(A

0

Ge

RASTER TECHNOLOGIES
MODEL ONE

ALPHANUMERIC TERMINAL EMULATION
PROGRAMMING GUIDE

RASTER TECHNOLOGIES

MODEL ONE

ALPHANUMERIC TERMINAL EMULATION
PROGRAMMING GUIDE

Revision 2.0 June 24, 1983

Alphanumeric Terminal Emulation Programming Guide

ALPHANUMERIC TERMINAL EMULATION PROGRAMMING GUIDE
June 24, 1983

Copyright 1983 by Raster Technologies, Inc. All rights reserved. No part of
this work covered by the copyrights herein may be reproduced or copied in any
form or by any means--electronic, graphic, or mechanical, including
photocopying, recording, taping, or information and retrieval systems--without
written permission.

NOTICE:

The information contained in this document is subject to change without
notice.

RASTER TECHNOLOGIES DISCLAIMS ALL WARRANTIES WITH RESPECT TO THIS MATERIAL
(INCLUDING WITHOUT LIMITATION WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A
PARTICULAR PURPOSE), EITHER EXPRESS OR IMPLIED. RASTER TECHNOLOGIES SHALL NOT
BE LIABLE FOR DAMAGES RESULTING FROM ANY ERROR CONTAINED HEREIN, INCLUDING,
BUT NOT LIMITED TO, FOR ANY SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
ARISING OUT OF OR IN CONNECTION WITH THE USE OF THIS MATERIAL,

This document contains proprietary information which is protected by
copyright.

Alphanumeric Terminal Emulation Programming Guide

Table of Contents

1.0 INTRODUCTION 4
2.0 ALPHANUMERIC TERMINAL EMULATION COMMANDS 6

3.0 WINDOW DEFINITION, SELECTION, AND DELETION 7

4.0 MOVING AROUND THE WINDOW 9
5.0 WINDOW AND TEXT CHARACTERISTICS 10
6.0 ERROR MESSAGES 11
7.0 ALPHABETICAL COMMAND REFERENCE 12
ALPHEM 13
BOLD 14
DEFWIN 15
DELWIN . 17
DIRCUR 18
GETCUR 19
GETPOS , 20
GETWIN 21
HOME 22
MOVCUR 23
OVRSTK ' 24
SCROLL 25
SELWIN 26
SETCUR ; 27
SETSIZ 28
WRAP 29
8.0 INDEX 30

Alphanumeric Terminal Emulation Programming Guide

1.0 INTRODUCTION

This manual describes the alphanumeric terminal emulation commands. These
commands use the Model One monitor as an alphanumeric temminal, thus allowing
a Model One workstation to be operated with the Model One, a local keyboard,
and a monitor. Under these circumstances, no local terminal is needed.

This manual includes 7 sections, as described below.

Section 2.0 Alphanumeric Terminal Emulation Commands

This section describes this command:

ALPHEM Enables or disables terminal emulation; routes text from the
keyboard and host to the selected window.

Section 3.0 Window Definition, Selection, and Deletion

This section describes the commands to set up the scrolling text windows as
desired.

DEFWIN Defines the size and position of up to 9 scrolling text windows.
SELWIN Selects a previously defined window.

DELWIN Deletes a previously defined window.

GETWIN Returns the number of the currently selected window.

Section 4.0 Moving Around the Window

This section describes the commands for moving around the selected text
window:

DIRCUR Moves the cursor to a specified character position.

GETPOS Returns the character position‘of the cursor.

MOVCUR Moves the cursor to a specified Model One coordinate position,
GETCUR Returns the Model One coordinate position of the cursor.

HOME Moves the cursor to character position (0,0).

SETCUR Enables or disables drawing of the cursor.

Section 5.0 Window and Text Characteristics

This section describes the commands used to define the window attributes, such
as color and text size:

BOLD Enables or disables drawing of bold text.

Alphanumeric Terminal Emulation Programming Guide

OVRSTK Enables or disables overstriking of text.
SCROLL Enables or disables text scrolling.
SETSIZ Sets x and y scaling of text.

WRAP | Enables or disables text wraparound.

Section 6.0 Error Messages

This section lists the possible error messages.

Section 7.0 Alphabetical Command Reference

This section provides complete details of all commands associated with
alphanumeric windows.

the

Alphanumeric Terminal Emulation Programming Guide

2.0 ALPHANUMERIC TERMINAL EMULATION COMMANDS

A single cammand is used to start and stop the alphanumeric terminal emulator;
it is described in this section. Use of the windows is described in detail in
the following sections. When the Model One is factory-configured for a
keyboard attached to the KEYBSIO port, the Model One coldstarts with window 0

"defined and selected; all window attributes, such as bolding and text size,
are set to their defaults. No other windows are defined. Any text that is
typed at the keyboard will go to the text window.

The command ALPHEM ON is also executed during coldstart. This instructs the
Model One to send all text from the keyboard to the window; if you wish to
turn off the alphanumeric text emulation enviromment, you can use the command
ALPHEM 0 or ALPHEM OFF.

Alphanumeric Terminal Emulation Programming Guide

3.0 WINDOW DEFINITION, SELECTION, AND DELETION

Up to nine scrolling text windows may be defined and used for alphanumeric
terminal emulation. Window 0 is the hardware-scrolled window; it always uses
the entire monitor area. The screen origin register (CREG 4) is used for
scrolling, so that changes to CREG 4 will also affect window O.

Up to eight software-scrolled windows--windows 1 through 8--may also be
defined and used for alphanumeric text. These windows may be any size.

Each alphanumeric window is defined by number. When the window is defined,
two diagonal corners are specified, thus giving the window size. (Of course,
window 0 always occupies the entire screen, and so these corners are ignored
for window 0.) The x and y scaling of the text for the window can also be
defined,

Finally, each window has an associated write mask, which is specified the same
way as with the WRMASK command.

The DEFWIN window,x1,yl,xl,y2,X size,y size,bitm,bankm command defines the
text window specified by window. Any parameter with a wvalue of zero (0)
instructs the DEFWIN command to use the default or existing value. (There is
no default for the window corners.) (This is shown in the examples below.)
x1,yl and x2,y2 specify the corners of the text window. Windows 1 through 8
can be any size; window 0 will always use the entire screen. x size and
y size specify the text size. x size and y size are normally set to 1,1 (2,2
for the Model One/40 and the Model One/25 in 1K mode); this is equlvalent to
specifying a text size of 16 with the TEXTC command. X size and y size of 2,2
are equivalent to a text size of 32 with the TEXTC command. x size and y size
may be different, allowing tall skinny text or short fat text.

bitm and bankm specify the write mask and are used exactly as they are used in
the WRMASK command. Note: because a value of zero for any parameter
instructs the DEFEWIN command to use the default or existing value, it is
impossible to specify a write mask of 0,0. This means, of course, that the
write mask can never be set so that no information can be written in the
alphanumeric windows.

Each window has a foreground, background, and cursor color. A set of three
value registers is used for each window to specify these colors. Window O
uses value registers 16, 17, and 18; window 1 uses value registers 19, 20,
and 21; and so on through window 8, which uses value registers 40, 41, and
42,

The foreground color is used for text; the background color occupies the rest
of the window. The cursor is an XOR cursor, so that the color in the value
register is XORed with the background color to display the cursor. For
example, if the background color is red and the foreground color is black, the
cursor color value register must be set to cyan for the user to see a white
cursor.

For example, to define window 1 to occupy the lower area of the monitor, use
all bit planes and banks for text, and have a normal text size, you would use
the command:

Alphanumeric Terminal Emulation Programming Guide

DEFWIN 1 -512,-512 512,-450 2,2 0,0

for a Model One/40 or a Model One/25 in 1K mode. For a Model One/60, you
could use this command:

DEFWIN 1 -389,-288 389,-240 2,2 0,0

Then, to set up the desired colors for background, foreground and cursor, you
would set value registers 19, 20, and 21.

Now, if you wish to redefine the area of window 1, you can use the command:
DEFWIN 1 -100,-100 -50,-50 0,0 0,0

which redefines the area of the window, and sets the text size and write mask
back to the default values.

Once a window has been defined, it must be selected before information can be
written to the window. Only one window can be selected at a time, and
selection of the window "unselects" the previously selected window. The
command SELWIN window selects a window; for example, SELWIN 2 selects window
2.

DELWIN window deletes the definition of a window. The window to be deleted
cannot be selected.

GETWIN returns the number of the selected window. -1 is returned if no window
is selected.

Alphanumeric Terminal Emulation Programming Guide

4,0 MOVING AROUND THE WINDOW

The alphanumeric -text windows include a cursor. This cursor can be moved to
any character position--row and column--or to a Model One coordinate position.
For windows 1 through 8, the Model One coordinate position is rounded to the
nearest character position; in window O, the coordinate position is not
rounded.

The commands DIRCUR x,y and HOME are used to move the cursor to character
positions. DIRCUR will move the cursor to an arbitrary position; if it is
outside the window, it will move the cursor as far as possible in the right
direction. HOME always moves the cursor to character position (0,0)--the
first row and first column. GETPOS returns the character position of the
cursor.

MOVCUR moves the cursor to a Model One coordinate position; GETCUR returns
the Model One coordinate position of the cursor.

SETCUR enables or disables the cursor.

Alphanumeric Terminal Emulation Programming Guide

5.0 WINDOW AND TEXT CHARACTERISTICS

In using the scrolling text windows, the boldness of the text, the size of the
text, whether the text can be overstruck, and whether the text will wrap or
scroll can all be set as desired.

BOLD ON or BOLD 1 turns on bolding of text. The boldness of text is in
proportion to its size, as determined by the SETSIZ or DEFWIN commands. Bold
text is the default. BOLD OFF or BOLD 0 disables bolding of text.

SETSIZ xscale,yscale specifies the x and y scaling of text. The default is
1,1. The new size overrides whatever was defined by the DEFWIN command; for
windows 1 through 8, the entire window is re-initialized and any text
currently in the window is lost. If either xscale or yscale is zero, the
current value will be used.

OVRSTK ON or OVRSTK 1 enables overstriking of characters on the line.
Previous characters in the 1line may then be overstruck without erasing that
character. OVRSTK OFF or OVRSTK 0 disables overstriking; this 1is the
default. For windows 1 through 8, only the last character in a given position
will remain after the window is scrolled.

SCROLL ON and WRAP ON enables scrolling and wraparound of text. If scrolling
is off--SCROLL OFF or SCROLL O--characters wrap from the end of the bottom
line to the beginning of the top line. If wraparound is off, the cursor stays
in the last character position on the line until a carriage return in typed.
The default is scrolling and wraparound of text.

In addition to these commands, a set of control characters can be used to move
around the window and perform line functions. These are:

[CTRL-B] Clear entire current line

[CTRL-E] Move cursor up one pixel (window O only)
[CTRL-H] Backspace

[CTRL~1] Horizontal tab to next multiple of 8 characters
[CTRL-J] Linefeed

[CTRL-K] Vertical tab one line (upward linefeed)

[CTRL-L] Formmfeed: clears entire window

[CTRL-M] Carriage return

[CTRL-T] Clear to end of line

[CTRL~V] Move cursor down one pixel (window 0 only)
[CTRL~Y] Move cursor left one pixel (window 0 only)
[CTRL=\] Home (move to character position 0,0)
[CTRL-]] Move cursor right one character position
[CTRL-_] Move cursor right one pixel (window 0 only)

10

Alphanumeric Terminal Emulation Programming Guide

6.0 ERROR MESSAGES

These error messages are generated by the alphanumeric terminal emulation
. commands:

7.
17.
72.

73.
74.

75.

76.

78.

Illegal parameter: this message indicatés that an illegal value for
a parameter has been entered. This message will be given for a bad
write mask in DEFWIN,

Not enough space for definition: this message will be given by
DEFWIN or SETSIZ if all available window buffer space has been used.
Delete unneeded windows before proceeding.

Window not yet defined: this message will be given by SELWIN if the
user attempts to select a window that has not been defined by
DEEWIN.

Bad character size: this message will be given by SETSIZ if an
invalid size has been entered.

Bad window size: this message will be given by DEFWIN if an invalid
size has been given by the two window corners.

Illegal window number: this message will be given by DEFWIN,
SELWIN, and DELWIN if an invalid window number (not 0 through 8) has
been entered.

No window selected: this message will be given by the commands
ALPHEM, BOLD, DIRCUR, GETCUR, GETPOS, HOME, MOVCUR, OVRSTK, SCROLL,
SETCUR, SETSIZ, and WRAP if no window has been selected and an
attempt is made to execute one of these commands.

Cannot delete selected window: this message will be given by DELWIN
if the user tries to delete the currently selected window.

11

Alphanuneric Terminal Emulation Programming Guide

7.0 ALPHABETICAL COMMAND REFERENCE

This section lists, one command to a page, every Model One alphanumeric
windowing command. These subsections are included for each command:

SYNTAX: this section gives the command syntax.
FUNCTION: this section describes the function of the command.

PARAMETERS: this section 1lists the parameters for the command, gives their
ranges, and supplies any other needed information on the command parameters.

HOST BINARY COMMAND STREAM: this section gives the host binary command stream
and the hexadecimal, octal, and decimal opcodes for the cammand.

FORTRAN CALL: this section describes the FORTRAN call for the command,
including the variable names. ,

EXAMPLE: this section gives an example of how the cammand is used.

RELATED COMMANDS: this section lists any related cammands.

The following pages present the Model One commands in alphabetical order.

12

Alphanumeric Terminal Emulation Programming Guide

ALPHEM
SYNTAX
ALPHEM flag
FUNCTION
The ALPHEM command turns the alphanumeric terminal emulator on or off. When
the alphanumeric temminal emulator is on, the selected window of the display
monitor is used as a scrolling text window. Any characters typed at the
Raster Technologies keyboard are sent to the window. The window must be
defined (see DEFWIN) and selected (SELWIN) before it can be used.
PARAMETERS
flag flag=l or ON enables alphanumeric terminal emulator; flag=0 or OFF

disables alphanumeric temminal emulator

HOST BINARY COMMAND STREAM

[C2H] [flag] (2 bytes)
C2H=302 (octal) =194 (decimal)

FORTRAN SUBROUTINE CALL

CALL ALPHEM (FLAG)
EXAMPLE

DEFWIN 2 110,110 220,220 1,1 0,0
Defines window 2 with default write mask

SELWIN 2 Selects window 2

ALPHEM ON Turn on alphanumeric terminal emulator.
Subsequent characters typed at the local
keyboard are sent to window 2

RELATED COMMANDS

all alphanumeric terminal emulation commands

13

Alphanumeric Terminal Emulation Programming Guide

BOLD
SYNTAX
BOLD flag
FUNCTION ‘
The BOLD command controls the drawing of text. BOLD ON or BOLD 1 (tﬁe
default) draws bold text, in proportion to the scaling factor. BOLD OFF or
BOLD 0 draws normal (thin) text. :
PARAMETERS
flag flag=1 or ON draws bold £ext; flag=0 or OFF draws normal text |

HOST BINARY COMMAND STREAM

[CCH] [£lag] ' (2 bytes)
CCH=314 (octal) =204 (decimal) o

FORTRAN SUBROUTINE CALL

CALL BOID (flag)
EXAMPLE
BOLD ON Enables drawing of bold text

RELATED COMMANDS

all alphanumeric terminal emulation cammands
ALPHEM
BOLD
DEFWIN
DELWIN
DIRCUR
GETCUR
GETPOS
GETWIN
HOME
MOVCUR
OVRSTK
SCROLL
SELWIN
SETCUR
SETSIZ
WRAP

14

Alphanumeric Terminal Emulation Programming Guide

DEFWIN
SYNTAX
DEFWIN window,x1,yl,x2,y2,x size,y size,bitm,bankm
FUNCTION

The DEFWIN command is used to define the parameters for the alphanumeric
windows: the corners, the size of the text within the window, and the
writemask. window gives the window number. window=0 specifies the
hardware-scrolled window, which uses the entire screen of the monitor. This
window uses the screen origin register for scrolling; changes to creg 4 will
affect window 0. In addition, eight other windows are available (window=l to
8). These windows are software-scrolled, and may be any size.

The corners are defined by the Model One coordinate pair (x1,yl) and (x2,y2),
where the two points specify diagonally opposite corners. For window 0, these
corners are ignored, as the window always occupies the full screen. Windows
may overlap and the selected window (for windows 1 through 8) will always be
on top of the other windows.

X size and y size specify the x and y scaling of all text for that window.
The scale is equivalent to that specified with the SETSIZ command.

bitm and bankm set the write mask for the specified window. Details of these
parameters can be found in the WRMASK command. The default write mask is all
bit planes of all banks.

If the size or write mask parameters have a value of zero, the default value
is used.

Three value registers are associated with each window: the first specifies
the text color, the second the background color, and the third the cursor
color. Note that this cursor color is then XORed with the background color to
produce the color that is actually seen; for example, if the background is
red and the user wants a white cursor, the value register for the cursor color
would hold cyan. Window O uses value registers 16, 17, and 18; window 1 uses
value registers 19, 20, and 21; and so on through window 8, which uses value
registers 40, 41, and 42.

For windows 1 through 8, any changes to attributes of the window do not affect
the entire window until the window is scrolled. However, changes to the
attributes will take place on the current line immediately. For example, a
change in the value register for the background color will not change the
window until the window is scrolled. '

PARAMETERS

window the window number; the range is 0 to 8.

x1,yl the first corner of the window (ignored for window 0);
must be given in Model One coordinates.

x2,y2 the diagonally opposite corner of the window (ignored

15

Alphanumeric Terminal Emulation Programming Guide

for window 0); must be given in Model One coordinates.
X_size,y size the x and y scaling of text within the window; range is
from 1,1 (where each character uses a 16-pixel square).
The default is 1,1 for a 512x512 or 768x576 system, and
2,2 for a 1024x1024 system (including 1K mode).
bitm,bankm specify the write mask, as detailed in the WRMASK command.

HOST BINARY COMMAND STREAM

[COH] {window] [highxl] [lowx1] [highyl] [Llowyl] [highx2] [lowx2] [highy2] [lowy2]
[x_size] [y_size] [bitm] [bankm] (14 bytes)
COH=300 (octal) =l_92 (decimal)

FORTRAN SUBROUTINE CALL -

CALL DEFWIN (WINDOW,X1,Y1,X2,Y2,X SIZE,Y SIZE,BITM,BANKM)
EXAMPLE -

DEFWIN 1 20,20 50,50 1,1 0,0 This command defines window 1 with a
lower—-left corner of (20,20), an upper
right corner of (50,50), a text size of
1,1 and the default write mask of all
bit planes and banks.

