PSB.PRIE).

Invalid send buffer address or size (PSB.SBAE)
Invalid return buffer address or size (PSB.RBAE)

Invalid no-wait mode end action routine address
(PSB.EAE)

Memory pool unavailable (PSB.MPE)
Destination task receiver queue is full (PSB.DTQF)

System Description 1-29

Bits 16-23 User status - defined by the destination task. _(\\;..

Bits 24-31 Options - contains user-request control specification as follows: Ay
Bit Meaning if Set
24 Request is to be issued in no-wait mode (PSB.NWM)
25 Do not post completion status or accept return
parameters. This bit is examined only if bit 24 is set.
When this bit is set, the request is said to have been
issued in the no call back mode. (PSB.NCBM).
—
N

C
‘MPX-32, Vol. 1
1-30 System Description Technical Manual

Parameter Receive Block (PRB)

The Parameter Receive Block (PRB) is used to control the storage of passed parameters
into the receiver buffer of the destination task. The same format PRB is used for
message and run requests. The address of the PRB must be presented when the
M.GMSGP or M.GRUNP services are invoked by the receiving task.

Word 0 7 8 15 16 31
0 Status Parameter receiver buffer address
(PRB.ST) (PRB.RBA)
1 Receiver buffer length Number of bytes actually received
(PRB.RBL) (PRB.ARQ)
2 Owner name of sending task, word one (PRB.OWN)
3 Owner name of sending task, word two
4 Task number of sending task (PRB.TSKN)
Word 0
Bits 0-7 Status - contains status as follows:
Bit Meaning if Set

0] Normal status
1 Invalid PRB address
2

Invalid receiver buffer address or size detected during
parameter validation (PRB.RBAE)

3 No active send request (PRB.NSRE)
4 Receiver buffer length exceeded (PRB.RBLE)
5-7 Reserved
Bits 8-31 Parameter receiver buffer address - contains the word address of

the buffer where any returned parameters are stored.

Word 1
Bits 0-15 Receiver buffer length - contains the length of the receiver buffer
(0 to 768 bytes).
Bits 16-31 Number of bytes actually received - set by the operating system and

is a maximum equal to the receiver buffer length.

MPX-32, Vol. 1
Technical Manual System Description 1-31

Words 2,3

Bits 0-63

Word 4

Bits 0-31

1-32

Owner name of sending task - set by the operating system to contain
the owner name of the task which issued the parameter send
request.

Task number of sending task - set by the operating system to contain
the task activation sequence number of the task which issued the
parameter send request.

MPX-32, Vol. I
System Description Technical Manual

C

Receiver Exit Block (RXB)

The Receiver Exit Block (RXB) is used to control the return of parameters and status
from the destination (receiving) task to the task that issued the send request. It is also
used to specify receiver exit options. The same format RXB is used for both messages
and run requests. The address of the RXB must be presented as an argument when either
the M. XMSGR or M. XRUNR services are called.

Word 0 7 8 15 16 31
0 Return status Return parameter buffer address (RXB.RBA)
(RXB.ST)
1 Options Reserved Number of bytes to be
(RXB.OPT) returned (RXB.RQ)
Word 0
Bits 0-7 Return status - contains status as defined by the receiver task. Used

to set the user status byte in the Parameter Send Block (PSB) of the
task which issued the send request.

Bits 8-31 Return parameter buffer address - contains the word address of the

buffer containing the parameters which are to be returned to the task
which issued the send request.

Word 1
Bits 0-7 Options - contains receiver exit control options as follows:
Value Meaning
0 Wait for next run request (M. XRUNR)
Return to point of task interrupt (M.XMSGR)
1 Exit task, process any additional run requests. If none
exist, perform a standard exit (M.XRUNR)
Not applicable for M. XMSGR
Bits 8-15 Reserved

Bits 16-31 Number of bytes to be returned - contains the number of bytes (0 to
768) to be returned on a message or receiver run exit.

MPX-32, Vol. I
Technical Manual System Description ‘ 1-33

Message or Run Request Queue Entry (MRRQ) R

The Message or Run Request Queue Entry (MRRQ) is generated by the system to process
a send request. After the MRRQ has been manufactured by the send service, it is
attached to the appropriate queue slot in the DQE of the destination task. When the
receiver program is entered, register one contains the address of the MRRQ in memory
pool. The receiver program can reference the MRRQ directly, without issuing a
M.GRUNP or M.GMSGP service call. The same format MRRQ is used for both messages
and run requests.

Word 0 78 15 16 23 24 31
0 String forward address (MQ.SF)
1 String backward address (MQ.SB)
2 Priority Address of Parameter Send Block (PSB)
(MQ.PR) (MQ.PSBA)
3 Task number of sending task (MQ.TNST)
4 Postprocessing service PSD word one, or

sending task owner name word one (MQ.PPSD)

Postprocessing service PSD word two, or

5 sending task owner name word two (MQ.PPSD) P
. \
Passed parameter Return parameter s
6 quantity in bytes buffer length in bytes
or number of bytes of or number of actual
storage space (MQ.PPQ) return parameters (MQ.RBL)
7 Completion Initial User Options--
status-- status-- status-- PSB format
PSB format PSB format PSB format (MQ.OPT)
(MQ.CST) (MQ.IST) (MQ.UST)

Variable length storage area for passed and returned parameters

C

MPX-32, Vol. 1
1-34 System Description Technical Manual

() Word 0

Bits 0-31 String forward address - contains the address of next entry of top-to-
bottom list.

Word 1
Bits 0-31 String backward address - contains address of next entry in bottom-to-
top list.
Word 2
Bits 0-7 Priority - contains the priority (1 to 64) of this request.
Bits 8-31 Address of Parameter Send Block (P°B) - contains the logical address
of the PSB in the address space of the task which initiated the request.
Word 3
Bits 0-31 Task number of requesting task - contains the task activation sequence
number of the task which issued the request.
Words 4-5
Bits 0-63 Postprocessing service PSD - contains the PSD of the appropriate
postprocessing service for the task which issued the request or contains
(the sending task's owner name.
Word 6
Bits 0-15 Passed parameter quantity - contains the number of bytes sent to the

destination task.

Bits 16-31 Return parameter buffer length - contains the length in bytes of the
return parameter buffer in the task which issued the request.

Word 7
Bits 0-15 Scheduler status - contains status information to be posted in the
scheduler status field of the PSB upon request completion. See PSB
format.
Bits 16-23 User status - contains status as defined by the destination task.
Bits 24-31 Options - contains user request control specifications as follows:
Bit Meaning if Set
24 Request is in no-wait mode
25 Request is in no call back mode (no wait, no status, no

return parameters)

MPX-32, Vol. I
Technical Manual System Description 1-35

Messages and Run Request Services Summary

The following table is provided as a summary of message and run request services
provided by the MPX-32 system.

Run Request Message Function
Services Services
Receiver Services
N/A M.RCVR recvaddr Establish receiver address
M.GRUNP prbaddr M.GMSGP prbaddr Get parameters
M. XRUNR rxbaddr M. XMSGR rxbaddr Exit receiver
M?I;XIT
N/A M.ANYW timel Wait for receipt of next

or message
M.SUSP taskno,timel

Sender Services

M.SRUNR psbaddr M.SMSGR psbaddr Send request
M.ANYW timel M.ANYW timel Wait for any request
M.EAWAIT timel completion
M. XREA M.XMEA Exit user end action
service

Argument Description

recvaddr Address of receiver

prbaddr . Address of Parameter Receive Block (PRB)

rxbaddr Address of Receiver Exit Block (RXB)

psbaddr Address of Parameter Send Block (PSB)

taskno Contains zero

timel Contains zero if indefinite wait, or contains a negative number

of time units to be used as a wait time-out value
MPX-32, Vol. 1

1-36 System Description Technical Manual

1.7 Device Address Specification

Device addresses are specified using a combination of three levels of identification:
device type, device channel/controller address, and device address/subaddress.

A device may be specified using the generic device type only, which will result in
allocation of the first available device of the type requested.

A second method of device specification is achieved by using the generic device type and
specifying the channel/controller address which results in allocation of the first available
device of the type requested on the channel/controller specified.

The third method of device selection requires specification of the device type,
channel/controller, and device address/subaddress. This method allows specification of a
specific device.

Examgles

Type 1 - Generic device class:
ASSIGN OUT TO DEV=M9

In this example, the file associated with logical file code OUT is allocated to any 9-track
tape unit on any channel.

Type 2 - Generic device class and channel/controller:
ASSIGN OUT TO DEV=M910

In this example, the file associated with logical file code OUT is allocated to the first

available 9-track tape unit on channel ten. The specification is invalid if a 9-track tape
unit does not exist on the channel.

Type 3 - Specific device request:
ASSIGN CUT TO DEV=M91001

In this example, the file associated with logical file code OUT is allocated to the 9-track
tape unit 01 on channel ten. The specification is invalid if unit 01 on channel ten does
not exist or is not a 9-track tape.

GPMC/GPDC devices are specified in keeping with the general structure as defined. For
instance, the CRT at subaddress 04 on GPMC 01 whose channel address is 20 would be
identified as follows:

ASSIGN OUT TO DEV=TY2004

A special device type, NU, is available for null device specifications. Files accessed
using this device type generate an end-of-file upon attempt to read and normal
completion upon attempt to write.

MPX-32, Vol. I
Technical Manual System Description 1-37

Assignment of logical file codes to the operator console is achieved through usage of the

device type CT.

