
,.

IPILIEXIU~ ~

Sys5 UNIX Programmer's Reference Manual

98-05085.1 Ver. D November, 1986

PLEXUS COMPUTERS, INC.

3833 North First Street

San Jose, CA 95134

408/943-9433

Copyright 1986
Plexus Computers, Inc., San Jose, CA

All rights reserved.

No part of this publication may
be reproduced, transmitted,
transcribed, stored in a
retrieval system, or translated
into any language, in any form
or by any means, without the
prior written consent of Plexus
Computers, Inc.

The information contained
herein is subject to change
without notice. Therefore,
Plexus Computers, Inc.
assumes no responsibility for
the accuracy of the information
presented in this document
beyond its current release
date.

Printed in the United States of America

./

(

(

INTRODUCTION

1. INTRODUCTION

This manual describes the programming features of the UNIX system.
It does not provide either a general overview of the UNIX system or
details of the implementation of the system.

This manual is divided into four sections, some with sub-sections:

• 2. System Calls

- 2S. Standalone System Calls

• 3. Subroutines

- 3C. C and Assembler Library Routines

- 3S. Standard 1/0 Library Routines

- 3M. Mathematical Library Routines

- 3X. Miscellaneous Routines

- 3F. Fortran Routines

• 4. File Formats

• 5. Miscellaneous Facilities

Section 2 (System Calls) describes the entries into the UNIX system
kernel, including the C language interface.

Section 2S (Standalone System Calls) describes standalone system
calls, functions, and error numbers.

Section 3 (Subroutines) describes the available subroutines. Their
binary versions reside in various system libraries in the directories /lib
and /usr/lib. See intro(3) for descriptions of these libraries and files
where they are stored.

Section 4 (File Formats) documents the structure of particular kinds
of files. Files used by only one command are not included. (For
example, the assembler's intermediate files). In general, the C
language struct declarations corresponding to these formats are
found in the directories /usr/include and /usr/include/sys.

Section 5 (Miscellaneous Facilities) contains a variety of things,
including descriptions of character sets, macro packages, etc.

Each section consists of independent entries of a page or so each.
The name of the entry appears in the upper corners of its pages.
Entries within each section are alphabetized, except for the
introductory entry that begins each section. Some entries describe

Sys5 UNIX 1

INTRODUCTION

several routines, commands, etc., and in s.uch cases the entry
appears only once, under its major name.

All entries have a common format, not all of whose parts always
appear:

NAME gives the name(s) of the entry and briefly states its
purpose.

SYNOPSIS summarizes the program being described. A few
conventions are used, particularly in Section 1 (Commands):

Boldface strings are literals and are to be typed exactly
as they appear.

Italic strings usually represent substitutable prototypes
and program names found elsewhere in the manual.
(They are underlined in the typed versions of the entries.)

Square brackets ([]) around an argument prototype
indicate that the argument is optional. When an
argument prototype is given as name or file, it always
refers to a file name.

Ellipses (...) are used to show that the previous argument
prototype might be repeated.

A final convention is used by itself. An argument
beginning with a minus (-), plus (+), or equal sign (=) is
often a flag argument, even if it appears in a position
where a file name could appear. Therefore, it is unwise
to have files whose names begin with -, +,or=.

DESCRIPTION discusses the subject at hand.

FILES gives the file names that are built into the program.

SEE ALSO gives pointers to related information.

DIAGNOSTICS discusses the diagnostic indications that might
be produced. Self-explanatory messages are not listed.

WARNINGS points out potential pitfalls.

BUGS gives known bugs, and sometimes, deficiencies.
Occasionally the suggested fix is also described.

A table of contents precedes the first section. On most systems, all
entries are available on-line via the man(1) command.

2 Sys5 UNIX

(_/ CONTENTS

1. COMMANDS AND APPLICATION PROGRAMS

1. COMMANDS AND APPLICATION PROGRAMS

intro introduction to commands and application programs
300 handle special functions of DASI 300 and 300s terminals
4014 ... paginator for the TEKTRONIX 4014 terminal
450 ... handle special functions of the DASI 450 terminal
acctcom .. search and print process accounting file(s)
adb .. absolute debugger
admin .. create and administer secs files
ar archive and library maintainer for portable archives
arcv convert archive files from PDP-11 to common archive format
as ... common assembler
asa ... interpret ASA carriage control characters
at .. execute commands at a later time
awk .. pattern scanning and processing language
banner .. make posters
bar .. Berkeley archive and library maintainer
basename .. deliver portions of path names
bbanner ... print large banner on printer
bc ... arbitrary-precision arithmetic language
bdiff .. big diff
bfs ... big file scanner

(bls ... list contents of directory
bs .. a compiler/interpreter for modest-sized programs
cal ... print calendar
calendar .. reminder service
cat .. concatenate and print files
cb ... C program beautifier
cc ... C compiler
cd ... change working directory
cdc .. change the delta commentary of an secs delta
cflow .. generate C flow graph
chmod ... change mode
chown .. change owner or group
clear ... clear terminal screen
cmp ... compare two files
col ... filter reverse line-feeds
comb ... combine secs deltas
comm select or reject lines common to two sorted files
cp .. copy, link or move files
cpio .. copy file archives in and out
cpp ... the C language preprocessor
crontab ... user crontab file
crypt ... encode/decode
csh ... a shell (command interpreter) with C-like syntax
csplit .. context split
ct .. spawn getty to a remote terminal

(
ct .. spawn getty to a remote terminal
ctags ... create a tags file
ctrace .. C program debugger

Plexus Sys5 UNIX - 1 - November 1986

CONTENTS

cu ... ;• call another UNIX system
cu•... call another UNIX system
cut•.....•.......•.•........••......• cut out selected fields of each line of a file
cxref•.......•.....................................•....•.. generate C program cross-reference
date•..................•...........................•.•........................... print and set the date
de ~•.......................•................... ; desk calculator
dd•......•..•...........•....................•................................... convert and copy a file
delta ...•.•.•......................•............••...•......... make a delta (change) to an secs file
deroff••............•.....•.. remove nroff/troff, tbl, and eqn constructs
dial•...........................•••..................... dial a Racal-Vadic 3451 modem
diff ..•.......................... differential file comparator
diff3 ...•..........•.....................•.•......•.....•.............. 3-way differential file comparison
diffmk•.......................... ·::·····························mark differences between files
dircmp•.......•...............•................. directory comparison
du .. summarize disk usage
dump•........•.........•......•......•.............. dump selected parts of an object file
dx9700•.....•..............•...... prepare troff documents for the Xerox 9700 printer
echo•........•...•.•.......•......................•....................................... echo arguments
ed .•......•.........•......••.........•...•...............••...................•............................. text editor
edit•...•.....••........•....... text editor (variant of ex for casual users)
efl•....•............•...............••.••....••....................... Extended Fortran Language
enable •..........•..........................••................................. enable/disable LP printers
env•........•........••..•...............•........... set environment for command execution
eqn•..................•.........•..•.•....... .format mathematical text for nroff or troff
ex•.........•.........•......................•................................... text editor
expr••.....................•......••............... evaluate arguments as an expression
f77••..•.............•...•.•.••.•.................•....................•.........•..... Fortran 77 compiler
factor•....................•••.. factor a number
file•.........•....•.........••.............•........................ determine file type
find ...•.........•................................... find files
fsplit•..•.........................•............................... split f77, ratfor, or efl files
gdev•...................•........•............•........ graphical device routines and filters
gdev•......................................•................ graphical device routines and filters
ged•....•..........•..•.............•...•..........•.........•..................... graphical editor
ged ..•.....•......•..........................•.•.•...•.....•..•................................... graphical editor
get .•............................••....•..........•............................ get a version of an secs file
getopt ..•.........•................•..•....•.•..........•......................... parse command options
graph ...•.....•...•......•.................................... draw a graph
graph•.................•..•....•.. draw a graph
graphics•.......................... access graphical and numerical commands
graphics•.. access graphical and numerical commands
greek•...........•.•...•......•..•..•.....••................................... select terminal filter
grep ..•.........•..............•......•.......•.••....•...........•.........•..... search a file for a pattern
gutil•...........................•................•.............................. graphical utilities
gutil ..•...•.....................••.........•....•.....••...•.•.................................. graphical utilities
head•.....................•...........•........................ give first few lin.es of a stream
help ..•.. ask for help
hp•.... handle special functions of HP 2640 and 2621-series terminals
hyphen•...........•........................... find hyphenated words
id ...•....... print user and group IDs and names
ipcrm remove a message queue, semaphore set or shared memory id
ipcs•...•.. report inter-process communication facilities status
join•...........•......•••.........•....•.........•.............•....... relational database operator

November 1986 - 2 - Plexus Sys5 UNIX

/

/ --"

(··~
/

()

CONTENTS

kill .. terminate a process
Id•.. .link editor for common object files
lex ... generate programs for simple lexical tasks
line .. read one line
lint ... a C program checker
login ... sign on
logname ..•.. get login name
lorder•............... find ordering relation for an object library
Ip ..•........... send/cancel requests to an LP line printer
lphold .. postpone printing, resume printing
lpstat•... print LP status information
ls •.........•.•...........................•.. list contents of directory
m4 •...........•..•.... macro processor
macref ... produce cross-reference listing of macro files
mail ... send mail to users or read mail
mailx ... interactive message processing system
make maintain, update, and regenerate groups of programs
makekey ... generate encryption key
man .. print entries in this manual
mesg ... permit or deny messages
mkdir .. , make a directory
mkstr create an error message file by massaging C source
mm prinVcheck documents formatted with the MM macros
mmlint sroff/MM nroff/MM document compatibility checker
mmt ... typeset documents, viewgraphs, and slides
more••.......•...••....•.....•.•........................ file perusal filter for crt viewing
newform .. change the format of a text file
newgrp .. log in to a new group
news .. print news items
nice ..•...•...•.......•.............•..................................... run a command at low priority
nl .. line numbering filter
nm .. print name list of common object file
nohup .. run a command immune to hangups and quits
nroff .. format or typeset text
ocw ~ ... prepare constant-width text for otroff
od .. octal dump
pack ... compress and expand files
passwd .. change login password
paste merge same lines of several files or subsequent lines of one file
pg ... file perusal filter for soft-copy terminals
pic ... troff preprocessor for drawing simple pictures
pr•.........•...•...•.•.. print files
printenv .. print out the environment
prof .. display profile data
prs .. print an' secs file
ps .. report process status
ptx .. permuted index
pwd .. working directory name
ratfor .. rational Fortran dialect
regcmp .. regular expression compile
rm ... remove files or directories
rmdel .. remove a delta from an secs file
sact .. print current secs file editing activity

Plexus Sys5 UNIX - 3 - November 1986

CONTENTS

sag ... system activity graph
sag ... system activity graph
sar .. system activity reporter
sec .. C compiler for stand-alone programs
sccsdiff ... compare two versions of an secs file
script .. ; ... make typescript of terminal session
sdiff .. side-by-side difference program
sed ... stream editor
sh shell, the standard/restricted command programming language
size ... print section sizes of common object files
sleep ... suspend execution for an interval
sno ... SNOBOL interpreter
sort ..•...........•........ sort and/or merge files
spell ... find spelling errors
spline ... interpolate smooth curve
spline ... interpolate smooth curve
split ... split a file into pieces
sroff ..•....................... format text
stat statistical network useful with graphical commands
stat statistical network useful with graphical commands
strings find the printable strings in a object, or other binary, file
strip strip symbol and line number information from common object file
stty ... set the options for a terminal
style ... analyze surface characteristics of a document
su ... become super-user or another user
sum .. print checksum and block count of a file
sync .. update the super block
tabs ...•...................... set tabs on a terminal
tail ... deliver the last part of a file
tape .. tape manipulation
tar ... tape file archiver
tbl... .. format tables for nroff or troff
tc .. troff output interpreter
tee .. pipe fitting
test ... condition evaluation command
time .. time a command
timex time a command; report process data and system activity
toe ... graphical table of contents routines
toe ... graphical table of contents routines
touch .. update access and modification times of a file
tplot ... graphics filters
tplot ... graphics filters
tput .. query term info database
tr ... translate characters
troff .. text formatting and typesetting
true ... provide truth values
tset ... set terminal modes
tsort ...•..... topological sort
tty ... get the name of the terminal
umask ... set file-creation mode mask
uname ... print name of current UNIX system
unget .. undo a previous get of an sccs file
uniq ... report repeated lines in a file

November 1986 - 4 - Plexus Sys5 UNIX

CONTENTS

units .. conversion program
uucp .. UNIX system to UNIX system copy
uucp .. UNIX system to UNIX system copy
uuencode encode/decode a binary file for transmission via mail
uuencode encode/decode a binary file for transmission via mail
uustat .. uucp status inquiry and job control
uustat .. uucp status inquiry and job control
uuto ... public UNIX-to-UNIX system file copy
uuto ... public UNIX-to-UNIX system file copy
uux .. UNIX-to-UNIX system command execution
uux .. UNIX-to-UNIX system command execution
val .. validate secs file
vc ... version control
vi .. screen-oriented (visual) display editor based on ex
vtty ... connect to a remote host via NOS
wait .. await completion of process
wc .. word count
what ... identify secs files
who•.. who is on the system
write ... write to another user
x9700 prepare nroff documents for the Xerox 9700 printer
xargs construct argument list(s) and execute command
xstr extract strings from C programs to implement shared strings
yacc .. yet another compiler-compiler

1M. SYSTEM MAINTENANCE COMMANDS AND PROGRAMS

intro system maintenance commands and application programs
accept .. allow/prevent LP requests
acct overview of accounting and miscellaneous accounting commands
acctcms command summary from per-process accounting records
acctcon ... connect-time accounting
acctmerg .. merge or add total accounting files
acctprc .. process accounting
acctsh ~ ... shell procedures for accounting
acpdmp .. dump contents of Advanced Communication
brc ... system initialization shell scripts
checkall ... faster file system checking procedure
chroot .. change root directory for a command
clri .. clear i-node
copytape .. make an image copy of a tape
cpset .. install object files in binary directories
crash ... examine system images
cron .. clock daemon
dconfig .. configure logical disks
dcopy .. copy file systems for optimal access time
devnm .. device name
df ... report number of free disk blocks
diskusg•.................................. generate disk accounting data by user ID
dnld ... download program files
dump .. incremental file system dump
dumpdir ... print the names of files on a dump tape
errdead ... extract error records from dump

Plexus Sys5 UNIX - 5 - November 1986

CONTENTS

errdemon ... error-logging daemon
errpt .. process a report of logged errors
errstop .. terminate the error-Jogging daemon
fbackup ... make a fast tape backup of a file system
ff ... list file names and statistics for a file system
filesave .. daily/weekly UNIX system file system backup
fine .. fast incremental backup
free ... recover files from a backup tape
fsck file system consistency check and interactive repair
fsdb .. file system debugger
fuseridentify processes using a file or file structure
fwtmp ... manipulate connect accounting records
getty set terminal type, modes, speed, and line discipline
icpdmp dump contents of an Intelligent Communication
init ... process control initialization
install .. install commands
killall ... kill all active processes
link .. exercise link and unlink system calls
lpadmin ... configure the LP spooling system
lpsched start/stop the LP request scheduler and move requests
mirutil .. utility for connecting two identical
mkfs ... construct a file system
mknod ... build special file
mount .. mount and dismount file system
mvdir ... move a directory
ncheck ... generate names from i-numbers
non-btl reinstall MM macros without Bell Laboratories specific features
profiler .. operating system profiler
pwck .. password/group file checkers
ramdisk .. , memory as disk
restor .. incremental file system restore
runacct .. run daily accounting
sadp ... disk access profiler
sar .. system activity report package
setmnt .. establish mount table
shutdown .. terminate all processing
sys .. System control and status program.
tic .. term info compiler
topq ... prioritize print queue
uucico ... file transport program for the uucp system
uuclean ... uucp spool directory clean-up
uusub ... monitor uucp network
uuxqt ... execute remote command requests
volcopy, labelit.. .. copy file systems with label checking
wall .. write to all users
whodo .. who is doing what

2. SYSTEM CALLS

2. SYSTEM CALLS

intro .. introduction to system calls and error numbers
access ... determine accessibility of a file

November 1986 - 6 - Plexus Sys5 UNIX

CONTENTS

acct .. enable or disable process accounting
alarm .. set a process alarm clock
brk .. change data segment space allocation
chdir ... change working directory
chmod .. change mode of file
chown .. change owner and group of a file
chroot ... change root directory
close ... close a file descriptor
creat ... create a new file or rewrite an existing one
dup .. duplicate an open file descriptor
exec .. execute a file
fcntl .. file control
fork ... create a new process
getpid get process, process group, and parent process IDs
getuid get real user, effective user, real group, and effective group IDs
ioctl ... control device
kill send a signal to a process or a group of processes
link ... link to a file
lseek .. move read/write file pointer
mknod .. make a directory, or a special or ordinary file
mount ... mount a file system
msgctl .. message control operations
msgget ... get message queue
msgop ... message operations
nice .. change priority of a process
open ... open for reading or writing
pause .. suspend process until signal
pipe ... create an interprocess channel
plock ... lock process, text, or data in memory
profil .. execution time profile
ptrace .. process trace
read .. read from file
semctl ••...•.•........••......•... semaphore control operations
semget .. get set of semaphores
semop ... semaphore operations
setpgrp ... set process group ID
setuid, setgid ... set user and group IDs
shmctl ... shared memory control operations
shmget ...•.....•.•..••... get shared memory segment
shmop .. shared memory operations
signal ... specify what to do upon receipt of a signal
stat, fstat ... get file status
stime ... set time
sync ... update super-block
time•.........•.•.•.•....•...•..•..•..••.........................•...•............................... get time
times ... get process and child process times
ulimit .. get and set user limits
umask .. set and get file creation mask
umount ... unmount a file system
uname ... get name of current UNIX system
unlink ... remove directory entry
ustat .. get file system statistics
utime .. set file access and modification times

Plexus Sys5 UNIX - 7 - November 1986

CONTENTS

wait ... wait for child process to stop or terminate \
write •••.•...••...•...•..•.•.••••..•••••••...••.•.•..•......•...•.•..•••......•..••................... write on a file)

2S. STANDALONE SYSTEM CALLS

intro .•••••••••.••••.••••••.••••••••.•.•••••••••••••.•..... introduction to standalone system calls,
access •••••• , .. determine accessibility of a file
brk .. change data segment space allocation
chdir ... change working directory
chmod .. change mode of file
close ... close a file descriptor
creat ... create a new special file
exit .. terminate process
float .. float and double routines
getargv display a program name and get arguments for
getpid ... get process ID
getuld get real user, effective user, real group, and effective group IDs
gtty .. get terminal characterisitcs
isatty returns a 1 if specified file descriptor is a terminal
kill send a signal to a process or a group of processes
lseek .. move read/write file pointer
mknod .. make a special file
mount ... mount a file system
nice .. change priority of a process
open ... open for reading or writing
read .. read from file
sleep ... suspend execution for interval
srcheof .. position to a specific file number on a tape
stat ... get file status
stime ... set time
stty ... set terminal characteristics
tell .. report the current value of a file pointer
time •....•..•.....•...•••••••..•••••••.•..•••••......•..•.•....•.....•..•...................................... get time
umask .. set and get file creation mask
umount ... unmount a file system
ustat .. get file system statistics
write ... write on a file

3. SUBROUTINES

3C and 3S. C AND ASSEMBLER, STANDARD 1/0 LIBRARY ROUTINES

intro ... introduction to subroutines and libraries
a641 convert between long integer and base-64 ASCII string
abort .. generate an IOT fault
abs .. return integer absolute value
bsearch , .. binary search a sorted table
clock ... report CPU time used
conv ... translate characters
crypt ... generate DES encryption
ctennid .. generate file name for terminal /~.
ctime ... convert date and time to string
ctype ... classify characters ', __ _/

November 1986 - 8 - Plexus Sys5 UNIX

CONTENTS

cuserid ... get character login name of the user
dial .. establish an out-going terminal line connection
drand48 generate uniformly distributed pseudo-random numbers
ecvt .. convert floating-point number to string
end .. last locations in program
fclose ... close or flush a stream
ferror .. stream status inquiries
fopen .. open a stream
fread .. binary input/output
frexp .. manipulate parts of floating-point numbers
fseek ... reposition a file pointer in a stream
ftw .. walk a file tree
getc .. get character or word from a stream
getcwd .. get path-name of current working directory
getenv ... return value for environment name
getgrent .. get group file entry
getlogin ... get login name
getopt .. get option letter from argument vector
getpass .. read a password
getpw ... get name from UID
getpwent .. get password file entry
gets ... get a string from a stream
getut ... access utmp file entry
hsearch .. manage hash search tables
13tol convert between 3-byte integers and long integers
lsearch .. linear search and update
malloc .. main memory allocator
memory .. memory operations
mktemp .. make a unique file name
monitor ... prepare execution profile
nlist ... get entries from name list
perror ... system error messages
popen ... initiate pipe to/from a process
printf .. print formatted output
putc ; ... put character or word on a stream
putenv .. change or add value to environment
putpwent .. write password file entry
puts .. put a string on a stream
qsort ... quicker sort
rand .. simple random-number generator
scanf sscanf ... convert formatted input
setbuf .. assign buffering to a stream
setjmp .. non-local goto
sleep ... suspend execution for interval
ssignal ... software signals
stdio ... standard buffered input/output package
stdipc standard interprocess communication package
string .. string operations
strtod .. convert string to double-precision number
strtol ... convert string to integer

(
swab .. swap bytes
system .. issue a shell command
termlib .. terminal independent operation routines

Plexus Sys5 UNIX - 9 - November 1986

CONTENTS

tmpfile ... create a temporary file
tmpnam .. create a name for a temporary file
tsearch ... manage binary search trees
ttyname ... find name of a terminal
ttyslot .. find the slot in the utmp file of the current user
ungetc ... push character back into input stream
vprintf print formatted output of a varargs argument list

3M. MATHEMATICAL LIBRARY ROUTINES

bessel .. Bessel functions
erf ... error function and complementary error function
exp exponential, logarithm, power, square root functions
floor floor, ceiling, remainder, absolute value functions
gamma .. log gamma function
hypot .. Euclidean distance function
matherr .. error-handling function
sinh••..........•... hyperbolic functions
trig ... trigonometric functions

3X. MISCELLANEOUS ROUTINES

assert ... verify program assertion
curses CRT screen handling and optimization package
ldahread read the archive header of a member of an archive file
ldclose, ldaclose .. close a common object file
ldfhread .. read the file header of a common object file
ldgetname retrieve symbol name for common object file symbol table entry
ldlread manipulate line number entries of a common object file function
ldlseek seek to line number entries of a section of a common object file
ldohseek seek to the optional file header of a common object file
ldopen ... open a common object file for reading
ldrseek seek to relocation entries of a section of a common object file
ldshread read an indexed/named section header of a common object file
ldsseek seek to an indexed/named section of a common object file
ldtbindex ... compute the index of a symbol table entry of a common object file
ldtbread read an indexed symbol table entry of a common object file
ldtbseek seek to the symbol table of a common object file
logname ... return login name of user
malloc ... fast main memory allocator
plot .. graphics interface subroutines
regcmp ... compile and execute regular expression
sputl access long integer data in a machine-independent fashion

3F. FORTRAN ROUTINES

abort ... terminate Fortran program
abs .. Fortran absolute value
acos .. Fortran arccosine intrinsic function
aimag .. Fortran imaginary part of complex argument
aint .. Fortran integer part intrinsic function
asin ... Fortran arcsine intrinsic function
atan .. Fortran arctangent intrinsic function

November 1986 - 10 - Plexus Sys5 UNIX

(

CONTENTS

atan2 .. Fortran arctangent intrinsic function
bool ... Fortran bitwise boolean functions
conjg ... Fortran complex conjugate intrinsic function
cos ... Fortran cosine intrinsic function
cosh ... Fortran hyperbolic cosine intrinsic function
dim ... positive difference intrinsic functions
dprod ... double precision product intrinsic function
exp .. Fortran exponential intrinsic function
ftype ... explicit Fortran type conversion
getarg .. return Fortran command-line argument
getenv .. return Fortran environment variable
iargc returns number of command line arguments passed to the program
index .. return location of Fortran substring
len ... return length of Fortran string
109 .. Fortran natural logarithm intrinsic function
10910 .. Fortran common logarithm intrinsic function
max ..•..........•... Fortran maximum-value functions
mclock ..•........ return Fortran time accounting
min ...•............. Fortran minimum-value functions
mod ... Fortran remaindering intrinsic functions
rand•..•... random number generator
round .. Fortran nearest integer functions
sign ... Fortran transfer-of-sign intrinsic function
signal specify Fortran action on receipt of a system signal
sin ..•............. Fortran sine intrinsic function
sinh ...•.... Fortran hyperbolic sine intrinsic function
sqrt ...•...........• Fortran square root intrinsic function
strcmp ...••...... string comparison intrinsic functions
system ...•....•... issue a shell command from Fortran
tan ..•......•......•. Fortran tangent intrinsic function
tanh ... Fortran hyperbolic tangent intrinsic function

4. FILE FORMATS

intro .. introduction to file formats
L-devices .. link devices, connection information
L-dialcodes ... alphabetic dialing abbreviations file
L.cmds .. remote execution commands
L.sys ... link systems
USERFILE .. UUCP pathname permissions file
a.out .. common assembler and link editor output
acct ... per-process accounting file format
ar .. common archive file format
checklist ... list of file systems processed by fsck
core .. format of core image file
cpio•... format of epic archive
dir ...•....................................... format of directories
dumpincremental dump tape format
errfile ... error-log file format
filehdrfile header for common object files
fs .. format of system volume
fspec ... format specification in text files

Plexus Sys5 UNIX - 11 - November 1986

CONTENTS

gettydefs ... speed and terminal settings used by getty ,
gps .•................•...........•••....•. graphical primitive string, format of graphical files)
group•.••............•...•.........•........•.. group file
inittab ... script for the init process
inode .. format of an i-node
ioctl.syscon••..•.......••....•....•....•.•...•..••..•........ system console configuration file
issue •.......•.•...••....•••.•...•.••.....•..••••••.••.•..•.•...•...................... issue identification file
ldfcn .. common object file access routines
linenum .. line number entries in a common object file
mnttab••.....•..•••..•..•.........•••••.•.•.......••..••..•••..•....••...... mounted file system table
passwd ... password file
plot ••..••.•.•..•...••.•••...•.••.•.•.••.•...•..........•...•..•.•.•...•...•........••......... graphics interface
profile .. setting up an environment at login time
reloc ... relocation information for a common object file
sccsfile•....•.•.•.••••..•.•..............................•...................•....•.... format of SCCS file
scnhdr ... section header for a common' object file
syms .. common object file symbol table format
tenn ... format of compiled term file.
tenncap ... terminal capability data base
tenninfo ... terminal capability data base
utmp .. utmp and wtmp entry formats

5. MISCELLANEOUS FACILITIES

intro•..•.•...•........••...••........••.......•...................•... introduction to miscellany
ascii .. map of ASCII character set
environ•.......•...........•..........•.••.....•.....•.••......•.. ; user environment
eqnchar special character definitions for eqn and neqn
fcntl ... file control options
font .. description files for device-independent troff
man .. macros for formatting entries in this manual
math ... math functions and constants
mm .. the MM macro package for formatting documents
mosd the osoo adapter macro package for formatting documents
mptx the macro package for formatting a permuted index
mv .•.................•.... a troff macro package for typesetting viewgraphs and slides
prof ... profile within a function
profile .. setting up an environment at login time
regexp regular expression compile and match routines
stat ... data returned by stat system call
term ... conventional names for terminals
troff ... description of output language
ttytype ... data base of terminal types by port
types ... primitive system data types
values .. machine-dependent values
varargs ... handle variable argument list

6. GAMES
/--,\

intro ... introduction to games ,~

November 1986 - 12 - Plexus Sys5 UNIX

CONTENTS

arithmetic .. provide drill in number facts
back .. the game of backgammon
bj ... the game of black jack
craps .. the game of craps
hangman ... guess the word
maze ... generate a maze
moo ..•..................•............... guessing game
quiz ..•............•.•.. test your knowledge
wump .. the game of hunt-the-wumpus

7. SPECIAL FILES

intro .. .introduction to special files
err ..•.......•...............•.. error-logging interface
ft .. IMSP streaming cartridge controller
icp .. Intelligent Communications Processor
mem ...•........•••......... core memory
mv .. a macro package for making view graphs
null ..•..•......................•..................•.. the null file
pp .. parallel port interface
prf .. operating system profiler
pt ..•....•..••......•..•. IMSP cartridge controller
rm .. Cipher Microstreamer tape drive
rram•...................... allows memory to be used as a disk
tty ... general terminal interface

8. SYSTEM MAINTENANCE AND STANDALONE PROCEDURES

intro ... introduction to system maintenance procedures
cat .. concatenate and print files
crash .. what to do when the system crashes
dconfig .. configure logical disks
dd ... convert and copy a file
dformat ..••....•..................•..... disk formatter
du ..•. summarize disk usage
fbackup ... make a fast tape backup of a file system
fsck file system consistency check and interactive repair
fsdb .. file system debugger
help ... ask for help
Is .. list contents of directories
mkfs ...•.....•..... construct a file system
od .. octal dump
restor .. incremental file system restore

Plexus Sys5 UNIX - 13 - November 1986

~ \
J

.~\

PERMUTED INDEX

make a delta
edit text editor

status program
a isatty returns a

handle special functions of HP
comparison diff3

handle special functions of DASI
dial dial a Racal-Vadic

for the TEKTRONIX 4014 terminal
of the DASI 450 terminal

Fortran
troff documents for the Xerox
nroff documents for the Xerox

asa interpret
acpdmp dump contents of

maintainer bar

programs sec
generate

the

a
generate

report
optimization package curses

rm
dump contents of Advanced

icp Intelligent
handle special functions of the

generate
exits. write

Extended

system signal signal specify
function acos

functio asin
function atan2
function atan

functions bool
getarc return

intrinsic function log10
intrinsic function conjg

functions cos
rational

getenv return
function exp

Intrinsic function cosh
function slnh

Intrinsic function tanh

Plexus Sys 5.21 UNIX

(change) to an secs file delta delta(1)
(variant of ex for casual users) edlt(1)
1etc/sys System control and sys(1 m)
1 if specified file descriptor is isatty(2s)
2640 and 2621-series terminals hp hp(1)
3-way differential file dlff3(1)
300 and 300s terminals 300 300(1)
3451 modem ... dlal(1)
4014 paginator .. 4014(1)
450 handle special functions 450(1)
77 complier f77 .. 177(1)
9700 printer dx9700 prepare dx9700(1)
9700 printer x9700 prepare x9700(1)
ASA carriage control characters asa(1)
Advanced Communication acpdmp(1m)
Berkeley archive and library bar(1)
C complier cc ... cc(1)
C complier for stand-alone scc(1)
C flow graph cflow cflow(1)
C language preprocessor cpp cpp(1)
C program beautifier cb cb(1)
C program checker lint lint(1)
C program cross-reference cxref cxref(1)
C program debugger ctrace ctrace(1)
CPU time used clock clock(3C)
CRT screen handling and curses(3X)
Cipher Microstreamer tape drive rm(7)
Communication acpdmp acpdmp(1m)
Communications Processor icp(7)
DASI 450 terminal 450 450(1)
DES encryption crypt crypt(3C)
EOT on the other terminal and write(1)
Euclidean distance function hypot hypot(3M)
Extended Fortran language efl efl(1)
Fortran 77compiler177 ITT(1)
Fortran Language efl efl(1)
Fortran absolute value abs abs(3F)
Fortran action on receipt of a signal(3F)
Fortran arccosine intrinsic acos(3F)
Fortran arcsine intrinsic asin(3F)
Fortran arctangent intrinsic atan2(3F)
Fortran arctangert intrinsic atan(3F)
Fortran bitwise boolean bool(3F)
Fortran command-line argument getarc(3F)
Fortran common logarithm log10(3F)
Fortran complex conjugate conjg(3F)
Fortran cosine intrinsic cos(3F)
Fortran dialect ratfor ratfor(1)
Fortran environment variable getenv(3F)
Fortran exponential intrinsic exp(3F)
Fortran hyperbolic cosine cosh(3F)
Fortran hyperbolic sine intrinsic sinh(3F)
Fortran hyperbolic tangent tanh(3F)

- 1 - November 1986

PERMUTED INDEX

complex argument aimag Fortran imaginary part of aimag(3F)
function aint Fortran integer part intrinsic aint(3F)

max Fortran maximum-value functions max(3F)
min Fortran minimum-value functions min(3F)

intrinsic function log Fortran natural logarithm log(3F)
functions round Fortran nearest integer round(3F)

terminate Fortran program abort abort(3F)
functions mod Fortran remaindering intrinsic mod(3F)

sin Fortran sine intrinsic function sin(3F)
function sqrt Fortran square root intrinsic sqrt(3F)

return length of Fortran string len len(3F)
return location of Fortran substring index index(3F)

issue a shell command from Fortran system .. system(3F)
function tan Fortran tangent intrinsic tan(3F)

return Fortran time accounting mclock mclock(3F)
intrinsic function sign Fortran transfer-of-sign sign(3F)

explicit Fortran type conversion ftype ftype(3F)
hp handle special functions of HP 2640 and 2621-series terminals hp(1)
disk accounting data by user ID diskusg diskusg - generate diskusg(1 m)

set process group ID setpgrp .. setpgrp(2)
getpid get process ID .. getpid(2s)

and real and effective group ID get real and effective user, getuid(2s)
real group, and effective group ID's getuid effective user, getuid(2)

print user and group IDs and names id id(1)
process group, and parent process IDs getpid get process, getpid(2)

set user and group IDs setuid .. setuid(2)
pt IMSP cartridge controller pt(7)

controller ft IMSP streaming cartridge ft(?)
generate an IOT fault abort ... abort(3C)

icpdmp dump contents of an Intelligent Communication icpdmp(1 m)
Processor icp Intelligent Communications icp(7)

connection information L-devices link devices, L-devices(4)
abbreviations file L-dialcodes alphabetic dialing L-dialcodes(4)

commands L.cmds remote execution L.cmds(4)
L.sys link systems L.sys(4)

send/cancel requests to an LP line printer Ip Ip(1)
enable/disable LP printers enable enable(1)

requests start/stop the LP request scheduler and move lpsched(1 m)
configure the LP spooling system lpadmin lpadmin(1m)

print LP status information lpstat lpstat(1)
Extended Fortran Language ell ... efl(1)

documents mm the MM macro package for formatting mm(5)
documents formatted with the MM macros mm prinVcheck mm(1)

rm Cipher Microstreamer tape drive rm(?)
formatting documents mosd the OSDD adapter macro package for mosd(5)

mdial dial the P/75 onboard modem dial(1)
execute a command on the PCL network net net(1)

icp Intelligent Communications Processor ... icp(7)
dial dial a Racal-Vadic 3451 modem dial(1)

change the delta commentary of an secs delta cdc cdc(1)
combine secs deltas comb comb(1)

make a delta (change) to an SCCS file delta .. delta(1)
print current SCCS file editing activity sact sact(1)

get a version of a SCCS file get ... get(1)
print an secs file prs .. prs(1)

November 1986 - 2 - Plexus Sys 5.21 UNIX

PERMUTED INDEX

remove a delta from an secs file rmdel rmdel(1)
compare two versions of an SCCS file sccsdiff sccsdiff(1)

format of SCCS file sccsfile sccsfile(4)
undo a previous get of an SCCS file unget unget(1)

validate SCCS file val .. val(1)
create and administer SCCS files admin admin(1)

identify SCCS files what what(1)
sys System control and status program sys(1 m)

program. /etc/sys System control and status sys(1 m)
status program System control and sys(1 m)

paginator for the TEKTRONIX 4014 terminal 4014 4014(1)
get name from UID getpw .. getpw(3C)

UNIX system to UNIX system copy uucp uucp(1)
call another UNIX system cu cu(1)

filesave daily/weekly UNIX system file system backup filesave(1 m)
uucp UNIX system to UNIX system copy uucp(1)

print name of current UNIX system uname uname(1)
get name of current UNIX system uname uname(2)

execution uux UNIX-to-UNIX system command uux(1)
uuto public UNIX-to-UNIX system file copy uuto(1)

permissions file USERFILE UUCP pathname USERFILE(4)
USERFILE UUCP pathname permissions file USERFILE(4)

prepare troff documents for the Xerox 9700 printer dx9700 dx9700(1)
prepare nroff documents for the Xerox 9700 printer x9700 x9700(1)

a C program checker lint lint(1)
modest-sized programs bs a compiler/interpreter for bs(1)

view graphs mv a macro package for making mv(7)
typesetting viewgraphs and mv a troff macro package for mv(S)

assembler and link editor output a.out common ... a.out(4)
integer and base-64 ASCII string a641 convert between long a641(3C)

L-dialcodes alphabetic dialing abbreviations file L-dialcodes(4)
generate an IOT fault abort ... abort(3C)

terminate Fortran program abort abort(3F)
return integer absolute value abs .. abs(3C)

Fortran absolute value abs ... abs(3F)
absolute debugger adb adb(1)

return integer absolute value abs abs(3C)
Fortran absolute value abs abs(3F)

floor, ceiling, remainder, absolute value functions floor floor(3M)
a file touch update access and modification times of touch(1)

utime set file access and modification times utime(2)
of a file access determine accessibility access(2s)

commands graphics access graphical and numerical graphics(1)
machine-independent fashion. access long integer data in a sputl(3X)

disk access profiler sadp sadp(1 m)
common object file access routines ldfcn ldfcn(4)

copy file systems for optimal access time dcopy dcopy(1 m)
access utmp file entry getut getut(3C)

determine accessibility of a file access .. access(2)
determine accessibility of a file access access(2)

access determine accessibility of a file access(2s)

(
enable or disable process accounting acct acct(2)

connect-time accounting acctcon acctcon(1 m)
of accounting and miscellaneous accounting commands acct acct(1m)

diskusg - generate disk accounting data by user ID diskusg(1 m)

Plexus Sys 5.21 UNIX - 3 - November 1986

PERMUTED INDEX

per-process accounting file format acct acct(4)
search and print process accounting file(s) acctcom acctcom(1)

merge or add total accounting files acctmerg acctmerg(1 m)
return Fortran time accounting mclock mclock(3F)

command summary from per-process accounting records acctcms acctcms(1 m)
run daily accounting runacct runacct(1 m)

or disable process accounting acct enable ... acct(2)
miscellaneous accounting commands acct overview of accounting and acct(1 m)

accounting file format acct per-process acct(4)
per-process accounting records acctcms command summary from acctcms(1 m)
print process accounting file(s) acctcom search and acctcom(1)

connect-time accounting acctcon .. acctcon(1 m)
or add total accounting files acctmerg merge acctmerg(1 m)

arccosine intrinsic function acos Fortran .. acos(3F)
Advanced Commuriication acpdmp dump contents of acpdmp(1m)

signal signal specify Fortran action on receipt of a system signal(3F)
kill all active processes killall killall(1 m)

system activity graph sag sag(1)
system activity report package sar sar(1 m)
system activity report sail sail(1)

print current SCCS file editing activity sact .. sact(1)
report process data and system activity timex time a command; timex(1)

formatting mosd the OSDD adapter macro package for mosd(5)
absolute debugger adb ... adb(1)

acctmerg merge or add total accounting files acctmerg(1 m)
change or add value to environment putenv putenv(3C)
create and administer SCCS files admin admin(1)

part of complex argument aimag Fortran imaginary aimag(3F)
integer part intrinsic function aint Fortran .. aint(3F)

set a process alarm clock alarm alarm (2)
change data segment space allocation brk ... brk(2)

brk change data segment space allocation .. brk(2s)
main memory allocator malloc malloc(3C)

fast main memory allocator malloc malloc(3X)
disk rram allows memory to be used as a rram(7)

abbreviations file L-dialcodes alphabetic dialing L-dialcodes(4)
of a document analyze surface characteristics style(1)

sort and/or merge files sort sort(1)
common archive file format ar .. ar(4)

maintainer for portable archives ar archive and library ar(1)
language be arbitrary-precision arithmetic bc(1)

Fortran arccosine intrinsic function acos acos(3F)
for portable archives ar archive and library maintainer ar(1)

bar Berkeley archive and library maintainer bar(1)
format of cpio archive cpio ... cpio(4)

common archive file format ar ar(4)
archive header of a member of an archive file ldahread read the ldahread(3X)

common archive format convert archive files .. arcv(1)
files archive format arcv archive arcv(1)

archive file ldahread read the archive header of a member of an ldahread(3X)
tape file archiver tar ... tar(1)

library maintainer for portable archives ar archive and ar(1)
copy file archives in and out cpio cpio(1)
Fortran arcsine intrinsic functio asin asin(3F)

atan2 Fortran arctangent intrinsic function atan2(3F)

November 1986 - 4 - Plexus Sys 5.21 UNIX

PERMUTED INDEX

atan Fortran arctangert intrinsic function atan(3F)
archive format arcv convert archive files from arcv(1)

Fortran imaginary part of complex argument aimag aimag(3F)
return Fortran command-line argument getarc getarc(3F)

handle variable argument list varargs varargs(5)
formatted output of a varargs argument list vprintf print vprintf(3S)

command xargs construct argument list(s) and execute xargs(1)
get option letter from argument vector getopt getopt(3C)

evaluate arguments as an expression expr expr(1)
echo arguments echo echo(1)

display a program name and get arguments for getargv getargv(2s)
arbitrary-precision arithmetic language be bc(1)

provide drill in number facts arithmetic ... arithmetic(6)
map of ASCII character set ascii .. ascii(5)

Fortran arcsine intrinsic functio asin ... asin(3F)
ask for help help help(1)

help ask for help .. help(B)
a.out common assembler and link editor output a.out(4)

common assembler as ... as(1)
verify program assertion assert assert(3X)

setbuf assign buffering to a stream setbuf(3S)
arctangent intrinsic function atan2 Fortran .. atan2(3F)

await completion of process wait wait(1)
scanning and processing language awk pattern .. awk(1)

the game of backgammon back back(6)
UNIX system file system backup filesave daily/Weekly filesave(1 m)

fast incremental backup fine .. finc(1m)
!backup fast tape backup of a file system fbackup(1 m)

!backup make a fast tape backup of a file system fbackup(S)
recover files from a backup tape free frec(1m)

make posters banner .. banner(1)
library maintainer bar Berkeley archive and bar(1)

ttytype data base of terminal types by port ttytype(S)
terminal capability data base terminfo ... terminfo(4)

convert between long integer and base-64 ASCII string a641 a641(3C)
(visual) display editor based on ex vi screen-oriented vi(1)

deliver portions of path names basename .. basename(1)
arithmetic language be arbitrary-precision bc(1)

big diff bdiff .. ··············· bdiff(1)
C program beautifier cb ... cb(1)

su become super-user or another user su(1)
big file scanner bfs .. bfs(1)

big diff bdiff .. bdiff(1)
big file scanner bfs bfs(1)

install object files in binary directories cpset cpset(1 m)
binary input/output fread fread(3S)

bsearch binary search a sorted table bsearch(3C)
manage binary search trees tsearch tsearch(3C)
Fortran bitwise boolean functions boot boo1(3F)

the game of black jack bj .. bj(6)
print checksum and block count of a file sum sum(1)

(
update the super block sync .. sync(1)

report number of free disk blocks df .. df(1 m)
Fortran bitwise boolean functions bool .. bool(3F)

initialization shell scripts brc system ... brc(1m)

Plexus Sys 5.21 UNIX - 5 - November 1986

PERMUTED INDEX

allocation brk change data segment space brk(2s)
data segment space allocation brk change ... brk(2)

for modest-sized programs bs a compiler/interpreter bs(1)
binary search a sorted table bsearch .. bsearch(3C)

stdio standard buffered input/output package stdio(3S)
assign buffering to a stream setbuf setbuf(3S)

build special file mknod mknod(1 m)
swap bytes swab .. swab(3C)

print calendar cal ... cal(1)
desk calculator de .. dc(1)
print calendar cal ... cal(1)

reminder service calendar ... calendar(1)
call another UNIX system cu cu(1)

data returned by stat system call stat ... stat(5)
exercise link and unlink system calls link ... link(1 m)

terminal capability data base terminfo terminfo(4)
interpret ASA carriage control characters asa asa(1)

ft IMSP streaming cartridge controller ft(7)
pt IMSP cartridge controller pt(7)

text editor (variant of ex for casual users) edit edit(1)
files cat concatenate and print cat(8)

concatenate.and print files cat .. cat(1)
C program beautifier cb ... cb(1)

C compiler cc .. cc(1)
change working directory cd ... cd(1)

delta commentary of an SCCS delta cdc change the cdc(1)
value functions floor floor, ceiling, remainder, absolute floor(3M)

generate C flow graph cflow ... cftow(1)
allocation brk change data segment space brk(2)
allocation brk change data segment space brk(2s)

change login password passwd passwd(1)
change mode ch mod chmod(1)
change mode of file ch mod chmod(2)

ch mod change mode of file chmod(2s)
environment putenv change or add value to putenv(3C)

file chown change owner and group of a chown(2)
nice change priority of a process nice(2)
nice change priority of a process nice(2s)

change root directory ch root chroot(2)
command chroot change root directory for a chroot(1 m)

an secs delta cdc change the delta commentary of .. ········· cdc(1)
file newform change the format of a text newform(1)

change working directory cd cd(1)
change working directory chdir chdir(2)

chdir change working directory chdir(2s)
create an interprocess channel pipe .. pipe(2)

ungetc push character back into input stream ungetc(3S)
neqn eqnchar special character definitions for eqn and eqnchar(5)

cuserid get character login name of the user cuserid(3S)
getc get character or word from a stream getc(3S)
putc put character or word on a stream putc(3S)

map of ASCII character set ascii ascii(5)
gtty get terminal characterisitcs ... gtty(2s)
analyze surface characteristics of a document style(1)
stty set terminal characteristics ... stty(2s)

November 1986 - 6 - Plexus Sys 5.21 UNIX

PERMUTED INDEX

0 interpret ASA carriage control characters asa ... asa(1)
translate characters conv conv(3C)

classify characters ctype ctype(3C)
translate characters tr .. tr(1)

chdir change working directory chdlr(2s)
change working directory chdir ... chdir(2)

file system consistency check and interactive repair fsck fsck(1 m)
fsck file system consistency check and interactive repair fsck(8)

file system checking procedure checkall faster ... checkall(1m)
a C program checker lint .. lint(1)

nroff/MM document compatibility checker mm lint sroff/MM mmlint(1)
password/group file checkers pwck ... pwck(1 m)

faster file system checking procedure checkall checkall(1m)
copy file systems with label checking volcopy volcopy(1m)

of file systems processed by fsck checklist list ... checklist(4)
file sum print checksum and block count of a sum(1)

get process and child process times times(2)
terminate wait wait for child process to stop or wait(2)

ch mod change mode of file chmod(2s)
change mode ch mod .. chmod(1)

change mode of file ch mod .. chmod(2)
change owner or group chown ... chown(1)

change root directory ch root ... chroot(2)
root directory for a command chroot change ... chroot(1 m)

classify characters ctype ctype(3C)

0
uucp spool directory clean-up uuclean uuclean(1m)

clear i-node clri .. clri(1m)
set a process alarm clock alarm .. alarm(2)

cron clock daemon cron cron(1 m)
report CPU time used clock ... clock(3C)

ldclose close a common object file ldclose(3X)
close a file descriptor close close(2)

close close a file descriptor close(2s)
close or flush a stream fclose fclose(3S)

close a file descriptor close ... close(2)
clear i-node clri ... clri(1m)

compare two files cmp ... cmp(1)
filter reverse line-feeds col ... col(1)

combine SCCS deltas comb comb(1)
lines common to two sorted files comm select or reject comm(1)

run a command at low priority nice nice(1)
change root directory for a command ch root chroot(1 m)

set environment for command execution env env(1)
UNIX-to-UNIX system command execution uux uux(1)

issue a shell command from Fortran system system(3F)
quits nohup run a command immune to hangups and nohup(1)

execute a command on the PCL network net net(1)
parse command options getopt getopt(1)

shell, the standard/restricted command programming language sh sh(1)
per-process accounting records command summary from acctcms(1m)

issue a shell command system system(3S)

(" condition evaluation command test .. test(1)
time a command time ... time(1)

argument list(s) and execute command xargs construct xargs(1)
return Fortran command-line argument getarc getarc(3F)

Plexus Sys 5.21 UNIX - 7 - November 1986

PERMUTED INDEX

system activity timex time a command; report process data and timex(1)
and miscellaneous accounting commands acct of accounting acct(1 m)

execute commands at a later time at at(1)
access graphical and numerical commands graphics graphics(1)

install commands install install(1 m)
network useful with graphical commands stat statistical stat(1)

change the delta commentary of an SCCS delta cdc cdc(1)
common archive file format ar ar(4)

archive files common archive format arcv arcv(1)
convert archive files common archive format arcv(1)

output a.out common assembler and link editor a.out(4)
common assembler as as(1)

function log10 Fortran common logarithm intrinsic log10(3F)
routines ldfcn common object file access ldfcn(4)

ldopen "pen a common object file for reading ldopen(3X)
ldlread line number entries of a common object file function ldlread(3X)

close a common object file ldclose ldclose(3X)
read the file header of a common object file ldfhread ldfhread(3X)

number entries of a section of a common object file ldlseek line ldlseek(3X)
to the optional file header of a common object file ldohseek seek ldohseek(3X)

entries of a section of a common object file ldrseek ldrseek(3X)
section header of a common object file ldshread ldshread(3X)

to an indexed/named section of a common object file ldsseek seek ldsseek(3X)
of a symbol table entry of a common object file ldtbindex ldtbindex(3X)

indexed symbol table entry of a common object file ldtbread an ldtbread(3X)
seek to the symbol table of a common object file ldtbseek ldtbseek(3X)

line number entries in a common object file linenum linenum(4)
print name list of common object file nm nm(1)

relocation information for a common object file reloc reloc(4)
section header for a common object file scnhdr scnhdr(4)

line number information from a common object file strip and strip(1)
entry retrieve symbol name for common object file symbol table ldgetname(3X)

format syms common object file symbol table syms(4)
file header for common object files filehdr filehdr(4)
link editor for common object files Id ld(1)

print section sizes of common object files size size(1)
select or reject lines common to two sorted files comm comm(1)

ipcs report inter-process communication facilities status ipcs(1)
standard interprocess communication package stdipc stdipc(3C)

differential file comparator diff ... diff(1)
compare two files cmp cmp(1)

file sccsdlff compare two versions of an SCCS sccsdiff(1)
strcmp string comparlsion intrinsic functions strcmp(3F)

3-way differential file comparison diff3 diff3(1)
directory comparison dlrcmp dircmp(1)

expression regcmp compile and execute regular regcmp(3X)
regular expression compile and match routines regexp regexp(5)

format of compiled term file. term term(4)
C compiler cc ... cc(1)

Fortran 77 compiler m ... ITT(1)
sec C compiler for stand-alone programs scc(1)

term info compiler tic ... tic(1 m)
yet another compiler-compiler yacc yacc(1)

modest-sized programs bs a compiler/interpreter for bs(1)
error function and complementary error function erf erf(3M)

November 1986 - 8 - Plexus Sys 5.21 UNIX

I
/

PERMUTED INDEX

c await completion of process wait wait(1)
Fortran imaginary part of complex argument aimag aimag(3F)

function conjg Fortran complex conjugate intrinsic conjg(3F)
compress and expand files pack pack(1)

table entry of a common object compute the index of a symbol ldtbindex(3X)
concatenate and print files cat cat(1)

cat concatenate and print files cat(8)
test condition evaluation command test(1)

ioctl.syscon system console configuration file ioctl.syscon(4)
configure logical disks dconfig(1 m)

dconfig configure logical disks dconfig(8)
lpadmin configure the LP spooling system lpadmin(1m)

conjugate intrinsic function conjg Fortran complex conjg(3F)
conjg Fortran complex conjugate intrinsic function conjg(3F)

connect-time accounting acctcon acctcon(1 m)
an out-going terminal line connection dial establish dial(3C)

L-devices link devices, connection information L-devices(4)
repair fsck file system consistency check and interactive fsck(1 m)
repair fsck file system consistency check and interactive fsck(8)

ioctl.syscon system console configuration file ioctl.syscon(4)
ocw prepare constant-width text for otroff ocw(1)

math functions and constants math .. math(5)
construct a file system mkfs mkfs(1 m)

mkfs construct a file system mkfs(8)
execute command xargs construct argument list(s) and xargs(1)

remove nroff/troff, tbl, and eqn constructs deroff deroff(1)
Is list contents of directories ls(8)

list contents of directory Is ls(1)
graphical table of contents routines toe toc(1)

context split csplit csplit(1)
interpret ASA carriage control characters asa asa(1)

control device ioctl ioctl(2)
file control fcntt .. fcnt1(2)

process control initialization init init(1m)
message control operations msgctl msgctl(2)

semaphore control operations semctl semctl(2)
shared memory control operations shmctl shmctl(2)

file control options fcntl fcnt1(5)
uucp status inquiry and job control uustat ... uustat(1)

version control vc ... vc(1)
ft IMSP streaming cartridge controller .. ft(7)

pt IMSP cartridge controller .. pt(7)
tty controlling terminal interface tty(7)

translate characters conv ... conv(3C)
terminals term conventtonal names for term(5)

explicit Fortran type conversion ftype ftype(3F)
conversion program units units(1)
convert and copy a file dd dd(1)

dd convert and copy a file dd(8)
common archive format convert archive files from arcv(1)

and long integers 13tol convert between 3-byte integers 13tol(3C)

(
base-64 ASCII string a641 convert between long integer and a641(3C)

ctime convert date and time to string ctime(3C)
string ecvt convert floating-point number to ecvt(3C)

convert formatted input scant scanf(3S)

Plexus Sys 5.21 UNIX - 9 - November 1986

PERMUTED INDEX

strtol convert string to integer strtol(3C)
double-precision number strtod convert string to strtod(3C)

convert and copy a file dd .. dd(1)
dd convert and copy a file .. dd(8)

cpio copy file archives in and out cpio(1)
access time dcopy copy file systems for optimal dcopy(1 m)

checking volcopy copy file systems with label volcopy(1 m)
UNIX system to UNIX system copy uucp ... uucp(1)

public UNIX-to-UNIX system file copy uuto ... uuto(1)
copy, link or move files cp cp(1)

format of core image file core core(4)
core memory mem mem(7)

cosine intrinsic function cosh Fortran hyperbolic cosh(3F)
Fortran hyperbolic cosine intrinsic function cosh cosh(3F)

Fortran cosine intrinsic functions cos cos(3F)
print checksum and block count of a file sum sum(1)

word count wc .. wc(1)
copy, link or move files cp ... cp(1)

format of cpio archive cpio cpio(4)
copy file archives in and out cpio ... cpio(1)

the C language preprocessor cpp .. cpp(1)
files in binary directories cpset install object cpset(1 m)

the game of craps craps .. craps(6)
examine system images crash .. crash(1m)

to do when the system crashes crash what ... crash(8)
file or rewrite an existing one creat create a new creat(2)

file tmpnam create a name for a temporary tmpnam(3S)
existing one creat create a new file or rewrite an creat(2)

create a new process fork fork(2)
creat create a new special file creat(2s)

create a temporary file tmpfile tmpfile(3S)
pipe create an interprocess channel pipe(2)

admin create and administer SCCS files admin(1)
set and get file creation mask umask umask(2)

umask set and get file creation mask .. umask(2s)
cron - clock daemon cron cron(1m)

user crontab file crontab .. crontab(1)
generate C program cross-reference cxref cxref(1)
files macref produce cross-reference listing of macro macref(1)

encode/decode crypt .. crypt(1)
generate DES encryption crypt .. crypt(3C)

context split csplit ... cs pl it(1)
spawn getty to a remote terminal ct .. ct(1)

generate file name for terminal ctermid ... ctermid(3S)
convert date and time to string ctime ... ctime(3C)

C program debugger ctrace ... ctrace(1)
classify characters ctype ... ctype(3C)

call another UNIX system cu ... cu(1)
activity sact print current secs file editing sact(1)

print name of current UNIX system uname uname(1)
get name of current UNIX system uname uname(2)

the slot in the utmp file of the current user ttyslot find ttyslot(3C)
tell report the current value of a file pointer tell(2s)

get path-name of current working directory getcwd getcwd(3C)
handling and optimization package curses CRT screen curses(3X)

November 1986 - 10 - Plexus Sys 5.21 UNIX

PERMUTED INDEX

interpolate smooth curve spline ... spline(1)
character login name of the user cuserid get .. cuserid(3S)

line of a file cut cut out selected fields of each cut(1)
C program cross-reference cxref generate ... cxref(1)

cron -clock daemon cron ... cron(1m)
error-logging daemon errdemon errdemon(1 m)

terminate the error-logging daemon errstop errstop(1 m)
run daily accounting runacct runacct(1m)

system backup filesave daily/weekly UNIX system file filesave(1m)
time a command; report process data and system activity timex timex(1)

port ttytype data base of terminal types by ttytype(S)
port ttytype data base of terminal types by ttytype(S)

terminal capability data base terminfo terminfo(4)
generate disk accounting data by user ID diskusg diskusg diskusg(1m)

fashion. access long integer data in a machine-independent sputl(3X)
lock process, text, or data in memory plock plock(2)

display profile data prof ... prof(1)
stat data returned by stat system call stat(S)

change data segment space allocation brk brk(2)
brk change data segment space allocation brk(2s)

primitive system data types types types(S)
relational database operator join join(1)

query terminfo database tput ... tput(1)
convert date and time to string ctime ctime(3C)

print and set the date date .. date(1)

(-\

/

print and set the date date ... date(1)
desk calculator de ... dc(1)

disks dconfig configure logical dconfig(S)
systems for optimal access time dcopy copy file dcopy(1m)

dd convert and copy a file dd(B)
convert and copy a file dd ... dd(1)

absolute debugger adb .. adb(1)
C program debugger ctrace ctrace(1)
file system debugger fsdb ... fsdb(1m)

fsdb file system debugger ... fsdb(B)
eqnchar special character definitions for eqn and neqn eqnchar(S)

basename deliver portions of path names basename(1)
tail deliver the last part of a file tail(1)

delta make a delta (change) to an SCCS file delta(1)
the delta commentary of an secs delta cdc change cdc(1)

cdc change the delta commentary of an SCCS delta cdc(1)
remove a delta from an secs file rmdel rmdel(1)

a delta (change) to an SCCS file delta make ... delta(1)
combine secs deltas comb ... comb(1)

permit or deny messages mesg mesg(1)
tbl, and eqn constructs deroff remove nroff/troff, deroff(1)

device-independent troff font description files for font(S)
troff description of output language troff(S)

close a file descriptor close close(2)
duplicate an open file descriptor dup .. dup(2)

returns a 1 if specified file descriptor is a isatty isatty(2s)

(
close close a file descriptor ... close(2s)

desk calculator de dc(1)
access determine accessibility of a file access(2)
access determine accessibility of a file access(2s)

Plexus Sys 5.21 UNIX - 11 - November 1986

PERMUTED INDEX

determine file type file file(1)
control device ioctl ... ioctl(2)

device name devnm devnm(1m)
graphical device routines and filters gdev gdev(1)

font description files for device-independent troff font(5)
L-devices link devices, connection information L-devices(4)
device name devnm .. devnm(1m)

report number of free disk blocks df .. df(1 m)
dformat disk formatter dformat(8)

dial dial a Racal-Vadic 3451 modem dial(1)
mdial dial the P/75 onboard modem dial(1)

terminal line connection dial establish an out-going dial(3C)
rational Fortran dialect ratfor ... ratfor(1)

L-dialcodes alphabetic dialing abbreviations file L-dialcodes(4)
big diff bdiff .. bdiff(1)

differential file comparator diff ... diff(1)
differential file comparison diff3 3-way ... diff3(1)

dim positive difference intrinsic functions dim(3F)
side-by-side difference program sdiff sdiff(1)

mark differences between files diffmk diffmk(1)
differential file comparator diff diff(1)

diff3 3-way differential file comparison diff3(1)
mark differences between files diffmk .. diffmk(1)

difference intrinsic functions dim positive .. dim(3F)
format of directories dir .. dir(4)

directory comparison dircmp .. dircmp(1)
install object files in binary directories cpset cpset(1m)

format of directories dir ... dir(4)
remove files or directories rm ... rm(1)

Is list contents of directories .. ls(8)
change working directory cd .. cd(1)
change working directory chdir .. chdir(2)

change root directory chroot chroot(2)
uucp spool directory clean-up uuclean uuclean(1 m)

directory comparison dircmp dircmp(1)
remove directory entry unlink unlink(2)

change root directory for a command ch root chroot(1 m)
get path-name of current working directory getcwd getcwd(3C)

list contents of directory Is ... ls(1)
make a directory mkdir ... mkdir(1)
move a directory mvdir ... mvdir(1 m)
working directory name pwd pwd(1)

ordinary file mknod make a directory or a special or mknod(2)
chdir change working directory ... chdir(2s)

enable or disable process accounting acct acct(2)
type, modes, speed, and line discipline getty set terminal getty

disk access profiler sadp sadp(1 m)
diskusg diskusg - generate disk accounting data by user ID diskusg(1 m)

report number of free disk blocks df ... df(1 m)
dformat disk formatter ... dformat(8)

summarize disk usage du .. du(1)
du summarize disk usage ... du(8)

ramdisk memory as disk .. ramdisk(1m)
allows memory to be used as a disk rram ... rram(7)

configure logical disks ... dconfig(1 m)

November 1986 - 12 - Plexus Sys 5.21 UNIX

\
j

\.

PERMUTED INDEX

accounting data by user ID diskusg - generate disk diskusg(1 m)
mount and dismount file system mount moun1(1 m)

screen-oriented (visual) display editor based on ex vi vi(1)
display profile data prof prof(1)

Euclidean distance function hypot hypot(3M)
drand48 generate uniformly distributed pseudo-random numbers drand48(3C)

mm lint sroff/MM nroff/MM document compatibility checker .. mmlint(1)
surface characteristics of a document analyze style(1)

macros mm print/check documents formatted with the MM mm(1)
MM macro package for formatting documents mm the mm(5)

macro package for formatting documents the OSDD adapter mosd(5)
mmt typeset documents, viewgraphs, and slides mmt(1)

who is doing what whodo whodo(1m)
intrinsic function dprod double precision product dprod(3F)

float and double routines float(2s)
convert string to double-precision number strtod strtod(3C)

product intrinsic function dprod double precision dprod(3F)
distributed pseudo-random numbers drand48 generate uniformly drand48(3C)

draw a graph graph graph(1)
pie troff preprocessor for drawing simple pictures pic(1)

provide drill in number facts arithmetic arithmetic(6)
rm Cipher Microstreamer tape drive ... rm(7)

du summarize disk usage du(8)
summarize disk usage du ... du(1)

Communication acpdmp dump contents of Advanced acpdmp(1 m)

(
Intelligent Communication icpdmp dump contents of an icpdmp(1m)

extract error records from dump errdead .. errdead(1 m)
octal dump od .. od(1)

object file dump dump selected parts of an dump(1)
dump incremental dump tape format dump(4)

od octal dump .. od(8)
selected parts of an object file dump dump ... dump(1)

duplicate an open file descriptor dup ... dup(2)
for the Xerox 9700 printer dx9700 prepare troff documents dx9700(1)

echo arguments echo echo(1)
floating-point number to string ecvt convert .. ecvt(3C)

text editor ed ... ed(1)
(variant of ex for casual users) edit text editor ... edit(1)

print current SCCS file editing activity sact sact(1)
users edit text editor (variant of ex for casual edit(1)

screen-oriented (visual) display editor based on ex vi vi(1)
text editor ex ... ex(1)
link editor for common object files Id ld(1)

graphic editor ged ... ged(t)
common assembler and link editor output a.out a.out(4)

stream editor sed ... sed(1)
split 177, ratfor. or efl files !split ... !split(1)

Ex1ended Fortran Language ell .. efl(1)
accounting acct enable or disable process acct(2)

enable/disable LP printers enable .. enable(!)
enable enable/disable LP printers enable(!)

for/ uuencode.uudecode encode/decode a binary file uuencode(1c)
encode/decode crypt crypt(1)

generate DES encryption crypt crypt(3C)
generate encryption key makekey makekey(1)

Plexus Sys 5.21 UNIX - 13 - November 1986

PERMUTED INDEX

1st locations in program end .. end(3C)
get entries from name list nlist nlist(3C)

linenum line number entries in a common object file linenum(4)
print entries in this manual man man(1)

manipulate line number entries of a common object file ldlread(3X)
object file seek to relocation entries of a section of a common ldrseek(3X)

utmp and wtmp entry formats utmp utmp(4)
get group file entry getgrent .. getgrent(3C)

get password file entry getpwent ... getpwent(3C)
access utmp file entry getut .. getut(3C)

common object file symbol table entry ldgetname symbol name for ldgetname(3X)
the index of a symbol table entry of a common object file ldtbindex(3X)

read an indexed symbol table entry of a common object file ldtbread(3X)
write password file entry putpwent ... putpwent(3C)

remove directory entry unlink .. unlink(2)
environment for command execution env set ... env(1)

user environment environ ... environ(5)
setting up an environment at login time profile profile(4)

profile setting up an environment at login time profile(5)
user environment environ environ(5)

env set environment for command execution env(1)
return value for environment name getenv getenv(3C)

change or add value to environment putenv putenv(3C)
return Fortran environment variable getenv getenv(3F)

special character definitions for eqn and neqn eqnchar eqnchar(5)
remove nroff/troff, tbl, and eqn constructs deroff deroff(1)

for nroff or troff eqn format mathematical text eqn(1)
and complementary error function erf error function erf(3M)

error-logging interface err ... err(?)
extract error records from dump errdead .. errdead(1 m)

error-logging daemon errdemon ... errdemon(1 m)
error-log file format errfile .. errfile(4)

complementary error function erf error function and erf(3M)
system error messages perror perror(3C)
extract error records from dump errdead errdead(1 m)

error-handling function matherr matherr(3M)
error-log file format errfile errfile(4)
error-logging daemon errdemon errdemon(1 m)

terminate the error-logging daemon errstop errstop(1 m)
error-logging interface err err(?)

process a report of logged errors errpt ... errpt(1 m)
find spelling errors spell ... spell(1)

process a report of logged errors errpt .. errpt(1 m)
the error-logging daemon errstop terminate errstop(1 m)

line connection dial establish an out-going terminal dial(3C)
establish mount table setmnt setmnt(1m)

expression expr evaluate arguments as an expr(1)
test condition evaluation command test(1)

text editor {variant of ex for casual users) edit edit(1)
(visual) display editor based on ex vi screen-oriented vi(1)

examine system images crash crash(1 m)
execute a file exec ... exec(2)

network net execute a command on the PCL net(1)
execute a file exec exec(2)

construct argument list(s) and execute command xargs xargs(1)

November 1986 - 14 - Plexus Sys 5.21 UNIX

(

PERMUTED INDEX

at execute commands at a later time at(1)
compile and execute regular expression regcmp regcmp(3X)

uuxqt execute remote command requests uuxqt(1 m)
L.cmds remote execution commands L.cmds(4)

set environment for command execution env .. env(1)
suspend execution for interval sleep sleep(3C)
prepare execution profile monitor monitor(3C)

execution time profile profil profil(2)
UNIX-to-UNIX system command execution uux .. uux(1)

calls link exercise link and unlink system link(1 m)
create a new file or rewrite an existing one creat creat(2)

exit terminate process exit(2s)
terminate process exit ... exit(2)

EOT on the other terminal and exits write ... write(1)
exponential intrinsic function
power, square root function

com press and
conversion !type

exp Fortran
square root function exp

arguments as an expression
routines regexp regular

regular
evaluate arguments as an

compile and execute regular
errdead

Fortran 77 compiler
split

inter-process communication

exp Fortran .. exp(3F)
exp exponential, logarithm, exp(3M)
expand files pack pack(1)
explicit Fortran type ftype(3F)
exponential intrinsic function exp(3F)
exponential, logarithm, power, exp(3M)
expr evaluate .. expr(1)
expression compile and match regexp(5)
expression compile regcmp regcmp(1)
expression expr expr(1)
expression regcmp regcmp(3X)
extract error records from dump errdead(1m)
f77 .. f77(1)
f77, ratfor, or efl files !split fsplit(1)
facilities status ipcs report ipcs(1)
factor a number factor factor(1)

provide drill in number facts arithmetic .. arithmetic(6)
data in a machine-independent fashion. sputl long integer sputl(3X)

fbackup
!backup make a

procedure checkall
generate an IOT

backup of a file system
backup of a file system
close or flush a stream

file control options
stream status inquiries

and statistics for a file system
cut out selected
times utime set
common object

determine accessibility of a
tape
copy

password/group
change of of

change owner and group of a
differential

fast incremental backup fine finc(1 m)
fast main memory allocator malice malloc(3X)
fast tape backup of a file system fbackup
fast tape backup of a file system fbackup(B)
faster file system checking checkall(1 m)
fault abort ... abort(3C)
!backup make a fast tape fbackup(1 m)
fbackup make a fast tape fbackup(B)
fclose .. fclose(3S)
fcntl ... fcnt1(5)
!error ... ferror(3S)
ff list file names ff(1m)
fields of each line of a file cut cut(1)
file access and modification utime(2)
file access routines ldfcn ldfcn(4)
file access .. access(2)
file archiver tar ... tar(1)
file archives in and out epic cpio(1)
file checkers pwck pwck(1 m)
file chmod .. chmod(2)
file chown ... chown(2)
file comparator diff diff(1)

3-way differential file comparison diff3 diff3(1)

Plexus Sys 5.21 UNIX - 15 - November 1986

PERMUTED INDEX

file control fcntl .. fcntl(2)
file control options fcntl fcntl(5)

public UNIX-to-UNIX system file copy uuto ... uuto(1)
format of core image file core .. core(4)

set and get file creation mask um ask umask(2)
um ask set and get file creation mask umask(2s)

user crontab file crontab ... crontab(1)
selected fields of each line of a file cut cut out ... cut(1)

convert and copy a file dd ... dd(1)
make a delta (change) to an SCCS file delta .. delta(1)

close a file descriptor close close(2)
duplicate an open file descriptor dup dup(2)

returns a 1 if specified file descriptor is a isatty isatty(2s)
close close a file descriptor ... close(2s)

dump selected parts of an object file dump .. dump(1)
print current SCCS file editing activity sact sact(1)

get group file entry getgrent getgrent(3C)
get password file entry getpwent getpwent(3C)
access utmp file entry getut .. getut(3C)

write password file entry putpwent putpwent(3C)
execute a file exec .. exec(2)
search a file for a pattern grep grep(1)

open a common object file for reading Id open ldopen(3X)
per-process accounting file format acct ... acct(4)

common archive file format ar .. ar(4)
error-log file format errfile errfile(4)

number entries of a common object file function ldlread line ldlread(3X)
get a version of a SCCS file get .. get(1)

group file group .. group(4)
files filehdr file header for common object filehdr(4)

file ldfhread read the file header of a common object ldfhread(3X)
file seek to the optional file header of a common object ldohseek(3X)

split a file into pieces split split(1)
issue identification file issue ... issue(4)

header of a member of an archive file ldahread read the archive ldahread(3X)
close a common object file ldclose .. ldclose(3X)

file header of a common object file ldfhread read the ldfhread(3X)
of a section of a common object file ldlseek line number entries ldlseek(3X)
file header of a common object file ldohseek to the optional ldohseek(3X)

of a section of a common object file ldrseek relocation entries ldrseek(3X)
section header of a common object file ldshread an indexed/named ldshread(3X)

section of a common object file ldsseek an indexed/named ldsseek(3X)
table entry of a common object file ldtbindex index of a symbol ldtbindex(3X)
table entry of a common object file ldtbread an indexed symbol ldtbread(3X)

symbol table of a common object file ldtbseek seek to the ldtbseek(3X)
number entries in a common object file linenum line linenum(4)

link to a file link .. link(2)
build special file mknod .. mknod(1m)

or a special or ordinary file mknod make a directory mknod(2)
generate file name for terminal ctermid ctermid(3S)

make a unique file name mktemp mktemp(3C)
file system ff list file names and statistics for a ff(1 m)

change the format of a text file newform ... newform(1)
print name list of common object file nm ... nm(1)

the null file null .. null(?)

November 1986 - 16 - Plexus Sys 5.21 UNIX

PERMUTED INDEX

find the slot in the utmp file of the current user ttyslot ttyslot(3C)
identify processes using a file or file structure fuser fuser(1m)

creat create a new file or rewrite an existing one creat(2)
password file passwd ... passwd(4)

files or subsequent lines of one file paste same lines of several paste(1)
terminals pg file perusal filter for soft-copy pg(1)
reposition a file pointer in a stream !seek fseek(3S)

move read/write file pointer lseek , lseek(2)
lseek move read/write file pointer lseek(2s)

report the current value of a file pointer tell te11(2s)
print an SCCS file prs prs(1)

read from file read .. read(2)
information for a common object file reloc relocation reloc(4)

remove a delta from an secs file rmdel rmdel(1)
big file scanner bfs bfs(1)

compare two versions of an SCCS file sccsdiff sccsdiff(1)
format of SCCS file sccsfile ... sccsfile(4)

header for a common object file scnhdr section scnhdr(4)
get file status stat .. stat(2)

stat get file status .. stat(2s)
information from a common object file strip and line number strip(1)

processes using a file or file structure fuser identify fuser(1 m)
checksum and block count of a file sum print .. sum(1)

symbol name for common object file symbol table entry ldgetname ldgetname(3X)
common object file symbol table format syms syms(4)

(
daily/weekly UNIX system file system backup filesave filesave(1m)

checkall faster file system checking procedure checkall(1m)
interactive repair fsck file system consistency check and fsck(1 m)

and interactive repair fsck file system consistency check fsck(B)
file system debugger fsdb fsdb(1 m)

fsdb file system debugger fsdb(B)
file names and statistics for a file system ff list ff(1 m)

construct a file system mkfs mkfs(1 m)
mount and dismount file system mount mount(1 m)

mount a file system mount mount(2)
incremental file system restore restor(1m)

restor incremental file system restore restor(B)
get file system statistics ustat ustat(2)

ustat get file system statistics ustat(2s)
mounted file system table mnttab mnttab(4)

unmount a file system umount umount(2)
mount a file system .. mount(2s)

unmount a file system .. umount(2s)
make a fast tape backup of a file system fbackup fbackup(1 m)

time dcopy copy file systems for optimal access dcopy(1m)
checklist list of file systems processed by fsck checklist(4)

volcopy copy file systems with label checking volcopy(1m)
deliver the last part of a file tail ... tail(1)

create a temporary file tmpfile ... tmpfile(3S)
create a name for a temporary file tmpnam .. tmpnam(3S)

and modification times of a file touch update access touch(1)
uucp system uucico file transport program for uucico

walk a file tree ftw .. ftw(3C)
determine file type file ... file(1)

undo a previous get of an SCCS file unget .. unget(1)

Plexus Sys 5.21 UNIX - 17 - November 1986

PERMUTED INDEX

report repeated lines in a file uniq .. uniq(1)
validate SCCS file val ... val(1)

write on a file write .. write(2)
creat create a new special file .. creat(2s)

determine file type file ... file(1)
mknod make a special file ... mknod(2s)

read read from file .. read(2s)
write on a file ... write(2s)

and print process accounting file(s) acctcom search acctcom(1)
set file-creation mode mask um ask umask(1)

format of compiled term file. term .. term(4)
header for common object files filehdr file ... filehdr(4)
merge or add total accounting files acctmerg ... acctmerg(1 m)

create and administer SCCS files admin ... admin(1)
concatenate and print files cat ... cat(1)

compare two files cmp ... cmp(1)
reject lines common to two sorted files comm select or comm(1)

copy, link or move files cp .. cp(1)
mark differences between files diffmk .. diffmk(1)

file header for common object files filehdr .. filehdr(4)
recover files from a backup tape free frec(1m)

format specification in text files fspec ... fspec(4)
split f77, ratfor, or efl files fsplit .. fsplit(1)

string, format of graphical files gps graphical primitive gps(4)
install object files in binary directories cpset cpset(1m)

link editor for common object files Id ... ld(1)
remove files or directories rm rm(1)

merge same lines of several files or subsequent lines of one paste(1)
compress and expand files pack .. pack(1)

print files pr .. pr(1)
section sizes of common object files size print .. size(1)

sort and/or merge files sort ... sort(1)
identify SCCS files what .. what(1)

archive format convert archive files ... arcv(1)
UNIX system file system backup filesave daily/weekly filesave(1 m)

file perusal filter for soft-copy terminals pg pg(1)
select terminal filter greek .. greek(1)
line numbering filter nl .. nl(1)

filter reverse line-feeds col col(1)
graphical device routines and filters gdev ... gdev(1)

graphics filters tplot ... tplot(1)
fast incremental backup fine .. finc(1 m)

find hyphenated words hyphen hyphen(1)
find name of a terminal ttyname ttyname(3C)

object library larder find ordering relation for an lorder(1)
find spelling errors spell spell(1)

the current user ttyslot find the slot in the utmp file of ttyslot(3C)
find files find ... find(1)

float and double routines float(2s)
ecvt convert floating-point number to string ecvt(3C)

manipulate parts of floating-point numbers frexp frexp(3S)
absolute value functions floor floor, ceiling, remainder, floor(3M)

generate C flow graph cflow cflow(1)
close or flush a stream fclose fclose(3S)

open a stream fopen .. fopen(3S)

November 1986 - 18 - Plexus Sys 5.21 UNIX

PERMUTED INDEX

create a new process fork .. fork(2)
per-process accounting file format acct .. acct(4)

common archive file format ar .. ar(4)
common archive format arcv archive files arcv(1)

error-log file format errfile .. errfile(4)
nroff or troff eqn format mathematical text for eqn(1)

format of secs file sccsfile """"' sccsfile(4)
change the format of a text file newform newform(1)

format of an i-node inode inode(4)
term format of compiled term file term(4)

format of core image file core core(4)
format of cpio archive cpio cpio(4)
format of directories dir dir(4)

graphical primitive string, format of graphical files gps gps(4)
format of system volume fs fs(4)

nroff format or typeset text nroff(1)
files fspec format specification in text fspec(4)

common object file symbol table format syms ... syms(4)
tbl format tables for nroff or troff· tbl(1)

sroff format text .. sroff(1)
utmp and wtmp entry formats utmp .. utmp(4)

convert formatted input scan! scanf(3S)
argument list vprintf print formatted output of a varargs vprintf(3S)

print formatted output print! printf(3S)
dformat disk formatter ... dformat(8)

mptx the macro package for formatting a permuted index mptx(S)
troff text formatting and typesetting troff(1)

mm the MM macro package for formatting documents mm(S)
OSDD adapter macro package for formatting documents mosd the mosd(S)

man macros for formatting entries in this manual man(S)
binary inpuVoutput !read ... fread(3S)

recover files from a backup tape free ... frec(1 m)
report number of free disk blocks df df(1 m)

parts of floating-point numbers frexp manipulate frexp(3S)
format of system volume fs ... fs(4)

list of file systems processed by fsck checklist ... checklist(4)
check and interactive repair fsck file system consistency fsck(8)
check and interactive repair fsck file system consistency fsck(1 m)

fsdb file system debugger fsdb(B)
file system debugger fsdb .. fsdb(1m)

a file pointer in a stream !seek reposition fseek(3S)
specification in text files !spec format .. fspec(4)

split f77, ratfor, or efl files !split .. fsplit(1)
controller ft IMSP streaming cartridge ft(?)

walk a file tree ftw ... ftw(3C)
explicit Fortran type conversion !type .. ftype(3F)

Fortran arcsine intrinsic functio asin .. asin(3F)
Fortran arccosine intrinsic function acos ... acos(3F)

Fortran integer part intrinsic function aint ... aint(3F)
function erf error function and complementary error erf(3M)

Fortran arctangert intrinsic function atan .. atan(3F)
Fortran arctangent intrinsic function atan2 .. atan2(3F)
complex conjugate intrinsic function conjg Fortran conjg(3F)

hyperbolic cosine intrinsic function cash Fortran cosh(3F)
precision product intrinsic function dprod double dprod(3F)

Plexus Sys 5.21 UNIX - 19 - November 1986

PERMUTED INDEX

function and complementary error function erf error erf(3M)
Fortran exponential intrinsic function exp ... exp(3F)

logarithm, power, square root function exp exponential, exp(3M)
log gamma function gamma gamma(3M)

Euclidean distance function hypot ... hypot(3M)
entries of a common object file function ldlread line number ldlread(3X)

natural logarithm intrinsic function log Fortran log(3F)
common logarithm intrinsic function log10 Fortran log10(3F)

error-handling function matherr matherr(3M)
profile within a function prof .. prof(5)

transfer-of-sign intrinsic function sign Fortran sign(3F)
Fortran sine intrinsic function sin .. sin(3F)

Fortran hyperbolic sine intrinsic function sinh .. sinh(3F)
Fortran square root intrinsic function sqrt ... sqrt(3F)

Fortran tangent intrinsic function tan .. tan(3F)
hyperbolic tangent intrinsic function tanh Fortran tanh(3F)

math functions and constants math math(5)
Fortran bitwise boolean functions bool .. bool(3F)
Fortran cosine intrinsic functions cos ... cos(3F)

positive difference intrinsic functions dim ... dim(3F)
remainder, absolute value functions floor floor, ceiling, floor(3M)

Fortran maximum-value functions max .. max(3F)
Fortran minimum-value functions min ... min(3F)

Fortran remaindering intrinsic functions mod .. mod(3F)
terminals 300 handle special functions of DASI 300 and 300s 300(1)

2621-series handle special functions of HP 2640 and hp(1)
terminal 450 handle special functions of the DASI 450 450(1)

Fortran nearest integer functions round .. round(3F)
hyperbolic functions sinh .. sinh(3M)

string comparision intrinsic functions strcmp strcmp(3F)
trigonometric functions trig .. trig(3M)

using a file or file structure fuser identify processes fuser(1 m)
guessing game moo ... moo(6)

the game of backgammon back back(6)
the game of black jack bj bj(6)
the game of craps craps craps(6)
the game of hunt-the-wumpus wump wump(6)

log gamma function gamma ... gamma(3M)
device routines and filters gdev graphical .. gdev(1)

graphic editor ged ... ged(1)
tty general terminal interface tty(?)

generate C flow graph cftow cflow(1)
cross-reference cxref generate C program cxref(1)

generate DES encryption crypt crypt(3C)
generate a maze maze maze(6)
generate an IOT fault abort abort(3C)

user ID diskusg diskusg generate disk accounting data by diskusg(1 m)
generate encryption key makekey makekey(1)

ctermid generate file name for terminal ctermid(3S)
ncheck generate names from I-numbers ncheck(1 m)

lexical tasks lex generate programs for simple lex(1)
pseudo-random numbers drand48 generate uniformly distributed drand48(3C)

simple random-number generator rand ... rand(3C)
random number generator rand ... rand(3F)

get a string from a stream gets gets(3S)

November 1986 - 20 - Plexus Sys 5.21 UNIX

PERMUTED INDEX

get get a version of a secs file get(1)
get and set user limits ulimit ulimit(2)

user cuserid get character login name of the cuserid(3S)
stream getc get character or word from a getc(3S)

nlist get entries from name list nlist(3C)
get file status stat stat(2)

stat get file status stat(2s)
ustat get file system statistics ustat(2)
ustat get file system statistics ustat(2s)

get group file entry getgrent getgrent(3C)
get login name getlogin getlogin(3C)
get login name logname logname(1)
get message queue msgget msgget(2)
get name from UID getpw getpw(3C)

uname get name of current UNIX system uname(2)
vector getopt get option letter from argument getopt(3C)

getpwent get password file entry getpwent(3C)
working directory getcwd get path-name of current getcwd(3C)

getpid get process ID ... getpid(2s)
times get process and child process times(2)

parent process IDs getpid get process, process group, and getpid(2)
and real and effective getuid get real and effective user, getuid(2s)

real group, and effective group get real user, effective user, getuid(2)
get set of semaphores semget semget(2)

shmget get shared memory segment shmget(2)
gtty. get terminal characterisitcs gtty(2s)

(/ tty get the name of the terminal tty(1)
get time time .. time(2)

time get time .. time(2s)
Fortran command-line argument getarc return ... getarc(3F)

and get arguments for getargv display a program name getargv(2s)
character or word from a stream getc get ... getc(3S)

of current working directory getcwd get path-name getcwd(3C)
return value for environment name getenv .. getenv(3C)

Fortran environment variable getenv return ... getenv(3F)
get group file entry getgrent .. getgrent(3C)

get login name getlogin .. getlogin(3C)
parse command options getopt ... getopt(1)

letter from argument vector getopt get option getopt(3C)
read a password getpass .. getpass(3C)

getpid get process ID getpid(2s)
group, and parent process IDs getpid get process, process getpid(2)

get name from UID getpw .. getpw(3C)
get password file entry getpwent .. getpwent(3C)

get a string from a stream gets ... gets(3S)
and terminal settings used by getty gettydefs speed gettydefs(4)

spawn getty to a remote terminal ct ct(1)
terminal settings used by getty gettydefs speed and gettydefs(4)

user, and real and effective getuid get real and effective getuid(2s)
group, and effective group ID's getuid effective user, real getuid(2)

access utrn p file entry getut ... getut(3C) ,.- string, format of graphical flies gps graphical primitive gps(4)
generate C flow graph cflow .. cflow(1)

draw a graph graph ... graph(1)
system activity graph sag ... sag(1)

Plexus Sys 5.21 UNIX - 21 - November 1986

PERMUTED INDEX

draw a graph graph ... graph(1)
graphic editor ged ged(1)

graphics access graphical and numerical commands graphics(1)
statistical network useful with graphical commands stat stat(1)

filters gdev graphical device routines and gdev(1)
primitive string, format of graphical files gps graphical gps(4)

routines toe graphical table of contents toc(1)
graphical utilities gutil gutil(1)
graphics filters tplot tplot(1)
graphics interface plot plot(4)

plot graphics interface subroutines plot(3X)
graphical and numerical commands graphics access graphics(1)

a macro package for making view graphs mv ... mv(7)
select terminal filter greek .. greek(1)

search a file for a pattern grep .. grep(1)
set process group ID setpgrp setpgrp(2)

user, and real and effective group ID get real and effective getuid(2s)
user, real group, and effective group ID's getuid effective getuid(2)

print user and group IDs and names id id(1)
set user and group IDs setuid setuid(2)

change owner or group chown .. chown(1)
get group file entry getgrent getgrent(3C)

group file group group(4)
log in to a new group newgrp ... newgrp(1)

change owner and group of a file chown chown(2)
send a signal to a process or a group of processes kill kill(2)

group file group .. group(4)
real user, effective user, real group, and effective group ID's getuid(2)
getpid get process, process group, and parent process IDs getpid(2)

maintain, update, and regenerate groups of programs make make(1)
characterisitcs gtty get terminal gtty(2s)

guess the word hangman hangman(6)
guessing game moo moo(6)

graphical utilities gutil .. gutil(1)
300 and 300s terminals 300 handle special functions of DASI 300(1)

2640 and 2621-series terminals handle special functions of HP hp(1)
DASI 450 terminal 450 handle special functions of the 450(1)

varargs handle variable argument list varargs(5)
curses CRT screen handling and optimization package curses(3X)

guess the word hangman .. hangman(6)
run a command immune to hangups and quits nohup(1)

manage hash search tables hsearch hsearch(3C)
scnhdr section header for a common object file scnhdr(4)

filehdr file header for common object files filehdr(4)
ldfhread read the file header of a common object file ldfhread(3X)

seek to the optional file header of a common object file ldohseek(3X)
read an indexed/named section header of a common object file ldshread(3X)

file ldahread read the archive header of a member of an archive ldahread(3X)
help ask for help help(8)

ask for help help ... help(1)
HP 2640 and 2621-series terminals hp handle special functions of hp(1)

manage hash search tables hsearch ... hsearch(3C)
the game of hunt-the-wumpus wump wump(6)

function cosh Fortran hyperbolic cosine intrinsic cosh(3F)
hyperbolic functions sinh sinh(3M)