RELATED COMMANDS

all alphanumeric terminal emulation cammands
ALPHEM

BOLD

DELWIN

DIRCUR

~ GETCUR

GETPOS

- GETWIN
HOME
MOVCUR

" OVRSTK
SCROLL
SELWIN
SETCUR
SETSI1Z
‘WRAP

16

Alphanumeric Terminal Emulation Programming Guide

DELWIN
SYNTAX
DELWIN window
FUNCTION

The DELWIN command deletes a previously defined window, freeing the buffer
space for use. The currently active window cannot be deleted.

PARAMETERS
window the window number, from 0 to 8

HOST BINARY COMMAND STREAM

[C3H] [window] (2 bytes)
C3H=303 (octal)=195 (hexadecimal)

FORTRAN SUBROUTINE CALL

CALL DELWIN (WINDOW)
EXAMPLE

SELWIN 2 Select window 2

DELWIN 3 Deletes window 3

DELWIN 2 Window 2 cannot be deleted; it is selected
Error 075

DELWIN: Illegal window number

RELATED COMMANDS

all alphanumeric terminal emulation commands
ALPHEM
BOLD
DEFWIN
DELWIN .
DIRCUR
GETCUR
GETPOS
GETWIN
HOME
MOVCUR
OVRSTK
SCROLL
SELWIN
SETCUR
SETSIZ
WRAP

17

Alphanumeric Terminal Emulation Programming Guide

DIRCUR
SYNTAX
DIRCUR X,y
FUNCTION
The DIRCUR command moves the cursor to character position (x,y) within the
alphanumeric window. The character positions are defined as (0,0) in the

upper-left corner of the window, moving positive in x and y toward the
lower-right corner, as shown:

Note that the first row is row 0 and the first column in column O.

If an attempt is made to move the cursor beyond the window boundaries, the
cursor will be moved to the edge of the window but not beyond. The largest
character position on the Model One/20 (assuming a full-screen window) is
(84,50); for the Model One/40 and Model One/60, it is (169,101).

PARAMETERS

X,y X,y specify the character position within the window.

HOST BINARY COMMAND STREAM

[C4H] [x] [y] (3 bytes)
C4H=304 (octal) =196 (decimal)

FORTRAN SUBROUTINE CALL

CALL DIRCUR (X,Y)
EXAMPLE

DIRCUR 3,4 Moves the cursor to character position (3,4),
which is the fourth row, fifth column.

RELATED COMMANDS

all alphanumeric terminal emulation commands

1R

Alphanumeric Terminal Emulation Programming Guide

GETCUR
SYNTAX
GETCUR
FUNCTION
The GETCUR command returns the Model One coordinate position of the cursor
within the currently selected window. Note that the Model One coordinate

position is rounded to the nearest character position for windows 1 through 8.

HOST BINARY COMMAND STREAM

[C9H] (1 byte)
C9H=311 (octal) =201 (decimal)

FORTRAN SUBROUTINE CALL

CALL GETCUR (IX,IY)

EXAMPLE
MOVCUR 100;100 Moves cursor to coordinate position (100,100)
GETCUR Gets cursor coordinate position

00100 00100 Current coordinate position

RELATED COMMANDS

all alphanumeric terminal emulation commands
ALPHEM
BOLD
DEFWIN
DELWIN
DIRCUR
GETCUR
GETPOS
GETWIN
HOME
MOVCUR
OVRSTK
SCROLL
SELWIN
SETCUR
SETSIZ
WRAP

19

Alphanumeric Terminal Emulation Programming Guide

GETPOS
SYNTAX
GETPOS
FUNCTION

The GETPOS command returns the character position of the cursor within the
currently selected window.

HOST BINARY COMMAND STREAM

[C5H] (1 byte)
C5H=305 (octal) =197 (decimal)

FORTRAN SUBROUTINE CALL

CALL GETPOS (ICOL,IROW)

EXAMPLE

DIRCUR 3,4 Moves cursor to character position (3,4)
GETPOS Gets cursor character position

003 004 Current character position

RELATED COMMANDS

all alphanumeric terminal emulation cammands
ALPHEM
BOLD
DEFWIN
DELWIN
DIRCUR
GETCUR
GETPOS
GETWIN
HOME
MOVCUR
OVRS1TK
SCROLL
SELWIN
SETCUR
SETSIZ
WRAP

20

Alphanumeric Terminal Emulation Programming Guide

GETWIN
SYNTAX
GETWIN
FUNCTION

The GETWIN command returns the number of the currently selected alphanumeric
window. The value (-1) is returned if no window is active.

HOST BINARY COMMAND STREAM

[CEH] (1 byte)
CEH=316 (octal) =207 (decimal)

FORTRAN SUBROUTINE CALL

CALL GETWIN (NUM)

EXAMPLE
GETWIN Returns number of selected window
-001 No window is active

SELWIN 7

GETWIN

007 Window 7 is now active

RELATED COMMANDS

all alphanumeric terminal emulation commands
ALPHEM
BOLD
DEFWIN
DELWIN
DIRCUR
GETCUR
GETPOS
GETWIN
HOME
MOVCUR
OVRSTK
SCROLL
SELWIN
SETCUR
SETSIZ
WRAP

21

Alphanumeric Terminal Emulation Programming Guide

HOME
SYNTAX
HOME
FUNCTION
The HOME command moves the cursor within the alphanumeric window to character
position (0,0), which is the upper-left corner of the window. Note that the
command DIRCUR 0,0 and HOME are equivalent.

HOST BINARY COMMAND STREAM

[CFH] (1 byte)
CFH=317 (octal) =207 (decimal)

FORTRAN SUBROUTINE CALL

CALL HOME

EXAMPLE

DIRCUR 1,1 ' Moves cursor to character position (1,1)
HOME Moves cursor to character position (0,0)

RELATED COMMANDS

all alphanumeric terminal emulation commands
ALPHEM
BOLD
DEFWIN
DELWIN
DIRCUR
GETCUR
GETPOS
GETWIN
HOME
MOVCUR
OVRSTK
SCROLL
SELWIN
SETCUR
SETSIZ
WRAP

22

Alphanumeric Terminal Emulation Programming Guide

MOVCUR

SYNTAX

MOVCUR X,y

FUNCTION

The MOVCUR command moves the alphanumeric window cursor to Model One
coordinate (x,y), within the boundaries of the window. For windows 1 through
8, the cursor position will be rounded to the nearest character position; for
window 0, the precise Model One coordinate is used.

PARAMETERS

X,y the Model One (x,y) coordinate

HOST BINARY COMMAND STREAM

[C8H] [highx] [lowx] [highy] [lowy] o (5 bytes)
C8H=310 (octal) =200 (decimal)

FORTRAN SUBROUTINE CALL

CALL MOVCUR (X,Y)
EXAMPLE

MOVCUR 100,100 Moves the cursor to Model One coordinate
(100,100)

RELATED COMMANDS

all alphanumeric terminal emulation commands
ALPHEM
BOLD
DEFWIN
DELWIN
DIRCUR
GETCUR
GETPOS
GETWIN
HOME
MOVCUR
OVRSTK
SCROLL
SELWIN
SETCUR
SETSIZ
WRAP

23

Alphanumeric Terminal Emulation Programming Guide

OVRSTK
SYNTAX
OVRSTK flag
FUNCTION
The OVRSTK command enables or disables overstriking of text. If overstriking
is enabled, previous characters in the line may be overstruck without being
erased. flag=1l or ON will enable overstriking; flag=0 or OFF (the default)

disables overstriking.

In windows 1 through 8, only the last character in a given position will
remain after the window is scrolled.

PARAMETERS

flag flag=0 or OFF disables overstriking; flag=l or ON enables
overstriking .

HOST BINARY COMMAND STREAM

[CDH] [flag] (2 bytes)
CDH=315 (octal) =207 (decimal)

FORTRAN SUBROUTINE CALL

CALL OVRSTK (FLAG)
EXAMPLE
OVRSTK ON Enables overstriking of characters

RELATED COMMANDS

all alphanumeric terminal emulation cammands
ALPHEM
BOLD
DEFWIN
DELWIN
DIRCUR
GETCUR
GETPOS
GETWIN
HOME
MOVCUR
OVRSTK
SCROLL
SELWIN
SETCUR
SETSIZ
WRAP

24

Alphanumeric Terminal Emulation Programming Guide

SCROLL
SYNTAX
SCROLL flag

FUNCTION

The SCROLL command controls whether the window scrolls when the text reaches
the bottom of the window. If flag=l or ON (the default), scrolling is done;
if flag=0 or OFF, scrolling is not done.

When scrolling is disabled, characters wrap from the end of the bottom line to
the beginning of the top line.

PARAMETERS
flag flag=l or ON enables scrolling; flag=0 or OFF disables scrolling

HOST BINARY COMMAND STREAM

[CaH] [flag] (1 byte)
CAH=312 (octal) =202 (decimal)

FORTRAN SUBROUTINE CALL

CALL SCROLL (FLAG)
EXAMPLE
SCROLL ON Enables scrolling of the text window

RELATED COMMANDS

all alphanumeric terminal emulation cammands
ALPHEM
BOLD
DEFWIN
DELWIN
DIRCUR
GETCUR
GETPOS
GETWIN
HOME
MOVCUR
OVRSTK
SCROLL
SELWIN
SETCUR
SETS1Z
WRAP

25

Alphanumeric Terminal Emulation Programming Guide

SELWIN
SYNTAX
SELWIN window
FUNCTION
The SELWIN command selects the current window for use as a scrolling text
window. If the alphanumeric emulator is in use, all alphanumeric data is sent
to the currently selected window. The window must be defined (see DEFWIN)

before it can be selected. SELWIN redraws the entire window, for windows 1
through 8, leaving the selected window on top of the other windows.

PARAMETERS
window window number: range is 0 to 8.

HOST BINARY COMMAND STREAM

[C1H] [window] (2 bytes)
C1H=301 (octal)=193 (decimal)

FORTRAN SUBROUTINE CALL

CALL SELWIN (WINDOW)
EXAMPLE
DEFWIN 7 100,100 150,150 1,1 0,0
Defines window number 7 using the default write mask
SELWIN 7 Selects window number 7 as the current window

RELATED COMMANDS

all alphanumeric terminal emulation commands
ALPHEM
BOLD
DEEFWIN
DELWIN
DIRCUR
GETCUR
GETPOS
GETWIN
HOME
MOVCUR
OVRSTK
SCROLL
SELWIN
SETCUR
SETSIZ
WRAP

26

Alphanumeric Terminal Emulation Programming Guide

SETCUR
SYNTAX
SETCUR flag
FUNCTION
The SETCUR command determines whether or not the cursor will be displayed.
PARAMETERS |
flag flag=1 or ON displays the cursor; flag=0 or OFF disables the
cursor.,

HOST BINARY COMMAND STREAM

[C7H] [flag] (2 bytes)
C7H=307 (octal)=199 (decimal)

FORTRAN SUBROUTINE CALL

CALL SETCUR (FLAG)
EXAMPLE
SETCUR ON Cursor is displayed

RELATED COMMANDS

all alphanumeric terminal emulation cammands
ALPHEM
BOLD
DEFWIN
DELWIN
DIRCUR
GETCUR
GETPOS
GETWIN
HOME
MOVCUR
OVRSTK
SCROLL
SELWIN
SETCUR
SETSIZ
WRAP

27

Alphanumeric Terminal Emulation Programming Guide

SETSIZ

SYNTAX

SETSIZ xscale,yscale

FUNCTION

The SETSIZ command sets the width and height of all text written into the
alphanumeric windows. xscale detemmines the width (scaling in the x
dimension); yscale determines the height.

If a value of zero is given for either parameter, the current value is
retained. The default value for the Model One/25 in 512 mode and for the
Model One/60 is (1,1); otherwise, the default is (2,2), for 1K mode and the
Model One/40. An xscale and yscale of (1,1) create a 10-pixel-high by
6-pixel-wide character.

For windows 1 through 8, this command will reinitialize the entire window,
erasing the text buffer and placing the cursor in character position (0,0).

PARAMETERS

xscale determines the width of the text
yscale determines the height of the text

HOST BINARY COMMAND STREAM

[C6H] [xscale] [yscale] (3 bytes)
C6H=306 (octal)=198 (decimal)

FORTRAN SUBROUTINE CALL

CALL SETSIZ (XSCALE,YSCALE)
EXAMPLE

SETSIZ 3,3 Sets the x and y text scaling to three times
normal size

RELATED COMMANDS

all alphanumeric terminal emulation commands

28

Alphanumeric Terminal Emulation Programming Guide

WRAP
SYNTAX
WRAP flag
FUNCTION

The WRAP command controls whether the cursor will wrap around to the next line
when the end of the line is reached. flag=l or ON (the default) enables
wraparound; flag=0 or OFF disables wraparourd.

If wrap is disabled, the cursor.stays in the last character position on the
line until a carriage return is typed, so that the last character is
overwritten repeatedly. -

PARAMETERS
flag flag=l or ON enables wraparound; flag=0 or OFF disables wraparound

HOST BINARY COMMAND STREAM

[CBH] [flag] (2 bytes)
CBH=313 (octal) =203 (decimal)

FORTRAN SUBROUTINE CALL

CALL WRAP (FLAG)
EXAMPLE

WRAP OFF Disables wrapping of the cursor when the
end of the text line is reached

RELATED . COMMANDS

all alphanumeric terminal emulation commands
ALPHEM
BOLD
DEFWIN
DELWIN
DIRCUR
GETCUR
GETPOS
GETWIN
HOME
MOVCUR
OVRSTK
SCROLL
SELWIN
SETCUR
SETSIZ
WRAP

29

Alphanumeric Terminal Emulation Programming Guide

8.0 INDEX

Alphabetical command reference 12
ALPHEM 13 :
ALPHEM 6

BOLD 10

BOLD 14

COLDstart 6

Command Reference 12
CTRL commands for window movement 10
Cursor 7

Cursor, moving 9
Default window 6

DEFWIN 15

DEFWIN 7

DELWIN 17

DELWIN 8

DIRCUR 18

DIRCUR 9

Error messages 11
GETCUR 19

GETCUR 9

GETPOS 20

GETPOS 9

GETWIN 21

GETWIN 8

HOME 22

HOME 9

Introduction 4

KEYBSIO 6

MOVCUR 23

MOVCUR 9

OVRSTK 10

OVRSTK 24

SCROLL 10

SCROLL 25

SELWIN 26

SELWIN 8

SETCUR 27

SETCUR 9

SETSIZ 10

SETSIZ 28

Text characteristics 10
Value registers ard window colors 7
Window characteristics 10
Window colors 7

Window definition 7
Window deletion 7
Window selection 7
Window, moving around 9
WRAP 29

Write mask 7

30

RASTER TECHNOLOGIES

MODEL ONE
DISPLAY LIST FIRMWARE

PROGRAMMING GUIDE

Revision 1.0 May 17, 1983

Display List Programming Guide

DISPLAY LIST FIRMWARE PROGRAMMING GUIDE
May 17, 1983

Copyright 1983 by Raster Technologies, Inc. All rights reserved. No part of
this work covered by the copyrights herein may be reproduced or copied in any
form or by any means——electronic, graphic, or mechanical, including
photocopying, recording, taping, or information and retrieval systems--without
written permission.

NOTICE:

The information contained in this document is subject to change without
notice.

RASTER TECHNOLOGIES DISCLAIMS ALL WARRANTIES WITH RESPECT TO THIS MATERIAL
(INCLUDING WITHOUT LIMITATION WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A
PARTICULAR PURPOSE), EITHER EXPRESS OR IMPLIED. RASTER TECHNOLOGIES SHALL NOT
BE LIABLE FOR DAMAGES RESULTING FROM ANY ERROR CONTAINED HEREIN, INCLUDING,
BUT NOT LIMITED TO, FOR ANY SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
ARISING OUT OF OR IN CONNECTION WITH THE USE OF THIS MATERIAL.

This document contains proprietary information which is protected by
copyright.

-

~—

Display List Programming Guide

Table Qf Contents

1.0

2.0

3'0
4.0
5.0

6.0

7.0

>

INTRODUCI‘ION..00000000000000..-0..0.o.oooo.oo.o.

CREATING AND UPDATING SEGMENTS..ccccesecsccccces
2.1 The World Coordinate SySteMieeeesescecencss
2.2 Defining SegmentS.ecescescccsscscssccsccsns
2.3 Segment ManipulatioN..eeessesssccccsoscsccs

o

VIEW SPECIFICATION.:cecscoosscccssscccssssssscse O
SMNT ATPRIBUTES.O..O"....‘.................. 7
PICKING GRAPHICS PRIMITIVES..eceecssccccccccsces 8

ALPHABETICAL COMMAND REFERENCE.eccsceccccccccses 9
DEFVW.ceeeosecccsccssesscscscscccscscsssassasasassssll
DELPIDeececcscoscccocccscsccsccccccsscsssscsnsscsssell
HILITE .eeeeecosnoscccscccsssassccacscscsccssascasseld
PICKCR:eeeeoessocsccsacssssscscscssscsscsssssscsassseld
RDPID:eceeesccccecsssccccscccacsoosscacansossssnalbd

mm.....ooo0.0000cooooooo.o..ooooo.ooooo.cooo.lg

RDTREE..ccccececcccosscscsscosascosccscnssasssssald
REDRAW. ¢ coeecoccccccccccscscccssccssssscsssccsasell
SEGAPP.cceeccsccccsccccccscocsccccccscsssssasesell
SEGOOP e eeeecscosncesanscccsscscnscaccscsoscsssell
SEGDEF e ceceeesceccsccccccccsccscanccsscscssocccessld
SEGDELceceeecccecceccccacsssccccacscccscsannceseldd
SEGEND .« ececeecccccocsacacscscssccacscscssosccseeld
SEGINI.eceeecececesccoacssscsoanccacaccssaconceall
SEGINQeeeeeccecacssccscssacsscssoscsscscsnsnasseeald
SEGPIDcecececcocesocsoscscccscscssoscscsscsssceseld
SEGREF..cceeereccsescesccsosssccsssssccsssacscessll
SEGREN.ceeeceesocsaosccssccssscssnsccssscsscsscssll
SETeeeeeeecesoaasosssnanscasasscsasnsocsosscscsssll
SETATR. ceeeeceeoncscsssscsscscssscscssscsancsessld
SYSTAT.ceeececesesesoscasscssscscssssscssscasansald

QUICK COmAND REE‘ERENCE..‘..............'.......36

Display List Programming Guide

1.0 INTRODUCTION

This manual describes the Display List Firmware for the Model One/25, Model
One/40, and Model One/60. The same Firmware can be used on any Model One; no
changes are necessary to move the firmware between Model Ones.

There are seven sections in this manual:

1.0 Introduction

2.0 Creating and Updating Segments: this section describes the command used
for creating and updating segments.

3.0 View Specification: this section describes and explains the DEFVW
command .

4.0 Segment Attributes: this section describes the possible attributes of
segments and the commands used to set those attrbutes.