A description of device selection possibilities are as follows:

Disc

DC

DM
DM08
DM0801
DM0002
DF
DF04
DF0401

Tape

MT

M9
M910
M91002

Card Equipment

CR
CR78
CR7800

Line Printer

LP
LP7A
LP7A00
LP7EAD

1-38

Any disc except memory disc

Any moving head or memory disc
Any moving head disc on channel 08
Moving head disc 01 on channel 08
Memory disc 02 on channel 00

Any fixed head disc

Any fixed head disc on channel 04
Fixed head disc 01 on channel 04

Any magnetic tape

Any 9-track magnetic tape

Any 9-track magnetic tape on channel 10
9-track magnetic tape 02 on channel 10

Any card reader
Any card reader on channel 78
Card reader 00 on channe! 78

Any line printer

Any line printer on channel 7A

Line printer 00 on channel 7A

Serial printer A0 on ACM channel 7E

System Description

MPX-32, Vol. 1

Technical Manual

o
e

(MPX-32 Device Type Codes

Dev Type Device
Code Mnemonic Device Description
00 CT Operator console (not assignable)
01 DC Any disc unit except memory disc
02 DM Any moving head or memory disc
03 DF Any fixed head disc
04 MT Any magnetic tape unit
05 M9 Any 9-track magnetic tape unit
08 CR Any card reader
0A LP Any line printer
0B PT Any paper tape reader punch
oC TY Any teletype compatible device (other than console)
0D CT Operator console (assignable)
OE FL Floppy disc
OF NU Any null device
10 CA Communications adapter
11 uo User-supplied device
12 Ul User-supplied device
13 U2 User-supplied device
14 u3 User-supplied device
15 U4 User-supplied device
16 U5 User-supplied device
17 ué User-supplied device
. 18 u7 User-supplied device

() 19 us User-supplied device
1A U9 User-supplied device
1B LF Line printer/floppy controller (used only with SYSGEN)
N/A ANY Any nonfloppy disc except memory disc

1.8 CPU Scheduling

The MPX-32 CPU scheduler is responsible for allocating CPU execution time to active
tasks. Tasks are allocated CPU time based on execution priority and execution
aligibility. Execution priority is specified when a task is cataloged into the system.
Execution eligibility is determined by the task's readiness to run.

Execution Priorities

The MPX-32 system provides 64 levels of execution priority. These priority levels are
divided into two major categories. Real-time tasks operate in the priority range 1
to 54. Time-distribution tasks operate in the priority range 55 to 64.

MPX-32, Vol. I
Technical Manual System Description 1-39

Real-time Priority Levels (1 to 54)

Scheduling of real-time tasks in MPX-32 occurs on a strict priority basis. The system
does not impose time-slice, priority migration, or any other scheduling algorithm that
interferes with the execution priority of a real-time task. Execution of an active real-
time task at its specified priority level is inhibited only when it is ineligible for execution
(not ready to run). Execution of a real-time task can always be pre-empted by a higher
priority real-time task that is ready to run.

Time-distribution Priarity Levels (55 to 64)

For tasks executing at priority levels 55 to 64, MPX-32 provides a full range of priority
migration, situational priority increment, and time-quantum control.

Priority Migration

The specified execution priority of a time-distribution task is used as the task's base
execution priority. Each time-distribution task's current execution priority is determined
by the base priority level as adjusted by any situational priority increment. The current
execution priority is further adjusted by increasing the priority by one level whenever
execution is pre-empted by a higher priority time-distribution task, and decreasing the
priority whenever the task gains CPU control. The highest priority achievable by a time-
distribution task is priority level 55. The lowest priority is the task's base execution
priority level.)

Situational Priority Increments

Time-distribution tasks are given situational priority increments in order to increase
program responsiveness. The effect of situational priority increments is to give
execution preference to tasks that are ready to run after having been in a natural wait
state. A task that is CPU bound migrates toward its base execution priority. Situational
priority increments are invoked when a task is unlinked from a wait-state list and
relinked to the ready-to-run list.

Situation Priority Increment
Terminal input wait complete Base level + 2

I/O wait complete Base level + 2
Message (send) wait complete Base level + 2

Run request (send) complete Base level + 2
Memory (inswap) wait complete Base level + 3
Pre-empted by real-time task Level 55

MPX-32, Vol. I
1-40 System Description Technical Manual

S

C

Time-Quantum Controls

The MPX-32 system allows for the specification of two time-quantum values at system
generation time. If these values are not specified, system default values are used. The
two quantum values are provided for scheduling control of time-distribution tasks. The
first quantum value (stage 1) indicates the minimum amount of CPU execution time
guaranteed to a task before pre-emption by a higher priority time-distribution task. The
stage 1 quantum value is also used as a swap inhibit quantum after inswap. The second
quantum value represents the task's full-time quantum. The difference between the first
and second quantum values defines the execution period called quantum stage 2. During
quantum stage 2, a task is pre-empted and/or outswapped by any higher priority task.
When a task's full time-quantum has expired, it relinks to the bottom of the priority list
at base execution priority.

Time-quantum accumulation is the accumulated sum of actual execution times used by
this task. A task's quantum accumulation value resets when the task voluntarily
relinquishes CPU control; for example, suspend, wait 1/0, etc.

State Chain Management

The current state of a task like ready to run or waiting for 1/O is reflected by the linkage
of the dispatch queue entry associated with the task into the appropriate state chain.
The state queues are divided into two major categories: ready to run and waiting. The
ready-to-run category is subdivided by priority, with a single queue for the real-time
priorities and a separate queue for each of the time-distribution priority levels. The
waiting category is subdivided according to the resource or event required to make the
task eligible for execution.

MPX-32, Vol. I
Technical Manual System Description 1-41

2.
3.
4.
5.
6.
7.
8.

10.
11.
12,
13.
14.

15.
16.
17.
18.
19.

20.
21.
22.

23.

24,
25.
26.
27.
28.

1-42

MPX-32 State Queues

Ready-to-Run Queues

Current CPU task (in execution) - CURR
Current IPU task (in execution) - CIPU
IPU requesting state - RIPU

Real-time priority levels (1-54) - SQRT
Time-distribution priority level 55 - SQ55
Time-distribution priority level 56 - SQ56
Time-distribution priority level 57 - SQ57
Time-distribution priority level 58 - SQ58
Time-distribution priority level 59 - SQ59
Time-distribution priority level 60 - SQ60
Time-distribution priority level 61 - SQ61
Time-distribution priority level 62 - SQ62
Time-distribution priority level 63 - SQ63
Time-distribution priority level 64 - SQ64

Wait Mode Operation Queues

Wait mode interactive input - SWTI
Wait mode 1/O - SWIO

Wait mode send message - SWSM
Wait mode send run request - SWSR

Wait mode low speed output (not implemented) - SWLO

Execution Wait Queues

Suspended waiting for message interrupt, timer expiration, or resume - SUSP

Waiting for run request or timer expiration - RUNW
Operator hold, waiting for continue - HOLD

Wait for Any Operation Complete Queue

Waiting for completion of any no-wait I/O, no-wait message, no-wait

run request, or any message interrupt or break - ANYW

Waiting for Resource Queues

Waiting for disc space - SWDC
Waiting for peripheral device - SWDV
Reserved

Waiting for memory - MRQ

Waiting for memory pool - SWMP

System Description

MPX-32, Vol. I
Technical Manual

N

e

1.9 FAT/FPT and Blocking Buffer Allocation

During the task allocation process, separate areas are reserved in a task's TSA for
FAT/FPT pairs and blocking buffers. The size of each area is fixed for the duration of a
task's execution. The size of the FAT/FPT area limits the number of file codes that a
task can have allocated concurrently. The size of the blocking buffer area limits the
number of file codes assigned to blocked devices or files that a task can allocate
concurrently. The number of entries in each area is established as follows.

FAT/FPT Area

Nonshared task -- one FAT and FPT entry for each cataloged assignment, plus one entry
for each TSM assignment that does not override a cataloged assignment, plus the number
specified on the cataloger FILES directive.

Shared task -- the number specified on the cataloger FILES directive.

Blocking Buffer Area

Nonshared task -- from the assignments resulting from merging cataloger and TSM as-
signments, one buffer for each $ASSIGN; plus one buffer for each $ASSIGN to a magnetic
tape or disc unit on which the unblocked option is not specified, plus one buffer for each
$ASSIGN plus the number specified on the cataloger BUFFERS directive.

Shared task -- the number specified on the cataloger BUFFERS directive.

Cataloger and TSM $ASSIGN directives are modified by the addition of an unblocked
specification as follows:

$ASSIGN 1fc TO file BLOCKED=N

The following cataloger directives are added:
FILES number

number specifies the maximum number of dynamically allocated file codes that a
nonshared task can allocate concurrently. It specifies the maximum number of file codes
that a shared task can have allocated concurrently.

BUFFERS number

number specifies the maximum number of dynamically allocated file codes assigned to
blocked files or devices that a nonshared task can allocate concurrently. It specifies the
maximum number of file codes assigned to blocked files or devices that a shared task can
allocate concurrently.

Files and buffers override parameters are specified to the Parameter Task Activation
(M.PTSK) system service. These parameters allow addition of TSM FILES and BUFFERS
directives if required by a future "load and go" capability.

MPX-32, Vol. I
Technical Manual System Description 1-43

1.10 Indirectly Connected Interrupts

An indirectly connected interrupt is an interrupt that is associated with an MPX-32
task. When the interrupt occurs, the associated task is resumed. An interrupt is
declared as indirectly connected at system generation (SYSGEN) time. This declaration
causes SYSGEN to generate an Indirectly Connected Task Linkage Block (ITLB). The
ITLB is permanently associated with the specified interrupt level, but only becomes
associated with an MPX-32 task when the M.CONN system service is invoked. A task can
be disconnected from an interrupt level by invoking the M.DISCON system service.

Connect Task to Interrupt Service (M.CONN)

The M.CONN system service associates an MPX-32 task with an external interrupt that
was declared at system generation time to be indirectly connected. When called,
M.CONN is presented the priority level of the interrupt and the task activation sequence
number (TASKNO) of the task. The TASKNO is first validated to ensure that it is
currently active and has either the same owner name as the calling task, or the owner
name of the calling task is privileged or is not restricted from access to tasks of a
different owner. If so, the M.CONN service next checks to see if the specified task is
already connected to an interrupt. DQE.ILN in the DQE contains the interrupt priority
level if the task is already connected. If the task is not previously connected, the
M.CONN service searches the Indirectly Connected Task Linkage Table (ITLT) to find the
linkage block (ITLB) associated with this interrupt. If one exists and is not already
connected, the DQE address of the task being linked is stored in word one of the ITLB to
reflect the linkage. DQE.ILN in the DQE is set to contain the interrupt priority level.

