

Text Editing

<bs>

5. : Commands

VI Command Ref

The backspace always serves as an erase during insert modes in addition to
your normal "erase" character. To insert a <bs> into your file, use the
< AV> to quote it.

Typing a ":" during command mode causes vi to put the cursor at the bottom on the screen in
preparation for a command. In the ":" mode, vi can be given most ed commands. It is also
from this mode that you exit from vi or switch to different files. All commands of this variety
are terminated by a <nl>, <cr>, or <esc>.

:w[!) [file) Causes vi to write out the current text to the disk. It is written to the file you
are editing unless "file" is supplied. If "tile" is supplied, the write is directed
to that file instead. If that file already exists, vi will not perform the write
unless the "r' is supplied indicating you really want to destroy the older copy
of the file.

:q[!) Causes vi to exit. If you have modified the file you are looking at currently
and haven't written it out, vi will refuse to exit unless the 'T' is supplied.

:e[!) [+ [cmd)) [file)

:n[!)

Start editing a new file called "file" or start editing the current file over again.
The command ":e!" says "ignore the changes I've made to this file and start
over from the beginning". It is useful if you really mess up the file. The
optional "+ " says instead of starting at the beginning, start at the "end", or, if
"cmd" is supplied, execute "cmd" first. Useful cases of this are where cmd is
"n" (any integer) which starts at line number n, and "/text", which searches
for "text" and starts at the line where it is found.

Switch back to the place you were before your last tag command. If your last
tag command stayed within the file, AA returns to that tag. If you have no
recent tag command, it will return to the same place in the previous file that
it was showing when you switched to the current file.

Start editing the next file in the argument list. Since vi can be called with
multiple file names, the ":n" command tells it to stop work on the current file
and switch to the next file. If the current file was modifies, it has to be writ­
ten out before the ":n" will work or else the "I" must be supplied, which �s�~�y�s�

discard the changes I made to the current file.

:n[!) file [file file ...)

:r file

:r !cmd

:!cmd

:ta[!) tag

Replace the current argument list with a new list of files and start editing the
first file in this new list.

Read in a copy of "file" on the line after the cursor.

Execute the "cmd" and take its output and put it into the file after the current
line.

Execute any UNIX shell command.

Vi looks in the file named tags in the current directory. Tags is a file of lines
in the format:

tag filename vi-search-command

If vi finds the tag you specified in the :ta command, it stops editing the
current file if necessary and if the current file is up to date on the disk and
switches to the file specified and uses the search pattern specified to find the
"tagged" item of interest. This is particularly useful when editing multi-file C

9051 -9-

Text Editing VI Command Ref

programs such as the operating system. There is a program called etags
which will generate an appropriate tags file for C and f77 programs so that by
saying :ta funeUon<nl> you will be switched to that function. It could also
be useful when editing multi..,file documents, though the tags file would have
to be generated manually.

6. Special Arrangements for Startup

Vi takes the value of $'IERM and looks up the characteristics of that terminal in the file
/ek./tA!rmeap. If you don't know vi's name for the terminal you are working on, look in
/ ek./termeap.

When vi starts, it attempts to read the variable EXINIT from your environment.* If that
exists, it takes the values in it as the default values for certain of its internal constants. See the
section on "Set Values" for further details. If EXINIT doesn't exist you will get all the normal
defaults.

Should you inadvertently hang up the phone while inside vi, or should the computer
crash, all may not be lost. Upon returning to the system, type:

vi - r file

This will normally recover the file. If there is more than one temporary file for a specific file
name, vi recovers the newest one. You can get an older version by recovering the file more
than once. The command "vi -r" without a file name gives you the list of files that were saved
in the last system crash (but not the file just saved when the phone was hung up).

7. Set Commands

Vi has a number of internal variables and switches which can be set to achieve special affects.
These options come in three forms, those that are switches, which toggle from off to on and
back, those that require a numeric value, and those that require an alphanumeric string value.
The toggle options are set by a command of the form:

:set option <nl>

and turned off with the command:

:set nooption < nl >

Commands requiring a value are set with a command of the form:

:set option=value <nl>

To display the value of a specific option type:

:set option? <nl>

To display only those that you have changed type:

:set<nl>

and to display the long table of all the settable parameters and their current values type:

:set all <nl>

Most of the options have a long form and an abbreviation. Both are listed in the follow­
ing table as well as the normal default value.

