
OSBORNE 1
User's Reference

Guide

COMPUTER CORPORATION

by Thorn Hogan and Mike lannarnico

BSBDRNE1

User's
Reference

Guide
by Thorn Hogan

and Mike Iannarnico

1M

Acknowledgements
Particular acknowledgement should be awarded the following people for their participation in this
newly revised and typeset User's Reference Guide: to Roger Gottlieb for directing and overseeing the
project; to Gary Cuevas for his expertise in BASIC and program contributions. Also, a special thanks
to all of those Osborne,users who took the time to point out errors and inconsistencies in previous
editions and who made valuable suggestions for improvement.

Part #: 2F00161-01

All rights to this publication are reserved. No part of this document may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any language, in any form or by any
means, electronic, mechanical, magnetic, optical, chemical, manual, or in any other manner, without
prior permission from OSBORNE COMPUTER CORPORATION, 26538 Danti Court, Hayward, CA
94545.

Chapters 3,7, and 8 copyright © 1981 by Thorn Hogan.
Remainder copyright © 1981 by Osborne Computer Corporation.

Osborne 1 is a registered trademark of Osborne Computer Corporation. WordStar, copyright © 1981,
and MailMerge are registered trademarks of MicroPro Corporation. SuperCalc, copyright © 1982, is a
registered trademark of Sorcim Corporation. CP/M, copyright © 1981, is a registered trademark of
Digital Research Corporation. Microsoft BASIC, copyright © 1977-1981, by Microsoft. CBASIC
copyright © by Compiler Software, Inc.

Osborne Computer Corporation reserves the right to make changes or improvements to the equip
ment, software, and documentation herein described at any time and without notice.

Notice: Please be advised that any tampering with the internal hardware of the Osborne 1 computer
may void the warranty.

iii

The Osborne 1 computer falls under the rules regarding
radiation and radio frequency emission by Class A computing
devices. The following information must be supplied to users
of the Osborne 1 in accordance with the FCC standard Part 15,
Subpart J:

This equipment generates and uses radio frequency en
ergy and if not installed and used properly, that is, in
strict accordance with the manufacturer's instructions,
may cause interference to radio and television recep
tion. It has been type tested and found to comply with
the limits for a Class A computing device in accordance
with the specifications in Subpart J or Part 15 of FCC
Rules, which are designed, however, to provide
reasonable protection against such interference in a
residential installation. There is no guarantee that in
terference will not occur in a particular installation. If
this equipment does cause interference to radio or tele
vision reception, which can be determined by turning
the equipment on and off, the user is encouraged to
try to correct the interference by one or more of the
following measures:

• Reorient the receiving antenna.
• Relocate the computer with respect to the

receiver.
• Move the computer away from the receiver.
• Plug the computer into a different outlet so

that the computer and receiver are on different
branch circuits.

If necessary, the user should consult the dealer or an
experienced radio/television technician for additional
suggestions. The user may find the following booklet
prepared by the Federal Communications Commission
helpful: "How to Identify and Resolve Radio-TV Inter
ference Problems."

The booklet is available from the U.S. Government
Printing Office, Washington, D.C. 20402, Stock No.
004-000-00345-4.

v

Table of Contents
PARTl

Introduction ix

Chapter 1 Getting To Know Your Computer 1

Setting Up the Osborne 1 Computer 2
Plugging Things Into Your Computer 8

The Monitor 10
The Keyboard 11

Restarting the Computer 14
Diskettes and Disk Drives 14

Putting Diskettes Into Drives 18
Some Last Words About Diskettes 20

Moving On 22

Chapter 2 How To Use Your Computer 23

Plug It In, Turn It On 24
Loading a Program 25

Leaving HELP 27
Formatting a Diskette 29

Copying Diskettes 32
Reset 36

More HELP 36
Setting Up 37

Certified Computer User 42

Chapter 3 Learning and Using CP/M 45

Operating Systems 46
Lesson 1: File Names 47

Lesson 2: Disk Drives 50
Lesson 3: Some CP/M Commands 52

Lesson 4: Ambiguity and CP/M 54
Lesson 5: Control-Character Commands 56

Lesson 6: PIP and STAT 58

vi OSBORNE 1 USER'S GUIDE

Lesson 7: Error Messages 63
Time to Move On 64

Chapter 4 WordStar and MailMerge 65

What Is WordS tar and What Does It Do? 66
Starting WordStar 67

Lesson 1: Starting From the No-File Menu 68
Lesson 2: Getting Help When Needed 74

Lesson 3: Entering Text 76
Getting Started Summary 81

Lesson 4: Editing a File 83
Lesson 5: Margins and Tabs 88
Lesson 6: Block Maneuvers 93

Lesson 7: Some Finishing Touches Using WordS tar 98
Lesson 8: Finding Text 100

Lesson 9: Print-Control Characters 102
Printing a File 107

WordStar Commands 111
Lesson 10: DOT Commands 113

Lesson 11: Managing Files 120
Lesson 12: MailMerge 124

Another Section Completed 150

Chapter 5 SuperCalc 153

Introduction 154
What Is SuperCalc? 154

The Worksheet 155
Getting Started 156

Lesson 1: Moving Around the Worksheet 158
Lesson 2: Data Entry 164

Lesson 3: Blanking, Protecting, and Saving Your Work 176
Lesson 4: COpy and REPLICATE 186

Lesson 5: Move, Insert, and Delete 194
Lesson 6: Formatting 201

Lesson 7: TITLE LOCK and WINDOW 209
Lesson 8: Graphic Formats and Recalculations 214

TABLE OF CONTENTS vii

Lesson 9: OUTPUT 221
Lesson 10: Creating Command Files 224

Some Last Words on SuperCa1c 226

Chapter 6 CBASIC 231

Introduction 232
What CBASIC Is 232

Lesson 1: Creating CBASIC Programs 232
Lesson 2: Compiling: Getting CBASIC Programs Ready 235

Lesson 3: Using a CBASIC Program 237

Chapter 7 Microsoft BASIC 241

Starting Microsoft BASIC 242
Lesson 1: Entering Programs 244

Lesson 2: Introduction to Variables 249
Lesson 3: Control Structures 270

Lesson 4: Getting Around on the Diskette 278
Lesson 5: Getting Information to a Program 281

Lesson 6: Advanced Variable Use and Functions 289
Lesson 7: Advanced Control Structures 294

Lesson 8: Disk Files and BASIC 296
Closing Up the Basic Shop 304

Chapter 8 CP/M Revisited 305

Lesson 1: Creating New CP/M Systems 306
Lesson 2: Odds and Ends 308

Lesson 3: Assembly-Language Programming 315
Lesson 4: Inside CP/M 330

Lesson 5: SUBMIT and XSUB 335
Eight Down, One to Go 338

Chapter 9 System Specifications 339

Memory Layout 342
Direct Screen Manipulations 347

The Ports 351
The Keyboard 354

viii OSBORNE 1 USER'S GUIDE

The Modem and RS-232 Interfaces 355
The Disk Interface 359

The IEEE-488 Interface 361
The Centronics Interface 364

Appendix 1 Modifying WordStar 367
Modifying WordS tar on the Osborne 1 368

Appendix 2 IEEE-488 Implementation 383

The Osborne 1 IEEE-488 Implementation 384
IEEE-488 Sample Programs 396

Appendix 3 SuperCalc Installation 407
SuperCalc Installation Procedure 408

Table of Contents Part 2 413

CP/M 417
WordStar 445

SuperCa1c 523
CBASIC 571
MBASIC 643

Software Error Messages 717

Appendix 4 Single- & Double-Density Differences 759

IX

Introduction

This manual is unlike most others in the microcomputer world.

1. This manual was written by users of the Osborne I,
not technicians.

2. The tutorial portion of this manual was written several
months after the computer appeared.

3. This manual emphasizes teaching of how to make the
computer perform tasks, and does not stress the rote
memorization of material.

4. This manual was written, in part, using the equipment
and software it describes.

The tutorial begins with chapter I, an exploration of the physi
cal attributes of the Osborne 1; including a section on setting it
up and turning it on, and an explanation of what diskettes are.
The tutorial assumes that you have no knowledge of computing
and makes sure you acquire the fundamental information you
need to use your new computer effectively.

Each succeeding chapter in the tutorial covers progressively
more specialized information and tasks. Chapter 2 tells you how
to start the system and copy diskettes; you'll also find a few
other things you'll need to know in order to understand later
chapters. Chapter 3 tells you all you need to know about the
CP/M operating system in order to efficiently use the Osborne 1.

Chapters 4 and 5 deal with WordS tar and SuperCalc, the two
primary programs that come with the Osborne 1. Both of these
chapters take you from no knowledge of the tasks involved to a
full understanding of how to use WordStar and SuperCalc.

X OSBORNE 1 USER'S GUIDE

Chapters 6 and 7 examine CBASIC and Microsoft BASIC, and
cover the procedures for using prewritten programs in those
computer languages. Chapter 7 specifically instructs you on
how to begin learning to program the computer.

Finally, chapters 8 and 9 explore complex and advanced topics
concerning CP/M and the internal design of the Osborne 1.

The material in the tutorial section is progressively'more special
ized; thus, many newcomers to computing will find that by the
end of chapter 5 they know everything they need to know to
use their Osborne 1 computer. With the exception of the first
three chapters, feel free to skip around and to stop once you
think you've grasped all the information you need to use your
computer. Someday you may find that the rest of the tutorial is
relevant because of new uses you discover for your Osborne 1.

The tutorial is designed to be used in conjunction with the
Reference Guide. It is the Reference Guide, located after the
tutorial, that you'll use most often once you become familiar
with how your Osborne 1 works. The Reference Guide defines
all the features of CP/M, WordStar, SuperCalc, and BASIC, and
explains how to use them.

We are proud of this manual, but considering the very nature of
documentation, some mistakes have undoubtedly gotten by.
Also, since the computer and software that accompany it are
constantly being refined, so must the documentation be revised
to reflect these improvements. If you find something in this
manual that isn't complete, accurate, or easy to understand,
please let us know so that we can make whatever changes are
necessary in future revisions.

Mike Iannamico & Thorn Hogan

~SBDRNE1
TM

User's
Guide

CHAPTER 1-
Getting To

Know Your
Computer

This section describes the various parts of the
Osborne 1 computer. You'll also learn how to

ready the machine for use.

2 OSBORNE 1 USER'S GUIDE

Setting Up the Osborne 1 Computer

The Osborne 1 is a sophisticated business machine. To get
started, you simply place it on a flat surface, with the latches on
top. The handle should be at the rear facing away from you.

The keyboard is on the inside of the cover, which you remove
by unfastening the latches. A cable connects the keyboard to the
main body of the Osborne 1. Be careful that you don't violently
jerk the keyboard away from the computer, doing so may
damage the cable.

GETTING TO KNOW YOUR COMPUTER 3

The keyboard has a standard typewriter layout, with a ten-key
numeric pad on the right side:

When you look at the Osborne I, the most prominent features
facing you are the screen (monitor) and the disk drives:

DRIVEA MONITOR DRIVE 8

4 OSBORNE 1 USER'S GUIDE

Orient the display so that it is comfortable. Some people like to
set the bottom rim of the main computer unit on the back edge
of the keyboard. If you try this, you'll find that the monitor tilts
up toward you at an almost perfect angle.

There is a vent on the Osborne 1 used to dissipate heat when
the computer is in use. The vent, located on the top side (when
the computer is set up for use), should always be uncovered. To
open the vent, press the finger-sized, corrugated depression
and slide the cover in the direction of the handle.

GETTING TO KNOW YOUR COMPUTER 5

The power cord, power switch, fuse card, and circuit breaker
fuse are all located in the covered power well, next to the han
dle. The hatch covering the power well opens very easily, just
pull the tab and lift upward.

Notice that the fuse and fuse card are accessible by sliding the
clear plastic fuse cover over the three-pronged plug. A one-amp
fuse protects the internal components from damage caused by
power overloads. To replace the fuse, slide the fuse cover away
from the fuse, then pull upward on the "fuse pull" tab.

WARNING: Consult your authorized dealer on switching
voltages.

6 OSBORNE 1 USER'S GUIDE

Now that we have detailed the contents of the power well,
it is time to plug the computer in. Connect the socket end of
the power cord onto the three-pronged plug located in the
power well.

It may be necessary to slide the plastic fuse cover away to get at
the plug. When the cord is securely attached to the Osborne 1,
plug the other end into a wall socket. Now, press the top por
tion of the power switch to turn the computer ON. After you
are through accessing the power well, lower the hatch to protect
it from being damaged.

GETTING TO KNOW YOUR COMPUTER 7

When you power up the computer, some information should ap
pear on the screen (referred to as the "monitor"). We will dis
cuss the information displayed on the monitor in chapter 2.
If after a few moments nothing appears, check the small
opening below the monitor and slightly to the right, labeled
EXT VIDEO. A rectangular-shaped plug should securely fit this
slot. If this plug is loose or disconnected, TURN OFF THE
POWER TO THE COMPUTER and then reconnect it.

[I
T CONTR o ~~~=====9i

,el..----, I:::::: :::1

o

VIDEO EXT.,

The plug that comes with your Osborne 1 selects the 5-inch
built-in monitor as the display location. If you like, a special
adaptor may be purchased which allows an external monitor to
be connected through this slot.

8 OSBORNE 1 USER'S GUIDE

Sometimes rough shipping of the computer may result in the
brightness and contrast controls being slightly out of adjust
ment. If you're still not getting a display, try "twiddling" with
the knobs labeled BRT (for brightness) and CONTR (for con
trast). These controls work very much like those on your televi
sion set. The proper method for setting the brightness and
contrast levels is as follows:

1. Turn the contrast all the way up (clockwise).

2. Adjust the brightness level to wherever suits you (if
you see diagonal white lines on the display, you prob
ably have the brightness adjusted too high).

3. Now adjust the contrast level so that each character on
the display is clearly defined.

If you still do not have a display after making the above checks
and adjustments, be sure you have plugged the computer into a
working wall socket.

If you have performed all the steps above, but the monitor
still displays nothing, then call the dealer who sold you the
Osborne 1.

Plugging Things Into Your Computer

If you remove the plug in the EXT VIDEO slot (do so only with
the power to the computer OFF) and look inside, you'll see a
"connector." The connector is comprised of a flat piece of pro
truding plastic with little metal "spikes" on it. There are several
connectors which your Osborne 1 uses to hook up to other
"devices. "

At the far left of the Osborne 1 is a MODEM connector. This
connector is employed for telephone communications. With an
optional Osborne-supplied modem, you can use your Osborne 1
to transmit and receive information over standard telephone
lines.

GETTING TO KNOW YOUR COMPUTER 9

MODEM IEEE-488 MONITOR RESET BATTERY
BUTTON JACK

RS-232 KEYBOARD VIDEO EXTENSION

Immediately to the right of the modem connector is one labeled
SERIAL RS232. RS-232 refers to a computer-industry standard
ized method of connecting devices to a computer. Your Osborne
1 is compatible with many other devices through this port. Most
printers use the RS-232 method of "communicating" with the
computer, for instance.

If you're not sure whether or not your printer uses the RS-232
standard, ask the dealer from whom you purchased the printer
to help you make it work with the Osborne 1.

Accessories advertised in computer magazines are often
described as being "RS-232 compatible." You mayor may not be
able to attach these accessories to your Osborne 1 through the
RS-232 connector, however. Some such devices require a spe
cially constructed cable because their manufacturer did not con
form to the complete RS-232 standard. If you want to use an
accessory, buy it from your dealer, or at least consult with your
dealer before purchasing it elsewhere.

To the right of the RS-232 connector, the next connector you'll
find is marked IEEE 488. This is another well-known method by

10 OSBORNE 1 USER'S GUIDE

which computers and accessories communicate. If you have any
engineering or scientific equipment, or a printer labeled as being
"Centronics Interface compatible," chances are that it plugs into
the IEEE-488 connector. Again, your dealer can help you connect
accessories to this interface.

The next connector to the right, labeled KEYBOARD, should
already have the cable that comes out the back of the keyboard
plugged into it. Should the keyboard ever come unplugged,
plug it back into this connector, WITH THE POWER TO THE
COMPUTER OFF.

N ext comes the EXT VIDEO connector, which we've already
discussed. As stated, if you are using another monitor, you must
remove the small plug from this connector and make use of a
special adaptor in its place. Don't lose the original plug,
however, you'll need it whenever you wish to use the internal
video display. Remember that you must make the switch with
the power to the computer OFF.

Last,on the far right of the front of the computer you'll find a
connector labeled BATTERY This connector was originally
designed for the optional battery pack but is now reserved for
future use.

The Monitor

The Osborne 1 displays 24 lines at a time, with 52 characters
on each line. The screen shows only a small portion-usually
referred to as a "window" -of a larger, unseen screen. The
Osborne 1 display is actually comprised of 32 lines of 128
characters each, even though only a portion of it is visible at a
time. You can see the additional area by first holding down the
key labeled I CTRLI and then pressing one of the arrow keys.
When you do so, the display will "slide" text under the screen,
in the direction of the arrow key being pressed. In other words,
you use these controls to see any 24-line-by-52-character por
tion of the larger display:

GETTING TO KNOW YOUR COMPUTER 11

128- COLUMN DISPLAY
A ,

I 52- COLUMN WINDOW

I -r
r--24
ROWS
WINDOW

32
ROWS
DISPLAY

The monitor built into the Osborne 1 has a 5-inch diagonal
screen. Optional external monitors are larger, usually 12 inches
diagonally. Since an optional monitor displays the same number
of characters, the characters will appear bigger.

The Keyboard

The keyboard supplied with the Osborne 1 has the standard set
of letter and number keys, positioned as you would find them
on a typewriter. A numeric pad sits to the right of the keyboard
to facilitate the entry of numbers.

The Osborne 1 keyboard operates much like a typewriter key
board. When you press a key, one of the characters embossed
on the key top is transmitted to the computer.

Notice that the keyboard has a I SHIFTI key. When you depress
this key, you get the uppercase equivalent of the character
shown on the letter key you are typing, or the character shown
on the upper portion of the key top. You automatically get
the lowercase version of a key when the SHIFT key is not
depressed.

12 OSBORNE 1 USER'S GUIDE

Also at the left side of the keyboard is an I ALPHA LOCK I key. This
key is used like a SHIFT key, except that it affects only the letter
keys, having no effect on other keys. Once pressed, the ALPHA
LOCK key remains depressed, and all letters selected are u pper
case until the ALPHA LOCK key is again pressed.

The key labeled I CTRL I is known as the "Control key." You use
this key to enter characters that control operations within the
computer. You might think of these characters as simple com
mands to the computer. As with the SHIFT key, you need to
depress the Control key before you press the other key, in
order for the computer to recognize that you mean to give it a
command.

We use the following notation throughout this manual to
identify a key that is being used as a control key:

character
represents I CTRL I -----I~ h · "X I---- t at is key depressed simultaneously

typed
A CONTROL KEY

I\~ is entered by depressing the I CTRL I key and the B key
simultaneously. Thus, I\~ means that the right arrow is being
used as a control character; it does not mean to press the" 1\"

key followed by the ~ key.

The B key, when not used in conjunction with the CTRL key,
backspaces over and erases unwanted characters you have
typed. You can also use the key marked I ESC I in some programs
to backspace over and erase unwanted characters. The key
marked I RETURN I is used like the carriage-return key on a type
writer; it indicates to the computer that you have finished
typing' a line of information.

A few keys serve special functions on the Osborne 1. Look at
the four arrow keys.

GETTING TO KNOW YOUR COMPUTER 13

Most programs let you use the four arrow keys to move a small,
bright underline, called a cursor, around the sCreen. Whenever
you press a key, its corresponding character appears at the cur
sor position; the cursor then moves one character position to
the right, just as the carriage or typing element on most
typewriters moves one position each time you strike a key. The
cursor moves in the direction indicated by the arrow key you
press: left 8, right EJ, up []], or down [I] .

You can always use the arrow keys with the control key de
pressed to move the whole display one direction or another. To
move the display back to its normal position, simply hold down
the I CTRL I and bracket II] keys.

Besides the keys shown on the keyboard, four additional charac
ters are available. These four characters are accessible as control
characters, meaning that the CTRL key is depressed while the
key associated with the character is pressed. Here are the
characters and the control sequences required to access them:

A/ = tilda (~)

A< = left bracket ({)

A> = right bracket (})

A = = open single quote (I)

14 OSBORNE 1 USER'S GUIDE

NOTE

You will not be able to enter any characters on the screen
until we show you how.

Restarting the Computer

To the right of the brightness and contrast knob you will see a
small protruding button with the word RESET marked under
neath it. This button "resets" (restarts) the computer.

When you reset the computer, it stops doing whatever it was
doing and returns to the condition it was in when you first
turned the power on. When you press this button, any informa
tion in the computer's memory is virtually lost. Also, if either of
the disk drives are in use-the little red light on each lights up
when they're in use-you may accidentally destroy information
on that diskette if you press the RESET button.

Use the RESET button judiciously; otherwise you may lose data
you intended to save.

Diskettes and Disk Drives

The Osborne 1 has two disk drives, one on each side of the
monitor. These drives read information from or write informa
tion onto diskettes.

The disk drive on the left is labeled drive A, and the one on the
right is labeled drive B. You should find some diskettes in a
small box that accompanies the Osborne 1.

A diskette is a thin plastic disk with a magnetic coating on its
surface. A diskette works along the same principles as does cas
sette tape, only diskettes are shaped differently. The surface of a

GETTING TO KNOW YOUR COMPUTER 15

diskette-on which information is stored-is permanently con
tained in a cardboard envelope. Diskettes in their cardboard en
velopes are stored in a paper pocket.

WOROSTARtl/HAILMERGE t.

~,)p'flqht 1181 b~ Ihtr~ro ,~!.

~;N ~DI('il:.(" {

~DISKETTE

PAPER
~POCKET

16 OSBORNE 1 USER'S GUIDE

To use a diskette you must remove it from the paper pocket. Do
not try to remove the plastic disk from the cardboard envelope,
or you will destroy the diskette.

The next illustration shows an ordinary diskette and identifies
its important features.

ROTATION
HOLE

SYSTEM DISKETTE LABEL

ACCESS
SLOT

WRITE
PROTECT
NOTCH

~(NOTON
SYSTEM
DISKETTES)

INDEX
HOLE

You must treat diskettes with care. It is easy to damage a disk
ette and lose the information stored on it if you are sloppy.

Do not place a diskette near any magnetic field, since this
erases all information stored on the diskette. Television sets,
telephones, large appliances, and stereo speakers are common
objects that emit magnetic fields. Keep your diskettes at least a
foot-preferably more-away from such devices.

Dust and scratches also damage a diskette's surface. Keep all ex
posed surfaces protected from dust and contact with foreign
material. Store your diskette in a cool, clean, dry place.

GETTING TO KNOW YOUR COMPUTER 17

A long slot in the cardboard envelope containing the diskette ex
poses the diskette's magnetic surface. Mechanisms within the
disk drive use this slot to read information from the magnetic
surface, or to write information to it. Do not touch the magnetic
surface with your fingers, or you may leave finger oil on the
diskette, resulting in the disk drive's inability to use the infor
mation contained at that spot.

A spindle in the disk drive uses the large, round hole in the cen
ter of the diskette to rotate the diskette within the cardboard en
velope. The disk drive also uses the small, round hole at the side
of the large center hole as an index, or "starting position," on
the diskette surface.

Turn the diskette within its cardboard envelope; you will see
an index hole occasionally align itself with a small hole in the
cardboard. All diskettes the Osborne 1 computer uses have one
index hole; these diskettes are called "soft sectored." Some disk
ettes are "hard sectored"; they have numerous index holes
usually 10 or 16-and the Osborne 1 computer cannot use them.

NOTE

When ordering diskettes for your computer, always specify
"soft-sectored", single-sided 5-114-inch diskettes, either
single- or double-density, depending on your computer. If
your dealer is out of this type of diskette, you may substi
tute double-sided or double-density, but these may cost
you more money. Other substitutions will not work.

18 OSBORNE 1 USER'S GUIDE

Putting Diskettes Into Drives
The disk drives of your Osborne 1 have doors you must open to
insert or remove diskettes. The doors, which resemble small
flaps, should lift easily.

Notice the small red light just to the left and below each door.
This "disk activity light" tells you whenever the diskette in that
drive is in use.

Insert diskettes into the drives with the access slot pointing for
ward, and make sure that the small index hole is positioned to
the left of the larger hole. Usually a label or manufacturing
emblem will be on the top and facing outward. A small notch
should be positioned closest to you, on the left side of the disk
ette as you insert it into the drive.

GETTING TO KNOW YOUR COMPUTER 19

NOTE

To avoid accidental erasure, some system diskettes are sup
plied with no write-protect notch. Other diskettes may be
write-protected with a piece of tape or sticky foil over the
small notch.

When the diskette is securely in the drive, close the door. This
door must be closed for the disk drive to work properly. To
remove the diskette, flip the door open and gently pull the
diskette out. When inserting or removing the diskette, do not
bend it.

Never attempt to remove a diskette from a drive while the disk
activity light is on. Doing so may cause you to lose information.
You can insert and remove diskettes while the computer is run
ning, but not while the·drives are active. The disk activity lights
are there to inform you when the drive is working and when it
isn't; look at them before removing a diskette. There is no excep
tion to this rule.

20 OSBORNE 1 USER'S GUIDE

If you must remove a diskette when the computer is trying to
"access" it (read from or write to it) , the correct procedure is to
press the RESET button to interrupt whatever the computer is
doing. If the computer is trying to write information onto a disk
ette when you press the RESET button, you run the risk of per
manently losing information on the diskette, so this should be a
"last ditch" measure only.

Remember that your Osborne 1 has two disk drives. You already
know that the left drive is referred to as drive A and the right
one as drive B. For now, simply note that you'll usually place
the diskette containing your programs in the left drive (A) and
the diskette onto which you wish to save your data in the right
drive (B).

Some Last Words About Diskettes

Many diskettes have a "write-protect notch," shown in the fol
lowing drawing. You can protect data on a diskette by placing a
small label-or a specially designed silver tab you receive when
you buy your diskettes-over the notch. Do not use transparent
tape, masking tape, or anything else that has a "gooey" ad
hesive that may ooze out and possibly contaminate the disk
drives.

WORDSTARh/MAILMERGE h

Copyright 1981 by "icroPro lnt.
P/N3DI002-0IE

aSBORNE __ WRITE

PROTECT
NOTCH

GETTING TO KNOW YOUR COMPUTER 21

When the write-protect notch is covered, information can still be
read from your protected diskette, but data cannot be written
onto the diskette. Valuable programs and data should be pro
tected in this manner to prevent accidental overwrites or
erasures.

The first thing you should do with any system diskettes that
have write-protect notches is place a write-protect tab on each
one. After you've made copies of these "master" diskettes as
outlined in the next chapter, store the original diskettes in a
safe, out-of-the-way place. It's a good idea to make a spare copy
of every diskette you use with your system and to keep these
"backups" apart from the diskettes you use every day.

Information is stored on diskettes in the form of "files." You can
visualize a diskette file much as you would a manila envelope in
a filing cabinet. All files have names with which you reference
them. You'll be naming your files as you create them.

A file can contain any kind of information; its size is limited only
by the capacity of the diskette. On your Osborne 1 in its single
density configuration, an individual file can contain up to 92,000
characters of data. (The system uses another 10,000 characters
on the diskette, and they are not normally available to you).
This translates to almost 25 pages of text if you assume each
page has 65 characters on each of 55 lines.

Double-density diskettes can store 204,800 characters of data.
Making similar allowance for system storage, there would be
an available balance of about 185,000 for storing files. This
translates into a bit more than 50 pages of text by the same
measurements.

22 OSBORNE 1 USER'S GUIDE

You should always clearly label your diskettes so that you can
tell what you stored on them and find the diskette you need
quickly. Always write on a label BEFORE you put the label on
the diskette. If you must write on the label after it's on the disk
ette, use only a felt-tip pen and write as gently as possible; pen
creases destroy diskettes.

Your Osborne 1 has two diskette holders, located under the disk
drives, in which you can store diskettes. Each holder accom
modates approximately 10 diskettes. Don't stuff too many disk
ettes into a holder, or you may have trouble removing them.

When you handle diskettes, it is always better to err on the safe
side; put about eight diskettes in each holder and you shouldn't
have any problems removing them.

Moving On

Now that you're familiar with the Osborne 1 and the diskettes
you'll use, it's time to start learning how to use the machine.

Since the next chapter will tell you how to make copies of disk
ettes, make sure you have a few extra BLANK diskettes and
about 30 minutes of continuous time available. If you don't have
any extra diskettes or are rushed for time, we encourage you to
set aside this manual and your task of learning about your new
computer until you do.

If you accidentally erase a file from a master diskette because
you're in a hurry or didn't make diskette copies before proceed
ing, you will lose more time than you thought you were gain
ing. There is nothing difficult or overly time consuming in the
next chapter; we simply don't want you to waste time because
of haste.

CHAPTER 2-
How To Use

Your Computer

In this chapter you'll begin familiarizing
yourself with how to use the

Osborne 1 efficiently.

24 OSBORNE 1 USER'S GUIDE

Plug It In, Turn It On

Now that you know a little about the Osborne 1, sit down in
front of the keyboard. Make sure the vent on top is open; if it is
not, push down on the vent cover and slide it away from you
toward the handled side of the computer. We know that you
already turned the computer ON in the last chapter, but just for
the sake of procedure let's start from scratch.

Although the Osborne 1 does not draw a lot of power and is not
likely to trigger a circuit breaker, it is wise to isolate the com
puter from as many other devices as possible. Sometimes
electromechanical devices such as Selectric typewriters emit
what are called voltage "spikes" when they are turned ON and
OFF. Such electrical surges are a menace to computers, espe
cially if the spike occurs when the computer is accessing a
diskette. To be extra safe, ask your Osborne dealer about a
voltage-protector into which you can plug your computer.

The power switch is at the rear right-hand side of the computer
(as you face it). Make sure that there are no diskettes in the
drives, and if you haven't done so already, turn the
computer ON.

You should hear a small "beep" when you turn the Osborne 1
on. Watch the monitor. Like a TV set, it will take about 20
seconds to warm up. You should see a display similar to the one
that follows: I

HOW TO USE YOUR COMPUTER 25

We'll refer to the message on the screen as the "sign-on mes
sage." Notice that the sign-on message asks for a diskette. Al
though the computer is somewhat "intelligent," when you turn
it on, its memory is blank. Every time you switch the power
ON, you are essentially dealing with a newborn computer. This
is an important fact to remember when you use any small
computer.

In order to communicate and work for you, the computer needs
the instructions that are on one of your program diskettes. In
formation you generate while the computer is active will be
stored in its memory. When you turn the Osborne 1 OFF, it
loses all the information that is located in its memory-one rea
son why diskettes are used to permanently store information.

Loading a Program

You received several diskettes with your Osborne 1. Let's exam
ine one of them.

Each diskette has a label with a name, an identification number,
and a serial number. You're looking for the diskette labeled
CP/M System.

We'll refer to this diskette as the "master system diskette."
When you eventually make a copy of this diskette, we'll call the
copy "system diskette."

Remove your master system diskette from its envelope. Hold
the diskette between your thumb and index finger with the
label facing upwards and the small index hole on the left. Lift
the door on the left-hand disk drive (remember, it's drive A) and
carefully slide the master system diskette into the drive. It
should go in smoothly and require no force. Now close the door.

Your monitor is still asking you to insert a diskette into drive A
and press RETURN. You've inserted the diskette, so as in
structed, you should now press the key labeled 1 RETURN I.

26 OSBORNE 1 USER'S GUIDE

The red activity light will come on, you'll hear some whirring
noises, and within a few moments a message that looks like this
should appear:

The disk activity light will remain on, and you'll hear some
more whirring noises from the drive. Within ten seconds the
monitor screen should clear and then fill with this information:

HOW TO USE YOUR COMPUTER 27

What's happened here? Your Osborne 1 has loaded into its
memory a program that contains a wealth of information about
the system. We call this program HELP because it's designed to
"help" you learn about your Osborne 1.

Your screen should now display 26 topics of interest, one for
each letter of the alphabet. To obtain some information on any
one of the topics, simply press the letter that corresponds to the
subject of interest. For starters, press the Q] key. You should see
the screen clear, and then some new information dealing with
the operation of your Osborne 1 appears. As indicated at the top
of the screen, press the I RETURN I key to return to the main
menu.

The HELP program is virtually foolproof. Go ahead and press
any key except the one labeled ESC (we're saving that option for
later). If your choice is a valid one, you'll see the information
you requested; all incorrect choices produce a "beep" indicating
that your selection is invalid.

At this point, you might want to spend some time exploring the
other topics shown in the menu. Some are designed for ad
vanced users; you can ignore these for now.

Leaving HELP

Okay, now that you've had a chance to use your first computer
program, it's time to move on. Before you accidentally damage
your master system diskette, we want to teach you how to make
copies of your diskettes.

To leave HELP, simply press the key labeled I ESC I (for "escape").

The disk activity light comes on briefly, the screen clears, and a
giant CP/M appears at the top of the screen with a copyright
message underneath, and eventually an rill appears:

Besides the CP/M programs on your System and Utility disk
ettes, CP/M is also a general set of instructions that controls

28 OSBORNE 1 USER'S GUIDE

how your Osborne 1 works. CP/M, which stands for Control
Program/Monitor, is called an "operating system" because it ties
all the computer's components together and allows them to
communicate. The CP/M operating system actually loaded into
the computer when you first pressed the RETURN key in
response to the sign-on message. CP/M, in turn, automatically
loaded the instructions that constitute the HELP program,
which you were just using.

Now we want to tell CP/M what to do next.

The r.\B that appeared is the standard CP/M greeting. It means
that CP/M is ready for a command. The A in the message indi
cates that CP/M will perform your commands using the diskette
.in drive A (the left one), unless you precede the command with
a B: in which case the B drive is accessed.

Let's be inquisitive for a moment and find out what files are
stored on the SYSTEM diskette. Type the directory command
[QJ OJ ffi], then press the I RETURN I key. Again the disk drive will
hum, and then a directory listing all of the files on the diskette
will appear on your screen.

HOW TO USE YOUR COMPUTER 29

The files contained on any diskettes can be listed in this manner.
You assign a name to each new file as you create it. We'll deal
with this subject at length in the next chapter; for the time
being, note that your master system diskette already contains
some files.

Formatting a Diskette

You don't need to know much about the mechanics of disk
drives. What you do need to know is that information is written
onto the diskette's surface in a specific way. Unfortunately, you
cannot simply load a brand new diskette and expect the Os
borne 1 to start writing information onto its surface. First the
surface of the diskette must be prepared by a process known as
formatting.

Formatting is a routine procedure that is performed automati
cally by the COPY program before the contents of a diskette are
transferred to another. Generally, only those diskettes being
used for storage of documents or reports need to be specifically
formatted. You have to format a diskette only once. You can
reformat a diskette you've used before, in which case all prior
information on the diskette is erased.

30 OSBORNE 1 USER'S GUIDE

Before proceeding, make sure that your master system diskette
has a write-protect tab on it, as described in the last chapter.

You should see the r.:.B on your screen just below the directory
of files. Notice that one of the files is named s.)a·'II.,~~1. The
.COM to the right indicates that the file named COpy is a
"command" file. You'll learn more about command files in the
next chapter, but for now, all you need to know is that a com
mand file contains a program that can be run just by typing its
name and pressing RETURN. In this case, the program which
allows you to format diskettes is started by issuing COPY-then
pressing the RETURN key. So, type [II @J [£] I]J and press
I RETURNI.

The computer accesses the diskette in drive A and transfers the
instructions from the COpy file into the computer's memory.
Upon completion of this loading procedure, the computer begins
to follow the instructions. The first thing the instructions tell the
computer to do is to display the following message on your
monitor screen:

HOW TO USE YOUR COMPUTER 31

Let's format a diskette in the second drive, drive B. Take a
Brand-New Diskette from its envelope and insert it into the
right-hand drive in the same manner you inserted the master
system diskette earlier. Close the door over the diskette.

The COPY program is waiting for you to press either a C, to
copy a diskette, or F, to format a diskette. This should be clear
from the instructions on the screen. (Do take time to read what
is displayed on the screen; you'll develop bad habits if you
merely assume what the message says.)

You want to format a diskette to be used later for storage, so
press the letter [£J. Immediately, the screen changes and waits
for you to press either an A or a B to indicate which drive the
diskette you wish formatted is in. You placed your new diskette
in drive B, so press the letter []]. You should notice that the
computer responds to this action by telling you to press
RETURN when your diskette is ready (i.e., in the drive and
ready to be formatted). After pressing RETURN, you are asked
whether your computer is Single or Double density. (See notes
on single and double density, page 758.)

Press I]] for single or [QJ for double.

Formatting is now taking place. You should soon see the display
illustrated below:

32 OSBORNE 1 USER'S GUIDE

As the drive formats the diskette, asterisks are displayed under
the row of numbers. The numbers refer to "track" numbers.
When formatted, an Osborne diskette has 40 concentric tracks
of information on it. Thus, each * you see displayed under the
row of numbers indicates the track that has been formatted cor
rectly. An E occurs instead of an asterisk if the track was not for
matted correctly. If an error occurs, perform the format process
again. If you still get an E-especially if it occurs in the same
place-your diskette is probably damaged or is the wrong type,
and should be replaced with another.

When the formatting is complete, this message appears:

Formatting completed successfully

At the bottom of the screen you will see the question asking
which drive contains the diskette to be formatted. If you'd like
to format several diskettes, you should keep replying with a B
each time this question is asked and insert new diskettes into
drive B when prompted to do so by the computer. Pressing the
I RETURN I key once will take you back to the original choices of
"C"opying, "F"ormatting, or returning to CP/M. Pressing the
[BETURN I key a second time returns you to CP/M's control, where
you should see the now-familiar ~ indicating that CP/M is
waiting for another command.

Copying Diskettes

Now that you have a few diskettes ready to be used for storing
files you will be creating later, let's copy the program diskettes
that came with your Osborne 1. You do this by employing the
instructions in the file named COpy which you just used to
format a diskette.

At this point we strongly suggest you make copies of all your
program diskettes, otherwise you are in danger of losing some
very valuable software. In fact, you may wish to make two or
more copies of each, as diskettes do wear-usually they stand
up to at least three months of heavy use, but are extremely vul
nerable to damage.

HOW TO USE YOUR COMPUTER 33

You already have your master system diskette in drive A, so let's
begin by making a copy of it. Type em I]] [£J ~ and press
1 RETURN I. In a few moments you'll again see the Copy program
menu:

The screen displays three choices, as before. Instead of pressing
F to format a diskette, press em to copy diskettes. You will be
asked to place the original source diskette (the one you wish to
make a copy of) in drive A and the destination diskette (a blank
diskette or one which you wish to reuse) in drive B.

You just used the COpy program to format a blank diskette; but
the COpy program also formats a blank diskette while copying
information to it. In other words, if you wish to prepare a blank
diskette for storing files, you select the formatting option (F) of
the COpy program, but if you want to copy an entire diskette,
you select only the copy option (C); you do not need to format
diskettes before copying to them, only when using them for
storage.

In case you haven't put your diskettes into the proper drives
yet-and also so that you develop the habit of verifying the in
structions you give the computer-the Osborne 1 displays the
following prompt:

34 OSBORNE 1 USER'S GUIDE

If you are copying a diskette other than the one which con
tained the COpy program, follow the instructions and place it in
drive A at this time.

Press the RETURN key and the copying process will commence.
As the copy operation proceeds, you receive a message telling
you which track is being copied. Rarely, you might see a mes
sage telling you of an error during the copying process. If this
happens, first try copying the diskette again. Should you still
get errors, try formatting the destination diskette before using
the copy option. If the same error messages appear, you prob
ably have a defective diskette.

It is sometimes possible to "fix" damaged diskettes, and Os
borne sells a program, called Disk Doctor, that will help you do
so. Inquire at your dealer if you're interested in this program.

NOTE

Although Osborne warrants that your machine and disk
ettes are free from manufacturing defects for 90 days, our
limited warranty does not cover misuse or abuse of disk
ettes. Diskettes whose files are erased "accidentally" or
that have fingerprints or other contaminants on the media
surface will not be replaced free of charge by your dealer or
by Osborne Computer Corporation.

HOW TO USE YOUR COMPUTER 35

If you receive error messages frequently when using the COpy
program, it is likely that your Osborne 1 is out of adjustment
and needs servicing, or that you are using poor-quality disk
ettes. If you experience problems with low-cost diskettes, try
switching to high-quality, certified diskettes before bringing
your Osborne 1 in for servicing.

At the end of the copy process, a message appears telling you
that the procedure was completed successfully. In addition, you
will be offered a chance to continue copying diskettes or to
return to the copy/format menu that appeared when you first
started COpy.

You should now proceed to make copies of all of the diskettes
you received with your Osborne 1. Place the diskette you wish
to copy in drive A and follow the instructions just given. You
can make as many copies as you desire of the diskettes we pro
vide, without violating the copyright or licensing agreement you
signed when you purchased your computer. You cannot sell
these copies or give them to a friend; to do so is illegal. Since all
Osborne-supplied software contains hidden serial numbers, any
copies you give away can be traced. The cornpanies who created
the programs you'll use allow you to make copies for YOUR
OWN USE ONLY.

Be sure to label each diskette as you create new copies. (You
may want to include the date on which you created the copy
so that you'll know later how long you've been using that
diskette.)

DO NOT GO ON IN THIS MANUAL UNTIL YOU'VE MADE
COPIES OF ALL YOUR OSBORNE-SUPPLIED DISKETTES. Put
the originals, the ones that came with the system, away in a safe
place and use only the copies from here on. The diskettes we
supply you are only for creating new copies. If you had to
replace the programs and information on these diskettes at list
price, you would spend over $1400. The original diskettes are
valuable and should be treated as such.

36 OSBORNE 1 USER'S GUIDE

Reset

In chapter 1 we referred to the RESET button on the front of the
Osborne 1. "Reset" is a computer term that indicates a specific
sequence of events within the computer.

All you have to know about the RESET button on your Osborne
1 computer is that it functions as a "restart" button. When you
push RESET, the screen clears and the sign-on message you saw
when you first turned on the power

Insert disk in drive A and press RETURN

reappears. Pushing RESET, then, is much like turning the power
off and starting over.

It is important to understand that pushing the RESET button at
the wrong time will make the computer "forget" any informa
tion in its memory that has not yet been transferred onto a disk
ette. Thus, if you're in the middle of entering information into
the computer and have not told it to save the information on a
diskette, all of the information stored in the computer's memory
will be lost. Later chapters will show you how to save informa
tion on a diskette.

If you always ask yourself "Have I told the computer to save my
entries on a diskette?" before you push RESET, you probably
will never lose valuable data by accidentally pushing RESET
at the wrong time. NEVER PUSH RESET IN PANIC OR
FRUSTRATION; ALWAYS MAKE SURE YOU REALLY MEAN
TO DO SO BEFORE PRESSING THE RESET BUTTON.

More HELP

Whenever you use your system diskette, you'll find that the
HELP program is loaded into your Osborne l's memory and that
the computer executes the instructions in it. This is the process:

HOW TO USE YOUR COMPUTER 37

1. The Osborne 1 displays the sign-on message and waits
for you to insert a diskette and press the RETURN key.

2. After you press the RETURN key, the instructions that
comprise CP/M are transferred from the diskette into
the computer's memory. One of these instructions tells
CP/M to perform the next step automatically.

3. A copy of the file containing the Osborne logo goes
into memory, and the monitor displays the logo.

4. A final set of automatic instructions loads the HELP
program into the Osborne l's memory and the com
puter begins following the instructions that make up
the HELP program.

Each diskette Osborne provides follows these steps; the only
difference is in step four. The diskette that contains WordStar
automatically loads the WordS tar instructions during step four
and begins following them; the SuperCa1c diskette loads Super
Calc during step four; the BASIC diskette loads and executes
Microsoft BASIC during step four. As you'll eventually learn,
you can change the program the Osborne 1 first loads. For now,
be content that the CP/M System diskette always loads and ex
ecutes HELP first, the WordStar diskette automatically loads and
executes WordStar, and so on.

Setting Up

Before we finish acquainting you with the Osborne 1, we want
to introduce you to another program. Called SETUP, this pro
gram performs numerous useful functions.

Your system diskette should be in drive A at this point. Type:

then press 1 RETURN I.

38 OSBORNE 1 USER'S GUIDE

After a few moments, a new message will appear on the screen
identifying the program and asking you which drive has the
diskette containing the CP/M system to be altered. This may not
make any sense right now, but go ahead and press 0 to indi
cate that you want to use the system from drive A. It next
reminds you that the source diskette should be in the A drive.
Then press RETURN.

In a few more moments, you'll see the following display:

You've probably already figured out that you can use the SETUP
program to "set up" the CP/M operating system so that it recog
nizes your printer as well as providing a few other convenient
options. (You will learn all about the operating system in the
next chapter.) The SETUP program shows you the name of the
options in dim letters and the current setting in brighter letters.
Let's take each one individually.

HOW TO USE YOUR COMPUTER 39

A PRINTER: Your Osborne 1 can use five types of printers:

• Standard Serial (uses RS-232 communications protocol);
• Qume or NEC (uses ETX-ACK communications

protocol);
• Diablo (uses XON-XOFF communications protocol);
• Centronics (uses parallel communications protocol);
• IEEE-488 (uses IEEE-488 communications protocol).

Almost every printer manufactured falls into one of these five
categories. If you're not sure where your printer fits in, check
with the dealer who sold it to you before proceeding. If you
don't have a printer yet, you can skip the rest of this printer
option discussion.

Currently, the setting indicates that Standard Serial has been
chosen. If you wish to change to another type of printer, press
the letter II] to signify that it's the PRINTER option you want
to alter (followed by RETURN for double-density). This gives
you the five choices just mentioned. Each choice has a letter
associated with it; just press the letter of your choice and the
CURRENT PRINTER setting automatically changes. Your choice
isn't permanently recorded until later, so don't worry about
making a mistake at this point.

Also in the printer catagory are the options for addressing a par
ticular IEEE device number and a feature for inputting a printer
initialization string. Both of these options should be used only
by those knowledgable in their implementation. Use the
I RETURN I to get from the printer menu back to the original dis
playas indicated in the message at the bottom of the screen.

B Baud Rate: The second setting you may wish to change is
the "speed" at which the serial port on your Osborne 1 com
municates. There are two choices: 300 baud (30 characters per
second) and 1200 baud (120 characters per second). Pressing the
letter [[] changes the selection from its current setting to the
other one. Pressing [[] again changes it back.

40 OSBORNE 1 USER'S GUIDE

C Screen Size: You can tell your Osborne to "think" that its
screen is any number of characters wide, from 1 to 128; the
screen will still show only 52 at a time, however. The ability to
change the screen size is handy if you're using software de
signed for a different computer, one with a display size different
from the Osborne's. To change the screen size, press @]' then
press [K], [ID, or @] , depending upon whether you want 52,
128, or some other size. If you press C, you'll need to enter the
size you desire (1-128, inclusive).

Be careful about what size you specify; some sizes don't make
any sense or will have an effect on the programs you run.
NEVER CHANGE THE SCREEN SIZE TO ANYTHING EXCEPT
128 ON YOUR WORDS TAR DISKETTES, for instance, or you
may find the program MAY not function properly. Changing the
system diskette to 52 will also make the HELP display a little er
ratic. We recommend leaving the setting on all diskettes at 128.

D Auto Horizontal Scroll: We've done everything in our power
to make your Osborne 1 more useful than systems with larger
screen sizes. Consequently, we've come up with an optional set
ting that makes the screen automatically scroll horizontally
when you move the cursor past the 52nd character on a line.

As with selection B, two choices exist. Pressing []] turns auto
matic scrolling ON or turns it OFF, depending upon its current
setting. We recommend that you leave it ON; WordStar disk
ettes should always have this feature ON, while SuperCalc disk
ettes should always have this feature OFF.

E Function Keys: When you press the control key and any of
the number keys, something special happens. A "5 tells your
Osborne 1 to automatically display the characters associated
with function 5. Simply stated, the function keys (0-9, each is
sued by holding the control key down) can be programmed to
represent a sequence of characters or commands. Therefore,
these keys become a shorthand method of issuing the desired
command or entering a sequence of characters. For example, if

HOW TO USE YOUR COMPUTER 41

you found yourself constantly typing the wordANTIDISESTAB
LISHMENTARIANISM, you could enter that sequence of
characters for a given function key. After programming the
function key, you type the word ANTIDISESTABLISHMEN
TARIANIsM by simply pressing the associated function key (i. e,
holding down the control key while pressing a number key).

The E option of the SETUP program lets you program each
function key. Let's try programming some function keys!

Press III to see the function-key menu. Next, press a number
key (0-9) to begin programming that key. For a quick demon
stration, press IT]. Notice that your cursor sits next to a 1: and
that a message states that there are 77 (D.D.) Characters
Remaining. This last message means that you can use up to 76
characters for the ten separate function keys, but no more than
that. Try issuing the CP/M command below:

[[] OJ ffi] I SPACE BAR I c:J Q c:J I RETURN I

The <cr> is a shorthand way of signifying a RETURN, and is
shown along with the rest of the command for function key 1.
You inform SETUP you're done programming a function key by
pressing I ESC I twice in succession; do so now. Note that the
command you programmed for function key 1 is now listed to
the right of the 1: in the table at the top of the screen.

You can continue programming the keys until you're satisfied
that all are exactly as you want them and then press I RETURN I to
get back to the original SETUP display.

We suggest that you refrain from programming the function
keys for any diskette until you've used that diskette for a while.
Note which commands or sequences of characters you use
often, and program these into the function keys.

F Arrow Keys: The arrow keys are also function keys of a sort,
but very special ones. Unfortunately, CP/M and WordS tar expect
the arrow keys to have different internal values associated with

42 OSBORNE 1 USER'S GUIDE

them. For the arrow keys to work properly in WordStar, they
must have one set of values; to work properly with all other
software, they need a second set. It is best not to mess with this
option unless you know what you are doing.

As there are two options, simply pressing [£J changes the set
ting from CP/M to WORDSTAR, and vice versa.

We've now introduced you to all the SETUP options. To save the
settings you selected, press I RETURN I and you will leave the con
figuration menu. Next press 0, rID , or the I RETURN I key to
save the new "setup" on the diskette in drive A, drive B, or ~
to save it in memory until the computer is reset or turned OFF.
If you've changed any setting and wish to save it, press 0, as
that is the diskette from which you got the system you have
made the changes to.

One final note about SETUP: SETUP does not change anything
except in the operating system of the diskette being configured.
In other words, if you add function keys and now expect them
to work, they won't, at least not until you restart the computer
using the diskette on which you saved your new setup. In other
words, to start using your new settings, wait for the disk ac
tivity light to go OFF and then push the RESET button to restart
the computer. Now put the diskette that you changed into the A
drive-if it isn't already there-and press I RETURN I. Your new
settings should then be in effect.

Certified Computer User

If you've made it this far without too many false starts, you're a
certified computer user. In these few pages you've encountered
basic concepts and procedures with which to use your Osborne
1 computer.

The above statement may surprise you. Although a computer is
an extremely complex device internally, you don't need a degree
in computer science to use it. The basic premise on which al
most all the software you'll ever use on the Osborne 1 computer
works is this:

HOW TO USE YOUR COMPUTER 43

1. The computer displays a message or prompt.

2. You respond with an instruction or with information.

3. The computer processes your instruction or data and
goes back to step 1.

What often makes computers difficult to understand is that the
message or prompt is cryptic or ambiguous, or that you have to
memorize the instructions or information you need to give the
computer.

We've attempted to make the Osborne 1 as simple as possible to
use. The messages and prompts it displays have gone through
tests and evaluations to rid them of ambiguity and make them
as clear-cut as possible. It is, unfortunately, impossible to ac
count for every conceivable use of the Osborne 1 or to make the
system entirely "idiot-proof." In fact, if we made the computer
simple enough so that anyone could use it, you might complain
that it was not as effective a tool for you as it could be. Never
theless, if you find messages or instructions that are confusing,
let us know so that we can correct the problem in future
versions.

The Reference Guide contains listings of all the commands, er
ror messages, and other specific information you need to use
your Osborne 1 efficiently. Before you proceed with the next
chapter, it may be wise to briefly thumb through the Reference
Guide to see what information is there and how it is presented.

Incidentally, you'll notice that throughout this Guide, when we
want you to achieve certain precise results we'll ask you to type
very specific sequences, character by character, like this:

[Z] [£J [I] [K] I RETURN I

44 OSBORNE 1 USER'S GUIDE

Often, character sets of this kind are too long to be typeset in a
single line, so they are shown like this:

~~~illill~mD~~mQ~m~D~m~m~ill~mm~~mm 
o ill ~ [[] 0 ~ [§J m m I RETURN I 

In all such cases, continue typing the characters without pressing 
RETURN until you get to an actual I RETURN I character, such as at 
the end of the final line, above. 

In addition, we denote control characters in a sequence like this: 

which means type a control A (I CTRL I [KJ), then a [KJ. We'll let 
you know if we use the ~ symbol to mean the" caret" above 
the 6 key. 



CHAPTER 3-
Learning 

and Using 
CP/M 

In this chapter, we'll introduce you to the CP 1M 
operating system that directs the activities of 

your Osborne 1. It is important that you 
understand the information presented in this 

chapter before you begin regular use 
of your computer. 



46 OSBORNE 1 USER'S GUIDE 

Operating Systems 

CP/M stands for "Control Program/Monitor." It is usually re
ferred to as an "operating system." An operating system is a set 
of instructions that tells your computer how to use its various 
components. 

As such, CP/M represents the basic intelligence of your Osborne 
1 computer. The CP/M operating system is different from the 
CP/M System and Utility programs. The operating system oc
cupies a reserved area of each program diskette supplied with 
your computer. This CP/M operating system "knows" how to 
send information to the printer, to and from an optional modem 
(a device used to communicate with remote equipment via tele
phone lines), and to and from the disk drives; knows how to get 
programs from the diskette and place them in memory for use; 
and performs other important tasks. 

Most of the time, you probably won't notice CP/M's presence. 
The operating system loads automatically into the memory of 
your computer if you follow the instructions we gave you in the 
last chapter. 

You might like to think of the CP/M operating system as an intel
ligent "engine" inside your computer. Like the engine in your 
car, you know it is there, but it is rare that you actually have to 
pay much attention to it. Like an auto's engine, CP/M does re
quire you to remember a few important things in order to use it; 
you shouldn't put regular gas in a car that requires unleaded, for 
example, and CP/M similarly requires you to remember a few 
simple facts about it. If you need to transfer a copy of the CP/M 
operating system to a diskette, use the SYSGEN program 
described in the Reference Guide. 



LEARNING AND USING CP/M 47 

Lesson 1: File Names 

In chapter 1, we told you that all information on a diskette is 
stored in files. CP/M requires that each file have a unique name 
associated with it. Let's take a look at a diskette and find out 
what these file names are like: 

1. Turn the power to your Osborne 1 ON. 

2. Put the copy of the CP/M master diskette you made 
into the left-hand drive and press I RETURN I, as the 
message on the monitor screen requests. 

3. After a few moments, the HELP program should 
appear. Press the I ESC I key to get to CP/M. 

4. Across the top of your screen you should see the word 
CP/M, in large letters, and an informative message un
derneath. A couple of lines underneath that you'll see 
_ and an underline character. The underline charac
ter shows your "cursor" and indicates where the next 
information you enter from the keyboard will appear, 
as illustrated below: 



48 OSBORNE 1 USER'S GUIDE 

5. Type @][IJ[[] and press I RETURN I. The disk drive will 
activate for a moment and a list of files will appear on 
your screen: 

You'll notice that the fa is back, again followed by 
your cursor (underline). 

Look carefully at the display on your monitor screen; you 
should notice certain things about the information presented 
on it. 

• The letter "N' recurs. First, it always appears before you 
issue a command, and, second, it appears on each line 
of information . 

• The information on the screen seems to be a series of 
names, each set off by a colon; also, sometimes large 
spaces appear between portions of the name, and this 
depends on how long the first part of the name is. 

You've just asked CP/M for a "directory" (a listing) of the files 
on your diskette. CP/M replied with a list of files, several to a 
line, and then returned for another command (the r.IEI). 



LEARNING AND USING CP/M 49 

File-naming conventions in CP/M have three basic components: 

1. 

A : F I L E N A M E T Y P 
--..-- '" v 

~ 

~ 

a letter and 2. the actual 3. a period and 
colon to file name 3 characters 
represent the for the "type" 
drive of file it is 

1. A letter and colon to represent the disk drive in use: 
CP/M considers the first drive (the one on the left) to be 
drive A, the second to be drive B. A colon separates the 
disk drive "identifier" from the next part of the file 
name. 

2. A one- to eight-letter file name: The file name may con
sist of any combination of letters and numbers. You can 
also use a few symbols (such as +), but it is best to 
avoid these, as many are not legal: 

< >. , ; : = ? * [ ] illegal characters in file name 

CP/M does not distinguish between uppercase and 
lowercase file names; thus FILE would be the same as 
file to CP/M. 

3. A zero- to three-letter file type may follow a period 
(the period used to separate the file name from the file 
type). 

The directory you just received of the files on your diskette fol
lows the above rules. The letter that precedes each line tells you 
the disk drive the files are on, a file name follows, separated 
from its file type by spaces, separated from the next file name by 
a vertical line. 

You may wonder what different kinds of files there are. 

CP/M predefines some common types of files. "COM" is the 
most important of these file types. Any file that resides in a file 
of this type is assumed to be a program or a command. If you 



50 OSBORNE 1 USER'S GUIDE 

enter its file name, leaving off the type, CP/M will load and exe
cute the instructions in that program file. Try issuing the follow
ing CP/M command: 

[]] III ~ IT] and press I RETURN I 

If you're still using the copy of the CP/M master diskette, you'll 
find on it a file named STAT. COM whose instructions the Os
borne 1 will load into memory and follow. After a few moments 
of disk activity, a message should appear on the monitor screen 
telling you how much space is available on your diskette. We'll 
return to STAT later; for now, you should have learned that typ
ing the file name of any COM-type file will cause the computer 
to load and execute the instructions. 

Other file types commonly used in CP/M include the following: 

.ASM assembly-language source code 

.BAK a backup, or copy, of a file 

.BAS a BASIC program source file 

.CAL a SuperCalc data file 

.DAT a data file 

.DOC a text or document file 

.INT a CBASIC2 program file 

. TXT a text or document file 

.$$$ a temporary file, or a file not properly completed 

As you learn about WordS tar, SuperCalc, CBASIC2, and 
Microsoft BASIC, we'll tell you more about the file types these 
programs use. 

Lesson 2: Disk Drives 

We already mentioned that CP/M uses letters to represent the 
disk drives. The left-hand drive on your Osborne 1 is known as 
drive A and the right-hand one is known as drive B. 

So that CP/M knows when you are referring to a drive and when 
you're typing a file name or command, a colon always comes 
after the drive letter. If you enter: 



LEARNING AND USING CP/M 51 

I]] D !Ill] [II [[] and press I RETURN I 

the computer will attempt to find FILE. COM on the right-hand 
drive and load its instructions into memory for execution. Try 
issuing the above command now. 

Whoops! We didn't tell you to put a diskette into drive B, so the 
disk-drive activity light will come on and stay on. The only way 
to recover from this error is to push RESET. Do so now and 
restart CP/M. We had you make this mistake intentionally. The 
only legitimate way to recover from such an error is to push the 
RESET button. Do not succumb to temptation and slide a disk
ette into drive B while the disk activity light is on. 

Return to CP/M by pressing I ESC I after HELP identifies itself; 
you should see the _ again. 

That _ is a meaningful prompt. The A tells you that CP/M 
will attempt to do everything on drive A unless you instruct it 
otherwise; the _ is simply a separator to indicate that your 
instructions to CP/M will appear immediately to the right of it. 
An _ prompt means that CP/M considers the left-hand drive, 
the A drive, the "default" drive. 

You can make B the default drive. Take another of the diskettes 
you copied in the last chapter and place it in the right-hand 
drive. Issue: 

I]] D and press I RETURN I 

You should see that the right-hand drive is accessed for a mo
ment (a check to determine if there is a diskette there) and then 
see a _ appear. Drive B is now the default, and any instruc
tions you give CP/M will assume that you are dealing with 
the files in drive B. Try issuing the directory command (DIR, 
remember?). You should receive a different set of file names. 

Now issue [K] D and press I RETURN I to set the left-hand drive as 
the default once again. 



52 OSBORNE 1 USER'S GUIDE 

Lesson 3: Some CP/M Commands 

CP/M has only seven built-in commands, and you've already 
learned two of them. In addition to the commands, CP/M has a 
few control character commands about which you might want 
to learn. 

You already know the commands for changing disk drives and 
for displaying a directory: 

A: establishes left-hand drive as the default, 
B: establishes right-hand drive as the default, 
DIR displays a list of file names on the monitor screen. 

Let's look at each of the other commands, one at a time. 

Command #3: ERA filename.typ 

To erase a file from a diskette, you issue ERA followed by a 
space and the name and type of the file you wish to delete. If 
the file is not on the default drive, you must also specify the 
drive it is on. 

Since there is nothing on your drive that you should wish to 
erase, let's put something there that you can erase. Type: 

[§J [KJ ~ [[] I SPACE BAR II]] I SPACE BAR I 
QJ [ill [ill [K) 0 II] OJ [I] I RETURN I 

All we're doing here is saving a blank file named JUNK whose 
type is FIL. 

Ask for a directory of the diskette using the [Q] OJ ffi] command 
you learned earlier. You should see JUNK.FIL somewhere at the 
bottom of the directory. It is good to develop the habit of asking 
for a directory of the diskette before you erase any file on it, as 
CP/M erases files without asking you for verification. 



LEARNING AND USING CP/M 53 

Okay, now type: 

[]] []J 01 SPACE BAR I 
QJ [ill rm [KJ D II] OJ [I1 and press I RETURN 1 

The disk will activate and in a few moments your prompt will be 
back again. CP/M issues no message to verify that a file has 
been erased. You must ask for another directory to find out if 
CP/M actually deleted the file. Do so now with [[] OJ [[J I RETURN I. 

Command #4: REN newfile.typ=oldfile.typ 

To rename a file you use the REN command. You'll note that the 
new name goes on the left and the old name goes on the right of 
the equal sign. Let's rename a file, issue: 

[]J []] rm I SPACE BAR 1 []J IT] 0 [II [ill []J D @] @] [0 ~ 

[]J IT] 0 IT] D @] @] [0 and press I RETURN 1 

You should remember the STAT file. Since it gives you a mes
sage regarding the status of the diskette, we've just changed its 
name to STATUS. Don't forget to include the file types when 
you rename files. 

STATUS.COM is the same as what used to be STAT.COM; only 
the name has changed. You can, if you desire, change the names 
of the files we supply with your Osborne 1. If STATUS makes 
more sense to you than does STAT, leave the name changed and 
make a note of the change in the Reference Guide. If you prefer 
to leave your files the same as they come, type: 

[]J [I] [ill I SPACE BAR 1 []J IT] 0 [II D @] @] [0 ~ 

[]J [II 0 IT] [ill []J D @] @] [0 and press I RETURN I 

to restore the original name to the file you just used. 



54 OSBORNE 1 USER'S GUIDE 

You can change a name of a file on the B drive by prefacing the 
file name with the B: disk drive identifier. The following com
mand is invalid, however, since you can't rename a file from one 
drive to another: 

REN B:STATUS.COM=A:STAT.COM RETURN 

invalid! ~~~~~~~ 

Command #5: TYPE filename.typ 

You can display files containing characters that can be displayed 
(data, as opposed to computer instructions) on the monitor 
screen by using the TYPE command. Since all the files on your 
CP/M diskette contain only instructions, put the copy you made 
of your WordS tar diskette into the right-hand drive and issue: 

IT] IYI [EJ [[] I SPACE BAR I [§J D 
~ []J 1m []J @] []J D []J I3ZJ [B] and press I RETURN I 

You should see a sentence or two that identifies the contents of 
the file. Generally, you don't need this command unless you're 
trying to verify the contents of a file. 

Command #6: USER n 
Command #7: SAVE n filename.typ 

These two commands constitute advanced topics, so we'll deal 
with them in a later chapter. 

Lesson 4: Ambiguity and CP/M 

Sometimes you may want to refer to a group of files at one time, 
rather than to a single file. CP/M identifies files in two ways 
without your having to enter the exact file name and its type. 
Both methods are called "ambiguous file references" or "CP/M 
wildcard specifiers." 



LEARNING AND USING CP/M 55 

First, you can use an asterisk (*) to substitute for either the 
entire file name or the entire file type, as in 

ERA *.BAS 

or 

ERA PROGRAM.* 

A second method of substitution involves the question mark (?). 
CP/M interprets the question mark as an "I don't care what's in 
this position" character. For example: 

ERA PROGRA?BAS RETURN 

erases all files that have file names seven letters long, have 
PROGRA as the first six characters, and have the BAS file type. 

Try issuing each of the following on your Osborne 1 and note 
what happens: 

@] IT] I]] RETURN I 
@] IT] I]] SPACE BAR I ~ D [gJ @] [01 RETURN 1 
@] IT] I]] SPACE BAR I ~ D []J 0 [§J 1 RETURN 1 

@] IT] I]] SPACE BAR I 
[gJ [1J [1J [1J [1J rn [1J [1J D ~ 1 RETURN I 

@] IT] I]] 1 SPACE BAR I ~ D [gJ [1J [01 RETURN I 

The first of these commands gives you a directory of the entire 
diskette. The second presents a directory of all COM-type files. 
The third presents a directory of all BAS-type files. The fourth 
displays a directory of all files whose names begin with C. The 
last displays a directory of all file types starting with C and 
ending with M. 

You may use the asterisk and the question mark with the DIR 
and ERA commands, but not with the others. Later you will 



56 OSBORNE 1 USER'S GUIDE 

learn about the PIP and STAT programs, and these, too, can 
recognize the ambiguous file references you've just learned. 

Lesson 5: Control-Character Commands 

Control characters are something like capital letters on computer 
keyboards, but instead of holding down the SHIFT key to create 
them, you hold down the control key (marked I CTRL I). The best 
way to accustom yourself to typing control characters is to first 
hold down the control key, then press a letter, and finally let go 
of the control key. Eventually good typists are able to enter con
trol characters as quickly as they can any other character. 

We represent control characters in this manual by preceding the 
letter to be pressed with a small "caret" (,,). CP/M and WordStar 
also use this symbol to indicate a control character. 

"C = control C 
"p = control P 
"S = control S 

Whenever you see the CP/M prompt, you may issue any of the 
above characters. 

"C causes CP/M to restart. The practical effect of restarting is 
that it causes CP/M to "forget" any information it has learned 
about a diskette and start from scratch. If this doesn't make any 
sense to you, consider what would happen if you switched disk
ettes in a drive without telling CP/M. If it expected a certain 
diskette in the drive when you had replaced it with another, it 
might not know where to put information onto that diskette and 
might accidentally erase something you wanted to save. 

Fortunately, CP/M can detect if a diskette is changed. Unfor
tunately, CP/M displays an error message if it detects that you 
changed diskettes: 

BOOS ERR ON A: RIO 



LEARNING AND USING CP/M 57 

The above message stands for" disk error on drive A:; I can only 
read from that diskette, not write anything onto it." 

So, anytime you change a diskette when the prompt indicates 
that CP/M is waiting for a command, issue a AC to tell CP/M that 
you've just changed diskettes. Try that right now with one of 
the diskettes you created with the COpy program in the last 
chapter: 

1. put a different diskette in drive A; 

2. issue a ~ []]; and 

3. Type a @] IT] [ID and press I RETURN I to see what's on 
that diskette. 

NOTE 

When you change diskettes while you're running a pro
gram, what you have to do to tell the computer you've 
changed diskettes varies from program to program. 
WordStar, for example, requires you to issue a CHANGE 
LOGGED DISK command. This is one reason why read
ing the manuals that come with a program is vital. 

Put your CP/M system diskette back in drive A. 

Another control character, AP, "toggles" the printer. CP/M 
usually sends characters only to the monitor screen. If you have 
correctly connected a printer to your Osborne 1 and have first 
run the printer SETUP program (described in chapter 2), issuing 
a ~ ~ will tell CP/M to now send all characters to both the 
monitor screen and the printer. Issuing ~ ~ again turns off 
the stream of characters to the printer. In other words, if the 
printer is mimicking the screen, issuing AP turns the printer 
OFF. You can visually determine if this feature is engaged by 
the way characters appear to stream from left to right rather 



58 OSBORNE 1 USER'S GUIDE 

than all at once on the screen. By the way, if you issue "P and 
nothing prints, be sure the printer is turned ON and correctly 
plugged in. 

The last control character described in this chapter is control-So 
Issuing "S temporarily makes the Osborne 1 computer pause. 
Issuing it causes anything being displayed on the screen to 
freeze. Issuing another "S (any character, actually) restarts 
the computer. This command is helpful if a lot of information 
is being displayed which begins "scrolling" off the top of 
the screen; issue "S to make the computer pause in such a 
circumstance. 

Lesson 6: PIP and STAT 

Two helpful programs included with CP/M are PIP (which 
stands for Peripheral Interchange Program, a fancy way of say
ing "copy") and STAT. Both of these programs are stored on the 
CP/M diskette as COM-type files, so you execute them by typ
ing their file name. 

Both programs have several options you'll want to know. Let's 
start with STAT. 

Type: 

. [§J II] ~ ITJI SPACE BAR I ~ 0 ~ I RETURN I 

and you should soon see a list of files-it may not match the 
one below-in alphabetical order, and some other information 
about those files. 



LEARNING AND USING CP/M 59 

Recs stands for the number of 128-character "blocks" (called 
records) the file in question occupies. This is an internal piece 
of "housekeeping" information that most users don't need 
to know. 

Bytes represents the length of the file in kilobytes, each kilobyte 
being 1024 characters long. A byte is equivalent to one character 
of information. The Osborne 1 can store as much as 185K bytes 
of information on each double-density CP/M diskette. 

Ext represents the number of physical extents occupied by the 
file. This is another internal housekeeping item and shouldn't 
concern you unless you begin learning to program. 

Ace stands for the file access attribute. RlW indicates 
"read/write," which means you can read from the file and write 
new information to it. Sometimes you might encounter RIO in 
place of RlW. RIO stands for "read/only," meaning that no new 
information can be written into the file. Immediately to the right 
of the access attribute are the disk drive, the file name, and the 
file type. 



60 OSBORNE 1 USER'S GUIDE 

STAT functions as a fancy directory, one that gives you some ex
tra information about each file on the disk. Try each of the fol
lowing commands: 

[[I IT] 0 IT] 1 SPACE BAR 1 

[Q] rn rn rn rn rn rn rn D c:J 1 RETURN I 

[[I IT] 0 IT] 1 SPACE BAR I c:J D @] @] [01 RETURN I 
[[] IT] 0 IT] 1 SPACE BAR I 

rn [ill rn rn rn rn rn rn D ~ 1 RETURN I 

N ow try the following: 

[Q] [0 ffi] 1 SPACE BAR I 

[Q] rn IT] IT] rn IT] IT] rn D c:J 1 RETURN I 

[Q] [0 ffi] 1 SPACE BAR I c:J D []] @] [01 RETURN I 
[Q] [0 ffi] 1 SPACE BAR I 

rn [ill IT] IT] rn IT] rn rn D c:J 1 RETURN I 

You should note that DIR and STAT work essentially the same 
way; only the information they present differs. We'll cover other 
uses of STAT later in this manual; but most users will find the 
above functions more than enough for now. 

NOTE 

We've included another special program named XDIR on 
all the diskettes we provide. XDIR performs the same as 
STAT. If all you want to do is find out what is on a disk
ette and how much room it takes up, use XD IR in place of 
STAT. We placed XDIR on each diskette instead of STAT 
because XDIR takes up less space on a diskette, leaving 
more room for your files. Later in this manual you'll 
find out about other uses for STAT, uses XDIR does not 
duplicate. 



LEARNING AND USING CP/M 61 

Now we move on to PIP, a program that has multiple uses. For 
now, we'll study one: how to copy individual files-as opposed 
to entire diskettes-between diskettes. We'll quickly cover the 
other uses of PIP later. 

Issue: 

[f] OJ lEI and press I RETURN I 

After a few moments, you should see an asterisk (*), which indi
cates that PIP is waiting for further commands. PIP commands 
are structured much like the REN (rename) command: 

newfile. typ= oldfile. typ 

Unlike REN, however, PIP lets you use the ambiguous file 
references you learned earlier. Let's try PIP out; press the Reset 
button and follow the instructions below: 

1. Take a blank, unformatted diskette and put it into 
drive B. Your system diskette should be in drive A. 

2. Format the blank diskette as you learned in the second 
chapter, but do not use the COpy program to duplicate 
the system diskette. (In other words, with the CP/M 
system diskette in the left drive and the ~ appear
ing on the screen, type @] @] lEI [YJ and I RETURN I, then 
[IJ, and []J, then I RETURN I and finally @] for double 
density. Get back to CPM; press RETURN twice. 

3. Type [Q] OJ [[] I SPACE BAR I [ID D and press I RETURN I to 
see the directory of files on drive B. You should get the 
1~["'''3 message. 

4. Type lEI OJ lEI I SPACE BAR I [ID D ~ [A] D 
[A] [1J [1J [1J [1J [1J [1J [2] D [2] [1J [2] I RETURN I 
(We're being sneaky here. First, we just showed you a 
direct way to issue PIP commands that skips the PIP 
prompt, an asterisk. Second, we abbreviated the 
"newfile.typ" to liB:" -which means that PIP should 



62 OSBORNE 1 USER'S GUIDE 

copy whatever fulfills the right side of the equation 
onto drive B, using the same file names.) 

5. You should see something like the following: 

6. Try the following sequence of other PIP commands and 
see what they do. (Hint: use DIR B: or XDIR B:*.* to 
see what was copied onto drive B.): 

[£J [JJ [£J 1 RETURN' +- initiates PIP 

with the * prompt present on the screen, type: 

[[]DB0D~D@]@][0 

1 RETURN' +- valid PIP sequence 

+- remember control-C? 

[8J @] [JJ [[] , SPACE BAR I [[J D , RETURN I 

[[] [[] 01 SPACE BAR' [[J D 

+- examine 
disk in B 



LEARNING AND USING CP/M 63 

c:J D c:J 1 RETURN 1 ("- note the message ERA 
gives and press IT] 
and RETURN 

[£J OJ [£J 1 SPACE BAR I 

[]] D EI [K] D []] IT] IT] IT] D @] @] [01 RETURN I 
II] []] OJ [EJ I SPACE BAR I []] D 1 RETURN I ("- examine 

disk in B 

Lesson 7: Error Messages 

Since we can't always be perfect, it is a good idea to be aware of 
the error messages CP/M may present and what they mean. 
Rather than lead you through a series of errors (we don't want 
you to learn any bad habits), we'll just describe each error mes
sage and what it means. If it takes you a while to make an error, 
just remember to look here to find out what CP/M was trying to 
tell you. 

IU"I"3 

BDOS ERR ON x: 

Any sequence of characters followed by a 
question mark indicates that CP/M looked 
on the disk for a file of the type COM 
with those characters as the file name and 
couldn't find it. Check the directory of the 
diskette to make sure that the file you 
thought was there really is. 

Indicates that no files in the directory 
matched what you specified in your com
mand. If you issue [Q] [] I]] and I RETURN I , 
then receive this message, no files at all are 
present on the diskette. 

Appears when CP/M cannot find a diskette in 
the drive (A: or B:) you specified, the disk
ette hasn't been formatted, or the drive door 
is not properly closed. If the words BAD 
SECTOR immediately follow the message, 



64 OSBORNE 1 USER'S GUIDE 

then you either have a bad or an improperly 
formatted diskette. If the abbreviation RIO 
appears, you may have forgotten to issue a 
"C when you changed diskettes, or you told 
CP/M at some point not to allow anything to 
be added to or deleted from that file. 

You tried to rename a file with a name that 
already existed. Since you can't have two 
files on the same diskette with the same 
name, try using a different name. 

Time to Move On 

At this point, that's all you really have to know about CP/M. In 
the next chapters, we'll concentrate on teaching you how to use 
WordS tar and SuperCalc, the two primary software programs 
that accompany yO~lr Osborne 1 computer. 

CP/M has more to offer, and we'll return to it in the advanced 
sections of this manual. You might also want to look at some of 
the books that have appeared on CP/M, most notably The CP/M 
Primer, published by Howard Sams, and The Osborne CP/M User 
Guide, published by Osborne/McGraw-Hill. 



CHAPTER 4-
Word Star 

and MailMerge 

This chapter will take you step by step through 
the procedures of creating, formatting, storing, 
and printing documents using WordStar and its 
companion program, MailMerge. The chapter 

explains frequently used features in detail, while 
touching briefly on those used less often. 



66 OSBORNE 1 USER'S GUIDE 

What Is WordStar and What Does It Do? 

WordStar is a program that enables the Osborne 1 to function as 
an efficient word-processing system. The term "word process
ing" aptly applies to the process of manipulating text (letters, 
reports, books, and the like) with a computer. 

WordStar word processing lets you enter text at the keyboard 
just as you would on a typewriter. In actuality, the keyboard is 
one of the few design features held over from the antiquated 
typewriter technology. As you read on, it will become obvious 
why word processing makes typewriters seem cumbersome 
and archaic. 

To begin with, information you enter at the keyboard is immedi
ately displayed on the monitor, where you can move, change, or 
delete it with easy-to-learn commands. When you first begin 
using WordStar, margins and line spacing are preset to the most 
common settings, but can be altered at will. 

You can compose whole paragraphs of text without using the 
carriage return; when you reach the right-hand margin and 
WordStar detects a word that is too long to fit on the current 
line, it automatically moves the word to the next line. 

Once you've entered a rough draft of your document, you can 
rearrange and edit its parts until you are satisfied with its 
accuracy and organization. As you become proficient in using 
WordS tar, you will learn how to locate a specific word or phrase; 
optionally replacing it with another, manipulating sections of 
text, and reconstructing fragmented paragraphs. A menu at 
the top of the screen aids you in learning these more complex 
commands. 

Special-effect commands can further enhance your document. 
For example, you can specify underlines, boldface, subscripts, 
superscripts, and specific formatting that will appear in the 
printed version of the document. Furthermore, the MailMerge 
feature lets you merge text and/or data files together, thereby 



WORDSTARAND MAILMERGE 67 

generating form letters, boilerplate text (text created from files of 
preexisting, commonly used sections of text), mailing lists, and 
large documents. In fact, this entire manual was written using 
WordStar. 

After you have prepared a document, you store it as a file on a 
diskette. Your text will remain safe and securely stored on the 
diskette until you want to edit, print, or send the file to another 
computer over the phone lines. 

We suggest that you read through this chapter once, then sit 
down with your Osborne 1 computer and work your way 
through the lessons. 

See notes on single and double density, page 758. 

Starting WordStar 

The process of loading WordStar is simple. 

1. Press the RESET button (unless you've just turned the 
Osborne ION). 

2. Put a copy of the WordStar diskette you made in chap
ter 2 into drive A and secure it by pulling the door 
down over the diskette. 

3. Place a blank, formatted diskette in drive B and secure 
it. You will use this diskette to store the documents you 
create using WordStar. If you wish to edit any docu
ment files that you creat~d in an earlier WordStar ses
sion, you should put the diskette on which those files 
reside into drive B. 

4. Press the I RETURN I key in response to the sign-on mes
sage displayed on the monitor. (Typing WS from the 
r.iWI prompt may also be used to start WordStar.) After 
a few moments, you'll see the Osborne logo, then the 
WordStar sign-on message, and finally the no-file 
menu will appear: 



68 OSBORNE 1 USER'S GUIDE 

You are now using WordS tar. 

Lesson 1: Starting From the No-File Menu 

The listing of command definitions at the top of your screen is 
the "no-file menu," called such because at this stage you are not 
working on any particular file. The no-file menu provides an 
introductory level where files are manipulated, and where 
preparations which affect these files are made. A single letter 
identifies each possible operation. You select one of the listed 
operations by pressing the letter that precedes it on the menu. 
The definition of each operation is fairly explicit, and as you 
read on, you will gradually understand the operations that can 
be performed from this menu. A detailed description of each op
eration and what it does can be found in the Reference Guide 
that accompanies this tutorial. 

File directory 

Immediately below the no-file menu you will notice a list of 



WORDSTARAND MAILMERGE 69 

file names. This listing currently shows a directory of all the 
WordS tar program files on the diskette in drive A. This directory 
is like the one you learned about in the last chapter (the CP/M 
command DIR), except that here files are arranged in alphabeti
cal order. The no-file FILE DIRECTORY command F turns this 
directory OFF or ON again like a switch. You will encounter 
many such "toggle-switch" commands when using WordStar. 
For now, try pressing the letter I£J (FILE DIRECTORY) and 
watch the resultant action on the screen. Before proceeding, 
make sure that the file directory is once again displayed by 
pressing I£J again. 

Changing Disk Drives 

Before actually creating any documents using WordStar, you 
should get in the habit of telling the computer which disk drive 
to use for storing your documents. If you don't give WordS tar 
any instruction to the contrary, it will use drive A to store and 
retrieve documents. Since the WordStar program diskette in 
drive A is already full of files, you should always store your files 
on drive B. A blank diskette placed in drive B will have the max
imum capacity of 80 single-spaced, typed pages. 

REMEMBER: You don't want to store your files on the WordS tar 
program diskette in drive A. So, place a formatted disk in drive 
B, and issue the no-file CHANGE LOGGED DRIVE command 
II] to switcl1 control to drive B. This message will appear: 

THE LOGGED DISK DRIVE IS NOW A: 

NEW LOGGED DISK DRIVE (letter, colon, RETURN)? 

The "logged drive" means the drive currently being used to 
store and retrieve information. To "log" the B drive so informa
tion is recorded on your storage diskette, enter []] D and press 
the I RETURN I key. The A drive will whirr a moment, and then 
the B drive will become active, as indicated by its activity light. 

Notice that the file directory, which used to list the files on 
drive A, has been replaced by a new directory of the files on 



70 OSBORNE 1 USER'S GUIDE 

drive B. If this is the first time you've used your storage disk
ette, there aren't any files on it, so nothing is listed in the 
directory. 

Creating A File 

By now you are probably anxious to begin word processing. 
Issue the no-file CREATE OR EDIT A DOCUMENTcommand; 
press [Q] to begin creation of a document file. 

NOTE 

WordStar distinguishes between files it calls "documents" 
and those it calls "non-documents." The difference be
tween the two is simple: a document file is formatted 
according to your instructions (margins, headings, and 
other special instructions), while a non-document file con
tains only characters exactly as you entered them. You 
create document files if your primary need is to create let
ters, memos, reports, or other documents using WordStar. 
You create non-document files if you are editing programs 
or program data using WordStar. 

Whenever you ask WordStar to create a document file, some 
guidelines on creating a file appear on -the screen and 
WordStar asks: 

NAME OF FILE TO EDIT? 

This prompt (WordS tar question) may seem confusing since you 
probably think that you want to create, not edit, a file. Actually, 
WordS tar doesn't pay much attention to the difference. If the file 
you name doesn't already exist on the diskette in the logged 
drive, WordS tar creates a new file under the specified name, 
which will contain the document you generate. If the file you 
name already exists on the logged diskette, WordStar loads the 



WORDSTAR AND MAILMERGE 71 

first portion of that file into the memory of the Osborne 1 and 
allows you to begin editing it. 

The name you assign a file will subsequently be used to recall 
the file, so make sure that the name you pick is meaningful to 
you. Remember, a file name consists of up to eight letters or 
digits, a period, and three optional characters called the file 
type. For example, enter: 

TRIAL.TXT 

as the name of your file; don't press RETURN yet! Notice that 
this is a valid name, and gives a clear indication of the file's con
tents: trial text. A file named ARC08T.VOl gives little indication 
of what's in the file. 

Now let's experiment with the control commands that are listed 
just above the prompt that requests a file name. Once you leave 
the no-file menu, WordS tar uses control characters-referred to 
as "commands" -to handle all word-processing operations. To 
issue a WordS tar command, simply depress the I CTRL I (,,) key 
while simultaneously pressing the appropriate letter to issue a 
command. 

The command "5 deletes the last letter in the file name 
TRIAL. TXT, and "D restores it. Try that right now. Press "I]], 
then ,,[[], and make sure that WordStar behaves in the manner 
you expect. A "[I] deletes the entire file name and a "ffi] re
stores it. Try each command now, first erasing the file name you 
entered, then restoring it. 

In passing, we'll note that the arrow keys on your Osborne 1 
perform the following functions with WordStar: 

EJ is the same as "D 

EJ is the same as "5 

rn is the same as "E 

[]J is the same as "x 



72 OSBORNE 1 USER'S GUIDE 

When you're actually editing a document, the arrow keys move 
the cursor as you will see. We'll return to our discussion of the 
arrow keys when we talk about moving the cursor. 

Use "U, the INTERRUPT command, whenever you wish to 
abort a command currently in progress. What's the command in 
progress right now, you ask? Since you're not typing anything at 
the moment, the last command that is still in effect is the one in 
which you asked to edit a document file. In this case, then, the 
INTERRUPT command ( "U) would abort the creation of the file 
named TRIAL. TXT, causing you to start again from the no-file 
menu. Issue "[[I and observe that you receive this message: 

* * * INTERRUPTED * * * Press ESCAPE Key 

Press the I Escl ("escape") key on your Osborne 1 as advised in 
the message, and you will return to the no-file menu. You just 
aborted the CREATE OR EDIT A DOCUMENTcommand. 
Anytime you mistakenly issue a command, use the INTERRUPT 
command ( "U) as you just did. 

Again issue the CREATE A FILE command by pressing the [[] 
key, and when WordS tar asks you for the name of the file to 
edit, once again enter: 

TRIAL.TXT 

Make sure the file name TRIAL.TXT is correctly entered on 
the prompt line, then press the I RETURN I key. The message 
1~IM"jl'3 will appear at the left edge of the screen just below 
where you last typed. WordS tar automatically creates the 
new file for you. If a file named TRIAL. TXT already existed 
on the storage diskette in drive B, then WordS tar would have 
accessed it (computer term for "opening a file"), retrieved 
the information from it, -and then displayed the text on the 
screen so you could edit it. Creating a WordStar document 
file the first time is comparable to clearing your desk and 
getting out a pad of paper and a pencil. Editing a file that 
already exists is like taking out a pad of paper that already 
has writing on it. 



WORDSTARAND MAILMERGE 73 

Your screen should now look like this: 

At last you are ready to begin word processing. A menu of com
mands in the upper portion of the screen shows the most-often
used WordS tar commands. Five other such menus assist you in 
learning specific other parts of the WordStar word-processing 
system. 

The commands at the top of the screen are all single-letter com
mands, which you use by holding down the CTRL key and 
pressing the letter corresponding to the action you desire. 

Look at the menu, and you'll see a number of commands that 
move the cursor. Many higher-level WordS tar commands consist 
of a sequence of control letters. The first letter accesses a specific 
catagory and the next letter selects the command from within 
that category. The letters Q, J, K, 0, P function in this manner 
and thus serve as a command "prefix." Issuing one of these pre
fix commands causes a menu corresponding to its related cate
gory to appear. Let's investigate these two-letter commands. 



74 OSBORNE 1 USER'S GUIDE 

Lesson 2: Getting Help When Needed 

The most useful prefix command for beginners is the HELP 
prefix "J. Issue "QJ now. 

You will see a different menu listing several subjects, each pre
ceded by a letter and an equal sign. In the upper left-hand cor
ner of the screen, is a "J. This indicates that you've pressed the 
prefix J and selected the J HELP menu. WordS tar is waiting for 
you to select from this new menu of options. 

The first command listed on the HELP menu is the letter H. This 
HELP command changes the degree of assistance provided. 
Pressing the letter [8] from the HELP menu shows what level of 
help is currently in effect and allows you to change it. 



WORDSTAR AND MAILMERGE 75 

You have four levels of assistance to choose from (0-3). The 
HELP setting is usually 3, but as you gain experience using 
WordStar, you may reduce the amount of information the 
menus show and eventually eliminate them by choosing lower 
numbers. Actually, except for the main menu, you can avoid 
seeing any of the other menus by issuing your commands in 
rapid succession. When you issue a command prefix, WordS tar 
waits just a moment before displaying your options. If you press 
a response before WordStar begins displaying these options, 
you'll "beat the computer" and not see any additional messages. 
The WordStar HELP system is designed to be there when you 
need it, not to intrude on everything you do. 

Examine the different HELP levels with 1\ JH (0-3) if you like, 
but since you are just starting out, leave the HELP level set to 3. 
We'll return to each subject listed on the HELP menu in its 
proper context, so don't think you're missing anything. 

When you return to the main menu, look at the top of the 
WordStar screen. You'll see another helpful feature of WordS tar, 
the "status line." 

B:TRIAL.TXT PAGE 1 LINE 2 COL 7 INSERT ON 

is the way the status line should read at this point. Don't worry 
if the column or line number-is different if you've moved the 
cursor around more than we suggested you do. 

Observe that the command currently in progress, if any, ap
pears at the far left of the status line, followed by the name of 
the file you are working on. The current page number, line, and 
column are also shown. Also the message "~~1#1;I'.)~1 should be 
visible at the right-hand side of the status line; you will need to 
use the control arrow keys (~ and ~) to see this message. As 
described later, INSERT ON indicates that WordS tar will 
"insert" text rather than replace it. 

To reinforce what you've just learned about the status line, let's 
have WordS tar tell you all about it. You remember the HELP 



76 OSBORNE 1 USER'S GUIDE 

command, right? Issue a "Q], and the HELP menu should 
appear in a moment at the top of your screen. If you read the 
menu carefully, you'll find that you have to press []] to get 
more information about the status line. Do so now. A screen 
full of information should appear for you to read. Press the 
I SPACE BAR I when you've read the screen, and another full 
screen will appear. Continue doing so until WordS tar returns 
you to the main menu and the text you entered earlier. 

Lesson 3: Entering Text 

Take a minute now to enter a few lines of text. To do so, first po
sition the cursor at the end of the information you've already 
typed by issuing "[£J (for "next word") several times. Remem
ber that the cursor (the bright underline) always appears at the 
position where the next letter will appear or the next action 
will occur. 

Watch the column number on the status line as you type. Use 
the left arrow key (<r- without control) to backspace a single
character position. If you want to erase characters as you back
space, use "- (control-hyphen) instead of the left arrow. (Note: 
On the Osborne I, control-hyphen is the same as what 
WordS tar calls the DEL ("delete") key.) 

Even though the Osborne 1 displays just 52 characters per line, 
it allows lines up to 128 characters (letters or numbers) wide. 
The 52-character display is a window on a longer line. When 
you enter text beyond the 52nd column, the window automati
cally shifts to the right, thus extending your view of lines that 
are longer than the screen. 

Now let's explore some of the special word-processing functions 
WordStar incorporates: 

WORD WRAP: Normally when you have typed 65 characters, 
WordStar lets you finish the word you are typing and then 
jumps to the next line. If possible, the last word you typed will 



WORDSTAR AND MAILMERGE 77 

be fit within the 65 columns on the previous line; otherwise the 
word moves to the beginning of next line. This feature, termed 
"word wrap," means that you never have to use the carriage
return key except when you wish to force WordS tar to move to 
the next line, as at the end of a paragraph. 

You can turn the word-wrap feature OFF and enter text just as 
you would on a conventional typewriter with the "ow com
mand, but it is rare that anyone would want to do this. Issue 
"@] and look closely at the a-prefix menu. Notice that the W 
option (for word wrap) tells you whether it is ON or OFF. Right 
now it should be ON. Press I ESC I to return to the main menu. 

JUSTIFICATION: Have you noticed that the words on a line are 
spaced unevenly and that all text lines end in the same column? 
Text is aligned at the right margin by a WordStar feature called 
"justification." Justification purposely spaces the words to 
achieve this symmetry. If you want text to appear without being 
aligned at the right margin, turn the justification OFF with the 
command "OJ. You can also use hyphens to improve the ap
pearance of your text, so don't be afraid to hyphenate a long 
word if it seems to be going past the right-hand margin. 

RULER LINE: A line that appears just above the first line of 
your text is called the "ruler line": 

L---- !---- !---- !---- !---- !---- !---- !---- !---- !----R 

The L marks the left-hand margin setting, the R the right. Each 
exclamation point marks a regular tab stop, while a number sign 
signifies decimal tabs. WordStar margins can be set anywhere 
between 1 and 240; we'll show you how to set margins and 
tabs later. 

HYPHENS: WordStar has two kinds of hyphens: the "soft 
hyphen" is used to indicate a syllable break that only appears in 
your printed text if the break occurs at the end of a line; a "hard 
hyphen" separates words and phrases no matter where it ends 
up, and always appears in your printed text. 



78 OSBORNE 1 USER'S GUIDE 

Hyphens are automatically soft because the soft-hyphen feature 
is automatically ON. As with most commands that concern the 
format or look of a document, the status of the soft-hyphen fea
ture is shown on the 1\0 menu. You turn the soft-hyphen entry 
ON or OFF with a combination of 1\0 and E. You can tell if the 
soft-hyphen feature is ON or not by issuing a I\/]] and looking 
at the menu. 

Use hard hyphens whenever a fixed divider is required between 
characters, words, or phrases. Hyphens are always hard when 
soft-hyphen entry is OFF, but you can enter hard hyphens even 
though soft-hyphen entry is ON by issuing I\p before typing 
the hyphen. 

You distinguish between hard and soft hyphens when you 
review text on the monitor with the print-control display com
mand, 1\00. 1\00 turns the display of certain print-control 
characters OFF or ON. With the print control display turned 
OFF, soft hyphens will not appear on the screen. The current 
state of the print-control display is shown on the 1\0 menu. 

You'll learn more about hyphens in an upcoming lesson. 

MOVING AROUND IN A FILE: At this point you've typed 
some lines of text. Experiment with the one-letter cursor move
ment commands listed on the left side of the main menu. These 
cursor-movement commands should be easy to learn because 
the cursor moves in the direction in which keys are positioned 
on the keyboard. This cursor command-key arrangement is 
illustrated here: 



WORDSTARAND MAILMERGE 79 

Just remember that the cursor moves in the same direction as 
the keys are positioned in the diamond on the keyboard. Try it. 
The cursor cannot move beyond the text on the screen in either 
direction, so you will get a better feeling for these commands if 
you have a nice chunk of text to play in. 

Because the arrow keys also function like these cursor-control 
keys, whether you use the arrow keys or the control keys is up 
to you and will depend on your style of typing. Generally, fast 
typists should use the control keys because the hand does not 
have to move out of the typing position to use them. Con
versely, "hunt-and-peck" typists will probably find the arrow 
keys more convenient. 

If you type enough text, you'll discover another feature called 
"scrolling." Scrolling occurs when you have more than one 
screen full of text. Your monitor represents a "window" through 
which you look at your text, and WordS tar automatically moves 
the document under the window as appropriate. As you add 
more text, the text in the window seems to move up because 
you're adding material at the bottom. 

You can manually force WordStar to scroll the text by using the 
scrolling commands, A II], A ~, A []], and A I]] . Notice how 
the first two commands move the screen window one line at a 
time, while the latter two move the window about a full screen 
at a time. 

DELETIONS: Try deleting some text by positioning the cursor 
within an existing line of text, and issuing AI]]. The AG com
mand deletes one character or space at the cursor and draws in 
the next character from the right. Issuing A [!] deletes a whole 
word to the right of the cursor, and A[Y] deletes an entire line. 
Note that the Osborne 1 does not have a DEL key as indicated 
on the menu. Use A_ (control-hyphen) if you want the DEL 
function. Most professional typists prefer not to delete charac
ters as they backspace; turning the INSERT feature OFF ac
complishes this function. See lesson 4, "Editing a File," for more 
on the INSERT feature. 



80 OSBORNE 1 USER'S GUIDE 

FLAGS: While you were scrolling the screen, did you see some 
strange symbols to the right of your text? These symbols are 
called "flag" characters. They indicate the status of text lines. 
Each line contains a flag character that tells you how WordStar 
interprets the line. Issue 1\1]] [£J (our good friend HELP, again) 
to receive a full description of these flag symbols, then review 
the summary on flag characters in the Reference Guide. 

SAVING A FILE: When you are through experimenting with the 
skills you've learned so far, you'll probably want to take a break. 

Even though the document you have created may not be of per
manent value, we will show you how to save it anyway so you 
learn from the beginning how to keep your work. Follow the di
rections for saving a file as described below to get a solid under
standing of the SAVE commands. 

Three methods exist for saving files: 

SAVE AND REEDIT: Initiate this command by issuing 1\ [K] []J . 
A message at the top of the screen informs you that the file 
TRIAL. TXT is being saved. A copy of the file is saved on disk
ette, while the original version of the file is left open for further 
editing. You should be returned to the beginning of the docu
ment. You can move your cursor back to the position it occupied 
before you issued the save command by following the instruc
tions that are now displayed at the top of the screen (issue a 
I\@]IE]), or simply start at the top of the document by hitting 
any key. You should get in the habit of periodically saving what 
you have typed with 1\ KS, just in case of some unforeseen 
calamity. Also, if for some reason you must leave the computer, 
it is wise to issue a 1\ KS command before you depart. 

SAVE AND DONE EDITING: Issue this command by typing 
1\ [K] [[]. This form of the save command saves the file under the 
name with which you created it, and returns you to the no-file 
menu. Use this method when you want to work with additional 
files or to save a file before printing it. 



WORDSTARAND MAILMERGE 81 

SAVE AND EXIT: You issue this command with I\KX. Since 
you are already at the no-file menu, you cannot try this com
mand without reopening the file. You can, however, simulate 
what would happen; just press [8], since the I\KX command 
both saves the file like I\KD and additionally exits WordStar 
like X. This method of saving a file is used when you are 
completely through with WordS tar and wish to employ some 
other program or quit for the day. When WordS tar stops ex
ecuting, you should see the CP/M prompt ~ at the bottom 
of your screen. (Remember that if you change program disks 
at this point, you should push RESET or issue a I\C command 
to bring in the CP/M operating system from that disk.) 

The foregoing was a large, but important lesson. We put just 
enough of every use of the basic editing functions of WordStar 
into that lesson that you should be able to create and edit docu
ments on your own now. There's plenty to come, but if you'd 
like to go back and practice some more editing before moving 
on, the following chart should help summarize what you've 
learned. 

Getting Started Summary: 

no-file menu: D-to create a document file 
N-to edit programs or data 
L-to switch disk drives 
F-to turn directory ON or OFF 

interrupt command: 1\ U -cancels current command 

HELP commands: I\JH-change HELP level 
I\JS-Iearn about status line 
I\JF-Iearn about flags in right margin 

format commands: 1\ OJ -turn justification ON or OFF 
1\ OW -turn word wrap ON or OFF 
I\OE-turn soft-hyphen entry ON 

or OFF 



82 OSBORNE 1 USER'S GUIDE 

cursor controls: 

"OD-turn print-control display ON 
or OFF 

"E-cursor up one line 
"X-cursor down one line 
"S-cursor left one character 
"D-cursor right one character 
"A-cursor left one word 
"F-cursor right one word 

"W - scroll window down one line 
"Z-scroll window up one line 
"R - scroll window down one screen 
"C-scroll window up one screen 

deletion commands: "G-delete one character to the right 
"T -delete one word to the right 

save commands: 

" Y - delete en tire line 
"--delete one character to the left 

"KS - save copy and leave file open 
"KD - save file and return to no-file 

menu 
"KX-save file and quit 



WORDSTARAND MAILMERGE 83 

Lesson 4: Editing a File 

You are now ready to move on and explore some more advanced 
editing techniques and formatting methods. Turn ON the 
Osborne 1 or if it is already ON push RESET to insure a fresh 
start for this lesson. Make sure that the diskette holding the file 
named TRIAL.TXT is in drive B and that the diskette containing 
WordStar is in drive A. Press I RETURN I but instead of specifying 
D for editing a document, press the [KJ key from the no-file 
menu to exit to CP/M (like you did at the end of lesson 3). 

Let's learn a new way of invoking WordStar. Enter the following 
in response to the _ prompt: 

~ [§J I SPACE BAR I [[] D III []] ITI ~ [I] D III [KJ IT] I RETURN I 

This method of creating or editing a file eliminates the need to 
go through the no-file menu and log onto the B drive. You must 
indicate the drive in which the file you want to edit or create is 
located by appending the drive identifier followed by a colon (in 
this case, B:) to the front of the file name. 

Preceding the file name with B: is not the same as logging onto 
the B drive; this procedure only temporarily activates the drive 
for that particular file. 

The file you created earlier should now be opened and dis
played on the monitor. Look on the status line for the file name 
I=I';IM_," to verify that WordStar retrieved the file you speci
fied, and not some other file. 

Now it's time to investigate some of the editing features shown 
in the miscellaneous column on the main menu. 

Insertions 

The INSERT feature is normally ON. You can determine if IN
sERT is ON or not by checking to see if the words 1I~@t::l;II'nl 
are displayed in the upper right corner above the menu (status 



84 OSBORNE 1 USER'S GUIDE 

line). Use the control-arrow combination to move the monitor 
window to make sure that the 1I~~1";I"nl message is displayed. 
If it is not, turn it ON by issuing 1\ V. 

To demonstrate the INSERT feature, place the cursor within 
some existing text and type a few letters. Notice -that the 
existing text moves to the right and accommodates the typed 
characters, so you can insert a letter or even a whole sentence 
wherever you want. If you insert enough material, WordS tar 
automatically moves words to the next line-we're assuming 
you haven't turned the justification feature OFF. 

Now watch what happens when INSERT is OFF; issue the I\CSZJ 
command to turn INSERT OFF. The words 1I~~1";I'.nl disap
pear from the top right corner of the screen. Scroll the screen 
with the control-arrow keys to ascertain that the words are in
deed gone. Now place the cursor within some text and type a 
few letters. With the insert feature OFF, the characters you enter 
replace those at the cursor position. Use of the insertion feature 
should be clear at this point; it either allows text to be inserted 
to the left of the cursor when ON, or replaces text at the cursor 
when OFF. To turn INSERT back ON, issuel\[2J-notice that 
this is one of those toggle-switch commands we mentioned 
earlier. 

Two other commands need explanation in conjunction with IN
sERT. Use the INSERTA RETURN command, 1\1]], when you 
want a carriage return but you do not want the cursor to move 
with the return. In other words, the text following your cursor 
will move down a line, but your cursor will remain stationary. 
Note that the TAB command, 1\ OJ, moves the cursor to the next 
tab stop; if INSERT is ON, text moves with the cursor. 

Reforming Paragraphs 

After playing with these editing commands, you may have a 
disorganized paragraph with some lines extending beyond the 
right margin, and other lines not quite reaching it. Place the cur
sor at the beginning of the paragraph you wish to clean up, turn 



WORDSTAR AND MAILMERGE 85 

Hyphen Help OFF with "@][8], and issue the paragraph 
REFORM command, "I]]. The cursor will advance to the end of 
the paragraph, leaving the text in its wake perfectly aligned. 

Unless you turn the Hyphen Help feature OFF, the cursor will 
stop in mid-paragraph and you'll get a message from Word5tar 
at the top of your screen asking whether you want to insert a 
hyphen. For now, if you get such a message, simply issue an
other" I]] to continue the reformatting operation. 

Do not expect the REFORM operation to eliminate spaces or car
riage returns that you have entered. You will quickly appreciate 
the usefulness of this command to realign margins and shore up 
spaces between words. The value of REFORM will become even 
more evident when you see how it can be used to change the 
format of an entire document. 

Changing the Format of a Document 

One nice feature of Word5tar is the ability to change the format 
(margins, line spacing, etc.) of a document at any time. In order 
to investigate the formatting procedures, you must have a few 
paragraphs of text in your file. If you do not have at least a page 
of text, take a moment and type something-use the text in this 
lesson if nothing else comes to mind. 

It's also not important to be very accurate. After all, you'll be 
able to correct the mistakes by using Word5tar's editing capabili
ties .. 50 type away, and let the mistakes happen! 

A normal WordS tar page consists of 66 lines (several of these are 
reserved for margins in the default settings, so you actually 
only have 54 lines of text); a hyphenated line with a P in the 
rightmost column separates one page from the next. Use the 
down arrow to move the cursor to this dotted page-break line. 
This page divider is called the DYNAMIC PAGE-BREAK LINE. 



86 OSBORNE 1 USER'S GUIDE 

When you reach this line, use the command 1\ I]] [f] to first turn 
the line OFF and then back ON again; the 1\0 menu shows 
whether it is ON or OFF. Page length is adjustable, but you will 
have to wait awhile to see how this is done. If or when you have 
a page of text, issue 1\1]] to gain access to the ON SCREEN 
FORMATTING menu: 

This menu lists commands you can use to format a document 
and also shows the current state of various features. Most of the 
features listed in the status section, except HYPHEN HELp and 
SOFT-HYPHEN ENTRY, should be ON. 

You can switch a feature OFF or ON at any time by using the 
toggle command that precedes it on the 1\0 menu. For example, 
you turn the RULER DISPLAY OFF with 1\ I]] III. The main 
menu returns, and the RULER LINE below the menu should no 
longer be visible. Turn the RULER LINE back ON with another 
1\ I]] III. Experiment with each feature on this menu; when nec
essary, use the Reference Guide to get a full description of the 
feature. 



WORDSTARAND MAILMERGE 87 

The rest of the menu is devoted to commands that format docu
ments. For example, enter the words FORMATTING COM
MANDS on a blank line, and with the cursor still positioned 
in the same line, use the CENTER CURSOR LINE command 
"@][]]. This command centers the words you just typed 
midway between your margins. Use the delete command "IT] 
to delete this title if it interferes with the contents of your file. 

The lines in your document are now single spaced because this 
is the usual setting WordStar assumes when you first start using 
it. You can change the line spacing easily. Change the line spac
ing with the SET LINE SPACING command, "OS. Issue "@] 
then []], and WordS tar will ask you: 

ENTER space OR NEW LINE SPACING (1--9): 

The number you enter in response to this prompt represents 
line spacing in the document and dictates the number of times 
the cursor or print carriage moves down at the end of each line. 
For example, enter I]] and press 1 RETURN I. Even though nothing 
appears changed in your existing document, rest assured that 
the line spacing is now set to 5. Four blank lines will separate 
each new line of text you enter from this point on. Text you've 
already entered will stay the same, unless you reformat it. The 
message should show at the upper right of the 
top line. 

Now, to demonstrate how to change line spacing for an existing 
document, place the cursor at the beginning of a paragraph and 
REFORM it with a "[§J command (you may have to issue "[ID 
several times to get through the paragraph unless you turn 
Hyphen Help OFF with "OH beforehand). The cursor will move 
through the file, setting off each text line with four blank lines. 
To reestablish the original line spacing, use the "@] [[] com
mand and enter IT] as the new line spacing. Go back and 
REFORM the paragraph with ,,[]] and single spacing will once 
again be in effect. 



88 OSBORNE 1 USER'S GUIDE 

Lesson 5: Margins ,and Tabs 

You can change margins just as easily as line spacing. The fol
lowing exercise will lead you through the process of changing 
the left margin to 5 and the righ t margi~ to 45: 

1. To change the left margin, issue the LEFT MARGIN 
command, I\@J II]. When WordS tar asks: 

LEFT COLUMN NUMBER (ESCAPE for cursor column)? 

enter @] and press 1 RETURN I. 

2. To change the right margin, use the RIGHT MARGIN 
command, 1\ []] ffi]. When the following prompt 
appears: 

RIGHT COLUMN NUMBER (ESCAPE for cursor column)? 

enter rn I]] and press 1 RETURN I. 

3. To format the document with the newly specified 
margins, place the cursor at the beginning of each 
paragraph and use the REFORM command, 1\ [ID . 
Notice that the RULER LINE reflects the new margin 
settings. 

4. To restore the original left margin of 1, try a slightly dif
ferent approach. Move the cursor to the far left-hand 
margin; you'll have to use the arrow keys to do so. 
Notice that the status line shows that the cursor is in 
column 1. Issue the LEFT MARGIN command, I\[]] II]. 
When WordStar requests a column-number, simply 
press the 1 ESC I key. Pressing ESC will set the left 
margin at the column where the cursor is located 
(column 1). 

5. Restore the original right margin (65) with the RIGHT 
MARGIN command I\@][[],and enter I]][[] as the 
column number. You cannot use the ESC key in this 
case because you haven't learned how to move the 
cursor beyond the current right-margin setting of 52. 



WORDSTARAND MAILMERGE 89 

REFORM with 1\1]] to reestablish the original and 
normally used WordStar margins. 

You can temporarily disengage the margins so you can enter text 
outside of the present settings. To release the margins, use the 
MARGIN RELEASE command, 1\ [QJ [8J . After issuing this com
mand, you can move the cursor beyond the current margins. 
The message IllJE"i'jl::t. will be displayed at the far right of the 
STATUS LINE while the margins are released. The original mar
gins will again be in effect as soon as the cursor returns within 
the bounds of the current margins. 

Something to consider when you format a document is that 
standard line spacing, margins, and tabs reset whenever you 
leave WordStar. This means that text in a file will remain format
ted as it was when you saved it, but when you return to edit 
after leaving WordStar, the standard settings will be in effect. 

To clarify this point further, suppose you were creating a docu
ment with 65 as the right margin, and you saved the file and left 
WordS tar to use another program. When you returned to edit 
the file, existing text would still have 65 as its right margin, but 
entry of any subsequent text or reformatting would have 52 as 
its right margin. 

There is an easy way to set the margins and tabs to match those 
of a previously composed document. Place the cursor within a 
full line of existing text and issue th~ FROM FILE LINE com
mand, I\@] II]. If your existing text has 65 as the right margin, 
the I\OF will reset the current right margin to 65. 

Another practical application demonstrates the FROM FILE 
LINE command. We will create an imitation ruler line that will 
specify the margin and tab settings for your file. 

Place the cursor at column 5 (you can tell by looking at "COL" 
on the status line) and type L as your left margin marker. Now 
enter hyphens-make sure they're not soft hyphens-all the 
way to column 52 and type R to mark the right margin. You can 



90 OSBORNE 1 USER'S GUIDE 

position exclamation points (!) on the line where you want tabs 
set; enter a number sign (#) to denote decimal tab stops (an 
indicator that aligns decimal points in numbers). 

Leave the cursor within the imitation ruler line and issue the 
FROM FILE LINE command, ""@][£]. This command clears 
the present margins and tabs and sets those the new ruler line 
specifies. Observe that the real RULER LINE below the menu 
reflects the new settings. To prevent the imitation ruler line from 
appearing when you print the document, insert two periods at 
the front of the line in columns 1 and 2. These periods are a 
DOT command, and they inform the printer not to print this 
ruler line; you'll learn all about DOT commands later on. 

The TAB command definitions on the ""0 menu are fairly self
explanatory. ""1 (or TAB) advances the cursor to the next tab 
stop, moving text with it if INSERTION is ON. The PARA
GRAPH TAB command, ""OG, temporarily sets the left margin 
to the next tab stop and remains in effect until you type some
thing, issue a margin command, move the cursor to the left of 
the position in which you issued ""OG, or press RETURN. Ex
periment with these tab commands if you like! 

Remember that tab stops are shown below the menu on the 
RULER LINE. WordS tar shows regular tabs as exclamation 
points (!) and automatically sets them at every fifth column. You 
can set your own tabs in order to format a document or arrange 
columnar data. The SET TAB STOP command, 01 (or ""0 fol
lowed by the TAB key) sets tab stops. Either of these commands 
prompt you for the column number in which you want the tab 
set. You can specify a column or press ESC to indicate the col
umn containing the cursor as the tab site. Follow this exercise to 
become familiar with tab arrangement: 

1. To clear the tab stops in column 11 use the CLEAR TAB 
command, ,...@] 1]]. WordS tar will ask: 

CLEAR TAB AT COL (ESCAPE for cursor col; A for all)? 



WORDSTARAND MAILMERGE 91 

Enter IJJ IJJ and press 1 RETURN I. Watch the exclamation 
point in column 11 disappear from the RULER LINE. 

2. To clear the tab set at column 16, move the cursor to 
column 16 (as shown on the STATUS LINE), issue the 
CLEAR TAB command, I\. I]] [ill, and either enter the 
column number IJJ [§J followed by 1 RETURN I, or press 
the ESC key. Either of these actions clears the tab at 
the column containing the cursor. 

3. To clear all of the tab stops, again use the 1\.1]] [ill com
mand, but this time answer the prompt with [K] fol
lowed by 1 RETURN I to clear all of the tab settings. The 
RULER LINE should now consist of a dotted line of 
hyphens with L on the left and R on the right. 

4. To set a regular tab, use the SET TAB command, 
I\. I]] [IJ. This message appears: 

SET TAB AT COLUMN (ESCAPE for cursor column)? 

Enter []] []] and press 1 RETURN I to set a tab at that col
umn. An exclamation point positioned roughly in the 
middle of your screen on the RULER LINE represents 
the tab you have set. As before, you could have set the 
tab at the cursor column by pressing ESC. Entering # 
before you enter the column number or before pressing 
ESC, sets a decimal tab. 

Columns of numbers may be aligned on the decimal point, or 
text can be right-aligned through the use of decimal tabs. After 
you tab over to a decimal tab stop, characters you enter will 
move to the left, pushing the entire field to the left of the deci
mal setting. The cursor remains at the tab position until a period 
is entered, thus terminating that particular decimal tab. 

Decimal numbers entered under the decimal tab will align with 
the decimal point in the column where the tab was set. Text that 
does not contain decimal points or periods will align with the 
character one column to the left of the decimal tab stop. Decimal 
tabbing is only active when VARIABLE TABBING is ON. You 



92 OSBORNE 1 USER'S GUIDE 

can determine whether this feature is ON by looking at the 
"0 menu. 

The VARIABLE TABBING command, "@] [YJ, switches this fea
ture OFF or ON. This feature is normally ON so that variable 
tab stops are in effect and you can specify tab settings if you 
desire. When VARIABLE TABBING is OFF, fixed tabs are in 
effect. Fixed tabs are not normally used for standard word
processing operations; use fixed tabs when you use WordStar 
to write computer programs. 

If you intend to write programs using WordStar, you need to 
know that when VARIABLE TABBING is OFF the tab character 
("lor the binary number representing 9 decimal) is used in the 
file and is displayed with fixed stops every eight columns, as 
opposed to the multiple spaces WordS tar enters into the file 
when VARIABLE TABBING is ON. You should turn this feature 
OFF when you develop programs for use with the CP/M text 
editor (ED.COM) or Micropro's WordMaster editor. 

Since each fixed tab is a single character, it acts differently than 
the multiple characters in variable tabs. The cursor cannot go 
within the white space representing the fixed tab, and the cur
sor advances over the tab. Text inserted before the tab appears in 
front of it until enough text is entered to force the tab to move to 
the next tab position. 

To refresh your memory on line spacing, margins, and tabs, use 
the MARGIN and TABS HELP command, "QJ IM]. 

Hyphen Help 

One last thing on the "0 menu that we promised to show you 
and that may interest you is an explanation of the HYPHEN 
HELP feature. HYPHEN HELP is usually ON. Look on the "0 
menu to determine what condition this feature is currently in 
and if it is not already turned ON, do so with H. 



WORDSTAR AND MAILMERGE 93 

With HYPHEN HELP ON, place the cursor at the beginning of 
a paragraph and issue the REFORM command, "[]]. If there 
happens to be a long word that can be divided between lines 
and thus improve spacing, WordStar will indicate where this 
word can be hyphenated. HYPHEN HELP checks that the word 
can, in fact, be divided by syllables; selects a proper position for 
the hyphen; and then allows you to decide if you want to insert 
a hyphen at the indicated location. 

The cursor will stop where HYPHEN HELP suggests that you 
enter the hyphen; though you can move the cursor around and 
select another place to insert the hyphen if you like. Once you 
insert a hyphen, the REFORM operation, including HYPHEN 
HELP, will continue until the end of the paragraph is reached. 
If a hyphen is not desirable at the suggested location, simply 
issue another ,,[]], and the operation will continue. If SOFT
HYPHEN ENTRY is ON, hyphens will be soft. To explicitly enter 
a hard hyphen while SOFT-HYPHEN ENTRY is on, issue "p 
before typing the hyphen. 

Lesson 6: Block Maneuvers 

On the "K menu are the commands used to save a file, or ma
nipulate a file just as if from the no-file menu. Also shown are 
the BLOCK commands used to manipulate a specific portion of 
text. The BLOCK commands are used to select a portion of text 
so you can move, copy, delete, or even write it to another file. 
Here is the K menu: 

There are two types of blocks: the usual margin-to-margin 
blocks and special column-to-column blocks. The usual 
WordS tar blocks are used for normal text and encompass every
thing between the beginning and ending markers. On the other 
hand, 1/ column blocks" are different in that they extend from 
the column of the beginning marker to the column of the end 
marker. Column blocks are usually used to manipulate columns 
of numbers or tables without disturbing data on either side. To 
specify a column block, use the COLUMN MODE switch "KN 



94 OSBORNE 1 USER'S GUIDE 

whose current state may be determined by looking on the" K 
menu. 

To mark a block and, in effect, select that portion of the docu
ment to be manipulated, place the cursor at the beginning of the 
material you want blocked and use the BLOCK START com-
mand, "[K] []] . A will appear on the screen to indicate 
the position of this beginning marker. Next, move the cursor to 
the end of the section you wish to block and use the BLOCK 
END command, "[K] [K]. The text within the block will become 
dim, making it easily discernible from its surroundings. 

The marked block is always the source for any block operations. 
You can redefine the boundaries of a block by moving the cursor 
and setting a new beginning and/or ending marker. Block opera
tions that require a destination assume the cursor position at the 
time of the block command as the location for the new place
ment of the block. 

There is a limit to the size of block you can move or copy. If you 
see the message, reposition the BLOCK END 
MARKER closer to the beginning and try manipulating the text 
in smaller segments. 

To make a copy of your block, move the cursor to the location in 
your document where you want the copy transferred. Use the 
INSERT A RETURN command, "N, to make room if you want 
the copy inserted within some existing text. Then issue "[K] @] . 

The BLOCK COpy command, "KC, produces a duplicate of the 
block and includes the block markers at the destination speci
fied by the cursor. The duplicated portion of the document will 
become the new block, and the cursor will be set at its begin
ning. Text at the original site of the block will remain unaltered. 
If you'd like to return to the place from which you copied the 
block, use the CURSOR TO SOURCE OF LAST BLOCK com
mand, "I]] [2J. 

When you finish making copies, you can use the HIDE/DISPLAY 



WORDSTARAND MAILMERGE 95 

BLOCK command, "!Kl [8], to return the characters to their nor
mal brightness (i.e., "unmark" them). When a block is hidden in 
this manner it is impervious to any block operations until you 
redisplay it with another "KH command. Try to make a copy 
while it is hidden; you can't do so. 

Now redisplay the block with the "!Kl [ill command and we will 
demonstrate how to move a block. To move the block of text, 
place the cursor at the desired destination and use the BLOCK 
MOVE command, "!Kl [SZ]. The block will be moved to the loca
tion specified by the cursor. The block markers move with the 
block and remain displayed. Hide the block with "!Kl [8] and 
then move the cursor with "[Q] [SZ] to the space that resulted 
from moving the block. If necessary, use the REFORM com
mand, "B, to clean up the margins. 

At this point you should note the difference between the 
BLOCK MOVE command and the BLOCK COpy command. 
Copying a block duplicates the marked text in a new location
you will end up with two copies of your text. Moving a block 
physically relocates the marked text to the new location. 

If you have been trying these procedures as we described them, 
you should have at least two duplicate portions of text. Try to 
delete one of these portions with the BLOCK DELETE com
mand, "[!g [Y]. Nothing happens if your block was still hidden 
from the last demonstration. If the block was not hidden, then it 
vanished from the screen along with its markers. Redisplay your 
block with "[!g [8J and delete it with "[!g [Y]. The block will 
disappear, leaving the block markers at the sight of the deletion. 

You can see why it is a good idea to always hide a block when 
you are through with it; you don't want to accidentally delete it. 
When a block is deleted, the markers are hidden and remain at 
the deletion site. The cursor does not move, but "QV can send it 
to where the deletion took place. 

Sometimes you may want to extract a segment of text and save 
it in a separate file on diskette for later use. Since you deleted 



96 OSBORNE 1 USER'S GUIDE 

your last block of text, mark another block. Next, issue the 
BLOCK WRITE TO FILE command, "[K] ~ . After you issue 
"KW, you'll get a request for the name of a file where a copy of 
the block is to be sent: 

NAME OF FILE TO WRITE MARKED TEXT ON? 

Supply a valid file name so that WordS tar knows where you 
want the block stored. If you specified the name of a file that 
already existed, this message would appear: 

FILE B:name.typ EXISTS ... OVERWRITE? (YIN) 

If you pressed Y (for yes), the block would replace the contents 
of the existing file. If you pressed N (for no), you would be 
given a chance to supply another file name. Send the block you 
have marked to a file named TRIAL.BLK on the B drive. 

Enter B:TRIAL.BLK in response to the NAME OF FILE prompt. 
Press I RETURN I after supplying the file name. 

NOTE 

The disk identifier (B:) is necessary in this case because of 
the way you started WordStar at the beginning of these 
lessons and opened the file to be edited. If you had 
"logged" the B drive with command L from the no-file 
menu, the drive identifier would not be needed. It is also 
possible to make the B drive the logged drive from within 
the file you are presently working on with the "l<L 
command. 

Once you have finished writing (copying) the block to the file 
named TRIAL.BLK, hide the block with "[K] [8J. Now, just to 
make sure that the block was copied successfully, issue "[K] [g, 
enter B: and press I RETURN I to log drive B, then issue "[K] [I] to 



WORDSTARAND MAILMERGE 97 

look at the directory of drive B for the file named TRIAL.BLK. 
Issue 1\ IE] [£J again to get rid of the directory. 

Place Markers 

Before we conclude this section, we want to teach you about the 
use of PLACE MARKERS. Do not confuse these markers with 
the BLOCK MARKERS, since they serve distinctly different 
purposes. 

Use PLACE MARKERS to mark up to ten separate locations in 
your file where you may later send the cursor. You set a PLACE 
MARKER by positioning the cursor at the desired location and 
issuing I\IE] followed by a number (0 through 9). The numbered 
marker will be displayed as a "dim" character at the specified 
location. The marker remains fixed until you use it somewhere 
else in the file. When you are through with the marker or no 
longer want it displayed, hide it by issuing I\[EJ and the number 
that set the marker. 

To send the cursor to a particular place marker, simply use the 
CURSOR TO PLACE MARKER command, I\[]], and the num
ber of the marker. The Help command, QJ IE) , presents more in
formation about the use of PLACE MARKERS. 

You're ready to take another break. If you want to save the file 
you created, do so with the SAVE EXIT command, I\[K] [K]. If 
you would like to stop editing for a while and don't mind losing 
this most recently edited version of your file, use the ABAN
DON EDIT command, I\[K] []]. Since you've made changes to 
the file, WordS tar will ask you: 

Abandon Edited file 8 :TRIAL.TXT? (YIN) 

Reply with a IYI to indicate to WordS tar that you're not inter
ested in permanently saving the changes made since the file 
was opened. You could probably use a rest before going on to 
lesson 7. 



98 OSBORNE 1 USER'S GUIDE 

Lesson 7: Some Finishing Touches 
Using WordStar 

Start over! Put your WordStar diskette into drive A, push the 
RESET button, and press I RETURN I. Make sure the storage disk
ette in drive B holds your TRIAL. TXT file. You should see the 
no-file menu displayed on your screen. If not, refer to the begin
ning of this chapter to see how to start WordStar. 

Before you begin editing the file named TRIAL. TXT, make 
sure you've "logged onto" the diskette in drive B. Issue the 
CHANGE LOGGED DRIVE command, [I], and enter B: as the 
active drive. If you have been following along with us, at least 
three files should be listed in the directory of the diskette in 
drive B. 

The files listed should include your sample file called 
TRIAL. TXT; the file you named TRIAL.BLK, which contains 
the sample block you saved; and maybe another file called 
TRIAL.BAK. WordStar always creates a "backup" file whenever 
you edit. The backup file has the same name as the file you 
edited, but has the file type .BAK. This backup file reflects the 
file's contents as they existed before you began editing it the last 
time. If you abandoned your last file by issuing I\KQ, then no 
backup file will have been made. 

WordS tar will not erase a previous backup copy of a file until 
the end of an editing session. As you look at the directory of 
drive B, the file named TRIAL. TXT contains the version of that 
file before you last saved it. TRIAL.BAK contains the version of 
that file prior to the previous editing session-that is, the file as 
it was before the last time you edited it. If you now again edit 
TRIAL. TXT, when you save it the old TRIAL. TXT file will be 
renamed TRIAL.BAK, the old TRIAL.BAK will be erased, and 
the new version of your file will be saved in a file named 
TRIAL.TXT. 

The exception to the above procedure is when you abandon an 
edit. If you use the I\KQ command and specify that you wish to 



WORDSTAR AND MAILMERGE 99 

abandon the editing you've done, WordStar will replace the files 
on the diskette exactly as they were before you began the cur
rent editing session. 

Now that you understand about "backup" files, open the file 
TRIAL.TXTwith the create or edit-a-document file command, 
I]] . You should know about a few more editing" goodies" 
before you prepare your document for printing. 

All of the commands you are going to use to make last-minute 
refinements are listed in the QUICK menu, so issue I\@] and 
you will see the Quick Menu: 

The cursor commands listed in the above menu move the cursor 
through the file as quickly as possible. Issuing 1\1]] [§], for in
stance, sends the cursor to the left side of the screen. Issuing 
I\[]] I]] sends the cursor to the right end of the current line. 
Issuing 1\ @] [K] sends the cursor to the bottom of the screen, 
and issuing 1\ [Q] I]] sends it to the top of the screen. Try using 
these commands to move the cursor through your file. 1\ I]] [[I 
advances the cursor to the beginning of the file, and 1\ []] @] 
advances it to the end. 



100 OSBORNE 1 USER'S GUIDE 

You should notice that the letter following the uQ" prefix 
follows the same pattern as did the cursor-control diamond pre
sented earlier: S is a leftward movement, D is a rightward 
movement, E is up, X is down. WordStar is consistent in the 
placement of its command characters. 

The other cursor commands listed in the left column of this 
menu send the cursor to various markers. "Q and a number 
between 0 and 9 send the cursor to the appropriate PLACE 
MARKER. "QB and "QK send the cursor to the beginning and 
ending block markers, respectively. Issuing "QV advances the 
cursor to the source of the last block or' ufind" operation; we'll 
describe ufind" in a minute. Last, but not used less often, is the 
"QP command, which sends the cursor to the position it occu-' 
pied prior to the most recent command. 

As indicated at the bottom of the menu, issuing "@][II will 
continuously scroll the screen upward, while ,,@] ~ will scroll 
it downward. You press the I SPACE BAR I to stop the scrolling , 
started by either command. 

Also on the "Q menu are commands to delete a portion of a 
line. Issuing "@][YJ deletes everything in the current line to the 
right of the cursor. 

Lesson 8: Finding Text 

The next set of commands we want to introduce you to on the 
"Q menu are used to quickly find or change sections of text. 
The FIND commands locate words or phrases and optionally 
replace them. Pick a rarely used word in your trial file and keep 
it in mind. Use the "@] ffi] command to move the cursor to the 
beginning of the document. With the cursor at the beginning of 
the file, issue the FIND command, ,,@] [I]. The following 
prompt will appear on the screen: 



WORDSTARAND MAILMERGE 101 

Enter the word that you want to find-the word we told you 
earlier to keep in mind-and press 1 RETURN I. You will see this 
message: 

OPTIONS? (? for Info) 

Options allow you to specify such things as matching whole 
words, ignoring the distinction between uppercase and lower
case letters, or searching backward instead of forward. Entering 
a question mark (?) will show these options and they are 
described more fully in the Reference Guide. For the time being, 
press 1 RETURN 1 to ignore "the OPTIONS? question. The screen 
will flicker slightly, and the cursor should move to the word you 
specified. If the message below appears: 

* * NOT FOUND: "word" * * * Press ESCAPE Key 

where "word" is the word you specified, you must have made a 
mistaken entry, or the cursor was not at the beginning of the 
document when the FIND operation started. Press the ESC key 
and try the FIND command again. Once the desired word or 
phrase is located, proceed to the next occurrence of the same 
word-if there is one-with the FIND AGAIN command, "[g. 

Another version of the FIND command allows you to locate a 
phrase or word and replace it with another phrase or word. The 
FIND/REPLACE command, "@] [K], locates a word or phrase 
just as does the FIND command, "QF, but it takes the operation 
a step further by replacing the found word with another. The 
first step in this command asks for the word to replace; then, af
ter you supply the word you wish to locate and press 1 RETURN 1 , 

WordStar asks: 

REPLACE WITH? 

Respond by entering the replacement text, and press 1 RETURN I. 
Ignore the OPTIONS? prompt by again pressing I RETURN I. After 
the FIND/REPLACE operation starts, the word will be located, 



102 OSBORNE 1 USER'S GUIDE 

and the following prompt will appear in the upper right of the 
screen (use the control arrow keys). 

REPLACE (YIN): 

The cursor will blink to indicate that a decision concerning the 
located word is required. If you want to replace the located 
word, press II], otherwise, press [[J. Then, issue the 
FIND/REPLACE AGAIN command, A lIJ, to continue the search 
and find the next occurrence of the word you specified. 

Repeat Any Command 

At the bottom of the Q-menu is a useful command that repeats 
any valid command as many times as you like. For instance, 
place the cursor at the start of a sentence and issue the REPEAT 
NEXT COMMAND command, A@] @], and then the CURSOR 
RIGHT A CHARACTER command, A [[I. The cursor will move a 
column at a time to the right, and you will see this message 
above the RULER LINE: 

TYPE 1--9 TO VARY SPEED, SPACE TO STOP 

This message tells you that you can increase or decrease the 
speed with which the command executes. The slowest speed is 
9, and the fastest is 1. If you don't specify a rate, the command 
will execute at the normal rate of 3. To terminate the command, 
press the 1 SPACE BAR I. You can use this command to repeat any 
other command. 

Lesson 9: Print-Control Characters 

Before you print your document, you can add special command 
characters that control your printer and produce special effects. 
All of these PRINT-CONTROL characters are listed in the 
PRINT-CONTROL HELP menu (AJP) and the Reference Guide, 
so if you want more information quickly, remember to use these 
added resources. 



WORDSTAR AND MAILMERGE 103 

You enter print-control characters into the file by first issuing 
the ENTER CONTROL CHARACTER command, "P, followed 
by the control character. Documents containing control charac
ters will appear disorganized, with lines of text possibly over
flowing margins. Do not worry too much about the appearance 
of your text, because PRINT-CONTROL characters are purely 
symbolic and will not print or affect the printed formatting of 
your document. Also, there is a way to make the control charac
ters disappear to see exactly how your document will appear 
with the "OD command. 

Many of the print-control features we are about to investigate 
greatly depend on the capabilities of your printer and the soft
ware that directs it. Refer to the section in Chapter 2 in this 
manual that tells you how to use SETUP to match your printer 
to the Osborne 1. Your dealer should also be able to supply you 
with the necessary information to help you fully utilize your 
particular printer. You may also have to use another program, 
INSTALL, to inform WordStar that you have a special printer. 
See Appendix A for details on the INSTALL program. 

In this demonstration you will receive instructions to insert spe
cific text. You may want to create a new file devoted especially 
to learnirig the following print controls; save your current file 
with "[RJ@], then create a new file called TRIAL.TST from the 
no-file menu. An alternative method is to enter the text and 
control characters we tell you into your present file, then block 
it and send it to a file named TRIAL.TSTwith the "KW 
command. 

Some of the print-control characters are used like toggle com
mands: each successive use of the character either turns the fea
ture ON or OFF. You embed print-control characters in your text 
by using the ENTER CONTROL CHARACTER command, "P, 
followed by the control character. To test your printer's capabil
ity, enter each example exactly as shown, preceding each 
of the printer control characters with "P. Number each example 
so you can keep track of which features work when you print 
the file. 



104 OSBORNE 1 USER'S GUIDE 

You can make titles and headings stand out by using the 
BOLDFACE CONTROL character, "B. Boldface type is created 
when characters overstrike characters offset slightly from one 
another on DAISYWHEEL and other printers capable of in
cremental motion. The character may strike numerous times on 
less expensive Teletype-like printers to create boldface type. 

Enter the words: 

1. This is an example of the BOLDFACE feature. 

Next place the cursor in front of the word BOLDFACE, issue the 
command "[f] , and press the control letter []]. Now move the 
cursor to the end of the word BOLDFACE and again issue "[f] 
followed by the control letter []J. The top line of your file 
should look like this: 

1. This is an example of the A BBOLDFACE A B feature 

DOUBLE-STRIKE causes each character to strike twice for extra 
clarity but is not as dark as boldface. This PRINT-CONTROL 
character can also produce an extremely sharp impression for an 
entire document on printers that use carbon ribbons. 

Enter the words: 

2. This is an example of the DOUBLE-STRIKE feature. 

Surround the words DOUBLE-STRIKE with "[f] [[] on each 
side. The first" PO turns the DOUBLE-STRIKE ON, the second 
"PO turns it OFF. The second entry in your file should now 
look like this: 

2. This is an example of the A DDOUBLE-STRIKE A D feature 

Inserting characters to control the printer is easy. Continue by 
entering the text in each of the following examples. Remember 



WORDSTAR AND MAILMERGE 105 

to use "P before each of the control characters: 

3. This is a test of the "SUNDERLINING"S feature. 
"STo-underline-an-entire-line-place-underscore
characters-between-words-like-this. "S 

4. This is a test of the "XSTRIKE OUT"X feature used to 
illustrate the omission of text. 

Subscripted text prints slightly below the surrounding text. The 
subscripted portion is lower by 3/48ths of an inch, and the DOT 
command .SR (described later), can change this amount. Some 
printers are not capable of fractional line roll, so subscripts print 
on the line below if it's empty; otherwise, there is no subscript 
effect at all. 

5. This is a test of the "VSUBSCRIPT "V feature, which 
slightly lowers the text. 

6. This is a test of the "TSUPERSCRIPT "T feature, which 
slightly raises the text. 

The color of print can change on printers that have a two-color 
ribbon. Special installation is required to activate this character 
on nondaisywheel printers. 

7. This is a test of the" YRIBBON COLOR TOGGLE" Yon 
printers with color selection. 

The PRINT-CONTROL characters just described were toggle 
commands that turned a particular feature ON and OFF. The 
control characters in the remainder of this exercise initiate a fea
ture at a particular point in the document. Proceed in the same 
manner as you have, continuing to number your sample entries. 

You can enter the control character, "C, into a file to tell the 
printer to stop. Use this character as many times as you want 
anywhere in the text. When the printer receives the "C, printing 



106 OSBORNE 1 USER'S GUIDE 

halts, and the message appears on the STATUS 
LINE. The no-file command, P, or the in-file command, "KP 
-whichever initiated printing-will restart the printing. 

8. This is a test of the STOP PRINT "C CONTROL character, 
which halts the printing until Par "KP is issued. 

Character pitch can switch between ALTERNATE pitch, "A 
(Elite), which is usually 12 characters per inch, and STANDARD 
pitch, "N (Pica), ten characters per inch on Daisywheel printers. 
You can further modify these features with the DOT command 
. Cw, described later. 

9. "A. This is a test of the ALTERNATE character feature. 
"N. The STANDARD character pitch is returned in this 
sentence. 

After you know about DOT commands and are using .HE and 
.FO to specify headings and footing, you can use the LEFT
RIGHT HEADING/FOOTING PRINT CONTROL, "K. Its effect 
is to print headings, page numbers, etc., that print on the left
hand side of even numbered pages and on the right-hand side 
of odd pages so text prints in the appropriate position when the 
document is collated. 

Depending on your printer, the PHANTOM SPACE and the 
PHANTOM RUBOUTcontrol a specific code that prints a spe
cial character. The exact character depends on the print wheel in 
use. Try it! 

10. This is a test of the PHANTOM SPACE character ("F) 
and the PHANTOM RUBOUT character ("G), which will 
be a surprise. 

11. This is a test of the NON BREAK feature which causes 
separated "Owords "Oto"Obe "Okept"Otogether. 



WORDSTARAND MAILMERGE 107 

The STRIKEOVER CONTROL character is useful for putting ac
cent marks over letters or creating special symbols by printing 
different characters in the same spot. 

12. This is a test of the STRIKEOVER feature, which creates 
an accent mark over the word "repousse I\H'." 

WordS tar makes allowance for four user-defined USER PRINT
CONTROL characters. These control characters are for accessing 
special printer features that vary among printers. Until you 
define these commands, the control characters I\Q, 1\ W, 1\ E, and 
1\ R serve no purpose. See your dealer for more information on 
defining these features. 

Printing a File 

If you have a daisywheel or thimble-variety printer-capable of 
incremental spacing-and either you or your dealer has prop
erly configured WordStar for use with such a printer, the 
printed copy you receive will be "microspace" justified. This 
means that "soft spaces" will disappear. (Soft spaces are those 
extra spaces between words on your screen that let your mar
gins align.) Microspace justification eliminates gaps and spaces 
words evenly in printed documents. 

If your printer is one of the more popular, inexpensive dot
matrix varieties, soft spaces achieve margin justification in 
printing. 

It's time to check which PRINT-CONTROL features your printer 
uses by printing your test file, TRIAL. TST. 

To print the file TRIAL. TST, you must first save a copy of this 
file on diskette. You can initiate printing of the file you are edit
ing, but only if you have saved a copy of the file. Since you 
haven't saved TRIAL. TSTyet, it does not exist to be printed. 
The usual sequence for printing a file is to use the SAVE DONE 
command, 1\ KD, first and then issue the no-file PRINT com
mand' P. 



108 OSBORNE 1 USER'S GUIDE 

An alternative to the aforementioned method is to save the file 
TRIAL.TSTwith the SAVE REEDIT command, "KS, and then 
issue the PRINT command, "KP. After you issue "KP, WordStar 
will inform you that the most recently saved version will print 
and that you cannot save the current version until printing is 
completed. 

If you transferred your test material by first marking it with 
block markers and then writing it to the TRIAL. TST file with 
the "KW command, you could now use the PRINT command, 
"KP. You can examine the file directory to determine what files 
reside on disk by issuing the FILE DIRECTORY command, "KF. 
You can also issue "F when the prompt asks for the name of the 
file to be printed. You can always use "F like this to see the 
directory whenever you're manipulating a file from within 
another file. 

To make things simple for this demonstration, save the file 
you're working on with the "IKI @] command and return to the 
no-file menu. Next, issue [EI to initiate the PRINT FILE opera
tion. Once you have asked to print a file, WordStar will prompt 
you through each successive step as follows: 

NAME OF FILE TO PRINT? 

Supply the name of the drive in which the file is located-if it is 
different from the currently "logged drive" -and the file's 
name; in this case, enter: 

TRIAL.TST 

and press I RETURN /. Remember that you can edit your file name 
as you learned at the beginning of this chapter. 

When the file you name is located, PRINT OPTION questions 
come up in sequence. We will explain these options, but in nor
mal circumstances, you usually press RETURN to ignore each of 
them. You can completely avoid the PRINT OPTION questions 
by typing the name of the file you want printed and pressing 
ESC instead of RETURN to complete the command. 



WORDSTARAND MAILMERGE 109 

The following option descriptions appear in the order in which 
they occur on the screen. For now, press I RETURN I after reading 
each option. 

DISK FILE OUTPUT (YIN): 

This option allows the contents of a printed file to go to another 
disk file whose name you specify. Press [ill or press I RETURN I to 
ignore this question. Press 1YI to tell WordS tar to send the for
matted output to a disk file instead of to the printer. 

START AT PAGE NUMBER (RETURN for beginning)? 

Supply the number of the page at which the printing should 
begin or press the I RETURN I key to start printing with the first 
page of the file. This option continues printing from a specific 
page number after an interruption, as might be necessary if you 
ran out of paper or ribbon on your printer. 

STOP AFTER PAGE NUMBER (RETURN for end)? 

Supply the page number at which you want printing stopped, 
or press I RETURN I to print to the last page of the file. This allows 
you to stop the print operation at a predetermined page. 

USE FORM FEEDS (YIN)? 

This option allows "form-feed" characters to output to the 
printer. It is customarily used with nondaisywheel printers to 
allow for the discrepancies that sometimes occur if your printer 
uses form feeds to paginate listings. Press I RETURN I or press [ill 
to ignore this question. 

SUPPRESS PAGE FORMATTING (YIN): 

An exact replica of the file as it appears on the screen, including 
DOT commands, can print, regardless of top margins, bottom 
margins, headings, and footings. This option is often used to 
proofread a file and check the embedded print commands with
out actually using them. Press I RETURN I to ignore this option. 



110 OSBORNE 1 USER'S GUIDE 

PAUSE FOR PAPER CHANGE BETWEEN PAGES (YIN): 

Press [Y] if you want the printer to stop after printing each 
page. This option is handy if you are using single sheets of 
paper, as with letterhead. When the printing stops at the end 
of a page, insert the next sheet of paper and issue lEI or "lRJ lEI 
-depending on whether you're at the no-file menu or edit
ing a file, respectively-and printing continues. The message 
PRINT PAUSED appears on the STATUS line while printing 
halts. Press [ill or press I RETURN I if you have continuous-feed 
paper in your printer. 

Ready printer, press RETURN: 

This message indicates that the printer is ready to begin. Make 
sure the cable between your Osborne 1 and your printer is con
nected, that the printer is turned ON, and that the printer's 
"on-line" light, if it has one, is lit. Press I RETURN I to initiate 
printing. 

A message at the top of the screen informs you that printing is 
in progress. If you want to stop printing at any time, issue the 
same command you used to initiate the print operation: lEI or 
"[K] [E]. The PRINT commands, P or "KP, act like a toggle 
switch that halts printing temporarily and gives you a choice of 
three options: 

"Y" TO ABANDON PRINT, "N" TO RESUME, "U" TO HOLD 

If you respond with a [y], the print operation in progress will 
discontinue. Pressing [ill causes printing to resume. You can 
also press [ill to temporarily suspend printing and then use the 
P or "KP command to resume printing. This last option comes 
in handy when you need to readjust the paper or need to leave 
the computer unattended for a few minutes. 

The message will display on the STATUS LINE 
anytime printing is interrupted. By the way, this message 



WORDSTAR AND MAILMERGE 111 

should appear on your screen as a result of the "C in example 8 
of the file TRIAL. TST. As described above, issue a lI1 or 
"[KJ lI1 to finish printing your file. 

You now know how to tell WordS tar to start or stop printing a 
file. You need to know other commands, called "DOTcom
mands,i' that concern printing, though. 

WordStar Commands 

Here's a list of WordS tar commands and functions, all assembled 
in one place and arranged conveniently in alphabetic order: 

(Press CONTROL key, then type letter) 

"A Cursor word left "JS Defines status line 
"B Paragraph REFORM "JV Defines text moving 
"C Scroll up screen "KO-9 Set/Hide place markers 
"D Cursor character right "KB Mark/Hide block begin 
"E Cursor up line "KC Block COPY 
"F Cursor word right "KD Save file 
"G Delete character right "KE RENAME file 
"H Cursor character left "KF Directory ON/OFF 
"I TAB advance "KH Hide/Display block 
"J Prefix HELP "KJ Delete file 
"K Prefix editing "KK Mark block end 
"L FIND/REPLACE 

AGAIN "KL Switch logged drive 
"M RETURN "KO COPY file 
"N Insert carriage return "KP PRINT 
"0 Prefix formatting "KQ Edit abandon 
"P Enter control character "KR Read a file 
"Q Prefix cursor editing "KS Save file reedit 
"R Scroll down screen "KV Block move 
"S Cursor character left "KW Write block to file 
"T Delete word right "KX Save file exit 
"U INTERRUPT commands "KY Block delete 
"v INSERT ON/OFF "OC Center cursor line 
"W Scroll down line "OD Display DOT 

commands 



112 OSBORNE 1 USER'S GUIDE 