Note: The task is automatically disconnected from the interrupt on abort, delete, or
exit.

Disconnect Task from Interrupt Service (M.DISCON)

The M.DISCON system service disconnects an MPX-32 task from an external interrupt it
had previously been connected to. When called, M.DISCON is presented the task
activation sequence number (TASKNO) of the task as an argument with the call. If the
specified task is not connected to an interrupt, DQE.ILN in the DQE will be equal to zero
and the request will be ignored. Otherwise, DQE.ILN contains the external interrupt
priority level. M.DISCON uses this priority level to locate the linkage block (ITLB) in the
linkage table (ITLT). The DQE address (word one of the ITLB) is cleared to mark the
level as disconnected. DQE.ILN is cleared in the DQE of the specified task.

Indirectly Connected Task Linkage Table (ITLT)

The Indirectly Connected Task Linkage Table (ITLT) is a variable length table built by
the system generation program (SYSGEN). It contains an entry for each interrupt
specified as being indirectly connectable. An entry is called an Indirectly Connected
Task Linkage Block (ITLB) and is 24 words in length. The address of the ITLT is
contained in C.ITLT. The number of entries in ITLT is contained in C.NITI. Both C.ITLT
and C.NITI are initialized by SYSGEN.

MPX-32, Vol. 1
1-44 System Description Technical Manual

2N

AN

(\ Indirectly Connected Task Linkage Block (ITLB)

An entry in the indirectly connected task linkage table is called an Indirectly Connected
Task Linkage Block (ITLB). An ITLB is 24 words long and is used to associate an external

interrupt with an indirectly connected task.

Word 0 31
0 Priority level [DATAW X'YVY"
1 DQE address of indirectly [DATAW 0]
connected program
2 Old PSD word one [DATAW 0]
3 Old PSD word two [DATAW 0]
4 New PSD word one [GEN 1/1, 12/0, 19/W($+2W)]
5 New PSD word two [GEN 1/1, 14/0, 1/1, 1/0, 1/0, 14/0]
6 Increrr]ent gloI?al interrupt [ABM 31,C.GINT]
count instruction
7 Save register instruction [STF RO,$+9W]
(’ \‘\; 8 Branch and link to ICP routine [BL ICP]
P | forsexecs eal LA X2, $+7W]
10 Old PSD for S.EXECS call [LD Ré6, $-8W]
11 Block external interrupts [BET]
12 Deactivate interrupt [DAI X'YY"]
13 Branch back for S.EXECS call [BL ICP.20]
ig Reserved for future use
16 Register save area
237 -~

C

MPX-32, Vol. I

Technical Manual

System Description

1-45

Word O

Bits 0-31

Word 1

Bits 0-31

Words 2 to 3

Bits 0-63

Words 4 to 5
Bits 0-63

Word 6

Bits 0-31

Word 7

Bits 0-31

Word 8

Bits 0-31

Words 9 to 13

Words 14 to 15

Words 16 to 23

1-46

Priority level - set by SYSGEN to contain the priority level of
the associated interrupt.

DQE address of indirectly connected program - contains the
Dispatch Queue Entry (DQE) address of the task to be resumed
on occurrence of this interrupt. Initially set equal to zero by
SYSGEN. Initialized by M.CONN system service.

Old PSD - contains the old PSD slot of the interrupt control
block. Used for storage of the PSD associated with the
interrupted context. Initially set equal to zero by SYSGEN. The
dedicated interrupt location (IVL) is initialized by SYSGEN to
contain the address of word two of the ITLB.

New PSD - contains the new PSD slot of the interrupt control
block to be used on occurrence of this interrupt. Causes
execution to begin at ITLB word six in privileged mode,
unblocked state, with old map status retained.

Increment global interrupt instruction - contains an add bit in
memory instruction to increment the global interrupt count.
Execution will begin at this location upon occurrence of the
associated interrupt. It must be the first instruction executed in
ICP. This location is initialized by SYSGEN to contain an ABM
31,C.GINT.

Save registers instruction - contains a store file instruction to
save all eight registers in words 16 to 23 of the ITLB. This
location is initialized by SYSGEN to contain an STF R0,$+9W.

Branch and link to ICP routine - executed after the register save
instruction on occurrence of the associated interrupt. Transfers
control to the single-copied ICP routine. This location is
initialized by SYSGEN to contain a BL ICP.

Branch back for S.EXECS5 call returns control to this location
after S.EXEC14 is called in the ICP routine. Set-up is made for
exiting the interrupt; then control is transferred back to ICP for
the S.EXECS call.

Reserved for future use

Register save area

MPX-32, Vol. I

System Description Technical Manual

>
N

Indirectly Connected Interrupt Program (H.ICP)

The Indirectly Connected Interrupt Program (H.ICP) is a single-copied routine that
processes all indirectly connected external interrupts. It is entered in unblocked mode
with the end address (+1W) of the linkage block (ITLB) in register zero. The global
interrupt count will have been incremented within the ITLB and the registers from the
interrupted context will have been stored in words 16 to 23 of the block. When ICP is
entered, it checks ITLB word one to verify connection of the interrupt to an MPX-32
task. If the interrupt is not connected, it is ignored and ICP transfers back to the ITLB
to exit the interrupt. If ITLB word one contains a DQE address, the associated task is
resumed by calling S.EXEC14, which returns control to word nine of the ITLB. Set-up is
made for exiting the interrupt within the ITLB; then execution is transferred back to
ICP.20 for the S.EXECS exit.

H.ICP TRR RO,R1 ITLB END ADDRESS TO R1
SuUI R1,8W BACK UP TO DQE POINTER
LW R2,0,R1 GET DQE ADDR OF IND CONN TASK
BCF ZR,ICP.10 CONTINUE IF CONNECTED
TRSW RO BRANCH BACK TOITLB TOEXIT
ICP.10 BU S.EXECI14 RESUME PROGRAM
ICP.20 BL S.EXEC5

1.11 Miscellaneous System Macros

L11.1 M.BACK

This macro backspaces the current address of a blocked file by the specified number of
file or record marks.

Calling Sequence:
M.BACK addr, [R] [,num]
addr is the FCB address
R specifies record. If not specified, the default is file.
num is the number of record or file marks to be backspaced. The number specified

must be word scaled, for example, one word for one record. If not supplied, the
current contents of register four are used.

1.11.2 M.CALL
This macro generates a supervisor call instruction.
Calling Sequence:

M.CALL name,num

MPX-32, Vol. I
Technical Manual System Description 1-47

name is the name of a system module
num is an entry point number (1,2,3,...) within the system module
1.11.3 M.CLSE

This macro marks a file closed to subsequent service. An end-of-file mark can be
written and a rewind can be performed.

Calling Sequence:

addr
EOF

REW

M.CLSE addr , [EOF] , [REW]

F CB address

specifies an end-of-file mark is to be written

specifies the file is to be rewound

1.11.4 M.DFCB

This macro creates a File Control Block (FCB) and sets the appropriate parameters and
specifications common to I/O requests that are issued for the file.

Calling Sequence:

M.DFCB label,lfc ,[count], [addrl], [addr2], [addr3],

label

Ifc

count
addrl
addr2

addr3

1-48

[NWT], [NER], [DFI],

[NST], [RAN], ASC [LDR] [INT [EVN] ,555]
BIN |, | NLDJ, LPck], | opbD]l,800

is the ASCII character string to be used as the symbolic label for the address of
the FCB

is the one- to three-character ASCII string to be used as the logical file code in
the FCB

is the transfer count in bytes
is the data transfer address
is the error return address

is the random access address expressed as the hexadecimal block number (zero
origin) relative to the base of the random access file

MPX-32, Vol. I
System Description Technical Manual

NWT is the no-wait I/O specification indicator

NER is the inhibit peripheral error processing indicator
DFI is the inhibit data formatting indicator

NST is the inhibit status testing indicator

RAN is the random access mode indicator

ASC or BIN is the forced ASCII or forced binary mode specification for read or punch
operations performed when the file code for this file is assigned to a card
reader

LDR or NLD s the skip leader or do not skip leader specification when the file code for
this file is assigned to a paper tape reader/punch device

INT or PCK is the interchange or packed made specification when the file code for
this file is assigned to a magnetic tape device

EVN or ODD is the even or odd parity specification when the file code for this file is
assigned to a magnetic tape device

556 or 800 is the 556 or 800 BPI tape density specification when the file code for this
file is assigned to a magnetic tape device

1.11.5 M.DFCBE

This macro creates an expanded File Control Block (FCB) and sets the appropriate
parameters and specifications common to I/O requests that are issued for the file.

Calling Sequence:
M.DF CBE label, 1fc , [count], [addrl], [addr2], [addr3], [NWT], [NER], [DFI],
[NsT], [RAN] ,[ASC] ,[LER] ,[INT] , [EVN] , [556] ,
BIN NLD PCK 0obD 800
[addr4] , [addr5] , [addré6]

label is the ASCII character string to be used as the symbolic label for the
address of the FCB

Ifc is the one- to three-character ASCII string to be used as the logical file
code in the FCB

count is the transfer count in bytes

MPX-32, Vol. 1 ;
Technical Manual System Description 1-49

addrl
addr2

addr3

NWT

NER

DFI

NST

RAN

ASC or BIN

LDR or NLD

INT or PCK

EVN or ODD

556 or 800

addr4
addr5

addré6

1.11.6 M.EIR

is the data transfer address
is the wait I/O error return address

is the random access address expressed as the hexadecimal block number
(zero origin) relative to the base of the random access file

is the no-wait I/O specification indicator

is the inhibit peripheral error processing indicator

is the inhibit data formatting indicator

is the inhibil; status testing indicator

is the random access mode indicator

is the forced ASCII or forced binary mode specification for read
operations performed when the file code for this file is assigned to a card

reader

is the specify skip leader or do not skip leader specification when the file
code for this file is assigned to a paper tape reader/punch device

is the interchange or packed mode specification when the file code for
this file is assigned to a magnetic tape device

is the even or odd parity specification when the file code for this file is
assigned to a magnetic tape device

is the 556 or 800 BPI tape density specification when the file code for this
file is assigned to a magnetic tape device

is the no-wait I/O normal end-action service address
is the no-wait I/O error end-action service address

is the user-supplied blocking buffer

This macro is called by the resident system module's initialization entry points at entry.
It stores register zero for later recall by M.XIR, the initialization entry point exit macro.