5.0 Picking Graphics Primitives: this section describes the commands used to

pick graphics primitives. In addition, the commands used to manipulate picked
primitives are explained.

6.0 Alphabetical Command Reference: this section lists the available Display
List Firmware commands 1in alphabetical order, providing a complete reference.

7.0 Quick Command Reference: this section lists and very briefly describes
the available Display List Firmware commands.

Display List Programming Guide

2.0 CREATING AND UPDATING SEGMENTS

This section outlines the Dlsplay List Firmware commands used for creating and
updating segments.

The command SEGINI initializes the Display List Firmware and should be used
whenever an entirely new set of segments is to be defined. SYSTAT returns the
Display List Firmware memory usage and availability.

2.1 The World Coordinate System

Segments are composed of graphics primitives which are defined in a 16-bit
World Coordinate System ranging from (-32767,-32767) to (32766,32766). The
graphics primitives are defined by the Model One command set, including MOVEs,
DRAWs, CIRCLEs, ARCs, POLYGONs, and so on.

Views are defined by the DEFVWW command (see section 3); views specify the
portion of the World Coordinate System (WCS) which is currently visible and
how that portion is displayed.

2.2 Defining Segments

A segment is a collection of graphics primitives which are stored and
reterenced together. The command SEGDEF begins definition of a segment; each
segment may include:

1. Model One graphics primitives: MOVE commands, DRAW commands, TEXT
command, CIRCLE, ARC, POLYGN, RECTAN, etc.

2. Changes to the current pixel value: VALUE, VAL8, VALIK, etc.
3. Changes to primitive generation attributes: PRMFIL, VECPAT, etc.
To end segment definition, the SEGEND command is used.

2.3 Segment Manipulation

Once defined, a segment may be deleted (SEGDEL), renamed (SEGREN), copied
(SEGCOP), or expanded (SEGAPP--segment apperd). To end an append to a
segment, the SEGEND command is also used.

To nest a segment within another segment--up to eight levels deep—— the
command SEGREF is used.

To change the current pick identification number of a segment (see section 4
for details), the SEGPID command is used.

Display List Programming Guide

3.0 VIEW SPECIFICATIQN

Up to eight views into the World Coordinate System may be defined and
displayed. These are defined with the DEFVW command; the view can then be
drawn with the REDRAW command.

Each view is defined by:

l.

2.

its window coordinates in the World Coordinate System

the viewport coordinates in the Display Coordinate System. The Display
Coordinate System 1is defined by the monitor window: for example, the
Model One/40 has a maximum display viewport from (-512,-512) to (511,511).
the UP vector: this vector is defined by its two endpoints, and may be at
any angle. It specifies the rotation of the view as it 1is displayed on
the screen.

the transformation type: four types of transformation may be done. These
are: no transformation; translation and scaling; rotation only; and
rotation, translation, and scaling. '

the background color for the view.

the write mask for the view.

the highest level segment to be displayed.

The REDRAW command is used to display a window after it is defined; you can
erase the viewport to the background color if desired.

Display List Programming Guide

4.0 SEGMENT ATTRIBUTES

Each segment has a set of attributes associated with it; these attributes may
be used when picking or editing segments.

A pick identification number can be associated with primitives within a
segment. The SEGPID command assigns a pick identification number which is
assigned to all the graphics primitives until a SEGEND command is executed or
another SEGPID command is encountered, whichever comes first.

The SETATR command is used to set the visibility or pickability of an entire
segment; these are useful for the PICKCR and REDRAW commands.

The SET command is used to set the search attributes for the PICKCR command.
See section 5 for details of picking.

The command SEGINQ returns information about the attributes of a given
segment; the pickability and visibility are indicated.

Display List Programming Guide

5.0 PICKING GRAPHICS PRIMITIVES

In PICKING, an (x,y) coordinate in the Display Coordinate System is given.
This coordinate is then used to find both the segment number and the graphics
primitive which intersects that point. The error margin (aperture) can be set
as desired.

The PICKCR command initiates the pick search. PICKCR also specifies the
coordinate register for picking.

When the PICKCR command is executed, the PIDREG (pick identification number
register) is updated, as 1is the SEGREG (segment register). The PIDREG and
SEGREG are set with the value of the picked primitives. The PIDREG and SEGREG
may be set with the SET command, as well. (See DELPID and HILITE for more
details of how this would be used.) PICKCR uses the picking error margin
(PICKAP) set with the SET command.

The HILITE and DELPID commands can be used to highlight or delete primitives
with a specified pick identification number (as found in PIDREG) or segment
number (SEGREG) .

Display List Programming Guide

6.0 ALPHABETICAL COMMAND REFERENCE

This section lists, one command to a page, every Model One Display List
Firmware command. These subsections are included for each command:

SYNTAX: this section gives the command syntax.
FUNCTION: this section describes the function of the command.

PARAMETERS: this section lists the parameters for the command, gives their
ranges, and supplies any other needed information on the command parameters.

HOST BINARY COMMAND STREAM: this section gives the host binary command stream
and the hexadecimal, octal, and decimal opcodes for the command.

FORTRAN CALL: this section describes the FORTRAN call for the command,
including the variable names.

EXAMPLE: this section gives an example of how the command is used.

RELATED COMMANDS: this section lists any related commands.

The following pages present the Model One commands in alphabetical order.

Display List Programming Guide

DEFVW
SYNTAX

DEFVW view wcsregl,wcsreg2 desregl,dcsreg2 upregl,upreg2 rotate
xform backvreg bitm,bankm hiseg

FUNCTION

The DEFVW command defines the view into the Display List world coordinate
system (WCS) and how it is displayed in the display coordinate system (DCS).
The UP vector, rotation, and transformation are defined. The background color
for the view is specified, as are the writemask and the highest level segment
to be included in the view.

To explain the DEFVWW command further: the user defines graphics primitives in
a 64,000 by 64,000 world coordinate system (WCS). The view specifies the
portion of the WCS that is to be displayed, and describes the display in
detail. Up to eight views-—numbered from 0 to 7--can be simultaneously
defined and displayed. Two Two coordinate registers wesregl and wesreg2 specify
the corners of the window within the world coordlnate system.

Each view includes a window of the WCS that is to be displayed on the screen.
This window specifies a rectangle which may present a squeezed or stretched
view of the WCS window. The screen display system is called the device
coordinate system (DCS); the DCS has coordinates corresponding to the screen
size. The Model One/25 has a window from (-256,-256) to (255,255); the Model
One/40 DCS goes from (-512,-512) to (511,511) as does the Model One/60 image
memory, although the actual display window is from (-384,-288) to (383,287).
The two coordinate registers dcsregl and dcsreg2 specify the display window.

To specify rotations of the WCS as it is displayed in the DCS window, a vector
which defines UP is used. The two endpoints of this UP vector are defined by
the registers upregl and upreg2. rotate then gives the center around which
the window is rotated. rotate is a coordinate register containing an x,y
point.

xform gives the type of transformation that is desired when the WCS window is
mapped into the DCS window. xform=0 specifies that no transformation is done
for display; this is especially useful for menus and other primitives that
should not be changed before display. xform=l indicates that translation and
scaling should be done; the UP vector is ignored. xform=2 specifies that
only rotation should be done. xform=3 specifies translation, rotation, and
scaling should be done. The default value is xform=l.

A background color for the window can be specified, using backvreg. When
REDRAWs are done, using the REDRAW command, the window can be cleared to this
background value first, if desired.

bitm and bankm specify the writemask for the image memory. These two
parameters function exactly as they do in the WRMASK command and should be
used in the same way.

10

e

hiseg specifies the number of the highest level segment that is included in
the view., For a top-level view, for. example, the user would define the view
to reference the highest level segment only. Then, unwanted detail from
lower=level segments could be controlled with the SETATR command, which can
make selected segments "invisible".

PARAMETERS

view the view number; range is 0 to 7.

wcsregl ,wesreg?2
this pair of coordinate registers specifies the diagonal corners of
the WCS window. The range is 0 to 63 (although some cregs are
reserved) .

desreql ,dcsreg2
this pair of coordinate registers specifies the diagonal corners of
the DCS window. The range is 0 to 63 (although some cregs are
reserved) .

upregl ,upreg?
this pair of coordinate registers specifies the two ends of the UP
vector.

rotate the number of the coordinate register containing the WCS x,y center
of rotation '

xform transformation type; the range is 0 to 3, as follows: 0: no
transformation;l: translate and scale; 2: rotate;3: translate,
rotate, and scale.

backvreg the number of the value register containing the background color.

bitm,bankm
the writemask for the view; see the WRMASK command for details.

hiseg the highest level of nested segments to be included in the view.

HOST BINARY COMMAND STREAM

[EBH] [view] [wesregl] [wesreg2] [desregl] [desreg2] [upregl] [upreg2]
[rotate] [xform] [backvreg] [bitm] [bankm] [hiseg] (14 bytes)
EBH=353 (octal)=235 (decimal)

FORTRAN SUBROUTINE CALL

CALL DEFVW (VIEW,WCSREG1 ,WCSREG2,DCSREG1,DCSREG2,UPREGL ,UPREG2,
ROTATE ,XFORM, BACKVREG ,BITM, BANKM, HISEG)

EXAMPLE
_,«/‘9 P %*-""? A e
DEFW 2 22,23 24
G ~Th18 command defines view 2 with WCS window

corners specifed by cregs 22 and 23, DCS
window corners specified by cregs 24 and 25,
UP vector corners given by cregs 26 and 27,
the rotation center given by creg 28, the
transformation type of 3, a background value
given by vreg 14, a writemask (bitm,bankm) of
255,7 (write all banks, all bit planes), and
a high segment number of 3.

[At

RELATED COMMANDS

all Display List commands

12

——

e

DELPID

SYNTAX

DELPID

FUNCTION

The DELPID command deletes all graphics primitives with a pick identification
number equal to PIDREG and a segment number equal to SEGREG. The graphics
primitives are deleted from the current pickid to the next pickid or to the
end of the segment, whichever cames first.

PARAMETERS

None.

HOST BINARY COMMAND STREAM

[ECH] (1 byte)
ECH=354 (octal) =236 (decimal)

FORTRAN SUBROUTINE CALL

CALL DELPID

EXAMPLE

SET SEGREG 1 Set the segment register id

SET PIDREG 15 Set the pickid to 15

DELPID Delete all primitives with pickid of 15 in segment 1

RELATED COMMANDS

all Display List commands

13

HILITE
SYNTAX

HILITE view,flag,vreg
FUNCTION

The HILITE command highlights all graphics primitives with the current pickid
and segment number, using PIDREG and SEGREG (see the SET command). The view
to be highlighted is given by view; the highlight color is given by value
register vreg. If flag=l or ON, the corresponding primitives are highlighted;
if flag=0 or OFF, the primitives are drawn normally. This option can be used
to unhighlight previous highlighted segments.

PARAMETERS

view the view number (see DEFVW)

flag if flag=1 or ON, graphics primitives are highlighted in color
specified by vreg. If flag=0 or OFF, graphics primitives are drawn
normally,

vreg value register containing the highlight color. The default is value

register 0 (the current color).

HOST BINARY COMMAND STREAM

[DFH] [view] [flag] [vreg] (4 bytes)
DFH=337 (octal) =223 (decimal)

FORTRAN SUBROUTINE CALL

CALL HILITE (VIEW,FLAG,VREG)

EXAMPLE
SET SEGREG 1 Set the segment register id
SET PIDREG 15 Set pickid to 15
HILITE 11 4 Highlight all primitives with pickid of 15
in segment 1, view 1, using the color in vreg 4

HILITE 1 0 Returns highlighted primitives to original color.
: Note that vreg is not needed here.

RELATED COMMANDS

all Display List commands

14

-

PICKCR
SYNTAX
PICKCR view dcsreg searchflag
FUNCTION

The PICKCR command is used in pick searches of a view. view gives the view
number to be picked. dcsreg specifies the coordinate register containing the
DCS coordinates for the pick. searchflag specifies the conditions of the
search. If searchflag is ON or I, the search is continued from the current
location (allowing continuing searches through a tree to pick among multiple
overlapping objects: see the RDTREE command). If searchflag is OFF or 0, the
search is started fram the top of the segment.

PARAMETERS

view the view number (see DEFVW); range is 0 to 7.

dcsreg the coordinate register containing the DCS coordinates for the pick.
searchflag

If 1 or ON, pick search is from current location; if 0 or OFF, pick
search is fram top of segment.

HOST BINARY COMMAND STREAM

[E3H] [view] [dcsreg] [searchflag] (4 bytes)
E3H=343 (octal) =227 (decimal)

FORTRAN SUBROUTINE CALL

CALL PICKCR (VIEW,WCSREG,SEARCHFLAG)

EXAMPLE

PICKCR 2 24 ON Performs search from current location of
view 2, using coordinate register 24 for

DCS coordinates.

RELATED COMMANDS

all Display List commands

15

RDPID

SYNTAX
RDPID

FUNCTION

The RDPID command reads and returns the graphics primitives with a pickid
equal to PIDREG and a segment number equal to SEGREG. A list of primitives is

returned: the format is (n,nray). n gives the number of words; nray is a
vector of n words.

For RDPID, a graphics primitive is defined 'as all the graphics primitives
between two SEGPID commands (see SEGPID for more details). n thus gives the
number of words; nray gives the words defining the graphics primitives in raw
form——opcodes and parameters.

PARAMETERS

None.

HOST BINARY COMMAND STREAM

[EDH] (1 byte)
EDH=355 (octal) =237 (decimal)

FORTRAN SUBROUTINE CALL

CALL RDPID (BYTESRAY (m,n))

BYTESRAY is an array of size m,n where m is the number of bytes and n is the
raw data.

EXAMPLE

SEGDEF 1 Define segment 1

SEGPID 4
MOVABS 10,-10
SEGPID 5

SEGEND

SET SEGPID 1 Set SEGPID to 1
SET PIDREG 4 Set PIDREG to 4
RDPID

00003
00004 00010 -00010 00000
(Indicates command MOVABS 10,-10)

16

—

RELATED COMMANDS

all Display List commands

17

RDREG
SYNTAX
RDREG
FUNCTION

The RDREG command returns the current segment number and the current pick
identification number, as set by the SET SEGREG and SET PIDREG commands.

PARAMETERS
None.

HOST BINARY COMMAND STREAM

—x

[EOH] (1 byte)
EOH=340 (octal) =224 (decimal)

FORTRAN SUBROUTINE CALL

CALL RDREG (SEGMENT,PICKID)

EXAMPLE (
SET PIDREG 46 Set current pickid to 46 (load PID register)

SET SEGREG 10 Set current segment to 10 (load segment register)

RDREG

00010 00046 Segment is 10, pickid is 46

RELATED COMMANDS

all Display List commands

10

RD

=

R E E

|

SYNTAX
RDTREE

FUNCTION

The RDTREE command returns the hierarchical history generated by the PICKCR
comand. The nesting level (plus 1) and an 9x2 array of the segment and
pickid numbers are returned.

PARAMETERS

None.

HOST BINARY COMMAND STREAM

[EEH] (1 byte)
EEH=356 (octal) =239 (decimal)

FORTRAN SUBROUTINE CALL

CALL RDTREE (NESTING,SEGPID)
SEGPID is an 9x2 array of segment and pickid numbers.
EXAMPLE

SEGDEF 5 Begin view data structure definition
SEGPID 1

SEGREF 1

SEGEND

SEGDEF 1

SEGPID 0
SEGREF 13

SEGEND
SEGDEF 13

SEGPID 100

DRWREL 100 100

SEGEND End view definition
CREG 2 contains the DCS coordinates of a point on
or near (see SET PICKAP) the DRWREL 100,100 vector

PICKCR 0,2,0 Set up search through view 0

RDTREE Execute RDTREE command

00003

00005 00001

00001 00000

19

00013 00100
00000 00000
00000 00000
00000 00000
00000 00000
00000 00000
00000 00000

RELATED COMMANDS

all Display List commands

20

REDRAW

SYNTAX

REDRAW view,flag

FUNCTION

The REDRAW command redisplays all segments associated with the specified view.
If the flag is ON or 1, the window of the display is cleared to the background

color before the display is done. All views can be erased by giving a view of
-1, '

PARAMETERS

view the view number; range is -1 to 7. If the view is -1, all views
are redisplayed.

flag flag=ON or 1, erase before display; flag=OFF or 0, do not erase
before display.

HOST BINARY COMMAND STREAM

[E2H] [view] [flag] (3 bytes)
E2H=342 (octal) =226 (decimal)

FORTRAN SUBROUTINE CALL

CALL REDRAW (VIEW,FLAG)
EXAMPLE

REDRAW 2 ON Redraw view 2; erase before redrawing.
REDRAW -1 OFF Redraw all views; do not erase first.

RELATED COMMANDS

all Display List commands

21

SEGAPP

SYNTAX

SEGAPP segment

FUNCTION

The SEGAPP command is used to append graphics primitive commands to an
existing segment definition. The specified segment is reopened; after all
desired commands are added, the SEGEND command closes the opened segment.
PARAMETERS

segment = the segment to which commands will be appended

HOST BINARY COMMAND STREAM

[DBH] [segment] (2 bytes)
DBH=333 (octal) =219 (decimal)

FORTRAN SUBROUTINE CALL

CALL SEGAPP (SEGMENT)

EXAMPLE
SEGDEF 10 Begin definition of segment 10
Model One graphics primitives commands
SEéEND End definition of segment 10
SEGAPP 10 Re~-open segment 10 to append commands
Additional Model One commands
SEéEND Re-close segment 10 after appending commands

RELATED COMMANDS

all Display List commands

22

PN

SEGCOP
SYNTAX
SEGCOP segment2, segmentl
FUNCTION

The SEGCOP command copies segmentl into segment2, leaving segmentl unchanged.
If segment2 already exists, it 1s overwritten.

PARAMETERS

segmentl the segment to be copied; range is 0 to 32,767.
segment2 the name of the segment into which segmentl is copied.

HOST BINARY COMMAND STREAM

[EAH] [segment2] [segmentl] (3 bytes)
EAH=352 (octal) =234 (decimal)

FORTRAN SUBROUTINE CALL

CALL SEGCOP (SEGMENT2,SEGMENT1)

EXAMPLE
SEGDEG 10 Begin definition of segment 10
: Model One graphics primitive commands
SEGEND
SEGCOP 12 10 Copy segment 10 into segment 12

RELATED COMMANDS

all Display List commands

23

SEGDEF
SYNTAX
SEGDEF segment
FUNCTION
The SEGDEF command begins the definition of a Display List segment. segment
gives the segment number; while its range is from 0 to 32,767, only roughly
500 segments may be simultaneously defined. It may be useful, however, to

number the segments in increments of ten, like program statements, to allow
room for expansion.