November 1986 - 22 - Plexus Sys 5.21 UNIX

PERMUTED INDEX

function sinh Fortran hyperbolic sine intrinsic sinh(3F)
function tanh Fortran hyperbolic tangent intrinsic tanh(3F)

find hyphenated words hyphen ... hyphen(1)
Euclidean distance function hypot ... hypot(3M)

clear i-node clri .. clri(1 m)
format of an i-node inode ... inode(4)

generate names from i-numbers ncheck ncheck(1 m)
iargc iargc .. iargc(3F)

Processor icp Intelligent Communications icp(7)
Intelligent Communication icpdmp dump contents of an icpdmp(1 m)

semaphore set or shared memory id ipcrm remove a message queue, ipcrm(1)
user and group IDs and names id print .. id(1)

issue identification file issue issue(4)
identify SCCS files what what(1)

or file structure !user identify processes using a file fuser(1 m)
format of core image file core ... core(4)

examine system images crash ... crash(1 m)
argument aimag Fortran imaginary part of complex aimag(3F)

run a command immune to hangups and quits nohup nohup(1)
fast incremental backup fine finc(1 m)

dump incremental dump tape format dump(4)
incremental file system restore restor(1 m)

rester incremental file system restore restor(8)
termlib terminal independent operation routines termlib(3c)

a common object compute the index of a symbol table entry of ldtbindex(3X)

(
permuted index ptx .. ptx(1)

package for formatting a permuted index mptx the macro mptx(5)
location of Fortran substring index return ... index(3F)
common object file read an indexed symbol table entry of a ldtbread(3X)

a common object file read an indexed/named section header of ldshread(3X)
common object file seek to an indexed/named section of a ldsseek(3X)

file reloc relocation information for a common object reloc(4)
strip symbol and line number information from a common object strip(1)

print LP status information lpstat lpstat(1)
script for the init process inittab inittab(4)

process control initialization init ... init(1 m)
process control initialization init .. init(1 m)

system initialization shell scripts brc brc(1 m)
papen initiate pipe to/from a process popen(3S)

script for the 'in it process inittab .. inittab(4)
format of an i-node inode .. inode(4)

convert formatted input scanf ... scanf(3S)
push character back into input stream ungetc ungetc(3S)

binary input/output fread fread(3S)
standard buffered input/output package stdio stdio(3S)

stream status inquiries !error .. ferror(3S)
uucp status inquiry and job control uustat uustat(1)

directories cpset install object files in binary cpset(1 m)
install commands install .. install(1 m)

return integer absolute value abs abs(3C)
a641 convert between long integer and base-64 ASCII string a641(3C)

access long integer data in a sputl(3X)
Fortran nearest integer functions round round(3F)

aint Fortran integer part intrinsic function aint(3F)
(

convert string to integer strtol ... strtol(3C)

Plexus Sys 5.21 UNIX - 23 - November 1986

PERMUTED INDEX

convert between 3-byte integers and long integers 13tol 13tol(3C)
facilities status ipcs report inter-process communication ipcs(1)

system mailx interactive message processing mailx(1)
file system consistency check and interactive repair fsck fsck(1 m)
file system consistency check and interactive repair fsck fsck(8)

error-logging interface err .. err(?)
graphics interface plot .. plot(4)
graphics interface subroutines plot plot(3X)

controlling terminal interface tty .. tty(?)
pp parallel port interface ... pp(7)

tty general terminal interface ... tty(?)
interpolate smooth curve spline spline(1)

characters asa interpret ASA carriage control asa(1)
SNOBOL interpreter sno ... sno(1)

tc troff output interpreter ... tc(1)
create an interprocess channel pipe pipe(2)

package stdipc standard interprocess communication stdipc(3C)
suspend execution for an interval sleep .. sleep(1)

suspend execution for interval sleep ... sleep(3C)
Fortran arcsine intrinsic functio asin asin(3F)

Fortran arccosine intrinsic function acos acos(3F)
Fortran inte.ger part intrinsic function aint aint(3F)

Fortran arctangert intrinsic function atan atan(3F)
Fortran arctangent intrinsic function atan2 atan2(3F)

Fortran complex conjugate intrinsic function conjg conjg(3F)
Fortran hyperbolic cosine intrinsic function cash cosh(3F)
double precision product intrinsic function dprod dprod(3F)

Fortran exponential intrinsic function exp exp(3F)
Fortran natural logarithm intrinsic function log log(3F)

Fortran common logarithm intrinsic function log10 log10(3F)
Fortran transfer-of-sign intrinsic function sign sign(3F)

Fortran sine intrinsic function sin sin(3F)
Fortran hyperbolic sine intrinsic function sinh sinh(3F)

Fortran square root intrinsic function sqrt sqrt(3F)
Fortran tangent intrinsic function tan tan(3F)

Fortran hyperbolic tangent intrinsic function tanh tanh(3F)
Fortran cosine intrinsic functions cos cos(3F)

positive difference intrinsic functions dim dim(3F)
Fortran remaindering intrinsic functions mod mod(3F)

string comparision intrinsic functions strcmp strcmp(3F)
control device ioctl ... ioctl(2)

configuration file ioctl.syscon system console ioctl.syscon(4)
semaphore set or shared memory id ipcrm remove a message queue, ipcrm(1)

communication facilities status ipcs report inter-process ipcs(1)
specified file descriptor is a isatty returns a 1 if isatty(2s)

Fortran system issue a shell command from system(3F)
issue a shell command system system(3S)
issue identification file issue issue(4)

issue identification file issue .. issue(4)
print news items news ... news(1)

uucp status inquiry and job control uustat uustat(1)
relational database operator join .. join(1)

generate encryption key makekey ... makekey(1) f
kill all actiVe processes killall killall(1 m)

process or a group of processes kill send a signal to a kill(2s)

November 1986 - 24 - Plexus Sys 5.21 UNIX

PERMUTED INDEX

terminate a process kill ... kill(1)
a process or a group of processes kill send a signal to kill(2)

kill all active processes killall .. killall(1m)
test your knowledge quiz quiz(6)

3-byte integers and long integers 13tol convert between 13tol(3C)
copy file systems with label checking volcopy volcopy(1 m)

pattern scanning and processing language awk awk(1)
arbitrary-precision arithmetic language be ... bc(1)

the C language preprocessor cpp cpp(1)
command programming language sh standard/restricted sh(1)

troff description of output language .. troff(S)
execute commands at a later time at .. at(1)

editor for common object files Id link ... ld(1)
of a member of an archive file ldahread read the archive header ldahread(3X)

close a common object file ldclose .. ldclose(3X)
object file access routines ldfcn common ldfcn(4)

header of a common object file ldfhread read the file ldfhread(3X)
object file symbol table entry ldgetname symbol name for common .. ldgetname(3X)

of a common object file function ldlread line number entries ldlread(3X)
a section of a common object file ldlseek line number entries of ldlseek(3X)

header of a common object file ldohseek to the optional file ldohseek(3X)
a common object file for reading ldopen open .. ldopen(3X)

a section .of a common object file ldrseek to relocation entries of ldrseek(3X)
header of a common object file ldshread indexed/named section ldshread(3X)
section of a common object file ldsseek to an indexed/named ldsseek(3X)

entry of a common object file ldtbindex of a symbol table ldtbindex(3X)
entry of a common object file ldtbread an indexed symbol table ldtbread(3X)
table of a common object file ldtbseek seek to the symbol ldtbseek(3X)
return length of Fortran string len .. len(3F)

getopt get option letter from argument vector getopt(3C)
generate programs for simple lexical tasks lex lex(1)
ordering relation for an object library lorder find lorder(1)

archives ar archive and library maintainer for portable ar(1)
bar Berkeley archive and library maintainer bar(1)

get and set user limits ulimit .. ulimit(2)
establish an out-going terminal line connection dial dial(3C)

read one line line ... line(1)
object file linenum line number entries in a common linenum(4)

object file manipulate line number entries of a common ldlread(3X)
of a common object seek to line number entries of a section ldlseek(3X)

common object strip symbol and line number information from a strip(1)
line numbering filter nl nl(1)

cut out selected fields of each line of a file cut .. cut(1)
send/cancel requests to an LP line printer Ip ... lp(1)

read one line line .. line(1)
filter reverse line-feeds col ... col(1)

linear search and update lsearch lsearch(3C)
entries in a common object file linenum line number linenum(4)

comm select or reject lines common to two sorted files comm(1)
report repeated lines in a file uniq uniq(1)

subsequent lines of merge same lines of several files or paste(1)

(
exercise link and unlink system calls link link(1 m)

information L-devices link devices, connection L-devices(4)
files Id link editor for common object ld(1)

common assembler and link editor output a.out a.out(4)

Plexus Sys 5.21 UNIX - 25 - November 1986

PERMUTED INDEX

copy, link or move files cp cp(1)
L.sys link systems ... L.sys(4)

link to a file link .. link(2)
link to a file link .. link(2)

link and unlink system calls link exercise .. link(1m)
a C program checker lint ... lint(1)

Is list contents of directories ls(S)
list contents of directory Is ls(1)

for a file system ff list file names and statistics ff(1m)
get entries from name list nlist ... nlist(3C)

print name list of common object file nm nm(1)
fsck checklist list of file systems processed by checklist(4)

handle variable argument list varargs ... varargs(5)
output of a varargs argument list vprintf print formatted vprintf(3S)

construct argument list(s) and execute command xargs xargs(1)
macref produce cross-reference listing of macro files macref(1)

index return location of Fortran substring index(3F)
1st locations in program end end(3C)

memory plock lock process, text, or data in plock(2)
log gamma function gamma gamma(3M)
log in to a new group newgrp newgrp(1)

logarithm intrinsic function log Fortran natural log(3F)
logarithm intrinsic function log10 Fortran common log10(3F)

Fortran natural logarithm intrinsic function log log(3F)
function exp exponential, logarithm, power, square root exp(3M)

process a report of logged errors errpt errpt(1 m)
configure logical disks ... dconfig(1m)

get login name getlogin getlogin(3C)
get login name logname logname(1)

get character login name of the user cuserid cuserid(3S)
return login name of user logname logname(3X)

change login password passwd passwd(1)
setting up an environment at login time profile profile(4)
setting up an environment at login time profile profile(5)

sign on login .. login(1)
get login name logname ... logname(1)

return login name of user logname ... logname(3X)
relation for an object library larder find ordering lorder(1)

run a command at low priority nice .. nice(1)
requests to an LP line printer Ip send/cancel ... lp(1)

configure the LP spooling system lpadmin ... lpadmin(1m)
resume printing lphold postpone printing, lphold(1)

scheduler and move requests lpsched the LP request lpsched(1 m)
print LP status information lpstat ... lpstat(1)

directories Is list contents of ls(8)
list contents of directory Is ... ls(1)

linear search and update lsearch ... lsearch(3C)
pointer lseek move read/write file lseek(2s)

move read/write file pointer lseek ... lseek(2)
1st locations in program end end(3C)

macro processor m4 .. m4(1)
machine-dependent values values values(5)

access long integer data in a machine-independent fashion sputl(3X)
listing of macro files macref produce cross-reference macref(1)

permuted index mptx the macro package for formatting a mptx(5)

November 1986 - 26 - Plexus Sys 5.21 UNIX

PERMUTED INDEX

documents mm the MM macro package for formatting mm(5)
mosd the OSDD adapter macro package for formatting mosd(5)

graphs mv a macro package for making view mv(7)
viewgraphs and mv a troff macro package for typesetting mv(5)

macro processor m4 m4(1)
in this manual man macros for formatting entries man(S)

send mail to users or read mail mail mail(1)
binary file for transmission via mail /encode/decode a uuencode(1c)

message processing system mailx interactive mailx(1)
main memory allocator malloc malloc(3C)

fast main memory allocator malloc malloc(3X)
regenerate groups of programs maintain, update, and make(1)

ar archive and library maintainer for portable archives ar(1)
SCCS file delta make a delta (change) to an delta(1)

make a directory mkdir mkdir(1)
or ordinary file mknod make a directory or a special mknod(2)

mknod make a special file mknod(2s)
make a unique file name mktemp mktemp(3C)
make posters banner banner(1)

generate encryption key makekey .. makekey(1)
mv a macro package for making view graphs mv(7)

main memory allocator malloc ... malloc(3C)
fast main memory allocator malloc ... malloc(3X)

tsearch manage binary search trees tsearch(3C)
manage hash search tables hsearch hsearch(3C)

a common object file function manipulate line number entries of ldlread(3X)
floating-point numbers frexp manipulate parts of frexp(3S)

print entries in this manual man ... man(1)
map of ASCII character set ascii ascii(S)

diffmk mark differences between files diffmk(1)
setfile-creation mode mask um ask .. umask(1)

set and get file creation mask um ask .. umask(2)
set and get file creation mask umask .. umask(2s)

regular expression compile and match routines regexp regexp(5)
math functions and constants math ... math(5)

error-handling function matherr ... matherr(3M)
Fortran maximum-value functions max .. max(3F)

Fortran maximum-value functions max max(3F)
generate a maze maze .. maze(6)

retum Fortran time accounting mclock .. mclock(3F)
modem mdial dial the P/75 onboard dial(1)

core memory mem ... mem(7)
read the archive header of a member of an archive file ldahread(3X)

main memory allocator malloc malloc(3C)
fast main memory allocator malloc malloc(3X)

ramdisk memory as disk ramdisk(1m)
shared memory control operations shmctl shmct1(2)

queue, semaphore set or shared memory id ipcrm remove a message ... ipcrm(1)
core memory mem .. mem(7)

memory operations memory memory(3C)
shared memory operations shmop shmop(2)

lock process, text, or data in memory plock .. plock(2)
get shared memory segment shmget shmget(2)

rram allows memory to be used as a disk rram(7)
memory operations memory .. memory(3C)

Plexus Sys 5.21 UNIX - 27 - November 1986

PERMUTED INDEX

sort and/or merge files sort .. sort(1)
files acctmerg merge or add total accounting acctmerg(1 m)

or subsequent lines of one merge same lines of several files paste(1)
permit or deny messages mesg .. mesg(1)

msgctl message control operations msgctl(2)
message operations msgop msgop(2)

interactive message processing system mailx mailx(1)
get message queue msgget msgget(2)

shared memory id remove a message queue, semaphore set or ipcrm(1)
permit or deny messages mesg mesg(1)

system error messages perror perror(3C)
Fortran minimum-value functions min ... min(3F)

two identical mirutil utility for connecting mirutil(1 m)
overview of accounting and miscellaneous accounting commands ... acct(1 m)

make a directory mkdir .. mkdir(1)
mkfs construct a file system mkfs(8)

construct a file system mkfs .. mkfs(1m)
mknod make a special file mknod(2s)

build special file mknod .. mknod(1 m)
or a special or ordinary file mknod make a directory mknod(2)

make a unique file name mktemp .. mktemp(3C)
formatted with the MM macros mm prinVcheck documents mm(1)

formatting documents mm the MM macro package for mm(5)
document compatibility checker mm lint sroff/MM nroff/MM mmlint(1)

viewgraphs, and slides mmt typeset documents, mmt(1)
mounted file system table mnttab .. mnttab(4)

remaindering intrinsic functions mod Fortran .. mod(3F)
change mode chmod ... chmod(1)

set file-creation mode mask um ask umask(1)
chmod change mode of file .. chmod(2s)

dial a Racal-Vadic 3451 modem ... dial(1)
mdial dial the P/75 onboard modem ... dial(1)

a complier/interpreter for modest-sized programs bs bs(1)
touch update access and modification times of a file touch(1)

set file access and modification times utime utime(2)
monitor uucp network uusub uusub(1m)

prepare execution profile monitor ... monitor(3C)
guessing game moo .. moo(6)

package for formatting documents mosd the OSDD adapter macro mosd(5)
mount mount a file system mount(2s)
mount mount and dismount file system mount(1m)

establish mount table setmnt setmnt(1m)
mount and dismount file system mount ... mount(1 m)

mount a file system mount ... mount(2)
mnttab mounted file system table mnttab(4)

move a directory mvdlr mvdlr(1m)
copy, link or move files cp ... cp(1)

lseek move read/Write file pointer lseek(2)
lseek move read/write file pointer lseek(2s)

the LP request scheduler and move requests lpsched start/stop lpsched(1m)
formatting a permuted Index mptx the macro package for mptx(5)
message control operations msgctl ... msgctl(2)

get message queue msgget ... msgget(2)
message operations msgop .. msgop(2)

view graphs mv a macro package for making mv(7)

November 1986 - 28 - Plexus Sys 5.21 UNIX

\

)

/

PERMUTED INDEX

typesetting viewgraphs and mv a troff macro package for mv(5)
move a directory mvdir .. mvdir(1 m)

device name devnm ... devnm(1m)
create a name for a temporary file tmpnam tmpnam(3S)

symbol table retrieve symbol name for common object file ldgetname(3X)
generate file name for terminal ctermid ctermid(3S)

get name from UID getpw getpw(3C)
return value for environment name getenv ... getenv(3C)

get login name getlogin ... getlogin(3C)
get entries from name list nlist ... nlist(3C)

nm print name list of common object file nm(1)
get login name logname .. logname(1)

make a unique file name mktemp .. mktemp(3C)
find name of a terminal ttyname ttyname(3C)
print name of current UNIX system uname(1)
get name of current UNIX system uname(2)

get the name of the terminal tty tty(1)
get character login name of the user cuserid cuserid(3S)

return login name of user logname logname(3X)
working directory name pwd .. pwd(1)
system ff list file names and statistics for a file ff(1 m)

deliver portions of path names basename basename(1)
conventional names for terminals term term(5)

generate names from i-numbers ncheck ncheck(1 m)
print user and group IDs and names id .. id(1)

function log Fortran natural logarithm intrinsic log(3F)
generate names from i-numbers ncheck ... ncheck(1 m)

Fortran nearest integer functions round round(3F)
character definitions for eqn and neqn eqnchar special eqnchar(5)
a command on the PCL network net execute ... net(1)
execute a command on the PCL network net .. net(1)

commands stat statistical network useful with graphical stat(1)
monitor uucp network uusub ... uusub(1 m)

change the format of a text file newform ... newform(1)
log in to a new group newgrp .. newgrp(1)

print news items news news(1)
process nice change priority of a nice(2s)

run a command at low priority nice ... nice(1)
change priority of a process nice ... nice(2)

line numbering filter nl ... nl(1)
get entries from name list nlist ... nlist(3C)

name list of common object file nm print ... nm(1)
immune to hangups and quits nohup run a command nohup(1)

9700 printer x9700 prepare nroff documents for the Xerox x9700(1)
nroff format or typeset text nroff(1)

tbl format tables for nroff or troff .. tbl(1)
checker mmlint sroff/MM nroff/MM document compatibility mmllnt(1)
constructs deroff remove nroff/troff, tbl, and eqn deroff(1)

the null file null ... null(?)
file linenum line number entries in a common object linenum(4)

file function manipulate line number entries of a common object ldlread(3X)
common object seek to line number entries of a section of a ldlseek(3X)

factor a number factor .. factor(1)
provide drill in number facts arithmetic arithmetic(6)

random number generator rand rand(3F)

Plexus Sys 5.21 UNIX - 29 - November 1986

PERMUTED INDEX

object strip symbol and line
report

string to double-precision
convert floating-point

line
distributed pseudo-random

parts of floating-point
access graphical and

common
dump selected parts of an

open a common
line number entries of a common

close a common
read the file header of a common
entries of a section of a common
optional file header of a common
entries of a section of a common

section header of a common
section of a common

a symbol table entry of a common
symbol table entry of a common

to the symbol table of a common
line number entries in a common

print name list of common
information for a common

section header for a common
number information from a common

retrieve symbol name for common
syms common

file header for common
directories cpset install
link editor for common

print section sizes of common
find ordering relation for an

od
text for otroff

octal dump
mdial dial the P/75

reading ldopen

duplicate an
open
open

open for reading or writing
profiler

terminal independent
memory

message control
message

semaphore control
semaphore

shared memory control
shared memory

string

November 1986

number info from a common strip(1)
number of free disk blocks df df(1 m)
number strtod convert strtod(3C)
number to string ecvt ecV1(3C)
numbering filter nl nl(1)
numbers drand48 uniformly drand48(3C)
numbers frexp manipulate frexp(3S)
numerical commands graphics graphics(1)
object file access routines ldfcn ldfcn(4)
object file dump dump(1)
object file for reading Id open ldopen(3X)
object file function ldlread ldlread(3X)
object file Id close ldclose(3X)
object file ldfhread ldfhread(3X)
object file ldlseek line number ldlseek(3X)
object file ldohseek seek to the ldohseek(3X)
object file ldrseek relocation ldrseek(3X)
object file ldshread ldshread(3X)
object file ldsseek ldsseek(3X)
object file ldtbindex index of ldtbindex(3X)
object file ldtbread an indexed ldtbread(3X)
object file ldtbseek seek ldtbseek(3X)
object file linenum linenum(4)
object file nm ... nm(1)
object file reloc relocation reloc(4)
object file scnhdr scnhdr(4)
object file strip and line strip(1)
object file symbol table entry ldgetname(3X)
object file symbol table format syms(4)
object files filehdr filehdr(4)
object files in binary cpset(1m)
object files Id ... ld(1)
object files size .. size(1)
object library larder lorder(1)
octal dump ... od(8)
ocw prepare constant-width ocw(1)
od octal dump .. od(8)
od :: od(1)
on board modem dial(1)
open a common object file for ldopen(3X)
open a stream fopen fopen(3S)
open file descriptor dup dup(2)
open for reading or writing open(2)
open for reading or writing open(2s)
open ... open(2)
operating system profiler profiler(1 m)
operation routines termlib(3c)
operations memory memory(3C)
operations msgctl msgct1(2)
operations msgop msgop(2)
operations semctt semct1(2)
operations semop semop(2)
operations shmctt shmct1(2) (
operations sh mop shmop(2)
operations string string(3C)

- 30 - Plexus Sys 5.21 UNIX

PERMUTED INDEX

relational database operator join ... join(1)
copy file systems for optimal access time dcopy dcopy(1 m)

CRT screen handling and optimization package curses curses(3X)
vector getopt get option letter from argument getopt(3C)

object file seek to the optional file header of a common ldohseek(3X)
file control options fcntl .. fcnt1(5)

set the options for a terminal stty stty(1)
parse command options getopt .. getopt(1)

library larder find ordering relation for an object lorder(1)
make a directory or a special or ordinary file mknod mknod(2)

prepare constant-width text for otroff ocw ... ocw(1)
connection dial establish an out-going terminal line dial(3C)

common assembler and link editor output a.out .. a.out(4)
tc troff output interpreter tc(1)

troff description of output language troff(5)
vprintf print formatted output of a varargs argument list ... vprintf(3S)

print formatted output printf .. printf(3S)
miscellaneous accounting overview of accounting and acct(1 m)

change owner and group of a file ch own chown(2)
change owner or group chown chown(1)

compress and expand files pack .. pack(1)
screen handling and optimization package curses CRT curses(3X)

mv a macro package for making view graphs mv(7)
system activity report package sar ... sar(1 m)

standard buffered input/output package stdio .. stdio(3S)
interprocess communication package stdipc standard stdipc(3C)

4014 terminal 4014 paginator for the TEKTRONIX 4014(1)
pp parallel port interface pp(7)

get process, process group, and parent process IDs getpid getpid(2)
parse command options getopt getopt(1)

Fortran integer part intrinsic function aint aint(3F)
deliver the last part of a file tail .. tail(1)

Fortran imaginary part of complex argument aimag aimag(3F)
dump selected parts of an object file dump dump(1)

frexp manipulate parts of floating-point numbers frexp(3S)
change login password passwd ... passwd(1)

password file passwd ... passwd(4)
get password file entry getpwent getpwent(3C)

write password file entry putpwent putpwent(3C)
password file passwd passwd(4)

read a password getpass getpass(3C)
change login password passwd passwd(1)

pwck password/group file checkers pwck(1 m)
or subsequent lines of one file paste lines of several files paste(1)

deliver portions of path names basename basename(1)
directory getcwd get path-name of current working getcwd(3C)

USER FILE UUCP pathname permissions file USERFILE(4)
search a file for a pattern grep ... grep(1)

language awk pattern scanning and processing awk(1)
suspend process until signal pause ... pause(2)

format acct per-process accounting file acct(4)
acctcms command summary from per-process accounting records acctcms(1m)

USERFILE UUCP pathname permissions file .. USERFILE(4)
permit or deny messages mesg mesg(1)
permuted index ptx ptx(1)

Plexus Sys 5.21 UNIX - 31 - November 1986

PERMUTED INDEX

macro package for formatting a permuted index mptx the mptx(5)
system error messages perror ... perror(3C)

terminals pg file perusal filter for soft-copy pg(1)
drawing simple pictures pie troff preprocessor for pic(1)

preprocessor for drawing simple pictures pie troff pic(1)
split a file into pieces split ... split(1)

initiate pipe to/from a process po pen popen(3S)
create an interprocess channel pipe ... pipe(2)

process, text, or data in memory plock lock ... plock(2)
graphics interface subroutines plot .. plot(3X)

graphics interface plot ,, .. plot(4)
reposition a file pointer in a stream fseek fseek(3S)

move read/write file pointer lseek ... lseek(2)
lseek move read/write file pointer .. lseek(2s)
the current value of a file pointer tell report te11(2s)

initiate pipe to/from a process popen ... popen(3S)
pp parallel port interface .. pp(7)

data base of terminal types by port ttytype ... ttytype(5)
and library maintainer for portable archives ar archive ar(1)

deliver portions of path names basename basename(1)
number on a tape srcheof position to a specific file srcheof(2s)

functions dim positive difference intrinsic dim(3F)
make posters banner .. banner(1)

printing lphold postpone printing, resume lphold(1)
exponential, logarithm, power. square root function exp exp(3M)

pp parallel port interface pp(7)
print files pr .. pr(1)

function dprod double precision product intrinsic dprod(3F)
monitor prepare execution profile monitor(3C)

Xerox 9700 printer x9700 prepare nroff documents for the x9700(1)
Xerox 9700 printer dx9700 prepare troff documents for the dx9700(1)

the C language preprocessor cpp cpp(1)
pictures pie troff preprocessor for drawing simple pic(1)

unget undo a previous get of an SCCS file unget(1)
graphical files gps graphical primitive string, format of gps(4)

types primitive system data types types(5)
lpstat print LP status information lpstat(1)

print an SCCS file prs prs(1)
print and set the date date date(1)
print calendar cal cal(1)

of a file sum print checksum and block count sum(1)
activity sact print current SCCS file editing sact(1)

man print entries in this manual man(1)
concatenate and print files cat .. cat(1)

print files pr .. pr(1)
cat concatenate and print files ... cat(8)

varargs argument list vprintf print formatted output of a vprintf(3S)
print formatted output printf printf(3S)

file nm print name list of common object nm(1)
system uname print name of current UNIX uname(1)

print news items news news(1)
acctcom search and print process accounting file(s) acctcom(1)

topq prioritize print queue ... topq(1 m) (
object files size print section sizes of common size(1)

names id print user and group IDs and id(1)

November 1986 - 32 - Plexus Sys 5.21 UNIX

PERMUTED INDEX

with the MM macros mm print/check documents formatted mm(1)
requests to an LP line printer Ip send/cancel lp(1)

documents for the Xerox 9700 printer prepare nroff x9700(1)
documents for the Xerox 9700 printer prepare troff dx9700(1)

enable/disable LP printers enable ... enable(1)
print formatted output printf ... printf(3S)

postpone printing, resume printing ... lphold(1)
topq prioritize print queue topq(1 m)

run a command at low priority nice .. nice(1)
change priority of a process nice nice(2)

nice change priority of a process nice(2s)
faster file system checking procedure checkall checkall(1 m)

getpid get process ID .. getpid(2s)
process group. and parent process IDs getpid get process, getpid(2)

errpt process a report of logged errors errpt(1 m)
errors errpt process a report of logged errpt(1 m)

enable or disable process accounting acct acct(2)
acctcom search and print process accounting file(s) acctcom(1)

set a process alarm clock alarm alarm (2)
get process and child process times times(2)
init process control initialization init(1m)

tlmex time a command; report process data and system activity timex(1)
terminate process exit ... exit(2)

create a new process fork ... fork(2)
set process group ID setpgrp setpgrp(2)

IDs getpid get process, process group, and parent process getpid(2)
script for the lnit process inittab ... inittab(4)

terminate a process kill ... kill(1)
change priority of a process nice .. nice(2)

kill send a signal to a process or a group of processes kill(2)
initiate pipe to/from a process popen ... popen(3S)

report process status ps ps(1)
get process and child process times .. times(2)

wait for child process to stop or terminate wait wait(2)
process trace ptrace " ptrace(2)

suspend process until signal pause pause(2)
await completion of process wait , walt(1)

exit terminate process .. exit(2s)
nice change priority of a process .. nice(2s)

parent process IDs getpid get process, process group, and getpid(2)
plock lock process, text, or data in memory plock(2)

list of file systems processed by fsck checklist checklist(4)
signal to a process or a group of processes kill send a kill(2)

kill all active processes killall killall(1 m)
structure fuser identify processes using a file or file fuser(1 m)

pattern scanning and processing language awk awk(1)
terminate all processing shutdown shutdown(1 m)

interactive message processing system mailx mailx(1)
macro processor m4 ... m4(1)

double precision product intrinsic function dprod dprod(3F)
display profile data prof ... prof(1)

('
profile within a function prof .. prof(S)

execution time profile profil .. profil(2)
display profile data prof .. prof(1)

prepare execution profile monitor .. monitor(3C)

Plexus Sys 5.21 UNIX - 33 - November 1986

PERMUTED INDEX

execution time profile profil ... profil(2)
environment at login time profile setting up an profile(5)

profile within a function prof prof(5)
up an environment at login time profile setting ... profile(4)

disk access profiler sadp .. sadp(1m)
operating system profiler profiler .. profiler(1 m)

terminate Fortran program abort .. abort(3F)
verify program assertion assert assert(3X)

C program beautifier cb cb(1)
a C program checker lint lint(1)

generate C program cross-reference cxref cxref(1)
C program debugger ctrace ctrace(1)

1st locations in program end .. end(3C)
for getargv display a program name and get arguments getargv(2s)

side-by-side difference program sdiff .. sdiff(1)
conversion program units ... units(1)

the standard/restricted command programming language sh shell, sh(1)
for modest-sized programs bs compiler/interpreter bs(1)

lex generate programs for simple lexical tasks lex(1)
update, and regenerate groups of programs make maintain, make(1)

arithmetic provide drill in number facts arithmetic(6)
provide truth values true true(1)

print an SCCS file prs .. prs(1)
report process status ps .. ps(1)

generate uniformly distributed pseudo-random numbers drand48 drand48(3C)
pt IMSP cartridge controller pt(7)

process trace ptrace ... ptrace(2)
permuted index ptx ... ptx(1)

copy uuto public UNIX-to-UNIX system file uuto(1)
stream ungetc push character back into input ungetc(3S)

put a string on a stream puts puts(3S)
stream putc put character or word on a putc(3S)

or add value to environment putenv change putenv(3C)
write password file entry putpwent ... putpwent(3C)
put a string on a stream puts ... puts(3S)

password/group file checkers pwck ... pwck(1 m)
working directory name pwd ... pwd(1)

quicker sort qsort ... qsort(3C)
query terminfo database tput tput(1)

get message queue msgget ... msgget(2)
topq prioritize print queue ... topq(1 m)

memory id remove a message queue, semaphore set or shared ipcrm(1)
quicker sort qsort qsort(3C)

a command immune to hangups and quits nohup run nohup(1)
test your knowledge quiz ... quiz(6)

ramdisk memory as disk ramdisk(1 m)
simple random-number generator rand .. rand(3C)

random number generator rand .. rand(3F)
simple random-number generator rand rand(3C)

rational Fortran dialect ratfor ... ratfor(1)
split ITT, ratfor, or efl files fsplit fsplit(1)

rational Fortran dialect ratfor ratfor(1)
read a password getpass getpass(3C) (

entry of a common object file read an indexed symbol table ldtbread(3X)
header of a common object file read an indexed/named section ldshread(3X)

November 1986 - 34 - Plexus Sys 5.21 UNIX

PERMUTED INDEX

read from file read read(2)
read read from file ... read(2s)

send mail to users or read mail mail .. mail(1)
read one line line line(1)

member of an archive file read the archive header of a ldahread(3X)
object file ldfhread read the file header of a common ldfhread(3X)

read from file read .. read(2)
move read/write file pointer lseek lseek(2)

lseek move read/write file pointer lseek(2s)
open a common object file for reading ldopen ldopen(3X)

open for reading or writing open open(2)
open open for reading or writing open(2s)

get real and effective user, and real and effective group ID getuid(2s)
get real and effective user, real and effective group ID's getuid(2)
get real and errective user, real and effective group, getuid(2)

real effective group get real and effective user, getuid(2)
specify what to do upon receipt of a signal signal(2)

specify Fortran action on receipt of a system signal signal(3F)
from per-process accounting records acctcms command summary ... acctcms(1 m)

extract error records from dump errdead errdead(1 m)
tape free recover files from a backup frec(1 m)

regular expression compile regcmp .. regcmp(1)
and execute regular expression regcmp compile regcmp(3X)

make maintain, update, and regenerate groups of programs make(1)
compile and match routines regexp regular expression regexp(5)

match routines regexp regular expression compile and regexp(5)
regular expression com pile regcm p regcm p(1)

regcmp regular expression compile regcmp(1)
compile and execute regular expression regcmp regcmp(3X)
files comm select or reject lines common to two sorted comm(1)
lord er find ordering relation for an object library larder(1)

join relational database operator join(1)
for a common object file reloc relocation information reloc(4)

of a common object seek to relocation entries of a section ldrseek(3X)
common object file reloc relocation information for a reloc(4)

functions floor, ceiling, remainder, absolute value floor(3M)
mod Fortran remaindering intrinsic functions mod(3F)

reminder service calendar calendar(1)
uuxqt execute remote command requests uuxqt(1 m)

L.cmds remote execution commands L.crnds(4)
spawn getty to a remote terminal ct ct(1)

file rmdel remove a delta from an secs rmdel(1)
semaphore set or shared memory remove a message queue, ipcrm(1)

remove directory entry unlink unlink(2)
remove files or directories rm rm(1)

constructs deroff remove nroff/troff, tbl, and eqn deroff(1)
consistency check and interactive repair fsck file system fsck(1 m)
consistency check and interactive repair fsck file system fsck(B)

report repeated lines in a file uniq uniq(1)
report CPU time used clock clock(3C)

communication facilities report inter-process ipcs(1)

(blocks df report number of free disk df(1 m)
process a report of logged errors errpt errpt(1 m)

system activity report package sar sar(1m)
activity timex time a command; report process data and system timex(1)

Plexus Sys 5.21 UNIX - 35 - November 1986

PERMUTED INDEX

report process status ps ps(1)
uniq report repeated lines in a file uniq(1)

system activity report sail .. sail(1)
stream fseek reposition a file pointer in a fseek(3S)

requests start/stop the LP request scheduler and move lpsched(1 m)
send/cancel requests to an LP line printer Ip lp(1)

uuxqt execute remote command requests ... uuxqt(1 m)
restore restor incremental file system restor(8)

incremental file system restore .. restor(1m)
lphold postpone printing, resume printing .. lphold(1)

object file symbol table entry retrieve symbol name for common ldgetname(3X)
argument getarc return Fortran command-line getarc(3F)
variable getenv return Fortran environment getenv(3F)

mclock return Fortran time accounting mclock(3F)
abs return integer absolute value abs(3C)
len return length of Fortran string len(3F)

substring index return location of Fortran index(3F)
log name return login name of user logname(3X)

name getenv return value for environment getenv(3C)
data returned by stat system call stat stat(5)
filter reverse line-feeds col col(1)

create a new file or rewrite an existing one creat creat(2)
drive rm Cipher Microstreamer tape rm(7)

remove files or directories rm ... rm(1)
remove a delta from an SCCS file rmdel .. rmdel(1)

change root directory chroot chroot(2)
chroot change root directory for a command chroot(1m)

logarithm, power. square root function exp exponential exp(3M)
Fortran square root intrinsic function sqrt sqrt(3F)

Fortran nearest integer functions round .. round(3F)
graphical device routines and filters gdev gdev(1)

common object file access routines ldfcn .. ldfcn(4)
expression compile and match routines regexp regular regexp(5)

graphical table of contents routines toe .. toc(1)
float and double routines .. float(2s)

as a disk rram allows memory to be used rram(7)
nice run a command at low priority nice(1)

and quits nohup run comm immune to hngup nohup(1)
run daily accounting runacct ... runacct(1 m)

SCCS file editing activity sact print current sact(1)
disk access profiler sadp .. sadp(1m)

system activity graph sag .. sag(1)
system activity report sail ... sail(1)

system activity report package sar .. sar(1m)
convert formatted input scant .. scanf(3S)

big file scanner bfs .. bfs(1)
awk pattern scanning and processing language awk(1)

programs sec C compiler for stand-alone scc(1)
two versions of an SCCS file sccsdiff compare sccsdiff(1)

format of SCCS file sccsfile ... sccsfile(4)
start/stop the LP request scheduler and move requests lpsched(1m)

header for a common object file scnhdr section .. scnhdr(4)
package curses CRT screen handling and optimization curses(3X) (
editor based on ex vi screen-oriented (visual) display vi(1)

inittab script for the init process inittab(4)

November 1986 - 36 - Plexus Sys 5.21 UNIX

PERMUTED INDEX

system initialization shell scripts brc .. brc(1m)
side-by-side difference program sdiff ... sdiff(1)

grep search a file for a pattern grep(1)
binary search a sorted table bsearch bsearch(3C)

accounting file(s) acctcom search and print process acctcom(1)
linear search and update lsearch lsearch(3C)

manage hash search tables hsearch hsearch(3C)
manage binary search trees !search tsearch(3C)

object file scnhdr section header for a common scnhdr(4)
file read an indexed/named section header of a common object ldshread(3X)

seek to line number entries of a section of a common object file ldlseek(3X)
seek to relocation entries of a section of a common object file ldrseek(3X)

seek to an indexed/named section of a common object file ldsseek(3X)
files size print section sizes of common object size(1)
stream editor sed ... sed(1)

section of a common object seek to line number entries of a ldlseek(3X)
section of a common object file seek to relocation entries of a ldrseek(3X)

of a common object file seek to the optional file header ldohseek(3X)
common object file ldtbseek seek to the symbol table of a ldtbseek(3X)

get shared memory segment shmget shmget(2)
change data segment space allocation brk brk(2)

brk change data segment space allocation brk(2s)
to two sorted files comm select or reject lines common comm(1)

select terminal filter greek" greek(1)
file cut cut out selected fields of each line of a cut(1)

dump dump selected parts of an object file dump(1)
semctl semaphore control operations semct1(2)

semaphore operations semop semop(2)
ipcrm remove a message queue, semaphore set or shared memory id ipcrm(1)

get set of semaphores semget semget(2)
semaphore control operations semctl ... semct1(2)

get set of semaphores semget ... semget(2)
semaphore operations semop .. semop(2)
group of processes kill send a signal to a process or a kill(2)

a group of processes kill send a signal to a process or kill(2s)
mail send mail to users or read mail mail(1)

line printer Ip send/cancel requests to an LP lp(1)
reminder service calendar calendar(1)

set a process alarm clock alarm alarm(2)
umask set and get file creation mask umask(2)
umask set and get file creation mask umask(2s)

map of ASCII character set ascii .. ascii(5)
execution env set environment for command env(1)

modification times utime set file access and utime(2)
umask set file-creation mode mask umask(1)

get set of semaphores semget semget(2)
remove a message queue, semaphore set or shared memory id ipcrm ipcrm(1)

set process group ID setpgrp setpgrp(2)
set tabs on a terminal tabs tabs(1)

stty set terminal characteristics stty(2s)
print and set the date date date(1)

stty set the options for a terminal stty(1)
set time stime .. stime(2)

stime set time .. stime(2s)
set user and group IDs setuid setuid(2)

Plexus Sys 5.21 UNIX - 37 - November 1986

PERMUTED INDEX

get and set user limits ulimit ulimit(2)
assign buffering to a stream setbuf ... setbuf(3S)

establish mount table setmnt .. setmnt(1 m)
set process group ID setpgrp .. setpgrp(2)

login time profile setting up an environment at profile(4)
login time profile setting up an environment at profile(5)

speed and terminal settings used by getty gettydefs gettydefs(4)
set user and group IDs setuid .. setuid(2)

of one merge same lines of several files or subsequent lines paste(1)
command programming language sh the standard/restricted sh(1)

shmctl shared memory control operations shmct1(2)
a message queue, semaphore set or shared memory id ipcrm remove ipcrm(1)

shared memory operations shmop shmop(2)
get shared memory segment shmget shmget(2)

issue a shell command from Fortran sys system(3F)
issue a shell command system system(3S)

system initialization shell scripts brc .. brc(1m)
command programming language sh shell, the standard/restricted sh(1)

shared memory control operations shmctl ... shmctl(2)
get shared memory segment shmget .. shmget(2)

shared memory operations shmop .. shmop(2)
terminate all processing shutdown .. shutdown(1m)

sdiff side-by-side difference program sdiff(1)
sign on login ... login(1)

intrinsic function sign Fortran transfer-of-sign sign(3F)
suspend process until signal pause .. pause(2)
processes kill send a signal to a process or a group of kill(2)
processes kill send a signal to a process or a group of kill(2s)

on receipt of a system signal signal specify Fortran action signal(3F)
to do upon receipt of a signal signal specify what signal(2)

software signals ssignal .. ssignal(3C)
generate programs for simple lexical tasks lex lex(1)

troff preprocessor for drawing simple pictures pie pic(1)
rand simple random-number generator rand(3C)

Fortran sine intrinsic function sin sin(3F)
Fortran hyperbolic sine intrinsic function sinh sinh(3F)

hyperbolic functions sinh ... sinh(3M)
sine intrinsic function sinh Fortran hyperbolic sinh(3F)

print section sizes of common object files size size(1)
interval sleep suspend execution for sleep(2s)

suspend execution for an interval sleep ... sleep(1)
suspend execution for interval sleep ... sleep(3C)
for typesetting viewgraphs and slides a troff macro package mv(5)

documents, viewgraphs, and slides mmt typeset mmt(1)
current user ttyslot find the slot in the utmp file of the ttyslot(3C)

interpolate smooth curve spline spline(1)
SNOBOL interpreter sno .. sno(1)
file perusal filter for soft-copy terminals pg pg(1)

software signals ssignal ssignal(3C)
sort and/or merge files sort sort(1)

quicker sort qsort .. qsort(3C)
topological sort tsort ... tsort(1)

or reject lines common to two sorted files comm select comm(1)
binary search a sorted table bsearch bsearch(3C)

change data segment space allocation brk brk(2)

November 1986 - 38 - Plexus Sys 5.21 UNIX

PERMUTED INDEX

b'rk change data segment space allocation brk(2s)
terminal ct spawn getty to a remote ct(1)

for eqn and neqn eqnchar special character definitions eqnchar(5)
build special file mknod mknod(1 m)

create a new special file .. creat(2s)
mknod make a special file ... mknod(2s)

300s terminals 300 handle special functions of DASI 300 and 300(1)
2621-series terminals handle special functions of HP 2640 and hp(1)

terminal 450 handle special functions of the DASI 450 450(1)
make a directory or a special or ordinary file mknod mknod(2)

format specification in text files fspec fspec(4)
isatty returns a 1 if specified file descriptor is a isatty(2s)

of a system signal signal specify Fortran action on receipt signal(3F)
of a signal signal specify what to do upon receipt signal(2)

by getty gettydefs speed and terminal settings used gettydefs(4)
find spelling errors spell spell(1)

interpolate smooth curve spline .. spline(1)
split a file into pieces split split(1)

context split csplit .. csplit(1)
fsplit split f77, ratfor, or efl files fsplit(1)
uucp spool directory clean-up uuclean uuclean(1 m)

configure the LP spooling system lpadmin lpadmin(1 m)
in a machine-independent fashion. sputl access long integer data sput1(3X)

square root intrinsic function sqrt Fortran ... sqrt(3F)
exponential, logarithm, power, square root function exp exp(3M)

sqrt Fortran square root intrinsic function sqrt(3F)
file number on a tape srcheof position to a specific srcheof(2s)

sroff format text sroff(1)
compatibility checker mm lint sroff/MM nroff1MM document mmlint(1)

software signals ssignal .. ssigna1(3C)
sec C compiler for stand-alone programs scc(1)

package stdio standard buffered input/output stdio(3S)
communication package stdipc standard interprocess stdipc(3C)

programming shell, the standard/restricted command sh(1)
scheduler and move requests start/stop the LP request lpsched(1 m)

stat get file status stat(2s)
data returned by stat system call stat stat(5)

get file status stat .. stat(2)
data returned by stat system call stat .. stat(5)
useful with graphical commands stat statistical network stat(1)

graphical commands stat statistical network useful with stat(1)
list file names and statistics for a file system ff ff(1 m)

get file system statistics ustat ... ustat(2)
ustat get file system statistics ... ustat(2s)

print LP status information lpstat lpstat(1)
stream status inquiries ferror ferror(3S)

uustat uucp status inquiry and job control uustat(1)
communication facilities status ipcs report inter-process ipcs(1)

System control and status program sys(1m)
report process status ps .. ps(1)

get file status stat .. stat(2)
stat get file status ... stat(2s)

buffered input/output package stdio standard ... stdio(3S)
communication package stdipc standard interprocess stdipc(3C)

stime set time .. stime(2s)

Plexus Sys 5.21 UNIX - 39 - November 1986

PERMUTED INDEX

set time stime ... stime(2)
wait for child process to stop or terminate wait wait(2)

comparision intrinsic functions strcmp string ... strcmp(3F)
stream editor sed sed(1)

close or flush a stream fciose ... fclose(3S)
open a stream !open .. fopen(3S)

reposition a file pointer in a stream !seek .. fseek(3S)
get character or word from a stream getc .. getc(3S)

get a string from a stream gets .. gets(3S)
put character or word on a stream putc .. putc(3S)

put a string on a stream puts .. puts(3S)
assign buffering to a stream setbuf .. setbuf(3S)

stream status inquiries ferror ferror(3S)
push character back into input stream ungetc ... ungetc(3S)

ft IMSP streaming cartridge controller ft(7)
long integer and base-64 ASCII string a641 convert between a641(3C)

functions strcmp string comparision intrinsic strcmp(3F)
convert date and time to string ctime ... ctime(3C)

convert floating-point number to string ecvt ... ecvt(3C)
get a string from a stream gets gets(3S)

return length of Fortran string !en .. len(3F)
put a string on a stream puts puts(3S)

string operations string string(3C)
strtod convert string to double-precision number strtod(3C)

convert string to integer strtol strtol(3C)
string operations string .. string(3C)

gps graphical primitive string, format of graphical files gps(4)
information from a common strip symbol and line number strip(1)

from a common object file strip line number information strip(1)
string to double-precision number strtod convert .. strtod(3C)

convert string to integer strtol ... strtol(3C)
processes using a file or file structure fuser identify fuser(1 m)

characteristics stty set terminal stty(2s)
set the options for a terminal stty .. stty(1)

become super-user or another user su ... su(1)
graphics interface subroutines plot plot(3X)

same lines of several files or subsequent lines of one file paste(1)
return location of Fortran substring index .. index(3F)
and block count of a file sum print checksum sum(1)

summarize disk usage du du(1)
du summarize disk usage du(B)

accounting records command summary from per-process acctcms(1 m)
update the super block sync sync(1)

update super-block sync sync(2)
become super-user or another user su su(1)

document analyze surface characteristics of a style(1)
interval sleep suspend execution for an sleep(1)

sleep suspend execution for interval sleep(2s)
sleep suspend execution for interval sleep(3C)

pause suspend process until signal pause(2)
swap bytes swab ... swab(3C)

information from a strip symbol and line number : strip(1) (
file symbol table retrieve symbol name for common obiect ldgetname(3X)·

name for common object file symbol table entry ldgetname ldgetname(3X)
object compute the index of a symbol table entry of a common ldtbindex(3X)

November 1986 - 40 - Plexus Sys 5.21 UNIX

PERMUTED INDEX

object file read an indexed symbol table entry of a common ldtbread(3X)
common object file symbol table format syms syms(4)

file ldtbseek seek to the symbol table of a common object ldtbseek(3X)
object file symbol table format syms common .. syms(4)

update the super block sync ... sync(1)
update super-block sync ... sync(2)

system activity graph sag sag(1)
sar system activity report package sar(1 m)

system activity report sail sail(1)
command; report process data and system activity timex time a timex(1)

daily/weekly UNIX system file system backup file save filesave(1 m)
data returned by stat system call stat stat(5)

exercise link and unlink system calls link link(1m)
checkall faster file system checking procedure checkall(1 m)

UNIX-to-UNIX system command execution uux uux(1)
interactive repair fsck file system consistency check and fsck(1 m)
interactive repair fsck file system consistency check and fsck(8)

file ioctl.syscon system console configuration ioctl.syscon(4)
UNIX system to UNIX system copy uucp uucp(1)
what to do when the system crashes crash crash(8)

call another UNIX system cu .. cu(1)
primitive system data types types types(5)

file system debugger fsdb fsdb(1 m)
fsdb file system debugger fsdb(8)

system error messages perror perror(3C)
names and statistics for a file system ff list file ff(1 m)

public UNIX-to-UNIX system file copy uuto uuto(1)
filesave daily/weekly UNIX system file system backup filesave(1 m)

examine system images crash crash(1 m)
scripts brc system initialization shell brc(1 m)

configure the LP spooling system lpadmin lpadmin(1 m)
interactive message processing system mailx .. mailx(1)

construct a file system mkfs .. mkfs(1 m)
mount and dismount file system mount .. mount(1 m)

mount a file system mount .. mount(2)
operating system profiler profiler profiler(1 m)

incremental file system restore ... restor(1 m)
Fortran action on receipt of a system signal signal specify signal(3F)

get file system statistics ustat ustat(2)
ustat get file system statistics ustat(2s)
mounted file system table mnttab mnttab(4)

UNIX system to UNIX system copy uucp uucp(1)
unmount a file system umount umount(2)

print name of current UNIX system uname ... uname(1)
get name of current UNIX system uname .. uname(2)

format of system volume fs fs(4)
who is on the system who ... who(1)

mount a file system .. mount(2s)
issue a shell command system .. system(3S)

a shell command from Fortran system issue ... system(3F)

(
dcopy copy file systems for optimal access time dcopy(1 m)

checklist list of file systems processed by fsck checklist(4)
volcopy copy file systems with label checking volcopy(1 m)

binary search a sorted table bsearch ... bsearch(3C)
for common object file symbol table entry ldgetname name ldgetname(3X)

Plexus Sys 5.21 UNIX - 41 - November 1986

PERMUTED INDEX

compute the index of a symbol table entry of a common object ldtbindex(3X)
file read an indexed symbol table entry of a common object ldtbread(3X)

common object file symbol table format syms syms(4)
mounted file system table mnttab ... mnttab(4)

ldtbseek seek to the symbol table of a common object file ldtbseek(3X)
graphical table of contents routines toe toc(1)

establish mount table setmnt ... setmnt(1m)
tbl format tables for nroff or troff tbl(1)

manage hash search tables hsearch ... hsearch(3C)
set tabs on a terminal tabs .. tabs(1)

deliver the last part of a file tail ... tail(1)
Fortran tangent intrinsic function tan tan(3F)

tangent intrinsic function tanh Fortran hyperbolic tanh(3F)
fbackup make a fast tape backup of a file system fbackup(1 m)
fbackup make a fast tape backup of a file system fbackup(S)

rm Cipher Microstreamer tape drive ... rm(?)
tape file archiver tar tar(1)

dump incremental dump tape format ... dump(4)
recover files from a backup tape free ... frec(1 m)

tape file archiver tar ... tar(1)
programs for simple lexical tasks lex generate lex(1)

troff tbl format tables for nroff or tbl(1)
deroff remove nroff/troff, tbl, and eqn constructs deroff(1)

tc troff output interpreter tc(1)
of a file pointer tell report the current value tell(2s)

create a temporary file tmpfile tmpfile(3S)
create a name for a temporary file tmpnam tmpnam(3S)

format of compiled term file. term .. term(4)
conventional names for terminals term .. term(5)

data base termcap terminal capability termcap(4)
paginator for the TEKTRONIX 4014 terminal 4014 ... 4014(1)

special functions of the DASI 450 terminal 450 handle 450(1)
EOT on the other terminal and exits. write write(1)

termcap terminal capability data base termcap(4)
terminfo terminal capability data base terminfo(4)
gtty get terminal characterisitcs gtty(2s)
stty set terminal characteristics stty(2s)

spawn getty to a remote terminal ct .. ct(1)
generate file name for terminal ctermid ctermid(3S)

select terminal filter greek greek(1)
routines termlib terminal independent operation termlib(3c)

controlling terminal interface tty tty(?)
tty general terminal interface tty(?)

establish an out-going terminal line connection dial dial(3C)
gettydefs speed and terminal settings used by getty gettydefs(4)
set the options for a terminal stty ... stty(1)

set tabs on a terminal tabs .. tabs(1)
get the name of the terminal tty ... tty(1)

find name of a terminal ttyname ttyname(3C)
ttytype data base of terminal types by port ttytype(5)

functions of DASI 300 and 300s terminals 300 handle special 300(1)
of HP 2640 and 2621-series terminals hp special functions hp(1)
file perusal filter for soft-copy terminals pg ... pg(1)

conventional names for terminals term .. term(5)
terminate Fortran program abort abort(3F)

November 1986 - 42 - Plexus Sys 5.21 UNIX

\
!

\
/

)

PERMUTED INDEX

0 terminate a process kill kill(1)
shutdown terminate all processing shutdown(1 m)

terminate process exit exit(2)
exit terminate process exit(2s)

daemon errstop terminate the error-logging errstop(1 m)
wait for child process to stop or terminate wait .. wait(2)

term info compiler tic tic(1 m)
query term info database tput tput(1)

terminal capability data base term info ... terminfo(4)
operation routines term lib terminal independent termlib(3c)

command test condition evaluation test(1)
test your knowledge quiz quiz(6)

condition evaluation command test ... test(1)
text editor ed ... ed(1)
text editor ex .. ex(1)

casual users edit text editor variant of ex for edit(1)
change the format of a text file newform newform(1)

format specification in text files fspec .. fspec(4)
eqn format mathematical text for nroff or troff eqn(1)

ocw prepare constant-width text for otroff .. ocw(1)
troff text formatting and typesetting troff(1)

nroff format or typeset text ... nroff(1)
sroff format text ... sroff(1)

lock process, text, or data in memory plock plock(2)
the C language preprocessor cpp cpp(1)
the game of backgammon back back(6)
the game of black jack bj bj(6)
the game of craps craps craps(6)

wump the game of hunt-the-wumpus wump(6)
the null file null null(7)

terminfo compiler tic .. tic(1m)
time a command time time(1)

data and system activity timex time a command; report process timex(1)
update access and modification times of a file touch touch(1)
set file access and modification times utime .. utime(2)

get process and child process times ... times(2)
process data and system activity timex time a command; report timex(1)

create a temporary file tmpfile ... tmpfile(3S)
a name for a temporary file tmpnam create .. tmpnam(3S)

initiate pipe to/from a process popen popen(3S)
table of contents routines toe graphical .. toc(1)

topological sort tsort tsort(1)
topq prioritize print queue topq(1 m)

merge or add total accounting files acctmerg acctmerg(1 m)
and modification times of a file touch update access touch(1)

graphics filters tplot ... tplot(1)
query term info database tput ... tput(1)

translate characters tr ... tr(1)
process trace ptrace .. ptrace(2)

function sign Fortran transfer-of-sign intrinsic sign(3F)
translate characters conv conv(3C)
translate characters tr tr(1)

system uucico file transport program for the uucp uucico(1 m)
walk a file tree ftw ... ftw(3C)

manage binary search trees tsearch .. tsearch(3C)

Plexus Sys 5.21 UNIX - 43 - November 1986

PERMUTED INDEX

trigonometric functions trig .. trig(3M)
language troff description of output troff(5)

9700 printer dx9700 prepare troff documents for the Xerox dx9700(1)
typesetting viewgraphs mv a troff macro package for mv(5)

tc troff output interpreter tc(1)
simple pictures pie troff preprocessor for drawing pic(1)

typesetting troff text formatting and troff(1)
tbl format tables for nroff or troff '" tbl(1)

mathematical text for nroff or troff eqn format eqn(1)
files for device-independent troff font description font(5)

provide truth values true ... true(1)
provide truth values true true(1)

manage binary search trees tsearch ... tsearch(3C)
topological sort tsort .. tsort(1)

tty general terminal interface tty(7)
get the name of the terminal tty ... tty(1)
controlling terminal interface tty ... tty(?)

find name of a terminal ttyname .. ttyname(3C)
the utmp file of the current user ttyslot find the slot in ttyslot(3C)

types by port ttytype data base of terminal ttytype(5)
explicit Fortran type conversion flype ftype(3F)
determine file type file .. file(1)

primitive system data types types ... types(5)
and slides mmt typeset documents, viewgraphs, mmt(1)

nroff format or typeset text .. nroff(1)
mv a troff macro package for typesetting viewgraphs and slides mv(5)

troff text formatting and typesetting .. troff(1)
get and set user limits ulimit ... ulimit(2)

creation mask umask set and get file umask(2s)
set file-creation mode mask um ask .. umask(1)

umount unmount a file system umount(2s)
unmount a file system umount ... umount(2)

print name of current UNIX system uname .. uname(1)
get name of current UNIX system uname .. uname(2)

file unget undo a previous get of an SCCS unget(1)
a previous get of an secs file unget undo .. unget(1)

character back into input stream ungetc push .. ungetc(3S)
pseudo-random numbers generate uniformly distributed drand48(3C)

report repeated lines in a file uniq .. uniq(1)
make a unique file name mktemp mktemp(3C)

conversion program units .. units(1)
exercise link and unlink system calls link link(1 m)

remove directory entry unlink .. unlink(2)
unmount a file system umount umount(2)

umount unmount a file system umount(2s)
suspend process until signal pause pause(2)

times of a file touch update access and modification touch(1)
linear search and update lsearch ... lsearch(3C)

update super-block sync sync(2)
update the super block sync sync(1)

programs make maintain, update, and regenerate groups of make(1)
specify what to do upon receipt of a signal signal signal(2)

summarize disk usage du .. du(1)
du summarize disk usage ... du(B)

stat statistical network useful with graphical commands stat(1)

November 1986 - 44 - Plexus Sys 5.21 UNIX

PERMUTED INDEX

generate disk accounting data by user ID diskusg diskusg diskusg(1m)
print user and group IDs and names id id(1)
set user and group IDs setuid setuid(2)

user crontab file crontab crontab(1)
get character login name of the user cuserid .. cuserid(3S)

user environment environ environ(5)
get and set user limits ulimit ulimit(2)

return login name of user log name logname(3X)
become super-user or another user su su(1)

in the utmp file of the current user ttyslot find the slot ttyslot(3C)
getuid get real and effective user, and real and effective getuid(2s)
and effective group get real user, effective user, real group, getuid(2)

group get real and effective, user, real and effective getuid(2)
group get real user, effective user, real group, and effective getuid(2)

send mail to users or read mail mail mail(1)
write to all users wall wall(1 m)

editor (variant of ex for casual users) edit text .. edit(1)
fuser identify processes using a file or file structure fuser(1 m)

statistics ustat get file system ustat(2s)
get file system statistics ustat ... ustat(2)

graphical utilities gutil .. gutil(1)
identical mirutil utility for connecting two miruti1(1 m)

access and modification times utime set tile .. utime(2)
utmp utmp and wtmp entry formats utmp(4)

access utmp file entry getut getut(3C)
ttyslot find the slot in the utmp file of the current user ttyslot(3C)

for the uucp system uucico file transport program uucico(1 m)
uucp spool directory clean-up uuclean .. uuclean(1 m)

monitor uucp network uusub uusub(1 m)
(

uuclean uucp spool directory clean-up uuclean(1m)
control uustat uucp status inquiry and job uustat(1)

file transport program for the uucp system uucico uucico(1m)
UNIX system to UNIX system copy uucp ... uucp(1)

encode/decode a binary file for/ uuencode,µudecode uuencode(1c)
status inquiry and job control uustat uucp ... uustat(1)

monitor uucp network uusub .. uusub(1 m)
UNIX-to-UNIX system file copy uuto public .. uuto(1)

system command execution uux UNIX-to-UNIX uux(1)
requests uuxqt execute remote command uuxqt(1 m)

validate secs file val ... val(1)
validate SCCS file val val(1)

return integer absolute value abs ... abs(3C)
Fortran absolute value abs ... abs(3F)

return value for environment name getenv getenv(3C)
ceiling, remainder, absolute value functions floor floor, floor(3M)

tell report the current value of a file pointer te11(2s)
change or add value to environment putenv putenv(3C)

provide truth values true ... true(1)
machine-dependent values values .. values(5)

machine-dependent values values ... values(5)
print formatted output of a varargs argument list vprintf vprintf(3S)

(
handle variable argument list varargs ... varargs(5)

handle variable argument listvarargs varargs(5)
return Fortran environment variable getenv .. getenv(3F)

version control vc .. vc(1)

Plexus Sys 5.21 UNIX - 45 - November 1986

PERMUTED INDEX

get option letter from argument vector getopt .. getopt(3C)
verify program assertion assert assert(3X)
version control vc vc(1)

get a version of a SCCS file get get(1)
compare two versions of an secs file sccsdiff sccsdiff(1)

display editor based on ex vi screen-oriented (visual) vi(1)
mv a macro package for making view graphs ... mv(7)

mmt typeset documents, viewgraphs, and slides mmt(1)
file systems with label checking volcopy copy ... volcopy(1m)

format of system volume fs ... fs(4)
output of a varargs argument list vprintf print formatted vprintf(3S)

terminate wait wait for child process to stop or wait(2)
await completion of process wait ... wait(1)

walk a file tree ftw ftw(3C)
write to all users wall ... wall(1 m)

word count wc ... wc(1)
crashes crash what to do when the system crash(8)

who is doing what whodo whodo(1 m)
who is on the system who who(1)

who is doing what whodo .. whodo(1 m)
profile within a function prof prof(5)

word count wc ... wc(1)
get character or word from a stream getc getc(3S)

guess the word hangman .. hangman(6)
put character or word on a stream putc putc(3S)
find hyphenated words hyphen .. hyphen(1)

change working directory cd ; cd(1)
change working directory chdir chdir(2)

get path-name of current working directory getcwd getcwd(3C)
working directory name pwd pwd(1)

chdir change working directory chdir(2s)
write write on a file ... write(2s)

putpwent write password file entry putpwent(3C)
write to all users wall wall(1 m)

write on a file write .. write(2)
on the other terminal and exits. write EOT .. write(1)

open for reading or writing open - open{2)
open for reading or writing ... open(2s)

utmp and wtmp entry formats Litmp utmp(4)
the game of hunt-the-wumpus wump .. wump(6)

for the Xerox 9700 printer x9700 prepare nroff documents x9700(1)
list(s) and execute command xargs construct argument xargs(1)

yacc yet another compiler-compiler yacc(1)

November 1986 - 46 - Plexus Sys 5.21 UNIX

(

i
/

\

)

/

INTR0(2) UNIX Sys5 INTR0(2)

NAME
(: intro - introduction to system calls and error numbers

/ SYNOPSIS
#include <errno.h>

DESCRIPTION

Page 1

This section describes all of the ·system calls. The sub-section,
Section 2S, describes the system calls and functions provided in the
standalone archive /libllib2.a.

Most of the calls in this section have one or more error returns. An
error condition is indicated by an otherwise impossible returned
value. This is usually -1 ; the individual descriptions specify the
details. An error number is also made available in the external vari­
able errno. Errno is not cleared on successful calls, so it should be
tested only after an error has been indicated.

Each system call description attempts to list all possible error
numbers. The following is a complete list of the error numbers and
their names as defined in <errno.h>.

1 EPERM Not owner
Usually this error indicates an attempt to modify a file in
some way that is reserved for its owner or super-user, or
when an ordinary user attempts to do things allowed only by
the super-user.

2 ENOENT No such file or directory
This error occurs when a file name or directory (in a path
name) is specified and should exist but does not.

3 ESRCH No such process
No process can be found corresponding to that specified by
pid in kill or ptrace.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which
the user has elected to catch, occurred during a system call.
If execution is resumed after processing the signal, it will
appear as if the interrupted system call returned this error
condition.

5 EIO 1/0 error
Some physical 1/0 error has occurred. In some cases this
error may occur on a call following the one to which it actu­
ally applies.

6 ENXIO No such device or address
1/0 on a special file refers to a subdevice which does not
exist, or beyond the limits of the device. It may also occur
when a tape drive is not on-line or no disk pack is loaded on

October 7, 1986

INTR0(2) UNIX Sys5 INTR0(2)

a drive.

7 E2BIG Arg list too long
An argument list longer than 5, 120 bytes is presented to a
member of the exec family.

8 ENOEXEC Exec format error
A request is made to execute a file which does not start with
a valid magic number although it may have the appropriate
permissions, (see a.out(4)).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (or
write) request is made to a file which is open only for writing
(or reading).

10 ECHILD No child processes
A wait was executed by a process that had no existing or
unwaited-for child processes.

11 EAGAIN No more processes
A fork failed because the system's process table is full or
the user is not allowed to create any more processes.

12 ENOMEM Not enough space
During an exec, brk, or sbrk, a program asks for more
space than the system is able to supply. This is not a tern- .
porary condition; the maximum space size is a system
parameter. The error may also occur if the arrangement of
text, data, and stack segments requires too many segmen­
tation registers, or if there is not enough swap space during
a fork.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by
the protection system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to
use an argument of a system call.

15 ENOTBLK Block device required
A non-block file was mentioned where a block device was
required, e.g., in mount.

16 EBUSY Device or resource busy
An attempt was made to mount a device that was already
mounted or an attempt was made to dismount a device on
which there is an active file (open file, current directory, / '
mounted-on file, active text segment). It will also occur if an
attempt is made to enable accounting when it is already
enabled. The device or resource is currently unavailable.

October 7, 1986 Page2

(·~
__ , ~/

(

(

INTR0{2) UNIX Sys5 INTR0{2)

Page3

17 EEXIST File exists
An existing file was mentioned in an inappropriate context,
e.g., link.

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call
to a device; e.g., read a write-only device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required,
for example in a path prefix or as an argument to chdir(2).

21 EISDIR Is a directory
An attempt was made to write on a directory.

22 EINVAL Invalid argument
Some invalid argument (e.g., dismounting a non-mounted
device; mentioning an undefined signal in signal, or kill;
reading or writing a file for which /seek has generated a
negative pointer). Also set by the math functions described
in the (3M) entries of this manual.

23 ENFILE File table overflow
The system file table is full, and temporarily no more opens
can be accepted.

24 EMFILE Too many open files
No process can have more than 20 file descriptors open at
a time.

25 ENOTTY Not a character device
An attempt was made to ioct/(2) a file that is not a special
character device.

26 ETXTBSY Text file busy
An attempt was made to execute a pure-procedure program
that is currently open for writing. Also an attempt to open
for writing a pure-procedure program that is being executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size
(1,082,201,088 bytes) or ULIMIT; see ulimit (2).

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space left
on the device.

29 ESPIPE Illegal seek
An /seek was issued to a pipe.

October 7, 1986

INTR0(2) UNIX Sys5 INTR0(2)

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a dev­
ice mounted read-only.

31 EMLINK Too many links
An attempt to make more than the maximum number of
links (1000) to a file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the
data. This condition normally generates a signal; the error
is returned if the signal is ignored.

33 EDOM Math argument
The argument of a function in the math package (3M) is out
of the domain of the function.

34 ERANGE Result too large
The value of a function in the math package (3M) is not
representable within machine precision.

34 EDEADLOCK Process could become deadlocked
The process has a file locked by lockf or locking and tryed
to access a file locked by another process.

\

"- .J

35 HOLCK No message of desired type /,--\

35 ENOMSG No message of desired type _ ._,;
An attempt was made to receive a message of a type that
does not exist on the specified message queue; see msgop
(2).

36 EIDRM Identifier Removed
This error is returned to processes that resume execution
due to the removal of an identifier from the file system's
name space (see msgctl (2), semctl (2), and shmctl (2)).

37 ECHRNG Channel number out of range

38 EL2NSYNC Level 2 not synchronized

39 EL3HL T Level 3 halted

40 EL3RDT Level 3 reset

41 ELNRNG Link number out of range

42 EUNATCH Protocol driver out of range

43 ENOCSI No CSI structure available

44 EL2HL T Level 2 halted

October 7, 1986 Page4

(/

(-

INTR0(2) UNIX Sys5 INTR0(2)

DEFINITIONS
Process ID

Each active process in the system is uniquely identified by a positive
integer called a process ID. The range of this ID is from 1 to 30,000.

Parent Process ID
A new process is created by a currently active process; see fork (2).
The parent process ID of a process is the process ID of its creator.

Process Group ID
Each active process is a member of a process group that is identi­
fied by a positive integer called the process group ID. This ID is the
process ID of the group leader. This grouping permits the signaling
of related processes; see kill (2).

Tty Group ID
Each active process can be a member of a terminal group that is
identified by a positive integer called the tty group ID. This grouping
is used to terminate a group of related processes upon termination
of one of the processes in the group; see exit (2) and signal (2).

Real User ID and Real Group ID
Each user allowed on the system is identified by a positive integer
called a real user ID.

Each user is also a member of a group. The group is identified by a
positive integer called the real group ID.

An active process has a real user ID and real group ID that are set
to the real user ID and real group ID, respectively, of the user
responsible for the creation of the process.

Effective User ID and Effective Group ID
An active process has an effective user ID and an effective group ID
that are used to determine file access permissions (see below). The
effective user ID and effective group ID are equal to the process's
real user ID and real group ID respectively, unless the process or
one of its ancestors evolved from a file that had the set-user-ID bit
or set-group ID bit set; see exec (2).

Super-user
A process is recognized as a super-user process and is granted
special privileges if its effective user ID is 0.

Special Processes

Page 5

The processes with a process ID of O and a process ID of 1 are spe­
cial processes and are referred to as procO and proc 1.

Proco is the scheduler. Proc1 is the initialization process (init).
Proc1 is the ancestor of every other process in the system and is
used to control the process structure.

October 7, 1986

INTR0(2) UNIX Sys5 INTR0(2)

File Descriptor
A file descriptor is a small integer used to do 1/0 on a file. The value 1 /

of a file descriptor is from O to 19. A process may have no more "­
than 20 file descriptors (0-19) open simultaneously. A file descriptor
is returned by system calls such as open(2), or pipe(2). The file
descriptor is used as an argument by calls such as read(2), write(2),
ioct/(2), and c/ose(2).

File Name
Names consisting of 1 to 14 characters may be used to name an
ordinary file, special file or directory.

These characters may be selected from the set of all character
values excluding \0 (null) and the ASCII code for I (slash).

Note that it is generally unwise to use * , ? , [, or] as part of file
names because of the special meaning attached to these characters
by the shell. See sh (1). Although permitted, it is advisable to avoid
the use of unprintable characters in file names.

Path Name and Path Prefix
A path name is a null-terminated character string starting with an
optional slash (/), followed by zero or more directory names
separated by slashes, optionally followed by a file name.

More precisely, a path name is a null-terminated character string
constructed as follows:

<path-name>::= <file-name> I <path-prefix> <file-name>V
<path-prefix>::=< rtprefix> I I< rtprefix>
< rtprefix>:: = <dirname> I I < rtprefix> <dirname> I

where <file-name> is a string of 1 to 14 characters other than the
ASCII slash and null, and <dirname> is a string of 1 to 14 charac­
ters (other than the ASCII slash and null) that names a directory.

If a path name begins with a slash, the path search begins at the
root directory. Otherwise, the search begins from the current work­
ing directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated as
if it named a non-existent file.

Directory
Directory entries are called links. By convention, a directory con­
tains at least two links, . and .. , referred to as dot and dot-dot
respectively. Dot refers to the directory itself and dot-dot refers to
its parent directory.

October 7, 1986 Page6

(..

INTR0{2) UNIX Sys5 INTR0{2)

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory
and a current working directory for the purpose of resolving path
name searches. The root directory of a process need not be the
root directory of the root file system.

File Access Permissions
Read, write, and execute/search permissions on a file are granted to
a process if one or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches the user ID of
the owner of the file and the appropriate access bit of the
"owner" portion (0700) of the file mode is set.

The effective user ID of the process does not match the
user ID of the owner of the file, and the effective group ID of
the process matches the group of the file and the appropri­
ate access bit of the "group" portion (070) of the file mode
is set.

The effective user ID of the process does not match the
user ID of the owner of the file, and the effective group ID of
the process does not match the group ID of the file, and the
appropriate access bit of the "other" portion (07) of the file
mode is set.

Otherwise, the corresponding permissions are denied.

Message Queue Identifier

Page 7

A message queue identifier (msqid) is a unique positive integer
created by a msgget (2) system call. Each msqid has a message
queue and a data structure associated with it. The data structure is
referred to as msqid_ds and contains the following members:

struct
us ho rt
us ho rt
ushort
ushort
time_t
time_t
time_t

ipc_perm msg_perm;
msg_qnum;
msg_qbytes;
msg_lspid;
msg_lrpid;
msg_stime;
msg_rtime;
msg_ctime;

I* operation permission struct *I
I* number of msgs on q */
/* max number of bytes on q */
I* pid of last msgsnd operation *f
I* pid of last msgrcv operation *I
/* last msgsnd time *I
/* last msgrcv time */
I* last change time *I
I* Times measured in secs since */
I* 00:00:00 GMT, Jan. 1, 1970 */

October 7, 1986

INTR0(2) UNIX Sys5 INTR0(2)

Msg_perm is an ipc_perm structure that specifies the message
operation permission (see below). This structure includes the fol-.
lowing members:

ushort cuid;
ushort
us ho rt
us ho rt
us ho rt

cg id;
uid;
gid;
mode;

f* creator user id *f
f* creator group id *f
f* user id*/
f* group id */
f* r/w permission */

Msg_qnum is the number of messages currently on the queue.
Msg_qbytes is the maximum number of bytes allowed on the
queue. Msg_lspid is the process id of the last process that per­
formed a msgsnd operation. Msg_lrpid is the process id of the last
process that performed a msgrcv operation. Msg_stime is the time
of the last msgsnd operation, msg_rtime is the time of the last
msgrcv operation, and msg_ctime is the time of the last msgctl (2)
operation that changed a member of the above structure.

Message Operation Permissions
In the msgop (2) and msgctl (2) system call descriptions, the per­
mission required for an operation is given as "{token}", where
"token" is the type of permission needed interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a msqid are granted to a process if
one or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches
msg_perm.[c]uid in the data structure associated with
msqid and the appropriate bit of the "user" portion (0600) of
msg_perm.mode is set.

The effective user ID of the process does not match
msg_perm.[c]uid and the effective group ID of the process
matches msg_perm.[c]gid and the appropriate bit of the
"group" portion (060) of msg_perm.mode is set.

The effective user ID of the process does not match
msg_perm.[c)uid and the effective group ID of the process
does not match msg_perm.[c]gid and the appropriate bit of
the "other" portion (06) of msg_perm.mode is set.

Otherwise, the corresponding permissions are denied.

October 7, 1986 Page8

INTR0(2) UNIX Sys5 INTR0(2)

Semaphore Identifier

Page9

A semaphore identifier (semid) is a unique positive integer created
by a semget (2) system call. Each semid has a set of semaphores
and a data structure associated with it. The data structure is
referred to as semid_ds and contains the following members:

struct ipc_perm sem_perm; f* operation permission struct *f
ushort sem_nsems; f* number of sems in set *f
time_t sem_otime; f* last operation time *f
time_t sem_ctime; f* last change time *I

f* Times measured in secs since *f
f* 00:00:00 GMT, Jan. 1, 1970 *f

Sem_perm is an ipc_perm structure that specifies the semaphore
operation permission (see below). This structure includes the fol­
lowing members:

ushort
ushort
ushort
us ho rt
ushort

cu id;
cg id;
uid;
gid;
mode;

f* creator user id */
f* creator group id */
f* user id */
f* group id */
f* rla permission *f

The value of sem_nsems is equal to the number of semaphores in
the set. Each semaphore in the set is referenced by a positive
integer referred to as a sem_num . Sem_num values run sequen­
tially from O to the value of sem_nsems minus 1. Sem_otime is the
time of the last semop (2) operation, and sem_ctime is the time of
the last semctl (2) operation that changed a member of the above
structure.

A semaphore is a data structure that contains the following
members:

ushort semval; f* semaphore value *f
short sempid; f* pid of last operation *f
ushort semncnt; f* # awaiting semval > cval *I
ushort semzcnt; f* # awaiting semval = O *f

Semval is a non-negative integer. Sempid is equal to the process
ID of the last process that performed a semaphore operation on this
semaphore. Semncnt is a count of the number of processes that
are currently suspended awaiting this semaphore's semval to
become greater than its current value. Semzcnt is a count of the
number of processes that are currently suspended awaiting this
semaphore's semval to become zero.

October 7, 1986

INTR0(2) UNIX Sys5 INTR0(2)

Semaphore Operation Permissions
In the semop (2) and semctl (2) system call descriptions, the per­
mission required for an operation is given as "{token}", where ,
"token" is the type of permission needed interpreted as follows:

00400 Read by user
00200 Alter by user
00060 Read, Alter by group
00006 Read, Alter by others

Read and Alter permissions on a semid are granted to a process if
one or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches
sem_perm.[c]uid in the data structure associated with
semid and the appropriate bit of the "user" portion (0600) of
sem_perm.mode is set.

The effective user ID of the process does not match
sem_perm.[c]uid and the effective group ID of the process
matches sem_perm.[c]gid and the appropriate bit of the
"group" portion (060) of sem_perm.mode is set.

The effective user ID of the process does not match
sem_perm.[c]uid and the effective group ID of the process
does not match sem_perm.[c]gid and the appropriate bit of
the "other" portion (06) of sem_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Shared Memory Identifier
A shared memory identifier (shmid) is a unique positive integer
created by a shmget (2) system call. Each shmid has a segment of
memory (shared memory segment) and a data structure
(schmid_ds) associated with it which contains the following
members:

struct
int
ushort
ushort
short
time_t
time_t
time_t

ipc_perm shm_perm;
shm_segsz;
shm_cpid;

f* operation permission struct *f
f* size of segment *f

October 7, 1986

shm_lpid;
shm_nattch;
shm_atime;
shm_dtime;
shm_ctime;

I* creator pid *f
f* pid of last operation *f
f* number of current attaches *I
f* last attach time *f
f* last detach time *f
f* last change time *f
f* Times measured in secs since*/
f* 00:00:00 GMT, Jan. 1, 197(' '

""'

Page 10

(~.

(

INTR0(2) UNIX Sys5 INTR0(2)

Shm_perm is an ipc_perm structure that specifies the shared
memory operation permission (below) and includes the following:

ushort cuid; /* creator user id */
ushort cgid; /* creator group id */
ushort uid; /* user id */
ushort gid; /* group id */
ushort mode; /* r/w permission */

Shm_segsz specifies the size of the shared memory segment.
Shm_cpid is the process id of the process that created the shared
memory identifier. Shm_lpid is the process id of the last process
that performed a shmop (2) operation. Shm_nattch is the number
of processes that currently have this segment attached.
Shm_atime is the time of the last shmat operation, shm_dtime is
the time of the last shmdt operation, and shm_ctime is the time of
the last shmctl (2) operation that changed one of the members of
the above structure.

Shared Memory Operation Permissions
In the shmop (2) and shmctl (2) system call descriptions, the per­
mission required for an operation is given as "{token}", where
"token" is the type of permission needed interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a shmid are granted to a process if
one or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches
shm_perm.[c]uid in the data structure associated with
shmid and the appropriate bit of the "user" portion (0600) of
shm_perm.mode is set.

The effective user ID of the process does not match
shm_perm.[c)uid and the effective group ID of the process
matches shm_perm.[c]gid and the appropriate bit of the
"group" portion (060) of shm_perm.mode is set.

The effective user ID of the process does not match
shm_perm.[c)uid and the effective group ID of the process
does not match shm_perm.[c]gid and the appropriate bit of
the "other" portion (06) of shm_perm.mode is set.

Otherwise, the corresponding permissions are denied.

SEE ALSO
close(2), ioctl(2), open(2), pipe(2), read(2), write(2), intro(3).

Page 11 October 7, 1986

(

ACCESS(2) UNIX Sys5 ACCESS(2)

NAME
access - determine accessibility of a file

SYNOPSIS
int access (path, amode)
char *path;
int amode;

DESCRIPTION
Path points to a path name naming a file. Access checks the
named file for accessibility according to the bit pattern contained in
amode , using the real user ID in place of the effective user ID and
the real group ID in place of the effective group ID. The bit pattern
contained in amode is constructed as follows:

04 read
02 write
01 execute (search)
00 check existence of file

Access to the file is denied if one or more of the following are true:
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] Read, write, or execute (search) permission is

[ENOENT]
[EACCES]

[EROFS]

requested for a null path name.
The named file does not exist.
Search permission is denied on a component of the
path prefix.
Write access is requested for a file on a read-only
file system.

[ETXTBSY] Write access is requested for a pure procedure
(shared text) file that is being executed.

[EACCESS] Permission bits of the file mode do not permit

[EFAULT]
the requested access.
Path points outside the allocated address
space for the process.

The owner of a file has permission checked with respect to the
"owner" read, write, and execute mode bits Members of the file's
group other than the owner have permissions checked with respect
to the "group" mode bits, and all others have permissions checked
with respect to the "other" mode bits.

RETURN VALUE
If the requested access is permitted, a value of 0 is returned. Oth­
erwise, a value of -1 is returned and errno is set to indicate the
error.

SEE ALSO
chmod(2), stat(2).

Page 1 May 21, 1985

ACCT(2) UNIX Sys5 ACCT(2)

NAME
acct - enable or disable process accounting

SYNOPSIS
int acct (path)
char •path;

DESCRIPTION
Acct is used to enable or disable the system process accounting
routine. If the routine is enabled, an accounting record will be writ­
ten on an accounting file for each process that terminates. Termi­
nation can be caused by one of two things: an exit call or a signal;
see exit (2) and signal (2). The effective user ID of the calling pro­
cess must be super-user to use this call.

Path points to a path name naming the accounting file. The
accounting file format is given in acct (4).

The accounting routine is enabled if path is non-zero and no errors
occur during the system call. It is disabled if path is zero and no
errors occur during the system call.

Acct will fail if one or more of the following are true:

[EPERMJ The effective user of the calling process is not
super-user,

[EBUSY]

[ENOTDIR]

[ENO ENT]

[EACCES)

[EACCES]

[EACCES]

[EISOIR]

[EROFS]

[EFAUL T]

An attempt is being made to enable accounting
when it is already enabled.

A component of the path prefix is not a directory.

One or more components of the accounting file
path name do not exist.

A component of the path prefix denies search per­
mission.

The file named by path is not an ordinary file.

Mode permission is denied for the named account­
ing file.

The named file is a directory.

The named file resides on a read-only file system.

Path points to an illegal address.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
exit(2), signal(2), acct(4).

Page 1 May 21, 1985

ALARM{2) UNIX Sys5 ALARM{2)

NAME
(alarm - set a process alarm clock

_/SYNOPSIS

(

unsigned alarm (sec)
unsigned sec;

DESCRIPTION
Alarm instructs the alarm clock of the calling process to send the
signal SIGALRM to the calling process after the number of real time
seconds specified by sec have elapsed; see signal (2).

Alarm requests are not stacked; successive calls reset the alarm
clock of the calling process.

If sec is 0, any previously made alarm request is canceled.

RETURN VALUE
Alarm returns the amount of time previously remaining in the alarm
clock of the calling process.

SEE ALSO
pause(2), signal(2).

Page 1 May 21, 1985

BRK(2) UNIX Sys5 BRK(2)

NAME
brk, sbrk - change data segment space allocation

SYNOPSIS
int brk (endds)
char *endds;

char *sbrk (incr)
int incr;

DESCRIPTION
Brk and sbrk are used to change dynamically the amount of space
allocated for the calling process's data segment; see exec (2). The
change is made by resetting the process's break value and allocat­
ing the appropriate amount of space. The break value is the
address of the first location beyond the end of the data segment.
The amount of allocated space increases as the break value
increases. The newly allocated space is set to zero.

Brk sets the break value to endds and changes the allocated space
accordingly.

Sbrk adds incr bytes to the break value and changes the allocated
space accordingly. Iner can be negative, in which case the amount
of allocated space is decreased.

/.·

I

Brk and sbrk will fail without making any change in the allocated.
space if one or more of the following are true:

Such a change would result in more space being allocated
than is allowed by a system-imposed maximum (see ulimit
(2)). [ENOMEM]

Such a change would result in the break value being greater
than or equal to the start address of any attached shared
memory segment (see shmop (2)).

RETURN VALUE
Upon successful completion, brk returns a value of O and sbrk
returns the old break value. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

SEE ALSO
exec(2), shmop(2), ulimit(2).

Page 1 May 21, 1985

(/,

(

CHDIR(2) UNIX Sys5 CHDIR(2)

NAME
chdir - change working directory

SYNOPSIS
int chdir (path)
char *path;

DESCRIPTION
Path points to the path name of a directory. Chdir causes the
named directory to become the current working directory, the start­
ing point for path searches for path names not beginning with I .

Chdir will fail and the current working directory will be unchanged if
one or more of the following are true:

[ENOTDIR]

[ENOENT]

[EACCES]

[EFAULT]

A component of the path name is not a directory.

The named directory does not exist.

Search permission is denied for any component of
the path name.

Path points outside the allocated address space of
the process.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
chroot(2).

Page 1 May 21, 1985

CHMOD(2) UNIX Sys5 CHMOD(2)

NAME
chmod - change mode of file

SYNOPSIS
int chmod (path, mode)
char *path;
int mode;

DESCRIPTION

Page 1

Path points to a path name naming a file. Chmod sets the access
permission portion of the named file's mode according to the bit pat­
tern contained in mode .

Access permission bits are interpreted as follows:

04000
02000
01000
00400
00200
00100
00070
00007

Set user ID on execution.
Set group ID on execution.
Save text image after execution.
Read by owner.
Write by owner.
Execute (search if a directory) by owner.
Read, write, execute (search) by group.
Read, write, execute (search) by others.

The effective user ID of the process must match the owner of the filef
or be super-user to change the mode of a file. '~ ·•·

If the effective user ID of the process is not super-user, mode bit
01000 (save text image on execution) is cleared.

If the effective user ID of the process is not super-user and the
effective group ID of the process does not match the group ID of the
file, mode bit 02000 (set group ID on execution) is cleared.

If an executable file is prepared for sharing then mode bit 01000
prevents the system from abandoning the swap-space image of the
program-text portion of the file when its last user terminates. Thus,
when the next user of the file executes it, the text need not be read
from the file system but can simply be swapped in, saving time.

Chmod will fail and the file mode will be unchanged if one or more
of the following are true:

[ENOTDIR]

[ENOENT]

[EACCES]

[EPERM]

A component of the path prefix is not a directory.