Calling Sequence:

M.EIR

1-50

MPX-32, Vol. I
System Description Technical Manual

1.11.7 M.FCBEXP

This macro defines a File Control Block (FCB) to be used for an execute channel program
request.

Calling Sequence:

M.FCBEXP label, 1fc [, [cpaddr], [tout], [PCP], [NWI], [NST], [ssize], [sbuffer],
[nowait], [nowaiterror], [waiterror], [psize], [ppciadr]

label is the ASCII string to use as the symbolic label for the address of the
FCB

1fc is the logical file code, word 0, bits 8 to 31 of the FCB

cpaddr the logical address of the channel program to be executed

tout a time-out value specified in seconds

PCP specifies physical channel program

NWI specifies no-wait I/O request

NST specifies status checking not requested

ssize the size of the user-specified sense buffer

sbuffer the address of the user-specified sense buffer

nowait normal no-wait end-action return address

nowaiterror no-wait end-action error return address

waiterror wait end-action error return address

psize size of PPCI status buffer to use

ppciaddr PPCI end-action address

1.11.8 MFWRD

This macro advances the current address of a blocked file by the number of file or record
marks specified.

Calling Sequence:

M.FWRD addr, [R][,num]

addr is the FCB address

MPX-32, Vol. I
Technical Manual System Description 1-51

R ' specifies record. If not specified, the default is file.

num is the number of record or file marks to be advanced, one word for one
‘ record.

1.11.9 M.NIT

This macro initializes device handler parameters through entry point eight. The code
generated by this macro is executed by SYSGEN and overlayed.

Calling Sequence:
M.INIT label , [NOP] [,SPA1l, [SPA2]...[,SPA15]
label is the entry point truncated label; for example, MTO for magnetic tape
handler. This argument must be three ASCII characters. The first two
represent the device mnemonic and the third is zero.

NOP specifies that TD 2000 level device status testing is not to be performed

SPA1-SPAl5 are the SPA parameters to be initialized. A maximum of 15 parameters
can be specified.

Usage:

M.INIT MTQ,,SPA1,,SPA3

When placed as the last source statement in the device handler, this macro provides the
necessary code to initialize the handler. The HAT must be modified to specify entry
point eight and an additional entry must be made in the table (ACH MTO00.8).

1.11.10 M.INITX

This macro is called by the handler initialization macros to combine basic instruction and
commands with priority levels and device addresses for later execution within the
handler. When this macro is called, register five must be preloaded with the properly
positioned priority level or device address.

Calling Sequence:

M.INITX cmd,mask

where:
cmd is the basic instruction or command
mask is a mask which is ORed with command

MPX-32, Vol. I
1-52 System Description Technical Manual

o

1.11.11 M.IOFF

This macro generates a Block External Interrupt (BEI) instruction that prevents the CPU
from sensing all external interrupt requests generated by the I/O channel and RTOM.

Calling Sequence:

M.IOFF

1.11.12 M.IONN

This macro generates an Unblock External Interrupt (UEI) instruction that causes the
CPU to sense all external interrupt requests generated by the I/O channel and RTOM.

Calling Sequence:

M.IONN

1.11.13 M.IPUOFF
This macro causes the IPU to be put off-line in software by setting bit C.IPUOFF.
Calling Sequence:

M.IPUCFF

1.11.14 M.IPUON
This macro causes the IPU to be put on-line in software by resetting bit C.IPUOFF.
Calling Sequence:

M.IPUON

1.11.15 M.JPURTN

This macro allows an IPU executable system module to return to the caller with registers
preserved. The system service performs a register pop-up, except for those registers to

be preserved, and returns to the location specified by the saved Program Status Word
(PSW).

Calling Sequence:
M.IPURTN regn [,regnl...

regn is a list of register numbers (0 to 7) identifying the registers to be
preserved through the register pop-up. Any register not specified is not

MPX-32, Vol. I
Technical Manual System Description 1-53

1.11.16 M.IVC
This macro connects a handler entry point to an interrupt vector location.
Calling Sequence:
M.IVC num,addr
num is the register number containing the interrupt level

addr is the handler entry point address label

1.11.17 MKILL
This macro disables the CPU Halt Trap Processor (H.IPHT) and halts the system.
Calling Sequence:

MXKILL addr

addr is the address of a four-character ASCII crash code

1.11.18 M.MODT
This macro builds an entry in the module address table.
Calling Sequence:
M.MODT addr,num
addr is the address label of the module's HAT table

num is the module number

1.11.19 M.OPEN

This macro controls gating. It results in the termination of context switching being
inhibited.

Calling Sequence:

M.OPEN

1.11.20 M.RTNA

This macro provides the facility to return to the caller from a system module to an
address other than that specified by the saved PSW. It is used primarily for denial
returns. It operates like the M.RTRN macro. The interrupt handler tests for the

presence of an address specification in the parameter and replaces the saved Program
Status Word (PSW) if an address is found.

MPX-32, Vol. I
1-54 System Description Technical Manual

TN

S

C

Calling Sequence:
M.RTNA addr,regn [,regnl...

addr is the register number of the register containing the address where return
control resumes

regn-regn is a list of register numbers (0 to 7) identifying the registers to be
preserved through the register pop-up. Any register not specified is not
preserved.

1.11.21 M.RTRN

This macro is the complement of M.CALL and allows a system module to return to the
caller with registers preserved. The system service performs a register pop-up (except
for those registers to be preserved) and returns to the location specified by the saved
Program Status Word (PSW).

Calling Sequence:

M.RTRN regn [,regn]...

regn-regn is a list of register numbers (0 to 7) identifying the registers to be
preserved through the register pop-up. Any register not specified is not
perserved.

1.11.22 M.SHUT

This macro is used for control gating purposes. It results in context switching being
inhibited. This macro should not be used in a user task which is eligible for IPU
execution. See M.USHUT.

Calling Sequence:
M.SHUT
1.11.23 M.SPAD

At each register push-down level, 22 scratchpad storage cells are provided for the use of
re-entrant system modules. The scratchpad storage macro, M.SPAD, provides a
convenient means of referencing the current level of scratchpad storage. The M.SPAD
macro performs any memory reference operating on at least a word boundary (LW, STF,
ARMD, DVMW), or any bit in memory operation (TBM, SBM, ABM, ZBM).

Calling Sequence:

M.SPAD mnem,reg,spad,index

mnem is an instruction mnemonic defining the operation to be performed

reg is the register number (0 to 7) or bit position (0 to 31) on which the
operation is to be performed, or null

spad is the scratchpad cell number (1 to 22) to be referenced by the operation

index is an index register number (1, 2, or 3) that will be utilized in performing

the operation

MPX-32, Vol. I
Technical Manual System Description 1-55

1.11.24 M.SVCP VA

This macro establishes any required protect bits in the high order byte of the SVC 'l' S
table. A table is supplied containing 16 bit entries aligned on a halfword boundary. Each

entry contains the SVC number in byte zero and the required protect bits in byte one.

The following protect bits are defined:

Bit Meaning if Set
1] Privileged SVC
1 PU
2 Base mode tasks executable
3-7 Reserved
Calling Sequence:
M.SVCP addr,num
addr is the address of the data table
num is the number of entries in the table

1.11.25 M.SVCP2

This macro establishes any required protect bits in the high order byte of the SVC '2'
table. A table is supplied containing 16 bit entries aligned on a halfword boundary. Each
entry contains the SVC number in byte zero and the required protect bits in byte one. -

The following protect bits are defined: oo
N e
Bit Meaning if Set
0 Privileged SVC
1 IPU executable
2 Base mode task executable
3-7 Reserved

Calling Sequence:
M.SVCP2 addr,num
addr is the address of the data table

num is the number of entries in the table

1.11.26 M.SVCT

This macro builds one entry in the SVC '1' table for each SVC type one defined in the
calling module's prototype SVC table. Each one word entry contains the address of the
corresponding SVC; i.e., the twentieth entry contains the address of the twentieth SVC.

Calling Sequence:

M.SVCT addr,num C

MPX-32, Vol. I
1-56 System Description Technical Manual

addr is the address label for the calling module's prototype SVC table

num is the number of SVC entries in the module's prototype SVC table

1.11.27 M.SVCT2
This macro builds one entry in the SVC '2' table for each SVC type two defined in the
calling module's prototype SVC table. Each one word entry contains the address of the
corresponding SVC. For example, the twentieth entry contains the address of the
twentieth SVC.
Calling Sequence:

M.SVCT2 addr,num
addr is the address label for the calling module's prototype SVC table

num?2 is the number of SVC entries in the module's prototype SVC table

1.11.28 M.TRAC

See Chapter 6 - System Trace.

1.11.29 M.TRPINT
This macro generates an entry in the trap vector table.
Calling Sequence:
M.TRPINT rpl,tcb
rpl is the hexadecimal trap priority level

tcb is the address of the trap context block of the user trap handler

1.11.30 M.TYPE

This macro types a user-specified message and performs an optional read on the system
console teletype.