A Display List segment may only include these commands:

1. Graphics primitive commands: the move commands, the draw commands,
POLYGN, the text commands, the circle commands, the rectangle commands,
and other graphics primitives.

2. The pixel value commands: VALUE, VAL1K, VAL8. Note that each byte of a
command takes up Display List space, so it may be desirable to use VALIK
or VAL8 commands if minimal space use is desired. VMOVE may be used for
dynamic color control.

3. Changes to primitive generation attributes: VECPAT, PRMFIL, etc.

PARAMETERS

segment the segment number; range is from 0 to 32,767.

HOST BINARY COMMAND STREAM

[DCH] [segment] (2 bytes)
DCH=334 (octal)=220 (decimal)

FORTRAN SUBROUTINE CALL

CALL SEGDEF (SEGMENT)

EXAMPLE
SEGDEF 10 Begin definition of segment 10.

; Model One graphics primitive commands
SEéEND End definition of segment 10

RELATED COMMANDS

all Display List commands

24

P,

SEGDEL

SYNTAX

SEGDEL segment

FUNCTION

The SEGDEL command deletes the specified Display List segment.

the number of the segment.
PARAMETERS
segment Display List segment number

HOST BINARY COMMAND STREAM

[DEH] [segment] (2 bytes)
DEH=336 (octal) =222 (decimal)

FORTRAN SUBROUTINE CALL

CALL SEGDEL (SEGMENT)
EXAMPLE
SEGDEL 10 Delete the definition of segment 10.

RELATED COMMANDS

all Display List commands

25

segment gives

SEGEND
SYNTAX
SEGEND
FUNCTION

The SEGEND command ends the definition of a Dlsplay List segment. See
for details of segment definition.

PARAMETERS
None.

HOST BINARY COMMAND STREAM

[DDH] (1 byte)
DDH=335 (octal) =221 (decimal)

FORTRAN SUBROUTINE CALL

CALL SEGEND
EXAMPLE
SEGDEF 10 Begin definition of segment 10.
Model One graphics primitive commands
SEéEND End definition of segment 10.

RELATED COMMANDS

all Display List commands

26

SEGDEF

_“~

——

e

SEGINTI

PRI

SYNTAX
SEGINI words

FUNCTION

The SEGINI command initializes the Display List Firmware and deletes any
existing segments and view definitions. words assigns the number of data
words to each segment block. The default is 254 words (invoked by setting

words=0); however, if the segments will be small, it may be desirable to
define a smaller block size.

PARAMETERS

words minimum number of data words per segment block; the segment may be
continued from block to block

HOST BINARY COMMAND STREAM

[E1H] [words] (2 bytes)
E1=341 (octal) =225 (decimal)

FORTRAN SUBROUTINE CALL

CALL SEGINI (WORDS)
EXAMPLE

SEGINI 128 Initializes Display List Firmware with a segment
block size of 128 data words

RELATED COMMANDS

all Display List commands

277

SEGINGQ
SYNTAX
SEGINQ segment

FUNCTION

The SEGINQ command returns the attributes of the specified segment. One word
is returned (16 bits) with the two least significant bits (I.SBs) indicating
the attributes of the segment. The least significant bit indicates whether
the visibility of the segment is ON (1) or OFF (0); the next least
significant bit indicates whether the pickability of the segment is ON (1) or
OFF (0). Thus, a returned value of zero indicates that both are OFF; 1
indicates visibility is ON; 2 indicates pickability is ON; and 3 indicates
both are ON.

PARAMETERS

e rrere————. i

segment the segment number whose attributes are being queried; range is 0
to 32,767. '

HOST BINARY COMMAND STREAM

[E5H] [segment] (2 bytes)
E5H=345 (octal) =229 (decimal)

FORTRAN SUBROUTINE CALL

CALL SEGINQ (SEGMENT,STATUS)

EXAMPLE
SETATR 10 VIS ON Set segment 10 visibility ON
SETATR 10 PICK OFF Set segment 10 pickability OFF
SEGINQ 10 Query attributes of segment 10
00001 Value of 1 indicates visibility ON, pickability OFF

RELATED COMMANDS

all Display List commands

28

~

SEGPID
SYNTAX
SEGPID pickid
FUNCTION
The SEGPID command defines the pick identification number for the g;aphics
primitives--vectors, circles, rectangles, and so on--immediately following the
SEGPID command until another SEGPID command is reached or until the end of the
segment (SEGEND) is reached.
All Model One graphics primitives will be assigned that pickid. Thus,_ a
RDPRM, HILITE, or DELPID command will find all the primitives associated with
the pickid. (Note: these commands use a pick identification number register
set with SET PIDREG to determine which primitives to pick.)
PARAMETERS
pickid pick identification number; range is 0 to 32,767.

HOST BINARY COMMAND STREAM

[D9H] [pickid] (2 bytes)
D9H=331 (octal) =217 (decimal)

FORTRAN SUBROUTINE CALL

CALL SEGPID (PICKID)

EXAMPLE
SEGDEF 10 Begin definition of segment 10
: Model One graphics primitives commands
SEGPID 46 Assign pick identification number of 46 to all
CIRCLE 50 following graphics primitives
RECTAN 0,0
SEGPID 47 Change to pick identification number of 47
TEXT1 Pickid is 47 '
SEGEND

Note that the circle and the rectangle are both included in pickid number of
46; the text has a pickid number of 47.

RELATED COMMANDS

all Display List commands

[a¥al

SEGREF

SYNTAX

SEGREF segment

FUNCTION

The SEGREF command nests the specified segment within another segment.
Segments may be nested up to eight levels deep. There is no practical limit
to the number of segment references at any given level. For example, segment
definition 1 can reference any number of other segments; if one of those
segments in turn references another segment, the nesting level is two. The
viewing transformation applied is unaffected by the nesting of segments. When
nesting segments, the user should be careful to use relative moves and draws
in nested segments; in addition, the nested segments should restore the
current point before returning to the calling segment.

PARAMETERS
segment the segment to be nested; range is 0 to 32,767.

HOST BINARY COMMAND STREAM

[D8H] [segment] (2 bytes)
D8H=330 (octal) =216 (decimal)

FORTRAN SUBROUTINE CALL

CALL SEGREF (SEGMENT)

EXAMPLE

SEGDEG 10 Begin definition of segment 10
SEE;REF 12 Nest segment 12 within segment 10
SEéEND End definition of segment 10

RELATED COMMANDS

all Display List commands

30

F——N

P =N

P

EGREN

SYNTAX
SEGREN segment2 segmentl
FUNCTION

The SEGREN command is used to rename a specified segment. segmentl gives the
segment to be renamed; segment2 gives the new name.

Note that references to the old Segment (SEGREF command) are not changed when
the segment is renamed.

PARAMETERS

segmentl the segment to be renamed; range is 0 to 32,767.
segment2 the new segment name; range is 0 to 32,767.

HOST BINARY COMMAND STREAM

[DAH] [segment2] [segmentl] (3 bytes)
DAH=332 (octal)=218 (decimal)

FORTRAN SUBROUTINE CALL

CALL SEGREN (SEGMENT2,SEGMENT1)

EXAMPLE
SEGDEF 10 . Begin definition of segment 10

; Model One graphics primitives commands
SEéEND
SEGREN 12 10 Rename segment 12 to segment 10

- RELATED COMMANDS

all Display List commands

SYNTAX
SET global value
FUNCTION

The SET command is used to set the value of globally used parameters: the
pick error margin aperture, the current pickid value, and the current segment
number. These parameters are used by other commands, such as PICKCR, HILITE,
RDPRM, and DELPID. {(Note that SET PIDREG and SEGPID are different commands;
SET PIDREG sets the pick identification number for picking, while SEGPID sets
the pick identification number for a given segment.)

The possible forms of the SET command are:

1. SET PICKAP aperture
The pick error margin aperture is specified in DCS units.

2. SET PIDREG value
The pickid register is set to value.

3. SET SEGREG value
The segment number register is set to value.

Note that setting SEGREG and PIDREG invalidates the current pick history.
In sumary, the SET command works as follows:
SET global value

where global may be specified with the parameter (0 for PICKAP; 1 for PIDREG;
2 for SEGREG) or with the character string (in local mode only).

PARAMETERS

global represents a possible global value that may be set by this command;
possible values are PICKAP (0), PIDREG (1), and SEGREG (2) (see
above for details).

value for PICKAP: aperture error margin in DCS units; for PIDREG:
pickid number, with a range of 0 to 32,767; for SEGREG: segment
number, with a range of 0 to 32,767.

HOST BINARY COMMAND STREAM

[46H] [global] [highval] [lowval] (4 bytes)
46H=106 (octal)=70 (decimal)

32

FORTRAN SUBROUTINE CALL

CALL SET (GLOBAL,VALUE)

EXAMPLE

SET PICKAP 10 Set the pick aperture error margin to 10 DCS units
SET PIDREG 104 Set the pickid register to 104

SET SEGREG 15 Set the segment number register to 15

RELATED COMMANDS

all Display List commands

33

SYNTAX
SETATR segment attribute flag

- FUNCTION

The SETATR command sets the visibility or pickability of a segment. The two
possible attributes are VIS and PICK. These may be entered locally as
character strings; from the host, the codes are 0 for VIS and 1 for PICK. A
segment number of -1 sets the attribute for all segments.

PARAMETERS

segment the segment number; range is 0 to 32,767. A value of -1 sets
attributes for all defined segments.

attribute the attribute to be set: choices are VISibility (0) or PICKability
Q).

flag the attribute flag; ON or 1 enables visibility or pickability; OFF
or 0 disables the attribute.

HOST BINARY COMMAND STREAM

[E6H] [segment] [att!ribute] [flaqg] (4 bytes)
E6H=
346(octal)=236(decimal)

FORTRAN SUBROUTINE CALL

CALL SETATR (SEGMENT,ATTRIBUTE,FLAG)

EXAMPLE

SETATR 10 VIS ON Set segment 10 visibility ON

SETATR 10 PICK OFF Set segment 10 pickability OFF

SEGINQ 10 Query attributes of segment 10

00001 Value of 1 indicates visibility ON, pickability OFF

RELATED COMMANDS

all Display List commands

34

P sme N

P SE=N

RSy

SYSTAT

SYNTAX

SYSTAT

FUNCTION

The SYSTAT command returns system memory usage and availability. A sigle
16-bit word is returned giving the number of free memory blocks of the size

defined with the SEGINI command.

PARAMETERS

None.

HOST BINARY COMMAND STREAM

[E4H] @ byte)
E4H=344 (octal)=228 (decimal)

FORTRAN SUBROUTINE CALL

CALL SYSTAT (FREEBLOCKS)

EXAMPLE
SYSTAT Query system memory availability
00117 117 free blocks of memory

RELATED COMMANDS

all Display List commands

35

7.0 QUICK COMMAND REFERENCE

This section provides a quick reference to the Display List Firmware commands.

DEFVW view,wcsregl,wcsreg2
decsregl ,dcsreg2 ,upregl
upreg2,rotate,xform,
backvreg,bitm,bankm,
hiseg

DELPID
HILITE

PICKCR

RDPID

RDREG

RDTREE
REDRAW
SEGAPP
SEGCOP
SEGDEF
SEGDEL
SEGEND

SEGINI

SEGINQ
SEGPID
SEGREF

SEGREN

view,flag,vreg

view,dcsreg,searchflag

view,flag

segment
segment2 ,segmentl

segment
segment

words

segments
pickid
segment

segment2, segmentl

SET global,value

SETATR

segment,attribute,flag

Defines the view into the World Coordinate
System. view gives the view number; wcsregl

and wcsreg2 define the WCS corners; dcsregl and
dcsreg2 define the display viewport; upregl and
upreg2 give the ends of the UP vector; rotate
defines the WCS window rotation center; xform
specifies the transformation type; backvreg

gives the background color; for bitm and bankm,
see the WRMASK command; hiseg specifies the
segment nesting. [EBH]

Delete primitives with PIDREG and SEGREG. [ECH]
Highlight view in the color specified by vreg.
flag=l1 or ON highlights primitives; flag=0 or

OFF draws primitives normally. PIDREG and SEGREG @
(see SET) are used. [DFH]

Perform pick search; view is picked, using the
dcsreg coordinates. searchflag=l or ON, search
from current tree location; searchflag=0 or OFF,
search from the top of the segment. [E3H]

Reads and returns the graphics primitives with
PIDREG and SEGREG (see SET). [EDH]

Reads and returns the current SEGREG and PIDREG
(see SET and PICKCR). [EOH]

Returns the PICKCR hierarchical history. [EEH]
Redisplay view; flag=l or ON clears the window
to the background color before display. view=-1
redisplays all views. [E2H]

Open segment to append graphics primitive
commands. SEGEND ends the append. [DBH]

Copies segmentl into segment2. [EAH] @
Begins definition of segment. [DCH]

Deletes segment. [DEH]

End segment definition begun with SEGDEF or
SEGAPP. [DDH]

Initializes Display List Firmware; words

gives the number of data words per segment

block. [ElH]

Returns the attributes of segment. (See SETATR).
[ESH]

Defines the pickid for primitives within segment
until next SEGPID or SEGEND command. [D9H]

Nest specified segment within current segment.
[D8H]

Renames segmentl to segment2. [DAH]

Set PICKAP aperture; set PIDREG value;

set SEGREG value. [46H]

Sets VISibility or PICKability of segment.

flag=1 or ON enables attribute (VIS or PICK); ‘
flag=0 or OFF disables attribue. [E6H]

a—

36

SYSTAT

Returns system memory usage and availability.
[E4H]

37

INTRODUCTION TO THE
RASTER TECHNOLOGIES
MODEL ONE

Revision 5.0 May 18, 1983

Introduction to the Model One

Introduction to the Raster Technologies Model One
May 18, 1983

Copyright 1983 by Raster Technologies, Inc. All rights reserved. No part of
this work covered by the copyrights herein may be reproduced or copied in any
form or by any means--electronic, graphic, or mechanical, including
photocopying, recording, taping, or information and retrieval systems--without
written permission.

NOTICE:

The information contained in this document is subject to change without
notice.

RASTER TECHNOLOGIES DISCLAIMS ALL WARRANTIES WITH RESPECT TO THIS MATERIAL
(INCLUDING WITHOUT LIMITATION WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A
PARTICULAR PURPOSE), EITHER EXPRESS OR IMPLIED., RASTER TECHNOLOGIES SHALL NOT
BE LIABLE FOR DAMAGES RESULTING FROM ANY ERROR CONTAINED HEREIN, INCLUDING,
BUT NOT LIMITED TO, FOR ANY SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
ARISING OUT OF OR IN CONNECTION WITH THE USE OF THIS MATERIAL.

This document contains proprietary information which 1is protected by
copyright.

Introduction to the Model One

Table of Contents

ABOUT THIS MANUAL....Q--QOQQooooo.ooooocooooo.oo..aoo..coooooo.o0000000000006

1.0

2.0

3.0

4.0

5.0

6.0

7.0

INTRODUCTION--..{.ooc...couur.ooooo..ooo.'c.ooooc..ooo...ooo.oc-ooo.o.o?

1 Overview of the Model One FamilY.eeeeeoescaccsosccscsscscncssssoccesd
2 Applications Development FeatUreS..ceeeecscesaccsssssessccsscocccced
3 System Architecture OVeIVieW..ceeceeeseseccccsccccccacscsssscsssssssll
4 Model One/30, Model One/40, and Model One/60 COMPAriSON.eceecsssecessl?2

MODEL: ONE STANDARD FIRMWARE...cccccae P

Communications CONtrOl.eeeeescoseccscaccascsscssscssscsscsssancsseld
Alpha and GraphiCs MOdES..eecesccsccccssccscsssccsssssssssscssseesld
Host Serial Communications Command FOrmat..ecececcccccecssccecsceselDd
DMA Command FOIMAteeceeseesecccscssosssssssscscasscsssscsscascccssesld
Local Alphanumeric Command FOIMat..eeecececcessccssssceccccssccssesld
Diagnostic and Development FeatUreSe.ececececcccscsccssssceascsesceseld
Coordinate SyStEM.ieeeceescccsccccsscssccessscsssessscsscsssossccascsll/
Coordinate RegiSterSe.sceceececscscsscccscsscccssssscccssscsnsnasecsssld
Clipping WindOWeseeseoesocsesesscscesssscassosassscsscssscscccccesseld
Graphic Primitive and Area FillS..ceceececccccccccssscccscccccceessll
Pixel Value REJiSterS.ceescccceccccsssecscssscssssccscsssscscssesesll
Macro Cofmands: Definition and EXeCutiON..eececececcccccccsascsseell
Interactive OpEeratioNS.eececcecccesssecesscssssoscsscscacnasaensesll
Alphanumeric Scrolling WindOWS..eceecececcsssccsssccscssscssassseell
Display LiSt FilMWar€.eeeecesceccssesssssscsescsssssssccccscsocscsell

NROMNNNNONNNNONNNNDNDN

[[] L] . [] . L] . [] [] [] . L]
HEHEEHEHWOONOUT S WN -
Vi WN O

FORTRAN LIBRARY..o.oo.o0ooo..-oot...o.-o.....ooooo.oo..o00000000000000024
CENTRAL PROCESSOR.....o.oooocoo0.0.0000..0.00......0.00-o.oto.‘oa.o.;oozs
4.1 PIOCGSSOK Memory-o-.ooo'ooo.ooooco.ooooot0.0000...0....0..0.oo-.-026
4.2 Input/output Ports.oo0.0.ooo.00.00..000................-0.00..00.026
4.3 COntrOl and Status Registers.n..o'....-o.oooo‘cooooo..o.o..-00000027
VECTOR GENERATOR.....IO‘C..........O..0.0.‘.0...........0..............28
5.1 VeCtor Queue..........................-............o.-.-..........zg

5.2 Pattern Registerooocoooca..o-noo.no..cocooo.0.0.0..0000.-.0.‘.-00028
503 Concatenated Vectorsooo-o.o-o.o-...oo-..ooocooooo.ooonoo.o.o-ooo.ozg

PIXEL PROCESSOR.....o.o..ooo.o.0-..ooooo.oo.o..o.o.o.-.oo0000000000000030
6.1 Pixel PrObeSSOI Operation...30
6.2 ALU Functions..ooooooc-..oo.ocooo-ooo.o'ooooooool000.000.00000000532

6.3 Data Value ClippingooQ...-.-oo.u.oo-o.-ooooo‘oooo.oo.o..l..ooo...o32

IMAGE MEMORY.O.....................0.........O......................0..33

8.0

9.0

10.0

11.0

Introduction to the Model One

7.1 Image Memory OrganizatiON.eecescccccccscscscsscccccceccscacesccsssceeeldld
7.2 Write-Enable MasSKS..cceceeescesccsccccsocssssscscsccssossscsssceseselld
7.3
7.4