The named file does not exist.

Search permission is denied on a component of the
path prefix. (··

The effective user ID does not match the owner of'
the file and the effective user ID is not super-user.

May 21, 1985

(/

CHMOD(2)

(EROFS]

[EFAUL T]

RETURN VALUE

UNIX Sys5 CHMOD(2)

The named file resides on a read-only file system.

Path points outside the allocated address space of
the process.

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
chown(2), mknod(2).

May 21, 1985 Page 2

CHOWN(2) UNIX Sys5 CHOWN(2)

NAME
chown - change owner and group of a file

SYNOPSIS
int chown (path, owner, group)
char *path;
int owner, group;

DESCRIPTION
Path points to a path name naming a file. The owner ID and group
ID of the named file are set to the numeric values contained in
owner and group respectively.

Only processes with effective user ID equal to the file owner or
super-user may change the ownership of a file.

If chown is invoked by other than the super-user, the set-user-ID
and set-group-ID bits of the file mode, 04000 and 02000 respec­
tively, will be cleared.

Chown will fail and the owner and group of the named file will
remain unchanged if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENO ENT]

(EACCES]

[EPERM]

(EROFS)

[EFAULT]

The named file does not exist.

Search permission is denied on a component of the
path prefix.

The effective user ID does not match the owner of
the file and the effective user ID is not super-user.

The named file resides on a read-only file system.

Path points outside the allocated address space of
the process.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
chmod(2).
chown(1) in the Sys5 UNIX User Reference Manual.

Page 1 May 21, 1985

/

!

(_ ...

CHROOT(2) UNIX Sys5 CHROOT(2)

NAME
chroot - change root directory

SYNOPSIS
int chroot (path)
char *path;

DESCRIPTION
Path points to a path name naming a directory. Chroot causes the
named directory to become the root directory, the starting point for
path searches for path names beginning with I . The user's working
directory is unaffected by the chroot system call.

The effective user ID of the process must be super-user to change
the root directory.

The .. entry in the root directory is interpreted to mean the root
directory itself. Thus, .. cannot be used to access files outside the
subtree rooted at the root directory.

Chroot will fail and the root directory will remain unchanged if one or
more of the following are true:

[ENOTDIR]

[ENO ENT]

[EPERM]

[EFAULT]

Any component of the path name is not a directory.

The named directory does not exist.

The effective user ID is not super-user.

Path points outside the allocated address space of
the process.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
chdir(2).

Page 1 May 21, 1985

CLOSE(2) UNIX Sys5

NAME
close - close a file descriptor

SYNOPSIS
int close (fildes)
int tildes;

DESCRIPTION

CLOSE(2)

Fi/des is a file descriptor obtained from a creat, open, dup, tent/,
or pipe system call. Close closes the file descriptor indicated by
fildes.

Close will fail if tildes is not a valid open file descriptor.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), exec(2), fcntl(2), open(2), pipe(2).

Page 1 May 21, 1985

0

CREAT(2) UNIX Sys5 CREAT(2)

NAME
("; creat - create a new file or rewrite an existing one

SYNOPSIS
int creat (path, mode)
char *path;
int mode;

DESCRIPTION

Page1

Great creates a new ordinary file or prepares to rewrite an existing
file named by the path name pointed to by path .

If the file exists, the length is truncated to O and the mode and
owner are unchanged. Otherwise, the file's owner ID is set to the
effective user ID, of the process the group ID of the process is set to
the effective group ID, of the process and the low-order 12 bits of
the file mode are set to the value of mode modified as follows:

All bits set in the process's file mode creation mask are
cleared. See umask (2).

The "save text image after execution bit" of the mode is
cleared. See chmod (2).

Upon successful completion, the file descriptor is returned and the
file is open for writing, even if the mode does not permit writing.
The file pointer is set to the beginning of the file. The file descriptor
is set to remain open across exec system calls. See tent/ (2). No
process may have more than 20 files open simultaneously. A new
file may be created with a mode that forbids writing.

Great will fail if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENTJ A component of the path prefix does not exist.

[EACCES]

[ENOENT]

[EACCES]

[EROFS]

[ETXTBSY]

[EACCES]

[EISDIR]

[EM FILE]

Search permission is denied on a component of the
path prefix.

The path name is null.

The file does not exist and the directory in which
the file is to be created does not permit writing.

The named file resides or would reside on a read­
only file system.

The file is a pure procedure (shared text) file that is
being executed.

The file exists and write permission is denied.

The named file is an existing directory.

Twenty (20) file descriptors are currently open.

May 7, 1986

CREAT(2) UNIX Sys5 CREAT(2)

[EFAULT] Path points outside the allocated address space of _
the process. / \1

The system file table is full. \ __ / [EN FILE]

RETURN VALUE
Upon successful completion, a non-negative integer, namely the file
descriptor, is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
chmod(2), close(2), dup(2), fcntl(2), lseek(2), open(2), read(2),
umask(2), write(2).

May 7, 1986 Page 2

(/

(

DUP(2) UNIX Sys5 OUP(2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
int dup (fildes)
int fildes;

DESCRIPTION
Fi/des is a file descriptor obtained from a creat, open , dup , tent/,
or pipe system call. Dup returns a new file descriptor having the
following in common with the original:

Same open file (or pipe).

Same file pointer (i.e., both file descriptors share one file
pointer).

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across exec system
calls. See tent/ (2).

The file descriptor returned is the lowest one available.

Dup will fail if one or more of the following are true:

[EBADF]

[EMFILE]

Fi/des is not a valid open file descriptor.

Twenty (20) file descriptors are currently open.

RETURN VALUE
Upon successful completion a non-negative integer, namely the file
descriptor, is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
creat(2), close(2), exec(2), fcnt1(2), open(2), pipe(2).

Page 1 May 7, 1986

EXEC(2) UNIX Sys5 EXEC(2)

NAME
execl, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS
int execl (path, argO, arg1, ... , argn, 0)
char *path, *argO, *arg1, ... , *argn;

int execv (path, argv)
char *path, *argv[];

int execle (path, argO, arg1, ... , argn, 0, envp)
char *path, *argO, *arg1, ... , *argn, *envp[];

int execve (path, argv, envp)
char *Path, *argv[], *envp[];

int execlp (file, argO, arg1, ... , argn, 0)
char *file, *argO, *arg1, ... , *argn;

int execvp (file, argv)
char *file, *argv[] ;

DESCRIPTION

Page 1

Exec in all its forms transforms the calling process into a new pro­
cess. The new process is constructed from an ordinary, executable
file called the new process file . This file consists of a header (see
a.out (4)), a text segment, and a data segment. The data segment
contains an initialized portion and an uninitialized portion (bss).
There can be no return from a successful exec because the calling
process is overlaid by the new process.

When a C program is executed, it is called as follows:

main {argc, argv, envp)
int argc;
char**argv, **envp;

where argc is the argument count and argv is an array of character
pointers to the arguments themselves. As indicated, argc is con­
ventionally at least one and the first member of the array points to a
string containing the name of the file.

Path points to a path name that identifies the new process file.

File points to the new process file. The path prefix for this file is
obtained by a search of the directories passed as the environment
line "PATH ="(see environ (5)). The environment is supplied by the
shell (see sh (1)).

Argo , argt , ... , argn are pointers to null-terminated character
strings. These strings constitute the argument list available to the
new process. By convention, at least argO must be present and ,
point to a string that is the same as path (or its last component). ·.

May 30, 1986

(_)

EXEC(2) UNIX Sys5 EXEC(2)

Argv is an array of character pointers to null-terminated strings.
These strings constitute the argument list available to the new pro­
cess. By convention, argv must have at least one member, and it
must point to a string that is the same as path (or its last com­
ponent). Argv is terminated by a null pointer.

Envp is an array of character pointers to null-terminated strings.
These strings constitute the environment for the new process. Envp
is terminated by a null pointer. For exec/ and execv , the C run­
time start-off routine places a pointer to the environment of the cal­
ling process in the global cell:

extern char **environ;
and it is used to pass the environment of the calling process to the
new process.

File descriptors open in the calling process remain open in the new
process, except for those whose close-on-exec flag is set; see tent/
(2). For those file descriptors that remain open, the file pointer is
unchanged.

Signals set to terminate the calling process will be set to terminate
the new process. Signals set to be ignored by the calling process
will be set to be ignored by the new process. Signals set to be
caught by the calling process will be set to terminate new process;
see signal (2).

If the set-user-ID mode bit of the new process file is set (see chmod
(2)), exec sets the effective user ID of the new process to the
owner ID of the new process file. Similarly, if the set-group-ID mode
bit of the new process file is set, the effective group ID of the new
process is set to the group ID of the new process file. The real user
ID and real group ID of the new process remain the same as those
of the calling process.

The shared memory segments attached to the calling process will
not be attached to the new process (see shmop (2)).

Profiling is disabled for the new process; see profit (2).

The new process also inherits the following attributes from the cal­
ling process:

May 30, 1986

nice value (see nice (2))
process ID
parent process ID
process group ID
semadj values (see semop (2))
tty group ID (see exit (2) and signal (2))
trace flag (see ptrace (2) request 0)
time left until an alarm clock signal (see alarm (2))

Page2

EXEC(2) UNIX Sys5 EXEC(2)

current working directory
root directory
file mode creation mask (see umask (2))
file size limit (see ulimit (2))
utime, stime, cutime, and cstime (see times (2))

Exec will fail and return to the calling process if one or more of the
following are true:

[ENOENT] One or more components of the new process path
name of the file do not exist.

[ENOTDIRJ A component of the new process path of the file
prefix is not a directory.

[EACCES]

[EACCES]

[EACCES]

[ENOEXEC]

[ETXTBSY]

[ENOMEM]

[E2BIG]

[EFAULT]

[EFAULT]

,·;,

Search permission is denied for a directory listed in
the new process file's path prefix.

The new process file is not an ordinary file.

The new process file mode denies execution per­
mission.

The exec is not an execlp or execvp , and the
new process file has the appropriate access per­
mission but an invalid magic number in its header. /-\

The new process file is a pure procedure (shared_ _ _/
text) file that is currently open for writing by some
process.

The new process requires more memory than is
allowed by the system-imposed maximum MAX­
MEM.

The number of bytes in the new process's argu­
ment list is greater than the system-imposed limit
of 5120 bytes.

The new process file is not as long as indicated by
the size values in its header.

Path , argv , or envp point to an illegal address.

RETURN VALUE
If exec returns to the calling process an error has occurred; the
return value will be -1 and errno will be set to indicate the error.

SEE ALSO

Page3

alarm(2), exit(2), fork(2), nice(2), ptrace(2), semop(2),
times(2), ulimit(2), umask(2), a.out(4), environ(S).
sh(1) in the Sys5 UNIX User Reference Manual.

signal(2),

May 30, 1986

c:

EXIT{2) UNIX Sys5 EXIT{2)

NAME
exit, _exit - terminate process

SYNOPSIS
void exit (status)
int status;
void _exit (status)
int status;

DESCRIPTION

Page 1

Exit terminates the calling process with the following consequences:

All of the file descriptors open in the calling process are
closed.

If the parent process of the calling process is executing a
wait , it is notified of the calling process's termination and
the low order eight bits (i.e., bits 0377) of status are made
available to it; see wait (2).

If the parent process of the calling process is not executing
a wait , the calling process is transformed into a zombie
process. A zombie process is a process that only occupies
a slot in the process table. It has no other space allocated
either in user or kernel space. The process table slot that it
occupies is partially overlaid with time accounting informa­
tion (see <sys/proc.h>) to be used by times.

The parent process ID of all of the calling process's existing
child processes and zombie processes is set to 1. This
means the initialization process (see intro (2)) inherits each
of these processes.

Each attached shared memory segment is detached and
the value of shm_nattach in the data structure associated
with its shared memory identifier is decremented by 1.

For each semaphore for which the calling process has set a
semadj value (see semop (2)), that semadj value is added
to the semval of the specified semaphore.

If the process has a process, text, or data lock, an unlock is
performed (see plock (2)).

An accounting record is written on the accounting file if the
system's accounting routine is enabled; see acct (2).

If the process ID, tty group ID, and process group ID of the
calling process are equal, the SIGHUP signal is sent to each
process that has a process group ID equal to that of the cal­
ling process.

The C function exit may cause cleanup actions before the process
exits. The function _exit circumvents all cleanup.

May 7, 1986

EXIT(2) UNIX Sys5 EXIT{2)

SEE ALSO
acct(2), intro(2), plock(2), semop(2), signal(2), wait(2).

WARNING
See WARNING in signal (2).

May 7, 1986 Page 2

FCNTL(2) UNIX Sys5 FCNTL(2)

NAME
(~·) fcntl - file control

- SYNOPSIS

(~)

c·

#include <fcntl.h>

int fcntl (fildes, cmd, arg)
int fildes, cmd, arg;

DESCRIPTION

Page 1

Fenti provides for control over open files. Fi/des is an open file
descriptor obtained from a creat , open , dup , tent/, or pipe sys­
tem call.

The command s available are:

F_DUPFD

F_GETFD

F_SETFD

F_GETFL

F_SETFL

Return a new file descriptor as follows:

Lowest numbered available file descriptor greater
than or equal to arg .

Same open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both file
descriptors share one file pointer).

Same access mode (read, write or read/write).

Same file status flags (i.e., both file descriptors
share the same file status flags).

The close-on-exec flag associated with the new file
descriptor is set to remain open across exec (2)
system calls.

Get the close-on-exec flag associated with the file
descriptor tildes . If the low-order bit is 0 the file will
remain open across exec , otherwise the file will be
closed upon execution of exec.

Set the close-on-exec flag associated with tildes to
the low-order bit of arg (0 or 1 as above).

Get file status flags.

Set file status flags to arg . Only certain flags can
be set; see tent/ (5).

Fenti will fail if one or more of the following are true:

[EBADF]

[EMFILE]

[EM FILE]

Fi/des is not a valid open file descriptor.

Cmd is F _DUPFD and 20 file descriptors are
currently open.

Cmd is F _DUPFD and arg is negative or greater
than 20.

May 7, 1986

FCNTL(2) UNIX Sys5 FCNTL(2)

RETURN VALUE
Upon successful completion, the value returned depends on cmd as /
follows:

F_DUPFD

F_GETFD

A new file descriptor.
Value of flag (only the low-order bit is
defined).

F _SETFD Value other than -1.

F _GETFL Value of file flags.
F _SETFL Value other than -1.

Otherwise, a value of -1 is returned and errno is set to indicate the
error.

SEE ALSO
close(2), exec(2), open(2), fcnt1(5).

May 7, 1986 Page 2

7
/

FORK{2) UNIX Sys5 FORK{2)

NAME

(". fork - create a new process

.··SYNOPSIS

()

int fork ()

DESCRIPTION

Page 1

Fork causes creation of a new process. The new process (child
process) is an exact copy of the calling process (parent process).
This means the child process inherits the following attributes from
the parent process:

environment
close-on-exec flag (see exec (2))
signal handling settings (i.e., SIG_DFL , SIG_ING , function
address)
set-user-ID mode bit
set-group-ID mode bit
profiling on/off status
nice value (see nice (2))
all attached shared memory segments (see shmop (2))
process group ID
tty group ID (see exit (2) and signal (2))
trace flag (see ptrace (2) request 0)
time left until an alarm clock signal (see alarm (2))
current working directory
root directory
file mode creation mask (see umask (2))
file size limit (see ulimit (2))

The child process differs from the parent process in the following
ways:

The child process has a unique process ID.

The child process has a different parent process ID (i.e., the
process ID of the parent process).

The child process has its own copy of the parent's file
descriptors. Each of the child's file descriptors shares a
common file pointer with the corresponding file descriptor of
the parent.

All semadj values are cleared (see semop (2)).

Process locks, text locks and data locks are not inherited by
the child (see plock (2)).

May 7, 1986

FORK(2) UNIX Sys5 FORK(2)

The child process's utime , stime , cutime , and cstime are
set to 0. The time left until an alarm clock signal is reset to(
0. ." /

Fork will fail and no child process will be created if one or more of
the following are true:

[EAGAIN]

[EAGAIN]

RETURN VALUE

The system-imposed limit on the total number of
processes under execution would be exceeded.

The system-imposed limit on the total number of
processes under execution by a single user would
be exceeded.

Upon successful completion, fork returns a value of O to the child
process and returns the process ID of the child process to the
parent process. Otherwise, a value of -1 is returned to the parent
process, no child process is created, and errno is set to indicate the
error.

SEE ALSO
exec(2), nice(2), plock(2), ptrace(2), semop(2), shmop(2), signal(2),
times(2), ulimit(2), umask(2), wait(2).

May 7, 1986 Page 2

GETPID{2) UNIX Sys5 GETPID{2)

NAME
getpid, getpgrp, getppid - get process, process group, and parent
process IDs

SYNOPSIS
int getpid ()

int getpgrp ()

int getppid ()

DESCRIPTION
Getpid returns the process ID of the calling process.

Getpgrp returns the process group ID of the calling process.

Getppid returns the parent process ID of the calling process.

SEE ALSO
exec(2), fork(2), intro(2), setpgrp(2), signal(2).

Page 1 May 7, 1986

GETUID(2) UNIX Sys5 GETUID(2)

NAME
getuid, geteuid, getgid, getegid - get real user, effective user, real t ~\,
group, and effective group IDs "-._/

SYNOPSIS
unsigned short getuid ()

unsigned short geteuid ()

unsigned short getgid ()

unsigned short getegid ()

DESCRIPTION
Getuid returns the real user ID of the calling process.

Geteuid returns the effective user ID of the calling process.

Getgid returns the real group ID of the calling process.

Getegid returns the effective group ID of the calling process.

SEE ALSO
intro(2), setuid(2).

Page 1 May 7, 1986

(I

IOCTL(2} UNIX Sys5 IOCTL(2}

NAME
ioctl - control device

SYNOPSIS
ioctl (tildes, request, arg)
int fildes, request;

DESCRIPTION
Ioctl performs a variety of functions on character special files (dev­
ices). The write-ups of various devices in Section 7 of the Sys5
UNIX Administrator Reference Manual discuss how ioctl applies to
them.

Ioctl will fail if one or more of the following are true:

[EBADF]

[ENOTTY]

[EINVAL]

[EINTR]

RETURN VALUE

Fi/des is not a valid open file descriptor.

Fi/des is not associated with a character special
device.

Request or arg is not valid. See Section 7 of the
Sys5 UNIX Administrator Reference Manual.

A signal was caught during the ioctl system call.

If an error has occurred, a value of -1 is returned and errno is set to
(~) indicate the error.

SEE ALSO
tty(?) in the Sys5 UNIX Administrator's Reference Manual.

c
Page 1 October 7, 1986

KILL(2) UNIX Sys5 Klll(2)

NAME
kill - send a signal to a process or a group of processes

SYNOPSIS
int kill (pid, sig)
int pid, sig;

DESCRIPTION

Page 1

Kill sends a signal to a process or a group of processes. The pro­
cess or group of processes to which the signal is to be sent is speci­
fied by pid . The signal that is to be sent is specified by sig and is
either one from the list given in signal (2), or 0. It sig is 0 (the null
signal), error checking is performed but no signal is actually sent.
This can be used to check the validity of pid .

The real or effective user ID of the sending process must match the
real or effective user ID of the receiving process, unless the effective
user ID of the sending process is super-user.

The processes with a process ID of O and a process ID of 1 are spe­
cial processes (see intro (2)) and will be referred to below as procO
and proc1 , respectively.

If pid is greater than zero, sig will be sent to the process whose
process ID is equal to pid . Pid may equal 1.

If pid is 0, sig will be sent to all processes excluding procO and
proc1 whose process group ID is equal to the process group ID of
the sender.

If pid is -1 and the effective user ID of the sender is not super-user,
sig will be sent to all processes excluding procO and proc 1 whose
real user ID is equal to the effective user ID of the sender.

If pid is -1 and the effective user ID of the sender is super-user, sig
will be sent to all processes excluding procO and proc1.

It pid is negative but not -1, sig will be sent to all processes whose
process group ID is equal to the absolute value of pid .

Kill will tail and no signal will be sent if one or more of the following
are true:

[El NV AL]

[El NV AL)

[ESRCH]

Sig is not a valid signal number.

Sig is SIGKILL and pid is 1 (proc1).

No process can be found corresponding to that
specified by pid .

May 22, 1985

KILL(2)

[EPERM]

UNIX Sys5 KILL(2)

The user ID of the sending process is not super­
user, and its real or effective user ID does not
match the real or effective user ID of the receiving
process.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
getpid(2), setpgrp(2), signa1(2).
kill(1) in the Sys5 UNIX User Reference Manual.

May 22, 1985 Page 2

(

LINK(2) UNIX Sys5 LINK(2)

NAME
link - link to a file

SYNOPSIS
int I ink (path1, path2)
char *path1, *path2;

DESCRIPTION
Path1 points to a path name naming an existing file. Path2 points
to a path name naming the new directory entry to be created. Link
creates a new link (directory entry) for the existing file.

Link will fail and no link will be created if one or more of the follow-
ing are true:

[ENOTDIR]

[ENO ENT]

[EACCES]

[ENO ENT]

[EEXIST]

[EPERM]

[EX DEV]

[ENOENT]

[EACCES]

[EROFS]

[EFAULT]

[EMLINK]

RETURN VALUE

A component of either path prefix is not a directory.

A component of either path prefix does not exist.

A component of either path prefix denies search
permission.

The file named by path 1 does not exist.

The link named by path2 exists.

The file named by path 1 is a directory and the
effective user ID is not super-user.

The link named by path2 and the file named by
path 1 are on different logical devices (file sys­
tems).

Path2 points to a null path name.

The requested link requires writing in a directory
with a mode that denies write permission.

The requested link requires writing in a directory on
a read-only file system.

Path points outside the allocated address space of
the process.

The maximum number of links to a file would be
exceeded.

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO

(' unlink(2).

Page 1 May 21, 1985

LSEEK(2) UNIX Sys5 LSEEK(2)

NAME
!seek - move read/write file pointer

SYNOPSIS
long lseek (fildes, offset, whence)
int fildes;
long offset;
int whence;

DESCRIPTION
Fi/des is a file descriptor returned from a creat , open , dup , or
tent/ system call. Lseek sets the file pointer associated with tildes
as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current location plus
offset.

If whence is 2, the pointer is set to the size of the file plus
offset.

Upon successful completion, the resulting pointer location, as meas­
ured in bytes from the beginning of the file, is returned.

Lseek will fail and the file pointer will remain unchanged if one or
more of the following are true:

[EBADFJ Fi/des is not an open file descriptor.

[ESPIPE] Fi/des is associated with a pipe or fifo.

[EINVAL and SIGSYS signal]
Whence is not 0, 1 , or 2.

[EINVAL] The resulting file pointer would be negative.

Some devices are incapable of seeking. The value of the file
pointer associated with such a device is undefined.

RETURN VALUE
Upon successful completion, a non-negative integer indicating the
file pointer value is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), fcnt1(2), open(2).

Page 1 May 21, 1985

c

MKN00(2) UNIX Sys5 MKNOD(2)

NAME
mknod - make a directory, or a special or ordinary file

SYNOPSIS
int mknod (path, mode, dev)
char *Path;
int mode, dev;

DESCRIPTION

Page 1

Mknod creates a new file named by the path name pointed to by
path . The mode of the new file is initialized from mode . Where the
value of mode is interpreted as follows:

0170000 file type; one of the following:
0010000 fife special
0020000 character special
0040000 directory
0060000 block special
0100000 or 0000000 ordinary file

0004000 set user ID on execution
0002000 set group ID on execution
0001000 save text image after execution
0000777 access permissions; constructed from the following

0000400 read by owner
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

The owner ID of the file is set to the effective user ID of the process.
The group ID of the file is set to the effective group ID of the pro­
cess.

Values of mode other than those above are undefined and should
not be used. The low-order 9 bits of mode are modified by the
process's file mode creation mask: all bits set in the process's file
mode creation mask are cleared. See umask (2). If mode indicates
a block or character special file, dev is a configuration-dependent
specification of a character or block 1/0 device. If mode does not
indicate a block special or character special device, dev is ignored.

Mknod may be invoked only by the super-user for file types other
than FIFO special.

Mknod will fail and the new file will not be created if one or more of
the following are true:

[EPERMJ The effective user ID of the process is not super­
user.

[ENOTDIR] A component of the path prefix is not a directory.

May 7, 1986

MKNOD(2) UNIX Sys5 MKNOD(2)

A component of the path prefix does not exist. [ENOENT]

[EROFS]
(\

The directory in which the file is to be created is __ 1

located on a read-only file system. ,J

[EEXIST]

[EFAULT]

RETURN VALUE

The named file exists.

Path points outside the allocated address space of
the process.

Upon successful completion a value of O is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
chmod(2), exec(2), umask(2), fs(4).
mkdir(1) in the SysS UNIX User Reference Manual.

May 7, 1986 Page2

f~.
'._ __ j

(

(

MOUNT(2) UNIX Sys5 MOUNT(2)

NAME
mount - mount a file system

SYNOPSIS
int mount (spec, dir, rwflag)
char *Spec, *dir;
int rwflag;

DESCRIPTION
Mount requests that a removable file system contained on the block
special file identified by spec be mounted on the directory identified
by dir. Spec and dir are pointers to path names.

Upon successful completion, references to the file dir will refer to
the root directory on the mounted file system.

The low-order bit of rwflag is used to control write permission on the
mounted file system; if 1 , writing is forbidden, otherwise writing is
permitted according to individual file accessibility.

Mount may be invoked only by the super-user.

Mount will fail if one or more of the following are true:

[EPERM]

[ENOENT]

[ENOTDIR]

[ENOTBLK]

[ENXIO]

[ENOTDIR]

[EFAULT]

[EBUSY]

[EBUSY]

The effective user ID is not super-user.

Any of the named files does not exist.

A component of a path prefix is not a directory.

Spec is not a block special device.

The device associated with spec does not exist.

Dir is not a directory.

Spec or dir points outside the allocated address
space of the process.

Dir is currently mounted on, is someone's current
working directory, or is otherwise busy.

The device associated with spec is currently
mounted.

[EBUSY]

RETURN VALUE

There are no more mount table entries.

Upon successful completion a value of O is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
umount(2).

Page 1 May 7, 1986

(

MSGCTL(2) UNIX Sys5 MSGCTL(2)

NAME
msgctl - message control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl (msqid, cmd, buf)
int msqid, cmd;
struct msqid_ds *buf;

DESCRIPTION

Page 1

Msgctl provides a variety of message control operations as speci­
fied by cmd . The following cmd s are available:

IPC_STAT Place the current value of each member of the
data structure associated with msqid into the struc­
ture pointed to by but . The contents of this struc­
ture are defined in intro (2). {READ}

IPC_SET Set the value of the following members of the data
structure associated with msqid to the correspond-
ing value found in the structure pointed to by but:

msg_perm.uid
msg_perm.gid
msg_perm.mode I* only low 9 bits */
msg_qbytes

This cmd can only be executed by a process that
has an effective user ID equal to either that of
super user or to the value of msg_perm.uid in the
data structure associated with msqid . Only super
user can raise the value of msg_qbytes .

IPC_RMID Remove the message queue identifier specified by
msqid from the system and destroy the message
queue and data structure associated with it. This
cmd can only be executed by a process that has
an effective user ID equal to either that of super
user or to the value of msg_perm.uid in the data
structure associated with msqid .

Msgctl will fail if one or more of the following are true:

[EINVAL]

[EINVAL]

Msqid is not a valid message queue identifier.

Cmd is not a valid command.

May 22, 1985

MSGCTL(2)

[EACCES]

[EPERM]

[EPERM]

[EFAULT]

RETURN VALUE

UNIX Sys5 MSGCTL(2)

Cmd is equal to IPC_STAT and {READ} operation;-­
permission is denied to the calling process (see, ~
intro (2)). ____/

Cmd is equal to IPC_RMID or IPC_SET . The effec-
tive user ID of the calling process is not equal to
that of super user and it is not equal to the value of
msg_perm.uid in the data structure associated
with msqid.

Cmd is equal to IPC_SET, an attempt is being
made to increase to the value of msg_qbytes, and
the effective user ID of the calling process is not
equal to that of super user.

But points to an illegal address.

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
intro(2), msgget(2), msgop(2).

May 22, 1985 Page 2

(

MSGGET(2) UNIX Sys5 MSGGET(2)

NAME
msgget - get message queue

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key, msgflg)
key_t key;
int msgflg;

DESCRIPTION

Page 1

Msgget returns the message queue identifier associated with key .

A message queue identifier and associated message queue and
data structure (see intro (2)) are created for key if one of the follow­
ing are true:

10 Key is equal to IPC_PRIVATE.

Key does not already have a message queue identifier
associated with it, and (msgflg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new message
queue identifier is initialized as follows:

Msg_perm.cuid , msg_perm.uid , msg_perm.cgid , and
msg_perm.gid are set equal to the effective user ID and
effective group ID, respectively, of the calling process.

The low-order 9 bits of msg_perm.mode are set equal to
the low-order 9 bits of msgflg .

Msg_qnum , msg_lspid, msg_lrpid, msg_stime, and
msg_rtime are set equal to 0.

Msg_ctime is set equal to the current time.

Msg_qbytes is set equal to the system limit.

Msgget will fail if one or more of the following are true:

[EACCES]

[ENOENT]

A message queue identifier exists for key , but
operation permission (see intro (2)) as specified by
the low-order 9 bits of msgflg would not be
granted.

A message queue identifier does not exist for key
and (msgflg & IPC_CREAT) is "false".

May 22, 1985

MSGGET(2)

[ENOS PC]

[EEXIST]

RETURN VALUE

UNIX Sys5 MSGGET(2)

A message queue identifier is to be creat~d but the .
system-imposed limit on the maximum number o(
allowed message queue identifiers system wide~_./
would be exceeded.

A message queue identifier exists for key but ((
msgf/g & IPC CREAT) & (msgf/g & IPC_EXCL))
is "true".

Upon successful completion, a non-negative integer, namely a mes­
sage queue identifier, is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO
intro(2), msgctl(2), msgop(2).

May 22, 1985 Page 2

(

(- '

-- ~/

MSGOP(2) UNIX Sys5 MSGOP(2)

NAME
msgop - message operations

SYNOPSIS
#include <sys/types.h>
#include < sys/ipc.h>
#include <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgflg)
int msqid;
struct msgbuf *msgp;
int msgsz, msgflg;

int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;
struct msgbuf *msgp;
int msgsz;
long msgtyp;
int msgflg;

DESCRIPTION

Page 1

Msgsnd is used to send a message to the queue associated with
the message queue identifier specified by msqid . {WRITE} Msgp
points to a structure containing the message. This structure is com­
posed of the following members:

long mtype; f* message type */
char mtext[]; f* message text */

Mtype is a positive integer that can be used by the receiving pro­
cess for message selection (see msgrcv below). Mtext is any text
of length msgsz bytes. Msgsz can range from O to a system­
imposed maximum.

Msgflg specifies the action to be taken if one or more of the follow­
ing are true:

The number of bytes already on the queue is equal to
msg_qbytes (see intro (2)).

The total number of messages on all queues system-wide is
equal to the system-imposed limit.

These actions are as follows:

If (msgflg & IPC_NOWAIT) is "true", the message will not
be sent and the calling process will return immediately.

If (msgflg & IPC_NOWAIT) is "false'', the calling process
will suspend execution until one of the following occurs:

The condition responsible for the suspension no
longer exists, in which case the message is sent.

May 7, 1986

MSGOP(2) UNIX Sys5 MSGOP(2)

Msqid is removed from the system (see msgctl
(2)). When this occurs, errno is set equal to 1/~
EIDRM, and a value of -1 is returned. __j
The calling process receives a signal that is to be
caught. In this case the message is not sent and
the calling process resumes execution in the
manner prescribed in signal (2)).

Msgsnd will fail and no message will be sent if one or more of the
following are true:

[EINVAL]

[EACCES]

Msqid is not a valid message queue identifier.

Operation permission is denied to the calling pro­
cess (see intro (2)).

(EINVAL]

(EAGAIN]

Mtype is less than 1.

The message cannot be sent for one of the rea­
sons cited above and (msgflg & IPC _NOWAIT) is
"true".

[EINVAL] Msgsz is less than zero or greater
system-imposed limit.

than the

[EFAULT] Msgp points to an illegal address.
./~,

Upon successful completion, the following actions are taken with 1 1

respect to the data structure associated with msqid (see intro (2)). "'-/

Msg_qnum is incremented by 1.

Msg_lspid is set equal to the process 10 of the calling pro­
cess.

Msg_stime is set equal to the current time.

Msgrcv reads a message from the queue associated with the mes­
sage queue identifier specified by msqid and places it in the struc­
ture pointed to by msgp. {READ} This structure is composed of the
following members:

long mtype; f* message type *f
char mtext[]; f* message text *f

Mtype is the received message's type as specified by the sending
process. Mtext is the text of the message. Msgsz specifies the
size in bytes of mtext. The received message is truncated to msgsz
bytes if it is larger than msgsz and (msgflg & MSG_NOERROR) is
"true". The truncated part of the message is lost and no indication
of the truncation is given to the calling process.

Msgtyp specifies the type of message requested as follows:

May 7, 1986

If msgtyp is equal to 0, the first message on the queue is
received.

Page2

MSGOP(2) UNIX Sys5 MSGOP(2)

Page 3

If msgtyp is greater than 0, the first message of type
msgtyp is received.

If msgtyp is less than 0, the first message of the lowest
type that is less than or equal to the absolute value of
msgtyp is received.

Msgflg specifies the action to be taken if a message of the desired
type is not on the queue. These are as follows:

If (msgflg & IPC_NOWAIT) is "true", the calling process
will return immediately with a return value of -1 and errno
set to ENOMSG.

If (msgflg & IPC __ NOWAIT) is "false", the calling process
will suspend execution until one of the following occurs:

A message of the desired type is placed on the
queue.

Msqid is removed from the system. When this
occurs, errno is set equal to EIDRM, and a value of
-1 is returned.

The calling process receives a signal that is to be
caught. In this case a message is not received
and the calling process resumes execution in the
manner prescribed in signal (2)).

Msgrcv will fail and no message will be received if one or more of
the following are true:

[EINVAL]

[EACCES]

[EINVAL]

[E2BIG]

[ENOMSG]

[EFAUL T]

Msqid is not a valid message queue identifier.

Operation permission is denied to the calling pro­
cess.

Msgsz is less than 0.

Mtext is greater than msgsz and (msgflg &
MSG_NOERROR) is "false".

The queue does not contain a message of the
desired type and (msgtyp & IPC_NOWAIT) is
"true".

Msgp points to an illegal address.

Upon successful completion, the following actions are taken with
respect to the data structure associated with msqid (see intro (2)).

Msg_qnum is decremented by 1.

Msg_lrpid is set equal to the process ID of the calling pro­
cess.

May 7, 1986

MSGOP(2) UNIX Sys5 MSGOP(2)

Msg_rtime is set equal to the current time.

RETURN VALUES
If msgsnd or msgrcv return due to the receipt of a signal, a value
of -1 is returned to the calling process and errno is set to EINTR. If
they return due to removal of msqid from the system, a value of -1
is returned and errno is set to EIDRM.

Upon successful completion, the return value is as follows:

Msgsnd returns a value of 0.

Msgrcv returns a value equal to the number of bytes actu­
ally placed into mte xt .

Otherwise, a value of -1 is returned and errno is set to indicate the
error.

SEE ALSO
intro(2), msgctl(2), msgget(2), signal(2).

May 7, 1986 Page 4

NICE(2) UNIX Sys5 NICE(2)

NAME

(-
----, nice - change priority of a process

- SYNOPSIS
int nice (incr)
int incr;

DESCRIPTION
Nice adds the value of incr to the nice value of the calling process.
A process's nice value is a positive number for which a more posi­
tive value results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of O are
imposed by the system. Requests for values above or below these
limits result in the nice value being set to the corresponding limit.

[EPERMJ Nice will fail and not change the nice value if incr
is negative or greater than 40 and the effective
user ID of the calling process is not super-user.

RETURN VALUE
Upon successful completion, nice returns the new nice value minus
20. Otherwise, a value of -1 is returned and errno is set to indicate
the error.

(- ---
----_ SEE ALSO

exec(2).
nice(1) in the Sys5 UNIX User Reference Manual.

Page 1 May 7, 1986

OPEN(2) UNIX Sys5 OPEN(2)

NAME
open - open for reading or writing

SYNOPSIS /
#include <fcntl.h>
int open (path, oflag [, mode])
char *path;
int oflag, mode;

DESCRIPTION

Page 1

Path points to a path name naming a file. Open opens a file
descriptor for the named file and sets the file status flags according
to the value of oflag . Oflag values are constructed by or-ing flags
from the following list (only one of the first three flags below may be
used):

O_RDONL Y Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

O_NDELAY This flag may affect subsequent reads and writes.
See read (2) and write (2).

When opening a FIFO with O_RDONL y or O_WRONL y

set:

If 0 ND ELA y is set:

An open for reading-only will return without
delay. An open for writing-only will return an
error if no process currently has the file open
for reading.

If O_NDELAY is clear:

An open for reading-only will block until a pro­
cess opens the file for writing. An open for
writing-only will block until a process opens
the file for reading.

When opening a file associated with a communication
line:

If O_NDELAY is set:

The open will return without waiting for car­
rier.

If O_NDELA y is clear:

The open will block until carrier is present.

O_APPEND If set, the file pointer will be set to the end of the file "- /
prior to each write.

May 7, 1986

(~

OPEN{2)

O_CREAT

O_TRUNC

O_EXCL

UNIX Sys5 OPEN(2)

If the file exists, this flag has no effect. Otherwise,
the owner ID of the file is set to the effective user ID of
the process, the group ID of the file is set to the effec­
tive group ID of the process, and the low-order 12 bits
of the file mode are set to the value of mode modified
as follows (see creat (2)):

All bits set in the file mode creation mask of
the process are cleared. See umask (2).

The "save text image after execution bit" of
the mode is cleared. See chmod (2).

If the file exists, its length is truncated to O and the
mode and owner are unchanged.

If O_EXCL and O_CREAT are set, open will fail if the
file exists.

The file pointer used to mark the current position within the file is set
to the beginning of the file.

The new file descriptor is set to remain open across exec system
calls. See tent/ (2).

The named file is opened unless one or more of the following are
true:

(ENOTDIR)

[ENOENT]

[EACCESJ

[EACCES]

[EISDIR]

[eROFS]

[EMF I LE]

[ENXIOJ

[ETXTBSY]

[EFAUl T]

May 7, 1986

A component of the path prefix is not a directory.

O_CREAT is not set and the named file does not
exist.

A component of the path prefix denies search per­
mission.

Oflag permission is denied for the named file.

The named file is a directory and oflag is write or
read/write.

The named file resides on a read-only file system
and oflag is write or read/write.

Twenty (20) file descriptors are currently open.

The named file is a character special or block spe­
cial file, and the device associated with this special
file does not exist.

The file is a pure procedure (shared text) file that is
being executed and oflag is write or read/write.

Path points outside the allocated address space of
the process.

Page 2

OPEN(2)

[EEXIST]

[ENXIO]

[EINTR]

[ENFILE]

RETURN VALUE

UNIX Sys5 OPEN(2)

O_CREAT and O_EXCL are set, and the named file
exists.

O_NDELAY is set, the named file is a FIFO, '~
O_WRONL Y is set, and no process has the file open
for reading.

A signal was caught during the open system call.

The system file table is full.

Upon successful completion, the file descriptor is returned. Other­
wise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO

Page3

chmod(2), close(2), creat(2), dup(2), fcntl(2), lseek(2), read(2),
umask(2), write(2).

May 7, 1986

(_

('

PAUSE(2) UNIX Sys5 PAUSE(2)

pause - suspend process until signal

SYNOPSIS
pause()

DESCRIPTION
Pause suspends the calling process until it receives a signal. The
signal must be one that is not currently set to be ignored by the cal­
ling process.

If the signal causes termination of the calling process, pause will not
return.

If the signal is ceught by the calling process and control is returned
from the signal-catching function (see signal (2)), the calling pro­
cess resumes execution from the point of suspension; with a return
value of -1 from pause and errno set to EINTR.

SEE ALSO
alarm(2), ki11(2), signal(2), wait(2).

Page 1 May 21, 1985

PIPE(2) UNIX Sys5 PIPE(2)

NAME
pipe - create an interprocess channel

SYNOPSIS
int pipe (tildes)
int fildes(2];

DESCRIPTION
Pipe creates an 1/0 mechanism called a pipe and returns two file
descriptors, tildes [OJ and tildes [1 J. Fi/des [OJ is opened for reading
and tildes {1 J is opened for writing.

Up to 5120 bytes of data are buffered by the pipe before the writing
process is blocked. A read only file descriptor tildes [OJ accesses
the data written to tildes [1 J on a first-in-first-out (FIFO) basis.

[EM FILE]

[EN FILE]

Pipe will fail if 19 or more file descriptors are
currently open.

The system file table is full.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
read(2), write(2).
sh(1) in the Syss UNIX User Reference Manual.

Page 1 May 21, 1985

PLOCK(2) UNIX Sys5 PLOCK(2)

NAME
plock - lock process, text, or data in memory

SYNOPSIS
#include <sys/lock.h>

int plock {op)
int op;

DESCRIPTION
Plock allows the calling process to lock its text segment (text lock),
its data segment (data lock), or both its text and data segments
(process lock) into memory. Locked segments are immune to all
routine swapping. Plock also allows these segments to be
unlocked. The effective user ID of the calling process must be
super-user to use this call. Op specifies the following:

PROCLOCK - lock text and data segments into memory
(process lock)

TXTLOCK­

DATLOCK­

UNLOCK-

lock text segment into memory (text lock)

lock data segment into memory (data lock)

remove locks

Plock will fail and not perform the requested operation if one or
more of the following are true:

[EPERM]

[EINVAL]

[EINVAL]

[EINVAL]

[EINVAL]

The effective user ID of the calling process is not
super-user.

Op is equal to PROCLOCK and a process lock, a
text lock, or a data lock already exists on the cal­
ling process.

Op is equal to TXTLOCK and a text lock, or a pro­
cess lock already exists on the calling process.

Op is equal to DATLOCK and a data lock, or a pro­
cess lock already exists on the calling process.

Op is equal to UNLOCK and no type of lock exists
on the calling process.

RETURN VALUE
Upon successful completion, a value of O is returned to the calling
process. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

SEE ALSO
exec(2), exit(2), fork(2).

Page 1 May 21, 1985

PROFIL(2) UNIX Sys5 PROFIL(2)

NAME
profil - execution time profile

SYNOPSIS
void profil (buff, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

DESCRIPTION
Buff points to an area of core whose length (in bytes) is given by
bufsiz . After this call, the user's program counter (pc) is examined
each clock tick (60th second); offset is subtracted from it, and the
result multiplied by scale . If the resulting number corresponds to a
word inside buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with
binary point at the left: 0177777 (octal) gives a 1-1 mapping of pc's
to words in buff; 077777 (octal) maps each pair of instruction words
together. 02(octal) maps all instructions onto the beginning of buff
(producing a non-interrupting core clock).

Profiling is turned off by giving a scale of O or 1. It is rendered inef­
fective by giving a bufsiz of 0. Profiling is turned off when an exec
is executed, but remains on in child and parent both after a fork .
Profiling will be turned off if an update in buff would cause a
memory fault. ~" . ./

RETURN VALUE
Not defined.

SEE ALSO
monitor(3C).
prof(1) in the Sys5 UNIX User Reference Manual.

Page 1 May 21, 1985

('

____ /

(

PTRACE(2) UNIX Sys5 PTRACE(2)

NAME
ptrace - process trace

SYNOPSIS
int ptrace (request, pid, addr, data);
int request, pid, addr, data;

DESCRIPTION
Ptrace provides a means by which a parent process may control the
execution of a child process. Its primary use is for the implementa­
tion of breakpoint debugging. The child process behaves normally
until it encounters a signal (see signal (2) for the list), at which time
it enters a stopped state and its parent is notified via wait (2). When
the child is in the stopped state, its parent can examine and modify
its "core image" using ptrace . Also, the parent can cause the child
either to terminate or continue, with the possibility of ignoring the
signal that caused it to stop.

The request argument determines the precise action to be taken by
ptrace and is one of the following:

0 This request must be issued by the child process if it
is to be traced by its parent. It turns on the child's
trace flag that stipulates that the child should be left in
a stopped state upon receipt of a signal rather than
the state specified by tune ; see signal (2). The pid ,
addr , and data arguments are ignored, and a return
value is not defined for this request. Peculiar results
will ensue if the parent does not expect to trace the
child.

The remainder of the requests can only be used by the parent pro­
cess. For each, pid is the process ID of the child. The child must
be in a stopped state before these requests are made.

1, 2 With these requests, the long at location addr in the
address space of the child is returned to the parent
process. If I and D space are not separated, either
request 1 or request 2 may be used with equal results.
The data argument is ignored. These two requests
will fail if addr is not the start address of a long, in
which case a value of -1 is returned to the parent pro­
cess and the parent's errno is set to EIO.

3 With this request, the word long at location addr in
the child's USER area in the system's address space
(see <sys/user.h>) is returned to the parent pro­
cess. Addresses in this area range from 0 to 4096.
The data argument is ignored. This request will fail if
addr is not the start address of a word or is outside
the USER area, in which case a value of -1 is returned

Page 1 October 8, 1986

PTRACE{2) UNIX Sys5 PTRACE{2)

to the parent process and the parent's errno is set to
EIO.

4, 5 With these requests, the long value given by the data
argument is written into the address space of the child
at location addr . Either request 4 or request 5 may be
used with equal results. Upon successful completion,
the value written into the address space of the child is
returned to the parent. These two requests will fail if
addr is a location in a pure procedure space and
another process is executing in that space, or addr is
not the start address of a word. Upon failure a value
of -1 is returned to the parent process and the
parent's errno is set to EIO.

6 With this request, a few entries in the child's USER
area can be written. Data gives the value that is to be
written and addr is the location of the entry. The few
entries that can be written are:

7

8

the general registers (i.e., registers AO-A? and
00-07

the condition codes of the Processor Status
Word

This request causes the child to resume execution. If "
the data argument is 0, all pending signals including
the one that caused the child to stop are canceled
before it resumes execution. If the data argument is a
valid signal number, the child resumes execution as if
it had incurred that signal, and any other pending sig­
nals are canceled. The addr argument must be equal
to 1 for this request. Upon successful completion, the
value of data is returned to the parent. This request
will fail if data is not O or a valid signal number, in
which case a value of -1 is returned to the parent pro­
cess and the parent's errno is set to EIO.

This request causes the child to terminate with the
same consequences as exit(2).

October 8, 1986 Page 2

PTRACE(2) UNIX Sys5 PTRACE(2)

9 This request sets the trace bit in the Processor Status
Word of the child (i.e., bit 15 and then executes the
same steps as listed above for request 7. The trace
bit causes an interrupt upon completion of one
machine instruction. This effectively allows single
stepping of the child.

1 O This request attaches a debugger to a process. The
calling process becomes the debugger for the process
pid. This is similar to request O being made by the
process being attached. The process does not stop at
this time. The debugger must send a signal to the
process to stop it. If the attached process does a fork
the child inherits the debugger and gets a SIGTRAP
before it starts execution. The debugger will therefore
get notification of the new process. Only processes
which the caller has the right to send a signal to may
be attached.

11 This request detaches the debugger. This undoes the
effect of an attach to a process. Children of the pro­
cess being detached will not be affected. Children
must each be deliberately detached.

12 This request returns the parent process id for the pro­
cess pid.

13 This request copies the contents of the u_comm area
of the process pid to addr.

To forestall possible fraud, ptrace inhibits the set-user-id facility on
subsequent exec (2) calls. If a traced process calls exec , it will
stop before executing the first instruction of the new image showing
signal SIGTRAP .

GENERAL ERRORS
Ptrace will in general fail if one or more of the following are true:

[EIOJ Request is an illegal number.

[ESRCH] Pid identifies a child that does not exist or has not
executed a ptrace with request 0 .

SEE ALSO
exec(2), signal(2), wait(2).

Page3 October 8, 1986

READ(2) UNIX Sys5 READ(2)

NAME
read - read from file

SYNOPSIS
int read (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION

Page 1

Fi/des is a file descriptor obtained from a creat, open , dup , tent/,
or pipe system call.

Read attempts to read nbyte bytes from the file associated with
tildes into the buffer pointed to by but .

On devices capable of seeking, the read starts at a position in the
file given by the file pointer associated with tildes . Upon return from
read , the file pointer is incremented by the number of bytes actually
read.

Devices that are incapable of seeking always read from the current
position. The value of a file pointer associated with such a file is
undefined.

Upon successful completion, read returns the number of bytes actu­
ally read and placed in the buffer; this number may be less than
nbyte if the file is associated with a communication line (see ioctl
(2) and termio (7)), or if the number of bytes left in the file is less
than nbyte bytes. A value of O is returned when an end-of-file has
been reached.

When attempting to read from an empty pipe (or FIFO):

If O_NDELAY is set, the read will return a 0.

If O_NDELAY is clear, the read will block until data is written
to the file or the file is no longer open for writing.

When attempting to read a file associated with a tty that has no data
currently available:

If O_NDELAY is set, the read will return a 0.

If O_NDELAY is clear, the read will block until data becomes
available.

Read will fail if one or more of the following are true:

[EBADF]

[EFAUL T]

Fi/des is not a valid file descriptor open for reading.

Bufpoints outside the allocated address space.

May 7, 1986

(

READ(2) UNIX Sys5 READ(2)

[EINTR] A signal was caught during the read system call.

RETURN VALUE
Upon successful completion a non-negative integer is returned indi­
cating the number of bytes actually read. Otherwise, a -1 is
returned and errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), fcntl(2), ioctl(2), open(2), pipe(2).
termio(7) in the Sys5 UNIX Administrator Reference Manual.

May 22, 1985 Page 2

SEMCTL(2) UNIX Sys5 SEMCTL(2)

NAME
semctl - semaphore control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (semid, semnum, cmd, arg)
int semid, cmd;
int semnum;
union semun {

int val;
struct semid_ds *buf;
ushort *array;

} arg;

DESCRIPTION

Page 1

Semctl provides a variety of semaphore control operations as speci­
fied by cmd.

The following cmd s are executed with respect to the semaphore
specified by semid and semnum:

GETVAl Return the value of semval (see intro (2)).
{READ}

SETVAl Set the value of semval to arg. val . {ALTER}
When this cmd is successfully executed, the
semadj value corresponding to the specified
semaphore in all processes is cleared.

GETPID Return the value of sempid. {READ}

GETNCNT Return the value of semncnt. {READ}

GETZCNT Return the value of semzcnt. {READ}

The following cmd s return and set, respectively, every semval in
the set of semaphores.

GET All Place semvals into array pointed to by
arg.array . {READ}

SET All Set semvals according to the array pointed to
by arg.array . {ALTER} When this cmd is suc­
cessfully executed the semadj values
corresponding to each specified semaphore in
all processes are cleared.

The following cmd s are also available:

May 21, 1985

SEMCTL(2)

(

May 21, 1985

UNIX Sys5 SEMCTL(2)

IPC_STAT Place the current value of each member of the
data structure associated with semid into the
structure pointed to by arg.buf . The contents
of this structure are defined in intro (2). lREADf

IPC_SET Set the value of the following members of the
data structure associated with semid to the
corresponding value found in the structure
pointed to by arg.buf:
sem_perm.uid
sem_perm.gid
sem_perm.mode f* only low 9 bits */

This cmd can only be executed by a process
that has an effective user ID equal to either that
of super-user or to the value of sem_perm.uid
in the data structure associated with semid.

IPC_RMID Remove the semaphore identifier specified by
semid from the system and destroy the set of
semaphores and data structure associated with
it. This cmd can only be executed by a pro­
cess that has an effective user ID equal to
either that of super-user or to the value of
sem_perm.uid in the data structure associated
with semid.

Semctl will fail if one or more of the following are true:

[EINVAL)

[EINVAL]

[EINVAL]

[EACCES]

[ERANGE]

[EPERM)

[EFAULT)

Semid is not a valid semaphore identifier.

Semnum is less than zero or greater than
sem_nsems.

Cmd is not a valid command.

Operation permission is denied to the cal­
ling process (see intro (2)).

Cmd is SETVAL or SET ALL and the value
to which semval is to be set is greater than
the system imposed maximum.

Cmd is equal to IPC_RMID or IPC_SET and
the effective user ID of the calling process
is not equal to that of super-user and it is
not equal to the value of sem_perm.uid in
the data structure associated with semid.

Arg.buf points to an illegal address.

Page 2

SEMCTL(2) UNIX Sys5 SEMCTL{2)

RETURN VALUE
Upon successful completion, the value returned depends on cmd as
follows:

GETVAL The value of semval.
GET PIO
GET NC NT
GETZCNT
All others

The value of sempid.
The value of semncnt.
The value of semzcnt.
A value of 0.

Otherwise, a value of -1 is returned and errno is set to indicate the
error.

SEE ALSO
intro(2), semget(2), semop(2).

Page3 May21, 1985

(

SEMGET(2) UNIX Sys5 SEMGET(2)

NAME
semget - get set of semaphores

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key, nsems, semflg)
key_t key;
int nsems, semflg;

DESCRIPTION
Semget returns the semaphore identifier associated with key .

A semaphore identifier and associated data structure and set con­
taining nsems semaphores (see intro (2)) are created for key if one
of the following are true:

Key is equal to IPC_PRIVATE.

Key does not already have a semaphore identifier associ­
ated with it, and (semflg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new sema­
phore identifier is initialized as follows:

Sem_perm.cuid , sem_perm.uid , sem_perm.cgid , and
sem_perm.gid are set equal to the effective user ID and
effective group ID, respectively, of the calling process.

The low-order 9 bits of sem_perm.mode are set equal to
the low-order 9 bits of semf/g .

Sem_nsems is set equal to the value of nsems .

Sem_otime is set equal to O and sem_ctime is set equal to
the current time.

Semget will fail if one or more of the following are true:

(EINVAL] Nsems is either less than or equal to zero or
greater than the system-imposed limit.

[EACCES]

,.~

[EINVAL)

A semaphore identifier exists for key , but opera­
tion permission (see intro (2)) as specified by the
low-order 9 bits of semflg would not be granted.

A semaphore identifier exists for key , but the
number of semaphores in the set associated with it
is less than nsems and nsems is not equal to
zero.

[ENOENT]

Page 1

A semaphore identifier does not exist for key and (
semf/g & IPC_CREAT) is "false".

May 7, 1986

SEMGET(2)

[ENOS PC]

[ENOS PC)

[EEXIST]

RETURN VALUE

UNIX Sys5 SEMGET(2)

A semaphore identifier is to be created but the
system-imposed limit on the maximum number of
allowed semaphore identifiers system wide would
be exceeded.

A semaphore identifier is to be created but the
system-imposed limit on the maximum number of
allowed semaph_ores system wide would be
exceeded.

A semaphore identifier exists for key but ((semflg
& IPC_CREAT) and (semflg & IPC_EXCL)) is
"true".

Upon successful completion, a non-negative integer, namely a
semaphore identifier, is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO
intro(2), semctl(2), semop(2).

May 7, 1986 Page 2

(

(

SEMOP{2) UNIX Sys5 SEMOP(2)

NAME
semop - semaphore operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;
struct sembuf **sops;
int nsops;

DESCRIPTION
Semop is automatically performs an array of semaphore operations
on the set of semaphores associated with the semaphore identifier
specified by semid. Sops is a pointer to the array of semaphore­
operation structures. Nsops is the number of such structures in the
array. The contents of each structure includes the following:

short sem_num; /* semaphore number *f
short sem_op; f* semaphore operation *f
short sem_flg; f* operation flags *I

Each semaphore operation specified by sem_op is performed on
the corresponding semaphore specified by semid and sem_num.

Sem_op specifies one of three semaphore operations as follows:

Page 1 .

If sem_op is a negative integer, one of the following will occur:
{ALTER}

If semval (see intro (2)) is greater than or equal to the abso­
lute value of sem_op, the absolute value of sem_op is sub­
tracted from semval. If (sem_flg & SEM_UNDO) is "true", the
absolute value of sem_op is added to the calling process's
semadj value (see exit (2)) for the specified semaphore.

If semval is less than the absolute value of sem_op and
(sem_t/g & IPC_NOWAIT) is "true", semop will return immedi­
ately.

If semval is less than the absolute value of sem_op and
(sem_t/g & IPC_NOWAIT) is "false", semop will increment the
semncnt associated with the specified semaphore and
suspend execution of the calling process until one of the fol­
lowing conditions occur.

Semval becomes greater than or equal to the absolute
value of sem_op . When this occurs, the value of
semncnt associated with the specified semaphore is
decremented, the absolute value of sem_op is sub­
tracted from semval and, if (sem_flg & SEM_UNDO)

October 9, 1986

SEMOP{2) UNIX Sys5 SEMOP(2)

is "true", the absolute value of sem_op is added to the
calling process's semadj value for the specified sema- / ··
phore. ·

The semid for which the calling process is awaiting
action is removed from the system (see semctl (2)).
When this occurs, errno is set equal to EIDRM, and a
value of -1 is returned.

The calling process receives a signal that is to be
caught. When this occurs, the value of semncnt asso­
ciated with the specified semaphore is decremented,
and the calling process resumes execution in the
manner prescribed in signal (2).

If sem_op is a positive integer, the value of sem_op is added to
semval and, if (sem_flg & SEM_UNDO) is "true", the value of
sem_op is subtracted from semadj value of the calling process for
the specified semaphore. {ALTER}

If sem_op is zero, one of the following will occur: {READ}

If semval is zero, semop will return immediately.

If semval is not equal to zero and (sem_flg & IPC_NOWAIT) is
"true", semop will return immediately.

'

If semval is not equal to zero and (sem_t/g & IPC_NOWAIT) \ /
is "false", semop will increment the semzcnt associated with
the specified semaphore and suspend execution of the calling
process until one of the following occurs:

October 9, 1986

Semval becomes zero, at which time the value of
semzcnt associated with the specified semaphore is
decremented.

The semid for which the calling process is awaiting
action is removed from the system. When this occurs,
errno is set equal to EIDRM, and a value of -1 is
returned.

The calling process receives a signal that is to be
caught. When this occurs, the value of semzcnt asso­
ciated with the specified semaphore is decremented,
and the calling process resumes execution in the
manner prescribed in signal (2).

Page 2

(

SEMOP(2) UNIX Sys5 SEMOP(2)

Semop will fail if one or more of the following are true for any of the
semaphore operations specified by sops :

[EINVAL]

(EFBIG]

[E2BIG]

[EACCES]

[EA GAIN)

[ENOS PC]

[EINVAL]

[ERANGE]

[ERANGE]

(EFAULT]

Semid is not a valid semaphore identifier.

Sem_num is less than zero or greater than or equal
to the number of semaphores in the set associated
with semid.

Nsops is greater than the system-imposed max­
imum.

Operation permission is denied to the calling pro­
cess (see intro (2)).

The operation would result in suspension of the
calling process but (sem_flg & IPC_NOWAIT) is
"true".

The limit on the number of individual processes
requesting an SEM_UNDO would be exceeded.

The number of individual semaphores for which the
calling process requests a SEM_UNDO would
exceed the limit.

An operation would cause a semval to overflow the
system-imposed limit.

An operation would cause a semadj value to over­
flow the system-imposed limit.

Sops points to an illegal address.

Upon successful completion, the value of sempid for each sema­
phore specified in the array pointed to by sops is set equal to the
process ID of the calling process.

RETURN VALUE
If semop returns due to the receipt of a signal, a value of -1 is
returned to the calling process and errno is set to EINTR. If it
returns due to the removal of a semid from the system, a value of
-1 is returned and errno is set to EIDRM.

Upon successful completion, the value of semval at the time of the
call for the last operation in the array pointed to by sops is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the
error.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), semctl(2), semget(2).

Page 3 . October 9, 1986

(\

SETPGRP(2) UNIX Sys5

NAME
setpgrp - set process group ID

SYNOPSIS
int setpgrp ()

DESCRIPTION

SETPGRP(2)

Setpgrp sets the process group ID of the calling process to the pro­
cess ID of the calling process and returns the new process group ID.

RETURN VALUE
Setpgrp returns the value of the new process group ID.

SEE ALSO
exec(2), fork(2), getpid(2), intro(2), ki11(2), signal(2).

Page 1 May 21, 1985

SETUI0(2) UNIX Sys5 SETUID(2)

NAME
setuid, setgid - set user and group IDs

SYNOPSIS
int setuid (uid)
int uid;

int setgid (gid)
int gid;

DESCRIPTION
Setuid (setgid) is used to set the real user (group) ID and effec­
tive user (group) ID of the calling process.

It the effective user ID of the calling process is super-user, the real
user (group) ID and effective user (group) ID are set to uid (gid).

It the effective user ID of the calling process is not super-user, but
its real user (group) ID is equal to uid (gid), the effective user
(group) ID is set to uid (gid).

If the effective user ID of the calling process is not super-user, but
the saved set-user (group) ID from exec(2) is equal to uid (gid), the
effective user (group) ID is set to uid (gid).

Setuid (setgid) will tail it the real user (group) ID of the calling pro­
cess is not equal to uid (gid) and its effective user ID is not
super-user. [EPERM]

The uid is out of range. [EINVALJ

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
getuid(2), intro(2).

Page 1 May 21, 1985

/

SHMCTL(2) UNIX Sys5 SHMCTL(2)

NAME

(~ ,SYNOP;,:mctl - shared memory control operations

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (shmid, cmd, buf)
int shmid, cmd;
struct shmid_ds *buf;

DESCRIPTION

(... ~

Page 1

Shmctl provides a variety of shared memory control operations as
specified by cmd . The following cmd s are available:

IPC_STAT Place the current value of each member of the
data structure associated with shmid into the
structure pointed to by but . The contents of
this structure are defined in intro (2). {READ}

IPC_SET Set the value of the following members of the
data structure associated with shmid to the
corresponding value found in the structure
pointed to by but :
shm_perm.uid
shm_perm.gid
shm_perm.mode f* only low 9 bits*/

This cmd can only be executed by a process
that has an effective user ID equal to either that
of super-user or to the value of shm_perm.uid
in the data structure associated with shmid .

IPC_RMID Remove the shared memory identifier specified
by shmid from the system and destroy the
shared memory segment and data structure
associated with it. This cmd can only be exe­
cuted by a process that has an effective user
ID equal to either that of super-user or to the
value of shm_perm.uid in the data structure
associated with shmid .

Shmctl will fail if one or more of the following are true:

[EINVAL]

[EINVAL]

[EACCES]

Shmid is not a valid shared memory iden­
tifier.

Cmd is not a valid command.

Cmd is equal to IPC_STAT and {READ}
operation permission is denied to the cal­
ling process (see intro (2)).

May 7, 1986

SHMCTL(2)

[EPERM]

[EFAULT]

RETURN VALUE

UNIX Sys5 SHMCTL(2)

Cmd is equal to IPC_RMID or IPC_SET and
the effective user ID of the calling process
is not equal to that of super-user and it is
not equal to the value of shm_perm.uid in
the data structure associated with shmid .

But points to an illegal address.

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
intro(2), shmget(2), shmop(2).

May 7, 1986 Page2

(

SHMGET(2) UNIX Sys5 SHMGET(2)

NAME
shmget - get shared memory segment

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key, size, shmflg)
key_t key;
int size, shmflg;

DESCRIPTION

Page 1

Shmget returns the shared memory identifier associated with key .

A shared memory identifier and associated data structure and
shared memory segment of size size bytes (see intro (2)) are
created for key if one of the following are true:

Key is equal to IPC_PRIVATE.

Key does not already have a shared memory identifier
associated with it, and (shmflg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new shared
memory identifier is initialized as follows:

Shm_perm.cuid , shm_perm.uid , shm_perm.cgid , and
shm_perm.gid are set equal to the effective user ID and
effective group ID, respectively, of the calling process.

The low-order 9 bits of shm_perm.mode are set equal to
the low-order 9 bits of shmflg . Shm_segsz is set equal to
the value of size .

Shm_lpid , shm_nattch , shm_atime , and shm_dtime
are set equal to 0.

Shm_ctime is set equal to the current time.

Shmget will fail if one or more of the following are true:

[EINVAL]

[EACCES]

[EINVAL]

Size is less than the system-imposed minimum or
greater than the system-imposed maximum.

A shared memory identifier exists for key but
operation permission (see intro (2)) as specified by
the low-order 9 bits of shmflg would not be
granted.

A shared memory identifier exists for key but the
size of the segment associated with it is less than
size and size is not equal to zero.

May 22, 1985

SHMGET{2)

[ENO ENT]

[ENOS PC]

[ENOMEM]

[EEXIST]

RETURN VALUE

UNIX Sys5 SHMGET(2)

A shared memory identifier does not exist for key .
and (shmflg & IPC __ CREAT) is "false". ·

A shared memory identifier is to be created but the
system-imposed limit on the maximum number of
allowed shared memory identifiers system wide
would be exceeded.

A shared memory identifier and associated shared
memory segment are to be created but the amount
of available physical memory is not sufficient to fill
the request.

A shared memory identifier exists for key but ((
shmflg & IPC_CREAT) and (shmflg & IPC_EXCL)
) is "true".

Upon successful completion, a non-negative integer, namely a
shared memory identifier is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO
intro(2), shmctl(2), shmop(2).

May 22, 1985 Page 2

(

c:

SHMOP(2) UNIX Sys5 SHMOP(2)

NAME
shmop - shared memory operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char *Shmat (shmid, shmaddr, shmflg)
int shmid;
char *Shmaddr
int shmflg;

int shmdt (shmaddr)
char *Shmaddr

DESCRIPTION

Page 1

Shmat attaches the shared memory segment associated with the
shared memory identifier specified by shmid to the data segment of
the calling process. The segment is attached at the address speci­
fied by one of the following criteria:

If shmaddr is equal to zero, the segment is attached at the
first available address as selected by the system.

If shmaddr is not equal to zero and (shmflg & SHM_RND)
is "true'', the segment is attached at the address given by (
shmaddr - (shmaddr modulus SHMLBA)).

If shmaddr is not equal to zero and (shmflg & SHM_RND)
is "false", the segment is attached at the address given by
shmaddr.

Shmdt detaches from the calling process's data segment
the shared memory segment located at the address speci­
fied by shmaddr.

Shmdt will fail and not detach the shared memory segment
if shmaddr is not the data segment start address of a
shared memory segment.

The segment is attached for reading if (shmffg & SHM_RDONL Y) is
"true" {READ}, otherwise it is attached for reading and writing
{READ/WRITE}.

Shmat will fail and not attach the shared memory segment if one or
more of the following are true:

[EINVAL] Shmid is not a valid shared memory identifier.

[EACCES] Operation permission is denied to the calling pro­
cess (see intro (2)).

[ENOMEM] The available data space is not large enough to
accommodate the shared memory segment.

April 3, 1986

SHMOP(2)

[EINVAL]

[EINVAL]

[EMFILE]

RETURN VALUES

UNIX Sys5 SHMOP(2)

Shmaddr is not equal to zero, and the value of (
shmaddr - (shmaddr modulus SHMLBA)) is an(\
illegal address. ~--/

Shmaddr is not equal to zero, (shmflg &
SHM_RND) is "false", and the value of shmaddr is
an illegal address.

The number of shared memory segments attached
to the calling process would exceed the system­
imposed limit.

Upon successful completion, the return value is as follows:

Shmat returns the data segment start address of the
attached shared memory segment.

Shmdt returns a value of 0.

Otherwise, a value of -1 is returned and errno is set to indicate the
error.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), shmctl(2), shmget(2).

April 3, 1986 Page2

(/

(-,

SIGNAL(2) UNIX Sys5 SIGNAL(2)

NAME
signal - specify what to do upon receipt of a signal

SYNOPSIS
#include <signal.h>

int (•signal (sig, func))()
int sig;
void (*func)();

DESCRIPTION

Page 1

Signal allows the calling process to choose one of three ways in
which it is possible to handle the receipt of a specific signal. Sig
specifies the signal and tune specifies the choice.

Sig can be assigned any one of the following except SIGKILL :

SIGHUP 01 hangup
SIGINT 02 interrupt
SIGQUIT 03* quit
SIGILL 04* illegal instruction (not reset when caught)
SIGTRAP 05* trace trap (not reset when caught)
SIGIOT 06* IOT instruction
SIGEMT 07* EMT instruction
SIGFPE 08* floating point exception
SIGKILL 09 kill (cannot be caught or ignored)
SIG BUS 1 O* bus error
SIGSEGV 11 * segmentation violation
SIGSYS 12* bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGUSR1 16 user-defined signal 1
SIGUSR2 17 user-defined signal 2
SIGCLD 18 death of a child

(see WARNING below)
SIGPWR 19 power fail

(see WARNING below)

See below for the significance of the asterisk (*) in the above list.

Fune is assigned one of three values: SIG_DFL , SIG_IGN , or a
function address. Following are descriptions of these values:

SIG_DFL - terminate process upon receipt of a signal
Upon receipt of the signal sig , the receiving process is
to be terminated with all of the consequences outlined in
exit (2). In addition a "core image" will be made in the
current working directory of the receiving process if sig is
one for which an asterisk appears in the above list and
the following conditions are met:

May 7, 1986

SIGNAL(2) UNIX Sys5 SIGNAL(2)

The effective user ID and the real user ID of the
receiving process are equal. (',

An ordinary file named CQre exists and is writable or V
can be created. If the file must be created, it will
have the following properties:

a mode of 0666 modified by the file creation
mask (see umask (2))

a file owner ID that is the same as the effective
user ID of the receiving process.

a file group ID that is the same as the effective
group ID of the receiving process

SIG_IGN - ignore signal
The signal sig is to be ignored.

Note: the signal SIGKILL cannot be ignored.

function address - catch signal

May 7, 1986

Upon receipt of the signal sig , the receiving process is to
execute the signal-catching function pointed to by tune .
The signal number sig will be passed as the only argument
to the signal-catching function. Additional arguments are
passed to the signal-catching function for hardware­
generated signals. Before entering the signal-catching
function, the value of tune for the caught signal will be set
to SIG_DFL unless the signal is SIGILL ' SIGTRAP , or
SIGPWR.

Upon return from the signal-catching function, the receiving
process will resume execution at the point it was inter­
rupted.

When a signal that is to be caught occurs during a read , a
write , an open , or an ioctl system call on a slow device
(like a terminal; but not a file), during a pause system call,
or during a wait system call that does not return immedi­
ately due to the existence of a previously stopped or zom­
bie process, the signal catching function will be executed
and then the interrupted system call may return a -1 to the
calling process with errno set to EINTR.

Note: The signal SIGKILL cannot be caught.

Page2

(/

(/

SIGNAL(2) UNIX Sys5 SIGNAL(2)

A call to signal cancels a pending signal sig except for a pending
SIGKILL signal.

Signal will fail if sig is an illegal signal number, including SIGKILL .
[EINVAL]

RETURN VALUE
Upon successful completion, signal returns the previous value of
tune for the specified signal sig . Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO
kill(2), pause(2), ptrace(2), wait(2), setjmp(3C).
kill(1) in the SysS UNIX User Reference Manual.

WARNING

Page 3

Two other signals that behave differently than the signals described
above exist in this release of the system; they are:

SIGCLD 18 death of a child (reset when caught)
SIGPWR 19 power fail (not reset when caught)

There is no guarantee that, in future releases of the UNIX system,
these signals will continue to behave as described below; they are
included only for compatibility with other versions of the UNIX sys­
tem. Their use in new programs is strongly discouraged.

For these signals, tune is assigned one of three values: SIG_DFL ,
SIG_IGN , or a function address . The actions prescribed by these
values of are as follows:

SIG_DFL - ignore signal
The signal is to be ignored.

SIG_IGN • ignore signal
The signal is to be ignored. Also, if sig is SIGCLD , the
calling process's child processes will not create zombie
processes when they terminate; see exit (2).

function address · catch signal
If the signal is SIGPWR , the action to be taken is the
same as that described above for tune equal to function
address . The same is true if the signal is SIGCLD
except, that while the process is executing the signal­
catching function, any received SIGCLD signals will be
queued and the signal-catching function will be continu­
ally reentered until the queue is empty.

May 7, 1986

SIGNAL(2) UNIX Sys5 SIGNAL(2)

The SIGCLD affects two other system calls (wait (2), and exit
(2)) in the following ways:

wait If the tune value of SIGCLD is set to SIG_IGN and a wai(',j
is executed, the wait will block until all of the calling
process's child processes terminate; it will then return a
value of -1 with errno set to ECHILD.

exit If in the exiting process's parent process the tune value
of SIGCLD is set to SIGJGN , the exiting process will not
create a zombie process.

When processing a pipeline, the shell makes the last process in
the pipeline the parent of the proceeding processes. A process
that may be piped into in this manner (and thus become the
parent of other processes) should take care not to set SIGCLD to
be caught.

May 7, 1986 Page4

(

(

(~

STAT{2) UNIX Sys5 STAT(2)

NAME
stat, fstat - get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int stat (path, buf)
char *path;
struct stat * buf;

int fstat (fildes, buf)
int fildes;
struct stat *buf;

DESCRIPTION

Page 1

Path points to a path name naming a file. Read, write, or execute
permission of the named file is not required, but all directories listed
in the path name leading to the file must be searchable. Stat
obtains information about the named file.

Similarly, fstat obtains information about an open file known by the
file descriptor tildes, obtained from a successful open, creat, dup,
fcntl, or pipe system call.

Buf is a pointer to a stat structure into which information is placed
concerning the file.

The contents of the structure pointed to by buf include the following
members:

ushort st_mode; '* File mode; see mknod (2) *f
ino_t st_ino; I* lnode number *'
dev_t st_dev; f* ID of device containing *'

f* a directory entry for this file *'
dev_t st_rdev; f* ID of device *'

f* This entry is defined only for */
f* character special or block special

files *'
short st_nlink; f* Number of links */
us ho rt st_uid; f* User ID of the file's owner *f
us ho rt st_gid; f* Group ID of the file's group *f
oft_t st_ size; f* File size in bytes *f
time_t st_atime; f* Time of last access *'
time_t st_mtime; f* Time of last data modification *f
time_t st_ctime; f* Time of last file status change *'

f* Times measured in seconds since

' ' 00:00:00 GMT, Jan. 1, 1970 *f

August 19, 1986

STAT(2) UNIX Sys5 STAT{2)

st_atime Time when file data was last accessed. Changed by the
following system calls: creat(2), mknod(2), pipe(2),

1
/

utime(2), and read(2).

st_mtime Time when data was last modified. Changed by the fol­
lowing system calls: creat(2), mknod(2), pipe(2),
utime(2), and write(2).

st_ctime Time when file status was last changed. Changed by
the following system calls: chmod(2), chown(2),
creat(2), link(2}, mknod(2), pipe(2), unlink(2), utime(2),
and write(2).

Stat will fail if one or more of the following are true:

[ENOTDIRJ A component of the path prefix is not a directory.

[ENOENT]

[EACCES]

[EFAULT]

The named file does not exist.

Search permission is denied for a component of
the path prefix.

Buf or path points to an invalid address.

Fstat will fail if one or more of the following are true:

[EBADF]

[EFAULT]

RETURN VALUE

Fi/des is not a valid open file descriptor.

But points to an invalid address.

Upon successful completion a value of O is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), read(2),
time(2), unlink(2), utime(2), write(2).

August 19, 1986 Page2

'<:'"" __ /

(

(

STIME(2)

NAME
stime - set time

SYNOPSIS
int stime (tp)
long *tp;

DESCRIPTION

UNIX Sys5 STIME(2)

Stime sets the system's idea of the time and date. Tp points to the
value of time as measured in seconds from 00:00:00 GMT January
1, 1970.

[EPERM]

RETURN VALUE

Stime will fail if the effective user ID of the calling
process is not super-user.

Upon successful completion, a value of O is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
time(2).

Page 1 May 7, 1986

SYNC(2) UNIX Sys5 SYNC(2)

NAME
sync - update super-block

SYNOPSIS
void sync ()

DESCRIPTION

Page 1

Sync causes all information in memory that should be on disk to be
written out. This includes modified super blocks, modified i-nodes,
and delayed block 1/0.

It should be used by programs which examine a file system, for
example fsck , df , etc. It is mandatory before a boot.

The writing, although scheduled, is not necessarily complete upon
return from sync .

May 7, 1986

(

(

TIME(2) UNIX Sys5 TIME(2)

NAME
time - get time

SYNOPSIS
long time ((long *) 0)

long time {tloc)
long *tloc;

DESCRIPTION
Time returns the value of time in seconds since 00:00:00 GMT,
January 1, 1970.

If tloc (taken as an integer) is non-zero, the return value is also
stored in the location to which tloc points.

[EFAUL Tl Time will fail if tloc points to an illegal address.

RETURN VALUE
Upon successful completion, time returns the value of time. Other­
wise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
stime(2).

Page 1 May 7, 1986

TIMES(2) UNIX Sys5 TIMES(2)

NAME
times - get process and child process times

SYNOPSIS
#include <sys/types.h>
#include <sys/times.h>

long times (buffer)
struct tms *buffer;

DESCRIPTION
Times fills the structure pointed to by buffer with time-accounting
information. The following are the contents of this structure:

struct tms {

~-
1'

time_t tms_utime;
time_t tms_stime;
time_t tms_cutime;
time_t tms_cstime;

This information comes from the calling process and each of its ter­
minated child processes for which it has executed a wait . All times
are in 64ths of a second.

Tms_utime is the CPU time used while executing instructions in the
user space of the calling process.

Tms_stime is the CPU time used by the system on behalf of the cal­
ling process.

Tms_cutime is the sum of the tms_utime s and tms_cutime s of the
child processes.

Tms_cstime is the sum of the tms_stime s and tms_cstime s of the
child processes.

[EFAUL T] Times will fail if buffer points to an illegal address.

RETURN VALUE
Upon successful completion, times returns the elapsed real time, in
64ths of a second, since an arbitrary point in the past (e.g., system
start-up time). This point does not change from one invocation of
times to another. If times fails, a -1 is returned and errno is set to
indicate the error.

SEE ALSO
exec(2), fork(2), time(2), wait(2).

Page 1 May 7, 1986

ULIMIT(2) UNIX Sys5 ULIMIT(2)

NAME

(
- _. ulimit - get and set user limits

_ SYNOPSIS
long ulimit (cmd, newlimit)
int cmd;
long newlimit;

DESCRIPTION
This function provides for control over process limits. The cmd
values available are:

1 Get the file size limit of the process. The limit is in units of
512-byte blocks and is inherited by child processes. Files of
any size can be read.

2 Set the file size limit of the process to the value of newlimit .
Any process may decrease this limit, but only a process with
an effective user ID of super-user may increase the limit.
Ulimit will fail and the limit will be unchanged if a process with
an effective user ID other than super-user attempts to increase
its file siz~ limit. [EPERMJ

3 Get the maximum possible break value. See brk (2).

__ RETURN VALUE

(, Upon successful completion, a non-negative value is returned. 0th-
- _,, erwise, a value of -1 is returned and errno is set to indicate the

error.

SEE ALSO
brk(2), write(2).

Page 1 May 7, 1986

UMASK(2) UNIX Sys5

NAME
urnask - set and get file creation mask

SYNOPSIS
int umask (cmask)
int cmask;

DESCRIPTION

UMASK{2)

Umask sets the process's file mode creation mask to cmask and
returns the previous value of the mask. Only the low-order 9 bits of
cmask and the file mode creation mask are used.

RETURN VALUE
The previous value of the file mode creation mask is returned.

SEE ALSO
chrnod(2), creat(2), mknod(2), open(2).
mkdir(1), sh(1) in the Sys5 UNIX User Reference Manual.

Page 1 May 7, 1986

(

(/

UNAME(2) UNIX Sys5 UNAME(2)

NAME
uname - get name of current UNIX system

SYNOPSIS
#include <sys/utsname.h>

int uname {name)
struct utsname *name;

DESCRIPTION
Uname stores information identifying the current UNIX system in the
structure pointed to by name.

Uname uses the structure defined in <sys/utsname.h> whose
members are:

char sysname[9];
char nodename[9];
char release[9];
char version[9];
char machine[9];

Uname returns a null-terminated character string naming the current
UNIX system in the character array sysname. Similarly, nodename
contains the name that the system is known by on a communica­
tions network. Re/ease and version further identify the operating
system. Machine contains a standard name that identifies the
hardware that the UNIX system is running on.

[EFAUL T] Uname will fail if name points to an invalid address.

RETURN VALUE
Upon successful completion, a non-negative value is returned. Oth­
erwise, -1 is returned and errno is set to indicate the error.

SEE ALSO
uname(1) in the Sys5 UNIX User Reference Manual.

Page 1 May 21, 1985

UNUNK(2) UNIX Sys5 UNUNK(2)

NAME
unlink - remove directory entry

SYNOPSIS
int unlink (path)
char *path;

DESCRIPTION
Unlink removes the directory entry named by the path name pointed
to be path.

The named file is unlinked unless one or more of the following are
true:

[ENOTDIR]

[ENO ENT]

[EACCES]

[EACCES]

[EPERM]

[EBUSY]

[ETXTBSY]

[EROFS]

[EFAULT]

A component of the path prefix is not a directory.

The named file does not exist.

Search permission is denied for a component of
the path prefix.

Write permission is denied on the directory contain­
ing the link to be removed.

The named file is a directory and the effective user
ID of the process is not super-user.

The entry to be unlinked is the mount point for a ·
mounted file system.

The entry to be unlinked is the last link to a pure
procedure (shared text) file that is being executed.

The directory entry to be unlinked is part of a
read-only file system.

Path points outside the process's allocated
address space.

When all links to a file have been removed and no process has the
file open, the space occupied by the file is freed and the file ceases
to exist. If one or more processes have the file open when the last
link is removed, the removal is postponed until all references to the
file have been closed.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
close(2), link(2), open(2).
rm(1) in the Sys5 UNIX User Reference Manual.

Page 1 May 21, 1985

(_/

USTAT(2) UNIX Sys5 USTAT(2)

NAME
ustat - get file system statistics

SYNOPSIS
#include <sys/types.h>
#include <ustat.h>

int ustat (dev, buf)
int dev;
struct ustat *buf;

DESCRIPTION
Ustat returns information about a mounted file system. Dev is a
device number identifying a device containing a mounted file sys­
tem. Buf is a pointer to a ustat structure that includes to following
elements:

daddr_t f_tfree; I* Total free blocks */
ino_t f_tinode; '* Number of free inodes *'
char f_fname[6]; /* Filsys name */
char f_fpack[6]; /* Filsys pack name *'

Ustat will fail if one or more of the following are true:

[EINVAL]

[EFAULT]

Dev is not the device number of a device contain­
ing a mounted file system.

Buf points outside the process's allocated address
space.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
stat(2), fs(4).

Page 1 May 7, 1986

UTIME(2) UNIX Sys5 UTIME(2)

NAME
utime - set file access and modification times

SYNOPSIS
#include <sys/types.h>
int utime (path, times)
char *path;
struct utimbuf *times;

DESCRIPTION

Page 1

Path points to a path name naming a file. Utime sets the access
and modification times of the named file.

If times is NULL , the access and modification times of the file are
set to the current time. A process must be the owner of the file or
have write permission to use utime in this manner.

If times is not NULL, times is interpreted as a pointer to a utimbuf
structure and the access and modification times are set to the
values contained in the designated structure. Only the owner of the
file or the super-user may use utime this way.

The times in the following structure are measured in seconds since
00:00:00 GMT, Jan. 1, 1970.

struct utimbuf {

};

time_t actime;
time_t modtime;

/o• access time */
/o• modification time *I

Utime will fail if one or more of the following are true:

[ENO ENT]

[ENOTDIR]

[EACCES]

[EPERM]

[EA CC ES]

[EROFS]

[EFAULn

[EFAUL T]

The named file does not exist.

A component of the path prefix is not a directory.

Search permission is denied by a component of the
path prefix.

The effective user ID is not super-user and not the
owner of the file and times is not NULL .

The effective user ID is not super-user and not the
owner of the file and times is NULL and write
access is denied.

The file system containing the file is mounted
read-only.

Times is not NULL and points outside the process's
allocated address space.

Path points outside the process's allocated
address space.

May 7, 1986

(

(.

UTIME(2) UNIX Sys5 UTIME(2)

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
stat(2).

May 7, 1986 Page 2

WAIT(2) UNIX Sys5 WAIT(2)

NAME
wait - wait for child process to stop or terminate

SYNOPSIS
int wait (stat_loc)
int *Stat_loc;

int wait ((int *)0)

DESCRIPTION

Page 1

Wait suspends the calling process until one of the immediate chil­
dren terminates or until a child that is being traced stops, because it
has hit a break point. The wait system call will return prematurely if
a signal is received and if a child process stopped or terminated
prior to the call on wait, return is immediate.

If staUoc (taken as an integer) is non-zero, 16 bits of information
called status are stored in the low order 16 bits of the location
pointed to by staUoc . Status can be used to differentiate between
stopped and terminated child processes and if the child process ter­
minated, status identifies the cause of termination and passes use­
ful information to the parent. This is accomplished in the following
manner:

If the child process stopped, the high order 8 bits of status
will contain the number of the signal that caused the pro­
cess to stop and the low order 8 bits will be set equal to
0177.

If the child process terminated due to an exit call, the low
order 8 bits of status will be zero and the high order 8 bits
will contain the low order 8 bits of the argument that the
child process passed to exit; see exit (2).

If the child process terminated due to a signal, the high
order 8 bits of status will be zero and the low order 8 bits
will contain the number of the signal that caused the termi­
nation. In addition, if the low order seventh bit (i.e., bit 200)
is set, a "core image" will have been produced; see signal
(2).

If a parent process terminates without waiting for its child processes
to terminate, the parent process ID of each child process is set to 1.
This means the initialization process inherits the child processes;
see intro (2).

Wait will fail and return immediately if one or more of the following
are true:

[ECHILD] The calling process has no existing unwaited-for
child processes.

May 7, 1986

(

(

WAIT(2) UNIX Sys5 WAIT(2)

(EFAUL T] Stat_loc points to an illegal address.

RETURN VALUE
If wait returns due to the receipt of a signal, a value of -1 is
returned to the calling process and errno is set to EINTR. If wait
returns due to a stopped or terminated child process, the process ID
of the child is returned to the calling process. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), pause(2), ptrace(2), signal(2).

WARNING
See WARNING in signal (2).

May 7, 1986 Page 2

WRITE(2) UNIX Sys5 WRITE(2)

NAME
write - write on a file

SYNOPSIS
int write (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION
Fi/des is a file descriptor obtained from a creat, open, dup, tent/,
or pipe system call.

Write attempts to write nbyte bytes from the buffer pointed to by but
to the file associated with the tildes .

On devices capable of seeking, the actual writing of data proceeds
from the position in the file indicated by the file pointer. Upon return
from write , the file pointer is incremented by the number of bytes
actually written.

On devices incapable of seeking, writing always takes place starting
at the current position. The value of a file pointer associated with
such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file pointer will /~

be set to the end of the file prior to each write.

Write will fail and the file pointer will remain unchanged if one or
more of the following are true:

[EBADFJ Fi/des is not a valid file descriptor open for writing.

[EPIPE and SIGPIPE signal]

[EFBIG]

[EFAULT]

[EINTR]

An attempt is made to write to a pipe that is not
open for reading by any process.

An attempt was made to write a file that exceeds
the process's file size limit or the maximum file
size. See ulimit (2).

But points outside the process's allocated address
space.

A signal was caught during the write system call.