To arrange to have values other than the default used every time you enter vi, place the
appropriate set command in EXINIT in your environment, e.g.

* On version 6 systems Instead of EX IN IT, put the startup commands in the Ole .exrc in your home
directory.

-10- 9051

Text Editing VI Command Ref

EXINIT 'set ai aw terse sh=/bin/csh'
export EXINIT

or

setenv EXINIT 'set ai aw terse sh=/bin/csh'

for sh and csh, respectively. These are usually placed in your .profile or .login. If you are run­
ning a system without environments (such as version 6) you can place the set command in the
file .exrc in your home directory.

autoindent ai

autoprint ap

autowrite aw

beautify bf

directory dir

errorbells eb

hardtabs ht

ignorecase ic

lisp

list

magic

. number nu

open

optimize opt

Default: noai Type: toggle
When in autoindent mode, vi helps you indent code by starting each line in
the same column as the preceding line. Tabbing to the right with <tab> or
< AT> will move this boundary to the right, and it can be moved to the left
with <AD>.

Default: ap Type: toggle
Causes the current line to be printed after each ex text modifying command.
This is not of much interest in the normal vi visual mode.

Default: noaw type: toggle
Autowrite causes an automatic write to be done if there are unsaved changes
before certain commands which change files or otherwise interact with the
outside world. These commands are :!, :tag, :next, :rewind, AA, and A].

Default: no bf Type: toggle
Causes all control characters except <tab>, <nl>, and <ff> to be dis­
carded.

Default: dir=/tmp Type: string
This is the directory in which vi puts its temporary file.

Default: noe b Type: toggle
Error messages are preceded by a <bell>.

Default: hardtabs=8 Type: numeric
This option contains the value of hardware tabs in your terminal, or of
software tabs expanded by the Unix system.

Default: noic Type: toggle
All upper case characters are mapped to lower case in regular expression
matching.

Default: nolisp Type: toggle
Autoindent for lisp code. The commands () [[and]] are modified appropri­
ately to affect s-expressions and functions.

Default: nolist Type: toggle
All printed lines have the <tab> and <nl> characters displayed visually.

Default: magic Type: toggle
Enable the metacharacters for matching. These include •• < > [string]
[Astring] and [<chr>-<chr>] .

Default: nonu Type: toggle
Each line is displayed with its line number.

Default: open Type: toggle
When set, prevents entering open or visual modes from ex or edit. Not of
interest from vi.

Default: opt Type: toggle
Basically of use only when using the ex capabilities. This option prevents
automatic <cr>s from taking place, and speeds up output of indented lines,
at the expense of losing typeahead on some versions of UNIX.

9051 -11-

Text Editing VI Command Ref

paragraphs para Default: para=IPLPPPQPP bp Type: string

prompt

redraw

report

scroll

sections

shell sh

shiftwidth sw

Each pair of characters in the string indicate nrofl' macros which are to be
treated as the beginning of a paragraph for the { and } commands. The
default string is for the -ms and -mm macros. To indicate one letter nrofl'
macros, such as .P or .H, quote a space in for the second character position.
For example:

:set paragraphs=P\ bp<nl>

would cause vi to consider .P and .bp as paragraph delimiters.

Default: prompt Type: toggle
In ex command mode the prompt character: will be printed when ex is wait­
ing for a command. This is not of interest from vi.

Default: noredraw Type: toggle
On dumb terminals, force the screen to always be up to date, by sending great
amounts of output. Useful only at high speeds.

Default: report=5 Type: numeric
This sets the threshold for the number of lines modified. When more than
this number of lines are modified, removed, or yanked, vi will report the
number of lines changed at the bottom of the screen.

Default: scroll={1/2 window} Type: numeric
This is the number of lines that the screen scrolls up or down when using the
<AU> and <AD> commands.

Default: sections=SHNHH HU Type: string
Each two character pair of this string specify nroff macro names which are to
be treated as the beginning of a section by the]] and [[commands. The
default string is for the -ms and -1IlIIl macros. To enter one letter nroff mac­
ros, use a quoted space as the second character. See paragraphs for a fuller
explanation.

Default: sh=from environment SHELL or /bin/sh Type: string
This is the name of the sh to be used for "escaped" commands.