Read Masks....o....o.....oo.oo..oo.c.o.'..Q.o..00000000000.000.00.33

Menory Bandwidth.-o..........o...oo...'...0.0..0.0..0..0000'0...0.33
IMAGE MEMORY OUTPUT.O..0..0...0................I.O.‘C.............'...035

8.1 Look—up_Tables.oooooooo'0.00..000.....0.....‘o..o.o.o........0..0036
8.2 Video Amplifiers.oc.o......oo....i.o.o..000.000000000000;00c¢....o37
8.3

. LUT Input ROUting.;O.......0......0......00.‘.0....O.........O....B?
DISPLAY CONTROL........-o.o.o.0..0..000.000‘000..-0...0...'.0...-o.00..38
9.1 Screen Origin-o‘.oo0.00000.0.0.-.0oon..o.oo..o0000000000000000000038
9.2 Display Scalingooo......000000000‘0.0000..000..00..00.00..0...000038
9.3 Flooding the Screen..oo.oouco..oo..o.oo-o-.coo..o..'.o.0000000000039

OPTION CARD......Qo....o..c...oo.o.o.o-.o‘.o.o.ooo0000000000000000000040
10.1 Direct Memory ACCeSSooctoo..Q'.o.0.0.00o.ooooo..0.....0..00000..040
10.2 PiX81 Moveroooo.oono.o‘0..00000000000.00000000000...‘......0...0.40
10.3 Overlay Planes.ouooooooto.oocoaoo..o.000.0.00..'.000.00'....00.0.40

INTERACTIVE DEVICE SUPPORT.......Q..o...ot..o.lo.o.oo..o..o0000000000042

ll.l Digitizing Tabletoooooo.o.oco.oo.o..o..lo....oo.....'.oo.o-.0000042

APPENDIX I LiSt Of MOdel One Commands.o.o.00.0'0.'.000..00.0...0...0...0...A—

1

Introduction to the Model One

List of Figures

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

COABNNNH--

i WRN N

Interactive Graphics WorkstatioN.seeeececccscsccsscccesacacssancenl
Data Paths and Functional BloCKS.eeececececsecccascccscscccscecesll
Use of the Clipping WindOW. .cecesesescscscccscsescsscssccsssscsessel
POlygon Filleeeeececeocosssseccsscesscecssoscccscscsassssossssassssesell

Area Fill...-.....21

Central Processor Addressing and I/O.eeeececccescscccccccscesscssld
Pixel Processor Data PathS.ccseecececoccccsccsccccsccscccacccaseall
Image Memory Output Diagram for the Model One/20...cececccccesse3b

List of Tables

Table
Table
Table
Table
Table
Table
Table
Table

[] . ° L] L]
FRWNDHWN

OB

» s 0

The Model One Answers to Software Development ProblemS.....cee...10
Sample Command Stream Translator Output.ccecececssccccscccscsscesssll
Comparison of Model One/20, Model One/40, and Model One/60.......14
Image Memory Corners for Model One Family..cceeeoeseccocscccoscssscel?
Coordinate Register AsSSigmmeNntS.ceeccecescsccccssccccsccccssssesesld
Value Register ASSIiaNMeNtS..cceeccccescscccessscccssscscscscsccnssell
Central Processor I/0 Port ASSigmmentS..ccceesceccsccccsscccsccsslbd
Display Scale Factors and Resultant WindOWS..cceeeececcccsocsscess38

Introduction to the Model One

ABOUT THIS MANUAL

The Raster Technologies Model One family of color graphic display controllers
includes the Model One/25, the Model One/40, and the Model One/60. This
manual introduces the Model One family, providing an overview of the Model One
system architecture and a summary of the features and specifications of the
display system. Section 1.0 provides an overview of the Model One family of
graphics systems. Section 2.0 describes the Model One's standard firmware
command set; section 3.0 describes the host FORTRAN subroutine library.
Sections 4.0 through 11.0 describe the functional blocks of the Model One. An
appendix provides a complete list of the firmware command set.

Introduction to the Model One

1.0 INTRODUCTION

The Model One/25, the Model One/40, and the Model One/60 fully support general
purpose graphics, interactive CAD, simulation, and imaging applications. The
Model One display controller forms the heart of a computer graphics
workstation and provides the local intelligence to off-load interactive tasks
from the host computer system. The workstation consists of a Model One
display controller, a high-resolution video monitor (either 512x512, 768x576,
or 1024x1024), and local interactive devices such as a keyboard or digitizer.
Figre 1.1 shows such a workstation.

W

High Resolution
Video Monitor

—_——
a Keyboard or
- Alphanumeric

Host
Computer
Interface

Terminal

[Wrooer one |

Digitizing
Tablet

Figure 1.1 Interactive Graphics Workstation

The Model One/25 is designed for deneral purpose graphics and full-color
imaging applications. It includes up to 24 bit planes of image memory. Its
standard RS-170 red, green, blue outputs allow it to drive a 512x512 monitor.
The Model One/25 is also available in a broadcast-campatible 512x484
configuration, which may be NTSC-encoded for video taping and video mixing.
The Model One/25 includes three 8-bit-in, 8-bit-out programmable
Look-Up-Tables, allowing over 16 million simultaneously displayable colors.

The Model One/40 is designed for ultra-high resolution applications; it
includes up to six bit planes of image memory, with a 1024x1024 visible
display. The Model One/40 provides standard RS-343 red, green, blue outputs.
The video Look-Up-Table for the Model One/40 is 6-bit-in, 24-bit-out, allowing
up to 64 simultaneously displayable colors, selected from a palette of 16.8

miliion colors.

Introduction to the Model One

The Model One/60 is a flicker-free, 60 Hz refresh high-resolution display
system with a visible display window of 768x576 and a total image memory of
1024x1024. The off-screen image memory may be used for symbols, fonts, menus,
etc. With up to 6 bit planes of image memory and a 6-bit-in, 24-bit-out video
Look-Up-Table, the Model One/60 allows up to 64 simultaneously displayable
colors. The video output is RS-343 standard red, green, blue.

1.1 overview of the Model One Family

In operation, the Model One controller is sent commands from the host computer
to update the displayed image and communicate with the local interactive
devices at the workstation. The Model One is delivered with an RS-232
standard host interface, which operates at speeds ranging from 75 baud to 38.4
Kbaud. Two optional higher-speed host interfaces are available: IEEE-488 and
a Direct Memory Access port for high-speed transfer of commands and image data
between the host computer and the Model One.

Multiple pipelined processors within the Model One are used to interpret and
execute the host cammand stream at the fastest possible rate. The 1l6-bit
central processor, hardware vector generator, and pixel processor, all
standard hardware features of the Model One, provide the fastest possible
execution of graphics commands.

The Model One offers an integrated set of over 150 firmware-based graphics
commands, compatible with the full product line. The command set includes:

* Graphics Primitives: lines, polygons, circles, arcs, rectangles,
horizontal and vertical text, and points, are available with firmware
commands. The standard command set includes several approaches to
drawing primitives, including relative and absolute addressing.

* Area Fills: two kinds of area fills, as well as flooding and clearing
of the display, are provided.

* Display Control: zooming, panning, read and write masks, clipping
window, and crosshairs are among the display control commands.

* Look-Up-Table Control: a complete set of commands is available for
programming the video look-up-tables.

* Data Read-Back: read-back of image memory windows, as well as pixel

values, current point, and so on, is provided with straightforward
firmware commands.

* Image Transmission: several formats for transmission of images from the
host to the Model One are supported.

* Interactive Device Support: a set of commands, such as blinking and
button support, is provided for interactive device support.

* Macro Programming: fimmware macro definition commands are supplied,
simplifying application development. '

Introduction to the Model One

* Register Operations: commands for manipulation of the Model One's
coordinate and value registers are supplied.

* Software Development: the applications developer has a full set of
commands to aid software development, including a command stream
translator and a local debugger.

* Alphanumeric Terminal Emulation: these commands allow the monitor to be
used as an alphanumeric terminal with attached keyboard. Up to nine
independent scrolling windows can be specified and used simultaneously;
these windows can be any size and placed whereever desired.

* Display List Firmmware: local scaling, rotation, and translation can be
handled locally. The user works in a 64,000 by 64,000 world coordinate
system and may define up to eight simultaneous views into the world
coordinate system.

The Model One firmware commands are described in more detail in Section 2.0 of
this manual; Appendix I provides a camplete listing.

A complete library of FORTRAN-callable subroutines is available with the Model
One for host-level access to all firmware commands.

The Model One is contained in a rack-mountable 5.25"-high enclosure which
houses the power supply, connectors, and four Model One printed circuit cards.
The Model One may be located at the graphics workstation or rack-mounted with
the host computer. All available hardware options fit within the Model One's
standard 5.25" enclosure.

1.2 Applications Development Features

The Model One includes extensive features to speed development of applications
programs. The Model One development tools are designed specifically to
minimize typical problems encountered in applications development and support,
as shown in the chart below.

Introduction to the Model One

Software Development Problems

Model One Approach

Off-loading graphics tasks
from the host program: clipping,
scrolling windows, rubber-banding,
dragging

Training new graphics programmers
for the Model One

Testing new graphics concepts and
sequences without writing or
rewriting host programs

Cost of programming microprocessor
intelligence for graphics use

Application menu management and
on-going support

DMA application debugging

Break-pointing new application
programs during development:
stepping through programs under
local control

Local management of cursors,
buttons, and other interactive
devices

Broadest command set available:
allows the Model One to perform
operations previously requiring
host intervention

English-like command mnemonics;
local mode allows commands to be
tested locally, without writing
host programs

Local mode

Macro command sequences
Macro command sequences

Command stream translator allows
local examination of the high-speed
command stream. ’

Camplete local debugger allows
breakpointing, stepping through
programs, local command execution,
and listing of defined macros

Macro command sequences

Table 1.1 The Model One Answers to Software Development Problems

The Model One firmware includes support for named, storable sequences of
commands, called macros. Macros are a series of graphics commands which may
be defined and stored for repeated execution with a single command. Up to 256
macros may be stored at any one time.

The Model One's 1local debugger allows the programmer to step through program
execution, list defined macros, execute graphics commands locally, and return
to normal execution when desired. The command stream translator is especially
useful when combined with the local debugger. The command stream translator,
when invoked, translates the command stream from the host into human-readable
mnemonics (the same mnemonics used when entering commands locally) and prints
those mnemonics and their associated parameters at the 1local terminal. The
command stream translator can be used with the serial, IEEE-488, and DMA
interfaces. Once application development is complete, the command stream

10

Introduction to the Model One

translator and local debugger can be disabled; of course, they remain
available for diagnostic use. Table 1.2 shows sample output from the Model
One's command stream translator.

Cammand Stream From Host Local ALPHA Output
..0100040006.. MOVABS 0004 0006

. .0600FFFF.. VALUE 00 255 255
..0EQ002D.. CIRCLE 100

. .0200E300D4.. MOVREL 100 105

« « 9005C8E5ECECEF. . TEXT1 Hello

Table 1.2 Sample Command Stream Translator Output

1.3 System Architecture Overview

The hardware architecture of the Model One includes these functional blocks:

—-central processor
-hardware vector generator
-pixel processor

-image memory
-Look~-Up~Tables

~video output

~optional DMA interface
—-optional pixel mover

Figure 1.2 shows the data paths and relationships between these functional
blocks.

11

Introduction to the Model One

Host
interfaces

Hardware
RS-232 P | I ;r.c:'or ,I‘l S
16-bit) Generstor
Central
Processor Iimage
16-bit Memary
- s S12x512x24
Paraliel or
Pixel IKx1Kx 6
Processing | il
DMA - — Unit 4
Look Video
Up ;— Qutput
Tables |/

Digital
to
Analog
Converters

Figure 1.2 Data Paths and Functional Blocks

The Model One architecture includes an easy-to-use powerful microprocessor,
coupled with hardware accelerators for high performance.

The Model One central processor is a general purpose 16-bit microcomputer
whose principal function is to interpret and decode graphics commands received
by the Model One, then direct the hardware vector generator and pixel
processor to execute those commands. '

The hardware vector generator is a custom processor which executes a digital

line generating algorithm at high speed. The central processor continues
processing of incoming commands while the vector generator makes real-time
updates to image memory.

The pixel processor performs logic operations on pixel values which are being
placed into image memory. The Model One/25 also allows arithmetic functions.
The pixel processor can be used in CAD applications to provide a write-through
mode for non-destructive dragging of objects in image memory. The pixel
processor also supports operations on images which are transferred over the
Model One's high-speed DMA port.

12

Introduction to the Model One

The optional DMA interface performs high-speed DMA transfers of both commands
and image data between the Model One and the host computer. The optional
pixel mover performs high-speed moves of rectangular blocks of pixels.

1.4 Model One/25, Model One/40, and Model One/60 Comparison

The Model One/25, Model One/40, and Model One/60 all offer a complete
integrated graphics controller, including the standard firmware set,
applications development environment, central processor, vector generator, and
pixel processor. The primary differences between the three models arise from

the configuration of image memory and the use of the video Look-Up-Tables. '

The Model One/25 is a full-color graphics controller, offering up to 24 bit
planes of 512x512 pixels. Three 8-bit-in, 8-bit-out Look-Up-Tables, one for
each color bank (red, green, and blue), are supported. These can be used for
double-buffering or animation of locally-stored images or as a single
8-bit-in, 24-bit-out Look-Up-Table for pseudo-color imaging.

The Model One/25 also offers a 1024x1024 addressing mode, which is fully
software campatible with the Model One/40. In this mode, the Model One/25
appears as a 1024x1024 system with six bit planes, allowing 64 simultaneous
colors. For display, four pixels are intensity-averaged to one pixel for
display on a standard 512x512 monitor. This produces automatic hardware
anti-aliasing. When the image is zoomed in, it is no longer averaged, and a
512x512 window of the 1024x1024 array is displayed.

Programs written for the Model One/25's 1024x1024 addressing mode may be run
without alteration on a Model One/40. This allows use of the less-expensive
medium-resolution monitor with the same programs as those developed for a more
expensive high-resolution monitor.

The Model One/40 offers 1024x1024 resolution, with up to six bit planes of
image memory. The Model One/40 supports a single 6-bit-in, 24-bit-out
Look-Up-Table for display of up to 64 simultaneous colors, selectable from a
palate of over 16 million colors. The Model One/40 is fully compatible with
the Model One/25's 1024x1024 addressing mode, and with the Model One/60.

The Model One/60 offers a 60 Hz refresh rate for flicker-free operation, with
a high-resolution monitor. The displayed window is 768x576 pixels of an image
memory of 1024x1024 with up to six bit planes. The off-screen memory may be
displayed by panning, or used for off-screen storage of menus, fonts, and
symbols, if desired. Like the Model One/40, the Model One/60 is fully
compatible with the rest of the Model One family--the Model One/25's 1024x1024
addressing mode and the Model One/40.

Table 1.3 compares the Model One/25, the Model One/40, and the Model One/60.

13

Introduction to the Model One

Model One/25

Model One/40

Feature 512 mode 1K mode Model One/60
Display Window :
(Pixels) 512x512 1024x1024 1024x1024 768x576
Total Image 512x512x24 1024x1024x6 1024x1024x6 1024x1024x6
Memory :
Bit Planes 24 6 6 6
Refresh Rate 30 Hz 30 Hz 30 Hz <2> 60 Hz
Maximum Simul-
taneous Colors 16.7 M 64 64 64
Programmable
Look-Up-Table 3 8-bit- <1> 6-bit-in, 6-bit-in,
in,8-bit- 24-bit-out 24-bit-out
out
Option Card
Pixel Mover yes yes yes yes
DMA yes yes yes yes
Overlay Planes yes - - -

Firmware Set

Advanced Graphics Application Development Firmware

<1> The Model One/25's 1024x1024 addressing mode's Look-Up-Table cannot

be reset.

<2> The Model One/40 can also display a 512x512 quadrant of the 1024x1024

image at 60 Hz when zoomed in.

Table 1.3 Comparison of Model One/25, Model One/40, and Model One/60

14

Introduction to the Model One

2.0 MODEL ONE STANDARD FIRMWARE

The Model One standard firmware, a rich command set which includes over 100
commands, is the control program run by the Model One's central processor.

The firmware can be divided into two major functions: communications control,
and graphic command interpretation and processing. Communication control
supports serial and parallel I/0 with the host computer and serial I/O with
the local alphanumeric terminal and graphic input devices. The graphics
command interpreter and processor provides a rich command set, designed for
efficiency, versatility, interactivity, and ease of applications development.

2.1 Communications Control

The Model One provides six RS-232C serial ports, which are
firmware-configurable. A set of firmware commands allows the user to
configure the host port, alphanumeric port, and port for error message
transmission. Each port may be configured for RTS, CTS, parity, baud rate
(from 75 baud to 38.4 Kbaud), queue size, XON/XOFF protocol, and acceptance of
control characters. All input and output through these ports is buffered and
interrupt-driven for maximum processor utilization.

The optional IEEE-488 port is also firmware configurable.

Use of the optional 16-bit DMA interface is user-transparent, requiring no
special commards.

2.2 Alpha and Graphics Modes

The host and 1local alphanumeric ports are always in graphics mode or alpha
mode; the mode of the port determines whether a character received at the
port is interpreted as alphanumeric data or as graphics commands. Only one of
the Model One's ports may be in graphics mode at any one time.

To enter graphics mode, the ENTERGRAPHICS control character is sent over the
port. The default ENTERGRAPHICS control character is [CTRL-D], although a
firmware command (SPCHAR) allows the user to select an alternate character.
Once a port enters graphics mode, all subsequent data is interpreted by the
graphics command interpreter.

Graphics cammands are composed of a one-byte opcode followed by a string of
bytes which are operands. The opcode specifies the graphics command--0EH
specifies the CIRCLE command--and the operand or operands supplies the data
needed for command execution--the radius for a CIRCLE, for example.

2.3 Host Serial Communications Command Format

Cammands sent over the host serial interface are normally sent in 8-bit binary
format. In binary format, the opcode for each command takes one byte and is
sent in the first character, with each byte of operand sent in subsequent
characters.

15

Introduction to the Model One

For those host computers which cannot be programmed to transmit 8-bit binary
charactes over their serial lines, the Model One can be configured to accept
ASCII hexadecimal format. In ASCII hexadecimal format, each 8-bit binary
character is replaced by two hexadecimal digits, sent in two successive ASCII
hexdecimal characters.

The 8-bit binary format is twice as efficient as ASCII hexadecimal format and
should be used for any host computer capable of transmitting 8-bit binary
characters.