If a write requests that more bytes be written than there is room for
(e.g., the ulimit (see ulimit (2)) or the physical end of a medium),
only as many bytes as there is room for will be written. For exam­
ple, suppose there is space for 20 bytes more in a file before reach-

_/

ing a limit. A write of 512 bytes will return 20. The next write of a ~

~-j

Page 1 May 7, 1986

(

(

WRITE(2) UNIX Sys5 WRITE(2)

non-zero number of bytes will give a failure return (except as noted
below).

If the file being written is a pipe (or FIFO) and the O_NDELAY flag of
the file flag word is set, then write to a full pipe (or FIFO) will return a
count of 0. Otherwise (O NDELAY clear), writes to a full pipe (or
FIFO) will block until space becomes available.

RETURN VALUE
Upon successful completion the number of bytes actually written is
returned. Otherwise, -1 is returned and errno is set to indicate the
error.

SEE ALSO
creat(2), dup(2), lseek(2), open(2), pipe(2), ulimit(2).

May 22, 1985 Page 2

/

(

(

INTR0{2S) (Plexus) INTR0{2S)

NAME
intro - introduction to standalone system calls, functions, and error
numbers

SYNOPSIS
#include <errno.h>

DESCRIPTION

Page 1

This section describes the system calls and functions provided in
the standalone archive llib/lib2.a. Most of these calls have one or
more error returns. An error condition is indicated by an otherwise
impossible returned value. This is almost always -1; the individual
descriptions specify the details. An error number is also made avail­
able in the external variable errno. Errno is not cleared on success­
ful calls, so it should be tested only after an error has been indi­
cated.

Each standalone call description attempts to list all possible error
numbers. The following is a complete list of all possible error
numbers returned by standalone system calls and functions, with
their names as described in <errno.h>.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in
some way. Disk files cannot be modified while in standalone
mode.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file
should exist but doesn't, or when one of the directories in a
path name does not exist.

5 EIO 1/0 error
Some physical 1/0 error has occurred. This error may in
some cases occur on a call following the one to which it
actually applies.

6 ENXIO No such device or address
1/0 on a special file refers to a subdevice which does not
exist, or beyond the limits of the device. It may also occur
when, for example, a tape drive is not on-line.

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read
(respectively, write) request is made to a file which is open
only for writing (respectively, reading).

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by
the protection system.

October 13, 1986

INTR0(2S) (Plexus) INTR0(2S)

16 EBUSY Device or resource busy
An attempt was made to mount a device that was already /
mounted or an attempt was made to dismount a device on'\"- /
which there is an active file (open file, current directory, --
mounted-on file, active text segment), or the device or
resource is currently unavailable.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context,
e.g., mknod.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call
to a device; e.g., read a write-only device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required,
for example in a path prefix or as an argument to chdir (2).

22 EINV AL Invalid argument ,
Some invalid argument (e.g., dismounting a non-mounted
device or reading or writing a file for which /seek has gen­
erated a negative pointer).

24 EMFILE Too many open files
No process may have more than 20 file descriptors open at ·
atima /

25 ENOTTY Not a character device
An attempt was made to ioct/(2) a file that is not a special
character device.

27 EFBIG File too large

DEFINITIONS

The size of a file exceeded the maximum file size
(1,082,201,088 bytes).

See intro(2) for a complete set of definitions.

DEVICES
A limited number of device drivers are available for use with stand­
alone programs. These are the disk driver, the reel-to-reel and car­
tridge tape drivers, the floppy disk driver (P/15 and P/20 only) and
the null device. The names used to refer to these devices are
shown in Table 2.1.

October 13, 1986 Page2

INTR0(2S) (Plexus) INTR0(2S)

Table 2-1.

(
/dev /dsk/ #s# disk drive, blocked 1/0

/dev/rrm/Om reel-to-reel tape, raw 1/0, rewind on close

/dev/rrm/Omn reel-to-reel tape, raw 1/0, no rewind on close

/dev/rm/Om reel-to-reel tape, blocked 1/0, rewind on close

/dev/rmO reel-to-reel tape, blocked 1/0, rewind on close

/dev/rm/Omn reel-to-reel tape, blocked 1/0, no rewind on close

/dev/nrmO reel-to-reel tpae, blocked 1/0, no rewind on close

/dev/rpt/Om cartridge tape, blocked 1/0, rewind on close

/dev/rptO cartridge tape, blocked 1/0, rewind on close

(.
/dev/rtp/Omn cartridge tape, blocked 1/0, no rewind on close

/dev/nrptO cartridge tape, blocked 1/0, no rewind on close

/dev/fp/Om floppy disk (P/15 and P/20 only)

/dev/null the null device

Page3 October 13, 1986

ACCESS(2S) (Plexus) ACCESS(2S)

NAME
access - determine accessibility of a file

SYNOPSIS
int access (path, amode)
char *path;
int amode;

DESCRIPTION
Path points to a path name naming a file. Access checks the
named file for accessibility according to the bit pattern contained in
amode. The bit pattern contained in amode is constructed as fol­
lows:

04 read
02 write
01 execute (search)
00 check existence of file

Access will fail if one of the following is true:

[EINVAL]

[ENOTDIR]

[ENOENT]

[EMFILE]

The file is not available for reading.

A component of the path prefix is not a directory.

The named file does not exist.

Twenty (20) file descriptors are currently open.

[EACCESJ The file cannot be used in the specified mode.

RETURN VALUE
If the requested access is permitted, a value of 0 is returned. Oth­
erwise, a value of -1 is returned and ermo is set to indicate the
error.

SEE ALSO
open(2S), stat(2S).

Page 1 October 13, 1986

/ \

(

(

BRK{2S) (Plexus) BRK(2S)

NAME
brk, sbrk - change data segment space allocation

SYNOPSIS
int brk (endds)
char *endds;

char *sbrk (incr)
int incr;

DESCRIPTION
Brk and sbrk are used to change dynamically the amount of space
allocated for the calling process's data segment. The change is
made by resetting the process's break value and allocating the
appropriate amount of space. The break value is the address of the
first location beyond the end of the data segment. The amount of
allocated space increases as the break value increases. The newly
allocated space is set to zero.

Brk sets the break value to endds and changes the allocated space
accordingly.

Sbrk adds incr bytes to the break value and changes the allocated
space accordingly. Iner can be negative, in which case the amount
of allocated space is decreased.

RETURN VALUE
Brk returns a value of O and sbrk returns the old break value.

Page 1 October 13, 1986

CHDIR(2S) {Plexus)

NAME
chdir - change working directory

SYNOPSIS
int chdir (path)
char *path;

DESCRIPTION

CHDIR{2S)

Path points to the path name of a directory. Chdir causes the
named directory to become the current working directory, the start­

, ing point for path searches for path names not beginning with I .

RETURN VALUE
A value of O is returned.

Page 1 October 13, 1986

(

(

CHMOD(2S) (Plexus)

NAME
chmod - change mode of file

SYNOPSIS
int chmod ()

DESCRIPTION

CHMOD(2S)

This is a dummy routine and always returns a -1 with the error:

[EPERM] The file cannot be modified by standalone process.

Page 1 October 13, 1986

CLOSE{2S) {Plexus)

NAME
close - close a file descriptor

SYNOPSIS
int close {fildes)
int fildes;

DESCRIPTION

CLOSE(2S)

Fil<;les is a file descriptor obtained from a creat or open standalone
system call. Close closes the file descriptor indicated by tildes .

[EBADF]
Close will fail with errno set to [EBADF] if tildes is not a
valid open file descriptor.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a
value of -1 is returned and e"no is set to indicate the error.

SEE ALSO
creat(2S), open(2S).

Page 1 October 13, 1986

(

CREAT(2S) (Plexus) CREAT(2S)

NAME
creat - create a new special file

SYNOPSIS
int creat (path)
char *path;

DESCRIPTION
Great creates a new device file.

Upon successful completion, the file descriptor is returned and the
file is open for writing, even if the mode does not permit writing.
The file pointer is set to the beginning of the file. No process may
have more than 20 files open simultaneously. A new file may be
created with a m::>de that forbids writing.

Great will fail if one or more of the following are true:

[ENOTDIRJ A component of the path prefix is not a directory.

[ENOENT] A component of the path prefix does not exist.

[EACCES]

[ENOENT]

[ENOENT]

[EACCES]

[EM FILE]

Search permission is denied on a component of the
path prefix.

The path name is null.

The special file is not one available in standalone
mode.

The file is not a special device file.

Twenty (20) file descriptors are currently open.

RETURN VALUE
Upon successful completion, a non-negative integer, namely. the file
descriptor, is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO

Page 1

close(2S), intro(2S), lseek(2S), open(2S), read(2S), umask(2S),
write(2S).

October 13, 1986

EXIT(2S)

NAME
exit - terminate process

SYNOPSIS
void exit (status)
int status;

DESCRIPTION

(Plexus) EXIT(2S)

Exit terminates the calling process, displaying "EXIT <status>" and
closing all file descriptors open in the calling process.

Page 1 October 13, 1986

(_

FLOAT(2S) (Plexus) FLOAT{2S)

NAME
fltused, uufp, temp, comfloa, fadd, fsub, fmul, fdiv, dneg, fneg, ftod,
dtof, afadd, afsub, afmul, afdiv, afaddf, afsubf, afmulf, afdivf, softfp,
convert, conv, itod, dtoi, itof, ftoi. - float and double routines

DESCRIPTION

Page 1

These are all dummy routines which merely return. They are pro­
vided to enable compilation of programs, but any program which
uses these routines can be expected to fail. You cannot, then, do
any mathematics involving floats or doubles, you cannot convert
from floats to doubles or integers or vice versa in any combination,
and you cannot print floating point numbers.

October 13, 1986

GETARGV(2S) (Plexus) GETARGV(2S)

NAME
getargv - display a program name and get arguments for it

SYNOPSIS
int getargv (cmd, argvp, ff)

char *cmd;

char *(*argvp[]) ;

int ff;

DESCRIPTION
Getargv displays the name of a standalone program on stdout in the
form "$$ < cmd >" and waits for arguments to be provided from
stdin.

If ff has a value greater than 0, the argument buffer argvp is first
cleared. Arguments are assumed to be separated by blanks or
tabs, and input is terminated by entry of a carriage return (\n).
Arguments are put info the buffer in the order received, with the first
(index O) argument being cmd.

RETURN VALUE
A zero is returned.

Page 1 October 13, 1986

(

(

GETPID(2S)

NAME
getpid - get process ID

SYNOPSIS
int getpid {)

DESCRIPTION

(Plexus) GETPID(2S)

This is a dummy routine. It returns 0, which is the appropriate value
in standalone mode.

Page 1 October 13, 1986

GETUID(2S) (Plexus) GETUID(2S)

NAME
getuid, geteuid, getgid, getegid - get real user, effective user, real / '
group, and effective group IDs

SYNOPSIS
unsigned short getuid ()

unsigned short geteuid ()

unsigned short getgid ()

unsigned short getegid ()

DESCRIPTION

Page 1

These are dummy routines. All return 0, which is the appropriate
value in standalone mode.

October 13, 1986

(

(

GTTY(2S) (Plexus) GTTY(2S)

NAME
gtty - get terminal characterisitcs

SYNOPSIS
int gtty (fildes, buf)
int fildes;
struct sgttyb *buf;

DESCRIPTION
Gtty gets the terminal characteristics of the device specified by
tildes. Fi/des must have a value of 0, 1, or 2. An error [ENOTTY] is
returned if it does not.

The buffer but has the form:

struct sgttyb {
char sg _ispeed; /*input speed* I
char sg _ospeed; /*output speed*/
char sg _erase; /*erase character* I
char sg _kill; /*kill character*/
int sg _flags; /*mode flags*/
}

Mode flags which are supported are:

RAW (040) Handle input in raw mode.

LCASE (04) Map upper case input to lower case.

XTABS (02) Expand tabs to 7 spaces.

ECHO (01 O) Echo input received from stdin to stdout.

CRMOD (020) Map newline to newline/carriage return.

Input and output speeds are as described in tty(?).

RETURN VALUE
Upon successful completion, a 0 is returned. Otherwise, a -1 is
returned and errno is set to [ENOTTY].

SEE ALSO
stty(2S), tty(?).

Page 1 October 13, 1986

ISATTV(2S) (Plexus) ISATTV(2S)

NAME
isatty - returns a 1 if specified file descriptor is a terminal

SYNOPSIS
int isatty (tildes)

int tildes;

DESCRIPTION
If tildes is stdin, stdout or stderr (0, 1, or 2), isatty returns a 1.
erwise a O is returned.

0th-

Page 1 October 13, 1986

0

(

KILL(2$) (Plexus)

NAME
kill - send a signal to a process or a group of processes

SYNOPSIS
int k'll ()

DESCRIPTION
This is a dummy routine. It always returns a 0.

KILL(2S)

Page 1 October 13, 1986

LSEEK(2S) (Plexus) LSEEK(2S)

NAME
lseek - move read/write file pointer

SYNOPSIS
long lseek {tildes, offset, whence)
int fildes;
long offset;
int whence;

DESCRIPTION
Fi/des is a file descriptor returned from a creat or open standalone
system call. Lseek sets the file pointer associated with tildes as fol­
lows:

If whence is 0, the pointer is set to offset bytes.
If whence is 1, the pointer is set to its current location plus

offset.
If whence is 2, the pointer is set to the size of the file plus

offset.

Upon successful completion, the resulting pointer location, as meas­
ured in bytes from the beginning of the file, is returned.

Lseek will fail and the file pointer will remain unchanged if one or
more of the following are true:

[EBADF] Fi/des is not an open file descriptor.

[EINVAL) Whence is not 0, 1, or 2.

[EINVAL) The resulting file pointer would be negative.

Some devices are incapable of seeking. The value of the file
pointer associated with such a device is undefined.

RETURN VALUE
Upon successful completion, a non-negative integer indicating the
file pointer value is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

SEE ALSO
creat(2S), open(2S), tell(2S)

Page 1 October 13, 1986

(

(

MKNOD(2S) (Plexus) MKN00(2S)

NAME
mknod - make a special file

SYNOPSIS
#include stand.h
int mknod (path, major, minor, offset)
char *path;
int major, minor;
daddr_t offset;

DESCRIPTION
Mknod defines a new device file named by the path name pointed
to by path.

The strategy which will be used is determined by the device table
entry indexed by major. The physical unit number is determined by
minor. The default beginning access offset is defined by offset.

Mknod will fail, the new device name will not be defined, and errno
will be set to one of the following values if one or more of the follow­
ing conditions is true:

(EINVALJ Major is not a valid index into the device table, or any of
the parameters are less than 0.

[EEXISTJ The special file name has already been defined.

Mknod will also fail if the maximum number of special files has
already been defined. An error message will be displayed in this
case.

RETURN VALUE

Page 1

Upon successful completion, a value of O is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

October 13, 1986

MOUNT(2S) (Plexus) MOUNT{2S)

NAME
mount - mount a file system

SYNOPSIS
int mount (spec, dir)
char *Spec, *dir; ,

DESCRIPTION
Mount requests that a removable file system contained on the block
special file identified by spec be mounted on the directory identified
by dir . Spec and dir are pointers to path names.

Upon successful completion, references to the file dir will refer to
the root directory on the mounted file system.

Mount will fail if one or more of the following are true:

[ENODEV]

[EINVAL]

[ENXIO]

[ENOTDIR]

[EBUSY]

Spec is not a device available for use in stand­
alone mode.

Dir is not available for use in standalone mode.

The device associated with spec does not exist.

Dir is not a directory.

The device associated with spec is currently
mounted.

[EBUSY]

RETURN VALUE

There are no more mount table entries.

Upon successful completion a value of O is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
umount(2S).

Page 1 October 13, 1986

(

(

(

NICE(2S) (Plexus)

NAME
nice - change priority of a process

SYNOPSIS
int nice ()

DESCRIPTION

NICE(2S)

This is a dummy routine provided for compilation compatibility. Nice
always returns a value of 0.

Page 1 October 13, 1986

OPEN(2S) (Plexus) OPEN(2S)

NAME
open - open for reading or writing

SYNOPSIS
int open {path, oflag)
char *path;
int oflag;

DESCRIPTION
Path points to a path name naming a file. Open opens a file
descriptor for the named file and sets the file status flags according
to the value of oflag, defined as shown:

o Open for reading only.

1

2

Open for writing only.

Open for reading and writing.

The file pointer used to mark the current position within the file is set
to the beginning of the file.

The named file is opened unless one or more of the following are
true:

[EINVAL]

[EACCES]

[ENOTDIR]

[ENOENT]

Mode is not valid.

Mode is 1 or 2 and the file is not a special file (dev­
ice).

A component of the path prefix is not a directory.

The named file does not exist, or the path name is
null.

[EM FILE]

RETURN VALUE

Twenty (20) file descriptors are currently open.

Upon successful completion, the file descriptor is returned. Other­
wise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
close(2S), creat(2S), lseek(2S), read(2S), umask(2S), write(2S).

Page 1 October 13, 1986

<~

(

READ(2S) {Plexus) READ{2S)

NAME
read - read from file

SYNOPSIS
int read (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION
Fi/des is a file descriptor obtained from a creator open standalone
system call.

Read attempts to read nbyte bytes from the file associated with
tildes into the buffer pointed to by but .

On devices capable of seeking, the read starts at a position in the
file given by the file pointer associated with tildes . Upon return from
read , the file pointer is incremented by the number of bytes actually
read.

Devices that are incapable of seeking always read from the current
position. The value of a file pointer associated with such a file is
undefined.

Upon successful completion, read returns the number of bytes actu­
ally read and placed in the buffer; this number may be less than
nbyte if the file is associated with a communication line or if the
number of bytes left in the file is less than nbyte bytes. A value of O
is returned when an end-of-file has been reached.

Read will fail if the following is true:

[EBADF] Fi/des is not a valid file descriptor open for reading.

RETURN VALUE
Upon successful completion a non-negative integer is returned indi­
cating the number of bytes actually read. Otherwise, a -1 is
returned and errno is set to indicate the error.

SEE ALSO
creat(2S), open(2S).

Page 1 October 13, 1986

SLEEP(2S) (Plexus) SLEEP(2S)

NAME
sleep - suspend execution for interval

SYNOPSIS
int sleep (seconds)
int seconds;

DESCRIPTION

Page 1

The current process is suspended from execution for the number of
seconds specified by the argument. The actual suspension time will
be less than that requested if any character is read from stdin. The
value returned by sleep will be the "unslept" amount (the requested
time minus the time actually slept).

October 13, 1986

(

(

SRCHEOF(2S) (Plexus) SRCHEOF(2S)

NAME
srcheof - position to a specific file number on a tape.

SYNOPSIS
srcheof {fdesc, count)
int fdesc, count;

DESCRIPTION
Srcheof will advance a tape drive specified by the file descriptor
fdesc to the start of the file number indicated by count.

Srcheof will fail, returning a -1 with errno set appropriately if one of
the following conditions is true:

[EBADF] fdesc does not indicate a valid open file

[EBADF] fdesc does not indicate a tape device

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a
value of -1 will be returned with errno set appropriately, or if there
has been a hardware problem detected by the tape controller, the
error status value is returned. These values are defined in the tape
controller header files. These files are /usrlincludelsyslimsc.h tor
the cartridge tape, and /usrlincludelsyslrm.h for the reel-to-reel
tape.

SEE ALSO
open(2S), creat(2S)

Page 1 October 13, 1986

STAT(2S) (Plexus) STAT(2S)

NAME
stat, fstat - get file status

SYNOPSIS
int stat {path, buf)
char *path;
struct stat *buf;

int fstat {tildes, buf)
int tildes;
struct stat * buf;

DESCRIPTION

Page 1

Path points to a path name naming a file. Read, write, or execute
permission of the named file is not required, but all directories listed
in the path name leading to the file must be searchable. Stat
obtains information about the named file.

Similarly, fstat obtains information about an open file known by the
file descriptor fildes , obtained from a successful open or creat sys­
tem call.

But is a pointer to a stat structure into which information is placed
concerning the file.

The contents of the structure pointed to by but include the following
members:

ushort st_mode;
ino_t
dev_t

dev_t

files *f
short
ushort
ushort
ott_t
time_t
time_t
time_t

st_ino;
st_dev;

st_rdev;

st_nlink;
st_uid;
st_gid;
st_size;
st_atime;
st_mtime;
st_ctime;

f* File mode; see mknod (2) *f
f* lnode number *f
f* ID of device containing *f
f* a directory entry for this file *I
I* ID of device *I
I* This entry is defined only for *I
f * character special or block special

f* Number of links */
f* User ID of the file's owner *f
f* Group ID of the file's group *f
f* File size in bytes */
f* Time of last access *f
I* Time of last data modification *I
f* Time of last file status change *f
I* Times measured in seconds since

f* 00:00:00 GMT, Jan. 1, 1970 *f

st_atime Time when file data was last accessed. This will not be
changed by any standalone system call.

st_mtime Time when data was last modified. Not altered in stan­
dalone mode.

October 13, 1986

(

(

(

STAT(2S) (Plexus)

st_ctime Time when file status was last changed.

Stat will fail if one or more of the following are true:

STAT(2S)

[ENOTDIRJ A component of the path prefix is not a directory.

[ENO ENT]

[EACCES]

The named file does not exist.

Search permission is denied for a component of
the path prefix.

Fstat will fail if the following is true:

[EBA OF]

RETURN VALUE

Fi/des is not a valid open file descriptor.

Upon successful completion a value of O is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

October 13, 1986 Page2

STIME(2S)

NAME
stime - set time

SYNOPSIS
int stime (tp)
long *tp;

DESCRIPTION

(Plexus) STIME(2S)

Stime sets the system's idea of the time and date. Tp points to the
value of time as measured in seconds from 00:00:00 GMT January
1, 1970.

SEE ALSO
time(2S).

Page 1 October 13, 1986

(

(

STIY(2S) (Plexus) STTY(2S)

NAME
stty - set terminal characteristics

SYNOPSIS
int stty (fildes, buf)
int fildes;
struct sgttyb buf;

DESCRIPTION
Stty sets the terminal characteristics of the device specified by tildes
to the value indicated in the struct *but. Fi/des must have a value of
0, 1, or 2. An error [ENOTTY] is returned if it does not.

The buffer has the form:

struct sgttyb {
char
char
char
char
int
}

sg_ispeed;
sg_ospeed;
sg_erase;
sg_kill;
sg_flags;

Mode flags which are aupported are:

RAW (040) Handle input in raw mode.

LCASE (04)
Map upper case input to lower case.

XTABS (02)
Expand tabs to 7 spaces.

ECHO (010)
Echo input received from stdin to stdout.

CRMOD (020)
Map newline to newline/carriage return.

Input and output speeds are as described in tty(?).

RETURN VALUE
Upon successful completion, a 0 is returned. Otherwise, a -1 is
returned and errno is set to [ENOTTY].

SEE ALSO
gtty(2S), tty(?).

Page 1 October 13, 1986

TELL(2S) (Plexus) TELL(2S)

NAME
tell - report the current value of a file pointer

SYNOPSIS
off_t tell {fildes)
int fildes;

DESCRIPTION
Tell is a shorthand call to /seek. It calls /seek for the deivce indi­
cated by the file descriptor tildes with an offset of O and a "whence"
parameter of 1 (see /seek(2s)). Tell will fail if one or more of the fol­
lowing are true:

[EBADF] Fi/des is not an open file descriptor.

[EINVALJ Whence is not O, 1, or 2.

[EINVALJ The resulting file pointer would be negative.

RETURN VALUE
Upon successful completion, a non-negative integer indicating the
file pointer value is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the eroor.

SEE ALSO
creat(2S), open(2S), lseek(2S).

Page 1 October 13, 1986

(

(

(

TIME(2S) (Plexus) TIME(2S)

NAME
time - get time

SYNOPSIS
long time ({long *) 0)

long time (tloc)
long *tloc;

DESCRIPTION
Time returns the value of time in seconds since 00:00:00 GMT,
January 1, 1970.

If tloc (taken as an integer) is non-zero, the return value is also
stored in the location to which tloc points.

RETURN VALUE
Time returns the value of time.

SEE ALSO
stime(2S).

Page 1 October 13, 1986

UMASK(2S) (Plexus)

NAME
umask - set and get file creation mask

SYNOPSIS
int umask ()

DESCRIPTION

UMASK(2S)

This is a dummy routine provided for compilation compatibility. It
always returns 0.

Page 1 October 13, 1986

(

(

UMOUNT(2S) (Plexus)

NAME
umount - unmount a file system

SYNOPSIS
int umount (spec)
char *Spec;

DESCRIPTION

UMOUNT(2S)

Umount requests that a previously mounted file system contained
on the block special device identified by spec be unmounted. Spec
is a pointer to a path name. After unmounting the file system, the
directory upon which the file system was mounted reverts to its ordi­
nary interpretation.

Umount will fail if the following is true:

[EINVAL]

RETURN VALUE

The device specified is not mounted.

Upon successful completion a value of O is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
mount(2S).

Page 1 October 13, 1986

USTAT(2S) (Plexus) USTAT(2S)

NAME
ustat - get file system statistics

SYNOPSIS
int ustat (dev, buf)
int dev;
struct ustat * buf;

DESCRIPTION
Ustat returns information about a mounted file system. Dev is a
device number identifying a device containing a mounted file sys­
tem. But is a pointer to a ustat structure that includes to following
elements:

daddr_t
ino_t
char
char

f_tfree;
f_tinode;
f_fname[6];
f_fpack[6];

Ustat will fail if the following is true:

f* Total free blocks *f
f* Number of free inodes *f
f* Filsys name *f
f* Filsys pack name *f

[EINVALJ Dev is not the device number of a device contain­
ing a mounted file system.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
stat(2S), fs(4).

Page 1 October 13, 1986

(

WRITE(2S) (Plexus) WRITE(2S)

NAME
write - write on a file

SYNOPSIS
int write (fildes, buf, nbyte)
int fildes;
char *buf;
int nbyte;

DESCRIPTION
Fi/des is a file descriptor obtained from a creat or open standalone
system call.

Write attempts to write nbyte bytes from the buffer pointed to by buf
to the file associated with the tildes .

On devices capable of seeking, the actual writing of data proceeds
from the position in the file indicated by the file pointer. Upon return
from write , the file pointer is incremented by the number of bytes
actually written.

On devices incapable of seeking, writing always takes place starting
at the current position. The value of a file pointer associated with
such a device is undefined.

Write will fail and the file pointer will remain unchanged if one or
more of the following are true:

[EBADF]

[EFBIG]

Fi/des is not a valid file descriptor open for writing.

An attempt was made to write a file that exceeds
the process's file size limit or the maximum file
size. See ulimit (2).

If a write requests that more bytes be written than there is room for
only as many bytes as there is room for will be written. For exam­
ple, suppose there is space for 20 bytes more in a file before reach­
ing a limit. A write of 512 bytes will return 20. The next write of a
non-zero number of bytes will give a failure return.

RETURN VALUE
Upon successful completion the number of bytes actually written is
returned. Otherwise, -1 is returned and errno is set to indicate the
error.

SEE ALSO
creat(2S), lseek(2S), open(2S).

Page 1 October 13, 1986

(

(

INTR0(3) UNIX Sys5 INTR0(3)

NAME
intro - introduction to subroutines and libraries

SYNOPSIS
#include < stdio.h>

#include <math.h>

DESCRIPTION
This section describes functions found in various libraries, other
than those functions that directly invoke UNIX system primitives,
which are described in Section 2 of this volume. Certain major col­
lections are identified by a letter after the section number:

(3C) These functions, together with those of Section 2 and those
marked (38), constitute the Standard C Library fibc , which is
automatically loaded by the C compiler, cc (1). The link editor
Id (1) searches this library under the -le option. Declarations
for some of these functions may be obtained from #include
files indicated on the appropriate pages.

(38) These functions constitute the "standard 110 package" (see
stdio (3S)). These functions are in the library libc , already
mentioned. Declarations for these functions may be obtained
from the #include file <stdio.h> .

(3M) These functions constitute the Math Library, /ibm . They are
automatically loaded as needed by the FORTRAN compiler
f77 (1). They are not automatically loaded by the C compiler,
cc (1); however, the link editor searches this library under the
-Im option. Declarations for these functions may be obtained
from the #include file <math.h> . Several generally useful
mathematical constants are also defined there (see math
(5)).

(3X) Various specialized libraries. The files in which these
libraries are found are given on the appropriate pages.

(3F) These functions constitute the FORTRAN intrinsic function
library, libF77. These functions are automatically available to
the FORTRAN programmer and require no special invocation
of the compiler.

DEFINITIONS

Page 1

A character is any bit pattern able to fit into a byte on the machine.
The null character is a character with value 0, represented in the C
language as '\O'. A character array is a sequence of characters. A
null-terminated character array is a sequence of characters, the last
of which is the null character . A string is a designation tor a null­
terminated character array . The null string is a character array
containing only the null character. A NULL pointer is the value that
is obtained by casting O into a pointer. The C language guarantees
that this value will not match that of any legitimate pointer, so many

May 13, 1986

INTR0(3) UNIX Sys5 INTR0(3)

FILES

functions that return pointers return it to indicate an error. NULL is
defined as 0 in <stdio.h> ; the user can include an appropriate (---,,
definition if not using <stdio.h> . V
Many groups of FORTRAN intrinsic functions have generic function
names that do not require explicit or implicit type declaration. The
type of the function will be determined by the type of its
argument(s). For example, the generic function max will return an
integer value if given integer arguments (maxO), a real value if given
real arguments (amaxt), or a double-precision value if given
double-precision arguments (dmax1).

/lib/libc.a
/lib/libm.a
/usr/lib/libF77.a

SEE ALSO
intro(2), stdio(3S), math(S).
ar(1), cc(1), f77(1), ld(1), lint(1), nm(1) in the Sys5 UNIX User Refer­
ence Manual.

DIAGNOSTICS
Functions in the C and Math Libraries (3C and 3M) may return the
conventional values O or ±HUGE (the largest-magnitude single- ! ~'.
precision floating-point numbers; HUGE is defined in the <math.h> \ __
header file) when the function is undefined for the given arguments
or when the value is not representable. In these cases, the external
variable errno (see intro (2)) is set to the value EDOM or ERANGE.
As many of the FORTRAN intrinsic functions use the routines found
in the Math Library, the same conventions apply.

WARNING
Many of the functions in the libraries call and/or refer to other func­
tions and external variables described in this section and in section
2 (System Calls). If a program inadvertantly defines a function or
external variable with the same name, the presumed library version
of the function or external variable may not be loaded. The lint(1)
program checker reports name conflicts of this kind as "multiple
declarations" of the names in question. Definitions for sections 2,
3C, and 38 are checked automatically. Other definitions can be
included by using the -I option (for example, -Im includes definitions
for the Math Library, section 3M). Use of lint is highly recom­
mended.

May 13, 1986 Page2

(

(

(

A64L{3C) UNIX Sys5 A64L(3C)

NAME
a641, 164a - convert between long integer and base-64 ASCII string

SYNOPSIS
long a641 (s)
char *S;

char *164a (I)
long I;

DESCRIPTION

BUGS

Page 1

These functions are used to maintain numbers stored in base-64
ASCII characters. This is a notation by which long integers can be
represented by up to six characters; each character represents a
"digit" in a radix-64 notation.

The characters used to represent "digits" are . for 0, I for 1, 0
through 9 for 2-11, A through Z for 12-37, and a through z for
38--B3.

A641 takes a pointer to a null-terminated base-64 representation and
returns a corresponding long value. If the string pointed to by s
contains more than six characters, a64/ will use the first six.

L64a takes a long argument and returns a pointer to the
corresponding base-64 representation. If the argument is 0, 164a
returns a pointer to a null string.

The value returned by 164a is a pointer into a static buffer, the con­
tents of which are overwritten by each call.

May 7, 1986

ABORT(3C) UNIX Sys5 ABORT(3C)

NAME
abort - generate an IOT fault

SYNOPSIS
int abort ()

DESCRIPTION
Abort first closes all open files if possible, then causes an IOT signal
to be sent to the process. This usually results in termination with a
core dump.

It is possible for abort to return control if SIGIOT is caught or ignored,
in which case the value returned is that of the kill (2) system call.

SEE ALSO
exit(2), ki11(2), signal(2).
adb(1), in the Sys5 UNIX User Reference Manual.

DIAGNOSTICS

Page 1

If SIGIOT is neither caught nor ignored, and the current directory is
writable, a core dump is produced and the message "abort - core
dumped" is written by the shell.

June 30, 1986

(_

(

AB$(3C) UNIX Sys5

NAME
abs - return integer absolute value

SYNOPSIS
int abs (i)
int i;

DESCRIPTION
Abs returns the absolute value of its integer operand.

BUGS

ABS(3C)

In two's-complement representation, the absolute value of the nega­
tive integer with largest magnitude is undefined. Some implementa­
tions trap this error, but others simply ignore it.

SEE ALSO
floor(3M).

Page 1 May 7, 1986

BSEARCH(3C) UNIX Sys5 BSEARCH(3C)

NAME
bsearch - binary search a sorted table

SYNOPSIS
#include <search.h>

char *bsearch ((char *) key, (char *) base, nel, sizeof (*key),
com par)
unsigned nel;
int (*Compar)();

DESCRIPTION
Bsearch is a binary search routine generalized from Knuth (6.2.1)
Algorithm B. It returns a pointer into a table indicating where a
datum may be found. The table must be previously sorted in
increasing order according to a provided comparison function. Key
points to a datum instance to be sought in the table. Base points to
the element at the base of the table. Ne/ is the number of elements
in the table. Compar is the name of the comparison function, which
is called with two arguments that point to the elements being com­
pared. The function must return an integer less than, equal to, or
greater than zero as accordinly the first argument is to be con­
sidered less than, equal to, or greater than the second.

EXAMPLE

Page 1

The example below searches a table containing pointers to nodes , /
consisting of a string and its length. The table is ordered alphabeti-
cally on the string in the node pointed to by each entry.

This code fragment reads in strings and either finds the correspond­
ing node and prints ;ut the string and its length, or prints an error
message.

#include <stdio.h>
#include <search.h>

#define T ASSIZE 1000

struct node { f* these are stored in the table *I
char *String;
int length;

};
struct node table[TABSIZE]; I* table to be searched */

{
struct node *node_ptr, node; ' /
int node_compare(); I* routine to compare 2 nodes *I
char str_space[20]; f* space to read string into *I

May 7, 1986

(

(

BSEARCH{3C) UNIX Sys5 BSEARCH(3C)

NOTES

int

node.string = str_space;
while (scanf("~1os", node.string) 1 == EOF) {

node_ptr = (struct node *)bsearch((char *)(&nodt
(char *)table, TABSIZE,
sizeof(struct node), node_compare);

if (node_ptr I= NULL) {
(void)printf("string = %20s, length = %d\1

node_ptr- >string, node_ptr- >len
f else {

(void)printf("not found: %s\n", node.string)

This routine compares two nodes based on an
alphabetical ordering of the string field.

node_compare(node1, node2)
struct node 0•node1, *nOde2;
{

return strcmp(node1 ->string, node2- >string);

The pointers to the key and the element at the base of the table
should be of type pointer-to-element, and cast to type pointer-to­
character.
The comparison function need not compare every byte, so arbitrary
data may be contained in the elements in addition to the values
being compared.
Although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

SEE ALSO
hsearch(3C), lsearch(3C), qsort(3C), tsearch(3C).

DIAGNOSTICS
A NULL pointer is returned if the key cannot be found in the table.

May 7, 1986 Page 2

CLOCK(3C) UNIX Sys5 CLOCK(3C)

NAME
clock - report CPU time used

SYNOPSIS
long clock ()

DESCRIPTION
Clock returns the amount of CPU time (in microseconds) used since
the first call to clock . The time reported is the sum of the user and
system times of the calling process and its terminated child
processes for which it has executed wait (2) or system (35).

The resolution of the clock is 15.625 milliseconds.

SEE ALSO

BUGS

times(2), wait(2), system(3S).

The value returned by clock is defined in microseconds for compati­
bility with systems that have CPU clocks with much higher resolu­

~ tion. Because of this, the value returned will wrap around after
accumulating only 2147 seconds of CPU time (about 36 minutes) .

Page 1 . May 7, 1986

(

(

CONV(3C) UNIX Sys5 CONV(3C)

NAME
toupper, tolower, _toupper, _tolower, toascii - translate characters

SYNOPSIS
#include <ctype.h>

int toupper (c)
int c;

int tolower (c)
int c;

int _toupper (c)
int c;

int _tolower (c)
int c;

int toascii (c)
int c;

DESCRIPTION
Toupper and tolower have as domain the range of getc (3$): the
integers from -1 through 255. If the argument of toupper
represents a lower-case letter, the result is the corresponding
upper-case letter. If the argument of tolower represents an upper­
case letter, the result is the corresponding lower-case letter. All
other arguments in the domain are returned unchanged.

The macros _toupper and _tolower , are macros that accomplish
the same thing as toupper and tolower but have restricted domains
and are faster. _toupper requires a lower-case letter as its argu­
ment; its result is the corresponding upper-case letter. The macro
_tolower requires an upper-case letter as its argument; its result is
the corresponding lower-case letter. Arguments outside the domain
cause undefined results.

Toascii yields its argument with all bits turned off that are not part of
a standard ASCII character; it is intended for compatibility with other
systems.

SEE ALSO
ctype(3C), getc(3S).

Page 1 May 21, 1985

CRYPT(3C) UNIX Sys5 CRYPT(3C)

NAME
crypt, setkey, encrypt - generate DES encryption

SYNOPSIS
char *Crypt (key, salt)
char *key, *Salt;

void setkey (key)
char *key;

void encrypt {block, edflag)
char *block;
int edflag;

DESCRIPTION
Crypt is the password encryption function. It is based on the NBS
Data Encryption Standard (DES), with variations intended (among
other things) to frustrate use of hardware implementations of the
DES for key search.

Key is a user's typed password. Salt is a two-character string
chosen from the set [a-zA-Z0-9./]; this string is used to perturb the
DES algorithm in one of 4096 different ways, after which the pass­
word is used as the key to encrypt repeatedly a constant string.
The returned value points to the encrypted password. The first two
characters are the salt itself. ___ /

The setkey and encrypt entries provide (rather primitive) access to
the actual DES algorithm. The argument of setkey is a character
array of length 64 containing only the characters with numerical
value 0 and 1. If this string is divided into groups of 8, the low-order
bit in each group is ignored; this gives a 56-bit key which is set into
the machine. This is the key that will be used with the above men-
tioned algorithm to encrypt or decrypt the string block with the func-
tion encrypt .

The argument to the encrypt entry is a character array of length 64
containing only the characters with numerical value O and 1. The
argument array is modified in place to a similar array representing
the bits of the argument after having been subjected to the DES
algorithm using the key set by setkey . If edflag is zero, the argu­
ment is encrypted; if non-zero, it is decrypted.

SEE ALSO

BUGS

Page 1

getpass(3C), passwd(4).
login(1), passwd(1) in the Sys5 UNIX User Reference Manual.

The return value points to static data that are overwritten by each
call.

May 21, 1985

(

(

(

CTERMID(3S) UNIX Sys5 CTEAMI0(3S)

NAME
ctermid - generate file name for terminal

SYNOPSIS
#include <stdio.h>
char *Ctermid (s)
char *S;

DESCRIPTION

NOTES

Ctermid generates the path name of the controlling terminal for the
current process, and stores it in a string.

If s is a NULL pointer, the string is stored in an internal static area,
the contents of which are overwritten at the next call to ctermid ,
and the address of which is returned. Otherwise, s is assumed to
point to a character array of at least L_ctermid elements; the path
name is placed in this array and the value of s is returned. The
constant L_ctermid is defined in the <stdio.h> header file.

The difference between ctermid and ttyname (3C) is that ttyname
must be handed a file descriptor and returns the actual name of the
terminal associated with that file descriptor, while ctermid returns a
string (/dev/tty) that will refer to the terminal if used as a file name.
Thus ttyname is useful only if the process already has at least one
file open to a terminal.

SEE ALSO
ttyname(3C).

Page 1 May 7, 1986

CTIME(3C) UNIX Sys5 CTIME(3C)

NAME
ctime, localtime, gmtime, asctime, tzset - convert date and time to
string

SYNOPSIS
#include <time.h>

char *Ctime (clock)
long *Clock;

struct tm *localtime (clock)
long *Clock;

struct tm *gmtime (clock)
long *Clock;

char *asctime (tm)
struct tm *tm;

extern long timezone;

extern int daylight;

extern char *tzname[2];

void tzset ()

DESCRIPTION

Page 1

Ctime converts a long integer, pointed to by clock , representing the
time in seconds since 00:00:00 GMT, January 1, 1970, and returns
a pointer to a 26-character string in the following form. All the fields
have constant width.

Sun Sep 16 01 :03:52 1973\n\O

Localtime and gmtime return pointers to "tm" structures, described
below. Localtime corrects for the time zone and possible Daylight
Savings Time; gmtime converts directly to Greenwich Mean Time
(GMT), which is the time the UNIX system uses.

Asctime converts a "tm" structure to a 26-character string, as
shown in the above example, and returns a pointer to the string.

May 8, 1986

(

(

CTIME(3C) UNIX Sys5 CTIME(3C)

Declarations of all the functions and externals, and the "tm" struc­
ture, are in the <time.h> header file. The structure declaration is:

struct tm {

};

int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

f* seconds (0 - 59) */
I* minutes (0 - 59) */
Jo• hours (0 - 23) */
f* day of month (1 - 31) */

I* month of year (O - 11) */
(i< year - 1900 *f
/* day of week (Sunday = 0) •/
Jo• day of year (0 - 365) *I

Tm_isdst is non-zero if Daylight Savings Time is in effect.

The external long variable timezone contains the difference, in
seconds, between GMT and local standard time (in EST, timezone is
5*60*60); the external variable daylight is non-zero if and only if the
standard U.SA Daylight Savings Time conversion should be
applied. The program knows about the peculiarities of this conver­
sion in 197 4 and 1975; if necessary, a table for these years can be
extended.

If an environment variable named TZ is present, asctime uses the
contents of the variable to override the default time zone. The value
of TZ must be a three-letter time zone name, followed by a number
representing the difference between local time and Greenwich Mean
Time in hours, followed by an optional three-letter name for a day­
light time zone. For example, the setting for New Jersey would be
EST5EDT . The effects of setting TZ are thus to change the values of
the external variables timezone and daylight ; in addition, the time
zone names contained in the external variable

char *tzname[2] = { "EST", "EDT"};

are set from the environment variable TZ . The function tzset sets
these external variables from TZ ; tzset is called by asctime and
may also be called explicitly by the user.

Note that in most installations, TZ is set by default when the user
logs on, to a value in the local /etc/profile file (see profile (4)).

SEE ALSO

BUGS

time(2), getenv(3C), profile(4), environ(S).

The return values point to static data whose content is overwritten
by each call.

May 8, 1986 Page 2

CTYPE(3C) UNIX Sys5 CTYPE(3C)

NAME
isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, /
isprint, isgraph, iscntrl, isascii - classify characters

SYNOPSIS
#include <ctype.h>

int isalpha (c)
int c;

DESCRIPTION
These macros classify character-coded integer values by table
lookup. Each is a predicate returning nonzero for true, zero for
false. lsascii is defined on all integer values; the rest are defined
only where isascii is true and on the single non-ASCII value EOF (-1
- see stdio (35)).

isalpha

isupper

is lower

isdigit

isxdigit

isalnum

isspace

ispunct

is print

is graph

iscntrl

isascii

c is a letter.

c is an upper-case letter.

c is a lower-case letter.

c is a digit [0-9].

c is a hexadecimal digit [0-9], [A-F] or [a-f].

c is an alphanumeric (letter or digit).

c is a space, tab, carriage return, new-line, vertical
tab, or form-feed.

c is a punctuation character (neither control nor
alphanumeric).

c is a printing character, code 040 (space) through
0176 (tilde).

c is a printing character, like isprint except false for
space.

c is a delete character (0177) or an ordinary con­
trol character (less than 040).

c is an ASCII character, code less than 0200.

DIAGNOSTICS
If the argument to any of these macros is not in the domain of the
function, the result is undefined.

SEE ALSO
stdio(3S), ascii(5). /'

Page 1 May 7, 1986

(

(

CUSERID(3S) UNIX SysS CUSERID(3S)

NAME
cuserid - get character login name of the user

SYNOPSIS
#include <stdio.h>

char *Cuserid (s)
char *S;

DESCRIPTION
Cuserid generates a character-string representation of the login
name that the owner of the current process is logged in under. If s
is a NULL pointer, this representation is generated in an internal
static area, the address of which is returned. Otherwise, s is
assumed to point to an array of at least L_cuserid characters; the
representation is left in this array. The constant L_cuserid is
defined in the <stdio.h> header file.

DIAGNOSTICS
If the login name cannot be found, cuserid returns a NULL pointer; if
s is not a NULL pointer, a null character (\0) will be placed at s[Oj.

SEE ALSO
getlogin(3C), getpwent(3C).

Page 1 May 7, 1986

DIAL(3C) UNIX Sys5 DIAL(3C)

NAME
dial - establish an out-going terminal line connection

SYNOPSIS
#include <dial.h>

int dial (call)
CALL call;

void undial (fd)
int fd;

DESCRIPTION
Dial returns a file-descriptor for a terminal line open for read/write.
The argument to dial is a CALL structure (defined in the <dial.h>
header file).

When finished with the terminal line, the calling program must
invoke undial to release the semaphore that has been set during the
allocation of the terminal device.

The definition of CALL in the <dial.h> header file is:

typedef struct {
struct termio *attr;
int baud;
int speed;
char *line;
char *tel no;
int modem;
char *device;

I* pointer to termio attribute struct *I
I* transmission data rate *I
I* 212A modem: low=300, high= 12or
/*device name for out-going line *f j

/* pointer to tel-no digits string */
/* specify modem control for direct lines */
/*Will hald the name of the device used

to make a connection*/
int dev_len; /*The length of the device used to

make connection *I
} CALL;

The CALL element speed is intended only for use with an outgoing
dialed call, in which case its value should be either 300 or 1200 to
identify the 113A modem, or the high- or low-speed setting on the
212A modem. Note that the 113A modem or the low-speed setting
of the 212A modem will transmit at any rate between 0 and. 300 bits
per second. However, the high-speed setting of the 212A modem
transmits and receivers at 1200 bits per secound only. The CALL
element baud is for the desired transmission baud rate. For exam­
ple, one might set baud to 110 and speed to 300 (or 1200). How­
ever, if speed set to 1200 baud must be set to high (1200).

If the desired terminal line is a direct line, a string pointer to its
device-name should be placed in the line element in the CALL struc­
ture. Legal values for such terminal device names are kept in the ·'-.
L-devices file. In this case, the value of the baud element need not
be specified as it will be determined from the L-devices file.

Page 1 October 7, 1986

(

(

(

DIAL(3C) UNIX Sys5 OIAL(3C)

FILES

The telno element is for a pointer to a character string representing
the telephone number to be dialed. Such numbers may consist only
of symbols described on the acu (7). The termination symbol will be
supplied by the dial function, and should not be included in the telno
string passed to dial in the CALL structure.

The CALL element modem is used to specify modem control for
direct lines. This element should be non-zero if modem control is
required. The CALL element attr is a pointer to a termio structure,
as defined in the termio.h header file. A NULL value for this pointer
element may be passed to the dial function, but if such a structure
is included, the elements specified in it will be set for the outgoing
terminal line before the connection is established. This is often
important for certain attributes such as parity and baud-rate.

The CALL element device is used to hold the device name (cul..)
that establishes the connection.

The CALL element dev _fen is the length of the device name that is
copied into the array device.

/usr /lib/uucp/L-devices
/usr/spool/uucp/LCK .. tty-device

SEE ALSO
uucp(1 C) in the Sys5 UNIX User Reference Manual.
alarm(2), read(2), write(2).
tty(?) in the "Sys5 UNIX Administrator Reference Manual" .

DIAGNOSTICS
On failure, a negative value indicating the reason for the failure will
be returned. Mnemonics for these negative indices as listed here
are defined in the <dial.h> header file.

INTRPT -1 f* interrupt occurred *f
D_HUNG -2 f* dialer hung (no return from write) *f
NO_ANS -3 /* no answer within 10 seconds *f
ILL_BD -4 /* illegal baud-rate *f
A_PROB -5 f* acu problem (open() failure) *f
L_PROB -6 f* line problem (open() failure) */
NO_Ldv -7 f* can't open LDEVS file *f
DV_NT_A -8 f* requested device not available *f
DV_NT_K -9 f* requested device not known *f
NO_BD_A -10 f* no device available at rqst'd baud *f
NO_BD_K -11 f* no device known at requested baud */

WARNINGS
Including the <dial.h> header file automatically includes the
<termio.h> header file.

October 7, 1986 Page 2

DIAL(3C) UNIX Sys5 DIAL(3C)

BUGS

Page3

The above routine uses <stdio.h>, which causes it to increase the
size of programs, not otherwise using standard 1/0. /\

\, _ _)

An alarm (2) system call for 3600 seconds is made (and caught)
within the dial module for the purpose of "touching" the LCK.. file
and constitutes the device allocation semaphore for the terminal
device. Otherwise, uucp (1C) may simply delete the LCK.. entry on
its 90·minute clean-up rounds. The alarm may go off while the user
program is in a read (2) or write (2) system call, causing an
apparent error return. If the user program expects to be around for
an hour or more, error returns from read s should be checked for
(errno= = EINTR), and the read possibly reissued.

October 7, 1986

(

(

(

DRAND48(3C) UNIX Sys5 DRAND48(3C)

NAME
drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48,
seed48, lcong48 - generate uniformly distributed pseudo-random
numbers

SYNOPSIS
double drand48 ()

double erand48 (xsubi)
unsigned short xsubi[3];

long lrand48 ()

long nrand48 (xsubi)
unsigned short xsubi[3];

long mrand48 ()

long jrand48 (xsubi)
unsigned short xsubi[3];

void srand48 (seedval)
long seedval;

unsigned short *Seed48 (seed16v)
unsigned short seed16v[3];

void lcong48 (param)
unsigned short param[7];

DESCRIPTION

Page 1

This family of functions generates pseudo-random numbers using
the well-known linear congruential algorithm and 48-bit integer arith­
metic.

Functions drand48 and erand48 return non-negative double­
precision floating-point values uniformly distributed over the interval
[0.0, 1.0).

Functions lrand48 and nrand48 return non-negative long integers
uniformly distributed over the interval [O, 231).

Functions mrand48 and jrand48 return signed long integers uni­
formly distributed over the interval [-231 , 231).

Functions srand48, seed48 and lcong48 are initialization entry
points, one of which should be invoked before either drand48,
lrand48 or mrand48 is called. (Although it is not recommended
practice, constant default initializer values will be supplied automati­
cally if drand48, lrand48 or mrand48 is called without a prior call to
an initialization entry point.) Functions erand48, nrand48 and
jrand48 do not require an initialization entry point to be called first.

All the routines work by generating a sequence of 48-bit integer
values, X;, according to the linear congruential formula

August 21, 1986

DRAND48(3C) UNIX Sys5 DRAND48{3C)

Xn 1 1 = (aXn + c)mod m n ::::0.

The parameter m = 248 ; hence 48-bit integer arithmetic is per­
formed. Unless fcong48 has been invoked, the multiplier value a
and the addend value c are given by

a= 5DEECE66D 16 = 273673163155 8

c = B 16 = 13 8.

The value returned by any of the functions drand48, erand48,
lrand48, nrand48, mrand48 or jrand48 is computed by first generat­
ing the next 48-bit X; in the sequence. Then the appropriate
number of bits, according to the type of data item to be returned,
are copied from the high-order (leftmost) bits of X; and transformed
into the returned value.

The functions drand48, lrand48 and mrand48 store the last 48-bit
Xi generated in an internal buffer; that is why they must be initialized
prior to being invoked. The functions erand48, nrand48 and
jrand48 require the calling program to provide storage for the suc­
cessive X, values in the array specified as an argument when the
functions are invoked. That is why these routines do not have to be
initialized; the calling program merely has to place the desired initial
value of X1 into the array and pass it as an argument. By using dif­
ferent arguments, functions erand48, nrand48 and jrand48 allow
separate modules of a large program to generate several indepen- ,
dent streams of pseudo-random numbers, i.e., the sequence of
numbers in each stream will not depend upon how many times the
routines have been called to generate numbers for the other
streams.

The initializer function srand48 sets the high-order 32 bits of X; to
the 32 bits contained in its argument. The low-order 16 bits of X;
are set to the arbitrary value 330E 16.

The initializer function seed48 sets the value of Xi to the 48-bit
value specified in the argument array. In addition, the previous
value of X, is copied into a 48-bit internal buffer, used only by
seed48, and a pointer to this buffer is the value returned by seed48.
This returned pointer, which can just be ignored if not needed, is
useful if a program is to be restarted from a given point at some
future time - use the pointer to get at and store the last Xi value,
and then use this value to reinitialize via seed48 when the program
is restarted.

The initialization function lcong48 allows the user to specify the ini­
tial Xi, the multiplier value a , and the addend value c. Argument
array elements param[0-2] specify Xi, param[3-5] specify the multi­
plier a, and param[6} specifies the 16-bit addend c. After lcong48
has been called, a subsequent call to either srand48 or seed48 will
restore the "standard" multiplier and addend values, a and c,

August 21, 1986 Page 2

(

(

(

DRAND48 (3C) UNIX Sys5 DRAND48(3C)

NOTES

specified on the previous paoe.

The routines are coded in portable C. The source code for the port­
able version can even be used on computers which do not have
floating-point arithmetic. In such a situation, functions drand48 and
erand48 do not exist; instead, they are replaced by the two new
functions below.

long irand48 (m)
unsigned short m;

long krand48 (xsubi, m)
unsigned short xsubi[3], m;

Functions irand48 and krand48.}f return non-negative long integers
uniformly distributed over the interval [O, m -1].

SEE ALSO
rand(3C).

Page 3 August 21, 1986

ECVT(3C) UNIX Sys5 ECVT(3C)

NAME
ecvt, fcvt, gcvt - convert floating-point number to string

SYNOPSIS
char *ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *Sign;

char *fcvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *Sign;

char *gcvt (value, ndigit, buf)
double value;
int ndigit;
char *buf;

DESCRIPTION
Ecvt converts value to a null-terminated string of ndigit digits and
returns a pointer thereto. The high-order digit is non-zero, unless
the value is zero. The low-order digit is rounded. The position of
the decimal point relative to the beginning of the string is stored
indirectly through decpt (negative means to the left of the returned
digits). The decimal point is not included in the returned string. If
the sign of the result is negative, the word pointed to by sign is /
non-zero, otherwise it is zero.

Fcvt is identical to ecvt, except that the correct digit has been
rounded for printf "%f" (FORTRAN F-format) output of the number of
digits specified by ndigit .

Gcvt converts the value to a null-terminated string in the array
pointed to by but and returns but . It attempts to produce ndigit sig­
nificant digits in FORTRAN F-format if possible, otherwise E-format,
ready for printing. A minus sign, if there is one, or a decimal point
will be included as part of the returned string. Trailing zeros are
suppressed.

SEE ALSO
printf(3S).

BUGS

Page 1

The values returned by ecvt and fcvt point to a single static data
array whose content is overwritten by each call.

May 7, 1986

(

EN0(3C) UNIX Sys5 END(3C)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern end;
extern et ext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interest­
ing contents. The address of etext is the first address above the
program text, edata above the initialized data region, and end
above the uninitialized data region.

When execution begins, the program break (the first location beyond
the data) coincides with end , but the program break may be reset
by the routines of brk (2), malloc (3C), standard input/output
(stdio(3S)), the profile (-p) option of cc (1), and so on. Thus, the
current value of the program break should be determined by sbrk(O)
(see brk (2)).

SEE ALSO
brk(2), malloc(3C}, stdio(3S).
cc(1) in the Sys5 UNIX User Reference Manual.

Page 1 May 21, 1985

FCLOSE(3S) UNIX Sys5 FCLOSE(3S)

NAME
fclose, fflush - close or flush a stream

SYNOPSIS
#include <stdio.h>

int fclose (stream)
FILE *Stream;

int fflush (stream)
FILE *Stream;

DESCRIPTION
Fcfose causes any buffered data for the named stream to be written
out, and the stream to be closed.

Fclose is performed automatically for all open files upon calling exit
(2).

Fffush causes any buffered data for the named stream to be written
to that file. The stream remains open.

DIAGNOSTICS
These functions return O for success, and EOF if any error (such as
trying to write to a file that has not been opened for writing) was
detected.

SEE ALSO
close(2), exit(2), topen(3S), setbuf(3S).

Page 1 May 21, 1985

(

(

FERROR(3S) UNIX Sys5 FERROR(3S)

NAME
terror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS
#include <stdio.h>

int ferror (stream)
FILE *Stream;

int feof (stream)
FILE *Stream;

void clearerr (stream)
FILE *Stream;

int fileno (stream)
FILE *Stream;

DESCRIPTION

NOTE

Ferrar returns non-zero when an 1/0 error has previously occurred
reading from or writing to the named stream , otherwise zero.

Feat returns non-zero when EOF has previously been detected
reading the named input stream , otherwise zero.

Clearerr resets the error indicator and EOF indicator to zero on the
named stream .

Fileno returns the integer file descriptor associated with the named
stream; see open (2).

All these functions are implemented as macros; they cannot be
declared or redeclared.

SEE ALSO
open(2), fopen(3S).

Page 1 May 21, 1985

FOPEN(3S) UNIX Sys5 FOPEN(3S)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#include <stdio.h>

FILE *fopen (file-name, type)
char *file-name, *type;

FILE *freopen (file-name, type, stream)
char *file-name, *type;
FILE *Stream;

FILE *fdopen (fildes, type)
int fildes;
char *type;

DESCRIPTION

Page 1

Fopen opens the file named by file-name and associates a stream
with it. Fopen returns a pointer to the FILE structure associated with
the stream.

File-name points to a character string that contains the name of the
file to be opened.

Type is a character string having one of the following values:

"r" open for reading

"w" truncate or create for writing

"a" append; open for writing at end of file, or create
for writing

"r+" open for update (reading and writing)

"w+" truncate or create for update

"a+" append; open or create for update at end-of-file

Freopen substitutes the named file in place of the open stream .
The original stream is closed, regardless of whether the open ulti­
mately succeeds. Freopen returns a pointer to the FILE structure
associated with stream .

Freopen is typically used to attach the preopened streams associ­
ated with stdin , stdout and stderr to other files.

Fdopen associates a stream with a file descriptor. File descriptors
are obtained from open, dup , creat, or pipe (2), which open files
but do not return pointers to a FILE structure stream. Streams are
necessary input for many of the Section 3S library routines. The
type of stream must agree with the mode of the open file.

When a file is opened for update, both input and output may be

May 21, 1985

(

(

(1

FOPEN(3S) UNIX Sys5 FOPEN(3S)

done on the resulting stream . However, output may not be directly
followed by input without an intervening fseek or rewind , and input
may not be directly followed by output without an intervening fseek ,
rewind, or an input operation which encounters end-of-file.

When a file is opened for append (i.e., when type is "a" or "a+"), it
is impossible to overwrite information already in the file. Fseek may
be used to reposition the file pointer to any position in the file, but
when output is written to the file, the current file pointer is disre­
garded. All output is written at the end of the file and causes the file
pointer to be repositioned at the end of the output. If two separate
processes open the same file for append, each process may write
freely to the file without fear of destroying output being written by
the other. The output from the two processes will be intermixed in
the file in the order in which it is written.

SEE ALSO
creat(2), dup(2), open(2), pipe(2), fclose(3S), fseek(3S).

DIAGNOSTICS
Fopen and freopen return a NULL pointer on failure.

May 21, 1985 Page 2

FREAD(3S) UNIX Sys5 FREAD(3S)

NAME
tread, fwrite - binary input/output

SYNOPSIS
#include <stdio.h>

int fread (ptr, size, nitems, stream)
char *ptr;
int size, nitems;
FILE *Stream;

int fwrite (ptr, size, nitems, stream)
char *ptr;
int size, nitems;
FILE *Stream;

DESCRIPTION
Fread copies, into an array pointed to by ptr , nitems items of data
from the named input stream , where an item of data is a sequence
of bytes (not necessarily terminated by a null byte) of length size .
Fread stops appending bytes if an end-of-file or error condition is
encountered while reading stream, or if nitems items have been
read. Fread leaves the file pointer in stream , if defined, pointing to
the byte following the last byte read if there is one. Fread does not
change the contents of stream .

Fwrite appends at most nitems items of data from the array pointed
to by ptr to the named output stream . Fwrite stops appending
when it has appended nitems items of data or if an error condition is
encountered on stream . Fwrite does not change the contents of the
array pointed to by ptr .

The argument size is typically sizeof(*ptr) where the pseudo­
function sizeof specifies the length of an item pointed to by ptr . If
ptr points to a data type other than char it should be cast into a
pointer to char .

SEE ALSO
read(2), write(2), fopen(3S), getc(3S), gets(3S), printf(3S), putc(3S),
puts(3S), scanf(3S).

DIAGNOSTICS

Page 1

Fread and fwrite return the number of items read or written. If size
or nitems is non-positive, no characters are read or written and 0 is
returned by both tread and fwrite .

May 21, 1985

FREXP(3C) UNIX Sys5 FAEXP(3C)

NAME
frexp, ldexp, modf - manipulate parts of floating-point numbers

SYNOPSIS
double frexp (value, eptr)
double value;
int *eptr;

double ldexp (value, exp)
double value;
int exp;

double modf (value, iptr)
double value, *iptr;

DESCRIPTION
Every non-zero number can be written uniquely as x * 2 n , where
the "mantissa" (fraction) x is in the range 0.5 s Ix I < 1.0, and the
"exponent" n is an integer. Frexp returns the mantissa of a double
value , and stores the exponent indirectly in the location pointed to
by eptr. If value is zero, both results returned by frexp are zero.

Ldexp returns the quantity value * 2 exp .

Modf returns the signed fractional part of value and stores the
integral part indirectly in the location pointed to by iptr.

DIAGNOSTICS

Page 1

If ldexp would cause overflow, ±HUGE is returned (according to the
sign of value), and errno is set to ERANGE.
If ldexp would cause underflow, zero is returned and errno is set to
ERANGE.

May 21, 1985

FSEEK(3S) UNIX Sys5 FSEEK(3S)

NAME
fseek, rewind, ftell - reposition a file pointer in a stream

SYNOPSIS
#include <stdio.h>

int fseek (stream, offset, ptrname)
FILE *Stream;
long offset;
int ptrname;

void rewind (stream)
FILE *Stream;

long ftell (stream)
FILE *Stream;

DESCRIPTION
Fseek sets the position of the next input or output operation on the
stream . The new position is at the signed distance offset bytes
from the beginning, from the current position, or from the end of the
file, according as ptrname has the value 0, 1, or 2.

Rewind (stream) is equivalent to fseek (stream , OL, O), except
that no value is returned.

Fseek and rewind undo any effects of ungetc (3$).

After fseek or rewind , the next operation on a file opened for
update may be either input or output.

Ftell returns the offset of the current byte relative to the beginning of
the file associated with the named stream .

SEE ALSO
lseek(2), fopen(3S), popen(3S), ungetc(3S).

DIAGNOSTICS
Fseek returns non-zero for improper seeks, otherwise zero. An
improper seek can be, for example, an fseek done on a file that has
not been opened via fopen ; in particular, fseek may not be used on
a terminal, or on a file opened via papen (3S).

WARNING

Page 1

Although on the UNIX system an offset returned by ftell is meas­
ured in bytes, and it is permissible to seek to positions relative to
that offset, portability to non-UNIX systems requires that an offset
be used by fseek directly. Arithmetic may not meaningfully be per­
formed on such an offset, which is not necessarily measured in
bytes.

May 21, 1985

(

FTW(3C) UNIX 5ys5 FTW(3C)

NAME
ftw - walk a file tree

SYNOPSIS
#include <ftw.h>

int ftw (path, fn, depth)
char *path;
int (*fn) ();
int depth;

DESCRIPTION

Page 1

Ftw recursively descends the directory hierarchy rooted in path .
For each object in the hierarchy, ftw calls fn , passing it a pointer to
a null-terminated character string containing the name of the object,
a pointer to a stat structure (see stat (2)) containing information
about the object, and an integer. Possible values of the integer,
defined in the <ftw.h> header file, are FTW_F for a file, FTW_D for a
directory, FTW_DNR for a directory that cannot be read, and FTW_NS

for an object for which stat could not successfully be executed. If
the integer is FTW _DNR, descendants of that directory will not be
processed. If the integer is FTW_NS, the stat structure will contain
garbage. An example of an object that would cause FTW_NS to be
passed to fn would be a file in a directory with read but without exe­
cute (search) permission.

Ftw visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invoca­
tion of fn returns a nonzero value, or some error is detected within
ftw (such as an 1/0 error). If the tree is exhausted, ftw returns zero.
If tn returns a nonzero value, ftw stops its tree traversal and returns
whatever value was returned by fn. If ftw detects an error, it returns
-1, and sets the error type in errno .

Ftw uses one file descriptor for each level in the tree. The depth
argument limits the number of file descriptors so used. If depth is
zero or negative, the effect is the same as if it were 1. Depth must
not be greater than the number of file descriptors currently available
for use. Ftw will run more quickly if depth is at least as large as the
number of levels in the tree.

May 8, 1986

FTW(3C) UNIX Sys5 FTW(3C)

SEE ALSO

BUGS

stat(2), malloc(3C).

Because ftw is recursive, it is possible for it to terminate with a
memory fault when applied to very deep file structures.
It could be made to run faster and use less storage on deep struc­
tures at the cost of considerable complexity.
Ftw uses ma/Joe (3C) to allocate dynamic storage during its opera­
tion. If ftw is forcibly terminated, such as by longjmp being exe­
cuted by fn or an interrupt routine, ftw will not have a chance to free
that storage, so it will remain permanently allocated. A safe way to
handle interrupts is to store the fact that an inten .. pt has occurred,
and arrange to have fn return a nonzero value at its next invocation.

May 8, 1986 Page 2

GETC(3S) UNIX Sys5 GETC(3S)

NAME
getc, getchar, fgetc, getw - get character or word from a stream

'SYNOPSIS

(

(~ '

#include <stdio.h>

int getc (stream)
FILE •stream;

int getchar ()

int fgetc (stream)
FILE •stream;

int getw (stream)
FILE •stream;

DESCRIPTION
Getc returns the next character (byte) from the named input stream,
as an integer. It also moves the file pointer, if defined, ahead one
character in stream. Getchar is defined as getc(stdin). Getc and
getchar are macros.

Fgetc behaves like getc, but is a function rather than a macro.
Fgetc runs more slowly than getc, but it takes less space per invo­
cation and its name can be passed as an argument to a function.

Getw returns the next word (integer) from the named input stream.
Getw increments the associated file pointer, if defined, to point to
the next word. The size of a word is the size of an integer and
varies between machines. Getw has no special file.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S), putc(3S),
scanf(3S).

DIAGNOSTICS
These functions return the constant EOF at end-of-file or upon an
error. Because EOF is a valid integer, use terror (35) to detect
getw errors.

WARNING

BUGS

Page 1

If the integer value returned by getc, getchar, or fgetc is stored into
a character variable and compared against the integer constant
EOF, the comparison may never succeed, because sign-extension of
a character on widening to integer is machine-dependent.

Because it is implemented as a macro, getc treats incorrectly a
stream argument with side effects. In particular, getc(•f+ +) does
not work sensibly. Fgetc should be used instead.
Because of possible differences in word length and byte ordering,
files written using putw are machine-dependent, and may not be
read using getw on a different processor.

August 20, 1986

/--

(

(

(

GETCWD(3C) UNIX SysS GETCWD(3C)

NAME
getcwd - get path-name of current working directory

SYNOPSIS
char *getcwd (buf, size)
char *buf;
int size;

DESCRIPTION
Getcwd returns a pointer to the current directory path-name. The
value of size must be at least two greater than the length of the
path-name to be returned.

If but is a NULL pointer, getcwd will obtain size bytes of space using
ma/Joe (3C). In this case, the pointer returned by getcwd may be
used as the argument in a subsequent call to free.

The function is implemented by using popen (3S) to pipe the output
of the pwd (1) command into the specified string space.

EXAMPLE
char *CWd, ,,,getcwd();

if ((cwd = getcwd((char *)NULL, 64)) = = NULL) {
perror("pwd");
exit(1);

}
printf("%s\n", cwd);

SEE ALSO
malloc(3C), popen(3S).
pwd(1) in the Sys5 UNIX User Reference Manual.

DIAGNOSTICS

Page 1

Returns NULL with errno set if size is not large enough, or if an error
ocurrs in a lower-level function.

May 21, 1985

GETENV(3C) UNIX Sys5

NAME
getenv ~ return value for environment name

SYNOPSIS
char *Qetenv (name)
char *name;

DESCRIPTION

GETENV(3C)

Getenv searches the environment list (see environ (5)) tor a string
of the form name =value, and returns a pointer to the value in the
current environment if such a string is present, otherwise a NULL
pointer.

SEE ALSO
exec(2), putenv(3C), environ(S).

Page 1 May 21, 1985

()

(

GETGRENT(3C) UNIX Sys5 GETGAENT(3C)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent - get
group file entry

SYNOPSIS
#include <grp.h>

struct group *getgrent ()

struct group *getgrgid (gid)
int gid;

struct group *getgrnam (name)
char *name;

void setgrent ()

void endgrent ()

struct group *fgetgrent {f)
FILE *f;

DESCRIPTION

Page 1

Getgrent , getgrgid and getgrnam each return pointers to an object
with the following structure containing the broken-out fields of a line
in the /etc/group file. Each line contains a "group" structure,
defined in the <grp.h> header file.

struct group {
char *gr_name; /*the name of the group*/

};

char
int
char

*gr_passwd; /*the encrypted group password *i

gr_gid; I* the numerical group ID *;

**gr_mem; /*vector of ptrs. to mem. names*/

Getgrent when first called returns a pointer to the first group struc­
ture in the file; thereafter, it returns a pointer to the next group struc­
ture in the file; so, successive calls may be used to search the
entire file. Getgrgid searches from the beginning of the file until a
numerical group id matching gid is found and returns a pointer to
the particular structure in which it was found. Getgrnam searches
from the beginning of the file until a group name matching name is
found and returns a pointer to the particular structure in which it was
found. If an end-of-file or an error is encountered on reading, these
functions return a NULL pointer.

A call to setgrent has the effect of rewinding the group file to allow
repeated searches. Endgrent may be called to close the group file
when processing is complete.

Fgetgrent returns a pointer to the next group structure in the stream
f, which matches the format of /etc/group .

May 21, 1985

GETGRENT(3C)

FILES
ietcigroup

SEE ALSO

UNIX Sys5

getlogin(3C), getpwent(3C), group(4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING

GETGRENT(3C)

The above routines use <stdio.h>, which causes them to increase
the size of programs, not otherwise using standard 1/0, more than
might be expected.

BUGS
All information is contained in a static area, so it must be copied it it
is to be saved.

May 21, 1985 Page 2

"-- -- /

GETLOGIN (3C) UNIX Sys5 GETLOGIN{3C)

NAME
(/ getlogin - get login name

SYNOPSIS

(

(

char *Qetlogin ();

DESCRIPTION

FILES

Getlogin returns a pointer to the login name as found in /etc/utmp.
It may be used in conjunction with getpwnam to locate the correct
password file entry when the same user ID is shared by several
login names.

If getlogin is called within a process that is not attached to a termi­
nal, it returns a NULL pointer. The correct procedure for determining
the login name is to call cuserid , or to call getlogin and if it fails to
call getpwuid .

/etc/utmp

SEE ALSO
cuserid(3S), getgrent(3C), getpwent(3C), utmp(4).

DIAGNOSTICS

BUGS

Page 1

Returns the NULL pointer if name is not found.

The return values point to static data whose content is overwritten
by each call.

May 13, 1986

GETOPT(3C) UNIX Sys5 GETOPT(3C)

NAME
getopt - get option letter from argument vector

SYNOPSIS
int getopt (argc, argv, optstring)
int argc;
char **argv, *Opstring;

extern char *Optarg;
extern int optind, opterr;

DESCRIPTION
Getopt returns the next option letter in argv that matches a letter in
optstring . Optstring is a string of recognized option letters; if a
letter is followed by a colon, the option is expected to have an argu­
ment that may or may not be separated from it by white space.
Optarg is set to point to the start of the option argument on return
from getopt .

Getopt places in optind the argv index of the next argument to be
processed. Because optind is external, it is normally initialized to
zero automatically before the first call to getopt .

When all options have been processed (i.e., up to the first non­
option argument), getopt returns EOF . The special option - may
be used to delimit the end of the options; EOF will be returned, and·
- will be skipped. · ··~ /

DIAGNOSTICS
Getopt prints an error message on stderr and returns a question
mark (?) when it encounters an option letter not included in opt­
string . This error message may be disabled by setting opterr to a
non-zero value.

EXAMPLE

Page 1

The following code fragment shows how one might process the
arguments for a command that can take the mutually exclusive
options a and b , and the options f and o , both of which require
arguments:

main (argc, argv)
int argc;
char **argv;
{

int c;
extern char *Optarg;
extern int optind;

while ((c getopt(argc, argv, "abf:o:")) != EOF)

May 13, 1986

(1

(_

(i

GETOPT(3C)

}

SEE ALSO

UNIX Sys5

switch (c) {
case 'a':

if (bflg)

else

break;
case 'b':

if (aflg)

else

break;
case 'f':

errflg+ +;

aflg++;

errflg+ +;

bproc();

ifile = optarg;
break;

case 'o':
ofile = optarg;
break;

case '?':
errflg+ +;

}
if (errflg) {

}

fprintf(stderr, "usage: ... ");
exit (2);

for (; optind < argc; optind + +) {
if (access(argv[optind], 4)) {

getopt(1) in the Sys5 UNIX User Reference Manual.

May 13, 1986

GETOPT(3C)

Page2

GETPASS(3C) UNIX Sys5 GETPASS(3C)

NAME
getpass - read a password

SYNOPSIS
char *getpass (prompt)
char *prompt;

DESCRIPTION

FILES

Getpass reads up to a newline or EOF from the file /dev/tty , after
prompting on the standard error output with the null-terminated
string prompt and disabling echoing. A pointer is returned to a
null-terminated string of at most 8 characters. If /dev/tty cannot be
opened, a NULL pointer is returned. An interrupt will terminate input
and send an interrupt signal to the calling program before returning.

/dev/tty

SEE ALSO
crypt(3C).

WARNING

BUGS

Page 1

The above routine uses <stdio.h>, which causes it to increase the
size of programs not otherwise using standard 1/0, more than might
be expected.

The return value points to static data whose content is overwritten
by each call.

May 13, 1986

(

(

(

GETPW(3C) UNIX Sys5 GETPW(3C)

NAME
getpw - get name from UID

SYNOPSIS
int getpw (uid, buf)
int uid;
char *buf;

DESCRIPTION

FILES

Getpw searches the password file for a user id number that equals
uid , copies the line of the password file in which uid was found into
the array pointed to by but, and returns 0. Getpw returns non-zero
if uid cannot be found.

This routine is included only for compatibility with prior systems and
should not be used; see getpwent (3C) for routines to use instead.

/etc/passwd

SEE ALSO
getpwent(3C), passwd(4).

DIAGNOSTICS
Getpw returns non-zero on error.

WARNING

Page 1

The above routine uses <stdio.h>, which causes it to increase,
more than might be expected, the size of programs not otherwise
using standard 1/0.

May 13, 1986

GETPWENT(3C) UNIX Sys5 GETPWENT (3C)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent - /
get password file entry

SYNOPSIS
#include <pwd.h>

struct passwd *getpwent ()

struct passwd *Qetpwuid (uid)
int uid;

struct passwd *getpwnam (name)
char *name;

void setpwent {)

void endpwent {)

struct passwd *fgetpwent (f)
FILE *f;

DESCRIPTION
Getpwent , getpwuid and getpwnam each returns a pointer to an
object with the following structure containing the broken-out fields of
a line in the /etc/passwd file. Each line in the file contains a
"passwd" structure, declared in the <pwd.h> header file:

struct passwd {
char
char

*pw_name;
* pw _passwd;
pw_uid;
pw_gid;

};

int
int
char *pw_age;
char *PW_comment;
char *PW_gecos;
char *PW_dir;
char *PW_shell;

This structure is declared in <pwd.h> so it is not necessary to
redeclare it.

The pw _comment field is unused; the others have meanings
described in passwd (4).

Getpwent when first called returns a pointer to the first passwd
structure in the file; thereafter, it returns a pointer to the next
passwd structure in the file; so successive calls can be used to
search the entire file. Getpwuid searches from the beginning of the
file until a numerical user id matching uid is found and returns a
pointer to the particular structure in which it was found. Getpwnam \'--"
searches from the beginning of the file until a login name matching
name is found, and returns a pointer to the particular structure in

Page 1 May 13, 1986

(

(

GETPWENT {3C) UNIX.Sys5 GETPWENT{3C)

FILES

which it was found. If an end-of-file or an error is encountered on
reading, these functions return a NULL pointer.

A call to setpwent has the effect of rewinding the password file to
allow repeated searches. Endpwent may be called to close the
password file when processing is complete.

Fgetpwent returns a pointer to the next passwd structure in the
stream f, which matches the format of /etc/passwd .

/etc/passwd

SEE ALSO
getlogin(3C), getgrent(3C), passwd(4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING

BUGS

The above routines use <stdio.h>, which causes them to increase
the size of programs, not otherwise using standard 1/0, more than
might be expected.

All information is contained in a static area, so it must be copied if it
is to be saved.

May 13, 1986 Page 2

GETS(3S) UNIX Sys5 GETS(3S)

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#include <stdio.h>

char *gets (s)
char *S;

char *fgets (s, n, stream)
char *S;
int n;
FILE *Stream;

DESCRIPTION
Gets reads characters from the standard input stream, stdin, into
the array pointed to by s , until a new-line character is read or an
end-of-file condition is encountered. The new-line character is dis­
carded and the string is terminated with a null character.

Fgets reads characters from the stream into the array pointed to by
s , until n -1 characters are read, or a new-line character is read
and transferred to s , or an end-of-file condition is encountered. The
string is then terminated with a null character.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S).

DIAGNOSTICS

Page 1

If end-of-tile is encountered and no characters have been read, no
characters are transferred to s and a NULL pointer is returned. If a
read error occurs, such as trying to use these functions on a file that
has not been opened for reading, a NULL pointer is returned. Other­
wise s is returned.

May 13, 1986

(

GETUT(3C) UNIX Sys5 GETUT(3C)

NAME
getutent, getutid, getutline, pututline, setutent, endutent, utmpname
- access utmp file entry

SYNOPSIS
#include <utmp.h>

struct utmp •getutent ()

struct utmp •getutid (id)
struct utmp •id;

struct utmp •getutline (line)
struct utmp •line;

void pututline (utmp)
struct utmp •utmp;

void setutent ()

void endutent ()

void utmpname (file)
char •file;

DESCRIPTION
Getutent, getutid and getutline each return a pointer to a structure
of the following type:

struct utmp {
char ut_user[8]; I* User login name *'
char ut_id[4]; I* /etc/inittab id

* (usually line #) */
char ut_line[12]; I* device name (console,

* lnxx) */
short ut_pid; I* process id *'
short ut_type; I* type of entry *'
struct exit_status {

short e_termination; I* Process term'ion stat. *I
short e_exit; I* Process exit stat. *'

} ut_exit; I* The exit stat. of a process * mrk'd DEAD_PROCESS. *I
time_t ut_time; I* time entry was made *'

};

Getutent reads in the next entry from a utmp -like file. If the file is
not already open, it opens it. If it reaches the end of the file, it fails.

Getutid searches forward from the current point in the utmp file until
it finds an entry with a ut_type matching id->ut_type if the type
specified is RUN_LVL, BOOT_TIME, OLD_TIME or NEW_TIME. If the
type specified in id is INIT _PROCESS, LOGIN_PROCESS,
USER_PROCESS or DEAD_PROCESS, then getutid will return a
pointer to the first entry whose type is one of these four and whose

Page 1 May 13, 1986

GETUT(3C) UNIX Sys5 GETUT(3C)

FILES

ut_id field matches id->ut_id. If the end of file is reached without a
match, it tails.

Getutline searches forward from the current point in the utmp file
until it finds an entry of the type LOGIN_PROCESS or
USER_PROCESS which also has a ut_line string matching the
line->ut_line string. If the end of file is reached without a match, it
fails.

Pututline writes out the supplied utmp structure into the utmp file.
It uses getutid to search forward for the proper place if it finds that it
is not already at the proper place. It is expected that normally the
user of pututline will have searched for the proper entry using one
of the getut routines. If so, pututline will not search. If pututline
does not find a matching slot for the new entry, it will add a new
entry to the end of the file.

Setutent resets the input stream to the beginning of the file. This
should be done before each search for a new entry if it is desired
that the entire file be examined.

Endutent closes the currently open file.

Utmpname allows the user to change the name of the file exam­
ined, from /etc/utmp to any other file. It is most often expected that
this other file will be /etc/wtmp . If the file does not exist, this will
not be apparent until the first attempt to reference the file is made.
Utmpname does not open the file. It just closes the old file if it is
currently open and saves the new file name.

/etc/utmp
/etc/wtmp

SEE ALSO
ttyslot(3C), utmp(4).

DIAGNOSTICS
A NULL pointer is returned upon failure to read, whether for permis­
sions or having reached the end of file, or upon failure to write.

COMMENTS
The most current entry is saved in a static structure. Multiple
accesses require that it be copied before further accesses are
made. Each call to either getutid or getutline sees the routine
examine the static structure before performing more 1/0. If the con­
tents of the static structure match what it is searching for, it looks no
further. For this reason to use getutline to search for multiple
occurrences, it would be necessary to zero out the static after each
success, or getutline would just return the same pointer over and
over again. There is one exception to the rule about removing the
structure before further reads are done. The implicit read done by

May 13, 1986 Page 2

' ,,

(

GETUT(3C) UNIX Sys5 GETUT(3C)

Page3

pututline (if it finds that it is not already at the correct place in the
file) will not hurt the contents of the static structure returned by the
getutent , getutid or getutline routines, if the user has just modified
those contents and passed the pointer back to pututline .

These routines use buffered standard 1/0 for input, but pututline
uses an unbuffered non-standard write to avoid race conditions
between processes trying to modify the utmp and wtmp files.

May 13, 1986

HSEARCH{3C) UNIX Sys5 HSEARCH{3C)

NAME
hsearch, hcreate, hdestroy - manage hash search tables

SYNOPSIS
#include <search.h>

ENTRY *hsearch (item, action)
ENTRY item;
ACTION action;

int hcreate (nel)
unsigned nel;

void hdestroy ()

DESCRIPTION

NOTES

Page 1

Hsearch is a hash-table search routine generalized from Knuth (6.4)
Algorithm D. It returns a pointer into a hash table indicating the
location at which an entry can be found. Item is a structure of type
ENTRY (defined in the <search.h> header file) containing two
pointers: item.key points to the comparison key, and item.data
points to any other data to be associated with that key. (Pointers to
types other than character should be cast to pointer-to-character.)
Action is a member of an enumeration type ACTION indicating the
disposition of the entry if it cannot be found in the table. ENTER
indicates that the item should be inserted in the table at an appropri-,
ate point. FIND indicates that no entry should be made. Unsuc- ,,
cessful resolution is indicated by the return of a NULL pointer.

Hcreate allocates sufficient space for the table, and must be called
before hsearch is used. Ne/ is an estimate of the maximum number
of entries that the table will contain. This number may be adjusted
upward by the algorithm in order to obtain certain mathematically
favorable circumstances.

Hdestroy destroys the search table, and may be followed by
another call to hcreate .

Hsearch uses open addressing with a multiplicative hash function.
However, its source code has many other options available which
the user may select by compiling the hsearch source with the fol­
lowing symbols defined to the preprocessor:

DIV Use the remainder modulo table size as the hash
function instead of the multiplicative algorithm.

USCR Use a User Supplied Comparison Routine for
ascertaining table membership. The routine1r",
should be named hcompar and should behave in~ _,;
a mannner similar to strcmp (see string (3C)). ·

May 13, 1986

(.

(

(

HSEARCH(3C) UNIX Sys5 HSEARCH{3C)

CHAINED Use a linked list to resolve collisions. If this
option is selected, the following other options
become available.

START Place new entries at the beginning
of the linked list (default is at the
end).

SORTUP Keep the linked list sorted by key in
ascending order.

SORTDOWN Keep the linked list sorted by key in
descending order.

Additionally, there are preprocessor flags for obtaining debugging
printout (-DDEBUG) and for including a test driver in the calling rou­
tine (-DDRIVER). The source code should be consulted for further
details.

EXAMPLE
The following example will read in strings followed by two numbers
and store them in a hash table, discarding duplicates. It will then
read in strings and find the matching entry in the hash table and
print it out.

May 13, 1986

#include <stdio.h>
#include <search.h>

struct info { f* this is the info stored in the table *'
int age, room; f* other than the key. *'

};
#define NUM_EMPL 5000 f * # of elements in srch tbl *'

main()
{

f* space to store strings *f
char string_space[NUM_EMPL*20];
f* space to store employee info *f
struct info info_space[NUM_EMPL];
f* next avail space in string_space *f
char *Str_ptr = string_space;
f* next avail space in info_space *'
struct info *info_ptr = info_space;
ENTRY item, *found_item, *hsearch();
f* name to look for in table *f
char name_to_find[30];
inti = O;

f* create table *f
(void) hcreate(NUM_EMPL);

Page 2

HSEARCH(3C) UNIX Sys5 HSEARCH{3C)

}

while (scanf("%s%d%d", str_ptr, &info_ptr- >age,
&info_ptr->room) != EOF && i+ + <

}

NUM_EMPL) {

f* put info in structure, and structure in item */
item.key = str_ptr;
item.data = (char *)info_ptr;
str_ptr + = strlen(str_ptr) + 1;
info_ptr+ +;
f* put item into table *f
(void) hsearch(item, ENTER);

f* access table *'
item.key = name_to_find;
while (scanf("%s", item.key) != EOF) {

}

if ((found_item = hsearch(item, FIND)) != NULL) {

f* if item is in the table *f
(void)printf("found %s, age = %d, room = %d\n",

found_item- >key,
((struct info *)found_item- >data)- >age,
((struct info *)found_item->data)- >room);

} else {

}

(void)printf("no such employee %s\n",
name_to_find)

SEE ALSO
bsearch(3C), lsearch(3C), malloc(3C), malloc(3X), string(3C),
tsearch(3C).

DIAGNOSTICS
Hsearch returns a NULL pointer if either the action is FIND and the
item could not be found or the action is ENTER and the table is full.

Hcreate returns zero if it cannot allocate sufficient space for the
table.

WARNING
Hsearch and hcreate use ma//oc (3C) to allocate space.

BUGS
Only one hash search table may be active at any given time.

Page 3 May 13, 1986

(-

(

l3TOL(3C) UNIX Sys5 l3TOL(3C)

NAME
13tol, ltol3 - convert between 3-byte integers and long integers

SYNOPSIS
void 13tol (Ip, cp, n)
long *Ip;
char *CP;
int n;

void ltol3 (cp, Ip, n)
char *CP;
long *Ip;
int n;

DESCRIPTION
L3tol converts a list of n three-byte integers packed into a character
string pointed to by cp into a list of long integers pointed to by Ip .

Lto/3 performs the reverse conversion from long integers (Ip) to
three-byte integers (cp).

These functions are useful for file-system maintenance where the
block numbers are three bytes long.

SEE ALSO
fs(4).

BUGS

Page 1

Because of possible differences in byte ordering, the numerical
values of the long integers are machine-dependent.