"x Cursor down line "OE 
"y Delete line "OF 

"Z Scroll up line "OG 
"JB Defines REFORM "OH 
"JD Print directives "01 
"JF Defines FLAG charac-

ters "OJ 
"JH Set HELP level "OL 
"JI Command index "ON 
"JM Defines tabs, margins "OP 

"JP Defines place markers "OR 
"JR Defines ruler line "OS 
"OT Display ruler "QF 
"OV Variable tabs ON/OFF "QK 
"OW Word wrap OFF/ON "QP 

"OX Release margins "QQ 
"PM Overprint next line "QR 
"PO Enter nonbreak space "QS 
"QO-9 Cursor to marker 

"QV 
"QA REPLACE 
"QB Cursor block beginning "QW 
"QC Cursor file end "QX 
"QD Cursor right end of line "QY 
"QE Cursor top screen "QZ 

"Q~ 

"- Deletes character left 
ESC 
RETURN 
TAB 

Error release 
Hard carriage return 
Tab 

Soft-hyphen entry 
Set margins, tabs 
as exist 
Paragraph tab 
Hyphen Help ON/OFF 
Set tab stop 

Justification ON/OFF 
Set left margin 
Clear tab stops 
Display page break 
ON/OFF 
Set right margin 
Set line spacing 
FIND 
Cursor block end 
Cursor previous 
position 
REPEAT next command 
Cursor file beginning 
Cursor screen left 

Cursor source (block, 
find) 
Downward scroll 
Cursor screen bottom 
Delete to end of line 
Upward scroll 
Deletes to front of line 

NO FILE MENU
D 

(When no file is being created or edited) 
Create or edit document file 

E 
F 
H 

Rename file 
File directory OFF/ON 
Set help level 



L 
M 
N 
o 
P 
R 
X 
Y 

WORDSTARAND MAILMERGE 113 

Change logged drive 
Merge-print 
Create, edit nondocument file 
Copy file 
PRINT, stop print, start print 
Run program 
Exit to system 
Delete file 

Lesson 10: DOT Commands 

When you become better versed in using WordStar you will 
want to have some control of the way your printed document 
looks. Before preparing a document to be printed you will want 
to insert DOT commands in your file that tell WordS tar what pa
rameters the finished document is to have. You have already 
learned how to perform basic on-screen formatting; now you 
need to learn about the special DOT commands that affect page 
length, margins, headings, footings, page numbering, and gen
erally the way a page is laid out. These DOT commands do not 
affect the screen display but do affect the way your document 
appears when it is printed. We will not lead you through the use 
of these commands, but will simply describe their use; then you 
can try them at your discretion. 

The features controlled by DOT commands are already set to 
1/ default" values, the settings used most often. You do not have 
to enter any DOT commands into your document unless you 
want to format a document in a specific manner. 

A DOT command consists of a period, a two-letter code, and 
possibly, a number or some other option. DOT commands must 
always begin in the first column of a line (column 1); WordS tar 
ignores DOT commands that start in any other column (and 
usually considers it as text). Putting a period in the first column 
might sound funny-normally you would never place a period 
in the first column in normal text-but, like the PRINT CON-



114 OSBORNE 1 USER'S GUIDE 

TROL characters, these symbols appear on the screen but do 
not print. 

When you enter a period in the first column, a question-mark 
FLAG appears in the last column to indicate that the Osborne 1 
expects a DOT command. The left margin temporarily disen
gages while you enter the DOT command; if you try to move the 
cursor to another line before you complete a valid DOT com
mand, the cursor will blink. So, a blinking cursor probably 
means that a period in the first column was not followed by a 
valid DOT command. 

You can use most DOT commands as many times as you want 
and locate them anywhere in the file, as long as they begin in 
the first column. However, Word5tar cannot show you where 
your pages end, unless the DOT commands that control page 
length and top and bottom margins are at the beginning of the 
file before any text. This ability to indicate where pages end is 
called the U dynamic page break display." All DOT commands 
are in the DOT HELP MENU ( ,.. QJ [QJ ) and are summarized in 
the Reference Guide. DOT commands direct vertical page 
layout, horizontal page layout, pagination, and so on. Let's 
examine some of them: 

Vertical Page Layout 

On daisywheel and thimble printers, you can space lines of text 
closer together or farther apart by changing the line height. The 
LINE HEIGHT DOT command, .LH, and a number set line spac
ing in 48ths of an inch on these special printers. The usual set
ting is 8/48ths which equals 1/6th of an inch, or six lines per 
inch. Use of this DOT command provides an alternative to the 
single, double, or triple spacing obtained with the PRINT
CONTROL command, "'05. After changing line height, you will 
have to adjust the margins or the paper to center the text verti
cally on the page. 



WORDSTARAND MAILMERGE 115 

LINE HEIGHTS 
Lines per Inch 

2.0 
2.4 
2.6 
3.0 
4.0 
4.8 
5.3 

DEFAULT ~ ~ 6.0 
6.8 
8.0 
9.6 

DOT Command Used 

.LH24 

.LH20 

.LHI8 

.LHI6 

.LHI2 

.LHIO 

.LH9 

.LH8 

.LH7 

.LH6 

.LH5 

Paper length is expressed as the number of lines allowed on a 
page. The default WordStar paper length is 66 lines. You can 
change this number with the PAPER LENGTH DOT command, 
.PL. The number specified after .PL determines the number of 
lines on a page. 

EXAMPLE: .PL 55 ~ 55 lines per page 

To change the number of blank lines reserved as a margin be
tween the top of the page and the beginning of your text, use 
the TOP MARGIN DOT command, .MT. Change the default 
setting of three lines by specifying the desired number of lines 
following .MT. 

EXAMPLE: .MT6 ~ 6-line top margin 

Change the bottom margin with the BOTTOM MARGIN DOT 
command, .MB, followed by the desired number of lines. The 
bottom margin usually occupies eight lines. Note that the four 
vertical-layout DOT commands (.LH, .PL, .MT, .MB) just 
mentioned will properly affect the DYNAMIC PAGE BREAK 
DISPLAY only if these commands appear at the beginning of 
the file. 



116 OSBORNE 1 USER'S GUIDE 

EXAMPLE: .MB6 +- 6-line bottom margin 

Two other DOT commands affect the vertical layout of a page. 
When you understand how headings and footings are specified, 
you may want to separate these headings and footings from the 
body of the text by a predetermined space. The HEADING 
MARGIN DOT command, .HM, or the FOOTING MARGIN 
command, .FM, followed by the desired number of lines will ac
complish this formatting. Usually, two lines separate headings 
and footings from the text. 

EXAMPLES: .HM3 
.FM5 

Horizontal Page Layout 

+- 3-line header margin 
+- 5-line footer margin 

The page number usually prints in column 33 or the center 
column if you specify margins. Position the page number at 
any column at the bottom of the page with the PAGE NUM
BER COLUMN DOT command, .PC, followed by the column 
number. 

EXAMPLE: .PC45 +-page number in 
column 45 

The PAGE OFFSET command, .PO, and a number representing 
columns, sets the number of columns indented from the 
printer's left margin. This command offsets text from the tractor
feed holes at the left of the paper, allowing use of narrow paper. 
Usually eight columns of space are indented on each line before 
printing occurs. 

EXAMPLE: .PO 12 +- indent text 12 spaces 

Pagination 

To indicate the point at which you want a new page to begin, 
use the UNCONDITIONAL PAGE DOT command, .PA, which 
forces the following text to begin at the top of a new page. 



WORDSTARANDMAILMERGE 117 

EXAMPLE: .PA +- start new page now 

To prevent a new page from starting-as in the middle of a 
table-or to begin a new page if a section of text cannot fit 
on the current page, use the CONDITIONAL PAGE DOT 
command, .CP. 

EXAMPLE: .CP6 +- start new page if 
less than 6 lines 
left on page 

You can specify a heading-a title at the top of each page-or a 
"footing" on each page. The TEXT HEADING DOT command, 
.HE, begins a line of text as the heading at the top of every 
page. You can change headings at any time with another .HE, 
but for a heading to print on the first page where it appears, it 
must precede all text for that page, including blank lines, if you 
have created any. 

EXAMPLE: .HE This is a heading! 

The TEXT FOOTING DOT command, .FO, specifies footings. 
Text on a line beginning with .FO will print at the bottom of 
the page. 

EXAMPLE: .FO This is a footing! 

Page numbers don't print when a footing is in effect. The char
acter # can occur in either the .HE or the .FO command at the 
place where the page number should appear. 

EXAMPLE: .HE This is a heading! Page # Here 

You can use the PRINT-CONTROL command, I\K, in the .HE or 
.FO lines to direct printing so that headings and page numbers 
can print on either side of the page depending on whether the 
page number is odd or even. This "alternating layout" is useful 
for creating long documents that have text on both sides of 
the page. 



118 OSBORNE 1 USER'S GUIDE 

EXAMPLE: .FO AKThis is an 
alternating footing! 

Page # 

When you want to print the page number at the top of the page 
and no footing is in effect, you must use the OMIT PAGE NUM
R DOT command, .OP, to prevent the number from occurring 
again at the bottom of the page. Use the .OP command at any
time to suppress page numbering. You don't have to use .OP 
when footing text is present, since it is automatically in effect in 
that circumstance. 

EXAMPLE: .OP ~ omits page numbers 

WordS tar usually numbers pages starting from page 1 in each 
file, but you can change the page number at any point in a file 
with the NUMBER PAGES DOT command, .PN. This command 
turns page numbering back ON following an .OP command. 
Page numbering continues from page 1 unless you specify a 
page number with .PN. The page numbers print at the bottom 
of the page unless you specify otherwise. The maximum possi
ble number of pages is 65533, and page numbers shown on the 
STATUS LINE pertain only to the present file. 

EXAMPLE: .PN 15 ~ start numbering pages at 15 

Special Controls 

The character width can change on printers with programmable 
character widths-daisywheel and thimble printers. The CHAR
ACTER WIDTH DOT command, . Cw, is set in 120th -inch incre
ments. The usual character width is 121120ths, which equals 
ten characters per inch. 



WORDSTARAND MAILMERGE 119 

CHARACTER WIDTHS 

Character Pitch 

5 per inch 
6 
7 
8 

DEFAULT ~ ~ 10 (pica) ~ ~ ~ ~ ~ 
12 (elite) 
15 (compressed) 
20 
24 
30 

DOT Command 

.CW24 

.CW20 

.CW17 

.CW15 

.CW12 

.CW10 

.CW8 

.CW6 

.CW5 

.CW4 

You specify the amount of platen roll used for producing 
subscripts and superscripts in 48th-inch increments. The 
SUB/SUPERSCRIPT ROLL DOT command is .SR. The default 
on daisywheel printers is 3/48ths, or .SR 3. 

EXAMPLE: .SR8 ~ 1/6-inch roll 

"Microjustification" is a feature that spreads letters evenly 
across a line when a document prints. This feature is usually 
ON, but you can turn it OFF with the ON/OFF MICROJUS
TIFICATION DOT command, .UJ. When this feature is OFF, the 
text will print as it appears on the display, using spaces and car
riage returns. Turning microjustification OFF might be useful to 
print columnar tables aligned as they appear on the screen. 

EXAMPLE: .UJ ~ toggle justification 

Many printers have bidirectional printing capability; the print
ing continues even as the printhead is going from right to left to 
return to its original position. Depending on previous setting, 
the ON/OFF BIDIRECTIONAL PRINT DOT command, .BP, ei
ther enables the printer to print or prevents it from printing 
back and forth across the page. This feature is usually turned 
OFF to make WordS tar work correctly with slow printers or 



120 OSBORNE 1 USER'S GUIDE 

with printers whose print tends to "wander" up and down 
when bidirectional printing is in effect. 

EXAMPLE: .BP ~ toggle bidirectional print 

All the DOT commands you've learned so far change the "looks" 
of a document. Sometimes you may want to enter text you don't 
want to print, such as "comment lines." For inserting such ma
terial, use the IGNORE TEXT DOT command, .IG. Another 
method of typing a comment line is to use two periods in the 
left-hand margin, followed by your comment. This command, 
you may remember, was used to hide the imitation RULER LINE 
you created earlier. 

EXAMPLES: .IG This is a comment line-ignore it! 
This is also a comment line 

Lesson 11: Managing Files 

Manipulating Files 

We hope that your printing was successful. If you had any diffi
culties, you might want to check the special Appendix on modi
fying WordStar in this manual, or check with your dealer. 

Besides the PRINT command, the no-file menu provides a 
category of "file commands" used to manipulate files. These 
commands let you rename, copy, and delete the files of your 
choosing. You can either issue these file commands from the 
no-file menu or from within your editing session, using the 
"K prefix. Since we're at the no-file menu in our description of 
WordStar, now is an appropriate time to go through a simple 
exercise to show how to manipulate files. 

Make sure WordStar is at the no-file menu display with the disk 
drive logged to drive B. Issue the FILE COpy command, 1]], 
and WordS tar will ask: 



WORDSTARAND MAILMERGE 121 

NAME OF FILE TO COpy FROM? 

WordS tar seeks the name of the file to be copied. Enter the drive 
identifier and file name B: TRIAL. TXT and press 1 RETURN I. If this 
file is not on the diskette in drive B or if you make a mistake 
while entering the file name, this message will appear: 

FILE B:"file name" NOT FOUND 

This message tells you that WordStar can't find the file you spec
ified. If you enter an invalid file name, WordStar displays the 
INVALID FILE NAME message. 

Once you have successfully entered the file name and the file 
has been located on the specified drive, you will see this 
prompt: 

NAME OF FILE TO COpy TO? 

This prompt requires that you supply the name of a file where 
you want the copy sent. Enter the name COPYTXT and press 
1 RETURN I. WordStar will create a file named COPY. TXT, and 
store an exact replica of the information from file TRIAL.TXT 
within it. If a file called COPY. TXT already existed on the speci
fied drive, the message 

"file name" ALREADY EXISTS OVERWRITE (YIN)? 

would appear. This message forces you to consider the 
ramifications of destroying the information already in the file 
specified and replacing it with a copy of another file. 

Now that you have two trial files, TRIAL. TXT and COPY. TXT, 
delete one of them. Delete TRIAL. TXT by using the DELETE 
FILE command, [y], from the no-file menu. After you issue Y, 
WordS tar will ask: 

NAME OF FILE TO DELETE? 



122 OSBORNE 1 USER'S GUIDE 

Enter []] D followed by the file name TRIAL. TXT and press 
I RETURN I to delete the trial text file. Observe that the file 
TRIAL. TXT has, in fact, been deleted from the file directory. 

You still have a copy of the information that was in TRIAL.TXT. 
Complete the circle by renaming the copy using the original 
name. Issue the no-file RENAME command, 1]]. WordS tar 
will ask: 

NAME OF FILE TO RENAME? 

Enter the name of the file you wish to rename-in this case, 
COPY.TXT -and press I RETURNI. WordS tar will then ask: 

Enter the new name you want assigned to the file. Since this file 
contains your trial text, change it back to the name that best 
reflects its contents: TRIAL.TXT. The name COPY. TXT should 
disappear from the directory, replaced with TRIAL. TXT. If you 
did everything correctly, the new TRIAL. TXT file should be 
exactly the same as the original one. 

You may not envision any uses for these file commands now, 
but their value will become apparent as you start working with 
a lot of files. A typical use for the DELETE FILE command 
would be to delete backup (.BAl<) files when you needed to free 
up more diskette space. You can accomplish the same task while 
editing a document, using the 1\ KJ command. 

WordStar File Size and Diskette Space 

Even though WordS tar can handle large document files, keep 
files as small as possible. WordS tar requires approximately three 
times the space occupied by a file if you are to properly edit it. 
Therefore, if you create a file on one-third of a diskette, the 
other two-thirds need to be left blank to enable you to safely 
edit the original file. 



WORDSTARAND MAILMERGE 123 

When you edit a file, the diskette retains a copy of the file in its 
original form as a backup; the file is of type BAK. Another copy 
of the file contains the new version of the file created during the 
most recent editing process. WordS tar maintains yet another 
copy of the file (of type $$$) when you go to the end of the 
document, then go back to the beginning to reedit. 

If you run out of space on your diskette while editing a file, 
WordStar will inform you of this fact with an error message. It 
may be possible to move the cursor forward in your document 
and still salvage your file. If a DISK FULL error message occurs 
while you are saving a file, however, you may lose the current 
contents of the file. Double-density owners should be able to get 
up to 80 single-spaced pages onto a diskette, so 30 or 35 pages 
should be the cut-off point for a working file. 

You must keep track of file size and diskette space to prevent 
the loss of data. WITH SINGLE-DENSITY DISKETTES, YOU 
SHOULD KEEP FILES UNDER FIVE PAGES LONG, AND UN
DER NO CIRCUMSTANCES CREATE A DOCUMENT LONGER 
THAN 15 SINGLE-SPACED PAGES, if you want to ensure that 
you'll always be able to save your edited document. 

You can use the DELETE FILE command to eliminate backup 
files when you are editing a series of files on the same diskette. 
In fact, you can erase any unimportant or otherwise restorable 
file from the diskette to make more room. This is another reason 
why you should always make copies of diskettes whenever you 
change any information stored on them. 

An easy method for keeping track of diskette space involves 
using the CP/M XDIR program. This program resides on your 
WordS tar diskette and provides information on specified files 
and the space they occupy. 

To examine how much space is left on your data diskette, make 



124 OSBORNE 1 USER'S GUIDE 

sure that you are at the no-file menu and issue I]] for RUN A 
PROGRAM. WordS tar then displays: 

If you are logged onto drive B, issue: 

[K] 0 [KJ [[] IIJI]] I SPACE BAR 1 [[J 0 

and press I RETURN I. On the other hand, if you are logged onto 
drive A, issue: 

[KJ [[] IIJ []J I SPACE BAR 1 [[J 0 

and press I RETURN I. WordS tar will then U run" the XDIR pro
gram which shows how much space has been used and how 
much room remains, then waits for you to press any key before 
returning to WordS tar. 

Another method for keeping track of a file's size is to turn OFF 
the PAGE BREAK DISPLAY command by issuing an I\@] [II . If 
you're at the end of the file, you'll see the number of bytes cur
rently occupied by the file you are editing at the top of screen 
immediately following FC= ("file count"). Remember, a single
density diskette contains 92,000 bytes. 

Lesson 12: MailMerge 

Congratulations! You are now an initiated WordS tar user and 
know how to prepare documents and print them. The Mail
Merge enhancement lets you use your newly gained skills to 
merge the contents of several files, including data files during 
printing. 

MailMerge provides an easy method of preparing form letters, 
envelopes, and mailing lists. Insertion of "boilerplate" text and 
successive printing of multiple files allows further flexibility. 



WORDSTARAND MAILMERGE 125 

Also, MailMerge lets you print a document with different line 
spacing, margins, and justification than were specified at the 
file's creation. 

All of these features result from a combination of DOT com
mands. You've seen some of them; others, unique to MailMerge, 
will follow, with explanations and demonstrations. 

Preparing a Form Letter 

Each copy of a form letter conveys the same information, while 
acknowledging each person individually. The first step in pre
paring a form letter is to create a document file. Prepare a file for 
the form letter that contains the information as it will appear for 
all the letters. As you create this master letter, identify the parts 
that will vary for each copy-such as names and addresses-by 
substituting each of these variable pieces of information with an 
ambiguous "keyword" (a special name). 

Keywords replace text that will change from one letter to the 
next when the master form-letter file later prints. MicroPro calls 
this process "Merge-Printing," which simply means that you 
use the special print commands embedded in MailMerge instead 
of the print commands in WordStar. 

A keyword can be up to 40 characters long. You can use the 
same keyword more than once in a document, as long as it 
represents the same piece of information each time. To identify a 
keyword in your text, place an ampersand (&) on both sides of 
the keyword. When the file containing your form letter prints, 
the variable information you want inserted at that point replaces 
the ampersand-enclosed keyword. 

KEYWORD EXAMPLE: Now is the time for all &TYPE& 
people to come to the aid of their 
party. 

&TYPE& varies with each print
ing of the document. 



126 OSBORNE 1 USER'S GUIDE 

You can hold information to be inserted for keywords in a sepa
rate "data file" or enter it from the keyboard as you print out a 
document. We will show you how information is supplied for 
keywords, but first you should prepare a master form-letter file. 
Create a file named FORMLET; you should know how to do 
this by now. Type the form letter, including keywords illustrated 
in the following example, and don't forget to include the .PA 
DOT command at the end: 

&NAME& 
&COMPANY& 
&STREET& 
&CITYSTATE& &ZIPCODE& 

DEAR &NAME&: 

We at Our Company are extremely happy to allow you 
the honor of being one of the first to know about our 
new product. Only our most endeared customers are 
privileged enough to partake of this once-in-a-lifetime 
opportunity. Since &COMPANY& has been such a loyal 
customer and because our solid business line is so com
petitive, we can afford to make you this offer. Thanks to 
you, our ability to provide prompt and low-cost service 
is possible. 

Sincerely yours, 
Bill Owner 
Title 

.PA 

This sample illustrates how to prepare a master copy of a form 
letter. An unlimited number of letters with a personal touch can 
derive from this one master form. 



WORDSTARAND MAILMERGE 127 

Once the master copy of the form letter exists, you must aug
ment it with certain strategically placed DOT commands. The 
CONDITIONAL PAGE DOTcommand, .PA, at the bottom of 
the form letter is one such command. You may have been 
surprised when you entered this command because the PAGE 
BREAK DISPLAY (dotted line) automatically appeared on the 
next line. The appearance of this dotted page-break line is nor
mal since the .PA command signifies the end of a page. The .PA 
command makes sure that a new page starts and only one copy 
of the form letter per sheet of paper prints; meaning the printer 
advances to the top of the next piece of paper before printing 
the next form letter. 

Other necessary DOT commands tell the computer where 
variables-such as names and addresses-will come from when 
the form-letter file is processed for printing. To work correctly, 
these DOT commands must be at the beginning of the file. Place 
the cursor at the beginning of the form-letter file and insert four 
blank lines by issuing 1\ 1m four times. If necessary, use 1\ I.Il 
to move the cursor to the top of the file, then insert the follow
ing DOT commands, pressing I RETURN I after each one: 

.. FORMLET Comment identifies file: 

.OP 

. OF OATAFYL 

. RV NAME, COMPANY, STREET, CITYSTATE, ZIPCOOE 

The top four lines in your file should look exactly as shown 
above. The COMMENT DOT command consists of two periods 
and indicates an unprinted comment. This comment serves as a 
reminder, naming the file you are working on. The DOTcom
mand .OP turns off the page numbering so a number will not 
print at the bottom of your letter. For a document longer than 
one page, you can number each page by using the NUMBER 
PAGES DOT command, .PN. 

The DATA FILE DOT command, .DF, specifies the name of the 
data file where information to be inserted for the keywords is 
stored. Our sample form letter includes five keywords repre
senting the name, company, street, city and state, and zip code. 



128 OSBORNE 1 USER'S GUIDE 

Each time the master form-letter file is processed for printing, 
MailMerge extracts five values from a data file (explained later) 
and inserts them in place of the keywords. 

The READ VARIABLE DOT command, .RV, lists keywords used 
in the file, in the same order in which they appear in the text. 
The order in which the keywords are listed in the .RV command 
must also correspond to the order that information is listed in 
the data file. All of this probably sounds confusing if you have 
never done any programming, but things will begin to make 
sense as you work your way through the examples. 

Now that you have prepared the form letter, you need to create 
a data file so that you have something to merge-print. For 
now, save your document file, FORMLET, using the "1KI [[J 
command. 

Data Files 

The CREATE A NON-DOCUMENT FILE command, N, from 
the no-file menu is used to create data files. Using N to create 
a file is normally reserved for writing source programs, but is 
also well suited for creating MailMerge data files. The reason 
for creating a data file with the N option rather than the D 
(document) option is because you don't want WordS tar to use 
any special "soft hyphens" or other word-processing features in 
your data file. Such features interfere with the data file's highly 
structured organization. Issue [ill. When the NAME OF FILE? 

prompt appears, supply the name DATAFYL and press I RETURN I. 
Recall that DATAFYL was the name of the file you specified 
with the .DF command in your form-letter file. 

A data file consists of lines of information called "records." Each 
record contains the information necessary to match all of the 
keywords for one form letter printed from the master. Informa
tion is organized within the record lines in the order that the 
corresponding keywords are arranged in the form-letter file and 
listed in the .RV command. 



WORDSTAR AND MAILMERGE 129 

Each data item supplied for a keyword must be separated from 
the next by a comma. If the information itself contains a comma, 
you must enclose the entire clause within quotation marks. 
Each record line of information for one printed copy of a docu
ment, such as a form letter, is "delimited" (ended, or "set off" 
from the next) with a RETURN. Enter the record lines shown 
below and remember to end each line by pressing RETURN: 

Mary Maid,Dairy Queen,411 E 32nd, Boston MA,02174 
Helen Mellon,H-Spa, 123 Main St.,"Troy,MI",27719 
Had Jolly, Goodtime Saloon,,"Nome,AK",00020 

The data file you just created contains enough information to 
print three copies from the master form letter. Notice that two 
of the city-and-state "fields" contain commas and are sur
rounded by quotes. Also use quotes if you want a blank space 
before or after a data item: 

1/ Space Cadet",Wizardry Inc., Upthere St.,Home,CA,OOOOO 
1\ 1\ 

space will appear space won't appear 

You can omit a data item such as the street address as illustrated 
in the third record of the example. Leaving an entry blank will 
cause no problems, as long as you remember to substitute the 
empty field with a comma. The comma is needed to keep the 
data selection in "sync" (properly arranged). The missing item 
will cause a blank at the location of the corresponding keyword. 
Later in this lesson, we will show you how to keep the blank 
from appearing in your letter. 

Inspect your data file and confirm correct entry of each item 
in all three records. Now save your data file with the 1\ [gJ [[] 
command and return to the no-file menu. 



130 OSBORNE 1 USER'S GUIDE 

NOTE 

The primary difference between editing a "document" file 
and editing a "nondocument" file, as you just did, is that 
WordStar will not insert any special characters on its own 
or perform any "word wrap," hyphenation, or margin 
justification. You should note, however, that except for 
these fancy word-processing functions, all the WordStar 
commands still function as before. 

Merge-Printing a Form Letter 

At this point, you should have two new files: one named 
FORMLET, containing your form letter; and another, holding 
your data records, named DATAFYL. It is time to reap the fruits 
of your labor and perform your first MailMerge operation. 

To initiate a MailMerge operation, issue the MERGE-PRINT com
mand, [MJ, from the no-file menu. WordStar will ask you for the 
name of the file to merge-print: 

NAME OF FILE TO MERGE PRINT? 

Enter the name of the file, in this case FORMLET, and press 
1 RETURN I. As with the regular PRINT command, you'll be pro
vided several options to use during the printing session. 

To make things simple, you should probably just press 1 RETURN I 

for each of these options. If you are not using paper that feeds 
continuously, however, you may want to answer Y to the 
PAUSE BETWEEN PAGES? question. Answering YES to this 
question halts printing after each page so you can insert indi
vidual sheets of paper. Also, if you wish to make more than one 
copy of each letter, specify the number of copies in response to 
the question. By now you should know 
what to do when you see the Ready printer, press RETU RN: 

message. That's right! Press 1 RETURN I to start merge-printing. 



WORDSTARAND MAILMERGE 131 

P = STOP PRINT The message displays in a box in the middle of 
your screen. You can stop the merge-print operation at any time 
by issuing the P command. You would be prompted with the 
usual options: i for abandon printing, W for continue printing, 
and W to temporarily interrupt the printing. Error and other 
messages appear below the printing message, and if there is 
room, the current file directory is shown. 

If you did everything correctly, three form letters should have 
printed. Did your screen display a message preceded by three 
asterisks? If so, you made a mistake either in the form-letter file, 
or in the data file. Refer to the error messages in the Reference 
Guide for a definition of any error message displayed on your 
screen. Correct your mistakes, then try again. 

The text in merge-printed files automatically reformats after 
each substitution of a data item for a keyword. Look at the form 
letters you just printed and note that the surrounding text has 
accommodated the company names perfectly. Even though data 
items vary in length, a feature called "print-time line forming" 
monitors these variable lengths and adjusts your text for them. 
We'll explore the subject of print-time formatting and ways to 
direct it in depth at the end of this chapter. 

Envelopes 

You now have three form letters. Wouldn't it be nice to have 
three addressed envelopes in which to send them? You can print 
the names and addresses stored in a data file on envelopes by 
creating a "command file" that specifies the formatting. A com
mand file usually contains no text and only directs formatting 
and merging of files. Create such a command file with the name 
ENVELOPE using the @] option from the no-file menu. You'll 
use this envelope command file only to format and position the 
names and addresses on envelopes. 

Constructing a command file that directs printing of names and 
addresses onto envelopes requires more attention to detail than 
did our form-letter file. You have to use the PAGE LENGTH 



132 OSBORNE 1 USER'S GUIDE 

DOT command, .PL, to specify the size of the envelope to the 
printer. Also, you must suppress the top and bottom margins so 
the address will be centered on the envelope. 

The .DF in the following example tells the computer which data 
file contains the information to be printed. The .RV command 
lists the keywords and establishes the order in which each data 
item will print. DOT commands at the beginning of a command 
file specifying the format for a standard letter-size envelope 
should look like this: 

.. ENVELOPE 

.OP 

.PL26 

.MT 12 

.MBO 

.OF DATAFYL 

.RV NAME, COMPANY, STREET, CITYSTATE, ZIPCODE 
"C 

.PA 

&NAME& 
&COMPANY& 
&STREET& 
&CITYSTATE& 
&ZIPCODE& 

This is a rudimentary example of a command file which refer
ences a data file to address envelopes. Examine the structure of 
this envelope file for a moment. The first line is a comment, as 
indicated by the double periods. These ignored comments help 
identify the file and are not needed. The page length is set to 26 
lines-the size of a standard business letter envelope. Using the 
.PL command, you can set the page length to match any size 
envelopes you want. The top margin in the example is set to 12 
(.MT 12) and the bottom margin is suppressed (.MB 0). The 
names and addresses that will print on each envelope will come 



WORDSTARAND MAILMERGE 133 

from the data file named DATAFYL as specified by the .DF 
command. You need the .RV to define the order in which the 
data items will be extracted from the data file and printed in 
place of keywords. 

Printing will have to stop after every envelope so you can insert 
a new one. You can stop printing after each page by answeringY 
to the question, but an easier way to 
stop the printer is to put a "C at the end of the DOT commands. 
Enter "C by first issuing a "P, then pressing C. Each time "C 
crops up, the printing will pause. After you've put the next en
velope in place, use the P command to start printing the next 
envelope. 

Save this file with "[KJ [QJ, which will bring you back to the 
no-file menu. Merge-print the envelope file by initiating Merge
Print with [M], and supplying the name ENVELOPE and press
ing the I Escl (for escape) key. You will have to position the 
envelopes in the printer by hand, so you will need to experi
ment a bit before you achieve proper alignment. 

NOTE 

The ESC key is a shorthand way of telling WordS tar that 
you don't want to specify any of the print options. You can 
use it to avoid the list of questions that appears after you 
supply the name of the file you want printed. Remember: 
you usually press the RETURN key. 

By slightly changing the DOT commands in your envelope file, 
you can create a nicely formatted mailing list. A mailing-list 
command file would not need to suppress the margins or 
modify the page length; you would leave out the .PL, .MT, and 
.MB DOT commands. You will still want to make use of the 
CONDITIONAL PAGE DOTcommand .CP, however. 



134 OSBORNE 1 USER'S GUIDE 

A number after the .CP command will cause a new page to start 
if fewer than that number of lines are left on a page. Since five 
keywords represent five data items, entering .CP 5 will ensure 
that no name and address will be split between pages. Set up a 
mailing-list command file as illustrated below: 

.. MAILIST 

.OF OATAFYL 

.RV NAME, COMPANY, STREET, CITYSTATE, ZIPCOOE 

.CP 5 

&NAME& 
&COMPANY& 
&STREET& 
&CITYSTATE& 
&ZIPCOOE& 

then merge-print it. 

Is that blank line left in the third address starting to bother you? 
A missing data item, such as the street address in the third 
record of your data file, will usually cause a blank line to appear 
at the position of the corresponding keyword. Remember that 
you used a comma in the data file to signify a missing data item. 
WordStar allows you to get rid of this blank line if you wish. 

Place a slash (/) and the letter 0 after the keyword within the 
ampersands if you suspect that a piece of information may 
sometimes be unavailable. The O-which stands for omit, will 
prevent the blank space from appearing in your list when the 
file prints. For a keyword using 10 to be effective, nothing else 
can be on the same line, and a comma must hold a place for the 
missing item in the data file. Here is how the keywords in a 
mailing list that accommodates possible missing items look: 

&NAME/O& 
&COMPANY/O& 
&STREET/O& 
&CITYSTATE/O& 
&ZIPCODE/O& 



WORDSTAR AND MAILMERGE 135 

Establishing a Constant Data Item 

Sometimes you may have a piece of information that can be 
changed but that you don't want to list in every record of the 
data file. For example, if your company is really small you might 
have more than one title reflecting your various duties and 
would like to easily switch from one to the other. Reedit your 
form-letter file, FORM LET, so we can demonstrate how to do 
this. Press [QJ from the no-file menu and supply FORMLET as 
the file name. 

The SET VARIABLE DOT command, .Sv, establishes a piece of 
information (data item) that remains constant and serves as a 
substitute for a specific keyword. The information that is set can 
be up to 200 characters long and is normally located at the 
beginning of the file. 

At the beginning of the file, enter: 

.SVTITLE, Vice Jack of all trades 

Replace the words "Vice Jack of all trades" with one of your 
choosing if you like; place this command beneath the existing 
comment command. Next, change the occurrence of the word 
"Title," under the name Bill Owner, to a keyword by surround
ing it with ampersands. The title Vice jack of all trades, or one 
you specify in .SV will print at the position of the keyword 
&Title&. This shortcut makes it unnecessary to enter a particu
lar title for each letter. 

An even more practical example of the use of .SV would be in 
preparing a standard contract between two parties. You could 
prepare the body of the contract as you did in the form letter, 
using keywords in place of the party names. Then you could 
place two .SV commands at the top of this contract file; one for 
each party. 



136 OSBORNE 1 USER'S GUIDE 

Since you would use the name of each individual many times in 
the contract, you could use .SV to specify the names of the par
ties involved, just once, at the top of the contract and have them 
print for all the associated keywords. In this way, you could use 
the master contract many times with many different individuals. 
Standard will preparation is one common use of this feature. 

An example of this standard contract idea might look like this: 

.SV PARTYl, John Doe 

.SV PARTY2, Ruth Smith 

Each time &P ARTY1& is encountered within the contract, the 
name John Doe is printed. Every time &P ARTY2& is encoun
tered, Ruth Smith is printed. 

Inserting Files 

Summoning a document file for merge-printing from within an
other file is simple. The FILE INSERTION DOT command, .FI, 
invokes processing of a named file from within another file. This 
file-insertion capability allows you to insert boilerplate text that 
has been stored in a separate file or to print several files in 
succession. Not only can you accomplish these very fundamen
tal tasks, but, the more experience you gain, the more complex 
uses you will discover. We will describe the basic file-insertion 
techniques and allude to some of the other capabilities in the 
remainder of this chapter. 

The name of the file to be inserted and processed is specified 
following .FI, which is located at the point in the main file 
where processing is to begin. When MailMerge encounters .FI, it 
temporarily interrupts merge-printing of the main file while it 
processes the file named by .FI. 

Files processed using .FI are treated as though the MERGE
PRINT command invoked them. Processing of the inserted file 
may even include further merging of referenced data files or 
even another file insertion. After processing of the inserted file 



WORDSTARAND MAILMERGE 137 

is finished, merge-printing of the main file continues with the 
line following .FI. 

Inserting frequently used text that's stored in a separate file is 
one of the most obvious uses of the file-insertion option. You 
can prepare a boilerplate file by using the BLOCK WRITE com
mand to save a block of text in its own file, or by creating a file 
and typing the appropriate text. 

A file containing boilerplate text must end with a RETURN, 
which the flag character, <, indicates. This flag should be pres
ent below the last line of text in the boilerplate file. Inserted files 
that do not end with RETURN will blend with the next sentence 
of the main file, usually resulting in serious complications. 

To demonstrate this type of insertion, create a file called 
POSTCRPT. Type anything you wish in this file, but remember 
to press IjJI"'jUI after the last line of text; then save it. In 
reality, this example probably does not reflect a practical appli
cation of a boilerplate insertion; but this demonstration will give 
you a chance to see how these insertions are handled. 

Next, reedit the file named FORMLET and place the cursor after 
the last sentence in the master form letter. 

With the cursor resting below the body of the form letter and 
before the salutation, press I RETURN I and issue 1\ 1]]. On the 
empty line you have created, enter: 

. FI POSTCRPT 

then save the file. Now merge-print the form-letter file. The text 
you saved in the file named POSTCRPT should print in each 
form letter at the location specified by .FI. 

Printing Multiple Files 

You may find, when creating a large document, that text is " 
spread out over many files. Printing the document one file at a 



138 OSBORNE 1 USER'S GUIDE 

time is painstaking. Using file insertions, you can reference each 
file to be printed in its proper context from a command file. 
Usually a command file that references text files in sequence is 
set up like this: 

.FI FILEt 

.FI FILE2 

.FI FILE3 

The following exercise demonstrates the concept of processing 
one file after another. Create a command file, named COMBINE 
that has an .FI and a file name on each line-use the names of 
your form letter, envelope, and mailing list files. This command 
file will process your form letters, address the envelopes to send 
them in, and then print a list of the letter's recipients. 

If you process this file in its present state, you will probably 
have a difficult time keeping track of which file is being pro
cessed. To make it easier to see what is going on, document the 
progression of multiple file insertions with messages. 

The DISPLAY MESSAGE DOT command, .DM, causes display 
of a specified message on the screen. So you will know when 
each file is being processed, add some message prompts to your 
command file. You will also want to make use of the CONDI
TIONAL PAGE DOT command, .PA, to ensure that a new page 
starts after every file insertion. Set up your command file in the 
following way: 

.OM The form letters are being printed . 

. FI FORMLET 

.PA 

. OM WordStar is now typing envelopes for you . 

. FI ENVELOPE 

.PA 

.OM The mailing list is now being prepared . 

. FI MAILIST 



WORDSTARAND MAILMERGE 139 

then save it and merge-print it. (Note: it is not really necessary 
to insert envelopes to observe this task-plain paper will do 
fine.) 

As you can see, this is a simple, yet effective, method of keeping 
track of what WordStar is doing when it merge-prints files. 

Changing Diskettes 

If the data file being referenced is on another diskette, or if 
you're printing a large document such as a book, you can 
specify a diskette change. To accommodate a diskette change, 
place the word CHANGE after the file name in either the .FI or 
.DF command. A .DF or .FI with the word CHANGE after it 
displays a message prompting a diskette change, and processing 
stops until the diskette change occurs. 

SPECIAL NOTE 

On the Osborne l-with only 92K of data-storage 
capacity-you'll find the CHANGE command extremely 
helpful. The early versions of this manual were created in 
this fashion. 

The name of the file and the drive where it is expected are indi
cated by a message on the screen. When this message appears, 
you know that a diskette change is required. Remove the disk
ette from drive B, and replace it with one holding the file being 
summoned, and press RETURN. If you like, use .DM to display 
a more explicit message prompting for a diskette change. After 
you press RETURN, the Osborne 1 will search for the named 
file on the diskette you've inserted. If the file is not on either 
diskette, a message asking for the correct diskette is displayed 
until the specified file is loaded. 



140 OSBORNE 1 USER'S GUIDE 

The diskette that holds the command file can be removed while 
the diskette containing the referenced file is processed. When 
processing finishes, a message asking for the original diskette is 
displayed. Reinsert the diskette holding the command file and 
press RETURN to continue the merge-print operation. 

Never specify a diskette change for the drive containing the 
Wordstar program files (normally drive A). Diskette changes are 
limited to the B drive on the Osborne 1. Accidental specification 
of a diskette change for the drive holding the program files dis-
plays the message . MailMerge 
will try to access the referenced file on both drives in case there 
is a mistaken drive identifier. If MailMerge can't find the file on 
either drive, it displays a message to this effect and ignores the 
.FI or .DF requesting the invalid change. 

If you are initiating a merge-print from the A drive, place B: 
before the file name in the .FI or .DF command. The drive iden
tifier is not necessary if you are already logged on drive Band 
the files to be used are also on that drive. 

Entering Data from the Keyboard 

Earlier we showed you how to store data to be supplied for 
keywords in a data file. An alternative method, which involves 
supplying data from the keyboard, is also possible. The screen 
can request data, and when supplied, inserts it for keywords in 
the file being merge-printed. Instead of storing information in a 
data file, use the ASK VARIABLE DOT command, .AV, to ask for 
the data. The .AV command replaces the .OF and .RV com
mands that are needed when information is stored in a data file. 

A separate .AV is needed for every keyword. Each .AV is fol
lowed by a keyword and placed one per line, in the same order 
that data for the keywords is inserted when the file is merge
printed. Recall that when using a data file, you need to establish 
the order of data insertion for keywords with .RV. Let's go 
through an exercise on entering data from the keyboard. Once 
again edit the file named FORMLET. 



WORDSTARAND MAILMERGE 141 

Place the cursor at the beginning of your form-letter file, issue 
"0 two times to move down two lines, and delete the .DF and 
. RV commands by issuing "[Y] twice. Issue a "lEI to give 
yourself a blank line to work in, and enter a separate .AV and 
I RETURN I for each keyword in the name and address. This is how 
the top eight lines of your file should appear: 

.. FORMLET that asks for variables 

.SV YOURCOMPANY, CompanyName 

.AV COMPANY 

.AV CITYSTATE 

.AV ZIPCODE 

Be sure the .DF and .RV commands have been deleted, then 
save this file and merge-print it. The disk drives will activate as 
usual but no printing will take place. Instead, the keyword listed 
in the first .AV will display on the screen, followed by a ques
tion mark. Respond by entering the data that you want printed 
for that particular keyword and press I RETURN I. 

Once you press RETURN, the next keyword will be prompted, 
and so on until you supply the data for all the .AV commands in 
the file. A copy of the form letter with the name and address 
you entered at the keyboard will then print. 

When dealing with many files, you may want a more explicit 
message than just the keyword displayed on the screen. You can 
specify any message you like in the .AV command to ask for 
data. To specify a prompt other than the keyword, follow.AV 
with the desired message enclosed in quotation marks. Then 
place a comma and the actual keyword after the message. Open 
your form-letter file to try this. 

Move the cursor to the end of the first sentence in your form 
letter, delete the last three words, , and replace 
this clause with the keyword &PRODUCT&. Now move the cur
sor below the currently existing DOT commands and enter these 



142 OSBORNE 1 USER'S GUIDE 

two commands: 

.AV "Enter the name of the product:", PRODUCT, 10 

.CS 

The prompt message and the data entered for it cannot extend 
beyond one line or a portion will be cut off. To avoid this prob
lem, you might limit the number of characters MailMerge can 
accept for an .AV prompt. To restrict the number of characters 
accepted from the keyboard, we have placed the number 10 at 
the end of our .AV command. A number at the end of an .AV 
command represents the maximum number of characters ac
cepted in response to an .AV prompt. This feature is used as a 
data check, or to limit text entry to fit a particular format. No 
extra characters over the specified limit will display or print. 

As its name implies, the CLEAR SCREEN DOT command, .CS, 
causes the screen to clear any information that has accumulated 
there. It is a good idea to use this command to clear the screen 
whenever you are prompting for data with a series of messages. 

Note that when data is entered from the keyboard instead of 
being stored in a data file, the file is processed only once. You 
have available several ways to process the file more than once 
without going through the whole print cycle each time. One 
way is to specify the number of times you want the file pro
cessed and thus the number of printed copies with the NUM
BER OF COPIES option offered when merge-print is initiated. 
You can also have a file insert itself through the insertion com
mand. Placing .FI and the file's name (FORMLET) at the end 
of the form-letter file will, in effect, trick the file into inserting 
itself over and over again. 

Save your form-letter file and merge-print this new version. 
The last prompt on the screen before the file prints should look 
like this: 

Enter the name of the product: 



WORDSTARAND MAILMERGE 143 

The entry in response to this message will print in place of the 
keyword &PRODUCT&. To see that any characters over the 
specified limit will in fact be ignored and won't display on the 
screen, try entering more than ten characters. A copy of the 
form letter will print and the screen will request data for the 
next letter. 

Should a data item be the same as in the previous letter, you 
could issue I\R to restore the same answer you used the last 
time MailMerge asked the question. The previous answer is dis
played on the screen, where you can edit it if necessary. Press 
I RETURN I to enter the data as you would for any input. 

Generally, you can halt merge-printing of your form-letter file 
by pressing P, but not when MailMerge expects data for an .AV 
prompt. If an .AV command expects data, that's how MailMerge 
will interpret the STOP PRINT P command. To circumvent this 
problem, supply the data necessary for the prompt, then press 
I RETURN I and IE] in rapid succession. The P command will issue 
before you get to the next .AV command and will keep the next 
document from printing. 

Before you try any of the examples in the remainder of this 
chapter, convert the form-letter file so it once again contains .DF 
and .RV to reference the data file. Edit your form-letter file and 
eliminate the .AV commands you used to ask for the name and 
address. 

Replace the .AV commands by first entering. OF OATAFYL and 
pressing I RETURN I. Then, on the next line enter: 

. RV NAME, COMPANY, STREET, CITYSTATE, ZIPCOOE 

Leave the .AV command that asks for the product alone. The 
final version of your form letter should look like this: 



144 OSBORNE 1 USER'S GUIDE 

.. FORMLET 
· SV TITLE, Vice Jack of All Trades 
.OP 
.DF DATAFYL 
.RV NAME, COMPANY, STREET, CITYSTATE, ZIPCODE 
.AV "Enter the name of the product:", PRODUCT, 10 

&NAME& 
&COMPANY& 
&STREET& 
&CITYSTATE& 
&ZIPCODE& 

Dear&NAME&: 

We at our company are extremely happy to allow you 
the honor of being one of the first to know about 
&PRODUCT&. Only our most endeared customers are 
privileged enough to partake of this once-in-a-lifetime 
opportunity. Since &COMPANY& has been such a loyal 
customer and because our solid business line is so 
competitive, we can afford to make you this offer. Thanks 
to you, our ability to provide prompt and low-cost service 
is possible. 

· OM The POSTCRPT file is now being processed 
· FI POSTCRPT 

Sincerely yours, 
Bill Owner 
&Title& 

.PA 



WORDSTARAND MAILMERGE 145 

Advanced Command Files 

Once you know how to insert files with .FI and enter data at 
the keyboard with .A V, you can combine these commands. To
gether, they can structure many imaginative merge-printing op
erations. Consider a command file that uses .AV to ask for the 
date and that uses .FI to insert the file containing the keyword 
&DATE&. A command file that asks for today's date and then 
merge-prints a file using the supplied date is set up so: 

.AV "Enter today's date :", DATE 

.FIFORMLET 

For this command file to work correctly, you must put the 
keyword &DATE& at the place in the inserted file where the 
date should appear. Explore this example and those that follow 
at your own speed. Insert the keyword &DATE& in your 
form-letter file, then create and merge-print the command file 
illustrated above and observe what happens. 

A whole new realm of possibilities opens up when you consider 
that you can use keywords within the DOT commands them
selves. Say you want to maintain a given document file that can 
accommodate different data files. You can do it by going back 
and changing the name of the data file listed in the .DF com
mand every time you want to use a different data file. Alterna
tively, you can create a command file that combines the .AVand 
.FI commands so you can enter the name of the data file at the 
keyboard. 

Prepare a command file using separate .AVs to ask for the 
name of the document and data files to merge-print. The same 
keyword used in the .AV asking for the file to merge-print is 
what .FI uses in the command file .. DF uses the .AV keyword in 
the document file to be referenced. Here's how to set up such a 
file: 



146 OSBORNE 1 USER'S GUIDE 

.. Command file for entering file name from keyboard 

.AV "Enter name of file to print:", KEYWORD1 

. AV "Enter name of data file:", KEYWORD2 

.FI&KEYWORD1& 

A command file set up like this will work only if the .DF com
mand in the document file uses &KEYWORD2& .. FI will insert 
the name of the document file entered for the first .AV for pro
cessing. The name of the data file entered for the second .AV 
will be inserted for the keyword in the .DF command. 

It is possible to place the .DF DOT command within the com
mand file to allow reading of the data file from the command 
file. Also, it becomes unnecessary for the keyword listed in the 
document file to match the keyword in the file inserted. 

A document file that uses a data file referenced from a command 
file needs the REPEAT PROCESSING DOTcommand, .RP, 
which causes reprocessing of the file until all data in the data 
file is used. Without the .RP command, processing stops after 
the first round. Here is an example of a command file that con
tains .DF to reference the data file: 

. DM This command file can reference any data file 

.AV "Enter name of file to merge-print", KEYWORDl 

.AV "Enter name of data file", KEYWORD2 

This information will be printed out before the file 
&KEYWORD1& is printed using data in the file 
&KEYWORD2& . 

. FI &KEYWORD1& 

.DF &KEYWORD2& 

When a command file such as the one above merge-prints, the 
name of the document file and the data file name are requested. 
The named data file supplies data for variables in the document 
file. Files referenced in this manner must contain the .RP com-



WORDSTARAND MAILMERGE 147 

mand (Le., the &KEYWORD1& file must contain a .RP). A num
ber following .RP causes processing of the file that many times. 

A command file can process more than one file, providing the 
same data file is used for each document. For example, the fol
lowing command file would print the form letters, then use the 
same data file to print the envelopes: 

. DM Prints form letters and envelopes 

.AV "Enter name of file to merge-print" ,KEYWORDl 

.AV "Enter name of data file" ,KEYWORD2 

.FI &KEYWORDl& 

.FI ENVELOPE 

The preceding examples are only a few of the possible command 
files you can structure by combining commands and using 
keywords. As you become used to these MailMerge DOT com
mands, you will fihd that with a bit of forethought you can 
handle most applications. 

MailMerge Formatting Commands 

Recall how text surrounding keywords shifted to make room for 
data of varying lengths. Text in files to be merge-printed auto
matically reformats following every insertion of a data item for a 
keyword. Consider this automatic text formatting when prepar
ing files for merge-printing. Data printed for keywords some
times exceeds the length of the ampersand-enclosed keyword, 
so a printed document might look quite different than it did 
when you created it. 

Sometimes automatic reformatting may cause your document 
to print in an undesirable manner. For instance, consider a 
line ending with a RETURN, where a long data item replaces a 
keyword. The long insertion might cause text to extend beyond 
the point you intended. 

One way to accommodate an expected long data item is to place 
spaces on both sides of the keyword. For example, enter the 



148 OSBORNE 1 USER'S GUIDE 

keyword &PRODUCT& where a long description that would 
alter the format is required. Advanced users may want to further 
control the way documents with long-data-item's format. 

Formatting is the province of the PRINT-TIME LINE FORMER. 
The line former consists of two functions: the "input scanner" 
and the "output formatter." 

The input scanner examines text in the file being merge-printed 
and locates the keywords. It takes margins, line spacing, jus
tification, and word wrap into account. When the input scanner 
detects insertion of data for a keyword, it directs the output for
matter to reorganize text: the scanner interprets the DOT com
mands and relays' them to the output formatter, which performs 
the automatic print formatting. 

The output formatter does not change text until the input scan
ner encounters a keyword. After insertion of the data item, lines 
of text reformat until to the next carriage return, line feed, form 
feed, or end of file is reached. This type of line forming is 
termed" discretionary" line forming. The PRINT-TIME LINE 
FORMING DOT command, .PF, can turn line forming ON or 
OFF. 

Whether a keyword turns line forming ON or you activate it by 
entering .PF ON:, you can direct formatting in a variety of 
ways. Left and right margins, line spacing, and justification are 
all subject to the control of MailMerge formatting commands. 
You can either turn these features ON or OFF, or leave them to 
the discretion of the input scanner and output formatter. 

Printing a document with different margins than those specified 
at the file's creation requires use of the RIGHT MARGIN DOT 
command, .RM, and the LEFT MARGIN DOT command, .LM. 
Line forming has to be ON for these margin commands to be in 
effect. You already know how to set the margins for a whole 
document, but if you want to change the margins for a particu
lar section of a file, use one of these margin commands. 



WORDSTARAND MAILMERGE 149 

Suppose you want to indent a specific paragraph with a left 
margin of 20 and right margin of 40. First, turn ON line forming 
at the beginning of the paragraph. Next, specify the left and 
right margins. After the intended section of text is formatted, 
you have to direct line forming to act in its normal manner. 
These formatting commands would appear like this in your file: 

.PF ON: 

.LM20 

.RM40 
These commands would be placed before the portion of 
the file to be affected. The PRINT-TIME LINE FORMER 
would be returned to its discretionary setting by the 
.PF DIS: command located after the affected paragraph 
as illustrated here . 
. PF DIS: 

Margins can change in the middle.of a paragraph: place the cur
sor at the beginning of the line above which you'll use the DOT 
command. Issue 1\ ffi], and enter the desired command. A soft 
RETURN will precede the command; a hard RETURN will fol
low it. MailMerge won't interpret the hard RETURN as a para
graph terminator. When detected, the DOT command will be 
invoked at the specified point in the file. If, subsequently, you 
need to use the REFORM command on the text containing the 
mid-paragraph command, you'll have to remove the DOT com
mand. If the line spacing or justification for a specific portion of 
text has to change, follow the same procedure as for changing 
margins. 

You can also use a command file to change the line spacing or 
some other format for an entire file. All you have to do is create 
a command file that turns line forming ON, specify the format
ting, and insert the file to be formatted. Below is an example of 
a command file that would cause a file to print double-spaced, 
even though the file was created with single spacing. Use the 
LINE SPACING DOT command, .LS, in this case, and set the 
command file up like this: 



150 OSBORNE 1 USER'S GUIDE 

.PF ON: 

.LS2 

.FI POSTCRPT 

To cause text to print with a ragged-right margin, even though 
justification is ON, use the OUTPUT JUSTIFICATION DOT 
command, .OJ. In the same vein, the INPUT JUSTIFICATION 
DOT command, .IJ, can direct the input scanner's interpre
tations .. IJ is not meant to format your files, but is there in case 
some unusual text confuses the input scanner. Try some of these 
commands on your file named POSTCRPT. Look in the Refer
ence Guide for a complete list of these MailMerge formatting 
commands. 

Another Section Completed 

You've completed another chapter and learned almost every
thing in both WordStar and MailMerge. Through the use of 
examples, you've attempted practical applications of every 
command. 

After one reading of this chapter, you probably won't remember 
everything about WordStar and MailMerge. For that reason, we 
suggest that you familiarize yourself with the reference material 
for WordS tar in the Reference Guide. 

In addition, we suggest that you learn to use the built-in HELP 
facilities of WordStar. Remember that AJ is the secret command 
that can bring you additional information about almost every 
topic in WordStar, even while you're in the middle of editing a 
document. 

On top of everything else, practice. We have attempted to make 
the use of a computer as easy as possible, but you'll never learn 
more than a few rudimentary ways of manipulating it unless 
you put some effort into the process. Neither author of this 
manual has been using word processors for long, but it did not 
take long to opt for their exclusive use. We know that you, too, 



WORDSTAR AND MAILMERGE 151 

can learn to use a word processor. We only ask that you remain 
patient during the process and remember the words of author 
Franz Kafka: "All human error is impatience, a premature 
renunciation of method, a delusive pinning down of a 
delusion. " 





CHAPTER 5-
SuperCalc 

In this chapter, you'll learn how to use 
SuperCalc, a program that lets you work with 
numbers in much the same way WordStar lets 

you work with words. 



154 OSBORNE 1 USER'S GUIDE 

Introduction 

The SuperCalc program supplied with your Osborne 1 is an im
portant tool for those who want to use their Osborne computer 
to deal with numbers. 

SuperCalc is easy to learn to use, partly because of built-in 
prompting messages that are concise and useful. In this 
chapter, you'll learn how to use SuperCalc. 

What Is SuperCalc? 

The SuperCalc program changes the Osborne l's memory into a 
large worksheet. Since the worksheet can be as large as 63 col
umns by 254 rows, the screen on your computer is a "window" 
through which you can view a portion of this worksheet at a 
time. You can look at information, alter it, delete it, or replace it, 
all with a few easy-to-Iearn commands. Subject to your control, 
the program will recalculate any values affected by new, 
updated, or modified data you enter. 

In a way, SuperCalc operates like a business or scientific calcula
tor. The primary difference is that SuperCalc has an extremely 
large memory and can remember both equations and data 
you enter. 

Suppose for a moment that you have entered several complex 
equations that predict the amount of cash your business will 
have if the interest rate is 20 percent. SuperCalc lets you change 
the data in your calculations so you can perform the same 
calculations with an assumed interest rate of 15 percent, 25 
percent, or whatever figure you desire. 

Perhaps, instead, you have a set of data for your business for 
the last year: monthly sales and expenses, for example. With 
SuperCalc you can keep the data the same while changing the 
calculations you perform. With a few simple changes to the 
equations you enter, you can perform a cash-flow analysis, a 



SUPERCALC 155 

return-on-sales analysis, or even a prediction of what next 
year's sales may be, based on the pattern of sales already 
achieved. 

SuperCalc is invaluable. You can use conditional expressions 
-for example, you might apply one formula to a set of numbers 
if a certain condition were met, and another if that condition 
were not met. 

See notes on single and double density, page 758. 

The Worksheet 

We've already noted that SuperCalc turns your Osborne l's 
memory into a large worksheet. Let's examine this worksheet 
more carefully. 

The SuperCalc worksheet is organized as a large grid of rows 
and columns of information. Letters designate columns, while 
numbers designate rows. Since 63 columns are possible, and the 
alphabet has only 26 letters, double letters represent some of the 
columns: 

A-Z ~ first 26 columns 
AA-AZ ~ second 26 columns 
BA-BK ~ final 11 columns 

Numbers from 1 to the maximum, 254, show rows. 

Each grid location in the worksheet is called a "cell." The cell in 
the upper left-hand corner of the worksheet is cell Al; the lower 
right-hand corner is BK254. 



156 OSBORNE 1 USER'S GUIDE 

upper 
left Al Bl Cl 01 < .... > BHl BI1 BJi BKl 
corner A2 B2 C2 02 < .... > BH2 BI2 BJ2 BK2 

A3 B3 C3 03 < .... > BH3 BI3 BJ3 BK3 

i i i 

~ ~ ~ 
A252 B252 C252 0252 < .... > BH252 Bi252 BJ252 BK252 
A253 B253 C253 0253 < .... > BH253 BI253 BJ253 BK253 
A254 B254 C254 0254 < .... > BH254 BI254 BJ254 BK254 

lower 
right 

corner 

You enter data into "active" cells. Only one cell is active 
(current) at any moment. This active cell is immediately avail
able for use. When you type in data, it goes into the active cell, 
and the row and column that contain the active cell are called 
the current row and current column. We'll use this nomencla
ture consistently throughout this manual. 

When you first start the SuperCalc program, cells are only 
potential locations of data or formulas and contain no entries. 
Empty cells to the right and below the worksheet space you use 
take up no space in your computer's memory. You bring a cell 
into existence by "using" it in some way, by putting some infor
mation into it, by formatting it, or by using it to enter an equa
tion. In addition, empty cells which lie between two used cells 
will have a bit of memory, called a "stub," assigned to them. 
We'll cover each of these functions in upcoming lessons. 

Getting Started 

You're now ready to begin your exploration of SuperCalc. We 
assume that you've read at least the first three chapters of this 
manual and understand the information in them. We also as
sume that you followed our advice and created a copy of the 



SUPERCALC 157 

SuperCalc diskette, along with all the others you were pro
vided. If you haven't already done so, do it now. 

The normal way you'll start using SuperCalc is as follows: 

1. Press the RESET button on the front of the Osborne 1. 

2. Place the SuperCalc diskette in drive A and press 
I RETURN I as instructed. 

3. The Osborne logo will appear and tell you that Super
Calc is loading. After a few moments, you'll see the 
SuperCalc sign-on message. 

For now we'll employ only the SuperCalc diskette, but when 
you begin using SuperCalc for real format a blank diskette with 
the COPY program, as described in chapter 2, and put this disk
ette into drive B so you have a diskette on which you can per
manently save your data and formulas. 

You're now ready to work through the nine lessons that follow. 
As you start out, set aside some time to work your way through 
all the lessons before you attempt to use SuperCalc for impor
tant calculations. 



158 OSBORNE 1 USER'S GUIDE 

Lesson 1: Moving Around the Worksheet 

Imagine that you are examining a map through a magnifying 
glass. When you use the SuperCalc program, think of the moni
tor screen as your magnifying glass; through it you can view 
any area of your map, or SuperCalc worksheet. 

The concept of the monitor as a magnifying glass looking at a 
larger area is similar to the "window" concept of the screen that 
you learned in chapter 1. Instead of using the control-arrow 
keys to control what area of the grid you see, SuperCalc requires 
that you learn a different method of specifying what section of 
the spreadsheet to be viewed. 

In the same way that you use latitude and longitude measure
ments to designate a location on a map, you locate and enter 
data on the SuperCalc worksheet in positions specified with ref
erence to alphabetically designated columns and numerically 
designated rows. Every location on your worksheet has a 
unique letter-and-number combination assigned to it. Let's learn 
how to move around the worksheet. 

The SuperCalc sign-on message should still be on your monitor. 
At the bottom of the screen is a line that reads: 

Enter "?" for HELP or "return" for start. 

Press the I RETURN I key. 

Examine the screen (figure next page) and you'll see columns 
A through E and rows 1 through 20. Notice also that one set of 
column and row coordinates (in this case, At) is on display at 
the lower-left side of the screen. 

A bright line is located at column A, row 1. This is the 
"worksheet cursor," and it designates the active cell, much like 
the WordS tar cursor designates the active character position. 
The active cell is the destination of any data or information 
you enter. 



SUPERCALC 159 

Any coordinate-for instance, Al, B3, B6, E19-is called a ucell" 
because it represents a unique position on your worksheet. You 
can position the worksheet cursor at any cell on the screen. One 
way to accomplish this is to press any of the arrow keys at the 
right side of your keyboard. Using these arrow keys, try moving 
the worksheet cursor. 

Alternatively, you can use the cursor-control keys you learned 
in the WordS tar chapter (I\E for up, I\X for down, 1\5 for left, 
I\D for right). When you issue one of these control characters, 
the worksheet cursor will move in the specified direction. We'll 
make all of our movement references using the arrow keys, 
but if you feel more comfortable with the WordS tar cursor
movement controls, by all means, use them instead. 

Scrolling 

What happens if you try to go above row lor to the left of 
columnA? Nothing. You have reached the boundary of your 
worksheet and cannot make the worksheet cursor go any 
further in those directions. 



160 OSBORNE 1 USER'S GUIDE 

But what about moving to the right or down? Try it, if you 
haven't already. You will quickly discover that when you move 
past what is displayed on the screen (to the right or downward), 
the columns or rows appear to renumber themselves. Actually, 
those cells that are "off-screen" come into view, a column or 
row at a time. As you move the worksheet window either 
horizontally or vertically, you are "scrolling" the display. 

Try moving off the screen to the right, but this time continue to 
hold the key down instead of striking it just once. You will see 
the screen continue to scroll until you stop pressing the key. 

Continue to "scroll" the screen until you pass column Z. Note 
that two-letter representations mark the remaining columns. 

Illustration points out status line, prompt line, and entry line 
which are discussed starting on the next page. 



SUPERCALC 161 

The Status, Prompt, and Entry Lines 

Now look at the three lines at the bottom of your screen. The 
top line is called the "status line." It tells you the current active 
cell and the direction the worksheet cursor will move. 

The first character-a pointer «, >, 1\, v}-indicates the direc
tion the cursor will move when you press the RETURN key. To 
change the direction of cursor movement, press the arrow key 
that points in the direction you wish it to move. Note that the 
arrow on the status line changes. 

The next entry on the status line is the "address" of the current 
active cell. The status line allows you to read from your work
sheet the location of the active cell more conveniently than you 
can by trying to estimate the column and row of its location, 
a problem you might encounter when you're working with 
narrow columns. 

If the current active cell is empty, you'll see nothing else dis
played on the status line. If the active cell contains text, num
bers, or formulas, however, the content of the cell will appear 
as you originally entered it. It will be displayed like this: 

Form = (contents of cell) 

Now move the worksheet cursor around, this time watching the 
status line as the active cell and direction indicators change. 

The second line at the bottom of the screen is the "prompt line" 
and secondary status line. This line will display the current cell 
width, and the amount of memory available to use, and indicate 
the last cell used for your current application. When you are in 
the command-entry mode, which you'll learn about soon, the 
message displayed here will change depending on what com
mand you are currently using. The prompt message also lists 
your options, if any, at any given moment. 



162 OSBORNE 1 USER'S GUIDE 

The last line at the bottom of the screen is the "entry line." It 
displays _ at the left margin. This line lets you communicate 
with the SuperCalc program. As you type at the keyboard, any 
information or command will appear on this line. The entry line 
is much like a scratch pad, in that it allows you to check and 
edit the data and text you wish to enter before you commit it to 
the worksheet. As you type in characters, the entry-line cursor 
moves to indicate where the next character will appear. At the 
left-hand margin, the number 1 will change to 2, 3, and so on, 
as the cursor moves from character 1 of your data to character 2, 
and so on. 

GOTO: Getting Around Quickly 

If you're working with a large worksheet, you'll want to be able 
to "jump" around from one position to another without having 
to scroll across many columns or rows. SuperCalc lets you make 
the worksheet cursor move from one active cell to another im
mediately by using the GOTO command. 

The GOTO command is simply the equal sign (=). Press G and 
the prompt line changes to read . Now type: 
[0 @] [IJ or ~ I]] IJJ· Either will work, as SuperCalc accepts 
lowercase or uppercase letters for any command, with two ex
ceptions: you can't substitute a lowercase L for the numerall, or 
the uppercase 0 for the numeral 0, as you can on a manual 
typewriter. 

Notice that nothing has happened, with the exception of the 
changes on the entry line. For any action to occur, you must 
press the RETURN key to inform SuperCalc to process your 
command. It's a good habit to check your work first, by reading 
the entry line, before pressing RETURN. 

Now press I RETURN I, if you haven't done so already. 

If you did everything right, you should see your worksheet 
cursor appear at cell M3l, which has replaced cellAl as the top 



SUPERCALC 163 

leftmost cell of your display window. Try to use the GJ com
mand to find out how large the worksheet is. When you are 
finished, GOTO At again by pressing B, then answering 
~ IT] and pressing I RETURN I. 

Let's learn an additional feature of the GOTO command. Move 
the active cell to anywhere near the middle of the screen, say to 
E8. Press B but specify no cell; just press I RETURN I. Notice how 
the active cell remains E8, but that the window moves to make 
E8 the top-left corner of your display window. 

You've now used the arrow keys and the GOTO command to 
move around the worksheet. For most situations, you process 
any entry you make in SuperCalc by pressing the RETURN key, 
which also affects the direction the cursor will move for the 
next entry. 

Press I RETURN 1 a few times and notice that the position of the 
active cell advances to the next cell. The direction-left, right, 
up, or down-depends on which arrow key you last used. 

Press the down-arrow key ([I]) once, and then I RETURN 1 a few 
times ... now the left arrow (8) and I RETURN I several more 
times. The arrow keys set the direction, and the RETURN key 
advances the worksheet cursor cell by cell in that direction. Re
member that the status line always indicates in which direction 
the worksheet cursor will move if you press RETURN. 

The QUIT Command 

Moving around is fun, but it's time to move on. 

Press [Z] to initiate a command sequence. You will see that the 
prompt line changes. It now reads: 

B,C,D,E,F,G,I,L,M,O,P,Q,R,S,T,U,W,X,Z, ? 



164 OSBORNE 1 USER'S GUIDE 

The prompt line is telling you that these letters represent the 
only meaningful actions you can take, now that you have typed 
the command prefix /. 

Each letter designates a command option. Whenever you wish 
to examine this command -option list in its expanded form, press 
[II and an annotated list will display on your screen. To return 
to your worksheet display, press I RETURN I. We will explore all of 
the commands sQon, but for now you should know about one in 
particular. 

Make sure you are in the command mode with [2], then-watch
ing the bottom lines of your screen carefully, press the @] key. 
What happened? First, the SuperCalc program automatically 
interprets the [2]@] so that it appears as K!lDIJ on the entry line. 
Second, the prompt line has changed. It now reads: 

EXIT SuperCalc? Y(es) or N(o). 

If you want to stop here and continue the lesson later, press the 
[Y] key; otherwise, press [ill. 

Lesson 2: Data Entry 

Now make some entries on your worksheet. 

In this exercise you will enter numbers down the column, so 
you should set the worksheet cursor to move "down" by press
ing the down-arrow key. Now use the GOTO command to place 
the worksheet cursor at cell Al. 

Enter the number []] on the entry line. Do not press RETURN 
yet. You may cancel an entry anytime by pressing the I CTRL 1 and 
II] keys simultaneously. If you start to do something but then 
change your mind, 1\ m will allow you to start over without 
affecting your worksheet. 



SUPERCALC 165 

You have 5 on the entry line. Now press I RETURN I; this action 
will enter whatever is currently shown on the entry line: the 
characters you have typed go to the active cell, and the entry 
line will clear. In our example, the data item m should now 
appear on the screen in cell AI. 

Notice that the worksheet cursor moved to A2. Enter []J, but do 
not press RETURN yet. Before you typed 6 a lEI was at the 
left edge of the entry line, now there is a !iii. This number in
creases each time you type a character on the entry line. The 
number you see is always one more than the number of charac
ters you have typed before pressing RETURN. For now, this 
information helps you fit your data into the column width you 
have-remember the [iJ on the status line. In a later lesson, this 
character count will become even more helpful. 

Now press I RETURN I, and cell A2 will contain the value of 6. Cell 
A3 becomes the active cell. 



166 OSBORNE 1 USER'S GUIDE 

Let's try another entry, this time 12. Type OJ [gJ now, followed 
by a /RETURNI. 

The worksheet cursor again progresses down one column, an
ticipating your next entry, while the data, 12, enters into cell A3. 

Press the right-arrow key (8) once, then enter I]J [[I, and 
press I RETURN I. What happens? 

The number ltD appears in B4, and the worksheet cursor moves 
to cell C4. Remember that, after each entry followed by a 
RETURN, the worksheet cursor moves in the direction indicated 
on the status line depending on the arrow you last pressed. 

Press the left-arrow key (8). Enter []], and press I RETURN I. 

An m should replace the ltD. In addition, the worksheet cursor 
now moves to cell A4. 



SUPERCALC 167 

Try entering different letters and numbers as data, changing di
rection with the arrow keys. Take a few minutes to make sure 
you fully understand this entry procedure. 

Depending on how adventurous you were, you may have made 
some discoveries. Generally, you can make two kinds of data 
entries: text and numbers. SuperCalc considers your entry a 
number unless you press the double quotation mark (") as the 
first character, in which case subsequent entry is treated as text. 
A single quote preceding an entry causes it to be repeated. Later 
in this chapter we'll show you how to enter formulas. 

Headings, labels,.and explanatory notes are all examples of text 
entries. In a mathematical sense, they simply have a value of 
zero. If you forget to lead these entries with double quotation 
marks, the computer will respond with an error message. The 
quotation marks do not appear on your screen; they simply sig
nal the computer that you are making a text entry, just like / 
signals a command. You do not have to close the quotation 
marks. 

You can obtain repeated text by starting your item with a single 
quotation mark. For instance, typing lJ [J will result in a series 
of hyphens appearing across the remaining positions in that 
row. We'll come back to this concept in a bit. 

The ZAP Command 

Let's try some more examples, but first let's start with a fresh 
screen. 

Remember that we used the QUIT command to exit from Super
Calc in lesson 1. Now we'll use another command, ZAP. 

Press [2] and note that the prompt line again displays a listing of 
all possible commands. 



168 OSBORNE 1 USER'S GUIDE 

Press [I]. The prompt line now reads: 

Y(es) to clear everything, else N(o) 

The entry line shows: 

/Zap-ENTI RE-Worksheet? 

The effect of the ZAP command is to clear the entire worksheet 
and return everything to its original state, just as it was when 
you first loaded the SuperCalc program. Because the command's 
effect is so drastic, the program uses the prompt line to remind 
you that the entire worksheet will empty if you follow through 
and actually execute the command. 

Since you do indeed want to clear everything, press the [Y] key. 
SuperCalc will clear the worksheet and replace the worksheet 
cursor at cell AI. Whatever you entered on the worksheet is now 
gone, permanently. 



SUPERCALC 169 

Characteristics of Text and Numeric Entries 

Now enter: 

"Oranges 

in cell Bl and 

250 

in cell B2. Note that you must lead off Oranges with a quotation 
mark to inform SuperCalc that you're entering text. When 
you've entered these two values, you should notice that the text 
is left-justified while the numbers are right-justified within 
column B. 

Now move the active cell back to B2 and watch the rightmost 
display of the status line. is how it should read. 
Move the active cell to Bl; the same display now reads: 

TEXT = "Oranges 



170 OSBORNE 1 USER'S GUIDE 

How wide are the columns; how large a number can we enter? 
How much text? 

Remember we mentioned display width earlier when looking at 
the status line. Note again the ~ on the status line under the 
width heading. 

The 9 tells us that the column currently accessed (the column 
with the active cell) is set to display nine characters. Nine is the 
standard, or default, value that SuperCa1c uses for the display 
width of all columns unless you specify otherwise. You will 
soon learn how to specify display widths. Text may contain 47 
characters visibly, or up to 115 that can be reaccessed with the 
EDIT command. You can also enter as many as 16 numeric 
characters per cell. The maximum column width is 127. 

Move the cursor to cell B3 and enter: 

"Alberta peaches 

This piece of text is longer than nine characters, but SuperCa1c 
allows display of your text to extend over neighboring cells, but 
only if those other cells are unused. Now move the worksheet 
cursqr to cell Al, press [J, and type [K] II] []] II] ffi] IT] [K] 
I SPACE BAR IlEJ II] [K] @] [8J II] I]] again. 

Your entry does not display in full because Bl is occupied. But 
the entire entry is accepted in cell Al even if only a portion of it 
-the first nine characters-is displayed. The status line with 
the worksheet cursor at Al should indicate: 

Text = "Alberta peaches 

Move to cell B4. Enter, without commas, 

2500000000 

(that's two-and-a-half billion). The number is too large to 
display. SuperCa1c converts it to scientific notation, a more 



SUPERCALC 171 

compact form of representing a number, and displays it as 
~-which means that the number in B4 is 2.5 times ten to 
the ninth power. 

SuperCalc provides many different display and format options. 
You've learned just a few; we'll introduce more later. If exponen
tial numbers (scientific notation) are new to you, here is a quick 
look at what they are and how SuperCalc displays them. Expo
nential numbers are displayed as "powers of 10." You will soon 
see what this means. 

GOTO cell Cl and set column C for exponential display. You use 
the FORMAT command to do this. Type 00, for the com
mand, and [gJ, for "column formatting." When the prompt asks 
you what column to format, you can just press the [J key, 
because you are at column C, and pressing the comma key 
indicates SuperCalc is to get the information it needs from the 
current location of the worksheet cursor. Next, press 1]], for 
exponential, and press 1 RETURN 1 to complete the entry. 

Press the down-arrow key (Q]) to set the current direction as 
down. Now enter 1776 and press 1 RETURN I. Cell C2 shows 
1114«11. What does this mean? e3 means exponential 3, or "10 to 
the power of 3," or 1000; 1.776 times 1000 is 1776. 

Try entering 1000. Is le3 what you expected? What will repre
sent lOa? Try it. Now enter 2000, and then enter .002. Notice 
that 2000 is 2e3 and that .002 is 2e-3. If e3 is thousands, e-3 is 
thousandths. What is -2000? Try it and see. 

What happens if you enter a number in exponential notation? 
Try it. E~ter: 

567e13 

Are you surprised to see it display as 1e1'4 .. 1? SuperCalc prefers 
to put the decimal point just after the first digit and will adjust 
the exponential value to do so. 



172 OSBORNE 1 USER'S GUIDE 

Explore on your own-use numbers in both decimal notation 
and in exponential form. Try to guess beforehand what the 
display will be. 

When you feel comfortable with exponential notation, give 
SuperCalc a little job to do. 

Press the down-arrow key to reset the cursor direction, then 
GOTO.(=) cell D1. 

In cell D1, enter: 

93000000 

and press I RETURN I. That is 93 million, the number of miles 
between the earth and the sun. Now in cell D2, enter: 

5280*01 

and press I RETURN I. The value displayed-OlneAII-is the 
number of feet in 93 million miles. What about inches? Enter: 

12*02 

in cell D3. The result-5.892e12-is the number of inches in 93 
million miles. 

What 5.892e12 tells us is that there are about 5.9 times 
1,000,000,000,000 inches between here and the sun. Only the 
first two digits of 5.892 are significant, because only the 93 was 
significant in 93 million miles. 

We bring this up because the reason for use of scientific nota
tion is to let you quickly grasp the essential points of a number 
and discard the unessential. Scientific notation splits very large 
and very small numbers into two distinct parts-both of which 
are easily scanned-the significant digits and the general 
magnitude of the value. 



SUPERCALC 173 

You used SuperCalc to perform calculations in the above exam
ple, but that's getting ahead of the game, so let's return to more 
formatting information. 

In-Line Editing 

Right now let's investigate SuperCalc's in-line editing feature. 
If you have used the exponential notation section of the lesson, 
ZAP your worksheet and reenter: 

"Oranges 

250 

and 

"Alberta peaches 

in their original positions. 

Move the active cell to B4. Type in the text entry, using the 
quotation mark to tell SuperCalc that text is coming next, with 
the following incorrect spelling but do not press RETURN: 

"Pinapples 

As you know, you could use a left-arrow key to backspace and 
retype from the point of the error. The right-arrow key moves 
your cursor one space to the right. 

Using the left and right arrows, move back and forth across 
your text, but take care not to backspace beyond the leftmost 
character. Notice that nothing changes except for the position 
of the cursor on the entry line. Now locate the cursor on the a 
in Pinapples. Notice also that the number 5 appears at the left 
of your entry line to tell you that you're on the fourth character 
in the entry. 



174 OSBORNE 1 USER'S GUIDE 

Press the up-arrow key (ITJ) and see what happens. 

SuperCalc has created a space for you just ahead of the a so 
that you can insert a one-character correction without having 
to retype any text. Enter ~, and your entry line now reads 
'#4',[4'D""1. What if you had needed to insert several charac
ters, or to delete some? 

Press the up-arrow key continuously and create a large gap in 
the text. Press the down-arrow key once and notice that the gap 
reduces by one character. Hold the key down and watch the 
blank spaces delete. Go ahead and enter IIPineapples and then 
make up other examples. Practice with the editing keys until 
you are confident with this in-line editing feature. Try it with 
numeric entries, too. 

Regardless of where the cursor is on the entry line, all the 
visible text or numeric values go into the active cell when you 
press RETURN. 



SUPERCALC 175 

The arrow keys have more than one use. They move the active 
cell around the worksheet until you type a character on the 
entry line. Then SuperCalc recognizes that you have begun 
to enter data. The function of the arrow keys changes in this 
data-entry mode; they are now for editing. 

The EDIT Command 

You've seen how you can edit data before it is entered into a cell. 
You might now want to know if there's a way to edit already 
processed data. You could enter the data again in its entirety-
a new entry replaces an old one in SuperCalc. There is a better 
way, though. You use a new command, the EDIT command 
(IE). 

Make B4 the active cell-use GOTO or move the worksheet 
cursor. Enter IZI [[] to inform SuperCalc you wish to edit. The 
prompt line now reads: 

From? Enter ceil. 

SuperCalc is asking where to find the material you want to edit. 
Because you want to edit the contents of the active cell, you 
need only press I RETURN I and SuperCalc will bring the cell's 
contents to the entry line. 

Make some changes using the arrow keys, as we previously 
discussed. For instance, delete a few characters from the entry. 
When your change is complete, press I RETURN I, and your modi
fied entry replaces the old one in B4. If you haven't done this, 
try it now. 

Sometimes you may wish to edit the contents of a cell and put 
them into another cell. For example, position the active cell at 
B5, your destination cell. Issue IZI []J to enter the edit mode. In 
response to the prompt, answer [ID GJ, your source cell, and 
press I RETURN I. The contents of cell B4 will be shown at the 
entry line. After you make your change, press I RETURN I to send 
the edited version of your entry to the current active cell, B5. 



176 OSBORNE 1 USER'S GUIDE 

Note that no matter where it comes from, the "new" or "edited" 
data on the entry line always goes into the active cell. In our 
first example, the original contents of B4, the active cell, were 
modified and replaced by our edited version because B4 was the 
active cell. In the second example, the contents of B4 didn't 
change. The edited material went into cell B5, the active cell, 
and the source material remained unchanged in cell B4. 

If you want to stop here, use the QUIT command as you learned 
previously. Otherwise, proceed on to the next lesson. 

Lesson 3: Blanking, Protecting, and Saving 
Your Work 

In lesson 2, you expanded your knowledge to include the fun
damentals of data entry for the purposes of creating text or for 
entering numeric data to use in actual calculations. In this les
son, you'll gain more experience entering data. You'll learn to 
blank, protect, unprotect, and save your data. You will also 
learn to use the / G command to make some general or "global" 
changes in your worksheet display and to use the / F command 
to make certain formatting changes. 

If you are continuing directly from lesson 2, issue a ZAP com
mand ([2] [II) so that you start with an empty screen. Other
wise, load the SuperCalc program in accordance with what you 
learned earlier. 

Use the down arrow to set the current direction. Use the GOTO 
command to go to cell Al. Enter the following following data in 
columnA: 

"Apples 

5 
8 
3 
11 



4 
B 
6 
12 

SUPERCALC 177 

Note: You should end up with the 
active cell as A 10, with data 
in cells A 1 through AB. 

In lesson 2, you learned how to modify a cell's contents, to edit. 
What if you just want to completely erase, or blank, the contents 
of a cell? 

You do that with a new command, the BLANK command. The 
BLANK command blanks out or erases data you have already 
entered on your worksheet. You can blank an individual entry 
or cell, partial or complete rows or columns, or entire blocks 
(rows and columns) of cells. We'll try an example of each in this 
lesson. 

Press [2] and note the prompt line. Now press []J. SuperCalc 
fills in the rest of the command, so you should now see t4:'!"~13 
on the the entry line. The prompt line should read: 

'::m'Y'ileum 
You must now specify the portion-or range, if you will-of the 
worksheet you want to blank. 

Enter A4:B4 and press I RETURN /. The.contents of A4 through 
B4 will disappear. You can blank a single cell by placing the 
worksheet cursor on the cell you want to blank, typing [2] []J 
and, with no cell reference, press I RETURN /. Try doing this with 
cell AS. When working regularly with SuperCalc, use whichever 
method is more convenient for you. Remember that since the 
cursor can only point to an individual cell, you affect only 
an individual entry when you press RETURN with no cell 
coordinates. 

Type [2] []J again. Now, in response to the ':m'Y'iijlei.m prompt, 
specify A6 through A8 by typing: 



178 OSBORNE 1 USER'S GUIDE 

Press I RETURN I. The colon in the above example is how you tell 
SuperCalc that you are specifying a range of cells. The two cells 
you identify are the first and last cells of the range. 

The PROTECT Command 

Reenter the numbers in column A that you just blanked out. 
Create a new column of numbers in column B. Label it Oranges: 

"Oranges 

1 
2 
3 
4 
5 
6 
7 
8 



SUPERCALC 179 

Your display should now look like this: 

Now let's use the /P command to protect a cell. Issue [2J!El. Use 
the PROTECT command exactly the same way you just learned 
for the BLANK command: enter a cell number or a range using 
the colon as the range indicator. For example, answer 0 []] and 
press 1 RETURN I. Move the cursor to cell AS and notice that a [i 
now appears next to the lIiDiil display on the status line. This 
indicator tells you that the active cell is "protected." You'll also 
note that the information in cell AS has "dimmed" -it is not 
displayed at the same intensity as the rest of the data you 
entered. 

Continue by protecting a range of cells. Type [2J!El, and answer 
o []] 0 []] []], then press 1 RETURN I. This will protect entries in 
columns A and B of row 8. 

What is the significance of what you've just done? 



180 OSBORNE 1 USER'S GUIDE 

Remember we said that I B could blank out an entire block of 
cells. Let's attempt to blank out a block of cells from row 2 
through row 8 for both columns A and B. Guess how we 
specify this. 

Type I2J [ID, followed by 0 [gJ D [ID []J and a I RETURN I. You 
define the range for a block of cells as a diagonal with the top 
leftmost cell followed by the lower rightmost cell in the block. 

Row 1, with titles, remains because it lies outside the range 
of the block definition we used with 'the BLANK com,mand. 
Cell AS and row 8 remain because they are protected. Row 9 
remains, not because it is protected, but because it, too, is 
beyond the range we blanked out. 

Try to change the contents of cellA9 to 17. Now try the same 
thing with cell AS or cell B8. Because the latter two cells have 
been protected, you can't change or blank them. This feature 
can provide you with a large measure of safety when you work 
around information you've taken a long time to develop and 
that you cannot afford to lose accidentally. 

The UNPROTECTcommand, IU, can unprotect the information 
in a cell, a partial row or column, or a block of cells. You can use 
the command twice to unprotect cell AS and row 8, but can you 
do it with just one IU command? 

Yes. How would you unprotect a block, rows S through 8 of 
columns A and B? What is the proper range specification? Did 
you say A5:B8? That's correct. Now go ahead and do it. 

Formula and Numeric Display Options 

Move the active cell to A2. Enter [[J G [[] 1 RETURN I. What hap
pened? The value of the expression, 8, was placed in cell A2. If 
the worksheet cursor is not at A2, move it there and examine 
the status line. The rightmost display will read: 

Form = 3 + 5 



SUPERCALC 181 

Has SuperCalc actually stored the 3+5 or the 8? 

However complicated the expression, SuperCalc calculates 
the result and displays it. This lets you use the entry line as a 
scratch pad. For instance, you may be adding two columns of 
numbers, but you're only interested in their total value. 

Again at A3, enter rn [±] 0 [gJ. SuperCalc recognizes this as a 
formula referring to cell A2 and quickly calculates and displays 
the value based on the value in A2. Further, if you change the 
contents of cell A2-to 5, for instance-you should observe that 
the new value of A3 will be recalculated as well. Try it! 

The active cell should be A3. The screen displays W, the cur
rent value, there, while the status line displays Form = 1 + A2 

Apparently, SuperCalc is keeping track of both expressions. In 
cell A4, enter 0 @] ~ D [§J [[]. The * means multiply and is the 
equivalent to the x sign in conventional notation. Division is 
represented by /. 

Locate the active cell at AIO. Enter: 

SUM(A2:A91 

followed by a 1 RETURN I. 

SUM is a built-in function of SuperCalc. Many such functions 
are built into SuperCalc, including: 

SQRT square root 
AVERAGE mathematical mean 

NPV let present value 
SIN trigonometric function (sine) 

COS trigonometric function (cosine) 
TAN trigonometric function (tangent) 

For more detail on these functions, see the Reference Guide. 



182 OSBORNE 1 USER'S GUIDE 

For SUM, you specify a list of ranges, as you've just done, or 
cells, as in SUM (A8,B9,A2). 

Now change the value of cellA2 from 5 to 3 and watch Super
Calc recalculate the sum. 

The GLOBAL Command-Formatting Options 

Earlier we determined that SuperCalc kept track of formulas, al
though it only displayed their current values on the worksheet. 
To review all the original formulas, issue [ZJ @]. 

Notice that SuperCalc's prompting fills the / G to read UClm;ml. 
What does this mean? The prompt line now reads: 

F( arm .), N (ext,), 8( order), T( a b), R( oW),C( 01), M( an .),A( uta)? 

You can think of the / G command as a way to make overall, 
or uglobal," changes to the worksheet, rather than specific, 
or ulocal" changes. It is as if you had a map of California 
and could, at will, transform it into a topographical map, 
a population-density map, or a tourist-attraction map. 

Our concern here is with formulas, so press II] and see a 
display of your formulas as well as numerical data. 



SUPERCALC 183 

To return to the other style of display (cell values), simply repeat 
the sequence [2] []] [II. SuperCalc will alternate, or switch 
between the two display modes. 

Determining Column Width 

Enter [[] in cell B10. 

Make sure the formulas are displayed. When SuperCalc displays 
formulas, you will notice one problem. The SUM formula in A10 
has two characters more than the column width, which is only 
9. Let's widen the column to accommodate longer entries. 

Type [2] [II, for FORMAT. The prompt line will respond with: 

Enter Level: G(lobal), C(olumn), R(ow), or E(ntry). 

The G in this case is not the same as the / G command. Here it 
simply qualifies the / F command; but its meaning is similar: 
"for all" or "every." Now press @]. The prompt line ~isplays: 



184 OSBORNE 1 USER'S GUIDE 

Define Formats: (I,G,E $ ,R,L,TR,TL * ,D,column width) 

As you can see, the IF command has many possible options; for 
now, though, define a new column width by typing 12, followed 
by I RETURN I. If necessary, move the cursor to column B and note 
the status-line display. It should indicate that the width is now 
12. Notice that all columns have changed to a 12-character 
width. You could have specified the new width for just a single 
column by typing a C, for column, instead of G, for global. 

You are now using commands with several levels of prompts. 
Another use for the left-arrow key-one that you may have dis
covered already-is that backspacing with the left arrow always 
takes you back to the prior /I step" in a command, to a less spe
cific level of the command. 

For instance, type [2] (£] @] IJJ [[] again. Now backspace once 
with the left arrow. Backspace again, and see that the prompt 

Enter Level... changes to its earlier message, /I " 

You can, if you want, specify a level other than global and con
tinue with the command sequence. Instead, backspace again. 

You will see the list of I commands on the prompt line. Back~ 
space again. Now you should finally have backed all the way to 
the original prompt. 

Of course, no matter how far you have gone in specifying some 
command, range, or option, you can always use "Z to abort 
-cancel-the operation. Typing "Z always returns you to the 
original prompt. You can use this technique, for example, if you 
start to enter data on the entry line and then notice that the 
active cell is not positioned where you want it. 

If you haven't done so already, return to the display mode that 
displays cell values rather than formulas by typing [2] @] (£] . 



SUPER CALC 185 

The SAVE Command 

You will want to save the work you've done in this lesson so you 