2.4 DMA Command Format

The DMA port is used with the optional host DMA interface and supports
parallel transfers fram the host computer. Each transfer includes two bytes
of data, a high byte and a low byte. The Model One interprets the high byte
of data before the low byte, in exactly the same manner as two successive
8-bit binary characters sent over the serial interface. (The Model One can be
configured to interpret the low byte first, if necessary.)

Hence, the data which passes from the host computer is independent of which
interface is used--serial or DMA--and is therefore transparent to the
applications program.

2.5 Local Alphanumeric Command Format

During program development, it is often helpful to be able to issue graphics
commands locally, which allows the applications programmer to test a sequence
of commands without writing and compiling a host computer program to generate
the commands. The Model One, by providing one port which accepts local
alphanumeric input, allows the user to do this simply and rapidly.

When the ENTERGRAPHICS character is typed locally and sent to the local
alphanumeric port, the Model One responds with a graphics command prompt [!]
to the local terminal. From then until the user types the command QUIT, he
can talk directly to the Model One command interpreter instead of the host
computer., The Model One expects commands over the local alphanumeric port to
be entered in a special English-like mnemonic form, rather than in binary or
hexadecimal form. The complete command set is shown in section 11; briefly,
the Model One's mnemonics includes such commands as CIRCLE, POINT, MOVREL, and
TEXT. The operands for commands may be entered locally in hexadecimal (base
16) or decimal (base 10).

2.6 Diagnostic and Development Features

The Model One's binary transmission format and 16-bit parallel transfers
maximize the performance of the Model One when communicating with the host.
This gives the Model One an advantage for interactive applications.

Because binary characters and 16-bit parallel transfers are not (usually)
human-readable, special debugging features are included to aid the
applications programmer in developing and debugging applications. A local
debugger and a command stream translator are available; in addition, error
messages can be sent to the host or to the local alphanumeric display whenever
an error occurs. A firmware REPLAY command allows the user to replay the last

16

Introduction to the Model One

32 characters that were sent over the host interface.

The local debugger can be entered at any time, through typing a single control
character at the local terminal. The application programmer can then step
through the commands being sent from the host, list all defined macros, list
the contents of a specific macro, enable execution of the macro at location
zero of the button table, and exit the local debugger.

The Model One's command stream translator allows the user to set the Model One
to disassemble the command stream from the host automatically; human readable
command mnemonics and parameters are sent to the local alphanumeric terminal.
The command stream translator, when combined with the local debugger, thus
allows the applications programmer to see the actual cammands as they are
executed.

The command stream translator and local debugger can be used without regard to
the type of host-Model One interface (serial or DMA) in use.

2.7 Coordinate System

The default coordinate system for all graphics commands has (0,0) in the
center of image memory, with the positive X axis to the right, and the
positive Y axis above. The locations of the four corners of image memory are
shown in Table 2.1.

Lower-left Upper-left Lower-Right Upper-Right

Model One/25

512 mode -256 ,-256 -256,255 255,-256 255,255

1K mode -512,-512 -512,511 511,-512 511,511
Model One/40 -512,-512 -512,511 511,-512 511,511
Model One/60 _

Display -288,-384 -288,383 287 ,-384 287,383

Memory -512,-512 -512,511 511,-512 511,511

Table 2.1 Image Memory Corners for Model One Family

A coordinate origin register, which may be changed with the firmmware command
CORORG, may be used to change the default coordinate system to any desired
orientation. Coordinates are supplied as parameters as two's-complement
16~-bit numbers ranging from -32,768 to 32,767. Relative moves and draws which
would cause a coordinate to be out of this range are clipped to these values.

17

Introduction to the Model One

2.8 Coordinate Registers

A set of sixty-four coordinate registers are used to manipulate coordinate
data in the Model One. Each coordinate register has a 16-bit X-camponent and
a 16-bit Y-component. Some of these registers are assigned to specific
functions. Others are available to the user for temporary coordinate storage.

A set of firmware commands allow the user to load coordinate registers
(CLOAD) , and to add (CADD), subtract (CSUB), and copy/move (CMOVE) between
pairs of coordinate registers.

The coordinate registers are defined in Table 2.2.

Coordinate Function
Register
0 Current point: used as a reference

point by graphics commands. The
current point is modified by
MOVE and DRAW commands.

1 Joystick or trackball location, updated
automatically by the Model One every
1/30th second.

2 Digitizing tablet cursor location,
updated autamatically by the Model One
every 1/30th second.

3 Coordinate origin: used to position
physical image memory within the virtual
address space. The coordinate origin
is modified by the CORORG command.

4 Screen origin: specifies the point which
appears at the center of the screen.
The screen origin is changed by the
SCRORG command. CREG 4 is used for
horizontal and vertical panning. It is also
used to scroll alphanumeric window zero.

5 Crosshair 0 current location: changes
to this register move crosshair 0.
.The crosshair is enabled/disabled using
the XHAIR command.

Table 2.2 Coordinate Register Assigrments
(continued on next page)

18

Introduction to the Model One

Table 2.2 Coordinate Register Assigmments (continued)

Coordinate Function
Register
6 Crosshair 1 current location: changes

to this register move crosshair 1.
The crosshair is enabled/disabled using
the XHAIR command.

7 Crosshair 2 (on overlay plane 0) current
location; available only for Model One/25
Option Card users.

8 Crosshair 3 (on overlay plane 1) current
location; available only for Model One/25
Option Card users.

9 Clipping window, lower-left corner.
10 Clipping window, upper-right corner.
11,12 For Option Card users only: diagonal corners

for source window for PIXMOV command.

13 For Option Card users only: PIXMOV destination
window.

14 For Option Card users only: pixel writing
direction for PIXMOV destination window.

15-19 Reserved.

21-63 Available for use by applications programmer.

Table 2.2 Coordinate Register Assigrnments

The coordinate registers provide a great deal of flexibility for applications
programming for the Model One. One of the most powerful uses is in passing
coordinate parameters in macro calls.

2.9 Clipping Window.

The Model One supports a clipping window for clipping of vectors, graphics
primitives, and images to any prescribed window in image memory. Figure 2.1
illustrates the use of the clipping window to keep vectors fram "spilling
over" into neighboring areas of the image.

10

Introduction to the Model One

The clipping window corners may be defined by direct modification of the
appropriate coordinate registers, or with the firmware command WINDOW.

’ \ ~ Clipping Window

Figure 2.1 Use of the Clipping Window

2.10 Graphic Primitive and Area Fills

The Model One supports filling of graphics primitives and two kinds of area
fills. A single command, PRMFIL, allows the user to select whether subsequent
graphics primitives should be drawn filled or unfilled. The vector pattern
register (as controlled by the VECPAT command) also controls filling of

graphics primitives. Figure 2.2 shows filling of a polygon (drawn with the
Model One's POLYGN command) .

In an area fill, a seed point and a boundary condition are defined. The two
firmware commands AREAl and AREA2 expect differing types of boundaries. Every
pixel within the boundary is set to the desired pixel value when the area fill
is performed. Figure 2.3 shows an area fill.

20

Introduction to the Model One

Vertices of closed
polygon to be filled

Boundary of region
to be filled

Seed Point

Figure 2.2 Polygon Fill Figure 2.3 Area Fill

2.11 Pixel Value Registers

The Model One has sixty-four pixel value registers (VREGs) for the
manipulation of image data values. Same of these registers are reserved for
Model One wuse; the rest are available for programmer use. A set of firmware
comands is available for loading the value registers (VLOAD), and for adding
(VADD) , subtracting (VSUB), and copying/moving (VMOVE) between pairs of value
registers.

Table 2.3 summarizes the use of the value registers.

21

Introduction to the Model One

Value Register Use

VREG 0 ' The current pixel value; this is
the value used by all commands
that write graphic data to the

Model One.
VREG 1 Crosshair 0 pixel value.
VREG 2 Crosshair 1 pixel value.
VREG 3 . Fill mask used for seeded area fills.
VREG 4* Color assigmment for overlay
plane 0.
VREG 5* Color assignment for overlay
plane 1.
VREG 6 Reserved.
VREG 7-15 Available for temporary value storage.
| VREG 16-42 Foreground, background, and cursor colors
for alphanumeric windows.
VREG 43-50 Reserved.
VREG 51-63 Available for temporary value storage.

*For Model One/25 Option Card users only.

Table 2.3 Value Register Assignments
Like the coordinate registers, the pixel value registers allow a great deal of
flexibility in applications programming for the Model One. One of the most

powerful uses is in passing value parameters in macro calls.

2.12 Macro Commands: Definition and Execution

The Model One includes macro programming capability. A group of commands may
be defined and stored in the Model One, to be executed whenever desired. Up
to 256 macros may be stored at any time. A macro is created with the firmware
command MACDEF, followed by a string of Model One commands. Any Model One
command--including defining or executing another macro--can be included in a
macro, with the exception of the two commands ASCII and QUIT. A macro is
ended with the command MACEND. ’

Macros can be nested up to eight deep.
Using the Model One's BUTTBL command, it is possible to set up macros to be
executed in response to buttons on the cursor that are pushed by the user.

The local debugger allows macros to be downloaded from the host and then
rewritten locally for testing, if desired.

22

Introduction to the Model One

Explicit MACRO commands, sent fram the host, from the local alphanumeric
terminal, or from another macro, can also be used to execute macros.
Parameters can be passed between macros by using the Model One's coordinate
and pixel value registers for storage of coordinates and pixel values.

2.13 Interactive Operations

Many interactive applications, such as dragging, rubber-banding, and menuing,
require a group of commands to be executed repeatedly, or for commands to be
executed in response to a function button of some kind. The Model One's
button table supports these applications.

The Model One button table has 64 entries, from 0 to 63. Each entry indicates
amacro to be executed in response to a function button pressing or in
response to an explicit BUTTON command. If no button is pressed, the entry at
button table location 0 is executed; this macro will execute every 1/30th
second and can be used for such functions as cursor tracking.

The button - table entries can be modified by macros executed in response to
button pressing, allowing virtually unlimited flexibility in interactive
support. For example, a tree of menus can be set up easily, since macros can
also define other macros and execute them.

When combined with the Model One's macro command facilities, the button table
allows many applications that used to require host intervention to be done
entirely within the Model One, thus off-loading the host camputer.

2.14 Alphanumeric Scrolling Windows

The Model One Advanced Graphics Application Development Firmware includes a
set of firmware commands for emulation of multiple-windowed editing terminals.
Up to five independently-scrolling windows are provided. The size of text
within the window, cursor position, scrolling, wraparound, bolding of text,
and overstriking of text are all firmware controllable.

2.15 Display List Firmware

The otptional Display List Firmware offers a fully compatible two-dimensional
display list management capability for the Model One. The Display List
Firmware package performs local scaling, rotation, and translation of a
two-dimensional graphics database which includes primitives such as circles,
polygons, and lines.

The user works in a 64,000 by 64,000 world coordinate system with a segmented
display structure. Up to eight views into the world coordinate system can be
simultaneously defined and displayed; each has its own viewpoint and
independent scaling, translation, and rotation. Pickability and visibility of
segments are easily controlled.

23

Introduction to the Model One

3.0 FORTRAN LIBRARY

The Model One host FORTRAN library, called ONELIB, gives the programmer access
to all of the Model One commands through subroutine CALLs fram the host
application program.

To send any command from the host to the Model One, the programmer issues a
CALL to a ONELIB subroutine. All ONELIB command subroutines have the same
name as the local command mnemonic. For example, these FORTRAN lines:

CALL MOVABS (0,0)
CALL CIRCLE (100)
CALL DRWABS (20,50)

are identical to typing these commands at the local terminal:

MOVABS 0,0
CIRCLE 100
DRWABS 20,50

The FORTRAN library contains several levels of subroutines. The subroutines
which generate Model One commands are called by the application program;
those subroutines in turn call low-level subroutines to perform I/0 between
the host and the Model One.

Each Model One cammand has an equivalent FORTRAN subroutine., For example, the
FORTRAN call for the MOVABS command is:

CALL MOVABS (IX,IY)

IX and IY are INTEGER*2 variables; the order for parameters is the same as
for locally-typed commands.

For all FORTRAN subroutines, these conventions are used: parameters are given
in the same order as for locally-typed commands; they are always INTEGER*2
(ranging from -32,768 to 32,767); and they are never changed by the FORTRAN
call.

24

Introduction to the Model One

4.0 CENTRAL PROCESSOR

The Model One central processor is a Z8002 16-bit microprocessor. The Z8002
processor is a powerful general purpose microprocessor with 16 and 32. 1.>1t
logic and arithmetic capabilities, including multiply and divide
instructions<1>,
The central processor runs a ROM firmware program which:

1. decodes incaning graphics commands,

2. provides interactive device supports,

3. maintains input/output buffers, and

4, controls display attributes, such as zoom and pan.
The central processor reads fram and writes to image memory through
memory-mapped registers which 1lie in its address space. Up to six serial
ports, an optional IEEE-488 port, and an optional DMA port are provided for
external communications. A set of firmware commands is used to set up these
ports as desired for host communications, local terminal use, interactive
device support, and error communications. ’

Figure 4.1 diagrams the central processor.

- ROM for storage of standard/custom firmware

P rag———> RAM for MACRO's, buffers, downloaded firmware

2-8002
Central
Processor

}—————3» Control Registers, WRITE-onliy to control the Model One

jaff——————— Status Registers, READ-only to interrogate and read-back status of
Mcdel One

“gf———P»- 1/O Ports for external communication with host and interactive
Gevices

Figure 4.1 Central Processor Addressing and 1/0

<1>A detailed description of the 28002 instruction set and features can be

found in AmZ8001/2 Processor Instruction Set, available fram Advanced Micro
Devices.

25

Introduction to the Model One

4,1 Processor Memory

The 78002 has a direct addressing range of 64K bytes and a memory mapping
schame for access to a maximum of 128K bytes of physical memory. This
expanded memory space is available to users for macro storage, configurable
buffers, and user-written firmware. Its memory map is divided into three
parts: ROM, RAM, and Control/Status registers.

4.2 Input/Output Ports

The central processor communicates with external devices through six serial
ports, an optional IEEE-488 interface, and an optional DMA interface. These
ports are configured, using firmware commands, for host communications, local
teminal support, interactive device support (such as a tablet), amd error
message communications. ’

Table 4.1 summarizes the available ports;

Port Type Description

1-6 RS-232C Host, alphanumeric temminal, tablet,
keyboard--serial ports to 38.4KBaud;
one of these ports is factory-selectable
to RS-232C, RS-422, or TTL (for keyboard
support) . All ports configured with
firmware commands.

HOSTGPIB IEEE-488 Optional host byte-parallel interface to
20 Kbytes/second.
HOSTDMA . Optional host DMA port.

Table 4.1 Central Processor I/0 Port Assigﬁments

All serial ports are fimware configurable for: RTS, CTS, parity, baud rate
(from 75 baud to 38.4 Kbaud), queue size, XON/XOFF protocol, and control
character acceptance. In the standard firmmware, all serial input and output
is interrupt-driven, with firmware configurable buffers to maximize processor
utilization.

The optional IEEE-488 interfaceyimplements all of the listener functions, as
described in IEEE standard 488-1978 Digital Interface for Programmable
“Instrumentation.

The optional host DMA interface is available for DEC DR11V, DRW1l1lB, and other
host camputers.

26

Introduction to the Model One

4.3 Control and Status Registers

The central processor uses Control/Status registers for its internal
communications with the Model One. Control registers are write-only locations
that cannot be read back; Status registers are read-only locations and cannot
be changed by a write operation.

The Control registers are grouped into three major subsystems: Vector

Generator, Pixel Processor, and Display Control. Three groups of Status
registers interrogate each subsystem and monitor its operation.

27

Introduction to the Model One

5.0 VECTOR GENERATOR

A hardware vector generator is used to off-load digital line generation from
the central processor. The Model One's vector generator is a custam dedicated
processor which performs vector-to-raster conversion. Using control
registers, the central processor sends the vector generator the start-point,
end-point, and pixel value information. The start-point and end-point give
the address of the pixels in image memory which are to be connected with a
digital line; the pixel value data indicates the value to be placed in image
memory at every pixel along the line. Each vector requires 1.6 microseconds
of hardware set-up time. FEach pixel along a vector takes as little as 400ns
to compute and write into image memory, giving the Model One exceptional
high-speed vector writing capability.

The vector generator has the image memory available to it approximately 27% of
the time. As a result, the vector generator has an average pixel writing rate
of roughly 1.45 microseconds, for a total of 700,000 pixels per second. With
the screen blanked (using the firmware command BLANK) , the pixel writing rate
is about one-third higher, for a total of over one million pixels per second.

The central processor requires about 70 microseconds to execute a DRAW
command. This time is often completely overlapped with vector drawing by
using the hardware vector generator. The bottleneck in vector drawing thus
depends on the average length of each vector being drawn; in any case, the
Model One can process over 12,000 "average" vectors per second.

5.1 Vector Queue

A hardware first-in, first-out (FIFO) buffer queue resides between the central
processor and the hardware vector generator. This queue stores up to 240
vectors waiting to be drawn by the vector generator. The Model One's
performance is enhanced by this queue, which increases the utilization of the
central processor and the vector generator. 1In addition, this vector queue
keeps vector set-up time to a minimum. Vector generator status registers give
the central processor the ability to detect queue-empty and queue-full
conditions.

For added flexibility, the central processor can inhibit the flow of vectors
out of the vector queue under program control, using the firmware command
VGWAIT. This capability is useful in real-time applications, where it can be
used to synchronize vector writing with vertical blanking interrupts to
eliminate tearing while moving objects.

5.2 Pattern Register

The vector generator provides patterned lines, such as dashed or dotted lines.
The firmware command VECPAT accesses a 16-bit control register which 1is used
to provide the 1line patterns. The same line pattern can also be used for
primitive and area tills.

At every pixel along the register, the pattern register is left-shifted by one
bit, If the shift causes a carry to occur, the pixel currently being
processed is written into image memory normally; if no carry occurs, the
pixel is inhibited. The carry bit is shifted into the rightmost bit of the

28

Introduction to the Model One

pattern register so that the bit pattern recycles every sixteen pixels.
Because the pattern register is not reinitialized after each vector, the
pattern will continue properly from one vector to the next.

5.3 Concatenated Vectors

The vector dgenerator writes digital lines from the start-point to the
end-point, including the points at both ends. If a series of vectors
represents concatenated 1line segments, the common point (the start of the new
line and the end of the old line) of the two segments will be written twice
into image memory. If the pattern register (VECPAT command) or pixel
processor (PIXFUN command) is being used, this may create undesired patterns.,
To prevent these undesired effects, the firmware command FIRSTP can be used to
inhibit writing of the tirst pixel (start-point) of any vector.