May 13, 1986

LSEARCH(3C) UNIX Sys5 LSEARCH(3C)

NAME
!search, lfind ~ linear search and update

SYNOPSIS
#include <stdio.h>
#include <search.h>

char *lsearch {(char *)key, (char *)base, nelp, sizeof(*key),
com par)
unsigned *nelp;
int (*COmpar)();

char *lfind ((char *)key, (char *)base, nelp, sizeof(*key),
com par)
unsigned *nelp;
int (*Compar)();

DESCRIPTION

NOTES

Lsearch is a linear search routine generalized from Knuth (6.1)
Algorithm S. It returns a pointer into a table indicating where a
datum may be found. If the datum does not occur, it is added at the
end of the table. Key points to the datum to be sought in the tabl~.
Base points to the first element in the table. Nelp points to an
integer containing the current number of elements in the table. The
integer is incremented if the datum is added to the table. Compar
is the name of the comparison function which the user must supply
(strcmp, for example). It is called with two arguments that point to
the elements being compared. The function must return zero if the
elements are equal and non-zero otherwise.

Lfind is the same as /search except that if the datum is not found, it
is not added to the table. Instead, a NULL pointer is returned.

The pointers to the key and the element at the base of the table
should be of type pointer-to-element, and cast to type pointer-to­
character.
The comparison function need not compare every byte, so arbitrary
data may be contained in the elements in addition to the values
being compared.
Although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

EXAMPLE

Page 1

This fragment will read in :s TABSIZE strings of length :s ELSIZE and
store them in a table, eliminating duplicates.

#include <stdio.h>
#include <search.h>

#define T ABSIZE 50

May 13, 1986

(

(

LSEARCH{3C) UNIX Sys5 LSEARCH{3C)

#define ELSIZE 120

char line[ELSIZE], tab(TABSIZE][ELSIZE], *ISearch();
unsigned nel = O;
int strcmp();

while (fgets(line, ELSIZE, stdin) ! = NULL &&
nel < TABSIZE)

(void) lsearch(line, (char *)tab, &nel,
ELSIZE, strcmp);

SEE ALSO
bsearch(3C), hsearch(3C), tsearch(3C).

DIAGNOSTICS

BUGS

If the searched for datum is found, both /search and /find return a
pointer to it. Otherwise, /find returns NULL and /search returns a
pointer to the newly added element.

Undefined results can occur if there is not enough room in the table
to add a new item.

May 13, 1986 Page2

MALLOC(3C) UNIX Sys5 MALLOC(3C)

NAME
malloc, free, realloc, canoe - main memory allocator

SYNOPSIS
char *malloc (size)
unsigned size;

void free (ptr)
char *Ptr;

char *realloc (ptr, size)
char *ptr;
unsigned size;

char *calloc (nelem, elsize)
unsigned nelem, elsize;

DESCRIPTION
Malloc and free provide a simple general-purpose memory alloca­
tion package. Malloc returns a pointer to a block of at least size
bytes suitably aligned for any use.

The argument to free is a pointer to a block previously allocated by
malloc ; after free is performed this space is made available for
further allocation, but its contents are left undisturbed.

Undefined results will occur if the space assigned by ma//oc is over-

./~---

\.,__ _ ____/

run or if some random number is handed to free . "· /

Page 1

Mal/oc allocates the first big enough contiguous reach of free space
found in a circular search from the last block allocated or freed,
coalescing adjacent free blocks as it searches. It calls sbrk (see
brk (2)) to get more memory from the system when there is no suit-
able space already free.

Realloc changes the size of the block pointed to by ptr to size
bytes and returns a pointer to the (possibly moved) block. The con­
tents will be unchanged up to the lesser of the new and old sizes. If
no free block of size bytes is available in the storage arena, then
realloc will ask ma//oc to enlarge the arena by size bytes and will
then move the data to the new space.

Realloc also works if ptr points to a block freed since the last call of
malloc , realloc , or calloc ; thus sequences of free , malloc and
realloc can exploit the search strategy of malloc to do storage com­
paction.

Calloc allocates space for an array of ne/em elements of size e/size
. The space is initialized to zeros.

May 13, 1986

(~

(

(-- ..
\

MALLOC(3C) UNIX Sys5 MALLOC(3C)

Each of the allocation routines returns a pointer to space suitably
aligned (after possible pointer coercion) for storage of any type of
object.

SEE ALSO
brk(2), malloc(3X).

DIAGNOSTICS

NOTE

Ma/foe , realloc and ca/foe return a NULL pointer if there is no avail­
able memory or if the arena has been detectably corrupted by stor­
ing outside the bounds of a block. When this happens the block
pointed to by ptr may be destroyed.

Search time increases when many objects have been allocated; that
is, if a program allocates but never frees, then each successive allo­
cation takes longer. For an alternate, more flexible implementation,
see ma/foe (3X).

May 22, 1985 Page 2

MEMORY(3C) UNIX Sys5 MEMORY(3C)

NAME
memccpy, memchr, memcmp, memcpy, memset - memory opera­
tions

SYNOPSIS
#include <memory.h>

char *memccpy (s1, s2, c, n)
char *S1, *S2;
int c, n;

char *memchr (s, c, n)
char *S;
int c, n;

int memcmp (s1, s2, n)
char *S1, *S2;
int n;

char *memcpy (s1, s2, n)
char *S1, *S2;
int n;

char *memset (s, c, n)
char *S;
int c, n;

DESCRIPTION
These functions operate as efficiently as possible on memory areas
(arrays of characters bounded by a count, not terminated by a null
character). They do not check for the overflow of any receiving
memory area.

Memccpy copies characters from memory area s2 into s1 , stop­
ping after the first occurrence of character c has been copied, or
after n characters have been copied, whichever comes first. It
returns a pointer to the character after the copy of c in s1 , or a
NULL pointer if c was not found in the first n characters of s2 .

Memchr returns a pointer to the first occurrence of character c in
the first n characters of memory area s, or a NULL pointer if c does
not occur.

Memcmp compares its arguments, looking at the first n characters
only, and returns an integer less than, equal to, or greater than O,
according as s1 is lexicographically less than, equal to, or greater
than s2.

Memcpy copies n characters from memory area s2 to s1 . It er ,
returns s1 . , __ /

Page 1 May 22, 1985

(

MEMORY{3C) UNIX Sys5 MEMORY(3C)

NOTE

BUGS

Memset sets the first n characters in memory area s to the value of
character c . It returns s .

For user convenience, all these functions are declared in the
optional <memory.h> header file.

Memcmp uses native character comparison, which is unsigned on
other machines. Thus the sign of the value returned when one of
the characters has its high-order bit set is implementation­
dependent.

Character movement is performed differently in different implemen­
tations. Thus overlapping moves may yield surprises.

May 22, 1985 Page 2

MKTEMP(3C) UNIX Sys5 MKTEMP(3C)

NAME
mktemp - make a unique file name

SYNOPSIS
char *mktemp (template)
char *template;

DESCRIPTION
Mktemp replaces the contents of the string pointed to by template
by a unique file name, and returns the address of template . The
string in template should look like a file name with six trailing X s;
mktemp will replace the X s with a letter and the current process ID.
The letter will be chosen so that the resulting name does not dupli­
cate an existing file.

SEE ALSO
getpid(2), tmpfile(3S), tmpnam(3S).

BUGS
It is possible to run out of letters.

Page 1 May 21, 1985

(

(

MONITOR(3C) UNIX Sys5 MONITOR(3C)

NAME
monitor - prepare execution profile

SYNOPSIS
#include <mon.h>

void monitor {lowpc, highpc, buffer, bufsize, nfunc)
int {*lowpc){), (*highpc){);
WORD *buffer;
int bufsize, nfunc;

DESCRIPTION

FILES

An executable program created by cc -p automatically includes
calls for monitor with default parameters; monitor needn't be called
explicitly except to gain fine control over profiling.

Monitor is an interface to profil (2). Lowpc and highpc two function
addresses; buffer is the address of a (user supplied) array of buf­
size WORDs (defined in the <mon.h> header file). Monitor records
a histogram of periodically sampled values of the program counter,
and of counts of certain function calls, in the buffer. The lowest
address sampled is that of lowpc and the highest is just below
highpc. In this case, lowpc may not equal 0. At most, nfunc call
counts can be kept; only calls of functions compiled with the profiling
option -p of cc (1) are recorded. (The C Library and Math Library
supplied when cc-pis used also have call counts recorded.)

For the results to be significant, especially where there are small,
heavily used routines, it is suggested that the buffer be no more
than a few times smaller than the range of locations sampled.

To profile the entire program, it is sufficient to use

extern etext;

monitor ((int (*)())2, etext, buf, bufsize, nfunc);

Etext lies just above all the program text; see end (3C).

To stop execution monitoring and write the results on the file
mon.out 1 use

monitor ((int (*)0)0, 0, 0, 0, O);

Prof (1) can then be used to examine the results.

mon.out
/lib/libp/libc. a

(/lib/libp/libm.a

. SEE ALSO
profil(2), end(3C).
cc(1), prof(1) in the Sys5 UNIX User Reference Manual.

Page 1 August 20, 1986

(

(

(

NLIST(3C) UNIX Sys5 NLIST(3C)

NAME
nlist - get entries from name list

SYNOPSIS
#include <nlist.h>

int nlist (file-name, nl)
char *file-name;
struct nlist *nl;

DESCRIPTION

NOTES

Nlist examines the name list in the executable file whose name is
pointed to by file-name , and selectively extracts a list of values and
puts them in the array of nlist structures pointed to by nl . The name
list nl consists of an array of structures containing names of vari­
ables, types and values. The list is terminated with a null name;
that is, a null string is in the name position of the structure. Each
variable name is looked up in the name list of the file. If the name is
found, the type and value of the name are inserted in the next two
fields. The type field will be set to O unless the file was compiled
with the -g option. If the name is not found, both entries are set to
0. See a.out (4) for a discussion of the symbol table structure.

This function is useful for examining the system name list kept in the
file /unix . In this way programs can obtain system addresses that
are up to date.

The <nlist.h> header file is automatically included by <a.out.h>
for compatability. However, if the only information needed from
<a.out.h> is for use of nlist , then including <a.out.h> is
discouraged. If <f}..out.h> is included, the line '·#undef n_name ..
may need to follow it.

SEE ALSO
a.out(4).

DIAGNOSTICS

Page 1

All value entries are set to O if the file cannot be read or if it does
not contain a valid name list.

Nlist returns -1 upon error; otherwise it returns 0.

May 21, 1985

PERROR(3C) UNIX Sys5 PERROR(3C)

NAME /---,\
perror, errno, sys_errlist, sys_nerr - system error messages 0

SYNOPSIS
voi~ perror (s)
char *S;

extern int errno;

extern char *Sys_errlist[] ;

extern int sys_nerr;

DESCRIPTION
Perror produces a message on the standard error output, describing
the last error encountered during a call to a system or library func­
tion. The argument string s is printed first, then a colon and a
blank, then the message and a new-line. ·To be of most use, the
argument string should include the name of the program that
incurred the error. The error number is taken from the external vari­
able errno , which is set when errors occur but not cleared when
non-erroneous calls are made.

To simplify variant formatting of messages, the array of message
strings sys_errlist is provided; errno can be used as an index in this
table to get the message string without the new-line. Sys_nerr is .. ·~
the largest message number provided for in the table; it should be·."-- j
checked because new error codes may be added to the system
before they are added to the table.

SEE Al-SO
intro(2).

Pa9e 1 May 21, 1985

(

(

(_

POPEN(3S) UNIX Sys5 POPEN(3S)

NAME
popen, pclose - initiate pipe to/from a process

SYNOPSIS
#include <stdio.h>

FILE *POpen {command, type)
char *Command, *type;

int pclose {stream)
FILE *Stream;

DESCRIPTION
The arguments to papen are pointers to null-terminated strings con­
taining, respectively, a shell command line and an 1/0 mode, either r
for reading or w for writing. Papen creates a pipe between the cal­
ling program and the command to be executed. The value returned
is a stream pointer such that one can write to the standard input of
the command, if the 1/0 mode is w, by writing to the file stream; and
one can read from the standard output of the command, if the 1/0
mode is r, by reading from the file stream.

A stream opened by papen should be closed by pc/ase, which
waits for the associated process to terminate and returns the exit
status of the command.

Because open files are shared, a type r command may be used as
an input filter and a type w as an output filter.

SEE ALSO
pipe(2), wait(2), fclose(3S), fopen(3$), system(3S).

DIAGNOSTICS

BUGS

Page 1

Papen returns a NULL pointer if files or processes cannot be
created, or if the shell cannot be accessed.

Pclase returns -1 if stream is not associated with a "papened"
command.

If the original and "papen ed" processes concurrently read or write a
common file, neither should use buffered 1/0, because the buffering
gets all mixed up. Problems with an output filter may be forestalled
by careful buffer flushing, e.g. with fflush; see fcfase(3S).

May 13, 1986

PRINTF{3S) UNIX Sys5 PRINTF(3S)

NAME
- printf, fprintf, sprintf - print formatted output

SYNOPSIS
#include <stdio.h>

int printf (format [, arg] . . .)
char *format;

int fprintf (stream, format [, arg] . . .)
FILE *Stream;
char *format;

int sprintf (s, format [, arg] . . .)
char *S, format;

DESCRIPTION

Page 1

Printf places output on the standard output stream stdout. Fprintf
places output on the named output stream. Sprintf places "output,"
followed by the null character (\0), in consecutive bytes starting at
*S; it is the user's responsibility to ensure that enough storage is
available. Each function returns the number of characters transmit·
ted (not including the \0 in the case of sprintf), or a negative value if
an output error was encountered.

Each of these functions converts, formats, and prints its args under /~~
control of the format. The format is a character string that contains ,,,__ /
two types of objects: plain characters, which are simply copied to
the output stream, and conversion specifications, each of which
results in fetching of zero or more args. The results are undefined if
there are insufficient args for the format. If the format is exhausted
while args remain, the excess args are simply ignored.

Each conversion specification is introduced by the character %.
After the %, the following appear in sequence:

Zero or more flags, which modify the meaning of the
conversion specification.

An optional decimal digit string specifying a minimum field
width. If the converted value has fewer characters than the
field width, it will be padded on the left (or right, if the left·
adjustment flag '-', described below, has been given) to the
field width. If the field width for an s conversion is preceded
by a 0, the string is right adjusted with zero-padding on the
left.

A precision that gives the minimum number of digits to
appear for the d, o, u, x, or X conversions, the number of
digits to appear after the decimal point for the e and f
conversions, the maximum number of significant digits for
the g conversion, or the maximum number of characters to

May 13, 1986

('

PRINTF(3S) UNIX Sys5 PRINTF(3S)

be printed from a string in s conversion. The precision
takes the form of a period (.) followed by a decimal digit
string; a null digit string is treated as zero.

An optional I (ell) specifying that a following d, o, u, x, or X
conversion character applies to a long integer arg. A I
before any other conversion character is ignored.

A character that indicates the type of conversion to be
applied.

A field width or precision may be indicated by an asterisk (*) instead
of a digit string. In this case, an integer arg supplies the field width
or precision. The arg that is actually converted is not fetched until
the conversion letter is seen, so the args specifying field width or
precision must appear before the arg (if any) to be converted.

The flag characters and their meanings are:

+

blank

The result of the conversion will be left-justified within the
field.
The result of a signed conversion will always begin with
a sign (+ or-).
If the first character of a signed conversion is not a sign,
a blank will be prefixed to the result. This implies that if
the blank and + flags both appear, the blank flag will be
ignored.
This flag specifies that the value is to be converted to an
"alternate form." For c, d, s, and u conversions, the flag
has no effect. For o conversion, it increases the preci­
sion to force the first digit of the result to be a zero. For
x or X conversion, a non-zero result will have Ox or OX
prefixed to it. For e, E, f, g, and G conversions, the
result will always contain a decimal point, even if no
digits follow the point (normally, a decimal point appears
in the result of these conversions only if a digit follows it).
For g and G conversions, trailing zeroes will not be
removed from the result (which they normally are).

The conversion characters and their meanings are:

d,o,u,x,x The integer arg is converted to signed decimal, unsigned
octal, decimal, or hexadecimal notation (x and X),
respectively; the letters abcdef are used for x conversion
and the letters ABCDEF for X conversion. The precision
specifies the minimum number of digits to appear; if the
value being converted can be represented in fewer
digits, it will be expanded with leading zeroes. (For com­
patibility with older versions, padding with leading zeroes
may alternatively be specified by prepending a zero to
the field width. This does not imply an octal value for the

May 13, 1986 Page 2

PRINTF(3S) UNIX Sys5 PRINTF(3S)

field width.) The default precision is 1. The result of con-/-"­
verting a zero value with a precision of zero is a null~ \'
string. \._/

f The float or double arg is converted to decimal notation
in the style "[-]ddd.ddd," where the number of digits
after the decimal point is equal to the precision specifica­
tion. If the precision is missing, six digits are output; if
the precision is explicitly 0, no decimal point appears.

e,E The float or double arg is converted in the style
"[-]d.ddde±dd," where there is one digit before the
decimal point and the number of digits after it is equal to
the precision; when the precision is missing, six digits
are produced; if the precision is zero, no decimal point
appears. The E format code will produce a number with
E instead of e introducing the exponent. The exponent
always contains at least two digits.

g,G The float or double arg is printed in style f or e (or in
style E in the case of a G format code), with the preci­
sion specifying the number of significant digits. The style
used depends on the value converted: style e will be
used only if the exponent resulting from the conversion is
less than -4 or greater than the precision. Trailing,,-------\
zeroes are removed from the result; a decimal point,"- __)
appears only if it is followed by a digit. -

c The character arg is printed.
s The arg is taken to be a string (character pointer) and

characters from the string are printed until a null charac­
ter (\0) is encountered or the number of characters indi­
cated by the precision specification is reached. If the
precision is missing, it is taken to be infinite, so all char­
acters up to the first null character are printed. A NULL
value for arg will yield undefined results.

% Print a o/o; no argument is converted.

In no case does a non-existent or small field width cause truncation
of a field; if the result of a conversion is wider than the field width,
the field is simply expanded to contain the conversion result. Char­
acters generated by printf and fprintf are printed as if putc(3S) had
been called.

EXAMPLES

Page 3

To print a date and time in the form "Sunday, July 3, 10:02," where
weekday and month are pointers to null-terminated strings:

printf("%s, %s %d, %d:%.2d", weekday, month, day, hour, r('-\
To print '1T to 5 decimal places: "-/

• May 13, 1986

PRINTF(3$) UNIX Sys5 PRINTF(3S)

(
printf("pi = %.Sf", 4 * atan(1:o));

SEE ALSO
ecvt(3C), putc(3S), scanf(3S), stdio(3S).

(

(~

May 13, 1986 Page4

PUTC{3S) UNIX Sys5 PUTC(3S)

NAME
putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS
#include <stdio.h>

int putc (c, stream)
int c;
FILE *Stream;

int putchar (c)
int c;
int fputc (c, stream)
int c;
FILE *Stream;

int putw (w, stream)
int w;
FILE *Stream;

DESCRIPTION

Page 1

Putc writes the character c onto the output stream (at the position
where the file pointer, if defined, is pointing). Putchar(c) is defined
as putc(c, stdout). Putc and putchar are macros.

Fputc behaves like putc, but is a function rather than a macro.
Fputc runs more slowly than putc, but it takes less space per invo- ,_ 7

cation and its name can be passed as an argument to a function.

Putw writes the word (i.e. integer) w to the output stream (at the
position at which the file pointer, if defined, is pointing). The size of
a word is the size of an integer and varies from machine to
machine. Putw neither assumes nor causes special alignment in
the file.

Output streams, with the exception of the standard error stream
stderr, are by default buffered if the output refers to a file and line­
buffered if the output refers to a terminal. The standard error output
stream stderr is by default unbuffered, but use of freopen (see
fopen(3S)) will cause it to become buffered or line-buffered. When
an output stream is unbuffered, information is queued for writing on
the destination file or terminal as soon as written; when it is buf­
fered, many characters are saved up and written as a block. When
it is line-buffered, each line of output is queued for writing on the
destination terminal as soon as the line is completed (that is, as
soon as a new-line character is written or terminal input is
requested). Setbuf(3S) or Setbuf(3S) may be used to change the
stream's buffering strategy.

August 20, 1986

(

('

PUTC(3S) UNIX Sys5 PUTC(3S)

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), printf(3S), puts(3S),
setbuf(3S).

DIAGNOSTICS

BUGS

On success, these functions each return the value they have writ­
ten. On failure, they return the constant EOF . This will occur if the
file stream is not open for writing or if the output file cannot be
grown. Because EOF is a valid integer, terror (35) should be used
to detect putw errors.

Because it is implemented as a macro, putc treats incorrectly a
stream argument with side effects. In particular, putc(c, *f+ +);
doesn't work sensibly. Fputc should be used instead.
Because of possible differences in word length and byte ordering,
files written using putw are machine-dependent, and may not be
read using getw on a different processor.

May 21, 1985 Page 2

PUTENV(3C) UNIX Sys5 PUTENV(3C)

NAME
putenv - change or add value to environment

SYNOPSIS
int putenv {string)
char *String;

DESCRIPTION
String points to a string of the form "name= value." Putenv makes
the value of the environment variable name equal to value by alter­
ing an existing variable or creating a new one. In either case, the
string pointed to by string becomes part of the environment, so
altering the string will change the environment. The space used by
string is no longer used once a new string-defining name is passed
to putenv.

DIAGNOSTICS
Putenv returns non-zero if it was unable to obtain enough space via
ma/Joe for an expanded environment, otherwise zero.

SEE ALSO
exec(2), getenv(3C), malloc(3C), environ(5).

WARNINGS

Page 1

Putenv manipulates the environment pointed to by environ, and can
be used in conjunction with getenv. However, envp (the third argu­
ment to main) is not changed.
This routine uses ma/Joe (3C) to enlarge the environment.
After putenv is called, environmental variables are not in alphabeti­
cal order.
A potential error is to call putenv with an automatic variable as the
argument, then exit the calling function while string is still part of the
environment.

May 21, 1985

(_

(

(

PUTPWENT(3C) UNIX Sys5 PUTPWENT(3C)

NAME
putpwent - write password file entry

SYNOPSIS
#include <pwd.h>

int putpwent (p, f)
struct passwd *P;
FILE *f;

DESCRIPTION
Putpwent is the inverse of getpwent (3C). Given a pointer to a
passwd structure created by getpwent (or getpwuid or getpwnam
), putpwent writes a line on the stream f, which matches the format
of /etc/passwd .

DIAGNOSTICS
Putpwent returns non-zero if an error was detected during its opera­
tion, otherwise zero.

SEE ALSO
getpwent(3C).

WARNING

Page 1

The above routine uses <stdio.h>, which causes it to increase the
size of programs, not otherwise using standard 1/0, more than might
be expected.

May 21, 1985

PUTS{3S) UNIX Sys5 PUTS{3S)

NAME
puts, fputs - put a string on a stream

SYNOPSIS
#include <stdio.h>

int puts (s)
char *S;

int fputs (s, stream)
char *S;
FILE *Stream;

DESCRIPTION
Puts writes the null-terminated string pointed to by s , followed by a
new-line character, to the standard output stream stdout.

Fputs writes the null-terminated string pointed to by s to the named
output stream .

Neither function writes the terminating null character.

DIAGNOSTICS
Both routines return EOF on error. This will happen if the routines try
to write on a file that has not been opened for writing.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), printf(3S), putc(3S).

NOTES
Puts appends a new-line character while fputs does not.

Page 1 May 21, 1985

(

(

(

QSORT(3C) UNIX Sys5 QSORT{3C)

NAME
qsort - quicker sort

SYNOPSIS
void qsort ((char *) base, net, sizeof (*base), compar)
unsigned nel;
int (*COmpar)();

DESCRIPTION

NOTES

Qsort is an implementation of the quicker-sort algorithm. It sorts a
table of data in place.

Base points to the element at the base of the table. Net is the
number of elements in the table. Compar is the name of the com­
parison function, which is called with two arguments that point to the
elements being compared. As the function must return an integer
less than, equal to, or greater than zero, so must the first argument
to be considered be less than, equal to, or greater than the second.

The pointer to the base of the table should be of type pointer-to­
element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary
data may be contained in the elements in addition to the values
being compared.
The order in the output of two items which compare as equal is
unpredictable.

SEE ALSO
bsearch(3C), lsearch(3C), string(3C).
sort(1) in the Sys5 UNIX User Reference Manual.

Page 1 May 21, 1985

RAND(3C) UNIX Sys5 RAND(3C)

NAME
rand, srand - simple random-number generator

SYNOPSIS
int rand ()

void srand (seed)
unsigned seed;

DESCRIPTION

NOTE

Rand uses a multiplicative congruential random-number generator
with period 232 that returns successive pseudo-random numbers in
the range from O to 2 15 -1 .

Srand can be called at any time to reset the random-number gen­
erator to a random starting point. The generator is initially seeded
with a value of 1 .

The spectral properties of rand leave a great deal to be desired.
Drand48 (3C) provides a much better, though more elaborate,
random-number generator.

SEE ALSO
drand48(3C).

Page 1 May 21, 1985

(

SCANF(3S) UNIX Sys5 SCANF(3S)

NAME
scant, fscanf, sscanf - convert formatted input

SYNOPSIS
#include <stdio.h>

int scanf (format [, pointer] . . .)
char *format;

int fscanf (stream, format [, pointer] ...
FILE *Stream;
char *format;

int sscanf (s, format [, pointer] . . .)
char *S, *format;

DESCRIPTION

Page 1

Scant reads from the standard input stream stdin. Fscanf reads
from the named input stream. Sscanf reads from the character
string s. Each function reads characters, interprets them according
to a format, and stores the results in its arguments. Each expects,
as arguments, a control string format described below, and a set of
pointer arguments indicating where the converted input should be
stored.

The control string usually contains conversion specifications, which
are used to direct interpretation of input sequences. The control
string may contain:

1. White-space characters (blanks, tabs, new-lines, or form-feeds)
which, except in two cases described below, cause input to be
read up to the next non-white-space character.

2. An ordinary character (not %), which must match the next char­
acter of the input stream.

3. Conversion specifications, consisting of the character %, an
optional assignment suppressing character*, an optional numer­
ical maximum field width, an optional I (ell) or h indicating the
size of the receiving variable, and a conversion code.

A conversion specification directs the conversion of the next input
field; the result is placed in the variable pointed to by the
corresponding argument, unless assignment suppression was indi­
cated by *· The suppression of assignment provides a way of
describing an input field which is to be skipped. An input field is
defined as a string of non-space characters; it extends to the next
inappropriate character or until the field width, if specified, is
exhausted. For all descriptors except"[" and "c", white space lead­
ing an input field is ignored.

The conversion code indicates the interpretation of the input field;
the corresponding pointer argument must usually be of a restricted
type. For a suppressed field, no pointer argument is given. The

May 13, 1986

SCANF(3S) UNIX Sys5 SCANF(3S)

following conversion codes are legal:

o/o a single o/o is expected in the input at this point; no assign-
ment is done.

d a decimal integer is expected; the corresponding argument
should be an integer pointer.

u an unsigned decimal integer is expected; the corresponding
argument should be an unsigned integer pointer.

o an octal integer is expected; the corresponding argument
should be an integer pointer.

x a hexadecimal integer is expected; the corresponding argu­
ment should be an integer pointer.

e,f,g a floating point number is expected; the next field is con­
verted accordingly and stored through the corresponding
argument, which should be a pointer to a float. The input
format for floating point numbers is an optionally signed
string of digits, possibly containing a decimal point, followed
by an optional exponent field consisting of an E or an e, fol­
lowed by an optional +, -, or space, followed by an integer.

s a character string is expected; the corresponding argument
should be a character pointer pointing to an array of charac­
ters large enough to accept the string and a terminating \0,

/~\

which will be added automatically. The input field is ter- "\
minated by a white-space character. .,.)

c a character is expected; the corresponding argument should
be a character pointer. The normal skip over white space is
suppressed in this case; to read the next non-space charac­
ter, use o/o1s. If a field width is given, the corresponding
argument should refer to a character array; the indicated
number of characters is read.

[indicates string data and the normal skip over leading white
space is suppressed. The left bracket is followed by a set
of characters, which we will call the scanset, and a right
bracket; the input field is the maximal sequence of input
characters consisting entirely of characters in the scanset.
The circumflex (A), when it appears as the first character in
the scanset, serves as a complement operator ·and rede­
fines the scanset as the set of all characters not contained
in the remainder of the scanset string. There are some con­
ventions used in the construction of the scanset. A range of
characters may be represented by the construct first-last,
thus [0123456789) may be expressed [0-9). Using this
convention, first must be lexically less than or equal to last,
or else the dash will stand for itself. The dash will also ,4 \
stand for itself whenever it is the first or the last character in ~;
the scanset. To include the right square bracket as an ele-
ment of the scanset, it must appear as the first character

May 13, 1986 Page2

(

(

SCANF(3S) UNIX Sys5 SCANF(3S)

(possibly preceded by a circumflex) of the scanset, and in
this case it will not be syntactically interpreted as the closing
bracket. The corresponding argument must point to a char­
acter array large enough to hold the data field and the ter­
minating \0, which will be added automatically. At least one
character must match for this conversion to be considered
successful.

The conversion characters d, u, o, and x may be preceded by I or h
to indicate that a pointer to long or to short rather than to int is in
the argument list. Similarly, the conversion characters e, f, and g
may be preceded by I to indicate that a pointer to double rather
than to float is in the argument list. The I or h modifier is ignored
for other conversion characters.

Scant conversion terminates at EOF, at the end of the control string,
or when an input character conflicts with the control string. In the
latter case, the offending character is left unread in the input stream.

Scant returns the number of successfully matched and assigned
input items; this number can be zero in the event of an early conflict
between an input character and the control string. If the input ends
before the first conflict or conversion, EOF is returned.

EXAMPLES
The call:

int i, n; float x; char name[50];
n = scant ("%d%f%s'', &i, &x, name);

with the input line:

25 54.32E-1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432,
and name will contain thompson\O. Or:

int i; float x; char name[50];
(void) scant ("%2d%t°lo*d %[0-9]", &i, &x, name);

with input:

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0
in name. The next call to getchar (see getc(3S)) will return a.

SEE ALSO

NOTE

Page 3

getc(3S)i printf(3S), strtod(3C), strtol(3C).

Trailing white space (including a new-line) is left unread unless
matched in the control string.

May 13, 1986

SCANF(3S) UNI* Sys5 SCANF(3S)

DIAGNOSTICS

BUGS

These functions return EOF on end of input and a short count for /
missing or illegal data items.

The success of literal matches and suppressed assignments is not
directly determinable.

May 13, 1986 Page4

(

(

{

SETBUF(3S) UNIX Sys5 SETBUF(3S)

NAME
setbuf, setvbuf - assign buffering to a stream

SYNOPSIS
#include <stdio.h>

void setbuf (stream, buf)
FILE *Stream;
char *buf;

int setvbuf (stream, type, buf, size)
FILE *Stream;
char *buf;
int type, size;

DESCRIPTION
Setbut may be used after a stream has been opened but before it is
read or written. It causes the array pointed to by but to be used
instead of an automatically allocated buffer. If buf is the NULL
pointer input/output will be completely unbuffered.

A constant BUFSIZ, defined in the <stdio.h> header file, tells how
big an array is needed:

char buf[BUFSIZ];

Setvbuf may be used after a stream has been opened but before it
is read or written. Type determines how stream will be buffered.
Legal values for type (defined in stdio.h) are:

_IOFBF

_IOLBF

_IONBF

causes input/output to be fully buffered.

causes output to be line buffered; the buffer will be
flushed when a newline is written, the buffer is full, or
input is requested.

causes input/output to be completely unbuffered.

If buf is not the NULL pointer, the array it points to will be used for
buffering, instead of an automatically allocated buffer. Size speci­
fies the size of the buffer to be used. The constant BUFSIZ in
<stdio.h> is suggested as a good buffer size. If input/output is
unbuffered, but and size are ignored.

By default, output to a terminal is line buffered and all other
input/output is fully buffered.

SEE ALSO
fopen(3S), getc(3S), malloc(3C), putc(3S), stdio(3S).

DIAGNOSTICS

Page 1

If an illegal value for type or size is provided, setvbut returns a
non-zero value. Otherwise, the value returned will be zero.

August 20, 1986

SETBUF(3S) UNIX Sys5 SETBUF(3S)

NOTE
A common source of error is allocating buffer space as an /
"automatic" variable in a code block, and then failing to close the
stream in the same block.

August 20, 1986 Page 2

(

(

(

SETJMP(3C) UNIX Sys5 SETJMP(3C)

NAME
setjmp, longjmp - non-local goto

SYNOPSIS
#include <setjmp.h>

int setjmp (env)
jmp_buf env;

void longjmp (env, val)
jmp_buf env;
int val;

DESCRIPTION
These functions are useful for dealing with errors and interrupts
encountered in a low-level subroutine of a program.

Setjmp saves its stack environment in env (whose type, jmp_buf,
is defined in the <setjmp.h> header file) for later use by longjmp .
It returns the value 0.

Longjmp restores the environment saved by the last call of setjmp
with the corresponding env argument. After longjmp is completed,
program execution continues as if the corresponding call of setjmp
(which must not itself have returned in the interim) had just returned
the value val . Longjmp cannot cause setjmp to return the value 0.
If longjmp is invoked with a second argument of 0, setjmp will
return 1. All accessible data had values as of the time longjmp was
called.

SEE ALSO
signal(2).

WARNING

Page 1

If longjmp is called even though env was never primed by a call to
setjmp , or when the last such call was in a function which has
since returned, absolute chaos is guaranteed.

May21, 1985

SLEEP(3C) UNIX Sys5 SLEEP(3C)

NAME
sleep - suspend execution for interval

SYNOPSIS
unsigned sleep (seconds)
unsigned seconds;

DESCRIPTION
The current process is suspended from execution tor the number of
seconds specified by the argument. The actual suspension time
may be less than that requested for two reasons: (1) Because
scheduled wakeups occur at fixed 1-second intervals, (on the
second, according to an internal clock) and (2) because any caught
signal will terminate the sleep following execution of that signal's
catching routine. Also, the suspension time may be longer than
requested by an arbitrary amount due to the scheduling of other
activity in the system. The value returned by sleep will be the
o;unslept" amount (the requested time minus the time actually slept)
in case the caller had an alarm set to go off earlier than the end of
the requested sleep time, or premature arousal due to another
caught signal.

The routine is implemented by setting an alarm signal and pausing
until it (or some other signal) occurs. The previous state of the
alarm signal is saved and restored. The calling program may have
set up an alarm signal before calling sleep . If the sleep time
exceeds the time till such alarm signal, the process sleeps only until
the alarm signal would have occurred. The caller's alarm catch rou­
tine is executed just before the sleep routine returns. But if the
sleep time is less than the time till such alarm, the prior alarm time
is reset to go off at the same time it would have without the inter­
vening sleep .

SEE ALSO
alarm(2), pause(2), signa1(2).

Page 1 May 21, 1985

(_

(

(_/

SSIGNAL{3C) UNIX Sys5 SSIGNAL{3C)

NAME
ssignal, gsignal - software signals

SYNOPSIS
#include <signal.h>

int (*SSignal (sig, action))()
int sig, (*action)();

int gsignal (sig)
int sig;

DESCRIPTION
Ssignal and gsignal implement a software facility similar to sig­
naf (2). This facility is used by the Standard C Library to enable
users to indicate the disposition of error conditions, and is also
made available to users for their own purposes.

Software signals made available to users are associated with
integers in the inclusive range 1 through 15. A call to ssignal associ­
ates a procedure, action, with the software signal sig; the software
signal, sig, is raised by a call to gsignal. Raising a software signal
causes the action established for that signal to be taken.

The first argument to ssignal is a number identifying the type of sig­
nal for which an action is to be established. The second argument
defines the action; it is either the name of a (user-defined) action
function or one of the manifest constants SIG __ DFL (default) or
SIG_IGN (ignore). Ssignal returns the action previously established
for that signal type; if no action has been established or the signal
number is illegal, ssignal returns SIG_DFL

Gsignal raises the signal identified by its argument, sig:

If an action function has been established for sig, then that
action is reset to SIG_DFL and the action function is entered
with argument sig. Gsignal returns the value returned to it by
the action function.

If the action for sig is SIG_IGN, gsignal returns the value 1 and
takes no other action.

If the action for sig is SIG_DFL, gsignal returns the value O
and takes no other action.

If sig has an illegal value or no action was ever specified for
sig, gsignal returns the value O and takes no other action.

SEE ALSO
signal(2).

NOTES

Page 1

There are some additional signals with numbers outside the range 1
through 15 which are used by the Standard C Library to indicate

May 13, 1986

SSIGNAL(3C) UNIX Sys5 SSIGNAL{3C)

error conditions. Thus, some signal numbers outside the range 1
through 15 are legal, although their use may interfere with the
operation of the Standard C Library.

May 13, 1986 Page 2

(

(

(/

STDl0(3S) UNIX Sys5 STDI0(3S)

NAME
stdio - standard buffered input/output package

SYNOPSIS
#include <stdio.h>

FILE *Stdin, *Stdout, *Stderr;

DESCRIPTION
The functions described in the entries of sub-class 3S of this manual
constitute an efficient, user-level 1/0 buffering scheme. The in-line
macros getc(3S) and putc(3S) handle characters quickly. The
macros getchar and putchar, and the higher-level routines fgetc,
fgets, fprintf, tputc, tputs, tread, tscant, fwrite, gets, getw, printf,
puts, putw, and scant all use or act as if they use getc and putc;
they can be freely intermixed.

A file with associated buffering is called a stream and is declared to
be a pointer to a defined type FILE. Fopen(3S) creates certain
descriptive data for a stream and returns a pointer to designate the
stream in all further transactions. Normally, there are three open
streams with constant pointers declared in the <stdio.h> header file
and associated with the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file

A constant NULL (O) designates a nonexistent pointer.

An integer-constant EOF (-1) is returned upon end-of-file or error by
most integer functions that deal with streams (see the individual
descriptions for details).

An integer constant BUFSIZ specifies the size of the buffers used by
the particular implementation.

Any program that uses this package must include the header file of
pertinent macro definitions, as follows:

#include <stdio.h>

The functions and constants mentioned in the entries of sub­
class 3S of this manual are declared in that header file and need no
further declaration. The constants and the following "functions" are
implemented as macros (redeclaration of these names is perilous):
getc, getchar, putc, putchar, terror, teot, clearerr, and tileno.

SEE ALSO .

Page 1

open(2), close(2), lseek(2), pipe(2), read(2), write(2), ctermid(3S),
cuserid(3S), fclose(3S), ferror(3S), fopen(3S), fread(3S), fseek(3S),
getc(3S), gets(3S), popen(3S), printf(3S), putc(3S), puts(3S),
scanf(3S), setbuf(3S), system(3S), tmpfile(3S), tmpnam(3S),
ungetc(3S).

May 13, 1986

STD10(3S) UNIX Sys5 STDI0(3S)

DIAGNOSTICS
Invalid stream pointers will usually cause grave disorder, possibly,/\
including program termination. Individual function descriptions '\..____,;
describe the possible error conditions.

May 13, 1986 Page2

(:

(

STDIPC(3C) UNIX Sys5 STDIPC(3C)

NAME
ftok - standard interprocess communication package

SYNOPSIS
#include <sys/types.h>
#include <syslipc.h>

key _t ftok(path, id)
char *path;
char id;

DESCRIPTION
All interprocess communication facilities require the user to supply a
key to be used by the msgget (2), semget (2), and shmget (2) sys­
tem calls to obtain interprocess communication identifiers. One sug­
gested method for forming a key is to use the ftok subroutine
described below. Another way to compose keys is to include the
project ID in the most significant byte and to use the remaining por­
tion as a sequence number. There are many other ways to form
keys, but it is necessary for each system to define standards for
forming them. If some standard is not adhered to, it will be possible
for unrelated processes to unintentionally interfere with each other's
operation. Therefore, it is strongly suggested that the most signifi­
cant byte of a key in some sense refer to a project so that keys do
not conflict across a given system.

Ftok returns a key based on path and id that is usable in subse­
quent msgget , semget , and shmget system calls. Path must be
the path name of an existing file that is accessible to the process.
Id is a character which uniquely identifies a project. Note that ftok
will return the same key for linked files when called with the same id
and that it will return different keys when called with the same file
name but different ids .

SEE ALSO
intro(2), msgget(2), semget(2), shmget(2).

DIAGNOSTICS
Ftok returns (key_t) -1 if path does not exist or if it is not accessible
to the process.

WARNING

Page 1

If the file whose path is passed to ftok is removed when keys still
refer to the file, future calls to ftok with the same path and id will
return an error. If the same file is recreated, then ftok is likely to
return a different key than it did the original time it was called.

May 21, 1985

STRING(3C) UNIX Sys5 STRING(3C)

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr,
strrchr, strpbrk, strspn, strcspn, strtok - string operations

SYNOPSIS
#include <string.h>

char *Streat (s1, s2)
char *S1, *S2;

char *Strncat (s1, s2, n)
char *S1, *S2;
int n;

int strcmp (s1, s2)
char *S1, *S2;

int strncmp (s1, s2, n)
char *S1, *S2;
int n;

char *Strcpy (s1, s2)
char *S1, *S2;

char *Strncpy (s1, s2, n)
char *S1, *S2;
int n;

int strlen (s)
char *S;

char *Strchr (s, c)
char *S;
int c;

char *Strrchr (s, c)
char *S;
int c;

char *Strpbrk (s1, s2)
char *S1, *S2;

int strspn (s1, s2)
char *S1, *S2;

int strcspn (s1, s2)
char *S1, *S2;

char *Strtok (s1, s2)
char *S1, *S2;

DESCRIPTION /"~
The arguments s1, s2 and s point to strings (arrays of characters~,

Page 1 May 21, 1985

(

(

(

STRING(3C) UNIX Sys5 STRING(3C)

NOTE

terminated by a null character). The functions strcat , strncat ,
strcpy , and strncpy all alter s1 . These functions do not check for
overflow of the array pointed to by s1 .

Streat appends a copy of string s2 to the end of string s1 . Strncat
appends at most n characters. Each returns a pointer to the null­
terminated result.

Strcmp compares its arguments and returns an integer less than,
equal to, or greater than 0, according as s1 is lexicographically less
than, equal to, or greater than s2 . Strncmp makes the same com­
parison but looks at at most n characters.

Strcpy copies string s2 to s1 , stopping after the null character has
been copied. Strncpy copies exactly n characters, truncating s2 or
adding null characters to s1 if necessary. The result will not be
null-terminated if the length of s2 is n or more. Each function
returns s1 .

Strlen returns the number of characters in s , not including the ter­
minating null character.

Strchr (strrchr) returns a pointer to the first (last) occurrence of
character c in string s , or a NULL pointer if c does not occur in the
string. The null character terminating a string is considered to be
part of the string.

Strpbrk returns a pointer to the first occurrence in string s1 of any
character from string s2 , or a NULL pointer 1f no character from s2
exists in s1 .

Strspn (strcspn) returns the length of the initial segment of string
s1 which consists entirely of characters from (not from) string s2 .

Strtok considers the string s1 to consist of a sequence of zero or
more text tokens separated by spans of one or more characters
from the separator string s2 . The first call (with pointer s1 speci­
fied) returns a pointer to the first character of the first token, and will
have written a null character into s1 immediately following the
returned token. The function keeps track of its position in the string
between separate calls, so that subsequent calls (which must be
made with the first argument a NULL pointer) will work through the
string s1 immediately following that token. In this way subsequent
calls will work through the string s1 until no tokens remain. The
separator string s2 may be different from call to call. When no
token remains in s1 , a NULL pointer is returned.

For user convenience, all these functions are declared in the
optional <string.h> header file.

May 21, 1985 Page 2

STRING(3C) UNIX Sys5 STRING(3C)

BUGS

Page 3

Strcmp and strncmp use native character comparison, which is •
unsigned on other machines. Thus the sign of the value returned c'­

when one of the characters has its high-order bit set is
implementation-dependent.

Character movement is performed differently in different implemen­
tations. Thus overlapping moves may yield surprises.

May 21, 1985

(

(

STRTOD(3C) UNIX Sys5 STRTOD(3C)

NAME
strtod, atof - convert string to double-precision number

SYNOPSIS
double strtod (str, ptr)
char *Str, **ptr;

double atof (str)
char *Str;

DESCRIPTION
Strtod returns as a double-precision floating-point number the value
represented by the character string pointed to by str . The string is
scanned up to the first unrecognized character.

Strtod recognizes an optional string of "white-space" characters (as
defined by isspace in ctype (3C)J, then an optional sign, then a
string of digits optionally containing a decimal point, then an optional
e or E followed by an optional sign or space, followed by an
integer.

If the value of ptr is not (char **)NULL, a pointer to the character
terminating the scan is returned in the location pointed to by ptr . If
no number can be formed, *ptr is set to str, and zero is returned.

Atof(str) is equivalent to strtod(str, (char **)NULL) .

SEE ALSO
ctype(3C), scanf(3S), strtol(3C).

DIAGNOSTICS

Page 1

If the correct value would cause overflow, ±HUGE is returned
(according to the sign of the value), and errno is set to ERANGE •

If the correct value would cause underflow, zero is returned and
errno is set to ERANGE •

May 21, 1985

STRTOL(3C) UNIX Sys5 STRTOL(3C)

NAME
strtol, atol, atoi - convert string to integer

SYNOPSIS
long strtol (str, ptr, base)
char *Str, **ptr;
int base;

long atol (str)
char *Str;

int atoi (str)
char *Str;

DESCRIPTION
Strtol returns as a long integer the value represented by the charac­
ter string pointed to by str . The string is scanned up to the first
character inconsistent with the base. Leading "white-space" char­
acters (as defined by isspace in ctype (3C)) are ignored.

If the value of ptr is not (char **)NULL, a pointer to the character
terminating the scan is returned in the location pointed to by ptr. If
no integer can be formed, that location is set to str , and zero is
returned.

If base is positive (and not greater than 36), it is used as the base
for conversion. After an optional leading sign, leading zeros are j
ignored, and "Ox" or "OX" is ignored if base is 16.

If base is zero, the string itself determines the base thusly: After an
optional leading sign a leading zero indicates octal conversion, and
a leading "Ox" or "OX" hexadecimal conversion. Otherwise, decimal
conversion is used.

Truncation from long to int can, of course, take place upon assign­
ment or by an explicit cast.

Atol(str) is equivalent to "strtol(str, (char **)NULL, 10)".

Atoi(str) is equivalent to "(int) strtol(str, (char **)NULL, 10)".

SEE ALSO
ctype(3C), scanf(3S), strtod(3C).

BUGS
Overflow conditions are ignored.

Page 1 May 21, 1985

(

(

(

SWAB(3C) UNIX Sys5 SWAB(3C)

NAME
swab - swap bytes

SYNOPSIS
void swab (from, to, nbytes)
char *from, *to;
int nbytes;

DESCRIPTION

Page 1

Swab copies nbytes bytes pointed to by from to the array pointed
to by to , exchanging adjacent even and odd bytes. It is useful for
carrying binary data between PDP-11s and other machines. Nbytes
should be even and non-negative. If nbytes is odd and positive
swab uses nbytes -1 instead. If nbytes is negative, swab does
nothing.

May 21, 1985

SYSTEM(3S) UNIX Sys5 SYSTEM(3S)

NAME
system - issue a shell command

SYNOPSIS
#include <stdio.h>

int system (string)
char *String;

DESCRIPTION

FILES

System causes the string to be given to sh (1) as input, as if the
string had been typed as a command at a terminal. The current
process waits until the shell has completed, then returns the exit
status of the shell.

/bin/sh

SEE ALSO
exec(2).
sh(1) in the Sys5 UNIX User Reference Manual.

DIAGNOSTICS

Page 1

System forks to create a child process that in turn exec's /bin/sh in
order to execute string . If the fork or exec fails, system returns a
negative value and sets errno .

May 21, 1985

(

(

(_

TERMLIB(3C) UNIX Sys5 TERMLIB(3C)

NAME
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs - terminal independent
operation routines

SYNOPSIS
char PC;
char *BC;
char *UP;
short ospeed;

tgetent(bp, name)
char *bp, *name;

tgetnum(id)
char *id;

tgetflag(id)
char *id;

char*
tgetstr(id, area)
char *id, **area;

char*
tgoto(cm, destcol, destline)
char *cm;

tputs(cp, affcnt, outc)
register char *cp;
int affcnt;
int (*outc) ();

DESCRIPTION
These functions are obsolete but were used in Sys3 and are
included here for downward compatibility only.

These functions extract and use capabilities from the terminal capa­
bility data base termcap(4). These are low level routines. See
curses(3X) for a higher level package.

Tgetent extracts the entry for a terminal name into the buffer at bp.
Bp should be a character buffer of size 1024 and must be retained
through all subsequent calls to tgetnum, tgetflag, and tgetstr.
Tgetent returns -1 if it cannot open the termcap file, O if the terminal
name given does not have an entry, and 1 if all goes well. It looks
in the environment for a TERMCAP variable. If found, and the value
does not begin with a slash, and the terminal type name is the same
as the environment string TERM, the TERMCAP string is used
instead of reading the TERMCAP file. If it does begin with a slash,

Page 1 October 14, 1986

TERMLIB(3C) UNIX Sys5 TERMLIB(3C)

FILES

NOTES

the string is used as a path name rather than /etc/termcap. This
can speed up entry into programs that call tgetent, as well as help / · · ,
debug new terminal descriptions or make one for your terminal if
you can't write the file /etc/termcap.

Tgetnum gets the numeric value of capability id, returning -1 if id is
not given for the terminal. Tgetflag returns 1 if the specified capabil­
ity is present in the terminal's entry, 0 if it is not. Tgetstr gets the
string value of the capability id, placing it in the buffer at area, and
advancing the area pointer. It decodes the abbreviations for this
field described in termcap(4), except for cursor addressing and pad­
ding information.

Tgoto returns a cursor addressing string decoded from cm to go to
column destcol in line destline. It uses the external variables UP
(from the up capability) and BC (if be is given rather than bs) if
necessary to avoid placing \n, 'D, or '@ in the returned string. (Pro­
grams that call tgoto should turn off the XTABS bit(s), since tgoto
may now output a tab. Note that programs using termcap should in
general turn off XTABS anyway, since some terminals use control I
for other functions, such as nondestructive space.) If a% sequence
is given that is not understood, then tgoto returns "OOPS".

Tputs decodes the leading padding information of the string cp;
affcnt gives the number of lines affected by the operation, or 1 if this
is not applicable. Outc is called with each character in turn. The
external variable ospeed should contain the output speed of the ter­
minal as encoded by stty(2). The external variable PC should con­
tain a pad character to be used (from the pc capability) if a null C@)
is inappropriate.

/usr/lib/libtermlib.a
/etc/termcap

termcap library
data base

These routines are based on those from the University of California
at Berkeley.

SEE ALSO
ex(1), curses(3X), termcap(4).

October 14, 1986 Page2

(

(

TMPFILE(3S) UNIX Sys5 TMPFILE(3S)

NAME
tmpfile - create a temporary file

SYNOPSIS
#include <stdio.h>

FILE *tmpfile {)

DESCRIPTION
Tmpfile creates a temporary file using a name generated by
tmpnam (35), and returns a corresponding FILE pointer. If the file
cannot be opened, an error message is printed using perror (3C),
and a NULL pointer is returned. The file will automatically be deleted
when the process using it terminates. The file is opened for update
("w+").

SEE ALSO
creat(2), unlink(2), fopen(3S), mktemp(3C), perror(3C),
tmpnam(3S).

Page 1 May 21, 1985

TMPNAM{3S) UNIX Sys5 TMPNAM(3S)

NAME
tmpnam, tempnam - create a name for a temporary file

SYNOPSIS
#include <stdio.h>

char *tmpnam (s)
char *S;

char *tempnam {dir, pfx)
char *dir, *pfx;

DESCRIPTION

Page 1

These functions generate file names that can safely be used for a
temporary file.

Tmpnam always generates a file name using the path-prefix defined
as P _tmpdir in the <stdio.h> header file. If s is NULL, tmpnam
leaves its result in an internal static area and returns a pointer to
that area. The next call to tmpnam will destroy the contents of the
area. If s is not NULL, it is assumed to be the address of an array
of at least L_tmpnam bytes, where L_tmpnam is a constant
defined in <stdio.h> ; tmpnam places its result in that array and
returns s.

Tempnam allows the user to control the choice of a directory. The
argument dir points to the name of the directory in which the file is
to be created. If dir is NULL or points to a string which is not a
name for an appropriate directory, the path-prefix defined as
P _tmpdir in the <stdio.h> header file is used. If that directory is
not accessible, /tmp will be used as a last resort. This entire
sequence can be up-staged by providing an environment variable
TMPDIR in the user's environment, whose value is the name of the
desired temporary-file directory.

Many applications prefer their temporary files to have certain favor­
ite initial letter sequences in their names. Use the pfx argument for
this. This argument may be NULL or point to a string of up to five
characters to be used as the first few characters of the temporary­
file name.

Tempnam uses ma/foe (3C) to get space for the constructed file
name, and returns a pointer to this area. Thus, any pointer value
returned from tempnam may serve as an argument to free (see
ma/foe (3C)). If tempnam cannot return the expected result for any
reason, i.e. ma/foe (3C) failed, or none of the above mentioned
attempts to find an appropriate directory was successful, a NULL
pointer will be returned.

May 21, 1985

/{--- '

(

(

(

TMPNAM(3S) UNIX Sys5 TMPNAM(3S)

NOTES
These functions generate a different file name each time they are
called.

Files created using these functions and either fopen(3S) or creat(2)
are temporary only in the sense that they reside in a directory
intended for temporary use, and their names are unique. It is the
user's responsibility to use unlink (2) to remove the file when its use
is ended.

SEE ALSO

BUGS

creat(2), unlink(2), fopen(3S), malloc(3C), mktemp(3C), tmpfile(3S).

If called more than 17,576 times in a single process, these functions
will start recycling previously used names.
Between the time a file name is created and the file is opened, it is
possible for some other process to create a file with the same
name. This can never happen if that other process is using these
functions or mktemp, and the file names are chosen so as to render
duplication by other means unlikely.

August 20, 1986 Page 2

TSEARCH{3C) UNIX Sys5 TSEARCH { 3C)

NAME
tsearch, tfind, tdelete, twalk - manage binary search trees

SYNOPSIS
#include <search.h>

char *tsearch ((char *) key, (char **) rootp, compar)
int (*Compar)();

char *tfind ((char *) key, (char **) rootp, compar)
int (*COmpar)();

char *tdelete ((char *) key, (char **) rootp, compar)
int (*COmpar)();

void twalk ((char *) root, action)
void (*action)();

DESCRIPTION

Page 1

Tsearch, tfind, tdelete, and twalk are routines for manipulating
binary search trees. They are generalized from Knuth (6.2.2) Algo·
rithms T and D. All comparisons are done with a user-supplied rou­
tine. This routine is called with two arguments, the pointers to the
elements being compared. It returns an integer less than, equal to,
or greater than 0, according to whether the first argument is to be
considered less than, equal to or greater than the second argument.
The comparison function need not compare every byte, so arbitrary
data may be contained in the elements in addition to the values
being compared.

Tsearch is used to build and access the tree. Key is a pointer to a
datum to be accessed or stored. If there is a datum in the tree
equal to *key (the value pointed to by key), a pointer to this found
datum is returned. Otherwise, *key is inserted, and a pointer to it
returned. Only pointers are copied, so the calling routine must store
the data. Rootp points to a variable that points to the root of the
tree. A NULL value for the variable pointed to by rootp denotes an
empty tree; in this case, the variable will be set to point to the datum
which will be at the root of the new tree.

Like tsearch, tfind will search for a datum in the tree, returning a
pointer to it if found. However, if it is not found, tfind will return a
NULL pointer. The arguments for tfind are the same as for tsearch.

Tdelete deletes a node from a binary search tree. The arguments
are the same as for tsearch. The variable pointed to by rootp will
be changed if the deleted node was the root of the tree. Tdelete
returns a pointer to the parent of the deleted node, or a NULL
pointer if the node is not found.

Twalk traverses a binary search tree. Root is the root of the tree to
be traversed. (Any node in a tree may be used as the root for a

May 30, 1986

(

(

(

TSEARCH(3C) UNIX Sys5 TSEARCH(3C)

walk below that node.) Action is the name of a routine to be invoked
at each node. This routine is, in turn, called with three arguments.
The first argument is the address of the node being visited. The
second argument is a value from an enumeration data type typedef
enum { preorder, postorder, endorder, leaf } VISIT; (defined in the
<search.h > header file), depending on whether this is the first,
second or third time that the node has been visited (during a depth­
first, left-to-right traversal of the tree), or whether the node is a leaf.
The third argument is the level of the node in the tree, with the root
being level zero.

The pointers to the key and the root of the tree should be of type
pointer-to-element, and cast to type pointer-to-character. Similarly,
although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

EXAMPLE
The following code reads in strings and stores structures containing
a pointer to each string and a count of its length. It then walks the
tree, printing out the stored strings and their lengths in alphabetical
order.

May 30, 1986

#include <search.h>
#include <stdio.h>

struct node { I* pointers are stored in the tree 0)

l.
J,

char *String;
int length;

char string_space[10000];
struct node nodes[SOO];
struct node *root = NULL;

f* space to store strings */
I* nodes to store */

r~ this points to the root */

main()
{

char *Strptr = string_space;
struct node * nodeptr = nodes;
void print_node(), twalk();
int i = 0, node_compare();

while (gets(strptr) != NULL && i+ -1- < 500) {
/* set node */
nodeptr- >string = strptr;
nodeptr- >length = strlen(strptr);
I* put node into the tree */
(void) tsearch((char *)nodeptr, &root,

node_compare);
/* adjust pointers, don't overwrite tree *I

Page 2

TSEARCH(3C) UNIX Sys5 TSEARCH(3C)

*/
int

}

strptr -+- = nodeptr- >length + 1;
nodeptr-+- + ;

twalk(root, print_node);

This routine compares two nodes, based on an
alphabetical ordering of the string field.

node_compare(node1, node2)
struct node 0•node1, '"node2;
{

void

retur~ strcmp(node1 - .>string, node2- >string);

This routine prints out a node, the first time
twalk encounters it.

print_node(node, order, level)
struct node '"'''node;
VISIT order;
int level;
{

if (order = = preorder 11 order = = leaf) {
(void)printf("string = %20s, length = %d\n",

(*node)- >string, (*node)-> length);

SEE ALSO
bsearch(3C), hsearch(3C), lsearch(3C).

DIAGNOSTICS
A NULL pointer is returned by tsearch if there is not enough space
available to create a new node.
A NULL pointer is returned by tsearch, tfind and tdefete if rootp is
NULL on entry.
If the datum is found, both tsearch and tfind return a pointer to it. If
not, tfind returns NULL, and tsearch returns a pointer to the inserted
item.

WARNINGS

Page3

The root argument to twafk is one level of indirection less than the
rootp arguments to tsearch and tdefete.
There are two nomenclatures used to refer to the order in which tree
nodes are visited. Tsearch uses preorder, postorder and endorder

May 30, 1986

___ __,./

(

(

(

TSEAACH(3C) UNIX Sys5 TSEARCH (3C)

BUGS

to respectively refer to visting a node before any of its children, after
its left child and before its right, and after both its children. The
alternate nomenclature uses preorder, inorder and postorder to refer
to the same visits, which could result in some confusion over the
meaning of postorder.

If the calling function alters the pointer to the root, results are
unpredictable.

May 30, 1986 Page 4

TTYNAME(3C) UNIX Sys5 TTYNAME(3C)

NAME
ttyname, isatty - find name of a terminal

SYNOPSIS
char *ttyname (fildes)
int fildes;

int isatty (fildes)
int fildes;

DESCRIPTION

FILES

Ttyname returns a pointer to a string containing the null-terminated
path name of the terminal device associated with file descriptor
tildes.

lsatty returns 1 if tildes is associated with a terminal device, 0 oth­
erwise.

/deV/*

DIAGNOSTICS

BUGS

Page 1

Ttyname returns a NULL pointer if tildes does not describe a termi­
nal device in directory /dev.

The return value points to static data whose content is overwritten /
by each call.

May 13, 1986

(

(

(

TTYSLOT(3C) UNIX Sys5 TTYSLOT(3C)

NAME
ttyslot - find the slot in the utmp file of the current user

SYNOPSIS
int ttyslot ()

DESCRIPTION

FILES

Ttyslot returns the index of the current user's entry in the /etc/utmp
file. This is accomplished by actually scanning the file /etc/inittab
for the name of the terminal associated with the standard input, the
standard output, or the error output (0, 1 or 2).

/etc, inittab
!etc, utmp

SEE ALSO
getut(3C), ttyname(3C).

DIAGNOSTICS

Page 1

A value of 0 is returned if an error was encountered while searching
for the terminal name or if none of the above file descriptors is asso­
ciated with a terminal device.

May 21, 1985

UNGETC(3S) UNIX SysS UNGETC(3S)

NAME
ungetc - push character back into input stream

SYNOPSIS
#include <stdio.h>

int ungetc (c, stream)
int c;
FILE *Stream;

DESCRIPTION
Ungetc inserts the character c into the buffer associated with an
input stream . That character, c , will be returned by the next
getc(3S) call on that stream. Ungetc returns c, and leaves the file
stream unchanged.

One character of pushback is guaranteed, provided something has
already been read from the stream and the stream is actually buf­
fered. In the case that stream is stdin , one character may be
pushed back onto the buffer without a previous read statement.

If c equals EOF , ungetc does nothing to the buffer and returns EOF

Fseek (3S) erases all memory of inserted characters.

SEE ALSO
fseek(3S), getc(3S), setbuf(3S).

DIAGNOSTICS
Ungetc returns EOF if it cannot insert the character.

Page 1 May21, 1985

(

(

VPRINTF(3S) UNIX Sys5 VPRINTF(3S)

NAME
vprintf, vfprintf, vsprintf - print formatted output of a varargs argu­
ment list

SYNOPSIS
#include <stdio.h>
#include <varargs.h>

int vprintf (format, ap)
char *format;
va_list ap;

int vfprintf (stream, format, ap)
FILE *Stream;
char *format;
va_list ap;

int vsprintf (s, format, ap)
char *S, *format;
va_list ap;

DESCRIPTION
vprintf, vfprintf, and vsprintf are the same as printf, fprintf, and
sprintf respectively, except that instead of being called with a vari­
able number of arguments, they are called with an argument list as
defined by varargs(S).

EXAMPLE

Page 1

The following demonstrates how vf printf could be used to write an
error routine.

#include <stdio.h>
#include <varargs.h>

'* * error should be called like
* error(function_name, format, arg1, arg2 ...);

*' /*VARARGSO*/
void
error(va_alist)
f* Note that the function_name and format arguments cannot be
* separately declared because of the definition of varargs.

*' va_dcl
{

va_list args;
char *fmt;

August 20, 1986

VPRINTF(3S)

}

SEE ALSO

UNIX Sys5 VPRINTF (3$)

va_start(args);
I* print out name of function causing error *' /-\
(void)fprintf(stderr, "ERROR in o/os: ", va_arg(args, char *))~"~ /
fmt = va_arg(args, char *); --'* print out remainder of message *'
(void)vfprintf(fmt, args);
va_end(args);
(void)abort();

. varargs(5).

August 20, 1986 Page2

(

(

(~

VPRINTF(3X) UNIX Sys5 VPRINTF(3X)

NAME
vprintf, vfprintf, vsprintf - print formatted output of a varargs argu­
ment list

SYNOPSIS
#include <stdio.h>
#include <varargs.h>

int vprintf (format, ap)
char *format;
va_list ap;

int vfprintf (stream, format, ap)
FILE *Stream;
char *format;
va_list ap;

int vsprintf (s, format, ap)
char *S, *format;
va_list ap;

DESCRIPTION
vprintf , vfprintf , and vsprintf are the same as printf , fprintf , and
sprintt respectively, except that instead of being called with a vari­
able number of arguments, they are called with an argument list as
defined by varargs (5).

EXAMPLE

Page 1

The following demonstrates how vfprintf could be used to write an
error routine.

#include <stdio.h>
#include <varargs.h>

I*
* error should be called like
* error(function_name, format, arg1, arg2 ...);
*/

/* VARARGSO*/
void
error(va_alist)
/* Note that the function_name and format arguments cannot be
* separately declared because of the definition of varargs.
*/

va_dcl
{

va_list args;

May 21, 1985

VPRINTF(3X)

SEE ALSO

UNIX Sys5 VPRINTF{3X)

char *fmt;

va_start(args);
/* print out name of function causing error */
(void)fprintf(stderr, "ERROR in %s: ", va_arg(args, char *));
tmt = va_arg(args, char *);
/* print out remainder of message */
(void)vfprintf(fmt, args);
va_end(args);
(void) abort() ;

printf(3S), varargs(5).

May 21, 1985 Page 2

(

(

BESSEL(3M) UNIX Sys5 BESSEL(3M)

NAME
jO, j1, jn, yO, y1, yn - Bessel functions

SYNOPSIS
#include <math.h>

double jO (x)
double x;

double j1 (x)
double x;

double jn (n, x)
int n;
double x;

double yO (x)
double x;

double y1 (x)
double x;

double yn (n, x)
int n;
double x;

DESCRIPTION
JO and j1 return Bessel functions of x of the first kind of orders 0
and 1 respectively. Jn returns the Bessel function of x of the first
kind of order n .

YO and y1 return Bessel functions of x of the second kind of orders
0 and 1 respectively. Yn returns the Bessel function of x of the
second kind of order n . The value of x must be positive.

DIAGNOSTICS
Non-positive arguments cause yO , y1 and yn to return the value
-HUGE and to set errno to EDOM. In addition, a message indicating
DOMAIN error is printed on the standard error output.

Arguments too large in magnitude cause jO , j1 , yo and y1 to
return zero and to set errno to ERANGE . In addition, a message
indicating TLOSS error is printed on the standard error output.

These error-handling procedures may be changed with the function
matherr (3M).

SEE ALSO
matherr(3M).

Page 1 May21, 1985

ERF(3M) UNIX Sys5 ERF(3M)

NAME
erf, erfc - error function and complementary error function

SYNOPSIS
#include <math.h>

double erf (x)
double x;

double erfc (x)
double x;

DESCRIPTION
x

Erf returns the error function of x, defined as ~ J e 12dt.
v .. 0

Ertc , which returns 1.0 - erf(x) , is provided because of the
extreme loss of relative accuracy if erf(x) is called for large x and
the result subtracted from 1.0 (e.g., for x = 5, 12 places are lost).

SEE ALSO
exp(3M).

Page 1 May 21, 1985

(

(

EXP(3M) UNIX Sys5 EXP{3M)

NAME
exp, log, log10, pow, sqrt - exponential, logarithm, power, square
root functions

SYNOPSIS
#include <math.h>

double exp (x)
double x;

double log (x)
double x;

double log10 (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

DESCRIPTION
Exp returns ex.

Log returns the natural logarithm of x . The value of x must be posi­
tive.

Log10 returns the logarithm base ten of x. The value of x must be
positive.

Pow returns xY. If x is zero, y mu.st be positive. If x is negative, y
must be an integer.

Sqrt returns the non-negative square root of x . The value of x may
not be negative.

DIAGNOSTICS

Page 1

Exp returns HUGE when the correct value would overflow, or O
when the correct value would underflow, and sets errno to ERANGE

Log and log10 return -HUGE and set errno to EDOM when x is
non-positive. A message indicating DOMAIN error (or SING error
when x is 0) is printed on the standard error output.

Pow returns O and sets errno to EDOM when x is O and y is non­
positive, or when x is negative and y is not an integer. In these
cases a message indicating DOMAIN error is printed on the standard
error output. When the correct value for pow would overflow or
underflow, pow returns ±HUGE or O respectively, and sets errno to .
ERANGE.

Sqrt returns O and sets errno to EDOM when x is negative. A mes­
sage indicating DOMAIN error is printed on the standard error output.

August 22, 1986

EXP(3M} UNIX Sys5 EXP(3M)

These error-handling procedures may be changed with the function
matherr (3M).

SEE ALSO
hypot(3M), rnatherr(3M), sinh(3M).

August 22, 1986 Page 2

(

(

(

FLOOR(3M) UNIX Sys5 FLOOR(3M)

NAME
floor, ceil, fmod, tabs - floor, ceiling, remainder, absolute value func­
tions

SYNOPSIS
#include <math.h>

double floor (x)
double x;

double ceil (x)
double x;

double fmod (x, y)
double x, y;

double fabs (x)
double x;

DESCRIPTION
Floor returns the largest integer (as a double-precision number) not
greater than x .

Ceil returns the smallest integer not less than x .

Fmod returns the floating-point remainder of the division of x by y :
zero if y is zero or if x/y would overflow; otherwise the number f
with the same sign as x , such that x = iy + f tor some integer i ,
and ltl < lyl.
Fabs returns the absolute value of x , Ix I.

SEE ALSO
abs(3C).

Page 1 May 21, 1985

GAMMA(3M) UNIX Sys5 GAMMA(3M)

NAME
gamma - log gamma function

SYNOPSIS
#include <math.h>

double gamma {x)
double x;

extern int signgam;

DESCRIPTION

Gamma returns ln(lf(x)I), where f(x) is defined as J e 1tx 1dt.
0

The sign of f(x) is returned in the external integer signgam . The
argument x may not be a non-positive integer.

The following C program fragment might be used to calculate r:
if ((y = gamma(x)) > LN_MAXDOUBLE)

error();
y = signgam * exp(y);

where LN_MAXDOUBLE is the least value that causes exp (3M) to
return a range error, and is defined in the <values.h> header file.

DIAGNOSTICS
For non-negative integer arguments HUGE is returned, and errno is
set to EDOM . A message indicating SING error is printed on the
standard error output.

If the correct value would overflow, gamma returns HUGE and sets
errno to ERANGE .

These error-handling procedures may be changed with the function
matherr (3M).

SEE ALSO
exp(3M), matherr(3M), values(S).

Page 1 May 21, 1985

_/

HYPOT(3M) UNIX Sys5

NAME
hypot - Euclidean distance function

SYNOPSIS
#include <math.h>

double hypot (x, y)
double x, y;

DESCRIPTION
Hypot returns

sqrt(x * x + y * y),

taking precautions against unwarranted overflows.

DIAGNOSTICS

HYPOT{3M)

When the correct value would overflow, hypot returns HUGE and
sets errno to ERANGE.

These error-handling procedures may be changed with the function
matherr (3M).

SEE ALSO
matherr(3M).

Page 1 May 21, 1985

MATHEAA(3M) UNIX Sys5 MATHEAA(3M)

NAME
matherr - error-handling function

SYNOPSIS
#include <math.h>

int matherr (x)
struct exception * x;

DESCRIPTION

Page 1

Matherr is invoked by functions in the Math Library when errors are
detected. Users may define their own procedures for handling
errors, by including a function named matherr in their programs.
Matherr must be of the form described above. When an error
occurs, a pointer to the exception structure x will be passed to the
user-supplied matherr function. This structure, which is defined in
the <math.h> header file, is as follows:

struct exception {

};

int type;
char *name;
double arg1, arg2, retval;

The element type is an integer describing the type of error that has
occurred, from the following list of constants (defined in the header
file):

DOMAIN argument domain error
SING argument singularity
OVERFLOW overflow range error
UNDERFLOW underflow range error
TLOSS total loss of significance
PLOSS partial loss of significance

The element name points to a string containing the name of the
function that incurred the error. The variables arg1 and arg2 are
the arguments with which the function was invoked. Retval is set to
the default value that will be returned by the function unless the
user's matherr sets it to a different value.

If the user's matherr function returns non-zero, no error message
will be printed, and errno will not be set.

If matherr is not supplied by the user, the default error-handling pro­
cedures, described with the math functions involved, will be invoked
upon error. These procedures are also summarized in the table
below. In every case, errno is set to EDOM or ERANGE and the pro­
gram continues.

May 21, 1985

(_

(-

MATHERR(3M} UNIX Sys5 MATHERR(3M}

EXAMPLE
#include <math.h>

int
matherr(x)
register struct exception *X;
{

May 21, 1985

switch (x->type) {
case DOMAIN:

'*change sqrt to return sqrt(-arg1), not O */

if ('strcmp(x-> name, "sqrt")) {
x->retval = sqrt(-x->arg1);
return (O); 1' print message and set errno ·;

}
case SING:

I* all other domain or sing errs, print msg and abort */
fprintf(stderr, "domain error in %s\n", x->name);
abort();

case PLOSS:
/* print detailed error message *i

fprintf(stderr, "loss of significance in %s(%g) = %g\n",
x->name, x->arg1, x->retval);

return (1) ; !' take no other action ·I

return (O); 1* all other errors, execute default procedure */

Page 2

MATHERR(3M) UNIX Sys5 MATHERR(3M)

DEFAULT ERROR HANDLING PROCEDURES

Types of Errors

type DOMAIN SING OVERFLOW UNDERFLOW TLOSS PLOSS
--1

errno EDOM EDOM ER ANGE ER ANGE ER ANGE ER ANGE

~ESSEL: - - - - M, 0 *
~O. y1, yn (arg :S O) M. -H - - - - -

~XP: - - H 0 - -

OG. LOG10:

(arg < __ O) M,-H - - - - -
(arg = 0) - M, -H - - - -

POW: - - :tH 0 - -
reg ** non-int M, 0 - - - - -
o ** non-pos

~ORT: M, 0 - - - - -

'1AMMA: - M,H H - - -

~YPOT: - - H - - -

~INH: - - :tH - - -
pOSH - - H - - -
~IN, COS, TAN - - - - M. 0

~SIN, ACOS, ATAN2: M, 0 - - - - -

ABBREVIATIONS
"' As much as possible of the value is returned.
M Message is printed (EDOM error).
H HUGE is returned.

-H -HUGE is returned.
± H HUGE or -HUGE is returned.
O O is returned.

Page 3 May 21, 1985

(

(

SINH{3M) UNIX Sys5 SINH(3M)

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
#include <math.h>

double sinh {x)
double x;

double cosh {x)
double x;

double tanh {x)
double x;

DESCRIPTION
Sinh, cosh, and tanh return, respectively, the hyberbolic sine,
cosine and tangent of their argument.

DIAGNOSTICS
Sinh and cosh return HUGE (and sinh may return -HUGE for nega­
tive x) when the correct value would overflow and set errno to
ERANGE.

These error-handling procedures may be changed with the function
matherr(3M).

SEE ALSO
matherr(3M).

Page 1 May 13, 1986

TRIG{3M) UNIX Sys5 TRIG(3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS
#include <math.h>

double sin (x)
double x;

double cos (x)
double x;

double tan (x)
double x;

double asin (x)
double x;

double acos (x)
double x;

double atan (x)
double x;

double atan2 {y, x)
double y, x;

DESCRIPTION
Sin, cos and tan return respectively the sine, cosine and tangent of
their argument, x, measured in radians.

Asin returns the arcsine of x, in the range --rr/2 to -rr/2.

Acos returns the arccosine of x, in the range O to -rr.

Atan returns the arctangent of x, in the range --rr/2 to -rr/2.

Atan2 returns the arctangent of ylx, in the range--rr to -rr, using the
signs of both arguments to determine the quadrant of the return
value.

DIAGNOSTICS

Page 1

Sin, cos, and tan lose accuracy when their argument is far from
zero. For arguments sufficiently large, these functions return zero
when there would otherwise be a complete loss of significance. In
this case a message indicating TLOSS error is printed on the stan~
dard error output. For less extreme arguments causing partial loss
of significance, a PLOSS error is generated but no message is
printed. In both cases, errno is set to ERANGE.

If the magnitude of the argument of asin or acos is greater than
one, or if both arguments of atan2 are zero, zero is returned and
errno is set to EDOM. In addition, a message indicating DOMAIN (~~
error is printed on the standard error output. \.___j

May 13, 1986

TRIG(3M) UNIX Sys5 TRIG(3M)

These error-handling procedures may be changed with the function

(
.. ···.. matherr(3M).

SEE ALSO
matherr(3M).

May 13, 1986 Page2

(

(

ASSERT(3X) UNIX Sys5 ASSERT(3X)

NAME
assert - verify program assertion

SYNOPSIS
#include <assert.h>

assert (expression)
int expression;

DESCRIPTION
This macro is useful for putting diagnostics into programs. When it
is executed, if expression is false (zero), assert prints

"Assertion failed: expression, file xyz, line nnn"

on the standard error output and aborts. In the error message, xyz
is the name of the source file and nnn the source line number of the
assert statement.

Compiling with the preprocessor option -DNDEBUG (see cpp (1 }),
or with the preprocessor control statement "#define NDEBUG"
ahead of the "#include <assert.h>" statement, will stop asser­
tions from being compiled into the program.

SEE ALSO
abort(3C).
cpp(1) in the Sys5 UNIX User Reference Manual.

Page 1 May 7, 1986

CURSES(3X) UNIX Sys5 CURSES(3X)

NAME
curses - CRT screen handling and optimization package

SYNOPSIS
#include <curses.h>
cc [flags] files -!curses [libraries]

DESCRIPTION
These routines give the user a method of updating screens with rea­
sonable optimization. In order to initialize the routines, the routine
initscr() must be called before any of the other routines that deal
with windows and screens are used. The routine endwin() should
be called before exiting. To get character-at-a-time input without
echoing, (most interactive, screen oriented-programs want this) after
calling initscr() you should call "non/(); cbreak(); noecho();"

The full curses interface permits manipulation of data structures
called windows which can be thought of as two dimensional arrays
of characters representing all or part of a CRT screen. A default
window called stdscr is supplied, and others can be created with
newwin . Windows are referred to by variables declared "WINDOW
*'', the type WINDOW is defined in curses.h to be a C structure.
These data structures are manipulated with functions described
below, among which the most basic are move, and addch. (More
general versions of these functions are included with names begin­
ning with 'w', allowing you to specify a window. The routines not ' .
beginning with 'w' affect stdscr .) Then refresh() is called, telling
the routines to make the users CRT screen look like stdscr .

Mini-Curses is a subset of curses which does not allow manipulation
of more than one window. To invoke this subset, use -DMINl­
CURSES as a cc option. This level is smaller and faster than full
curses.

If the environment variable TERMINFO is defined, any program using
curses will check for a local terminal definition before checking in
the standard place. For example, if the standard place is
/usr/lib/terminfo, and TERM is set to "vt100", then normally the
compiled file is found in /usr/lib/terminfo/v/vt100. (The "v" is
copied from the first letter of "vt100'' to avoid creation of huge direc­
tories.) However, if TERMINFO is set to /usr/mark/myterms, curses
will first check /opusr/mark/myterms/v/vt100, and if that fails, will
then check /usr/lib/terminfo/v/vt100. This is useful for developing
experimental definitions or when write permission in
/usr/lib/terminfo is not available.

SEE ALSO
terminfo(4).

Page 1 May 8, 1986

(

(

CURSES(3X) UNIX Sys5 CURSES(3X)

FUNCTIONS
Routines listed here may be called when using the full curses.
Those marked with an asterisk may be called when using Mini­
Curses.

addch(ch)'

addstr(str)*
attroff(attrs) •
attron(attrs r
attrset(attrs r
baudrate() •
beep()*
box(win, vert, hor)

clear()
clearok(win, bf)

· clrtobot()
clrtoeol()
cbreak()'
delay_output(ms)*
delch()
deleteln()
delwin(win)
doupdate()
echo()*
endwin()*
erase()
erasechar()
fixterm()
flash()
flushinp() •
getch()*
getstr(str)
gettmode()
getyx(win, y, x)
has_ic()
has_il()
idlok(win, bf)*
inch()
initscr()*
insch(c)
insertln()
intrflush(win, bf)
keypad(win, bf)

May 8, 1986

add a character to stdscr
(like putchar) (wraps to next
line at end of line)
calls addch with each character in str
turn off attributes named
turn on attributes named
set current attributes to attrs
current terminal speed
sound beep on terminal
draw a box around edges of win
vert and hor are chars to use for vert.
and hor. edges of box
clear stdscr
clear screen before next redraw of win
clear to bottom of stdscr
clear to end of line on stdscr
set cbreak mode
insert ms millisecond pause in output
delete a character
delete a line
delete win
update screen from all wnooutrefresh
set echo mode
end window modes
erase stdscr
return user's erase character
restore tty to "in curses" state
flash screen or beep
throw away any typeahead
get a char from tty

get a string through stdscr
establish current tty modes
get (y, x) co-ordinates
true if terminal can do insert character
true if terminal can do insert line
use terminal's inserVdelete line if bf ! = 0
get char at current (y, x) co-ordinates
initialize screens
insert a char
insert a line
interrupts flush output if bf is TRUE
enable keypad input

Page2

CURSES(3X) UNIX Sys5 CURSES(3X)

Page3

return current user's kill character killchar()
leaveok(win, flag) OK to leave cursor anywhere after refresh if (~\

flag!=O for win, otherwise cursor must be left .. _/
at current position.

longname() return verbose name of terminal
meta(win, flag)* allow meta characters on input if flag != O
move(y, x)* move to (y, x) on stdscr
mvaddch(y, x, ch) move(y, x) then addch(ch)
mvaddstr(y, x, str) similar ...
mvcur(oldrow, oldcol, newrow, newcol)

mvdelch(y, x)
mvgetch(y, x)
mvgetstr(y, x)
mvinch(y, x)
mvinsch(y, x, c)
mvprintw(y, x, fmt, args)
mvscanw(y, x, fmt, args)
mvwaddch(win, y, x, ch)
mvwaddstr(win, y, x, str)
mvwdelch(win, y, x)
mvwgetch(win, y, x)
mvwgetstr(win, y, x)
mvwin(win, by, bx)
mvwinch(win, y, x)
mvwinsch(win, y, x, c)
mvwprintw(win, y, x, fmt, args)
mvwscanw(win, y, x, fmt, args)

low level cursor motion
like delch, but move(y, x) first
etc.

newpad(nlines, ncols) create a new pad with given dimensions
newterm(type, fd) set up new term of given type to output on fd
newwin(lines, cols, begin_y, begin_x)

create a new window
nl()* set newline mapping
nocbreak() • unset cbreak mode
nodelay(win, bf) enable nodelay input mode through getch
noecho()* unset echo mode
nonl()* unset newline mapping
noraw()* unset raw mode
overlay(win1, win2) overlay win1 on win2
overwrite(win1, win2) overwrite win1 on top of win2
pnoutrefresh(pad, pminrow, pmincol, sminrow,
smincol, smaxrow, smaxcol)

\.

'"-_)

like prefresh but w/o output til doupdate called (\
prefresh(pad, pminrow, pmincol, sminrow, _ j
smincol, smaxrow, smaxcol) ·

refresh from pad starting with given upper left

May 8, 1986

(

(

(

CURSES(3X) UNIX Sys5 CURSES(3X)

printw(fmt, arg1, arg2, ...)

corner of pad with output to given
portion of screen

printf on stdscr
set raw mode raw()"

refresh()'
resetterm(r
resetty(r
saveterm()'
savetty()'

make current screen look like stdscr
set tty modes to "out of curses" state
reset tty flags to stored value
save current modes as "in curses" state
store current tty flags

scanw(fmt, arg1, arg2, ...)
scant through stdscr

scroll(win) scroll win one line
scrollok(win, flag) allow terminal to scroll if flag != O
set_term(new) now talk to terminal new
setscrreg(t, b) set user scrolling region to lines t through b
setterm(type) establish terminal with given type
setupterm(term, filenum, errret)
standend(r
standout() •

clear standout mode attribute
set standout mode attribute

subwin(win, lines, cols, begin_y, begin_x)
create a subwindow
change all of win
turn off debugging trace output
turn on debugging trace output

touchwin(win)
traceoff()
traceon()
typeahead(fd)
unctrl(ch)'
waddch(win, ch)
waddstr(win. str)
wattroff(win, attrs)

use file descriptor fd to check typeahead
printable version of ch
add char to win
add string to win
turn off attrs in win

wattron(win, attrs) turn on attrs in win
wattrset(win, attrs) set attrs in win to attrs
wclear(win) clear win
wclrtobot(win) clear to bottom of win
wclrtoeol(win) clear to end of line on win
wdelch(win, c) delete char from win
wdeleteln(win) delete line from win
werase(win) erase win
wgetch(win) get a char through win
wgetstr(win, str) get a string through win
winch(win) get char at current (y, x) in win
winsch(win, c) insert char into win
winsertln(win) insert line into win
wmove(win, y, x) set current (y, x) co-ordinates on win
wnoutrefresh(win) refresh but no screen output
wprintw(win, fmt, arg1, arg2, ...)

May 8, 1986 Page4

CURSES(3X) UNIX Sys5 CURSES(3X)

print! on win
wrefresh(win) make screen look like win
wscanw(win, fmt, arg1, arg2, ...)

wsetscrreg(win, t, b)
wstandend(win)
wstandout(win)

scanf through win
set scrolling region of win
clear standout attribute in win
set standout attribute in win

TERMINFO LEVEL ROUTINES

Page5

These routines should be called by programs wishing to deal directly
with the terminfo database. Due to the low level of this interface, it
is discouraged. Initially, setupterm should be called. This will
define the set of terminal dependent variables defined in terminfo(4).
The include files <curses.h> and <term.h> should be included to
get the definitions for these strings, numbers, and flags. Parmeter·
ized strings should be passed through tparm to instantiate them. All
terminfo strings (including the output of tparm) should be printed
with tputs or putp .''Before exiting, resetterm should be called to
restore the tty modes. (Programs desiring shell escapes or
suspending with control Z can call resetterm before the shell is
called and fixterm after returning from the shell.)
fixterm() restore tty modes for terminfo use

resetterm()
setupterm(term, fd, re)

tparm(str, p1, p2, ... , p9)

tputs(str, affcnt, putc)

putp(str)

vidputs(attrs, putc)

vidattr(attrs)

(called by setupterm)
reset tty modes to state before program entry\. .
read in database. Terminal type is the 7

character string term, all output is to UNIX
System file descriptor fd. A status value is
returned in the integer pointed to by re: 1
is normal. The simplest call would be
setupterm(O, 1, 0) which uses ~II defaults.

instantiate string str with parms pi.
apply padding info to string str.
affcnt is the number of lines affected,
or 1 if not applicable. Putc is a
putchar-like function to which the characters
are passed, one at a time.
handy function that calls tputs
(str, 1 , putchar)
output the string to put terminal in video
attribute mode attrs, which is any
combination of the attributes listed below.
Chars are passed to putchar-like
function putc.
Like vidputs but outputs through
putchar

May 8, 1986

(

(

(

CURSES(3X) UNIX Sys5 CURSES(3X)

TERMCAP COMPATIBILITY ROUTINES
These routines were included as a conversion aid for programs that
use termcap. Their parameters are the same as for termcap. They
are emulated using the terminfo database. They may go away at a
later date.
tgetent(bp, name)
tgetflag(id)
tgetnum(id)
tgetstr(id, area)
tgoto(cap, col, row)
tputs(cap, affcnt, fn)

ATTRIBUTES

look up termcap entry for name
get boolean entry for id
get numeric entry for id
get string entry for id
apply parms to given cap
apply padding to cap calling fn as

The following video attributes can be passed to the functions attron ,
attroff , attrset .
A_STANDOUT
A_UNDERLINE
A_REVERSE
A_BLINK
A_DIM
A_ BOLD
A_BLANK
A_PROTECT
A_AL TCHARSET

FUNCTION KEYS

Terminal's best highlighting mode
Underlining
Reverse video
Blinking
Half bright
Extra bright or bold
Blanking (invisible)
Protected
Alternate character set

The following function keys might be returned by getch if keypad
has been enabled. Note that not all of these are currently sup­
ported, due to lack of definitions in terminfo or the terminal not
transmitting a unique code when the key is pressed.
Name

KEY _BREAK
KEY_DOWN
KEY _UP

KEY_LEFT
KEY_RIGHT
KEY_HOME
KEY _BACKSPACE
KEY_FO
KEY_F(n)
KEY_DL

KEY_IL
KEY_DC
KEY_IC
KEY_EIC
KEY_CLEAR

KEY_EOS
KEY_EOL

May 8, 1986

Value

0401
0402
0403
0404
0405

0406
0407
0410
(KEY _FO+(n))

0510
0511
0512
0513
0514
0515
0516
0517

Key name

break key (unreliable)
The four arrow keys ..