can use it for later lessons. Save your worksheet by using the 
SAVE command, / S. This command makes a copy of the entire 
worksheet and stores it on a diskette located on either drive A or 
drive B, depending on which you specify. 

Issue: [2] [§J and a prompt requests: 

Enter File Name (or < RETURN> for directory) 

You can respond to this in one of several ways, depending on 
where you want to store your file. If you wish to save it on a for
matted diskette in drive B, type B:WORKI and I RETURN ,. Or 
omit the B: if you want the file stored on the Super Calc diskette 
in drive A. Do not leave any blank spaces in your file name. The 
computer will not accept TIME I, but TIMEI is acceptable. If 
you are unsure about file names in CP/M, review Chapter 3 
before proceeding. 

After you have entered the file name, the prompt line inquires 
further: 

A(II), V(alue) or Pea rt)? 

Since you wish to save both your formulas and your values, 
press l]] for all. Your disk drive will whirr and click contentedly 
for a few moments. 

We will use this newly created file to "load" your work back into 
the system when we resume with lesson 4, so keep the diskette 
handy. 

Now issue [2] []] and exit from the SuperCalc program; all your 
work disappears. It is gone irretrievably, unless you specifically 
save it with the SAVE command before exiting as we have just 
showed you. 



186 OSBORNE 1 USER'S GUIDE 

Lesson 4: COpy and REPLICATE 

In lesson 3 you began to learn about the "power" of the Super
Calc program-in particular, its ability to recalculate automati
cally all values that depended on the values in other cells. In 
this lesson you'll gain more insight into SuperCalc's versatility. 
You'll learn to use the LOAD (lL), COpy (I C), and REPLICATE 
(I R) commands, and the current-cell key (ESC). I L, I C, I R, 
and ESC are basically time-saving commands. 

The LOAD Command 

Continue using the worksheet you began in the last lesson. If 
you used the I QUIT command in the last lesson, then you will 
have to start SuperCalc over again. To start SuperCalc from the 
CP/M _ prompt, type [[] @] and press I RETURN I. Use the 
LOAD command, I2J [g, to retrieve the file you created at the 
end of lesson 3. If the file is not on the diskette that contains the 
SuperCalc program, be sure to insert the diskette with the file 
into the B disk drive. 

Issue I2J [g. How you respond to the prompt message ':mig'IIm 
IiIIiim depends on where you stored the file. Within the context 
of these lessons, enter: 

B:WDRK1 

then press 1 RETURN I. 

If the file is on the system drive, you do not need to include the 
drive identifier B:. You can examine the file directory of either 
drive by pressing RETURN before supplying a file name; this is 
so indicated on the screen. 

The disk drive will respond with some clicking, and the prompt 
line will change to read . Press [K], for AlII and the 
material you saved from your last effort will be extracted from 
the diskette and appear on the screen. 



SUPERCALC 187 

The COpy Command 

Now that you've restored your work from the previous lesson, 
it's time to investigate another command, COpy (I C). The 
COpy command is easy to use. You can copy a single cell, a 
partial row or partial column, or a block of cells. 

In this first example, copy the data in column A into column C. 
Issue 12] @]. The prompt line responds with: 

From? (Enter Range) 

In response, answer 0 IT] D 0 IT] @], followed by a I RETURN I. 
This time the prompt asks: 

To? (Enter Cell), then Return; or "," for Options 

We just want a "standard" (exact) copy this time-we'll look at 
the options later. So specify @] IT] and press 1 RETURN I. 

Now use the COPY command to copy the contents of cell AID to 
cell BID. 

Next, change the display to show formulas (12]@][IJ), and look 
at the contents of cell BID and column C. The formulas you en
tered into column A have all been adjusted relative to the col
umn in which they appeared. All cell references have changed 
to reflect the new location of the formulas. If you had moved to 
a new row, as well as a new column, the relative row designa
tion would also have been adjusted. (Figure next page.) 

Generally, this automatic adjustment is exactly what you want. 
But other options are open to you. For instance, you can specify 
that there be no adjustment, or you can tell the 5uperCalc pro
gram to ask whether each occurrence of a cell reference should 
be adjusted or left alone. We'll try this soon. 

The COPY command makes a one-to-one copy of its source ma
terial into a destination of the same type and size: cell to cell, 



188 OSBORNE 1 USER'S GUIDE 

row to row, column to column. But suppose you want to repeat 
a series of values and formulas many times, perhaps to compare 
alternative cases. 

The REPLICATE Command 

You can use another powerful command, REPLICATE (/R), for 
repetitions. It makes a "one-to-many" copy of a cell, a partial 
row, or a partial column and distributes these copies over a 
destination range that is larger than the source range. If you 
haven't already done so, change the display to show 
formulas (/GF). 

Try replicating a single cell, AID. 

Type [2] ffiJ· For lii"IU" answer 0 IT] @] followed by a 1 RETURN I. 
For iD, specify the range DID through FlO ·by typing 
I]] IT]@]D[£]IT]@],andfollowthatwithanother """':1 R~ET--U-RN--'I. 
Note how the command performs. 



SUPERCALC 189 

Replicate the partial column A3 through A4 into D3 through E3. 
These columns, D through E, now have data in row 10. 

The REPLICATE command has the same formula-adjustment 
options as the COpy command, so try one of them. 

Enter into cellA12 the formula A2+A2. 

Now type the sequence [2] ffi] 01]] [[] 0 [§J I]] [[] D [[] I]] [[] . 
After you specify E12, enter an additional comma (0) to receive 
a list of options. They will display on the prompt line: 

N(o Adjust), A(sk for Adjust), V(alue) 

Press !!J, for ask for adjustment. 

The prompt line changes to read: 

Source location A12. Adjust A2? 

and the first A2 is highlighted on the entry line. Respond with 
[E] for no adjustment. Now the second reference to A2 is high
lighted on the entry line. Respond with a [Y]. You see that the 
first part of your formula remains unchanged, while the second 
adjusts, according to your responses. In this way, you can 
specify that one component of a cell holds constant, while other 
components adjust relative to their new location. 

Replicate cell Al to cells Dl through El. Then use [2] m to 
edit the contents of Cl through El so they will be Apples-I, 
Apples-2, and so forth. (Figure next page.) 

It's important to save the work you have completed up to this 
point. We'll use it again in lesson 5. Save it on the storage disk
ette in drive B, type [2] []J, then B:WDRK1 followed by a 
I RETURN I. Otherwise, specify the drive that has your destination 
diskette in it. If you need to jog your memory about how SAVE 
works, press the [1J key to receive HELP or go back to lesson 3 
for a detailed reference. 



190 OSBORNE 1 USER'S GUIDE 

To help protect your work, SuperCalc checks to see if you 
already have a file with the same name on your destination 
diskette. If you do, SuperCalc then asks you: 

File already exists: C(hange name), B(ackup), O(verwrite)? 

You now have the option of retaining the existing file either by 
renaming the file C, or by backing up the existing file with B. 
o may be used to specify that the existing file be deleted and 
replaced with a copy of the current worksheet. 

When the Backup option is selected, SuperCalc will rename 
the existing file by changing its extension to .BAK. The current 
worksheet is then saved with a .CAL-type extension which 
allows you to always have the two latest versions on disk. 

Using the overwrite option causes the original file to be deleted 
before the new one is saved. This can be a potentially dangerous 
option, especially if your disk is almost full. If the current work
sheet is larger than the one before it and storage on the disk is 
limited, the old file is deleted but the new file is not saved. 



SUPER CALC 191 

However, the SuperCalc program will spot this potentially 
dangerous situation and point it out beforehand. 

If you no longer need the original version, reply with an 0; 
otherwise, specify B to rename the original version with a . BAK 
file type, or C to specify a different name to save the file under. 
Since we no longer need the old WORKl file, you may overwrite 
it by pressing [QJ, then press [KI for A(ll). Normally, you would 
use the backup option. 

Try replicating a row, or rows, or a block. If a practical applica
tion of your own comes to mind, begin a simple example on the 
screen. If you want to save this first effort of your own, be sure 
to use a different name-for example, TRIAL or MYTRY. 

SuperCalc offers many command options, which makes it pow
erful and versatile. We can't introduce you to all the options in 
this tutorial, so we encourage you to investigate them on your 
own. You should find it easy to make the best possible use of the 
SuperCalc program by combining what you learn here with 
information available in the Reference Guide and through the 
HELP function (?) built into SuperCalc. 

The Current-Cell Key: ESCAPE Key 

This is a good place to become acquainted with the" current
cell" key. You can use it to boost the efficiency of certain kinds 
of data manipulations that use the COpy and REPLICATE 
commands. The I ESC I key serves as the current-cell key. 

Whenever SuperCalc requires a cell or range, you can place the 
active-cell coordinate on the entry line by simply pressing the 
I Escl key. 

Set up an example to learn how to use this feature. Start with a 
fresh screen by ZAPping the worksheet. 

Enter 123 into cell AI. Use the REPLICATE command to fill 



192 OSBORNE 1 USER'S GUIDE 

every cell on the visible screen with 123. Try to do this before 
you look ahead. 

Here are two ways you could have done it: 

1) / RA1,B1:E1 RETURN 
2) / RA1:E1,A2:A20 RETURN 

or 
1) / RA1,A2:A20 RETURN 
2) / RA1:A20,B1:E1 RETURN 

You should see 123 everywhere on your screen. 

Type [2] []] for BLANK. SuperCalc now wants you to specify a 
cell or a range to blank. Let's start with a single cell. 

Press the 1 ESC I key. The address of the active cell will appear on 
the entry line. Use the arrow keys to move the worksheet cursor 
to another location-for example, C11. Notice the active-cell 
address on the entry line change as you move. 

Now press 1 RETURN I. Observe that the latest active cell was 
blanked and that the active cell location has returned to its 
original place. Again, type [2] []] for BLANK and press 1 ESC I. 

Use the arrow keys to make cell C16 the active cell. The entry 
line now reads r4=JFm1ll1lii. You can use this line to begin a range 
specification. Just press D. The line now reads 
Move the worksheet cursor to cell E16. 

\ 

IBlank,C16 :C16 

Notice that the second address of the range increments as 
you go. Press 1 RETURN I. The cells in the range C16 through 
E16 blank. 

In brief, this is what happens. Once you have set the ESC func
tion, the arrow keys move the worksheet cursor and set the cell 
location on the entry line. A colon (:) generates a limiting loca
tion (the starting point) for a range specification. Pressing the 
ESC or RETURN key terminates the ESC function and allows 



SUPERCALC 193 

you to use the arrow keys again for editing. The ESC movement 
of the active cell is only temporary; when you terminate the ESC 
function, the active cell returns to its starting place. 

Here is another sample. Type [Z] []J. Press I ESC I. Move the 
worksheet cursor to cell D4 and press D; then move again to 
cell E14 and press I RETURN I. You have blanked cells in the block 
from D4 to E14. 

By using the ESC key and placing the active cell at the appropri
ate points, you can let SuperCalc define your coordinates. At 
first, this may seem difficult, but with some practice you will 
begin to find it increasingly useful. This feature allows you to 
modify your screen by simply pointing with the active cell to the 
boundary of the range of cells you wish to modify. 

Don't bother to save any of this work. At this point you may 
quit or continue with lesson 5. 



194 OSBORNE 1 USER'S GUIDE 

Lesson 5: Move, Insert, and Delete 

You've learned to use the GOTO command, the ESC key, and 
many important / commands. You can save and load your work
sheet. Next we'll introduce some new commands and tech
niques that can greatly simplify the development of a complex 
worksheet. 

If you are continuing directly from lesson 4, use the ZAP com
mand so that you will begin with an empty worksheet. Other
wise, start SuperCalc as you learned in lesson 1. 

Let's continue to develop the worksheet you saved in lesson 4. 
Use [ZJ [g to LOAD the file WORKl. You can use [2] to get 
HELP, or check back to lesson 4 if you want a refresher on how 
to use LOAD. 

Suppose that column B, labeled Oranges, really belongs to the 
right of Apples-3, which is in column E. With what you know 
already, you can use the COpy command to "move" it there and 
then use the BLANK command to erase the original Oranges 
column. You can do that, but there is a better way. 

Type [ZJ 1M] for move, and notice that the prompt reads: 

R(ow) or C(olumn)? 

press @] (for column), and the prompt changes to: 

Enter column letter. 

Since you want to move column B, press I]J, followed by a 
1 RETURN I. The new prompt, lIB, asks where you want the 
material to go. Specify [f] (for column F). 

Wait a second, isn't column F already occupied? Press I RETURN 1 

anyway and note what happens. 



SUPERCALC 195 

Your column has moved and the formulas it contained have ad
justed. The" gap" you might have expected column C to leave 
behind is filled. SuperCalc moved your entries for former col
umns C through F one column to the left, in effect vacating col
umn F and making it available for use. The program has neatly 
moved all the columns and adjusted all the formulas to reflect 
their new locations. 

INSERT and DELETE Commands 

Two other complementary commands that can create or erase 
intermediate columns and rows are INSERT (I I) and DELETE 
(/D). 

Insert a row between rows 9 and 10. 

Type I2J OJ, followed by 1]], for row. Respond to the next 
prompt by typing the number [JJ 1]], press I RETURN I and a 
"new" row appears on your worksheet. 



196 OSBORNE 1 USER'S GUIDE 

Look at the formulas in row 11; you will see that they are un
changed. SuperCa1c can't know if you want to include the new 
row in the SUM equations-you will have to enter the new 
row separately if you desire to include it in the summations. 

Now insert another row at 7. Type I2J [[] IBJ lIJ and press 
I RETURN I. 

Look at the SUM formulas for row 12. They have been adjusted, 
automatically extended from A2:A9 to A2:AIO, because the row 
we just inserted fell within the range we previously described. 

Now type I2J [QJ IBJ. For row number, type IT] @] followed by 
I RETURN I. Row 14 is deleted. If you delete row 7, will the SUM 
formulas adjust back to A2:A9? Try it and see. 

Delete a column and try an experiment in the process. You want 
to find out what happens to a value that depends on one you 
delete. Enter into cell E9 the equation FB-the value contained 
in cell F8 will repeat in E9. Change the display to show cell 
values instead of equations. 



SUPER CALC 197 

Now type I2J [[J @] [I] followed by a I RETURN I-you're 
deleting column F, and the column entitled Oranges empties. 
Cell E9 now displays l3Ii

'
i'I1;J. SuperCalc has nothing to use in 

calculating the value of E9 and warns you of this fact with the 
error message. Once a cell is in error, any reference to it will dis
playa similar error message. As you see, the SUM value also in
dicates l3Ii'i'IJiJ. 

If cell E9 does, in fact, have F8 in it, you can simply enter that 
formula again, and everything will be set right. Now put a 
number or F8, whichever you wish, into cell E9. Notice that the 
error display in the SUM value also goes away; the recalculated 
value replaces it. You may force recalculation by pressing! 
if necessary. 

If you delete row 11, will this affect your range specification for 
the SUM formulas in row II? No, because row 11 is beyond the 
range. Delete row 10. 

What will happen if you now delete row 9? Try it. 

The deletion produces an l3Ii'i'IJiJ in the SUM formula. 



198 OSBORNE 1 USER'S GUIDE 

The general rule is not to delete either of the boundaries speci
fied in a range like the one in our example. Our example was 
SUM(A2:A9). Deleting either A2 or A9 will cause an ERROR 
condition because SuperCalc cannot guess your exact inten
tions. These warnings help you avoid inadvertently leaving 
references to nonexistent cells after a DELETE command. 

Use the BLANK command to blank out the block from cellA7 
to cell E9. Now reenter 8UM(A2:A6J in cellA7, and then use 
REPLICATE to place it in cells B7 through E7. Use the INSERT 
command to create a new column at A for labels. Next, enter the 
following text in column A: 

cell text 

A2 "Variable A 
A3 "Formula 1 
A4 "Formula 2 
A5 "Formula B 
A6 "Formula C 
A7 "Total 

Here's what you should now see: 



SUPERCALC 199 

At this point, use the SAVE command to save your work. This 
time, let's call it LESSONS. You'll use it later. 

Now that you've saved the worksheet, try something new. 
You'll need to start with a blank worksheet, so use the ZAP 
command. 

As you've seen, performing insertions and deletions at the 
boundaries of specified ranges creates problems. Because you 
will often want to add or delete from lists-including, naturally, 
the beginning or end of the list-here is a useful suggestion. 

Make the following entries to the worksheet: 

cell 

81 
82 
83 
84 
85 
86 

You should now see this: 

entry 

"Title 

3 
4 
5 

8UM(81 :85) 



200 OSBORNE 1 USER'S GUIDE 

Notice that the range specification includes the title line and the 
ledger line ( ). This inclusion is harmless because, in a 
mathematical sense, SuperCalc regards text as having a value of 
zero and, therefore, has no effect on the calculation. 

Now you can insert or delete with impunity. Insert a new row 5 
and enter some numerical value in cell B5. Now delete row 2. 
Delete row 4. You can add or remove entries without worrying 
about the top and bottom of your column. 

By the way, here is an easy way to put in lines of repeating 
characters, such as ,,--------- which you entered in cell B4. 
SuperCalc has a function to repeat text. Go to cell B4 and 
press 0 D followed by a 1 RETURN I. 

The single quote (') causes the display of hyphens to repeat and 
fill the cell display, and, in fact, to continue displaying to the 
right until it meets a cell with something in it ... not bad for 
three keystrokes. Take a look at the contents of cell B4. You will 
see: Rtxt='- which describes the contents as Repeated text. 

Experiment with this one a bit. Find some open space on the 
worksheet and try: 

0123 
Oabcd 

0* 
0* 

Try your name. 

Sometimes you may be working on a complex worksheet with 
many values that are functions of other values. Because your 
data may be incomplete, you may mistakenly view some totals 
or values as significant when, in fact, they are not yet complete. 

Here's another hint: using the example you started above, enter 
NA into cell B3, for instance. This action tells SuperCalc that you 
intend to put a value into that cell in the future, so the value of 



SUPERCALC 201 

the cell should be considered as "not available," as opposed to 
zero. You will see that as soon as you enter NA, cell B6, which 
uses cell B3 in a SUM equation, is also flagged as [E. 

N/A and ERROR behave similarly; one difference is what is dis
played, N/A or ERROR. By using NA, you inform yourself of 
the ramifications of any incompleteness or oversights. Another 
difference is that when you replace an NA with a value or 
formula, SuperCalc will use that new value to recalculate the 
worksheet; if you replace ERROR with a value, nothing else on 
the worksheet is affected. 

You may either quit here or continue to lesson 6. 

Lesson 6: Formatting 

By now you've learned most of the basic instructions you need 
to use SuperCalc. It is now time to build on this knowledge and 
refine it. 



202 OSBORNE 1 USER'S GUIDE 

When we introduced the FORMAT command (IF) in lesson 3, 
we used it to change the display width of all the columns on 
the worksheet. But the prompt line indicated that other options 
were available with this command. In this lesson, we will exam
ine these other options more closely. 

If you are continuing directly from lesson 5, use the ZAP 
command now so that you will start with a fresh worksheet. 
Otherwise, start SuperCalc as you learned previously. 

Now use IZIIIJ to load the file LESSON5. 

Integer Format 

Look at your worksheet. Is it displaying formulas? In this exam
ple we will want to look at cell values, not formulas. Use the 
GLOBAL options command (I G) if you need to change the 
display. 

Look at cell B4. If it does not contain a decimal fraction (for 
example, 6.4), enter one. 

Type [2] [£J (for FORMAT) and note that the prompt line now 
reads: 

G(lobal), C(olumn), R(ow), or E(ntry). 

This line means that you can specify whether the format change 
will affect all cells, a column only, a row only, a cell only, or a 
range of cells. 

Press @] for column. The prompt line now asks you to specify 
which column to affect. Use the column letter-in this case 
I]]-and press 1 RETURN I. 

Now the prompt gives you a great variety of choices: 

Define Formats: (I,G,E,$,R,L,TR,TL * ,D,column width). 



SUPERCALC 203 

We'll examine each of these options eventually, but for now 
specify OJ (for INTEGER) and press I RETURN I. Look at the 
entries on the display and see what happened to the fractional 
value you entered earlier-only the integer portion of the values 
is displayed. Integer format rounds values to the nearest whole 
number. 

Until now we have always used SuperCalc's standard, or 
"default," format to display numbers. That format is called the 
GENERAL format, represented by the letter ~ in the prompt
line display. 

You already know that any number too large to display in ordi
nary notation will display in scientific or exponential notation. 
In INTEGER format, numbers too large to display will appear as 
a series of greater-than signs (> > > ». In fact, whatever the 
format, > > > >s will appear whenever a number cannot be 
shown. 

Enter 123456789 at cell B5. 

Now reduce the display width to 8: [2] I£J I]] [ID I RETURN I. 



204 OSBORNE 1 USER'S GUIDE 

Notice the greater-than signs. Now change the column width 
back to 12 by typing [2] [£J [ill [JJ [[] I RETURN I. 

Again type [2] [£J I]] []J followed by a I RETURN I. This time, 
specify [ill for the GENERAL format. Notice that the fractional 
portion of your data values reappears. It is important to note 
that SuperCalc always maintains the number you enter and 
merely changes the displayed value based on your requested 
format. Changing the format does not change the value Super
Calc maintains, only the number it displays. 

Exponential Notation, Again 

For scientific or exponential notation, try [2] [£J @] [[J I RETURN III] 
I RETURN I. This format displays numbers as a power of 10. For 
example, 1776 is 1.776E3, or 1.776 times 10 to the third power. 
You should remember this from lesson 2. 

Look at your worksheet. As you see, SuperCalc converts all your 
data in column B to exponential notation, as per your request. If 



SUPER CALC 205 

the data does not look familiar to you, you may wish to experi
ment a bit. Enter some ordinary numbers in column B and watch 
how SuperCalc displays them. 

Dollars-and-Cents Format 

The next format option is a familiar one: [2] I£J @] [!] 1 RETURN I. 
Your data now formats as dollars and cents. Displayed numbers 
are rounded to the nearest cent. Note also that SuperCalc adds 
.00 to whole numbers, but does not insert a leading dollar sign. 

Except those cells in which you changed formats, everything 
changed. Why? When GLOBAL is indicated, SuperCalc changes 
all formats, except those that you have already specified using 
column, row, or entry options. It leaves these formats untouched 
because you intentionally set them individually. 

Now change the format for a single cell. Move the worksheet 
cursor to cell C5, making that the active cell. Type [2] I£J []]. 
The prompt line reads l::mm'iFui.W. 



206 OSBORNE 1 USER'S GUIDE 

You can specify a range of cells-that is, a partial row or a partial 
column-or you can simply specify a single cell. Change the 
format of cell C5, the active cell. You can type C5 to do this, but 
instead press 1 RETURN 1 and see what happens. 

If the result surprises you, think back to when we introduced the 
action of the ESCAPE key; at that time we said that RETURN 
would generally fill in a part of a command with the number 
of the active cell. Finish off the entry by pressing [[] (for 
EXPONENT), followed by another 1 RETURN I. Note the change 
on your worksheet. 

Now suppose you want to convert all the display back to the 
GENERAL format. Can you make a GLOBAL change? Sure
just issue the command [2] [£J @] @] 1 RETURN 1 (/FORMAT, 
GLOBAL, GENERAL, RETURN). 

Everything changes, except the cells in which you've changed 
the formats. 



SUPERCALC 207 

So that GLOBAL changes include any column, row, or cell you 
formatted individually-column B, for example-you must 
"undo" the individual formatting. 

Position the active cell anyplace in column B. Type [2] I£J []] 
I RETURN I, then [QJ (for default), and another I RETURN I. 
Notice that column B changes to GENERAL format except for its 
width, which may remain 12 characters wide. 

When a format setting that refers to a column or row defaults, it 
changes back to the original setting, which is text left-justified 
and numbers right-justified. Format settings function in a 
hierarchical fashion, meaning that an entry-level format, en
tered as a cell or a range of cells, is the "highest" level. The full 
list of levels looks like this: 

highest level ~ entry (individual entry) 
row 
column 

lowest level ~ global 



208 OSBORNE 1 USER'S GUIDE 

After the default command, column B formatting changed to 
the default format, and because we specified a certain range 
(the column) this supersedes any global formatting commands. 
Remember that if you don't change to the GLOBAL format, 
SuperCalc will assume that it's general. 

See if you can now default the format on cell CS. It is, of course, 
[ZJ [£J [I] @] [I] 1 RETURN 1 [QJ 1 RETURN I· Go ahead and do it. 

Right and Left Justification 

Type [Z] I£] []] IT] 1 RETURN I. You see the following options on the 
prompt line: 

... R,L,TR,TL. .. 

With them, you can change the setting to right or left justifica
tion. The standard, or default, values are left-justified text and 
right-justified numbers. Shift the text on row 1 so that all text 
entries are right justified. Hint: TR stands for "text right." 

Now that you've done that, try another one. 

Type [Z] I£] @] [I] 1 RETURN I. All numbers are now justified to 
the left. 

You can combine format entries. [Z] II] @] []] [!] 1 RETURN 1 

right-justifies numbers in the dollars-and-cents format, for ex
ample. Try experimenting with various format combinations. 

GRAPHIC Display 

There's one last FORMAT option to try, the GRAPHIC display 
option. Place the active cell at C2. Type ~ 1 RETURN 1 to place cell 
C2 at the upper left of your screen. Then type [Z] II] [Q] [:l 
1 RETURN I. The * specifies GRAPHIC display. 



SUPERCALC 209 

Depending on what you enter, you may have entries that no 
longer fit in the current column size. If this troubles you, you 
can specify a column width of anything up to and including 126 
characters, although you will not be able to see all of these in 
the current version of SuperCalc. 

We'll come back to the graphic display in lesson 8 and show 
you a way to make the graph fit within a column width of con
venient size. For now, there is no need to save the work you did 
in this lesson, so you may either quit or continue with lesson 7. 

Lesson 7: TITLE LOCK and WINDOW 

You know enough about SuperCalc and its many commands to 
put it to practical use. This lesson adds two more advanced 
commands to your store of tools. 

One of the commands, TITLE LOCK, is useful if you want to 
keep any portion of the worksheet locked in place while you 
scroll the rest of the screen. The other command, WINDOW, 



210 OSBORNE 1 USER'S GUIDE 

lets you "split" your screen and look at different parts of your 
worksheet at the same time. 

TITLE LOCK 

If it is not already running, start the SuperCalc program. Use 
the ZAP command to obtain a fresh worksheet. 

Now load the file you saved under the name LESSONS. Place 
the active cell at AI. Issue [2] m (for TITLE LOCK). The prompt 
line now asks: 

H( oriz), V( ert), B(oth), or C(lea r)? 

SuperCalc wants to know which titles you want locked in place. 
Press [2J for vertical titles. 

Now scroll the screen and move off the screen to the right. You 
will see the titles at screen left "locked" in place, while the rest 
of the screen scrolls as usual. The position of the active cell 
when you enter the TITLE LOCK command determines how 
much of the screen will lock in place. For example, if the work
sheet cursor is in row 8, everything in row 8 and above will be 
locked similarly; if the location of the worksheet cursor is 
coh;mn 4, everything in column 4 and to the left will lock. 

With the H option, lock the top row of titles in place. 

Move the worksheet cursor down the screen and watch the in
formation scroll up while the row I titles stay in place. Next go 
back to cell Al by using the GOTO command (=). 

Clear the locked row. Type [2] IT], and then @]. You are telling 
SuperCalc that you do not want to lock anything. Use the 
INSERT command to create a new row I for an additional title. 
At cell CI, type: 

"Sample Worksheet 



SUPERCALC 211 

This time lock both the horizontal and vertical titles with one 
command. Position the active cell at A2. Type 0 [!J, followed by 
~ (for BOTH). This locks columnA and rows 1 and 2. 

Move the worksheet cursor down and to the right and verify 
that the display scrolls in both directions while rows 1 and 2 and 
column A stay put. ' 

WINDOW-Split Screen 

What if you want to view two widely separated areas of your 
.workshe.et at the same time? The WINDOW command allows 
you to do this. We will use one of the sample worksheets 
on your SuperCalc diskette to demonstrate the WINDOW 
command. 

BefoJ;e loading the sample worksheet, make sure you've erased 
everything from the current worksheet by using the ZAP 
command. 

Now load the sample worksheet. Type the LOAD command 
(011]) and use the file name BALANCE. BALANCE is a com-



212 OSBORNE 1 USER'S GUIDE 

plete sample SuperCalc worksheet. For now, just scroll to col
umn N and notice that you see columns representing months 
and a "total" column for the entire year. 

Go back to cellAl (use GOTO) and scroll down to row 25 to see 
I~m'hia.hel§. Next go to cell Al, then move the active cell to col
umn D and scroll the screen to position column D in the center; 
do this by hitting the right arrow once, then the left arrow once. 
This will designate the place to "split" the screen. 

Type IZ1 ~ (for WINDOW). The prompt now reads: 

H(oriz), V(ert), C(lear Split), S(ynch), or U(nsynch) 

You are going to split the screen vertically into two separate 
display windows, so press [2J (for VERTICAL). 

Notice that, starting at column D, there is a second set of row 
numbers. This is the left-hand border of the second display win
dow. The worksheet itself hasn't split, though, you have simply 
created two display windows through which to view it. Either 
window may now scroll independently. 



SUPERCALC 213 

Scroll the display and notice that the left-hand window 
remains still. 

Now press the [J key which will transfer you to the "other" 
window, regardless of which window you are working with. 

Instead of splitting the screen vertically into right and left 
halves, you can split it horizontally. First clear the current split: 
type [2] [R] II]. Now set the active cell at the point you wish the 
screen to split horizontally. For example, move the active cell to 
row 15, then issue [2] [R] [8J and, if necessary, 1 RETURN I. 

You'll notice that the lower screen starts at row 15, at your cur
sor. Scroll down to see the I~Alhiy.lell# entry. Press [J to place 
the cursor in the upper screen, and move to cell B5. Change the 
value there. Watch as the recalculation takes place. Within 
moments you will see the net-income figure change in the lower 
window. When you wish to remove the split screen, type 
[2] [R] II] and, if necessary, 1 RETURN I. 

The S option indicates to the SuperCalc program that you 
wish to scroll both windows in a "synchronized" fashion 
(simultaneously). Try it. 

Split the screen vertically at column D again, but now use 
[2] ~ []J. The displays scroll together. Verify this, then 
"un synchronize" them by using I2J [R] []J. (Figure next page.) 

With the split screen in effect, each window has its own "global" 
identity for both the GLOBAL options and FORMAT commands. 
For instance, you could specify FORMULA display in one win
dow and CELL VALUE display in the other. Similarly, you could 
use FORMAT to specify GENERAL format in one window and 
INTEGER format in the other. You could even look at the same 
data in two different formats at once. 

Again, type [2] [R] []J 1 RETURN I. Scroll both displays to show Jan
uary through April. Now change to display formulas for one 
side of the screen. Type [2] [R] []J 1 RETURN I. Now you can scroll 



214 OSBORNE 1 USER'S GUIDE 

through the data in one window and compare it to the formulas 
as you go. 

The WINDOW and TITLE LOCK commands affect the way your 
worksheet is displayed. The effect is temporary, and you can al
ways reverse it. When you save your worksheet on a diskette, 
the TITLE LOCK and WINDOW information is included; if you 
reload the worksheet, it will look exactly as it did before. 

If you want to take a break now, use QUIT to exit from Super
Calc; otherwise, continue with lesson 8. 

Lesson 8: Graphic Formats and Recalculations 

In this lesson we will look more closely at some of the options 
available with two of SuperCalc's most powerful commands, 
FORMAT and GLOBAL OPTIONS. 

Start with a fresh screen-use ZAP to clear the screen if you are 
continuing from a previous lesson. 



SUPERCALC 215 

We touched briefly on graphic representation of data in lesson 6 
and promised, in time, to tell you more about it. That time has 
arrived. After working more with graphic representation, you 
should feel confident enough to use it with your own data. 

Start by entering some numbers in column A, from row 2 to 
row 20. Use any numbers between 1 and 45. 

Begin with this sequence: [2J lIJ [gJ [A] / RETURN / ~ @] [[] / RETURN / 

(this stands for IFormat,Column,A,RETURN,*,45,RETURN). 

You have accomplished two things: you've changed to graphic 
display (by using the *), and you have increased the width of 
column A to 45 characters. 

Say you now want to have the number display, in addition 
to a graphic representation. Try this: [2J II] [gJ [A] / RETURN / 

@] / RETURN / and [2J I]] II]. At cell Bl enter the FORMULA A 1 . 
Then type [2J l]] I]] OJ D I]] I]] 0 I]] I]] [QJ / RETURN / .. Finally: 
[2J II] [gJ I]] / RETURN I ~ @] []] I RETURN I and [2J I]] II] . 

Move the cursor to column B to check your results. 



216 OSBORNE 1 USER'S GUIDE 

We'll explain what you did. First you returned column A to the 
DEF AULT format. Then you asked SuperCalc to show FOR
MULAS. Next, you entered the FORMULA At in cell Bl and 
replicated that FORMULA through the rest of column B. Last, 
you told SuperCalc to show graphic representation in column B. 
Essentially, you duplicated column A in column B, then format
ted column B to show graphic representations of the numbers in 
columnA. 

You now have a one-for-one graphical display in column B of 
the numbers in column A. But what if the values you wish to 
display are as large as 600 or 1000? Do you have to make the col
umn widths 600 or 1000, and can you even make sense of such a 
display? No. 

So that your largest value will be equal to the column width, put 
a scaling formula into column B. If you divide any value in col
umn A by the maximum value within your sample from Al to 
A20, the result will express its SIZE (relative to the maximum). 
And since the maximum, whatever it is, will be represented by 
45 characters (*) of display, you can multiply the size by 45 to 
determine the SCALED value. 

This action gives you an opportunity to use another built-in 
function: MAX. The value of MAX will be the largest value 
within the specified range or list. Use MAX to scale your 
graphic displays so that they are relative to the maximum 
value. Here is how the formula for cell Bl should look: 

A 1 * 4S/MAX(A 1 :A20) 

We're using cell Al in the formula because we'll use the 
REPLICATE command to fill in the rest of column B. Type 
[Z] @] [I] I RETURN I, move the cursor to cell Bl and enter: 

A 1 *45/MAX(A 1 :A20) 



SUPERCALC 217 

Now use the REPLICATE command with the A (for ADJUST) 
option: 

IZJ[[J[[][I][][[][[JO[[][[J@][][K] 
wait, then type [Y] [ill [ill 

Here you've responded Y to adjust Al automatically, and N to 
keep the rest of the formula unchanged. 

Use [2] []] II] to see your formulas: 

Typing IZJ []] II] will return to the graphic display. Your graph 
looks the same so far-it should, since no value exceeds 45. 
Now change the value of any cell in column A to, say, 75. 
Notice that all the other lines are scaled relative to 75. Now 
enter 150. 

You may wish to save this example for your own use later. Use 
SAVE and call the file GRAPH, or something easy to remember. 



218 OSBORNE 1 USER'S GUIDE 

Now change your formula to scale from the minimum to the 
maximum value in Al throughA20. CoTo cell BI and use EDIT. 
You want to insert new information into the formula so that 
it reads: 

(A 1-M I N(A 1 :A20) * 4S/MAX(A2 :20) 

Replicate this new formula for cells A2 through A20, using the 
ASK-FOR-ADJUST option. Be careful to adjust only the first cell 
reference (At) in the formula. 

Type IZ] []] [£J. Notice how the results of this formula differ from 
those of your first formula. Try different values in column A to 
test and verify how this new formula works. 

Recalculation Options 

If you enter a new value in column A, notice that the program 
takes a long time to go through all necessary recalculation of for
mulas. It may take even longer with a larger worksheet because 
SuperCalc recalculates automatically every time you enter a new 
number. 

You can suspend that automatic recalculation. Type IZ] []] [0 . 
Now try entering new numbers in column A for the graph. As 
you can see, the time required for their entry is reduced. 

This is fine, but what does MANUAL recalculation mean? Cer
tainly you don't want to do it yourself with pencil and paper, 
you want SuperCalc to do it. You haven't yet learned the 
option that performs recalculation, but it's a familiar mark of 
punctuation. 

Besides serving its usual exclamatory function in textual 
material, the OJ key forces a recalculation. Try it. 

Manual mode allows you to make periodic recalculations at your 
convenience. When you wish to reestablish automatic recalcula
tion, type IZ] []] IA1 (for AUTOMATIC). 



SUPERCALC 219 

Order of Recalculation 

When SuperCalc recalculates, it does so in a certain order, which 
you can change. Usually, the order of calculation won't affect 
the results on your worksheet, and you can ignore it. But there 
are times when it can make a difference. Observe. 

First, use ZAP to get a fresh worksheet. 

Enter 4 into cell Al, 6 into cell A2, and 

8UMCA1 :A2) 

into cellA3. Next enter A3 into cell Bl. 

Look at the values. Everything seems fine. Cells A3 and Bl both 
display the value of IE. Now change the value in cell Al to 3. 

Cell Bl does not yet contain the new result, 9, and that is be
cause SuperCalc normally recalculates row by row: first row 1, 
then row 2, then 3, and so forth. Obviously, A3 was still 10 
when cell Bl referenced its value during recalculation. 

Now type [2] @]. The prompt line read~: 

F( orm.),N( ext),B( order),T(ab), R( oW),C( ol.),M(an.),A(uto)? 

In the example, recalculation should proceed column by 
column, so press @] to change the order of recalculation. 

Enter 5 at cellAl. Now everything seems to work because 
SuperCalc is proceeding down columns as it recalculates. Both 
cell A3 and cell Bl display ill. 

It is possible to create a situation in which neither order of cal
culation can give current values in all cells. Here is an example: 



220 OSBORNE 1 USER'S GUIDE 

ZAP the worksheet 
in cell Al enter 5 
in cell Cl enter A 1 
in cell A3 enter A 1 
in cell B2 enter C1 +A3 
in cell Al enter 4 

Can you see the problem? Cells Cl andA3 display II, and are 
correct, but cell B2,has a 9 in it. 

Issue [Z]@] 1]]; in cell Al enter 6. 

In cells A3 and Cl you see 6, but cell B2 shows mJ. One,of the 
cells in the formula for B2 has the correct value of 6, while the 
other has a leftover value of 4. 

Press OJ. Now cell B2 has the correct value of 12. You forced a 
second recalculation to get the correct result. 

This example is unrealistic and improbable-still, you should 
know that you can create situations involving out-of-order 
references that give misleading values. 

Cases of out-of-order references, such as this, are called 
"forward references" because the reference is forwarded to a 
value not yet recalculated. They can occur in actual worksheets, 
perhaps because a worksheet is especially complex or because 
you've changed it from its original design. 

A real-life example of a forward reference might happen like 
this: you build a worksheet with a table of expenditures by cate
gory (columns) and locations (rows). You sum the rows and col
umns to get total~. Everything works fine. Later, you add a table 
comparing various category and location totals. Everything still 
works fine, because you know where the second table should 
be. Then, someone else adds new material to the worksheet 
and moves one of your tables to a new location. Now the com
parison table shows incorrect values, but they might seem 
reasonable. 



SUPERCALC 221 

One way to check for such cases is to press OJ and see if any 
value changes. If so, it is time to redo the worksheet. 

Another case you want to avoid is the "circular reference." Here 
is an example: 

ZAP the worksheet 
in Al enter 1 +81 
in Bl enter 1 +A 1 

Press OJ a few times and watch the values in the two cells in
crease. They will never stop changing because there is no logical 
place to stop calculating. 

When you're satisfied you understand the circular reference, 
you can quit or ZAP the circular references and go on to the 
next lesson. 

Lesson 9: OUTPUT 

You've now worked with all of the SuperCalc commands except 
for OUTPUT. This command makes it possible to generate 
printed reports from your worksheets. 

The OUTPUT command makes a copy of your worksheet and 
sends that copy to any of three places, depending on your 
specification. You can send the "output" -the copy of all or part 
of your worksheet-to a printer, which will print it out immedi
ately; or you can send it to the screen, where it will temporarily 
replace the usual SuperCalc display; or you can send the output 
to a diskette. In this last case, the output will be "saved" as a 
special sort of disk file, different from the ones you created in 
the past with the SAVE command. 



222 OSBORNE 1 USER'S GUIDE 

NOTE 

Look in the Appendix for information on installing your 
printer. Also consult the section on the System Setup 
program in chapter 2. 

Try this new command. First, be sure that you have a fresh 
worksheet. Next, load the file that you created in lesson 5 
(LESSONS). 

Type 12J@] (for OUTPUT). Now the prompt line reads: 

D(isplay) or C(ontents) report. 

"Display" means that the output will reproduce exactly what 
you see on the screen, including the column and row number
ing. So try that first. Press [QJ. 

You see that the prompt line requests the range of material you 
want as output. Specify the range as usual. In this case, specify 
IA] OJ 0 [£J [§J, which describes the boundaries of your work. 
Press I RETURN I to complete the command. 

The prompt now reads: 

Enter Device: P(rinter),S(etup),C(onsole),or D(isk) 

Press @] to send the report to the console screen. There may 
seem to be no reason to do this, but sometimes you may want to 
check your output before printing it. By the way, if you have 
several pages of output, SuperCalc shows them to you one at a 
time; you tell the program when to show the next one. 

Press any key to return to the normal SuperCalc display. If you 
have a printer, try sending output to it-print just part of your 
worksheet. Be sure that the printer is turned on and connected 
properly to the Osborne 1, then type: 



SUPERCALC 223 

I2J [Q] [Q] [K] IJJ D [[] [[] I RETURN lIE] I RETURN I 

So far, the examples have used only the D, or DISPLAY, option. 
Try C, for CONTENTS output. Type: 

[2] [Q] @] [K] IJJ D []] 01 RETURN lIE] I RETURN I 

The C(ontents) option gives you a list of all cell contents-what 
is actually in each cell. Because of display formatting, the con
tents may be quite different from what you see on the work
sheet. You are familiar with the idea of cell contents because the 
contents of the active cell regularly display on the status line. 

The D(isk) option, in some ways, is similar to the SAVE com
mand. The resulting disk file is different, however; you cannot 
use the LOAD command to reload a Disk file in SuperCalc. The 
files created with this OUTPUT option automatically receive a 
special file type of .PRN (stands for "print"). 

Print files can be useful. You can use them to mix SuperCalc's 
output with WordStar-as when you are preparing a report in 
which you need calculations-so you may use SuperCalc to 
create the numeric sections of any text report you are preparing. 
Use the D option to save the worksheet in a form WordS tar can 
use. When you get to the point in WordS tar where you want to 
insert the worksheet, simply use the "KR option to read the 
print file you created with SuperCalc. 

The S(etup codes) option is used to output select codes that af
fect the printer being used. When you press [[] from the OUT
PUT mode, a list of parameters that can be controlled as well as 
their current settings are shown as follows: 

L = Change page length (now 66 lines) 
(length zero for continuous form) 

W Change page width (now 80 chars) 
S = Manual setup codes 
P = Print report 

CTRL-Z to cancel 10 command 



224 OSBORNE 1 USER'S GUIDE 

To alter the page dimensions, use L for length or W for width 
and specify the desired number of characters. The Setup codes 
are those recognized by your printer and described in your 
printer documentation. These codes perform such print func
tions as compression and graphic displays. 

Lesson 10: Creating Command Files 

Command files contain instructions used by the IX (execute) 
command. The character strings contained in the file represent 
exactly the characters that would be typed at your terminal 
while in the SuperCalc program. 

This is how a command file is created: 

Command files can be created using SuperCalc or through the 
"N" command in WordStar. Each line of the file contains exactly 
the keys you would press to execute a specific command within 
the SuperCalc program. Every operation available to you in the 
SuperCalc program is also available for use in an executable 
command file. This includes cursor movement (represented by i, 
L ~, ~, for up, down, right, and left), and data entry. One 
exception to this is the IE (edit) command which should only be 
used as the last command in your command file. 

Now let's create a file of commands. 

The first thing you might like to do in your command file is to 
I ZAP the worksheet. If we were to enter this command in the 
SuperCalc prpgram, the entry line would look like this: 

24 > fZAP-ENTIRE-Worksheet? Y 

The keys that were actually pressed to accomplish this were 
[2] m [Y]. Let's try another. If we were to format column A to be 
20 characters wide, the entry line would look like this: 

21 > fFormat, Column, A,20 



SUPERCALC 225 

The keys that were actually pressed were [Z] [I] @] [K] [J []] @] . 
So, on the second line of the command file you would have 
/ FCA,20. Each line represents the exact keys pressed for a spe
cific command. Use the N command in WordStar to build the 
following command file: 

/ZY 
/FCA,20 
/LBALANCE,A 
/GF/GM/FGD,$ 
/IR23 
=A23 
"Tax Rate 
/P 
>IF(B21 <= 1800, .3, .32) 
/RB23,C23:N23 
=A24 
/U 
"Taxes 

</P 
>B23*B21 
/RB24, C24:N24 
/GF!/ODALL, C 

You will notice that on line 4 of our command file we have com
bined three commands. This is because carriage returns are not 
required after IGF and IGA for execution. Using unnecessary 
carriage returns would advance the worksheet cursor spuri-
0usly' thus easily losing your place on the worksheet. 

If you wanted to build the command file within SuperCalc, each 
command line is entered as text, then the file is saved. You 
should save your SuperCalc command file in two segments: 1) 
by using the IOutput command and creating a .PRN print file 
that can be read by the IX command, and 2) by using the ISAVE 
command to save the file for editing later. If you have not saved 



226 OSBORNE 1 USER'S GUIDE 

a .CAL-type file, you will not be able to reedit the file .. PRN
type files are not loadable by the SuperCalc program. Before 
creating the .PRN-type command file, be sure to remove its 
borders otherwise the EXECUTE command will not be able to 
load it. 

To execute the command file, issue I2J [8] from SuperCalc and 
you will be prompted like so: 

Enter filename (or < RETURN> for directory) 

If you press RETURN, you will be given the options for the 
directory as in the ID(elete) command. If you enter a file name, 
SuperCa1c reads each of the commands in the file and executes 
them in sequence. If the file is not in the proper format or an 
improper command is used, an error message is displayed on 
the status line and the EXECUTE command is aborted. You can 
also terminate the execution of the command file at any time by 
pressing "ill. 

NOTE 

The default extension for command files is . QXT. If your 
file has no extension, you must have a period at the end of 
the file name. 

Some Last Words on SuperCalc 

By now you know enough about SuperCa1c to use it without 
step-by-step instructions. On the SuperCa1c diskette are three 
"sample" files with which you may wish to experiment. Make 
changes and see their effects on the worksheet. 



SUPERCALC 227 

The samples deal with different subjects. One is a balance-sheet 
projection, one calculates the break-even point for a project, and 
the last does engineering calculations to specify requirements 
for an "air curtain." (An air curtain can separate two locations 
of different temperatures, such as separating a walk-in freezer 
from the rest of a room. Since you can walk right through the 
air curtain, you don't have to worry about anyone leaving the 
door open.) 

Again, experiment with all the sample worksheets, even if the 
subject matter is out of your area of interest. The techniques 
used in the samples are general, and you can transfer them 
easily to your own work. In fact, you may be able to use one or 
more of the sample worksheets as a model for your own. 

Before leaving SuperCalc, we want to remind you that Super
Calc, like WordStar, has its own built-in HELP function. 
Anytime you find yourself unsure of what to do next or what 
your options are, press the question mark (?). The HELP mes
sages SuperCalc presents are useful reminders of the informa
tion we've presented in this chapter and should be your first 
source of information. So that you're familiar with what Super
Calc's HELP messages look like, we've reprinted several of them 
on the next two pages. And remember, if you're really stuck or 
need detailed information, there's always the Reference Guide. 
The Reference Guide contains all of the SuperCalc commands 
and error messages. 



228 OSBORNE 1 USER'S GUIDE 



SUPERCALC 229 



230 OSBORNE 1 USER'S GUIDE 



CHAPTER 6-
CBASIC 



232 OSBORNE 1 USER'S GUIDE 

Introduction 

This chapter provides you with information about the CBASIC 
software that accompanies your Osborne 1 computer. If you've 
bought programs that require the use of CBASIC, you'll want to 
read "What CBASIC Is," lessons 2 and 3; if you know how to 
program, you'll want to read all of this chapter. Otherwise, skip 
it for now. 

What CBASIC Is 

CBASIC is a version of the BASIC program language, which has 
been available for almost the entire history of microcomputers. 
The version of CBASIC you received is the current one, 
CBASIC2. Two earlier versions of the language were EBASIC 
and CBASIC. 

CBASIC2 is a "pseudo-compiler." This means you create your 
program by using an editor (like WordS tar) and then run your 
program through a portion of CBASIC, CBAS2, which trans
lates your BASIC statements into a more compressed form. 
Once this "compiled code" is created, another portion of the 
CBASIC "interprets" these compressed instructions. 

You need to understand two terms to use CBASIC: 

"Source code" -your original BASIC instructions created 
using an editor, such as WordS tar. 

"Object code" -the compacted instructions CBASIC 
creates from your source code. 

Lesson 1: Creating CBASIC Programs 

In the Reference Guide, you'll find a full list of the statements 
and functions that CBASIC understands, complete with a full 
discussion of what each is for and the exact syntax in which to 
use each. 



CBASIC 233 

If you're familiar with another version of BASIC, you'll probably 
find that CBASIC is similar. The most notable differences be
tween CBASIC and other BASICs are the additional statements 
and functions CBASIC provides for use in CP/M. For further 
elaboration on the commands, you might want to read The 
CBASIC User Guide, by Eubanks, McNiff and Osborne, pub
lished by Osborne/McGraw-Hill. 

CBASIC source code is written as a sequence of CBASIC 
statements and functions. The best method to create your source 
program is to use the N (non-document file) command in 
WordStar. You may give your file any legal name, but it must be 
the .BAS type. For example, a source program could have the 
file name: 

PROGRAM.BAS 

You should note a few things in creating your CBASIC source 
code. Since we're assuming you already know something about 
programming, we'll just briefly summarize these unique aspects 
of CBASIC: 

• The CBASIC compiler ignores anything on a line to the 
right of a [SJ character. The [SJ character itself is an in
struction to CBASIC to consider that the information on 
the following line should be part of this previous line. 
With the backslash character, you can create multiline 
statements. DATA, DIM and END statements must be 
on separate lines by themselves, however . 

• CBASIC programs do not require line numbers except 
where they specifically reference a line, as in a GOTO 
NUMBER statement. Line numbers may be any valid 
number, and you can express them in exponential nota
tion or with decimal points, although CBASIC treats the 
following numbers as different line numbers: 

100 
100.0 
1.0E02 



234 OSBORNE 1 USER'S GUIDE 

• CBASIC variable names can have as many as 31 char
acters. If a variable name ends in a percent sign (%), 
CBASIC considers it an integer-only variable. Ending a 
variable name with a dollar sign ($) tells CBASIC that 
the name references a string variable. 

• CBASIC has statements and functions not usually found 
in BASIC, or that you may not have encountered before. 
Most notably these are: 

statements 

CALL 
CONSOLE 
INITIALIZE 
LPRINTER 
PRINT USING 
SAVEMEM 
WHILE-WEND 

functions 

COMMAND$ 
CONCHAR% 
CONSTAT % 

FLOAT 
MATCH 
SADD 
UCASE$ 

Before attempting any significant CBASIC program
ming, you might want to look over the definitions for 
these statements and functions in the Reference Guide. 

• Six compiler-directive statements in CBASIC expand 
your ability to create complex programs. These direc
tives are also detailed in the Reference Guide and 
deserve your attention if you are doing complex 
CBASIC programming. 

Building on your knowledge about how to program with the 
next chapter will help to supplement this brief introduction. 
Even with the complete Reference Guide, this manual will prob
ably not suffice to teach you to use CBASIC to create programs. 

We'll recapitulate what you have to know to program in 
CBASIC: 

• You have to create CBASIC source code using an editor. 

• CBASIC differs from other BASICs mostly in the addi
tional statements and functions it provides. 



CBASIC 235 

• CBASIC has a few unique idiosyncrasies regarding line 
numbering, multiple-line statements, and variable 
names. 

• CBASIC source code must reside in a . BAS-type file. 

Lesson 2: Compiling: Getting CBASIC 
Programs Ready 

To novice computer users who purchased a program that re
quires the use of CBASIC: the program you received is on a 
diskette containing instructions that constitute the program, but 
not the method by which to interpret them. CBASIC will be the 
interpreter for these programs. 

Your CBASIC-based program may be in source-code format or in 
object-code format. The difference is critical. If you have source 
code, you must first "compile" the programs into the compacted 
form that CBASIC can interpret. If you have object code, the 
compacting is already done for you; the program is ready to use. 

With source code, you can change the instructions should the 
need arise. Not so with object code. In fact, you can't even "list" 
these instructions to see what they are. 

Let's assume for a moment that you have source code. You per
form the actual "compilation," or compacting, by performing 
the following sequence: 

1. Press the RESET button on the front of the Osborne 1 
computer. Place your CBASIC/MBASIC diskette in the 
left-hand drive and press 1 RETURN I. 

2. The Osborne logo will appear, and Microsoft BASIC 
will load. Once Microsoft BASIC identifies itself by dis
playing its name on the screen followed by an tmi, 
issue: 

[§J [Y] [§J IT] []] [01 RETURN 1 



236 OSBORNE 1 USER'S GUIDE 

You should see the CP/M prompt _. 

3. Place the diskette conta~ning your CBASIC program in 
the right-hand drive. Type: 

@] [ID ~ I]] [[] 1 SPACE BAR 1 [ID D 
[]J OJ [I] 0 ~ ~ IEiJ 01 RETURN I 

Filename is the name of the program to compile. Do 
not include the file type when you define a file's name. 
CBASIC will load its compiler portion into memory and 
begin converting the program in drive B. If you don't 
know the name of the program to be compiled, first 
type [QJ [[] [[] 1 SPACE BAR I [ID D ~ D [ID ~ I]] I RETURN I 

to see the names of the CBASIC programs on drive B. 

NOTE 

The instructions that accompany a CBASIC pro
gram coming from a software firm might tell you to 
type some special instructions -called "compiler 
directives" -after the file name. Be sure to do so or 
you may have an improperly functioning program. 

4. You'll see a report on the screen at the end of compila
tion and, if it informs you that you made no compila
tion errors, your program is now ready to use. Make 
sure you compile all the . BAS-type files on the B drive 
-many complex programs actually consist of a series 
of "interlocking" short programs. 

You should note two things in the above sequence. First, 
CBASIC displays the code it is compiling as it does so. CBASIC 
reports errors as it detects them, and summarizes them at the 



CBASIC 237 

end of the process. If you wanta "listing" of the program as 
it is compiled and have a printer attached to your Osborne 1, 
substitute: 

CBAS2 B:filename $FRETURN 

for the instruction listed in step 3, above. ($F is one of those 
special compiler directives we mentioned.) 

A special program called XREF is also on your CBAsIC diskette. 
With this program you can create a list of all the variables the 
program uses and where it uses them. This ability is often useful 
in finding and eradicating any errors in a program. You invoke 
XREF like this: 

[R] I]] [[] [£J I SPACE BAR II filename I 
I SPACE BAR I [ID 0 I RETURN I 

XREF will create a new file with the same name, but its type is 
.XRF; it contains this special listing. 

Lesson 3: Using a CBASIC Program 

To use your CBAsIC programs, we advise you to create a special 
diskette, on which CBAsIC and your programs reside, that you 
can load into the system just as you load your CP/M System, 
WordS tar and superCalc diskettes. Let's learn how to do so. 

NOTE 

You might want to refer back to this section after you've 
read the Microsoft BASIC chapter, as the process is valid 
for MBASIC as well as CBASIC. 



238 OSBORNE 1 USER'S GUIDE 

1. Press the RESET button on the front of your Osborne 
1, put your system master diskette in drive A, and 
press I RETURN I. 

2. The Osborne logo will appear, and the HELP program 
will load. Press the , ESC 1 key to start CP/M. 

3. Place a fresh, unused diskette into drive B. 

4. Format the diskette in drive B using the COpy pro
gram as you learned earlier in this manual. If you 
wish to create several CBASIC program diskettes, go 
ahead and format several diskettes. 

5. Return to CP/M and type the following: 

[§J [Y] [§J []] III [ill' RETURN 1 

A special program that copies CP/M "systems" will 
load into memory and identify itself. In response to 
its question about "source diskette," respond with an 
[K]. After a few moments, SYSGEN will ask you for 
a destination diskette; specify []], as that's where 
your CBASIC diskette-to-be resides, then , RETURN I. 
SYSGEN will access the B drive for a moment then 
ask you again about a destination. If you have mOre 
diskettes with which to perform this procedure, place 
them, one at a time, in drive B and continue to press 
the [[] key in response to SYSGEN's prompting. 
When you're done, press 'RETURN I. You've just written 
the instructions that constitute CP/M onto your new 
diskettes-a necessary action because CBASIC re
quires CP/M in order to operate. 

6. Type [f] OJ [f] , RETURN I. You should see an asterisk on 
your screen after a few moments. Remove your CP/M 
diskette from the left-hand drive and replace it with 
your CBASIC/MBASIC diskette. Type: 

B:=A:CRUN2.COM 'RETURN 1 



CBASIC 239 

(For Microsoft BASIC, substitute MBASIC for CRUN2 
in the above example.) 

Both disk drives will be in use alternately for a few 
moments; then the asterisk will return. You've just 
copied the CBASIC interpreter onto your new disk
ette. You'll have to repeat this step for each diskette 
you create, but remember that to do so you have to 
tell CP/M that you've changed diskettes by typing 
1\ [I] . This, unfortunately, causes PIP to stop running 
and return you to CP/M. A less-problematic alterna
tive is to create one diskette and then use the COpy 
program to duplicateit. 

7. You should still see the asterisk on your screen. Again 
place the CP/M system diskette in the left-hand drive. 
Enter: 

B:=A:PIP.COM I RETURN I 

then when the asterisk returns, enter: 

B:=A:XDIR.COM I RETURN I 

then when the asterisk returns, enter: 

B:=A:COPY.COM I RETURN I 

What you are doing is making copies of a few often 
used programs that will be convenient to have on 
your CBASIC program diskette. 

8. You still have the asterisk prompt on your screen. 
Now transfer the CBASIC programs you compiled ear
lier. Place the diskette with the compiled programs on 
them into drive A and type: 

B:=A:*.INT I RETURN I 

(For Microsoft BASIC, substitute .BAS for the .INT in 
the above instruction.) 



240 OSBORNE 1 USER'S GUIDE 

This time the copying process will inform you as each 
program is copied. 

9. Put the system diskette back into the left-hand drive 
and type AI]]. CP/M should restart. 

10. Your last step is to use the SETUP program, described 
in chapter 2, to configure the necessary printer/special 
devices you intend to use with your CBASIC pro
grams. Make sure you save these changes on the right 
diskette, the one in drive B. 

One thing we didn't mention that might occur during one of the 
above steps is that you'll get a disk-error message-such as 
BOOS ERR ON A: -or a 'IJI.1;-I"" message. With the single
density disk capacity on the standard Osborne 1, you may have 
to omit one or more of the programs specified above when you 
copy files. If you run into the DISK FULL message often, maybe 
you should consider purchasing the double-density disk option. 

One quick last word: the Osborne version of CP/M expects to 
find a program named AUTOST.COM on each diskette used 
to start the machine. Chapter 8 lists this program and makes 
suggestions on how to modify it. 



CHAPTER 7-
Microsoft BASIC 

In this chapter, you'll learn about Microsoft 
BASIC. You'll learn how to run programs that 

use Microsoft BASIC, and you'll find an 
introduction to the commands that make up 

Microsoft BASIC. This chapter won't teach you 
everything you need to know about 

programming in BASIC, but it will get you 
started. If you are serious about learning how to 

program, we suggest you browse through the 
book rack of your local computer store and select 
a book on BASIC programming with examples 

specific to your area of interest-such as 
business programming or scientific 

programming. 



242 OSBORNE 1 USER'S GUIDE 

Starting Microsoft BASIC 

In CP/M, starting Microsoft BASIC can be simple or complex, 
depending on the use you intend for it. Since you're just begin
ning, we'll show you the general manner in which to run 
Microsoft BASIC. 

To start MBASIC, follow the sequence below: 

1. Press the RESET button on the front of your Osborne 1 
computer. 

2. Insert the diskette that contains Microsoft BASIC and 
press I RETURN I as the instructions on the monitor tell 
you. 

3. The Osborne logo will appear along with the words 

Loading Microsoft BASIC 

After a few more moments you'll see a multiple-line 
message, which identifies Microsoft BASIC, and the 
letters t;D. 

Use the above sequence if you just want to load BASIC to play 
around with it or to start working on a new program. If you 
already have a partially or completely finished program, you'll 
want to load it into your computer's memory along with 
Microsoft BASIC. You could follow the above sequence and 
then type: 

4. II] [Q] IE] [[] DProgram name D I RETURN I 
or 

IBJ [ill [ill DProgram name D I RETURN I 

depending on whether you wanted Microsoft BASIC to bring 
the program into memory for examination/modification or to 
begin running it. 



MICROSOFT BASIC 243 

You may encounter a few errors if you attempt to load and/or 
run a program. Some of the more common ones are: 

SYNTAX ERROR IN XX 

This message means that Microsoft BASIC tried to 
run your program but came across an instruction it 
did not understand in line XX. Something in your 
program is not entered in a way Microsoft BASIC 
recognizes; examine the line in question while con
sulting the appendix that gives syntax examples for 
each statement. 

STATEMENT NOT FOUND IN XX 

This message indicates that Microsoft BASIC tried to 
run your program but could not find a line number 
the program referenced. You have a flaw in program 
control and should check your program while 
rereading the section on program control. 

DIRECT STATEMENT IN FILE 

You receive this message if Microsoft BASIC finds 
a statement that is not preceded by a line number 
when it tries to load your program. This error some
times occurs if you create a program using the 
WordS tar editor and accidentally forget to include a 
line number or leave extraneous material in the pro
gram; try reediting the program. 

FILE NOT FOUND 

If you get this message, it means that Microsoft 
BASIC tried to load your program but couldn't find 
it. Check that you have the right diskette and that 
you specified the right program name. 



244 OSBORNE 1 USER'S GUIDE 

Before we learn about the "building blocks" of the BASIC com
puter language, we need to ascertain that we're talking about 
the same thing when we say that you're learning how to 
"program" your computer. 

Before you can build a computer program in BASIC, you must 
know what you are attempting to create. 

A computer is a group of components that work together to per
form tasks. A program is the instructions that tell the computer 
how to perform the task. To be more precise, let's define a pro
gram as: 

the complete set of instructions necessary for a computer to fulfill 
a predefined function (or functions) 

Your goal in this chapter is to learn about the various instruc
tions that comprise the BASIC language-specifically, Microsoft 
BASIC-then to learn how to group these instructions to per
form a complete function or task. More technical information is 
packed into this chapter than any of the previous ones, so we'll 
forewarn you that you'll probably have to put more effort into 
its lessons. Furthermore, since so much detailed information is 
presented here, you will have to decide which examples to try. 
Don't lose sight of your ultimate goal: telling the computer how 
to perform a task or function. 

Lesson 1: Entering Programs 

To understand how to enter a program using Microsoft BASIC, 
you must first understand a little about what makes up a pro
gram. In Microsoft BASIC, the basic component consists of what 
are known as "statements." 



LINE# STATEMENT 

MICROSOFT BASIC 245 

. STATEMENT 

+ 
(optional additional 
statements) I 

(optional colon separates statements 
on line) 

(instruction tells BASIC what to do) 
(line number establishes order of instructions) 

A statement is one complete instruction to BASIC to perform 
some action. The action can be assigning a value to a specific 
variable name, or something more complex such as formatting 
output according to a "mask" you design. When you press the 
carriage return, Microsoft BASIC stores each line for later use. 
A program consists of statements strung together in a particular 
order of execution. 

Generally, each individual statement is on a line of its own. 
Each line must have a number associated with it. When a BASIC 
program "runs," lines execute in numeric order, unless you 
specify otherwise. So BASIC will perform instructions on a line 
numbered 10 before it performs the instructions on a line num
bered 20. For ease in changing a program after parts of it are 
written, you need not use consecutive numbers when you 
assign line numbers. Thus, the following example is a valid 
sequence of BASIC statements: 

10 STATEMENT (executes first) 
30 STATEMENT (executes second) 
32 STATEMENT (executes third) 
33 STATEMENT (executes fourth) 

199 STATEMENT (executes fifth) 

Any number between 0 and 65529, inclusive, can refer to a spe
cific line in Microsoft BASIC. You must use actual digits to indi
cate the line number. Microsoft BASIC doesn't recognize typing 
one as meaning line number one. Note that a space must follow 
the line number to separate it from the instructions that follow. 



246 OSBORNE 1 USER'S GUIDE 

It is also possible to have more than one instruction on a line. 
Each separate statement in such a case is separated by a colon, 
as in the example below. 

LINE# STATEMENTl : STATEMENT2 : STATEMENT3 

In this example, when the line executes: STATEMENTl would 
execute first, followed by STATEMENT2 and STATEMENT3, in 
that order. Some exceptions to this rule occur, and we'll state 
them in the discussion of commands that differ from the norm. 

You can have any number of statements on a single line-each 
set off by a colon-up to a maximum of 255 characters. On the 
Osborne 1, 255 characters are almost two complete display lines 
(remember that you only see 52 characters of a 128-character 
line at a time). The line number counts as part of your 255 
characters. 

In addition to the "program" mode described above, there is 
an "immediate" mode of Microsoft BASIC. You can issue most 
Microsoft BASIC commands directly after you receive the t+D 
prompt. You can even issue multiple commands by setting off 
each with a colon, as described above. Your instructions will 
execute as soon as you press the RETURN key to indicate that 
you have entered a complete line. The 255-character rule also 
applies to the immediate mode, by the way. 

You have available two ways to make Microsoft BASIC perform 
functions for you: 1) immediate mode-instructions execute af
ter you enter a line of valid BASIC commands terminated with a 
RETURN, or 2) program mode-instructions will execute in the 
order of their associated line numbers when you later issue the 
RUN command. 

For ease in entering programs, Microsoft BASIC has a built-in 
command that automatically generates line numbers for you as 
you're programming; this command is called AUTO. You issue it 
in the immediate mode, thus: 

AUTO x,y RETURN 



MICROSOFT BASIC 247 

where x is the line number with which you wish Microsoft to 
begin your entry sequence, and y is the increment to use for 
successive line numbers. Typing: 

[K] [QJ IT] [QJ I SPACE BAR I OJ []J [J OJ []J I RETURN I 

tells Microsoft BASIC to begin with line number 10 and to 
increment subsequent line numbers by 10 (Le., the second line 
number will be 20, the third, 30, and so on). 

When you use the AUTO command, Microsoft BASIC displays 
the current line number and waits for you to enter the instruc
tions for that line. When you complete the line by pressing 
RETURN, BASIC will provide the next line number automati
cally and wait for you to enter the instructions for that line. This 
process continues until you issue a control-C as the first charac
ter on a line, at which time Microsoft BASIC drops out of the 
auto-line-numbering mode and returns to the immediate mode. 
Since you did not enter any valid instructions on the last line 
number displayed, your program won't include it. 

To help you understand the process described above, here's a 
complete example of AUTO being used to program: 



248 OSBORNE 1 USER'S GUIDE 

The program you entered would look this: 

10 PRINT"NOW IS THE TIME" 
20 PRINT"FOR ALL GOOD PEOPLE" 
30 PRINT"TO COME TO THE" 
40 PRINT"AID OF THEIR PARTY." 

Line 50 does not exist; you didn't place an instruction on that 
line-the control-C told BASIC you wanted to quit. 

Before we leave the AUTO command, you need to learn that 
if you omit either of the numbers the command expects, 
Microsoft BASIC will assume you want the default value, 10, 
meaning that: 

AUTO 10 is the same as AUTO 10,10 
AUTO is the same as AUTO 10,10 
AUTO ,10 is the same as AUTO 10,10 

Here the topic of how to number lines when you're program
ming arises. The default values that Microsoft BASIC assumes 
-line numbers starting at 10 and progressing in intervals of 10 
-are a good starting point because you can create any line 
numbers you wish, and the program will execute in the order 
of those numbers. What happens if you enter the following 
program? 

1 PRINT"NOW IS THE TIME" 
2 PRINT"TO COME TO THE" 
3 PRINT"AID OF THEIR PARTY." 

You've accidentally left FOR ALL GOOD PEOPLE out of the 
quote. Since you've used line-number intervals of one, in order 
to tell BASIC to print the missing information you'll have to 
create a line number 1.5. Since Microsoft BASIC only recognizes 
whole numbers to identify lines, you'll now have to reenter lines 
2 and 3 in the above example and assign them higher line num
bers to replace the missing part of the quote. 



MICROSOFT BASIC 249 

You've just learned the first of what we might call 
Murphy's Laws of BASIC Programming: If you need to 
insert two lines between existing ones, you'll find you 
have room for only one. 

Wise programmers choose their line numbers carefully. You 
should follow these rules for choosing line numbers: 

1. Each major section of a program starts on a line 
number that is divisible by 500. 

2. Each major "subroutine" within a program starts on a 
line number that is divisible by 500 and greater than 
10000. 

3. Otherwise, use line numbers with intervals of 10. 

Follow the above rules and you can add extra lines, sections, or 
subroutines at a later date without having to renumber any 
existing line. 

While we're on the subject of line numbers, you might wonder 
how you get rid of an existing line. You have two choices: 

1. Type the line number you wish to eliminate, followed 
by a carriage return (Le., an empty line). 

2. Use the DELETE command described in a later section 
of this manual. 

Okay, you should be all "lined up," ready to learn about 
variables and begin programming. 

Lesson 2: Introduction to Variables 

Your computer has a lot of "memory," but how do you make use 
of that storage capability. 

Actually, when you load CP/M and Microsoft BASIC into your 
computer, you already begin using some of the RAM (random-



250 OSBORNE 1 USER'S GUIDE 

access memory) your system contains. Before we show you 
what variables are and how BASIC maintains them, we want to 
make sure you know what's happening inside your computer. 

If you could have looked inside the Osborne l's memory when 
you first turned it ON, you would have found that nothing had 
yet been stored there: 

nothing's 
happening 
in memory 
right now 

top of RAM memory 

bottom of RAM memory 



MICROSOFT BASIC 251 

If you could have looked inside your memory after you loaded 
and executed CP/M and Microsoft BASIC, you would have 
found this: 

top of RAM memory 

CP/M 

not yet 
being used 

Microsoft 
BASIC 

CP/M bottom of RAM memory 

As you can see, CP/M takes up a little memory at the bottom 
(256 bytes) and some more room at the top-usually between 
4K and 8K, depending on the version of CP/M. Microsoft 
BASIC, which has loaded toward the bottom of memory, uses 
approximately 24K of memory area. The portion of memory 
labeled not yet being used is where your program and variables 
(information) will be stored. 

Generally, you don't need to know exactly where each piece 
of your program is stored. We will point out, however, that 
Microsoft BASIC uses the space immediately following the pro
gram and works its way up as it needs to use more memory. 

A variable is a temporary storage area reserved for information 
used within a BASIC program. As you program, you assign arbi
trary names to each variable, and it is by this variable name that 
you can tell BASIC what to do with the information. 



252 OSBORNE 1 USER'S GUIDE 

We'll show the concept of variables with an example. Suppose 
that you were trying to count the number of three-, four-, and 
five-letter words in this paragraph. If you were counting in your 
head, without the benefit of a pen and paper to make "tally 
marks," you'd probably say the following to yourself: 

"That's no three letter, one four letter, no five letter; that's 
no three letter, two four letter, no five letter; that's one 
three letter, two four letter, no five letter. 

Consider this example carefully. You're using placement and 
identification to keep track of each changing piece of informa
tion. When you're programming, BASIC keeps track of the 
placement, while you use the identification to tell your program 
when to update a piece of information. 

Let's look at how you do this in Microsoft BASIC: 



MICROSOFT BASIC 253 

To start, each variable has a name and is set equal to zero. The 
first time it encounters a variable name, Microsoft BASIC as
sumes that the value is zero, unless you inform it otherwise, but 
it is good programming practice to explicitly declare a value for 
every variable at the beginning of your program. That way 
you'll be sure that the values used are the ones you intended. 

Note that our choice of names is purely arbitrary. Within certain 
constraints, Microsoft BASIC allows you to assign names that 
are any combination of letters up to 40 characters long. Actu
ally, you could have longer names, but BASIC would only use 
the first 40 characters. 

At this point, you only need to know a few rules about choosing 
names: 

1. All names must begin with a letter. 

2. Make your names between 1 and 40 characters in 
length. 

3. Do not start a name with the letters FN. 

4. Do not use special characters (@, #, $, %, ", &, etc.); 
use only uppercase letters and numbers. 

4. Variable names cannot be any word already in use as 
an MBASIC command. 

Now, back to our example. 

We introduced you to the most used BASIC command without 
your realizing it. Remember the statement 10 THREELETTERS 
= O? Did you wonder what the = 0 part of it meant? 

All three statements in our example are called LET statements. 
The general form of a LET statement is: 

LINE# LET X = Y 

As in our example, you need not type LET; the equal sign in the 
statement implies it. The above means: 1) calculate or retrieve 



254 OSBORNE 1 USER'S GUIDE 

variable Y; 2) move its value into the storage location assigned 
toX. 

Acquire the habit of saying to yourself, "New equals old," 
because we're going to confuse the picture a bit with a new 
statement for our example: 

50 THREELETTERS = THREELETTERS + 1 

In the above statement, using the first rule we just stated, 
BASIC will retrieve the value of THREELETTERS, add one, 
and then store the result in THREELETTERS (following the 
second rule). 

LET statements can be simple, like the one above, or they can be 
quite complex, like the one below: 

1010 RESULT = «XPOS*YPOS)- (42/ZPOS»/2 

The above calculation uses algebraic notation. For the most part, 
Microsoft BASIC follows algebraic notation conventions exactly. 
Below are some of the rules of evaluating algebraic expressions: 

1. Do all multiplication and division before addition and 
subtraction operations. 

A+B+C*D -+-
calculated first 

We'll elaborate on "precedence" in a few paragraphs, 
when we introduce some other arithmetic operations. 

2. Calculate the expressions in the innermost set of 
parentheses first. 

(A +( B * C + (D IE) ) ) -t-
calculated first 



MICROSOFT BASIC 255 

3. Work from left to right if none of the above rules 
apply. 

A+B+C+D+E 

+ calculated first 

Using the above rules, if you were calculating the expression 

( 24 * 5 ) / 2 - 5 + 10 

you'd perform the following steps: 

1. multiply 24 times 5 

2. divide by 2 

3. subtract 5 

4. add 10 

(equals 120) 

(equals 60) 

(equals 55) 

(equals 65) 

In Microsoft BASIC, the statement that represents the above 
calculation looks like this: 

200 RESULT = (24*5)/2-5+10 
or 

200 RESULT = 24*5/2-5+10 

While we're concentrating on things mathematical, let's make 
sure you know the basic arithmetic functions a LET statement 
can use, in order of their precedence during calculation: 

1\ represents exponentiation: 2 1\ 2 means "two raised to 
the power of two"; exponents are calculated before 
multiplication and division are performed, but other
wise follow the rules stated above. 

* represents multiplication: 2 * 2 means "two times 
two." 



256 OSBORNE 1 USER'S GUIDE 

/ represents division: 2./ 2 signifies "two divided by 
two." 

\ represents integer division: 2 \ 2 means "the integer 
result of two divided by two," or that any remainder 
is forgotten after the division is completed. Integer 
division takes precedence over addition and subtrac
tion, but not over multiplication and division. 

MOD represents modulus division: 2 MOD 2 denotes "the 
integer remainder left after two is divided by two"; 
modulus division is performed after integer division, 
but before addition and subtraction. 

+ represents addition: 2 + 2 means "two plus two." 

represents subtraction: 2 - 2 signifies "two minus 
two." 

One other" operator" you should know about is called 
"negation." Negation looks like subtraction in that it uses a 
hyphen (-) to indicate its presence. You can tell whether the [J 
implies subtraction or negation by the context in which it is 
used. Look at the example below. 

x-v 
x * (-y) 

subtraction 

negation (parentheses must separate two 
consecutive operators ... one hint that 
negation is implied) 

Before you leave LET statements, note just a few more things 
about them. First, you can freely intermix variables with 
explicitly stated values, as in this example: 

100 RESULT = 45 * VARIABLE2 

You must, however, place a variable on the left side of the equal 
sign. In fact, only one element can go on the left side of the 



MICROSOFT BASIC 257 

equations; this is another requirement of the LET statement: you 
can only assign values to one variable at a time. Thus, none of 
the following are valid statements: 

1045 = RESULT * SECONDRESULT ~ doesn't have a 
variable to the 
left of the 
equal sign 

10 RESULT + SECONDRESULT = 45 ~ you've assigned 
two variables on 
the left of the 
equal sign 

Do You Know the Variable Type? 

So far we've used only examples in which numbers or values 
are stored in variables. Actually, you can specify four types of 
variables in Microsoft BASIC. 

1. INTEGER variables can store only values between 
-32768 and 32767. Integer numbers cannot have 
embedded decimal points. 

2. SINGLE-PRECISION variables can store any positive 
or negative real numbers, including those with frac
tional values indicated by a decimal point (Le., 3.1456). 
Single-precision variables, so-called because they store 
only the seven most significant numbers and print with 
only the six most significant. If you overstep these 
bounds, the result will be incorrect rounding or trunca
tion of information, depending on the operation you 
are performing. 

45 I 7 = 6.4285714 with 9-digit precision, 

but the result is only 6.42857 with 6-digit 
precision 



258 OSBORNE 1 USER'S GUIDE 

The rounding in the above example is correct-at least 
if you're concerned only with the first six digits of 
accuracy-but what would happen if the result stored 
were 6.4285771? Precision errors have a tendency to 
mushroom. Although no error may exist after one 
operation, repeated operations can exaggerate any 
imprecisions. 

3. DOUBLE-PRECISION variables not only store any 
positive or negative real number, but they can also do 
so with 16 digits of accuracy. 

4. STRING variables are a special type. Even though they 
can store certain types of values, they almost always 
store "characters" of information. You assign informa
tion to be stored in a string variable by using quotes 
around the characters you wish to store: 

100 STRINGVARIABLE$ = IIABCDEF" 

The above example places ABCDEF in storage with the 
name STRINGVARIABLE$ assigned to it. 

You can do more than make assignments with string 
variables. In a later lesson, we'll show you how to add, 
subtract, compare, and parse, among other functions, 
with string variables. 

You may wonder how BASIC can know which type of variable 
you're referencing when you use a name. Actually, if you do not 
explicitly state how you want BASIC to store information, it will 
assume that your variables are single-precision. 

To tell Microsoft BASIC the type of variable you desire, append a 
single character to the end of the variable name. The character 
informs BASIC of your intentions. 

# 
$ 

integer variable 
single-precision variable 
double-precision variable 
string variable 



METOO% 
METWO% 
METO% 

YOUANDME 

YOUANDME! 
UANDME! 

HE# 
SHE# 
IT# 

MONEY$ 
DOLLAR$ 
MULLAH$ 

MICROSOFT BASIC 259 

all integer variables 

Note: no symbol means single-precision, 
also 
all single-precision variables 

all double-precision variables 

all string variables 

Once you define a variable using an extra character you must 
continue to employ that character every time you use the vari
able in your program. HE# and HE, for example, are interpreted 
as different variables. 

You might sometimes notice that as you are typing a program, 
Microsoft BASIC supplies an exclamation point or number sign 
that you didn't specify. For instance, typing the following 
statement: 

5440 AND HIKE = 654578 

will appear in any program listing as: 

5440 AND HIKE = 654578! 

If you had declared AND HIKE a single-precision variable, the 
exclamation point would not have appeared after the specified 
number. 

We don't want to bog you down in arithmetic details this early 
in the chapter, so we'll save supplemental details for later. Be 



260 OSBORNE 1 USER'S GUIDE 

forewarned, however, that you haven't learned everything there 
is to know on the subject of Microsoft BASIC's variable notation. 

Print It 

So far you only know how to number lines and assign values to 
variables. Now we'll show you a way to get information out of 
the computer. 

Enter each line of the following program lines, pressing 
I RETURN I after each: 

10 VARIABLE2 = 10 
20 RESULT = 45 * VARIABLE2 

It would be nice to learn the value of RESULT, and it's simple: 
you use a PRINT statement. Enter: 

30 PRINT RESULT 

followed by I RETURN I. If you now run the program-issue "I]] 
and [BJ I]] ill], then press I RETURN I-you'll see 450 appear on 
your screen. Try this new statement. Type: 

01]] IT] I]] I SPACE BAR III] I]] 

and press I RETURN I, then type: 

VARIABLE2 = 10 
RESULT = 45 * VARIABLE2 
PRINT RESULT 

Follow each line with I RETURN I and on line 40 issue "I]] fol
lowed by [BJ I]] ill]. Microsoft BASIC will display the value of 
RESULT Dml and follow that with another [!D. 



MICROSOFT BASIC 261 

PRINT statements can be as complex as LET statements. Instead 
of adding line 30 in the example, we could have made our 
program: 

10VARIABLE2 = 10 
20 PRINT 45 * VARIABLE2 

Don't rush to any conclusions about this last point, though. 
Sometimes it pays to shorten your program by combining LET 
and PRINT statements-as we have just done-sometimes it 
doesn't. Generally, if a value is going to be calculated only once, 
it is okay to calculate it on a PRINT statement. In the interest of 
clarity (does someone else have to be able to understand your 
programs?), however, you should avoid the combining practice. 

Two other aspects of the PRINT statement are important. 
First, if you wish to send something to a printer instead of the 
Osborne 1 screen, substitute the word LPRINT (Line PRINTer) 
for PRINT. For this procedure to work, you must have a printer 
attached to your Osborne 1 and have used the SETUP program 
to specify what kind of printer you're using. In addition, the 
printer must be turned ON and ready to print; don't scoff, 
many so-called "problems" with printers arise because no one 
bothered to turn the printer ON! 

Another significant aspect of PRINT statements is that you can 
use one PRINT command to print multiple items. Each item 
to print is set off by a semicolon or a comma, depending on 
whether you want the items to print with 14 or no spaces be
tween them. Enter the following: 

10 PRINT 1 ;2;3;4;5 
20 PRINT 1,2,3,4,5 

On line 3D, type "@] to get in the command mode, then type 
I]] I]] [E], and press I RETURN I. You should see: 

1 234 5 
1 2 3 4 5 



262 OSBORNE 1 USER'S GUIDE 

Hold on. Didn't we just say no spaces would appear between 
the values if you used the semicolon? True, but Microsoft BASIC 
is leaving a space in the printout for the" sign" (positive/ 
negative) of the number. Since the numbers are positive, and 
BASIC doesn't show a + sign, you should assume from this that 
BASIC exhibits only negative signs unless you explicitly tell it to 
display the positive sign for a value. In addition, when you print 
numbers, each number is always followed by at least one space, 
even if you use the semicolon. 

Let's look at the use of the comma in a PRINT statement a little 
more carefully, too. Enter the following: 

10 PRINT 00001,00002,00003,00004,00005 
20 PRINT 10000,20000,30000,40000,50000 

On line 30, issue 1\ []], and type I]] I]] [ill and press I RETURN I. 
You'll see: 

12345 

10000 20000 30000 40000 50000 

If you count carefully, you'll find that each new item starts 14 
spaces after the preceding one. Regardless of the length of 
the item, the numbers print at the beginning of 14-character 
columns. 

Some final tidbits about the PRINT statement: for the word 
PRINT, you can substitute a question mark. This saves typing 
four additional characters. Also, Microsoft BASIC can under
stand PRINT, even if a line number doesn't precede it. Enter 
[1J 0 [[] * [I] @] followed by I RETURN I. You should see the result . 
just as before. This last feature is handy when you're trying to 
calculate a value but don't want to write a program to figure it 
out. Think of this feature as an expensive calculator. 



MICROSOFT BASIC 263 

Remarks 

Sometimes you merely want to insert into a program a 
comment-something that suggests what is happening but that 
does not appear to BASIC as an instruction to do something. 
For such comment insertions, use the REM (remark) statement: 

10 REM This is the start of the program 

It is wise to use plenty of remarks in your program when you 
are still building it-you can take them out later if the program 
starts to become large or cumbersome. 

You can add remarks to lines that contain instructions: 

10 PRINT HRSi:PRINT SEeS:' Tell user how much time 
has expired 

What?! We pulled three tricks on you in the above example: 1) 
we substituted a D for REM, 2) we put three instructions on 
one line (two PRINTs and one REM); and 3) we made the hours 
(HRS) and seconds (SEeS) print together because we ended the 
first PRINT statement with a semicolon. 

The first trick is the same as replacing PRINT with a question 
mark, and Microsoft BASIC recognizes it as a valid substitution. 

To perform the second trick, set off each statement with a colon. 
Thus, our example is the equivalent of: 

10 PRINT HRSi 
11 PRINT SEeS 
12 REM Tell user how much time has expired 

The third trick should make sense to you. Since the semicolon 
-when used between items to be printed-inserts no spaces 
between the items I the semicolon will perform the same func
tion, even if the items to print are in different statements; the 
same is true of the comma. 



264 OSBORNE 1 USER'S GUIDE 

If you're concerned that BASIC is complex and you have too 
many things to remember, don't worry. We've already intro
duced about ten percent of Microsoft BASIC to you, and this 
fraction of the language will probably account for over half of 
your BASIC programming. 

To round out this lesson, we'll teach you some other ways 
to manipulate statements. Type lEI [I] ~ I RETURN I, then 
o [QJ III [QJ I SPACE BAR I []] [[J I RETURN I, and enter the following 
program: 

PRINT"The Osborne 1 is a great computer." 
PRINT"lt only costs:" 
SOFTWARE= 1400 
PRICE=1795 
PRINT PRICE-SOFTWARE 
END 

When entered, issue 1\ /]] and ffiJ [QJ lEI, then press 1 RETURN I. 

Already you've encountered two new statements: 

NEW erases from memory any previously existing 
program. Use this with caution! 

END tells Microsoft BASIC that it has come to the end 
of a program. For reasons that will become appar
ent later, this should be the last statement every 
program you write executes. 

Take a close look at what the program printed on the screen. Are 
you happy with the results? We aren't: there's no dollar sign in 
front of the 395, and the price really should be on the line where 
It only costs: is. Is there any way to make the program function 
the way you want without having to type it all again? 

To this question there is a reasonable answer. Type [g OJ [[] III 
followed by I RETURN I. Microsoft BASIC should redisplay your 
program. Type [g OJ [[] III I SPACE BAR 1 []] [[J followed by 



MICROSOFT BASIC 265 

1 RETURN I. Microsoft BASIC should display line 10 of your pro
gram. Type II] OJ [[J [!] 1 SPACE BAR 1 CD I]] B @] I]] followed by 
1 RETURN I. Microsoft BASIC should display lines 10-30 of your 
program. 

NOTE 

To make the listing of your program, go to your printer 
instead of to the screen, issue LLIST instead of LIST. This 
construct is similar to the LPRINT statement described 
earlier. 

Okay, so now you can relist your program to see what Microsoft 
BASIC thinks is in it. How do you change it? 

You can enter in new lines as necessary, so let's change the way 
the end of the program functions. Type the following, remem
bering to complete each line with a 1 RETURN I: 

45 REALCOST = PRICE - SOFTWARE 
50 PRINT REALCOST 

List your program again to make sure that the changes are made 
correctly. Run your program again to ascertain that it works 
the same way. Does it? Good, now proceed to make some 
"cosmetic" changes. Type: 

II] @] [] [!] I SPACE BAR I []] I]] I RETURN I 

You should see the line number (20) and nothing else but your 
cursor. Microsoft BASIC has retrieved line 20 from memory and 
is now waiting for you to issue one of the "editing" commands 
it recognizes: 

SPACE: moves cursor forward one character and 
shows previous character. 



266 OSBORNE 1 USER'S GUIDE 

LEFT ARROW: moves cursor backward one character 
but does not erase any characters. 

I: tells Microsoft BASIC to begin 
"inserting" characters at the current 
cursor position. All characters to the 
right of the cursor will "push ahead" to 
make room for the new characters you 
enter. 

ESC: ends the insertion of characters and 
resumes normal editing. 

X: places cursor at the end of the current 
line and allows you to add to that line. 

D: deletes the character at the current cur
sor position. So that you can tell deleted 
characters from retained ones before 
you execute the command, BASIC dis
plays deleted characters in backslashes. 

H: deletes all characters from the current 
cursor position to the end of the line. 

Schar: typing S followed by another character 
tells Microsoft BASIC to go to the 
next occurrence of the character; the 
cursor positions just before the next 
occurrence. 

Kchar: deletes all characters from the current 
cursor position to the next occurrence of 
the character specified. 

C: replaces the next character in the state
ment with the next character you type. 



MICROSOFT BASIC 267 

RETURN or E: ends editing of the current line with all 
changes being used. 

Q: quits editing of the current line without 
implementing the changes you may 
have made to the line. 

L: lists the remainder of the line and 
repositions the cursor at the beginning 
of the line. 

A: restarts the editing of a line; useful 
when you've made some changes you 
want to "take back." 

Don't worry too much about memorizing the above commands. 
Eventually they'll be normal to you, as each single-letter com
mand implies the editing function (C, Change; D, Delete; 
L, List). If you've learned WordS tar, the actual functions 
performed should seem quite natural to you. 

With the above commands in mind, return to that program with 
the pricing problem. We want to add a semicolon to the end of 
line 20 so that the price prints to the right of the It only costs: 
element. Type the following sequence to do so: 

[I] [Q] OJ II1I SPACE BAR II]] [QJ 
[8J 
o 
I RETURN I 

Now rerun the program and make sure it works as you want it 
to. It should look better, but still not correct. Where's the dollar 
sign? Change that line again; the sequence of commands you 
type this time is: 

[I] [Q] OJ II1I SPACE BAR II]] [QJ 
[§J[J[§J[J 
OJ [!] I ESC I·I~ R-ET-U-RN---'I 



268 OSBORNE 1 USER'S GUIDE 

You just inserted a space and a dollar sign at the end of the in
formation to print. Run the program one more time to make 
sure that it works. 

Now get rid of a line by using the DELETE statement. Type 
[QJ W [I] wIT] w I SPACE BAR II]] [QJ. Now list the program; line 
60 should be missing. DELETE works as does LIST, although it 
always requires a single line number or a series of line numbers. 

The subject of line numbers evokes Murphy's Laws of Program
ming, one of which states that if you need to insert two lines 
between two others, you'll only have room for one. The people 
at Microsoft must have heard of Murphy, because they've 
provided a RENUM command, which renumbers lines. Type 
[[] w em [QJ ~ I SPACE BAR I OJ [QJ [J OJ [QJ [J I]] [QJ, and press 
I RETURN I. Now list your program. You should see: 

10 PRINT"The Osborne 1 is a great computer." 

30 PRINT"lt only costs: $"; 

50 SOFTWARE = 1400 

70 PRICE = 1795 

90 REALCOST = PRICE - SOFTWARE 

110 PRINT REALCOST 

Notice that line 45 has been renumbered with the same multiple 
(20) as the rest of the lines. The components of the RENUM 
command are: 

RENUM #1 , #2 , #3 

where #1 is the first number to use in the new sequence; 
#2 is the first current line number to change; 
#3 is the increment to use for numbering lines. 

You can omit any of the three, but be sure to use a comma 
to show its place if you are omitting only one or two of 
the components. 



MICROSOFT BASIC 269 

Despite all the abilities of the Osborne 1, there are a few things 
you cannot do: 

• use renumbering to rearrange the order in which 
statements occur, and 

• create numbers greater than 65529. 

You'll learn later about other statements, such as GOTO and 
GOSUB, that reference line numbers. If the line numbers these 
other statements reference exist, RENUM automatically changes 
the references. 

Some Cleanup Instructions 

You've now completed two of the 13 topics we want to present 
concerning Microsoft BASIC. So you have something to "play" 
with for the remaining lessons, make sure you know how to 
save your program for later use. 

We're assuming that you have your Microsoft BASIC diskette in 
driveA. Type: 

and press / RETURN /. Note that your program's name 
(PROGRAMl) must be enclosed in quotes. To save the program 
on drive H, type: 

and press / RETURN /. 



270 OSBORNE 1 USER'S GUIDE 

Lesson 3: Control Structures 

You know about variables, line manipulations, printing of infor
mation, arithmetic operations, and the LET statement. These 
attributes comprise about half of most simple programming 
chores in BASIC. 

What you don't yet know is how to make BASIC execute only 
sections of a program. We'll call this "forced execution" "control 
structures" because you are creating a program structure that 
controls which statements to execute and which not to execute. 

You want to retrieve that program you've been working on. 
Type: 

and press I RETURN I. Next type II] ITJ []] IT] followed by I RETURN I 
to verify that the program loaded correctly. This exercise is more 
for your benefit than anything else, as your Osborne 1 usually 
reports any problems it encounters in loading a program file. To 
give yourself some space to work, renumber the program again: 

ffi] [II ffi] [[J [01 SPACE BAR III] [Q] [Q] [J II] [Q] [J II] [Q] 

I RETURN I 