29

Introduction to the Model One

6.0 PIXEL PROCESSOR

Many applications require arithmetic and logical operations to be performed
between incoming image data values and those which are already in the image
memory. For example, the pixels of an incoming image can be added together
with the pixel values which comprise a displayed image, thus adding the first
image to the second.

In many graphics systems, these pixel functions must be performed in program
software, adding signiticant overhead. In the Model One, a hardware pixel
processor is standard, providing the most useful of these pixel functions at
high speed, with no central processor overhead. Both the vector generator and
host DMA port can write into image memory using the pixel processor.

6.1 Pixel Processor Operation

The vector generator or the DMA port give the pixel processor an image memory
address and a pixel value as input. The pixel processor uses the input
address to read from image memory; the value read from image memory and the
input data value are then input to ALUs (Arithmetic/Logic Units) which perform
the desired pixel function or logic operation.

The output from the ALUs is written into image memory on the next available
image memory cycle, for a total processing time of 800ns.

Figure 6.1 illustrates the data path within in the pixel processor.

30

Introduction to the Model One

M value from —f5——P

tor generator or ————f——p»
it DMA — g 5
8 Three
8-bit
Arithmetic-
Logic
Units
| ,
. ® 5 Pixel Value
, 8 > to Image Memory
7
8
Add, subtract /
XOR,ANDOrOR | _~
-
g
P
< s Pixel Value
-t v from Image
< / s Memory
8

Figure 6.1 Pixel Processor Data Paths

31

Introduction to‘the Model One

6.2 ALU Functions

The pixel processor ALUs support logical XOR, AND, and OR tfunctions, and
PRESET (write all 1's), and CONDITIONAL (do not write wvalues of 0,0,0)
functions for the Model One/25, Model One/40, and Model One/60. For the Model
One/25 only, addition and subtraction functions are supported as well, in the
512x512 addressing mode. (In the 1024x1024 addressing mode, the arithmetic
tunctions are not available.)

The logic functions provide easy solutions to many CAD-related problems. For
example, the XOR mode can be used to provide a "write-through" function for
rapid non-destructive dragging of sub-pictures and objects. The arithmetic
tunctions are most useful in imaging applications to add and subtract
intensity values between incoming data and data already in image memory.

The pixel processor function is selected through the firmware command PIXFUN.

6.3 Data Value Clipping

When using the Model One/25 in add or subtract mode, an overflow or underflow
from the ALU is possible. The tirmware command PIXCLP allows the wuser to

select between wrap-around or clipping of the ALU output on overflow and
underflow.

32

Introduction to the Model One

7.0 IMAGE MEMORY

The image memory of the Model One consists of up to 768K bytes of dynamic RAM,
available in ditterent configurations. The Model One/25 is available with up
to 24 512x512 bit planes; the Model One/40 and Model One/60 are available

with up to 6 L024x1024 bit planes. The Mod = of course, can be
addressed in 1K mode, where the memory is T 7124%1024 bit
planes.

The Model One uses 64K RAM chips to allow a’ ::,’ ? o contained
on a single printed circuit board. Image m ~ g ’f minimum of
128K bytes (4 bits per pixel at 512x° ! and with a

) . . ~J

minimum of 256K bytes (2 bits per pixel) 3 ;? I and Model
One/60. The maximum image memory is 768K 0 ¢ ,'g at 512x512,
6 bits per pixel at 1024x1024). Ui g ‘g

7.1 Image Memory Organization -

In the Model One/25, image memory is or¢)r 1024x1024x6
array, selectable with the firmware co age array is
divided into three banks, each of which el in 512 mode
or 2 bits per pixel in 1K mode. The! Ad to store the
red, green, and blue components of a fu el image, or to
store multiple independent pseudo-color

In the Model One/40 and the Model One/vu, s organized as
1024x1024x6 array, allowing 6 bits per pixel, for u. - colors. In the

Model One/40, all of image memory can be displayed; in the Model One/60, a
portion of image memory is off-screen and may be used to store symbols, fonts,
etc.

7.2 Write-Enable Masks

Each bit-plane and each bank of image memory can be selectively
write-protected or write-enabled by using write-enable masks. A set of
control registers gives the central processor access to the write-enable
masks. The firmware command WRMASK allows the programmer to modify the write
masks.

7.3 Read Masks

The output from image memory passes through a set of read masks which can
force the output of any bit plane to zero. These masks, which may be modified
with the firmware command RDMASK, are useful in double-buffering and other
real-time applications.

7.4 Memory Bandwidth

Each memory cycle 1is under 400 ns. During this time, any location in image
memory may be written into or read from. In normal operation, approximately
73% of all image memory cycles is used for screen refresh, leaving 27% for use
by the vector generator, pixel processor, and host DMA. The memory bandwidth
with normal screen refresh enabled is thus about 2.4M bytes per second and
about 7.5M bytes per second with the screen blanked.

33

Introduction to the Model One

The tirmware command BLANK allows the programmer to enable and disable screen
refresh as desired.

34

Introduction to the Model One

8.0 IMAGE MEMORY OUTPUT

In the Model One/25 using 512x512 addressing mode, the output of image memory
is routed 1into three color Look-Up-Tables (LUTs). The LUTs are used to drive
eight-bit digital-to-analog converters (DACs) for each primary color, as shown
in Figure 8.1.

A set of firmware cammands is available to control the output from the LUTs:
LUTR, LUTG, and LUTB control the red, green, and blue LUTs; LUTA modities all
three LUTs; LUTRTE can be used to modify the routing into the Look-Up-Tables;
and LUTRMP can be wused to modify the default linear ramping of the
Look-Up-Tables.

In the Model One/25's 1024x1024 addressing mode, no Look-Up-Tables are used,
and two bits per bank are used to drive the DACs directly, giving 64
simultaneously displayable colors.

In the Model One/40 and the Model One/60, the output of image memory is six
bits, which 1is routed into a single Look-Up-Table with sixty-four entries.
This Look-Up-Table can be modified with the same commands used for the Model

One/25; the LUTRTE command is not applicable, however.

35

Introduction to the Model One

image Memory

Red
| S o 256 x 8
— - >t __,___.f__p.a LUT s Red Video Output
512x512x8 H
or H
IKx1Kx 2 '
i
i
Green
, 256 x 8 4 ‘
5)‘—?———-—f—’—b LUT te DAC Green Video Outpu
512x512x8 !
or
IKx1Kx2
]
Blue !
256 x 8 4
-—/--——»-———0——a : :—}—.-—b- LUT . DAC Blue Video Output
§12x512x 8 LUT
or Input
IKx1Kx2 Routing

Sync and Blanking PN —~Sync Output

Figure 8.1 Image Memory Output Diagram for the Model One/25

8.1 Look-Up-Tables

In the Model One/25, three 8-bit-in, 8-bit-out LUTs (256x8) are used to drive
the video DACs. In a 24 bit per pixel full-color imaging application, the
LUTs can be wused to provide linearity and color correction. In an 8 bit per
pixel pseudo-color application, the inputs to all three LUTs would come from
the same image memory bank; alternatively, the 24 bit plane system could be

divided into three 8 bit per pixel pseudo-color images, for pseudo-color
animation.

In the Model One/40 and Model One/60, the single Look-Up-Table is a 6-bit-in,

24-bit-out Look-Up-Table, with all six bits caming from a single image memory
bank.

36

Introduction to the Model One

8.2 Video Amplitiers

A separate video amplifier stage is used for each of the three primary colors:
red, green, and blue. A summing amplifier for each channel adds blanking and
sync pulses to the video signal and drive a 75 ohm output buffer. The output
of this buffer is connected to external BNC connectors for input to a standard
color video monitor. Since sync and blanking signals have been added to all
three video signals, any or all of the video outputs can be used to drive a
monochrome video monitor. In addition, separate composite sync output is
provided. ;

8.3 LUT Input Routing

In the Model One/25, a central processor control register determines the image
data routing into the three LUTs. This register may be modified using the
firmware cammand LUTRTE.

By using this register, any bank of image memory can drive no LUT, one LUT,
two LUTs, or all three LUTs. This provides greater control for the user in
image memory configurations with less than 24 bits per pixel, in addition to
providing flexibility for real-time operations such as double-buftering and
movie-loop animation.

37

Introduction to the Model One

9.0 DISPLAY CONTROL

The Model One provides pan, zoom, and control of several other display
attributes in hardware. The firmware then supports these teatures through
control registers which are accessed by the central processor.

9.1 Screen Origin

A pair of control registers are used to preset the screen refresh address
counters in the Model One. These counters control the placement of the screen
origin in image memory and are used for panning. The firmware command SCRORG
is used to modify these control registers. In the Model One/60, modification
of the screen origin can be used to display off-screen memory.

The screen origin can be placed on four pixel boundaries horizontally and two
pixel boundaries vertically in the Model One/25; in the Model One/40, sixteen
pixel poundaries are wused horizontally and two pixel boundaries vertically.
Finally, the Model One/60 uses sixteen pixel horizontal boundaries and one
pixel vertical boundaries.

Changes to the screen origin are performed only during vertical blanking to
eliminate tearing.

9.2 Display Scaling

The Model One supports display scale factors of 1, 2, 4, and 8. These
correspond to display windows as shown in Table 9.1.

Scale Factor Model One/25 Model One/40 Model One/60
512 mode 1K mode
1 512x512 1024x1024 1024x1024 768x576
2 256x256 512x512 512x512 384x288
4 128x128 256x256 256x256 192x144
8 64x64 128x128 128x128 96x72

Table 9.1 Display Scale Factors and Resultant Windows

In the Model One/25's 1024x1024 addressing mode (1K mode), each 2x2 array of
image memory pixels is intensity averaged to form each screen pixel. This
averaging is performed automatically by the Model One/25's hardware. Once the
screen is zoomed to a scale tactor of two, pixel averaging is no longer
necessary.

For the Model One/40 and the Model One/60, no pixel averaging is necessary.

The display scale tactor is controlled by two firmware commands: ZOOM and
ZOOMIN.

38

Introduction to the Model One

9.3 Flooding the Screen

The Model One can flood all visible pixels to any 24-bit value in a single
frame time, synchronized with vertical blanking to eliminate tearing. The
firmware command FLOOD is used to flood the screen.

In addition, the screen can be CLEARed (with the tirmware command CLEAR) with
any desired 24-bit pixel value. The CLEAR command, unlike the FLOOD command,
is under the control of the pixel processor and vector pattern register; for
example, the value can be 2ANDed with existing values (PIXFUN command), or
patterns created with VECPAT.

39

Introduction to the Model One

10.0 OPTION CARD

The Model One series includes a serial (RS-232C) host interface, hardware
vector generator, and pixel processor. In addition, the tirmware needed for
user support 1is standard. The Model One family includes the Model One Option
Card, which provides several hardware options to enhance the display system.
These options are: Direct Memory Access (DMA) port, pixel mover, and--for the
Model One/25 Option Card only--two overlay planes.

10.1 Direct Memory Access

The Model One host Direct Memory Access (HOSTDMA) interface allows the user to
perform high speed image data and graphic command transters between the host
computer and the Model One. The DMA interface minimizes the overhead for
transmission of large amounts of data, providing the fastest possible screen
update.

The data passed over the DMA interface may be either graphics cammands to be
executed by the Model One's central processor, or raw image data to be placed
directly into image memory. Use of the DMA interface is transparent; no
special commands are needed.

The standard DMA interface is DEC DR11-W and DRV11-B compatible; other
intertaces are available,

10.2 Pixel Mover

The Pixel Mover moves a rectangular block of pixels from one location in image
memory to another at very high speeds. The pixel processor mode (AND, XOR,
etc.) controls the pixels which are transferred, providing additional
fiexibility. Two firmware commands are used for pixel moves: PIXMOV performs
the actual move; PMCTL controls the pixel mover mode. The corners of the
window to be moved are set with the Model One's coordinate registers.
Judicious setting of the coordinate registers allows mirroring around the X or
Y axis during the pixel move.

For the Model One/25, the Pixel Mover allows transfers between the red, green,
and blue banks of image memory as well.

10.3 Qverlay Planes

Two 512x512 overlay planes are provided on the Model One/25 option card.
These planes can be used for alphanumeric display in a single screen
workstation or for annotating an independent image. The overlay planes can be
panned and zoomed separately fram image memory; display of the overlay planes
has priority over image memory (they are "in front of" image memory).
Finally, each overlay plane may have one of eight possible colors.

A set of firmware commands supports the hardware options: OVRRD sets the

display mode for the overlay planes, OVRZM determines the =zoam factor, and
OVRVAL determines the value to be written into the overlay planes.

40

Introduction to the Model One

The overlay planes also include two crosshairs (in addition to the two
crosshairs in the standard firmware) and up-down scrolling for use when the
overlay planes are used for alphanumeric display.

41

Introduction to the Model One

11.0 INTERACTIVE DEVICE SUPPORT

11.1 Digitizing Tablet

The Model One supports interactive input devices, such as a digitizing tablet.
A set of firmware commands is available to configure the interactive device

support for any application.

The Model One's digitizing tablet has an 11"x1l" active surface area, and can
be used to enter coordinate information and position crosshairs, Three cursor
options are available: a simple stylus, a thirteen button cursor, and a
sixteen button cursor. The firmware command BUTTBL allows the user to write
macros to be executed whenever one of the cursor buttons is pressed; these
macros can call other macros, redefine the button table (controlled by
BUTTBL) , execute one or a series of Model One commands--the macros provide the

user with an enormous capability for local programming.

In addition, whether the user is using an interactive device or not, button
table location zero may be set. When 1location zero 1is set, the macro
corresponding to that location executes every 1/30th of a second; thus, the
macro at location zero can easily be set for cursor tracking or other such

tasks.

42

APPENDIX I. MODEL ONE FIRMWARE COMMAND SET SUMMARY

The following is a summary of the graphics commands supported by
the standard firmware in the Model One product family. Brackets
[1 indicate the hexadecimal opcode of each command.

HELP
HELP mnemonic

Graphics Primitives

ARC rad,al,a2

AREAl
AREA2 vreg
CIRCI creg
CIRCLE rad
CIRCXY X,y
CLEAR

DRW2R dx,dy
DRW3R dx,dy

DRWABS X,y

DRWI creg

DRWREL dx,dy

FILMSK rmsk,gmsk, bmsk

List all command mnemonics.

Give command information.

Draw arc of radius rad. Starting
angle is al; ending angle is a2.
[11y]

Area fill. Boundary is any pixel
different in value from the current
point. The area is filled with
current value. [13g]

Area fill. Boundary pixel value given
in vreg. [l4gy]

Draw circle. Location given by creg
lies on the circumference. [10g]

Draw a circle of radius rad. [OEgl

Draw circle. Point x,y lies on the
circumference. [OFy]

Flood current window to current pixel
value. [87y]

Draw vector relative by dx,dy. [84y]
Draw vector relative by dx,dy. [83pyh]

Draw vector from current point to the
point x,y. [81y]

Draw vector to location given by creg.
[85q]

Draw vector relative by dx,dy. [82yh]l
Image data is ANDed with masks before

checking value in AREA fill commands.
[9Fy]

Introduction to the Model One

INDEX

1024x1024 addressing mode, Model One/25 13
L024x1024 addressing mode, Model One/25 14
1024x1024 addressing mode, Model One/25 32
1024x1024 addressing mode, Model One/25 35
1024x1024 addressing mode, Model One/25 38
ALPHA mode 15 ‘

ALUs 32

Area fills 20

AREA1l 20

AREA2 20

BLANK 28

BLANK 34

BUTTBL 22

BUTTBL 42

BUTTON 23

Button table 23

Button table 42

CabD 18

Central processor 11

Central processor 15

Central processor 26

Central processor 28

Central processor 30

Central processor 33

Central processor 37

Central processor 40

Central processor 8

Central processor. 25

CLEAR 39

Clipping window 19

CLOAD 18

CMOVE 18

Command stream translator 10
Command stream translator 17
Control registers 27

Control registers 28

Control registers 33

Control registers 37
Coordinate origin register 17
Coordinate registers 18
Coordinate system 17

CORORG 17

Crosshairs 41

CsSUB 18

DEC DR11-W 40

DEC DRV11-B 40

Digital line generation 28
Digitizing tablet 42

Display Control 38

Display scaling 38

DMA 40

44

DMA 8

Dragging 23

DRAW 28
ENTERGRAPHICS 15
FLOOD 39

FORTRAN 24

FORTRAN 6

GRAPHICS mode 15
Host communications 24
Host FORTRAN library 24
IEEE-488 15
IEEE-488 25
IEEE-488 26
IEEE-488 8

Image memory 11l
Image memory 13
Image memory 17
Image memory 25
Image memory 28
Image memory 28
Image memory 30
Image memory 33
Image memory 35
Image memory 37
Image memory 38
Image memory 40
Image memory 7
Input/output ports 26
Local debugger 16
Local debugger 22
Local debugger 9
Logical functions 32
Look-Up-Table 11
Look-Up-Table 13
Look-Up-Table 35
Look-Up-Table 7
LUTB 35

LUTG 35

LUTR 35

LUTRMP 35

LUTRTE 35

LUTRTE 37

MACDEF 22

MACEND 22

MACRO 23

Macro definition 10
Macro deftinition 22
Macros 42

Memory bandwidth 33
Menuing 23

MODDIS 33

Model One/25 11
Model One/25 13
Model One/25 14

Introduction to the Model One

45

Model One/25 17
Model One/25 32
Model One/25 33
Model One/25 35
Model One/25 37
Model One/25 38
Model One/25 40
Model One/25 6
Model One/40 11
Model One/40 13
Model One/40 14
Model One/40 17
Model One/40 32
Model One/40 33
Model One/40 35
Model One/40 38
Model One/40 6
Model One/60 11
Model One/60 13
Model One/60 17
Model One/60 32
Model One/60 33
Model One/60 35
Model One/60 38
Model One/60 6
Mounting 9
Off-screen memory 13
Off-screen memory 8
ONELIB 24

Option Card 40
Overlay planes 40
OVRRD 40

OVRVAL 40

OVRZM 40

Pan 38

Pattern register 20
Pattern register 28
Pattern register 39
PIXCLP 32

Pixel mover 40
Pixel processor 29
Pixel processor 30
Pixel processor 33
Pixel processor 39
Pixel processor 40
Pixel processor 40
PIXFUN 29

PIXFUN 32

PIXFUN 39

PIXMOV 40

PMCTL 40

POLYGN 20
Primitive fills 20
PRMFIL 20

introduction to the Model One

46

Processor Memory 26
QUIT 16

RDMASK 33

Read masks 33
REPLAY 17

RS-232C 15

RS-232C 26

RS-232C 40

RS-232C 8
Rubber-banding 23
Screen origin 38
SCRORG 38

Set-up Time, Vector 28
Status registers 26
Status registers 27
Status registers 28
Subroutines, FORTRAN 24
VADD 21