Default: sw=8 Type: numeric
This is the number of spaces that a < AT> or < AD > will move over for
indenting, and the amount < and > shift by.

showmatch sm Default: nosm Type: toggle
When a) or } is typed, show the matching (or { by moving the cursor to it
for one second if it is on the current screen.

slowopen slow Default: terminal dependent Type: toggle

tabstop ts

taglength tl

term

On terminals that are slow and unintelligent, this option prevents the updat­
ing of the screen some of the time to improve speed.

Default: ts=8 Type: numeric
<tab>s are expanded to boundaries that are multiples of this value.

Default: tl=O Type: numeric
If nonzero, tag names are only significant to this many characters.

Default: (from environment TERM, else dumb) Type: string
This is the terminal and controls the visual displays. It cannot be changed
when in "visual" mode, you have to Q to command mode, type a set term
command, and do "vi." to get back into visual. Or exit vi, fix $ TERM , and
reenter. The definitions that drive a particular terminal type are found in the
file /ek/termeap.

9051

Text Editing

terse

warn

window

VI Command Ref

Default: terse Type: toggle
When set, the error diagnostics are short.

Default: warn Type: toggle
The user is warned if she/he tries to escape to the shell without writing out
the current changes.

Default: window={s at 600 baud or less, 16 at 1200 baud, and screen size -
1 at 2400 baud or more} Type: numeric
This is the number of lines in the window whenever vi must redraw an entire
screen. It is useful to make this size smaller if you are on a slow line.

w300, w1200, w9600

wrapscan ws

These set window, but only within the corresponding speed ranges. They are
useful in an EXINIT to fine tune window sizes. For example,

set w300=4 w1200=12

causes a 4 lines window at speed up to 600 baud, a 12 line window at 1200
baud, and a full screen (the default) at over 1200 baud.

Default: ws Type: toggle
Searches will wrap around the end of the file when is option is set. When it is
off, the search will terminate when it reaches the end or the beginning of the
file.

wrapmargin wm Default: wm=O Type: numeric

writeany wa

Vi will automatically insert a <nl> when it finds a natural break point (usu­
ally a <sp> between words) that occurs within "wm" spaces of the right mar­
gin. Therefore with "wm=O" the option is off. Setting it to 10 would mean
that any time you are within 10 spaces of the right margin vi would be look­
ing for a <sp> or <tab> which it could replace with a <nl>. This is con­
venient for people who forget to look at the screen while they type. (In ver­
sion 3, wrapmargin behaves more like nroff, in that the boundary specified by
the distance from the right edge of the screen is taken as the rightmost edge
of the area where a break is allowed, instead of the leftmost edge.)

Default: nowa Type: toggle
Vi normally makes a number of checks before it writes out a file. This
prevents the user from inadvertently destroying a file. When the "writeany"
option is enabled, vi no longer makes these checks.

9051 -13-

Text Editing VI Command Ref

-14- 9051

SED - A Non-interactive Text Editor

This document is based on a paper by Lee E. McMahon of Bell Laboratories.

Introduction

Sed (a descendent of ed) is a non-interactive context editor designed to be especially useful in
three cases:

1) To edit files too large for comfortable interactive editing;
2) To edit any size file when the sequence of editing commands is too complicated to

be comfortably typed in: interactive mode;
3) To perform multiple 'global' editing functions efficiently in one pass through the

input.

Since only a few lines of the input reside in core at one time, and no temporary files are used,
the effective size of file that can be edited is limited only by the requirement that the input and
output fit simultaneously into available secondary storage.

Complicated editing scripts can be created separately and given to sed as a command file. For
complex edits, this saves considerable typing, and its attendant errors. Sed running from a
command file is much more efficient than any interactive editor known to the author, even if
that editor can be driven by a pre-written script.

The principal loss of functions compared to an interactive editor are lack of relative addressing
(because of the line-atra-time operation). and lack of immediate verification that a command
has done what was intended.

Sed is a lineal descendant of the ED editor. Because of the differences between interactive and
non-interactive operation, considerable changes have been made between ed and sed; even
confirmed users of ed will frequently be surprised (and probably chagrined), if they rashly use
sed without reading Sections 2 and 3 of this document~ The most striking family resemblance
between the two editors is in the class of patterns ('regular expressions') they recognize; the
code for matching patterns is copied almost verbatim from the code for ed, and the description
of regular expressions in Section 2 is copied almost verbatim from the ROS Reference Manual
(9010) .