Home key (upward+left arrow)
backspace (unreliable)
Function keys. Space reserved for 64.

Formula for fn.
Delete line

Insert line
Delete character
Insert char or enter insert mode
Exit insert char mode

Clear screen
Clear to end of screen
Clear to end of line

Page 6

CURSES(3X) UNIX Sys5 CURSES(3X)

KEY_SF 0520 Scroll 1 line forward
KEY_SR 0521 Scroll 1 line backwards (reverse) /' --\
KEY_NPAGE 0522 Next page \"'--/
KEY_PPAGE 0523 Previous page
KEY_STAB 0524 Set tab
KEY_CTAB 0525 Clear tab
KEY_CATAB 0526 Clear all tabs
KEY_ENTER 0527 Enter or send (unreliable)
KEY_SRESET 0530 soft (partial) reset (unreliable)
KEY_RESET 0531 reset or hard reset (unreliable)
KEY_PRINT 0532 print or copy
KEY_LL 0533 home down or bottom (lower left)

WARNING

Page 7

The plotting library plot (3X) and the curses library curses (3X) both
use the names erase() and move(). The curses versions are mac­
ros. If you need both libraries, put the plot (3X) code in a different
source file than the curses (3X) code, and/or #undef move() and
erase() in the plot (3X) code.

May 8, 1986

(

(

(

LDAHREAD(3X) UNIX Sys5 LDAHREAD(3X)

NAME
ldahread - read the archive header of a member of an archive file

SYNOPSIS
#include < stdio.h>
#include <ar.h>
#include <filehdr.h>
#include < ldfcn.h>

int ldahread (ldptr, arhead)
LDFILE *ldptr;
ARCHDR *arhead;

DESCRIPTION
If TYPE(/dptr) is the archive file magic number, ldahread reads the
archive header of the common object file currently associated with
ldptr into the area of memory beginning at arhead .

Ldahread returns SUCCESS or FAI Ldahread will fail if TYPE(fdptr)
does not represent an archive file, or if it cannot read the archive
header.

The program must be loaded with the object file access routine
library !ibid.a .

SEE ALSO
ldclose(3X), ldopen(3X), ldfcn(4), ar(4).

Page 1 May 22, 1985

LDCLOSE(3X) UNIX Sys5 LOCLOSE(3X)

NAME
ldclose, ldaclose - close a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldclose (ldptr)
LDFILE *ldptr;

int ldaclose (ldptr)
LDFILE *ldptr;

DESCRIPTION
Ldopen (3X) and ldclose are designed to provide uniform access to
both simple object files and object files that are members of archive
files. Thus an archive of common object files can be processed as
if it were a,.series of simple common object files.

If TYPE(/dptr) does not represent an archive file, ldclose will close
the file and free the memory allocated to the LDFILE structure
associated with ldptr . If TYPE(/dptr) is the magic number of an
archive file, and if there are any more files in the archive, ldclose \
will reinitialize OFFSET(/dptr) to the file address of the next archive _)
member and return FAILURE . The LDFILE structure is prepared for
a subsequent ldopen (3X). In all other cases, ldclose returns SUC­
CESS.

Ldaclose closes the file and frees the memory allocated to the
LDFILE structure associated with ldptr regardless of the value of
TYPE(ldptr). Ldaclose always returns SUCCESS. The function is
often used in conjunction with ldaopen .

The program must be loaded with the object file access routine
library libld.a.

SEE ALSO
fclose(3S), ldopen(3X), ldfcn(4).

Page 1 May 21, 1985

(~

(-

LDFHREAD(3X) UNIX Sys5 LDFHREAD(3X)

NAME
ldfhread - read the file header of a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldfhread (ldptr, filehead)
LDFILE *ldptr;
FILHDR *filehead;

DESCRIPTION
Ldfhread reads the file header of the common object file currently
associated with ldptr into the area of memory beginning at filehead.

Ldfhread returns SUCCESS or FAI Ldfhread will fail if it cannot read
the file header.

In most cases the use of ldfhread can be avoided by using the
macro HEADER(/dptr) defined in ldfcn.h (see ldfcn (4)). The infor­
mation in any field, fieldname , of the file header may be accessed
using HEADER (ldptr). fieldname.

The program must be loaded with the object file access routine
library !ibid.a .

SEE ALSO
ldclose(3X), ldopen(3X), ldfcn(4).

Page 1 May 21, 1985

LDGETNAME(3X) UNIX Sys5 LDGETNAME(3X)

NAME /'-\
ldgetname - retrieve symbol name for common object file symbol~ J

table entry . ./

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include < ldfcn.h>

char *ldgetname (ldptr, symbol)
LDFILE *ldptr;
SYMENT *Symbol;

DESCRIPTION
Ldgetname returns a pointer to the name associated with symbol
as a string. The string is contained in a static buffer local to ldget­
name that is overwritten by each call to ldgetname , and therefore
must be copied by the caller if the name is to be saved.

As of UNIX system release 5.0, the common object file format has
been extended to handle arbitrary length symbol names with the
addition of a "string table". Ldgetname will return the symbol name
associated with a symbol table entry for either a pre-UNIX system /
5.0 object file or a UNIX system 5.0 object file. Thus, ldgetname \
can be used to retrieve names from object files without any back- "
ward compatibility problems. Ldgetname will return NULL (defined
in stdio.h) for a UNIX system 5.0 object file if the name cannot be
retrieved. This situation can occur:

if the "string table" cannot be found,

if not enough memory can be allocated for the string table,

if the string table appears not to be a string table (for exam­
ple, if an auxiliary entry is handed to ldgetname that looks
like a reference to a name in a non-existent string table), or

if the name's offset into the string table is past the end of
the string table.

Typically, ldgetname will be called immediately after a successful
call to ldtbread to retrieve the name associated with the symbol
table entry filled by ldtbread .

The program must be loaded with the object file access routine
library libld.a .

SEE ALSO (-----\

ldclose(3X), ldopen(3X), ldtbread(3X), ldtbseek(3X), ldfcn(4). \.__j

Page 1 May 21, 1985

(

(

(-

LOLREAD(3X) UNIX Sys5 LDLREAD(3X)

NAME
ldlread, ldlinit, ldlitem - manipulate line number entries of a common
object file function

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <linenum.h>
#include <ldfcn.h>

int ldlread(ldptr, fcnindx, linenum, linent)
LDFILE *ldptr;
long fcnindx;
unsigned short linenum;
LINENO linent;

int ldlinit(ldptr, fcnindx)
LDFILE *ldptr;
long fcnindx;

int ldlitem(ldptr, linenum, linent)
LDFILE *ldptr;
unsigned short linenum;
LINENO linent;

DESCRIPTION

Page 1

Ldlread searches the line number entries of the common object file
currently associated with ldptr . Ld/read begins its search with the
line number entry for the beginning of a function and confines its
search to the line numbers associated with a single function. The
function is identified by fcnindx , the index of its entry in the object
file symbol table. Ldlread reads the entry with the smallest line
number equal to or greater than linenum into linent .

Ldlinit and Id/item together perform exactly the same function as
Id/read. After an initial call to Id/read or ldlinit, Id/item may be used
to retrieve a series of line number entries associated with a single
function. Ld/init simply locates the line number entries for the func­
tion identified by fcnindx. Ldlitem finds and reads the entry with the
smallest line number equal to or greater than linenum into linent .

Ldlread , ldlinit , and Id/item each return either SUCCESS or
FAILURE . Ldlread will fail if there are no line number entries in the
object file, if fcnindx does not index a function entry in the symbol
table, or if it finds no line number equal to or greater than linenum .
Ldlinit will fail if there are no line number entries in the object file or

May 22, 1985

LDLREAD(3X) UNIX Sys5 LDLREAD(3X)

if fcnindx does not index a function entry in the symbol table. Ldli­
tem will fail if it finds no line number equal to or greater than line­
num.

The programs must be loaded with the object file access routine
library libld.a .

SEE ALSO
ldclose(3X), ldopen(3X), ldtbindex(3X), ldfcn(4).

May 22, 1985 Page 2

(

LDLSEEK(3X) UNIX Sys5 LDLSEEK(3X)

NAME
ldlseek, ldnlseek - seek to line number entries of a section of a
common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldlseek (ldptr, sectindx)
LDFILE *ldptr;
unsigned short sectindx;

int ldnlseek (ldptr, sectname)
LDFILE *ldptr;
char *Sectname;

DESCRIPTION
Ldlseek seeks to the line number entries of the section specified by
sectindx of the common object file currently associated with ldptr.

Ldnlseek seeks to the line number entries of the section specified
by sectname .

Ldlseek and ldnlseek return SUCCESS or FAILURE . Ldlseek will fail
if sectindx is greater than the number of sections in the object file;
ldnlseek will fail if there is no section name corresponding with
*Sectname. Either function will fail if the specified section has no
line number entries or if it cannot seek to the specified line number
entries.

Note that the first section has an index of one .

The program must be loaded with the object file access routine
library libld.a .

SEE ALSO
ldclose(3X), ldopen(3X), ldshread(3X), ldfcn(4).

Page 1 May 21, 1985

LDOHSEEK(3X) UNIX Sys5 LDOHSEEK (3X)

NAME
ldohseek - seek to the optional file header of a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include < ldfcn.h>

int ldohseek (ldptr)
LDFILE *ldptr;

DESCRIPTION
Ldohseek seeks to the optional file header of the common object file
currently associated with ldptr.

Ldohseek returns SUCCESS or FAI Ldohseek will fail if the object file
has no optional header or if it cannot seek to the optional header.

The program must be loaded with the object file access routine
library libld.a .

SEE ALSO
ldclose(3X), ldopen(3X), ldfhread(3X), ldfcn(4).

Page 1 May 21, 1985

(

(

(

LDOPEN(3X) UNIX Sys5 LDOPEN(3X)

NAME
ldopen, ldaopen - open a common object file for reading

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include < ldfcn.h>

LDFILE *ldopen (filename, ldptr)
char *filename;
LDFILE * ldptr;

LDFILE *ldaopen (filename, oldptr)
char *filename;
LDFILE *Oldptr;

DESCRIPTION

Page 1

Ldopen and ldclose (3X) are designed to provide uniform access to
both simple object files and object files that are members of archive
files. Thus an archive of common object files can be processed as
if it were a series of simple common object files.

If ldptr has the value NULL, then ldopen will open filename and allo­
cate and initialize the LDFILE structure, and return a pointer to the
structure to the calling program.

If ldptr is valid and if TYPE(ldptr) is the archive magic number, ldo­
pen will reinitialize the LDFILE structure for the next archive
member of filename.

Ldopen and ldclose (3X) are designed to work in concert. Ldclose
will return FAILURE only when TYPE(ldptr) is the archive magic
number and there is another file in the archive to be processed.
Only then should ldopen be called with the current value of ldptr. In
all other cases, in particular whenever a new filename is opened,
ldopen should be called with a NULL ldptr argument.

The following is a prototype for the use of ldopen and ldclose (3X).

f* tor each filename to be processed *f

ldptr = NULL;
do
{

if ((ldptr = ldopen(filename, ldptr)) != NULL)
{

}

f* check magic number *f
f* process the file *f

} while (ldclose(ldptr) = = FAILURE);

If the value of oldptr is not NULL, ldaopen will open filename anew
and allocate and initialize a new LDFILE structure, copying the TYPE,

August 20, 1986

LDOPEN(3X) UNIX Sys5 LDOPEN(3X)

OFFSET, and HEADER fields from oldptr. Ldaopen returns a pointer
to the new LDFILE structure. This new pointer is independent of (c ""

the old pointer, oldptr. The two pointers may be used concurrently ___,/
to read separate parts of the object file. For example, one pointer
may be used to step sequentially through the relocation information,
while the other is used to read indexed symbol table entries.

Both ldopen and ldaopen open filename for reading. Both functions
return NULL if filename cannot be opened, or if memory for the
LDFILE structure cannot be allocated. A successful open does not
insure that the given file is a common object file or an archived
object file.

The program must be loaded with the object file access routine
library libld.a .

SEE ALSO
fopen(3S), ldclose(3X), ldfcn(4).

August 20, 1986 Page2

\'- __ j

(

(

LDRSEEK(3X) UNIX Sys5 LDRSEEK(3X)

NAME
ldrseek, ldnrseek - seek to relocation entries of a section of a com­
mon object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldrseek (ldptr, sectindx)
LDFILE *ldptr;
unsigned short sectindx;

int ldnrseek (ldptr, sectname)
LDFILE *ldptr;
char *Sectname;

DESCRIPTION
Ldrseek seeks to the relocation entries of the section specified by
sectindx of the common object file currently associated with ldptr.

Ldnrseek seeks to the relocation entries of the section specified by
sectname.

Ldrseek and ldnrseek return SUCCESS or FAIL Ldrseek will fail if
sectindx is greater than the number of sections in the object file;
ldnrseek will fail if there is no section name corresponding with
sectname . Either function will fail if the specified section has no
relocation entries or if it cannot seek to the specified relocation
entries.

Note that the first section has an index of one .

The program must be loaded with the object file access routine
library !ibid.a .

SEE ALSO
ldclose(3X), ldopen(3X), ldshread(3X), ldfcn(4).

Page 1 May 22, 1985

LDSHREAD(3X) UNIX Sys5 LDSHREAD(3X)

NAME r~~

ldshread, ldnshread - read an indexed/named section header of a ()
common object file ""-_/

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <scnhdr.h>
#include < ldfcn.h>

int ldshread (ldptr, sectindx, secthead)
LDFILE *ldptr;
unsigned short sectindx;
SCNHDR *Secthead;

int ldnshread (ldptr, sectname, secthead)
LDFILE *ldptr;
char *Sectname;
SCNHDR *Secthead;

DESCRIPTION
Ldshread reads the section header specified by sectindx of the
common object file currently associated with ldptr into the area of
memory beginning at secthead .

/ \
I

Ldnshread reads the section header specified by sectname into the '- _ _)
area of memory beginning at secthead .

Ldshread and ldnshread return SUCCESS or FAILURE . Ldshread
will fail if sectindx is greater than the number of sections in the
object file; ldnshread will fail if there is no section name correspond­
ing with sectname . Either function will fail if it cannot read the

. specified section header.

Note that the first section header has an index of one .

The program must be loaded with the object file access routine
library !ibid.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldfcn(4).

Page 1 May 21, 1985

(

(

LDSSEEK(3X) UNIX Sys5 LDSSEEK(3X)

NAME
ldsseek, ldnsseek - seek to an indexed/named section of a common
object file

SYNOPSIS
#include < stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldsseek (ldptr, sectindx)
LDFILE *ldptr;
unsigned short sectindx;

int ldnsseek (ldptr, sectname)
LDFILE *ldptr;
char *Sectname;

DESCRIPTION
Ldsseek seeks to the section specified by sectindx of the common
object file currently associated with ldptr .

Ldnsseek seeks to the section specified by sectname .

Ldsseek and ldnsseek return SUCCESS or FAIL Ldsseek will fail if
sectindx is greater than the number of sections in the object file;
ldnsseek will fail if there is no section name corresponding with
sectname . Either function will fail if there is no section data for the
specified section or if it cannot seek to the specified section.

Note that the first section has an index of one .

The program must be loaded with the object file access routine
library !ibid.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldshread(3X), ldfcn(4).

Page 1 May 21, 1985

lDTBINDEX(3X) UNIX Sys5 lOTBINOEX (3X)

NAME
ldtbindex - compute the index of a symbol table entry of a common
object file '"

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <ldfcn.h>

long ldtbindex (ldptr)
LDFILE *ldptr;

DESCRIPTION
Ldtbindex returns the (long) index of the symbol table entry at the
current position of the common object file associated with ldptr.

The index returned by ldtbindex may be used in subsequent calls to
ldtbread (3X). However, since ldtbindex returns the index of the
symbol table entry that begins at the current position of the object
file, if ldtbindex is called immediately after a particular symbol table
entry has been read, it will return the index of the next entry.

Ldtbindex will fail if there are no symbols in the object file, or if the
object file is not positioned at the beginning of a symbol table entry.

Note that the first symbol in the symbol table has an index of zero .

The program must be loaded with the object file access routine
library libld.a .

SEE ALSO
ldclose(3X), ldopen(3X), ldtbread(3X), ldtbseek(3X), ldfcn(4).

Page 1 May 21, 1985

<~

(

(_

LDTBREAD(3X) UNIX Sys5 LDTBREAD(3X)

NAME
ldtbread - read an indexed symbol table entry of a common object
file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <ldfcn.h>

int ldtbread (ldptr, symindex, symbol)
LDFILE *ldptr;
long symindex;
SYMENT *Symbol;

DESCRIPTION
Ldtbread reads the symbol table entry specified by symindex of the
common object file currently associated with ldptr into the area of
memory beginning at symbol.

Ldtbread returns SUCCESS or FAILURE . Ldtbread will fail if sym­
index is greater than the number of symbols in the object file, or if it
cannot read the specified symbol table entry.

Note that the first symbol in the symbol table has an index of zero .

The program must be loaded with the object file access routine
library !ibid.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldtbseek(3X), ldgetname(3X), ldfcn(4).

Page 1 May 21, 1985

LDTBSEEK(3X) UNIX Sys5 LDTBSEEK(3X)

NAME
ldtbseek - seek to the symbol table of a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldtbseek (ldptr)
LDFILE *ldptr;

DESCRIPTION
Ldtbseek seeks to the symbol table of the object file currently asso­
ciated with ldptr.

Ldtbseek returns SUCCESS or FAI Ldtbseek will fail if the symbol
table has been stripped from the object file, or if it cannot seek to
the symbol table.

The program must be loaded with the object file access routine
library !ibid.a .

SEE ALSO
ldclose(3X), ldopen(3X), ldtbread(3X), ldfcn(4).

Page 1 May 21, 1985

(

(-

(~

LOGNAME(3X) UNIX Sys5

NAME
logname - return login name of user

SYNOPSIS
char *logname()

DESCRIPTION

LOGNAME(3X)

Logname returns a pointer to the null-terminated login name; it
extracts the $LOGNAME variable from the user's environment

This routine is kept in /lib/libPW.a .

FILES
/etc/profile

SEE ALSO

BUGS

Page 1

profile(4), environ(5).
env(1), login(1) in the Sys5 UNIX User Reference Manual.

The return values point to static data whose content is overwritten
by each call.

This method of determining a login name is subject to forgery.

May 13, 1986

MALLOC(3X) UNIX Sys5 MALLOC(3X)

NAME
malloc, free, realloc, calloc, mallopt, mallinfo - fast main memory (~
allocator __j

SYNOPSIS
#include <malloc.h>

char *malloc (size)
unsigned size;

void free (ptr)
char *ptr;

char *realloc (ptr, size)
char *ptr;
unsigned size;

char *Calloc (nelem, elsize)
unsigned nelem, elsize;

int mallopt (cmd, value)
int cmd, value;

struct mallinfo mallinfo (max)
int max;

DESCRIPTION

Page 1

Malloc and free provide a simple general-purpose memory alloca­
tion package, which runs considerably faster than the ma//oc (3C)
package. It is found in the library "malloc", and is loaded if the
option "-lmalloc" is used with cc (1) or Id (1).

Malloc returns a pointer to a block of at least size bytes suitably
aligned for any use.

The argument to free is a pointer to a block previously allocated by
malloc ; after free is performed this space is made available for
further allocation, and its contents have been destroyed (but see
mallopt below for a way to change this behavior).

Undefined results will occur if the space assigned by malloc is over­
run or if some random number is handed to free .

Realloc changes the size of the block pointed to by ptr to size
bytes and returns a pointer to the (possibly moved) block. The con­
tents will be unchanged up to the lesser of the new and old sizes.

Calloc allocates space for an array of nelem elements of size elsize
. The space is initialized to zeros.

Mal/opt provides for control over the allocation algorithm. The avail­
able values for cmd are:

M_MXFAST Set maxfast to value. The algorithm allocates all
blocks below the size of maxfast in large groups and

May 13, 1986

(

(

MALLOC(3X) UNIX Sys5 MALLOC(3X)

then doles them out very quickly. The default value
for maxfast is 0.

M_NLBLKS Set numlblks to value . The above mentioned "large
groups" each contain numlblks blocks. Numlblks
must be greater than 0. The default value for
numlblks is 100.

M_GRAIN Set grain to value . The sizes of all blocks smaller
than maxfast are considered to be rounded up to the
nearest multiple of grain. Grain must be greater than
0. The default value of grain is the smallest number
of bytes which will allow alignment of any data type.
Value will be rounded up to a multiple of the default
when grain is set.

M_KEEP Preserve data in a freed block until the next ma/Joe ,
realloc , or calloc . This option is provided only for
compatibility with the old version of ma//oc and is not
recommended.

These values are defined in the <malloc.h > header file.

Mal/opt may be called repeatedly, but may not be called after the
first small block is allocated.

Mal/info provides instrumentation describing space usage.
the structure:

It returns

struct mallinfo {
int arena;
int ordblks;
int smblks;
int hblkhd;
int hblks;

}

int usmblks;
int fsmblks;
int uordblks;
int fordblks;
int keepcost;

I* total space in arena */
/* number of ordinary blocks */
/*number of small blocks*/
/*space in holding block headers*/
/*number of holding blocks*/
I* space in small blocks in use */
/* space in free small blocks */
I* space in ordinary blocks in use*/
I* space in free ordinary blocks */
I* space penalty if keep option *I
I* is used*/

This structure is defined in the <malloc.h> header file.

Each of the allocation routines returns a pointer to space suitably
aligned (after possible pointer coercion) for storage of any type of
object.

SEE ALSO
brk(2), malloc(3C).

May 13, 1986 Page2

MALLOC(3X) UNIX Sys5 MALLOC(3X)

DIAGNOSTICS
Malloc, realloc and calloc return a NULL pointer if there is not/'\
enough available memory. When realloc returns NULL, the block 1\.._~/
pointed to by ptr is left intact. If mallopt is called after any alloca-
tion or if cmd or value are invalid, non-zero is returned. Otherwise,
it returns zero.

WARNINGS

Page3

This package usually uses more data space than ma//oc (3C).
The code size is also bigger than ma//oc (3C).
Note that unlike ma//oc (3C), this package does not preserve the
contents of a block when it is freed, unless the M_KEEP option of
mallopt is used.
Undocumented features of malloc (3C) have not been duplicated.

May 13, 1986

(

(

PLOT(3X) UNIX Sys5 PLOT(3X)

NAME
plot - graphics interface subroutines

SYNOPSIS
openpl ()

erase ()

label (s)
char *S;

line (x1, y1, x2, y2)
int x1, y1, x2, y2;

circle (x, y, r)
int x, y, r;

arc (x, y, xO, yo, x1, y1)
int x, y, xO, yO, x1, y1;

move (x, y)
int x, y;

cont (x, y)
int X, y;

point (x, y)
int x, y;

linemod (s)
char *S;

space (xO, yO, x1, y1)
int xO, yO, x1, y1;

closepl ()

DESCRIPTION

Page 1

These subroutines generate graphic output in a relatively device­
independent manner. Space must be used before any of these
functions to declare the amount of space necessary. See plot(4).
Openpl must be used before any of the others to open the device
for writing. Closepl flushes the output.

Circle draws a circle of radius r with center at the point (x, y).

Arc draws an arc of a circle with center at the point (x, y) between
the points (xO, yO) and (x1, y1).

String arguments to label and linemod are terminated by nulls and
do not contain new-lines.

See plot(4) for a description of the effect of the remaining functions.

The library files listed below provide several flavors of these rou­
tines.

July 15, 1986

PLOT(3X) UNIX Sys5 PLOT(3X)

FILES
/usr/lib/libplot.a produces output for tpfot(1 G) filters
/usr/lib/lib300.a for DASI 300
/usr/lib/lib300s.afor DASI 300s
/usr/lib/lib450.a for DASI 450
/usr/lib/lib4014.a for TEKTRONIX 4014

WARNINGS
In order to compile a program containing these functions in file.c it
is necessary to use "cc fife.c -!plot".

In order to execute it, it is necessary to use "a.out I tplot".

The above routines use < stdio.h >, which causes them to
increase the size of programs, not otherwise using standard 1/0,
more than might be expected.

SEE ALSO
plot(4).
graph(1 G), stat(1 G), tplot(1 G) in the Sys5 UNIX User Reference
Manual.

July 15, 1986 Page 2

(

REGCMP(3X) UNIX Sys5 REGCMP(3X)

NAME
regcmp, regex - compile and execute regular expression

SYNOPSIS
char *regcmp (string1 [, string2, ...], (char *)O)
char *String1, *String2, ... ;

char *regex (re, subject[, retO, ...])
char *re, *Subject, *retO, ... ,

extern char * _loc1;

DESCRIPTION

Page 1

Regcmp compiles a regular expression and returns a pointer to the
compiled form. Ma/Joe (3C) is used to create space for the vector.
It is the user's responsibility to free unneeded space so allocated. A
NULL return from regcmp indicates an incorrect argument.
Regcmp(1) has been written to generally preclude the need for this
routine at execution time.

Regex executes a compiled pattern against the subject string.
Additional arguments are passed to receive values back. Regex
returns NULL on failure or a pointer to the next unmatched character
on success. A global character pointer _loc1 points to where the
match began. Regcmp and regex were mostly borrowed from the
editor, ed(1); however, the syntax and semantics have been
changed slightly. The following are the valid symbols and their
associated meanings.

[]*.A These symbols retain their current meaning.

$ Matches the end of the string; \n matches a new-line.

Within brackets the minus means through. For example,
[a-z] is equivalent to [abed ... xyz]. The - can appear
as itself only if used as the first or last character. For
example, the character class expression []-] matches the
characters] and -.

+ A regular expression followed by + means one or more
times. For example, [0-9]+ is equivalent to [0-9][0-9]*.

{m} {m,} {m,u}
Integer values enclosed in {} indicate the number of times
the preceding regular expression is to be applied. The
value m is the minimum number and u is a number, less
than 256, which is the maximum. If only m is present
(e.g., {m}), it indicates the exact number of times the regu­
lar expression is to be applied. The value {m,} is analo­
gous to {m,infinity}. The plus (+)and star(*) operations
are equivalent to {1,} and {O,} respectively.

July 15, 1986

REGCMP(3X) UNIX Sys5 REGCMP(3X)

(...)$n The value of the enclosed regular expression is to be
returned. The value will be stored in the (n+ 1)th argu­
ment following the subject argument. At most ten
enclosed regular expressions are allowed. Regex makes
its assignments unconditionally.

(...) Parentheses are used for grouping. An operator, e.g., *,
+, {}, can work on a single character or a regular expres­
sion enclosed in parentheses. For example,
(a*(Cb+)*)$0.

By necessity, all the above defined symbols are special. They
must, therefore, be escaped to be used as themselves.

EXAMPLES
Example 1:

char *Cursor, *newcursor, *ptr;

newcursor = regex((ptr = regcmp('"\n", 0)), cursor);
free(ptr);

This example will match a leading new-line in the subject string
pointed at by cursor.

Example 2:
char ret0[9];
char *newcursor, *name;

name = regcmp("([A-Za-z][A-za-z0-9_]{0,7})$0", O);
newcursor = regex(name, "123Testing321 ", retO);

This example will match through the string "Testing3" and will return
the address of the character after the last matched character (cur­
sor+ 11). The string "Testing3" will be copied to the character array
retO.

Example 3:
#include "file.i"
char *String, *newcursor;

newcursor = regex(name, string);

This example applies a precompiled regular expression in file.i (see
regcmp(1)) against string.

This routine is kept in /lib/libPW.a.

SEE ALSO
malloc(3C).
ed(1), regcmp(1) in the Sys5 UNIX User Reference Manual.

BUGS
The user program may run out of memory if regcmp is called

July 15, 1986 Page 2

(

REGCMP{3X) UNIX Sys5 REGCMP{3X)

Page3

iteratively without freeing the vectors no longer required. The follow­
ing user-supplied replacement for malloc (3C) reuses the same vec­
tor saving time and space:

f* user's program *f

char*
malloc(n)
unsigned n;
{

static char rebuf[512];
return (n < = sizeof rebut) ? rebuf : NULL;

}

July 15, 1986

SPUTL(3X) UNIX Sys5 SPUTL(3X)

NAME
sputl, sgetl - access long integer data in a machine-independent (-"
fashion. : '"-._j

SYNOPSIS
void sputl {value, buffer)
long value;
char *buffer;

long sgetl (buffer)
char *buffer;

DESCRIPTION

Page 1

Sputl takes the four bytes of the long integer value and places them
in memory starting at the address pointed to by buffer. The order­
ing of the bytes is the same across all machines.

Sgetl retrieves the four bytes in memory starting at the address
pointed to by buffer and returns the long integer value in the byte
ordering of the host machine.

The combination of sputl and sgetl provides a machine-independent
way of storing long numeric data in a file in binary form without
conversion to characters.

A program which uses these functions must be loaded with the '\
object-file access routine library !ibid.a. ", _)

August 20, 1986

(

ABORT(3F) UNIX Sys5

NAME
abort - terminate Fortran program

SYNOPSIS
call abort ()

DESCRIPTION

ABORT(3F)

Abort terminates the program which calls it, closing all open files
truncated to the current position of the file pointer.

DIAGNOSTICS
When invoked, abort prints "Fortran abort routine called" on the
standard error output.

SEE ALSO
abort(3C).

Page 1 May 21, 1985

ABS(3F) UNIX SysS ABS(3F)

NAME
abs, iabs, dabs, cabs, zabs - Fortran absolute value

SYNOPSIS
integer i1, i2
real r1, r2
double precision dp1, dp2
complex cx1, cx2
double complex dx1, dx2

r2 = abs(r1)

i2 = iabs(i1)
i2 = abs(i1)

dp2 = dabs(dp1)
dp2 = abs(dp1)

cx2 = cabs(cx1)
cx2 abs(cx1)

dx2 zabs(dx1)
dx2 abs(dx1)

DESCRIPTION
Abs is the family of absolute value functions. labs returns the
integer absolute value of its integer argument. Dabs returns the
double-precision absolute value of its double-precision argument.
Cabs returns the complex absolute value of its complex argument.
Zabs returns the double-complex absolute value of its double­
complex argument. The generic form abs returns the type of its
argument.

SEE ALSO
floor(3M).

Page 1 May 21, 1985

(-

("

ACOS(3F) UNIX Sys5 ACOS(3F)

NAME
aces, daces - Fortran arccosine intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2

r2 = acos(r1)

dp2 = dacos(dp1)
dp2 = acos(dp1)

DESCRIPTION
Acos returns the real arccosine of its real argument. Dacos returns
the double-precision arccosine of its double-precision argument.
The generic form acos may be used with impunity as its argument
will determine the type of the returned value.

SEE ALSO
trig(3M).

Page 1 May 21, 1985

AIMAG(3F) UNIX Sys5 AIMAG(3F)

NAME
aimag, dimag - Fortran imaginary part of complex argument

SYNOPSIS
real r
complex cxr
double precision dp
double complex cxd

r = aimag(cxr)

dp = dimag(cxd)

DESCRIPTION

Page 1

Aimag returns the imaginary part of its single-precision complex
argument. Dimag returns the double-precision imaginary part of its
double-complex argument.

May 21, 1985

(

(

(

AINT(3F) UNIX Sys5 AINT(3F)

NAME
aint, dint - Fortran integer part intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2

r2 = aint(r1)

dp2 = dint(dp1)
dp2 = aint(dp1)

DESCRIPTION

Page 1

Aint returns the truncated value of its real argument in a real. Dint
returns the trunc'3ted value of its double-precision argument as a
double-precision value. Aint may be used as a generic function
name, returning either a real or double-precision value depending on
the type of its argument.

May 21, 1985

ASIN(3F) UNIX Sys5

NAME
asin, dasin - Fortran arcsine intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2

r2 = asin(r1)

dp2 = dasin(dp1)
dp2 = asin(dp1)

DESCRIPTION

ASIN(3F)

Asin returns the real arcsine of its real argument. Dasin returns the
double-precision arcsine of its double-precision argument. The gen­
eric form asin may be used with impunity as it derives its type from
that of its argument.

SEE ALSO
trig(3M).

Page 1 May 21, 1985

·"'-· ./

(

(

ATAN(3F) UNIX Sys5

NAME
atan, datan - Fortran arctangent intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2

r2 = atan(r1)

dp2 = datan(dp1)
dp2 = atan(dp1)

DESCRIPTION

ATAN(3F)

Atan returns the real arctangent of its real argument. Datan returns
the double-precision arctangent of its double-precision argument.
The generic form atan may be used with a double-precision argu­
ment returning a double-precision value.

SEE ALSO
trig(3M).

Page 1 May 21, 1985

ATAN2(3F) UNIXSys5

NAME
atan2, datan2 - Fortran arctangent intrinsic function

SYNOPSIS
real r1, r2, r3
double precision dp1, dp2, dp3

r3 = atan2(r1, r2)

dp3 = datan2(dp1, dp2)
dp3 = atan2(dp1, dp2)

DESCRIPTION

ATAN2(3F)

Atan2 returns the arctangent of arg1 /arg2 as a real value. Datan2
returns the double-precision arctangent of its double-precision argu­
ments. The generic form atan2 may be used with impunity with
double-precision arguments.

SEE ALSO
trig(3M).

Page 1 May 21, 1985

/ \.
_/

(

(

(

BOOL(3F) UNIX Sys5 BOOL(3F)

NAME
and, or, xor, not, !shift, rshitt - Fortran bitwise boolean functions

SYNOPSIS
integer i, j, k
real a, b, c
double precision dp1, dp2, dp3

k = and(i, j)
c = or(a, b)
j = xor(i, a)
j = not(i)
k = lshift(i, j)
k = rshift(i, j)

DESCRIPTION

NOTE

BUGS

Page 1

The generic intrinsic boolean functions and , or and xor return the
value of the binary operations on their arguments. Not is a unary
operator returning the one's complement of its argument. Lshift and
rshift return the value of the first argument shifted left or right,
respectively, the number of times specified by the second (integer)
argument.

The boolean functions are generic, that is, they are defined for all
data types as arguments and return values. Where required, the
compiler will generate appropriate type conversions.

Although defined for all data types, use of boolean functions on any
but integer data is bizarre and will probably result in unexpected
consequences.

The implementation of the shift functions may cause large shift
values to deliver weird results.

May 21, 1985

CONJG(3F) UNIX Sys5 CONJG(3F)

NAME
conjg, dconjg - Fortran complex conjugate intrinsic function

SYNOPSIS
complex cx1, cx2
double complex dx1, dx2

cx2 = conjg(cx1)

dx2 = dconjg(dx1)

DESCRIPTION

Page 1

Conjg returns the complex conjugate of its complex argument.
Dconjg returns the double-complex conjugate of its double-complex
argument.

May 21, 1985

(

(

COS(3F) UNIX Sys5 COS(3F)

NAME
cos, dcos, ccos - Fortran cosine intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2
complex cx1, cx2

r2 = cos(r1)

dp2 c= dcos(dp1)
dp2 = cos(dp1)

cx2 = ccos(cx1)
cx2 = cos(cx1)

DESCRIPTION
Cos returns the real cosine of its real argument. Deas returns the
double-precision cosine of its double-precision argument. Ccos
returns the complex cosine of its complex argument. The generic
form cos may be used with impunity as its returned type is deter­
mined by that of its argument.

SEE ALSO
trig(3M).

Page 1 May 21, 1985

COSH{3F) UNIX Sys5 COSH(3F)

NAME
cosh, dcosh - Fortran hyperbolic cosine intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2

r2 = cosh(r1)

dp2 = dcosh(dp1)
dp2 = cosh(dp 1)

DESCRIPTION
Gosh returns the real hyperbolic cosine of its real argument. Dcosh
returns the double-precision hyperbolic cosine of its double-precision
argument. The generic form cosh may be used to return the hyper­
bolic cosine in the type of its argument.

SEE ALSO
sinh(3M).

Page 1 May 21, 1985

./ \.

(_

(

DIM(3F) UNIX Sys5

NAME
dim, ddim, idim - positive difference intrinsic functions

SYNOPSIS
integer a1 ,a2,a3
a3 = idim(a1,a2)

real a1 ,a2,a3
a3 = dim(a1 ,a2)

double precision a1 ,a2.,a3
a3 = ddim(a1 ,a2)

DESCRIPTION

Page 1

These functions return:
a1-a2 if a1 > a2
o if a1 <= a2

DIM{3F)

May 21, 1985

DPROD{3F) UNIX Sys5

NAME
dprod - double precision product intrinsic function

SYNOPSIS
real a1,a2
double precision a3
a3 = dprod (a1 ,a2)

DESCRIPTION

DPROD(3F)

Dprod returns the double precision product of its real arguments.

Page 1 May 21, 1985

/ ",

(

EXP(3F) UNIX Sys5 EXP(3F)

NAME
exp, dexp, cexp - Fortran exponential intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2
complex cx1, cx2

r2 = exp(r1)

dp2 = dexp(dp1)
dp2 ~·· exp(dp1)

cx2 = clog(cx1)
cx2 = exp(cx1)

DESCRIPTION
Exp returns the real exponential function ex of its real argument.
Dexp returns the double-precision exponential function of its
double-precision argument. Cexp returns the complex exponential
function of its complex argument. The generic function exp
becomes a call to dexp or cexp as required, depending on the type
of its argument.

SEE ALSO
(exp(3M).

(~

Page 1 May 21, 1985

FTYPE{3F) UNIX Sys5 FTYPE{3F)

NAME /-\
int, ifix, idint, real, float, sngl, dble, cmplx, dcmplx, ichar, char -
explicit Fortran type conversion

SYNOPSIS
integer i, j
real r, s
double precision dp, dq
complex ex
double complex dcx
character* 1 ch

int(r)
int(dp)
int(ex)
int(dcx)

= ifix(r)
= idint{dp)

r = real(i)
r = real(dp)
r = real(cx)
r = real(dcx) -
r = float(i) / \

r = sngl(dp)

dp = dble(i)
dp = dble(r)
dp = dble(cx)
dp = dble(dcx)

ex = cmplx(i)
ex = cmplx(i, j)
ex = cmplx(r)
ex = cmplx(r, s)
ex = cmplx(dp)
ex = cmplx(dp, dq)
ex = cmplx(dcx)

dcx = dcmplx(i)
dcx = dcmplx(i, j)
dcx = dcmplx(r)
dcx = dcmplx(r, s)
dcx = dcmplx(dp)
dcx = dcmplx(dp, dq)
dcx = dcmplx(cx) /-~.

i = ichar(ch) _/

ch = char(i)

Page 1 May 21, 1985

(

(

FTYPE(3F) UNIX Sys5 FTYPE(3F)

DESCRIPTION
These functions perform conversion from one data type to another.

The function int converts to integer form its real, double precision,
complex, or double complex argument. If the argument is real or
double precision. int returns the integer whose magnitude 1s the
largest integer that does not exceed the magnitude of the argument
and whose sign 1s the same as the sign of the argument (i.e. trunca­
tion). For complex types, the above rule is applied to the real part.
ifix and idint convert only real and double precision arguments
respectively.

The function real converts to real form an integer, double precision,
complex, or double complex argument. If the argument is double
precision or double complex, as much precision is kept as is possi­
ble. If the argument is one of the complex types, the real part is
returned. float and sngl convert only integer and double precision
arguments respectively.

The function dble converts any integer, real, complex, or double
complex argument to double precision form. If the argument is of a
complex type, the real part is returned.

The function cmplx converts its integer, real, double precision, or
double complex argument(s) to complex form.

The function dcmplx converts to double complex form its integer,
real, double precision, or complex argument(s).

Either one or two arguments may be supplied to cmplx and dcmplx
. If there is only one argument, it is taken as the real part of the
complex type and an imaginary part of zero is supplied. If two argu­
ments are supplied, the first is taken as the real part and the second
as the imaginary part.

The function ichar converts from a character to an integer depend­
ing on the character's position in the collating sequence.

The function char returns the character in the ith position in the pro­
cessor collating sequence where i is the supplied argument.

For a processor capable of representing n characters,

ichar(char(i)) = i for 0 ::::; i < n, and

char(ichar(ch)) = ch for any representable character ch.

May 21, 1985 Page 2

GETARG(3F) UNIX Sys5

NAME
getarg - return Fortran command-line argument

SYNOPSIS
character*N c
integer i

getarg(i, c)

DESCRIPTION

GETARG(3F)

Getarg returns the i -th command-line argument of the current pro­
cess. Thus, if a program were invoked via

too arg1 arg2 arg3

getarg(2, c) would return the string "arg2" in the character variable
c.

SEE ALSO
getopt(3C).

Page 1 May 21, 1985

<~

GETENV(3F) UNIX Sys5

NAME
getenv - return Fortran environment variable

SYNOPSIS
character* N c

getenv{'"TMPDIR", c)

DESCRIPTION

GETENV(3F)

Getenv returns the character-string value of the environment vari­
able represented by its first argument into the character variable of
its second argument. If no such environment variable exists, all
blanks will be returned.

SEE ALSO
getenv(3C), environ(5).

Page 1 May 21, 1985

IARGC(3F)

NAME
iargc

SYNOPSIS
integer i
i = iargc()

DESCRIPTION

UNIX Sys5 IARGC(3F)

The iargc function returns the number of command line arguments
passed to the program. Thus, if a program were invoked via

too arg1 arg2 arg3

iargc() would return "3".

SEE ALSO
getarg(3F).

Page 1 May 21, 1985

___ /

(

(~

INDEX(3F) UNIX Sys5

NAME
index - return location of Fortran substring

SYNOPSIS
character*N1 ch1
character* N2 ch2
integer i

i = index (ch1, ch2)

DESCRIPTION

INDEX(3F)

Index returns the location of substring ch2 in string ch 1 . The value
returned is the position at which substring ch2 starts, or 0 is it is not
present in string ch1 .

Page 1 May 21, 1985

LEN(3F) UNIX Sys5

NAME
. len - return length of Fortran string

SYNOPSIS
character*N ch
integer i

i = len(ch)

DESCRIPTION
Len returns the length of string ch .

Page 1

LEN(3F)

May 21, 1985

(

(

LOG(3F) UNIX Sys5 LOG(3F)

NAME
log, alog, dlog, clog - Fortran natural logarithm intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2
complex cx1, cx2

r2 = alog(r1)
r2 = log(r1)

dp2 = dlog(dp1)
dp2 = log(dp1)

cx2 = clog(cx1)
cx2 = log(cx1)

DESCRIPTION
Alog returns the real natural logarithm of its real argument. Dlog
returns the double-precision natural logarithm of its double-precision
argument. Clog returns the complex logarithm of its complex argu­
ment. The generic function log becomes a call to alog , dlog , or
clog depending on the type of its argument.

SEE ALSO
exp(3M).

Page 1 May 21, 1985

LOG10(3F) UNIX Sys5 LOG10(3F)

NAME
log10, alog10, dlog1 O - Fortran common logarithm intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2

r2 = alog10(r1)
r2 = log1 O(r1)

dp2 = dlog1 O(dp1)
dp2 = log10(dp1)

DESCRIPTION
Alog10 returns the real common logarithm of its real argument.
Dlog10 returns the double-precision common logarithm of its
double-precision argument. The generic function log10 becomes a
call to alog10 or dlog10 depending on the type of its argument.

SEE ALSO
exp(3M).

Page 1 May 21, 1985

(-

(

MAX(3F) UNIX Sys5 MAX(3F)

NAME
max, maxO, amaxO, max1, amax1, dmax1 - Fortran maximum-value
functions

SYNOPSIS
integer i, j, k,
real a, b, c, d
double precision dp1, dp2, dp3

I = max(i, j, k)
c = max(a, b)
dp = max(a, b, c)
k = maxO(i, j)
a = amaxO(i, j, k)
i = max1(a, b)
d = amax1 (a, b, c)
dp3 = dmax1(dp1, dp2)

DESCRIPTION
The maximum-value functions return the largest of their arguments
(of which there may be any number). Max is the generic form
which can be used for all data types and takes its return type from
that of its arguments (which must all be of the same type). MaxO
returns the integer form of the maximum value of its integer argu­
ments; amaxO , the real form of its integer arguments; max1 , the
integer form of its real arguments; amax1 , the real form of its real
arguments; and dmax1 , the double-precision form of its double­
precision arguments.

SEE ALSO
min(3F).

Page 1 May 21, 1985

MCLOCK(3F) UNIX Sys5

NAME
mclock - return Fortran time accounting

SYNOPSIS
integer i

i = mclock()

DESCRIPTION

MCLOCK(3F)

Mclock returns time accounting information about the current pro­
cess and its child processes. The value returned is the sum of the
current process's user time and the user and system times of all
child processes.

SEE ALSO
times(2), clock(3C), system(3F).

Page 1 May 21, 1985

(

(

MIN(3F) UNIX Sys5 MIN(3F)

NAME
min, minO, amino, min1, amin1, dmin1 - Fortran minimum-value
functions

SYNOPSIS
integer i, j, k, I
real a, b, c, d
double precision dp1, dp2, dp3

I = min(i, j, k)
c = min(a, b)
dp = min(a, b, c)
k = minO(i, j)
a = aminO(i, j, k)
i = min1(a, b)
d = amin1(a, b, c)
dp3 = dmin1(dp1, dp2)

DESCRIPTION
The minimum-value functions return the minimum of their arguments
(of which there may be any number). Min is the generic form which
can be used for all data types and takes its return type from that of
its arguments (which must all be of the same type). Mino returns
the integer form of the minimum value of its integer arguments;
amino , the real form of its integer arguments; min 1 , the integer
form of its real arguments; amin1 , the real form of its real argu­
ments; and dmin1 , the double-precision form of its double-precision
arguments.

SEE ALSO
max(3F).

Page 1 May 21, 1985

MOD(3F) UNIX Sys5 MOD(3F)

NAME
mod, amod, dmod - Fortran remaindering intrinsic functions

SYNOPSIS
integer i, j, k
real r1, r2, r3
double precision dp1, dp2, dp3

k = mod(i, j)

r3 = amod(r1, r2)
r3 = mod(r1, r2)

dp3 = dmod(dp1, dp2)
dp3 = mod(dp1, dp2)

DESCRIPTION

Page 1

Mod returns the integer remainder of its first argument divided by its
second argument. Amod and dmod return, respectively, the real
and double-precision whole number remainder of the integer division
of their two arguments. The generic version mod will return the
data type of its arguments.

May 21, 1985

_/

(

(-

RAND(3F) UNIX Sys5 RAND(3F)

NAME
irand, rand, srand - random number generator

SYNOPSIS
call srand(iseed)

i = irand()

x = rand()

DESCRIPTION
/rand generates successive pseudo-random numbers in the range
from 0 to 2"15-1. Rand generates pseudo-random numbers distri­
buted in (0, 1.0). Srand uses its integer argument to re-initialize the
seed for successive invocations of irand and rand .

SEE ALSO
rand(3C).

Page 1 May 21, 1985

ROUND(3F) UNIX Sys5 ROUND(3F)

NAME
anint, dnint, nint, idnint - Fortran nearest integer functions

SYNOPSIS
integer i
real r1, r2
double precision dp1, dp2

r2 = anint(r1)
i = nint(r1)

dp2 = anint(dp1)
dp2 = dnint(dp1)

i = nint(dp1)
i = idnint(dp1)

DESCRIPTION

Page 1

Anint returns the nearest whole real number to its real argument
(i.e., int(a+0.5) if a 2: 0, int(a-0.5) otherwise). Dnint does the same
for its double-precision argument. Nint returns the nearest integer
to its real argument. ldnint is the double-precision version. Anint is
the generic form of anint and dnint , performing the same operation
and returning the data type of its argument. Nint is also the generic / ·
form of idnint.

May 21, 1985

./

(

(

SIGN(3F) UNIX Sys5 SIGN(3F)

NAME
sign, isign, dsign - Fortran transfer-of-sign intrinsic function

SYNOPSIS
integer i, j, k
real r1, r2, r3
double precision dp1, dp2, dp3

k = isign(i, j)
k = sign(i, j)

r3 = sign(r1, r2)

dp3 = dsign(dp1, dp2)
dp3 = sign(dp1, dp2)

DESCRIPTION
!sign returns the magnitude of its first argument with the sign of its
second argument. Sign and dsign are its real and double-precision
counterparts, respectively. The generic version is sign and will
devolve to the appropriate type depending on its arguments.

~A-:n1 'J1 1 ooi:::

SIGNAL(3F) UNIX Sys5 SIGNAL(3F)

NAME
signal - specify Fortran action on receipt of a system signal

SYNOPSIS
integer i
external integer intfnc

call signal(i, intfnc)

DESCRIPTION
Signal allows a process to specify a function to be invoked upon
receipt of a specific signal. The first argument specifies which fault
or exception; the second argument the specific function to be
invoked.

SEE ALSO
kill(2), signal(2).

Paae 1 May 21, 1985

(

SIN(3F) UNIX Sys5

NAME
sin, dsin, csin - Fortran sine intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2
complex cx1, cx2

r2 = sin(r1)

dp2 = dsin(dp1)
dp2 -~ sin(dp1)

cx2 = csin(cx1)
cx2 = sin(cx1)

DESCRIPTION

SIN(3F)

Sin returns the real sine of its real argument. Osin returns the
double-precision sine of its double-precision argument. Csin returns
the complex sine of its complex argument. The generic sin function
becomes dsin or csin as required by argument type.

SEE ALSO
trig(3M).

Page 1 May 21, 1985

SINH(3F) UNIX Sys5

NAME
sinh, dsinh - Fortran hyperbolic sine intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2

r2 = sinh(r1)

dp2 = dsinh(dp1)
dp2 = sinh(dp1)

DESCRIPTION

SINH(3F)

Sinh returns the real hyperbolic sine of its real argument. Dsinh
returns the double-precision hyperbolic sine of its double-precision
argument. The generic form sinh may be used to return a double­
precision value when given a double-precision argument.

SEE ALSO
sinh(3M).

Page 1 May 21, 1985

(

(

SQRT(3F) UNIX Sys5

NAME
sqrt, dsqrt, csqrt - Fortran square root intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2
complex cx1, cx2

r2 = sqrt(r1)

dp2 = dsqrt(dp1)
dp2 = sqrt(dp1)

cx2 = csqrt(cx1)
cx2 = sqrt(cx1)

DESCRIPTION

SQRT(3F)

Sqrt returns the real square root of its real argument. Dsqrt returns
the double-precision square root of its double-precision argument.
Csqrt returns the complex square root of its complex argument.
Sqrt, the generic form, will become dsqrt or csqrt as required by its
argument type.

SEE ALSO
exp(3M).

Page 1 May 21, 1985

STRCMP(3F) UNIX Sys5

NAME
lge, lgt, lie, lit - string comparision intrinsic functions

SYNOPSIS
character*N a1, a2
logical I

lge (a1 ,a2)
lgt (a1 ,a2)
lie (a1 ,a2)
lit (a1 ,a2)

DESCRIPTION

STRCMP(3F)

These functions return .TRUE. if the inequality holds and .FALSE.
otherwise.

Page 1 May 21, 1985

(

(

SYSTEM(3F) UNIX SysS

NAME
system - issue a shell command from Fortran

SYNOPSIS
character*N c

call system(c)

DESCRIPTION

SYSTEM(3F)

System causes its character argument to be given to sh (1) as
input, as if the string had been typed at a terminal. The current pro­
cess waits until the shell has completed.

SEE ALSO
exec(2), system(3S).
sh(1) in the Sys5 UNIX User Reference Manual.

Page 1 May 21, 1985

TAN{3F) UNIX Sys5

NAME
tan, dtan - Fortran tangent intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2

r2 = tan(r1)

dp2 = dtan(dp1)
dp2 = tan(dp1)

DESCRIPTION

TAN(3F)

Tan returns the real tangent of its real argument. Dtan returns the
double-precision tangent of its double-precision argument. The gen­
eric tan function becomes dtan as required with a double-precision
argument.

SEE ALSO
trig(3M).

Page 1 May 21, 1985

(

(

(

TANH(3F) UNIX Sys5 TANH(3F)

NAME
tanh, dtanh - Fortran hyperbolic tangent intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2

r2 c~ tanh(r1}

dp2 - dtanh(dp1}
dp2 = tanh(dp1}

DESCRIPTION
Tanh returns the real hyperbolic tangent of its real argument. Dtanh
returns the double-precision hyperbolic tangent of its double­
precision argument. The generic form tanh may be used to return a
double-precision value given a double-precision argument.

SEE ALSO
sinh(3M).

Page 1 May 21, 1985

(

(

INTR0(4) UNIX Sys5 INTR0(4)

NAME
intro - introduction to file formats

DESCRIPTION

Page 1

This section outlines the formats of various files. The C struct
declarations for the file formats are given where applicable. Usually,
these structures can be found in the directories /usr/include or
/usr/include/sys .

References of the type name (1 M) refer to entries found in Section
1 of the "UNIX System Administrator Reference Manual" .

May 13, 1986

l-DEVICES(4) UNIX Sys5 l-DEVICES(4)

NAME
L-devices - link devices, connection information

DESCRIPTION
The file /usrllibluucp/L-devices contains information for terminal port
configuration and for dialer and hardwired connections that UUCP
needs to call other systems. This information is coded directly into
the UUCP programs.

The following is the format for an entry describing a hardwired port
configuration:

DIR device 0 baud

The 0 indicates a direct connection.

To describe an Automatic Call Unit (modem) connection, use the
format:

ACU device modem baud

The modem or cable port must be described in this file and each
device in the file must also be in the directory /dev, with an owner­
ship of uucp.

SEE ALSO
L.sys(4), getty(1m).

Page 1 October 13, 1986

(

l-DIALCODES(4) UNIX Sys5 L-DIALCODES(4)

NAME
L-dialcodes - alphabetic dialing abbreviations file

DESCRIPTION
The file /usr!lib/uucp/L-dialcodes contains alphabetic abbreviations
for dialing strings. The dialing strings are typically area codes, pre­
fixes, and outside line access digits, but can contain the entire tele­
phone number as well as any other dialable digits. The strings can
also contain special dialing characters: an equals sign (=) tells the
dialer to wait for a secondary dial tone (helpful for dialing from busi­
ness communications sytems); a dash (-) tells the dialer to pause
for one second before dialing the next digit.

The alphabetic abbreviation is entered in the telephone number field
of the /usr/lib!uucp!L.sys file. Dialable digits can follow the dialing
abbreviation in this file. A sample /usr/lib/uucp/L.sys file might look
like the following:

NJ 9 = 201 834
IL 9 = 312 982

The abbreviations reference the digits to dial the area code and pre­
fix for New Jersey or Illinois.

(. SEE ALSO

L.sys(4).

(_

Page 1 October 3, 1986

L.CMDS(4) UNIX Sys5 L.CMDS(4)

NAME
L.cmds - remote execution commands

DESCRIPTION
The file /usrllibluucp/L.cmds contains commands needed by the
UUCP remote command execution program uux. Its format is one
command per line.

A system administrator should be careful which files are put into the
L.cmds file. At a minimum, it should contain rmail. Other sugges­
tions are mews, /pr, and who. Commands like cat(1), cp(1), rm(1),
or uucp(1c) should not be included. To do so would allow remote
users to override security restrictions.

The safest list would allow remote users to look around the
/usrlspoo/luucppublic directory and to print files on a remote printer,
but not allow them to move files onto their system.

The /usr!libluucp!L.cmds file looks like the following:

############ L.cmds ############

This is a list of commands that
#can be executed by uux.

rm ail
who
lpr
more

SEE ALSO
USERFILE(4), uucico(1 m), uuxqt(1 m), uucp(1 c).

Page 1 October 13, 1986

(

(

(··

L.SYS(4) UNIX Sys5 L.SYS(4)

NAME
L.sys - link systems

DESCRIPTION
The file /usrllib/uccp/L.sys contains the following information that
uucp must have for each system that is to be linked:

uucp login name
uucp password
Phone number of modem

Each system connected to the local uucp programs has a line entry
in the L.sys file. Syntax is as follows:

sysname time device baud phone# (logininfo)

The sysname field is the name of the system to be called, as
entered using the dconfig(1 m) command ..

The time field consists of the day and time this system is available
for incoming calls, and an option of a minimum retry time for calling
back when a call does not go through.

Days of the week can be specified with the following abbreviations:
Mo, Tu, We, Th, Fr, Sa, Su, or Wk for any weekday. Time-of-day
is indicated with a 24-hour clock. A range can be given, separating
the times with a dash. If the system is available at all times the
word Any can be used. If the system can call, but cannot be called,
you can use Never and uucp requests will be queued. The day and
time-of-day fields are not separated by a space.

Calls that come in at times other than those specified in the time
field are batched and executed at the specified time. By default, the
system waits 55 minutes before trying a connection after a failure.
To change the default time, enter the new time (minimum of five
minutes) after the day specification, separated by a comma.

The device is ACU or the name of the device to use, such as ttyO.

baud is the baud rate of the device being called.

phone# is the phone number of the system being called. A one­
second pause is indicated by a dash(-), and a wait for a dial-tone is
indicated by an equals sign (=). A dial code can also be entered in
this field. If a direct line is being used, this entry is the save as dev­
ice.

The logininfo is optional information that the local system expects to
receive from the remote system and what should be sent in reply
during login.

SEE ALSO
L-dialcodes(4), uucp(1c).

Page 1 October 13, 1986

LSYS(4) UNIX Sys5 L.SYS(4)

WARNING
Only the first six characters of a system-name are significant. Any
excess characters are ignored.

October 13, 1986 Page 2

/-

(

USERFILE(4) UNIX Sys5 USERFILE (4)

NAME
USERFILE - UUCP pathname permissions file

DESCRIPTION
USERFILE specifies the file system directory trees that are accessi­
ble to local users and to remote systems via UUCP.

Each line in USERFILE is of the form:

user, [system] [c] pathname [pathname ...]

The first two items are separated by a comma; any number of
spaces or tabs may separate the remaining items. Lines beginning
with a'#' character are comments.

User is a login (from letclpasswd) on the local machine. Every
login name that is used by remote systems to connect for UUCP
transfers must be listed.

The optional System is the name of a remote machine, the same
name used in L.sys(4).

c denotes the optional callback field. If a c appears here, a remote
machine that calls in will be told that callback is requested, and the
conversation will be terminated. The local system will then immedi­
ately call the remote host back.

Pathname is a pathname prefix that is permissible for this login
and/or system.

When uucico(1M) runs in master role or uucp(1C) or uux(1C) are
run by local users, the permitted pathnames are those on the first
line with a /oginname that matches the name of the user who exe­
cuted the command. If no such line exists, then the first line with a
null (missing) loginname field is used. (Beware: uucico is often run
by the superuser or the UUCP administrator through cron(1 M).)

When uucico runs in slave role, the permitted pathnames are those
on the first line with a system field that matches the hostname of the
remote machine. If no such line exists, then the first line with a null
(missing) system field is used.

Uuxqt(1 M) works differently; it knows neither a login name nor a
hostname. It accepts the pathnames on the first line that has a null
system field. (This is the same line that is used by uucico when it
cannot match the remote machine's hostname.)

A line with both loginname and system null, for example

(_'
/usr/spoolluucppublic

is termed a "null line." It specifies the paths for whichever of the
"unknown login name" or the "unknown hostname" cases was not
defined earlier in the file. If neither has been defined, then only the
"unknown login name" case will be defined. Note that it is

Page 1 October 3, 1986

USERFILE(4) UNIX Sys5 USERFILE(4)

FILES

unacceptable to have a USERFILE consisting of nothing but a "null ~ _
line"; this will leave the "unknown hostname" case undefined and ('
will cause uuxqt to reject all requests. ""------/

/usr/lib/uucp/U SE RFI LE

SEE ALSO

NOTES

uucp(1C), uux(1C), L.cmds(4), L.sys(4), L-dialcodes(4),
L-devices(4), uucico(1 M), uuxqt(1 M).

The UUCP utilities (uucico, uucp, uux, and uuxqt) always have
access to the UUCP spool files in /usrlspool/uucp, regardless of
pathnames in USERFILE.

If uucp is listed in L.cmds(4), then a remote system will execute
uucp on the local system with the USER FILE privileges for its login,
not its hostname.

Uucico freely switches between master and slave roles during the
course of a conversation, regardless of the role with which it was
started. This affects how USERFILE is interpreted.

WARNING

BUGS

USERFILE restricts access only on strings that the UUCP utilities,/ ~
identify as being pathnames. If the wrong holes are left in other"'-· j
UUCP control files (notably L.cmds), it can be easy for an intruder to
open files anywhere in the file system. Arguments to uucp(1C) are
safe, since it assumes all of its non-option arguments are file
names. Uux(1 C) cannot make such assumptions; hence, it is more
dangerous.

The current user's name is determined via the getpwent(3C) func­
tion call; hence, if several names are assigned to a single UID, the
first name encountered in /etclpasswd will be used.

Older versions of uuxqt(1 M) erroneously check UUCP spool files
against the USERFILE pathname permissions. Hence, on these
systems it is necessary to specify /usrlspoolluucp as a valid path
on the USERFILE line used by uuxqt. Otherwise, all uux(1C)
requests are rejected with a "PERMISSION DENIED" message.

Only the first six characters of a system-name are significant. Any
excess characters are ignored.

October 3, 1986 Page2

(,

(_ \

A.OUT(4) UNIX Sys5 A.OUT(4)

NAME
a.out - common assembler and link editor output

DESCRIPTION

Page 1

The file name a.out is the output file from the assembler as (1) and
the link editor Id (1). Both programs will make a.out executable if
there were no errors in assembling or linking and no unresolved
external references.

A common object file consists of a file header, a UNIX system
header, a table of section headers, relocation information, (optional)
line numbers, and a symbol table. The order is given below.

File header.
UNIX system header.
Section 1 header.

Section n header.
Section 1 data.

Section n data.
Section 1 relocation.

Section n relocation.
Section 1 line numbers.

Section n line numbers.
Symbol table.
String table.

The last four sections (relocation, line numbers, symbol table and
string table) may be missing if the program was linked with the -s
option of Id (1) or if the symbol table and relocation bits were
removed by strip (1). Also note that if there were no unresolved
external references after linking, the relocation information will be
absent. The string table exists only if necessary.

The sizes of each segment (contained in the header, discussed
below) are in bytes and are even.

When an a.out file is loaded into memory for execution, three logical
segments are set up: the text segment, the data segment (initialized
data followed by uninitialized, the latter actually being initialized to all
O's), and a stack. The text segment begins at location 0 in the core
image. The header is never loaded. If the magic number (the first
field in the UNIX system header) is 407 (octal), it indicates that the
text segment is not to be write-protected or shared, so the data seg­
ment will be contiguous with the text segment. If the magic number
is 410 (octal), the data segment and the text segment are not

May 13, 1986

A.OUT(4) UNIX Sys5 A.OUT(4)

writable by the program; if other processes are executing the same
a.out file, the processes will share a single text segment.

The value of a word in the text or data portions that is not a refer­
ence to an undefined external symbol is exactly the value that will
appear in memory when the file is executed. If a word in the text
involves a reference to an undefined external symbol, the storage
class of the symbol-table entry for that word will be marked as an
"external symbol", and the section number will be set to 0. When
the file is processed by the link editor and the external symbol
becomes defined, the value of the symbol will be added to the word
in the file.

File Header
The format of the filehdr header is

struct filehdr
{

};

unsigned short
unsigned short
long
long
long
unsigned short
unsigned short

UNIX System Header

t_magic;
f_nscns;
f_timdat;
t_symptr;
t_nsyms;
f_opthdr;
f_flags;

/:• magic number *f
/:• number of sections */
/:• time and date stamp ,,;
f* file ptr to symtab *f
/:• # symtab entries *I
I* sizeof(opt hdr) *I
I* flags *f

The format of the SysS UNIX system header is

typedef struct aouthdr
{

short
short
long
long
long
long
long
long

} AOUTHDR;

Section Header

magic;
vstamp;
tsize;
dsize;
bsize;
entry;
text_ start;
data_start;

The format of the section header is

May 13, 1986

f* magic number *I
f* version stamp *f
f* text size in bytes, padded */
f* initialized data (.data) *f
f* uninitialized data (.bss) *f
f* entry point */
f* base of text this file */
f* base of data this file */

Page 2

(

(\

A.OUT(4)

Relocation

UNIX Sys5 A.OUT{4)

struct scnhdr
{

};

char
long
long
long
long
long
long
unsigned short
unsigned short
long

s_name[SYMNMLEN];/* section name */
s_paddr; f* physical address '"/
s_vaddr; /* virtual address *f
s_size;
s_scnptr;
s_relptr;
s_lnnoptr;
s_nreloc;
s_nlnno;
s_flags;

1* section size *I
I* file ptr to raw data *I
/* file ptr to relocation */
1'• file ptr to line numbers */
I* # reloc entries */
/* # line number entries */
I* flags *I

Object files have one relocation entry tor each relocatable reference
in the text or data. If relocation information is present, it will be in
the following format:

struct reloc
{

long r _ vaddr; /* (virtual) address of reference *f
long r_symndx; f* index into symbol table ;/
unsigned short r_type;/* relocation type*/

l·
j,

The start of the relocation information is s_relptr from the Section
Header. If there is no relocation information, s_relptr 1s 0.

Symbol Table
The format of the symbol table header is

#define SYMNMLEN 8
#define FILNMLEN 14
#define SYMESZ 18 r the size of a SYMENT ·I

struct syment
{

union r~ all ways to get sym name *I
{

char
struct

_n_name[SYMNMLEN]; f* name of symbol*/

{
long
long

} _n_n;
char

} _n;
unsigned long

_n_zeroes;
_n_offset;

I* = = OL if in string table */
I* location in string table *I

_n_nptr[2]; / allows overlaying */

n_value; /* value of symbol */

Page3 May 13, 1986

A.OUT(4) UNIX Sys5 A.OUT(4)

};

short
unsigned short
char
char

#define n_name
#define n_zeroes
#define n_offset
#define n_nptr

n_scnum;
n_type;
n_sclass;
n_numaux;

I* section number *I
f* type and derived type
f* storage class *I
f* number of aux entries *I

_n._n_name
_n._n_n._n_zeroes
_n._n_n._n_offset
_n._n_nptr[1]

Some symbols require more information than a single entry; they
are followed by auxiliary entries that are the same size as a symbol
entry. The format follows.

May 13, 1986

union auxent {
struct {

long x_tagndx;
union {

struct {
unsigned short x_lnno;
unsigned short x_size:

} x_lnsz;
long x_fsize;

} x_misc;
union {

struct {
long
long

} x_fcn;
struct {

x_lnnoptr;
x_endndx;

unsigned short x_dimen[DIMNUM];
} x_ary;

} x_fcnary;
unsigned short x_tvndx;

} x_sym;

struct {
char x_fname[FILNMLEN];

} x_file;

struct {
long x_scnlen;
unsigned short x_nreloc;
unsigned short x_nlinno;

} x_scn;

struct {

Page 4

(

(·

('

A.OUT(4) UNIX Sys5 A.OUT(4)

} x_tv;
} ;

long x_tvfill;
unsigned short x_tvlen;
unsigned short x_tvran[2];

Indexes of symbol table entries begin at zero . The start of the sym­
bol table is f_symptr (from the file header) bytes from the beginning
of the file. If the symbol table is stripped, f_symptr is 0. The string
table (if one exists) begins at f_symptr + (f_nsyms • SYMESZ)
bytes from the beginning of the file.

SEE ALSO

Page 5

brk(2), filehdr(4), ldfcn(4), linenum(4), reloc(4), scnhdr(4), syms(4).
as(1), cc(1), ld(1) in the Sys5 UNIX User Reference Manual.

May 13, 1986

(

ACCT(4) UNIX Sys5 ACCT(4)

NAME
acct - per-process accounting file format

SYNOPSIS
#include <sys!acct.h>

DESCRIPTION
Files produced as a result of calling acct (2) have records in the
form defined by <sys, acct.h> , whose contents are:

typedef ushort comp_t; '' "floating point" '

struct
{

I·
f,

acct

char
char
us ho rt
us ho rt
dev_t
time_t

* 13-bit fraction, 3-bit exponent ,

ac_flag;
ac_stat;
ac_uid;
ac_gid;
ac_tty;
ac_btime;

1 * Accounting flag
/* Exit status ''/

1* Beginning time*/
comp_t ac_utime; : ' acctng user time in clock ticks */
comp_t ac_stime; ' acctng system time in clock ticks */
comp_t ac_etime; / ' acctng elapsed time in clock ticks *I
comp_t ac_mem; 1* memory usage in clicks *
comp_t ac_io; I* chars trnsfrd by read1write ,,
comp_t ac_rw; /* number of block reads1writes ,,;
char ac_comm[8]; ;,, command name r.;

extern struct acct
extern struct inode

acctbuf;
acctp; / inode of accounting file c.,

#define AFORK 01 i* has executed fork, but no exec *'
#define ASU 02 /* used super-user privileges *'
#define ACCTF 0300 I* record type: 00 = acct,,,

In ac_flag, the AFORK flag is turned on by each fork (2) and turned
off by an exec (2). The ac_comm field is inherited from the parent
process and is reset by any exec . Each time the system charges
the process with a clock tick, it also adds to ac_mem the current
process size, computed as follows:

(!
(data size) + (text size) / (number of in-core processes
using text)

Page 1 May 21, 1985

ACCT(4) UNIX Sys5 ACCT(4)

The value of ac_mem 1 (ac_stime + ac_utime) can be
viewed as an approximation to the mean process size, as
modified by text-sharing. '', ...

SEE ALSO

BUGS

acct(2), exec(2), fork(2).
acct(1 M) in the Sys5 UNIX Administrator Reference Manual.
acctcom(1) in the Sys5 UNIX User Reference Manual.

The ac_mem value for a short-lived command gives little information
about the actual size of the command, because ac_mem may be
incremented while a different command (e.g., the shell) is being
executed by the process.

May 21, 1985 Page 2

(·

(·

AR(4) UNIX Sys5 AR(4)

NAME
ar - common archive file format

DESCRIPTION

Page 1

The archive command ar (1) is used to combine several files into
one. Archives are used mainly as libraries to be searched by the
link editor Id (1).

Each archive begins with the archive magic string.

#define ARMAG "!<arch>\n"
#define SARMAG 8

I* magic string *f
f* length of magic string *f

Each archive which contains common object files (see a.out (4))
includes an archive symbol table. This symbol table is used by the
link editor Id (1) to determine which archive members must be
loaded during the link edit process. The archive symbol table (if it
exists) is always the first file in the archive (but is never listed) and
is automatically created and/or updated by ar .

Following the archive magic string are the archive file members.
Each file member is preceded by a file member header which is of
the following format:

#define ARFMAG "'\n"

struct ar _hdr
{

};

char
char
char
char
char
char
char

ar_name[16];
ar_date[12];
ar_uid[6];
ar_gid[6];
ar _mode[8];
ar_size[10];
ar_fmag[2];

I* header trailer string */

I* file member header *f

I* '/' terminated file member name *I
I* file member date */
I* file member user identification *I
I* file member group identification */
I* file member mode (octal) *I
I* file member size *f
/* header trailer string *I

All information in the file member headers is in printable ASCII. The
numeric information contained in the headers is stored as decimal
numbers (except for ar_mode which is in octal). Thus, if the archive
contains printable files, the archive itself is printable.

The ar _name field is blank-padded and slash (/) terminated. The
ar _date field is the modification date of the file at the time of its
insertion into the archive. Common format archives can be moved
from system to system as long as the portable archive command ar
(1) is used.

June 30, 1986

AR(4) UNIX Sys5 AR(4)

Each archive file member begins on an even byte boundary; a new- ,
line is inserted between files if necessary. Nevertheless the size
given reflects the actual size of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

If the archive symbol table exists, the first file in the archive has a
zero length name (i.e., ar_name[O] = = '/'). The contents of this file
are as follows:

• The number of symbols. Length: 4 bytes.

• The array of offsets into the archive file. Length: 4 bytes *

"the number of symbols".

• The name string table. Length: ar _size - (4 bytes * ("the
number of symbols" + 1)).

The number of symbols and the array of offsets are managed with
sgetl and sputl . The string table contains exactly as many null ter­
minated strings as there are elements in the offsets array. Each
offset from the array is associated with the corresponding name
from the string table (in order). The names in the string table are all
the defined global symbols found in the common object files in the
archive. Each offset is the location of the archive header for the
associated symbol.

SEE ALSO
sput1(3X), a.out(4).
ar(1), arcv(1), ld(1), strip(1) in the Sys5 UNIX User Reference
Manual.

CAVEATS
Strip (1) will remove all archive symbol entries from the header.
The archive symbol entries must be restored via the ts option of the
ar (1) command before the archive can be used with the link editor
Id (1).

June 30, 1986 Page 2

(

CHECKLIST (4) UNIX Sys5 CHECKLIST(4)

NAME
checklist - list of file systems processed by fsck

DESCRIPTION
Checklist resides in directory /etc and contains a list of, at most, 15
special file names. Each special file name is contained on a
separate line and corresponds to a file system. Each file system will
then be automatically processed by the fsck (1 M) command.

SEE ALSO
fsck(1 M) in the Sys5 UNIX Administrator Reference Manual.

Page 1 May 13, 1986

CORE(4) UNIX Sys5 CORE(4)

NAME
core - format of core image file

DESCRIPTION
The UNIX system writes out a core image of a terminated process
when any of various errors occur. See signal (2) for the list of rea­
sons; the most common are memory violations, illegal instructions,
bus errors, and user-generated quit signals. The core image is
called core and is written in the process's working directory (pro­
vided it can be; normal access controls apply). A process with an
effective user ID different from the real user ID will not produce a
core image.

The first section of the core image is a copy of the system's per­
user data for the process, including the registers as they were at the
time of the fault. The size of this section depends on the parameter
usize , which is defined in /usr/include/sys/param.h . The
remainder represents the actual contents of the user's core area
when the core image was written. If the text segment is read-only
and shared, or separated from data space, it is not dumped.

The format of the information in the first section is described by the
user structure of the system, defined in /usr/include/sys/user.h .
The important stuff not detailed therein is the locations of the regis­
ters, which are outlined in /usr/include/sys/reg.h .

SEE ALSO
setuid(2), signal(2).
crash(1 M) in the Sys5 UNIX Administrator Reference Manual.

Page 1 June 30, 1986

(

(

(\

CP10(4) UNIX Sys5 CPI0(4)

NAME
cpio - format of cpio archive

DESCRIPTION
The header structure, when the -c option of cpio (1) is not used, is:

struct {

} Hdr;

short h_magic,
h_dev;

ushort h_ino,
h_mode,
h_uid,
h_gid;

short h_nlink,
h_rdev,
h_mtime[2],
h_namesize,
h_filesize[2];

char h_name[h_namesize rounded to word];

When the -c option is used, the header information is described by:

sscanf(Chdr, "%60%60%60%60%60%60%60%60% 1110%60
%111o%s",

&Hdr.h_magic, &Hdr.h_dev, &Hdr.h_ino, &Hdr.h_mode,
&Hdr.h_uid, &Hdr.h_gid, &Hdr.h_nlink, &Hdr.h_rdev,
&Longtime, &Hdr.h_namesize,&Longfile,Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h_mtime and
Hdr.h_filesize , respectively. The contents of each file are recorded
in an element of the array of varying length structures, archive ,
together with other items describing the file. Every instance of
h_magic contains the constant 070707 (octal). The items h_dev
through h_mtime have meanings explained in stat (2). The length of
the null-terminated path name h_name , including the null byte, is
given by h_namesize .

The last record of the archive always contains the name TRAILER!!!.
Special files, directories, and the trailer are recorded with h_fifesize
equal to zero.

SEE ALSO
stat(2).
cpio(1), find(1) in the Sys5 UNIX User Reference Manual.

Page 1 May 22, 1985

DIR(4) UNIX Sys5 DIR(4)

NAME
dir - format of directories

SYNOPSIS
#include <sysldir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user
may write into a directory. The fact that a file is a directory is indi­
cated by a bit in the flag word of its i-node entry (see ts (4)). The
structure of a directory entry as given in the include file 1s:

#ifndef DIRSIZ
#define DIRSIZ 14
#endif
struct direct
{

1· r,

ino_t d_ino;
char d_name[DIRSIZ];

By convention, the first two entries in each directory are for . and ...
The first is an entry for the directory itself. The second is for the
parent directory. The meaning of .. is modified for the root directory /
of the master file system; there is no parent, so .. has the same
meaning as .

SEE ALSO
fs(4).

Page 1 May 21, 1985

(

(

DUMP(4) (Plexus) DUMP(4)

NAME
dump - incremental dump tape format

DESCRIPTION

Page 1

The dump and restor commands are used to write and read incre­
mental dump magnetic tapes. This is a Plexus utility and not a part
of UNIX /bin/dump.

The dump tape consists of a header record, some bit mask records,
a group of records describing file system directories, a group of
records describing file system files, and some records describing a
second bit mask.

The header record and the first record of each description have the
format described by the structure included by

#include <dumprestor.h>

This include file has the following contents:

/* */
/* @(#)dumprestor.h 1.2 2/15/85 */

#define NTREC
#define MLEN
#define MSIZ

#define TS_ TAPE
#define TS_INODE
#define TS_BITS
#define TS_ADDR
#define TS_END
#define TS_CLRI
#define MAGIC
#define CHECKSUM
struct spcl
{

10
16
4096

2
3
4
5
6
(unsigned short)60011
(short)84446

short c_type;
time_t c_date;
time_t c_ddate;
short c_volume;
daddr _t c_tapea;
ino_t c_inumber;
unsigned short c_magic;
short c_checksum;
struct dinode c_dinode;
short c_count;
char c_addr[BSIZE];

} spcl;

October 23, 1986

DUMP(4) (Plexus) DUMP(4)

struct id ates
{

char id_name[16];
char id_incno;
time_t id_ddate;

};

NTREC is the number of 1024 byte blocks in a physical tape record.
MLEN is the number of bits in a bit map word. MS/Z is the number
of bit map words.

The TS_ entries are used in the c_type field to indicate what sort of
header this is. The types and their meanings are as follows:

TS_ TYPE Tape volume label

TS_INODE A file or directory follows. The c_dinode field is a
copy of the disk inode and contains bits telling what
sort of file this is.

TS_BITS A bit mask follows. This bit mask has a one bit for
each inode that was dumped.

TS_ADDR A subblock to a file (TS_INODE). See the description
of c_count below.

TS_END End of tape record.

TS_CLRI A bit mask follows. This bit mask contains a one bit
for all inodes that were empty on the file system
when dumped.

MAGIC All header blocks have this number in c_magic.

CHECKSUM Header blocks checksum to this value.

The fields of the header structure are as follows:

c_type The type of the header.

c_date The date the dump was taken.

c_ddate The date the file system was dumped from.

c_volume The current volume number of the dump.

c_tapea The current block number of this record. This is
counting 1024 byte blocks.

c_inumber The number of the inode being dumped if this is of
type TS_INODE.

c_magic This contains the value MAGIC above, truncated as
needed.

c_checksum This contains whatever value is needed to make the
block sum to CHECKSUM.

October 23, 1986 Page2

(

(1

DUMP(4) (Plexus) DUMP(4)

c_dinode

c_count

c_addr

This is a copy of the inode as it appears on the file
system.

This is the count of characters following that describe
the file. A character is zero if the block associated
with that character was not present on the file sys­
tem, otherwise the character is non-zero. If the block
was not present on the file system no block was
dumped and it is replaced as a hole in the file. If
there is not sufficient space in this block to describe
all of the blocks in a file, TS_ADDR blocks will be scat­
tered through the file, each one picking up where the
last left off.

This is the array of characters that is used as
described above.

Each volume except the last ends with a tapemark (read as an end
of file). The last volume ends with a TS_END block and then the
tapemark.

The structure idates describes an entry of the file where dump his­
tory is kept.

SEE ALSO
/etc/dump(1 M), restor(1 M).

Page3 October 23, 1986

ERRFILE(4) UNIX Sys5 ERRFILE(4)

NAME
errfile - error-log file format

DESCRIPTION

Page 1

When hardware errors are detected by the system, an error record
is generated and passed to the error-logging daemon for recording
in the error log for later analysis. The default error log is
/usr/adm/errfile .

The format of an error record depends on the type of error that was
encountered. Every record, however, has a header with the follow­
ing format:

struct errhdr {
short
short
time_t

};

e_type;
e_len;
e_time;

f* record type *f
f* bytes in record (inc hdr) *f
f* time of day *f

The permissible record types are as follows:

#define E_GOTS 010 f* start for Sys5 UNIX

#define E_GORT
#define E_STOP
#define E_ TCHG
#define E_CCHG
#define E_BLK
#define E_STRAY
#define E_PRTY

011
012
013
014
020
030
031

* Release 3.0*/
f* start for UNIX system/RT *f
f* stop *f
f* time change *f
f* configuration change *f
f* block device error *f
f* stray interrupt *f
f* memory parity *f

Some records in the error file are of an administrative nature.
These include the startup record that is entered into the file when
logging is activated, the stop record that is written if the daemon is
terminated "gracefully", and the time-change record that is used to
account for changes in the system's time-of-day. These records
have the following formats:

struct estart {
short e_cpu;
struct utsnamee_name;
short e_mmr3;
long e_syssize;
short e_bconf;

};

f* CPU type *f
f* system names *f
f* contents mem mgmt reg 3 *f
f* 11no system memory size*/
f* block dev configuration *f

#define eend errhdr f* record header *f

struct etimchg {
time_t e_ntime; f* new time */

};

August 20, 1986

ERRFILE(4) UNIX Sys5 ERRFILE(4)

Stray interrupts cause a record with the following format to be
logged:

struct estray {
physadr
short

};

e_saddr;
e_sbacty;

I* stray loc or device addr *f
I* active block devices *I

Memory subsystem error causes the following record to be gen­
erated:

struct eccerr {
char
char

};

e_syndrome;
e_bconk;

Error records for block devices have the following format:

struct eblock {
dev_t
physadr
short

e_dev;
e_regloc;
e_bacty;

I* "true" major + minor dev no */
I* controller address *I

struct iostat {

}

long
long
ushort

short
short
daddr_t
ushort
paddr_t
ushort
short

io_ops;
io_misc;
io_unlog;
e_stats;
e_bflags;
e_cyloff;
e_bnum;
e_by1es;
e_memadd;
e_rtry;
e_nreg;

#ifdef vax
struct mba_regs {

long mba_csr;
long mba_cr;
long mba_sr;
long mba_var;
long mba_vcr;

} e_mba;
#endif
};

August 20, 1986

I* other block 110 activity *f

I* number read/writes *I
I* number "other" operations *1 -

I* number unlogged errors *I -~-~ .·

I* read/write, error, etc */
I* logical dev start cyl *I
I* logical block number *'
I* number by1es to transfer *I
I* buffer memory address *I
I* number retries *'
I* number device registers *f

Page2

·."'--...

(

ERRFILE(4) UNIX Sys5 · ERRFILE (4)

The following values are used in the e_bflags word:

#define E_ WRITE 0
#define E_READ 1
#define E_NOIO 02
#define E_PHYS 04
#define E_MAP 010
#define E_ERROR 020·

SEE ALSO

f* write operation *I
f* read operation *I
f* no 1/0 pending */
I* physical 1/0 */
f* Unibus map in use *I
I* 110 failed *I

errdemon(1 M) in the SysS UNIX Administrator Reference Manual.

Paae3 Auaust 20_ 1986

FILEHDR(4) UNIX Sys5 FILEHDA(4)

NAME
filehdr - file header for common object files

SYNOPSIS
#include <filehdr.h>

DESCRIPTION
Every common object file begins with a 20-byte header. The follow­
ing C struct declaration is used:

struct filehdr
{

unsigned short
unsigned short
long
long
long
unsigned short
unsigned short

f_magic;
f_nscns;
Uimdat;
f_symptr;
f_nsyms;
f_opthdr;
f_flags ;

f* magic number *f
f* number of sections *f
f* time & date stamp *f
lo• file ptr to symtab ,,/
f* # symtab entries */
f* sizeof(opt hdr) */
f* flags *f

} ;

F _symptr is the byte offset into the file at which the symbol table
can be found. Its value can be used as the offset in fseek (3S) to
position an 1/0 stream to the symbol table. The UNIX system
optional header is 36 bytes. The valid magic numbers are given
below:

#define MC68MAGIC 0520
#define MC68TVMAGIC 0521

#define M68MAGIC 0210
#define M68TVMAGIC 0211

The value in f_timdat is obtained from the time (2) system call. Flag
bits currently defined are:

#define F _RELFLG 00001 f* relocation entries stripped *f
#define F _EXEC 00002 f* file is executable *f
#define F _LNNO 00004
#define F _LSYMS 00010
#define F _MINMAL 00020
#define F _UPDATE 00040
#define F _SWABD 00100
#define F _AR16WR 00200
#define F _AR32WR 00400
#define F _AR32W 01000
#define F _PATCH 02000

f* line numbers stripped *f
f* local symbols stripped*/
f* minimal object file *f
f* update file, ogen produced *f
f* file is "pre-swabbed" *f
f* 16 bit DEC host *f
f* 32 bit DEC host *f
f* non-DEC host *f
/* "patch" list in opt hdr *f

SEE ALSO
time(2), fseek(3S), a.out(4).

Page 1 May 13, 1986

(

(

(

FS(4) UNIX Sys5 FS(4)

NAME
file system - format of system volume

SYNOPSIS
#include <sys/filsys.h>
#include <sys/types.h>
#include <sys/param.h>

DESCRIPTION

Page 1

Every file system storage volume has a common format for certain
vital information. Every such volume is divided into a certain
number of 512-byte long sectors. Sector O is unused and is avail­
able to contain a bootstrap program or other information.

Sector 1 is the super-block . The format of a super-block is:

I*
* Structure of the super-block

*I
struct filsys

ushort s_isize; !* size in blocks of i-list *!

daddr _t s_fsize; lo< size in blocks of entire volume ·"·
short s_nfree; I* number of addresses in s_free ~.

daddr_t s_free[NICFREE]; I* free block list *
short s_ninode; I* number of i-nodes in s_inode *
ino_t s_inode(NICINOD]; I* free i-node list *
char s_flock; I* lock during free list manipulation *'
char s_ilock; f* lock during i-list manipulation *i

char s_fmod; f* super block modified flag *!

char s_ronly; I* mounted read-only flag *I
time_t s_time; I* last super block update *:

short s_dinfo[4]; I* device information */
daddr_t s_tfree; f* total free blocks*/
ino_t s_tinode; I* total free i-nodes *I
char s_fname[6]; I* file system name *I
char s_fpack[6]; I* file system pack name *I
long s_fill[13]; I* ADJUST to make sizeof filsys

be 512 *I
long s_magic; f* magic number to denote new

file system *f
long s_type; f* type of new file system *I

};

May 13, 1986

FS(4) UNIX Sys5

#define FsMAGIC Oxfd187e20

#define Fs1 b
#define Fs2b

1

2

/* s_magic number *I

I* 512 byte block *;
;* 1024 byte block */

FS(4)

S_type indicates the file system type. Currently, one type of file
system is supported: the 1024-byte oriented. S_magic is used to
distinguish the original 512-byte oriented file systems from the
newer file systems. If this field is not equal to the magic number,
FsMAGIC, the type is assumed to be Fs1b, otherwise the s_type
field is used. In the following description, a block is then determined
by the type. A block is 1024 bytes or two sectors. The operating
system takes care of all conversions from logical block numbers to
physical sector numbers.