Value registers 21
VECPAT 28

VECPAT 29

VECPAT 39

Vector Generator 11
Vector Generator 28
Vector Generator 28
Vector Generator 40
Vector Generator 8
Vector queue 28
Vector set-up time 28
VGWAIT 28

Video amplifiers 37
VLOAD 21

VMOVE 21

VSUB 21

WINDOW 20
Write—-enable masks 33
WRMASK 33

28002 25

728002 8

Zoom 38

ZOOM 38

ZOOMIN 38

Introduction to the Model One

47

FLOOD

MOV2R dx,dy
MOV3R dx,dy

MOVABS X,y

MOVI creg

MOVREL dx,dy

POINT

POLYGN npoly, verts

PRMFIL flag

RECREL dx,dy

RECTAN x,y

RECTI creg

TEXT1 string
TEXT2 string

TEXTC size,ang

TEXTDN char,veclst

TEXTRE

VALK val

VAL8 val

Flood displayed image memory to
current pixel value. [07]

Move relative by dx,dy. [04yh]

Move relative by dx,dy. [03g]l

- Move absolute location of current

point to x,y. [0lg]

Move to location given by coordinate
register creg. [05py]

Move relative by dx,dy. [02p]

Set current point to current pixel
value. [88y]

Draw polygons. Npoly gives number of
polygons; for each polygon, verts
gives number of vertices and the
vertices. [12y]

Primitive fill. Filled primitives are
drawn if flag=l. If flag=0, the
perimeter of graphics primitives is
drawn. [1Fgl

Draw rectangle. Diagonal corner is
dx,dy away from current point. [89y]

Draw rectangle Diagonal corner is
point x,y. [8Eg]

Draw rectangle. Location given by

creg is diagonal corner. [8Fyl

Draw text string with font 1. [90y]
Draw text string with font 2. [91p]

Specify size of text and draw at angle
ang. [92ph]

Define downloaded character in font 2
[26g] :

Restore default character set.
[Blyl

Set current pixel value (for 1K mode).
[BOy]l ‘

Set current pixel value to
val,val,val. [86H]

VALUE r,q,b

VTEXT1l string

VTEXT2 string

Look-Up Table Commands

LUT8 index,r,qg,b

LUTA index,entry
LUTB index,entry
LUTG index,entry
LUTR index,entry
LUTRMP code,sind,eiﬁd,

sent,ent

LUTRTE+ func

Set current pixel value to r,qg,b.
[06g]
Vertical text string with font 1.
(9341

Vertical text string with font 2.
[94y]

Make entry r,qg,b at location given by
index in Red, Green, and Blue LUTS.
[1Cy]

Make entry in all LUTs. Place entry
at location given in index. [1Bgyl

Make entry in Blue LUT. Place entry
at location given in index. [1Ag]

Make entry in Green LUT. Place entry
at location given in index. [19y4]

Make entry in Red LUT. Place entry at
location given in index. [18y]

Load LUTs with ramp function. [1Dgl

Change LUT routing function specified
by func. [1Ey]

+Model One/20 and Model One/25 Users Only.

Image Transmissions

PIXEL8 nrows,ncols,val

PIXELS nrows,ncols,r,qg,b

Pixel by pixel image definition.
Pixel values are val,val,val. [29yh]

Pixel by pixel image definition.
Pixel values are r,qg,b. [28p]

RUNLEN nrows, ncols,
r,b,b,cnt

RUNLN8 nrows,ncols,val,
cnt

Display Control

ASCII flag

BLANK flag
COLD
CORORG X,Y

FIRSTP flag

MODDIS flag

MODE1K func+

OVRRD*+ plane,flag

OVRVAL*+ plane,flag

OVRZM*+ plane,flag

PIXCLP flag
PIXFUN mode

PIXMOV*

Run-length encoded stream. Pixel
value is r,g,b. Horizontal count is
cnt. [2Agl

Run-length stream. Pixel value is
val,val,val. Horizontal count is cnt.
[2By]

Sets host port input as free format
ASCII if flag=1, if flag=0 binary.
[9By]

Blanks screen when flag=l, normal
video is restored when flag=0. [31ly]

Coldstart. Reset the Model One.
[FDyl

Loads coordinate origin register with
x,y. [37]

First pixel on vectors is inhibited
when flag=l, uninhibited when flag=0.
[2Fg]

Select display mode. 512 mode is
selected if flag=0, 1K mode is
selected if flag=l. [2Cy]

Select output data routing in 1K
mode. [2Dgl

Display specified overlay plane when
flag=0, inhibit display when flag=l.
[BAgL]

Set bits to 1 in specified overlay
plane when flag=l, reset bits to 0
when flag=0. [B9y]

Display plane at scale factor 1:1 if
flag=0, display at same scale fact as
image memory if flag=l. [B8y]

Pixel processor clipping status. Clip
on over/underflow flag=l. [2]

Set pixel processor mode. All vectors
and DMA writes are affected. [2]

Initiate pixel mover transfer. Move
window specified by CREG 11 and 12 as
controlled by CREG 13 and 14. [BBH]

PMCTL* g @ 4 @
redrte,greenrte, bluerte

QUIT

RDMASK mask
SCRORG X,y
SPCHAR string

TEKEM flag
VECPAT mask

VGWAIT frames

WAIT frames

WARM
WINDOW x1,vl,x2,y2

WRMASK bitm, bankm

XHAIR num,flag

ZOOM fact

ZOOMIN
*Option Card Users Only.

Set pixel mover mode; redrte,
reenrte, and bluerte control writing
into the red, green, and blue banks.
[BFyl

Exit graphics mode. [FFyl

Set Read Mask. All pixel values read
from image are ANDed with mask. [9Ey]

Set screen origin register to x,y.
[36y]

Redefine special characters (ENTER-
GRAPHICS, etc.) [B2g]

Invoke Tektronix emulator [39p]

Vector generator ?attern register is
set to mask. [2Eg

Inhibit transfer of vectors from
vector queue for frames frame times.
[30y]

Wait for given number of frame times
?efore continuing command execution.
3Dyl

Warmstart. Reinitialize Model One.
[FEg]

Set current window. Defined by
diagonal x1,yl and x2,y2. [3Agl

Set Write-Enable Mask. Bit planes
indicated by bitm and banks indicated
by bankm are write-enabled. [9Dyl

Enable/Disable Crosshair number num.
If flag=l enable, if flag=0 disable.
[9Cy]l

Zoom by factor of fact=1l,2,4 or 8.
[34y]

Zoom in by factor of 2. [35ph]

+Model One/20 and Model One/25 Users Only.

Special Characters (Default Values)

CTL D 0 ENTERGRAPHICS

CTL P 1 Break

ESC 2 Warmstart

@ 3 Line Kill

CTL H 4 Backspace

CTL F 5 ACK

CTL U 6 NACK

CTL X 7 Invoke Debug

CTL S 8 Suspend Communications
CTL Q 9 Resume Communications

FORTRAN Utility Subroutines

Call ENTGRA Enter Graphics Mode

Call EMPTYB Empty Buffers

Call SENDl(val) Send one byte to_ output buffer.

Call SEND2(val) Send two bytes (16 bits) to output buffer.

Readback Commands

All Read commands require a 7-bit ASCII ACK.

RDMODE flag Set read back mode for subsequent READ
commands; OFF or # reads back ASCII
decimal; ON or 1 reads back binary
format. [D3gl

READBU flg,cflg Read button number. If flag=l wait
for next button. If flag=0 send
number of last button pushed. If
cflg=l send current digitizing tablet
coordinate, if clfg=0 send current
?oystlck/trackball coordinate.

9Aag]

READCR creg Read coordinate register. Send x,y to
port in graphics mode. [98p]

READER Read number of first error.[38y]

READF func Sets pixel readback format. Func

; specifies format. [27g]

READP Read Pixel. Send value of pixel to
port in graphics mode. [95y]

READVR vreg Read value register. Send pixel value
to port in graphics mode. [99y]

READW nrows,ncols, bf Read Window. Send values of pixels in
window to port in graphics mode.
[96y]

READWE nrows,ncol Read Window run-length encoded. Send.

values of pixels in window in run-
length encloded form to port in
graphics mode. [97y]

Register Operations

CADD csum,creg Place result of csum+creg .in csum.
[A2yh]
CLOAD cregqg,X,y Load coordinate register creg with

X/y. [AﬂH]

CMOVE cdst,csrc
CSUB cdif,creg
VADD vsum,vreg
VLOAD vreq,r,qg,b
VMOVE vdst,csrc
VSUB vdif,vreg

Software Development

*

ALPHAO strlen,string

DEBUG flag

DELAY factor

DNLOAD

HOSTO strlen,string

NULL

PEEK addr
POKE addr,data

REPLAY

Move contents of csrc into cdst.
[AlH]

Place result of cdif-creg in cdif.
[A3g]

Place result of vsumt+vreg into
vsum. [A6y]

Load contents of value register vreg
with r,g,b. [Ady]

Move contents of vsrc with vdst.
[A5y]

Place result of vdif-vreg into
vdif. [A7g]

Program comment,

Send text string to local alpha-
numeric display. [B4dgl

Enter/Exit Command Stream Translator.

Exit when flag=0, else enter. [A8pl

Delay transmission of characters.
[B6yl

Download %8002 object code. String
format is Tektronix Hex. [FBpyl

Send a text string to the host.
[B5x]1

No operation. [@§@g]

Display contents of CPU memory.
[BDyl

Change contents of addr in CPU memory.
[BEg]

Dump last 32 characters of HOSTSIO
input buffer to ALPHASIO port. [BCy]

Macro Programming

MACDEF num

MACEND
MACERA num
MACRO num

Interactive Device Support

BLINKC

BLINKD lut, index

BLINKE lut, index
entryl ,entry2

BLINKR frames

BUTTBL index,nmac
BUTTON index
FLUSH

RDPIXR vreg

Define Macro number num is terminated
by MACEND command. [8By]l

End of Macro definition. [@Cyl
Erase Macro num. [8Cyl

Execute Macro num. [@Byl

Clear blink table. [23g]

Disable Blink of specified
lut,index. [21y]

Enable Blink of specified lut, index.
Use entry 1 and entry 2 as alternate
values. [20y]

Blink rate is frame times. [22y]

Place Macro nmac in Button Table at
location index. [AAy]

Execute Macro indicated by Button
Table at location index. [ABy]

Empty function button event queue.
[15g4]

Places value of pixel at current point
in specified value register vreg.
[AFg]

Coordinate Register Assignment

- CREG 0

CREG 1

CREG 2

CREG 3

Current Point. Starting point of
graphics primitives. Updated by a
MOVE or DRAW command.

Joystick/Trackball Cursor Location.
Current coordinate from the joystick
or trackball. Updated automatically.

Digitizing Tablet Cursor Location.
Current coordinate from the digitizing
tablet. Updated automatically.

Coordinate Origin. Coordinate of the

CREG

CREG
CREG
CREG
CREG

CREG

CREG

CREG

CREG

CREG

CREG
CREG
CREG

CREG

*Option Card Users Only.

T*+

8%+

10

11,12%*

13*

14%

15%+
l6*+
17-19
20-63

center of image memory.

Screen Origin. Coordinate of the
pixel in the center of the screen.

Crosshair 0 location in Image Memory.
Crosshair 1 Location in Image Memory.
Crosshair 2 Location in Image Memory.
Crosshair 3 Location in Image Memory.
Clipping Window Origin. Lower left
corner of current clipping window.
All vectors are clipped to this
window.

Clipping Window Origin. Upper right
corner of current clipping window.
All vectors are clipped to this

window,

Diagonal corners for PIXMOV command
source window definition.

Defines start corner for PIXMOV
destination window.

Controls direction of pixel writing
for PIXMOV destination window.

Screen origin of overlay plane §.
Screen origin of overlay plane 1.
Reserved for future definition.

Unassigned. Available for temporary
coordinate storage.

+Model One/20 and Model One/25 Users Only.

Value Register Assignments

VREG 0 Current Value

VREG

VREG

VREG

1
2

3

The value used in all graphics
primitives commands.

Value used for crosshair 0.
Value used for crosshair 1.

Fill Mask used for Area fills.

VREG 4*+
VREG 5*+
VREG 6

VREG 7-15

VREG 16, 19...40

VREG 17, 20...41

VREG 18, 21...42

VREG 43-50

VREG 51-63

*Option Card Users Only.

Color assignment for overlay plane #.
Color assignment for overlay plane 1.
For future definition.

Available for temporary value
storage.

**Foreground color, alphanumeric windows
0-8.

**Background color, alphanumeric windows
0-8.

**Cursor color, alphanumeric windows 0-8.
For future definition.

Available for temporary value storage.

+Model One/20 and Model One/25 Users Only.
**Advanced Graphics Development Firmware

System Configuration Commands

DFTCFG

DISCFG
SAVCFG
SYSCFG HOST

SYSCFG IEEE

SYSCFG SERIAL

Restore all ports to default
configurations.

Display current system configurations.
Save configuration set with SYSCFG.
[ASCII/BINARY]

[address] [NORMAL] [TALK] [LISTEN]
[port-mnemonic] [RTS on/off]l [CTS on/off]l
[sTOP 1/2] [BITS 7/8] [PARITY e/0o/1/h/n]

[BAUD rate] [XIN on/off] [XOUT on/off]
[CTRL on/off].

**Advanced Graphics Development Firmware

Default Port Configurations

Port Mnemonic RTS CTS Baud Parity XIN XOUT CTRL STOP NBITS
MODEMSIO off off 1200 none on off off 1 8
KEYBSIO off off 1200 none on off on 1 8
TABLETSIO off off 1200 none on off off 2 8
GRINSIO off off 1200 none off off off 2 8
HOSTSIO off off 9600 none off on off 2 8
ALPHASIO off off 9600 none on off on 2 8

Alphanumeric Terminal Emulation**

ALPHEM* *

flag

BOLD** flag

DEFWIN** w1ndow x1l,vyl,x2,vy2

xsize,ysize, b1tm bankm

DELWIN* *

DIRCUR**

GETCUR**

GETPOS**
GETWIN**

HOME* *

MOVCUR* *

OVRSTK**

SCROLL**

SELWIN**

SETCUR**

window

X,Y

flag

flag
window

flag

Enables (flag=l or ON) or disables
(flag=0 or OFF) the alphanumeric terminal

emulator. Routes text to selected
window. [C2y]
Enables (flag=l or ON) or disables

(flag=0 or OFF) drawing of bold
text. [CCy]l

Defines size and position of indicated
window number. (x1,yl) defines first
corner; (x2, y2) defines diagonal corner.
xsize, ysize define text size; bitm, bankm
define write mask for window (see WRMASK
command) . [COg]

Deletes window. [C3y]l

Moves cursor to character p031t10n
X,y within window. [C4y]

Returns Model One coordinates of cursor
in currently-selected window. [C9y]

Returns character p051t10n of cursor in
currently-selected window. [C5g]

Returns number of active w1ndow (-1 for
no active window).[CEg]

Moves cursor to character position (0,0),
the upper-left corner of the window.
[CFH]

Moves cursor to Model One coordinate
X,y within window limits. [C8p]

Enables (flag=l or ON) or disables
(flag=0 or OFF) overstriking of text.
[CDyl.

Enables (flag=1l or ON) or disables
(flag=0 or OFF) scrolling of text.

Select window as defined by DEFWIN.
Sets routing for ALPHEM command. [Cly]l

Enables (flag=l or ON) or disables
(flag=0 or OFF) cursor. [C7q]

SETSIZ** xscale,yscale Sets x,y scaling (multiples of 16
, pixels). Default is (1,1).[Cé6yl

WRAP** flag Enables (flag=l or ON) or disables
(flag=0 or OFF) wraparound of
text. [CBy]

**Advanced Graphics Development Firmware

Displa

y List Firmware++

DEFVW

DELPID

HILITE

PICKCR

RDPID

RDREG

RDTREE

REDRAW

SEGAPP

SEGCOP

SEGDEF

SEGDEL

view,wcsregl,wcsreg2
dcsregl,dcsreg2,
upregl,upreg2, rotate,
xform, backvreg, bitm,
bankm,hiseg

view,flag,vreg

view,dcsreg,
searchflag

view,flag

segment

segment2, segmentl
Segment

segment

Defines the view into the World
Coordinate System view gives the view
number; wcsregl and wcsreg2 define the
WCS corners; dcsregl and dcsreg2 define
the display viewport; upregl and upreg2
give the ends of the UP vector; rotate
defines the WCS window rotation center;
xform specifies the transformation
type; backvreg gives the background
color; for bitm and bankm, see the
WRMASK command; hiseg specifies the
segment nesting. [EBH]

Delete primitives with PIDREG and

SEGREG. [ECH] Highlight view in the
color specified by vreg. flag=l or ON
highlights primitives; flag=0 or OFF
draws primitives normally. PIDREG and
SEGREG (see SET) are used. [DFH]

Perform pick search; view is picked,
using the dcsreg coordinates.
searchflag=l or ON, search from current
tree location; searchflag=0 or OFF,
search from the top of the segment.
[E3H]

Reads and returns the graphics primi-
tives with PIDREG AND SEGREG (see SET).
[EDH]

Reads and returns the current SEGREG
and PIDREG (see SET and PICKCR). [EOH]

Returns the PICKCR hierarchical
history. [EEH]

Redisplay view; flag=l or ON clears the
window to the background color before
display. view=-1 redisplays all views.
[E2H]

Open segment to append graphics
primitive commands. SEGEND ends the
append. [DBH]

Copies segmentl into segment2. [EAH]
Begins definition of segent. [DCHI

Deletes segment [DEH]

SEGEND

SEGINI words

SEGINQ segments

SEGPID pickid

SEGREF segment

SEGREN segment2,segmentl

SET global,value

SETATR segment,attribute,
flag

SYSTAT

End segment definition begun with
SEGDEF or SEGAPP. [DDH]

Initializes Display List Firmware;
words gives the number of data words
per segment block. [ElH]

Returns the attributes of segment. (See
SETATR). [E5H]

Defines the pickid for primitives
within segment until next SEGPID or
SEGEND command. [D9H]

Nest specified segment within current
segment. [D8H]

Renames segmentl to segment2. [DAH]

Set PICKAP aperture; set PIDREG value;
set SEGREG value. [46H]

Sets VISibility or PICKability of
segment. flag=1l or ON enables
attribute (VIS or PICK); flag=0 or OFF
disables attribute. [F6H]

Returns system memory usage and
availability. [E4H]

++Optional firmware for Model One/25,
Model One/40, and Model One/60