Calling Sequence:

M.TYPE outaddr,outent [, inaddr][,incnt]

outaddr is the output message address
outent is the output transfer count
inaddr is the input message address
incnt - is the input transfer count

MPX-32, Vol. I
Technical Manual System Description 1-57

1.11.31 M.USHUT

This macro is used to inhibit context switching of a user task. It should be used in user
tasks which are eligible for IPU execution. See M.SHUT.

Calling Sequence:

M.USHUT

1.11.32 MXIR

This macro is called by the resident system module's initialization entry points right
before they exit. It decrements the number of entry points in the calling module by one
so the initialization entry point is no longer included, and returns to the SYSGEN
processor.

Calling Sequence:
M.XIR addr

addr is the address label of the module's HAT table

1.11.33 DCA.DATA

This macro is used within the SYSGEN entry point of F class handlers to reserve Device
Context Area (DCA) space for the number of DCAs specified by the repeat (REPT)
count. During SYSGEN execution, one DCA is initialized for each Unit Definition Table
(UDT) entry containing the name of the handler. The unused DCAs and the code
contained within the SYSGEN entry point are overlayed following execution.

Calling Sequence:

DCA.DATA sbuf [,[xwrds] [,time0,...,timeF]]

sbuf specifies the sense buffer size (bytes) for automatic sense retrieval by
the Extended I/O (XIO) common subroutines following an 1/O error
indication

xwrds is the number of extra words to reserve for each DCA. If not specified,

the standard DCA size is used.

timeO-timeF specifies the time-out value in seconds for each Input/Output Control
System (IOCS) opcode, hexadecimal O through F; for example, open,
rewind, read, write, etc. If not specified or if zero is specified, no time
out is associated with the I/O request.

MPX-32, Vol. I
1-58 System Description Technical Manual

C

O

(1.11.34 DCA.INIL
This macro is used within the SYSGEN entry point of F-class handlers to initialize areas
of the Device Context Area (DCA), Controller Definition Table (CDT) and Unit
Definition Table (UDT) associated with the particular handler. The code generated by
this macro is overlayed following SYSGEN execution.
Calling Sequence:

DCA.INI1 hname [,[OPIN],[IOQCDT] [,COM] 1]

hname specifies the handler name, e.g., HDCXIO for F class disc handlers
OPIN specifies operator intervention is applicable for this handler
I0QCDT specifies I/O queue entries are to be linked to the CDT. If not specified,

I/O queue entries are linked to the UDT. Because many standard
handlers assume I/O queue entries are linked a certain way, this
parameter must be used with caution. This parameter is available to
allow users flexibility when building handlers.

COoM specifies the handler interfaces with the XIO common subroutines

1.11.35 DCA.INI2

™ This macro is used within the SYSGEN entry point of F-class handlers to restore the
(working environment within the SYSGEN entry point following any user added executable
code.

Calling Sequence:

DCA.INI2

1.11.36 HMP.INIT

This macro initializes multiplexed 1/O processor (MIOP) device handler parameters with
entry point eight. The code generated by this macro is executed by SYSGEN and
overlayed.

Calling Sequence:
HMP,INIT label
label is the entry point truncated label; for example, ASO for the asynchronous

communications handler. This argument must be three ASCII characters. The
first two represent the device mnemonic and the third is zero.

MPX-32, Vol. I
Technical Manual System Description 1-59

1.11.37 IB.INIT

This macro initializes multiplexed 1/O processor (MIOP) device handler parameters with
entry point eight, where register seven contains the Controller Definition Table (CDT)
address and register two contains the address of the current context block.

Calling Sequence:

IB.INIT

1.12 Extended MPX-32 Macros

The extended MPX-32 macros allow existing user modules and service routines to run in
the extended mode. These macros select the appropriate coding, extended or
nonextended, for a task by testing the state of the Macro Assembler option 16. (For
example, if the MBR_DEF macro is specified, the coding for a DEF or SDEF directive is
supplied depending on the state of option 16.)

The following are extended macros that directly replace the corresponding Macro
Assembler directive:

Macro Assembler directive
MBR BEQ BEQ
MBR BGE BGE
MBR BGT BGT
MBR BL BL
MBR BLE BLE
MBR BLT BLT
MBR _BNE BNE
MBR BNS BNS
MBR BS BS
MBR DEF DEF
MBR_EXT EXT
MBR _TRSW TRSW

For descriptions of these macros, see the corresponding Macro Assembler directive
description in the MPX-32 Utilities Manual.

The following macros do not have corresponding Macro Assembler directives, and must
be placed within the code that is to operate in the extended mode:

Macros Description
MBR DBG Calls the system debugger
MBR DSCT Directs data into the DSECT

MPX-32, Vol. I
1-60 System Description Technical Manual

Macros Description

MBR_ENT Generates the adaptation sequence required to reference a routine
from a nonextended module

MBR_INIT Tests the state of Macro Assembler option 16

MBR_SSCT Returns to a local code section in the system section (SSECT) area

after an MBR DSCT has been specified

1.12.1 MBR DBG (Calls to System Debugger) Macro

The MBR_DBG macro calls the system debugger from the target extended module. This
macro references the system debugger extended code entry within the adaptation code
sequence.

Syntax: MBR DBG <symbol>

1.12.2 MBR DSCT (DSECT Data Separation) Macro

The MBR _DSCT macro specifies that the following code is data, and directs the data into
the DSECT. All data and variable constants must have been separated for inclusion in
the DSECT section.

Syntax: MBR DSCT <symbol>

1.12.3 MBR ENT (Extended Code Routine Entry) Macro

The MBR_ENT macro generates the adaptative sequence required to reference a routine
from a nonextended module. Each entry point must have an MBR ENT macro before the
first instruction.

Syntax: MBR ENT <symbol> Replaces <symbol> EQU $

1.12.4 MBR INIT (Module Initialization) Macro

The MBR_INIT macro tests the state of option 16. If option 16 is set, MBR INIT
initializes the code location to SSECT EXT_MPX. This macro is required after the
program statement of an extended module.

Syntax: MBR_INIT

1.12.5 MBR SSCT (System Code Separation) Macro

The MBR_SSCT macro specifies that the following code is executable data, and returns to
a local code section in the system section (SSECT) area after an MBR_DSCT macro has
been specified.

MPX-32, Vol. 1
Technical Manual ' System Description 1-61

Syntax: MBR _SSCT /(iy
Usage: J

MBR DSCT SEND DATA TO DATA SECTION
J.MOUNT DATAD C'J. MOUNT SYSTEM MOUNT TASK

!
OPCOM DATAD Cc'oPCOM ! OPERATOR COMMUNICATIONS TASK
SYS.LFC DATAW X'00AA532A ' SYSTEMLFC "7T* (H.TAMM)

LFC3 DATAW G'(3) ' LFCFOR SYSTEM FCB3 (H.VOMM)
: !

J.ATAPE DATAD C'J.ATAPE ANSI TAPE HANDLER TASK
LPOOL

MBR SSCT RETURN TO CODE SECTION

MPX-32, Vol. I
1-62 System Description Technical Manual

CHAPTER 2
SYSTEM TABLES AND VARIABLES

This chapter contains descriptions and format layouts for the tables and variables used by
the MPX-32 operating system.

The MPX-32 table structure consists of the following categories:
Batch processing data area which contains the following:

. Job table

. Link file format (batch SLO and SBO)
. Run request format (J.5OEX)

. Spooled file directories

Executive (H.EXEC) data area which contains the following:

. Central Processing Unit (CPU)
Dispatch Queue Entry (DQE)
. Dispatch Queue Address Table (DAT)

Input/output data area which contains the following:

Blocking buffer control cells
. Controller Definition Table (CDT)
. Device Context Area (DCA)
. File Assignment Table (FAT)
File Control Block (FCB)
File Pointer Table (FPT)
. I/O Queue (I0Q) entry
. 1/O table linkages
. Type Control Parameter Block (TCPB)
. Unit Definition Table (UDT)
. XIO Channel Definition Table (CHT)

Memory Management data area which contains the following:

. Map Image Descriptor List (T.MIDL)

. Memory Allocation Table (MATA)
Memory Attribute List (T.MEML)

. Memory pool management

. Shared Memory Table (SMT)

Resource Management data area which contains the following:

. Allocated Resource Table (ART)

. Device Type Table (DTT)

. Mounted Volume Table (MVT)

. Resource Inquiry Table (M.RIQ)

. Resource Requirement Summary (RRS) entries
. Task Service Area (TSA)

. Volume Assignment Table (VAT)

MPX-32, Vol. 1 System Tables
Technical Manual and Variables 2-1

Status Management data area which contains the following:

. Caller Notification Packet (CNP)

Terminal Services data area which contains the following:

. Terminal Line Buffer

Volume Management data area which contains the following:

Bad Block Descriptor (M.BB.DEQ)

Descriptor Allocation Map Descriptor (M.DM.DEQ)
Descriptor Map (DMAP) Deallocation File Descriptor (M.BD.DEQ)
Descriptors Descriptor (M.DD.DEQ)

Directory Descriptor (M.DI.DEQ)

Directory Entry Table (M.DN.TEQ)

. DQE Address Table (DAT)

Memory Partition Descriptor (M.ME.DEQ)

Resource Create Block (RCB)

Resource Descriptor (M.RDCOM)

Resource Descriptor Space Definition (M.RDSPD)

Resource Logging Block (RLB)

Space Allocation Map Descriptor (M.SM.DEQ)

Space Map (SMAP) Deallocation File Descriptor (M.BS.DEQ)
. System Master Directory (SMD)

. Volume Descriptor (M.VO.DEQ)

e o o o o o

Disc resident structures are:

. Volume format

l_oad module structure

l_oad module preamble

Nonshared executable image structure
Nonshared executable image preamble
Shared executable image structure
Shared executable image preamble
Shared image descriptor

The resident system memory layout and utilization structure is described first.
The communications region is described next.
The table formats are then described, arranged in alphabetical order by the table name.