S_isize is the address of the first data block after the i-list; the i-list
starts just after the super-block, namely in block 2; thus the i-list is
s_isize-2 blocks long. S_fsize is the first block not potentially avail­
able for allocation to a file. These numbers are used by the system
to check for bad block numbers; if an "impossible" block number is
allocated from the free list or is freed, a diagnostic is written on the
on-line console. Moreover, the free array is cleared, so as to
prevent further allocation from a presumably corrupted free list.

The free list for each volume is maintained as follows. The s_free
array contains, in s_free [1 }, ... , s_tree [s_nfree -1], up to 49 ,
numbers of free blocks. S_tree [OJ is the block number of the head
of a chain of blocks constituting the free list. The first long in each
free-chain block is the number (up to 50) of free-block numbers
listed in the next 50 longs of this chain member. The first of these
50 blocks is the link to the next member of the chain. To allocate a
block: decrement s_nfree, and the new block is s_free [s_nfree}. If
the new block number is 0, there are no blocks left, so give an error.
If s_nfree became 0, read in the block named by the new block
number, replace s_nfree by its first word, and copy the block
numbers in the next 50 longs into the s_free array. To free a block,
check if s_nfree is 50; if so, copy s_nfree and the s_free array into
it, write it out, and set s_nfree to 0. In any event set s_free [
s_nfree j to the freed block's number and increment s_nfree.

S_tfree is the total free blocks available in the file system.

S_ninode is the number of free i-numbers in the s_inode array. To
allocate an i-node: if s_ninode is greater than 0, decrement it and
return s_inode [s_ninode }. If it was 0, read the i-list and place the
numbers of all free i-nodes (up to 100) into the s_inode array, then
try again. To free an i-node, provided s_ninode is less than 100,
place its number into s_inode [s_ninode J and increment s_ninode.
If s_ninode is already 100, do not bother to enter the freed i-node

May 13, 1986 Page 2

(

(

FS(4)

FILES

UNIX Sys5 FS(4)

into any table. This list of i-nodes is only to speed up the allocation
process; the information as to whether the i-node is really free or not
is maintained in the i-node itself.

S_tinode is the total free i-nodes available in the file system.

S_flock and s_ilock are flags maintained in the core copy of the file
system while it is mounted and their values on disk are immaterial.
The value of s_fmod on disk is likewise immaterial; it is used as a
flag to indicate that the super-block has changed and should be
copied to the disk during the next periodic update of file system
information.

S_ronly is a read-only flag to indicate write-protection.

S_time is the last time the super-block of the file system was
changed, and is the number of seconds that have elapsed since
00:00 Jan. 1, 1970 (GMT). During a reboot, the s_time of the
super-block for the root file system is used to set the system's idea
of the time.

S_fname is the name of the file system and s_fpack is the name of
the pack.

I-numbers begin at 1, and the storage for i-nodes begins in block 2.
Also, i-nodes are 64 bytes long. I-node 1 is reserved for future use.
I-node 2 is reserved for the root directory of the file system, but no
other i-number has a built-in meaning. Each i-node represents one
file. For the format of an i-node and its flags, see inode (4).

/usr/include/sys/filsys.h
/usr/include/sys/stat. h

SEE ALSO
inode(4).

Page 3

fsck(1 M), fsdb(1 M), mkfs(1 M) in the Sys5 UNIX Administrator Refer­
ence Manual.

May 13, 1986

FSPEC(4) UNIX Sys5 FSPEC(4)

NAME
fspec - format specification in text files

DESCRIPTION
It is sometimes convenient to maintain text files on the UNIX system
with non-standard tabs, (i.e., tabs which are not set at every eighth
column). Such files must generally be converted to a standard for­
mat, frequently by replacing all tabs with the appropriate number of
spaces, before they can be processed by UNIX system commands.
A format specification occurring in the first line of a text file specifies
how tabs are to be expanded in the remainder of the file.

A format specification consists of a sequence of parameters
separated by blanks and surrounded by the brackets <: and :>.
Each parameter consists of a keyletter, possibly followed immedi­
ately by a value. The following parameters are recognized:

ttabs The t parameter specifies the tab settings for the file.
The value of tabs must be one of the following:

1. a list of column numbers separated by commas,
indicating tabs set at the specified columns;

2. a - followed immediately by an integer n , indicat­
ing tabs at intervals of n columns;

3. a - followed by the name of a "canned" tab
specification.

Standard tabs are specified by t-8, or equivalently,
t1,9,17 ,25, etc- The canned tabs which are recognized
are defined by the tabs (1) command.

ssize The s parameter specifies a maximum line size. The
value of size must be an integer. Size checking is per­
formed after tabs have been expanded, but before the
margin is prepended.

mmargin The m parameter specifies a number of spaces to be
prepended to each line. The value of margin must be
an integer.

d The d parameter takes no value. Its presence indicates
that the line containing the format specification is to be
deleted from the converted file.

e Thee parameter takes no value. Its presence indicates
that the current format is to prevail only until another
format specification is encountered in the file.

Default values, which are assumed for parameters not supplied, are
t-8 and mo. If the s parameter is not specified, no size checking is
performed. If the first line of a file does not contain a format specifi­
cation, the above defaults are assumed for the entire file. The

Page 1 September 23, 1986

(

(_

('

FSPEC(4) UNIX Sys5 FSPEC(4)

following is an example of a line containing a format specification:

* <:tS,10,15 s72:> *
If a format specification can be disguised as a comment, it is not
necessary to code the d parameter.

SEE ALSO
ed(1), newform(1), tabs(1) in the Sys5 UNIX User Reference
Manual.

September 23, 1986 Page2

GETTYDEFS(4) UNIX Sys5 GETTYDEFS(4)

NAME
gettydefs - speed and terminal settings used by getty

DESCRIPTION
The /etc/gettydefs file contains information used by getty (1 M) to
set up the speed and terminal settings for a line. It supplies infor­
mation on what the login prompt should look like. It also supplies
the speed to try next if the user indicates the current speed is not
correct by typing a <break> character.

Each entry in /etc/gettydefs has the following format:

label# initial-flags # final-flags # login-prompt #next-label

Each entry is followed by a blank line. The various fields can con­
tain quoted characters of the form \b , \n , \c , etc., as well as \
nnn, where nnn is the octal value of the desired character. The
various fields are:

label This is the string against which getty tries to match its
second argument. It is often the speed, such as
1200, at which the terminal is supposed to run, but it
need not be (see below).

initial-flags These flags are the initial ioctl (2) settings to which
the terminal is to be set if a terminal type is not speci­
fied to getty . The flags that getty understands are
the same as the ones listed in
/usr/include/sys/termio.h (see termio (7)). Normally
only the speed flag is required in the initial-flags .
Getty automatically sets the terminal to raw input
mode and takes care of most of the other flags. The
initial-flag settings remain in effect until getty exe­
cutes login (1).

final-flags These flags take the same values as the initial-flags
and are set just prior to getty executes login . The
speed flag is again required. The composite flag
SANE takes care of most of the other flags that need
to be set so that the processor and terminal are com­
municating in a rational fashion. The other two com­
monly specified final-flags are TAB3 , so that tabs are
sent to the terminal as spaces, and HUPCL , so that
the line is hung up on the final close.

login-prompt This entire field is printed as the login-prompt. Unlike
the above fields where white space is ignored (a
space, tab or new-line), they are included in the
login-prompt field.

Page 1 October 7, 1986

(

('

GETTYDEFS(4) UNIX Sys5 GETTYDEFS (4)

FILES

next-label If this entry does not specify the desired speed, indi­
cated by the user typing a <break> character, then
getty will search for the entry with next-label as its
label field and set up the terminal for those settings.
Usually, a series of speeds are linked together in this
fashion, into a closed set; For instance, 2400 linked
to 1200, which in turn is linked to 300, which finally is
linked to 2400.

If getty is called without a second argument, then the first entry of
/etc/gettydefs is used, thus making the first entry of /etc/gettydefs
the default entry. It is also used if getty can not find the specified
label . If /etc/gettydefs itself is missing, there is one entry built into
the command which will bring up a terminal at 300 baud.

It is strongly recommended that after making or modifying
/etc/gettydefs , it be run through getty with the check option to be
sure there are no errors.

/etc/gettydefs

SEE ALSO
ioct1(2).
getty(1 M), tty(?) in the Sys5 UNIX Administrator's Reference
Manual.
login(1) in the Sys5 UNIX User's Reference Manual.

October 7, 1986 Page2

(:

GPS(4) UNIX Sys5 GPS(4)

NAME
gps - graphical primitive string, format of graphical files

DESCRIPTION
GPS is a format used to store graphical data. Several routines have
been developed to edit and display GPS files on various devices.
Also, higher level graphics programs such as plot (in stat (1 G)) and
vtoc (in toe (1 G)) produce GPS format output files.

A GPS is composed of five types of graphical data or primitives.

GPS PRIMITIVES
lines The lines primitive has a variable number of points from

which zero or more connected line segments are pro­
duced. The first point given produces a move to that
location. (A move is a relocation of the graphic cursor
without drawing.) Successive points produce line seg­
ments from the previous point. Parameters are available
to set color, weight, and style (see below).

arc The arc primitive has a variable number of points to
which a curve is fit. The first point produces a move to
that point. If only two points are included, a line connect­
ing the points will result; if three points a circular arc
through the points is drawn; and if more than three, lines
connect the points. (In the future, a spline will be fit to
the points if they number greater than three.) Parameters
are available to set color, weight, and style.

text The text primitive draws characters. It requires a single
point which locates the center of the first character to be
drawn. Parameters are color, font, textsize, and
textangle.

hardware The hardware primitive draws hardware characters or
gives control commands to a hardware device. A single
point locates the beginning location of the hardware
string.

comment A comment is an integer string that is included in a GPS
file but causes nothing to be displayed. All GPS files
begin with a comment of zero length.

GPS PARAMETERS

Page 1

color Color is an integer value set for arc, lines, and text primi­
tives.

weight Weight is an integer value set for arc and lines primitives
to indicate line thickness. The value 0 is narrow weight,
1 is bold, and 2 is medium weight.

May 22, 1985

GPS(4)

style

font

t,extsize

UNIX Sys5 GPS(4)

Style is an integer value set for lines and arc primitives
to give one of the five different line styles that can be
drawn on TEKTRONIX 4010 series storage tubes ... They
are:

0 solid
1 dotted
2 dot dashed
3 dashed
4 long dashed

An integer value set for text primitives to designate the
text font to be used in drawing a character string.
(Currently font is expressed as a four-bit weight value
followed by a four-bit style value.)

Textsize is an integer value used in text primitives to
express the size of the characters to be drawn. Textsize
represents the height of characters in absolute universe­
units and is stored at one-fifth this value in the size­
orientation (so) word (see below).

textangle Textangle is a signed integer value used 1n text primi­
tives to express rotation of the character string around
the beginning point. Textangle is expressed in degrees
from the positive x-axis and can be a positive or negative
value. It is stored in the size-orientation (so) word as a
value 256/360 of it's absolute value.

ORGANIZATION
GPS primitives are organized internally as follows:

lines cw points sw
arc cw points sw
text cw point sw so [string)
hardware cw point [string)
comment cw [string)

cw Cw is the control word and begins all primitives. It con­
sists of four bits that contain a primitive-type code and
twelve bits that contain the word-count for that primitive.

point(s) Point(s) is one or more pairs of integer coordinates.

May 22, 1985

Text and hardware primitives only require a single point.
Point(s) are values within a Cartesian plane or universe
having 64K (-32K to +32K) points on each axis.

Page2

(

(1

GPS(4)

SW

so

string

UNIX Sys5 GPS(4)

Sw is the style-word and is used in lines, arc, and text
primitives. For all three, eight bits contain color informa­
tion. In arc and lines eight bits are divided as four bits
weight and four bits style. In the text primitive eight bits
of sw contain the font.

So is the size-orientation word used in text primitives.
Eight bits contain text size and eight bits contain text
rotation.

String is a null-terminated character string. If the string
does not end on a word boundary, an additional null is
added to the GPS file to insure word-boundary alignment.

SEE ALSO

Page 3

graphics(1 G), stat(1 G), toc(1 G) in the Sys5 UNIX User Reference
Manual.

May 22, 1985

GROUP(4) UNIX Sys5 GROUP(4)

NAME
group - group file

DESCRIPTION

FILES

Group contains for each group the following information:

group name
encrypted password
numerical group 10
comma-separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; each group
is separated from the next by a new-line. If the password field is
null, no password is demanded.

This file resides in directory /etc . Because of the encrypted pass­
words, it can and does have general read permission and can be
used, for example, to map numerical group ID's to names.

/etc/group

SEE ALSO
crypt(3C), passwd(4).
newgrp(1), passwd(1) in the Sys5 UNIX User Reference Manual.

Page 1 May 21, 1985

(

(

(

INITIAB{4) UNIX Sys5 INITIAB(4)

NAME
inittab - script for the init process

DESCRIPTION

Page 1

The inittab file supplies the script to init 's role as a general process
dispatcher. The process that constitutes the majority of init 's pro­
cess dispatching activities is the line process /etc/getty that initiates
individual terminal lines. Other processes typically dispatched by init
are daemons and the shell.

The inittab file is composed of entries that are position dependent
and have the following format:

id:rstate:action:process

Each entry is delimited by a newline, however, a backslash (\)
preceding a newline indicates a continuation of the entry. Up to 512
characters per entry are permitted. Comments may be inserted in
the process field using the sh (1) convention for comments. Com­
ments for lines that spawn getty s are displayed by the who (1)
command. It is expected that they will contain some information
about the line such as the location. There are no limits (other than
maximum entry size) imposed on the number of entries within the
inittab file. The entry fields are:

id This is one or two characters used to uniquely identify an
entry.

rstate This defines the run-level in which this entry is to be pro­
cessed. Run-levels effectively correspond to a configura­
tion of processes in the system. That is, each process
spawned by init is assigned a run-level or run-levels in
which it is allowed to exist. The run-levels are
represented by a number ranging from 0 through 6 . As an
example, if the system is in run-level 1 , only those entries
having a 1 in the rstate field will be processed. When init
is requested to change run-levels, all processes which do
not have an entry in the rstate field for the target run-level
will be sent the warning signal (SIGTERM) and allowed a
20-second grace period before being forcibly terminated
by a kill signal (SIGKILL). The rstate field can define multi­
ple run-levels for a process by selecting more than one
run-level in any combination from 0-6. If no run-level is
specified, then the process is assumed to be valid at all
run-levels 0-6 . There are three other values, a , b and c ,
which can appear in the rstate field, even though they are
not true run-levels . Entries which have these characters
in the rstate field are processed only when the telinit (see
init (1 M)) process requests them to be run (regardless of
the current run-level of the system). They differ from run-

April 18, 1986

INITTAB(4) UNIX Sys5 INITTAB{4)

levels in that init can never enter run-level a , b or c .
Also, a request for the execution of any of these
processes does not change the current run-level. Further­
more, a process started by an a , b or c command is not
killed when init changes levels. They are only killed if their
line in /etc/inittab is marked off in the action field, their
line is deleted entirely from /etc/inittab , or init goes into
the SINGLE USER state.

action Key words in this field tell init how to treat the process
specified in the process. field. The actions recognized by
init are as follows:

April 18, 1986

respawn If the process does not exist then start the
process, do not wait for its termination (con­
tinue scanning the inittab file), and when it
dies restart the process. If the process
currently exists then do nothing and continue
scanning the inittab file.

wait Upon init 's entering the run-level that
matches the entry's rstate , start the process
and wait for its termination. All subsequent
reads of the inittab file while init is in the
same run-level will cause init to ignore this
entry.

once Upon init 's entering a run-level that matches
the entry's rstate , start the process, do not
wait for its termination. When it dies, do not
restart the process. If upon entering a new
run-level, where the process is still running
from a previous run-level change, the pro­
gram will not be restarted.

boot The entry is to be processed only at in it 's
boot-time read of the inittab file. /nit is to start
the process, not wait for its termination; and
when it dies, not restart the process. In order
for this instruction to be meaningful, the
rstate should be the default or it must match
init 's run-level at boot time. This action is
useful for an initialization function following a
hardware reboot of the system.

bootwait The entry is to be processed only at in it 's
boot-time read of the inittab file. /nit is to
start the process, wait for its termination and,
when it dies, not restart the process.

Page2

INITTAB(4)

(

(~ '

(~ \

Page3

UNIX Sys5 INITTAB(4)

powerfail Execute the process associated with this
entry only when init receives a power fail sig­
nal (SIGPWR see signal (2)).

powerwait Execute the process associated with this
entry only when init receives a power fail sig­
nal (SIGPWR) and wait until it terminates
before continuing any processing of inittab.

off If the process associated with this entry is
currently running, send the warning signal
(SIGTERM) and wait 20 seconds before forci­
bly terminating the process via the kill signal
(SIGKILL). If the process is nonexistent,
ignore the entry.

ondemand This instruction is really a synonym for the
respawn action. It is functionally identical to
respawn but is given a different keyword in
order to divorce its association with run­
levels. This is used only with the a , b or c
values described in the rstate field.

initdefault An entry with this action is only scanned
when init initially invoked. /nit uses this entry,
if it exists, to determine which run-level to
enter initially. It does this by taking the
highest run-level specified in the rstate field
and using that as its initial state. If the rstate
field is empty, this is interpreted as 0123456
and so init will enter run-level 6 . Also, the
initdefault entry cannot specify that init start
in the SINGLE USER state. Additionally, if init
does not find an initdefault entry in
/etc/inittab , then it will request an initial run­
/eve/ from the user at reboot time. If you
wish to use the "autoboot mode" you must
modify any scripts requiring terminal input on
bootup, such as the file /etc/bcheckrc. The
desired actions must be coded to happen
automatically.

sysinit Entries of this type are executed before init
tries to access the console. It is expected
that this entry will be only used to initialize
devices on which init might try to ask the
run-level question. These entries are exe­
cuted and waited for before continuing.

April 18, 1986

INITTAB(4) UNIX Sys5 INITTAB(4)

FILES

process This is a sh command to be executed. The entire pro­
cess field is prefixed with exec and passed to a forked sh/ ·
as sh -c 'exec command '. For this reason, any legal"
sh syntax can appear in the process field. Comments
can be inserted with the ; #comment syntax.

/etc/inittab

SEE ALSO
exec(2), open(2), signal(2).
getty(1 M), init(1 M) in the "SysS UNIX Administrator Reference
Manual".
sh(1), who(1) in the SysS UNIX User Reference Manual.

April 18, 1986 Page 4

\'<..... __ /

(

(

(~ \

INODE(4) UNIX Sys5 INOOE(4)

NAME
inode - format of an i-node

SYNOPSIS
#include <sys/types.h>
#include <sys/ino.h>

DESCRIPTION

FILES

An i-node for a plain file or directory in a file system has the follow­
ing structure defined by <sys/ino.h> .

f* lnode structure as it appears on a disk block. *f
struct dinode
{

us ho rt
short
ushort
us ho rt
off_t
char
time_t
time_t
time_t

di_mode; f* mode and type of file */
di_nlink; /* number of links to file *I
di_uid; I* owner's user id */
di_gid; I* owner's group id */
di_size; r~ number of bytes in file */
di_addr[40]; /* disk block addresses */
di_atime; /* time last accessed *I
di_mtime; r~ time last modified */
di_ctime; f* time of last file status change *I

};
/*
* the 40 address bytes:
* 39 used; 13 addresses
* of 3 bytes each.
*f

For the meaning of the defined types off_t and time_t see types (5).

/usr/include/sys/ino. h

SEE ALSO
stat(2), fs(4), types(5).

Page 1 May 13, 1986

IOCTL.SYSCON(4) UNIX Sys5 IOCTL.SYSCON(4)

NAME
ioctl.syscon - system console configuration file

DESCRIPTION
This file is referenced by /etc/init when changing from state to state.
It contains ASCII representations of hexadecimal values to be used to
set up proper terminal characteristics for the system console.

The file has 15 fields separated by colons. The fields are input
mode flags, output mode flags, hardware control mode flags, local
control mode flags, eight control characters and three fields used for
special terminal handling.

The Plexus default for this file is:

526: 1805:4bf:2b:7f: 1 c:23:40:4:0:0:0:0:0:0

The values thus set up are:

input mode IXON I ICRNL I ISTRIP I IGNPAR I BRKINT
output mode OPOST I ONLCR I TAB3
hardware control EXTB I CS8 I CREAD I MUPCL
local control ISIG I ICANON I ECHO I ECHOK
interrupt DEL (7f)
quit FS (28)
erase #
kill @
EOF EOT (4)
EOL NULL (0)
not used O
SWTCH O

The final three flags, used only by /etc/init, are also zero.

SEE ALSO
termio(7)

NOTES

Page 1

If you shut down your system from a terminal other than your sys­
tem console, this file may be set up with values that do not work
properly. If you find you are unable to re-enter multi-user state after
such a shutdown, edit this file, altering its values to the Plexus
default given above.

October 27, 1986

(

ISSUE(4) UNIX Sys5 ISSUE(4)

NAME
issue - issue identification file

DESCRIPTION

FILES

The file /etc/issue contains the issue or project identification to be
printed as a login prompt. This is an ASCII file which is read by pro­
gram getty and then written to any terminal spawned or respawned
from the lines file.

/etc/issue

SEE ALSO
login(1) in the Sys5 UNIX User Reference Manual.

Page 1 May 13, 1986

LDFCN(4) UNIX Sys5 LDFCN(4)

NAME
ldfcn - common object file access routines

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include < ldfcn.h>

DESCRIPTION

Page 1

The common object file access routines are a collection of functions
for reading an object file that is in (common) object file form.
Although the calling program must know the detailed structure of the
parts of the object file that it processes, the routines effectively insu­
late the calling program from knowledge of the overall structure of
the object file.

The interface between the calling program and the object file access
routines is based on the defined type LDFILE , defined as struct
ldfile , declared in the header file ldfcn.h . The primary purpose of
this structure is to provide uniform access to both simple object files
and to object files that are members of an archive file.

The function ldopen (3X) allocates and initializes the LDFILE struc­
ture and returns a pointer to the structure to the calling program.
The fields of the LDFILE structure may be accessed individually
through macros defined in ldfcn.h and contain the following informa­
tion:

LDFILE *ldptr;

TYPE(ldptr)

IOPTR(ldptr)

OFFSET(ldptr)

HEADER(ldptr)

The file magic number, used to distinguish between
archive members and simple object files.

The file pointer returned by fopen and used by the
standard input/output functions.

The file address of the beginning of the object file;
the offset is non-zero if the object file is a member
of an archive file.

The file header structure of the object file.

The object file access functions themselves may be divided into four
categories:

(1) functions that open or close an object file

ldopen (3X) and ldopen (3X)
open a common object file

ldclose (3X) and ldclose (3X)
close a common object file

August 20, 1986

f

('

LOFCN(4) UNIX Sys5 LDFCN(4)

(2) functions that read header or symbol table information

ldahread (3X)
read the archive header of a member of an
archive file

ldfhread (3X)
read the file header of a common object file

ldshread (3X) and ldshread (3X)
read a section header of a common object
file

ldtbread (3X)
read a symbol table entry of a common
object file

ldgetname (3X)
retrieve a symbol name from a symbol table
entry or from the string table

(3) functions that position an object file at (seek to) the
start of the section, relocation, or line number information
for a particular section.

ldohseek (3X)
seek to the optional file header of a com­
mon object file

ldsseek (3X) and ldsseek (3X)
seek to a section of a common object file

ldrseek (3X) and ldrseek (3X)
seek to the relocation information for a sec­
tion of a common object file

Id/seek (3X) and Id/seek (3X)
seek to the line number information for a
section of a common object file

ldtbseek (3X)
seek to the symbol table of a common
object file

(4) the function ldtbindex (3X) which returns the index of a
particular common object file symbol table entry.

These are described in detail on their respective manual pages.

All the functions except ldopen (3X}, ldgetname (3X}, ldopen (3X),
and ldtbindex (3X) return either SUCCESS or FAILURE , both con­
stants defined in ldfcn.h . Ldopen (3X) and ldopen (3X) both return
pointers to an LDFILE structure.

Additional access to an object file is provided through a set of mac­
ros defined in ldfcn.h . These macros parallel the standard
input/output file reading and manipulating functions, translating a
reference of the LDFILE structure into a reference to its file descrip­
tor field.

August 20, 1986 Page 2

LDFCN(4) UNIX Sys5 LDFCN(4)

The following macros are provided:

GETC(ldptr)
FGETC(ldptr)
GETW(ldptr)
UNGETC(c, ldptr)
FGETS(s, n, ldptr)
FREAD((char *) ptr, sizeof (*ptr), nitems, ldptr)
FSEEK(ldptr, offset, ptrname)
FTELL(ldptr)
REWIND(ldptr)
FEOF(ldptr)
FERROR(ldptr)
FILENO(ldptr)
SETBUF(ldptr, but)
STROFFSET(ldptr)

The STROFFSET macro calculates the address of the string table in
a UNIX system release 5.0 object file. See the manual entries for
the corresponding standard input/output library functions for details
on the use of the rest of the macros.

The program must be loaded with the object file access routine
library !ibid.a .

WARNING
The macro FSEEK defined in the header file ldfcn.h translates into a
call to the standard input/output function fseek (3S). FSEEK should
not be used to seek from the end of an archive file since the end of
an archive file may not be the same as the end of one of its object
file members!

SEE ALSO

Page3

fseek(3S), ldahread(3X), ldclose(3X), ldgetname(3X), ldfhread(3X),
ldlread(3X), ldlseek(3X), ldohseek(3X), ldopen(3X), ldrseek(3X),
ldlseek(3X), ldshread(3X), ldtbindex(3X), ldtbread(3X), ldtbseek(3X).

August 20, 1986

"-- __ /

(~

('

LINENUM(4) UNIX Sys5 LINENUM(4)

NAME
linenum - line number entries in a common object file

SYNOPSIS
#include <linenum.h>

DESCRIPTION
Compilers based on pee generate an entry in the object file for each
C source line on which a breakpoint is possible (when invoked with
the -g option; see cc (1)). Users can then reference line numbers
when using the appropriate software test system. The structure of
these line number entries appears below.

struct lineno
{

} ;

union

long l_sym ndx ;
long l_paddr;

l_addr;
unsigned short l_lnno ;

Numbering starts with one for each function. The initial line number
entry for a function has /_Inna equal to zero, and the symbol table
index of the function's entry is in l_symndx . Otherwise, !_Inna is
non-zero, and l_paddr is the physical address of the code for the
referenced line. Thus the overall structure is the following:

l_addr l_lnno

function symtab index 0
physical address line
physical address line

function symtab index 0
physical address line
physical address line

SEE ALSO
a.out(4).
cc(1) in the Sys5 UNIX User Reference Manual.

Page 1 June 30, 1986

(

{·

MNTTAB(4) UNIX Sys5 MNTTAB(4)

NAME
mnttab - mounted file system table

SYNOPSIS
#include <mnttab.h>

DESCRIPTION
Mnttab resides in directory /etc and contains a table of devices,
mounted by the mount (1 M) command, in the following structure as
defined by <mnttab.h> :

struct mnttab {
char

};

char
char
short
time_t

mt_dev[MNTPATH];
mt_node[1 O];
mt_filsys[MNTPA TH];
mt_ro_flg;
mt_ time;

Each entry is 70 bytes in length; the first 32 bytes are the null­
padded name of the place where the special file is mounted; the
next 32 bytes represent the null-padded root name of the mounted
special file; the remaining 6 bytes contain the mounted special file
's read1write permissions and the date on which it was mounted.

The maximum number of entries in mnttab is based on the system
parameter NMOUNT located in /usr/src/utsicf/conf.c , which defines
the number of allowable mounted special files.

SEE ALSO

Page 1

mount(1 M), setmnt(1 M) in the Sys5 UNIX Administrator Reference
Manual.

May 21, 1985

PASSWD(4) UNIX Sys5 PASSWD(4)

NAME
passwd - password file

DESCRIPTION

Page 1

Passwd contains for each user the following information:

login name
encrypted password
numerical user ID
numerical group ID

GCOS job number, box number, optional GCOS user ID
initial working directory
program to use as Shell

This is an ASCII file. Each field within each user's entry is separated
from the next by a colon. The GCOS field is used only when com­
municating with that system, and in other installations can contain
any desired information. Each user is separated from the next by a
new-line. If the password field is null, no password is demanded; if
the Shell field is null, the Shell itself is used.

This file resides in directory /etc . Because of the encrypted pass­
words, it can and does have general read permission and can be
used, for example, to map numerical user IDs to names.

The encrypted password consists of 13 characters chosen from a
64-character alphabet (., /, 0-9 , A-Z , a-z), except when the
password is null, in which case the encrypted password is also null.
Password aging is effected for a particular user if his encrypted
password in the password file is followed by a comma and a non­
null string of characters from the above alphabet. (Such a string
must be introduced in the first instance by the super-user.)

The first character of the age, M say, denotes the maximum
number of weeks for which a password is valid. A user who
attempts to login after his password has expired will be forced to
supply a new one. The next character, m say, denotes the
minimum period in weeks which must expire before the password
may be changed. The remaining characters define the week
(counted from the beginning of 1970) when the password was last
changed. (A null string is equivalent to zero.) Mand m have numer­
ical values in the range 0-63 that correspond to the 64-character
alphabet shown above (i.e., I = 1 week; z = 63 weeks). If m = M
= 0 (derived from the string . or ..) the user will be forced to
change his password the next time he logs in (and the "age" will
disappear from his entry in the password file). If m > M (signified,
e.g., by the string .I) only the super-user will be able to change the \~
password.

May 21, 1985

C·

PASSWD(4)

FILES
/etc/passwd

SEE ALSO

UNIX Sys5

a641(3C), crypt(3C), getpwent(3C), group(4).

PASSWD(4)

login(1), passwd(1) in the Sys5 UNIX User Reference Manual.

August 20, 1986 Page2

PLOT(4) UNIX Sys5 PLOT(4)

NAME
plot - graphics interface

DESCRIPTION

Page 1

Files of this format are produced by routines described in plot (3X)
and are interpreted for various devices by commands described in
tplot (1G). A graphics file is a stream of plotting instructions. Each
instruction consists of an ASCII letter usually followed by bytes of
binary information. The instructions are executed in order. A point
is designated by four bytes representing the x and y values; each
value is a signed integer. The last designated point in an I, m, n, or
p instruction becomes the "current point" for the next instruction.

Each of the following descriptions begins with the name of the
corresponding routine in plot (3X).

m move: The next four bytes give a new current point.

n cont: Draw a line from the current point to the point given by the
next four bytes. See tpfot (1 G).

p point: Plot the point given by the next four bytes.

line: Draw a line from the point given by the next four bytes to
the point given by the following four bytes.

t label: Place the following ASCII string so that its first character / .·
falls on the current point. The string is terminated by a new-line.

e erase: Start another frame of output.

f linemod: Take the following string, up to a new-line, as the style
for drawing further lines. The styles are "dotted", "solid", "long­
dashed", "shortdashed", and "dotdashed". Effective only for the
-T4014 and -Tver options of tplot (1G) (TEKTRONIX 4014 termi­
nal and Versatec plotter).

s space: The next four bytes give the lower left corner of the plot­
ting area; the following four give the upper right corner. The plot
will be magnified or reduced to fit the device as closely as possi­
ble.

Space settings that exactly fill the plotting area with unity scaling
appear below for devices supported by the filters of tplot (1G). The
upper limit is just outside the plotting area. In every case the plot­
ting area is taken to be square; points outside may be displayable
on devices whose face is not square.

DASl300
DASl300s
DASl450
TEKTRONIX 4014
Versatec plotter

space(O, 0, 4096, 4096);
space(O, 0, 4096, 4096);
space(O, 0, 4096, 4096);
space(O, 0, 3120, 3120);
space(O, 0, 2048, 2048);

May 13, 1986

(

PLOT(4) UNIX Sys5 PLOT(4)

SEE ALSO
plot(3X), gps(4), term(S).
graph(1 G), tplot(1 G) in the Sys5 UNIX User Reference Manual.

WARNING
The plotting library plot (3X) and the curses library curses (3X) both
use the names erase() and move(). The curses versions are mac­
ros. If you need both libraries, put the plot (3X) code in a different
source file than the curses (3X) code, and/or #undef move() and
erase() in the plot (3X) code.

May 13, 1986 Page 2

(

PROFILE(4) UNIX Sys5 PROFILE(4)

NAME
profile - setting up an environment at login time

DESCRIPTION
If your login directory contains a file named .profile , that file will be
executed (via exec .profile) before your session begins; .profile s
are handy for setting exported environment variables and terminal
modes. If the file /etc/profile exists, it will be executed for every
user before the .profile . The following example is typical (except for
the comments):

Make some environment variables global
export MAIL PATH TERM
Set file creation mask
umask 22
Tell me when new mail comes in
MAIL= iusr;mail/myname
Add my /bin directory to the shell search sequence
PA TH= $PA TH :$HOME/bin
Set terminal type
echo "terminal: \c"
read TERM

(·
case $TERM in

3aa)
3aas)
45a)
hp)

stty cr2 nla tabs; tabs;;
stty cr2 nla tabs; tabs;;
stty cr2 nla tabs; tabs;;
stty era nla tabs; tabs;;

FILES

esac

745 j 735)
43)
4a14 jtek)
*)

$HOME/ .profile
/etc1profile

stty cr1 nl1 -tabs; TERM=745;;
stty cr1 nla -tabs;;
stty era nla -tabs ff1; TERM=4a14; echo '\33;";;
echo "$TERM unknown";;

SEE ALSO

(\

Page 1

environ(5), term(5).
env(1), login(1), mail(1), sh(1), stty(1), su(1) in the Sys5 UNIX User
Reference Manual.

May 21, 1985

RELOC(4) UNIX Sys5 RELOC(4)

NAME
reloc - relocation information for a common object file

SYNOPSIS
#include <reloc.h>

DESCRIPTION

Page 1

Object files have one relocation entry for each relocatable refere,,ce
in the text or data. If relocation information is present, it will be in
the following format.

struct reloc
{

long r _ vaddr ; / * (virtual) address of reference '
long r _symndx : , ,, index into symbol table '
short r_type; 1* relocation type >1

} ;

/*
* All generics
* reloc. already performed to symbol in the same section

#define R_ABS 0

/*
* 38 computer generic

24-bit direct reference
24-bit "relative" reference
16-bit optimized '·indirect" TV reference
24-bit "indirect" TV reference
32-bit "indirect" TV reference

*1
#define R_DIR24 04
#define R_REL24 05
#define R_OPT16 014
#define R_IND24 015
#define R_IND32 016

• DEC Processors VAX 11 /780 and VAX 11 /750

*I
#define R_RELBYTE
#define R_RELWORD
#define R_RELLONG

017
020
021

May 21, 1985

(

RELOC(4) UNIX Sys5 RELOC(4)

#define R. PCRBYTE
#define R PCRWORD
#define R PCRLONG

022
023
024

As the link editor reads each input section and performs relocation,
the relocation entries are read. They direct how references found
within the input section are treated.

R ABS

R_DIR24

R REL24

R_OPT16

R_IND24

R_IND32

The reference 1s absolute, and no relocation is neces­
sary. The entry will be ignored.

A direct, 24-bit reference to a symbol's virtual address.

A "'PC-relative", 24-bit reference to a symbol's virtual
address. Relative references occur in instructions
such as jumps and calls. The actual address used is
obtained by adding a constant to the value of the pro­
gram counter at the time the instruction is executed.

An optimized, indirect, 16-bit reference through a
transfer vector. The instruction contains the offset into
the transfer vector table to the transfer vector where
the actual address of the referenced word is stored.

An indirect, 24-bit reference through a transfer vector.
The instruction contains the virtual address of the
transfer vector, where the actual address of the refer­
enced word is stored.

An indirect, 32-bit reference through a transfer vector.
The instruction contains the virtual address of the
transfer vector, where the actual address of the refer­
enced word is stored.

R_RELBYTE A direct 8-bit reference to a symbol's virtual address.

R_RELWORD A direct 16-bit reference to a symbol's virtual address.

R_RELLONG A direct 32-bit reference to a symbol's virtual address.

R_PCRBYTE A "PC-relative", 8-bit reference to a symbol's virtual
address.

R_PCRWORD
A "PC-relative", 16-bit reference to a symbol's virtual
address.

R_PCRLONG A "'PC-relative", 32-bit reference to a symbol's virtual
address.

On the VAX processors relocation of a symbol index of -1 indicates

May 21, 1985 Page 2

RELOC(4) UNIX Sys5 REL0Cf4)

that the relative difference between the current segment's start I' -,
address and the program's load address is added to the relocatable ·
address. ''-- _,

Other relocation types will be defined as they are needed.

Relocation entries are generated automatically by the assembler
and automatically utilized by the link editor. A link editor option
exists for removing the relocation entries from an object file.

SEE ALSO
a.out(4), syms(4).
ld(1), strip(1) in the SysS UNIX User Reference Manual.

Page3 May 21, 1985

(

(

SCCSFILE (4) UNIX Sys5 SCCSFILE (4)

NAME
sccsfile - format of SCCS file

DESCRIPTION

Page 1

An SCCS file is an ASCII file. It consists of six logical parts: the
checksum , the delta table (contains information about each delta),
user names (contains login names and/or numerical group IDs of
users who may add deltas), flags (contains definitions of internal
keywords), comments (contains arbitrary descriptive information
about the file), and the body (contains the actual text lines inter­
mixed with control lines).

Throughout an secs file there are lines which begin with the ASCII
SOH (start of heading) character (octal 001). This character is
hereafter referred to as the control character and will be
represented graphically as Cu. Any line described below which is
not depicted as beginning with the control character is prevented
from beginning with the control character.

Entries of the form DDDDD represent a five-digit string (a number
between 00000 and 99999).

Each logical part of an secs file is described in detail below.

Checksum
The checksum is the first line of an secs file. The form of
the line is:

(ilhDDDDD

The value of the checksum is the sum of all characters,
except those of the first line. The cilh provides a magic
number of (octal) 064001.

Delta table
The delta table consists of a variable number of entries of
the form:

(frS DDDDD/DDDDD; DODOO
((id <type> <SCCS ID> yr1mo1da hr:mi:

se <pgmr> DODOO DODOO
<di DODOO .. .
(ifx DODOO .. .
(i/g DODOO ..•
C(/'m <MR number>

(ii;c <comments> ...

May 22, 1985

SCCSFILE(4) UNIX Sys5 SCCSFILE(4)

cue

The first line (Cc1 s) contains the number of lines
inserted deleted, unchanged, respectively. The second line
(Cdd) contains the type of the delta (currently, normal: D,
and removed: R), the SCCS ID of the delta, the date and
time of creation of the delta, the login name corresponding
to the real user ID at the time the delta was created, and the
serial numbers of the delta and its predecessor, respec­
tively.

The (di, c(1·x, and (ci·g lines contain the serial numbers of
deltas included, excluded, and ignored, respectively. These
lines are optional.

The Cdm lines (optional) each contain one MR number asso­
ciated with the delta; the cue lines contain comments asso­
ciated with the delta.

The cue line ends the delta table entry.

User names

Flags

May 22, 1985

The list of login names and1or numerical group IDs of users
who may add deltas to the file, separated by new-lines. The
lines containing these login names and/or numerical group
IDs are surrounded by the bracketing lines (du and (dU. An
empty list allows anyone to make a delta. Any line starting
with a ! prohibits the succeeding group or user from making
deltas.

Keywords used internally (see admin (1) for more informa­
tion on their use). Each flag line takes the form:

(ilf <flag> <optional text>

The following flags are defined:
(a'f t <type of program>
(df v
((lf i
@fb
@fm
C4'f f

<program name>
<keyword string>

<module name>
<floor>

Page 2

(

SCCS FILE (4)

(i1f c
(af d
(uf n
(u f j

UNIX Sys5

<ceiling>
<default-sid>

caf I <lock-releases>
iuf q <user defined>

SCCSFILE(4)

<uf z <reserved for use in interfaces>

The t flag defines the replacement for the % Y% identification
keyword. The v flag controls prompting for MR numbers in
addition to comments; if the optional text is present it
defines an MR number validity checking program. The i flag
controls the warning/error aspect of the ''No id keywords"
message. When the i flag is not present, this message is
only a warning; when the i flag is present, this message will
cause a "fatal" error (the file will not be gotten, or the delta
will not be made). When the b flag is present the -b
keyletter may be used on the get command to cause a
branch in the delta tree. The m flag defines the first choice
for the replacement text of the %M% identification keyword.
The f flag defines the "floor" release; the release below
which no deltas may be added. The c flag defines the "ceil­
ing" release; the release above which no deltas may be
added. The d flag defines the default SID to be used when
none is specified on a get command. The n flag causes
delta to insert a ··null'' delta (a delta that applies no
changes) in those releases that are skipped when a delta is
made in a new release (e.g., when delta 5.1 is made after
delta 2. 7, releases 3 and 4 are skipped). The absence of
then flag causes skipped releases to be completely empty.
The j flag causes get to allow concurrent edits of the same
base SID. The I flag defines a list of releases that are
locked against editing (get (1) with the -e keyletter). The q
flag defines the replacement for the %0% identification key­
word. The z flag is used in certain speciali~ed interface pro­
grams.

Comments

Page 3

Arbitrary text is surrounded by the bracketing lines (q't and
((i'T. The comments section typically will contain a descrip­
tion of the file's purpose.

May 22, 1985

SCCSFILE(4)

Body

SEE ALSO

UNIX Sys5 SCCSFILE(4)

The body consists of text lines and control lines. Text lines
do not begin with the control character, control lines do. \,_ -
There are three kinds of control lines: insert , delete , and
end, represented by:

<al DODOO

(110 DODOO

<11E DODOO

respectively. The digit string is the serial number
corresponding to the delta for the control line.

admin(1), delta(1), get(1), prs(1) in the Sys5 UNIX User Reference
Manual.
Source Code Control System User Guide in the Sys5 UNIX User
Guide.

May 22, 1985 Page 4

(

(

(/

SCNHDR(4) UNIX Sys5 SCNHDR(4)

NAME
scnhdr - section header for a common object file

SYNOPSIS
#include <scnhdr.h>

DESCRIPTION
Every common object file has a table of section headers to specify
the layout of the data within the file. Each section within an object
file has its own header. The C structure appears below.

struct scnhdr
{

} ;

char
long
long
long
long
long
long
unsigned short
unsigned short
lpng

s_name[SYMNMLEN]; I* section name*/
s_paddr; I* physical address */
s_ vaddr; Jo" virtual address */
s_size;
s_scnptr;
s_relptr;
s_lnnoptr;
s_nreloc;
s_nlnno;
s_flags;

Jo• section size */
/* file ptr to raw data */
/* file ptr to relocation °</
Jo" file ptr to Jine numbers */
/* # reloc entries ~1

/* # line number entries */
/* flags ~1

File pointers are byte offsets into the file; they can be used as the
offset in a call to fseek (3$). If a section is initialized, the file con­
tains the actual bytes. An uninitialized section is somewhat dif­
ferent. It has a size, symbols defined in it, and symbols that refer to
it. But it can have no relocation entries, line numbers, or data.
Consequently, an uninitialized section has no raw data in the object
file, and the values for s_scnptr ", "s_relptr ", "s_lnnoptr, s_nreloc
", and " s_nlnno are zero.

SEE ALSO
fseek(3S), a.out(4).
ld(1) in the SysS UNIX User Reference Manual.

Page 1 May 13, 1986

SYMS(4) UNIX Sys5 SYMS(4)

NAME
syms - common object file symbol table format

SYNOPSIS
#include <syms.h>

DESCRIPTION

Page 1

Common object files contain information to support symbolic
software testing. Line number entries, linenum (4), and extensive
symbolic information permit testing at the C source level. Every
object file's symbol table is organized as shown below.

File name 1.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 1.

File name 2.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 2.

Defined global symbols.
Undefined global symbols.

The entry for a symbol is a fixed-length structure. The members of
the structure hold the name (null padded), its value, and other infor­
mation. The C structure is given below.

#define SYMNMLEN 8
#define FILNMLEN 14

struct syment
{

union f* all ways to sym name *I
{

char
struct

_n_name[SYMNMLEN]; I* symbol name *I

{
long
long

} _n_n;

_n_zeroes;
_n_offset;

I* = = OL when strng tbl
f* location of name in table *f

July 18, 1986

(

(

(~ \

SYMS(4) UNIX Sys5 SYMS(4)

char * _n_nptr[2]; I* allows overlaying *I
} n· - '
long n_value; I* value of symbol *I
short n_scnum; I* section number */
unsigned short n_type; f* type and derived type *I
char n_sclass; f* storage class *I
char n_numaux; f* number of aux entries */

};

#define n_name - n._n_name
#define n_zeroes - n._n_n._n_zeroes
#define n_offset -n._n_n._n_offset
#define n_nptr _n._n_nptr[1]

Meaningful values and explanations for them are given in both
syms.h and Common Object File Format. Anyone who needs to
interpret the entries should seek more information in these sources.
Some symbols require more information than a single entry; they
are followed by auxiliary entries that are the same size as a symbol
entry. The format follows.

July 18, 1986

union auxent
{

struct
{

long
union
{

x_tagndx;

struct
{

unsigned short x_lnno;
unsigned short x_size;

} x_lnsz;
long x_fsize;

} x_misc;
union
{

struct
{

}
struct
{

long
long
x_fcn;

x_lnnoptr;
x_endndx;

unsigned short x_dimen[DIMNUM];
} x_ary;

} x_fcnary;
unsigned short x_tvndx;

Page 2

SYMS(4} UNIX Sys5 SYMS{4)

};

} x~sym;
struct / ~
{ \ ____ _/

char x_fname[FILNMLEN];
} x_file;
struct
{

long x_scnlen;
unsigned short x_nreloc;
unsigned short x_nlinno;

} x_scn;

struct
{

long x_Mill;
unsigned short x_tvlen;
unsigned short x_tvran[2];

} x_tv;

Indexes of symbol table entries begin at zero .

SEE ALSO
a.out(4), linenum(4).

CAVEATS

Page3

To minimize the complexity of the compiler code generator, the
compiler will define symbols declared as longs to be ints in the sym­
bol table, as longs and ints are of the same size.

July 18, 1986

(

TERM(4) UNIX Sys5 TERM(4)

NAME
term - format of compiled term file.

SYNOPSIS
term

DESCRIPTION

Page 1

Compiled terminfo descriptions are placed under the directory
/usr/lib/terminfo. In order to avoid a linear search of a huge UNIX
system directory, a two-level scheme is used:
/usr/lib/terminfo/c/name where name is the name of the terminal,
and c is the first character of name . Thus, act4 can be found in the
file /usr/lib/terminfo/a/act4. Synonyms for the same terminal are
implemented by multiple links to the same compiled file.

The format has been chosen so that it will be the same on all
hardware. An 8 or more bit byte is assumed, but no assumptions
about byte ordering or sign extension are made.

The compiled file is created with the compile program, and read by
the routine setupterm . Both of these pieces of software are part of
curses (3X). The file is divided into six parts: the header, terminal
names, boolean flags, numbers, strings, and string table.

The header section begins the file. This section contains six short
integers in the format described below. These integers are (1) the
magic number (octal 0432); (2) the size, in bytes, of the names sec­
tion; (3) the number of bytes in the boolean section; (4) the number
of short integers in the numbers section, (5) the number of offsets
(short integers) in the strings section: (6) the size, in bytes, of the
string table.

Short integers are stored in. two 8-bit bytes. The first byte contains
the least significant 8 bits of the value, and the second byte contains
the most significant 8 bits. (Thus, the value represented is
256*second-r-first.) The value -1 is represented by 0377, 0377,
other negative value are illegal. The -1 generally means that a
capability is missing from this terminal. Note that this format
corresponds to the hardware of the VAX and PDP-11. Machines
where this does not correspond to the hardware read the integers
as two bytes and compute the result.

The terminal names section comes next. It contains the first line of
the terminfo description, listing the various names for the terminal,
separated by the 't character. The section is terminated with an
ASCII NUL character.

May 30, 1986

TERM(4) UNIX Sys5 TERM(4)

The boolean flags have one byte for each flag. This byte is either O
or 1 as the flag is present or absent. The capabilities are in the /
same order as the file <term.h>.

Between the boolean section and the number section, a null byte
will be inserted, if necessary, to ensure that the number section
begins on an even byte. All short integers are aligned on a short
word boundary.

The numbers section is similar to the flags section. Each capability
takes up two bytes, and is stored as a short integer. If the value
represented is -1, the capability is taken to be missing.

The strings section is also similar. Each capability is stored as a
short integer, in the format above. A value of -1 means the capabil­
ity is missing. Otherwise, the value is taken as an offset from the
beginning of the string table. Special characters in ·x or \c notation
are stored in their interpreted form, not the printing representation.
Padding information $< nn> and parameter information %x are
stored intact in uninterpreted form.

The final section is the string table. It contains all the values of
string capabilities referenced in the string section. Each string is
null terminated.

Note that it is possible for setupterm to expect a different set of
capabilities than are actually present in the file. Either the database
may have been updated since setupterm has been recompiled
(resulting in extra unrecognized entries in the file) or the program
may have been recompiled more recently than the database was
updated (resulting in missing entries). The routine setupterm must
be prepared for both possibilities - this is why the numbers and
sizes are included. Also, new capabilities must always be added at
the end of the lists of boolean, number, and string capabilities.

As an example, an octal dump of the description for the Microterm
ACT 4 is included:

microtermlact4lmicroterm act iv,
cr='M, cud1 ='J, ind='J, bel='G, am, cub1 ='H,
ed='_, el=", clear='L, cup='T%p1%c%p2%c,
cols#80, lines#24, cuf1 ='X, cuu1 =·z, home='],

000 032 001 \0 025 \0 \b \0 212 \0 " \0
m 1 c r 020 0 t e r m I a c t

4 I m 1 c r 0 040 t e r m a
c t 1 v \0 \0 001 \0 \0 060 \0 \0 \0

\0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
100 \0 \0 p \0 377 377 030 \0 377 377 377 377
377 377 377 377 120 377 377 377 377 \0 \0 002 \0

May 30, 1986 Page 2

(-~

(

TERM(4) UNIX Sys5 TERM(4)

FILES

377 377 377 377 004 \0 006 \0 140 \b \0 377 377

377 377 \n \0 026 \0 030 \0 377 377 032 \0 160

377 377 377 377 034 \0 377 377 036 \0 377 377 377

377 377 377 200 377 377 377 377 377 377 377 377 377

377 377 377 377 377 377 377 * 520 377 377 377 377

\0 377 377 377 377 377 377 377 377 377 377 540 377

377 377 377 377 377 007 \0 \r \0 \f \0 036 \0

037 \0 560 024 % p 1 % c % p 2 %
c \0 \n \0 035 \0 600 \b \0 030 \0 032 \0 \n

\0

Some limitations: total compiled entries cannot exceed 4096 bytes.
The name field cannot exceed 128 bytes.

/usr/libiterminfo/'/' compiled terminal capability data base

SEE ALSO
curses(3X), terminfo(4).

Page 3 May 30, 1986

TERMCAP(4) UNIX Sys5 (Plexus) TERMCAP(4.)

NAME
termcap - terminal capability data base

SYNOPSIS
/etc/termcap

DESCRIPTION
Termcap has been replaced by curses(3x) in Sys5. The information is
included here for downward compatibility only.

Termcap is a database describing terminals, used, e.g., by vi (1) and
curses (3). Termcap describes terminals by listing a set of their capa­
bilities, and by describing how operations are performed. Padding
requirements and initialization sequences are included in termcap.

Entries in termcap consist of a number of fields, separated by':'. The
first entry for each terminal gives the names that are known for the
terminal, separated by 'I' characters. The first name is always 2 char­
acters long and is used by older version 6 systems, which store the
terminal type in a 16 bit word in a systemwide data base. The
second name is the most common abbreviation for the terminal, and
the last name should be a long name fully identifying the terminal.
The second name should contain no blanks; the last name may con­
tain blanks for readability.

CAPABILITIES

Page 1

(P)
(P*)

padding may be specified
padding may be based on the number of lines affected

Name Type Pad? Description
ae str (P) End alternate character set
al str (P*) Add new blank line
am boo I Terminal has automatic margins
as str (P) Start alternate character set
be str Backspace if not AH
bs boo I Terminal can backspace with AH
bt str (P) Back tab
bw boo I Backspace wraps from column 0 to last column
cc str Command character in prototype if terminal settable
Cd str (P*) Clear to end of display
ce str (P) Clear to end of line
ch str (P) Like cm but horizontal motion only, line stays same
cl str (P*) Clear screen
cm str (P) Cursor motion
co num Number of columns in a line
er str (P*) Carriage return, (default AM)
cs str (P) Change scrolling region (vt100), like cm
CV str (P) Like ch but vertical only.
da boo I Display may be retained above
dB num Number of millisec of bs delay needed
db boo I Display may be retained below
dC num Number of millisec of er delay needed
de str (P*) Delete character
dF num Number of millisec of ff delay needed
di str (P*) Delete line

November 13, 1986

TERMCAP(4) UNIX Sys5 (Plexus) TERMCAP(4)

dm str Delete mode (enter)

(
dN num Number of millisec of nl delay needed
do str Down one line
dT num Number of millisec of tab delay needed
ed str End delete mode
ei str End insert mode; give :ei=: if ic
eo str Can erase overstrikes with a blank
ff str (P*) Hardcopy terminal page eject (default AL)
he boo I Hardcopy terminal
hd str Half-line down (forward 1 /2 linefeed)
ho str Home cursor (if no cm)
hu str Half-line up (reverse 1 /2 linefeed)
hz str Hazeltine; can't print -·s
ic str (P) Insert character
if str Name of file containing is
im boo I Insert mode (enter); give :im=: if ic
in boo I Insert mode distinguishes nulls on display
ip str (P*) Insert pad after character inserted
is str Terminal initialization string
k0-k9 str Sent by other function keys 0-9
kb str Sent by backspace key
kd str Sent by terminal down arrow key
ke str Out of keypad transmit mode
kh str Sent by home key
kl str Sent by terminal left arrow key

(kn num Number of other keys
ko str Termcap entries for other non-function keys
kr str Sent by terminal right arrow key
ks str Put terminal in keypad transmit mode
ku str Sent by terminal up arrow key
10-19 str Labels on other function keys
Ii num Number of lines on screen or page
II str Last line, first column (if no cm)
ma str Arrow key map, used by vi version 2 only
mi boo I Safe to move while in insert mode
ml str Memory lock on above cursor.
mu str Memory unlock (turn off memory lock).
nc boo I No correctly working carriage return (DM2500,H2000)
nd str Non-destructive space (cursor right)
nl str (P*) Newline character (default \n)
ns boo I Terminal is a CRT but doesn't scroll.
OS boo I Terminal overstrikes
pc str Pad character (rather than null)
pt boo I Has hardware tabs (may need to be set with is)
se str End stand out mode
sf str (P) Scroll forwards
sg num Number of blank chars left by so or se
so str Begin stand out mode

(· sr str (P) Scroll reverse (backwards)
ta str (P) Tab (other than Al or with padding)
tc str Entry of similar terminal - must be last
te str String to end programs that use cm
ti str String to begin programs that use cm

November 13, 1986 Page 2

TERMCAP(4) UNIX Sys5 (Plexus) TERMCAP(4)

Page 3

UC

ue
ug
ul
up
us
vb
ve
vs
xb
xn
xr
XS
xt

str
str
num
boo I
str
str
str
str
str
boo I
boo I
boo I
boo I
boo I

Underscore one char and move past it
End underscore mode
Number of blank chars left by us or ue
Terminal underlines even though it doesn't overstrike ..
Upline (cursor up)
Start underscore mode
Visible bell (may not move cursor)
Sequence to end open/visual mode
Sequence to start open/visual mode
Beehive (f1=escape, f2=ctrl C)
A newline is ignored after a wrap (Concept)
Return acts like ce \r \n (Delta Data)
Standout not erased by writing over it (HP 264?)
Tabs are destructive, magic so char (Teleray 1061)

A Sample Entry

The following entry, which describes the Concept-100, is among the
more complex entries in the termcap file as of this writing. (This par­
ticular concept entry is outdated, and is used as an example only.)

c1Ic100 I concept1 OO:is=\EU\Ef\E7\E5\E8\El\ENH\EK\E\200\Eo&\200:\
:al=3'"\EAR:am:bs:cd=16*\FC:ce=16\EAS:cl=2~L:cm=\Ea %+ %+ :co#80:\
:dc=16\EAA:dl=3*\EAB:ei=\E\200:eo:im=\EAP:in:ip=16*:1i#24:mi:nd=\E=:\
:se=\Ed\Ee:so=\ED\EE:ta=8\t:ul:up=\E;:vb=\Ek\EK:xn:

Entries may continue onto multiple lines by giving a \ as the last
character of a line, and empty fields may be included for readability
(here between the last field on a line and the first field on the next).
Capabilities in termcap are of three types: (1) Boolean capabilities,
which indicate that the terminal has some particular feature; (2)
numeric capabilities giving the size of the terminal or the size of par­
ticular delays; and (3) string capabilities, which give a sequence that
can be used to perform particular terminal operations.

Types of Capabilities

All capabilities have two letter codes. For instance, the fact that the
Concept has automatic margins (automatic return and linefeed at end
of line) is indicated by the capability am. Hence the description of
the Concept includes am. Numeric capabilities are followed by the
character '#' and then the value. Thus co, which indicates the
number of columns the terminal has, is '80' for the Concept.

Finally, string valued capabilities, such as ce (clear to end of line
sequence) are given by the two-character code, an '=', and then a
string ending at the next following ':'. A delay in milliseconds may
appear after the '=' in such a capability, and padding characters are
supplied by the editor after the remainder of the string is sent to pro-
vide this delay. The delay can be either a integer, e.g. '20', or an
integer followed by a '*', i.e. '3*'. A '*' indicates that the padding
required is proportional to the number of lines affected by the opera- /I-- .

tion, and the amount given is the per-affected-unit padding required.
When a '*' is specified, it is sometimes useful to give a delay of the
form '3.5' specify a delay per unit to tenths of milliseconds.

November 13, 1986

(

(~

TERMCAP(4) UNIX Sys5 (Plexus) TERMCAP(4)

Some escape sequences are provided in the string valued capabilities
for easy encoding of characters. A \E maps to an ESCAPE character, Ax
maps to a control-x for any appropriate x, and the sequences \n \r \t
\b \f give a newline, return, tab, backspace and formfeed. Finally,
characters may be given as three octal digits after a\, and the char­
acters A and \ may be given as \A and \\. If you must place a : in a
capability it must be escaped in octal as \072. If you must place a
null character in a string capability it must be encoded as \200. The
routines that deal with termcap use C strings, and strip the high bits
of the output very late so that a \200 comes out as a \000 would.

Preparing Descriptions

We now outline how to prepare descriptions of terminals. The most
effective way to prepare a terminal description is to imitate the
description of a similar terminal in termcap and then build up a
description gradually, using partial descriptions with ex to check that
they are correct. Be aware that a very unusual terminal may expose
deficiencies in the ability of the termcap file to describe it or bugs in
ex. To easily test a new terminal description you can set the environ­
ment variable TERMCAP to a pathname of a file containing the
description you are working on and the editor will look there rather
than in /etc/termcap. TERMCAP can also be set to the termcap entry
itself to avoid reading the file when starting up the editor. (This only
works on version 7 systems.)

Basic capabilities

The number of columns on each line for the terminal is given by the
co numeric capability. If the terminal is a CRT, then the number of
lines on the screen is given by the Ii capability. If the terminal wraps
around to the beginning of the next line when it reaches the right
margin, then it should have the am capability. If the terminal can
clear its screen, then this is given by the cl string capability. If the ter­
minal can backspace, then it should have the bs capability, unless a
backspace is accomplished by a character other than AH (ugh) in
which case you should give this character as the be string capability.
If it overstrikes (rather than clearing a position when a character is
struck over) then it should have the os capability.

A very important point here is that the local cursor motions encoded
in termcap are undefined at the left and top edges of a CRT terminal.
The editor will never attempt to backspace around the left edge, nor
will it attempt to go up locally off the top. The editor assumes that
feeding off the bottom of the screen will cause the screen to scroll
up, and the am capability tells whether the cursor sticks at the right
edge of the screen. If the terminal has switch selectable automatic
margins, the termcap file usually assumes that this is on, i.e. am.

These capabilities suffice to describe hardcopy and glass-tty termi­
nals. Thus the model 33 teletype is described as

t3 I 33 I tty33:co#72:os

while the Lear Siegler ADM-3 is described as

cl I adm3l3llsi adm3:am:bs:cl=AZ:li#24:co#80

November 13, 1986 Page 4

TERMCAP(4) UNIX Sys5 (Plexus) TERMCAP (4)

Page 5

Cursor addressing

Cursor addressing in the terminal is described by a cm string capa- ,
bility, with printf (3s) like escapes %x in it. These substitute to ·
encodings of the current line or column position, while other charac- '·
ters pass through unchanged. If the cm string is thought of as a
function, then its arguments are the line and then the column to
which motion is desired, and the % encodings have the following
meanings:

%d
%2
%3
%.
%+x
%>xy
%r
%i
%%
%n
%B
%D

as in printf, 0 origin
like %2d
like %3d
like %c
adds x to value, then %.
if value > x adds y, no output.
reverses order of line and column, no output
increments line/column (for 1 origin)
gives a single %
exclusive or row and column with 0140 (DM2500)
BCD (16*(x/10)) + (x%10), no output.
Reverse coding (x-2*(x% 16)), no output. (Delta Data).

Consider the HP2645, which, to get to row 3 and column 12, needs
to be sent \E&a 12c03Y padded tor 6 milliseconds. Note that the
order of the rows and columns is inverted here, and that the row and
column are printed as two digits. Thus its cm capability is .
cm=6\E&%r%2c%2Y. The Microterm ACT-Iv needs the current row/
and column sent preceded by a I, with the row and column simply
encoded in binary, cm=AT%.% .. Terminals which use %. need to be
able to backspace the cursor (bs or be), and to move the cursor up
one line on the screen (up introduced below) .. This is necessary
because it is not always safe to transmit \t, \n AD and \r, as the sys­
tem may change or discard them.

A final example is the LSI ADM-3a, which uses row and column offset
by a blank character, thus cm=\E=%+ %+ .

Cursor motions

If the terminal can move the cursor one position to the right, leaving
the character at the current position unchanged, then this sequence
should be given as nd (non-destructive space). If it can move the cur­
sor up a line on the screen in the same column, this should be given
as up. If the terminal has no cursor addressing capability, but can
home the cursor (to very upper left corner of screen) then this can be
given as ho; similarly a fast way of getting to the lower left hand
corner can be given as II; this may involve going up with up from the
home position, but the editor will never do this itself (unless II does)
because it makes no assumption about the effect of moving up from
the home position.

Area clears

If the terminal can clear from the current position to the end of the\ ... _
line, leaving the cursor where it is, this should be given as ce. If the
terminal can clear from the current position to the end of the display,

November 13, 1986

(

TERMCAP(4) UNIX Sys5 (Plexus) TERMCAP(4)

then this should be given as ed. The editor only uses cd from the
first column of a line.

Insert/delete line

If the terminal can open a new blank line before the line where the
cursor is, this should be given as al; this is done only from the first
position of a line. The cursor must then appear on the newly blank
line. If the terminal can delete the line which the cursor is on, then
this should be given as di; this is done only from the first position on
the line to be deleted. If the terminal can scroll the screen back-

. wards, then this can be given as sb, but just al suffices. If the termi­
nal can retain display memory above then the da capability should be
given; if display memory can be retained below then db should be
given. These let the editor understand that deleting a line on the
screen may bring non-blank lines up from below or that scrolling
back with sb may bring down non-blank lines.

Insert/delete character

There are two basic kinds of intelligent terminals with respect to
insert/delete character that can be described using termcap. The
most common insert/delete character operations affect only the char­
acters on the current line and shift characters off the end of the line
rigidly. Other terminals, such as the Concept 100 and the Perkin
Elmer Owl, make a distinction between typed and untyped blanks on
the screen, shifting upon an insert or delete only to an untyped blank
on the screen which is either eliminated, or expanded to two untyped
blanks. You can find out which kind of terminal you have by clearing
the screen and then typing text separated by cursor motions. Type
abc def using local cursor motions (not spaces) between the abc
and the def. Then position the cursor before the abc and put the ter­
minal in insert mode. If typing characters causes the rest of the line
to shift rigidly and characters to fall off the end, then your terminal
does not distinguish between blanks and untyped positions. If the
abc shifts over to the def which then move together around the end
of the current line and onto the next as you insert, you have the
second type of terminal, and should give the capability in, which
stands for insert null. If your terminal does something different and
unusual then you may have to modify the editor to get it to use the
insert mode your terminal defines. All terminals we have seen have an
insert mode falling into one of these two classes.

The editor can handle both terminals that have an insert mode, and
terminals that send a simple sequence to open a blank position on
the current line. Give as im the sequence to get into insert mode, or
give it an empty value if your terminal uses a sequence to insert a
blank position. Give as ei the sequence to leave insert mode (give
this, with an empty value also if you gave im so). Now give as ic any
sequence needed to be sent just before sending the character to be
inserted. Most terminals with a true insert mode will not give ic, termi­
nals which send a sequence to open a screen position should give it
here. (Insert mode is preferable to the sequence to open a position on
the screen if your terminal has both.) If post insert padding is
needed, give this as a number of milliseconds in ip (a string option).
Any other sequence which may need to be sent after an insert of a

November 13, 1986 Page 6

TERMCAP(4) UNIX Sys5 (Plexus) TERMCAP(4)

Page 7

single character may also be given in ip.

It is occasionally necessary to move around while in insert mode to
delete characters on the same line (e.g. if there is a tab after the '
insertion position). If your terminal allows motion while in insert mode
you can give the capability mi to speed up inserting in this case.
Omitting mi will affect only speed. Some terminals (notably
Datamedia's) must not have mi because of the way their insert mode
works.

Finally, you can specify delete mode by giving dm and ed to enter
and exit delete mode, and de to delete a single character while in
delete mode.

Highlighting, underlining, and visible bells

If your terminal has sequences to enter and exit standout mode these
can be given as so and se respectively. If there are several flavors of
standout mode (such as inverse video, blinking, or underlining - half
bright is not usually an acceptable standout mode unless the terminal
is in inverse video mode constantly) the preferred mode is inverse
video by itself. If the code to change into or out of standout mode
leaves one or even two blank spaces on the screen, as the TVI 912
and Teleray 1061 do, this is acceptable, and although it may confuse
some programs slightly, it can't be helped.

Codes to begin underlining and end underlining can be given as us
and ue respectively. If the terminal has a code to underline the
current character and move the cursor one space to the right, such
as the Microterm Mime, this can be given as uc. (If the underline
code does not move the cursor to the right, give the code followed by
a nondestructive space.)

If the terminal has a way of flashing the screen to indicate an error
quietly (a bell replacement) then this can be given as vb; it must not
move the cursor. If the terminal should be placed in a different mode
during open and visual modes of ex, this can be given as vs and ve,
sent at the start and end of these modes respectively. These can be
used to change, e.g., from a underline to a block cursor and back.

If the terminal needs to be in a special mode when running a program
that addresses the cursor, the codes to enter and exit this mode can
be given as ti and te. This arises, for example, from terminals like
the Concept with more than one page of memory. If the terminal has
only memory relative cursor addressing and not screen relative cursor
addressing, a one screen-sized window must be fixed into the termi­
nal for cursor addressing to work properly.

If your terminal correctly generates underlined characters (with no
special codes needed) even though it does not overstrike, then you
should give the capability ul. If overstrikes are erasable with a blank,
then this should be indicated by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the keys are
pressed, this information can be given. Note that it is not possible to
handle terminals where the keypad only works in local (this applies,

November 13, 1986

(

(

TERMCAP (4) UNIX Sys5 (Plexus) TERMCAP (4)

for example, to the unshifted HP 2621 keys). If the keypad can be set
to transmit or not transmit, give these codes as ks and ke. Otherwise
the keypad is assumed to always transmit. The codes sent by the left
arrow, right arrow, up arrow, down arrow, and home keys can be
given as kl, kr, ku, kd, and kh respectively. If there are function keys
such as fO, f1, ... , f9, the codes they send can be given as kO, k1, ... ,
k9. If these keys have labels other than the default fO through f9, the
labels can be given as 10, 11, ... , 19. If there are other keys that
transmit the same code as the terminal expects for the corresponding
function, such as clear screen, the termcap 2 letter codes can be
given in the ko capability, for example, :ko=cl,11,sf,sb:, which says
that the terminal has clear, home down, scroll down, and scroll up
keys that transmit the same thing as the cl, II, sf, and sb entries.

The ma entry is also used to indicate arrow keys on terminals which
have single character arrow keys. It is obsolete but still in use in ver­
sion 2 of vi, which must be run on some minicomputers due to
memory limitations. This field is redundant with kl, kr, ku, kd, and kh.
It consists of groups of two characters. In each group, the first char­
acter is what an arrow key sends, the second character is the
corresponding vi command. These commands are h for kl, j for kd, k
for ku, I for kr, and H for kh. For example, the mime would be
:ma=AKrzkAXI: indicating arrow keys left CH). down CK), up CZ). and
right ("X). (There is no home key on the mime.)

Miscellaneous

If the terminal requires other than a null (zero) character as a pad,
then this can be given as pc.

If tabs on the terminal require padding, or if the terminal uses a char­
acter other than Al to tab, then this can be given as ta.

Hazeltine terminals, which don't allow ·-· characters to be printed
should indicate hz. Datamedia terminals, which echo carriage-return
linefeed for carriage return and then ignore a following linefeed
should indicate nc. Early Concept terminals, which ignore a linefeed
immediately after an am wrap, should indicate xn. If an erase-eel is
required to get rid of standout (instead of merely writing on top of it),
xs should be given. Teleray terminals, where tabs turn all characters
moved over to blanks, should indicate xt. Other specific terminal
problems may be corrected by adding more capabilities of the form
xx.

Other capabilities include is, an initialization string for the terminal,
and if, the name of a file containing long initialization strings. These
strings are expected to properly clear and then set the tabs on the
terminal, if the terminal has settable tabs. If both are given, is will be
printed before if. This is useful where if is /usr/lib/tabset!std but is
clears the tabs first.

Similar Tenninals

If there are two very similar terminals, one can be defined as being
just like the other with certain exceptions. The string capability tc
can be given with the name of the similar terminal. This capability
must be last and the combined length of the two entries must not

November 13, 1986 Page 8

TERMCAP(4) UNIX Sys5 (Plexus) TERMCAP(4)

FILES

exceed 1024. Since termlib routines search the entry from left to right,
and since the tc capability is replaced by the corresponding entry,
the capabilities given at the left override the ones in the similar termi­
nal. A capability can be canceled with xx@ where xx is the capabil­
ity. For example, the entry

hn I 2621 nl:ks@:ke@:tc=2621:

defines a 2621 nl that does not have the ks or ke capabilities, and
hence does not turn on the function key labels when in visual mode.
This is useful for different modes for a terminal, or for different user
preferences.

/etc/termcap file containing terminal descriptions

SEE ALSO

NOTES

BUGS

ex(1), curses(3x), termlib(3c), tset(1), vi(1), ul(1), more(1).

The Plexus version of termcap is based on the one developed at the
University of California at Berkeley.

Ex allows only 256 characters for string capabilities, and the routines
in termcap(3) do not check for overflow of this buffer. The total
length of a single entry (excluding only escaped newlines) may not
exceed 1024.

The ma, vs, and ve entries are specific to the vi program.

/,-----,

·""-···j

Not all programs support all entries. There are entries that are not "---- ·
supported by any program.

Page 9 November 13, 1986

(

TERMINF0(4) UNIX Sys5 TERMINFO(4)

NAME
terminfo - terminal capability data base

SYNOPSIS
/usr/lib/terminfo/* /*

DESCRIPTION
Terminfo is a data base describing terminals, used, e.g., , by vi (1)
and curses (3X). Terminals are described in terminfo by giving a set
of capabilities which they have, and by describing how operations
are performed. Padding requirements and initialization sequences
are included in terminfo.

Entries in terminfo consist of a number of ',' separated fields. White
space after each ', · is ignored. The first entry for each terminal
gives the names which are known for the terminal, separated by 'I'
characters. The first name given is the most common abbreviation
for the terminal, the last name given should be a long name fully
identifying the terminal, and all others are understood as synonyms
for the terminal name. All names but the last should be in lower
case and contain no blanks; the last name may well contain upper
case and blanks for readability.

Terminal names (except for the last, verbose entry) should be
chosen using the following conventions. The particular piece of
hardware making up the terminal should have a root name chosen,
thus "hp2621 ". This name should not contain hyphens, except that
synonyms may be chosen that do not conflict with other names.
Modes that the hardware can be in, or user preferences, should be
indicated by appending a hyphen and an indicator of the mode.
Thus, a vt100 in 132 column mode would be vt100-w. The following
suffixes should be used where possible:

Suffix Meaning Example
-w Wide mode (more than 80 columns) vt100-w
-am With auto. margins (usually default)
-nam Without automatic margins
-n Number of lines on the screen
-na No arrow keys (leave them in local)
-np Number of pages of memory
-rv Reverse video

vt100-am
vt100-nam
aaa-60
c100-na
c100-4p
c100-rv

CAPABILITIES

Page 1

The variable is the name by which the programmer (at the terminfo
level) accesses the capability. The capname is the short name
used in the text of the database, and is used by a person updating
the database. The i.code is the two letter internal code used in the
compiled database, and always corresponds to the old termcap
capability name.

May 30, 1986

TERMINF0(4) UNIX Sys5 TERMINF0(4)

Capability names have no hard length limit, but an informal limit of 5
characters has been adopted to keep them short and to allow the
tabs in the source file caps to line up nicely. Whenever possible,
names are chosen to be the same as or similar to the ANSI X3.64-
1979 standard. Semantics are also intended to match those of the
specification.

(P) indicates that padding may be specified

(G) indicates that the string is passed through tparm withparms
as given (#i).

(*) indicates that padding may be based on the number of lines
affected

(#;) indicates the /h parameter.

Variable Cap- I. Description
Booleans name Code

auto_left_margin, bw bw cub1 wraps from column 0 to last
column

auto _right_margin, am am Terminal has automatic margins
beehive _glitch, xsb xb Beehive (f1 =escape, f2=ctrl C)
ceol_standout_glitch, xhp XS Standout not erased by overwriting

(hp)
eat_newline_glitch, xenl xn newline ignored after 80 cols

(Concept)
erase _overstrike, eo eo Can erase overstrikes with a blank
generic_type, gn gn Generic line type (e.g.,, dialup,

switch).
hard_copy, he he Hardcopy terminal
has_meta_key, km km Has a meta key (shift, sets parity

bit)
has __ status_line, hs hs Has extra "status line"
insert_null_glitch, in in Insert mode distinguishes nulls
memory_above, da da Display may be retained above the

screen
memory _below, db db Display may be retained below the

screen
move_insert_mode, mir mi Safe to move while in insert mode
move_standout_mode, ms gr ms Safe to move in standout modes
over _strike, OS OS Terminal overstrikes
status_line_esc_ok, eslok es Escape can be used on the status line
teleray _glitch, xt xt Tabs ruin, magic so char (Teleray

1061)
tilde_glitch, hz hz Hazeltine; can not print -·s
transparent_ underline, ul ul underline character overstrikes
xon_xoff, xon XO Terminal uses xon/xoff handshaking

May 30, 1986 Page 2

TERMINFO(4) UNIX Sys5 TERMINF0(4)

Numbers:

(~
columns, cols co Number of columns in a line

iniUabs, it it Tabs initially every # spaces
lines, lines Ii Number of lines on screen or page
lines_of_memory, Im Im Lines of memory if > lines. 0 means

varies
magic_ cookie _glitch, xmc sg Number of blank chars left by smso or

rmso
padding _baud_rate. pb pb Lowest baud where crml padding is

needed
virtual _terminal, vt vt Virtual terminal number (UNIX system)
width_ status_ line. wsl WS No. columns in status line

Strings:
back_ tab. cbt bt Back tab (P)
bell, bel bl Audible signal (bell) (P)
carriage_return. er er Carriage return (p·)

change _scroll_region. csr cs change to lines #1 through #2 (vt100)
(PG)

clear _all_tabs, tbc ct Clear all tab stops (P)
clear _screen, clear cl Clear screen and home cursor (P*)
cir _eol. el ce Clear to end of line (P) ,- cir _eos, ed cd Clear to end of display (P*)
column address, hpa ch Set cursor column (PG)
command _character, cmdch cc Term. settable cmd char in prototype
cursor _address. cup cm Screen rel. cursor motion row #1

col #2 (PG)
cursor _down. cud1 do Down one line
cursor _home, home ho Home cursor (if no cup)
cursor _invisible, civis vi Make cursor invisible
cursor _left, cub1 le Move cursor left one space
cursor _mem_address. mrcup CM Memory relative cursor addressing
cursor _normal, cnorm ve Make cursor c;ippear normal (undo vs/Vi)
cursor _right, cuf1 nd Non-destructive space (cursor right)
cursor_to_ll, II II Last line, first column (if no cup)

cursor_up, cuu1 up Upline (cursor up)
cursor_ visible, cvvis VS Make cursor very visible
delete_character, dch1 de Delete character (P*)
delete_line, dl1 di Delete line (P*)
dis_status_line, dsl ds Disable status line
down_half_line, hd hd Half-line down (forward 112 linefeed)
enter _alt_charset_mode, smacs as Start alternate character set (P)

(-, enter _blink_mode, blink mb Turn on blinking
enter _bold_mode, bold md Turn on bold (extra bright) mode
enter _ca_mode, smcup ti String to begin programs that use cup
enter _delete_mode, smdc dm Delete mode (enter)

Page 3 May 30, 1986

TERMINFO(4) UNIX Sys5 TERMINFO(4)

enter _dim_mode, dim mh Turn on half-bright mode
enter _insert_mode, smir im Insert mode (enter);

/
enter _protected_mode. prot mp Turn on protected mode
enter _reverse __ mode, rev mr Turn on reverse video mode
enter _secure_mode, in vis mk Turn on blank mode (chars invisible)
enter _standout_ mode. smso so Begin stand out mode
enter _underline _mode, smul us Start underscore mode
erase_chars ech ec Erase #1 characters (PG)
exit alt charset_mode rmacs ae End alternate character set (P)
exit_attribute_rnode, sgrO me Turn off all attributes
exit_ca_mode, rmcup te String to end programs that use cup
exit_delete_mode, rmdc ed End delete mode
exit_insert_mode, rmir ei End insert mode
exit_standout_mode. rmso se End stand out mode
exit _underline _mode, rmul ue End underscore mode
flash _screen, flash vb Visible bell (may not move cursor)
form_ feed, ff ff Hardcopy terminal page eject (P*)
from_status_line, fsl fs Return from status line
init_ 1 string, is1 i1 Terminal initialization string
init_2string, is2 i2 Terminal initialization string
init_3string, is3 i3 Terminal initialization string
init_file, if if Name of file containing is
insert_ character, ich1 ic Insert character (P)
insert_line, 111 al Add new blank line (P')
insert_padding, ip ip Insert pad after character inserted-

(p*)
key_backspace, kbs kb Sent by backspace key
key_catab. ktbc ka Sent by clear-all-tabs key
key_clear, kclr kC Sent by clear screen or erase key
key_ctab, kctab kt Sent by clear-tab key
key_dc. kdch1 kD Sent by delete character key
key_dl, kdl1 kl Sent by delete line key
key_down, kcud1 kd Sent by terminal down arrow key
key_eic, krmir kM Sent by rrnir or smir in insert mode
key_eol, kel kE Sent by clear-to-end-of-line key
key_eos, ked kS Sent by clear-to-end-of-screen key
key_fO, kfO kO Sent by function key fO
key_f1. kf1 k1 Sent by function key f1
key_f10, kf10 ka Sent by function key f1 O
key_f2, kt2 k2 Sent by function key f2
key_f3, kf3 k3 Sent by function key f3
key_f4, kf4 k4 Sent by function key f4
key_f5, kf5 k5 Sent by function key 15
key_f6, kf6 k6 Sent by function key f6
key_f7, kf7 k7 Sent by function key f7 '·

key_f8, kf8 k8 Sent by function key f8

May 30, 1986 Page 4

TERM INFO(4) UNIX Sys5 TERMINF0(4)

key_f9, kf9 k9 Sent by function key f9
key_home. khome kh Sent by home key c key_ic, kich1 kl Sent by ins char/enter ins mode key
key_il, kil1 kA Sent by insert line
key _left, kcub1 kl Sent by terminal left arrow key
key_ll, kll kH Sent by home-down key
key_npage, knp kN Sent by next-page key
key_ppage, kpp kP Sent by previous-page key
key_right, kcuf1 kr Sent by terminal right arrow key
key_sf, kind kF Sent by scroll-forward down key
key_sr, kri kR Sent by scroll-backward up key
key_stab, khts kT Sent by set-tab key
key _up, kcuu1 ku Sent by terminal up arrow key
keypad _local, rmkx ke Out of "keypad transmit" mode
keypad_xmit smkx ks Put terminal in "keypad transmit' mode
lab_fO, lfO 10 Labels on function key fO if not fO
lab_f1, lf1 11 Labels on function key f1 if not f1 '

lab_f10. lf10 la Labels on function key f1 O if not f1 O
lab_f2 lf2 12 Labels on function key f2 if not f2
labJ3 lf3 13 Labels on function key f3 if not f3
lab_f4. 114 14 Labels on function key f4 if not f4
lab_t5 lf5 15 Labels on function key f5 if not f5

("
lab_f6 lf6 16 Labels on function key f6 if not f6
lab_f7 lf7 17 Labels on function key f7 if not f7
lab _18. lf8 18 Labels on function key f8 if not f8
lab_f9. lf9 19 Labels on function key f9 if not f9
meta_on. smm mm Turn on "meta mode" (8th bit)
meta_ off, rmm mo Turn off "meta mode"
newline, nel nw Newline (behaves like er followed

by If)
pad_char, pad pc Pad character (rather than null)
parm_dch, dch DC Delete #1 chars (PG')
parm_delete_iine, di DL Delete #1 lines (PG*)
parm_down_cursor, cud DO Move cursor down #1 lines (PG*)
parm_ich, ich IC Insert #1 blank chars (PG*)
parm_index, indn SF Scroll forward #1 lines (PG)
parm_inserUine, ii AL Add #1 new blank lines (PG*)
parm_ieft_cursor, cub LE Move cursor left #1 spaces (PG)
parm_right_cursor, cuf RI Move cursor right #1 spaces (PG*)
parm_rindex, rin SR Scroll backward #1 lines (PG)
parm_up_cursor, cuu UP Move cursor up #1 lines (PG*)
pkey_key, pfkey pk Prog funct key #1 to type string #2
pkey _local, pfloc pl Prog funct key #1 to execute string #'<

(~' pkey_xmit, pfx px Prog funct key #1 to xmit string #2
print_ screen, mcO ps Print contents of the screen
prtr_off, mc4 pf Turn off the printer

Page 5 May 30, 1986

TERM INFO (4) UNIX Sys5 TERMINFO(4)

prtr_on, mc5 po Turn on the printer
repeat_ char, rep rp Repeat char #1 #2 times. (PG")

/
reset_ 1 string, rs1 r1 Reset terminal completely to sane 1).

reset_2string, rs2 r2 Reset terminal completely to sane ri'ibues.
reset_3string, rs3 r3 Reset terminal completely to sane modes.
reset_file, rt rf Name of file containing reset string
restore_cursor, re re Restore cursor to position of last sc
row_address, vpa CV Vertical position absolute

(set row) (PG)
save_cursor, SC SC Save cursor position (P)
scroll_forward, ind sf Scroll text up (P)
scroll_reverse, ri sr Scroll text down (P)
set_attributes, sgr sa Define the video attributes (PG9)
set_tab, hts st Set a tab in all rows, current column
set_ window, wind wi Current window is lines #1-#2

cols #3-#4
tab, ht ta Tab to next 8 space hardware tab stop
to_status_line, tsl ts Go to status line, column #1
underline_char, UC UC Underscore one char and move past it
up _half _line, hu hu Half-line up (reverse 112 linefeed)
init_prog. iprog iP Path name of program for init
key _a 1, ka1 K1 Upper left of keypad
key_a3, ka3 K3 Upper right of keypad
key_b2, kb2 K2 Center of keypad
key_c1. kc1 K4 Lower left of keypad
key_c3, kc3 KS Lower right of keypad
prtr _non. mc5p pO Turn on the printer for #1 bytes

A Sample Entry

The following entry, which describes the Concept-100, is among the
more complex entries in the terminfo file as of this writing.

concept100 I c100 I concept I c104 I c100-4p I concept 100,

am, bel=-G, blank=\EH, blink=\EC, clear=-L$<2*>, cnorm=\Ew,

cols#80, cr=-M$<9>, cubl=-H, cudl=-J, cuf1=\E=,

cup=\Ea.%p1%" '%+%c3p2% 3+3c,

'----

cuu1=\E;, cvvis=\EW, db, dch1=\E-A$<16*>, dim=\EE, dl1=\E-B$<3*>,

ed=\E-c$<16*>, el=\E-U$<16>, eo, fla.ah=\Ek$<20>\EK, ht=\t$<8>,

il1=\E-R$<3*>, in, ind=-J, . ind=-J$<9>, ip=$<16*>,

ia2=\EU\Ef\E7\E5\E8\El\ENH\EK\E\200\Eo&\200\Eo\47\E,

kba=-h, kcubl=\E>, kcud1=\E<, kcuf1=\E=, kcuu1=\E;,

kf1=\E5, kf2=\E6, kf3=\E7, khome=\E?,

lines#24, mir, pb#9600, prot=\EI, rep=\Er3p13c%p2%' '%+%c$<.2*>,

rev=\ED, rmcup=\Ev $<6>\Ep\r\n, rmir=\E\200, rmkx=\Ex,

rmao=\Ed\Ee, rmul=\Eg, rmul=\Eg, agrO=\EN\200,

smcup=\EU\Ev 8p\Ep\r, smir=\E-P, smkx=\EX, smso=\EE\ED,

smul=\EG, tabs, ul, vt#8, xenl,

May 30, 1986 Page 6

(

(_

TERMINFO(4) UNIX Sys5 TERMINFO(4)

Page7

Entries may continue onto multiple lines by placing white space at
the beginning of each line except the first. Comments may be
included on lines beginning with "#". Capabilities in terminfo are of
three types: Boolean capabilities which indicate that the terminal has
some particular feature, numeric capabilities giving the size of the
terminal or the size of particular delays, and string capabilities,
which give a sequence which can be used to perform particular ter­
minal operations.

Types of Capabilities

All capabilities have names. For instance, the fact that the Concept
has automatic margins (i.e., an automatic return and linefeed when
the end of a line is reached) is indicated by the capability am.
Hence the description of the Concept includes am. Numeric capa­
bilities are followed by the character '#' and then the value. Thus
cols, which indicates the number of columns the terminal has, gives
the value '80' for the Concept.

Finally, string valued capabilities, such as el (clear to end of line
sequence) are given by the two-character code, an'=', and then a
string ending at the next following ·,'. A delay in milliseconds may
appear anywhere in such a capability, enclosed in $< .. > brackets,
as in el =\EK$<3>, and padding characters are supplied by tputs to
provide this delay. The delay can be either a number, e.g., '20', or
a number followed by an···, i.e., '3*'. A··· indicates that the padding
required is proportional to the number of lines affected by the opera­
tion, and the amount given is the per-affected-unit padding required.
(In the case of insert character, the factor is still the number of fines
affected. This is always one unless the terminal has xenl and the
software uses it.) When a ·•· is specified, it is sometimes useful to
give a delay of the form '3.5' to specify a delay per unit to tenths of
milliseconds. (Only one decimal place is allowed.)