1. Overall Operation

Sed by default copies the standard input to the standard output, perhaps performing one or
more editing commands on each line before writing it to the output. This behavior may· be
modified by fiags on the command line; see Section 1.1 below.

The general format of an editing command is:

[addressl,address2] [function] [arguments]

One or both addresses may be" omitted; the format of addresses is given in Section 2. Any
. number of blanks or tabs may separate the addresses from the function. The function must be
present; the available commands are discussed in Section 3. The arguments may be required or
optional, according to which function is given; again, they are discussed in Section 3 under each ..
individual function.

Tab characters and spaces at the beginning of lines are ignored.

1.1. Command-line Flags

Three flags are recognized on the command line:
-n: tells sed not to copy all lines, but only those specified by p functions or p flags after

s functions (see Section 3.3);
-e: tells sed to take the next argument as an editing command;

9051 -1-

Text Editing SED

-f: tells Bed to take the next argument as a file name; the file should contain editing
commands, one to a line.

1.2. Oxder of Application of Ediung Chmmands

Before any editing is done (in fact, before any input file is even opened), all the editing com~
mands are compiled into a form which will be moderately efficient during the execution phase
(when the commands are actually applied to lines of the input file). The commands are com­
piled in the order in which they are encountered; this is generally the order in which they will
be attempted at execution time. The commands are applied one at a time; the input to each
command is the output of all preceding commands.

The default linear order of application of editing commands can be changed by the fiow-of­
control commands, t and b (see Section 3). Even when the order of application is changed by
these commands, it is still true that the input line to any command is the output of any previ­
ously applied command.

1.3. Pattern-space

The range of pattern matches is called the pattern space. Ordinarily, the pattern space is one
line of the input text, but more than one line can be read into the pattern space by using the N
command (Section 3.6.).

1.4. Examples

Examples are scattered throughout the text. Except where otherwise noted, the examples all
assume the following input text:

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
D own to a sunless sea.

(In no case is the output of the Bed commands to be considered an improvement on Coleridge.)

Example:

The command

2q

will quit after copying the first two lines of the input. The output will be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

2. ADDRESSES: Selecting lines for editing

Lines in the input file(s) to which editing commands are to be applied can be selected by
addresses. Addresses may be either line numbers or context addresses.

The application of a group of commands can be controlled by one address (or address-pair) by
grouping the commands with curly braces ('{ }')(Sec. 3.6.).

2.1. Line-number Addresses

A line number is a decimal integer. As each line is read from the input, a line~number counter
is incremented; a line~number address matches (selects) the input line which causes the inter­
nal counter to equal the address line-number. The counter runs cumulatively through multiple
input files; it is not reset when a new input file is opened.

-2- 9051

Text Editing SED

As a special case, the character $ matches the last line of the last input file.

2.2. Context Addresses

A context address is a pattern ('regular expression') enclosed in slashes (' /'). The regular
expressions recognized by sed are constructed as follows:

I} An ordinary character (not one of those discussed below) is a regular expression,
and matches that character.

2} A circumfiex ,A, at the beginning of a regular expression matches the null character
at the beginning of a line.

3} A dollar-sign '$' at the end of a regular expression matches the null character at the
end of a line.

4} The characters '\n' match an embedded newline character, but not the newline at
the end of the pattern space.

5} A period'.' matches any character except the terminal newline of the pattern space ..
6} A regular expression followed by an asterisk '*' matches any number (including 0)

of adjacent occurrences of the regular expression it follows.
7} A string of characters in square brackets '[]' matches any character in the string,

and no others. If, however, the first character of the string is circumflex' A',

the regular expression matches any character except the characters in the string
and the terminal newline of the pattern space.

8} A concatenation of regular expressions is a regular expression which matches the
concatenation of strings matched by the components of the regular expression.

9} A regular expression between the sequences '\(' and '\)' is identical in effect to the
unadorned regular expression, but has side-effects which are described under
th~ s command below and specification IO} immediately below.