The disc resident resource descriptors are described in alphabetical order after the
tables.

The disc resident structures are described last.

System Tables MPX-32, Vol. 1
2-2 and Variables Technical Manual

2.1 Memory Layout

Resident system memory layout and utilization structures are described below.

Entries Table
in Table Address CONCEPT/32
0 Not used
1C
20 IPU trap vectors
60
64 Not used
7C
80 Trap vectors
FC
100 L Interrupt vectors 1
e -~
27C
300 CPU scratchpad save area
6FC T g
700 IOCD emulation area
~ L
Ve ol ~
7FC
800 Communication Region (C.)
C.TABLES
C.TMCC C.MATA Memory Allocation Table (MEM.)
1 byte/map configured (word bound)
C.NITI C.ITLT Indirectly connected interrupt
24 words/entry (file bound)
C.MPAA Patch area user defined (word bound)
C.SMTN C.SMTA Shared Memory Table (SMT.) variable -
C.SMTS contains number of bytes/entry (file bound)
C.TENT C.TTAB Interrupt Timer Table (ITT.)
5 words/entry (word bound)
C.ARTN C.ARTA Allocated Resource Table (AR.)
6 words/entry (doubleword bound)
C.MVTN C.MVTA Mounted Volume Table (MV.)
40 words/entry (doubleword bound)
C.RMTM C.RMTA Resourcemark Table (RMT.)
1 byte/entry (word bound)
C.ACTN C.ACTA Activation Table
4 words/entry (doubleword bound)

MPX-32, Vol. 1
Technical Manual

System Tables
and Variables

2-3

C.SEQN

C.NQUE

C.CDTN

C.UDTN

C.DTTN

C.CHTN

C.SVTN

C.MODN

C.SEQA

C.DQUE

C.ADAT+1W

C.CDTA

C.UDTA

C.DTTA

C.CHTA

C.MPL

C.MIDL

C.SPAD

C.SVTA

C.SVTA2

C.MIOP

C.MODD

Start of resident
code. All programs
are file bound.

C.SBUF

End of resident

system

C.TSAD

Sequence Table
4 words/entry (doubleword bound)

Dispatch Queue (DQE.)
54 words/entry (file bound)

DQE Address Table
1 word/DQE (word bound)

Controller Definition Table (CDT.)
24 words/entry (word bound)

Unit Definition Table (UDT.)
16 words/entry (word bound)

Device Type Table (DTT.)
2 words/entry (doubleword bound)

Channel Definition Table (CHT.)
40 words/entry (file bound)

Master process list
2 words/entry (doubleword bound)

Map image list for operating system
1 halfword/operating system map (doubleword bound)

CPU scratchpad image
256 words (word bound)

SVC Type 1 Vector Table
128 words or user defined (word bound)

SVC Type 2 Vector Table
128 words (word bound)

GPMC Jump Table
16 words (file bound)

Module Address Table
16 words (word bound)

Trap processors

Interrupt processors

I/0 processors

System modules:

H.ALOC, H.BKDM, H.EXEC, H.FISE, H.IOCS,
H.MEMM, H.MONS, H.MVMT, H.REMM, H.REXS,
H.SOUT, H.TAMM, H.TSM, H.VOMM

User operating system resident modules and tasks, if any

System debugger (H.DBUG1)

Swapper (H.SWAPR)

Memory pool area

Starting logical address of task's TSA

User task space

>4 >

System Tables MPX-32, Vol. 1
and Variables Technical Manual

F =
NS

2.2 Communications Region

The communications region is an area of main memory reserved for use by MPX-32 for
storage of common data. This data is referenced by symbols that are equated to absolute
memory locations. Together with each symbol is the length of the variable associated
with the symbol. The length is in units, which is also the minimum boundary on which the
variable resides.

Bit variables are contained in a set of contiguous words with the symbol C.BIT equated to
the address of the first word. Bit variables are equated to bit positions relative to
C.BIT. Bit variables are referenced by a combination of the variable symbol and C.BIT;
for example, TBM C.AFLK,C.BIT.

MPX-32, Vol. 1 System Tables
Technical Manual and Variables 2-5

Word # Byte
(Decimal) (Hex)
512-513 800
514 808
515 80C
516-517 810
518-519 818
520-521 820
522-523 828
524-525 830
526-527 838
528 840
529 844
530 848
531 84C
532-533 850
534-537 858
538-539 868
540-541 870
542-543 878
544-557 880
558-560 8B8
561-563 8C4
564-566 8D0
567-569 8DC
570-572 8ES8
573-575 8F4
576-578 900
579-581 90C
582-584 918
585-587 924
588-590 930
591-593 93C
594-596 948
597-599 954
600-602 960
603-605 96C
606-608 978
609-611 984
612-614 990
615-617 99C
618-620 9A8
621-623 9B4
624-626 9COo
627-629 9CC
630-632 9D8
633-635 9E4
636-638 9F0
639-641 9FC
642-644 A08
645-647 Al4
648-650 A20
2-6

8 15 16

C.DATE

C.CAL

C.INTC

C.TIME

C.LODC

C.SYMTAB

C.PODC

C.SBUF

C.SIDV

C.TMAC

C.EMAC

C.HMAC

C.SMAC

C.TMCC

C.EMCC

Cc.HMCC

C.SMCC

C.SYSTEM

C.SYPATH

C.PCHFLE

C.TRACE

C.DBGLM

C.SPRDW

C.CIPU

C.RIPU

C.FREE

C.PREA

C.CURR

C.SQRT

C.5Q55

C.5Q56

C.5Q57

C.5Q58

C.5Q59

C.5Q60

C.5Q61

C.5Q62

C.5Q63

C.5Q64

C.SWTI

C.SWIO

C.SWSM

C.SWSR

C.SWLO

C.SUSP

C.RUNW

C.HOLD

C.ANYW

C.SWDC

C.SWDV

C.SWFI

C.MRQ@

C.SWMP

C.SwWGQ

System Tables
and Variables

MPX-32, Vol. 1
Technical Manual

@

C

651-671 Az2C
672 A80
673 AB4
674 A88
675-676 A8C
677 A94
678 A98
679 A9C
680 AAO
681 AA4
682 AA8
683 AAC
684 ABO
685 AB4
686 AB8
687 ABC
688 ACO
689 AC4
690 ACS8
691 ACC
692 ADO
693 AD4
694 ADS
695 ADC
696 AEO
697 AE4
698 AES8
699 AEC
700 AFO
701 AF4
702 AF8
703 AFC
704 BOO
705 B0O4
706 BO8
707 . BoC
708 B10
709 Bl4
710-717 B18
718 B38
719 B3C
720 B40
721 Ba4
722 B48
723 B4C
724 B50
725 B54
726 B58
727 B5C
728 B60
729 B64
730 B68
731 B6C

MPX-32, Vol. I
Technical Manual

0 7 8 15 16

23 24

31

C.SPCH

C.TSAD

C.ACTSEQ

C.ADAT

C.BIT

C.CDTA

C.CPRI

C.DQUE

C.DTTA

C.FADR

C.FGONR

C.GINT

C.IDLA

C.IDLC

C.ITLT

C.BATSEQ

C.JOBN

C.MGRAN

C.MIDL

C.MIOP

C.MODD

C.MPL

C.MSD

C.MTIM

C.NTIM

C.PATCH

C.POOL

C.SGOS

C.SICTD

C.SMTA

C.ARTA

C.SPAD

C.SVTA

C.SVTA2

C.SWAP

C.SYCS

C.TSKN

C.TSMDQA

C.TTBT

C.UDTA

C.TTAB

C.MATA

C.MPAA

C.MPAC

C.MPAH

C.RMTA

C.EMTA

C.REV

C.DEBUG

C.TDQ1

C.TDQ2

C.TDQ3

C.REGS

System Tables
and Variables

2-7

732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752-759
760
761
762-763
764-765
766-767
768-769
770-771
772-773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788-789
790
791
792-793
794-810
811
812
813
814
815
816

2-8

B70
B74
B78
B7C
B8O
B84
B88
B8C
B90
B94
B98
B9C
BAO
BA4
BAS8
BAC
BBO
BB4
BB8
BBC
BCO
BEO
BE4
BES
BFO
BF8
Co0o
cos
C10
C18
Ci1C
C20
C24
C28
C2C
C30
C34
C38
C3C
C40
Ca4
C48
c4C
Cs50
C58
CsC
Ceé0
Ceé8
CAC
CBO
CB4
CB8
CBC
CcCo

[C.MVTA

0 7 8

15 16

23 24

31

C.ACTA

C.SEQA

C.SCDIPU

C.CHTA

C.ETLOC

C.ADMASK

C.IDLAL

C.IDLC1

C.IPUIT]1

C.IPUIT2

C.BTIME

C.BDATE

C.TCORR

T C.FSSP

C.DPTIMO

C.MDTA

C.MDTE

C.SWPLIM

C.PDQE

C.MPXBR

C.MPXBRD

C.IPa0

C.PSDBRE

C.PSDBRX

C.PSDMSE

C.PSDMSX

C.PSDEAE

C.PSDEAX

C.DSECT

C.ADAPT

C.TDEFA

C.SWIOCL

C.CRDUMP

C.HSTADR

C.CDTN

C.ITRS

C.SMVTI

C.SVTN

C.UDTN

C.RMTM

C.EMTM

C.NOS

C.NRST

C.MVTN

C.ARTN

C.CHTN

C.HIMAP

C.SVTNZ

C.MDTN

C.MDTAV

C.RMS

C.GSLEMC

Reserved

C.BDBUG

C.SPRH

C.DPTRY

C.SMAPS

[C.BPRI C.DTTN

C.FSFLGS

C.MODN

C.NITI C.NQUE

C.RRUN

C.SMTN

C.TSMCNT C.TSMPRI

C.TSMTOT

C.TENT

LC.ACTN

C.RMTL C.EMTL

C.CONF

C.MACH

C.DBTLC

C.SMTS

C.SEQN

System Tables
and Variables

MPX-32, Vol. 1
Technical Manual

C&*

C

817
818
819
820-821
822
823
824
825
826
827
828
829
830
831
832
833

MPX-32, Vol. I

CC4
CCs
ccc
CcDo
CDs8
CDC
CEO
CE4
CES8
CEC
CFO
CF4
CF8
CFC
Doo
Do4

Technical Manual

0

8 15 16

23 24

31

C.IPUHIS

C.SHRHI

[C.sHRLO

C.MAXSWP

| C.sPB1

C.SPB1 (cont.)