A number of escape sequences are provided in the string valued
capabilities for easy encoding of characters there. Both \E and \e
map to an ESCAPE character, ·x maps to a control-x for any
appropriate x, and the sequences \n \I \r \t \b \f \s give a newline,
linefeed, return, tab, backspace, formfeed, and space. Other
escapes include \ • for ·, \\ for \, \, for comma, \: for :, and \0 for null.
(\0 will produce \200, which does not terminate a string but behaves
as a null character on most terminals.) Finally, characters may be
given as three octal digits after a \.

Sometimes individual capabilities mu~t be commented out. To do
this, put a period before the capability name. For example, see the
second ind in the example above.

May 30, 1986

TERMINF0(4) UNIX Sys5 TERMtNFO(4)

Preparing Descriptions

We now outline how to prepare descriptions of terminals. The most /
effective way to prepare a terminal description is by imitating the
description of a similar terminal in terminfo and to build up a descrip­
tion gradually, using partial descriptions with vi to check that they
are correct. Be aware that a very unusual terminal may expose
deficiencies in the ability of the terminfo file to describe it or bugs in
vi. To easily test a new terminal description you can set the environ­
ment variable TERMINFO to a pathname of a directory containing
the compiled description you are working on and programs will look
there rather than in /usr/lib/terminfo . To get the padding .for insert
line right (if the terminal manufacturer did not document it) a severe
test is to edit /etc/passwd at 9600 baud, delete 16 or so lines from
the middle of the screen, then hit the 'u' key several times quickly.
If the terminal messes up, more padding is usually needed. A simi­
lar test can be used for insert character.

Basic Capabilities

The number of columns on each line for the terminal is given by the
cols numeric capability. If the terminal is a CRT, then the number of
lines on the screen is given by the lines capability. If the terminal
wraps around to the beginning of the next line when it reaches the .
right margin, then it should have the am capability. If the terminal
can clear its screen, leaving the cursor in the home position, then
this is given by the clear string capability. If the terminal overstrikes
(rather than clearing a position when a character is struck over) then
it should have the os capability. If the terminal is a printing terminal,
with no soft copy unit, give it both he and os. (os applies to storage
scope terminals, such as TEKTRONIX 4010 series, as well as hard
copy and APL terminals.) If there is a code to move the cursor to
the left edge of the current row, give this as er . (Normally this will
be carriage return, control M.) If there is a code to produce an audi­
ble signal (bell, beep, etc) give this as bel .

If there is a code to move the cursor one position to the left (such
as backspace) that capability should be given as cub1 . Similarly,
codes to move to the right, up, and down should be given as cuf1 ,
cuu1 , and cud1 . These local cursor motions should not alter the
text they pass over, for example, you would not normally use
'cuf1 = ' because the space would erase the character moved over.

A very important point here is that the local cursor motions encoded
in terminfo are undefined at the left and top edges of a CRT termi­
nal. Programs should never attempt to backspace around the left
edge, unless bw is given, and never attempt to go up locally off the 4

top. In order to scroll text up, a program will go to the bottom left
corner of the screen and send the ind (index) string.

May 30, 1986 Page8

(

(_

TERMINFO(4) UNIX Sys5 TERMINFO(4)

Page9

To scroll text down, a program goes to the top left corner of the
screen and sends the ri (reverse index) string. The strings ind and
ri are undefined when not on their respective corners of the screen.

Parameterized versions of the scrolling sequences are indn and rin
which have the same semantics as ind and ri except that they take
one parameter, and scroll that many lines. They are also undefined
except at the appropriate edge of the screen.

The am capability tells whether the cursor sticks at the right edge of
the screen when text is output, but this does not necessarily apply
to a cuf1 from the last column. The only local motion which is
defined from the left edge is if bw is given, then a cub1 from the left
edge will move to the right edge of the previous row. If bw is not
given, the effect is undefined. This is useful for drawing a box
around the edge of the screen, for example. If the terminal has
switch selectable automatic margins, the terminfo file usually
assumes that this is on; i.e., am. If the terminal has a command
which moves to the first column of the next line, that command can
be given as nel (newline). It does not matter if the command clears
the remainder of the current line, so if the terminal has no er and If
it may still be possible to craft a working nel out of one or both of
them.

These capabilities suffice to describe hardcopy and glass-tty termi­
nals. Thus the model 33 teletype is described as

33 I tty33 I tty I model 33 teletype,
bel=-G, cols#72, cr=-M, cud1=-J, he, ind=-J, os,

while the Lear Siegler ADM-3 is described as

adm3 I 3 I lsi adm3,
am, bel=-G, clear=-z, cols#80, cr=-M, cub1=-H, cud1=-J,

ind=-J, lines#24,

Parameterized Strings

Cursor addressing and other strings requiring parameters in the ter­
minal are described by a parameterized string capability, with printf
(3S) like escapes %x in it. For example, to address the cursor, the
cup capability is given, using two parameters: the row and column
to address to. (Rows and columns are numbered from zero and
refer to the physical screen visible to the user, not to any unseen
memory.) If the terminal has memory relative cursor addressing,
that can be indicated by mrcup .

The parameter mechanism uses a stack and special % codes to
manipulate it. Typically a sequence will push one of the parameters
onto the stack and then print it in some format. Often more com­
plex operations are necessary.

May 30, 1986

TERMINFO(4) UNIX Sys5 TEAMINF0(4)

The % encodings have the following meanings:

%0/o outputs'%'
%d print pop() as in printf
%2d print pop() like %2d
%3d print pop() like %3d
%02d
%03d as in printf
%c print pop() gives %c
%s print pop() gives %s

%p[1-9) push ith parm
%P[a-z] set variable [a-z] to pop()
%g[a-z] get variable [a-z] and push it
0/o'c' char constant c
%{nn} integer constant nn

%+ %- %* %1%m

%& o;J%-

%= O/o> %<

arithmetic (%mis mod): push(pop() op pop())
bit operations: push(pop() op pop())
logical operations: push(pop() op pop())
unary operations push(op pop{))
add 1 to first two parms (for ANSI terminals)

%? expr %t thenpart %e elsepart %;
if-then-else, %e elsepart is optional.
else-ifs are possible ala Algol 68:
%? c1 %t b1 %e c2 %t b2 %e c3
%t b3 %e c4 %t b4 %e %;

ci are conditions, bi are bodies.

Binary operations are in postfix form with the operands in the usual
order. That is, to get x-5 one would use "%gx%{5}%·".

Consider the HP2645, which, to get to row 3 and column 12, needs
to be sent \E&a12c03Y padded for 6 milliseconds. Note that the
order of the rows and columns is inverted here, and that the row
and column are printed as two digits. Thus its cup capability is
cup= 6\E&%p2%2dc%p1 %2dY.

The Microterm ACT-IV needs the current row and column sent pre­
ceded by a AT, with the row and column simply encoded in binary,
cup='T%p1%c%p2%c. Terminals which use %c need to be able to
backspace the cursor (cub1), and to move the cursor up one line on
the screen (cuu1). This is necessary because it is not always safe
to transmit \n AD and \r, as the system may change or discard
them. (The library routines dealing with terminfo set tty modes so
that tabs are never expanded, so \t is safe to send. This turns out
to be essential for the Ann Arbor 4080.)

May 30, 1986 Page 1 O

(

(

TEAMINF0(4) UNIX Sys5 TERMINF0(4)

A final example is the LSI ADM-3a, which uses row and column
offset by a blank character, thus cup= \E = %p 1 %' '% + %c%p2%'
'% + %c. After sending '\E = ', this pushes the first parameter,
pushes the ASCII value for a space (32), adds them (pushing the
sum on the stack in place of the two previous values) and outputs
that value as a character. Then the same is done for the second
parameter. More complex arithmetic is possible using the stack.

If the terminal has row or column absolute cursor addressing, these
can be given as single parameter capabilities hpa (horizontal posi­
tion absolute) and vpa (vertical position absolute). Sometimes
these are shorter than the more general two parameter sequence
(as with the hp2645) and can be used in preference to cup . If there
are parameterized local motions (e.g., move n spaces to the right)
these can be given as cud , cub , cuf , and cuu with a single
parameter indicating how many spaces to move. These are pri­
marily useful if the terminal does not have cup , such as the TEK­

TRONIX 4025.

Cursor Motions

If the terminal has a fast way to home the cursor (to very upper left
corner of screen) then this can be given as home; similarly a fast
way of getting to the lower left-hand corner can be given as II; this
may involve going up with cuu1 from the home position, but a pro­
gram should never do this itself (unless II does) because it can
make no assumption about the effect of moving up from the home
position. Note that the home position is the same as addressing to
(0,0): to the top left corner of the screen, not of memory. (Thus, the
\EH sequence on HP terminals cannot be used for home .)

Area Clears

If the terminal can clear from the current position to the end of the
line, leaving the cursor where it is, this should be given as el. If the
terminal can clear from the current position to the end of the display,
then this should be given as ed. Ed is only defined from the first
column of a line. (Thus, it can be simulated by a request to delete a
large number of lines, if a true ed is not available.)

Insert/delete line

If the terminal can open a new blank line before the line where the
cursor is, this should be given as il1; this is done only from the first
position of a line. The cursor must then appear on the newly blank
line. If the terminal can delete the line which the cursor is on, then
this should be given as dl1; this is done only from the first position
on the line to be deleted. Versions of il1 and dl1 which take a sin­
gle parameter and insert or delete that many lines can be given as ii
and di . If the terminal has a settable scrolling region (like the vt100)
the command to set this can be described with the csr capability,

Page 11 May 30, 1986

TERMINF0(4) UNIX Sys5 TERMINF0'(4)

which takes two parameters: the top and bottom lines of the scrol­
ling region. The cursor position is, alas, undefined after using this
command. It is possible to get the effect of insert or delete line
using this command - the sc and re (save and restore cursor) com­
mands are also useful. Inserting lines at the top or bottom of the
screen can also be done using ri or ind on many terminals without a
true insert/delete line, and is often faster even on terminals with
those features.

If the terminal has the ability to define a window as part of memory,
which all commands affect, it should be given as the parameterized
string wind . The four parameters are the starting and ending lines
in memory and the starting and ending columns in memory, in that
order.

If the terminal can retain display memory above, then the da capa­
bility should be given; if display memory can be retained below, then
db should be given. These indicate that deleting a line or scrolling
may bring non-blank lines up from below or that scrolling back with
ri may bring down non-blank lines.

Insert/Delete Character

There are two basic kinds of intelligent terminals with respect to
insert/delete character which can be described using terminfo. The ·
most common insert/delete character operations affect only the
characters on the current line and shift characters off the end of the '
line rigidly. Other terminals, such as the Concept 100 and the Per­
kin Elmer Owl, make a distinction between typed and untyped
blanks on the screen, shifting upon an insert or delete only to an
untyped blank on the screen which is either eliminated, or expanded
to two untyped blanks. You can determine the kind of terminal you
have by clearing the screen and then typing text separated by cur­
sor motions. Type abc def using local cursor motions (not
spaces) between the abc and the def. Then position the cursor
before the abc and put the terminal in insert mode. If typing charac­
ters causes the rest of the line to shift rigidly and characters to fall
off the end, then your terminal does not distinguish between blanks
and untyped positions. If the abc shifts over to the def which then
move together around the end of the current line and onto the next
as you insert, you have the second type of terminal, and should give
the capability in, which stands for insert null. While these are two
logically separate attributes (one line vs. multiline insert mode, and
special treatment of untyped spaces) we have seen no terminals
whose insert mode cannot be described with the single attribute.

Terminfo can describe both terminals which have an insert mode,
and terminals which send a simple sequence to open a blank posi­
tion on the current line. Give as smir the sequence to get into

May 30, 1986 Page 12

(

TERMINF0(4) UNIX Sys5 TERMINFO(4)

insert mode. Give as rmir the sequence to leave insert mode. Now
give as ich1 any sequence needed to be sent just before sending
the character to be inserted. Most terminals with a true insert mode
will not give ich1; terminals which send a sequence to open a
screen position should give it here. (If your terminal has both, insert
mode is usually preferable to ich1. Do not give both unless the ter­
minal actually requires both to be used in combination.) If post insert
padding is needed, give this as a number of milliseconds in ip (a
string option). Any other sequence which may need to be sent after
an insert of a single character may also be given in ip. If your ter­
minal needs both to be placed into an 'insert mode' and a special
code to precede each inserted character, then both smir I rmir and
ich1 can be given, and both will be used. The ich capability, with
one parameter, n , will repeat the effects of ich1 n times.

It is occasionally necessary to move around while in insert mode to
delete characters on the same line (e.g., if there is a tab after the
insertion position). If your terminal allows motion while in insert
mode you can give the capability mir to speed up inserting in this
case. Omitting mir will affect only speed. Some terminals (notably
Datamedia's) must not have mir because of the way their insert
mode works.

Finally, you can specify dch1 to delete a single character, dch with
one parameter, n , to delete n characters, and delete mode by giv­
ing smdc and rmdc to enter and exit delete mode (any mode the
terminal needs to be placed in for dch1 to work).

A command to erase n characters (equivalent to outputting n blanks
without moving the cursor) can be given as ech with one parameter.

Highlighting, Underlining, and Visible Bells

If your terminal has one or more kinds of display attributes, these
can be represented in a number of different ways. You should
choose one display form as standout mode, representing a good,
high contrast, easy-on-the-eyes, format for highlighting error mes­
sages and other attention getters. (If you have a choice, reverse
video plus half-bright is good, or reverse video alone.) The
sequences to enter and exit standout mode are given as smso and
rmso, respectively. If the code to change into or out of standout
mode leaves one or even two blank spaces on the screen, as the
TVI 912 and Teleray 1061 do, then xmc should be given to tell how
many spaces are left.

Codes to begin underlining and end underlining can be given as
smul and rmul respectively. If the terminal has a code to underline
the current character and move the cursor one space to the right,
such as the Microterm Mime, this can be given as uc.

Page 13 May 30, 1986

TERMINFO(4) UNIX Sys5 TERMINFO(4)

Other capabilities to enter various highlighting modes include blink
(blinking) bold (bold or extra bright) dim (dim or half-bright) invis / ~
(blanking or invisible text) prot (protected) rev (reverse video) sgrO
(turn off a// attribute modes) smacs (enter alternate character set
mode) and rmacs (exit alternate character set mode). Turning on
any of these modes singly may or may not turn off other modes.

If there is a sequence to set arbitrary combinations of modes, this
should be given as sgr (set attributes), taking 9 parameters. Each
parameter is either O or 1, as the corresponding attribute is on or
off. The 9 parameters are, in order: standout, underline, reverse,
blink, dim, bold, blank, protect, alternate character set. Not all
modes need be supported by sgr , only those for which correspond­
ing separate attribute commands exist.

Terminals with the "magic cookie" glitch (xmc) deposit special
"cookies" when they receive mode-setting sequences, which affect
the display algorithm rather than having extra bits for each charac­
ter. Some terminals, such as the HP 2621, automatically leave
standout mode when they move to a new line or the cursor is
addressed. Programs using standout mode should exit standout
mode before moving the cursor or sending a newline, unless the
msgr capability, asserting that it is safe to move in standout mode,
is present. . / ~,

If the terminal has a way of flashing the screen to indicate an error \" _/
quietly (a bell replacement) then this can be given as flash; it must
not move the cursor.

If the cursor needs to be made more visible than normal when it is
not on the bottom line (to make, for example, a non-blinking under­
line into an easier to find block or blinking underline) give this
sequence as cvvis . If there is a way to make the cursor completely
invisible, give that as civis . The capability cnorm should be given
which undoes the effects of both of these modes.

If the terminal needs to be in a special mode when running a pro­
gram that uses these capabilities, the codes to enter and exit this
mode can be given as smcup and rmcup. This arises, for exam­
ple, from terminals like the Concept with more than one page of
memory. If the terminal has only memory relative cursor addressing
and not screen relative cursor addressing, a one screen-sized win­
dow must be fixed into the terminal for cursor addressing to work
properly. This is also used for the TEKTRONIX 4025, where smcup
sets the command character to be the one used by terminfo.

If your terminal correctly generates underlined characters (with no
special codes needed) even though it does not overstrike, then you
should give the capability ul. If overstrikes are erasable with a
blank, then this should be indicated by giving eo.

May 30, 1986 Page 14

(

TERMINFO(4) UNIX Sys5 TERMINFO(4)

Keypad

If the terminal has a keypad that transmits codes when the keys are
pressed, this information can be given. Note that it is not possible to
handle terminals where the keypad only works in local (this applies,
for example, to the unshifted HP 2621 keys). If the keypad can be
set to transmit or not transmit. give these codes as smkx and rmkx.
Otherwise the keypad is assumed to always transmit. The codes
sent by the left arrow, right arrow, up arrow, down arrow, and home
keys can be given as kcub1, kcuf1, kcuu1, kcud1, and khome
respectively. If there are function keys such as fO, f1, ... , f10, the
codes they send can be given as kfO, kf1, ... , kf10. If these keys
have labels other than the default fO through f10, the labels can be
given as lfO, lf1, ... , lf10. The codes transmitted by certain other
special keys can be given: kit (home down), kbs (backspace), ktbc
(clear all tabs), kctab (clear the tab stop in this column), kclr (clear
screen or erase key), kdch1 (delete character), kdl1 (delete line),
krmir (exit insert mode), kel (clear to end of line), ked (clear to end
of screen), kich1 (insert character or enter insert mode), kil1 (insert
line), knp (next page), kpp (previous page), kind (scroll
forward/down), kri (scroll backward/up), khts (set a tab stop in this
column). In addition, if the keypad has a 3 by 3 array of keys
including the four arrow keys. the other five keys can be given as
ka1 , ka3 , kb2 , kc1 , and kc3 . These keys are useful when the
effects of a 3 by 3 directional pad are needed.

Tabs and Initialization

If the terminal has hardware tabs, the command to advance to the
next tab stop can be given as ht (usually control I). A "backtab"
command which moves leftward to the next tab stop can be given
as cbt . By convention, if the teletype modes indicate that tabs are
being expanded by the computer rather than being sent to the termi­
nal, programs should not use ht or cbt even if they are present,
since the user may not have the tab stops properly set. If the termi­
nal has hardware tabs which are initially set every n spaces when
the terminal is powered up, the numeric parameter it is given, show­
ing the number of spaces the tabs are set to. This is normally used
by the tset command to determine whether to set the mode for
hardware tab expansion, and whether to set the tab stops. If the
terminal has tab stops that can be saved in nonvolatile memory, the
terminfo description can assume that they are properly set.

Other capabilities include is1 , is2 , and is3 , initialization strings for
the terminal, iprog , the path name of a program to be run to initial­
ize the terminal, and if, the name of a file containing long initializa­
tion strings. These strings are expected to set the terminal into
modes consistent with the rest of the terminfo description. They are
normally sent to the terminal, by the tset program, each time the

Page 15 May 30, 1986

TERMINF0(4) UNIX Sys5 TERMINF0(4)

user logs in. They will be printed in the following order: is1 ; is2 ;
setting tabs using tbc and hts ; if ; running the program iprog ; and /
finally is3 . Most initialization is done with is2 . Special terminal ,
modes can be set up without duplicating strings by putting the com­
mon sequences in is2 and special cases in is1 and is3 . A pair of
sequences that does a harder reset from a totally unknown state
can be analogously given as rs1 , rs2 , rf , and rs3 , analogous to
is2 and if . These strings are output by the reset program, which is
used when the terminal gets into a wedged state. Commands are
normally placed in rs2 and rf only if they produce annoying effects
on the screen and are not necessary when logging in. For example,
the command to set the vt100 into 80-column mode would normally
be part of is2 , but it causes an annoying glitch of the screen and is
not normally needed since the terminal is usually already in 80
column mode.

If there are commands to set and clear tab stops, they can be given
as tbc (clear all tab stops) and hts (set a tab stop in the current
column of every row). If a more complex sequence is needed to set
the tabs than can be described by this, the sequence can be placed
in is2 or if.

Delays

Certain capabilities control padding in the teletype driver. These are
primarily needed by hard copy terminals, and are used by the tset
program to set teletype modes appropriately. Delays embedded in
the capabilities er , ind , cub1 , ff , and tab will Gause the appropri­
ate delay bits to be set in the teletype driver. If pb (padding baud
rate) is given, these values can be ignored at baud rates below the
value of pb.

Miscellaneous

If the terminal requires other than a null (zero) character as a pad,
then this can be given as pad. Only the first character of the pad
string is used.

If the terminal has an extra "status line" that is not normally used by
software, this fact can be indicated. If the status line is viewed as
an extra line below the bottom line, into which one can cursor
address normally (such as the Heathkit h19's 25th line, or the 24th
line of a vt100 which is set to a 23-line scrolling region), the capabil-
ity hs should be given. Special strings to go to the beginning of the
status line and to return from the status line can be given as tsl and
fsl . (fsl must leave the cursor position in the same place it was
before tsl . If necessary, the sc and re strings can be included in tsl
and fsl to get this effect.) The parameter tsl takes one parameter,
which is the column number of the status line the cursor is to be
moved to. If escape sequences and other special commands, such

May 30, 1986 Page 16

/.

(~

(·

TERMINF0(4) UNIX Sys5 TERMINFO(4)

as tab, work while in the status line, the flag eslok can be given. A
string which turns off the status line (or otherwise erases its con­
tents) should be given as dsl . If the terminal has commands to
save and restore the position of the cursor, give them as sc and re .
The status line is normally assumed to be the same width as the
rest of the screen, e.g., cols . If the status line is a different width
(possibly because the terminal does not allow an entire line to be
loaded) the width, in columns, can be indicated with the numeric
parameter wsl .

If the terminal can move up or down half a line, this can be indicated
with hu (half-line up) and hd (half·line down). This is primarily use­
ful for superscripts and subscripts on hardcopy terminals. If a hard­
copy terminal can eject to the next page (form feed), give this as ff
(usually control L).

If there is a command to repeat a given character a given number of
times (to save time transmitting a large number of identical charac­
ters) this can be indicated with the parameterized string rep . The
first parameter is the character to be repeated and the second is the
number of times to repeat it. Thus, tparm(repeat_char, 'x', 10) is the
same as ·xxxxxxxxxx'.

If the terminal has a settable command character, such as the TEK­
TRONIX 4025, this can be indicated with cmdch . A prototype com­
mand character is chosen which is used in all capabilities. This
character is given in the cmdch capability to identify it. The follow­
ing convention is supported on some UNIX systems: The environ­
ment is to be searched for a CC variable, and if found, all
occurrences of the prototype character are replaced with the char­
acter in the environment variable.

Terminal descriptions that do not represent a specific kind of known
terminal, such as switch , dialup , patch , and network , should
include the gn (generic) capability so that programs can complain
that they do not know how to talk to the terminal. (This capability
does not apply to virtual terminal descriptions for which the escape
sequences are known.)

If the terminal uses xon/xoff handshaking for flow control, give xon .
Padding information should still be included so that routines can
make better decisions about costs, but actual pad characters will not
be transmitted.

If the terminal has a "meta key" which acts as a shift key, setting
the 8th bit of any character transmitted, this fact can be indicated
with km . Otherwise, software will assume that the 8th bit is parity
and it will usually be cleared. If strings exist to turn this "meta
mode" on and off, they can be given as smm and rmm .

Page 17 May 30, 1986

TERMINFO(4) UNIX Sys5 TERMINF0(4)

If the terminal has more lines of memory than will fit on the screen
at once, the number of lines of memory can be indicated with Im . A /
value of Im #0 indicates that the number of lines is not fixed, but
that there is still more memory than fits on the screen.

If the terminal is one of those supported by the UNIX virtual terminal
protocol, the terminal number can be given as vt .

Media copy strings which control an auxiliary printer connected to
the terminal can be given as mcO : print the contents of the screen,
mc4 : turn off the printer, and mes : turn on the printer. When the
printer is on, all text sent to the terminal will be sent to the printer. It
is undefined whether the text is also displayed on the terminal
screen when the printer is on. A variation mc5p takes one parame­
ter, and leaves the printer on for as many characters as the value of
the parameter, then turns the printer off. The parameter should not
exceed 255. All text, including mc4 , is transparently passed to the
printer while an mcSp is in effect.

Strings to program function keys can be given as pfkey , pfloc ,
and pfx . Each of these strings takes two parameters: the function
key number to program (from 0 to 10) and the string to program it
with. Function key numbers out of this range may program unde­
fined keys in a terminal dependent manner. The difference between
the capabilities is that pfkey causes pressing the given key to be
the same as the user typing the given string; pfloc causes the string
to be executed by the terminal in local; and pfx causes the string to
be transmitted to the computer.

Glitches and Braindamage

Hazeltine terminals, which do not allow ,_, characters to be displayed
should indicate hz.

Terminals which ignore a linefeed immediately after an am wrap,
such as the Concept and vt100, should indicate xenl.

If el is required to get rid of standout (instead of merely writing nor­
mal text on top of it), xhp should be given.

Teleray terminals, where tabs turn all characters moved over to
blanks, should indicate xt (destructive tabs). This glitch is also
taken to mean that it is not possible to position the cursor on top of
a "magic cookie", that to erase standout mode it is instead neces­
sary to use delete and insert line.

The Beehive Superbee, which is unable to correctly transmit the
escape or control C characters, has xsb , indicating that the f1 key
is used for escape and f2 for control C. (Only certain Superbees
have this problem, depending on the ROM.)

May 30, 1986 Page 18

(

(

(/'

TERMINFO(4) UNIX Sys5 TERMINFO(4)

FILES

Other specific terminal problems may be corrected by adding more
capabilities of the form xx.

Similar Terminals

If there are two very similar terminals, one can be defined as being
just like the other with certain exceptions. The string capability use
can be given with the name of the similar terminal. The capabilities
given before use override those in the terminal type invoked by use
. A capability can be cancelled by placing xx@ to the left of the
capability definition, where xx is the capability. For example, the
entry

2621-nl, smkx@ rmkx(~!, use=2621,

defines a 2621-nl that does not have the smkx or rmkx capabilities,
and hence does not turn on the function key labels when in visual
mode. This 1s useful for different modes for a terminal, or for dif­
ferent user preferences.

/usr/lib/term info/? r files containing terminal descriptions

SEE ALSO
curses(3X), printf(3$), term(5).
tic(1 M) in the Sys5 UNIX Administrator Reference Manual.

Page 19 May 30, 1986

UTMP(4) UNIX Sys5 UTMP(4)

NAME
utmp, wtmp - utmp and wtmp entry formats

SYNOPSIS
#include <sys/types.h>
#include <utmp.h>

DESCRIPTION

Page 1

These files, which hold user and accounting information for such
commands as who (1), write (1), and login (1), have the following
structure as defined by <utmp.h> :

#define UTMP _FILE "/etc/utmp"
#define WTMP _FILE "/etc/wtmp"
#define ut_name ut_user

struct utmp {
char
char
char
short
short
struct

ut_user[8];
ut_id[4];
ut_line[12];
ut_pid;
ut_type;
exit__status {

I* User login name */
/oi< /etc/inittab id (usually line #) *I
I* device name (console, lnxx) */
r" process id *I
I* type of entry */

short
short

} ut_exit;

e_termination; I* Process termination status */
e_exit; /oi< Process exit status */

time_t ut_time;
};

/* Definitions for ut_type */
#define EMPTY 0
#define RUN_L VL

#define BOOT_TIME 2
#define OLD_ TIME 3
#define NEW_TIME 4
#define !NIT _PROCESS 5
#define LOGIN_PROCESS 6
#define USER_PROCESS 7
#define DEAD_PROCESS 8
#define ACCOUNTING 9

/o1< The exit status of a process
* marked as DEAD_PROCESS. */

/ol< time entry was made */

I* Process spawned by "init" */

I* A "getty" process waiting for login */

I* A user process */

#define UTMAXTYPE ACCOUNTING /* Largest legal value of ut_type *I

May 13, 1986

(

UTMP(4) UNIX Sys5 UTMP(4)

FILES

f* Special strings or formats used in the "ut_line" field when */
f* accounting for something other than a process *f
f* No string for the ut_line field can be more than 11 chars + *f
f* a NULL in length 4
#define RUNLVL_MSG "run-level %c"
#define BOOT _MSG "system boot"
#define OTIME_MSG "old time"
#define NTIME_MSG "new time"

/usr/include/utmp.h
/etc/utmp
/etc/wt mp

SEE ALSO
getut(3C).
login(1), who(1), write(1) in the Sys5 UNIX User Reference Manual.

May 13, 1986 Page 2

/~- ---

(

INTR0(5) UNIX Sys5

NAME
intro - introduction to miscellany

DESCRIPTION

INTR0(5)

This section describes miscellaneous facilities such as macro pack­
ages, character set tables, etc.

Page 1 May 21, 1985

ASCll(5) UNIX Sys5 ASCII(5)

NAME
ascii - map of ASCII character set

SYNOPSIS
cat /usr/pub/ascii

DESCRIPTION
Ascii is a map of the ASCII character set, giving both octal and hex-
adecimal equivalents of each character, to be printed as needed. It
contains:

I 000 nul ! 001 soh '002 stx 003 etx I 004 eot i 005 enq 006 ack · 007 bel
I 010 bs I 011 ht 012 nl 013 vt i 014 np 1 015 er i 016 so 017 si
i 020 die i 021 dc1 i 022 dc2 '023 dc3 ! 024 dc4 ! 025 nak 026 syn : 027 etb
i 030 can ! 031 em I 032 sub '033 esc I 034 fS i 035 gs , 036 rs '037 us
i 040 sp I 041 ! ! 042" 043 # :044 $ i045 % ·046 & !047
I 050 (I 051) ! 052. 053 + i OS4, ! oss - '056. i OS7'
1060 0 I 061 1 i062 2 063 3 I 064 4 I 065 s i 066 6 I 067 7
1070 8 I 071 9 1072: 073; I 074 < I o7s = I 076 > i 077?
1100 (ri 1 I 101 A I 102 B 103 c I 104 D I 10S E I 106 F i 107 G
1 110 H I 111 I I 112 J 113 K I 114 L i 115 M i 116 N . 117 0
! 120 p i 121 Q I 122 R 123 s 1124 T I 125 u I 126 v 127 w
'130 x i 131 y I 132 z 133 [I 134 \ ! 13S] '136. 137
I 140 I 141 a I 142 b 143 c I 144 d I 14S e '146 f 147g/-
i 1SO h 11 s1 i I 1s2 i 1S3 k i 1S4 I I 1SS m ! 1S6 n '1S7 0

1160 p I 161 q I 162 r 163 s '164 t I 16S u i 166 v 167 w ~ .
1170 x I 171 y 1172 z 173 l : 174 i I 175} ! 176. 177 del

i 00 nul i 01 soh i 02 stx 03 etx · 04 eot 05 enq I 06 ack i 07 bel
: 08 bs i 09 ht 1 Oa nl Ob vt 1 Oc np Oder ! Oe so 1 Of si
i 10 die i 11 dc1 I 12 dc2 13 dc3 · 14 dc4 15 nak I 16 syn I 17 etb
i 18 can I 19 em I 1 a sub ! 1 b esc 1 1 c Is 1d gs i 1 e rs ! 1f us
i 20 sp I 21 ! i 22" 23 # ' 24 $ 25 % : 26 & I 27
I 2s (i 29) I 2a' ! 2b + 1 2c, 2d - i 2e. I 2t ·
I 30 o I 31 1 i 32 2 I 33 3 ! 34 4 3S 5 ! 36 6 I 37 7
I 38 8 I 39 9 I 3a: : 3b; i 3c < 3d = · 3e > I 3t?
I 40 0.' I 41 A I 42 B I 43 C I 44 D ! 4S E 1 46 F ! 47 G
I 48 H I 491 I 4a J I 4b K ! 4c L i 4d M I 4e N I 4t o
i sop I 51 o I 52 R i S3 s I S4 T I ss u : 56 v : 57 w
1 S8 x I 59 Y I Sa Z i Sb [I 5c \ I Sd l , 5e i Sf_
I 60 I 61 a ! 62 b I 63 c I 64 d i 65 e I 66 f I 67 g
I 68 h I 69 i I 6a i I 6b k I 6c I : 6d m 1 6e n I 6f 0

I 70 p I 71 q ! 72 r I 73 s I 74 t i 75 u i 76 v : 77 w
I 78 x I 79 y I 7a z i 7b { I 7c I i 7d} : 7e ·

1 7f del

FILES
/usr/pub/ ascii

Page 1 May 21, 1985

(
~ ...

/

(~/,

ENVIRON(5) UNIX Sys5 ENVIRON(5)

NAME
environ - user environment

DESCRIPTION
An array of strings called the "environment" is made available by
exec (2) when a process begins. By convention, these strings have
the form "name=value". The following names are used by various
commands:

PATH The sequence of directory prefixes that sh (1), time (1),
nice (1), nohup (1), etc., apply in searching for a file known
by an incomplete path name. The prefixes are separated
by colons(:). Login (1) sets PATH=:/bin:/usr/bin.

HOME Name of the user's login directory, set by login (1) from the
password file passwd (4).

TERM The kind of terminal for which output is to be prepared.
This information is used by commands, such as mm (1) or
tplot (1G), which may exploit special capabilities of that ter­
minal.

TZ Time zone information. The format is xxx n zzz where xxx
is standard local time zone abbreviation, n is the difference
in hours from GMT, and zzz is the abbreviation for the
daylight-saving local time zone, if any; for example,
ESTSEDT.

Further names may be placed in the environment by the export
command and "name=value" arguments in sh (1 }, or by exec (2). It
is unwise to conflict with certain shell variables that are frequently
exported by .profile files: MAIL' PS1 ' PS2' IFS.

SEE ALSO
exec(2).

Page 1

env(1), login(1), sh(1), mm(1), nice(1), nohup(1), time(1), tplot(1G)
in the SysS UNIX User Reference Manual.

August 8, 1986

EQNCHAR(5) UNIX Sys5 EQNCHAR{5)

NAME
eqnchar - special character definitions for eqn and neqn

SYNOPSIS
eqn /usr/pub/eqnchar [files] I troff [options]

neqn /usr/pub/eqnchar [files] I nroff (1) [options)

eqn -Taps /usr/pub/apseqnchar [files) I troff [options)

eqn -Teat /usr/pub/cateqnchar [files] I otroff [options)

DESCRIPTION

FILES

Page 1

Eqnchar contains troff(1) and nroff(1) character definitions for con-
structing characters that are not available on a phototypesetter.
These definitions are primarily intended for use with eqn(1) and
neqn; eqnchar contains definitions for the following characters:

cipfus ciplus II 11 square square

citimes citimes tangle tangle circle circle

wig wig rang le rangle blot blot
-wig -wig hbar hbar bullet bullet

>wig >wig ppd ppd prop prop

<wig <wig <-> <- empty empty

=wig =wig <=> ::::> member member

star star I< I< nomem nomem

bigs tar big star I> I> cup cup

=dot =dot ang ang cap cap

orsign orsign rang rang incl incl

and sign and sign 3dot 3dot subsetsubset

=de/ =def thf thf supset supset

opp A opp A quarter quarter !subset !subset

oppE oppE 3quarter 3quarter !supset!supset

angstrom angstrom degree degree scrLscrL
==< ==< ==> ==>

Apseqnchar is a version of eqnchar tailored for the Autologic APS-5
phototypesetter. This will not look optimal on other photo­
typesetters. Cateqnchar is the old eqnchar tailored for the Wang
CAT and the old otroff. Until a phototypesetter-independent version
of eqnchar is available, eqnchar should be a link to the default ver­
sion on each system. The standard default is apseqnchar.

/usr/pub/eqnchar
/usr/pub/apseqnchar
/usr/pub/cateqnchar

September 19, 1986

EQNCHAR(5) UNIX Sys5 EQNCHAR(5)

SEE ALSO
(eqn(1), nroff(1), troff(1). Sys5 UNIX User Reference Manual.

(

(·

September 19, 1986 Page 2

FCNTL(5) UNIX Sys5 FCNTL(5)

NAME
fcntl - file control options

SYNOPSIS
#include <fcntl.h>

DESCRIPTION
The tent! (2) function provides for control over open files. This
include file describes requests and arguments to tent! and open
(2).

f* Flag values accessible to open(2) and fcntl(2) *I
f* (The first three can only be set by open) *I
#define O_RDONL y 0
#define O_WRONLY 1
#define O_RDWR 2
#define O_NDELAY 04
#define O_APPEND 010

/* Non-blocking 110 */
/* append (writes guaranteed at the end) */

/* Flag values accessible only to open(2) */
#define O_CREAT 00400 /* open with file create (uses third open arg)'</
#define O_TRUNC 01000 /*open with truncation*/
#define O_EXCL 02000 r~ exclusive open *I

/* fcntl(2) requests */
#define F _DUPFO 0
#define F _GETFD 1
#define F _SETFD 2
#define F _GETFL 3
#define F _SETFL 4

/* Duplicate tildes 0•/

r~ Get tildes flags */
I* Set tildes flags 0d
/* Get file flags */
/* Set file flags */

SEE ALSO
fcntl(2), open(2).

Page 1 May 14, 1986

(

FONT(5) UNIX Sys5 FONT (5)

NAME
font - description files for device-independent troff

SYNOPSIS
troff -T ptty ...

DESCRIPTION

Page 1

For each phototypesetter supported by troff(1) and available on this
system, there is a directory containing files describing the device and
its fonts. This directory is named /usr/lib/font/devptty where ptty is
the name of the phototypesetter. Currently the only ptty supported is
aps for the Autologic APS-5.

For a particular phototypesetter, the ASCII file DESC in the directory
/usr/lib/font/devptty describes its characteristics. Each line starts
with a word identifying the characteristic and followed by appropriate
specifiers. Blank lines and lines beginning with a# are ignored.

The legal lines for DESC are:

res num

hor num

vert num

unitwidth num

sizescale num

paperwidth num

resolution of device in basic increments
per inch

smallest unit of horizontal motion

smallest unit of vertical motion

pointsize in. which widths are specified

scaling for fractional pointsizes

width of paper in basic increments

paperlength num length of paper in basic increments

spare1 num available for use

spare2 num available for use

sizes num num ... list of pointsizes available on typesetter

fonts num name ... number of initial fonts followed by the
names of the fonts. For example:
fonts 4 RIBS

charset this always comes last in the file and is
on a line by itself. Following it is the list
of special character names for this dev­
ice. Names are separated by a space or
a newline. The list can be as long as
necessary. Names not in this list are not
allowed in the font description files.

Res is the basic resolution of the device in increments per inch. Hor
and vert describe the relationships between motions in the horizontal
and vertical directions. If the device is capable of moving in single
basic increments in both directions, both hor and vert would have
values of 1. If the vertical motions only take place in multiples of two
basic units while the horizontal motions take place in the basic incre­
ments, then hor would be 1, while vert would be 2. Unitwidth is the
pointsize in which all width tables in the font description files are
given. Troff automatically scales the widths from the unitwidth size

November 18, 1986

FONT(S) UNIX Sys5 FONT(S)

to the pointsize it is working with. Sizescale is not currently used
and is 1. Paperwidth is the width of the paper in basic increments.
The APS-5 is 6120 increments wide. Paperlength is the length of a
sheet of paper in the basic increments.

For each font supported by the phototypesetter, there is also an
ASCII file with the same name as the font (e.g., R, I, CW). The format
for a font description file is:

name name name of the font, such as R or CW

intemalname name internal name of font

special sets flag indicating that the font is spe­
cial

ligatures name ... 0 Sets flag indicating font has ligatures.

spare1

spacewidth num

charset

The list of ligatures follows and is ter­
minated by a zero. Accepted ligatures
a re: ff fi fl ffi ffl .

available for use

width of space if something other than
1 /3 of \(em is desired as a space.

The charset must come at the end. Each
line following the word charset describes

~~= ~fh:~~c:~;~~t!~e font. Each line has .~
name width kerning code '-__/
name n

where name is either a single ASCII character or a special
character name from the list found in DESC . The width is in
basic increments. The kerning information is 1 if the charac­
ter descends below the line, 2 if it rises above the letter 'a',
and ~ if it both rises and descends. The kerning information
for special characters is not used and so may be 0. The code
is the number sent to the typesetter to produce the character.
The second format is used to indicate that the character has
more than one name. The double .Quote indicates that this
name has the same values as the preceding line. The kerning
and code fields are not used if the width field is a double
quote character.

Troff and its postprocessors read this information from binary
files produced from the ASCII files by a program distributed
with troff called makedev . For those with a need to know, a
description of the format of these files follows:

The file DESC.out starts with the dev structure, defined by
dev.h:

I*
dev.h: characteristics of a typesetter
*I
struct dev {
short filesize;

November 18, 1986

/* number of bytes in file, */

Page 2

FONT(5)

(~

(

(I

Page 3

UNIX Sys5 FONT(5)

r excluding dev part •1
short res; r basic resolution in goobies/inch ·1
short hor; r goobies horizontally ·1
short vert;
short unitwidth; r size at which widths are given•/
short nfonts; r number fonts physically available ·1
short nsizes; r number of pointsizes ·1
short sizescale; r scaling for fractional pointsizes ·1
short paperwidth; r max line length in units •1
short paperlength; r max paper length in units •1
short nchtab; r number of funny names in chtab •1
short lchname; r length of ch name table·;
short spare1; r in case of expansion •1
short spare2;
};

Filesize is just the size of everything in DESC.out excluding the
dev structure. Nfonts is the number of different font positions
available. Nsizes is the number of different pointsizes sup­
ported by this typesetter. Nchtab is the number of special
character names. Lchname is the total number of characters,
including nulls, needed to list all the special character names.
At the end of the structure are two spares for later expan­
sions.

Immediately following the dev structure are a number of
tables. First is the sizes table, which contains nsizes + 1
shorts (a null at the end), describing the pointsizes of text
available on this device. The second table is the
funny_char_index_table . It contains indices into the table
which follows it, the funny_char_strings . The indices point to
the beginning of each special character name which is stored
in the funny_char_strings table. The funny_char_strings table
is lchname characters long, while the funny_char_index_table
is nchtab shorts long.

Following the dev structure will occur nfonts {font}.out files,
which are used to initialize the font positions. These
{font}.out files, which also exist as separate files, begin with a
font structure and then are followed by four character arrays:

struct font { r characteristics of a font ·1
char nwfont; r number of width entries ·1
char specfont; r 1 ~= special font ·1
char ligfont; r 1 == ligatures exist on this font ·1
char spare1; r unused for now •1
char namefont (10]; r name of this font, e.g., R •1
char intname (1 OJ; /'internal name of font, in ASCII*/
};

The font structure tells how many defined characters there are
in the font, whether the font is a "special" font and if it con­
tains ligatures. It also has the ASCII name of the font, which
should match the name of the file it appears in, and the

November 18, 1986

FONT(S) UNIX Sys5 FONT(S)

internal name of the font on the typesetting device (intname).
The internal name is independent of the font position and
name that troff knows about. For example, you might say

/~

mount R in position 4, but when asking the typesetter to actu- \" /
ally produce a character from the R font, the postprocessor
which instructs the typesetter would use intname.

The first three character arrays are specific for the font and
run in parallel. The first array, widths, contains the width of
each character relative to unitwidth. Unitwidth is defined in
DESC. The second array, kerning, contains kerning informa­
tion. If a character rises above the letter ·a', 02 is set. If it
descends below the line, 01 is set. The third array, codes,
contains the code that is sent to the typesetter to produce the
character.

The fourth array is defined by the device description in DESC.
It is the fonUndex_table. This table contains indices into the
width, kerning, and code tables tor each character. The order
that characters appear in these three tables is arbitrary and
changes from one font to the next. In order for troff to be able
to translate from ASCII and the special character names to
these arbitrary tables, the fonUndex_table is created with an
order which is constant for each device. The number of
entries in this table is 96 plus the number of special character
names for this device. The value 96 is 128 - 32, the number
of printable characters in the ASCII alphabet. To determine /
whether a normal ASCII character exists, troff takes the ASCII
value of the character, subtracts 32, and looks in the
fonUndex_table. If it finds a 0, the character is not defined in
this font. If it finds anything else, that is the index into widths,
kerning and codes that describe that character.

To look up a special character name-for example \(pl , the
mathematical plus sign-and determine whether it appears in
a particular font or not, the following procedure is followed. A
counter is set to O and an index to a special character name
is picked out of the counter'th position in the
funny_char_index_table. A string comparision is performed
between funny_char_strings [funny_char_index_table[counter]]
and the special character name, (in our example pl). and if it
matches, then troff refers to this character as (96 + counter).
When it wants to determine whether a specific font supports
this character, it looks in font_index_tab/e [(96 + counter)],
(see below), to see whether there is a 0, meaning the charac­
ter does not appear in this font, or number, which is the index
into the widths, kerning, and codes tables.

Notice that since a value of O in the font_index_table indicates
that a character does not exist, the 0th element of the width,
kerning, and codes arrays are not used. For this reason the
0th element of the width array can be used for a special pur­
pose, defining the width of a space for a font. Normally a
space is defined by troff to be 1 /3 of the width of the \(em
character, but if the Oth element of the width array is non-

November 18, 1986 Page 4

(

(~

FONT(S) UNIX Sys5 FONT(S)

zero, then that value is used for the width of a space.

SEE ALSO

FILES

Page 5

troff(1), troff(5).

/usr/lib/font/dev{X}/DESC.out description file for phototypesetter X
/usr/lib/font/dev{X}/{font}.out font description files for photo­
typesetter X

November 18, 1986

MAN(5) UNIX Sys5 MAN(5)

NAME
man - macros for formatting entries in this manual

SYNOPSIS
nroff -man files

troff -man [-rs1] files

DESCRIPTION

Page 1

These troff(1) macros are used to lay out the format of the entries of
this manual. A skeleton entry may be found in the file
/usr/man/u_man/manO/skeleton. These macros are used by the
man(1) command.

The default page size is 8.5 x 11, with a 6.5 x 1 O text area; the -rs1
option reduces these dimensions to 6 x 9 and 4. 75 x 8.375, respec­
tively; this option (which is not effective in nroff(1)) also reduces the
default type size from 10-point to 9-point, and the vertical line spac­
ing from 12-point to 10-point. The -rV2 option may be used to set
certain parameters to values appropriate for certain Versatec
printers: it sets the line length to 82 characters, the page length to
84 lines, and it inhibits underlining; this option should not be con­
fused with the -Tvp option of the man(1) command, which is avail­
able at some UNIX system sites.

Any text argument below may be one to six "words". Double
quotes (may be used to include blanks in a "word". If text is
empty, the special treatment is applied to the next line that contains
text to be printed. For example, .I may be used. to italicize a whole
line, or .SM followed by .B to make small bold text. By default,
hyphenation is turned off for nroff(1), but remains on for troff(1).

Type font and size are reset to default values before each para­
graph and after processing font- and size-setting macros, e.g., .I,
.RB, .SM. Tab stops are neither used nor set by any macro except
.OT and .TH.

Default units for indents in are ens. When in is omitted, the previ­
ous indent is used. This remembered indent is set to its default
value (7.2 ens in troff(1), 5 ens in nroff-this corresponds to 0.5 in
the default page size) by .TH, .P, and .RS, and restored by .RE.

.TH ts c n

• SH text
. SS text
. B text
. I text
. SM text

Set the title and entry heading; t is the title, s is the sec­
tion number, c is extra commentary, e.g., "local", n is
new manual name. Invokes .DT (see below).
Place subhead text, e.g., SYNOPSIS, here .
Place sub-subhead text, e.g., Options, here .
Make text bold .
Make text italic .
Make text 1 point smaller than default point size .

September 19, 1986

I~

(:

MAN(5)

.RI ab

.P

.HP in

.TP in

.IP tin

.RS in

.RE k

.PMm

.OT

.POV

UNIX Sys5 MAN(5)

Concatenate roman a with italic b , and alternate these
two fonts for up to six arguments. Similar macros alter­
nate between any two of roman, italic, and bold:

.IR .RB .BR .IB .Bl
Begin a paragraph with normal font, point size, and
indent. .PP is a synonym for .P .
Begin paragraph with hanging indent.
Begin indented paragraph with hanging tag. The next
line that contains text to be printed is taken as the tag.
If the tag does not fit, it is printed on a separate line.
Same as .TP in with tag t; often used to get an indented
paragraph without a tag.
Increase relative indent (initially zero). Indent all output
an extra in units from the current left margin.
Return to the k th relative indent level (initially, k = 1; k
=O is equivalent to k = 1); if k is omitted, return to the
most recent lower indent level.
Produces proprietary markings; where m may be P for
PRIVATE, N for NOTICE, BP for BELL LABORATORIES
PROPRIETARY, or BR for BELL LABORATORIES RES­
TRICTED.
Restore default tab settings (every 7.2 ens in troff(1), 5
ens in nroff(1)).
Set the interparagraph distance to v vertical spaces. If
v is omitted, set the interparagraph distance to the
default value (0.4v in troff(1), 1v in nroff(1)).

The following strings are defined:

*R ®in troff(1), (Reg.)f1 in nroff.
*S Change to default type size.
*(Tm Trademark indicator.

The following number registers are given default values by .TH:

IN Left margin indent relative to subheads (default is 7.2
ens in troff(1), 5 ens in nrotf(1)).

LL Line length including IN .
PD Current interparagraph distance.

CAVEATS
In addition to the macros, strings, and number registers mentioned
above, there are defined a number of internal macros, strings, and
number registers. Except for names predefined by troff(1) and
number registers d, m, and y, all such internal names are of the
form XA, where X is one of),], and }, and A stands for any
alphanumeric character.

If a manual entry needs to be preprocessed by eqn(1) (or neqn),
and/or tb/(1), it must begin with a special line (described in man(1)),

September 19, 1986 Page2

MAN(5)

FILES

UNIX Sys5 MAN(5)

causing the man ·command to invoke the appropriate
preprocessor(s). /-~

The programs that prepare the Table of Contents and the Permuted "'--/
Index for this Manual assume the NAME section of each entry con-
sists of a single line of input that has the following format:

name[, name, name ...] \- explanatory text

The macro package increases the inter-word spaces (to eliminate
ambiguity) in the SYNOPSIS section of each entry.

The macro package itself uses only the roman font (so that one can
replace, for example, the bold font by the constant-width font (CW).
Of course, if the input text of an entry contains requests for other
fonts (e.g., .I , .RB, \fl), the corresponding fonts must be mounted.

/usr/lib/tmac/tmac.an
/usr/lib/macros/cmp.n.[dt].an
/usr/lib/macros/ucmp.n.an
/usr/man/[uap]_man/manO/skeleton

SEE ALSO
ocw(1), eqn(1), man(1), nroff(1), tbl(1), tc(1), troff(1).

BUGS ,~

Page3

If the argument to .TH contains any blanks and is not enclosed by '----/
double quotes (there will be strange irregular dots on the output.

September 19, 1986

(

MATH(5) UNIX Sys5 MATH(5)

NAME
math - math functions and constants

SYNOPSIS
#include <math.h>

DESCRIPTION

FILES

This file contains declarations of all the functions in the Math Library
(described in Section 3M), as well as various functions in the C
Library (Section 3C) that return floating-point values.

It defines the structure and constants used by the matherr (3M)
error-handling mechanisms, including the following constant used as
an error-return value:

HUGE The maximum value of a single-precision
floating-point number.

The following mathematical constants are defined for user conveni-
ence:

M_E

M_LOG2E

M_LOG10E

M_LN2

M_LN10

M_PI

M_SQRT2

M_SQRT1_2

The base of natural logarithms (e).

The base-2 logarithm of e .

The base-10 logarithm of e .

The natural logarithm of 2.

The natural logarithm of 10.

The ratio of the circumference of a circle to
its diameter. (There are also several frac­
tions of its reciprocal and its square root.)

The positive square root of 2.

The positive square root of 1/2.

For the definitions of various machine-dependent "constants," see
the description of the <values.h> header file.

/usr/include/math. h

SEE ALSO
intro(3), matherr(3M), values(S).

Page 1 May 14, 1986

MM(5) UNIX Sys5 MM(5)

NAME
mm - the MM macro package for formatting documents

SYNOPSIS
mm [options] [files]

nroff -mm [options] [files)

nroff -cm [options J [files J

mmt [options] [files]

troff -mm [options] [files]

DESCRIPTION
This package provides a formatting capability for a very wide variety
of documents. It is the standard package used by the BTL typing
pools and documentation centers. The manner in which a docu­
ment is typed in and edited is essentially independent of whether
the document is to be eventually formatted at a terminal or is to be
phototypeset. See the references below for further details.

The -mm option causes nroff(1) and troff(1) to use the non­
compacted version of the macro package, while the -cm option
results in the use of the compacted version, thus speeding up the
process of loading the macro package. r

Fl~S ~~

/usr/lib/tmac/tmac.m

/usr/lib/macros/mm[nt]

/usr/lib/macros/cmp.n.[dt].m
/usr/lib/macros/ucmp.n.m

pointer to the non-compacted version
of the package .
non-compacted version of the pack­
age
compacted version of the package
initializers for the compacted version
of the package

SEE ALSO

Page 1

mm(1), mmt(1), nroff(1), troff(1).
MM-Memorandum Macros by D.W. Smith and J.R. Mashey.
Typing Documents with MM by D.W. Smith and E.M. Piskorik.

September 18, 1986

(.

(·

MOSD(5) UNIX Sys5 MOSD(5)

NAME
mosd - the OSDD adapter macro package for formatting documents

SYNOPSIS
osdd [options] [files]

mm -mosd [options] [files]

nroff -mm -mosd [options] [files]

nroff -cm -mosd [options] [files]

mmt -mosd [options] [files]

troff -mm -mosd [options] [files]

DESCRIPTION

Page 1

The osoo adapter macro package is a tool used in conjunction with
the MM macro package to prepare Operations Systems Deliverable
Documentation. Many of the OSDD Standards are different from the
default format provided by MM. The osoo adapter package sets the
appropriate MM options for automatic production of the OSDD Stan­
dards. The osoo adapter package also generates the correct
OSDD page headers and footers, heading styles, Table of Contents
format, etc.

OSDD document (input) files are prepared with the MM macros.
Additional information which must be given at the beginning of the
document file is specified by the following string definitions:

.ds H1 document-number

.ds H2 section-number

.ds H3 issue-number

.ds H4 date

.ds H5 rating

The document-number should be of the standard 10-character for­
mat. The words "Section" and "Issue" should not be included in the
string definitions; they will be supplied automatically when the docu­
ment is printed. For example:

.ds H1 OPA-1P135--01

.ds H2 4

.ds H3 2
automatically produces

OPA-1P135-01
Section 4
Issue 2

as the document page header. Quotation marks are not used in
string definitions.

If certain information is not to be included in a page header, then the
string is defined as null. In other words, ".ds H2" means that there
is no section-number.

September 19, 1986

MOSD(5) UNIX Sys5 MOSD(5)

The osoo Standards require that the Table of Contents be num­
bered beginning with Page 1. By default, the first page of text will
be numbered Page 2. If the Table of Contents has more than one
page, for example n, then either -rPn+ 1 must be included as a
command line option or .nr P n must be included in the document
file. For example, if the Table of Contents is four pages then use
-rP5 on the command line or .nr P 4 in the document file.

The osoo Standards require that certain information such as the
document rating appear on the Document Index, or on the Table of
Contents page if there is no index. By default, it is assumed that an
index has been prepared separately. If there is no index, the follow­
ing must be included in the document file:

.nrDiO
This will ensure that the necessary information is included on the
Table of Contents page.

The OSDD Standards require that all numbered figures be placed at
the end of the document. The .Fg macro is used to produce full
page figures. This macro produces a blank page with the appropri­
ate header, footer, and figure caption. Insertion of the actual figure
on the page is a manual operation. The macro usage is

.Fg page-count "figure caption"
where page-count is the number of pages required for a multi-page
figure (default 1 page). "·· .

The .Fg macro cannot be used within the document unless the final
.Fg in a series of figures is followed by a .SK macro to force out the
last figure page.

The Table of Contents for osoo documents (see Figure 4 in Section
4.1 of the osoo Standards) is produced with:

.Tc
System Type
System Name
Document Type
.Td

The .Tc I .Td macros are used instead of the .TC macro from MM.

The .PM macro may be used to generate proprietary markings - see
the MM document for legal styles.

The .P macro is used for paragraphs. The Np register is set
automatically to indicate the paragraph numbering style. It is very
important that the .P macro be used correctly. All paragraphs
(including those immediately following a .H macro) must use a .P
macro. Unless there is a .P macro, there will not be a number gen­
erated for the paragraph. Similarly, the .P macro should not be
used for text which is not a paragraph. The .SP macro may be
appropriate for these cases, e.g., for "paragraphs" within a list item.

September 19, 1986 Page 2

(

(·

MOSD(5) UNIX Sys5 MOSD(5)

FILES

The page header format is produced automatically in accordance
with the osoo Standards. The osoo Adapter macro package uses
the .TP macro for this purpose Therefore the .TP macro normally
available in MM is not available for users.

/usr/libltmacltmac.osd

SEE ALSO
mm(1), mmt(1), nroff(1), troff(1), mm(S).

Page 3 September 19, 1986

MPTX(5) UNIX Sys5 MPTX(5)

NAME
mptx - the macro package for formatting a permuted index

SYNOPSIS ~-/

nroff -mptx [options] [files]

troff -mptx [options] [files)

DESCRIPTION

FILES

This package provides a definition for the .xx macro used for for­
matting a permuted index as produced by ptx(1). This package
does not provide any other formatting capabilities such as headers
and footers. If these or other capabilities are required, the mptx
macro package may be used in conjunction with the MM macro
package. In this case, the -mptx option must be invoked after the
-mm call. For example:

nroff -cm -mptx file
or

mm -mptx file

/usr/lib/tmac/tmac.ptx pointer to the non-compacted version of the
package

/usr/lib/macros/ptx

SEE ALSO

non-compacted version of the package

mm(1), nroff(1), ptx(1), troff(1), mm(S).

Page 1 September 25, 1986

(_

MV(5) UNIX Sys5 MV(5)

NAME
mv - a troff macro package for typesetting viewgraphs and slides

SYNOPSIS
mvt [-a] [options] [files]

troff [-a) [-rX1] -mv [options] [files]

DESCRIPTION

Page 1

This package makes it easy to typeset viewgraphs and projection
slides in a variety of sizes A few macros (briefly described below)
accomplish most of the formatting tasks needed in making tran­
sparencies. All of the facilities of troff(1), eqn(1), and tb/(1) are
available for more difficult tasks

The output can be previewed on most terminals, and, in particular,
on the TEKTRONIX 4014. For this device, specify the -rX1 option
(this option is automatically specified by the mvt
command-q.v.-when that command is invoked with the -T4014
option). To preview output on other terminals, specify the -a option.

The available macros are:

.VS [n] [1] [d]

.Vw [n] [1] [d]

• Vh [n] [11 [d]

. VW [n] [!] [d]

• VH [n] [tl [d]

Foil-start macro; foil size is to be 7" x 7"; n is the
foil number, i is the foil identification, d is the
date; the foil-start macro resets all parameters
(indent, point size, etc.) to initial default values,
except for the values of i and d arguments inher­
ited from a previous foil-start macro; it also
invokes the .A macro (see below).

The naming convention for this and the following
eight macros is that the first character of the
name (V or S) distinguishes between viewgraphs
and slides, respectively. while the second charac­
ter indicates whether the foil is square (S), small
wide (w), small high (h), big wide (W), or big high
(H). Slides are "skinnier" than the corresponding
viewgraphs: the ratio of the longer dimension to
the shorter one is larger for slides than for view­
graphs. As a result, slide foils can be used for
viewgraphs, but not vice versa; on the other hand,
viewgraphs can accommodate a bit more text.

Same as . VS, except that foil size is 7" wide x
5" high .

Same as . VS, except that foil size is 5" x 7" .

Same as .VS, except that foil size is 7" x5.4" .

Same as . VS, except that foil size is 7'' x 9' '.

September 22, 1986

MV(5)

.Sw [n] [!] [d]

. Sh [n] [1] [d]

. SW [n] [l1 [d]

. SH [n] [!] [cf]

. A [x]

.B [m [s]]

. C [m [s]]

.D [m [s]]

.T string

. I [in] [a [x])

.s [p] [~

. OF n f [n f

September 22, 1986

UNIX Sys5 MV(5)

Same as . VS, except that foil size is 7" x 5" .

Same as . VS, except that foil size is 5" x 7" .

Same as .VS, except that foil size is 7" x 5.4" .

Same as . VS except that foil size is 7" x 9" .

Place text that follows at the first indentation level
(left margin); the presence of x suppresses the 1~

line spacing from the preceding text.

Place text that follows at the second indentation
level; text is preceded by a mark; m is the mark
(default is a large bullet); s is the increment or
decrement to the point size of the mark with
respect to the prevailing point size (default is O); if
s is 100, it causes the point size of the mark to be
the same as that of the default mark .

Same as .B, but for the third indentation level;
default mark is a dash.

Same as .B, but for the fourth indentation level;
default mark is a small bullet.

String is printed as an over-size, centered title .

Change the current text indent (does not affect
titles); in is the indent (in inches unless dimen- '
sioned, default is O); if in is signed, it is an incre­
ment or decrement; the presence of a invokes the
.A macro (see below) and passes x (if any) to it.

Set the point size and line length; p is the point
size (default is "previous"); if p is 100 the point
size reverts to the initial default for the current
foil-start macro; if p is signed, it is an increment or
decrement (default is 18 for .VS, .VH, and .SH,
and 14 for the other foil-start macros); I is the line
length (in inches unless dimensioned; default is
4.2" for .Vh, 3.8" for .Sh, 5" for .SH, and 6" for
the other foil-start macros) .

Define font positions; may not appear within a
toil's input text (i.e., it may only appear after all
the input text for a foil, but before the next foil­
start macro); n is the position of font (f) up to four

"n (f)" pairs may be specified; the first font _
named becomes the prevailing font; the initial set-" ·.
ting is (His a synonym for G):

Page 2

MV(5)

FILES

UNIX Sys5 MV(5)

DF 1 H 2 I 3 B 4 S

.DV [a] [b] [c] [cl] Alter the vertical spacing between indentation lev­
els; a is the spacing for .A, b is for .B, c is for .C,
and d is for .D; all non-null arguments must be
dimensioned; null arguments leave the
corresponding spacing unaffected; initial setting is:

DV 5v 5v 5v Ov

.U str1 [str2] Underline str1 and concatenate str2 (if any) to it.

The last four macros in the above list do not cause a break; the .I
macro causes a break only if it is invoked with more than one argu­
ment; all the other macros cause a break.

The macro package also recognizes the following upper-case
synonyms for the corresponding lower-case troff requests:

AD BR CE Fl HY NA NF NH NX SO SP TA Tl

The Tm string produces the trademark symbol.

The input tilde C) character is translated into a blank on output.

See the user's manual cited below for further details.

/usr/lib/tmac/tmac. v
/usr/lib/macros/vmca

SEE ALSO

BUGS

Page 3

eqn(1), mmt(1), tbl(1), troff(1).

The .VW and .SW foils are meant to be 911 wide by 7" high, but
because the typesetter paper is generally only 8'' wide, they are
printed 7'' wide by 5.4'' high and have to be enlarged by a factor of
917 before use as viewgraphs; this makes them less than totally
useful.

September 22, 1986

PROF(5) UNIX Sys5 PROF(5)

NAME
prof - profile within a function

SYNOPSIS
#define MARK
#include <prof.h>

void MARK (name)

DESCRIPTION
MARK will introduce a mark called name that will be treated the
same as a function entry point. Execution of the mark will add to a
counter for that mark, and program-counter time spent will be
accounted to the immediately preceding mark or to the function if
there are no preceding marks within the active function.

Name may be any combination of up to six letters, numbers or
underscores. Each name in a single compilation must be unique,
but may be the same as any ordinary program symbol.

The symbol MARK must be defined before the header file prof.h is
included. It can be defined by a preprocessor directive as in the
synopsis, or by a command line argument, such as:

cc -p -OMARK foo.c

If MARK is not defined, the MARK (name) statements may be left in ·
the source files containing them and will be ignored.

EXAMPLE

Page 1

In this example, marks can be used to determine how much time is
spent in each loop. Unless this example is compiled with MARK
defined on the command line, the marks are ignored.

#include <prof.h>

too()
{

}

int i, j;

MARK(loop1);
for (i = O; i < 2000; i+ +) {

}
MARK(loop2);
for (j = O; j < 2000; j++) {

}

July 18, 1986

\'- __

~ .. •

PROF{5) UNIX Sys5 PROF{5)

SEE ALSO
profil(2), monitor(3C).
prof(1) in the Sys5 UNIX User Reference Manual.

(·

July 18, 1986 Page 2

PROFILE(5) UNIX Sys5 PROFILE(5)

NAME
profile - setting up an environment at login time

DESCRIPTION

FILES

If your login directory contains a file named .profile, that file will be
executed (via the shell's exec .profile) before your session begins;
.profiles are handy for setting exported environment variables and
terminal modes. If the file /etc/profile exists, it will be executed for
every user before the .profile. The following example is typical
(except for the comments):

Make some environment variables globa
export MAIL PATH TERM LOGNAME
Set file creation mask
umask 22
Tell me when new mail comes in
MAIL= /usr/mail/myname
Add my /bin directory to the shell se
PATH= $PATH :$HOME/bin
Set terminal type
echo "terminal: \c"
read TERM
case $TERM in

300)
300s)
450)
hp)

esac

745 I 735)
43)
4014 Itek)
*)

$HOME/.profile
/etc/profile

stty cr2 nlO tabs; tabs;;
stty cr2 nlO tabs; tabs;;
stty cr2 nlO tabs; tabs;;
stty crO nlO tabs; tabs;;
stty cr1 nl1 -tabs; TERM=745;;
stty cr1 nlO -tabs;;
stty crO nlO -tabs ff1; TERM=4014; echo '\33;";;
echo "$TERM unknown";;

SEE ALSO
env(1), login(1), mail(1), sh(1), stty(1), su(1), environ(?), term(?).

Page 1 September 29, 1986

(

REGEXP(S) UNIX Sys5 REGEXP(5)

NAME
regexp - regular expression compile and match routines

SYNOPSIS
#define INIT <declarations>
#define GETC() <getc code>
#define PEEKC() <peekc code>
#define UNGETC(c) <ungetc code>
#define RETURN(pointer) <return code>
#define ERROR(val) <error code>

#include <regexp.h>

char *Compile (instring, expbuf, endbuf, eof)
char *instring, ~,expbuf, *endbuf;
int eof;

int step (string, expbuf)
char *String, *expbuf;

extern char *IOC1, *IOC2, *IOCS;

extern int circf, sed, nbra;

DESCRIPTION

Page 1

This page describes general-purpose regular expression matching
routines in the form of ed (1), defined in /usr/include/regexp.h .
Programs such as ed (1), sed (1), grep (1), bs (1), expr (1), etc.,
which perform regular expression matching use this source file. In
this way, only this file need be changed to maintain regular expres·
sion compatibility.

The interface to this file is unpleasantly complex. Programs that
include this file must have the following five macros declared before
the "#include <regexp.h>" statement. These macros are used by
the compile routine.

GETC()

PEEKC()

UNGETC(c)

Return the value of the next character in the
regular expression pattern. Successive calls
to GETC() should return successive charac­
ters of the regular expression.

Return the next character in the regular
expression. Successive calls to PEEKC()
should return the same character (which
should also be the next character returned by
GETC()).

Cause the argument c to be returned by the
next call to GETC() (and PEEKC()). No more
that one character of pushback is ever
needed and this character is guaranteed to
be the last character read by GETC(). The

May 14, 1986

REGEXP(5) UNIX Sys5 REGEXP(5)

value of the macro UNGETC(c) is always
ignored.

RETURN(pointer) This macro is used on normal exit of the
compile routine. The value of the argument
pointer is a pointer to the character after the
last character of the compiled regular expres·
sion. This is useful to programs which have
memory allocation to manage.

ERROR(val) This is the abnormal return from the compile
routine. The argument val is an error number
(see table below for meanings). This call
should never return.

ERROR MEANING
11 Range endpoint too large.
16 Bad number.
25 ''\digit"" out of range.
36 Illegal or missing delimiter.
41 No remembered search string.
42 \(\) imbalance.
43 Too many\(.
44 More than 2 numbers given in\{ \}.
45 } expected after \.
46 First number exceeds second in\{ \}.
49 [] imbalance.
50 Regular expression overflow.

The syntax of the compile routine is as follows:

compile(instring, expbuf, endbuf, eof)

The first parameter instring is never used explicitly by the compile
routine but is useful for programs that pass down different pointers
to input characters. It is sometimes used in the INIT declaration
(see below). Programs which call functions to input characters or
have characters in an external array can pass down a value of
((char *) 0) for this parameter.

The next parameter expbuf is a character pointer. It points to the
place where the compiled regular expression will be placed.

The parameter endbuf is one more than the highest address where
the compiled regular expression may be placed. If the compiled
expression cannot fit in (endbuf - expbuf) bytes, a call to
ERROR(SO) is made.

The parameter eof is the character that marks the end of the regular
expression. For example, in ed (1), this character is usually "/".

May 14, 1986 Page 2

REGEXP(5) UNIX Sys5 REGEXP(5)

Page 3

Each program that includes this file must have a #define statement
for INIT. This definition will be placed right after the declaration for
the function compile and the opening curly brace ({). It is used for
dependent declarations and initializations. Most often it is used to
set a register variable to point the beginning of the regular expres­
sion so that this register variable can be used in the declarations for
GETC(), PEEKC() and UNGETC(). Otherwise it can be used to
declare external variables that might be used by GETC(), PEE KC()
and UNGETC(). See the example below of the declarations taken
from grep (1).

There are other functions in this file which perform actual regular
expression matching, one of which is the function step . The call to
step is as follows:

step(string, expbuf)

The first parameter to step is a pointer to a string of characters to
be checked for a match. This string should be null terminated.

The second parameter expbuf is the compiled regular expression
which was obtained by a call of the function compile .

The function step returns non-zero if the given string matches the
regular expression, and zero if the expressions do not match. If
there is a match, two external character pointers are set as a side
effect to the call to step . The variable set in step is foe 1 . This is a
pointer to the first character that matched the regular expression.
The variable loc2 , which is set by the function advance , points to
the character after the last character that matches the regular
expression. Thus if the regular expression matches the entire line,
Joe 1 will point to the first character of string and loc2 will point to
the null at the end of string .

Step uses the external variable circf which is set by compile if the
regular expression begins with • . If this is set then step will try to
match the regular expression to the beginning of the string only. If
more than one regular expression is to be compiled before the first
is executed the value of circf should be saved for each compiled
expression and circf should be set to that saved value before each
call to step.

The function advance is called from step with the same arguments
as step . The purpose of step is to step through the string argu­
ment and call advance until advance returns non-zero indicating a
match or until the end of string is reached. If one wants to con­
strain string to the beginning of the line in all cases, step need not
be called; simply call advance .

When advance encounters a * or \{ \} sequence in the regular
expression, it will advance its pointer to the string to be matched as

May 14, 1986

REGEXP(5) UNIX Sys5 REGEXP(5)

far as possible and will recursively call itself trying to match the rest
of the string to the rest of the regular expression. As long as there / ·
is no match, advance will back up along the string until it finds a\" ./
match or reaches the point in the string that initially matched the *
or \{ \}. It is sometimes desirable to stop this backing up before the
initial point in the string is reached. If the external character pointer
foes is equal to the point in the string at sometime during the back-
ing up process, advance will break out of the loop that backs up
and will return zero. This is used by ed (1) and sed (1) for substitu­
tions done globally (not just the first occurrence, but the whole line)
so, for example, expressions like SIY*//9 do not loop forever.

The additional external variables sed and nbra are used .for special
purposes.

EXAMPLES

FILES

The following is an example of how the regular expression macros
and calls look from grep (1):

#define INIT
#define GETC()
#define PEEKC()
#define UNGETC(c)
#define RETURN(c)
#define ERROR(c)

#include <regexp.h>

register char ''SP = instring;
(*Sp+_,_)
(*SP)
(-sp)
return;
regerr()

(void) compile(*argv, expbuf, &expbuf[ESIZE], 1 '0');

if (step(linebuf, expbuf))
succeed();

/us r/include/regexp. h

SEE ALSO

BUGS

bs(1), ed(1), expr(1), grep(1), sed(1) in the Sys5 UNIX User Refer­
ence Manual.

The handling of circf is kludgy. The actual code is probably easier
to understand than this manual page.

May 14, 1986 Page 4

(

(~

STAT(5) UNIX Sys5 STAT(5)

NAME
stat - data returned by stat system call

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

DESCRIPTION

FILES

Page 1

The system calls stat and fstat return data whose structure is
defined by this include file. The encoding of the field st_mode is
defined in this file also.

/*
* Structure of the result of stat
*/

struct stat
{

dev_t st_dev;
ino_t st_ino;
ushort st_mode;
short st_nlink;
us ho rt st_uid;
ushort st_gid;
dev_t st_rdev;
off_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;

};

#define S_IFMT 0170000 lo• type of file *f
#define S_IFDIR 0040000 I* directory *f
#define S_IFCHR 0020000 f* character special */
#define S_IFBLK 0060000 ;,. block special *f
#define S_IFREG 0100000 /* regular *f
#define S_IFIFO 0010000 f* fifo */
#define S_ISUID 04000 f* set user id on execution*/
#define S_ISGID 02000 /* set group id on execution *f
#define S_ISVTX 01000 f* save swapped text even after use */
#define S_IREAD 00400 f* read permission, owner *f
#define S_IWRITE 00200 f* write permission, owner *f
#define S_IEXEC 00100 f* execute/search permission, owner *I

/usr/include/sys/types. h
/usr/include/sys/stat.h

May 14, 1986

STAT(5) UNIX Sys5 STAT(5)

SEE ALSO
stat(2), types(5).

May 14, 1986 Page 2

(~

TERM(5) UNIX Sys5 TERM(5)

NAME
term - conventional names for terminals

DESCRIPTION

Page 1

These names are used by certain commands (e.g., tabs (1) , man
(1) and are maintained as part of the shell environment (see sh (1),
profile (4), and environ (5)) in the variable $TERM:

1520 Datamedia 1520
1620 DIABLO 1620 and others using the HyType 11 printer
1620-12 same, in 12-pitch mode
2621 Hewlett-Packard HP2621 series
2631 Hewlett-Packard 2631 line printer
2631-c Hewlett-Packard 2631 line printer - compressed mode
2631-e Hewlett-Packard 2631 line printer - expanded mode
2640 Hewlett-Packard HP2640 series
2645 Hewlett-Packard HP264n series (other than the 2640 series)
300 DASl1DTC1GSI 300 and others using the HyType I printer
300-12 same, in 12-pitch mode
300s DASl/DTC/GSI 300s
382 OTC 382
300s-12
3045
33
37
40-2
40-4
4540
3270
4000a
4014
43
450
450-12
735
745
dumb

sync

hp
Ip
tn1200
tn300

same, in 12-pitch mode
Datamedia 3045
TELETYPE® Model 33 KSR
TELETYPE Model 37 KSR
TELETYPE Model 40/2
TELETYPE Model 40/4
TELETYPE Model4540
IBM Model 3270
Trendata 4000a
TEKTRONIX 4014
TELETYPE Model 43 KSR
DASI 450 (same as Diablo 1620)
same, in 12-pitch mode
Texas Instruments Tl735 and Tl725
Texas Instruments Tl745
generic name for terminals that lack reverse
line-feed and other special escape sequences
generic name for synchronous TELETYPE
4540-compatible terminals
Hewlett-Packard (same as 2645)
generic name for a line printer
User Electric TermiNet 1200
User Electric TermiNet 300

Up to 8 characters, chosen from [-a-z0-9], make up a basic termi­
nal name. Terminal sub-models and operational modes are dis­
tinguished by suffixes beginning with a -. Names should generally

August 8, 1986

TERM(5) UNIX Sys5 TERM{5)

be based on original vendors, rather than local distributors. A termi­
nal acquired from one vendor should not have more than one dis­
tinct basic name.

Commands whose behavior depends on the type of terminal should
accept arguments of the form -T term where term is one of the
names given above; if no such argument is present, such com­
mands should obtain the terminal type from the environment vari­
able $TERM , which, in turn, should contain term .

SEE ALSO

BUGS

profile(4), environ(5).
man(1), mm(1), nroff(1), sh(1), stty(1), tabs(1), tplot(1 G) in the Sys5
UNIX User's Reference Manual.

This is a small candle trying to illuminate a large, dark problem.
Programs that ought to adhere to this nomenclature do so some­
what fitfully.

August 8, 1986 Page 2

/

TROFF(5) UNIX Sys5 TROFF(5)

'NAME

(·. . troff - description of output language

· DESCRIPTION

(:

Page 1

The device-independent troff outputs a pure ASCII description of a
typeset document. The description specifies the typesetting device,
the fonts, and the point sizes of characters to be used as well as the
position of each character on the page. A list of all the legal com­
mands follows Most numbers are denoted as n and are ASCII
strings. Strings inside of [] are optional. Troff may produce them,
but they are not required for the specification of the language. The
character \n has the standard meaning of "newline" character.
Between commands white space has no meaning. White space
characters are spaces and newlines. All commands which have an
arbitrary length numericai parameter or word must be followed by

. white space. For example, the command to specify point size,
s###, must be followed by a space or newline.

sn

fn

ex

Cxyz

Hn

hn

Vn

The point size of the characters to be gen­
erated.

The font mounted in the specified position is to
be used. The number ranges from O to the
highest font presently mounted. O is a special
position, invoked by troff, but not directly acces­
sible to the troff user. Normally fonts are
mounted starting at position 1.

Generate the character x at the current location
on the page; x is a single ASCII character.

Generate the special character xyz. The name
of the character is delimited by white space.
The name will be one of the special characters
legal for the typesetting device as specified by
the device specification found in the file DESC.
This file resides in a directory specific for the
typesetting device. (See font(5) and
/usr/lib/font/dev*.)

Change the horizonal position on the page to
the number specified. The number is in basic
units of motions as specified by DESC . This is
an absolute "goto".

Add the number specified to the current hor­
izontal position. This is a relative "goto".

Change the vertical position on the page to the
number specified (down is positive). ·

September 19, 1986

TROFF(5)

vn

nnx

nb a

w

pn

{

}

txxxxx

.... \n

DI x y\n

De d\n

September 19, 1986

UNIX Sys5 TROFF(5)

Add the number specified to the current vertical
position.

This is a two-digit number followed by an ASCII
character. The meaning is a combination of hn
followed by ex. The two digits nn are added to
the current horizontal position and then the
ASCII chwacter, x, is produced. This is the
most common form of character specification.

This command indicates that the end of a line
has been reached. No action is required,
though by convention the horizontal position is
set to 0. Troff will specify a resetting of the x, y
coordinates on the page before requesting that
more characters be printed. The first number,
b, is the amount of space before the line and
the second number, a, the amount of space
after the line. The second number is delimited
by white space.

A w appears between words of the input docu­
ment. No action is required. It is included so
that one device can be emulated more easily on /
another device.

Begin a new page. The new page number is
included in this command. The vertical position
on the page should be set to 0.

Push the current environment, which means
saving the current point size, font, and location
on the page.

Pop a saved environment.

Print the string of characters, xxxxx , using the
natural width of each character to determine the
next x coordinate. Troff does not currently pro­
duce this form of command. It is not recom­
mended. The characters will probably be too
close together.

A line beginning with a pound sign is a com­
ment.

Draw a line from the current location to x, y. At
the end of the drawing operation the current
location will be x, y.

Draw a circle of diameter d with the leftmost
edge being at the current location (x, y). The

Page 2

".. ...

TROFF(5)

De dx dy\n

Da x y r\n

o- x y x y ... \n

x i[nit]\n

x T device\n

x r[es] n h v\n

x p[ause]\n

x s[top]\n

x t[railer]\n

Page 3

UNIX Sys5 TROFF(5)

current location after drawing the circle will be
x+d,y, the rightmost edge of the circle.

Draw an ellipse with the specified axes. dx is
the axis in the x direction and dy is the axis in
the y direction. The leftmost edge of the ellipse
will be at the current location. After drawing the
ellipse the current location will be x+dx,y.

Draw a counterclockwise arc from the current
location to x, y using a circle of radius r. The
current location after drawing the arc will be x,
y.

Draw a spline curve (wiggly line) between each
of the x, y coordinate pairs starting at the
current location. The final location will be the
final x, y pair of the list. Currently there may be
no more than 36 x, y pairs to this command.

Initialize the typesetting device. The actions
required are dependent on the device. An init
command will always occur before any output
generation is attempted.

The name of the typesetter is device . This is
the same as the argument to the -T option.
The information about the typesetter will be
found in the directory /usr/lib/font/dev{device}.

The resolution of the typesetting device in incre­
ments per inch is n . Motion in the horizontal
direction can take place in units of h basic
increments. Motion in the vertical direction can
take place in units of v basic increments. For
example, the APS-5 typesetter has a basic
resolution of 723 increments per inch and can
move in either direction in 723rds of an inch.
Its specification is:
x res 723 1 1

Pause. Cause the current page to finish but do
not relinquish the typesetter.

Stop. Cause the current page to finish and
then relinquish the typesetter. Perform any
shutdown and bookkeeping procedures
required.

Generate a trailer. On some devices no opera­
tion is performed.

September 19, 1986

TROFF(5) UNIX Sys5 TROFF(5)

x f[ont] n name\n Load the font name into position n.

x H[eight] n\n Set the character height to n points. This /' ~
causes the letters to be elongated or shortened. ',_______,,
It does not aff.ect the width of a letter.

x S[lant] n\n

September 19, 1986

Set the slant to n degrees. Only some
typesetters can do this and not all angles are
supported.

Page4

(

(/

TTYTYPE(5) (Plexus) TTYTYPE(5)

NAME
ttytype - data base of terminal types by port

SYNOPSIS
/etc/ttytype

DESCRIPTION
Ttytype is a database containing, for each TTY port on the system,
the kind of terminal that is attached to it. The terminal kinds are
from the names listed in termcap(S). Each port description occu­
pies one line. The line contains the terminal kind, a space, and the
name of the TTY, minus the /dev prefix. A sample ttytype file looks
like this:

vt100 console
adm3a ttyO
vt100 tty1
vt52 tty2
vt100 tty3
vt100 tty4
dm1s20 ttys
vt100 tty6
vt100 tty?

This information is used by tset(1) and login(1) to initialize the TERM
variable at login time.

SEE ALSO
tset(1), login(1).

Page 1 October 13, 1986

TYPES(5) UNIX Sys5 TYPES(5)

NAME
types - primitive system data types

SYNOPSIS
#include <sys/types.h>

DESCRIPTION
The data types defined in the include file are used in UNIX system
code; some data of these types are accessible to user code:

typedef struct { int r[1]; } * physadr;
typedef long daddr _t;
typedef char* caddr_t;
typedef unsigned int uint;
typedef unsigned short ushort;
typedef ushort ino_t;
typedef short cnt_t;
typedef long time_t;
typedef int labeU[10];
typedef short dev _t;
typedef long off_t;
typedef long paddr _t;
typedef long key_t;

The form daddr _t is used for disk addresses except in an i-node on /'
disk, see ts (4). Times are encoded in seconds since 00:00:00 GMT,
January 1, 1970. The major and minor parts of a device code
specify kind and unit number of a device and are installation­
dependent. Offsets are measured in bytes from the beginning of a
file. The label_t variables are used to save the processor state
while another process is running.

SEE ALSO
fs(4).

Page 1 May 14, 1986

VALUES(5) UNIX Sys5 VALUES(5)

NAME
values - machine-dependent values

SYNOPSIS
#include <values.h>

DESCRIPTION

Page 1

This file contains a set of manifest constants, conditionally defined
for particular processor architectures.

The model assumed for integers is binary representation (one's or
two's complement), where the sign is represented by the value of
the high-order bit.

BITS(type) The number of bits in a specified type (e.g.,
int).

HIBITS

HIBITL

HIBITI

MAXSHORT

MAXLONG

MAXI NT

The value of a short integer with only the
high-order bit set (in most implementations,
Ox8000).

The value of a long integer with only the
high-order bit set (in most implementations,
Ox80000000).

The value of a regular integer with only the
high-order bit set (usually the same as HIBITS
or HIBITL).

The maximum value of a signed short integer
(in most implementations, Ox7FFF == 32767).

The maximum value of a signed long integer
(in most implementations, Ox7FFFFFFF ==
2147483647).

The maximum value of a signed regular
integer (usually the same as MAXSHORT or
MAXLONG).

MAXFLOAT, LN_MAXFLOAT The maximum value of a single­
precision floating-point number,
and its natural logarithm.

MAXDOUBLE, LN_MAXDOUBLE The maximum value of a double­
precision floating-point number,
and its natural logarithm.

MINFLOAT, LN_MINFLOAT The minimum positive value of a
single-precision floating-point
number, and its natural logarithm.

May 21, 1985

VALUES(5) UNIX Sys5 VALUES(5)

MINDOUBLE, LN_MINDOUBLE The minimum positive value ·of a /---.....,

FSIGNIF

DSIGNIF

FILES
/usr/include/values. h

SEE ALSO
intro(3), math(S).

May 21, 1985

double-precision floating-point (
number, and its natural logarithm. "-----/

The number of significant bits lrl'ttie mantissa
of a single-precision floating-point number,

·The number of significant bits in the mantissa
of a double-precision floating-point number.

Page2

VARARGS(5) UNIX Sys5 VARARGS(5)

NAME
varargs - handle variable argument list

SYNOPSIS
#include <varargs.h>

va_alist

va_dcl

void va_start(pvar)
va_list pvar;

type va_arg(pvar, type)
va_list pvar;

void va_end(pvar)
va_list pvar;

DESCRIPTION

Page 1

This set of macros allows portable procedures that accept variable
argument lists to be written. Routines that have variable argument
lists (such as printf (3$)) but do not use varargs are inherently non­
portable, as different machines use different argument-passing con­
ventions.

va_alist is used as the parameter list in a function header.

va_dcl is a declaration for va_alist . No semicolon should follow
va_dcl.

va_list is a type defined for the variable used to traverse the list.

va_start is called to initialize pvar to the beginning of the list.

va_arg will return the next argument in the list pointed to by pvar .
Type is the type the argument is expected to be. Different types
can be mixed, but it is up to the routine to know what type of argu­
ment is expected, as it cannot be determined at runtime.

va_end is used to clean up.

Multiple traversals, each bracketed by va_start ... va_end, are pos­
sible.

May 14, 1986

VARARGS(5) UNIX Sys5 VARARGS(5)

EXAM PU:
This example is a possible implementation of exec/ (2).

#include <varargs.h>
#define MAXARGS 100

f* execl is called by
execl(file, arg1, arg2, ... , (char *)O);

*f
execl(va_alist)
va_dcl
{

va_list ap;
char *file;
char *args[MAXARGS];
int argno = O;

va_start(ap);
file = va_arg(ap, char*);
while ((args[argno++] = va_arg(ap, char'"))!= (char 0<)0)

va_end(ap);
return execv(file, args);

SEE ALSO

BUGS

exec(2), printf(3S).

It is up to the calling routine to specify how many arguments there
are, since it is not always possible to determine this from the stack
frame. For example, exec/ is passed a ;z~ro pointer to signal the
end of the list. Printf can tell how many arguments are there by the
format.
It is non-portable to specify a second argument of char , short , or
float to va_arg , since arguments seen by the called function are not
char , short , or float . C converts char and short arguments to int
and converts float arguments to double before passing them to a
function.

May 14, 1986 Page 2