The result of this command is that your program now starts 
with line number 100, and each succeeding line number is in 
increments of 10. 

Add the following to your program: 

10 REM This is the new start of the new program 
20 GOTO 100 
30 END 

Notice the END statement in line 30. If Microsoft BASIC sees 
this statement, the program stops executing. Notice also the 



MICROSOFT BASIC 271 

@J,II,llml statement in line 20. Since Microsoft BASIC executes 
a program by looking at line numbers in order, it will see GOTO 
100 before it sees END. The GOTO statement forces execution 
to take place at the line number indicated, so Microsoft BASIC 
never reaches line 30. Verify this by running the program; it 
should still work as before. 

Just for fun, type 160 GOTO 10, and press I RETURN I. Now run 
the program. The program goes around and around, printing 
the same message on the screen. Your program is now in an 
"infinite loop," so named because there is no possibility that the 
program will come to an ending place-it merely keeps on going 
back to the beginning and repeating the same thing over and 
over again. Depending on what you're trying to do, infinite 
looping can be both useful and frustrating. 

Want to stop the looping? Issue 1\[gJ to tell Microsoft BASIC to 
interrupt what it is doing and return control back to you. You 
will see a message such as , to indicate what line 
number Microsoft was executing when you stopped it. Now 
type: [gJ@][illm (for continue), and press I RETURN I. The mes
sage resumes where it left off. Issue 1\ [gJ to stop again. 

Although that exercise was interesting, all you've learned so 
far is to command Microsoft BASIC to do something, period: 
"forced execution." 

Another type of execution is called "conditional": execution 
resumes at a location dependent upon what "condition" 
Microsoft BASIC encounters. Let's examine this idea more 
carefully. 

"If I were rich, I'd buy a computer": that statement exhibits con
ditional execution. If you are rich, you'll buy a computer; if 
you're not rich, the implication is that you won't. Let's add this 
construct to our program: 

160 END:'CANCEL THE CONTINUOUS RUNNING 
20 RICH=1 



272 OSBORNE 1 USER'S GUIDE 

30 IF RICH= 1 THEN GOTO 100 
40 PRINT"You can't afford a computer!" 
50 PRINT"But it doesn't take much to buy an Osborne 1." 
60 GOTO 110 

Run your program now. It still does the same thing, because at 
line 30 Microsoft BASIC "tests" to see if RICH=l or not. If that 
statement is true, then execution proceeds at line 100; if not, ex
ecution proceeds with the next line, 40. Now change line 20 to 
read RICH= 0 instead. What happens when you run the pro
gram now? It executes lines 40-60, skips line 100, and executes 
lines 110-160. 

If you don't believe what you just read about which line num
bers were executed and which were not, we'll teach you a trick 
you can use to verify which lines BASIC executes. Issue 
IT] ffi] @] [ill (for trace on), and press 1 RETURN I; then type 
[[] [ill [ill, and press 1 RETURN I. You should see: 

[10] [20] [30] [40] You can't afford a 

computer! [50] 

But it doesn't take much to buy an Osborne 1. 

[60] [110] It only costs: $ [120] [130] 

[140] [150] 395 [160] 

Each of the bracketed numbers is a line number that executed. 
Although the example above clutters up the display, it allows 
you to verify exactly what Microsoft BASIC is doing at any point 
in the program. You might not need this facility now, but when 
your program becomes difficult to follow, TRON is a handy tool. 
To turn this feature off, type IT] ffi] @] [I] [I] (for trace off) 
followed by a 1 RETURN I. 

The complexity of the IF test is up to you. The tests you create 
work about the same way as does the LET statement, introduced 
earlier. For example, the following is a valid IF test: 



MICROSOFT BASIC 273 

IF «RICH=l) AND (POOR<>l» THEN 100 

Notice the use of parentheses to force BASIC to evaluate certain 
portions of the statement before others. Also, any of the "logical 
operators" that follow can be used: 

<> 

<= 
=> 
> 
< 
AND 
OR 

not equal to 
equal to 
less than or equal to 
greater than or equal to 
greater than 
less than 
both subequations must be true 
one of the subequations must be true 

The last two possibilities may be past your understanding at 
this point, but don't worry-we'll return to them at an 
appropriate time. 

We want to show you one more trick concerning the IF test. 
Enter the following replacements for lines 20 and 30: 

20 RICH=1 
30 IF RICH THEN 100 

We're using a lot of shorthand here. First, the test is missing! 
The reason this trick works is because Microsoft BASIC 
evaluates the entire expression between the IF and the THEN; 
if the expression is equal to zero, then the expression is false; 
if the expression is not equal to zero, the expression is true. To 
BASIC, a value of zero is always "false," while any other value 
is "true." Another trick is that we've left off the GOTO in line 
30. In this example, the context implies GOTO. 

One other attribute of IF before we move on: you can insert any 
valid expression between IF and THEN, and any valid BASIC 
statement can follow THEN. Thus, 

30 IF RICH<>l THEN END 

is a valid statement. 



274 OSBORNE 1 USER'S GUIDE 

A variant of the GOTO statement you learned earlier is the • 
GOSUB statement; GOSUB stands for "go to subroutine and 
return." GOSUB means almost the same thing as GOTO, but a 
GOSUB always comes back to the statement that follows it. You 
might compare the GOSUB statement to a GOTO boomerang 
-it always comes back. Let's kill two more birds while learning 
one new command: 

5 GOSUB 1000 
1000 PRINT CHR$(261 

1010 RETURN 

N ow run your program. The screen should clear, then your 
message should appear. Line 1000 clears the screen; for the time 
being, never mind how. Line 5 tells BASIC to execute statements 
that begin with line 1000, but to remember to return when it 
has finished the "subroutine" beginning at line 1000. Line 1010 
contains the command that tells BASIC that your subroutine is 
complete and it's time to return to the main program's next 
statement. 

In other words, GOSUB directs BASIC to execute a new section 
of the program-so far, just as GOTO does-but when BASIC 
encounters the magic word RETURN, GOSUB instructs BASIC 
to come back and begin executing the instructions that immedi
ately follow the original GOSUB. Sound confusing? It shouldn't, 
especially since you already know the statements to use to check 
what's happening: turn the trace function on, run your pro
gram, and list it. 

NOTE 

You won't see the first two statements that execute because 
the screen clears after they've been passed; sorry about 
that, but let's move on to another control structure: 
FOR/NEXT loops. 



MICROSOFT BASIC 275 

So far, the control structures we've introduced are simply "go 
from here to there (and maybe return)" types. The FOR/NEXT 
construct is an example of a structure called "looping." 

A loop is a section of code that repeats. Remember the "endless 
loop" you created earlier in this lesson using the GOTO state
ment. That program performed instructions, then looped back 
to the first one and started over again. We'll do the same thing 
with FOR/NEXT, except we'll tell the computer how many times 
to loop. 

10 FOR LOOP=1 TO 10 
20 PRINT"The Osborne 1 is a great computer." 
30 PRINT"lt only costs: $"; 

50 SOFTWARE= 1400 
70 PRICE= 1795 
90 REALCOST = PRICE - SOFTWARE 
100 PRINT REALCOST 
110 NEXT LOOP 

This new version of our program has some additional qualities. 
First, there is a variable named LOOP involved in the FOR 
statement; there could be others to the right of the equal sign, as 
well. Second, the program instructions ("code") that will exe
cute each time the loop executes are contained between the FOR 
and the NEXT statements. Also, we have indented (using the 
TAB key) the instructions within the loop, so that the actual 
loop becomes more visible to the casual observer. This last point 
is not frivolous. In complex programs, loops often become bur
ied in instructions, where they are difficult to find and check for 
proper functioning. 



276 OSBORNE 1 USER'S GUIDE 

Several components make up the FOR and NEXT statements; 
we want to be sure you understand each part: 

FOR variablename = startnumber TO endnumber 

NEXT variablename 

Variablename is a name you give the loop; 
startnumber is a starting value for the loop count; and 
endnumber is the ending value for the loop count. 

Every FOR/NEXT loop must have a variable name associated 
with it. During each iteration of the loop, the current loop 
number will be the value of that variable, and you can use that 
variable in calculations if you want. Type: 

FOR LOOP= 1 TO 10 

VALUE = 2 * LOOP 
PRINT VALUE 

NEXT LOOP 

You have to specify the starting and ending count, although 
another variable can set these values. 

FOR LOOP=STARTTO LAST 
VALUE = MULTIPLIER * LOOP 
PRINT VALUE 

NEXT LOOP 

Make sure, however, that you initialize (set the starting values 
of) the variables used for the starting and ending count before 
you get to the loop. A loop will not execute if its ending count 
is lower than its starting count. A special circumstance arises 
when the two counts are the same: the loop executes once. Be
cause the starting count is not greater than the ending count, 
execution of the loop proceeds. When execution reaches the 
NEXT statement, the loop-counter variable has equalled the end 
value; therefore execution stops. 



MICROSOFT BASIC 277 

You may "nest" loops within loops. Each loop must be wholly 
contained within another-they cannot "overlap." Also, each 
loop must have its own name. Try entering and executing the 
following program; but before you do, see if you can guess what 
will print at each step of execution: 

10 FOR LOOP1=1 TO 10 
20 FOR LOOP2= 1 TO 1 0 
30 FOR LOOP3= 1 TO 10 
40 PRINT LOOP1 ,LOOP2,LOOP3 
50 FOR DELAY = 1 TO 100 
60 NEXT DELAY 
70 NEXT LOOP3 
80 NEXT LOOP2 
90 NEXT LOOP1 
100 STOP 

We sneaked a new statement into that last program example, by 
the way: STOP. STOP performs the same function as does typ
ing a control-C while a program is running: it stops the program 
temporarily. To continue the program (if there's more, which 
there isn't in this example), simply issue CONT and press 
RETURN, and execution picks up with the statement following 
the STOP statement. 

STOP is handy to use when you're trying to figure out why a 
program doesn't work correctly. Insert a few STOPs into your 
program, and, when execution stops, check the values of the 
variables in your program by using the PRINT command in the 
immediate mode (without line numbers). Then type CONT to 
resume where you left off. 



278 OSBORNE 1 USER'S GUIDE 

Lesson 4: Getting Around on the Diskette 

You already know how to save and load BASIC programs. Before 
continuing with our programming examples, we want to teach 
you a few new tricks to do with the SAVE and LOAD state
ments, and briefly introduce some other commands for manipu
lating files on a diskette. 

In CP/M, to get a directory of the files on a diskette, type DIR, 
and press RETURN. Sometimes you use the asterisk and 
question mark to search for certain types of names (as in DIR 
*.BAS). In Microsoft BASIC, the FILES command does the same 
thing. The only difference you must learn between FILES and 
DIR is that you must specify any additional factors enclosed 
within quotation marks. The chart below shows equivalent 
commands in BASIC and CP/M. 

BASIC 

FILES <cr> 
FILES "A:" < cr> 
FILES "B:*.BAS" <cr> 

< cr> stands for RETURN. 

CP/M 

DIR <cr> 
DIRA: <cr> 
DIR B:*.BAS <cr> 

You can use the FILES command within a BASIC program. 

To erase a file in CP/M, you use ERA; in Microsoft BASIC, use 
KILL. Despite its violent name, the command works in the same 
benign way as FILES does: 

KILL IIA:*.*" <cr> 
KILL IIYOREFILE. BAS" < cr> 
KILL IIB:*.BAS" <cr> 



MICROSOFT BASIC 279 

The Microsoft BASIC equivalent of the CP/M REN command, 
NAME AS, works a bit differently: 

BASIC 

NAME "OLDFILE" AS 
"NEWFILE" 

CP/M 

REN NEWFILE= 
OLDFILE 

We told you earlier that almost universally in computing, "new 
= old" is true, remember? We suppose Microsoft BASIC must be 
the exception that proves the rule, since it does just the oppo
site. Fortunately, the syntax of the command suggests the order 
in which the file names should appear. 

The next command we'll introduce, MERGE, is often handy 
when you're creating large programs. 

MERGE "programname" <cr> 

MERGE takes the program file you specify and "merges" it with 
the program in memory. Where line numbering corresponds be
tween the two programs, the program being merged from the 
diskette will replace the old program. Where line numbering 
diverges between the two programs I the new program will 
simply be added to the existing program. Keep two caveats in 
mind: the file to be merged must have been saved as an ASCII 
text file (see below), and if the MERGE command is used within 
a program, execution stops and you will see the Ok prompt 
again (this is not true if you use the MERGE option of the 
CHAIN command; see the Reference Guide for details). 

Suppose you want to return to CP/M. Simply type SYSTEM and 
press RETURN. Be careful with this command, however, be
cause once you issue it, you have no way to recover any data 
your program may have stored in memory. 

Earlier in this lesson we promised you some more information 
about the MBASIC SAVE command and ASCII text files. When 
we first introduced the SAVE command, we did not tell you that 
three different formats enable you to save your programs: 



280 OSBORNE 1 USER'S GUIDE 

ASCII text 
binary 
protected binary 

"ASCII text" refers to a standard method by which your pro
gram saves everyone of its characters on the diskette. You 
specify this option by appending a comma and an A to the 
SAVE command: 

SAVE IIfilename",A I RETURN I 

You can edit ASCII text files by using the N option in WordStar, 
but this type of file takes up more room on the diskette than the 
other types. ASCII, which stands for American Standard Code 
for Information Interchange, is a numbering system in which 
each different character h.as a different pattern of bits used to 
represent it; it is the format in which most computers store text. 

Microsoft BASIC does not store your program in memory as 
ASCII text. Instead, it converts each command it recognizes into 
a single "special" character. For instance, it stores the command 
PRINT in memory as a 26, or 00011010 in the numbering 
method computers understand. This computer format is called 
"binary" because it uses the binary representation (so named 
because it involves counting by twos) to store each command. 
Text and variable names within a program are stored in ASCII 
format; but if you try to coax CP/M to print a copy of this file, all 
kinds of "weird" things will happen because of those binary 
commands. The binary format will be used to store your pro
gram files if you do not specify an option at the end of the 
SAVE command: 

SAVE "program" I RETURN I 

A third method to save programs is called "protected binary." 
This method uses a special "encrypted" form of the binary 
instructions, so that after the program has reloaded into the 
computer's memory, the program cannot be examined, only 



MICROSOFT BASIC 281 

executed. DO NOT SAVE A PROGRAM IN THIS FORMAT 
unless you have copies in an unprotected format; otherwise, 
you'll never be able to make changes. 

SAVE "program" ,P I RETURN I 

We've come to the end of another section. By now you should 
be able to enter some simple BASIC programs, change them, 
store them on diskette, and retrieve them. We're now going to 
start introducing commands that build upon the base you 
already have. We strongly suggest that you try writing a simple 
program of your own without any additional instructions from 
us. When you pass this intermediate test, you'll want to plunge 
ahead. If you can't write a simple program yet, we suggest you 
review the material already presented before you continue. 

Lesson 5: Getting Information to a Program 

If BASIC were restricted to the commands we've presented, it 
wouldn't be very flexible. 

BASIC is an "interactive" computer language. Interactive means 
that BASIC presents some information, you interact with-or 
react to-it, and BASIC presents some more information. So far 
we haven't shown you any ways-with the exception of typing 
"C-to make BASIC pay any attention to what you're doing 
while a program is running; but we're now going to teach you 
how to do it. 

The PRINT command sends information to your Osborne l's 
screen. To get information from the Osborne keyboard, BASIC 
uses the INPUT command: 

INPUT variablename 

If the type of the variable indicates that it stores a number-as 
in integer, floating point, and double-precision variables
BASIC will wait for you to type a number when it encounters 



282 OSBORNE 1 USER'S GUIDE 

the above statement. BASIC indicates it is waiting for you to en
ter something by displaying a question mark. If you enter some
thing other than a valid number, an error message (?Redo from 
start) will show up, and the question mark will reappear. Press 
RETURN to tell BASIC that you've finished entering a value. 

You can also employ string variables-variables that contain let
ters and symbols as well as numbers-in an INPUT statement. 
To indicate that you are finished entering information into a 
string variable, press RETURN . 

A special version of the INPUT command combines the PRINT 
and INPUT functions: 

LINE INPUTIIWhat is your name?" iNS 

The above example displays the message What is your name? 
first, and then waits for you to enter a name. Notice that the 
question mark is contained within the message to be displayed, 
as use of the LINE INPUT statement does not automatically 
supply it. 

You can specify multiple variables with a single INPUT 
statement: 

INPUT NAMS,DATES,AGE 

In this case, you must type the information in the order the pro
gram expects it-name first, date second, age third as in our 
example-and you must separate each distinct item from the 
others by using a comma, not RETURN. Use RETURN to tell 
BASIC you're done entering all items. If you are going to employ 
this last form of the INPUT statement, make sure you use a 
message that explains exactly what users are to do; otherwise, 
they may not enter the information the way BASIC expects it. 

10 PRINT"Sample Multiple Data Entry Program" 
20 PRINT 
30 PRINT"Enter the two pieces of information" 



MICROSOFT BASIC 283 

40 PRINT"requested below in the order requested," 
50 PRINT"each set off by a comma. Press RETURN" 
60 PRINT"when done." 
70 PRINT 
80 INPUT "Enter NAME and AGE: ";NAM$,AGE 
90END 

NOTE 

Lines 20 and 70 use a simple trick in BASIC-a PRINT 
statement with nothing else on the line creates a blank line 
on the display because BASIC issues a RETURN when it 
comes to the end of a PRINT statement and doesn't find a 
comma or a semicolon telling it to stay at a location. 

What if you want to insert a comma into a string variable? You 
use a second variation of the INPUT command: 

LINE INPUTIIEnter CITY and STATE: ";CITYSTATE$ 

LINE INPUT accepts any character (up to 254 characters in all) 
in a string up to the terminating RETURN. If the words LINE 
INPUT are immediately followed by a semicolon-before the 
prompt message and variable name-pressing the RETURN key 
to terminate the input will not cause the cursor to move down a 
line, as normally happens when you press RETURN. 

You now know how to get information and assign it to a vari
able. All of the methods so far described have the drawback that 
they require you to press the RETURN key when entry of infor
mation is complete. Even if you type only one character, you 
have to press two keys. 

One way to cause BASIC to respond immediately to key presses 
is to use the INPUT$ command: 



284 OSBORNE 1 USER'S GUIDE 

CHARS$= INPUT$(NUMBER) 

where CHARS$ is the variable to store the input, and 
where NUMBER is the number of characters to expect. 

As soon as BASIC receives the expected number of characters, 
program execution resumes with the next statement. 

If you only want to check to see if a user has added some other 
character, use the following routine: 

1000 'CHECK FOR CHARACTER ENTRY 
1010 'CHAR= 1 if character is ready, =0 if none 
1020' 
1030 CHAR=O:CHAR$='''' 
1 040 CHAR$= INKEY$ 
1050 IF CHAR$<>""THEN CHAR=1 
1060 RETURN 

The key new statement here is the INKEY$ command, which 
searches to see if anyone has entered a character. If so, CHAR$ 
will contain that character upon execution of line 1040; if no 
character is ready, CHAR$ will remain unchanged; we set it to 
nothing in line 1030. 

The routine listed above is designed for use as a subroutine. 
Every time you wish to check to see if a character is entered, 
you add a GOSUB 1000 command to your program. When the 
subroutine has executed and control has returned to the main 
portion of your program, the variable CHAR will have a value 
of 1 if a character has been entered, or 0 if no character is ready. 
You could then use the IF statement you learned earlier to con
ditionally execute portions of your program, depending on 
whether or not a character was typed. 

Let's leave the subject of user-typed input and consider a differ
ent method of getting information to your program. 

Wouldn't it be nice if you could "store" some data in a program 



MICROSOFT BASIC 285 

and then look at it as you needed it? Well, you can. First, you 
need to store the data in DATA statements: 

DATA lO,lO,l/Now, what is the",time,lOO 

The above statement has five pieces of information: 

information 

10 
10 
"Now, what is the" 
time 
100 

type 

numeric 
numeric 
string 
string 
numeric 

A comma separates each piece of data from the next. Notice that 
the third entry has a comma embedded in it and is surrounded 
by quotes. Use quotes to surround information destined for 
string variables only if you have a comma, an extra starting or 
ending space, or a colon in the data. 

To use the information in a DATA statement, you must "read" it; 
the READ statement performs this task. 

READ VALUEl, VALUE2,CHARl$,CHAR2$, VALUE3 

is a valid READ statement for the data in our example. You don't 
have to use all of the data in one READ statement. BASIC keeps 
track of how much of each DATA statement you've used, and 
will use the next unused data item each time it encounters a 
READ. The following is a valid method of using DATA and 
READ: 

1 0 DATA Now, is, the, time 
20 DATA for, all, good, people 
30 DATA to, buy, Osborne, 1's 
40 READ INF01 $,INF02$,INF03$,INF04$ 
50 READ INF05$ 
60 READ INF06$,INF07$ 



286 OSBORNE 1 USER'S GUIDE 

70 READ INF08$,INF09$,INF01 0$,INF011 $,INF012$ 
80 PRINT INF01 $+" u+INF02$+" UINF03$+" "+INF04$; 
90 PRINT" u;INF09$+" u+INF010$+" u+INF011$+" 
u+INF012$ 
100 END 

NOTE 

As has been our habit in this chapter, we have introduced 
a new concept in the context of a programming example. 
Note that lines 80 and90 have "concatenated" (brought 
together) items to print. Try the example and note that a 
space is inserted between each word and the next when the 
word is displayed. 

You can tell BASIC to forget where the next data item is located 
and to go back to the start of, or other location in, the list by 
using the RESTORE statement in your program. RESTORE by 
itself tells BASIC to start at the first DATA statement it encoun
ters. You can also specify a line number following RESTORE, in 
which case the DATA statement beginning on the line number 
specified becomes the location of the next data items the pro
gram will use. 

This lesson has taught you new things about getting informa
tion into the computer. We'll close the section by briefly intro
ducing a few more items about getting information out of 
the computer. 

The Osborne 1 stores 128 characters on each line and then 
shows you 52 of them, but Microsoft BASIC was designed for 
use on terminals with 80-character line widths. Therefore, every 
time BASIC detects that it is doing something past column 79, it 
"wraps around" to the next line. You can change this" default 
value" by using the WIDTH statement: 



MICROSOFT BASIC 287 

WIDTH NUMBER 

where NUMBER is the value you want as the new screen 
width. The two values that make the most sense are 52 and 128. 
As long as your printer can print more than 80 characters on a 
line, you can also change the width of lines that appear on your 
printer by typing: 

WIDTH LPRINTER NUMBER 

Using the commands we've given you to work with so far, in 
order to display spaces on the screen you must enclose them 
within quotes in a PRINT statement. Two ways are available to 
circumvent this requirement: 

PRINT TAB (NUMBER) 
PRINT SPC(NUMBER) 

Either command will print the number of spaces you specify, 
and you can use either one in multiple-element PRINT 
commands: 

PRINT I/Now" iTAB(30) iI/is" iTAB(5) 

We've saved the hardest command to master for the end of this 
lesson. If you've been experimenting while reading this chapter, 
you've probably noticed that it's not easy to line up the decimal 
places in amounts that contain different numbers of characters. 

PRINT 10:PRINT 12.3:PRINT 14.56:PRINT 17.987 

would appear as: 



288 OSBORNE 1 USER'S GUIDE 

To make printed information appear the way you want it to, you 
use a formatting technique called a "mask." The mask is a string 
expression (it may be a variable) that contains a picture of the 
way you wish tp format information. Here are the elements that 
go into the mask: 

# 
+ 

** 

$$ 

& 
\ \ 

1\1\1\1\ 

represents a digit position 
represents the sign of a digit 
represents trailing minus sign for negative 

numbers 
means leading spaces will be filled with 

asterisks 
represents two digit positions and requests 

that a dollar sign appear at the left side of a 
number 

represents a variable-length string position 
enclose spaces to be printed 
represents the first character of a string 
represents exponential notation 
is a program flag to indicate that an oversize 

number has been printed 
represents decimal point 

Those descriptions probably don't make much sense to you yet. 
Let's show you an example of how to print numbers up to 
$100,000.00 in the dollars-and-cents format: 

PRINT USING II$$#####.##";VARIABLE 

The USING in the above statement is what tells BASIC that the 
information in the following string will be used for the mask. 
Note that the information printed in the above example will 
have leading blanks (spaces) if the number doesn't totally fill the 
format string. 

The number of combinations of the masking elements listed 
above is extraordinary, so you need to experiment with this fea
ture to achieve the results you desire. Use the Reference Guide 
to help you further understand how each masking element 
works. 



MICROSOFT BASIC 289 

Lesson 6: Advanced Variable Use and Functions 

We're going to speed up the learning process a bit by using only 
brief introductions for most of the commands left for you to 
learn. We assume at this point that you are either a proficient 
programmer who is trying to learn the Microsoft BASIC syntax, 
or that you've consulted an outside work to learn more about 
BASIC and what it does. 

If you're a newcomer to computing and have made it this far 
without outside help, GREAT! We are not the final authorities 
on everything, however, and we think some additional help will 
facilitate your learning. A book we think you'll find useful is 
Programming for Poets: A Gentle Introduction Using BASIC by 
Richard Conway, James Archer, and Ralph Conway. Even you 
experts out there will probably benefit from some outside ma
terial, and we suggest Software Debugging for Microcomputers by 
Robert Bruce. 

You're continuing, eh? Okay, buckle up; the pace will be quicker. 

Microsoft BASIC has built-in functions, much like the function 
keys on some hand calculators. These functions are often a 
shorthand way of performing an action or calculation that 
otherwise might take considerable programming effort. Let's 
briefly examine the functions available: 

ABS(NUMBER) 

ASC(CHAR$) 

ATN(NUMBER) 
CDBL(NUMBER) 

CHR$(NUMBER) 

CINT(NUMBER) 

the absolute value of the 
number 

the ASCII value of the first 
character in a string 

the arc tangent of the number 
converts number to a double

precision number 
the character string that has the 

ASCII value of the number 
converts number to an integer 

by rounding 



290 OSBORNE 1 USER'S GUIDE 

COS(NUMBER) 
CSNG(NUMBER) 

EXP(NUMBER) 

FIX (NUMBER) 

FRE(NUMBER) 

HEX$(NUMBER) 

INT(NUMBER) 

LOG(NUMBER) 

LPOS(Nl)MBER) 

OCT$(NUMBER) 

PEEK(NUMBER) 

POS(NUMBER) 

RND(NUMBER) 

SIN (NUMBER) 
SPACE$(NUMBER) 

SQR(NUMBER) 
STR$(NUMBER) 

TAN(NUMBER) 
VAL(CHAR$) 

the cosine of the number 
converts number to single

precision number 
raises e to the power of the 

number 
the truncated portion of the 

number (not rounded) 
the amount of free memory 

available 
the string in hexadecimal 

representation of the number 
the rounded-down integer of 

the number 
the natural logarithm of the 

number 
the current position of the 

printer's printhead 
the string in octal representa

tion of the number 
the value stored at the memory 

location with the address of 
the number 

the current position of the 
cursor 

a random number between 
o and 1 

the sine of the number 
a string of spaces equal in 

length to the number 
the square root of the number 
the string equal to the value of 

the number 
the tangent of the number 
the numerical value of the 

string 

The method by which you use these functions is to assign them 
to a variable: 

VARIABLE = FUNCTION(PARAMETER) 



MICROSOFT BASIC 291 

Make sure that the type of variable you use matches the type of 
function you're using-string variables should be used with 
string functions, for example. 

A second set of functions you'll want to know about are some 
special string functions: 

LEFT$(CHAR$,NUMBER) - used to get the string of 
characters of the number's length from the left-hand side 
of a string you specify. 

RIGHT$(CHAR$,NUMBER) - used to get the string of 
characters of the number's length from the right-hand side 
of a string you specify. 

MID$(CHAR$,STARTPOS,NUMBER) - used to get the 
string of characters of the number's length from the start
ing position in the middle of the string specified. 

INSTR(STARTPOS,CHAR1$,CHAR2$) - used to get the 
position (number) at which the occurrence of the second 
string is duplicated by the first string. 

If you need more information about any of these functions, turn 
to the Reference Guide for a complete description of their use. 

For the most part, we've presented the straightfoward aspects 
of Microsoft BASIC. It's now time to examine some of the 
"sneakier" commands. 

DIMENSIONING VARIABLES: The term "dimensioning" refers 
to the process of telling BASIC ahead of time how much space to 
reserve for a variable. You must do this when you use a variable 
as an array: a table of values all referenced by the same name. 
Say you wanted to maintain a table of values consisting of four 
columns and four rows of information. You could do so by 
assigning the following variable names: 



292 OSBORNE 1 USER'S GUIDE 

VALUEl 
VALUES 
VALUE9 
VALUED 

VALUE2 
VALUE6 
VALUEA 
VALUEE 

VALUE3 
VALUE 7 
VALUEB 
VALUEF 

VALUE4 
VALUES 
VALUEC 
VALUEO 

This could become unwieldy, however, especially if you had a 
large table. In BASIC, you could create this table like this: 

OPTION BASE 1 
DIM VALUE(4,4) 

Your table would now look like this: 

VALUE(l,l) VALUE(l,2) VALUE(l,3) VALUE(l,4) 
VALUE(2,l) VALUE (2,2) VALUE(2,3) VALUE(2,4) 
VALUE(3,l) VALUE(3,2) VALUE(3,3) VALUE(3,4) 
VALUE(4,l) VALUE(4,2) VALUE(4,3) VALUE(4,4) 

Mathematicians will immediately recognize this concept as a 
"matrix." The numbers in the parentheses following the variable 
name are simply the location of that item in the matrix. In 
BASIC, we call this concept an II array," and this particular array 
is a two-dimensional one. 

But what about that OPTION BASE 1 statement-what is it 
doing? Most computers use internal counting procedures that 
begin with zero. The OPTION BASE statement we use before 
the DIM statement sets the internal counting BASIC uses to 
begin at one. 

You must declare all multidimensioned variables by using a DIM 
statement before you attempt to use them in your program. The 
maximum number of dimensions in an array is 255, and the 
maximum number of entries in anyone dimension is 32767. 
Dimensioning does take up memory space, so be careful not to 
get carried away with this concept, or else you might find you 
have little or no room to expand your program. 



MICROSOFT BASIC 293 

You can make BASIC "forget" your dimensioning commands by 
using the ERASE command followed by a list of variable names. 
If you do not use this statement and try to redimension a vari
able, you will get an error message. 

Another method of quickly starting over with variables is to use 
the CLEAR command: 

CLEAR ,topofmemory,stackspace 

Topofmemory is the topmost memory address BASIC should 
use, and stackspace is the amount of stack space (temporary 
information storage) you wish Microsoft BASIC to use. All 
numeric variables are set equal to zero, while string variables are 
set to "null" ('"' indicates "nothing" between the quotes) when 
you use the CLEAR command. 

DEFINING: You can assign a variable type to all variable names 
beginning with a single letter or range of letters by using the 
DEF statements in Microsoft BASIC: 

DEFINT A defines all names beginning with A as 
being integer variables. 

DEFSTR B-C defines all names beginning with Band C 
as being string variables. 

DEFSNG A,Z defines all names beginning with A and Z 
as being single-precision variables. 

DEFDBL A-Z defines all variable names as being 
double-precision variables. 

In general, Microsoft BASIC deals with integer variables the 
most quickly, and with double-precision and string variables the 
most slowly. Your programs will execute more quickly if you use 
integer variables for FOR/NEXT loops and other control struc
tures where possible. 



294 OSBORNE 1 USER'S GUIDE 

OTHER VARIABLE TRICKS: Let's say that you have two 
variables and want to exchange their values. In most BASICs, 
you effect the exchange by entering something like this: 

5 'Initial VALUEs 
10 X=10 
20 Y=20 
30 'Now swap 'em 
40 Z= X:'use dummy variable temporarily 
50 X=Y 
60 Y=Z 

Keeping track of that third, "dummy," variable is sometimes 
difficult, and it certainly masks your real intent: you don't want 
to assign a value to Z; you just want to swap X and Y. Microsoft 
BASIC lets you use one statement to perform the swap: 

SWAP variablel, variable2 

The only limitation of this command is that the variable types 
must match. 

Lesson 7: Advanced Control Structures 

You already know about the IF/THEN structure introduced 
earlier. Let's add some new variations to the control structures 
you know. 

One method of extending IF/THEN is to put multiple statements 
to the right of the test: 

IF test THEN statementl:statement2:statement3 

Each statement following the THEN will execute, in order, 
only if the test condition is true (unequal to 0). 



MICROSOFT BASIC 295 

You can also extend the IF/THEN construct by using the ELSE 
option: 

IF test THEN statementl ELSE statement2 

This structure is useful if you wish to program an "either/or" 
situation. In the above example, if the test proves "true," then 
"statementl" executes; otherwise, "statement2" executes. 

What if you want to test for more than two conditions (true and 
false)? Simple-use the ON/GOTO or ON/GOSUB construct: 

ON value GOTO placel,place2,place3, etc. 
ON value GOSUB placel,place2,place3, etc. 

The "value" encountered directs execution to the "place" that 
corresponds to that value. So, if the value is 1, the first line 
number named ("place1") will be used; if the value is 2, the 
second line number named is used, and so on. When you use 
ON/GOTO or ON/GOSUB, make sure you have a line number 
to go to for every possible value you can encounter. If the value 
is greater than the number of line numbers listed, execution 
will drop down to the statement following ON/GOTO or 
ON/GOSUB. Most programmers put a "trap" either 
immediately preceding or immediately following the 
ON/GOTO/GOSUB construct so that an unexpected value 
is captured and reported rather than allowed to "wander 
off in the program untended." 

The last control structure we'll examine is the WHILE/WEND 
construct. Here is the basic layout of this structure: 

WHILE test 
STATEMENTS 
WEND 

The STATEMENTS in the body of the WHILE/WEND loop will 
execute over and over, in order, until the test is equal to zero. 
This loop structure is similar to the FOR/NEXT loop. Unlike the 



296 OSBORNE 1 USER'S GUIDE 

FOR/NEXT loop, however, the WHILE/WEND structure ex
ecutes a variable number of times. It is important to make sure 
you've provided a way for the test to become false, because 
you may otherwise find that you have coded another 
II endless loop." 

Lesson 8: Disk Files and BASIC 

Even with all the fancy and complicated BASIC commands 
you've learned, Microsoft BASIC wouldn't really be too useful 
without a permanent method for storing and retrieving infor
mation your programs use. One reason we've saved this section 
for last is that the way Microsoft BASIC "talks to" disk files is 
not intuitively obvious to casual observers. 

Two methods exist to store information on a diskette and 
retrieve it: sequential access and random access. A file you 
maintain using "sequential access" is one in which you must 
always start with the first piece of information in the file 
and work your way to the item you want. Watching TV is a 
sequential-access activity-even if you want to watch only 
the last five minutes of a program, the first 25 minutes must 
still play. 

Take an example. Say you are storing the scores of your five fa
vorite football teams on a diskette. One week's scores might be: 

Team 1 45 
Team 2 14 
Team 3 20 
Team 4 21 
Team 5 32 

You might store this in a sequential-access file like this: 

1,45,2,14,3,20,4,21,5,32 



MICROSOFT BASIC 297 

The format in the above example is team number, score, team 
number, score, and so on. To find the score for team 5, you 
must first "read" all the rest of the information in the file that 
precedes it. 

Each piece of data in a sequential-access file is separated from 
the others by a comma. Let's examine the process necessary to 
create a sequential-access file: 

1. "Open" the file to be used (ready it for use). 

2. "Write" information to it. 

3. "Close" the file when you finish adding information. 

Each process above has a BASIC command associated with it. 
Using our football-score example, the following program 
statements would create a sequential-access file: 

100' CREATE A FOOTBALL SCORE SEQUENTIAL
ACCESS FILE 

110' 
120 OPEN "0",#1 ,"SCORES. OAT" 
130 PRINT#1, 1 ,45,2.14,3,20,4,21 ,5.32 
140 CLOSE #1 

The format of the OPEN statement consists of the following 
informa tion: 

• the word OPEN; 

• 0 to write information to a file, or I to get information 
from a file; 

• an arbitrary number assigned to that file (#1 here); and 

• the name of the file to be used. 

The file has an assigned number so you can have multiple files 
all open for use at the same time. Since each file has a different 
number associated with it, Microsoft BASIC knows which file 
you wish to write information to. 



298 OSBORNE 1 USER'S GUIDE 

In fact, line 130 in our example shows how you specify how to 
write to a sequential-access file. Note that-except for the #1-
the write-to-file statement takes the same form as the PRINT 
statement. When Microsoft BASIC sees a number sign followed 
by a number in a print statement, it assumes that you are 
referencing a file and checks to make sure it is open for use. 

Okay, you now know how to create and write information to a 
sequential-access file-how about getting information out of it? 
Simple-you can substitute the following lines in the above 
program: 

120 OPEN "IIJ,#1,"SCORES.DATIJ 

125 FOR LOOP= 1 TO 5 
130 INPUT #1,TEAM,SCORE 
135 PRINT TEAM, SCORE 
1 37 NEXT LOOP 

The lines above read a team number and score from the file and 
display them on your screen. 

Next you need to know how to add information to a sequential 
file . . . it's not as easy as you may think. To add information, 
follow these steps: 

1. Open the file you want to add to in the I (for input) 
mode. 

2. Open a second file with a "dummy" name in the 0 (for 
output) mode. 

3. Read the data from the first file and write it to the 
second. 

4. Add your new information to the second file. 

5. Close the second file. 

6. Close the first file and use the KILL command to 
delete it. 



MICROSOFT BASIC 299 

7. Rename the second file using the NAME AS command. 
Make sure that it ends up with the same name as the 
first file (the one you were adding to). 

This procedure can be complicated, and the limitation of disk
sto~age. space available will compound your problems if you are 
m~I~tam~ng a lot of data in a sequential-access file because your 
ongInal fIle cannot be larger than 46K for the above scenario to 
work correctly. 

Two functions sequential-access files often use are EOF and 
LOC. 

EOF(filenumber) is true if the next item in the file 
is the file's end and false if 
you're in the middle of a file. 

LOC(filenumber) gives the number of sectors read 
or written to in a sequential file. 

Use these functiol~~ Just as any other function we described 
earlier. 

Random-access files may require a little extra effort to learn; but 
once you've written a few programs using random files, you'll 
find that the commands come naturally to you. 

A random file is one in which everything is ordered in such a 
way that you can go directly to a piece of information you wish 
to read or write. If watching TV is somewhat akin to reading a 
sequential file, using a videotape recorder to find a particular 
frame of a TV show is akin to reading a random-access file. 

Let's continue to use our example of five football teams and their 
scores from last week's games. What if every team number con
sisted of one digit, and every score consisted of two digits? 
Every combination of team and score would occupy three 
characters in our file. To get to team three's score, we'd then 
need to tell the computer to go to the eighth and ninth charac-



300 OSBORNE 1 USER'S GUIDE 

ters in the file and read them. So we'll find something like this 
in the file: 

145214320421532 

That mishmash isn't very easy to scan, but that's okay because 
you're going to make the computer scan it. Before you continue, 
however, make sure that when you first set up a random-access 
file you allow for all possibilities. You must consider what will 
happen if you have a score less than 10 or greater than 99. So 
that your program can accommodate such an eventuality, you 
should make team numbers two digits in length and use zeros 
in front of single-digit numbers. You might also want to make 
the scores three digits long if you expect prodigious point 
production. 

Let's create our random file. In this example, we're going to use 
comments on every line to explain what is happening. 

100' CREATE A RANDOM DISK FILE OF TEAMS I.\'ND 
SCORES 

110 ' 

120 OPEN "R",#"1 ,"SCORES'[)AT",4:'note "R" and number 
at end 

130 FIELD #1,2 AS TEAM$,2 AS SCORE$:'we define 
fields in file 

140 FOR LOOP= 1 TO 5 

150 READ TEAMNUM$, TEAMSCORE$:'scores are in 
a DATA statement 

160 LSET TEAM$= TEAMNUM$:'get information into 
field 

170 LSET SCORE$= TEAMSCORE$:'get information 
into field 

180 PUT #1 ,LOOP:'store it on disk 
190 NEXT LOOP 
200 CLOSE #1 

210 DATA 01,45,02,14,03,20,04,21,05,32 



MICROSOFT BASIC 301 

The OPEN statement for a random file is different in two 
respects from the sequential-access OPEN statement: first, you 
use R (for "random") instead of lor 0; second, after the file 
name you must add a comma and tell Microsoft BASIC how 
long each "record" in the file will be. 

A "record" is one complete set of data. It's kind of like a file 
folder in a file drawer. Within the record can be a number of 
"fields." A field is one individual set of data, like a sheet of 
paper in a file folder. Here's an example of one file hierarchy: 

file: 

record: 

fields: 

Osborne owners' names and 
addresses 
Information on one Osborne 
owner 
Osborne owner's nam~ 
Osborne owner's address 
Osborne owner's city 
Osborne owner's state 
Osborne owner's ZIP code 

"OZ.DAT" 

RECNUM% 
NAM$ 
ADDRESS$ 
CITY$ 
STATE$ 
ZIP$ 

We have put the variable names that reference each item in the 
right-hand column. 

Next in the sample random-disk-access program comes the 
FIELD statement. Given the information we just presented, you 
should guess that you have to identify each field and give it a 
length. The total length of the fields must add up to the total 
length specified in the OPEN statement. 

To write information into a random-access file, you first must 
move the information into the variables named in the FIELD 
statement, using either LSET (for leftset, or left justify) or RSET 
(for rightset, or right justify). Any information that "spills over" 
the amount of room set up for a given field will vanish. 



302 OSBORNE 1 USER'S GUIDE 

NOTE 

DO NOT USE THE VARIABLES NAMED IN THE 
FIELD STATEMENT FOR ANYTHING EXCEPT 
MOVING INFORMATION TO AND FROM THE 
DISKETTE. If you use one of these variables to display 
something on the screen or to change a value, you will 
confuse Microsoft BASIC's internal buffer Upointers" and 
get some interesting-but incorrect-results. 

Finally, to actually write the information onto the diskette, use 
the PUT statement. Its two elements are the file number you'll 
use and the record number where you want to store the infor
mation. A nice feature of random-access files is that you can 
begin by storing information in record number 50, if you want, 
and then come back and fill in the rest at a later time. 

To get information from a random-access disk file, simply get rid 
of the LSET or RSET statements and use GET in place of PUT. 
After your GET statement, you'll want to move the information 
from the field variables to variables you can use within your 
program: 

OPEN "R",#1,"SCORES.DAT",4 
FIELD #1,2 AS TEAM$,2 AS SCORE$ 
FOR LOOP= 1 TO 5 

GET #1,LOOP 
TEAMNUM$(LOOP)= TEAM$ 
TEAMSCORE$(LOOP1= SCORE$ 

NEXT LOOP 
END 

We keep using string variables in our examples to store numeric 
information because Microsoft BASIC stores all information on 
disk in a special binary form. We're using strings so you don't 
have to deal with the conversion from the binary form to the 
one used within your program. 



MICROSOFT BASIC 303 

To convert numbers into their requisite format for storage in 
random-access files, you must use one of the following com
mands to do the conversion in conjunction with the the LSET or 
RSET command: 

LSET(FIELDVARIABLE)= MKI$(VARIABLE) for integer 
variables 
LSET(FIELDVARIABLE)= MKS$(VARIABLE) for single 
precision 
LSET(FIELDVARIABLE)= MKD$(VARIABLE) for double 
precision 

To restore the information to the form you can use within your 
program, use the following conversion commands instead of 
the LET statement used in the above read-from-random-file 
example: 

VARIABLE= CVI(FIELDVARIABLE) for integer variables 
VARIABLE= CVS(FIELDVARIABLE) for single precision 
VARIABLE= CVD(FIELDVARIABLE) for double precision 

We want to tell you only one more thing about files, and that is 
how to change diskettes and let Microsoft BASIC know that 
you've done so. Use the RESET command. Simply placing 
RESET in your program at the point immediately before you 
remove the first diskette from the drive closes all files in use and 
rewrites the correct information about them in the CP/M direc
tory onto that diskette. 



304 OSBORNE 1 USER'S GUIDE 

Closing Up the BASIC Shop 

A few commands we have not covered in this text are fully 
explained in the Reference Guide: 

CALL 
DEFUSR 
&0 
ERROR 
1M: 

PEEK 
WAIT 
RANDOMIZE 
ON ERROR 
IS: 

POKE INP OUT 
DEFFN USR &H 
VARPTR ERR ERL 
NULL RESUME IF: 

We hope we gave you a good "taste" for Microsoft BASIC. You 
can find more information on the language in Microsoft BASIC 
by Ken Knecht. Also, TRS-80 Disk BASIC is almost exactly the 
same as the version of BASIC provided with the Osborne 1. For 
more information on CBASIC, try the CBASIC User Guide by 
Adam Osborne, Gordon Eubanks, and Martin McNiff. 



CHAPTER 8-
CP/M 

Revisited 

This chapter is intended to teach advanced 
Osborne 1 users some of the technical details of 

CP/M, including how to use the assembly
language utility programs supplied with CP/M. 
Reference to CP/M addresses within this chapter 

pertain specifically to the attributes of the 
1.4 ROM and BIOS. 

Most users of the Osborne 1 will not need to 
read this chapter. The material in this chapter 
and the next are presented as a discussion and 

differ from preceding chapters which were 
interactive tutorials. Topics covered here include 
the advanced and technical aspects of CP/M and 
the utility programs that accompany it. Certain 
exercises are highlighted as in the tutorials just 

in case you want to follow along. 



306 OSBORNE 1 USER'S GUIDE 

Lesson 1: Creating New CP/M Systems 

Some day you may encounter a few circumstances in which 
you'll need to modify CP/M or create a CP/M system of a 
different size. Two utilities help you do so. 

SYSGEN is a program that reads a copy of the CP/M system 
from the first tracks of a diskette where it resides and transfers it 
into the main memory of your Osborne 1. Once CP/M operating 
system is in memory, SYSGEN asks you on which diskette you 
wish to save it. Press I RETURN I instead of specifying a drive, and 
you will see the _ return. 

Each time you type SYSGEN from the _ prompt, SYSGEN 
will prompt you for the drive you wish to load CP/M from. If 
you press RETURN without specifying a drive letter, SYSGEN 
will assume that CP/M is already in memory. There are three 
steps required to modify CP/M at the machine-language level: 

1. use SYSGEN to place a copy of CP/M in memory, 

2. use DDT to examine and modify CP/M, and 

3. use SYSGEN to place CP/M back onto a diskette. 

SYSGEN's other purpose is used to copy CP/M from diskette to 
diskette. You need to do this for diskettes you wish to place in 
drive A to start up the system after you've pressed the RESET 
button or just turned ON the power. 

MOVCPM is the second utility for changing CP/M. Normally, 
the CP/M you use on your Osborne 1 allows the use of 59K of 
memory, with CP/M filling the uppermost area of memory 
-from about 52K to 59K. 

Some programs require that you create a different-size CP/M 
system, usually so that you can place special instructions in a 



CP/M REVISITED 307 

protected area above that occupied by CP/M. To do so, you 
would issue: 

MOVCPM ## * <cr> 

where ## is the size CP/M system you wish to create. The 
video display uses the top 4K of memory, with 1K used as a 
disk buffer, so the largest CP/M system you can create is 59K. 
We forewarn experienced CP/M users that merely issuing 
MOVCPM and pressing RETURN- usually used to create the 
largest possible CP/M system-won't work on the Osborne 1 
because CP/M will find the video memory and think that it is 
available for use. Instead, to create the largest possible CP/M 
system on the Osborne 1, type: 

MOVCPM * * <cr> 

Here is an example of how to use MOVCPM: To leave 4K of 
memory space between the last memory CP/M uses and the first 
memory the video monitor uses, type: 

[01]] [2J []] [£J [01 SPACE BAR 1 @] @] 1 SPACE BAR 1 

~IRETURNI 

MOVCPM replies with the message: 

READY FOR "SYSGEN" OR 

"SAVE 39 CPM55.COM" 

This message means that the new version of CP/M is in memory, 
and you should either use the CP/M SAVE command to place 
the copy in a file on diskette for later use, or use the SYSGEN 
program to save this new CP/M on diskette. You must perform 
one of these two options immediately. Any intervening com
mand may change the CP/M instructions stored in memory. 

If you used SYSGEN to save the new CP/M, you should wait 
for the disk activity light to go off and then press the RESET 



308 OSBORNE 1 USER'S GUIDE 

button. Place the diskette with the new CP/M system in drive A 
and press I RETURN I. You should see _ appear momentarily. 
If the diskette you created didn't have a program named 
AUTOST.COM on it, you might also see the AUTOST? 
message. 

Several things can go wrong if you start playing with MOVCPM 
and SYSGEN. Make sure that the first few times you use these 
commands you are using diskettes from which you can afford to 
lose information. Watch out for the following: 

• Making a CP/M system too large. You can't use 
MOVCPM for any size larger than 59K. 

• Saving "junk," instead of CP/M, on a diskette. If you 
don't have a copy of CP/M in memory when you use 
SYSGEN to write to a diskette, that diskette will not 
have CP/M on it and will act erratically. 

• Modifying CP/M incorrectly. If you use DDT to examine 
and modify CP/M, make sure you know what you're 
doing and why. 

• Making a CP/M system too small. The smallest size 
CP/M system you can create on an Osborne 1 is 20K. 

Lesson 2: Odds and Ends 

Some Editing Characters 

You've used WordStar and are aware of the way electronic edit
ing works. Here's a complete list of the control characters CP/M 
recognizes and what each does (we neglected to tell you about 
a few "editing" commands that you can use when you see the 
_ in CP/M in chapter 3): 

I\E Performs a line feed and carriage return with
out sending the command to be processed; 
useful for typing commands longer than 52 
characters without using the scrolling feature. 



CP/M REVISITED 309 

"H backspaces one character; same as left arrow. 

"J ends command; same as RETURN. 

"M ends command; same as RETURN. 

"R repeats the current command line for 
verification. 

"U or "X cancels the entire command line. 

"- deletes one character by echoing it on the 
screen instead of erasing it (as does the left
arrow key). 

You can use these special editing characters any time that CP/M 
interprets keyboard input-as it does when you're using DDT, 
PIP, and most of the rest of the CP/M utilities. Most special pro
grams, such as WordS tar or SuperCalc, bypass this feature and 
substitute their own editing capabilities. 

STAT filename $SYS 

Something you might find interesting is the ability to change 
any file into a CP/M system file. To make a file a system file, 
you type: 

/]] IT] [K] IT] I SPACE BAR! filename. typ I SPACE BAR! [!] /]] IYJ /]] 
I RETURN! 



310 OSBORNE 1 USER'S GUIDE 

where filename. typ is any valid CP/M file name or ambiguous 
file name. Remember the ~ and II] characters and their use 
in defining file names? When you perform this action, CP/M 
replies filename.typ set to SYS for each file turned into a 
system file. 

The problem with this is that system files don't appear in direc
tories. The only way you can find out if a system file exists on a 
diskette is with XDIR (extended directory) or: 

I]] IT] 0 ITJI SPACE BAR I ~ D c:J I RETURN I 

which will identify all files, with system files shown in paren
theses. To turn a system file back into a normal file, type: 

I]] IT] 0 ITJI SPACE BAR I filename. typ [SPACE BAR I [!] I]] OJ ffi] 
I RETURN I 

Issuing the above command sequence returns the appropriate 
files to their original (called "directory") status. 

While we're concentrated on the intricacies of the STAT com
mand, we want to briefly mention two other similar uses: 

STAT filename.typ $RlO RETURN makes a file that can 
only be read, not 
changed 

STAT filename.typ $RlW RETURN makes a normal file 
that can be changed 
as well as read 

R1Wand RIO stand for "read/write" and "read/only," 
respectively. 



CP/M REVISITED 311 

USTAT"ting Other Things 

We still haven't come to the end of the list of uses for STAT. So 
far, you know about finding out how much room files take up 
(chapter 3) and changing files to different "types" (the last 
section). Here, briefly, are some other uses of STAT: 

STAT DEV:<cr> reports on current devices 
STAT VAL:<cr> lists possible device 

STAT USR:<cr> 
STAT DSK:<cr> 
STAT X:=R/O<cr> 

STAT log:=phy:<cr> 

assignments 
reports user numbers in use 
reports statistics on disk drives 
changes diskette in drive X: into 

a "read/only" diskette 
assigns a "physical" device to a 

"logical" one 

Note the recurrence of of the word device. A device is a "unit" 
or "module" of your Osborne 1. Unfortunately, the standard 
CP/M names for devices don't quite match the names you 
probably already know: 

CP/M CP/M 
DEVICE TYPE 

-----
CON: logical 
RDR: logical 
PUN: logical 
LST: logical 

TTY: physical 
CRT: physical 
BAT: physical 
UCI: physical 
PTR: physical 
URI: physical 
UR2: physical 
PTP: physical 
UP1: physical 
UP2: physical 

OSBORNE I DEVICE 

keyboard + screen 
serial/parallel/IEEE* 
serial/parallel/IEEE* 
serial/parallel/IEEE* 

keyboard + screen 
serial 
parallel 
IEEE 
serial 
parallel 
IEEE 
serial 
parallel 
IEEE 



312 OSBORNE 1 USER'S GUIDE 

LPT: 
UL1: 

physical 
physical 

parallel 
IEEE 

*depends on physical assignment 

In the table, a "physical" device is one that exists physically on 
the Osborne 1: the serial port or the parallel port. A "logical" 
device is a fictional device CP/M uses for various functions. 
Printing goes to the "logical LST: device," for instance. 

The table means that you can, more or less, assign any physical 
device to any logical device. Say you wanted to send printing to 
the screen instead of to the serial port; you'd issue: 

[]] IT] IKI IT] I SPACE BAR I [g []] IT] D B IT] IT] [y] D I RETURN I 

Now all printing (the LST: device in CP/M) will go to the screen 
instead of to the printer. 

PIP Again 

Having introduced you to "devices" under CP/M, we can now 
tell you about some of the other uses of the PIP program you 
encountered briefly in chapter 3. 

The device names listed for STAT also apply to PIP; so instead of 
copying from file to file as we showed you earlier, you can also 
copy from file to device, device to file, or device to device. What 
does this mean in plain English? Say you wanted to copy a file 
from a diskette to your printer and didn't want to run WordStar 
to create a printout. You already know that you can use the 
CP/M commands TYPE and I\p together to send a file to the 
printer. Sometimes using TYPE is not a satisfactory solution, 
however, as the screen will display the information being 
printed-perhaps you want to go on to see some important in
formation now on the screen but also need a printout of a file. 
The following PIP command is valid and solves your problem: 

[I] II] [f] I SPACE BAR I [g []] IT] D EI filename. typ I RETURN I 



CP/M REVISITED 313 

Actually, for files that contain only text, PIP is a wonderful 
resource. Not only can you send files to your printer, but you 
can "capture" files from another computer by connecting them 
with an RS-232 cable and typing: 

[E] I] [E] I SPACE BAR I filename. typ B 
ffi] @] ffi] 0 I RETURN I 

Five additional "special" devices are available using PIP: 

NUL: 
EOF: 
OUT: 
INP: 
PRN: 

sends 40 "null" characters (00 hex) 
sends a CP/M end -of-file marker (lA hex) 
uses an output routine you must create 
uses an input routine you must create 
a special LST: device that prints eight spaces 

for each tab character, line numbers, and 
pagination 

Be careful that your PIP command makes sense. Sending a 
printer device (LST:) to a diskette file makes no sense since your 
printer is unable to send any characters. PIP will usually catch 
such mistakes and issue a message similar to CANNOT READ: 
LST:-but you'll save yourself a lot of frustration by always 
double-checking the instruction you issue to CP/M before 
pressing RETURN. 

Another aspect of PIP is the options you can instruct it to use 
during the copying process. We'll briefly describe each one here, 
but if you need more information, please consult the Reference 
Guide or one of the books on CP/M mentioned earlier. 

B 
D# 
E 
F 
G# 
H 
I 
L 

"Block mode" transfer 
Deletes characters after #th column 
Echoes the copying to the Osborne 1 screen 
Form feeds removed during copying 
Gets file from user area # 
Hex-format file transfer method used 
Ignores "null" characters (00 hex) 
Lowercase conversion (all characters) 



314 OSBORNE 1 USER'S GUIDE 

N 
o 
P# 
Qstring"Z 
R 
Sstring"Z 
T# 
U 
V 
W 
Z 

N umbers each line during transfer 
Object file transfer, not text file 
Paginates transfer every #th line 
Quits copying when "string" found 
Allows "system files" to be copied 
Starts copying when "string" found 
Tab stops set at # columns 
Uppercase conversion (all characters) 
Verifies copy before completion 
Writes to "RIO" files 
"Zeroes" the parity bit (eighth bit) on all 

ASCII characters 

The format used to specify an option in a PIP command is: 

PIP destination = source[options] RETURN 

About the above structure, you should note: 

• Options are enclosed in a set of square brackets. 

• The first bracket must immediately follow the final char
acter in the source specification; no spaces are allowed. 

• More than one option is allowed (you may use blanks to 
separate them at your discretion). 

• The options specified apply to the entire copying 
process to the left of the options. 

The last point probably doesn't make any sense to you yet be
cause we haven't told you that you can include multiple copying 
commands in a PIP command line: 

PIP dest = source[options],dest = source[options] RETURN 

Commas should separate commands. As long as the total num
ber of characters in your overall command does not exceed 128, 
you can have any number of commands on the line. We've 
briefly mentioned all of PIP's capabilities. If you feel you need 
more information about anything in this chapter, consult a 
reference work on the relevant subject. See notes, page 760. 



CP/M REVISITED 315 

The Missing Program 

Even though we've supplied Digital Research's ED program on 
your CP/M Utility diskette, we're not going to describe how to 
use it in this tutorial manual. ED was designed for use with a 
Teletype terminal; your Osborne 1, a CP/M system, is much 
more sophisticated than the system for which ED was designed. 
We see no need to burden you with additional information, 
especially when 99 percent of Osborne 1 owners will probably 
never use ED. 

Lesson 3: Assembly-Language Programming 

On your CP/M Utility diskette you'll find utility programs suited 
for 8080 assembly-language programming and debugging: 

ASM.COM 
DDT. COM 
DUMP. COM 
LOAD.COM 

an 8080 two-pass assembler 
an 8080 dynamic debugging tool 
lists file contents in hex 
converts hex files to command files 

To show you how to use these four assembly-language utility 
programs to create a finished program, we'll assume that you're 
using the source code (assembly-language instructions) for the 
Osborne AUTOST.COM program listed below. Take a close look 
at the code so that the descriptions of each element that follow 
will make more sense to you. 

: AUTOCPM.ASM version 2.0 

: copyright 1 982 by Thom Hogan 
THine. 

21 Sept 82 

: This program executes CP 1M command at COMMAND: 



316 OSBORNE 1 USER'S GUIDE 

; EQUATES 

clear equ 26 ;clear screen 
escape equ 1bh ;escape character 
pbuff equ 9 ;BOOS print buffer 
bdos equ 5 ;Iocation of BOOS 
cr equ Odh ;carriage return 
If equ Oah ;Iine feed 

; START OF PROGRAM 

org 01 DOh 

; BEGIN: Changes logo letters into graphic 
characters for display. 

Ihld 01 ;find BIOS 
mvi 1,00 ;zero low-order byte 
mov a,h 
sui 16h ;subtract BIAS from BIOS 
mov h,a ;you now have hi-order byte 
shld ccp ; of address of CCP; store it 
Ixi d,logo ;point to coded graphics 
Ixi b,2047 ;set up counter 

over: Idax d ;get the byte pointed to 
sui 65 ;subtract the magic coded number 
stax d ;save the new byte 
inx d ;increment the pointer 
dcx b ;decrement the counter 
mov a,b ;check to see if we're done 
ora a 
jnz over ;if zero, we're done, otherwise ... 

; START: displays all information on screen 

start: 
Ixi d,init ;point to initialization message 
call print 
Ixi d,OfOOOh ;point to video RAM 



CP/M REVISITED 317 

Ixi h,logo ;point to logo 
Ixi b,14*128 ;number of bytes to move 
db Oedh,ObOh ;fake LOIR 
Ixi d,endmes ;point to load message 
call print 
Ixi d,command ;point to file name 
Ixi b,10 ;set counter 

; MOVE: moves information to the CCP locations for 
autostart process 

move: 
Ihld ccp ;get CCP back 
mvi 1,07 ;calculate autostart address 
call again ;move it 
Ihld ccp ;get the CCP back 
mvi 1,88h ;point to autostart pointer 
mvi a,08h ;Isb of ccp pointer 
mov m,a ;put it in place 
Ihld ccp ;get CCP one more time ... 
mvi 1,89h 
mov a,h 
mov m,a 
Ihld ccp ;and get it back again 
pchl ;execute cold start 

again: 
Idax d ;get byte to move 
mov m,a ;move it 
inx h ;increment location 
inx d ;increment location 
dcx b ;decrement counter 
mov a,b ;get counter in a 
ora c ;check if done 
jnz again ; ... not done 
ret ; ... done 

print: 
mvi c,pbuff ;get proper call in c 
jmp bdos ;do it 

; STORAGE AREA 



318 OSBORNE 1 USER'S GUIDE 

ccp: ds 2 ;place to store CCP address 
command: 

db 04,'HELP',0,0,0,0,0,0,0 

t Lb, I 
length command must be followed by a 

of command string zero to work properly 

; note: if command string is longer than 8 characters, 
you must change "Ixi b, 1 0" to Ixi b,length+2" 

init: db clear, '$' 

; note: may put anything in the following lines of code that· 
you wish to, although be careful to make sure that it is 
8 lines or less. 

endmes: db 
db 
db 
db 
db 
db 
db 
db 
db 

escape,'=', 16+32,1 +32 ;position cursor 

LOADING CP/M AND HELP ... 

Osborne Computer Corporation 
26538 Danti Court 
Hayward, CA 94545 

',cr,lf 
',cr,lf 
',cr,lf 
',cr,lf 
',cr,lf 
',cr,lf 
',cr,lf 

$' 

; DO NOT DISTURB THE FOLLOWING information as it contains 
; a coded graphic display. Changing anything from here to the 
; end of the program may result in catastrophic results. 

logo: db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 

'YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYa' 
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' 
'aaaaaaaaaaaaaaaaaaaaaaaaaaaa' 
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaKWWWWWWWWWWWWWWWWWWWWI' 
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' 
'aaaaaaaaaaaaaaaaaaaaaaaaaaaa' 
'YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY' 
'Iaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' 
'aaaaaaaaaaaaaaaaaaaaaaaaaaaa' 
'aaaaaaaaaaaaaaaaaaaaaaaaaaKWWWWWWZaaaaaaaaaaVVVVVWWW' 
'Wlaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' 
'aaaaaaaaaaaaaaaaaaaaaaaaaaaa' 
'YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY' 
'YYaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' 
'aaaaaaaaaaaaaaaaaaaaaaaaaaaa' 
'aaaaaaaaaaaaaaaaaaaaaaaaaaVVWWWWWWaaaaaaaaaaaaVVWWWW' 
'WWaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' 
'aaaaaaaaaaaaaaaaaaaaaaaaaaaa' 
'YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY' 
'YYaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' 
'aaaaaaaaaaaaaaaaaaaaaaaaaaaa' 
'aaaaaaaaaaaaaaaaaaaaaaaaaaVVWWWWVVWaaaaaaaaaaaaWWWWW' 
'WWaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' 
'aaaaaaaaaaaaaaaaaaaaaaaaaaaa' 
'YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY' 
'YYaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' 
'aaaaaaaaaaaaaaaaaaaaaaaaaaaa' 
'aaaaaaaaaaaaaaaaaaaaaaaaaaWVVWWWWWaaaaaaaaaaaaWWWWW' 
'WWaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' 
'aaaaaaaaaaaaaaaaaaaaaaaaaaaa' 



db 
db 
db 
db 

db 
db 
db 
db 
db 
db 
db 
db 

end 

CP/M REVISITED 319 

'YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY' 
'YYaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' 
'aaaaaaaaaaaaaaaaaaaaaaaaaaaa' 
'aaaaaaaaaaaaaaaaaaaaaaaaaaVWWWWWWlaaaaaaaaaaKWWWWW' 

'WZaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' 
'aaaaaaaaaaaaaaaaaaaaaaaaaaaa' 
'YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY' 
'Zaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' 
'aaaaaaaaaaaaaaaaaaaaaaaaaaaa' 
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaVWWWWWWWWWVVWWWWWWWWWWZ' 
'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' 
'aaaaaaaaaaaaaaaaaaaaaaaaaaaa$' 

The assembly language the CP/M assembler uses is called Intel 
format 8080 source code. The actual instructions within your 
program must conform to the syntax described in the Intel 8080 
Reference Manual. Most of the examples in this User's Reference 
Guide are written in Intel 8080 code so that the ASM assembler 
may be used; however, the IEEE appendix uses Z80 code. A 
table of valid Intel assembly language instructions appears 
below: 

ADD DCR MOV RPO 
ADI DCX MVI RST 
ADC DI NOP SPHL 
ACI EI ORA SHLD 
ANA HLT ORI STA 
ANI IN OUT STAX 
CALL INR PCHL STC 
CZ INX POP SUB 
CNZ JMP PUSH SUI 
CP JZ RAL SBB 
CM JNZ RAR SBI 
CC JP RLC XCHG 
CNC JM RRC XTHL 
CPE JC RET XRA 
CPO JNC RZ XRI 
CMA JPE RNZ 
CMC JPO RP 
CMP LDA RM 
CPI LDAX RC 
DAA LHLD RNC 
DAD LXI RPE 



320 OSBORNE 1 USER'S GUIDE 

Each instruction above is called a "mnemonic." Many 
mnemonics require additional "arguments." Thus, a complete 
8080 instruction might look like this: 

MOVB,A 

where MOV is the instruction mnemonic and B ,A is the 
argument. The above instructions say to move the contents 
of internal register A to internal register B. 

To use assembly language correctly, you'll need to purchase a 
book describing the action of each 8080 instruction. A good 
choice is 8080a/8085 Assembly Language Programming from 
Osborne/McGraw-Hill. 

In addition to the 8080 instruction set, the CP/M assembler also 
recognizes special "directives," instructions that instruct the as
sembler to perform a special operation not defined by the 8080 
instruction set. A list of the CP/M assembler directives follows: 

DB 
DW 
DS 
END 

EQU 
IF 

ENDIF 
ORG 

SET 

initializes memory byte by byte 
initializes memory two bytes at a time 
reserves an area of memory for storage 
tells the assembler that it has come to the 

file's end 
assigns a permanent value to a label 
allows conditional assembly of sections 

of code 
defines end of conditional-assembly section 
defines beginning location of the next 

instructions 
assigns a temporary value to a label 

In assembly-language programming, each line of text contains 
one instruction to the assembler. The format of each line is: 

line # label MNEMONIC argument* comment 

*sometimes referred to as an "operand" 



CP/M REVISITED 321 

Each of the above elements, if present, must be set off by at least 
one space; assembly-language programmers usually separate 
elements by using tab characters. 

The LINE # 1 LABEL, and COMMENT "fields" in assembly 
language are optional. If you use WordStar to create your 
assembly-language instructions, you won't use line numbers. 

LABELs identify a memory address or a value. Valid labels may 
be 1 to 16 characters in length; the first character must be a let
ter. The CP/M assembler automatically translates lowercase let
ters to uppercase. LABELs are optional in all statements except 
EQU and SET directives. In practice, if you properly assign a 
value to a LABEL, you can use LABELs as the arguments in 
many assembly-language instructions. For example: 

LABEL MNEMONIC OPERAND COMMENT 

PLACE EQU OE500h ;assign value of 
;OE500 hex to PLACE 

JMP PLACE ;transfers program flow 
;to location just defined 

Be careful not to use any of the assembly-language instructions, 
directives, or register names as a LABEL, as this will confuse 
the assembler. 

COMMENTs always start with a semicolon. If there is nothing 
else on the line, a COMMENT can start at the left margin; just 
remember that everything the assembler encounters on a line to 
the right of the first semicolon will be considered a COMMENT. 
Consequently, you cannot start a line with a COMMENT and 
then place an instruction following it. 

You can also use defined values (called "constants") or ex
pressions in the argument or operand field. The following 



322 OSBORNE 1 USER'S GUIDE 

conventions are recognizeable to the CP/M assembler: 

11 
lID 
lIB 
IlH 
110 
llQ 

+ 

* 
/ 
MOD 

NOT 
AND 
OR 
XOR 
SHL# 
SHR# 

interpreted as 11 decimal 
interpreted as 11 decimal 
interpreted as 11 binary (3 decimal) 
interpreted as 11 hex (17 decimal) 
interpreted as 11 octal (9 decimal) 
interpreted as 11 octal (9 decimal) 

represents addition 
represents subtraction 
represents multiplication 
represents integer portion of division 
represents remainder portion of division 

bit-by-bit logical complement 
bit-by-bit logical AND 
bit-by-bit logical OR 
bit-by-bit logical exclusive OR 
shift left # of bit positions 
shift right # of bit positions 

The assembler performs all arithmetic operations using 16-bit. 
unsigned numbers. Valid expressions in the operand field using 
some of the above conventions are: 

16 MOD 8 
5+ LABEL 
IllbAND lIb 

result = 0 
adds 5 to value of LABEL 
result = 011b 

If you like, follow along and try some assembly-language source 
codes. Put your WordStar diskette into drive A, and a blank, for
matted diskette into drive B. Start WordS tar as normal, but in
stead of using the D option to create a document file, ,use the 1m 
option to create a non-document file. Specify the name of the 
file to edit as B:AUTOST.ASM: Next, we will show you how to 
create a new version of the autostart program listed earlier. 

Enter the text for AUTOST. COM using the normal WordS tar 
editing features. (Do not use "B.) The primary difference be
tween the document and non-document methods of creating 



CP/M REVISITED 323 

files is that the non-document way does not insert extra charac
ters for automatic margin control or justification. Use the TAB 
key on the Osborne to separate the various fields on each line of 
assembly-language code-it's faster than spacing and should 
result in the vertical alignment of every field, as in our example. 

Make sure that your cursor is at the end of the file before using 
the "1K11K1 command to finish editing the file. 

You're now ready to "assemble" the source code you just en
tered. Put your CP/M Utility diskette into the A drive. Before 
we proceed, we'll explain what happens next and what your 
options are. 

On the CP/M Utility diskette is a file named ASM.COM. This 
program looks at your source code in two successive "passes," 
first compiling a table (called the" symbol table") in memory of 
all the labels and cross-referencing, and then using this table 
in the second pass to create the machine instructions for your 
program. 

The assembler normally generates two files-one containing the 
combination of the machine-language code, in hex representa
tion, called the "print file," and a file containing a hexadecimal 
representation of the final program, usually referred to as the 
"Intel hex" file. Three options are available to cancel the creation 
of either of these files, 'or to tell the assembler to send the print 
file to your monitor screen. These options are specified when 
you start the assembler: 

A>ASMAUTOST.123 RETURN 
.-.,.-

lthree option specifiers 

Option 1, which tells CP/M where to find the source-code file, 
must be either A or B on the Osborne 1. For the example above, 
the source code should be on the diskette in the B drive. 

Option 2 tells CP/M where to put the hex file: into A, B, or Z; 
the latter indicates that you do not want a hex file. 



324 OSBORNE 1 USER'S GUIDE 

Option 3 tells CP/M where to put the print file. Again, you can 
specify drive A or B, or Z to skip generation of the print file. You 
can also use the letter X to tell CP/M to display the print file on 
the monitor. 

For now, create both output files on drive B. Type: 

o [§J [M] I SPACE BAR 10 []] IT] [QJ [§J IT] D []] []] []] I RETURN I 

After a few minutes, you'll see the following message: 

yyyH USE FACTOR 

END OF ASSEMBLY 

If you see any lines above the ones just listed, you've made an 
error in entering the source code. The types of errors you might 
encounter are: 

D Data Error. The value of the expression you indi-
cated may be too long. 

E Expression Error. The expression you indicated is 
incorrect or cannot be computed (too complex). 

L Label Error. You used a label incorrectly. Occurs 
when you use a label inconsistently in a program. 

N Not Implemented. You used an expression that is 
appropriate for MAC, a different assembler. 

o Overflow Error. Your expression is too 
complicated. 

P Phase Error. The value of a label changes between 
passes of the assembler. 

R Register Error. You specified a register inappropri-
ate to the mnemonic you used. 

S Syntax Error. There is probably a typographical 
error in your source file. 

U Undefined Symbol. You used a label in an 
expression without assigning a value to it. 

V Value Error. The operand is incorrect. 



CP/M REVISITED 325 

The format in which error messages appear is: 

r"'!I·n:·"II.~ml:II~'Il!iI"l!"';! 

error message 

If. you have any errors in your assembly, you need to go back to 
reedit your source file and correct them before you proceed. 
Assuming that the assembly reported no errors, you might be 
wondering what the two numbers in the USE FACTOR message 
mean. The first indicates in hexadecimal the first address un
used by your program-that is, one byte greater than the last 
location your program used; while the second number, which 
can be as large as OFF hex, indicates how large the symbol 
table is. 

The directory of the diskette in drive B would reveal the follow
ing files: 

AUTOST.ASM your source file 

the Intel hex file 

AUTOST.PRN Ihii·oullum 
and maybe 

AUTOST.BAK a backup copy of the source file 

However, you still don't have a working program. All that's 
stored in AUTOST .HEX is a series of hexadecimal numbers that 
can represent the final machine-language instructions. To use 
the program, you'll need to convert these hex numbers into 
instructions the Osborne 1 can execute by using the CP/M 
program LOAD.COM. 

The LOAD program reads files in the Intel hex format and 
converts them into machine language that the Osborne 1 can 
execute. Using LOAD is simple: 



326 OSBORNE 1 USER'S GUIDE 

[II []] II] @] I SPACE BAR II]] 0 IKI [QJ ITJ []] [§J ITJI RETURN I 

If your assembly is correct, the right-hand disk drive will whirr 
and clack; then a message like the following will appear: 

FIRST ADDRESS 0100 

LAST ADDRESS 0456 

BYTES READ 0357 

RECORDS WRITTEN 04 

This message indicates the pertinent details about your pro
gram: its length, the portion of memory it occupies, and how 
many 128-byte records are written on diskette. If you now look 
at the directory of the second drive, you'll find another file: 
AUTOST.COM. This is your executable program. Just type its 
name and the computer follows its instructions. 

You don't always get ready-to-use assembly-language programs 
to copy from; sometimes you'll create your own programs from 
scratch. When you do so, your program may not work, and then 
you'll be interested in another utility program, DDT. 

DDT stands for Dynamic Debugging Tool. It is a versatile pro
gram with which you can perform tasks in the "bowels" of your 
Osborne 1: 

• load an assembled program into memory 

• make changes in machine-language programs 

• locate errors in assembled programs 

• make simple corrections in programs 

• examine or modify the contents of memory 

• enter assembly-language code one line at a time 

• disassemble an assembled program 

• examine or modify the contents of CPU registers 



CP/M REVISITED 327 

• set breakpoints to stop program execution 

• trace the execution of a program 

The above list reveals that DDT is a program with many uses, 
and here are the two methods to invoke it: 

DDT RETURN ~ loads DDT only 

DDT filename. type RETURN ~ loads DDT and program 

DDT identifies itself by presenting its version-number message 
and, if a program is loading, two other pieces of information: 

DDT VERS 2.2 

1~I::t;t':lj 

#### #### 

I 

NEXT stands for the next available memory location, while PC 
indicates the setting of the Z80's "program counter." The num
bers underneath these two headings are the current settings and 
are expressed as hexadecimal numbers. 

DDT's prompt is a hyphen. Your cursor should be located just 
to the right of the prompt, indicating that DDT is waiting for 
instructions. DDT understands 14 different instructions: 

A#### tells DDT that you want to give assembly
language instructions beginning at the hexadecimal ad
dress you indicate (####). As you type each instruction, 
DDT displays the next address at the left-hand side of the 
screen. You may use any valid assembly-language instruc
tion exclusive of LABELs or COMMENTs. Typing a period 
will return you to the DDT command level. 

D#### ,#### displays the contents, in both hexa
decimal and ASCII, of memory locations beginning with 
the first one you specify and ending with the last one. 



328 OSBORNE 1 USER'S GUIDE 

If this display fills more than one full screen, you must 
use "5 to temporarily cause the display to pause. Alter
natively, you can omit the last address, in which case 
DDT will display the next 96 memory locations. Simply 
typing D will display the 96 memory locations that follow 
the last group you looked at. 

F#### ,#### ,@@ fills the memory between, and in
cluding, the first two memory locations specified with the 
value specified (@@). The value must be a valid hexa
decimal constant. 

G#### ,#### begins execution of machine-language 
instructions at the first location with a "breakpoint" 
(halting point) at the second location specified. If the 
second location is omitted, no breakpoint is set. If 
both locations are omitted, execution starts with the 
current value of the Z80 program counter. By typing 
G#### ,#### ,#### you can set two breakpoints. Typ
ing G,#### will start program execution at the current 
program counter with a single breakpoint. 

H#,# computes the sum and difference of the two hexa
decimal numbers you specify. The first number shown 
will be the sum; the second, the difference. 

Ifilename.typ tells DDT and CP/M that the default file 
block should be filled with the information pertaining to 
the file name specified. Unfortunately, DDT does not 
allow you to specify the drive to be used, so you must 
make sure that the default disk drive is correct before you 
enter DDT. 

L#### ,#### lists (disassembles) the assembly
language program between the two addresses specified. If 
the second address is omitted, 11 instructions beginning 
at the first address will disassemble. If both addresses are 



CP/M REVISITED 329 

omitted, 11 instructions beginning at the last location 
listed display. 

M#### ,#### ,#### moves the block of memory be
tween, and including, the first two addresses to the area 
of memory beginning at the third location. 

R#### reads the file to which the current default file 
block points, using the number specified as an "offset" 
(displacement) factor. If no number is specified, the file 
reads into memory at its usual memory location
normally 0100 hex for most files. 

S#### "sets" the memory at the location specified. DDT 
will display the memory location, a space, and the value 
currently stored there. You enter the new hexadecimal 
value or a period to conclude this command. 

T#### "traces" the execution for the number of instruc
tions specified. If no number is specified, one instruction 
is traced. 

COZOMOEOIOA=OO B=OOOO D=OOOO H=OOOO 5=0000 P=OOOO NOP 
~" v J ___ .-.,.- __ 

t t ~r---'~ 
flags registers stack program mnemonic 

point counter 

Trace Display 

U#### is similar to trace, but it displays the beginning 
contents of the registers before executing the number 
of instruction~specified. Unlike trace, the U command 
does not show what happens each time an instruction 
executes. 

X displays the current contents of the registers. 

X# displays the current contents of the register specified 
and allows you to change the contents. 



330 OSBORNE 1 USER'S GUIDE 

replace # with C to change 
Z 
M 

E 
I 

A 
B 
D 
H 
S 
P 

"carry flag" 
"zero flag" 
"minus (negative) 

flag" 
"even parity flag" 
"in terdigit carry 

flag" 
"accumulator" 
"register pair BC" 
"register pair DE" 
"register pair HL" 
"stack pointer" 
"program counter" 

If you need to know more about how DDT works, you've pro
gressed well beyond beginner status. Beginners should use DDT 
only with diskettes they can easily replace. Be careful that you 
don't accidentally modify any portion of CP/M while using DDT, 
or your Osborne 1 may exhibit unpredictable results. 

One last note: be careful about setting breakpoints on Z80 
instructions or in routines in the middle of a bank-switching 
operation. Either alternative will result in a system crash. 

When you exit from DDT, you may want to use the SAVE 
command to create a file with the modified file with which 
you were working. SAVE is simple to use; just type: 

I]] 0 [2J []J I SPACE BAR 10 0 filename. typl RETURN I 

where # # is the decimal number of 256-byte blocks you want 
CP/M to save. 

Lesson 4: Inside CP/M 

We're going further beyond beginners' material, but for the 
dedicated assembly-language programmer, here is a concise tour 
of the important aspects of CP/M. 



CP/M REVISITED 331 

CP/M resides in the top portion of the available memory, 
nominally from OCBOO hex to OFOOO hex on the Osborne 1 with 
1.4 ROM. The top and bottom addresses of CP/M are, of course, 
dependent on the location of CP/M itself which you may wish to 
move. In addition, the first 256 bytes of memory are called the 
"base page" and are reserved for certain CP/M functions and 
pointers. The area from 0100 hex to the beginning of CP/M is 
known as the transient program area (TPA), and is free for you 
to use as you wish. 

Overall, CP/M consists of three parts: 

CCP 
BDOS 
BIOS 

console command processor 
basic disk-operating system 
basic input/output system 

By default, CCP and BDOS reside between E100 and CBOO, and 
BIOS between E100 and EA80. If you alter the size of CP/M, 
these addresses will be different. To find the beginning address 
after a MOVCPM or if you happen to have a different ROM than 
1.4, use these assembly routines: 

To find the starting address of BIOS-

LHLD 1 

MVI L,DO 

To find the start of CCP-

MOV A,H 

SUI 16H 

MOV H,A 

;get warm start address 

;set low-order byte zero to obtain start 
of BIOS 

;810S start is now in HL 

;get BIOS page boundary in A 

;subtract offset to find start of CCP 

;CCP start is now in HL 



332 OSBORNE 1 USER'S GUIDE 

To find start of BDOS-

LHLO 6 

MVI L,DO 

:get BOOS entry point 

:set low-order byte to zero to obtain 
BOOS start and top of memory 
that can be used by programs 

The CCP occupies the first 7FF hex locations of CP/M and inter
prets the commands you type·when you see the _. The CCP 
handles all the built-in commands and, if the CCP cannot find a 
command that matches what you type, it will look on the disk 
drive for a file with a matching name and a file type of .COM 
(command). If the CCP finds a command file, said file will load 
into the TP A, and the CCP will pass execution to location 0100 
hex, the assumed starting place of your file. 

BDOS takes care of all device handling for your programs and 
for CP/M. Thirty-eight functions are built into BDOS, all of 
which are available to assembly-language programmers. Both 
CCP and BDOS are exactly the same on every standard CP/M
based computer. A recent trend indicates that some manufac
turers are modifying portions of CCP and BDOS, but Digital 
Research does not condone such activity, as it results in 
"nonstandard" CP/M systems. 

BIOS is the section of CP/M that contains instructions specific to 
the Osborne 1. At the beginning of the BIOS section must be a 
series of 17 predefined "jumps" (called the "jump table") that 
tell CP/M where to go when it needs to communicate with cer
tain parts of the Osborne-the keyboard, monitor, printer, and 
disk drives, for example. Unlike the rest of CP/M, the instruc
tions in BIOS were programmed by Osborne Computer Corpo
ration, and the company is responsible for their being correct. 
BDOS uses the instructions in BIOS, as needed, and relies on 
that jump table in order to find the correct instruction. 



CP/M REVISITED 333 

The "base page" (the first 256 bytes of memory) contains re
served memory locations that CP/M uses for various functions: 

HEX 
LOCATION 

0000-0002 
0003 

0004 

0005-0007 
000S-004F 

005C-007C 

007D-007F 

OOSO-OOFF 

FUNCTION 

location to jump to for warm start 
IOBYTE, which tells CP/M which 

devices to use 
DISKBYTE, which tells CP/M which 

disk is active 
BDOS entry vector, the entry to BDOS 

reserved for hardware interrupt 
handling 

File Control Block, used to define file 
being accessed 

Random Record Position, which tells 
CP/M exactly where to goon diskette 

Disk Buffer, used to store 128 bytes of 
information temporarily before writ
ing it to a diskette, or after reading it 
from a diskette 

At the lowest level, when a program wants CP/M to perform a 
function, the program places a set of parameters and/or informa
tion into the CPU registers and then CALLs BDOS (0005 hex). 
When CP/M has completed the assigned task, it returns control 
to the calling routine (Le., the program) with a new set of 
parameters and/or information in the CPU's registers. 

For example, say you want to write a program that can detect if 
a user is typing on the keyboard. The BDOS function requires 
that you place a OB hex in the C register; CP/M will return a 
value in the A register to tell you if the console is ready with a 
new character: 

INPUT: MVI C,OSh ;SOOS function number 
CALL 0005h ;CALL SODS 
CPI '~O' ;check if not ready 
JZ INPUT ;keep going back til 

;character available 



334 OSBORNE 1 USER'S GUIDE 

A complete list of BDOS functions, with the parameters used, is 
listed in the Reference Guide. 

The second area of CP/M available to programmers is the jump 
table in BIOS. It should be noted that the addresses in this BIOS 
jump table are dependent on the current size of CP/M. Each 6f 
the 17 jumps in the table references a different function on the 
Osborne 1. Here are the default jump addresses: 

OE100 
OE103 
OE106 
OE109 
OE10C 
OE10F 
OEl12 
OE115 
OEl18 
OEllB 
OEllJ;: 
OE121 
OE124 
OE127 
OE12A 
OE12D 
OE130 

perform cold start 
perform warm start 
get console status 
get console input 
display output on console 
display output on printer 
display output on modem 
get modem input 
move head on d~sk to home position 
select disk drive 
select track on diskette 
select sector on diskette 
select DMA address 
read from diskette 
write to diskette 
get printer status 
translate to new sector 

In addition, on the Osborne 1 we've extended this jump table 
with routines for the IEEE-488 interface; see Appendix 2 for 
complete details. 

To get input from the console, simply insert the following 
instruction in your program: 

CALL DE 1 DSh ;get console input 

We strongly discourage such a practice, by the way. First, you 
should always use the BDOS functions to maintain full com
patibility of your program with other CP/M-based machines. 



CP/M REVISITED 335 

Second, it is not good programming practice to make an abso
lute reference to a memory location that may move. If you later 
perform a MOVCPM command and create a different-size 
CP/M, the above instruction will no longer work. Many pro
grammers skirt this possibility by noting that the location in 
0001 and 0002 hex is the same as the second entry in the jump 
table for all versions of CP/M, and therefore calculates the posi
tion of a function in the table; Microsoft BASIC does this, as do 
other common CP/M programs. 

Lesson 5: SUBMIT and XSUB 

For the most part, every time you use your Osborne I, you will 
"interact" with it: you type something, the Osborne 1 responds, 
you type something, the Osborne 1 responds . . . 

Computing has not always been so interactive, netr is every task 
you may want to use your computer for an interactive one. The 
alternative is something called "batch processing," which 
groups a batCh of commands-in a diskette file in CP/M. The 
computer then performs them in succession, without human 
intervention. 

Two programs provided on your CP/M Utility diskette allow 
you to perform batch processing on your Osborne 1: SUBMIT 
andXSUB. 

SUBMIT reads a file you name that contains commands CP/M 
recognizes. Be careful here: SUBMIT works only with the type of 
commands allowed when you see the CP/M., not any other 
command or from any drive exceptA. To create a file SUBMIT 
can use, employ the WordS tar N option and give your file the 
.SUB type. You would type one command on each line, as in the 
following: 

DIR * .COM 
XDIR * .COM 
STAT * .COM 



336 OSBORNE 1 USER'S GUIDE 

Save the file and use SUBMIT as follows: 

[]J I]] [[] [0 OJ IT] I SPACE BAR I filename I RETURN I ~ don't 
type 
.SUB in 
the file
name 

What happens next is that CP/M builds a file of your commands 
-in reverse order-with the name $$$.SUB, and then it begins 
reading that file and executing the last command in it. A nifty 
programming trick continually makes SUBMIT think that one 
less command is in the file, and execution proceeds until SUB
MIT thinks the file is empty. In short, with the above file, you'll 
see the three commands you typed execute in order. When SUB
MIT is done, it will erase the temporary file from your diskette 
and return control to you. 

NOTE 

By prefacing a line with a semicolon, you can include 
"comments" in your SUBMIT file. 

SUBMIT has even more uses; two features add to its abilities. 
First, you can leave special "variables" in your .SUB file that 
will fill when you actually invoke SUBMIT. Anywhere in your 
file you wish to have a variable, use a dollar sign preceding a 
number-$l would be the first variable, for example. When 
you're ready to use SUBMIT, you type the values for each 
variable-separated by a space-following the SUBMIT 
command. For instance, the following .SUB file and SUBMIT 
command will produce the indicated results: 

.SUB file: ;There is no SUBstitute for quality! 
XDIR $1.$2 
;See what we mean? 



CP/M REVISITED 337 

command: [§J [ill [[] [0 OJ [!] 1 SPACE BAR 1 

filename~ 1 SPACE BAR I @] @] [01 RETURN I 

results: A > ;There is no SUBstitute for quality! 

A > XDIR * .COM 

Extended Directory version 3.5 

SUBMIT .COM 2K 

XDIR .COM 4K 

XSUB .COM 4K 

Disk A: 2K blocks 

Size = 92K, 13 files, Used = 92K, 

A > ;See what we mean? 

The second feature you may want to use is the program named 
XSUB. Remember, SUBMIT works only at the CP/M command 
level-you can't type in instructions once a program, such as 
DDT, has been loaded by SUBMIT. XSUB allows you to do so. 

If you needed to type 50003 RETURN 00 RETURN . RETURN 
after invoking DDT, you would need to have the following lines 
in your .SUB file: 

X8UB 
DDT 
80003 
00 



338 OSBORNE 1 USER'S GUIDE 

As part of your .SUB file, make sure that a line containing the 
command X5UB is present at the point before you wish to have 
individual characters" submitted" to a program. 

Eight Down, One to Go 

Well, you've made it successfully, we hope, through eight chap
ters. 50 far, everything we've described is related purely to 
the software (programs) that accompany your Osborne 1. In 
the next chapter, we'll turn our attention to the hardware 
(equipment) that comprises the computer. 



CHAPTER 9-
System 

Specifications 

This chapter examines the "insides" of the 
Osborne 1 and how to use some of the built-in 

hardware functions of the machine. If you're not 
familiar with assembly-language programming 
or aren't interested in programming at all, it's 

probably best if you skip this chapter. This 
revision of chapter 9 is specific to the 1.4 

monitor ROM currently being shipped with 
the Osborne 1 computer. 



340 OSBORNE 1 USER'S GUIDE 

The Osborne 1 is a complete computer-you cannot buy a 
version that does not have disk drives and a monitor. 

We ship the Osborne 1 with the following software: 

CP/M 2.2 
WordS tar 2.26 
SuperCalc 1.12 
Microsoft BASIC 5.21 
CBASIC 2.37 

All of the above software is the standard version the primary 
vendor supplies us. WordStar and SuperCalc have terminal and 
printer drivers modified to work with the Osborne 1, but we 
supply the INSTALL programs for both, should you wish to 
change our I/O (input/output) programming. 

The hardware of the Osborne 1 is of the "plain-vanilla" variety: 

Z80A-type central processor 
64K dynamic RAM memory 
built-in 5-inch video display monitor 
dual double-density disk drives 
serial RS-232 port/modem port 
IEEE-488 port 
external video port 
battery-pack option 
full uppercase/lowercase keyboard 
auto-dial, auto-answer modem option 

Following are the most important nitty-gritty details most pro
grammers want to know about the Osborne 1 specifications: 

SCREEN SIZE: • 32 lines of 128 characters main
tained in RAM 

• 24 lines of 52 characters shown on 
screen 

• dim, normal, underlined video 
supported 



SYSTEM SPECIFICATIONS 341 

• 32 biock-graphic characters 
predefined 

• uppercase/lowercase text display 
• video emulates TeleVideo terminal 
• external video available via edge 

connector 

DISK CAPACITY: Double-Density: 

SERIAL PORT: 

• 200K bytes per diskette 
• 185K bytes of data space using 

CP/M 
• 40 tracks of information 
• 5 physical sectors each track 

( soft-sectored) 
• 1024 bytes per sector 
• 40 logical sectors to CP/M 

(128 bytes each) 
• lK-byte extents maintained by 

CP/M 
• 3 reserved system tracks 

Single-Density (old style): 

• lOOK bytes per diskette 
• 92K bytes of data space using 

CP/M 
• 40 tracks of information 
• 10 physical sectors each track 

(soft-sectored) 
• 256 bytes per sector 
• 20 logical sectors to CP/M 

(128 bytes each) 
• 2K-byte extents maintained by 

CP/M 
• 3 reserved system tracks 

(See notes, page 760.) 

• 1200- or 300-baud, software
selectable 



342 OSBORNE 1 USER'S GUIDE 

• 2400- or 600-baud, jumper
selectable 

• uses 6850 chip, all parameters 
memory-mapped 

• standard female DB-25 connector 
provided 

IEEE-488 PORT: • standard IEEE-488 
implementation 

• may be configured as Centronics 
parallel port 

• 26-pin edge connector provided 

In this chapter, we'll abandon our tutorial instruction and 
describe each "module" of the Osborne 1 design individually, 
with a particular emphasis on how to use software to access or 
change parameters. 

Memory Layout 

The memory layout of the Osborne 1 is unique. Three basic 
components of system memory exist: 

bank 1 
bank 2 

bank 3 

64K dynamic RAM memory 
4K system ROM, memory-mapped 

I/O devices 
4K video-display-attribute dynamic RAM 

While we refer to the three components as "banks" of memory, 
they do not perform exactly as do the memory banks used in 
most S-IOO-based computers. Bank two, for instance, is a combi
nation of system ROM and memory-mapped I/O ports, with the 
remainder of the 64K address space filled.by "mimicking" the 
first bank (you may thus execute the same program from 
memory above 4000 hex in both banks). 

The memory map on the following page is a closer look at the 
way the Osborne 1 uses memory. 



FFFF 
video 

display 
128 x 32 

FOOO 
BMRAM 

EA80 
BIOS 

E500 
BDOS/CCP 

CBOO 
RAM 

used for 
programs 

4000 

3000 

2000 

1000 

0000 
bankl 

SYSTEM SPECIFICATIONS 343 

video 
display 
128 x 32 

BMRAM 

BIOS 

BDOS/CCP 

RAM 

used as 
buffer 

not used 

1/0 ports 

not used 

ROM 

bank 2 

video 
attributes 

4Kx 1 

not used 

bank 3 

Bank 1 of memory is the one you normally use for program
ming. CPIM, for instance, loads itself into the uppermost free 
area-just below the video display memory-with the Basic 
Input Output System (BIOS) beginning at EI00 hex. The Basic 
Disk Operating System (BDOS) and the Console Command Pro
cessor (CCP) take up the memory from CBOO hex to the begin
ning of BIOS. As with all CPIM systems, the memory area from 
0000 hex to 0100-commonly referred to as "page 1" of memory 
-is reserved for use by CP/M. Overall, about 51K bytes of 
usable memory are available to the programmer when CP/M is 
resident (a 59K CP/M system like the Osborne l's means that, 
including CP/M, 59K of memory is used). 



344 OSBORNE 1 USER'S GUIDE 

Bank 2 of memory contains the Osborne l's basic intelligence. 
When the power is turned ON, the ROM located at the bottom 
of bank 2 initializes the system, and some parameter passing in
formation stored in the area labeled BMRAM in the memory 
layout we just presented, then presents the "start-up" display 
on the video monitor. The ROM is contained in a single 2732 
memory chip. There is a slight difference between 1.3 ROMs 
and the 1.4 ROM presently being shipped with Osborne 1 com
puters. (A technical manual describing the Osborne 1 hardware 
in detail is now available from your dealer.) 

Briefly, the following is what you'd find in the Osborne 1 ROM 
if you looked at its source code: 

• disk-boot routines 

• I/O drivers 

• video-display drivers 

• disk drivers 

• keyboard drivers and N-key rollover routine 

• parallel port drivers 

Earlier versions of the ROM (REV A and REV 1.2) also contained 
some simple diagnostic routines and a real-time clock routine. 
These were removed in the 1.3 ROM to make room for addi
tional routines and because the diagnostic and clock code can be 
duplicated easily in RAM. 

Think of the system ROM as an extension of the BIOS routines 
used in CP/M. If you disassembled the BIOS supplied with the 
Osborne 1, you would find more references to the ROM than 
you'd normally encounter in many computer systems. Indeed, 
a section of memory from OEABO hex to OFOOO hex-called 
BMRAM-is reserved so that the ROM and BIOS may freely 
pass information back and forth. 



SYSTEM SPECIFICATIONS 345 

The advantage of the Osborne memory scheme is that we are 
able to offer a 59K CPIM system while still providing the benefits 
and speed of memory-mapped video. Most other CPIM systems 
that use memory-mapped video have only a 56K CP/M system; 
some have even less memory available. 

The disadvantage of the way we've laid out the system memory 
is that you'll have to learn a new way to get from one place to 
another. Systems that contain only a single memory bank 
merely require you to supply a memory address when you refer 
to a location. With the Osborne 1, you must make sure that 
you're addressing the proper bank of memory before you supply 
an address. 

We'll tell you, next, how to accomplish the switch between 