C.MMSG

C.MRUN

C.MNWI

C.GSLEGI

C.GSLEPR

C.ADAFL

C.TKILL

C.DELTA

C.MPXBRN

C.DBMAPS

C.SWAPSZ

C.DTSAVE

C.SHCPU

C.SHIPU

C.UPDT

C.SWPBUF

C.MRQATMR

C.SPARE

C.TABLES

C.USER

System Tables
and Variables

2-9

Byte (Hex) Symbol Description

800 C.DATE Current date (Gregorian) as input by operator
808 C.CAL Calendar devices:
Byte Description
0 Current century in binary (C.CENT)
1 Current year in binary (C.YEAR)
2 Current month in binary (C.MONTH)
3 Current day in binary (C.DAY)

80C C.INTC Interrupt counter (number of interrupts from zero which is
midnight) used for time-of-day calculations

810 C.TIME The system start-up values from C.BTIME and C.BDATE
818 C.LODC The system listed output device used as a default in
operator communications commands:
Byte Description
0-1 ASCII device type code
2-3 ASCII channel number
4-5 ASCII subaddress
6-7 Reserved
820 ' C.SYMTAB Name of the symbol table file
828 C.PODC The system punched output device used as a default in
operator communications commands:
Byte Description
0-1 ASCII device type code
2-3 ASCII channel number
4-5 ASCII subaddress
6-7 Reserved
830 C.SBUF First word contains address of memory pool. Second word is

set by S.REMM21 to the number of words in memory pool.

838 C.SIDbV The system input device used as a default in operator
communications commands:
Byte Description
0-1 ASCII device type code
2-3 ASCII channel number
4-5 ASCII subaddress
6-7 Reserved
System Tables MPX-32, Vol. I

2-10 ; and Variables Technical Manual

C

C

C

840

844

848

84C

850
858
868
870
878
880
8B8

MPX-32, Vol. I

C.TMAC

C.EMAC
C.HMAC
C.SMAC
C.TMCC

C.EMCC

C.HMCC

C.SMCC

C.SYSTEM
C.SYPATH
C.PCHFLE
C.TRACE
C.DBGLM
C.SPRDW
C.CIPU

Technical Manual

Total count in halfwords of all E, H, and S memory modules
available

Total count of valid E type memory modules available
Total count of valid H type memory modules available
Total count of valid S type memory modules available

Total count in halfwords of all E, H, and S memory modules
configured (minus three for the unmapped portion of the
debugger, if the system debugger is present)

Total count of valid E type memory modules configured
(minus one if swap device is E-class and extended memory is
present in the system, and minus any E-class map blocks
allocated for the unmapped portion of the system debugger)

Total count of valid H type memory modules configured
(minus any H-class map blocks allocated for the unmapped
portion of the system debugger)

Total count of valid S type memory modules configured
(minus any S-class map blocks allocated for the unmapped
portion of the system debugger)

Name of current system image
System pathname prototype

Patch file name

System trace (M.TRAC) control word
Debugger load module name
Reserved

Standard format linked list head cell for all IPU tasks
ineligible for CPU control, waiting in general queue.
C.CIPU is the first of a set of communications region
variables which are contiguous in memory. These variables,
listed in the order that they appear in memory, are as
follows:

C.CIPU
C.RIPU
C.FREE
C.PREA
C.CURR
C.SQRT
C.5Q55
C.5Q56
C.5Q57
C.5Q58
C.5Q59
C.5Q60
C.5Q61
C.5Q62
C.5Q63
C.5Q64

System Tables
and Variables 2-11

8C4

8D0

8DC

8ES8

8F4

900

90C

918

924

930

93C

948

2-12

C.RIPU

C.FREE

C.PREA

C.CURR

C.SQRT

C.5Q55

C.5Q56

C.5Q57

C.5Q58

C.5Q59

C.SQ60

C.5Q61

C.SWTI
C.SWIO
C.SWSM
C.SWSR
C.SWLO
C.SUSP
C.RUNW
C.HOLD
C.ANYW
C.SWDC
C.SWDV
C.SWFI
C.MRQ
C.SWMP
C.SWGQA
C.SPCH

Standard format linked list head cell for all IPU tasks ready
to run, waiting in general queue

Standard format linked list head cell for free entries in the
CPU dispatch queue

Standard format linked list head cell for CPU dispatch
queue entries that are in the preactivation state

Standard format linked list head cell for the CPU dispatch
queue entry of the currently executing task. This list can
have a maximum of two entries: one for the current real-
time task (if any) and one for the current time-distribution
task (if any).

Standard format linked list head cell for the list of ready-
to-run real-time (priority level 1 to 54) tasks

Standard format linked list head cell for the list of ready-
to-run priority level 55 time-distribution tasks

Standard format linked list head cell for the list of ready-
to-run priority level 56 time-distribution tasks

Standard format linked list head cell for the list of ready-
to-run priority level 57 time-distribution tasks

Standard format linked list head cell for the list of ready-
to-run priority level 58 time-distribution tasks

Standard format linked list head cell for the list of ready-
to-run priority level 59 time-distribution tasks

Standard format linked list head cell for the list of ready-
to-run priority level 60 time-distribution tasks

Standard format linked list head cell for the list of ready-
to-run priority level 61 time-distribution tasks

System Tables MPX-32, Vol. I
and Variables Technical Manual

AN

n

954

960

96C

978

984

990

9A8

984

9C0

9CC

908

9E4

9F0

9FC

MPX-32, Vol. 1

C.5Q62

C.5Q63

C.5Q64

C.SWTI

C.SWIO

C.SWSM

C.SWSR

C.swLO

C.SUSP

C.RUNW

C.HOLD

C.ANYW

C.SswWDC

C.SWDV

C.SWFI

Technical Manual

Standard format linked list head cell for the list of ready-
to-run priority level 62 time-distribution tasks

Standard format linked list head cell for the list of ready-
to-run priority level 63 time-distribution tasks

Standard format linked list head cell for the list of ready-
to-run priority level 64 time-distribution tasks

Standard format linked list head cell for all tasks waiting
for the completion of wait mode interactive (terminal) input

Standard format linked list head cell for all tasks waiting
for the completion of wait mode I/O requests

Standard format linked list head cell for all tasks waiting
for the completion of wait mode send message request

Standard format linked list head cell for all tasks waiting
for the completion of wait mode send run request

Standard format linked list head cell for all tasks waiting
for the completion of low speed output

Standard format linked list head cell for all tasks that are in
an execution suspend mode, waiting for a message interrupt,
a timer expiration, or a resume task request

Standard format linked list head cell for all tasks that are
ineligible for CPU control, waiting for a run request to be
received, or for the expiration of a timer

Standard format linked list head cell for all tasks that are
ineligible for CPU control, waiting for a continue request to
be received

Standard format linked list head cell for all tasks that are
ineligible for CPU control, waiting for the completion of
any no-wait mode I/O request, any no-wait mode send
message request, any no-wait mode send run request, or any
message or break interrupt

Standard format linked list head cell for all tasks ineligible
for CPU control, waiting for disc space to become available

Standard format linked list head cell for all tasks ineligible
for CPU control, waiting for a peripheral device to become
available

Reserved

System Tables
and Variables 2-13

A08

Al4

A20

A2C
A80

AB4

A88
A8C

2-14

C.MRQ

C.SWMP

C.swGa

C.SPCH
C.TSAD

Standard format linked list head cell for all tasks ineligible
for CPU control, waiting for memory to become available

Standard format linked list head cell for all tasks ineligible
for CPU control, waiting for memory pool to become
available

Standard format linked list head cell for all tasks ineligible
for CPU control, waiting in general queue

Reserved

Contains the address of the TSA for the currently executing
task

C.ACTSEQ Runhing count of task activations, used to form right-most

C.ADAT
C.BIT

24 bits of task number when a task is activated. SYSGEN
initializes this word to zero

Address of the DQE address table (DAT)
Symbol associated with the beginning of the bit variables:
Bit Meaning if Set

0 Accounting file lock indicator (C.AFLK)
1 Swap volume is E-class disc (C.ESWAP)
2
3

Dump real-time tasks on abort (C.FGPM)
Indicates user is using CPU scratchpad for his
own needs. IPL alters SPAD locations defined by
SYSGEN, Reset indicates SPAD locations not
defined by SYSGEN are to be set to zero.
(C.SPADOK)

4 List patches indicator (C.LSPT)

5 On-line restart in progress (C.RSTRT)

6 Reserved

7 Continuous batch mode indicator (C.SCBT)

8 J.SOUT banner page inhibit (C.SIBP)

9 SSIN device density is 556 (7-track) (C.SIDD)

10 SSIN device parity is odd (7-track) (C.SIDP)
11 Inhibit context switching in IPU (C.ICSIPU)
12 Task context switch inhibited (C.CSWI)
13 Activation from tape (C.TAPACT)
14-15 Reserved
16 Inhibit magnetic tape mount message (C.SIMM)
17 Memory error detected by H.IP02 (C.MERR1)
18 Memory parity error detected during memory
initialization (C.MERR2)
19 Nonpresent memory detected (C.MERR3)
20 Module cannot be loaded (C.NOLOAD)
21 SYSINIT active - IPL or restart (C.5YSB)
22 IPU is off-line (C.IPUOFF)
23 IPU accounting timer present (C.IPUIT)
24 Inhibit operator intervention (C.NOP)
25 Reserved for RJE
26 Absolute context switch inhibit (C.ACSWI)
27 Shadow memory configuration error (C.SMERR)
28 Reserved
29 Dual-port disc mounted (C.DPMT)
System Tables MPX-32, Vol. 1

and Variables Technical Manual

,’/Vﬁx\!\ |

O

A94 C.CDTA
A98 C.CPRI
A9C C.DQUE
AAO C.DTTA
AA4 C.FADR
AAB C.FGONR
AAC C.GINT
ABO C.IDLA
AB4 C.IbLC
AB8 C.ITLT
ABC C.BATSEQ
ACO C.JOBN
AC4 C.MGRAN
ACS8 C.MIDL
ACC C.MIOP