IO} The expression '\d'means the same string of characters matched by an expression
enclosed in '\(' and '\)' earlier in the same pattern. Here d is a single digit; the
string specified is that beginning with the dth occurrence of '\(' counting from
the left. For example, the expression' A\(.*\) \1' matches a line beginning with
two repeated oc~urrences of the same string.

II} The null regular expression standing alone (e .g., '/ /') is equivalent to the last reg-
ular expression compiled.

To use one of the special characters (A $. * [] \ /) as a literal (to match an occurrence of itself
in the input), precede the special character by a backslash '\'. .

For a context address to 'match' the input requires that the whole pattern within the address
match some portion of the pattern space.

2.3. Number of Addresses

The commands in the next section can have 0, 1, or 2 addresses. Under each command the
maxiinum number'of allowed addresses is given. For a command to have more addresses than
the maximum allowed is considered an error.

If a command'has no addresses, it is applied to every line in the input.

If a command has one address, it is applied to all lines which match that address.

If a command has two addresses, it is applied to the first line which matches the first address,
and to all subsequent lines until (and including) the first subsequent line which matches the
second address. Then an attempt is made on subsequent lines to again match the first address,
and the process is repeated.

Two addresses are separated by a comma.

9051 -3-

Text Editing SED

Examples:

Ian I
lan.*anl
IAanl

matches lines 1, 3, 4 in our sample text
matches line 1

matches no lines

1·1
I\.I
Ir*anl

matches all lines
matches line 5

I\{ an\) .*\11
matches lines 1,3, 4 (number = zero!)
matches line 1

3. FUNCTIONS

All functions are named by a single character. In the following summary, the maximum
number of allowable addresses is given enclosed in parentheses, then the single character func­
tion name, possible arguments enclosed in angles (< », an expanded English translation of
the single-character name, and finally a description of what ,each function does. The angles
around the arguments are not part of the argument, and should not be typed in actual editing
commands.

3.1. 'Whole-line Oriented Functions

(2) d -- delete lines

The d function deletes from the file (does not write to the output) all those
lines matched by its address{ es).

It also has the side effect that no further commands are attempted on the
corpse of a deleted line; as soon as the d function is executed, a new line is
read from the input, and the list of editing commands is re-started from the
beginning on the new line.

(2)n -- next line

{ l)a\

The n function reads the next line from the input, replacing the current line.
The current line is written to the output if it should be. The list of editing
commands is continued following the n command.

< text> -- append lines

{ l)i\

The a function causes the argument <text> to be written to the output after
the line matched by its address. The a command is inherently multi-line; a
must appear at the end of a line, and <text> may contain any number of
lines. To preserve the one-command-to-a-line fiction, the interior newlines
must be hidden by a backslash character ('\') immediately preceding the new­
line. The <text> argument is terminated by the first un hidden newline (the
first one not immediately preceded by backslash).

Once an a function is successfully executed, <text> will be written to the out­
put regardless of what later commands do to the line which triggered it. The
triggering line may be deleted entirely; <text> will still be written to the out­
put.

The <text> is not scanned for address matches, and no editing commands are
attempted on it. It does not cause any change in the line-number counter.

<text> -- insert lines

The i function behaves identically to the a function, except that <text> is
written to the output before the matched line. All other comments about the "a

9051

Text Editing SED

function apply to the i function as well.

(2)c\
<text> -- change lines

The c function deletes the lines selected by its address(es), and replaces them
with the lines in <text>. Like a and ~ c must be followed by a newline hid­
den by a backslash; and interior new lines in <text> must be hidden by
backslashes.

The c command may have two addresses, and therefore select a range of lines.
If it does, all the lines in the range are deleted, but only one copy of < text> is
written to the output, not one copy per line deleted. As with a and ~~ <text>
is not scanned for address matches, and no editing commands are attempted on
it. It does not change the line-number counter.

After a line has been deleted by a c function, no further commands are
attempted on the corpse.

If text is appended after a line by a or r functions, and the line is subsequently
changed, the text inserted by the c function will be placed before the text of the
a or r functions. (The r function is described in Section 3.4.)

Note: Within the text put in the output by these functions, leading blanks and tabs will disap­
pear, as always in sed commands. To get leading blanks and tabs into the output, precede the

. first desired blank or tab by a backslash; the backslash will not appear in the output.

Example:

The list of editing commands:

n
a\
XXXX
d

applied to our standard input, produces:

In Xanadu did Kubhla Khan
XXXX
Where Alph, the sacred river, ran
XXXX
D own to a sunless sea.