memory banks. The first bank-switching technique for micro
computers was pioneered by Cromemco. It requires you to send 
a special message to 110 port O. The Osborne 1 bank-switching 
technique is also simple. To go from bank 1 to bank 2, you must 

a. disable the interrupts, 

b. output to 110 port 0, and 

c. store a 00 hex in memory location EF08 hex. 

This bank-switching routine looks like this in assembly 
language: 

F3 
D3 
3E 
32 

00 
00 
08 EF 

FLAGPOS 
SWITCH: 

EQU 
DI 
OUT 
MVI 
STA 

OEF08h 

OOh 
A,OOh 
FLAGPOS 

Simple, right? Now let's see what you have to do to get back to 
memory bank 1: 

a. output to 1/0 port 1, 

b. store a 01 hex in memory location EF08 hex, and 

c. enable interrupts. 



346 OSBORNE 1 USER'S GUIDE 

In assembly language, that procedure looks like this: 

D3 
3E 
32 
FB 

01 
01 
08 EF 

FLAGPOS 
GOBACK: 

EQU 
OUT 
MVI 
STA 
EI 

OEF08h 
01h 
A,Olh 
FLAGPOS 

There's only one catch to all of this switching between banks of 
memory: you are limited to what you can do in memory located 
below 4000 hex. 

Look at the memory map again. You'll note that in bank 2 below 
4000 hex there is no RAM memory, only ROM and I/O ports. 
Therefore, the following restrictions apply to switching between 
banks: 

1. Your switch routine must be in bank 1 at a memory 
location above 4000 hex. 

2. You cannot have any executable code (other than the 
system ROM) in bank 2 located below 4000 hex (Le., 
when you are using bank 2, all executable code must be 
at locations 4000 hex and above). 

3. If you are operating in CP/M, you must be extremely 
careful to set up a buffer in bank 1 that corresponds to 
any memory location in bank 2 you may wish to 
change. 

Of these restrictions the third is the most subtle and likely to 
cause you problems. Memory from 4000 hex to FFFF hex in bank 
2 is actually the memory in bank I! We call this mimicking "the 
shadow mode" because the memory is actually shadowing the 
primary bank. When you're operating in bank-2 memory, you 
can change anything you want above location 4000 hex, but 
remember that when you get back to bank 1, its memory will 
reflect any changes you make. 



SYSrEM SPECIFICATIONS 347 

There is an easy way around this "shadowing" problem. Simply 
use MOVCPM to create a smaller CP/M system. If you need 4K 
of memory space in bank 2, create a 55K CP/M system, and 
you'll be able to use memory locations OEOOO to OEF70 hex 
without worrying about "crashing" any application program 
running under CP/M in bank 1. 

A close study of the way we implemented CP/M on the Osborne 
1 shows you that we use areas within BIOS as data buffers and 
temporary storage areas. In essence, we've already moved CP/M 
down in memory just a smidgen to make room for our disk 
buffers, so don't be afraid to create your own buffer room 
above CP/M. 

We have more on the memory map of the Osborne 1, but it 
properly belongs in a discussion of the video display, which 
follows, and the 110 ports. If you need to know more about 
memory addressing, skip ahead and look at those sections. 

Direct Screen Manipulations 

You've already learned that the video display is memory
mapped using RAM memory beginning at OFOOO hex. The video 
memory is a 128 x 32 matrix-128 characters on each of 32 lines. 

Now wait a minute, you say-the Osborne's monitor displays 52 
characters on each of 24 lines. What gives? 

The display you see is actually a "window" on the larger video 
matrix, so you can select any window of the larger matrix to 
display. If you want to put the character in position 52 of line 12 
in the upper left-hand corner of the screen, do so by telling the 
computer to issue the following sequence of characters: 

<ESCAPE> S yposition xposition 

Here, yposition is the line number you want in the upper-left 
corner and xposition is the column number. You have to add an 



348 OSBORNE 1 USER'S GUIDE 

"offset" of 32 to both numbers. In BASIC, you might code that 
sequence like this: 

10 PRINT CHR$(27)+"S"+CHR$(YPOS+31)+CHR$(XPOS+31)i 

Alternatively, you can place your desired location in the upper
left corner in the HL register and use an assembly-language 
routine like the one that follows to reposition the screen: 

BDOS EQUOO05h 
ESC EQU27 
PLACE EQUyyxx iYOU fill in 

SETSCR: LXI H,PLACE 
MVI E,'S' iset screen function 
PUSH H isaveYX 
PUSH D isave setscr function 
MVI E,ESC 
CALL OUTCH isend ESCAPE 
POP D irestore setscr 
CALL OUTCH isend SETSCR 
LXI D,2020 ibias forYX 
POP H irestore position 
DAD D iadd bias' to position 
PUSH H isave xposition 
MOV E,H iprepare yposition 
CALL OUTCH isend yposition 
POP D iprepare xposition 
CALL OUTCH isend xposition 

OUTCH: MVI C,2 iCP/M write to 
console function 

IMP BDOS icall CP/M 

To move the cursor-as opposed to the screen-use the same 
routine as listed above, with the one exception that the 
sequence of characters now becomes: 

<ESCAPE> = yposition xposition 



SYSTEM SPECIFICATIONS 349 

Again, offsets of 32 decimal to the X and Y positions are required 
for proper positioning to occur. Only one byte need be changed 
in the above assembly-language routine to set cursor position 
instead of screen position: MVI E,'=' instead of MVI E,'S' 
-thus, with very little reworking, you can create an assembly
language routine that sets either the screen or the cursor 
position. 

You can control many other video attributes by having the 
computer issue a sequence of characterS. Here is a complete list 
of the screen controls: 

HEX 
SEQUENCE 

07 
08 

OA 
OB 
OC 
OD 
1A 
1E 
1B 29 
1B 28 
1B 45 
1B 67 
1B 47 
1B6C 
1B6D 
1B 51 
1B 52 
1B 54 
1B 57 

ACTION 

rings the bell 
moves the cursor left one position 

(no erasure) 
moves the cursor down one line 
moves the cursor up one line 
moves the cursor right one position 
performs a carriage return (no line feed) 
clears the screen and homes the cursor 
homes the cursor 
begins half-intensity video display (dim) 
ends half-intensity video display (bright) 
inserts a line at cursor position 
starts graphic character interpretation 
ends graphic character interpretation 
starts underlining all characters 
ends underlining of characters 
inserts a character at cursor position 
deletes a line at cursor position 
deletes from cursor to end of line 
deletes a character at current cursor 

position 

To clear the screen in BASIC, therefore, a PRINT CHR$(&H1A); 
is all you need. In assembly language, simply place a lA hex 
in the E register and use CALL OUTCH as listed in the last 



350 OSBORNE 1 USER'S GUIDE 

assembly-language-program example. When accessing graphic 
characters from within BASIC, use an offset of 96 decimal in 
order to get all of the characters available. 

A close look at the above sequences will show that, for the most 
part, the Osborne 1 "emulates" the TeleVideo 920C terminal's 
video functions. So, if you have a program that works correctly 
with the TeleVideo terminal, it should also work correctly with 
the Osborne 1. 

After so much "standard" fare in the video area, it may come as 
a shock to discover that the Osborne 1 really thinks of the video 
display as a 128 x 32 matrix of 9-bit memory locations. The 
layout of these 9-bit locations looks like this: 

8 7 6 5 4 3 2 1 0 bit number 

1 
\ y / 

• ASCII character code 

1 = underline 
o = no underline 

1 = full intensity 
o = dim intensity 

This lets you manipulate individual memory locations directly, 
without the output sequences: 1BH,29H or 1BH,28H. 

Of course, the memory isn't actually 9 bits wide. It's just made 
to look that way by using a BIOS call to the ROM's" dim" 
routine (STODIM). 

To work properly, the CPU's D&E registers must hold the 
STODIM address (015DH) when calling. Also, the STODIM 
routine requires that the address of the pertinent screen location 
be in the H&L registers, and that the contents of that location 
be in the B register. Then you can "AND" the location with 7FH 
for dim, or "OR" the location with 80H for bright. Finally, for 



SYSTEM SPECIFICATIONS 351 

the actual addressing: if your Osborne 1 is double density, its 
"ROM resident" call address is OE136H; if it's single density, the 
address may be at OE536H. 

One last area to examine during discussion of the video display 
is the character set. Each character on the Osborne 1 is defined 
as a dot matrix of eight columns wide by ten rows high. 128 
characters are possible-underlining creates another 128, but 
the matrix used is the same except for the bottom row. 

The character-generator ROM on the Osborne 1 uses the first 
128 characters of its memory to define what the top row of each 
character looks like, the next 128 characters in ROM define the 
second row of each character, etc. 

You should note that the graphics character set occupies the first 
32 ASCII codes. An offset of 60 hex (96 Decimal) should be used 
when accessing the graphics, otherwise there might be a prob
lem. Assuming that you have told the Osborne 1 to switch to 
graphics presentation, the control functions will no longer work 
correctly (RETURN will show up as a white circle). Be careful 
here. If you must use cursor positioning with graphics, you'll ei
ther have to do so using direct memory manipulations, or you'll 
have to drop out of the graphics mode every time you want to 
reposition the cursor. This problem poses little trouble in assem
bly language, but if you're programming in a high-level lan
guage, expect this. switching back and forth for graphics to slow 
down the speed at which you can display things-sorry, folks, 
games are going to be difficult to program in BASIC. 

The Ports 

Experienced CP/M programmers are apt to be a bit confused 
when they start studying the keyboard, serial, modem, and 
IEEE ports. Since CP/M runs only on the 8080 family of central 
processors, most CP/M-based machines use the 8080 family 
of support chips to provide 110 ports. Many popular CP/M 
machines use an 8251 chip to provide a serial interface, for 
instance. 



352 OSBORNE 1 USER'S GUIDE 

In the 8080 (and the Z80 and 8086) family of support chips, the 
usual method of "programming" a port is to use an OUT in
struction to send something to the port, and an IN instruction 
to receive something from it. The Osborne 1 is different. In 
designing it, we chose to use support chips from the 6800 family 
of central processors. In particular, a 6850 chip is used for the 
serial port and a 6821 is used to address the IEEE-488 port. 

These support chips use memory-mapped 110, as opposed to 
the port-addressed 110 typical in CP/M systems. Thus, to send 
something to a port, you must send bytes of information to 
memory addresses; however, you read bytes from the memory 
addresses to receive something from the port. Before we go too 
far with our explanation, let's look at the memory map for the 
I/O ports; all of these locations are in bank 2: 

2FFF 

2C03 
2C02 
2COl 
2COO 

2A01 
2AOO 

2903 
2902 
2901 
2900 

xxxxxxxxxxxxxx xxxxxx = not used 
xxxxxxxxxxxxxx 

part b control 
part b data video 
part a control 
part a data 

xxxxxxxxxxxxxx 

buffer 
status/control serial 

xxxxxxxxxxxxxx 

part b control 
part b data IEEE 
part a control 
part a data 

xxxxxxxxxxxxxx 



2280 
2240 
2220 
2210 
2208 
2204 
2202 
2201 

2103 
2102 
2101 
2100 

2000 

row 7 
row 6 
rowS 
row 4 
row 3 
row 2 
row 1 
row 0 

xxxxxxxxxxxxxx 

data 
sector 
track 
status 

xxxxxxxxxxxxxx 
xxxxxxxxxxxxxx 

SYSTEM SPECIFICATIONS 353 

keyboard 

disk 

To fully understand how these memory locations work, you 
need specification sheets for the 6850 ACIA and 6821 PIA chips, 
and one for the Western Digital 1793 floppy-disk controller. The 
specification sheets will define what each bit does in each mem
ory location. Remember, many of the locations perform dual 
functions: read and write, for example. 



354 OSBORNE 1 USER'S GUIDE 

The Keyboard 

If you look at the construction of the Osborne 1 keyboard, you 
quickly discover that it has no decoding logic. 

When an Osborne 1 user presses a key, that key has a unique 
location in an 8 x 8 matrix: 

AD 

A1 

A5 

A2 

A3 

A4 

AS 

A7 

GND 

r--

P1 
3 

8 

7 

6 

4 

2 

5 

9 

ESC 

IY; 
{) 
Q 

A 
Z 
c) 

10 

TAB CTRL 

~ IYs 
(] ~ 
W E 
S 0 
X C 
Q -

-

11 12 

RET ' ) 
SHIFT I~ [ 

lY; ~ Va ~ Va 
S P > 

0/0 P 0 Va 
R T Y U I 
F G H J K 
V B N M < , 
? I 

L + I 

/ "- = 

ALPHA 
LOCK 

13 14 15 16 17 r~ 
\/NO DO 01 02 03 04 05 06 07 

RFIAND 
STATIC SHIELD 

If you remember the memory map presented earlier, you'll im
mediately associate the rows listed in the above matrix with the 
memory locations set aside for keyboard 110. The system ROM 
in the Osborne 1 continually checks to see if a key has been 
pressed. The logic in that routine allowed us to implement 
three-key rollover and a set of ten quasi-function keys. 



SYSTEM SPECIFICATIONS 355 

The function keys are control-O through control-9, and are user
programmable. In BIOS you'll find two tables associated with 
the function keys. The first is a table of pointers to the function 
definitions, which by default is located at OE16B hex. The other 
is a 76-character table, located at OE192 hex, which maintains 
the character sequence associated with a function. For the most 
part, you'll program these keys using the SETUP program sup
plied with the Osborne 1. Since the table is in RAM, you can 
change the table from within your program. 

You may wonder if you can reinterpret the keyboard characters 
as you depress them. Only programs executing in bank 2, like 
the system ROM, can access the keyboard. You can replace our 
BIOS call for input with your own, using a translation table 
to substitute keystrokes. Be-cause of the three-key rollover in 
ROM, we do not suggest that you replace the ROM routine with 
your own. 

The Modem and RS-232 Interfaces 

A close look at the circuitry in the Osborne 1 will show you 
that the modem and RS-232 interfaces are basically one and 
the same; the primary differences being that many of the signal 
levels on the RS-232 connector are held constant, while you can 
manipulate them using the modem connector. Also, the (RTS) 
on the RS-232 serves as a Transmit enable/disable while the 
modem uses this "request to send" signal in the conventional 
manner. 

The IOBYTE is a reserved memory location (0003 hex) which 
defines the current assigment of physical to logical devices. The 
IOBYTE is divided into four distinct fields for the four logical 
devices recognized by CP/M. The logical device names are now 
obsolete (do not match Osborne 1 physical device names) and 
are used only for the sake of maintaining the standard CP/M 
nomenclature. 



356 OSBORNE 1 USER'S GUIDE 

The Osborne BIOS fully implements the IOBYTE function of 
CP/M. If all you need to do is read to and from the modem 
and/or serial port, simply change the IOBYTE indirectly by using 
the CP/M STAT command, or directly by changing the byte at lo
cation 0003 hex. The IOBYTE is split into four sections, one each 
for the console, punch, reader, and list devices. Each device is 
represented by two bits, as follows: 

7 6 5 4 3 2 1 0 bits 

\ /\ 1\ 1\ I 
printer punch reader console 

The table of possible values for each of these 2-bit indicators is 
as follows: 

CONSOLE field (bits 1 and 0) 00 = keyboard + screen (TTY:) 
01 = serial port (CRT:) 
10 = parallel port (BAT:) 
11 = IEEE-488 port (UC1:) 

READER field (bits 3 and 2) 00 = keyboard + screen (TTY:) 
01 = serial port (PTR:) 
10 = parallel port (UR1:) 
11 = IEEE-488 port (UR2:) 

PUNCH field (bits 5 and 4) 00 = keyboard + screen (TTY:) 
01 = serial port (PTP:) 
10 = parallel port (UP1:) 
11 = IEEE-488 port (UP2:) 

LIST field (bits 7 and 6) 00 = keyboard + screen (TTY:) 
01 = serial port (CRT:) 
10 = parallel port (LPT:) 
11 = IEEE-488 port (UL1:) 

(Note: the values in parentheses are used with the STAT 
command to change the IOBYTE to the value indicated.) 



SYSTEM SPECIFICATIONS 357 

Thus, to make the serial port the new CP/M console, you'd 
change the IOBYTE (memory location 3) from 80 hex to 81 hex. 
However, the easiest way to accomplish this type of logical-to
physical assignment is using STAT. 

The IOBYrE 

The IOBYTE is a reserved memory location (0003 hex) which 
defines the current assignment of physical to logical devices. 
The IOBYTE is divided into four distinct fields for the four logi
cal devices recognized by CP/M. The logical device names are 
now obsolete (i.e., do not match Osborne physical device 
names) and are used only for the sake of maintaining the stan
dard CP/M nomenclature. 

I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I bit number 
~ ~ '-v-" '-v-" 

list punch reader console 

A value in the range 00 to 3 hex (0 to 3 decimal) determines the 
assignment of each logical device as follows: 

Logical CP/M Osborne 
Device Value Physical Physical 

List: 00 TTY: keyboard + screen 
(LST:) 01 CRT: serial port 

10 LPT: parallel 
11 UL1: IEEE port 

Reader: 00 TTY: keyboard + screen 
(RDR:) 01 PTR: serial port 

10 UR1: parallel port 
11 UR2: IEEE port 

Punch: 00 TTY: keyboard + screen 
(PUN:) 01 PTP: serial port 

10 UP1: parallel port 
11 UP2: IEEE port 



358 OSBORNE 1 USER'S GUIDE 

Console: 00 TTY: keyboard + screen 
(CON:) 01 CRT: serial port 

10 BAT: parallel (Centronics) 
11 UC1: IEEE port 

You can determine the output status of both the modem and 
serial ports by using the BIOS call LISTST located at OE12D hex. 
A value of OFF hex indicates that the list device is ready; 00 indi
cates busy. To find the input status of the modem or serial ports, 
you must first switch to bank 2 of memory and then look at 
memory location 2AOO hex. To change the status of the modem 
or serial device directly, you use the same memory location and 
write a special" control" byte as dictated in the 6850 specifica
tion sheet (see the technical manual for more details). Memory 
location 2AOl hex in bank 2 is the data buffer: you read informa
tion from external devices by moving the byte to one of the Z80 
internal registers, you send information to the external device 
by moving data from the Z80 register to the memory location. 

The pin connections on the modem port are as follows: 

1 GND signal ground 
2 TXD transmitted data-TTL logic, l=high 

3 not used 
4 MSB modem status bit-open collector, 

50JLa sink=inactive 
5 CTS clear to send 
6 RXD receive data 
7 +12v connected to power supply through 

22 ohms 
8 MCB modem control bit-TTL, low 

suppresses outp~t 
9 RI ring indicator-TTL, high-to-Iow 

·sets flag 

Osborne has an optional modem. Connecting other modems 
without using some sort of external adapter may damage your 



SYSTEM SPECIFICATIONS 359 

Osborne I, as pins 4 and 5 are open collectors and are sensitive 
to signal-edge transitions. If pin 4 is not connected to the 
modem, make sure that nothing is connected to pin 4 at the 
Osborne end; otherwise, adjacent signals may be received 
inadvertently. 

Below are the pin assignments for the RS-232 connector from 
the printer point of view: 

1 
2 
3 
4 

5 
6 
7 
8 

20 

AA 
BA 
BB 
CA 

CB 
CC 
AB 
CF 

CD 

frame ground (optional) 
transmitted data (low=l) 
received data (low= 1) 
request to send (high or no connection 
enables) 
clear to send (always high on acc 1) 
data set ready (always high on OCC 1) 
signal ground 
received line signal detected (always 
high) 
data terminal ready (high or no con
nection enables) 

Baud rates for the serial port are 300 and 1200, software
selectable (use the SETUP program to permanently change the 
baud rate from 1200 that BIOS assumes). If it's necessary, you 
can change an internal jumper to double the baud rate. 

The Disk Interface 

You can address the disk interface directly, although we strongly 
discourage this practice. If you must control the disk drives 
directly, do so through the standard CP/M BIOS calls: 

OEl18 
OEllB 
OEllE 
OE12l 
OE124 

move head to track 0 on selected drive 
select disk-drive number 
set track number 
set sector number 
set the DMA address 



360 OSBORNE 1 USER'S GUIDE 

OE127 
OE12A 
OE130 

read the selected sector 
write the selected sector 
translate the sector 

Each of these routines is documented in the Osborne 1 technical 
manual should you need to use them. If you're familiar with the 
way CP/M handles disk I/O, you also know that "BDOS func
tions" are accessible through memory location 0005 hex. Also 
note that the default BIOS addresses shown in this manual are 
affected by the currently implemented size of CP/M. The Os
borne 1 is a standard CP/M system, and thus works as docu
mented in such books as The Osborne CP/M User Guide. 

If you're curious about how information is stored on the disk
ette, here are the bare facts: 

40 
5 

1024 
3 

200 
64 
1K 

tracks 
physical sectors 
bytes per sector 
tracks reserved for operating system 
total diskette capacity 
number of directory entries allowed 
smallest addressable disk space 

Track 0 contains the CCP portion of CP/M, along with BDOS. 
Track 1 contains all of BIOS, and track 2 is reserved for 
future use. 

The directory is the first data track, track 3. Each entry consists 
of the standard CP/M format: one byte to indicate deletion, 11 
bytes for the file name, and 20 bytes representing the "groups" 
assigned to the file. 

There are two unusual aspects of the Osborne l's use of the disk 
system. First, even though information is stored on the diskette 
in 5 sectors, to CP/M there are 40 sectors of 128 bytes each on 
the diskette. In other words, if you are using the Osborne 1 
ROM routines, as documented in the technical manual, you'll 
be working with 5 physical sectors of 1024 bytes, but if you're 



SYSTEM SPECIFICATIONS 361 

working with CP/M BIOS or BDOS routines, you'll be dealing 
with 40 logical sectors of 128 bytes each. 

Also, the Osborne 1 does not allow transfers of data directly to 
memory in the first 16K of memory space because the ROM and 
I/O in the second bank reside there. Instead, transfer informa
tion involving the first 16K of memory by first buffering the in
formation in high memory (above BIOS) and then moving it into 
position. The opposite procedure occurs when you write infor
mation to the diskette from the initial 16K of memory. Use of 
the Z80 block-memory-move instruction makes this buffering 
transparent to users, and almost completely cancels any speed 
penalty involved. 

The IEEE-488 Interface 

Any IEEE-488-compatible device can connect to the Osborne 1 
by the IEEE connector. Because this connector is used for more 
than just IEEE-488 signals, we've declined to use a standard 
IEEE connector. The following table shows the pin assignments 
for both the IEEE standard connector and the Osborne 1 edge 
connector: 

IEEE OSBORNE 1 SIGNAL NAME 

1 1 Data bit 1 (0101) 
2 3 Data bit 2 (DI02) 
3 5 Data bit 3 (0103) 
4 7 Data bit 4 (DI04) 
5 9 End or Identify (EOI) 
6 11 Data Valid (DAV) 
7 13 Not Ready for Data (NRFD) 
8 15 No Data Accepted (NDAC) 
9 17 Interface Clear (IFC) 
10 19 Service Request (SRQ) 
11 21 Attention (A TN) 
12 23 Cable Shield + GND (SHIELD) 
13 2 Data bit 5 (0105) 



362 OSBORNE 1 USER'S GUIDE 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

4 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 

Data bit 6 
Data bit 7 
Data bit 8 
Remote Enable 
Signal Ground 
Signal Ground 
Signal Ground 
Signal Ground 
Signal Ground 
Signal Ground 
Signal Ground 

(DI06) 
(DI07) 
(DI08) 
(REN) 
(DAV) 
(NRFD) 
(NDAC) 
(IFC) 
(SRQ) 
(ATN) 
(Logic) 

Note: The pin connections on the Osborne 1 are counted 
from the top left to the lower right: 

26 24 22 20 18 16 14 12 10 8 6 4 2 

Hewlett-Packard computers and Commodore's PET and CBM 
use the IEEE-488 interface to hook peripherals to the computer, 
so peripherals designed for these computers will work with the 
Osborne 1. Create a cable with the pin connectors indicated 
above; then run the SETUP program to configure the IOBYTE 
properly. Printers which are other than device number 0 on the 
IEEE bus will need some extra manipulation; one byte in the 
BIOS memory will need to be changed. You can specify any 
valid IEEE device number from within the SETUP program. 

We've taken the headache out of much of the other program
ming you'll need to do for the IEEE-488 port, as well. The eight 
primary commands are included as jumps appended to the end 
of the CP/M BIOS jump table. You must employ them in an in
telligent sequence to properly use the IEEE interface. The CP/M 
BIOS entry and exit states for the following commands are 
defined in Appendix 2. 



The IEEE commands are: 

Control out 
Status in 
Go to Standby 
Take Control 

SYSTEM SPECIFICATIONS 363 

Output Interface Message 
Output Device Message 
Input Device Message 
Input Parallel Poll Message 

IEEE-488 commands use no RAM other than the stack. Each 
command routine in BIOS determines status of the port by read
ing the status of the 6821 PIA chip. The PIA transmits signals in 
both directions, so to reduce the overhead in determining the 
current direction the PIA is attempting to communicate, it is 
always left in one of two modes: 

the source handshake mode 
the accepter handshake mode 

(The PIA specification sheet will be helpful in determining 
these modes.) 

Several of the IEEE commands require that the PIA be in the 
source handshake mode when called. The PIA is normally in the 
source handshake mode following the completion of any IEEE
bus information transfer, so this is not a major restriction. For 
instance, both the Status In and the Parallel Poll commands re
quire that the PIA be in the source mode, which means that you 
can perform the detection-of-device requests using either serial 
poll or parallel poll only when the interface is idle. / 

To send data to a device on the IEEE bus, the controller makes 
the device a LISTENER, assumes the role of TALKER, and sends 
the data. To receive data from an external device, the controller 
must first make the device a TALKER and then assume the role 
of LISTENER. After this, the controller goes on "standby" and 
allows the two devices to communicate at their own rate. 



364 OSBORNE 1 USER'S GUIDE 

The controller can regain control asynchronously by setting the 
ATN signal to true. But if a device-dependent message is true 
when ATN becomes true, other devices on the IEEE bus can 
misinterpret the interrupted byte as an interface message and 
produce chaos. Avoid the problem by taking control synchro
nously. If high-speed transfer of data between devices is not 
required and the computer can be tied up during the transfer, 
it is better to make the controller listen to the transfer while 
discarding the data. This procedure allows the controller to 
count transfers, look for EOI signals, or "time out" the TALKER 
before regaining control. 

The IEEE commands are detailed in Appendix 2, with sample 
programs included for help in deciphering how we've put the 
BIOS jumps into effect for the IEEE bus. Within three months 
of introduction of the Osborne 1, users figured out methods of 
connecting hard-disk drives, printers, modems, and other pop
ular devices using the IEEE interface. 

The Centronics Interface 

The Osborne 1 does not have a Centronics interface, per se, but 
we have done some clever programming via the IEEE interface 
to mimick Centronics' protocol. 

To hook a Centronics printer to your Osborne 1 you must create 
a cable with the following pin connections: 



SYSTEM SPECIFICATIONS 365 

Osborne IEEE Centronics 
Edge Connector Connector 

pin 1 data 0 2 
2 data 4 6 
3 data 1 3 
4 data 5 7 
5 data 2 4 
6 data 6 8 
7 data 3 5 
8 data 7 9 

10 ground 30 
11 out strobe 1 
12 ground 19 
15 busy 11 
16 ground 29 
17 input ready 14 (not neces-
18 ground 21 saryon 
19 in strobe 13 Epson) 
20 ground 20 

NOTE 

The pin connections on the Osborne 1EEE-488 port are 
numbered in the following manner as you look at the front 
of the Osborne 1: 

25 23 21 19 17 15 13 11 9 7 5 3 1 

I 

26 24 22 20 18 16 14 12 10 8 6 4 2 

Generally speaking, the above signal definitions apply to most 
parallel printers, although the connector on the printer end may 
be entirely different-for instance, the IDS Paper Tiger uses a 
DB25 connector. One area which has provided for much confu
sion is the Centronics protocol definition. A number of printer 
manufacturers, Centronics included, do not use the full set of 



366 OSBORNE 1 USER'S GUIDE 

ground hookups defined, and in some cases, printer manufac
turers who claim Centronics compatibility do not always attain 
it. If your dealer cannot help you in connecting a printer, WRITE 
to Osborne Computer Corporation Customer Service Dept. with 
a full description of the printer you are trying to connect, and 
we will attempt to help you get it working. 

To use the printer connected to the IEEE interface, you must 
employ the SETUP program to configure the printer to the 
Centronics protocol. You need do this only once for each disk
ette. Alternatively, if you have two printers hooked up, or wish 
to change the printer being used from within a program, you 
can reset the IOBYTE as described earlier. 



APPENDIX 1-
Modifying 

Word Star 



368 OSBORNE 1 USER'S GUIDE 

Modifying WordStar on the Osborne 1 

Some Osborne 1 purchasers have asked Osborne Computer 
Corporation for help in modifying their copies of WordS tar to 
work correctly with their printer. Unfortunately, over 500 differ
ent printers are available, some of which Osborne has no experi
ence with. It is therefore virtually impossible for Osborne to 
provide the specific help many of you have requested. 

At the same time, Osborne Computer Corporation is interested 
in providing as much support as possible to our customers. This 
document provides a general framework for making modifica
tions to WordS tar on the Osborne 1. Osborne will also work 
with FOG (First Osborne User Group) and other user groups to 
help bring specific modifications to the attention of Osborne 1 
users. In 1982, we also began publication of a users' magazine 
(Portable Companion). With the help of the user groups and 
dealers, the magazine has become a further vehicle for dissemi-
nating information. . 

We're working on bringing our user support up to the highest 
level in the industry; if you'd also like to join an Osborne User 
Group, please consult the magazine or contact our customer 
service department for the group nearest you. 

Modifying WordStar 

If you want to modify WordS tar, it is likely that you wish to 
make modifications to accommodate your printer. In this 
document, we will concentrate on making printer changes. 

To modify WordS tar, you'll need the following items: 

Your WordS tar diskette. 
Your CP/M Utility diskette. 



MODIFYING WORDSTAR 369 

Your CP/M System diskette. 
The assembly-language listing in this document, or 

the MicroPro Customization Notes. 
A blank, formatted diskette. 
The manual for your printer. 
A hexadecimal/decimal/ASCII chart (helpful, but not 

necessary) . 

Make sure that you have these materials in front of you and that 
you've read through the documentation so that you're familiar 
with where to find specific information wheri you need it. 

Step 1: Configuring the CP/M Printer Handler 

Place your CP/M System diskette in drive A and the WordS tar 
diskette in drive B. We assume that you're working with copies 
of both diskettes so that any mistakes you might make can be 
quickly reversed. 

Press RESET on the front of the Osborne 1. Press the I RETURN I 
key to start CP/M. When the HELP program identifies itself, 
press the ESC (for ESCAPE) key to get to CP/M. Then type: 

SETUP I RETURN I 

When SETUP asks which disk you wish to configure, press B to 
indicate that you wish to reconfigure your WordStar diskette. 
After a few moments, the screen will clear and fill with a listing 
of the current settings. 

We have now reached the moment of the first decision to be 
made: how is your printer connected to the Osborne 1? You 
must change setting A (PRINTER) and sometimes setting B 
(BAUD RATE) to reflect how your printer is connected to the 
computer. 

If your printer is a low-cost dot-matrix printer, such 
as an Okidata, a Centronics, or an Epson, you will 
either select STANDARD SERIAL or CENTRONICS, 



370 OSBORNE 1 USER'S GUIDE 

depending on which interface option you pur
chased. Normally, these printers also run at 1200 
baud, if you have a serial interface and the proper 
cable. 

If your printer is a high-quality daisywheel printer, 
it will probably connect to the serial port; a few 
models might connect like a Centronics parallel 
printer, however, so you'd better check. You may 
use the incremental spacing and other special print
ing capabilities of a daisywheel printer if you specify 
300 BAUD, STANDARD SERIAL, or if you know 
enough about special printer protocols to use the 
XON/XOFF or ETX/ACK selections at 1200 baud. 
Using 300 baud will always work, so we suggest that 
you start with this rate. 

If your printer is intended for a Commodore or 
Hewlett-Packard computer, it may feature an 
IEEE-488 interface. In this case, specify IEEE as 
the printer type; baud rate need not be set. 

If you don't know how your printer connects to the computer, 
you'll have to consult your dealer or the person who sold you 
the printer. Osborne Computer Corporation cannot supply you 
with the cabling or interfacing information. 

While you're using SETUP to choose CP/M options, make sure 
that the ARROW KEYS are set for WORDSTAR (and not CP/M), 
that AUTO HORIZONTAL SCROLL is ON, and that SCREEN 
SIZE is set for 128. With the versions of WordS tar being ship
ped, these options must be set correctly for WordS tar to work as 
described in the User's Reference Manual. 

You might also want to add some function keys while you're 
using SETUP. Commands that we find handy to have program
med into the function keys are: 



I\QQI\B 
I\OR 
I\OL 
I\OC 
I\KD 

MODIFYING WORDSTAR 371 

continuously reformat document 
set right margin 
set left margin 
center line 
save file 

We suggest that you figure out your ten most frequently used 
commands and program them into the function keys; you don't 
have to, of course, but if you learn to use them properly, they 
do save time. 

When you've finished making sure that all the options are 
properly configured, press RETURN (to exit), then press B 
to indicate that the configuration should be saved on drive B. 

The disk drive, as usual, will whirr and clack, then shut off. You 
should see the CP/M prompt (~). 

Step 2: Figuring Out the Special Codes 
for Your Printer 

You need to know certain things about the way your printer 
operates. We can't list all the different printers and the specific 
information you'll need to add or change in your source listing 
to allow WordS tar to work properly with your printer. 

What we will do is list each piece of information you need to 
modify, and discuss what each means. You'll have to sleuth 
through your printer's manual to find the specifics you need, 
but at least you'll have an idea of what you're looking for. 

Usually, you're looking for a chart labeled "Print Control 
Codes." This chart will tell you the sequence of speCial charac
ters the printer must receive to perform each function. These 
characters are usually multiple-character sequences (two or 
three characters in length) and often begin with the ESCAPE 
character. Normally, the control codes will be given in both 
decimal and hexadecimal format-we'll want the hexadecimal 
numbers to enter into WordS tar. 



372 OSBORNE 1 USER'S GUIDE 

The listing has two distinct patterns for the way WordStar 
wants to see character sequences: 

1. The first number must be the number of characters in 
the sequence (zero characters if the function is not to 
be implemented), followed by the actual character 
sequence. For example, the Epson MX-80 uses the 
sequence ESCAPE E to change to enhanced print. 
This sequence looks like this: 

02h,lBh,45h,0,0,0,0,0 

where 02h is the number of characters in the sequence, 

1Bh is the ESCAPE character (in hex), 
45h is the E (in hex), and the 
Os are there to take up the rest of the space 

dedicated to the function. 

2. A single number or character is entered, and WordS tar 
will supply the rest of the information needed. This is 
often called a "flag" or "toggle" function-the value 
"flags" which type of printer is being used or what 
functions are available. 

Okay, here's the information you need to find out about 
your printer: 

HOW TO OVERPRINT: The first thing you need to know is 
the instructions that tell WordS tar how to create "overstrike" ef
fects. An overstrike is simply two characters printed one on JOP 
of the other. WordStar uses overstrike to create boldface print, 
by printing the same character over and over; to underline, by 
printing the character, then the underline; and to print one 
character above another, as in foreign-language accents. 

If you have a daisywheel printer, you'll just need to tell 
WordStar what kind it is. 

If you own a dot-matrix or other non-daisywheel printer, you'll 
need to determine whether it is capable of backspacing or 



MODIFYING WORDSTAR 373 

returning the carriage to the left margin without issuing a line 
feed. The latter method is preferred. The former is necessary for 
Selectric and other printers that cannot issue a carriage return 
without moving down a line on the paper. 

If your printer can't backspace or issue bare carriage returns 
(no line feed), you will not be able to use WordS tar's overstrike 
capabilities. 

BOLDFACE PRINTING: Some printers do a better job than 
others of striking the same character over and over to create 
boldface print. The second item you need to know is the number 
of" times you wish WordS tar to print the same characters for all 
text between the "PB commands. Daisywheel printers should 
always have this set at 02. WordStar will automatically make 
this setting, so don't change it. 

DOUBLESTRIKEPRINTING: The same criteria apply to 
doublestrike as to boldface. The difference between boldface 
print and doublestrike print should be readily apparent: bold
face should be darker and bolder. Increase the number for 
this function so that the density of the print is somewhere 
between that of normal printing and boldface printing. 
Daisywheel printers should have this function set at 02. 

ADVANCE A LINE: Some printers perform "automatic line 
feeds." This means that every time the computer sends a car
riage return to the printer, the printer will perform a carriage 
return and a line feed. Normally, printers should perform a 
carriage return only, and perform a line feed only when the 
computer issues a line feed. 

Therefore, to advance a line on the paper, WordStar usually has 
to send two characters: a carriage return followed by a line feed. 
If your printer performs auto line feeds, you'll need to get rid of 
the line feed in this function. 

Another problem with some printers is that they take much 
longer to perform a carriage return and line feed than they do to 



374 OSBORNE 1 USER'S GUIDE 

print any other characters. The result is that these printers lose 
characters unless WordStar is told to wait a few moments after 
sending line feeds. You can't do this, but you can tell WordS tar 
to send some extra characters-called "nulls" (00 hex}-which 
both WordStar and the printer will ignore. Each null sent by 
WordStar counts as a character only in the sense that it takes 
WordS tar time to send it. If you send enough nulls, the printer 
will be ready to start printing the real characters once they 
begin arriving. 

In other words, you may want to send a carriage return, line 
feed, and then several nulls with this function if you have a 
printer that performs carriage returns slowly-Selectric 
printers, for example. 

RETURN TO SAME LINE: This function is much the same as 
the previous one. The difference is that this one doesn't issue a 
line feed, as you don't want the carriage moved to the next line, 
just to the left margin. The same comments about nulls men
tioned for the previous function apply here. 

ADVANCE ONE-HALF LINE: If your printer is capable of 
advancing the paper one-half line at a time, you may want to 
change this function so that you can print superscripts and sub
scripts. Do not change this function from all nulls if your printer 
is a daisywheel or capable of moving the carriage upand down 
onthe paper (see below). You'll have to look through your 
printer's manual for the "character sequence" that performs this 
function, and then enter that sequence. 

BACKSPACE: If you specify that your printer backspaces to 
overstrike, you need to enter into this function the·character 
sequence your printer recognizes as the backspace· command 
(usually "H or 08 hex). If you have a daisywheel printer or 
specify that the printer should use carriage returns to perform 
overstrikes, you may simply fill this function with zeros. 

ALTERNATE CHARACTER SET: If your non-daisywheel 
printer is capable of printing different-size characters, you need 



MODIFYING WORDSTAR 375 

to enter the character sequence that tells the printer to change to 
the nonstandard size in this function. 

Many dot-matrix printers have several different-size characters 
available. You'll have to pick one size as your normal character 
set and one as your alternate. It's usually a good idea to pick the 
alternate set as the smaller of the two-i.e., 16 ·characters per 
inch versus 10 per inch for normal. WordStar can't tell how large 
your characters are, and if you switch in the middle of a line to a 
larger character set, you may end up with text running off the 
right side of the page. 

NORMAL CHARACTER SET: See discussion immediately 
above. If you specify an alternate character set, you must also 
specify a normal character set. 

ROLL CARRIAGE UP PARTIAL LINE: To perform superscripts 
on non-daisywheel printers, entering the character sequence for 
"carriage up a partial line" is the preferred method of creating 
superscripts. If you enter a character sequence in this function, 
you must also enter a character sequence in the next function. 

ROLL CARRIAGE DOWN PARTIAL LINE: This is the com
plement of the last function. The amount that the carriage is 
"rolled down" must equal the amount it is rolled up, otherwise 
you will end up with jagged lines when printing subscripts and 
superscripts. 

USER PATCHES 1 THROUGH 4: WordS tar allows four addi
tional character sequences to be sent to the printer through 
definable "user functions." With non-daisywheel printers, it 
makes sense to put any additional character sizes (other than 
those entered above) into these functions, just in case you wish 
to use them. With printers such as the Centronics 737, you 
might want to specify that your printer enter the "proportional 
spacing" mode by employing a user function. 

RIBBON CHANGE: If your printer allows you to switch be
tween the black portion of the ribbon and another color, usually 



376 OSBORNE 1 USER'S GUIDE 

red, enter the character sequence that tells the printer to change 
to the alternate ribbon color in this function. Otherwise, fill it 
with zeros. 

RIBBON CHANGE BACK: If you specify a ribbon change func
tion, you need to tell WordStar the sequence of characters your 
printer recognizes; this sequence instructs the printer to return 
to the normal ribbon color. Enter that sequence in this function. 

INITIALIZATION: You may send any sequence of up to 16 
characters to your printer before WordStar first begins to send a 
file for printing. At the least, send the printer a carriage retutn. 
This will assure that the printer always starts at the left edge of 
the paper. Some users may wish to send a form feed (12 hex) to 
make sure that WordStar always starts printing at the top of a 
form, no matter what instructions preceded. 

CONCLUSION: You may also elect to send your printer a se
quence of characters at the end of each printing session. Some 
printers, for example, need to have their motor turned off by the 
computer. If you turn off the printer's motor using this function, 
make sure you turn it on in the initialization function, above. 

STRIKEOUT CHARACTER: You may specify which character is 
used for strikeouts. WordStar comes with the" _" (hyphen) used 
as the strikeout character, but some people prefer a lowercase or 
uppercase X. Make sure at least some ~haracter is entered here 
or else you will never see strikeouts, even if you enter them into 
your document. 

UNDERSCORE CHARACTER: You may also specify which 
character to use for underlining. The obvious choice is the 
underline (_), but some printers use special underlining 
characters. 

PRINTER ROUTINE: WordS tar uses one of five different ways 
of sending characters to the printer. Only three of these make 
sense on the Osborne 1: 



CP/M list device 
user subroutine 
alternate console 

MODIFYING WORDSTAR 377 

You set up your WordStar diskette in step 1 for the first option, 
using the CP/M list device. In almost every instance, this is the 
only choice novice users should attempt to use. The other two 
possibilities both require some knowledge of either assembly 
language or the CP/M IOBYTE. The Customization Notes list 
these last two routines and show the areas to change; just make 
sure you know what you're doing if you begin tinkering with 
these two routines; otherwise, you may spend a lot of time 
going backwards (Le., not printing!). 

Step 3: Using INSTALL 

Now comes the process of actually changing WordStar. 

Place your CP/M Utility diskette in drive A and the WordStar 
diskette in drive B. Press RESET on t¥te front of the Osborne 1 
and press I RETURN I to load CP/M. Type INSTALL RETURN to 
load the WordStar installation program. 

A copyright message will appear, and INSTALL will ask you: 

Do you want a normal first-time INSTALLation of WordStar? 

(Y = yes; N = display other options): 

WordS tar was installed by Osborne Computer Corporation the 
first time, so DO NOT answer with a Y; press rm (for no). A 
new message will appear listing your options. Rather than ex
plain each of them, choose option liB" -the only one that really 
makes sense given our sample installation. 

INSTALL now asks: 

FILE NAME OF WORDSTAR to be INSTALLed? 



378 OSBORNE 1 USER'S GUIDE 

to which you should reply with the name of the WordS tar 
program file: B:WS.COM. You must supply the B: because 
INSTALL needs to be told that your WordStar diskette is 
in drive B, not drive A. 

Next, INSTALL asks: 

File name for saving INSTALLed WordStar? 

You will have to reply with B:WS.COM (Le., the same name as 
the program you wish to modify) because there is not enough 
space on drive B to save a second copy of WordS tar. 

The next message you'll see is a "terminal choice menu." The 
proper response is to specify U indicating no change. Modifying 
the terminal information in WordS tar makes no sense on the 
Osborne 1. 

Finally come the printer options in INSTALL. The first question 
is what type of printer you have: 

Printer Menu 

(More specific information is displayed after you enter 
your choice) 

A Any' 'Teletype-like printer (i.e., almost any printer) 

C "Teletype-like" printer that can BACKSPACE 

o DIABLO 1610/1620 daisywheel printer 

E DIABLO 1640/1650 daisywheel printer 

F QUME Sprint 5 daisywheel printer 

G NEC Spinwriter 5520/5520 thimble printer [ ? ] 

H "Half-line-feed" printers 

M I/O MASTER/OEM printer combination 

U no change 



MODIFYING WORDSTAR 379 

Z none of the above 

PLEASE ENTER SELECTION (1 LETTER): 

This is where your sleuthing will start to payoff. The informa
tion you found earlier in the "How to Overprint" section is the 
primary data you need to make your selection: 

If you have a daisywheel printer, select the choice (D-G) 
that comes closest to the type of daisywheel printer 
you own. 

If you have a non-daisywheel printer and it can back
space, you may want to choose option C, whereas all 
others should choose option A. 

When you pick an option, INSTALL will present some infor
mation about your choice and ask you if you are sure about 
your choice. Press [TI if you want to continue, [[] if you want 
to reconsider your last choice. 

Next, INSTALL asks you two questions about how WordS tar is 
to communicate to your printer. You must answer these ques
tions, even if you earlier told CP/M how to communicate to 
your printer. 

Communications Protocol 

WordS tar needs aI/communications protocol," a special method 
of communicating to the printer, for some types of printers. It 
does not make sense to have WordS tar provide this protocol; 
however, CP/M can do it. If you have a daisywheel printer, 
specify the appropriate protocol using SETUP and specify 
/lNONE required (or handled outside WordStar)" to the 
question INSTALL is now asking. 

If you have a non-daisywheel printer, the appropriate choice is 
the same one: N for /lNONE required." 



380 OSBORNE 1 USER'S GUIDE 

Print Driver 

WordS tar also needs to know which method you wish it to use 
to find the instructions to print. Of the options shown, only L 
(CP/M list device) or S (user-installed printer driver) makes 
sense. Novices should always choose the CP/M list device; if 
you have access to the Customization Notes and know Z80 
assembly language, you may want to code your own routine. 

Special Modifications 

INSTALL now asks you if your modifications are complete. If 
you have a daisywheel printer, you should reply Y, otherwise 
reply N. 

Should you continue making changes, the following modifica
tions are still open to you: 

NAME DEFAULT DESCRIPTION 

BLDSTR: 02 Number of strikes for boldface 
DBLSTR: 02 Number of strikes for doublestrike 
PSCRLF: 02,OD,OA,0,0, Advance to next line sequence 

0,0,0,0,0, 
PSCRLF:+11 01,OD,O,O,O,O,O Return carriage for overprint 
PSHALF: 0,0,0,0,0,0,0 Half-line-feed sequence 
PBACKS: 01,08,0,0,0,0 Backspace character sequence 
PALT: 0,0,0,0,0 Alternate character-pitch sequence 
PSTD: 0,0,0,0,0 Standard character-pitch sequence 
ROLUP: 0,0,0,0,0 Superscript character sequence 
ROLDOW: 0,0,0,0,0 Subscript character sequence 
USR1: 0,0,0,0,0 User-defined character sequence 
USR2: 0,0,0,0,0 User-defined character sequence 
USR3: 0,0,0,0,0 User-defined character sequence 
USR4: 0,0,0,0,0 User-defined character sequence 
RIBBON: 0,0,0,0,0 Ribbon alternate character sequence 
RIBOFF: 0,0,0,0,0 Ribbon standard character sequence 



MODIFYING WORDSTAR 381 

PSINIT: Ol,OD,O,O,O Initialization sequence 
0,0,0,0,0,0,0,0, 
0,0,0,0 

PSINIT:+17 0,0,0,0,0,0,0, Ending sequence 

SOCHR: 
ULCHR: 

0,0,0,0,0,0,0, 

° 2D 
SF 

Character used for strikeout 
Character used for underlining 

Default values: each hex number specified is one byte stored in 
WordStar. You may not use more bytes than are assigned to the 
default values, although you can use fewer by merely entering 
00 hex for each unimportant byte. 

The above table corresponds (in order) to the information you 
had to look up about your printer earlier. To substitute the infor
mation needed to control your printer in place of the default 
values listed above: 

1. Type the name of the routine you wish to change. 

PALT: I RETURN I 
tells INSTALL you wish to change the alternate 
character-pitch sequence. INSTALL replies: 

ADDRESS: xxxxH OLD VALUE: xxH NEW VALUE: 

2. Examine the "old value" and see if it is the same as for 
your printer. If it is, you need only press RETURN; 
if it isn't, enter the hex value you looked up in your 
printer's manual earlier. Remember, sometimes IN
STALL needs a sequence of information, which must 
be provided in the order the printer expects it, pre
ceded by the number of characters in the sequence. 



382 OSBORNE 1 USER'S GUIDE 

Example: 

for the Epson MX-80, you might enter 02, mean
ing two characters are in the sequence, to tell 
your MX-80 to switch to a different character 
pitch. 

Press RETURN after entering the correct hex value for 
your. prin ter. 

3. If more than one character needs to be sent to the 
printer for the function being modified, press RETURN 
a second time and INSTALL will show you what is 
stored in the second memory location of the function 
sequence. Again, enter the appropriate value for your 
printer. Repeat this process for all characters in the 
sequence, then go on to the next function (Le., type 
the function's name when you see the prompt 
IILOCATION TO BE CHANGED"). 

4. When you are through, enter 0 instead of a function 
name, and INSTALL will echo your selections and give 
you one last chance to change your mind. 

Don't panic if your changes don't work the first time. Since 
you're working on a copy of WordStar, you don't have to worry 
about goofing things up-the worst you'll do is waste a few 
minutes. 



APPENDIX 2-
IEEE-488 

Implementation 



384 OSBORNE 1 USER'S GUIDE 

The Osborne 1 IEEE-488 Implementation 

All commands (el, 2, 3, 4, 25) of the IEEE-488 can be performed 
using eight calls (defined below). The easiest way to include 
IEEE-488 capability is to add these commands to the BIOS jump 
table. These commands are defined at a low level and must be 
used in an intelligent sequence, the commands are general pur
pose and can be used by different hardware implementations. 
There are, however, some restrictions that impose limits which 
are not part of the IEEE standard. Some restrictions can be over
come with increased software. The SRQ input can generate an 
interrupt, but commands assume the interrupt is not used. 
It would require a more than simple change to allow SRQ 
interrupts. A background scan of SRQ should satisfy most 
applications. 

IEEE-488 command routines use no RAM other than the stack. 
Routines determine status by reading the current state of 
the PIA. 

The software was made considerably more complicated by the 
use of bidirectional signals from the PIA. To reduce the overhead 
of determining the current direction of all signals, the PIA is al
ways left in one of two modes: the source handshake mode, or 
the acceptor handshake mode. Several of the commands 
require that the PIA be in the source handshake mode when 
called. The PIA is normally in the source handshake mode fol
lowing the completion of an IEEE bus transfer, so this is not a 
major restriction. Both Status In and Parallel Poll commands re
quire that the PIA be in the source mode. This means that detec
tion of device requests using either serial poll or parallel poll can 
be done only when the interface is idle. 

To send data to a device on the IEEE bus, the controller makes 
the device a LISTENER, then assumes the role of a TALKER and 
sources the data. To receive data from a device, the controller 
makes the device a TALKER, then assumes the role of a LIS
TENER and accepts the data. It is also possible for the controller 
to enable both a TALKER and a LISTENER, then go to standby 



IEEE-488 IMPLEMENTATION 385 

and allow the two devices to talk at their own rate. The problem 
is how to regain control. 

The controller can take control asychronously by setting ATN 
true. If a device-dependent message is true when ATN becomes 
true, the interrupted byte could be misinterpreted by other 
devices as an interface message and produce unintended state 
transitions. The problem can normally be avoided by taking con
trol synchronously. If high-speed transfer of data between the 
devices is not required, and if the computer can be tied up dur
ing the transfer, it is better to have the controller LISTEN 
(acceptor handshake) to the transfer while discarding the data. 
This allows the controller to count transfers, look for EOI sig
nals, or timeout the TALKER before regaining control. 

The "GOTO Standby" command has three uses. If the controller 
is going to allow an unmonitored data transfer between two 
other devices on the bus (without listening, as described above), 
this command is used to relinquish bus handshake control to 
the devices. Secondly, this command can be used after the com
pletion of a bus transfer, causing the controller to float all sig
nals (except REN) so that a second controller, also on the bus, 
can take control. This command is also used to initialize the in
terface following certain device handshake errors. There is no 
formal transfer of control as defined in the IEEE Specification, 
but it does allow an operator the ability to share IEEE devices on 
the bus. 

Commands having loops that might cause the interface to 
"hangup" when a device on the bus is either busy or mal
functioning have error exits. Therefore, the programmer can 
define separate timeout limits, report the error, or recall the 
command and ignore the error. 

The time outs are very short, some as short as 100 microseconds, 
and are meant to occur often. Some IEEE peripherals use this 
timeout to indicate that they are not ready to receive data. When 
outputting to a slow device, e.g., a 300-baud printer, the printer 
will continuously not be ready for the next character. The pro-



386 OSBORNE 1 USER'S GUIDE 

gram could be written to wait as long as required, even allowing 
for a printer that is off-line. While the program is waiting for the 
printer, it is possible for the computer to perform background 
functions following each timeout. If the command times out, 
the device can be UNLISTENED. This capability is necessary for 
devices such as modems and keyboard printers operating in 
full-duplex mode. 

The following table summarizes CP/M BIOS entry and exit states 
for all IEEE-488 commands: 

CP/M BIOS CALL 

E13FH Control Out 
E142H Status In 
E145H GOTO Standby 
E148H Take Control 

E14BH Output Interface 
Message 

E14EH Output Device Message 
E151H Input Device Message 
E154H Input Parallel Poll 

Message 

ENTRY STATE EXIT STATE 

Any Source, ATN High 
Source Source 
Source Source, ATN High 
Source, ATN Source, ATN Low 
High 
Any Source, ATN Low 

Source 
Any 
Source 

Source, ATN High 
Acceptor, ATN High 
Source, ATN Low 

Table A-I IEEE-488 Exit and Entry States 

CP/M BIOS calls receive parameters in registers C or BC, param
eters are returned to A or HL. Only registers used to return 
results and status are modified by command execution. 

Control Out 

Bit No. 7 6 5 4 3 2 1 0 

C Register I ENR I REN I IFC 



IEEE-488 IMPLEMENTATION 387 

IFC: If 1/1", the interface logic is initialized and IFC is driven low 
for 100 microseconds. 

ENR 
a 
1 
1 

REN 
X 
a 
1 

No action 
REN set high 
REN set low 

When the PIA is reset, all internal registers are cleared. All I/O 
pins except REN become inputs and are pulled high by a pull-up 
register. REN becomes an input and floats, but has no pull-up 
register. Signals IFC, ATN, and REN power up till the active low 
state is achieved, but all other signals float. If IFC is set, the PIA 
is initialized to the source handshake mode in the standby state 
(ATN high), then the IFC signal is pulsed low to initialize all 
devices on the bus. The signal REN can be set or cleared 
independently. 

Status In 

No input parameters 

Bit No. 7 6 5 4 3 2 1 o 
A Register I SRQ I 
SRQ: Set to 1/1" if one or more devices are reque~ting service by 

driving SRQ low. 

This command reads the service request signal. This signal is 
used by a device requiring attention and also to request that the 
current sequence of events be interrupted. If SRQ is 1/1" (low on 
the IEEE bus), then a device is requesting service; this signal is 
connected to PIA input CAl and could be used to generate an 
interrupt. However, the software has not been written to sup
port interrupts; to detect a request, the application program 
must periodically call Status In to read SRQ. 



388 OSBORNE 1 USER'S GUIDE 

Since the CAl input of the PIA can only sense signal transitions, 
not signal levels, a trick must be used to read the SRQ signal. 
An open-collector driver controlled by the PIA output PB2 
(ENABLE EOliDAV) is OR-tied to the output of the SRQ input 
buffer. If the SRQ signal is low, the buffer presents a high to 
the PIA. When signal PB2 is driven low, and input CAl is also 
driven low, a transition is simulated that the PIA will detect. 
Conversely, if the SRQ signal is high, the buffer presents a low 
to the PIA. When signal PB2 is driven low, input CAl remains 
low and there is no transition to detect. 

This command can be called only when the interface is in the 
source handshake mode. To use the SRQ interrupt, all command 
routines would have to be modified to protect the interrupt state 
during their execution. Interrupts would have to be disabled 
during command execution. 

GOTO Standby 

No input or output parameters 

This command causes the controller to enter the controller 
standby state where all signals are allowed to float. This 
command can be used as follows: 

1) After completion of a bus transaction to free the bus for 
use by another controller. 

2) To pass control to a device that the controller has previ
ously made a TALKER. 

3) To clear an interface error condition. 

This command can only be called when the interface is in the 
source handshake mode. The only action performed by GOTO 
STANDBY is to clear the ATN signal and float the data bus. 



IEEE-488 IMPLEMENTATION 389 

Take Control 

Bit No. 7 6 5 4 3 2 1 0 

C Register 

TCA: If "1", the controller will regain control of the bus 
asynchronously. 

If "0", it will regain control synchronously. 

Bit No. 7 6 5 4 3 2 1 0 

A Register '--E_R_R___L. __ ...L.___---'-__ ~ _ ___L. __ ...L.__ _ __'_I_J\_T_O~I 

ATO: Set if DAV remains active for longer than 100 
microseconds during "take control synchronously." 

ERR: Set if any error bit is set. 

This command should only be used following a GOTO Standby 
that allows independent transfer of data between devices on the 
bus. The asynchronous take-control can be used safely only 
when there is no activity on the bus. Normally it is used to take 
control from a device that has malfunctioned and will not give 
up control synchronously. Use the synchronous take-control 
unless there is a special circumstance that requires asynchro
nous takeover. 

If the data-valid timeout error is returned (ATO), it means that 
a LISTENER is slow in accepting data, or the TALKER is slow 
removing data. This command can be called repeatedly until the 
takeover is performed successfully. 



390 OSBORNE 1 USER'S GUIDE 

Output Interface Message 

Message byte in the C Register 

Bit No. 7 6 5 4 3 2 1 0 

A Register Ir--E-RR----r-I----r---r---~---.-, ~-T-O---.'-R-TO--.-' N-D-P----.' 

NDP: No device present 
RTO: Device not ready for data timeout 
ATO: Data-not-accepted timeout 
ERR: Set if any error bit is set 

This command outputs the contents of Register C as an interface 
message (with the ATN signal active). If ATN is not active when 
called, ATN is first driven low and is left low following the data 
transfer. 

The command first checks the ENABLE-DATA-OUT bit (PBO) to 
determine if the interface is in the source handshake mode or 
the acceptor handshake mode. If this bit is set, then the inter
face is in the acceptor mode and must be switched to the source 
mode. Before starting the source handshake, the routine checks 
if the DAV signal is being driven low by the interface. If it is 
being driven low, then the command is being reentered follow
ing an ATO timeout error and the first portion of the source 
handshake is branched over. 

The handshake begins with the command placing register C 
contents on the bus. The routine then checks the NRFD signal to 
determine if the devices on the bus are all ready for data. If this 
signal remains low for more than 100 microseconds, the com
mand returns the RTO timeout error. This does not mean that a 
hardware error has occurred, only that the devices on the bus 
are not all currently ready for data. When the NRFD signal be
comes high, the routine checks the NDAC signal. If this signal is 
also high, it means that there is no active device on the bus and 
the NDP error is returned. If the NDAC signal is low, DAV is 
driven low to indicate that there is valid data on the bus. The 



IEEE-488 IMPLEMENTATION 391 

command then checks the NDAC signal to determine if all the 
devices on the bus have accepted data. If this signal remains 
low for more than 1000 microseconds, the ATO timeout error is 
returned. Again this does not mean that a hardware error has 
occurred, but it should be less common than the RTO timeout 
errors, since few IEEE-Std 488 devices use this portion of the 
handshake to control their input rate. When the NDAC signal 
becomes high the DAV signal and data is removed, and the A 
register is cleared. The command then ends. 

The NDP error occurs when there are no devices on the IEEE
Std 488 bus, or power is off at all devices. This error leaves 
data on the bus and should be followed by a GOTO Standby 
command in order to float the bus. 

The RTO error occurs when a device does not become ready for 
data within 100 microseconds. Most IEEE-Std 488 devices can 
accept interface control messages at or near the full rate of the 
interface, but there are exceptions. This error can be handled in 
any of several ways. It can be ignored by continuously recalling 
the command until all devices become ready, or the command 
can be called a fixed number of times (effectively lengthening 
the timeout) before responding to the error, or the error can be 
reported immediately. This error also leaves data on the bus 
and should be followed by a GOTO Standby command to float 
the bus. 

The ATO error occurs when a device does not accept data that 
it has already agreed to accept. If this error persists, a GOTO 
Standby command followed by an UNLISTEN may clear the 
error, or it may be necessary to command an IFC and initialize 
the interface. It cannot be determined whether valid data 
was transferred if the handshake is aborted here. 



392 OSBORNE 1 USER'S GUIDE 

Output Device Message 

Data byte in C Register 

Bit No. 7 6 5 4 3 2 1 o 
B Register EOI 

EOI: If 1/1", the EOI signal will be driven low when the data is 
on the bus. 

Bit No. 7 6 5 4 3 2 1 0 

A Register IL-_E_R_R_IL--_--L.-__ I.--_--'-_----'I_~_T_0___1.I_R_T_O___'_I_N_D_P___..lI 

NOP: No device present 
RTO: Device not ready for data timeout 
ATO: Data-not-accepted timeout 
ERR: Set if any error bit is set 

This command outputs the byte in register C as device
dependent data (with ATN SIGNAL high). If ATN is active 
when called, ATN is first driven high and is left high following 
the data transfer. 

This command is called only when in source handshake mode. 
If bit 0 of register B is 1/1", then the EOI signal is driven low. 
Before starting the source handshake the command checks 
whether the DAV signal is being driven low by the interface. If 
it is being driven low, then the command is being reentered fol
lowing an ATO timeout error and the first portion of the source 
handshake is branched over. The handshake begins with the 
interface replacing the data byte on the bus. The command then 
checks the NRFD signal to determine whether all LISTENERS 
are ready for data. If this signal remains low for more than 100 
microseconds, then the routine returns the RTO timeout error. 
This does not mean that a hardware error has occurred, but only 
that a device on the bus is not currently ready for data. 



IEEE-488 IMPLEMENTATION 393 

When the NRFD signal becomes high, the command checks the 
NDAC signal. If this signal is also high at this time, it means 
that there is no active LISTENER on the bus so the routine 
returns the NDP error. If the NDAC signal is low, the command 
responds by driving DAV low to identify valid data on the bus. 
The command then checks the NDAC signal to determine 
whether all the LISTENERS have accepted the data. If this sig
nal remains low for more than 1000 microseconds, the command 
returns the ATO timeout error. Again, this does not mean that a 
hardware error has occurred, but this error should be less com
mon than the RTO timeout error since few IEEE-Std 488 devices 
use this portion of the handshake to control their input rate. 
When the NDAC signal becomes high, the command removes 
the DAV signal and the data, clears the A register, and returns to 
the calling program. 

The NDP error occurs when none of the devices on the bus have 
been made a LISTENER. This could be caused by using a non
existent IEEE bus address, or the device addressed may not be 
powered up. This error leaves data on the bus and should be 
followed by a GOTO Standby command to float the bus. 

The RTO error occurs when a device does not become ready for 
data within 100 microseconds. Most IEEE-488 devices cannot ac
cept device-dependent data at the full rate of the interface. This 
error can be handled in any of several ways. It can be ignored by 
continually recalling the command until all LISTENER devices 
become ready, or the command can be cplled a fixed number of 
times (effectively lengthening the timeout) before responding to 
the error, or the error can be reported immediately. As an exam
pIe, a printer may only be able to accept data at a rate of 30 CPS. 
If the delay between transfers is much greater than this, it could 
mean that the printer is off-line or that the paper has jammed. It 
is possible to check a device and determine whether it is ready 
for data by attempting to transfer a data byte. If the command 
returns a timeout error, the device can be issued an UNLISTEN 
and the interface is then free for other transactions. Since this 
error leaves data on the bus, it should be followed by an 
UNLISTEN command to free the bus. 



394 OSBORNE 1 USER'S GUIDE 

The ATO error occurs when a device does not accept data that 
it has already agreed to accept. If this error persists, a GOTO 
Standby command followed by an UNLISTEN may clear the 
error, or it may be necessary to command an IFC to initialize the 
interface. It cannot be determined whether valid data had been 
transferred if the handshake is aborted here. 

Input Device Message 

No input parameters 

Data bytes in A and H Registers 

Bit No. 7 6 5 4 3 2 1 0 

L Register I '-_E_R_R--'I __ --L...-_----'-__ ....1.-_---L.I_N_T_O-J.-I_v_T_O_I'-----E_O_I----' 

EOI: Set to 1/1" if the EOI signal was low when the data 
was read 

VTO: Data-valid timeout 
NTO: Data-not-valid timeout 
ERR: Set if any error bit is set 

This command inputs a device-dependent data byte (with ATN 
high), reads the EOI signal, then returns the results in registers 
A, H, and L. 

The command first saves the contents of register HL in register 
DE. Register HL will contain input data if the routine is being 
reentered following an NTO timeout error. The ENABLE DATA 
OUT bit (PBO) is checked to determine if the interface is in the 
source handshake mode or the acceptor handshake mode. If 
this bit is clear, then the interface is in the source mode and is 
switched to the acceptor mode. When the interface is in the 
source handshake mode, the ATN signal will also be low. Signals 
NRFD and NDAC are driven low before the ATN signal is set 
high. 



IEEE-488 IMPLEMENTATION 395 

Before starting the acceptor handshake, the routine checks if the 
NDAC signal has been set high by the interface. If it is high, 
then the command is being reentered following an NTO timeout 
and the first portion of the acceptor handshake is branched 
over. The handshake sequence is initiated with the command 
setting signal NRFD high to indicate that it is ready for data. 
The command then checks the DAV signal to determine whether 
the TALKER has placed data on the bus. If this signal remains 
high for more than 100 microseconds, then the command 
returns the VTO timeout error. This does not mean that a hard
ware error has occurred, rather that the TALKER does not cur
rently have data available for transfer. When the DAV signal 
becomes low, the command drives signal NRFD high to indicate 
that it is no longer ready for data. It then reads data and the EOI 
signal. Next the command sets signal NDAC high to indicate 
that it has accepted data. The command then checks the DAV 
signal to determine whether the TALKER has removed its data. 
If this signal remains low for more than 1000 microseconds, the 
command returns the NTO timeout error. Again, this does not 
mean that a hardware error has occurred, but it should be less 
common than the VTO timeout error since few IEEE-Std 488 
devices use this portion of the handshake to control their output 
rate. When the DAV signal becomes high, the routine drives 
NDAC low and returns. 

The VTO error occurs when a device does not make data avail
able within 100 microseconds. Most IEEE devices will not 
supply data at this rate. This error can be handled in several 
ways. It can be ignored by continuously recalling the command 
until data becomes available, or the command can be called a 
fixed number of times (effectively lengthening the timeout) 
before responding to the error, or the error can be reported im
mediately. As an example, a keyboard may transfer a character 
only when a key is pressed. The time separating key entries 
could be very long. To exit from this error state, it is necessary to 
UNTALK the slow-responding device. There is a possibility of 
losing a character from the device when this is done, so if the 
device supports another method to check for data available, it 
should be used. Also, if the TALKER places the data on the bus 



396 OSBORNE 1 USER'S GUIDE 

after the error was detected, but before the UNTALK begins, 
then the ATN will occur on the bus with the data and could be 
misinterpreted by other devices as an interface message; this 
will produce unintended state transitions. 

The NTO error occurs when the TALKER does not remove the 
data after that data has been accepted by the controller. This can 
occur if the controller has enabled other LISTENERS on the bus, 
and not all devices have accepted the data, or if the TALKER is 
slow in removing the data. If this error persists, an UNTALK to 
the device must be sent. This could also cause unintended state 
transitions since the TALKER does have data on the bus. If the 
UNTALK is not accepted, an IFC should be used to clear this 
error state. The data returned when the error was reported 
is valid. 

Input Parallel Poll Messages 

No input parameters 

A = Parallel poll response 

This command can only be called in the source handshake 
mode. The controller may be in the Standby state, but ATN is 
left low following this command. The routine drives both the 
ATN and EOI signals low. All devices on the bus with parallel 
poll capability respond by driving their previously assigned data 
bit low. The command floats the internal data bus, then reads 
the parallel poll data. The command restores the source hand
shake, then ends. The GOTO Standby command should be 
called following this command to float the bus. 

IEEE-488 Sample Programs 

The sample programs ignore error returns from the IEEE-Std 
488 BIOS calls, except to reenter the routine if any error 
condition exists. A real I/O driver should analyze errors and 
determine the correct action. Timeout errors might be ignored 
but the "no device present" error must generate an I/O error. 



IEEE-4BB IMPLEMENTATION 397 

Make LISTENER 

There are two alternative versions of the L interface function: 
one with, and one without address extension. The normal L 
function uses a I-byte address. The L function with address ex
tension (the LE function) uses a 2-byte address. This example 
implements the LE function. 

;INPUT PARAMETERS: C PRIMARY ADDRESS (0-31) 
B SECONDARY ADDRESS (0-31) 

ML: LD A,C ;FORM PRIMARY 
;ADDRESS MESSAGE 

ADD 00100000B 
LD C,A 

ML10: CALL E14BH ;OUTPUT INTERFACE 
;MESSAGE 

OR A 
JR NZ,ML 10 ;REENTER ON ERROR 
LD A,B ;FORM SECONDARY 

;ADDRESS MESSAGE 
ADD 01100000B 
LD C,A 

ML20: CALL E14BH ;OUTPUT INTERFACE 
;MESSAGE 

OR A 
JR NZ,ML20 ;REENTER ON ERROR 

Make TALKER 

There are two alternative versions of the T interface function: 
one with and one without address extension. The normal T 
function uses a I-byte address. The T function with address ex
tension (the TE function) uses a 2-byte address. This example 
implements the TE function. 



398 OSBORNE 1 USER'S GUIDE 

;INPUT PARAMETERS C PRIMARY ADDRESS (0-31) 
8 SECONDARY ADDRESS (0-31) 

MT: LD A,C ;FORM PRIMARY 
;ADDRESS MESSAGE 

ADD 010000008 
LD C,A 

MT10: CALL E14BH ;OUTPUT INTERFACE 
;MESSAGE 

OR A 
JR NZ,MT10 ;REENTER ON ERROR 
LD A,8 ;FORM SECONDARY 

;ADDRESS MESSAGE 
ADD 011000008 
LD C,A 

Second-Level Software Description 

MT20 CALL E14BH ;OUTPUT INTERFACE 
;MESSAGE 

OR A 
JR NZ,MT20 

UNLISTEN 

UL: LD C,OD 111111 8 ;UNLISTEN MESSAGE 
UL 10: CALL E14BH ;OUTPUT INTERFACE 

;MESSAGE 
OR A 
JR NZ,UL10 ;REENTER ON ERROR 

UNTALK 

UT: LD C,01 0111118 ;UNTALK MESSAGE 
UT10: CALL E14BH ;OUTPUT INTERFACE 

;MESSAGE 
OR A 
JR NZ,UT10 ;REENTER ON ERROR 



IEEE-488 IMPLEMENTATION 399 

OUTPUT DATA 

;INPUT PARAMETERS C 
B 

00: CALL E14EH 

OR A 
JR NZ,OD 

INPUT DATA 

;OUTPUT PARAMETERS A,H 
L 

10: CALL E151 H 

BIT 7,L 
JR NZ,ID 

Higher-Level Functions 

DATA BYTE 
EOI 

DATA BYTE 
EOI 

;OUTPUT DEVICE 
;MESSAGE 

;REENTER ON ERROR 

;INPUT DEVICE 
;MESSAGE 

;REENTER ON ERROR 

The following examples use the above routines to perform the 
standard interface functions. This is not meant to be a complete 
description of the capabilities of the interface. 

OUTPUT DATA TO A DEVICE 

LD BC, DEVICE ADDRESS 
CALL ML 
LD BC,DATA 
CALL DO 

;MAKE LISTENER 
; DATA AND EOI 

;ANY NUMBER OF DATA BYTES MAY BE SENT 
CALL UL 
CALL E145H 

;UNLISTEN 
;GO TO STANDBY 



400 OSBORNE 1 USER'S GUIDE 

INPUT DATA FROM A DEVICE 

LD BC,DEVICE ADDRESS 
CALL MT ;MAKE TALKER 
CALL 10 ;INPUT DATA AND EOI 
;ANY NUMBER OF DATA BYTES MAY BE RECEIVED 
CALL UT ;UNTALK 
CALL E145H ;GO TO STANDBY 

Data Transfer Between Devices (Monitored) 

This will make one device a TALKER and another device a 
LISTENER, then let the TALKER control the bus. The controller 
will monitor the bus and take control when it detects an EOI. 

LD BC,TALKER ADDRESS 
CALL MT 
LD BC, LISTEN ADDRESS 
CALL ML 

LOOP: CALL 10 ;INPUT DATA AND EOI 
BIT O,L 
JR Z,LOOP ;LOOP UNTIL EOI LOW 
CALL UT ;UNTALK 
CALL UL ;UNLISTEN 
CALL E145H ;GO TO STANDBY 

Data Transfer Between Devices (Unmonitored) 

This will make one device a TALKER and another device a 
LISTENER, then let the TALKER control the bus. The controller 
will wait a fixed delay then take control synchronously. 

Second-Level Software Description 

LD BC, TALKER ADDRESS 
CALL MT 
LD BC, LISTEN ADDRESS 



LOOP: 

CALL ML 
CALL E145H 

IEEE-488 IMPLEMENTATION 401 

;GO TO STANDBY 
;FIXED DELAY WHILE DATA IS TRANSFERRED 
LD C,O 
CALL E148H ;TAKE CONTROL 

;SYNCHRONOUSLY 
OR A 
JR NZ,LOOP ;WAIT FOR CONTROL 
CALL UT ;UNTALK 
CALL UL ;UNLISTEN 
CALL E145H ;GO TO STANDBY 

Serial Poll 

This is an example of a serial poll. It assumes that the detection 
of the service request was performed separately. It is important 
that every device capable of generating the service request is 
polled to assure that two devices were not simultaneously 
driving the service request signal: 

LD C,00011000B 
LOOP1: CALL E14BH 

OR A 
JR NZ,LOOP1 
LD BC, TALKER ADDRESS 
CALL MT 

CALL 10 

CALL UT 

;ACT ON STATUS 
LD BC, TALKER ADDRESS 
CALL MT 

CALL 10 

CALL UT 
;ACT ON STATUS 
LD C,00011 001 B 

;SERIAL POLL ENABLE 

;REENTER ON ERROR 

;MAKE FIRST DEVICE 
;A TALKER 
;INPUT STATUS BYTE 
;UNTALK 

;MAKE SECOND 
;DEVICE A TALKER 
;INPUT STATUS 
;UNTALK 



402 OSBORNE 1 USER'S GUIDE 

LOOP2: CALL E14BH ;SERIAL POLL DISABLE 
OR A 
JR NZ,LOOP2 ;REENTER ON ERROR 
CALL E145H ;GO TO STANDBY 

SEND LOCAL LOCK OUT (UNIVERSAL) 

LD C,0000011 DB 
CALL E13FH ;SET REN LOW 
LD C,00010001B 

LOOP: CALL E14BH ;SEND LOCAL LOCK 
;OUT 

OR A 
JR NZ,LOOP ;REENTER ON ERROR 
LD BC,LlSTEN ADDRESS 

Second-Level Software Description 

CALL ML ;FIRST DEVICE GO 
;TO REMOTE 

LD BC,LlSTEN ADDRESS 
CALL ML ;SECOND DEVICE GO 

;TO REMOTE 
CALL UL ;UNLISTEN 

GO TO LOCAL (ADDRESSED) 

LD BC, DEVICE ADDRESS 
CALL ML ;MAKE FIRST DEVICE 

;A LISTENER 
LD BC,DEVICE ADDRESS 
CALL ML ;MAKE SECOND 

;DEVICE A LISTENER 
LD C, 0000000 1 B 



IEEE-488 IMPLEMENTATION 403 

LOOP: CALL E14BH ;GOTO LOCAL 
OR A 
JR NZ,LOOP ;REENTER ON ERROR 
CALL UL ;UNLISTEN 
CALL E145H ;GO TO STANDBY 

REMOVE LOCAL LOCK OUT (UNIVERSAL) 

LD C,OOOO0100B 
CALL E13FH ;SET REN HIGH 

PARALLEL POLL CONFIGURE 

LD BC,LlSTEN ADDRESS 
CALL ML ;MAKE LISTENER 
LD C,000001 01 B 

LOOP1: CALL E14BH ;PARALLEL POLL 
;CONFIGURE 

OR A 
JR NZ,LOOP1 ;REENTER ON ERROR 
LD C,0110SPPPB 

LOOP2: CALL E14BH ;PARALLEL POLL 
;ENABLE 

OR A 
JR NZ,LOOP2 ;REENTER ON ERROR 
CALL UL ;UNLISTEN 
CALL E145H ;GO TO STANDBY 

PARALLEL POLL UNCONFIGURE (UNIVERSAL) 

LD C,0001 01 01 B 

LOOP: CALL E14BH ;PARALLEL POLL 
;UNCONFIGURE 

OR A 
JR NZ,LOOP ;REENTER ON ERROR 
CALL E145H ;GO TO STANDBY 



404 OSBORNE 1 USER'S GUIDE 

PARALLEL POLL DISABLE (ADDRESSED) 

Second-Level Software Description 

LD BC, LISTEN ADDRESS 
CALL ML 
LD C,000001 01 B 

LOOP1: CALL E14BH 

OR A 
JR NZ,LOOP1 
LD C,01110000B 

LOOP2: CALL E14BH 

OR A 
JR NZ,LOOP2 
CALL UL 
CALL E145H 

DEVICE CLEAR (UNIVERSAL) 

LD C,0001 01 OOB 
LOOP: CALL E14BH 

OR A 
JR NZ,LOOP 
CALL E145H 

DEVICE CLEAR (ADDRESSED) 

LD BC, DEVICE ADDRESS 
CALL ML 

LD BC,DEVICE ADDRESS 
CALL ML 

LD C,OOOO0100B 

;MAKE LISTENER 

;PARALLEL POLL 
;CONFIGURE 

;REENTER ON ERROR 

;PARALLEL POLL 
;DISABLE 

;REENTER ON ERROR 
;UNLISTEN 
;GO TO STANDBY 

;DEVICE CLEAR 

;REENTER ON ERROR 
;GO TO STANDBY 

;MAKE FIRST DEVICE 
;A LISTENER 

;MAKE SECOND 
;DEVICE A LISTENER 



IEEE-488 IMPLEMENTATION 405 

LOOP: CALL E148H ;SELECTED DEVICE 
;CLEAR 

OR A 
JR NZ,LOOP ;REENTER ON ERROR 

CALL UL ;UNLISTEN 
CALL E145H ;GO TO STANDBY 

DEVICE TRIGGER 

LD BC, DEVICE ADDRESS 
CALL ML ;MAKE FIRST DEVICE 

;A LISTENER 

LD BC, DEVICE ADDRESS 
CALL ML ;MAKE SECOND 

;DEVICE A LISTENER 

LD C,0000100088 
LOOP: CALL E14BH ;GROUP EXECUTE 

;TRIGGER 

OR A 
JR NZ,LOOP ;REENTER ON ERROR 

CALL UL ;UNLISTEN 
CALL E145H ;GO TO STANDBY 





APPENDIX 3-
SuperCalc 

Installation 



408 OSBORNE 1 USER'S GUIDE 

SuperCalc Installation Procedure 

Follow these steps to alter the screen dimensions, or to 
configure SuperCa1c for compatibility with your printer: 

1. Load SuperCa1c on drive A. Press RETURN to load, 
then press RETURN again to start. Next, exit to CP/M ' 
with the command IQY. When the A> prompt appears, 
type: 

INSTALLS 

and RETURN. You'll see this message: 

This program will let you modify the SuperCa1c™ 
file on your disk. Do you wish to proceed (YIN)? 

2. Type Y for yes if you want to alter the default settings. 
Then this message is added: 

Enter the name of the SuperCa1c™ file as: 
"d:filename" where "d" is the drive. 

Enter name: -

After typing the file name, this list of options is offered: 

SuperCa1c Install Program 
A. Edit Screen dimensions 
B. Edit Printer dimensions 
C. Edit Printer initialization string 
D. Edit Border character 
E. Save SuperCa1c™ on disk 
X. Exit without changing SuperCa1c 

Enter option letter :-

3. If you want to change the height or width of the cur
rent screen display, type A. The options for changing 
either of these conditions as well as their present 
settings will be presented as shown below: 

A. The current screen height is : 24 



SUPERCALC INSTALLATION 409 

B. The current screen width is 52 
X. Exit to previous menu 

Enter option letter: 

To change the screen height, type A; to change the 
screen width, type B. After typing either A or B you 
will be asked to supply the new value. Enter the new 
screen size and press RETURN; the new value will be 
shown. When you have made the necessary alterations, 
simply type X and you will be returned to the initial 
menu. 

4. If you want to alter the size of a printed page, type B 
from the initial menu. You will be provided with these 
options: 

A. The current printer page length is 66 
B. The current printer page width is 132 
X. Exit to previous menu 

Type the letter of the value you want to change, enter 
the new value, and press RETURN as explained earlier. 
The newly configured page dimensions will be shown. 
Type X to get back to the initial menu. 

5. In some instances, a select string of code needs to be 
output to the printer before it is activated. This printer 
initialization string is sometimes required by certain 
printers or is needed to take advantage of certain print 
features such as compression (consult your printer 
manual). In order to configure this printer initialization 
string, type C from the main menu and the following 
message and prompt will appear: 

The printer initialization string is a series of up to 
8 hex bytes that will be output to the printer prior 
to printing a worksheet. 

A. Current printer initialization 
string : Unconfigured 

X. Exit to previous menu 



410 OSBORNE 1 USER'S GUIDE 

As indicated, the initialization string is currently un
configured. Type A and enter the desired value, then 
type X to return to the main menu. 

6. Selecting option letter D allows editing the border char
acter; this is a displayable, printable ASCII character 
that appears on the column border on the terminal 
and both row and column borders when printing a 
worksheet. 

A. Current border character 
X. Exit to previous menu 

7Ch 

7. After making the required adjustments through this in
stallation program, save the changes on disk by typing 
E. This message will appear indicating that your 
changes are being installed: 

This will install the changes you have made into 
your SuperCalc™ program 

If for any reason you want to leave the install program 
without implementing any changes, type X and you 
will be returned to CP/M. 



DSBORNE1 

Reference 
Guide 

TM 





TABLE OF CONTENTS 413 

Table of Contents 
PART 2 

CP/M 417 
Control Characters 418 

CP/M Commands (.COM files) 420 

WordStar 445 
Getting WordStar Started 446 

Block Operations 449 
Changing the Logged Disk Drive 454 

Cursor Motion 455 
Deletions 461 

Display Commands 463 
File Manipulations 464 

Find Functions 468 
Flag Characters 471 

HELP Commands 473 
Hyphens 475 

Interrupt Execution 477 
Insertions 477 

Layout 478 
Margin Arrangement 482 

Place Markers 484 
Print-Control Characters 484 

Print DOT Commands 490 
Printing a File 497 

Prompt-Question Control Characters 499 
Repeat a Command 500 

Run a Program 500 
Save Procedures 501 

Scroll Commands 502 
Status Line 503 

Tab Arrangement 504 
MailMerge DOT Commands 508 

WordStar Default Values 521 



414 OSBORNE 1 REFERENCE GUIDE 

SuperCalc 523 

Cursor Movement 524 
Special Function Keys 524 

Data Entry 525 
Status, Prompt, and Entry Information 529 

SuperCa1c Command Entry 532 
SuperCa1c Commands 534 

SuperCa1c Built-In Functions 560 
Practical Suggestions 564 

Worksheet Display 565 
Building Worksheets 566 

Security 567 
Standard or Default Settings 569 

CBASIC 571 

Labels and Identifiers 572 
Summary of CBASIC Statements 573 

CBASIC Functions 620 
Compiler Directives 638 

Compiler Toggles 639 
Cross-Reference Lister (XREF. COM) 640 

TRACE 642 

MBA SIC 643 

Special Control Characters 644 
MBASIC Commands 644 
MBASIC Statements 658 

MBASIC Functions 697 

Software Error Messages 717 

CP/M Error Messages 718 
WordStar Error Messages 720 

SuperCa1c Error Messages-Causes and Cures 732 
CBASIC Error Messages 737 
MBASIC Error Messages 750 



415 

This section of the Osborne 1 User Guide provides an in-depth 
compilation of facts regarding the software that directs your 
computer. A complete listing of all the software error messages 
that you may encounter while running Osborne 1 standard 
software is also provided. 

The following terms and abbreviations are used throughout this 
section: 

System 
Logged drive 
Default 
Toggle 

Prompt 
Scroll 
Justification 
Dot command 
Block 
Worksheet 
Cell 
Statement number 
Constant 

Delim 
Parm 
(Exp )pression 
Integer exp 
Numeric exp 

Real exp 
String exp 
Variable 

hex 
byte 
<ESC> 
RIO 
x: 

CP/M operating system 
disk drive currently in use 
usual condition 
turns function ON or OFF dependent on 

its current state 
message prompting action 
moving the en tire screen 
margin alignment of text 
command characters preceded by a period 
section of text 
SuperCalc grid delimited by coordinates 
a single SuperCalc ~orksheet coordinate 
any valid CBASIC or MBASIC line number 
a real number, integer, or string with a 

fixed value 
a punctuation mark used for separations 
defines specific parameters 
a single constant, variable, or expression 
an expression with integer value 
an expression with real, or integer 

numeric value 
an expression with a real numeric value 
an expression with a string value 
simple or subscripted variable type of 

informa tion 
hexadecimal 
equivalent to one character 
ESCAPE key 
assignment of read-only attributes 
drive identifier (A: or B:) 



416 

<cr> 
" 
# 
K 
{ } 

[ ] 

OSBORNE 1 REFERENCE GUIDE 

carriage return 
represents pressing the control key (CTRL) 
represents a number 
kilobyte 
indicates that the enclosed parameters 

may be repeated 
indicates that the enclosed parameters are 

optional 



CP/M' 



418 OSBORNE 1 REFERENCE GUIDE 

Control Characters 
Control characters are special characters in CP/M command 
lines. CP/M recognizes some control characters when they ap
pear on a command line. You create each control character by 
holding down the control key (labelled CTRL) while simulta
neously pressing another key. In some cases, CP/M may also 
recognize these control characters when you are running an 
application program. 

In the examples below, the following nomenclature is used: 

" 
n 

I\C 

"E 

represents pressing I CTRL I. 

represents a number. 

causes a general system restart (called a warm 
boot). To be recognized, this command must be 
the first on a CP/M command line. Always use 
this command after changing a diskette at the 
CP/M command level. 

causes a carriage return and line feed at the 
console display, but does not send the com
mand line for processing. 

Example: 
You type on the command line then press AE < cr> 
which takes you to the left margin AE < cr> 
of the next line, as in this example AE <cr> 
<this is not a valid CP/M command, by the 
way). 



I'M 

I\p 

CP/M 419 

backspaces one character position. 

performs a line feed and sends the current 
command line to be processed. 

is the same as a carriage return; it causes a line 
feed and carriage return and sends the current 
command line to be processed. 

toggles the printer. If the printer is OFF, press
ing "P will duplicate all subsequent console 
output on the list device. If the printer is 
already ON, issuing this command will stop 
sending output to the printer. 

1\ R redisplays the current command line on the 
next line without deleted characters. 

Example: 
A> MBASIC PROGRAM:RANDOMIZE"R 

MBASIC PROGRAM:RANDOMIZE 

stops the console display temporarily. You can 
press this command when CP/M is displaying 
any message or file dump, but it terminates 
execution of certain commands. Pressing "S 
again will restore execution of a program or 
command and restore output to the display. 

deletes the entire command line that has been 
typed and places your cursor on the line imme
diately below the current command line. 



420 OSBORNE 1 REFERENCE GUIDE 

Example: 

AX 

AZ 

A> MBASIC PROGRAM "U 
~Would position cursor here) 

functions exactly as "U (Le., it deletes the 
current command line), but does so by 
backspacing. 

ends input from the system console (keyboard). 
This control character is used in PIP and ED to 
indicate that the keyboard has transmitted the 
end of a file. 

CP/M Commands (.COM files) 

ASM-is Digital Research's 8080 Assembler 

The file ASM. COM contains Digital Research's 
8080 Assembler. This assembler can assemble 
any source program written using standard 
Intel-format mnemonics. Two new files are cre
ated: one with the same file name and an ex
tension of .PRN contains the annotated source 
listing after assembly; another with the same 
file name and an extension of .HEX contains 
Intel hex-format object code. 

The generalized process of using the assembler 
follows: 

1. Create your source file using the N 
command in WordStar. 

2. Use the assembler as indicated below to 
create a .HEX file. 



CP/M 421 

3. Use DDT to run and debug your pro
gram; reedit and reassemble the source 
file as necessary. 

4. Use LOAD to convert the finished pro
gram from hex format to an executable 
. COM-type file. 

Format: 
ASM x:filename.xxx <cr> 

ASM loads and executes the assembler pro
gram. You can use any valid CP/M file name 
that has an extension of .ASM and contains 
assembly-language source code. 

The three letters (xxx) following the period rep
resent the drive of the three files the assembler 
uses or creates; xxx is not the extension of the 
file name. The first letter represents the disk 
drive that contains the source file. The second 
letter represents the disk drive on which the 
hex file should be placed. The third letter 
represents the drive on which the annotated 
listing file should be placed. 

You may type any valid disk drive identifier 
(without the colon) for each of these letters. 
You may use "Z" in the second or third position 
to indicate that you wish the assembler to skip 
generation of the hex or listing file. You may 
use "X" in the third position to indicate that 
you wish the listing file to go to the printer and 
not to a disk file. 

If you do not type the period and the three 
letters after the file name, the assembler will 
assume that all files are to be found or placed 
on the current default disk drive. 



422 OSBORNE 1 REFERENCE GUIDE 

Examples: 
ASM SP <cr> 

assembles the file SP.ASM on the current 
default disk drive. A .PRN and .HEX file will 
be created on the default drive as well. 

ASM SP.ABX <cr> 

assembles the file SP.ASM that is on the pri
mary drive (drive A), places the resultant .HEX 
file on drive B, and sends the annotated listing 
to the printer instead of a disk file. 

DDT -is a dynamic debugging tool 

The DDT program allows you to interactively 
test, modify and disassemble 8080 object pro
grams. When DDT is loaded into memory it im
mediately moves to the top of the free memory 
space, then it installs some "hooks" that control 
all input, output, and execution until you 
return to the CP/M command level. 

Formats: 
DDT <cr> 

This form loads DDT into memory and executes 
it. No file is loaded into memory with DDT. 

DDT x:filename.typ 

This form loads DDT into memory and executes 
it. Before control passes to you, the specified 
file is also loaded into memory. 

The file type must be .HEX or .COM. Other 
extensions will not work. 



CP/M 423 

Once DDT is in control of the system, the fol
lowing commands are allowed (# represents 
hexadecimal number): 

A# allows entry of an assembly-language 
mnemonic beginning at the hex address 
requested. 

D#, # displays a hexadecimal andASCII dump/ 
of memory beginning at the first and continu
ing to the second hexadecimal address request
ed. You may leave off the second address to 
display only one page of memory. 

F#, #, # fills all memory inclusive between 
the first and second hexadecimal addresses 
requested with the third hexadecimal value 
indicated. 

G# begins execution at the hexadecimal ad
dress requested. Note that neither DDT nor 
CP/M is protected. Execution of your program 
could result in a reboot of CP/M, or worse. 

H#, # computes the sum and difference of the 
two hexadecimal numbers you specify. The first 
number shown will be the sum; the second, the 
difference. 

Ifilename sets the file control block used by 
CP/M to reflect the file name specified. If the 
file also has an extension, be sure to type it. 

L#, # lists in 8080 assembly-language 
mnemonics the machine code between the first 
and second hexadecimal addresses requested; 
you may leave off the second address to see 
only 12 lines of disassembly at a time. 



424 OSBORNE 1 REFERENCE GUIDE 

M#, #, # moves the block of memory be
tween, and including, the first two addresses to 
the area of memory beginning at the third 
location. 

R or R# reads a .COM- or .HEX-type file into 
memory at its proper position if no number is 
specified; or it reads a file into memory with an 
offset bias of the hexadecimal value you type. 

S# allows you to begin inserting machine code 
in hex at the hexadecimal address you supply. 

T or T# sets the trace function so that the CPU 
state is displayed on the console; the optional 
decimal number indicates the number of in
structions to be executed and which tracings 
are to be displayed. 

U or U# is identical to the trace command 
except that the CPU state is not displayed. 

Xregister allows you to examine the current 
CPU state if no register is specified; if a register 
is specified, its current state is displayed and 
any valid entry you type (other than a carriage 
return) will be entered as the new contents of 
that register. C, Z, M, E, and F represent flags. 
A, B, D, and H are registers. S is the stack 
pointer, and P is the program counter. 



CP/M 425 

Examples: 
DDT <cr> 

loads and executes DDT; a "_" prompt indicates 
that DDT is waiting for a valid command. 

DDTTNT.HEX <cr> 

loads and executes DDT, which, in turn, loads 
TNT.HEX into the proper position in memory; 
the following display will appear: 

DDTVERX.X 
NEXT PC 
01110000 

The number under "PC" indicates that the pro
gram counter is set to 0000 hex. The number 
0111 under "NEXT" indicates that the next free 
memory location is 0111 hex. 

DIR-displays a disk directory 

The DIR command displays a complete or par
tial directory of the contents of any currently 
active diskette. 



426 OSBORNE 1 REFERENCE GUIDE 

Formats: 
DIR <cr> 

This is the general form to show entire 
directory of current default drive. 

DIR X: <cr> 

This form shows entire directory of specified 
diskette. 

DIR x:filename.typ <cr> 

Form to show partial directory of a diskette. 
Note that I/?" and 1/*" can be used to create 
ambiguous file names. DIR *. * <cr> is the 
same as DIR <cr>. 

Examples: 
DIR <cr> 

displays complete directory for the current 
default diskette. 

DIR *.BAS <cr> 

displays all files, regardless of the file name, 
that have the extension of . BAS and are on the 
current default diskette. 

DIR *.BA? <cr> 

displays all files, regardless of file name, that 
have an extension whose first two characters 
are BA. The third character in the extension 
may be anything. Files must be on the current 
default diskette. 



CP/M 427 

DUMP -displays disk file in hex 

The DUMP program displays the named file in 
Intel hex format. The file is listed in 16 bytes 
per line, with the absolute byte address dis
played in hexadecimal at the beginning of each 
line. 

Format: 

DUMP x:filename.type <cr> 

This is the only form allowed for this com
mand; if a drive is not specified, the current 
. default drive is used. 

Sample Dump Display 

0000 57 52 49 54 54 4E 20 42 59 20 54 48 4F 4D 20 
0010 48 4F 47 41 3E 20 1A 1A 1A 1A 1A 1A 1A 1A 1A 

1\ 

absolute 

byte address 

Example: 

1\ 

Intel hex format display 

of file contents 

DUMPWASTE.PCB <cr> 

will display an Intel-format dump of the file 
WASTE.PCB. 

ED-is Digital Research's editor 

ED is the editor Digital Research supplies with 
CP/M. This editor is primitive; WordStar is ca
pable of performing the same task and is easier 
to use. 

Format: 
ED x:filename.type <cr> 



428 OSBORNE 1 REFERENCE GUIDE 

General form used to invoke the editor. Once 
the editor has been loaded, several commands 
are available for use. If you must use this 
editor, consult one of the books now available 
on CP/M for details on its use. 

Example: 
ED MAC.MAN <cr> 

instructs CP/M to load and execute the editor, 
with the file MAC.MAN to be referenced while 
the editor is in control of the system. 

ERA-erases a disk file 

The ERA command deletes an entry from the 
directory of a diskette. Note that the file will 
not actually be removed. Only the directory 
entry is removed. CP/M will reallocate the 
area of the diskette used by the deleted file as 
needed. It is often possible to reinstate a file 
after its deletion-if you have the proper 
software tools, and provided no information 
has been added to the diskette since the file 
was deleted. 

Format: 
ERA x:filename.typ <cr> 

This is the only form of the ERA command 
CP/M recognizes. The diskette identifier may be 
omitted if the file to be erased is on the current 
default drive. 

Example: 
ERA SE.ME <cr> 

erases the file SE.ME from the current default 
diskette.· 



.CP/M 429 

LOAD-converts hex file to a .COM file 

The CP/M assembler generates an Intel hex
format file containing the resultant object pro
gram. To convert this code into an executable 
file, use LOAD. LOAD reads a hex-format file 
and translates it into a . COM file .. COM files 
load and begin execution at 0100 hex. If your 
assembly-language program did not originate at 
this address, LOAD will abort without creating 
a new file. Your original hex-format file is left 
intact. 

Format: 

LOAD x:filename < cr> 

Thisis the only form that invokes LOAD (the 
drive identifier may be omitted if the default 
drive is used). Note that the file type is not 
specified; LOAD always assumes the extension 
.HEX for the file you specify. 

Example: 

LOAD UP <cr> 

creates the file UP.COM from the file UP.HEX 
on the current default drive. 

MOVCPM-creates a different size CP/M 

If you wish to create a CP/M operating system 
that uses memory differently than the one pro
vided with your system, you must first use the 
MOVCPM program. CP/M always uses the top 
8K bytes of memory within the memory space 
you specify in the MOVCPM command. Thus, 
if you ask for a 48K CP/M system, CP/M will oc
cupy the memory space between 40K and 48K. 



430 OSBORNE 1 REFERENCE GUIDE 

Wherever CP/M is located, it will, nevertheless, 
start execution at the standard CP/M location 
(0100 hex). 

When you run MOVCPM, the reallocated ver
sion of CP/M can either stay in memory, or be 
immediately executed. If you do not desire 
immediate execution of the newly created 
CP/M, you may save it by using the SYSGEN 
command. 

Formats: 

MOVCPM # <cr> 

Creates a CP/M version for the memory size 
specified by #. 

MOVCPM # * <cr> 

Creates a CP/M version for the memory size 
specified by #, but does not execute it. 

Example: 

MOVCPM 48 * <cr> 

creates a 48K CP/M system (about 40K of free 
memory beginning at location 0100 hex) and 
leaves it in memory. It is unlikely that you will 
want to use the other forms of the MOVCPM, 
as they create special problems when you use 
programs or commands that reset the system. 

PIP -Peripheral Interchange Program 

The Peripheral Interchange Program supplied 
with CP/M manipulates and moves files be
tween devices. The devices CP/M recognizes 
can be either physical (i.e., real) or logical (Le., 



CP/M 431 

assigned). Following is a list of all devices CP/M 
recognizes. 

PHYSICAL: 

x: 
TTY: 