MPX-32, Vol. I
Technical Manual

30 Activating tasks specified in the SYSGEN
SEQUENCE directive (C.SEQUEN)

31 Reserved for ICS (C.ICS)

32 Reserved

33 Exclusive ANSI tape drive is configured (C.ANSI)

34-63 Reserved

Address of controller definition table
Task execution bytes:

Byte Description

0 Current execution priority of currently executing
task (C.CUP)

1 Base execution priority of currently executing
task (C.BUP)

2 I/O priority of currently executing task (C.IOP)

3 State chain index of currently executing task
(C.US)

Address of CPU dispatch queue area. The CPU dispatch
queue area is a variable length table built by SYSGEN. It
contains the number of 58-word Dispatch Queue Entries
(DQEs) specified at system generation time.

Address of device type table
Reserved
Reserved

Contains the count of all outstanding interrupts and traps
(except SVC). It is incremented as the first instruction of
every interrupt or trap service routine, and decremented
by S.EXECS, the standard interrupt and trap exit routine.

CPU idle time accumulation value in seconds, cleared by
SYSGEN. This value is incremented when the countdown
value in C.IDLC expires.

CPU idle time countdown value, cleared by SYSGEN. This
value is used to load the interval timer when there are no
tasks ready to run. When a task becomes ready to run, the
interval timer is read and the value is stored in this word.

Address of Indirectly Connected Task Linkage Table
(ITLT). Initialized by SYSGEN.

Next batch sequence number
Maximum number of concurrent batch jobs
Machine dependent map granularity

Address of the list of map registers used by the operating
system

Address of first entry of MIOP jump table

System Tables
and Variables 2-15

ADO

AD4

ADS8

ADC

AEOD

AE4
AEB
AEC

AFO

AF4

AF8

AFC

BOO

B0O4

BO8

BOC

2-16

C.MODD

C.MPL

C.MSD

C.MTIM

C.NTIM

C.PATCH
C.POOL

C.SGOS

C.SICTD

C.SMTA

C.ARTA

C.SPAD

C.SVTA

C.SVTA2

C.SWAP

C.SYCS

Address of variable length module address table.
Initialized by SYSGEN. The module address table contains
entries in module number sequence. Each entry consists of
one word that contains the address of the entry point
transfer list (HAT) of the associated module.

~ Address of master process list. Length of list in words is

contained in C.NDQE plus one word. First entry points to
C.MSD (hardware requirement).

Contains map segment descriptor for operating system
(BPIX). It points to C.MIDL (hardware requirement).

Number of clock interrupts per second. Initialized by
SYSGEN.

Number of clock interrupts per time unit. Initialized by
SYSGEN.

System debug patch area
Address of memory pool

Contains the default SGO size of 32 blocks. This is
included for compatibility purposes only and is not
examined during job processing.

Address of MIOP test device status processor, H.SICTD

Address of shared memory table area. Size is determined
by SYSGEN SHARE directive.

Address of allocated resource table
Address of CPU scratchpad image

Address of variable length SVC 'l' table. Initialized by
SYSGEN. Each entry consists of one word which contains
the address of the service associated with the SVC number.

Address of variable length SVC '2' table. Initialized by
SYSGEN. Each entry consists of one word which contains
the address of the service associated with the SVC number.

Contains the swapper's status and DQE address. (If bit 0
equals zero, the swapper is active. If bit 0 equals one, the
swapper is inactive.) Bits 8 through 31 contain the address
of the swapper's DQE.

Contains the default SYC size of 32 blocks. This is
included for compatibility purposes only and is not
examined during job processing.

System Tables MPX-32, Vol. I
and Variables Technical Manual

7N
/

B10

B14

B18

B38

B3C
B40

B4a4
B48

B4C
B50

B54
B58

B5C

B60

MPX-32, Vol. I

C.TSKN

C.TSMDQA

C.TTBT

C.UDTA

C.TTAB
C.MATA

C.MPAA
C.MPAC

C.MPAH
C.RMTA

C.EMTA
C.REV

C.DEBUG

C.TDQ1

Technical Manual

Task activation sequence number of currently executing
task

Byte Description

0 Contains the DQE entry number of the currently
executing task in the range of 1 to 255; when
word format is adjusted, it may be used as an
index to the DQE address table (DAT) to obtain
the DQE for the associated task. The address of
the DAT is contained in C.ADAT. (C.PRNO)

1-3 ~ Activation sequence number of currently
executing task

Address of DQE for J.TSM. Required for ring processing
and message sending.

Task timer bit table containing 256 bits. FEach bit
corresponds to a C.DQE entry and is accessed by the DQE
entry number (1 to 255). A bit set in this table indicates
the associated DQE has an active task timer.

Address of unit definition table

Address of timer table

Address of memory tables

Low address of the patch area

Current address of the patch area

High address of the patch area

Address of resourcemark table

Address of eventmark table

MPX-32 release and interim release
Address location of debugger

Time-distribution quantum stage one, in interval timer
units. Initialized by SYSGEN. This value is used to load
the interval timer when CPU control is dispatched to a
time- distribution task under one of the following
conditions:

A task is initially selected after activation

A task is initially selected after the termination of a
voluntary wait state (e.g., wait I/O or timed suspend)

A task is initially selected after in-swap

A task is reselected after completion of its full quantum

During the quantum stage one interval, the currently
executing task is not eligible for out-swap, and may not be
pre-empted from CPU control by a higher priority time-
distribution task.

System Tables
and Variables 2-17

Bé4

Bé68

B6C
B70
B74
B78
B7C
B8O
B84
B88

B8C

B90

B94

B98

B9C

BAO

2-18

C.TDQ2

C.TDQ3

C.REGS
C.MVTA
C.ACTA
C.SEQA
C.SCDIPU
C.CHTA
C.ETLOC
C.ADMASK

C.IDLAl

C.IbLC1

C.IPUIT1

C.IPUIT2

C.BTIME .

C.BDATE

Time-distribution quantum stage two, in interval timer

units. Initialized by SYSGEN. This value is used to load
the interval timer when the stage one quantum for the
currently executing task expires. (The quantum stage two
value may be added to the quantum stage one value to

~ define the full task quantum.)

Time-distribution full quantum value, in interval timer
units. Initialized by SYSGEN. This value is the sum of the
quantum stage one and stage two values.

TSA address of current task

Address of mounted volume table

Address of activation table

Address of sequence table

Schedule IPU routine address

Address of channel definition table

Address of event trace logic

Maximum address bit mask for machine

IPU idle time accumulation value in seconds, cleared by
SYSGEN. This value is incremented when the countdown
value in C.IDLC1 expires.

IPU idle time countdown value, cleared by SYSGEN. This
value is used to load IPU accounting interval timer (if
present) when there are no tasks ready to run on the IPU.
When a task becomes ready to run, the IPU accounting
interval timer is read and the value is stored in this word.
Address of the IPU accounting routine, S.IPUIT1, which
performs accounting functions after an IPU trap is
fielded. Initialized by SYSGEN.

Address of the IPU accounting routine, S.IPUIT2, which
performs accounting functions prior to the starting of the

IPU. Initialized by SYSGEN.

The current time (in binary) kept as the number of 100
microsecond units

The current date (in binary) kept as the number of days
since January 1, 1960

System Tables MPX-32, Vol. I
and Variables Technical Manual

BA4

BAS
BAC

BBO

BB4
BB8
BBC
BCO
BEO
BE4
BES
BFO
BF 8
coo
cos
C10
C18
C1lC

C20
C24
C28

cz2C
C30

C34

C38

C3C

C40

MPX-32, Vol. I

C.TCORR

C.FSSP
C.DPTIMO

C.MDTA

C.MDTE
C.SWPLIM
C.PDQE
C.MPXBR
C.MPXBRD
C.IP00
C.PSDBRE
C.PSDBRX
C.PSDMSE
C.PSDMSX
C.PSDEAE
C.PSDEAX
C.DSECT
C.ADAPT

C.TDEFA
C.SWIOCL
C.CRDUMP
C.HSTADR
C.CDTN
C.ITRS

C.SMVTI
C.SVTN

C.UDTN
C.RMTM
C.EMTM
C.NOS
C.NRST

Technical Manual

The correction factor (in 100 microsecond units) which
must be subtracted from C.BTIME to get the correct local
time. This value is determined by the daylight savings and
time zone parameters specified (if any) at IPL.

File system stack frame pointer

Default time-out value applied to dual-processor, shared
volume resource assignments

Physical starting address of the
Descriptor Table (MDT)

Physical ending address of the MDT
Minimum number of maps to be swapped at any one time
Address of DQE of a partially swapped task

Base registers save area (eight words--one file each)

Memory Resident

Default logical map address

Address of the A.IP00 module

Break entered PSD for base mode task (two words)
Break exited PSD for base mode task (two words)
Message entered PSD for base mode task (two words)
Message exited PSD for base mode task (two words)
End action entered PSD for base mode task (two words)
End action exited PSD for base mode task (two words)
Start address of DSECT for extended MPX-32

Start address of the adapter code region for extended
MPX-32

Address of TERMPART, if present

Swapper's IOCL address

Address of the crash dump routine

IPU his<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>