In this particular case, the same effect would be produced by either of the two following com­
mand lists:

n
i\
XXXX
d

n
c\
XXXX

3.2. Substitute Function

One very important function changes parts of lines selected by a context search within the line.

(2)s<pattern> <replacement> <flags> -- substitute

The s function replaces part of a line (selected by <pattern» with <replace­
ment>. It can best be read:

Substitute for <pattern>, <replacement>

The <pattern> argument contains a pattern, exactly like the patterns in

9051 -5-

Text Editing

Examples:

SED

addresses (see 2.2 above). The only difference between <pattern> and a con­
text address is that the context address must be delimited by slash (' /') charac­
ters; <pattern> may be delimited by any character other than space or new­
line.

By default, only the first string matched by <pattern> is replaced, but see the
g flag below.

The <replacement> argument begins immediately after the second delimiting
character of <pattern>, and must be followed immediately by another instance
of the delimiting character. (Thus there are exactly three instances of the
delimiting character.)

The <replacement> is not a pattern, and the characters which are special in
patterns do not have special meaning in <replacement>. Instead, other char­
acters are special:

& is replaced by the string matched by <pattern>

\d (where d is a single digit) is replaced by the dth substring matched
by parts of <pattern> enclosed in '\(' and '\)'. If nested sub­
strings occur in <pattern>, the dth is determined by counting
opening delimiters ('\(').

As in patterns, special characters may be made literal by
preceding them with backslash ('\').

The <flags> argument may contain the following flags:

g -- substitute <replacement> for all (non-overlapping) instances of
<pattern> in the line. After a successful substitution, the
scan for the next instance of <pattern> begins just after the
end of the inserted characters; characters put into the line from
<replacement> are not rescanned.

p -- print the line if a successful replacement was done. The p flag
causes the line to be written to the output if and only if a sub­
stitution was actually made by the s function. Notice that if
several s functions, each followed by a p flag, successfully sub­
stitute in the same input line, multiple copies of the line will be
written to the output: one for each successful substitution.

w <filename> -- write the line to a file if a successful replacement was
done. The w flag causes lines which are actually substituted by
the s function to be written to a file named by <filename>. If
<filename> exists before sed is run, it is overwritten; if not, it
is created.

A single space must separate w and <filename>.

The possibilities of multiple, somewhat different copies of one
input line being written are the same as for p.

A maximum of 10 different file names may be mentioned after
w flags and w functions (see below), combined.

The following command, applied to our standard input,

s Ito Iby Iw changes

-6- 9051

Text Editing

produces, on the standard output:

In Xanadu did Kubhla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
D own by a sunless sea.

and, on the flle 'changes':

Through caverns measureless by man
D own by a sunless sea.

If the nocopy option is in effect, the command:

s/[.,;?:] /*P&*/gp

produces:

A stately pleasure dome decree*P:*
Where Alph*P,* the sacred river*P,* ran
Down to a sunless sea*P.*

Finally, to illustrate the effect of the g flag, the command:

/X/s/an/AN/p

produces (assuming nocopy mode) :

In XANadu did Kubhla Khan

and the command:

/X/s/an/AN/gp

produces:

In XANadu did Kubhla KhAN

3.3. Input-output Functions

(2) P -- print

SED

The print function writes the addressed lines to the standard output flle. They
are written at the time the p function is encountered, regardless of what
succeeding editing commands may do to the lines.

(2)w <filename> -- write on <filename>

The write function· writes the addressed lines to the file named by < filename> .
If the file previously existed, it is overwritten; if not, it is created. The lines
are written exactly as they exist when the write function is encountered for
each line, regardless of what subsequent editing commands may do to them.

Exactly one space must separate the w and < filename> .

A maximum of ten different files may be mentioned in write functions and w
flags after 8 functions, combined.

(1)r <filename> -- read the contents of a file

The read function reads the contents of <filename>, and appends them after
the line matched by the address. The file is read and appended regardless of
what subsequent editing commands do to the line which matched its address.
If r and a functions are executed on the same line, the text from the a func­
tions and the r functions is written to the output in the order that the functions
are executed.