CRT: 
UC1: 
PTR: 
UR1: 
UR2: 
PTP: 
UP1: 
UP2: 
LPT: 
UL1: 

LOGICAL: 

CON: 
RDR: 
PUN: 
LST: 

SPECIAL: 

( disk drives) 
(console, reader, punch, or list) 
(console or list) 
(user console #1) 
(reader) 
(user reader #1) 
(user reader #2) 
(punch) 
(user punch #1) 
(user punch #2) 
(list) 
(user li$t #1) 

(console) 
(reader) 
(punch) 
(list) 

NUL: (sends 40 nulls) 
EOF: (sends AZ) 
INP: (input obtained for PIP by call to 

0103 hex) 
OUT: (output obtained for PIP by call to 

0106 hex) 

NOTE 

You may intermix logical, special, or 
physical device names with the disk file 
names on the PIP command line. 



432 OSBORNE 1 REFERENCE GUIDE 

Formats: 

PIP <cr> 

This general form loads and executes PIP. 

PIP destination = sources [options] < cr> 

Normal form loads and copies" sources" to 
"destination." There may be only one destina
tion device or file, but there may be any num
ber of sources, each separated by commas. 

[Options] in the second format represents the 
following special parameters: 

B specifies block-mode transfer; data is 
buffered until "S command is received. 

Dn deletes all characters that extend past the 
column number specified. 

E echoes all transfers to the console. 

F removes form-feed characters from the data 
being transferred. 

Gn instructs PIP to get the file from the user 
area. 

H specifies that Intel hex-data transfer is used. 
The source must be an Intel hex-format file. 

I ignores 00 records in Intel hex transfers. 

L translates uppercase to lowercase letters. 



CP/M 433 

N adds line numbers to the data being 
transferred. 

o specifies an object-file transfer. 

Pn indicates that page breaks occur every n 
number of lines. 

R instructs PIP to read "system" files, if 
necessary. 

Q string "Z quits copying when it encounters 
the indicated string. 

S string "Z starts copying when it encounters 
the indicated string. 

Tn expands the tab character to n number of 
spaces. 

U translates lowercase to uppercase characters. 

V verifies that data has been copied correctly 
when the destination is a disk. 

W instructs PIP to write over a file with the 
attribute of RIO without asking. 

Z makes the parity bit zero on input for each 
ASCII character encountered. 



434 OSBORNE 1 REFERENCE GUIDE 

NOTE 

If you load and execute PIP by simply 
typing its name, you receive a "*,, 
prompt. You may type any valid 
"destination = sources [optionsI' line. 
That task completed, the "*,, prompt 
returns. You may enter as many PIP 
commands as you wish in this fashion. 
Press I\C to exit PIP. 

Examples: 
PIP <cr> 

loads and executes PIP. 

PIP A:= B:*. * <cr> 

copies all files from drive B to drive A. 

PIP EDREAM.DOC= B:ANYFILE. TXT <cr> 

copies ANYFILE. TXT from drive B to a file 
named EDREAM.DOC on the current default 
drive. 

PIP LST:=X:EWRENCH.TXT <CR> 

copies the file EWRENCH.TXT to the list 
device. 



CP/M 435 

PIP CON:=ETTE.BAS[Nl <cr> 

copies the file ETTE. BAS to the console device 
and displays line numbers before each line. 

REN -renames a disk file 

REN changes the name of a disk file. Renaming 
a file only changes the portion of the directory 
on the diskette that stores the file name and 
file extension. No other change is made to the 
diskette. 

Format: 
REN x:newname.typ=oldname.type <cr> 

This is the only form allowed. "Newname" is 
the name identifying the file, "oldname" is the 
file's original name. 

NOTE 

When using the REN command, you 
may change the file extension as well as 
the file name. 

Example: 
REN AME.IT=OLDNAME.WAS <cr> 

renames the file OLDNAME.WAS toAME.lT. 

SAVE-saves memory to disk file 

To save the memory beginning at 0100 hex, you 
use the SAVE command. Because of the way 



436 OSBORNE 1 REFERENCE GUIDE 

CP1M saves information on diskette, memory 
must be saved in 256-byte increments-referred 
to as one page of memory. 

Format: 
SAVE n x:filename.typ <cr> 

This is the only form of the SAVE command 
allowed. n is the number of pages (in decimal, 
not hex) of memory to be saved. 

NOTE 

Since programs initially load into 
memory beginning at 0100 hex, be 
careful that you don't execute a pro
gram between the time you create some
thing you wish to save and the time 
you save it. Also, you cannot use the 
SAVE command more than once con
secutively, because sometimes the 
memory image changes during the 
SAVE operation. 

Example: 
SAVE 7 CHICAGO <cr> 

saves seven pages (7*256 bytes) in a file named 
"CHICAGO." Note that the file does not have 
to have an extension. 

STAT -displays statistics 

The STAT command performs different func
tions. It can report on the current status of 



CP/M 437 

disk files. Such a report gives the following 
informa tion: 

SIZE: the virtual file size in records. 

RECS: the number of records in a file. 

BYTES: the size of the file in kilobytes. 

EXT: the number of logical extents the file 
occupies. 

Acc: the file access (read-only or read/write). 

If you did not ask for a report on the current 
status of individual files, but asked for a report 
on the entire diskette, one line listing the 
amount of free disk space in kilobytes would be 
displayed instead. 

A second use of STAT is to display the current 
status of devices. 

A third use of STAT is to reassign devices, or 
assign a particular status (such as RIO) to a 
device. 

Formats: 
STAT x:filename.typ 

returns statistics about specific file (or files if 
1/*" or I/?" parameters are used). 

STAT x:DSK: <cr> 

lists status of disk device. 

STAT VAL: <cr> 

lists possible device assignments. 



438 OSBORNE 1 REFERENCE GUIDE 

STAT DEV: <cr> 

lists current device assignments. 

STAT logicaldevice=physicaldevice <cr> 

assigns physical device to logical device. 

Examples: 
STAT <cr> 

displays the amount of space remaining on the 
current default drive. 

STAT *.BAS <cr> 

displays the status for all files with the 
extension of . BAS. 

STAT ISTICS.ON <cr> 

lists status for the file ISTICS.ON. 

STAT B:DSK: <cr> 

displays the status of disk drive B:. 

SUBMIT -is the batch submit utility 

CP/M can accept command lines from a disk file 
instead of the console. The file containing your 
commands may have any valid CP/M file name, 
but must have the file extension .SUB to work 
correctly. 

SUBMIT will accept parameters at the time it 
executes. Each parameter is identified within 
the SUBMIT file by a dollar sign ($), followed 
by a number. On the command line invoking 
SUBMIT, parameters you enter are assigned to 
SUBMIT variables in sequential order. 



CP/M 439 

NOTE 

CP/M 2.2 also includes another batch 
utility, called XSUB, which allows you 
to provide individual characters from a 
disk file. 

Format: 
SUBMIT x:filename parameters <cr> 

This is ,f general form (parameters may be omit
ted). If present, parameters are separated by 
spaces. 

Example: 
If you type "SUBMIT X:filename 
a:junkfile.ugh b:<cr>" and the SUBMIT file 
(x:filename) has the following commands in it: 

PIP $2:BACKUP.FYL=$1 

DIR$2 

ERA $1 

The following would be executed: 

PIP B:BACKUP.FYL=A:JUNKFILE.UGH 

DIR B: 

ERA A:JUNKFILE. UGH 

SYSGEN-creates a CP/M system image 

One way to place a copy of CP/M on the system 
tracks of a diskette is by using the SYSGEN 



440 OSBORNE 1 REFERENCE GUIDE 

utility; you can also use the COpy or BACKUP 
utility programs. SYSGEN gets a copy of 
CP/M either from memory after executing a 
MOVCPM command, or from a diskette con
taining the CP/M operating system. 

The SYSGEN utility does not alter the directory 
or data saved on the diskette involved; it only 
writes information on the reserved system 
tracks. 

Format: 

SYSGEN <cr> 

This is the only form allowed for invoking the 
SYSGEN command. Once invoked, SYSGEN 
prompts the user through the steps needed to 
save the CP/M system onto diskette. These 
prompts are: 

SOURCE DRIVE (A or B). Reply with a valid 
disk identifier if you wish to get the CP/M sys
tem from a diskette, or press RETURN if CP/M 
is in memory following a MOVCPM command. 

Put SOURCE diskette in drive x, then press 
RETURN. This prompt indicates that CP/M ex
pects you to place the diskette with the system 
from which you wish to copy on drive x. 

Put DESTINATION diskette in x, then press 
RETURN. In this case, x represents the drive 
opposite that designated as source. Insert the 
diskette in the indicated drive and press 
RETURN to save the CP/M system. 

DESTINATION (A, B or RETURN to exit). At 
this point you can copy the system to another 



CP/M 441 

diskette in the drive of your choice, or press 
RETURN to leave the SYSGEN program. 

TYPE- displays a disk file in ASCII 

The TYPE command displays any file contain
ing only displayable ASCII characters. TYPE 
does not format displayed files, so be prepared 
for long bunches of data without carriage 
returns to wrap around from one line to the 
next. If a file is longer than the screen can dis
play at one time, the screen will scroll. You can 
stop scrolling by pressing "5, which pauses the 
display, or you can stop scrolling completely by 
pressing "C. 

TYPE will display WordStar files you created 
using the N (nondocument) command. 
WordStar files created by the D (document) 
command are not displayed as entered, since 
they contain special control characters. Files 
created by programs running under CBASIC2 
generally contain all ASCII data and are dis
played as entered. 

Format: 
TYPE x:filename.type <cr> 

This is the only form of TYPE command 
allowed. 

Example: 

TYPE RIGHT.TER <cr> 

presents an ASCII display of the file 
RIGHT.TER. 



442 OSBORNE 1 REFERENCE GUIDE 

USER- changes disk access in the user's area 

CP/M allows you to specify any of 16 "user 
areas" and to assign files to them. These areas 
are not physical assignments on a diskette; they 
are only parameters stored in the directory. 
CP/M user areas are a security measure. 

CP/M will only allow you access to /I system" 
files (accessible to all user areas), or to the files 
that contain the user attributes matching your 
current user-area assignment. CP/M commands 
that do not involve system files will only oper
ate files with user attributes matching your 
current user-area assignment. You may change 
user areas anytime you are at the CP/M com
mand level and see the CP/M prompt. Correct 
and logical use of user areas makes sure that 
only authorized operators or programs access 
certain files. 

NOTE 

If you do not assign a user area, CP/M 
assumes that all files have user attri
bu tes of zero. 

Format: 

USERn <cr> 

This is the only form of the USER command. 
n may be any number between 1 and 15, in
clusive; it indicates the user area assignment 
you wish to make. 



CP/M 443 

Example: 
USER 0 <cr> 

sets the current user area to zero. 

XSUB- batch submit utility 

SUBMIT tells CP/M to receive further com
mands from a disk file. XSUB can be used as a 
command within a SUBMIT file to indicate that 
individual characters pass to CP/M (or the pro
gram currently in control of the system) for 
processing. 

XSUB only works if the program to which you 
wish to pass characters uses the CP/M-buffered 
console-input routines in a normal fashion (i.e., 
by your placing OA hex in the C register and 
calling 0005 hex). Some programs, notably 
MICROSOFT BASIC-80 and several word pro
cessing packages, do not use these routines. 
XSUB passes individual characters to any 
program Digital Research supplies. 

XSUB is only used as a command within a 
SUBMIT file, and it must be the first command 
within that file. The valid format as it appears 
in a SUBMIT file follows: 

XSUB 

MOVCPM$12$ 

SYSGEN 

$3 



444 OSBORNE 1 REFERENCE GtlIDE 

The above file generates and saves a new CP/M 
system; the size and disk drive of the system to 
be saved are entered on the SUBMIT command 
line (e.g., SUBMIT SUBFILE 48 * B: <cr». 



Word Star 



446 OSBORNE 1 REFERENCE GUIDE 

Getting WordStar Started 
In order to start WordS tar, place the WordStar diskette in drive 
A and a formatted diskette in drive B, then press RETURN. The 
diskette in drive B will be used to store text files you generate. 

Once WordS tar is running, the message 

editing no file 

appears at the top of the screen with a menu of WordS tar opera
tions below it. Each operation is identified by a single letter 
which you press to select the desired operation. Pressing CTRL 
is not necessary when you enter commands from the No-File 
menu-in fact this is the only menu from which WordS tar uses 
non-control letters as commands. Here is the No-File menu you 
will see: 

Initiate the following operations by pressing the letter indicated: 

CREATE OR EDIT A DOCUMENT -creates or 

D 
retrieves a document file 

is used for general word processing. A file 
name is requested. Supplying a new file name 



WORDSTAR 447 

causes a new file to be created under the speci
fied name. Entering an existing file name 
causes the specified file to be fetched from the 
current drive and displayed on the screen. 

EDIT A NON-DOCUMENT -creates or retrieves a 
non text file 

N is used to create or edit a data file for merge
printing. The non-document mode is generally 
used by programmers to create source-program 
files. 

MERGE-PRINT -initiates merge-printing of a file 

M initiates a merge-print operation. Merge-print 
merges files during printing, thereby generat
ing form letters, boilerplate text, mailing lists, 
and large documents. 

DISPLAY DIRECTORY-toggles appearance of file 
directory 

F turns the file directory OFF or ON again. The 
menu displays the current status. When the file 
directory is ON, the names of all text files on 
the logged drive are displayed. 



448 OSBORNE 1 REFERENCE GUIDE 

CHANGE LOGGED DISK DRIVE-activates 
alternate disk drive 

L selects the "logged" or "active" drive; WordStar 
assumes that all text files are on the diskette in 
this drive. When you press L, a message asks 
you to select the drive to activate. Type the 
drive letter followed by a colon, and press 
RETURN. 

RUN A PROGRAM-runs a program from the 
No-File menu 

R runs a program without exiting from WordStar. 
You can execute CP/M programs, such as XDIR 
and STAT, by supplying their file names to the 
[II.lM~tA'~I.11 prompt. 

HELP SET -establishes the level of assistance displayed on 
the screen 

H selects the level of information the menus dis
play. As you become more experienced with 
WordS tar, you may want to decrease the level 
of assistance displayed in the menus at the top 
of the screen. 

EXIT TO SYSTEM-relinquishes control to CP/M 

x exits WordS tar and returns control to the CP/M 
operating system. 



WORDSTAR 449 

PRINT A FILE- toggles printing of a named file 

p 
initiates and halts printing of a text file. The 
name of the file to print is requested, followed 
by prompt questions regarding the print opera
tion. The current print status is displayed on 
the screen. . 

DELETE A FILE-deletes the specified file 

y deletes a file from the diskette in the currently 
active drive. A file name is requested, and the 
named file is subsequently deleted. 

FILE COPY-copies a file 

o copies a file from source to destination. The 
name of the file to be copied, and the name of 
the file where the copy is to be transferred are 
requested. If the destination file name exists, 
it will be erased unless the command is 
abandoned. 

FILE RENAME-renames a file 

E assigns a new name to a specified file. The 
existing file name is requested; when the name 
is supplied, the new file name is requested. 
Supplying the new file name and pressing 
RETURN completes the renaming process. 



450 OSBORNE 1 REFERENCE GUIDE 

Block Operations 
An entire section of text may be moved, copied, deleted, or 
written to another file. All these operations are performed hy 
block commands. To manipulate a section of text, you must first 
ublock" it. To block a section of text, place the cursor at the 
beginning of the text to be blocked and type "KB; a will 
appear on the screen to indicate the position of the beginning 
marker. Next, move the cursor to the end of the text you wish to 
enclose within the block and type "KK. The entire marked block 
will be displayed in half intensity so it is easy to distinguish. 

You can set a beginning and end block marker in the middle of 
a paragraph to manipulate a sentence, or in the middle of a 
sentence to manipulate a word. 

You can have only one marked block in your text file at a time. 
A new "KB or "KK command will replace any previous block 
beginning or end marker, if one exists. The marked block is 
always the implied source for any block operation. Those block 
commands that require a destination assume the cursor position 
as the location. Following are the BLOCK commands: 

BLOCK MARK BEGINNING-defines the 
beginning of a block 

J\KB marks the beginning of a block at the cursor 
position. The beginning block marker is dis-
played as a . Alternatively, "KB hides 
the displayed marker. 



WORDSTAR 451 

BLOCK MARK END-defines the end ofa block 

AKK marks or hides the ending of a block. It is used 
with the beginning block marker to enclose a 
section of text so you can perform block opera
tions on it. 

BLOCK COPY -copies a block from source to destination 

I\KC copies the currently marked block of text to 
where the cursor is positioned. The original 
text remains unaltered. The block markers 
move with the text. 

To copy a text block, place the cursor at the 
desired destination and type I\KC. The current 
block is then copied to the cursor position. The 
cursor stays at the beginning of the copy. 

The block markers are transferred with the 
copy of the block and remain displayed. The 
command I\KH hides the block markers follow
ing a block operation. 

You may make as many copies of the block as 
you desire by typing I\KC as many times as 
necessary. Copies may be made in different 
locations by moving the cursor to the desired 
position between copy commands. 

Using I\QV after a block copy returns you to 
the source of the block. 

After copying a block, you may use the 
REFORM command, I\B, to reformat the text. 



452 OSBORNE 1 REFERENCE GUIDE 

NOTE 

Unlike Block markers, Place markers do 
not move with the marked block. 

BLOCK DELETE-removes a block from a file 

"KY deletes the currently marked block. The block 
must be visible (not hidden) for "KY to delete 
it. Since large amounts of text can be deleted by 
accident, it is recommended that a block be 
hidden when you're not operating on it. 

When a block is deleted, both block markers are 
hidden and left at the position of the deleted 
text. You can use the "QV command to move 
the cursor to the delete location. 

BLOCK MOVE-moves a block to the desired position 

"KV moves a block to the cursor position. Place 
the cursor at the desired destination and type 
"KV. The cursor is left at the beginning of the 
moved text. 

The block markers move with the block and 
remain displayed. The command "KH hides 
the block markers after the block operation. 

Following a BLOCK MOVE, the "QV command 
returns to the source of the block. Also, the 
REFORM command, "D, can be used to 
reformat text after the block is moved. 



WORD S TAR 453 

NOTE 

There is a limit to the size of block you 
can move or copy. If a BLOCK-TOO
LONG error occurs, divide the block 
in to smaller sections and perform the 
BLOCK operation on each section. 

BLOCK WRITE TO FILE-sends content of block to a 
named disk file 

"KW transfers the contents of a block to another file 
on the logged drive, or drive specified. The 
name of the file where the block is to be trans
ferred is requested, the contents of the block 
are then written to the named file. The entire 
contents of any existing file with the same 
name will be erased. To prevent unintended 
erasures, if the file name that is specified 
already exists, WordS tar responds: 

FILE d:name.typ EXISTS .... OVERWRITE? (YIN): 

Pressing Y causes the BLOCK WRITE function 
to write over the previous contents of the spec
ified file; pressing N causes the file name to be 
requested again. 

BLOCK WRITE lets you extract text from a doc
ument and save it as a separate document. 
BLOCK WRITE may also be used to move a sec
tion of text large distances within a file: write 
the block to a temporary file, then move the 
cursor where you want the block moved and 
read the file containing the block with "KR. 



454 OSBORNE 1 REFERENCE GUIDE 

BLOCK HIDE/REDISPLAY -toggles display of a block 

"KH hides a text block so that no BLOCK operations 
can be performed on it. Though hidden, the 
text remains blocked until another section of 
text is blocked. Alternatively, the "KH com
mand redisplays the hidden marked block mak
ing it once again subject to BLOCK operations. 

Changing the Logged Disk Drive 
The standard procedure for starting WordS tar involves activat
ing the disk drive where files will be stored. After you place the 
WordS tar program's diskette in drive A and press RETURN, the 
A drive is activated (logged). What this means is that, unless 
you append the drive identifier B:, any files you create or edit 
will be stored on the program's diskette in drive A. 

"Logging onto" the B drive provides the most convenient 
method of managing your files. You should log onto drive B 
before issuing any other command from the No-File menu. 
Subsequently, all your files will be stored and retrieved from 
the logged drive B. Here is a summary explanation of the 
command used to log drives: 

CHANGE LOGGED DISK DRIVE-activates 
alternate disk drive 

"KL (L from the No-File menu) changes the logged 
drive where files will be stored. The currently 
active drive is identified, and you are asked 
which drive to log. The file directory reflects 
the contents of the currently active drive. 



WORDSTAR 455 

After you type "KL (or L), the name of the 
drive where files are currently being stored is 
displayed. You are asked to identify the disk 
drive to activate. Enter the drive letter followed 
by a colon (A: or B:). Files will subsequently be 
written to, and read from this drive. 

Remember, WordStar will always read from and 
write to files on the currently logged disk drive 
unless you explicitly specify the other drive by 
appending a disk identifier (A: or B:) to the 
front of a file name. 

Cursor Motion 
Cursor-motion commands move the cursor within a document. 
Basic cursor movement is accomplished using six control charac
ters positioned according to the direction they move the cursor: 

The arrow keys, as well as a variety of other commands, also 
move the cursor to specific locations in the file. Following are 
the cursor-motion commands: 

CURSOR LEFT A CHARACTER-moves cursor 
left one character 

"S "H , , 
or I ( I each move the cursor one character position to 

the left. The cursor will move to the end of the 



456 OSBORNE 1 REFERENCE GUIDE 

preceding line if it is located at the beginning 
of the current line. These commands are used 
to backspace over characters and to make 
corrections. 

CURSOR LEFT A WORD-moves cursor left a word 

moves to the beginning of the word to the left 
of the cursor. A word is a string of characters 
separated by a punctuation mark (. , : ; ! ?, a 
space, or a carriage return). 

CURSOR LEFT EDGE OF SCREEN-moves 
cursor to left edge of screen 

1\ Q S moves the cursor to the far left of the screen. 

CURSOR RIGHT A CHARACTER-moves 
cursor right one character 

move the cursor one character position to the 
right. If the cursor is positioned at the end of 
the current line, it will go to the beginning of 
the next line. 

CURSOR RIGHT A WORD-moves cursor one word 
to the right 

moves the cursor to the beginning of the 
next word. 



WORDSTAR 457 

CURSOR RIGHT END OF LINE-moves cursor 
to the end of a line 

"QD moves the cursor to the end of the current line 
of text. To get the cursor to move beyond the 
actual characters at the right end of a line, you 
must space or tab over to the desired column. 

CURSOR UP A LINE-moves the cursor up one line 

moves the cursor to the next line above. The 
cursor remains in or near the same column. 

CURSOR DOWN A LINE-moves the cursor 
down a line 

moves the cursor down to the beginning of the 
next line in the document. The cursor remains 
in the same column, but will move to the left to 
avoid landing beyond an end of a line; the cur
sor will also jog around print-control characters 
when necessary. 

CURSOR TO BEGINNING OF FILE-positions 
cursor at file's beginning 

"QR moves the cursor to the beginning of the file 
being created or edited. If the document in-



458 OSBORNE 1 REFERENCE GUIDE 

volved is a large one, and you are near the end, 
use the FILE SAVE command, "KS, since 
it is faster and uses up less temporary diskette 
file space. 

CURSOR TO END OF FILE-positions cursor at 
file's end 

"QC moves the cursor to the end of the file. The cur
sor ends up in the position following the last 
character of the document. 

CURSOR TO SCREEN BOTTOM-moves the 

"QX 

cursor to the screen bottom 

moves the cursor to the bottom of the text dis
played on the screen. The cursor remains in its 
current column position. 

CURSOR TO SCREEN TOP -moves the cursor to the 
screen top 

"QE moves the cursor to the top of the currently 
displayed text. 

CURSOR TO BLOCK BEGINNING-moves 

"QB 

cursor to block's beginning 

moves the cursor to the beginning of the cur
rently marked block. If the text block is hidden, 
the beginning marker is redisplayed. 



WORDSTAR 459 

CURSOR TO BLOCK END-moves cursor to the end 
of a block 

I\QK moves the cursor to the end of the currently 
marked text block. If the block is hidden, the 
end-block marker will be redisplayed. 

CURSOR TAB-moves the cursor to the next tab stop 

I\. lor 
I TAB I 

advances the cursor to the next tab stop when 
INSERT is OFF, or inserts spaces up to the next 
tab stop when INSERT is ON. 

CURSOR TO PLACE MARKER-moves cursor to 
indicated place marker 

I\QO 

to I\Q9 
moves the cursor to any of the ten place mark
ers. Each PLACE MARKER is identified by a 
number. To send the cursor to a previously set 
place marker, type "Q and the number of the 
marker (0-9). 

CURSOR FIND-moves cursor to a specified string of 
characters 

I\QF moves the cursor to a specified word or phrase. 
The word or phrase is requested through a 
prompt. The cursor moves to the first occur
rence of the specified word or phrase. "QF can 



460 OSBORNE 1 REFERENCE GUIDE 

be used with the FIND/REPLACE AGAIN com
mand, "L, to find all occurrences of a given 
word. When you type "QF, WordS tar asks for 
the word to be located using the prompt 

~ 

This question will appear below the menu, 
moving the top of the file display area down 
one line. Respond by typing any sequence 
of characters that you wish to locate, then 
press RETURN. (This function is further 
discussed in the FIND command.) 

Send the cursor to the position it occupied 
before the last FIND or REPLACE by using the 
CURSOR-TO-LAST-FIND command, "QV. 

CURSOR TO PREVIOUS POSITION-moves 

"QP 

cursor to previous position 

moves the cursor to where it was when the last 
command was is~ued. The "QP command is 
frequently used to continue editing after saving 
a file with "KS. This command is also used fol
lowing a paragraph REFORM, "B, to return to 
the position where you were making editing 
changes. 

CURSOR TO SOURCE-moves cursor to source of last 
BLOCK or FIND operation 

"QV moves the cursor to the position it occupied 
before the last FIND or REPLACE operation, or 
to the source of the last block operation. 



WORDSTAR 461 

Deletions 

DELETE A CHARACTER RIGHT -eliminates 

I\G 
characters at the cursor 

deletes one character at the cursor position. 
Text, spaces, and carriage returns are deleted. 
Characters to the right of the deletion are 
drawn to the cursor position and replace the 
deleted characters. 

DELETE A CHARACTER LEFT -eliminates 
characters to the left 

I\. 
- deletes one character to the left of the cursor. 

When the left end of the line is encountered, 
the cursor eliminates the carriage return and 
starts deleting on the next line up. 

DELETE A WORD RIGHT -eliminates a word from 
the right 

I\.T deletes a word or portion of word to the right 
of the cursor. If the cursor is in the middle of a 
word, the part of the word to the right of the 
cursor is deleted. 

You can delete spaces between words by plac
ing the cursor between the characters you wish 
to join and pressing AT. If the cursor is set at 
the end of a line, the carriage return and any 
following spaces will be deleted. 



462 OSBORNE 1 REFERENCE GUIDE 

DELETE TO BEGINNING OF LINE-deletes to 
beginning of line 

AQA_ 
deletes all characters from the cursor position 
leftward to the beginning of the line. This com
mand, however, does not delete the carriage 
return at the end of the line. 

DELETE TO END OF LINE-deletes to end of line 

AQY deletes all characters to the end of the line 
from where the cursor is positioned. Carriage 
returns and any overprint lines will not be 
deleted at the end of this line. 

DELETE A LINE-eliminates the current cursor line 

deletes the entire line containing the cursor. 
The line below moves up and takes the place of 
the deleted line. Screen continuation lines and 
associated overprint lines are also deleted. 

DELETE A BLOCK-eliminates the currently marked block 

AKY deletes the currently marked block of text. (See 
BLOCK DELETE.) 



WORDSTAR 463 

DELETE A FILE-deletes a specified file 

"KJ (orY from the No-File menu) asks for the name 
of the file to be deleted and then deletes the 
specified file. 

Display Commands 

DISPLAY PAGE BREAK-toggles appearance of page 
break line 

"DP hides or displays the line used to illustrate 
where one page ends and the next begins. It 
also changes the status line to display the num
ber of the cursor character (FC= cursor charac
ter number from beginning of file) and the line 
number (FL= line number from beginning of 
document). The page break line is ON until the 
I\OP command is issued. The current status of 
the page break line is displayed on the 1\0 
prefix menu. 

DISPLAY PRINT-CONTROL 
CHARACTERS- toggles appearance of print-control 

characters 

"DD hides or displays print-control characters. 
Print-control characters are initially displayed 
while you're entering them into text; however, 
the I\OD command can conceal them from the 
screen display and thus show how your text 



464 OSBORNE 1 REFERENCE GUIDE 

should look when it is printed. You can exam
ine the current status of the print-control 
feature on the "0 prefix menu. 

DISPLAY RULER LINE-toggles appearance of 
ruler line 

displays or hides the ruler line. The ruler line is 
normally displayed until hidden. 

DISPLAY DIRECTORY -toggles appearance of file 
directory 

(or F from the N 0-File menu) hides or displays 
a directory listing all files contained on the 

, diskette in the currently logged drive. The 
prefix menu indicates whether the directory 
display is ON or OFF. 

File Manipulations 
You can enter a file or exit WordS tar from the No-File menu. The 
No-File menu also provides options that allow you to copy, 
delete, read, or rename files using the appropriate command. 
You can also undertake these file manipulations from within an 
open file. To manipulate files between drives, append a drive 
identifier followed by a colon to the file name. You can toggle 
the directory of the currently active drive ON or OFF by using 
the FILE DIRECTORY command "KF, or temporarily display it 
during a file manipulation by pressing "F after initially issuing a 
file manipulation command. Following are the commands used 
to manipulate files: 



WORDSTAR 465 

EDIT A DOCUMENT -creates or retrieves a file 

D creates a new file or opens an existing file for 
editing. A file name is requested. If the speci
fied file does not exist, then a nOew file is cre
ated. If a file with the specified name exists, it 
is retrieved so you can edit it. The file may be 
on another drive, in which case the drive letter 
and a colon must precede the file name. 

EDIT A NONDOCUMENT -creates or retrieves a 
non text file 

N creates or retrieves a nontext file for editing. 
Dynamic pagination is disabled, and a different 
set of defaults is in effect. This command is typ
ically used to prepare input for other text for
matters, to enter data for application programs, 
or to edit program source files. Do not use the 
N command for general word processing. 

NOTE 

Programmers should not reform ( I\B) 
the contents of nondocument program 
files. 

EDIT ABANDON-closes file without saving current 
version 

"KQ abandons the file being created or edited with
out saving a copy. A backup copy will remain 



466 OSBORNE 1 REFERENCE GUIDE 

only if the file is being edited after previously 
being created. If the file is just being created, 
no copy of it will exist following this command. 

EXIT TO SYSTEM-relinquishes control to CP/M 

leaves WordStar and returns control to the 
CP/M operating system. When you issue 
I\KX, the current file is saved before leaving 
WordStar. (Similar to the No-File command X.) 

FILE COPY-copies a named file 

AKO (or a from the N 0-File menu) copies a file from 
its source to a specified destination. Prompts 
ask for the name of the file to copy and the des
tination where the copy is to be sent. You can 
copy from one drive to another by preceding 
the file name with the letter and colon of the 
drives involved. (Performs the same function as 
the CP/M program PIP.COM.) 

When you type I\KO or 0, the following 
prompts occur: 

NAME OF FILE TO COpy FROM? 

NAME OF FILE TO COpy TO? 

Enter the name of the file that you wish to 
copy and press RETURN. Next, enter the name 
of the file where the copy is to be transferred. 
To make copies from one drive to another, add 
the appropriate drive identifier and a colon to 
the front of the file name, (e.g., A:copyfrom, 
B:copyto). 



WORDSTAR 467 

FILE DELETE-erases a named file from the directory 

I\KJ (or Y from the N 0-File menu) erases a named 
file from the current file directory. A drive 
identifier specifies a file on the inactive drive. 
This command performs the same function as 
the CP/M command ERA (also see DELETE 
A FILE). 

FILE READ-reads a named file into the currently open file 

transfers and inserts the contents of a specified 
file to the cursor position of the file being 
created or edited. A file name is requested by 
WordStar as follows: 

NAME OF FILE TO READ? 

The contents of the indicated file is inserted 
into the current file at the cursor position. 

FILE RENAME-renames a disk file 

(or E from the N 0-File menu) asks for the name 
of the file to rename and then assigns the new 
name to the specified file. These prompts occur: 

NAME OF FILE TO RENAME? 

NEW NAME? 

To change the name of a file, supply its name, 
and press RETURN. Then enter the name with 
which you want the file identified in the future. 



468 OSBORNE 1 REFERENCE GUIDE 

this command performs the same function as 
the CP/M command REN. 

Find Functions 
The FIND command, "QF, moves the cursor to a given word or 
phrase within the file. The FIND, REPLACE command, "QA, 
locates a specific word or phrase and replaces it with another. 
After the desired word or phrase has been located and/or 
replaced, you may proceed to the next occurrence of the word 
or phrase by issuing the FIND/REPLACE AGAIN command, "L. 

FIND-locates a given word or phrase 

AQF finds the first occurrence of a specified word or 
phrase. A prompt asks for the word or phrase 
to search for: 

l'I~"1i 

Reply by typing the word or phrase you wish 
to locate, then press RETURN. The cursor 
moves to the indicated word or phrase. Certain 
options are defined in the FIND REPLACE 
command below. 

FIND, REPLACE-locates and replaces a given string 
with another 

finds the first occurrence of a specified word or 
phrase and replaces it with another. Prompts 
ask for the word or phrase you're searching for, 
as described above. After you have entered the 



WORDSTAR 469 

string that you wish to locate and have pressed 
RETURN, WordStar asks: 

REPLACE WITH? 

Respond by entering the replacement charac
ters and pressing RETURN. WordS tar 
then asks: 

OPTIONS (? FOR INFO) 

The "OPTIQNS" question allows you to specify 
certain options, such as matching whole words 
only, ignoring the distinction between upper
case and lowercase letters, or searching back
wards instead of forwards. A question mark (?) 
will display a list of FIND options; use it to 
help refresh your memory. You can ignore the 
"OPTIONS" question by pressing RETURN, or 
you can answer it with one or more of the 
following option codes: 

#, when specified with the FIND com
mand, locates the #th occurrence of the 
specified word or phrase. Used in the 
FIND, REPLACE command, it locates and 
replaces the specified word or phrase that 
number of times. 

G, when used with the FIND, REPLACE 
command, replaces every occurrence of the 
specified word or phrase from the cursor 
position to the end of the file. A (YIN) 
prompt allows selection of each replace
ment as it appears. When used with the 
FIND command, it will search for the last 
occurrence. 

N replaces words or phrases without 
asking the (YIN) question. 



470 OSBORNE 1 REFERENCE GUIDE 

U causes the find or replacement operation 
to ignore the distinction between uppercase 
and lowercase letters. 

W matches only whole words during a 
FIND or REPLACE. 

"p (control character) Control characters 
can be entered in response to the OPTIONS 
question. Some specialized ones follow: 

B Instead of the search progressing towards 
the end of the file, as it usually does, this 
option causes the file to be searched back
wards to the beginning of the file. 

A matches any single character. 
S matches any character other than a 
letter or digit. 
o precedes a character so that a match 
will occur with any character but the one 
following "0. 
N causes a match to be made with a 
carriage return or line feed. 

NOTE 

You can eliminate the "OPTIONS" 
question by pressing ESC following 
either the "FIND" or "REPLACE" 
questions. 

After you've issued the FIND, REPLACE com
mand ("QA), WordStar will search for the word 
or phrase to' replace. On finding the word or 
phrase, WordStar will display the following 
prompt at the upper right side of the screen: 

REPLACE (YIN)? 



WORDSTAR 471 

The cursor flashes on and off to indicate that a 
decision is required. If you want to replace the 
word or phrase that is located, press Y for YES. 
If you do not wish to replace that particluar 
occurrence of the word or phrase, press any 
other key. To repeat the most recent REPLACE 
command from the current cursor position, 
use the abbreviated FIND/REPLACE AGAIN 
command, ,.. L. 

NOTE 

You may use the INTERRUPT 
command, "'U, to stop a FIND or 
REPLACE operation while it is in 
progress. 

FIND/REPLACE AGAIN-continues a previous FIND 
or REPLACE function 

repeats the most recent FIND or REPLACE 
command and supplies identical responses for 
the options. 

Flag Characters 
All the columns on the screen, except the 
rightmost column, are available for text. This 
column is reserved for FLAG characters that in
dicate the status of text on the current file line 
as follows: 



472 OSBORNE 1 REFERENCE GUIDE 

(b lank) in the last column indicates that the line 
ends with a soft carriage return. This condition 
may be changed following a WORD WRAP or 
REFORM operation. 

< 

-

• 

• • 

+ 
p 

indica tes that the line ends with a hard carriage 
return. WORD WRAP or REFORM operations 
do not change this line break. 

means that the following line will be printed 
over the current line. This PRINT function 
creates special effects. 

indicates that the current screen line is below 
the existing text. This character will also appear 
at the end of the last text line if there is not a 
carriage return at the end of this line. 

appears if the current text line is above or 
before the beginning of the document. 

indicates that the next screen line is a continua
tion of the initial line . 

appears only when the PAGE BREAK display is 
on: it indicates that a new page begins with the 
next line. 



? • 

J 

M 

WORD 5 TAR 473 

is displayed when a line contains an unrecog
nized or possibly erroneous DOT command. 
It also appears while a DOT command line is 
being typed. You may ignore this character 
until entry is complete. 

indicates that the line ends in a line feed with
out a carriage return. This format is non
standard and is never created during normal 
WordStar usage. 

indicates a line contains a MERGE-PRINT DOT 
command. 

HELP Commands 
HELP menus are shown at the top of the screen. You can elimi
nate them by degree as you become more adept at using the sys
tem. Also, WordS tar provides further information to assist you 
in learning; certain commands display detailed information 
about the more involved WordStar functions. The AJ prefix 
menu explains the following list of subjects: 

"JD 

"JI 
"JM 

"JB 

explains print directives such as DOT 
commands and PRINT controls. 

explains command index for entering text. 

explains margins, line spacing, justification, 
and tabs. 

explains paragraph reform. 



474 OSBORNE 1 REFERENCE GUIDE 

"JP explains place markers. 

"JV explains moving text. 

"JR explains the ruler line. 

"JS explains the status line. 

"JF explains flag characters. 

HELP SET-establishes the level of assistance displayed on 
the screen 

"JH, 
orH 

from the No-File menu, displays the current 
help level and requests a new setting. You can 
set the help level between 0, the least amount, 
or 3, the greatest amount of help. The amount 
of information displayed on the help menus 
corresponds to the help-level setting. 

After you type the HELP SET command, a 
description of help levels and the current help
level setting are displayed. The display requests 
a new help-level setting. 

As you gain experience using WordStar, you 
may reduce the level of assistance to coincide 
with your experience and ability. Help level 0 
provides the least assistance and gives you the 
most screen area for file display. 



WORDSTAR 475 

Hyphens 
WordStar has two kinds of hyphens: the soft hyphen, which in
dicates a syllable break, and the hard hyphen, which separates 
words or phrases. 

A soft hyphen at the end of a text line separates a word that is 
too long to fit on the current line. The hyphen divides the word 
into syllables and continues it on the next line. The soft hyphen 
prints only if the divided word appears at the end of a line; if 
the word ends up in another position following some operation 
such as a REFORM, the hyphen will not be printed. 

Generally, you enter soft hyphens by using the HYPHEN HELP 
feature, but you may enter them explicitly by turning ON the 
SOFT-HYPHEN ENTRY. Soft hyphens that you type when the 
SOFT-HYPHEN ENTRY is ON will divide a word only if it 
appears at the end of a line. 

Hard hyphens, on the other hand, are used whenever a fixed 
divider is required between characters, strings, or phrases. A 
hard hyphen will always be printed, no matter where it appears 
in the text. A hard hyphen is entered automatically if the SOFT
HYPHEN ENTRY is OFF and HYPHEN HELP is not engaged. 
"p- unconditionally enters a hard hyphen. 

To distinguish soft from hard hyphens, type "OD, which turns 
the print-control display ON and OFF. When this display is 
OFF, soft hyphens will not show up in the file document. 

HYPHEN HELP-toggles HYPHEN HELP feature ON 
or OFF 

turns HYPHEN HELP ON or OFF. When ON, 
the PARAGRAPH REFORM process pauses 
and positions the cursor at each instance where 



476 OSBORNE 1 REFERENCE GUIDE 

a word can be hyphenated. The "0 prefix 
menu displays whether HYPHEN HELP is ON. 

HYPHEN HELP checks that the word contains 
two syllables, and selects the proper position 
for the hyphen. You can then decide if the 
word should or should not be hyphenated at 
the selected position. 

When using HYPHEN HELP, make sure that 
margins, line spacing, and justification are 
properly selected. Place the cursor at the begin
ning of a paragraph and press "B. When the 
hyphen position is located, the following mes
sage is displayed: 

TO HYPHENATE, PRESS -. Before 

pressing the -, you may move the cursor: 

A S = cursor left, A D = cursor right. 

You can enter a hyphen at the suggested loca
tion, or you can move the cursor to the position 
where you want the hyphen to appear. If you 
do not want to hyphenate the word at all, press 
"B and the REFORM process will continue 
down the text. 

SOFT-HYPHEN ENTRY-toggles interpretation of 
hyphens 

turns SOFT-HYPHEN ENTRY ON or OFF. 
When ON, hyphens are temporary and will not 
be printed unless they fall at the end of a line. 
Soft hyphens are highlighted, but the "OD 
command causes only hyphens that will be 
printed to be displayed in half intensity. 



WORDSTAR 477 

Interrupt Execution 

INTERRUPT - stops command execution 

stops any commands currently in progress. You 
can also enter this command in response to 
prompt questions, such as "FIND?", to abort 
the command making the request. When you 
press "U, the following message is displayed: 

* * * INTERRUPTED * * * 
All commands issued before the INTERRUPT 
are aborted and must be reentered if needed. 

Insertions 

INSERTION- toggles character insertion ON and OFF 

toggles the INSERTION function to either 
insert text to the left of the cursor position 
or replace text at the current cursor position. 
When INSERTION is ON, it inserts typed 
characters to the left of the cursor while the 
cursor moves text to the right. When INSER
TION is OFF, typed characters replace those at 
the cursor position. The status line displays the 
current state of insertion. 

You can determine if INSERTION is ON or OFF 
by looking at the STATUS LINE at the top of 
the display for the words INSERT ON. (Use 
,,< LEFT ARROW> to see the INSERT message 

at the upper right of the screen.) 



478 OSBORNE 1 REFERENCE GUIDE 

INSERT CARRIAGE RETURN-establishes a fixed 

or 

AN 
"M 

Layout 

carriage return 

insert fixed carriage returns. Any text to the 
right of the cursor moves to the beginning of 
the next line. Neither WORD WRAP nor any 
other operation can alter a hard carriage return. 
A hard carriage return will always appear in 
the printed version of a document. 

The difference between these two commands 
is that "M moves the cursor with the text, 
whereas "N leaves the cursor in its current 
position. 

You can format a document in many ways using the WordStar 
layout commands. These commands allow you to control the 
way text is displayed. All the following commands can affect 
already existing text when they're used with the PARAGRAPH 
REFORM command: 

REFORM PARAGRAPH- reorganizes a paragraph 
with· new specifications 

"B reforms the paragraph below the cursor so that 
words are spaced evenly after editing. You can 
also use the REFORM command to change mar
gins or line spacing, justify or unjustify text, or 
assist in hyphenation. 



WORDSTAR 479 

JUSTIFICATION - toggles interpretation of text alignment 

"OJ when ON, aligns text with the right margin. 
When JUSTIFICATION is OFF, lines of text 
end in various columns. The "0 prefix menu 
displays the current state of justification. You 
determine if this function is ON or OFF by 
pressing "0 and looking at the menu. 

WORD WRAP-toggles carriage return requirements 
between lines 

"OW turns the WORD WRAP feature ON or OFF. 
This feature, which is normally ON, allows 
entry of text without the need for carriage 
returns except between paragraphs. Turn 
WORD WRAP OFF if you want to terminate 
every line with a carriage return as you would 
on an average typewriter. 

CENTER CURSOR LINE- centers current line 
between margins 

"OC centers the line containing the cursor within 
the margins. This command is generally used 
to center headings. To use this command, place 
the cursor anywhere on the line you wish to 
center and type "OC. This command deletes 
any spaces and tabs set at the beginning of the 
line, then enters the appropriate number of 
hard spaces needed to center the line. 



480 OSBORNE 1 REFERENCE GUIDE 

LINE SPACING- sets the line spacing 

1\05 sets the number of blank lines that separate 
text lines. When you type "OS, WordStar 
will request a number between 1 and 9 that 
represents the number of carriage returns 
placed between text lines. 

The LINE SPACING command also determines 
the number of line advances following every 
RETURN. You can change line spacing at any 
time by entering "OS, and reformatting the 
document (using the REFORM command). 

R VLER LINE- toggles display of the ruler line 

I\OT toggles the display of the RULER LINE below 
the menu. This dotted line shows the margin 
and tab formatting that is in effect. Left and 
right margins are illustrated by an ilL" and UR". 
Exclamation marks indicate variable tab stops. 
Decimal tab stops are shown as # signs. 

When a margin is set at a tab stop, the tab sym
bol is displayed. If the margin is temporarily 
moved in with the PARAGRAPH TAB com
mand, "OG, the ruler display will show the 
extent of the temporary margin. 

Tabs set outside the margins are not displayed 
until the margins are released or WORD WRAP 
is OFF. When the margin is set larger than the 
screen display, the RULER LINE doubles to 
show the current margin setting. You can hide 
the RULER LINE by typing the DISPLAY/HIDE 



WORDSTAR 481 

RULER LINE command "OT. When the 
RULER LINE is hidden, a line of S's is dis
played to separate the file directory from the 
file document. 

You can specify margins in a text file by using 
the RULER LINE to identify where to set the 
margins. To enter a RULER LINE that will set 
the margins, type a line into the document 
with an exclamation point (0 at each column 
where a tab should be set, a number sign (#) at 
each column where a decimal tab should be set, 
and a hard hyphen (-) in every other column 
between the desired left and right margins. You 
can then enter this RULER LINE into the docu
ment by placing the cursor anywhere in the line 
and typing the MARGINS FROM FILE LINE 
command, "OF. 

When you have entered this line, the desired 
tabs and margins will be set while all other 
default settings are cleared. The RULER LINE 
may be kept from appearing in the printed doc
ument by preceding it with two periods (see 
PRINT DOT COMMENT command). 



482 OSBORNE 1 REFERENCE GUIDE 

NOTE 

The 1\0 menu shows whether the 
following features are currently ON 
or OFF: 

HYPHEN HELP 
VARIABLE TABBING 
PAGE BREAK DISPLAY 
WORD WRAP 
JUSTIFICATION 
PRINT-CONTROL DISPLAY 
SOFT-HYPHEN ENTRY 
RULER DISPLAY 

Margin Arrangement 

MARGIN LEFT-establishes the left margin 

"OL sets the left margin between column 1 and col
umn 240. You can specify the left margin set
ting by entering the column number of the new 
margin, or pressing ESC to set it at the cursor 
column. The current column number is dis
played on the STATUS LINE. To set the left 
margin at the cursor position, press ESC 
following the I\OL command. 

MARGIN RIGHT-establishes right margin 

"OR sets the right margin. To answer the request for 
a right margin, you may enter a column num-



WORDSTAR 483 

ber, or press ESC to specify the current cursor 
position. 

NOTE 

You may change margins at any time by 
reforming the existing text with the 
new margin settings. 

MARGINS FROM FILE LINE-mimics existing 
margins 

"OF sets the margins to match those of the existing 
document. To set the margins with this com
mand, place the cursor anywhere in the 
existing line and type "OF. The margins 
automatically set to the width of the current 
file line. 

MARGIN RELEASE- disengages existing margins 

"OX temporarily disengages the current margin 
settings. Text entered following the "OX 
command can extend beyond the established 
margins. The margins remain released until the 
cursor returns within the bounds of the origi
nal margin setting. h'Jr41j'j'::t! appears on the 
STATUS LINE while the margins are released. 
You can reset the margins with the same "OX. 



484 OSBORNE 1 REFERENCE GUIDE 

Place Markers 

PLACE MARKERS-mark a position for later reference 

"KO
I\K9 

mark a position within the text where the cur
sor may be sent. There are ten PLACE MARK
ERS (0-9). You can set any of these markers 
within the file and subsequently reference 
them. The numbered marker will show up at 
the specified position, but it is not actually part 
of the document. Each numbered marker may 
be returned to by using the CURSOR TO 
MARKER command, "Q, followed by the 
number of the marker (0-9). 

You can hide a PLACE MARKER by moving the 
cursor to the desired location and issuing the 
same command used to set the marker. In other 
words, this command acts as a toggle that alter
nately sets or hides the marker. Though hidden, 
a set marker is still in effect and will be redis
played after it is accessed. 

Print-Control Characters 
You can insert control characters into a text file-by typing "P, 
followed by the print-control character-to control printing. 

Displayed print-control characters tend to distort text. However, 
editing commands ignore print-control characters, and they are 
not printed. 



WORDSTAR 485 

Print-Control Toggle Commands 
Toggle-control characters are those that must be placed on both 
sides of the affected text. The first toggle character initiates a 
control effect and the second toggle character terminates the 
effect. Listed here are the toggle commands: 

STRIKEOUT TOGGLE 

prints dashes over the specified characters. Use 
this command to illustrate deleted text in the 
revised version of a document. 

SUBSCRIPT TOGGLE 

prints the enclosed characters as subscripts. 
The subscripted characters will be positioned 
below the surrounding text. Determine the 
degree of subscript using the DOT command 
.SR. On printers without fractional lines, the 
next line must be blank. 

SUPERSCRIPT TOGGLE 

prints enclosed characters as superscripts so 
they will appear slightly higher than the 
surrounding text. 



486 OSBORNE 1 REFERENCE GUIDE 

BOLDFACE TOGGLE 

"PB offsets slightly and overstrikes on daisywheel 
printers or any other printer capable of 
incremental motion. "PB multistrikes each 
character on teletype printers. 

DOUBLE-STRIKE TOGGLE 

"PO strikes each character twice with no offset. 
This command produces a lighter version of 
"boldface." This control character, used with a 
carbon ribbon, produces an extremely sharp 
impression of the entire document. 

UNDERSCORE TOGGLE 

"PS is placed on both sides of the section of text 
you want to underline. Only nonblank 
characters are underlined. 

Other Print-Control Commands 
Following are the control-character commands that control the 
printer: 

LEFT/RIGHT, HEADING/FOOTING 
CONTROL 

"PK is used with heading and footing DOT com
mands to produce headings, page numbers, 



WORDSTAR 487 

etc., that print on the left-hand side of even
numbered pages and on the right-hand side of 
odd-numbered pages. "PK formats headings 
and page numbers so they will always appear 
on the side of the page farthest from the bind
ing in loose-leaf binders. Use this print-control 
character with the DOT commands .HE 
and .FO. 

ALTERNATE CHARACTER PITCH 

"PA is used with daisywheel printers to change 
the character width from 10 (pica) to 12 
characters per inch (elite). 

STANDARD CHARACTER PITCH 

"PN selects a standard 10-characters-per-inch width 
(pica) on daisywheel printers. 

BACKSPACE 

"PH makes the next character overprint the preced
ing character on the line. Use it to place accent 
marks over letters or to create special symbols 
by overprinting multiple characters. This con
trol character is placed where the backspace 
is desired; it may be affected when text is 
reformed or justified. 



488 OSBORNE 1 REFERENCE GUIDE 

NONBREAK SPACE 

"PO prints a space, but the space is not treated 
as such for line breaks or justification during 
line formatting. 

PHANTOM RUBOUT 

"PG prints the character on a daisywheel printer 
that is associated with code 7F hex. This code 
prints a "not sign," "double underline,"or 
graphic that is associated with the hex code. 

PHANTOM SPACE 

prints the character, normally a space code, 
associated with hex code 20 on daisywheel 
printers. 

STOP PRINT 

"PC halts printing. This function gives you a 
chance to change ribbons or type fonts. You can 
use this control character within a line as often 
as needed. When printing stops, the prompt 
PRINT PAUSED appears on the status line. You 
can restart the printer by typing the PRINT 
command "KP (or P). 



TAB 

"PI 

WORDS TAR 489 

displays and prints spaces to advance to the 
next multiple of eight columns; normally you 
don't enter it into the text except in VARIABLE 
TAB mode. 

USER PRINT FUNCTION (1-4) 

I\PQ, 
"PW , 
"PE , 
"PR 

are USER PRINT FUNCTIONS for special 
printer operations that WordS tar does not 
otherwise perform. You have to establish each 
of these functions when you install WordStar. 
Each function can send a sequence of one to 
four characters to the printer. 

FORM FEED 

"PL causes a form feed to be entered into the text. 

CARRIAGE RETURN 

"PM is the same as a carriage return. Causes the 
current line to print over the preceding line. 
The flag character (-) appears in the rightmost 
column to indicate an overprint. 



490 OSBORNE 1 REFERENCE GUIDE 

LINE FEED 

1\ PJ is the same as line feed. 

Print DOT Commands 
The DOT commands are special characters you embed in text to 
control the final format of the printed text. DOT commands alter 
default formats. DOT commands are displayed but they are not 
printed. 

A DOT command consists of a period in the first column of a 
line, a two-letter code, and optionally a number or some other 
argument. When you enter a period in the first column of a line, 
WordS tar expects a DOT command and the left margin tempo
rarily disengages; this is indicated by a ? prompt on. the current 
screen line. 

Most DOT commands may be placed anywhere in a text file, but 
the dynamic page break display requires that certain DOT com
mands appear at the beginning of a file. 

The following five sections describe the various DOT commands: 

Vertical Page Layout 
The following vertical-page-Iayout DOT commands have to 
appear at the beginning of the file for page breaks to correctly 
interpret them. 

LINE HEIGHT 

.LHn sets the line height in 1/48ths of an inch on 
daisywheel printers and provides an alternative 



WORDSTAR 491 

or supplement to the single, double, or triple 
spacing the PRINT CONTROL command 1\05 
gives. Don't use this DOT command on printers 
that can't print incrementally. The default is 6 
lines per inch. 

PAPER LENGTH· 

.PLn determines the number of lines per page, in
cluding the top and bottom margins. The paper 
length must match the forms specification. The 
default is 66 lines. 

TOP MARGIN 

· MT n specifies the number of lines from the top 
of the paper to the beginning of the text. The 
default is 3 lines from the top. 

BOTTOM MARGIN 

· MB n specifies the number of lines not to be used 
for text at the bottom of the page. The page 
number or footing, if present, is printed within 
the bottom margin. The default is 8 lines. 

HEADING MARGIN 

· HM n determines the number of blank lines that 
will appear between a page heading and the 
body of the text. 



492 OSBORNE 1 REFERENCE GUIDE 

FOOTING MARGIN 

. FM n sets the number of lines between the last 
text line of the page and the page number or 
footing. The default for the HEADING and 
FOOTING margins is 2 lines. 

Horizontal Page Layout 

Most horizontal formatting is an integral part of text editing and 
does not involve DOT commands. However, the following DOT 
commands cover special print operations. 

PAGE NUMBER COLUMN 

.Pen determines the column at which the page 
number is printed when neither the .FO or the 
.OP command is in effect. You can place the 
page number to the left or right of a page, but 
you must take the current character pitch into 
account. 

PAGE OFFSET 

. PO n sets the number of columns that the entire 
document will be indented from the printer's 
left margin, to offset text from the tractor-feed 
holes at the left of the paper. This feature al
lows you to load narrow paper near the center 
of wide printer carriages. The default is eight 
columns. 



WORDSTAR 493 

Pagination 

PAGE 

.PA starts a new page unconditionally. 

CONDITIONAL PAGE 

.CPn starts a new page if there are less than 
n lines left on the current page. This keeps 
blocks of text together and suppresses pagina
tion after a title, in the middle of a table, etc. 

Page Heading, Footing, and 
Page Number 

TEXT HEADING 

.HE begins a line that will serve as a heading for 
each page until another heading is specified. 
Headings may be changed as often as neces
sary. To print a heading on the first page, 
put an .HE command in front of all text in 
the file. 

TEXT FOOTING 

.FO The rest of a line beginning with this command 
serves as a page footing for the current and fol-



494 OSBORNE 1 REFERENCE GUIDE 

lowing pages of a document. A document may 
contain numerous footing commands. Text 
specified in the most recently encountered 
footing command is printed. 

If no footing is specified, or if an .FO command 
has no text following it, page numbers will be 
printed in the footing line at the column speci
fied by the PAGE NUMBER COLUMN com
mand, .PC. Page numbers are not automatically 
printed when a TEXT FOOTING DOTcom
mand is in effect. You can place a # symbol at 
the location where you wish a page number 
to appear. 

The following 3 characters have special mean
ing within TEXT HEADING and FOOTING 
commands: 

# prints the current page number. Use it to 
position page numbers wherever you want, 
at the top or bottom of the page. 

\ prints the next character without special 
interpretation so that control characters 
may be printed as text. 

"K is used with the .HE or .FO DOTcom
mands. This control character directs print
ing to format a heading or page number 
depending on whether a page number is 
odd or even. All spaces following the "K 
character are ignored if the page number is 
even so that the heading or page number 
will be printed on the right-hand side of 
odd-numbered pages and on the left-hand 
side of even-numbered pages. Use this 
feature if your document will be printed 
on both sides. 



WORDSTAR 495 

OMIT PAGE NUMBERS 

.oP suppresses printing of page numbers when no 
footing has been given. This DOT command has 
no effect if footing has been specified. 

NUMBER PAGES 

.PN turns page numbering back ON following a 
previous .OP command that turned it OFF. 
Page numbering will begin with the number 1, 
unless otherwise specified. (See .PN n below.) 

PAGE NUMBER 

. PN n turns page numbering back ON following a 
previously issued .OP DOT command. Page 
numbering will begin with the number you 
specify after .PN. The page numbers are 
printed at the bottom of the page unless a # 
character specifies otherwise. 

Miscellaneous DOT Commands 

CHARACTER WIDTH 

. CW n sets the character width in increments of 
1/120ths of an inch. The default standard pitch 
is 10 characters to the inch, and the default al
ternate pitch is 12 to the inch. This command 



496 OSBORNE 1 REFERENCE GUIDE 

only works with printers that have programma
ble character widths. CW 12 is the default. 

SUB/SUPERSCRIPT ROLL 

.SRn specifies the amount in 1/48ths of an inch that 
the carriage rolls before printing a super
scripted or subscripted word. The default is 
3/48ths of an inch or .SR3. 

ON (1) OR OFF (0) 
MICROJUSTIFICATION 

.U] turns off microjustification which is normally 
ON. Microjustification spreads words evenly by 
adding soft spaces. When microjustification is 
OFF, the text will be printed as it appears on 
the display with soft spaces and returns. Turn
ing microjustification OFF may be useful to 
make a columnar table print with the columns 
aligned as they appear on the screen, even with 
soft spaces inadvertently supplied by WORD 
WRAP or REFORM. 

ON (1) OR OFF (0) 
BIDIRECTIONAL PRINT 

.BP either enables or prevents the printer from 
printing back and forth across the page. Use it 
when you have a problem with the printer. 



WORDSTAR 497 

IGNORE TEXT-

. I G allows display, but not printing, of commentary 
text in a file line. 

After using the appropriate print-control characters and DOT 
commands to direct the printer, use the print command 
described below to print your file. 

Printing a File 

PRINT A FILE-toggles printing of a file ON and OFF 

J\KP (or P from the No-File menu) outputs the con
tents of a file to the printer. The same "KP or P 
commands halt the print operation. The current 
status of this command is displayed in the "K 
prefix menu. 

These PRINT A FILE commands toggle printing 
so that, when first issued, the name of the file 
to be printed is requested. When this file 
name has been supplied, several print option 
questions are asked. You may simply press 
RETURN in response to each question if you 
wish to use the default settings, or press ESC 
to prevent the options from being offered. 
These option questions are: 

DISK FILE OUTPUT (YIN) sends the file to 
a diskette. 

START AT PAGE NUMBER (RETURN for 



498 OSBORNE 1 REFERENCE GUIDE 

beginning) lets you specify a page number 
where printing should begin. 

STOP AFTER PAGE NUMBER (RETURN 
for end) asks for a page number where 
printing should stop. 

USE FORM FEED (YIN) outputs form-feed 
controls to the printer. 

SUPPRESS PAGE FORMATTING (YIN) 
sends an exact replica of the screen display, 
including DOT commands, to the printer if 
you answer YES. No formatting is per
formed on the text before it is printed when 
page formatting is suppressed. 

PAUSE FOR PAPER CHANGE BETWEEN 
PAGES (YIN) stops the printer at the end of 
each page if you answer with YES. This op
tion allows you to change paper between 
pages. 

Ready printer, press RETURN indicates 
that text is ready to be printed. The speci
fied file will output to the printer when you 
press RETURN. 

To halt printing, reissue the "KP (or P) com
mand, and the following messages appear: 

TYPE Y TO ABANDON PRINT, 

N TO CONTINUE, A U TO HALT 

If you respond with Y, the print operation will 
stop. Pressing N causes the print operation to 
resume immediately. Pressing "U temporarily 
suspends printing; subsequently you can use 
the "KP (or P) command to resume printing. 



WORDSTAR 499 

The STATUS LINE will display the prompt 
message PRINT PAUSED while printing is 
suspended. 

Prompt-Question 
Control Characters 
Special control characters entered in response to prompt ques
tions perform specific functions. These control characters 
follow: 

"x or "Y erases the entire answer in order to enter 
another answer (no file menu). 

"5, "H, or B erase one character to the left (no file 
menu). 

"D moves the cursor to the right and displays any previ
ously erased character. This function will also display the 
character that was entered the last time that the question 
was asked (no file menu). 

"R restores the erased answer, or the answer you entered 
the last time you received the current question (no file 
menu). 

"F displays a file directory of the currently logged disk 
drive for the duration of the command (main menu, 
with "K). 

"Z or "W scrolls the file directory up ("Z) or down ("W) 
to bring additional files into view (main menu, with "K). 

- enters a SOFT HYPHEN if the SOFT-HYPHEN ENTRY 
has been turned ON. Also permits using SOFT HYPHENS 
in response to a "FIND?" question prompt. (Use "P to 
search for a hard hyphen.) 



500 OSBORNE 1 REFERENCE GUIDE 

"N, "5, "A, or "0 have special meaning only with the 
"FIND" question prompts. (See the FIND FUNCTION.) 

"U interrupts and terminates the command in progress. 
(See the INTERRUPT command.) 

Repeat a Command 

REPEAT NEXT COMMAND-repeatedly executes a 
command 

(command) causes the command following it to 
be executed repeatedly until you press the 
SP ACE bar. You can specify a rate of execution 
between 0 (slowest) and 9 (fastest). First type 
the command "QQ, then type the command 
that is to be repeated. 

Run a Program 

RUN A PROGRAM-runs a program from the 
No-File menu 

R runs a specified program. Enter the name of 
the program in response to a prompt, and the 
indicated program executes. You can examine 
the amount of disk space, move or copy files, 
etc. Pressing R displays the following prompt: 

Answer this prompt question by entering the 
name of the program you want to run (ie., 



WORDSTAR 501 

XDIR) and then press RETURN. Precede the 
program file name with a drive identifier if it 
exists on a drive other than is currently logged. 

Save Procedures 
You can transfer a file to a disk and save it by using one of the 
following SAVE commands. 

SAVE DONE-saves file and returns to the No-File menu 

J\KD saves the file currently being created or edited, 
then transfers to the N 0-File menu. 

SAVE REEDIT -saves file without closing it 

"KS saves the current file, then returns to the 
beginning of the saved file. This command 
should be used periodically to protect your file 
from accidental loss by saving it in increments. 
After the file has been saved, editing of the 
same file can continue. 

The cursor will go to the beginning of the saved 
file, but you may return it to the position it oc
cupied when you saved the file with the CUR
SOR PREVIOUS POSITION command, I\QP. 
Also, the SAVE REEDIT command is the fastest 
method of moving long distances to the begin
ning of a file. 



502 OSBORNE 1 REFERENCE GUIDE 

SAVE EXIT -saves file and exits to CP/M 

I\KX saves the current file and exits from WordS tar 
to CP/M. This command performs the same 
function as the EXIT TO SYSTEM command, X, 
from the No-File menu, except that I\KX saves 
the file before leaving WordStar. 

Scroll Commands 
The SCROLL commands, which follow, move the screen display 
down or up a line, or move the entire display down or up one 
screen's distance. 

SCROLL DOWN LINE-scrolls display down a line 

1\ W moves the entire screen display down one line. 

SCROLL DOWN SCREEN-scrolls downward a 
screen's distance 

I\R 
moves displayed text down one screen's dis
tance so the text above is displayed. This com
mand causes the portion of the file that is being 
displayed to move upward and disappear while 
text below takes it place. 

SCROLL UP LINE-scrolls up a line 

1\ Z moves the screen display up one line. 



WORDSTAR 503 

SCROLL UP SCREEN-scrolls upward a screen's distance 

I\C causes text currently occupying the screen to be 
replaced by an equal amount of text below it. 

CONTINUOUS SCROLL-scrolls upward or 
downward till stopped 

QW 
orQZ 

scrolls the display continuously up or down. 

NOTE 

REPEAT NEXT COMMAND, "QQ, may be placed 
before any of the scroll commands to move the display 
continuously in either direction (see REPEAT NEXT 
COMMAND). 

Status Line 
The $TATUS LINE at the top of the screen displays various in
formation pertinent to the file being edited. The information 
displayed from left to right on the STATUS LINE is: the cur
rently active drive, a~plon, the name of the file being edited, 
the number of the page being edited, the line number, and the 
column number where the cursor is positioned. 



504 OSBORNE 1 REFERENCE GUIDE 

When you issue a command, it will be displayed at the upper far 
left of the STATUS LINE until the command has been executed. 
If the INSERTION function is ON, it will be indicated at the 
upper far right of the STATUS LINE. (See INSERTION.) 

Certain messages are displayed on the status line when appro
priate. These messages are: 

WAIT is displayed when a file is being read or written. No 
data should be entered while this message is displayed. 

MAR REL indicates that margins have been released. 

LINE SPACING n shows what line spacing is in effect, 
unless it is set to the default of one line per inch. 

PRINT PAUSED is displayed when printing is 
suspended. 

REPLACE is displayed when the FIND REPLACE function 
is in effect. 

Tab Arrangement 

TAB SET -establishes tab stops 

1\01 TAB I or 

1\01 sets a tab stop anywhere on a line to format a 
document or arrange columnar data. To set 
the tab, type the SET TAB STOP commands, 
"0 and TAB or "01, and a prompt question 
will ask for the column number where the tab 
should be set. 



WORDS TAR 505 

Typing a column number will set the tab at the 
specified column. Pressing ESC will set the tab 
at the cursor column, indicated on the STATUS 
LINE. All tab stops that are in effect are dis
played on the RULER LINE as an exclamation 
point (!). 

NOTE 

Decimal tabs will align columns of 
numbers on the decimal point, or right 
align text on a tab stop. After you tab to 
a decimal tab stop, characters entered 
move to the left, pushing the entire 
field to the left of the decimal tab set
ting. The cursor will remain at the tab 
position. This right alignment function 
may be terminated at any time by typ
ing a period. 

Decimal tabs may be set by using either of the 
methods for setting tab stops. When using the 
AOI command, you type a # sign before enter
ing the column number or pressing ESC. The 
decimal tab may also be set in the RULER LINE 
by placing a # sign instead of a ! sign at the col
umn where you want the decimal tab stop. 

Decimal tabbing is only active when variable 
tabbing is ON. You may determine if the VARI
ABLE TABBING is ON or OFF by pressing AO 
and examining the menu. 



506 OSBORNE 1 REFERENCE GUIDE 

TABBING VARIABLE-toggles from fixed to variable tabs 

AQV turns variable tabbing ON or OFF. When ON, 
variable tab stops are in effect and spaces are 
entered into the files for tabs. When OFF, fixed 
tabs are in effect. Fixed tabs are not usually 
used during standard word-processing opera
tions; this feature is used when writing com
puter programs. When variable tabbing is OFF, 
tab characters "I (09 hex) are used in the file 
and are displayed with fixed stops every 8 col
umns; multiple spaces are entered into the file 
when using variable tabbing. Variable tabbing 
should be turned OFF when programs are 
being developed under the CP/M text editor or 
Micropro Wordmaster. 

When the variable-tabbing mode is turned 
OFF, each tab is a single character that edits 
differently than those used when the variable
tabbing mode is ON. The cursor cannot be 
placed within the white space on the screen, 
representing the TAB; the cursor advances over 
the tab. Text that is inserted before a tab will 
appear in front of the tab until enough text has 
been entered to force the text to move to the 
next tab position. 

TAB ADVANCEMENT -moves to the next tab stop 

AI or 

I TAB I 

advances the cursor to the next tab stop. If no 
tab stops are encountered on a line, the cursor 
advances to the first tab on the following line. 
Only tab stops set within the current margins 
are used unless WORD WRAP is OFF or the 
margins have been released. 



WORDSTAR 507 

When INSERTION is ON, 1\1 or TAB inserts 
spaces to the tab stop and positions the text to 
the right of the tab stop. 

When INSERTION is OFF, the TAB command 
will advance the cursor over the existing text. A 
document line will be extended with spaces or 
a hard carriage return as an advance to the next 
tab stop occurs. 

TAB PARAGRAPH-temporarily relocates the margin to 
the next tab 

I\OG temporarily sets the left margin in one tab stop 
from its present setting. This command indents 
a paragraph or other section of text. This tem
porary margin setting will remain in effect until 
you press RETURN, issue another margin com
mand' or move the cursor above (before) the 
indented text. I\OG commands issued in 
succession further indent text. 

TAB CLEAR-disengages specified tab stops 

I\ON clears the tab at a specified, prompted location. 
You can release all tabs by typing A, then press
ing RETURN in response to the prompt. 



508 OSBORNE 1 REFERENCE GUIDE 

MailMerge DOT Commands 

MER G E-PRINT -initiates merge-printing of files 

M initiates printing in the same manner as the 
print command, but additionally interprets 
MailMerge DOT commands. You are asked for 
the name of the file to be merge-printed, and 
are provided with the following options: 

NAME OF FILE TO MERGE-PRINT? 

DISK FI LE OUTPUT (YIN)? 

START AT PAGE NUMBER (RETURN for 

'''4·ii ..... ,I.oo 
STOP AFTER PAGE NUMBER (RETURN for 

NUMBER OF COPIES (RETURN for 1)? 

USE FORM FEEDS (YIN)? 

SUPPRESS PAGE FORMATTING (YIN)? 

PAUSE FOR PAPER CHANGES BETWEEN 
PAGES (YIN)? 

Ready printer, press RETU RN: 

The various DOT commands used to control merge-print 
operations are described below: 

DATA FILE-specifies the data file 

.DF identifies the data file that contains information 
to be printed in place of keywords when the 
calling file is merge-printed. 



WORDSTAR 509 

Format: 
.DF d:filename [CHANGE] 

The named data file provides the text for 
keywords in the calling file. The data file will be 
expected on the currently active drive unless 
another drive is specified. 

Each record in a data file contains fields of in
formation to be supplied for one printed docu
ment, such as a form letter. A comma separates 
each field of information to be printed for a 
keyword from the next. A data record provides 
replacement text for all keywords in the calling 
file. An .RV command in the calling file lists 
keywords in the sequence that text from the 
data file will be assigned. 

The calling file is reprocessed once for every 
record in the data file. It ends when data has 
been taken from the last data-file record. You 
can access only one data file at a time. 

To display a prompt message asking for a disk
ette change, place the word CHANGE at the 
end of the .DF command. CHANGE, the name 
of the expected data file, and the drive where 
it is expected are all displayed when the 
CHANGE option appears in a .DF command. 

Examples: 
.DF DATA.FYL 

specifies that text variables listed in .RV will 
come from a data file named DATA.FYL . 

. DF B:DATA.FYL2 CHANGE 

asks that the diskette in drive B be changed. 



510 OSBORNE 1 REFERENCE GUIDE 

READ VARIABLES-reads data for variable keywords 
(with .DF) 

. RV lists keywords in the order that text fields from 
the data file are selected and assigned to them. 

Format: 
.RV keyword, keyword 

The sequence with which keywords are listed 
in the .RV command must correspond to the 
order that text fields are listed within records in 
the data file. 

The first text field in a record line is assigned 
to the first keyword listed in .RV, and so on. 
Usually one .RV is sufficient to list all 
keywords in a file, but you can use multiple 
.RVs when necessary. 

If a text field is missing from a record in the 
data file, .RV will use the next available text 
field. Extra text fields are ignored. Processing 
of a document always starts at the beginning 
of the next record line. 

Example: 
.RV NAME, ADDRESS, STREET, COMPANY 

ASKS VARIABLES-requests data to be assigned to 
keywords 

.AV asks for data to be entered from the keyboard 
that will be assigned to a corresponding key-



WORDSTAR 511 

word. Each .AV DOT command corresponds 
to a keyword and an optional message. Data 
entered at the keyboard is printed in place of 
the keyword wherever it appears in the file. 

Format: 
.AV [llmessage"] , variable identifier, 

[ max-length] 

The keyword and a question mark ask for data 
to be input from the keyboard. Optionally, a 
prompt message may be displayed: type the 
desired message within quotation marks in 
front of the keyword. 

You can specify the maximum number of text 
characters an .AV prompt accepts. To do so, 
place a comma and this maximum number at 
the end of the .AV command. No more than 
the maximum specified will be displayed or 
printed. 

The following CONTROL characters-AS (erase 
character), Ay (erase answer), and AR (restore 
previous answer for this question)-can edit 
keyboard entries. Press RETURN after you 
supply the appropriate data for the displayed 
prompt. 

To halt printing while .AV is asking for 
data, enter the requested input, then press 
RETURN and P in quick succession. This ma
neuver causes the "STOP" print command, P, 
to be received before the next .AV is processed. 

Examples: 
.AV IIEnter First, Last Name", NAME 



512 OSBORNE 1 REFERENCE GUIDE 

.AV "City, State", ADDRESS 

.AV ZIPCODE, 5 

SETS VARIABLE-establishes text for keywords 

• S V assigns a fixed piece of information to a 
keyword. 

Format: 
.SV keyword, data 

Data represents text that is permanently as
signed to the keyword. Data, up to 200charac
ters long, may include keywords, providing 
they have had text previously assigned. You can 
enter a carriage return into the data with a "N. 

Examples: 
.SV DATE, Dec 20,1981 

.SV PARTY1, John Doe 

.SV ADDRESS, 22334 55th St. "NHayward, 
CA,94545 

.SV PARTIES, &Party1& and &Party2& 

FILE INSERT -references a file to be inserted 

.FI inserts and processes a named file in its entirety 
at the point where the .FI command is encoun
tered. All commands in the inserted file are pro
cessed, including those that reference further 
insertions. 



WORDSTAR 513 

Format: 

.FI d:filename [CHANGE] 

Files you insert using .FI should end with a car
riage return to separate text in the inserted file 
from text in the calling file. After the inserted 
file has been processed, processing of the call
ing files continues where it left off. 

Inserted files may include .FI commands. This 
process of referencing files is called nesting. 
Files can be nested to a maximum of eight 
levels. An unlimited number of files can be 
nested when .FI is the last command in each 
file. A keyword in the .FI command allows you 
to enter a file name from the keyboard; you 
must set up the calling file with the appropriate 
.AV command. 

Examples: 

.FIDOC.FYL 

.FI B:LETTER.FYL 

.FI CHAPTER &KEYWORD& 

REPEAT PROCESSING-reprocesses a file 

. RP causes a file to be reprocessed. 

Format: 
.RP [n]: 

A file containing the .RP command is processed 
until all the text in the associated data file has 
been used; or until it has been processed the 



514 OSBORNE 1 REFERENCE GUIDE 

specified number of times. If the number speci
fied is larger than the number of records in a 
data file, processing continues reusing the 
records of the data file. 

Example:· 
.RP 20 <causes file to be processed 20 times> 

DISPLAY MESSAGE-displays a message on the screen 

.DM displays a message on the screen. If you don't 
specify a message, a blank line appears. Each 
message is displayed on the next free line. If 
the screen is full, existing messages scroll up a 
line to make room. Keywords can form part of 
the message, providing you've previously 
assign~d text to the keywords. 

Format: 
.DM (message) 

Examples: 
.DM (produces blank line on screen) 

.DM This file prints form letters 

.DM Printing letter to &NAME& 

. DM Load special paper and press P 

.DM Insert data diskette in drive B: 

CLEAR SCREEN-clears the screen 

. C S clears all accumulated messages from the 



WORDSTAR 515 

screen. An optional message can be displayed 
following clearance of the screen by placing the 
desired message after .CS. 

Format: 
. CS [message] 

Messages that follow a .CS command are dis
played on the first blank line at the top of the 
screen. When the screen fills with messages, 
the entire display scrolls up one line to make 
room for the next message. You can place refer
ences to keywords in the message, providing 
you've previously defined data for the 
keywords. 

Examples: 
. CS clears message area of screen 

.CS Press RETURN, P to stop, or enter data 
for next letter 

PRINT FORMATTER-controls print-time line 
formatting 

. PF turns the print-time line formatter ON, OFF, or 
to default. 

Formats: 
.PF OFF: 

This form suppresses print-time line format
ting. Inserted text is printed without being 
formatted to accommodate the length of 
keywords. 



516 OSBORNE 1 REFERENCE GUIDE 

.PFON: 

You must turn print-time line formatting ON 
before you can use other DOT commands to 
format printed text. Print-time line formatting 
remains ON until you issue a .PF OFF: or a .PF 
DIS: command. 

Print-time line formatting with other DOT 
commands reformats text before it is printed . 

. PF DIS: (default) 

This form leaves print-time line formatting to 
the discretion of merge-print. Print-time line 
formatting is automatically turned ON when a 
variable identifier is detected, and is turned 
OFF when the next carriage return, line feed, 
form feed, or end of file is encountered. 

RIGHT MARGIN -sets right margin 

. RM affects the right margin setting during merge
printing. 

Formats: 

.RMn: 

A number between 1 and 240 specifies the col
umn at which the right margin is set for the 
printed text. 



WORDSTAR 517 

NOTE 

Print-time line formatting must be ON 
before.RM will have any effect. (See 
the .PF command.) 

.RM DIS: (default) 

This form uses the right margin you specified 
when you created the file. 

LEFT MARGIN-sets left margin 

. LM specifies the left margin setting. 

Formats: 

.LMn: 

When .LM and a number between 1 and 240 oc
cur during merge-printing, the left margin is 
affected as specified. If the document contains 
hanging indentations or text that extends to the 
left of a desired margin setting, don't use the 
.LM command. 



518 OSBORNE 1 REFERENCE GUIDE 

NOTE 

Print-time line formatting must be 
turned ON before .LM commands will 
work. Print-time line formatting is 
turned ON when a variable identifier is 
detected in the current paragraph, or 
when the DOT command .PF ON: is 
encountered . 

. LM DIS: (default) 

.LM DIS: uses the left margin setting 
you specified when you created the file. 

LINE SPACING-sets line spacing 

. L S establishes line spacing during merge-printing. 

Formats: 

.LSn 

You can specify line spacing between 1 and 9 . 
. LS has no effect unless print-time line forma t
ting is ON, as described for .LM . 

. LS DIS: (default) 

.LS DIS: causes document to be printed with 
the line spacing used when you created the 
document file. 



WORDSTAR 519 

INPUT JUSTIFICATION-determines input 
justification 

.IJ determines whether the input scanner inter
prets input as justified. 

Formats: 

.I} ON: 

.I} ON: interprets input text margins as 
justified. 

.I} OFF: 

.I} OFF: assumes that input text will not be 
justified. 

.I} DIS: (default) 

.I} DIS: leaves input text right margins as you 
specified them when you created the file. 

Small variations in the right margin indicate 
ragged right. A constant right margin and soft 
spaces between words indicate justification. 

NOTE 

When you intend to justify output from 
ragged-right input, or vice versa, use 
the .J/DOT command. 



520 OSBORNE 1 REFERENCE GUIDE 

OUTPUT JUSTIFICATION-determines output 
jus tifica tion 

. OJ right-justifies printed text. 

Formats: 

.OJ ON: 

.OJ ON: prints text with the right margin 
aligned. 

.OJ OFF: 

.OJ OFF: prints text with a ragged right 
margin. 

.OJ DIS: (default) 

.OJ DIS: prints text using the right margin you 
specified when you created the file. 

NOTE 

.OJ has ,no effect unless print-time line 
formatting is ON, as described for .LM. 



WordStar Default Values 

Left margin 
Right margin 
Variable tab stops 

Word wrap 
Justification 
Ruler display 
Page break display 
Print-control display 
Soft-hyphen entry 
Hyphen-Help 
Insert mode 

D Option 
column 1 
column 50 
6, 11, 16, etc. 

ON 
ON 
ON 
ON 
ON 
OFF 
ON 
ON 

WORDSTAR 521 

N Option 
column 2 
column 50 
9, 17, 25, 
etc. 
OFF 
OFF 
OFF 
OFF 
OFF 
ON 
OFF 
OFF 





SuperCalc 



524 OSBORNE 1 REFERENCE GUIDE 

Cursor Movement 
There are several ways to move the worksheet cursor to a new 
active cell. You can use the four arrow keys. Similarly, you can 
use the alternate diamond keys. Hold down the CTRL key while 
you press the S,D, E, or X key to move left, right, up or down 
in that order. 

Alternately, you can use the = (address) command-also called 
the GOTO command-to move directly to the designated cell. 
The SuperCalc program will ask for the cell coordinates. When 
you type them, the display on your screen will change. If the 
designated cell is already on the display, it will show as the ac
tive cell. If not, the window will move to show the new active 
cell at the upper-left corner. There is a special case: if you type 
only = and press RETURN, the window will adjust to show the 
current active cell at the upper left. 

Special Function Keys 
? for help 
When you use the SuperCalc program and need information 
about your current entry options, press ? The display screen 
will change to show you a list of entries that you can make rela
tive to your present position within SuperCalc. This help func
tion is available at any time and in any mode. Press any key to 
return to the previous display. 

The! key 
The! command forces recalculation. In the manual-calculation 
mode, this command is the only way to have the program recal
culate values. In the automatic mode, it provides an additional 
recalculation. 



SUPERCALC 525 

The; key 

; moves the worksheet cursor from one portion of a split win
dow display to the other portion. See the WINDOW command. 

The ESC key 

The current-cell key is the ESC (escape) key. When you press it, 
the SuperCalc program puts the location of the active cell onto 
the entry line for you to use in a command or expression. After 
you press ESC, the arrow and alternate diamond keys control 
the worksheet cursor. If you move the worksheet cursor, the ac
tive cell address on the entry line changes dynamically to reflect 
the new location. When you press ESC again, the address stops 
changing, and the arrow and diamond keys are again available 
for editing. 

Pressing, after the active-cell address is a special case. 
SuperCalc places another active-cell address after the colon. 
The address before the , is fixed; the address after the, 
is still changeable. 

The new active-cell location is temporary. When you press 
RETURN to enter the command or expression, the worksheet 
cursor returns to the prior active-cell location. If you are enter
ing data into a cell, it will go into that prior location. 

Data·Entry 
SuperCalc accepts numbers, formulas, and text. Ordinary num
bers can have 16 significant digits plus a decimal point. Scien
tific, or exponential, numbers can have 16 significant digits and 
a decimal point, all raised to a power of ten. The limit is the 63rd 
power of 10. Text can have up to 110 characters. Formulas can 
have up to 110 characters and can include arithmetic expres
sions, relational expressions, functions, and references to cells. 



526 OSBORNE 1 REFERENCE GUIDE 

Once you begin to type a command or data on the entry line, 
the four arrows-and the alternate diamond keys-no longer 
move the worksheet cursor around the worksheet. Instead, you 
can use them to edit information on the entry line. You can al
ways correct your commands or data while they are on the 
entry line. The EDIT command allows you to use the edit pro
cess, and enter the changed contents into the active cell after 
you have committed an entry to the worksheet. 

Left and right arrows ("5 or "D) move the data-entry cursor 
without erasing an entry so you can position the cursor where 
you want to make the change. 

Because a cell can contain 110 characters-longer than entry 
line can show-SuperCa1c will scroll your entry during the edit 
process, allowing you to examine any portion of it. Wherever 
the cursor is, you can enter a new character to replace the old 
one. The cursor then moves right one location. 

Each time you press the down arrow (or "X) it deletes a 
character. The cursor stays in position. 

The up arrow (or "E) inserts a new space at the cursor location 
each time you press it. The cursor stays in place, and spaces fill 
out to the right of it. The space(s) can then be filled with addi
tional characters. 

Remember, what you see on the entry line is what is entered 
into the active cell. When you finish making your changes and 
enter the data or execute the command, SuperCa1c takes every
thing on the entry line, not just the material to the left of the 
cursor. 

Data-Entry Limit 
Numbers: 16 significant digits, plus optional decimal point and 
optional sign for ordinary numbers. 16 significant digits, plus 
decimal point and optional sign for exponential numbers 



SUPERCALC 527 

(scientific notation). These 16 digits can be raised to the 63rd 
power of 10. 

Largest ordinary number. 

Smallest ordinary number. 

Largest exponential number. 

Smallest exponential number. 

Text: 115 characters 

Example: IIExpenses, J~nuary 

Formulas: 116 characters 

9999999999999999 

- 9999999999999999 

9. 9999999999999ge62 

- 9. 9999999999999ge62 

Example: 7+ AS,9+S*E7,SUM(Bl:B9), MIN(A4,D4,G4) 

Distinguishing Numbers, Text, and 
Formulas When Entering Data 

Numbers start with digits (0-9), +, -, or a period. An entry 
beginning with a period is assumed to be a decimal entry begin
ning with zero and a decimal point. 

Text starts with a quotation mark ("). 

Formulas can start with the same characters as numbers-0-9, 
+, -, or period. They can also start with an open parenthesis 
-(. You can put arithmetic expressions, relational expressions, 
functions, and references to cells within formulas. 

About Numbers 

Numbers are ordinarily right-justified; optionally, they're left
justified. The way numbers appear when they're displayed 
depends on the display format you selected, not on the way 
they looked when you entered them into the cell. The display 
format doesn't affect the content of the cell. 



528 OSBORNE 1 REFERENCE GUIDE 

Display options allow you to display numbers in the following 
ways: 

• general (ordinary numbers if they fit column display 
width; otherwise, exponential); 

• exponential (scientific notation), rounded if necessary; 
integer (integers only; if there is a decimal number, 
round up or down to make it integer); 

• dollar amounts, rounded to the nearest cent; .00 is 
appended to whole numbers; 

• graphic display, using asterisks to show relative values 
. in bar-graph form. 

For any display format, if the numeric display cannot fit into the 
column, then »» fills the column. 

You can widen a column to display a number or text in full by 
setting column width from 1 to 126. 

NOTE 

Text is ordinarily left-justified; optionally it is right
justified. If text is too large for the column, the text dis
play continues into the adjoining blank cell(s) to the right. 
If it cannot continue into adjoining columns, it is cut off 
at the right. 



SUPERCALC 529 

NOTE 

Ordinarily the resulting values rather than formulas are 
displayed; optionally, you can see the formula with the F 
option in the GLOBAL command. The formula however, 
is shown on the status line. When the formula is displayed 
in a cell, it can continue into adjoining blank cells as 
text does. 

Status, Prompt, and 
Entry Information 
SuperCalc uses the prompt and status lines near the bottom of 
your screen to send you messages. You use the entry line to 
respond. Here is a more detailed look at some of the things you 
may find on those lines: 

Status Line 
The status line is the first of the three lines. This line displays 
information about the active cell. The information displayed in
cludes: the "Current Direction" that you have been moving, the 
active-cell location, the active cell's specific format and protec
tion, and the textual contents of the active cell. 

Here is an example of a status line: 

> AS L$TR P Text= IIFebruary 

Here is what it means: 

> is the current direction of the worksheet cursor, set by 
the last arrow key pressed. It may be >, <, v, or 1\. 



530 OSBORNE 1 REFERENCE GUIDE 

AS is the active-cell location. Data entered will go into that 
cell. Commands that use the current column or row will 
use the column or row containing that cell; in the exam
ple, column A and row 5. 

L$TR shows the active-cell format settings; numbers are 
left-justified, $ is the format, and text is right-justified. 
(The detailed reference for IFormat gives full information 
on these settings). 

P shows data protection of the active cell. This area is 
blank if the cell is unprotected. 

Text= "February indicates the contents of the Active Cell 
-in this case, text. "Rtxt=" indicates repeating text. 
Numbers or formulas are shown as "Form"; for example, 
"FORM =12*B9." 

SuperCalc also uses the status line to display error messages 
and certain informational messages. These special messages 
disappear and the status information reappears when you 
press any key. 

Prompt Line 
The middle of the three information lines serves a dual purpose: 
while you are entering a command, this line "prompts" you by 
outlining the choice of possible entries you may make. For ex
ample, after you have issued the DELETE command, the 
prompt line reads: 

R(ow) or C(olumn) 

This tells you that you must next tell the SuperCalc program 
whether you wi'sh to delete a Row or a Column. If you then ask 
for Row, the prompt line changes to: 

Enter Row Number 

to ask you which row number to delete. 



SUPERCALC 531 

Whatever the prompt is, if you press? a short but detailed ex
planation of your options will be displayed on the screen. 

When you finish typing your command, the middle line reverts 
to its other function: global status. It tells you about your work
sheet's current status. An example is: 

Width: 9 Memory:29 Last Cell:J10 ? for HELP 

This information is: 

Width: 9-column width. This is the display width of the 
column that contains the active cell. The standard, or 
default, setting is 9, but you can specify a different width. 
You can set all columns to the same width or set different 
widths for different columns. If you change the default 
setting, the status line lists the display width that you 
select. 

Memory: 29-available memory in kilobytes (a kilobyte is 
the memory sufficient to hold 1024 characters or digits). 
This number changes as you add data to the worksheet. 

Cell: Jl0-this tells you the lower right-hand corner of an 
imaginary block that just contains all your worksheet. In 
other words, J is the right-most column that you have 
used, and 10 is the lowest row (biggest row number). 

? for HELP-this reminds you that pressing? will always 
give you an explanation of the options you have 
at that moment. If you press ?, you will receive an 
explanation of your choices. 

/ precedes most commands. If you press it, the prompt line will 
change to list possible entries and the? symbol. 

As you proceed within commands, or make other possible 
entries, the prompt line will change to show you your current 
choices. 



532 OSBORNE 1 REFERENCE GUIDE 

Entry Line: 
This is the line where you tell SuperCa1c what to do by typing 
your commands or data. Your experience with the tutorial chap
ter and the information in this Reference Guide will give you all 
the information you need to type in the desired data. 

SuperCalc Command Entry 
Type all SuperCa1c commands with / and the first letter of the 
command. The remaining letters in the command are automati
cally supplied on the entry line. For example, / B causes the 
command word I:J"'~13 to be displayed on the entry line. The 
prompt line lists the choices available to you for that command. 
When you enter /, the prompt line shows the possible one
letter entries. After you choose a command, the prompt line 
changes to show the choices available for that particular com
mand. Whenever you wish further information about your 
options, you can press ? 

Some commands exhibit a sequence of prompts and entries 
before the command is executed. An example is the command 
to copy from one location to another. If you enter one of these 
multilevel commands, you can back out of your current entry by 
using the back (left) arrow. In fact, you can back entirely out of 
the command, level by level, till you return to the desired level. 

You can edit commands just as you do data by using the in-line 
editor. Remember that when you press RETURN, everything 
visible on the entry line will be executed-not just the part of 
the command to the left of the cursor. 

A few commands effect only the current cell, column, or row. 
Most allow you to specify which cell, column, or row to be af
fected in the command line. You can type column addresses as 
either capital or lowercase letters; SuperCa1c converts lowercase 
column entries to capitals. If you want to specify the current 
cell, column, or row (as appropriate) in such commands, 



SUPER CALC 533 

simply press the comma to enter the current location into the 
command line. 

The current-cell key (ESC) can also enter the current cell, col
umn, or row into the command line (if only the column or row 
is needed, the other part of the current cell location is ignored). 
Once you press ESC, you can move the active cell temporarily 
to a new location. Its address changes on your entry line, and 
you can use it in your command. By pressing : you can develop 
two cell addresses, such as B5:E5. 

RETURN follows up a command, causing it to be executed. In 
some cases, a comma can also end a command because pressing 
the comma enters the last item of information needed in 
the command line. The command is complete, so SuperCalc 
executes it. 

All commands consist of / and a single letter. SuperCalc's 
interpretive prompting fills out the rest of the word, and the 
prompt line lists the options available. These commands are 
summarized here and described in detail in the tutorial chapter. 

Commands Involving Formulas 
Some commands move formulas to new locations. It is usually 
desirable to adjust formulas for their new locations. For exam
ple, suppose cell D4 has the formula + B4*C4. If the contents of 
cells B4, C4, and D4 move to T7, TB, and T9, the formula in T9 
should read + T7*TB. SuperCalc ordinarily makes such adjust
ments automatically. 

Some commands optionally allow you to move formulas with
out adjustment, or query whether each cell reference for each 
formula should be adjusted. Some commands also have an op
tion to move values only; formulas do not transfer, only their 
values move. 



534 OSBORNE 1 REFERENCE GUIDE 

Commands Involving 
Formula Adjustments 
DELETE, INSERT, and MOVE all cause automatic formula ad
justment. They have no options. Deleting a column or row that 
contains a cell on which a formula, outside the range of the 
deletion depends, will cause an error. 

COPY and REPLICATE allow formula adjustment. Adjustment 
is automatic, unless you specify otherwise by selecting one of 
the options. The options allow you to disable formula adjust
ments, or to choose whether SuperCa1c should adjust individu
ally for each outside reference. 