Exactly one space must separate the r and <filename>. If a file mentioned by
a r function cannot be opened, it is considered a null file, not an error, and no

9051 -7-

Text Editing SED

diagnostic is given.

NOTE: Since there is a limit to the number of files that can be opened simultaneously, care
should be taken that no more than ten files be mentioned in w functions or fIags; that number

. is reduced by one if any r functions are present. (Only one read file is open at one time.)

Examples

Assume that the file 'notel' has the following contents:

Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.

Then the following command:

/Kubla/r notel

produces:

In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
D own to a sunless sea.

3.4. Multiple Input-line Functions

Three functions, all spelled with capital letters, deal specially with pattern spaces containing
imbedded newlines; they are intended principally to provide pattern matches across lines in the
input.

(2) N -- Next line

The next input line is appended to the current line in the pattern space; the two
input lines are separated by an imbedded newline. Pattern matches may extend
across the imbedded newline(s).

(2)D -- Delete first part of the pattern space

Delete up to and including the first newline character in the current pattern
spaCe. If the pattern space becomes empty (the only newline was the terminal
newline), read another line from the input. In any case, begin the list of edit­
ing commands again from its beginning.

(2)P -- Print first part of the pattern space

Print up to and including the first newline in the pattern space.

The P and D functions are equivalent to their lower-case counterparts if there are no imbedded
newlines in the pattern space.

3.5. Hold and Get Functions

Four functions save and retrieve part of the input for possible later use.

-8-

(2)h -- hold pattern space

The h functions copies the contents of the pattern space into a hold area (des­
troying the previous contents of the hold area).

(2)H -- Hold pattern space

9051

Text Editing SED

The H function appends the contents of the pattern space to the contents of the
hold area; the former and new contents are separated by a newline.

(2) g -- get contents of hold area

The 9 function copies the contents of the hold area into the pattern space (des­
troying the previous contents of the pattern space).

(2) G -- Get contents of hold area

The G function appends the contents of the hold area to the contents of the
pattern space; the former and new contents are separated by a newline.

(2)x -- exchange

The exchange command interchanges the contents of the pattern space and the
hold area.

Example

The commands

1h
1s/ did.*/ /
Ix
G

s/\n/ :/

applied to our standard example, produce:

In Xanadu did Kubla Khan :In Xanadu
A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

3.6. Flow-of-Chn1:.ro1 Functions

These functions do no editing on the input lines, but control the application of functions to the
lines selected by the address part.

(2)! -- Don't

The Don't command causes the next command (written on the same line), to
be applied to all and only those input lines not selected by the address part.

(2) { -- Grouping

The grouping command '{' causes the next set of commands to be applied (or
not applied) as a block to the input lines selected by the addresses of t.he group­
ing command. The first of the commands under control of the grouping may
appear on the same line as the '{' or on the next line.

The group of commands is terminated by a matching'}' standing on a line by
itself.

Groups can be nested.

(0) :<label> -- place a label

The label function marks a place in the list of editing commands which may be
referred to by b and t functions. The <label> may be any sequence of eight
or fewer characters; if two different colon functions have identical labels, a
compile time diagnostic will be generated, and no execution attempted.

9051 -9-

Text Editing SED

(2)b<label> -- branch to label

The branch function causes the sequence of editing commands being applied to

the current input line to be restarted immediately after the place where a colon
function with the same <label> was encountered. If no colon function with
the same label can be found after all the editing commands have been com­
piled, a compile time diagnostic is produced, and no execution is attempted.

A b function with no <label> is taken to be a branch to the end of the list of
editing commands; whatever should be done with the current input line is
done, and another input line is read; the list of editing commands is restarted
from the beginning on the new line.

(2) t<label> -- test substitutions

The t function tests whether any successful substitutions have been made on
the current input line; if so, it branches to <label>; if not, it does nothing.
The flag which indicates that a successful substitution has been executed is
reset by:

1) reading a new input line, or
2) executing a t function.

3.7. Miscellaneous Functions

(1)= -- equals

-10-

The = function writes to the standard output the line number of the line
matched by its address.

(1)q -- quit

The q function causes the current line to be written to the output (if it should
be), any appended or read text to be written, and execution to be terminated.

9051

•

Ridge Computers
Corporate Headquarters

2451 Mission College Blvd.
Santa Clara, California 95054
Phone: (408) 986-8500
Telex: 176956