LOAD adjusts formulas if you're loading the material into a 
worksheet location different from the one where it originated. 
In this case, you have the same options as in COpy and 
REPLICATE. 

SuperCalc Commands 
Data Commands 

IBLANK-blanks contents of a cell or range of cells 

Blanks the contents and clears the cell format 
of a cell, partial column, partial row, or block. 
Also clears the formatting of the cell if it has 
been formatted individually (that is, at the 
E(ntry) level; see FORMAT). 

Prompt: 
':rn'ijl;Ent.UJ 

Formatting for a column or row is not affected, 
even if every cell in it is blanked. Only the 



SUPERCALC 535 

FORMAT command can change the format 
for a column or row. Protected cells will be 
bypassed. 

Examples: 
IBlank, c7 <cr> 

IBlank, c7 :c12 < cr> 

IBlank, c7:h7 <cr> 

IBlank, c7:h7 <cr> 

IEDIT -transfers cell contents to entry line for editing 

The edit command lets you edit the contents of 
a specified cell, then place them back in the ac
tive cell. If the active cell is protected, you can
not edit. 

Prompt: 
From? Enter cell 

Specify a cell in response to the prompt; , 
indicates the current or active cell. The cell 
contents come to the entry line, replacing the 
command on the line. 

Edit with the in-line edit function. Use the ar
row or diamond keys to move the cursor non
destructively left and right to ~haracters you 
want to change. The character that will be 
altered is the one above the cursor. You can 
replace characters one-for-one by simply typing 
new characters over them. You can delete 
characters, including blanks, by pressing the 
down arrow (or "X). You can insert blanks by 
pressing the up arrow (or "E). Then if you 
wish, you can replace the blanks by typing 
other characters over them. 



536 OSBORNE 1 REFERENCE GUIDE 

Example: 
The active cell contains 86"'UII"1-

IE and, bring this example to the entry line. 
Use the left arrow to move the cursor to the 
second "a" in J anaurry and type ua .. Move the 
cursor right to one of the "r"s in Januarry, then 
press the down arrow to delete it, and press 
RETURN. (Remember, pressing RETURN puts 
the entire entry into the cell no matter where 
the cursor is positioned.) 

The active cell now contains 86jh!6I"~. 

IFoRMAT -specifies format for a given portion of the 
worksheet 

The Format command affects the worksheet 
G(lobally); by specific C(olumn), R(ow), E(ntry) 
cell; or range (collrow:collrow), in one or more 
of the following ways: 

I(nteger) notation, G(eneral format), 
E(xponential) notation to the tenth power, 
($) dollar format, R(ight) or L(eft) justification, 
(*) asterisk fill relative to value. D(efault) is: 
the general display, numeric right-justified, 
text left-justified, and column width 9. 

Prompts: 
Enter Level: G(lobal), C(olumn), R(ow), or E(ntry) 

Specify the portion of the worksheet to b,e af
fected; , will specify the current column or row. 
If you press .E, you can specify a single cell or a 

. range of cells; that is, a partial column or partial 
row. Using E to specify formatting at the cell 
level provides the highest priority of formatting. 



SUPERCALC 537 

The next prompt message you receive depends 
on the level of formatting you specified. 

A level of G or C has this prompt: 

Define Formats: (I,G,E,$,R,L,TR,TL, * ,0, column Width) 

A level of R or E has the same prompt, except 
that "column width" is not included because it 
is not a valid choice. 

You may select as many of the formats as you 
wish. Here is a list of the possible format 
choices: 

I 

E 

G 

$ 

* 

displays numbers as integers. 
This rounds decimal fractions 
up or down to convert them to 
whole numbers. 

(exponential) displays the num
ber in scientific notation, as a 
power of 10. For example: 1776 
is 1.77e3, 1,000,000 is 1.0e6; 
round if necessary. 

(general) displays the number 
as an ordinary number if it fits 
in the column width; otherwise, 
it displays the number as an ex
ponential number. 

(dollar amount) rounds to the 
nearest cent and appends .00 to 
whole numbers. No dollar sign 
is displayed. 

(graphic display for numbers) 
uses asterisks to show the rela
tive sizes of numbers. Allows 
bar graph display. 



538 OSBORNE 1 REFERENCE GUIDE 

R,L 

TR,TL 

0-126 

D 

(right-justify, left-justify) is for 
numbers. 

(text right, text left-justify) is for 
text. 

is the column width for the 
specified column or for the 
worksheet. 

(default) resets to the next level 
of formatting. See note 2 below. 

When your entries are contradictory, the Super
Calc program will act on the one entered last. 
For example, if you enter R,L,I,G, then Land G 
will take effect, and SuperCalc will ignore R 
and I. 

NOTE 

1. Format does not apply to data entry. The contents of 
a cell remain as entered; format specifies how the 
contents are displayed. 

2. Where formats differ, the order of precedence is first the 
cell (E), then row (R), column (C), and finally work
sheet or global (G). Cell formatting overrides any for
mat for the column or row where the cell is. Where row 
and column intersect, row formatting overrides. Any of 
these override the global settings. 

When the program starts up, these global format set
tings are in effect: general numeric display (G), 
numeric right justify (R), text left justify (TL), and a 
column width of 9. 



SUPERCALC 539 

Examples: 
IFormat, C, E, 12 < cr> 

IFormat, R, TR, <cr> 

IFormat, G, $, 11, <cr> 

IFormat, E, E, <cr> 

Worksheet Adjustment Commands 

IDELETE-erases data from a specified column or row 

When you type the command ID you are asked 
whether to delete a column or row. 

Prompts: 
R(ow), C(olumn) or F(ile)? 

If you reply R , the prompt becomes: 

Enter Row Number 

You may then type a number from 1 to 254, or 
type, for the current row. 

If you reply C , the prompt will be: 

Enter Column Letter 

You may enter a letter designation from A to 
BK, or type (,) for the current column. 

This command deletes the contents and format
ting of the specified row or column. The com
mand will not execute if a protected cell is in 
that row or column. 



540 OSBORNE 1 REFERENCE GUIDE 

The rest of the worksheet makes the following 
adjustments: 

• Rows below the deleted row move up, 
and all row numbering adjusts. If row 4 is 
deleted, row 5 moves up and becomes the 
new row 4, and so on . 

• Columns to the right of the deleted col
umn move left. If column D is deleted, 
column E moves and becomes column D, 
and so on. 

Examples: 
IDelete, R,S, <cr> 

IDelete, C,E, <cr> 

All formulas on the worksheet are automati
cally adjusted as necessary. The adjustments 
preserve references to cell contents by giving 
their new location. For example: 

Row 3 is deleted. 
A prior reference was SUM(B2:BS) 
That reference becomes SUM(B2:B4) 
The contents that were at BS are now at B4. 

A reference to B3 would cause an error if col
umn B or row 3 were deleted, because the con
tents vanish, and there can be no new reference 
to them. SuperCalc cannot assume that this is a 
special case, one where you want the old for
mula to refer to the new contents of cell B3. For 
example: 

Cell A6 has the formula SUM(B3,F3,G3). 
Column B is deleted. 



SUPERCALC 541 

Cell A6 will now display ':ti';111il because the 
contents of B3 have vanished. To correct the 
error, you must correct the reference to B3 in 
cellA6. 

IIN"SERT -inserts an empty column or raw where indicated 

The INSERT command inserts a column or row 
where needed. The inserted column or row 
replaces the specified column or row while the 
rest of the worksheet adjusts by reassignment 
of parameters. 

Prompts: 
R(ow) or C(olumn)? 

If you reply R , the new prompt is: 

Enter Row Number 

You may select a number from 1 to 254, or type 
, for the current row. 

If you reply C , the prompt is: 

Enter Column Letter 

You may enter a letter or letters from A to BK, 
or type a comma (,) for the current column. 

This command inserts a new row or column of 
empty cells between existing rows or columns. 
A new row appears above the specified row; a 
new column appears to the left of the specified 
column. 

The rest of the worksheet adjusts. Columns 
move right, rows move down. The contents of 
each column or row are preserved but have a 



542 OSBORNE 1 REFERENCE GUIDE 

new designation. The contents, if any, of the 
last row (254) or column (BK) are discarded. 
The command will not execute if that last row 
or column contains a protected cell. 

Examples: 
IInsert R,5 < cr> 

IInsert C,D <cr> 

All formulas on the worksheet are automati
cally adjusted as necessary. The adjustments 
preserve references to cell contents by giving 
their new location. For example: 

Row 3 is inserted. 
A prior reference was SUM(B2:B5). 
That reference becomes SUM(B2:B6). 
The contents that were at B5 are now at B6. 

A prior reference to B3 itself will become a 
reference to B4 when a new 3 is inserted. 

IMOVE-relocates a column or row of data 

The MOVE command transfers the contents 
from one column or row to another. 

Prompts: 
R(ow or C(olumn)? 

If your reply is R , the pr~mpt is: 

From? Enter row number 

You may enter a number from 1 to 254, or type 
a comma (,) for the current row. 



• 

SUPERCALC 543 

If you reply C , the prompt is: 

From? Enter column letter 

You may enter a column designation from A 
to BK. 

After you have specified a row or column, 
SuperCalc will ask the destination of the 
move. The prompt is: 

To? Enter column letter 

Reply with a row or column designation, 
whichever is appropriate. Pressing, or the 
current-cell key (ESC) will designate the 
current row or column. 

The MOVE command adjusts the worksheet 
without destroying any data or performing any 
formatting. It moves a specified column left or 
right and inserts it in a new location, or moves 
a specified row up or down and inserts it in a 
new location. The columns, or rows between, 
move to fill the old location. They move in the 
opposite direction of the basic move. 

Examples: 
IMove R,5,12 <cr> 

IMove C,E,A <cr> 

All formulas on the worksheet adjust automati
cally as necessary. The adjustments preserve 
references to cell contents by giving their new 
location. For example: 

Row 3 is moved to row 5. 
The former rows 4 and 5 move up to be
come new rows 3 and 4. 
The former row 3 becomes row 5. 



544 OSBORNE 1 REFERENCE GUIDE 

A prior reference was SUM(B2:BS) -That refer
ence becomes SUM(B2:B4). The contents of BS 
are now at B4. 

Copying and Replicating 
Rows or Columns 

/ COpy -dupliCtltes data from source to destination 

The COpy command allows a one-to-one copy 
of a cell, partial column, partial row, or block to 
a new location. Options give a choice of for
mula adjustment or copying values only. 

Prompts: 
From? (Enter Range) 

Specify a cell, partial column, partial row, or 
block. 

The next prompt is: 

TO? (Enter Cell), then Return; or "," for Options 

Copy makes a one-to-one copy of the source 
into a destination of the same shape and size. 
Enter a single cell address to give the new 
location: 

For a partial column, give the upper cell. 
F or a partial row, give the left cell. 
For a block, give the upper left cell. 

Press RETURN, or if you wish a choice 
of options for copying formulas, press the 
comma key. 



SUPERCALC 545 

If you press RETURN, then all the formulas are 
copied and automatically adjusted; that is, all 
references to other cells are adjusted for their 
new location, if possible. 

If you press, to select options, SuperCa1c will 
enter the cursor's location as a destination. 
Delete if not wanted. It will prompt you with: 

N(o) Adjust, A(sk for Adjust). V(alues) 

N-Copies formulas exactly as they are. 

A - Allows you to choose for each reference 
to another cell address within a formula 
whether to copy it as is, or to have the 
SuperCa1c program adjust it. 

V -Copies the values only, without 
formulas. 

When you choose the (A)sk option, each 
formula that qualifies for possible adjust
ment is displayed on the entry line. Its 
source and destination address are shown 
on the prompt line. SuperCa1c positions the 
cursor at each cell reference on the entry 
line, and asks you to replyYor N. Y means 
yes, automatically adjust. N means no 
adjustment, transfer as is. 

Examples: 
ICopy, b9, c12 < cr> 

copy cell to cell. 

ICopy, b9:b15, e9 <cr> 

copy partial column to partial column. 

ICopy, b9:g9, h12 <cr> 



546 OSBORNE 1 REFERENCE GUIDE 

copy partial row to partial row. 

ICopy, b9:g15, k20 <cr> 

copy block to block. 

ICopy, b9, c12,N < cr> 

copy without adjustment. 

ICopy, b9,b15, e9, A <cr> 

copy, ask for individual choice of adjustment. 

!REPLICATE-transfers source until specified range is filled 

The REPLICATE command makes a one-to
many copy of a cell to a group of cells, a partial 
colvmn to a group of partial columns, or a par
tial row to a group of partial rows. Options give 
a choice of formula adjustment or replicating 
values only. 

Prompts: 
From (Enter Range) 

Specify a cell, partial column, or partial row, 
followed by a comma. 

The next prompt is: 

To? (Enter Range), then Return; 

or "," for Options. 

Replicate makes a one-to-many copy of its 
source into a new destination that is larger 
than the source: 

A cell into a partial column or partial row. 



SUPERCALC 547 

A partial column into a group of partial col
umns. The destination address is given as 
the left and right cell addresses on the top 
row of the destination group. The partial 
column will be copied once for each cell in 
that portion of the row. 

A partial row into a group of partial rows. 
The destination address is given as the up
per and lower cell addresses for the left col
umn of the destination group. The partial 
row will be copied once for each cell in that 
portion of the row. 

Specify the destination and press RETURN; 
then if you wish a choice of options for copying 
formulas, press ,. 

The options are the same as those for COPY. If 
you press RETURN, formulas are adjusted au
tomatically. The options are: no adjustment (N), 
whether to adjust for values only (A), or leave 
formulas behind (V). (See ICOPYabove for 
details.). 

Examples: 
IReplicate, b12,e3:e8 <cr> 

replicates a cell into a partial column. 

IReplicate, b12,e3:j3 <cr> 

replicates a cell into a partial row. 

IReplicate, b3:b7,d3:j3 <cr> 

replicates a partial column into a group of par
tial columns. In this example, the partial col
umn is five cells deep. The result will be a block 
of cells repeating that partial column seven 
times. The top of that block is on row 3. 



548 OSBORNE 1 REFERENCE GUIDE 

IReplicate, b3:e3, gS:g7 <cr> 

replicates a partial row into a group of partial 
rows. The partial row here is four cells across. 
The result will be a block of cells repeating the 
partial row three times. The left side of that 
block is column G. 

IReplicate, b12, e3:e8,N <cr> 

replicates without adjustment. 

IReplicate, b12, e3:j3, A <cr> 

replicates and asks for individual choice of 
adjustment. 

NOTE 

As a special case, IREPLICATE can 
make a one-for-one copy just as ICOPY 
does. ICO PY cannot make multiple 
copies. ICOPY can, however, do some
thing that IREPLICATE cannot do; it 
can copy a block. 

Data Protection Commands 

IPROTECT -provides protection against alteration of data 

The IPROTECT command shields the contents 
and formatting of specified cells from altera
tion. You can't enter or edit data in protected 
cells. 

Prompt: 

':m'g'j6""W 



SUPERCALC 549 

IBLANK, IFORMAT, ICOP~ IREPLICATE, and 
ILOAD all bypass protected cells-that is, the 
commands operate on surrounding cells but 
leave the protected cells unchanged. IDELETE 
will not work if a protected cell is in the speci
fied row or column. 

There is one exception: the IZAP command 
overrides protection. 

Examples: 
IProtect,c3 <cr> 

IProtect,c3:c9 <cr> 

IProtect,c3:g3 < cr> 

IProtect,c3:g9 <cr> 

IU NPROTECT -allows exposure of previously 
protected cells 

This command removes protection from a cell, 
partial row or block. 

Prompt: 
l:G1ig_jtihut;J 

Allows you to change cell contents or format. 
There is no error if you try to remove protec
tion from something that is not protected. 

Examples: 
IUnprotect,c3 <cr> 
IUnprotect,c3: <cr> 
IUnprotect,c3:g3 < cr> 
IUnprotect,c3:g9 <cr> 



550 OSBORNE 1 REFERENCE GUIDE 

LOAD, SAVE and EXECUTE Commands 

ILOAD-loads and displq:ys part or all of a disk file 

The !LOAD command reads a SuperCa1c data 
file from a diskette and loads it into memory; 
the worksheet displays the contents of the file. 
You may load all or part of a worksheet at a 
location you specify. Options give a choice of 
formula adjustment or loading values only. 

Prompts: 
Enter File Name (or RETURN for directory) 

Enter the name of the desired file with the 
drive designation, unless you want the file 
loaded from the SuperCa1c diskette. The file 
name must have the. CAL-type "CAL". This 
extension is assumed, and you do not have to 
enter it. Do not leave blank spaces in the file 
name. For example: 

SALESFEB <cr> 

would load the file from the SuperCalc program 
diskette into drive A. 

B:SALESFEB <cr> 

would load the file from the B disk drive. 

You receive a choice of loading the entire file or 
a specific portion of the file. The following 
prompt displays: 

A(II) or P(art)? 



SUPERCALC 551 

If you reply A, the entire worksheet is loaded 
into the original location. 

If you reply P, then further questions appear 
on the prompt line: 

From? (Enter Range) 

Specify the position of the saved worksheet 
that you wish to load. 

To? (Enter Range) then RETURN or "," 
for options. 

Enter the cell address at the upper left of your 
destination, which may be a new location for 
that portion of your worksheet. Press RETURN 
if you wish automatic adjustment of formulas 
for the new location; otherwise, press, for 
options. The options are: N{o Adjustment), 
A{sk for Adjust}, or V{alues) only. (See ICOPY 
for an explanation of these options.) 

NOTE 

If there are protected cells in the 
destination area, they will remain 
unchanged. 

Examples: 
ILoad, QUARTER3 <cr> 

ILoad, B;QUARTER3 <cr> 



552 OSBORNE 1 REFERENC.E GUIDE 

/SAVE-stores data from the current worksheet to disk 

The /SAVE command stores the worksheet 
contents and all settings on a disk file. 
Options give a choice of saving all contents 
or values only. 

Prompts: 
Enter File Name (or < RETURN> for directory) 

Enter the name you have chosen for saving 
your worksheet. Also enter the drive designa
tion if you do not want to write it to the disk in 
the default drive (A). The SuperCalc program 
will automatically give the file the. CAL file
type extension. You do not need to enter it as 
part of the file name. The next prompt is: 

A(II), V(alues) or P(art) 

A specifies that all cell contents will be saved; 
V specifies that values will be saved without 
formulas. For either case, all of these are saved: 
format settings, global options, title locking, 
window splitting, and active-cell location. P 
allows you to save only part of of your current 
worksheet. When saving part of the worksheet, 
you can decide whether to save the entire 
portion A; or just the values V. 

NOTE 

If you specify the name of an existing 
file, the program will display the 
following prompt: 



SUPERCALC 553 

File already exists: 

C(hange name),B(ackup) or O(verwrite)? 

Examples: 
ISave, WORKS <cr> 

ISave, B:WORKS <cr> 

/XECUTE-executes a group of commands from a disk file 

The IXecute command causes the commands in 
a named file to be executed one after another. 
The IXecute command allows you to execute 
a WordS tar text file or SuperCalc file of com
mand strings. When you enter IX the prompt 
line changes to: 

Prompt: 
Enter File Name (or < RETURN> for directory) 

If you press RETURN, you will be given the 
option to display the directory (explained 
in the IDelete command). If you enter a file name, 
the SuperCalc program reads each of the com
mands in the specified file a character at a time. 
If the file is not in the proper format or a com
mand is in error, an error message is displayed 
on the status line and the Xecute command is 
abandoned. You can terminate the command at 
any time with "Z. 



554 OSBORNE 1 REFERENCE GUIDE 

NOTE 

The default extension for command files 
is .XQT. If your file has no extension, 
you must still place a period after the 
file name. 

Example: 

IX TESTl < cr> 

The WordStar or SuperCalc file named TESTl 
would look like this: 

IZY 
IFCA,20 
ILB:BALANCE,A 
IGF/GM/FGD ,$ 

Worksheet Display Commands 

IT'ITLE-provides method for fixing titles 

Title allows you to lock columns, rows, or both 
into their place on the display window. Locked 
information will not scroll; however, other 
information on the screen can scroll. Title lock 
uses the current row and column as the coor
dinates to be affected. 

Prompt: 
H(oriz), V(ert), 8(oth), or C(lear)? 

H locks the current row and all rows above it. 



SUPERCALC 555 

V locks the current column and all columns to 
the left of it. 

B locks both the current row and column and 
all rows above and columns to the left. 

C removes the title lock. 

A replaces a prior title lock with a new one. 

/WINDOW splits the screen into two worksheets 

The /WINDOW command splits the display 
window into two parts. Each portion can have 
separate format settings and options. The 
screen is split at the current row or column. 

Prompt: 
H(oriz), V(ert), C(lear Split), S(ynch), or U(nsynch) 

H The screen splits horizontally; the current 
row moves down and a second border replaces 
it. The active cell moves up one cell in its 
column. 

V The screen splits vertically; the current col
umn moves right and a second border replaces 
it. The active cell moves left one cell in its row. 

NOTE 

In both these cases, there is an alternate 
active cell in the original location. You 
can switch between the two active 
cells by pressing; as they move 
independen tly. 



556 OSBORNE 1 REFERENCE GUIDE 

C Clears the split screen. The portion that was 
above or to the left is the primary screen; it is 
now displayed in full. 

S Synchronizes scrolling in the two portions. 

U U nsynchronizes scrolling; the two portions 
will scroll independently. 

Within the two portions of the screen, you can 
set formatting and global options indepen
dently. It is possible to show the same data 
with different formatting and options-for ex
ample, to show the same column as values and 
as formulas. 

When the split is cleared, the options and for
mats for the primary screen remain. The pri
mary screen is the portion above or to the left. 

Data Display and Printing Commands 

/ OuTPUT sends worksheet contents to the printer or 
disk file 

This command writes part or all of the work
sheet to the printer, the terminal, or a disk text 
file. You can write out a partial column, partial 
row, or block. If you write the report to a disk 
file, you can use WordS tar to add further infor
mation or modify formats before printing, or to 
include the SuperCalc report within other text. 

Prompts: 
D(isplay) or C(ontents) report? 

The worksheet information can be written out 
in the way it is displayed, or as the actual cell-



SUPERCALC 557 

by-cell contents. If you choose D, for display, 
the entire worksheet is output. If you choose C, 
for contents, the following prompt appears: 

l:miij'ijut.G 

After you specify the portion of the worksheet 
to output, a prompt asks whether you want the 
data output to the printer, console, or disk. You 
may also change the default printer settings: 

P(rinter), S(etup), C(onsole), D(isk), 

Type P to send the data to the printer, C to dis
play it on the screen, or D to send it to a disk 
file. Type "Z to stop the output. If you type S, 
for setup, the following options are provided: 

Select printer control: 

L = Change page length (now # lines) 
(Length = 0 for continuous form) 

W = Change page width (now # chars) 
S = Manual setup codes 
P = Print report 

CNTRL-Z to cancel 10 command 

You may change one or more of the above 
parameters, then type P to output the report, 
or "Z to cancel the entire process. 

GLOBAL Options, QUIT, ZAP 

/ GLOBAL manipulates screen formatting and calculations 

The IGLOBAL command lets you view for
mulas on which values are based, change the 



558 OSBORNE 1 REFERENCE GUIDE 

appearance of the screen display, and specify 
the order and sequence of calculations. 

Prompt: 
F( 0 rm), N (ext), B( orde r), T( ab), R( ow), 

C(ol), M(an),A(uto)? 

If you respond to the prompt by pressing F, the 
. display window will show the formulas con
tained in the cells instead of the values that 
result from the formula calculations. If formulas 
are currently being displayed, pressing F will 
display the values. 

If you respond to the prompt by pressing N, 
the cursor will" auto-advance in the "current 
direction" after the data is entered into a cell. If 
auto-advance of the cursor is already in effect, 
then pressing N causes no auto-advance of the 
cursor after the data is entered into a cell. 

Pressing B will suppress the display of the 
worksheet border. If you already suppressed 
the border display, then pressing B will restore 
the border display. ("Border" refers to the col
umn and row designations across the top and 
down the left side of your display window.) 

Pressing T activates the Tab mode, or deac
tivates it if SuperCalc is already in the Tab 
mode. In the Tab mode, advancing between 
cells skips all empty or protected cells. There
fore, you can never select a protected or an 
empty cell as the active cell in this mode. 

Options R, C, M, and A concern recalculation. 

R means recalculate by rows, from the top 
down. (Rows are recalculated left to right.) 



SUPERCALC 559 

C means recalculate by columns, from the 
left across. (Columns are recalculated from 
top down.) 

A means recalculation is automatic 
(default). 

M means recalculation occurs at your 
request, whenever you press the! key. 

/ QUIT -exits from SuperCalc and returns to CP/M 

The /QUIT command leaves SuperCalc and 
relinquishes control to the CP/M operating 
system. You get a chance to save your work 
on diskette before the transition occurs. 

Prompt: 
EXIT Supe'rCalc? Y{€s) m N(o) 

If you reply Y, you return to CP/M as indicated 
by the A> prompt. If you reply N, you return 
to SuperCalc. Any other reply is ignored. 

If you have work you could lose when you quit, 
SuperCalc gives you a chance to save the work 
before exiting. 

Example: 
/Quit <cr> 

/ ZAP -clears the entire worksheet of data 

The /ZAP command clears the contents and 
formatting from the entire worksheet. 



I 560 OSBORNE 1 REFERENCE GUIDE 

Prompt: 
Y(es) to clear everything, else N(o) 

All cells become empty. All format settings and 
modes of operation revert to their standard set
tings. Everything starts fresh, as if you had just 
started up the SuperCalc program. 

ZAP is the only command that can override 
protection of cells. 

NOTE 

Remember, when you ZAP the work
sheet, nothing remains. 

Examples: 

IZAP, Y 

IZAp, N 

SuperCalc Built-In Functions 
ABS (value): Provides the absolute value. 

AVERAGE (list): Provides the arithmetic meanof the nonblank 
values in the list. 

COUNT (list): Returns the number of nonblank entries in 
the list. 

ERROR, NA: Displays ERROR or NA (not available) for the cell 
having this function and for any cell with a formula referring to 
this cell. 



SUPERCALC 561 

EXP (value): Raises "e" exponentially. The value is the exponent. 

OR (expression 1, expression 2): Results in "true" (value of 1) if 
either expression 1 or expression 2 is "true" (nonzero); other
wise, results in "false" (value of 0). 

AND (expression 1, expression 2): Results in "true" (value of 1) 
if both expression 1 and expression 2 are "true" (nonzero); 
otherwise, results in "false" (value of 0). 

NOT (expression): Results in "true" (value of 1) if expression is 
"false" (zero); otherwise, results in "false" (value of 0). 

IF (expl,exp2, exp3): If expression 1 is true, then use expression 
2; otherwise, use expression 3. Expression may be combined 
with AND or OR NOT to form expression 1. 

INT (valu~): Returns integer portion of value. The value is not 
rounded. Do not confuse this function with /FORMAT,I which 
will round off numerical entries. 

LOOKUP (value, column/row range): Searches the range for the 
last value less than or equal to the search value given. Returns 
the adjacent value from the column to the right of the search 
column or the row below the search row. Assumes the search 
range is in ascending order of values. 

Ln (value), LOG 10 (value): Provides the natural log, log base, 
10, of the value. 

MAX (list), MIN (list): Provides the maximum or minimum 
value in the list. 

NPV (discount, column/row range): Nets the present value of a 
group of cash returns at the.given rate of discount. The cash 
amounts are assumed to be projected for equal time' periods, 
such as every year; and the discount rate is for that interval. The 
first cash entry is discounted once, the second twice, and so 
forth, and added to form the total value. 



562 OSBORNE 1 REFERENCE GUIDE 

PI: Returns Pi to. 16 significant digits. 

SIN (value), ASIN (value), COS (value), ACOS (value), TAN 
(value), ATAN (value): Trigonometric calculation of the value. 
ASIN is arcsine, etc. Trigonometric results are give in radians. 

SQRT (value): Returns the square root of the value. 

SUM (list): Returns the sum of the values in the list. Here is a 
quick explanation of what "value," "range," and "list" mean in 
this context: Value is a constant, the value of a cell, or a combi
nation of these values made by using the arithmetic operators. 

Formulas and Functions 

Formulas specify calculations and comparisons. Formulas use 
values in other cells (which may be themselves the result of 
formulas), constants, and built-in functions. These values are 
combined using arithmetic and relational operators: 

+ addition 
subtraction 

* multiplica tion 
division 

1\ raising to a power 
is equal to 

<> is not equal to 
< is less than 
<= is less than or equal to 
> is greater than 
>= is greater than or equal to 

Examples: 

Constants: 12,5.9,3.4e3 

Cell values: A12, B19, BK54 

Combinations: 12+5.9 ,B19-3,7 ,A12*B14,(9+ E5)/4 



SUPERCALC 563 

The combinations are also called "expressions." They are 
evaluated from left to right; * and / are evaluated before + and -. 
Use parentheses to group terms in your expressions so that 
SuperCalc will evaluate them as you wish. Some examples 
follow: 

5+4*3+1=18 (that is, 5+12+1) 

(5+4)*3+1=28 (that is,9*3+1) 

5+4*(3+1)=21(that is, 5+4*4) 

(5+4)*(3+1)=36 (that is, 9*4) 

Here are some examples of functions with values: 

BS(A12) ,SQRT(9.5*E7) ,LN(3.5e4), TAN(C5+ E5) 

Range is simply a partial column or partial row, such as B4:B12 
or B4:H4. Here are some examples of functions that use both a 
value and a range: 

LOOKUP(7,C5:J5) 

LOOKUP(A4,D3:d12) , 

NPV(.18,D12:H12) 

NPV(B4,G3:G8) 

A list can have values, expressions, and ranges. Here are some 
examples: 

SUM(A12,B9,D5) 

SUM(C12:E12,H3:H7) 

SUM(MAX(C12:E12) 



564 OSBORNE 1 REFERENCE GUIDE 

COUNT(E3: E12,F8:J8) 

AVERAGE(B7,B8:h8,C12:C20) 

Sample worksheets provided on your SuperCalc disk give exam
ples of these formulas in actual use. This material will help you 
understand how you can put the formulas to work; it is espe
cially useful for IF, LOOKUP, and NPV. 

Practical Suggestions 
1. Keep your work in the upper left of the worksheet 

grid. 

2. Keep your work in a rectangular shape. Try to avoid 
having long columns or rows projectmg outside the 
basic shape. 

3. Do not blank cells, protect cells, or format cells in the 
area below or to the right of the area that you actually 
need. Especially, do not put data below or to the right 
of the area you actually need. 

4. When you have extra or interim work on the screen 
that you can get rid of, use the following procedure to 
free that space completely: 

a. /DELETE or /BLANK the material you do not need. 
b. Move the rest of the work to the upper left of the 

grid, and adjust it as you wish it to display. 
c. /SAVE your work. 
d./ZAP the screen. 
e. Reload. You are now using the minimum space 

required for your worksheet. 



SUPERCALC 565 

Worksheet Display 
A command, text, or formula too long for the entry-line infor
mation on the entry line will scroll left when it reaches the end 
of the line. You can enter a command, text, or formula that is too 
long to display in its entirety. You can then use the in-line editor 
to examine any part of the entry by moving the cursor to the left 
or right. The information will scroll to show the hidden part 
of the line. When you want to enter the line, press RETURN. 
SuperCalc will take the entire entry, not just the portion to 
the left of the cursor. 

Column Width Greater Than 
Screen Width 

You may sometimes want to make the width of a column greater 
than the width of the screen. In such cases, you can scroll to see 
all of the display. If you have a printer with a wide carriage, 
you can use the output command to print the full width of the 
information. This feature can be useful for long text notes, 
explanations, or graphic display of numeric values. 

To See the Same Information in 
Different Formats 

The window command lets you look at the same information si
multaneously in different formats. Split the single display win
dow into two smaller windows. After you have split the screen, 
you can move one window so that it shows the same informa
tion as the other. Each part of the screen can have its own for
mat settings for entries, rows, columns, or the entire worksheet. 
Each can have its own GLOBAL options settings. By using this 
technique, you could display both values and formulas for the 
same cell contents. 

When you set formats or GLOBAL options for a split screen, re
member that the portion above or to the left of your screen is 
"dominant." That is, when you cancel the split, the settings that 



566 OSBORNE 1 REFERENCE GUIDE 

were in effect for the upper or left window will remain in effect 
for· the entire single display window. 

Building Worksheets 
Combining worksheet portions to build entirely new worksheets 
is possible. The ISAVE command saves the entire worksheet, but 
the ILOAD command can load all or part of a worksheet. It can 
place the part loaded at any worksheet location. This means that 
you can construct the nucleus of a new worksheet from parts of 
one or more existing worksheets. 

When you have a fully developed worksheet with data, you can 
save it both with and without data. For example, you have de
veloped a monthly report, which you save. Then you blank all 
the variable contents of the report, which you save. Then you 
blank all the variable contents of the report and save only the 
information that will not change, such as: titles, formatting, the 
general layout of the sheet formulas, and any constant values. 
Next month you can load this file, fill in the new information, 
and save it as your current monthly report. 

Using PROTECT to Build 
New Worksheets from Old 
The IBLANK, ICOPY, ILOAD, and IREPLICATE commands all 
bypass protected cells, leaving their contents unchanged while 
changing surrounding cells. You can use this capability to com
bine information in detail, protecting key information and then 
surrounding it with new information by using LOAD, COPY, or 
REPLICATE. 

Summing a Partial Column or 
Partial Row 

When developing a worksheet, you may often insert new col
umns or rows within a range covered by a SUM formula. This 



SUPERCALC 567 

can be awkward. Inserting or deleting at the top or bottom of 
an existing column or at the left or right of an existing row can 
mean redoing your formula. For example, you wish to insert a 
new row 12 and have to change the formula SUM(C2:CI2) to 
SUM(C2:CI3). 

Here is a way to avoid this difficulty. Include a header or title at 
the top or left and an extra cell at the bottom or right within 
your sum. For a column, the extra cell could have" --------- as a 
total line. For example: 

1: January Receipts 
2: 
3: 

9: 

C 

35 
405 

38 
10: ________________________________ __ 

11: SUM(Cl:CI0) 

Text Cl and CI0 have a zero value. Including them in the sum 
makes no difference. You can insert or delete rows from 2 
through 9 and have the SUM formula automatically adjust to 
the new situation. 

Security 
Security includes protecting your work from accidental loss 
or change and protecting confidential information in your 
worksheet. 

Protecting Your Worksheets 

The CP/M operating system allows you to specify files or entire 
disks as "read only." Designating your worksheet files this way 
means others can examine them or print reports from them, but 
cannot change or erase them. 



568 OSBORNE 1 REFERENCE GUIDE 

The SuperCalc option to save values only offers another protec
tion. Your full worksheet may have important proprietary 
information within its formulas or lookup tables. 

After you have saved a full copy for yourself, you can save a 
Values-Only worksheet for others to use. In that worksheet, you 
may wish to remove lookup tables. 

Similarly, you can use the output command to put a Values
Only copy of selected portions of your worksheet on a disk file 
for others to use. They can print that file or use the system text 
editor to include it in their own text file. 

Save Your Work Often 
It is important to save your work frequently while you are 
entering data or building worksheets. This practice insures you 
against losing the time and effort you have invested. It protects 
you against problems that are completely out of your control 
-such as power failures or hardware problems with your 
disk drive. 

The Update option of the ISAVE command gives you a con
venient way to do this. Every time you save your work, use the 
same name-for example, TRIALBAL. The first time you save 
your work, it is stored on the disk as TRIALBAL. CAL. The 
second time you save it, SuperCalc will tell you that there is 
a file of that name and ask you what you want to do. If you 
choose the Update option, your new worksheet will be saved 
as TRIALBAL. CAL and the earlier one will become TRIAL
BAL.BAK, your backup file. Whenever you use the Update 
option after that, SuperCalc will give you the two most recent 
files as filename. CAL and filename.BAK; it will erase any 
earlier files. 

Having the backup file can be convenient; you may want to go 
back to that file in case a change does not work out in actual op
eration. You can use CP/M operations to change your file names 
so that filename.BAK becomes filename.CAL. Or you can di-



SUPER CALC 569 

rectly load the file by giving its full name including the . BAK 
extension. 

Standard or Default Settings 
SuperCalc uses standard settings for display and formatting and 
standard modes of reference. These are also called default set
tings or modes. You can change these settings by choosing 
among the available options described earlier. For convenience, 
here is a list of the standard settings and standard modes. 

You can change the following default settings by using the 
IFORMAT command: 

Column Width: 9 

Numeric Display: 
Right-justified. 

Standard numeric format. (Cells that contain formulas will have 
their values displayed; if the number is too large to fit into the 
column, the number will be displayed in scientific notation.) 

Text Display: 
Left-justified. 

You can change the following default settings by using the 
IGLOBAL command: 

Border Display: Row numbers (1-254) and column desig
nations (A-BK) are always displayed. (When the screen 
is split, the row numbers and column designations are 
displayed for both windows.) 

Calculation: Automatic calculation takes place upon 
reception of new or altered data followed by RETURN. 

Order of Calculation: Calculation is performed by rows, 
from left to right and top to bottom. 



570 OSBORNE 1 REFERENCE GUIDE 

Numeric Display: Standard numeric display. (Cells that 
contain formulas will have their values displayed.) 

Tab Mode: The tab mode is inactive: The cursor advances 
to the next cell in the current cursor direction. 

Automatic Cursor Advancing: Auto-advance mode is ac
tive. The cursor will advance to the next cell in the current 
cursor direction after data entry followed by RETURN. 

Additional Standard Operations: When you execute a 
ICOPYor IREPLICATE command, formulas with refer
ences to other cells automatically adjust to their new 
locations unless you choose an option provided for 
these commands. 



CBASIC 



572 OSBORNE 1 REFERENCE GUIDE 

Labels and Identifiers 
CBASIC labels and identifiers must have 31 characters or less. 
If the last character is a 0/0, then an integer numeric value is 
assumed. If the last character is a $, then a string variable is 
assumed. Otherwise, a real numeric variable is assumed. 

Numbers: 

Integer numbers can have values ranging between -32768 
and 32767. 

Real numbers are represented using standard decimal format; 
they can have up to 14 digits of precision. Larger numbers are 
represented using scientific notation. The mantissa has one 
digit in front of the decimal point. The exponent is a two-digit 
decimal number. 

Line Numbers: 

CBASIC statements do not need line numbers. Line numbers, 
where present, do not have to be in numeric sequence. Line 
numbers may be integers, real, or scientific-notation numbers. 
Line numbers with the same numeric value, but a different 
numeric type are treated as a different line number. For exam
ple, the following three line numbers have the same numeric 
value, but are treated as three different line numbers: 

Expressions: 

100 
100.0 
1.0E02 

CBASIC evaluates expressions using the following evaluation 
hierarchy from highest to lowest: 

1. Nested parentheses ( ) 



CBASIC 573 

2. Exponent" 

3. Multiply *, divide I 

4. Add +, subtract -, concatenate +, unary plus +, usary 
minus -

5. Relational operators LT or <, LE or < =, GT or >, GE 
or > =, EQ or =, NE or < > 

6. NOT 

7. AND 

8. OR,XOR 

Summary of 
CBASIC Statements 
CBASIC statements are summarized below in alphabetic order. 
Each statement's format is given, along with an example. 

CALL-links to a subroutine 

The CALL statement calls an assembly
language subroutirie. Also see SAVE, PEEK, 
and POKE statements. 

Format: 

CALL integer expression 

The integer expression must evaluate to the ab
solute memory address of the entry point for 
the assembly-language subroutine being ex
ecuted. An assembly-language return (RTN) in
struction (executed out of the subroutine) will 
return execution to the next sequential CBASIC 
statement. 



574 OSBORNE 1 REFERENCE GUIDE 

NOTE 

CPU registers may be altered by the 
assembly-language subroutine. 

Examples: 
CALL 27248 
CALL2CAOH 
CALL sub% 

CHAIN - transfers control from one program to another 

The CHAIN statement is used to transfer con
trol from one executing CBASIC program to 
another. 

Format: 
CHAIN string expression 

The string expression identifies the file name 
(and drive) for the next program to be ex
ecuted. The selected file must be of type INT 
and it must exist on the specified drive. When 
no drive is specified, the active drive is as
sumed. A CHAIN statement causes the selected 
file to be loaded and the program held within 
the file to be executed. In addition, the return 
stack is reset, open files are closed, and a 
RESTORE statement is executed. A COMMON 
statement can be used to exchange data be
tween chained programs. 

Examples: 
CHAIN "MAIN" 
CHAIN DRIVE$ + ":"+ PRINT.MSG$ 



CBASIC 575 

Sample Programs: 
REM TRANSFERS CONTROL TO A PROGRAM OF 
REM THE USER'S CHOICE DIRECT COMPILER 
REM TO RESERVE EXTRA SPACE FOR 
REM PROGRAM'S CONSTANT, CODE, DATA, 
REM AND VARIABLE AREAS (32, 1000, 32, AND 
REM 32 BYTES RESPECTIVELY) (TO PREVENT 
REM OVERWRITING BY THE CHAINED 
REM PROGRAM) 

0/0 CHAIN 32, 1000, 32, 32 

INPUT "WOULD YOU LIKE TO RUN A PROGRAM (Y/N)?,,;RUN$ 

IF RUN$ = "Y" THEN\ 
INPUT "WHICH ONE?"; PROG.NAME$:\ 

CHAIN PROG. NAME$ 

STOP 

REM PROGRAM CHECKCHAIN-WHEN MAIN 
REM PROGRAM CHAINS HERE A MESSAGE IS 
REM PRINTED TO SHOW THE CHAIN WAS 
REM SUCCESSFUL AND THEN CONTROL IS 
REM TRANSFERRED BACK TO THE MAIN 
REM PROGRAM 

PRINT "YOU HAVE SUCCESSFULLY CHAINED" 
PRINT "TO PROGRAM CHECKCHAIN" 
CHAIN "MAIN" 
STOP 

CLOSE-closes specified files 

The CLOSE statement closes open files. 

Format: 
CLOSE integer expression {,integer expression} 

Each integer expression denotes an open file 
that is to be closed. Reference to a file that has 
not been opened will cause an error. When a 



576 OSBORNE 1 REFERENCE GUIDE 

file is closed, the file number is released, and 
the associated buffer space is returned to the 
system. 

NOTE 

CLOSE terminates any IF END 
statement that references the file being 
closed. 

Examples: 
CLOSE 1 
CLOSE input.file.id%, temp.file.l% 

Sample Program: 

REM CREATE TWO NEW FilES, WRITE DATA TO 
REM THEM, AND CLOSE THE FilES 

CREATE "NEWFllE.SEQ" AS 1 
CREATE "NEWFllE. RAN" RECl 25 AS 2 
FOR 1 % = 1 TO 1 a 

PRINT # 1; "RECORD NUMBER", 1 0/0 

PRINT #2,1 0/0; "RECORD NUMBER", 1 0/0 

NEXT 10/0 

CLOSE 1,2 

CO MM 0 N - specifies common variables 

The COMMON statement specifies simple and 
subscripted variables that are retained in a 
common area of memory and passed between 
chained programs. 



CBASIC 577 

Format: 
COMMON variable {, variable} 

NOTE 

For a subscripted variable, the number 
of subscripts, not the actual subscript 
maximum dimensions, follows the 
paren thesis. 

COMMON statements must be the first in a 
program, preceded only by REM statements or 
blank lines. Chained programs must begin with 
COMMON statements having coincident pa
rameter lists. Common variables must be of the 
same type in all COMMON statements, and 
they must appear in the same sequence. Vari
able arrays must have the same number of di
mensions, and each dimension must have the 
same maximum value. 

Examples: 

COMMON DATE$, NAME$,ACCOUNTS$(3) 
COMMON SIZE%,ACCOUNT.LIMIT (2), COMPANY$ 

Sample Program: 

REM TRANSFER CONTROL TO A PROGRAM OF 
REM THE USER'S CHOICE 

COMMON RET$ 

REM DIRECT COMPILER TO RESERVE EXTRA 
REM SPACE FOR PROGRAM'S CONSTANT, 
REM CODE, DATA, AND VARIABLE AREAS (32, 
REM 1000, 32, AND 32 BYTES RESPECTIVELY) 



578 OSBORNE 1 REFERENCE GUIDE 

REM (TO PREVENT OVERWRITING BY THE 
REM CHAINED PROGRAM) 

OfoCHAIN 32. 1000. 32. 32 

INPUT "WOULD YOU LIKE TO RUN A PROGRAM (Y IN)?";RUN$ 

STOP 

IF RUN$ = "Y" THEN \ 

INPUT "WHICH ONE?"; PROG.NAME$:\ 
INPUT "DO YOU WANT TO RETURN TO THIS PROGRAM?";RET$:\ 
CHAIN PROG. NAME$ 

REM PROGRAM CHECK2-WHEN MAIN 
REM PROGRAM CHAINS HERE A MESSAGE 
REM IS PRINTED TO SHOW THE CHAIN WAS 
REM SUCCESSFUL AND THEN CONTROL IS 
REM TRANSFERRED BACK TO THE MAIN 
REM PROGRAM IF THE USER CHOSE THAT 
REM OPTION 

COMMON RET$ 

PRINT "YOU HAVE SUCCESSFULLY CHAINED" 
PRINT "TO PROGRAM CHECK2" 
IF RET$ = "Y" THEN \ 

CHAIN "MAIN2" 

STOP 

CONSOLE- redirects print to the console 

The CONSOLE statement follows an LPRINTER 
statement and causes output to be diverted 
from the printer to the console. This statement 
can also be used to make console width 
adjustments. 

Format: 
CONSOLE 

Following execution of a CONSOLE statement, 
PRINT statement output is directed to the 
console. 



CBASIC 579 

To adjust the console width, use the POKE 
statement. POKE the required character width 
to location 272. The new console width be
comes effective after the next execution of a 
console statement. A zero width setting is con
sidered infinite, so that new lines are never au
tomatically started. The default console width 
is 80 characters. 

Example: 
CONSOLE 

Sample Program: 
LPRINTER 
PRINT "THIS LINE WILL BE OUTPUTTO" 
PRINT "THE PRINTER" 

CONSOLE 

PRINT "THIS LINE SHOULD APPEAR" 
PRINT "ON THE CONSOLE" 

LPRINTERWIDTH 30 
PRINT "THE PRINTER WIDTH WAS SET TO 30" 
PRINT "SO THIS SENTENCE"; 
PRINT "SHOULD BE PRINTED AS 4 LINES BY" 
PRINT "THE PRINTER" 

POKE 272,30 
CONSOLE 

PRINT "THIS SHOULD APPEAR ON THE" 
PRINT "CONSOLE SCREEN"; 
PRINT "THE POKE STATEMENT SET THE LINE" 
PRINT "WIDTH TO 30" 

STOP 



580 OSBORNE 1 REFERENCE GUIDE 

CREATE-creates a new file 

The CREATE statement is comparable to an 
OPEN statement except that it is used to ac
tivate a new file rather than an existing file. 
Any existing file with the same name is erased 
so that a new file can be created. 

Format: 

CREATE string expression 
[RECL integer expression] 

AS integer expression 
[BUFF integer expression] 
[RECS integer expression] 

The expression following the keyword CREATE 
is a valid file name that identifies the file to be 
created. The integer expression following AS 
designates which of 20 available file numbers 
is assigned to the new file (see the READ# , 
PRINT#, IF END, and CLOSE statements). 
Each active file is assigned an identification 
number. This number is used in all subsequent 
references. 

The integer expression following RECL speci
fies record length. When the length is specified, 
the file will contain fixed-length records that 
may be accessed randomly or sequentially. If no 
length is specified, then record length will 
vary, and the file must be accessed sequentially. 

The BUFF and RECS portion of a CREATE 
statement either appear in conjunction, or are 
omitted. The integer expression following BUFF 
indicates how many disk sectors are to be 
maintained in memory. When using random ac
cess, you must specify one disk sector. A value 



CBASIC 581 

of 1 is automatically assumed in the absence of 
the BUFF and RECS parameters. RECS iden
tifies the size of a physical sector on the disk. 
This value is currently ignored and the system 
assumes a sector size of 128 bytes. (See the 
CLOSE statement for a CREATE programming 
example.) 

DATA-lists data constants 

A DATA statement defines constants. These 
constants are assigned to variables by READ 
statements. 

Format: 
DATA constant [,constant] 

The DATA statement may be used to list string, 
integer, or real constants. DATA statements can 
be located anywhere in a program, except 
before a COMMON statement. Each DATA 
statement must occupy one line exclusively and 
cannot be continued on the next line. No other 
statement can appear on the same line with a 
DATA statement. 

A list of constants is compiled from all DATA 
statements in a program. Constants are put into 
the list sequentially as they appear in the DATA 
statement(s) parameter list(s), in the same order 
that the DATA statements themselves appear. 
READ statements work down the list of con
stants, assigning the next sequential constant in 
the DATA list to the next variable in the READ 
statement parameter list. An attempt to read 
past the DATA statement list will cause a run
time error. 



582 OSBORNE 1 REFERENCE GUIDE 

Example: 
110 DATA 1, 2, 2.1, 22.1 

Sample Program: 

REM READ AND PRINT THE DATA LIST 
DATA 123.987, 42, "MORE DATA", "EVEN MORE DATA" 

READ REAL.NUM, INT, NUM%, STRING1 $, STRING2$ 
PRINT REAL.NUM; STRING1 $; INT.NUM%; STRING2$ 

STOP 

D EF - defines a line function 

The DEF statement defines either a single line 
function or multiple line function. The DEF 
keyword must appear before any reference to 
the actual function. 

Format: 
DEF FN.name [(parm {,parm} )] =expression 

This format illustrates a single line function. A 
function name always begins with FN.; the 
remainder of the function name may consist of 
any combination of letters, numbers, or decimal 
points including blanks. The function name 
must be a valid CBASIC variable name. 

The function computes a value, which it assigns 
to the function name. Subsequently the func
tion name is treated as a CBASIC program vari
able. The function name determines whether 
the function is of type real, integer, or string. 

In a single line function the expression to the 
right of the equal sign is evaluated, and the 
result is returned via the function name. 



CBASIC 583 

Parameters ("parmI!) are listed within the ex
pression. When the function is referenced in 
the body of the program, actual values must 
be specified for each parameter. These actual 
values are used when the expression is 
evaluated. 

Format: 
DEF FN.name [(parm {,parm})] 

Multiple line functions begin with a DEF state
ment and end with a FEND statement. The DEF 
statement specifies the function name and any 
function parameters. Any group of statements 
can occur between the DEF and FEND state
ments. A RETURN statement must be present 
to terminate the multiple line function, in a 
manner analogous to a subroutine return. The 
value returned by the multiple line function is 
the last value assigned to the function name 
before the RETURN statement is executed. 

Examples: 
DEF FN.CIRCLE.AREA (R)=3.142 * (R"2) 
THIS.AREA=FN.CIRCLE.AREA (5) 

Sample Program: 
DEF FN.CIRCLE.AREA (R)=3.142 * (R * R) 
DEF FN. CYLINDER. VOLUME(RADIUS, HEIGHT) 
BASE= FN, CIRCLE.AREA (RADIUS) 
FN.CYLINDER.VOLUME=BASE * HEIGHT 
RETURN 
FEND 

INPUT "CIRCLE RADIUS?";RAD 
THIS.AREA= FN. CIRCLE. AREA (RAD) 

INPUT "CYLINDER RADIUS?" RAD 



584 OSBORNE 1 REFERENCE GUIDE 

INPUT "CYLINDER HEIGHT?"; HEIGHT 
THAT. VOLUME= FN. CYLINDER. VOLUME (RAD, HEIGHT) 

PRINT 'THE CIRCLE'S AREA IS:", THIS AREA 
PRINT "THE CYLINDER'S VOLUME IS:", THAT.VOLUME 

STOP 

DELETE-erases file entry from the directory 

DELETE removes the indicated files from their 
respective directories. 

Format: 
DELETE <expression> {,<expression>} 

Each numeric expression indicates the assigned 
number of an active file. Real values are con
verted to integer; string values cannot be used. 
Any IF END statement associated with the file 
number being deleted will no longer be valid. 

Examples: 
DELETE 3,2,1 
DELETE FILE.No%,OUTPUT FILE.NO% 

DIM-allocates storage for an array 

The DIM statement allocates storage for an 
array and defines the upper limit of each sub
script; a lower bound limit of zero is assumed. 
Execution of each DIM statement allocates a 
new array. If the current array is numeric, it 
causes the previous array to be deleted, freeing 
space for the new one. Each element in a string 
array must be set to null before reexecution of 
DIM, to regain the maximum amount of 
storage. 



CBASIC 585 

Format: 
DIM exp (subscript list) ,exp (subscript list) 

Space is dynamically allocated for numeriC and 
string arrays. Elements of string arrays may be 
any length up to 255 bytes, and change in 
length as they assume different values. Numer
ic arrays are initially set to zero while elements 
of string arrays are null. 

The subscript list specifies the number of di
mensions and extent of each dimension of the 
array being declared. The subscript list may 
not contain a reference to the array being 
dimensioned. 

Examples: 
DIM A (10) 
DIMNAME$ (50), ADDRESS$ (100), 
DIM A % (1,2,3,), SALES% (QUOTA 0/0) 
DIM x (A %(B %),c%,D 0/0) 

FEND - teminates a multiple line-function definition 

CBASIC should never execute a FEND state
ment; all multiple line functions must end ex
ecution with a RETURN statement, otherwise 
an error will occur. See the DEF statement for 
more details. 

Format: 
FEND 



586 OSBORNE 1 REFERENCE GUIDE 

FOR-initiates a FOR/NEXT loop 

The FOR statement establishes a loop index, an 
initial index value, a termination index value, 
and an amount by which the index is increased 
on each iteration through the loop. A NEXT 
statement is used to terminate the loop. 

Format: 

FOR index=numeric expTO numeric exp [STEP exp] 

Index must be an unsubscripted variable. 
The expression following the equal sign is 
evaluated and then assigned to the index, 
thus establishing the initial index value for 
the FOR/NEXT loop. 

The expression following TO is the loop termi
nation value. A positive step value causes the 
loop to execute until the index is greater than 
the termination value. A negative step value 
executes the loop until the index is less than 
the termination value. The type of the termi
nation expression must match the type of 
the index. 

The expression following STEP is the loop in
crement value. When STEP is omitted, a value 
of 1 is assumed. The increment is added to the 
index on each execution of the loop prior to 
comparing the index with the termination 
value. 

Program speed can be maintained by using an 
index and expressions of type integer, and by 
omitting the STEP increment expression when 
a value of 1 is intended. 



CBASIC 587 

NOTE 

Statements within a FOR/NEXT loop are 
always executed at least once. 

Examples: 
FOR 10/0= 1 TO 1000 
FOR J = 12.0 TO 123.67 STEP 1.6 

Sample Program: 
PRINT "THIS PROGRAM FINDS THE AVERAGE" 
PRINT "OF NUMBERS YOU INPUT" 
INPUT "HOW MANY NUMBERS?", LAST 0/0 

TOTAL=O.O REM INITIALLY SET TOTAL TO ZERO 
FOR INDEX%= 1 TO LAST% 
PRINT "NUMBER";INDEX%; 

INPUT NEXT. NUMBER 
TOTAL=TOTAL+NEXT.NUMBER 
NEXT INDEX% 
AVERAGE= TOTAL/LAST% 
PRINT "THE AVERAGE IS";AVERAGE 
STOP 

GOSUB-causes execution of a subroutine 

The GOSUB statement executes a subroutine. 
The subroutine is identified via a statement line 
number. Execution returns to the statement 
following GOSUB after the subroutine has 
completed execution. 

Format: 
GOSUB statement number 



588 OSBORNE 1 REFERENCE GUIDE 

The statement number specifies the subroutine 
entry point. 

NOTE 

CBASIC can nest subroutines to a depth 
0[20. 

Examples: 
GOSUB200 
GOSUB 100.001 

Sample Program: 
REM USE A SUBROUTINE TO MAKE 
REM CORRECTIONS 

INPUT "WHAT STRING WILL YOU PRINT?";STRING$ 
GOSUB 300 REM MAKE CORRECTIONS 
GOSUB 350 

STOP 

REM PRINT THE STRING 

300 REM CORRECTIONS SUBROUTINE 
INPUT "WANT TO MAKE CORRECTIONS (Y INJ?";ANS$ 
WHILE ANS$="Y" 

INPUT "NEW STRING?";STRING$ 
INPUT "IS IT STILL WRONG(Y INJ";ANS$ 

WEND 
RETURN 

350 REM: PRINT SUBROUTINE 
LPRINTER 
PRINT STRING$ 
CONSOLE 

RETURN 



CBASIC 589 

IF END#-establishes a conditional file-access branch 

The IF END# statement prepares program logic 
for conditional execution of a branch during a 
subsequent file access, providing certain condi
tions are detected. 

Format: 

IF END# integer expression THEN 
statement number 

The IF END# statement is unusual in that it 
prepares program logic for a future conditional 
branch. Only bookkeeping operations are per
formed when the IF END# statement is ex
ecuted. The "integer expression" must be a 
number between 1 and 20. This is a file number 
that links the IF END# statement with subse
quent file-access statements. The statement 
number specifies the program line to which the 
conditional branch will occur if certain condi
tions are encountered when the subsequent 
file-access statement is executed. These are the 
conditions that can cause the IF END# branch: 

1. On reading from a file-if the End Of 
File is detected. 

2. On writing to a file-if there is no more 
disk space. 

3. On any file access'-if the named file 
does not exist. 

Any number of IF END# statements may 
appear in a program. The conditional branch 
specified by the most recent IF END# state
ment with the same file number gets executed. 



590 OSBORNE 1 REFERENCE GUIDE 

IF END# must be the only statement on a line. 
It cannot be followed by a colon and additional 
statements, nor can other statements precede it 
on the same line. 

NOTE 

When a file is deleted or closed, IF END # 
statements having the deleted or closed 
file number are deactivated. 

Examples: 
IF END# 7 THEN 700 
REM read a file from #7. On detecting the 
REM end of file branch to statement 700 
READ #7 ,A,B,C,D 

Sample Program: 
REM ADD A NEW RECORD TO NEWFILE. SEQ 
REM: OPEN FILE - IF FILE DOES NOT EXIST 
REM GOTO 900 

IF END# 10 THEN 900 
OPEN "NEWFILE. SEQ" AS 1 0 

REM: FIND END OF FILE 
IF END# 10 THEN 200 

100 READ # 10; STRING$,NUMBER% 
GOTO 100 

200 PRINT # 1 O;STRING$,NUMBER% + 1 
CLOSE 10 
STOP 

900 PRINT "ERROR-FILE DOES NOT EXIST" 
STOP 



CBASIC 591 

IF-THEN-ELSE-provides a conditional branch 

IF-THEN-ELSE conditionally executes state
ments depending on the value of an expres
sion. When the conditional expression 
following IF is true, the group of statements 
following THEN executes; otherwise the group 
of statements following ELSE is executed. An 
expression is "true" if it has a value other 
than zero. 

Formats: 

IF integer expression 
THEN group of statements 
[ELSE group of statements] 

The ELSE portion of an IF statement is op
tional. When ELSE is omitted and the integer 
expression is false, execution continues with 
the next sequential statement. 

NOTE 

A group of statements consists of one or 
more CBASIC statements separated by 
colons. The following statements cannot be 
in this group: DATA, DEF, DIM, IF, and 
IF END. 

The following format is compatible with other 
BASIC languages: 

IF integer expression THEN 
statement number 



592 OSBORNE 1 REFERENCE GUIDE 

This form of the IF END statement treats the 
statement number as a GOTO statement. This 
form does not allow use of the ELSE option. 

Sample Program: 
REM THIS PROGRAM ASKS FOR USER'S NAME 
REM AND CHECKS FOR ERRORS 

100 INPUT "WHAT IS YOUR NAME?";LlNE NAME$ 

PRINT NAME$; 
INPUT "-IS CORRECT (Y/NJ?,,;ANSWERS 

200 IF ANSWER$ < > "Y" AND ANSWER$ < > "N'" INVALID ANSWER 
INPUT "TYPE" "Y" " FOR YES OR " "N" " FOR NO"; ANSWERS$:' 
GOTO 200 

IF ANSWER$ = "N" THEN GOTO 100 , INCORRECT NAME 
ELSE PRINT "THANK YOU'" CORRECT 
STOP 

INITIALIZE-Reinitializes the operating system 

The INITIALIZE statement must be executed 
whenever the diskette in a drive is replaced 
during program execution. Never change a 
diskette while any files are open. If you do, 
data may be lost from open files, and the 
directory will not be updated. 

Example: 
INITIALIZE 

INPUT - assigns data to variables 

The INPUT statement receives data from the 
console input device and assigns it to variables. 



CBASIC 593 

Format: 
INPUT ["message";] variable {,variable} 

The message is an optional string of characters 
that is printed as a prompt before the computer 
accepts data from the console; the message 
must end with a semicolon. In the absence of a 
prompt, a question mark appears which indi
cates that input data is expected. The prompt 
string (or question mark) is followed by a blank 
character. You must enter data in response to 
the prompt or question mark. 

NOTE 

Prompt strings are directed to the console 
input device even when an LPRINTER 
statement is in effect. 

INPUT statement variables may be simple or 
subscripted, string or numeric. Data items you 
enter at the keyboard must be separated by 
commas. The last data item must be followed 
by a carriage return. Strings may be enclosed in 
quotation marks, in which case commas and 
leading blanks can be part of the string. 

There must be a data item for each variable 
present in the INPUT statement; otherwise 
CBASIC will request that all data be reentered. 
The message "IMPROPER INPUT -REENTER" 
is displayed if too many or too few data items 
are entered. 



594 OSBORNE 1 REFERENCE GUIDE 

You can enter a maximum of 255 characters in 
response to an INPUT statement. Data will be 
ignored after this 255-character limit is reached. 

If AZ is the first character you entered, the pro
gram terminates as if a STOP statement had 
been executed. All CP/M line-editing functions 
such as AU and AR are active while data is 
being input in response to an INPUT statement. 
(See IF-THEN-ELSE for a sample program.) 

Example: 
INPUT "Enter three values:" ;A °lo,Bolo,colo 

INPUT LINE-assigns console entry to a string variable 

INPUT LINE is a special form of the INPUT 
statement that reads an entire keyboard entry 
and assigns it to a single string variable. 

Format: 
INPUT ["message";l LINE string variable 

The prompt is handled as described for the 
INPUT statement. Only one string variable 
can follow the LINE keyword. 

Entered data is assigned to the string variable. 
Input terminates with a carriage return. 
Commas and spaces count as characters to 
be included in the string. 

You can enter a null string by responding to an 
INPUT LINE statement with a carriage return. 
Up to 255 characters can be entered; additional 
characters are ignored. 



CBASIC 595 

An INPUT LINE statement does not generate 
an "IMPROPER INPUT" message. (See IF
THEN -ELSE for a sample program.) 

Examples: 
INPUT II Abort (Y or N)?" ;LINE ANS$ 

INPUT "Press RETURN to continue"; LINE DUMMY$ 

LET - assigns a value to a variable 

The LET statement evaluates an expression 
and assigns the result to a v.ariable. The LET 
keyword is optional. 

Format: 
[LET] variable = expression 

The variable may be simple or subscripted. You 
must specify a string variable for a string ex
pression. Integer or real variables may be speci
fied for numeric expressions. The type of a 
numeric expression will convert to agree with 
the type of the numeric variable. 

Examples: 

LETX=3 
AMOUNT= COST*QTY% 
N AME$(L %)= FIRST(j %) + LAST$(kO/o) 

LPRINTER-directs print from console to printer 

The LPRINTER statement directs PRINT state
ment output to the printer (see the CONSOLE 
statement). 



596 OSBORNE 1 REFERENCE GUIDE 

Format: 

LPRINTER [WIDTH integer expression] 

The optional WIDTH parameter sets the printer 
line width. The initial width is set at 132 char
acters. A carriage return is automatically output 
following 132 characters or the specified line 
width. If you set the WIDTH to zero, an infinite 
width is assumed and no automatic carriage 
returns are output. (See the CONSOLE state
ment for a sample program.) 

Examples: 

LPRINTER 

LPRINTER PRI~TER. WIDTH % 

LPRINTER. WIDTH 0 

NEXT - terminates a FOR/NEXT loop 

The NEXT statement terminates one or more 
FOR/NEXT loops. (See the FOR statement.) 

Format: 
NEXT [index {,index}] 

A NEXT statement without any index parame
ters terminates the most recently encountered 
FOR statement loop. The index is optional; if 
present, it must match the index of the FOR 
statement for the loop being terminated. If the 
index does not match, an error will occur. You 
can terminate more than one FOR statement by 
listing multiple indexes in the NEXT statement. 
(See the FOR statement for a sample program.) 



CBASIC 597 

ON GOTO-executes a GOTO statement with a choice of 
destinations 

The ON GOTO statement executes a eOTO, 
selecting a destination statement number that 
depends on the value of an expression. 

Format: 
ON integer expression GOTO 

statement number list 

The statement number list consists of one or 
more statement line numbers. The integer ex
pression selects one of these statement num
bers. If the integer expression is 1, then the first 
number is selected; if the integer expression is 
2, then the second number is selected, and 
soon. 

The integer expression must evaluate to a num
ber ranging between 1 and the number of state
ment numbers in the statement number list. If 
the integer expression has any other value, 
then an error will occur. An error will also be 
reported if the statement number in the state
ment number list does not exist and the pro
gram logic, therefore, does not know where 
to branch. 

Example: 
ON 10/0 GOTO 199, 200,300 

When the statement shown above is executed, 
if I % is 1, then a branch to line 199 will occur. 
If I % is 2, a branch to line 200 will occur; and if 
1 % is 3, then a branch to line 300 occurs. In the 
context of this scenario, line numbers 199, 200, 



598 OSBORNE 1 REFERENCE GUIDE 

and 300 must exist, and 1% must be evaluated 
as 1, 2, or 3. Here is another example: 

On CODE% 3 GOTO 33.1, 33.2, 33.3 

Sample Program: 

REM THIS EITHER CHANGES OR PRINTS THE 
REM INPUT DATA STRING UNTIL THE USER 
REM TELLS IT TO QUIT 

100 INPUT "INPUT DATA STRING:"; 
STRING$ 

125 PRINT "YOUR OPTIONS ARE:" 
PRINT" 1 ........ CHANGE THE STRING" 
PRINT" 2 ........ PRINT THE STRING" 
PRINT" 3 ........ QUIT" 
INPUT "WHICH DO YOU WANT?";NUM8EROfo 
IF NUMBEROfoO AND NUMBER% <4 THEN\ 

ON NUMBER\ GOTO 100.150.175\ 
ELSE GOTO 125 

150 LPRINTER: PRINT STRING$:CONSOLE 

175 STOP 

ON GOSUB-executes a GOSUB statement with a choice of 
subroutines 

The ON GOSUB statement is similar to ON 
GOTO, described above, except that a sub
routine is called at the specified statement. 

Format: 
ON· integer expression 

GOSUB statement number list 



CBASIC 599 

The statement number list consists of one or 
more line numbers that are subroutine entry 
points. The integer expression determines 
which subroutine gets called. If the integer ex
pression is 1, the first subroutine is called. If 
the integer expression is 2, the second sub
routine is called, and so on. The integer expres
sion must have a value that ranges between 1 
and the number of subroutine entry points in 
the statement number list. 

Example: 
ON 1% GOSUB 199,200,300 

Sample Program: 
REM THIS PROGRAM EITHER CHANGES OR 
REM PRINTS THE INPUT DATA STRING UNTIL 
REM THEUSERTELLS IT TO QUIT 

INPUT "INPUT DATA STRING:";STRING$ 
MOREOJo = 1 
WHILE MOREOJo = 1 

PRINT "YOUR OPTIONS ARE:" 
PRINT" 1 ....... CHANGE THE STRING" 
PRINT" 2 ....... PRINT THE STRING" 
PRINT" 3 ....... QUIT" 

INPUT "WHICH DO YOU WANT?,,;NUMBERDfo 

IF NUMBEROfo>O AND NUMBEROJo<4 THEN\ 
ON NUMBEROfoGOSUB 210, 220, 230 

WEND 
STOP 

210 INPUT "WHAT STRING WOULD YOU LlKE/";STRING$ 
RETURN 

220 LPRINTER: PRINT STRING$: CONSOLE 
RETURN 

230 MOREOfo =0 REM NO MORE 

STOP 



600 OSBORNE 1 REFERENCE GUIDE 

This is almost identical to the ON GOTO 
example shown previously. In the ON GOSUB 
case, 199, 200, and 300 are line numbers within 
subroutines. After the selected subroutine 
executes, program logic will return to the 
statement directly following the ON GOSUB. 

OPEN - activates an existing file 

The OPEN statement is used to activate an 
existing file. The OPEN statement is similar to 
the CREATE statement, except that an existing 
file is activated rather than a new one. 

Format: 
OPEN string expression 

[RECL integer expression] 
AS integer expression [BUFF integer exp] 

[RECS integer expression] 

The string expression following the keyword 
OPEN is the name of the file to be activated. 
The integer expression following RECL 
specifies record length. When you specify the 
length, the file will contain fixed-length records 
that you can access randomly or sequentially. 
If no length is specified, the record length 
will vary. 

NOTE 

An IF END statement associated with the 
assigned file number will not be affected. 



CBASIC 601 

The BUFF and RECS portions of an OPEN 
statement must either be used in conjunction, 
or be omitted. The integer expression following 
BUFF indicates how many disk sectors are to be 
maintained in memory. When using random ac
cess you must specify one disk sector. A value 
of 1 is automatically assumed without the BUFF 
and RECS option. RECS identifies the size of a 
physical sector on the disk. This value is cur
rently ignored. The system currently assumes a 
sector size of 128 bytes. 

Examples: 
OPEN IIPAYROLL.DAT" AS 9 
OPEN FILE.NAME$ AS FILE.NO% 
OPEN WORK.FILE$(1 0/0)\ 
RECL LENGTH % \ 
AS FILE. NO % \ 
BUFF BS% RECS 128 

Sample Program: 
REM OPEN NEWFILE.SEQ AND NEWFILE.RAN. 
REM READ AND PRINT THE FIRST FILE OF 
REM NEWFILE. SEQ AND THE FIFTH FILE OF 
REM NEWFILE.RAN 

REM: OPEN NEWFILE.SEQ-IF IT DOES 
NOT EXIST GO TO 900 
IF END #3 THEN 900 
OPEN "NEWFILE. SEQ" AS 3 

REM: OPEN NEWFILE.RAN-IF IT DOES 
NOT EXIST GO TO 900 
IF END #4 THEN 900 
OPEN "NEWFILE. RAN" RECL 25 AS 4 
READ #3: STRING$, NUMBER0/o 

PRINT "FIRST RECORD OF 
NEWFILE. SEQ:", STRING$;NUMBER% 



602 OSBORNE 1 REFERENCE GUIDE 

READ #4,5;STRING$, NUMBER% 
PRINT "FIFTH RECORD OF 
NEWFILE.RAN:", STRING$ NUMBER% 

CLOSE 3,4 
STOP 

900 PRINT "ERROR DOES NOT EXIST" 

STOP 

OUT -outputs an integer to an I/O device 

The OUT statement is used to output an integer 
to a selected input/output port. 

Format: 

OUT integer expression, integer expression 

The low-order byte of the second expression is 
sent to the output port addressed by the low
order byte of the first expression. 

Examples: 

OUT 3, SOH 

OUTTAPE.DATA%,NEXTCHAR% 

POKE-stores a byte in a selected location 

The POKE statement stores a byte of data in a 
memory location identified by its absolute 
memory address. 

Format: 
POKE integer expression, integer expression 



CBASIC 603 

The low-order byte of the second expression is 
stored at the memory location addressed by the 
first expression. 

Examples: 
POKE lOOH, 225 
POKE MSG.ID%, END.MARK% 

Sample Program: 
REM POKE OR PEEK AT LOCATIONS CHOSEN 

REM BY USER 

MORE% = 1 
WHILE MORE% 

INPUT "TYPE POKE; PEEK, OR QUIT"; STRING$ 

IF STRING$ = "PEEK" THEN\ 
INPUT "LOCATION?"; LOC%:\ 
VAL% = PEEK (LOC%):\ 

PRINT VAL% 

IF STRING = "POKE" THEN\ 
INPUT "LOCATION?";LOC%:\ 
INPUT "VALUE?";VALO/o:\ 
POKE LOCO/a, VAL% 

IF STRING$ = "QUIT" THEN\ 
MORE% = 0 

WEND 
STOP 

PRINT -outputs data to the console or printer. 

The PRINT statement outputs data to. the 
console or p#nter. (See the LPRINTER and 
CONSOLE statements.) 

Format: 
PRINT expression {delim expression} 

[deliml 



604 OSBORNE 1 REFERENCE GUIDE 

Expressions in the PRINT statements parameter 
list are printed. Numbers are printed in IS
character columns and are left-justified. Scien
tific notation is used if a number will not fit 
within the IS-character column width. 

Strings are printed without modifications. If 
the end of a line is reached part way through a 
numeric field, then the entire number moves to 
the next line. A string, on the other hand, may 
be broken by an automatic carriage return. The 
string is output until the end of the line is 
reached, and the remainder of the string is 
output on the next line. 

The delimiter (delim) between expressions may 
be a comma or a semicolon. A comma causes 
automatic spacing to the next column divisible 
by 20. A semicolon causes one blank to be out
put following a numeric value and eliminates 
spacing following a string. 

The delimeter at the end of a PRINT statement 
is optional; if present, the last delimeter has the 
same effect as that described earlier. No car
riage return is output if the PRINT statement 
ends in a delimeter. A delimeter at the end of a 
statement allows the next PRINT statement to 
continue where the previous one left off. If you 
use no delimeter, a carriage return and line feed 
are output at the end of the print operation. 

NOTE 

A PRINT statement with no parameter 
list outputs a carriage return and a 
line feed. 



CBASIC 605 

Examples: 
PRINT VALUE, AMOUNT 
PRINT lithe amount owed is" ; COST 
PRINT A$; B$, C$, 
PRINT 

Sample Program: 
REM PRINT X AND V USING BOTH THE, AND: 
REM DELIMETERS 

X = 123.5463 
V = 98777777765523253647.5890 
PRINT "X =",X 
PRINT "V =";V; "X =";X 
STOP 

PRINT# -outputs data to a disk file 

The PRINT# statement functions like the 
PRINT statement described earlier, except that 
output is directed to a disk file. 

Format: 
PRINT# integer expression [,integer 
expression] ; expression {,expression} 

The PRINT# statement consists of two parts: 
the file and record -selector portion, which is 
terminated with a semicolon, and a list of ex
pressions. The expressions are separated by 
commas. No comma should appear at the end 
of the list, however. 

The first expression is a number identifying the 
file to which data will be output; this file num
ber must be active and can range from 1 to 20. 



606 OSBORNE 1 REFERENCE GUIDE 

The second integer expression is optional; if 
present, it identifies the record number of a 
random-access file where data will be stored. 
When the second integer expression is present, 
the file must have been opened with the RECL 
parameter specifying record length. 

Numbers are output to a diskette without any 
change in format. Strings are enclosed in 
quotation m~lrks before being output. A string 
that is output to a diskette file may not contain 
quotation marks. Blanks are used to pad fixed
length records of a random-access file so that 
the line feed is the last character in the record. 
(See the CLOSE statement for a sample 
program). 

Examples: 
PRINT# 1; A,B,C 
PRINT# DATA % ,REC.NO% 
;NAME$,STREET$.CITY$,STATE$,ZIP 

PRINT USING-outputs formatted data 

The PRINT USING statement provides format
ted output to the console or printer. You specify 
the format using a format expression. 

Format: 
PRINT USING string expression; 

expression list 

The string expression consists of data fields that 
describe the foqnat used to output the expres
sion list. The string expression may also contain 
literal characters that are output as they occur. 



CBASIC 607 

The expression list is as described for the 
PRINT statement. String field specifications 
may be used in a PRINT USING statement. 
These PRINT USING field specifiers are 
described in the "Print Using Table" and below: 

Literal Characters: 

Characters that are not part of a string or 
numeric-field format are assumed to be literal 
characters. Blank spaces, for example, are fre
quently used to separate fields. 

Examples: 

11#### ####" 3 blanks 
separate two 
numeric 
fields. 

IINO.##########" The 3 characters 
NO. precede a 
numeric field. 

\ treats the next character in the format expres
sion as a literal character. A single literal charac
ter is defined using a \ character followed by 
the single literal character. A \ is generally used 
to print a control character as a literal. 

Examples: 

11\ #" 
"\ $\ #\ !" 
"\ \ \ \" 

Numeric Fields: 

Prints # 
Prints ##! 
Prints \ \ 

# Numeric digit 



608 OSBORNE 1 REFERENCE GUIDE 

An integer numeric field is specified by two or 
more # characters, one per character of the 
field width. Numbers are right-shifted within 
the numeric field, with blanks preceding the 
most significant digit. 

Examples: 

"###" specifies a 3-digit numeric 
field. 

"######" specifies a 6-digit integer 
numeric field. 

You specify a real numeric with a decimal point 
by placing a character within the # character 
string at the location where the decimal is to 
appear. 

Example: 

"### .##" specifies a 5-digit numeric 
field; 3 digits precede the de
cimal point and 2 follow. 

You can format numeric fields with commas 
by placing one or more characters anywhere 
between the first and last # characters. The 
position of the, character in the numeric field 
specification is irrelevant; the commas are 
positioned after every third character. 

Example: 

"## ,##### .##" specifies a number with 
8 predecimal digit 
positions and 2 post
decimal digits. A, char
acter prints every third 
digit to the left of the 
decimal point. 



CBASIC 609 

"Exponential numeric format: 

You specify exponential numeric format by 
appending one or more " characters at the end 
of the numeric field definition. The decimal
point position affects the exponent value. Four 
character positions are always added for the 
exponent. 

Example: 

"#,####"" specifies a number printed in 
exponential format with 1 
pre decimal digit and 4 
postdecimal digits. 

** Fills a numeric field with leading asterisks: 

Two asterisks appearing at the beginning of a 
numeric field fill unused leading characters 
with asterisks. 

Example: 

"**###### .##" specifies a numeric field 
with 8 pre decimal digits 
and two postdecimal 
digits. * characters 
appear in any leading 
unused position. 

$ Monetary format with dollar sign: 

A $ sign will appear in front of the first non
blank digit if the numeric field definition begins 
with two $ characters. The $ character will not 
be printed for negative numbers and cannot be 
used with * fill characters. 



610 OSBORNE 1 REFERENCE GUIDE 

Example: 

"$$######.##" specifies a numeric field 
with 8 predecimal and 2 
postdecimal digits. A $ 
sign precedes the first 
nonblank digit. 

- Marks position for a number's sign (leading 
or trailing): 

A leading negative sign is defined by a - char
acter in the first-character position of the 
numeric field definition. A negative sign at the 
end of a numeric field is specified if the - char
acter appears in the last-character position of 
the numeric field definition. 

Examples: 

"-###### .##" specifies a numeric field 
with 6 predecimal digits 
preceded by a negative 
sign for negative 
numbers, and two 
postdecimal digits. 

"######.##-" specifies a numeric field 
with 6 predecimal digits 
and two postdecimal 
digits followed 

String Variables: 

by a negative sign for 
negative numbers. 

& defines a variable-length string field. 

A variable-length string field is specified by a 
single & character. 



CBASIC 611 

Examples: 

1/&" Specifies a string field of any length. 

1/&&" Specifies two variable-length string 
fields separated by a single blank 
character. 

To define a fixed-length string field, place a / 
character in the first and last field positions. 
Any characters may appear between the first 
and last / characters. 

Example: 

"/ ..... /" specifies a 7 -character string field. 

! specifies a single string character. 

A! specifies a single-character string field. 

Example: 

I/!" prints the first character of a string field. 

Sample Program: 
REM USE PRINT USING TO PRINT A PURCHASE 
REM RECORD 

COMPANY$ = "SHANNON'S SUPPLIES" 
FIRST.NAMES$ = "LIST" 
MI$= "G" 
LAST.NAMES$ = "PATRICK" 

PARTN010f0 = 1306: PRICE1= 1304.57: QUANT10f0 =4 
PARTN020f0 = 1296: PRICE2 = 23.99: QUANT2 = 6 
CHARGE1 = PRICE 1 * QUANT1 Ofo 
CHARGE2 = PRICE2 * QUANT20f0 
TOTAL = CHARGE1 + CHARGE2 

FOR$= "RECORD OF PURCHASE BY /FFFFF/L /LLLLLLLLU" 
FROM$ = "FROM &" 
ITEMS$ = "PART /##### : ## AT ##,###.## AMOUNT:/ $$##,###.##" 

PRINT USING FOR$; FIRST.NAMES$,MI$,LAST.NAMES$ 
PRINT USING FROM$; COMPANY$ 



612 OSBORNE 1 REFERENCE GUIDE 

0<: 

:;!~ 
ffi~ 
1-0<: --< 
....J:r: 

U 

IJ1 
Cl 
....J 

ti: 
U 
i:2 
W.J 

::E 
::J 
Z 

IJ1 
Cl 
....J 
W.J 
i:L: 
U 
i:2 
W.J 
::E 
::J 
Z 

FIELD 

A single literal 
character 

Literal text and field 
separators 

Simple integer 
numeric 

Real numeric with 
decimal point 

Numeric fields with 
' characters 

Numeric field with 
exponential notation 

Numeric field with' 
in leading numeric 
character position 

Numenc field with $ 
character 

Numeric field with -
sign in first character 
position 

Numeric field with -
sign in last character 
position 

Variable-length 
string field 

Fixed-length 
string field 

Single-string field 
character 

PRINT 
PRINT USING ITEM$;PARTN010f0, QUANT10f0,PRICE1,CHARGE1 
PRINT USING ITEM$;PARTN020f0, QUANT20f0, PRICE2, CHARGE2 
PRINT 
PRINT USING "!.!.!. OWESATOTAL OF **###,###.##";\ 

FIRST.NAME$,MI$,LAST.NAME$,TOTAL 

STOP 

String-Field Specifications in IIPRINT 
USING" Statements 

FORMAT 

Ix 
where x can be any 
character. 

Any character not 
part of a string or 
numeric field 
format. 

Two or more # 
characters, one # 
character per field 
width. 

Place. character 
within # string at 
desired decimal 
point location. 

Place one or more, 
characters anywhere 
between the first 
and last # 
characters. 

Append one or more 
t characters at the 
end of the field 
definition. 

Add •• to the front 
of the field 
specification. 

Add $$ to the front 
of the field 
specification. 

Begin field specifica-
tion with - character. 

End field specifica-
tion with - character. 

A single & character. 

/ character in first 
and last character 
position. 

A single! character. 

EXAMPLE 

"1#" prints # 
"I#I#I!" prints ##! 
"1111" prints I I 

"#### ####. Three blank 
spaces separate two numeric 
fields "NO:###". The three 
characters NO: precede a 
numeric field. 

"###" specifies a 3-digit integer 
numeric field. 
"######" specifies a 6-digit 
integer numeric field. 

"###.##" specifies as-digit 
numeric field. 
3 digits precede the decimal 
point, 2 follow. 

"##,,#####,##" specifies a 
number with 7 predecimal and 
2 postdecimal digits. A , occurs 
before every third digit to the 
left of the decimal point. 

"#.####t" specifies a number 
printed in exponential format 
with 'one predecimal digit and 
four postdecimal digits. 

""###### .##" specifies a 
numeric field with 6 predecimal 
and 2 postdecimal digits, plus' 
characters in leading unused 
character positions. 

"$$###### .##" specifies a 
numeric field with 6 predecimal 
and 2 postdecimal digits, and a 
$ character preceding the first 
non blank digit. 

"-######.##" specifies a 
nume"ric field with 6 predecimal 
and 2 postdecimal digits, and a -
sign in the first character position 
for negative numbers. 

"#####.##-" specifies a - sign 
in the last character position for 
the same field. 

"&" prints a string field of any 
length. 

"/ .... .I"specifies a 7-character 
string field. 

"!" prints the first character of a 
string field. 

COMPONENT 

I is generally used to print a 
control character as· a literal. 

Most frequently, literal blank 
spaces are used to separate fields. 

Numbers are right shifted within 
the numeric field with blanks pre
ceding the most significant digit. 

Numbers are rounded. 

The position of, characters in the 
field speCification is not relevant. 

The decimal point position effects 
the exponent value. Four charac
ter positions are always added for 
the exponent. 

This is used in financial printouts. 

$ is not printed for negative num
bers. $$ cannot be used with '*. 

Normally the - sign precedes the 
first non-blank character. The 
leading - cannot be used with •• 
or $$ options. 

Any characters may appear 
between the first and last /. 

From CBASIC" User Guide by Adam Osborne, Gordon Eubanks, and Martin McNiff. Copyright 1981 McGraw-Hili Inc. 
Used with permission of OSBORNE/McGraw-HilI. 



CBASIC 613 

PRINT USING# -outputs formatted data to disk file 

The PRINT USING# statement outputs format
ted data to disk files. See the PRINT# and 
PRINT USING statements for details on for
matted printing and printing to disk files. 
(See table on previous page.) 

RANDOMIZE-seeds a random-number generator 

The RANDOMIZE statement is used to seed 
the random-number generator. 

Format: 
RANDOMIZE 

The time an operator takes to respond to an 
INPUT statement is used to seed the random
number generator. Thus, an INPUT statement 
must be executed before the RANDOMIZE 
statement. 

Example: 
RANDOMIZE 

Sample Program: 

REM GUESSING GAME 

INPUT "GUESS A NUMBER BETWEEN 0 
AND 100"; GUESS% 

RANDOMIZE 
NUMBER% = 1 00 * RND 



614 OSBORNE 1 REFERENCE GUIDE 

COUNT% = 1 
WHILE GUESS% < > NUMBER% 

IF GUESs%>NUMBEROfo THEN PRINT "TOO LARGE"\ 

ELSE PRINT "TOO SMALL" 

INPUT "NEXT GUESS?"; GUESS% 
COUNT% = COUNT% + 1 

WEND 

PRINT "YOU GUESSED IT IN";COUNT%; "TRIES" 
INPUT "DO YOU WANT TO TRY AGAIN (YIN)?"; AGAIN$ 
IF AGAIN$ = "Y" THEN GOTO 100 

STOP 

READ-assigns values from DATA statements to variables 

The READ statement assigns values taken from 
DATA statements to variables in the READ 
statement parameter list. (See the DATA and 
RESTORE statements.) 

Format: 
READ variable {,variable} 

The next unused item from the list of constants 
compiled by concatenating all data-statement 
parameters is assigned to the next variable in 
the READ statement parameter list. (See the 
DATA statement for a sample program.) 

Examples: 
READ COST1,COST2,COST3 
READ TABLE (10/0) 

READ # - reads data from disk files 

The READ# statement is used to read data 
from disk files. 



Format: 

CBASIC 615 

READ# integer exp [,integer exp] ; 
variable {,variable} 

The first expression is the file number for 
which data will be read; this file number must 
be active and range from 1 to 20. The second in
teger expression is optional and identifies the 
record number of a random-access file from 
which data will be read. If the second integer 
expression is present, the file must have been 
opened with the REeL parameter specifying 
record length. 

When an attempt is made to read past the end 
of a file, execution continues with the state
ment number specified by the most recently ex
ecuted IF END# statement having the same file 
number. If no IF END statement was executed, 
an error occurs. (See the OPEN statement for a 
sample program.) 

READ# LINE- reads a disk file string and assigns it to a 
variable 

The READ# LINE statement reads a record 
from a selected diskette file and assigns it to a 
string variable. The READ# LINE statement 
acts like the READ# statement. 

Format: 

READ# integer exp [,integer exp] ; 
LINE string variable 

The first integer expression selects the file. The 
second integer expression, if present, selects 



616 OSBORNE 1 REFERENCE GUIDE 

the record for a random-access file. These ex
pressions are used as described for the READ# 
statement. 

The string read from the selected record is as
signed to the string variable. If the length of 
the record is greater than 255 bytes, the record 
is shortened to 255 characters and a warning is 
printed on the console. 

REM-indicates a remark 

The REM statement is used to document 
programs. This statement is ignored by the 
CBASIC compiler. 

Format: 
REM any character 

CBASIC object size is not affected by REM 
statements, since these statements are ignored 
by the compiler. REM statements can be split 
across lines using a \ character. If a REM state
ment shares a line with other statements, then 
REM must be the last statement on the line. 

RESTORE-resets the data-list pointer 

The RESTORE statement is used to reset the 
pointer into the DATA statement's list of con
stants so that the next value read by a READ 
statement will be the first item in the first 
DATA statement. 

Format: 
RESTORE 



CBASIC 617 

Sample Program: 

REM READ AND PRINT THE DATA LIST 
DATA 123.987,42 "MORE DATA", "EVEN MORE DATA" 

READ REAL.NUM, INT. NUMo/(}, STRING1 $, STRING2$ 
PRINT REAL.NUM; STRING1 $, INT.NUM%; STRING2$ 

RESTORE 
READ REAL.AGAIN, INT.AGAIN% 
PRINT REAL.AGAIN, INT.AGAIN% 
STOP 

RETURN - returns program execution from a subroutine to the 
calling program 

The RETURN statement causes execution of the 
program to continue with the statement follow
ing the most recently executed GOSUB. The 
RETURN statement also causes an exit from a 
user-defined function. 

Format: 
RETURN 

Each GOSUB statement saves the location of 
the statement following it. Program execution 
returns to the saved location after the sub
routine has completed execution. (See the 
GOSUB, ON GOSUB, and DEF statements.) 

SAVEMEM- reserves space for a file 

The SAVEMEM statement loads an assembly
language program from diskette into memory. 

Format: 
SAVEMEM integer constant, string expression 



618 OSBORNE 1 REFERENCE GUIDE 

The integer constant specifies the number of 
bytes of memory to reserve for the file being 
loaded. Space is reserved at the top of available 
memory. You can calculate the beginning ad
dress of the reserved area by subtracting the 
integer constant from the largest available 
address. 

The string expression identifies the file to be 
read. Records are read from the file until an end 
of file is encountered or until the next record to 
be read would exceed the specified memory 
size. If the string expression is null or if the 
integer constant is less than 128, space is 
reserved, but no file is loaded. 

Only one SAVEMEM statement may appear in 
a program; if the first program executed con
tains a SAVEMEM statement, any chained pro
gram associated with it must also include a 
SAVEMEM statement. The associated chained 
programs must have the same integer constant 
but a different file may be loaded by each 
chained program. 

Examples: 
SAVEMEM 1028, "IOPACK.COM" 
SAVEMEM 128,"" 

STOP -stops program execution 

The STOP statement causes program execution 
to stop. Control is returned to the operating 
system (CP/M). 

Format: 
STOP 



CBASIC 619 

NOTE 

Any OPEN files will be closed. 

WEND - terminates a WHILE loop 

The WEND statement terminates a WHILE 
statement loop (see the WHILE statement). 

Format: 

WEND 

WHILE- initiates the WHILE-WEND loop 

The WHILE statement controls looping between 
the WHILE statement and its corresponding 
WEND statement. 

Format: 

WHILE integer expression 

Looping continues until the integer expression 
is a 0 (false). The loop may contain any number 
of statements, including additional WHILE 
statements. If the expression is false initially, 
then no statements in the loop execute. (See 
RANDOMIZE for a sample program.) 

Examples: 

WHILE AMOUNT < = MAX 
WHILE -1 REM LOOP FOREVER 



620 OSBORNE 1 REFERENCE GUIDE 

CBASIC Functions 
There are three kinds of functions: numeric, string, and disk. 
The function name further identifies it as an integer, a real, or a 
string function. If the function requires an expression, then the 
normal CBASIC expression rules apply. If an integer expression 
is required, real values are automatically converted to integers. 
Likewise, integer expressions are converted to real expressions 
where necessary. Numeric expressions in string functions 
generate a run-time error; so do string expressions in numeric 
functions. Avoid conversions by using the proper form for the 
expression since this improves program execution speed. 

ABS- returns absolute value 

The ABS function returns the absolute value of 
the argument. 

Format: 
ABS (numeric expression) 

Examples: 
X=ABS(Y) 
DIFF=ABS(COST-PROFIT) 

ASC-returns an ASCII value 

The ASC function returns the ASCII integer 
value for the first character of the argument. 
Only the first character is considered. If the ex
pression is evaluated as a null string or if the 
argument is numeric, an error will occur. 

Format: 
ASC (string expression) 



CBASIC 621 

Examples: 
10/0 = ASC(STRINGS) 

FIRSTO/o = ASC(FIRST.NAMES) 

ATN-returns the arctangent of the argument 

The ATN function is used to return the arctan
gent of an argument. The argument must be ex
pressed in radians. The value returned is a real 
number. The arctangent returned can be used 
to compute various inverse trigonometric 
functions. 

Format: 
ATN (numeric expression) 

Examples: 
ANGLE = ATN(X) 
ASIN = ATN(X/SQR(1.0 - X*X») 

CHR$-returns the ASCII string equivalent of the argument 

The CHR$ function converts the argument to 
its one-character ASCII string equivalent. The 
CHR$ function can be used to send control 
characters to an output device. If the argument 
is greater than 255, the high -order byte is 
ignored. 

Format: 
CHRS (numeric expression) 



622 OSBORNE 1 REFERENCE GUIDE 

Examples: 
BELL$ = CHR$(7) 
STOP.CHAR$ = CHR$(STOp%) 

COMMANDS-returns the command line 

The COMMAND$ function returns the com
mand line used to execute the current program. 
The name of the program being executed will 
not be included in the string that is returned. 
If the TRACE option is used with CRUN, the 
word TRACE and the associated line numbers 
will not be included. 

Format: 
COMMAND$ 

The COMMAND$ function allows options to 
be passed to the CBASIC program when it is 
executed. The COMMAND$ function may be 
used anywhere and anytime within a program, 
including programs loaded by a CHAIN 
statement. 

CONCHAR %-returns the binary equivalent of a character 
input at the console device 

The CONCHAR % function reads one character 
from the console input device and returns an 
integer equal to the binary representation of 
that character. 

Format: 
. CONCHAR% . 



CBASIC 623 

The character that is read back is echoed to the 
console display device by the CONCHAR % 
function. If no character has been entered at 
the console, a zero is returned. (See the 
CONSTAT% function.) 

Examples: 
ANSO/o = CONCHAR% 
IF CONCHAR% = ESC% THEN DONE% 
= TRUE% 

CONSTATO/o-returns console status 

The CONSTAT% function returns an integer 
expression to indicate console status. A logical 
true (-1) signifies that the console is ready. If a 
logical false (0) is returned, the console device 
does not have a character ready. 

Format: 
CONSTAT% 

Examples: 
IF CONSTAT% THEN ANS% = CONCHAR% 
XO/o = CONSTAT% 

COS-returns the cosine of the argument 

The COS function returns the cosine of the 
argument. The argument must be expressed 
in radians, and the value returned is a real 
number. 

Format: 
COS (numeric expression) 



624 OSBORNE 1 REFERENCE GUIDE 

Example: 
x = COS(ANGLE) 

EXr -returns the exponent of the argument 

The EXP function returns the value of the con
stant raised to the power of the argument. The 
value returned is a real number. 

Format: 
EXP (numeric expression) 

Examples: 
POWER= EXP(X*X-y*y) 
E=EXP(l) 

FLOAT - converts the argument to a real number 

The FLOAT function converts the argument to a 
real number. If the argument is already a real 
number, FLOAT converts it to an integer and 
then back to a real number. 

Format: 
FLOAT (numeric expression) 

Example: 
X= SIN(FLOAT (1% » 

FRE- returns the amount of available data memory 

The FRE function returns the number of avail
able memory bytes in the dynamic or free 



CBASIC 625 

storage area. The value FRE returns is a real 
number. Free storage may consist of two or 
more noncontiguous memory blocks. 

Format: 
FRE 

Example: 
SPACE.REMAINING=FRE 

INP - returns a byte from an I/O port 

The INP function returns a byte from a selected 
input/output port. An integer that is the value 
read from the port addressed by the argument 
is returned. 

Format: 
INP (integer expression) 

Examples: 
DEV.l 0/0= INP(23) 
TAPE. STATUS %= INP (TAPE.Sp%) 

INT - returns the integer portion of the argument 

The INT function truncates the fractional por
tion of the argument and returns the integer 
portion. The value returned by INT is a 
floating-point number; if the argument is an 
integer, it is converted to a real value. 

Format: 
INT(numeric expression) 



626 OSBORNE 1 REFERENCE GUIDE 

Examples: 
DOLLARS= INT(TOTAL.DUE) 
CENTS= TOTAL-INT(TOTAL.DUE) 

INT%-converts the argument to an integer 

The INT% function converts the argument to 
an integer. The difference between INT and 
INT% is that the result of INT is a real number, 
while the result of INT% is an integer. If the ar
gument is an integer, it is converted to a real 
number and then back to an integer. 

Format: 
INT% (numeric expression) 

Examples: 
KO/o= INTO/o(SIZE) 
LENGTH= DIMENSION (lNT%(X)) 

LEFT$- returns leftmost characters of the argument 

The LEFT$ function returns characters from the 
left of a string argument. 

Format: 
LEFT$ (string expression, numeric expression) 

The numeric expression specifies the number of 
characters returned. If the number of characters 
that is to be returned is greater than.the length 
of the string, the entire string is returned. If 
the numeric expression is zero, a null string is 
returned. If the expression is negative, an error 
will occur. 



CBASIC 627 

Examples: 
RESPONSE= LEFT$(ANS$,l) 
PRINTLEFT$ 
(NAMES$,MAX.NAME.LENGTHO/o) 

LEN - returns the length of an argument 

The LEN function returns the length of a string 
argument. The value returned by LEN is an in
teger, a zero is returned if the value is a null 
string. An error occurs if the argument is 
numeric. 

Format: 
LEN (string expression) 

Examples: 
LENGTH.NAMEO/o= LEN(NAME$) 
IFLEN(TEMP$) >= MAX. L %THEN GOTO 100.00 

LOG- returns the natural logarithm of the argument 

The LOG function returns the natural or 
Naperian logarithm of the argument. The LOG 
function can be used to calculate logarithms to 
other bases. The value returned is real. Integer 
arguments are converted to real numbers before 
the logarithm is computed. An error occurs if 
the argument is negative or zero. 

Format: 
LOG (numeric expression) 

Examples: 
BASE. TEN .L= LOG(X)/LOG(lO) 
Z=LOG(W) 



628 OSBORNE 1 REFERENCE GUIDE 

MATCH-searchs a string for a match 

The MATCH function returns the position of 
the first occurrence of a pattern string within a 
source string, beginning at a specified position 
in the source string. 

Format: 

MATCH (string exp, string exp, numeric exp) 

The first string expression argument is the pat
tern, the second expression argument is the 
source string. The integer argument specifies 
the character position in the source string 
where the search is to begin. The search pro
gresses from the starting position to the end of 
the source string, attempting to match the pat
tern specified in the first expression. If a match 
occurs, the position of the first matching char
acter in the source string is returned. If no 
match occurs, a zero is returned. 

The following special pattern-matching charac
ters are provided: 

# A pound sign matches any numeric digit 
(0-9). 

! An exclamation mark matches any upper
case or lowercase letter (A-Z and a-z). 

? A question mark matches any character. 

\ A backslash indicates that the character 
following the backslash does not have a 
special meaning. Thus, a backslash before a 
# I!' ? I or another backslash character will 
override the definition above and result in 
the character being treated as a normal 
pattern character. 



CBASIC 629 

If either string expression is null, a zero is re
turned. If the beginning point for the match is 
greater than the length of the source string, a 
zero is returned. If the numeric expression is 
zero or negative, an error will occur. 

Examples: 
MATCH ("CDE", "ABCDEFGHI", 1) returns 3 
MATCH ("CDE", "ABCDEFGHI", 3) returns 3 
MATCH ("CDE", "ABCDEFGHI", 4) returns 0 
MATCH (IID?F", "ABCDEFGHI", 1) returns 1 
MATCH ("\ #1 \ \ \ ?", "1#1\ ?2#", 1) returns 2 

MID$- returns a portion of a string 

The MID$ function returns a string that may 
be any portion of another string. MID$ can ac
complish the same function as either RIGHT$ 
or LEFT$, but, in addition, MID$ can return a 
string from the middle of another string. 

Format: 
MID$ (string exp, numeric exp, numeric exp) 

A portion of the first string expression is re
turned. The second expression specifies the 
starting position of the string to be returned. 
The third expression specifies the length of the 
string to be returned. If the third expression 
speCifies a character position beyond the end of 
the string, then characters from the position 
specified by the second argument, up to the 
end of the string, are returned. A null string is 
returned if the starting position specified by 
the second expression is greater than the length 
of the string, or if the third expression is zero. 



630 OSBORNE 1 REFERENCE GUIDE 

NOTE 

An error occurs if either numeric ex
pression is negative, or if the second 
one is zero. 

Examples: 
MIDDLE$= MID$(NAME$,START .MN%, LENGTH.MN%) 
DAY$= MID$("MOTUWETHFRSASU", DAY% 3-2,3) 

PEEK-returns the contents of a selected memory location 

The PEEK function returns the contents of the 
memory location addressed by the function 
argument. 

Format: 
PEEK (numeric expression) 

The numeric expression is a memory address. 
The PEEK function returns an integer value 
equal to the contents of the addressed memory 
location. The memory location must be within 
the address space of the computer, or the 
results will be meaningless. For memory loca
tions greater than 32767, the address must be 
negative; in this case the address could be ex
pressed in hexadecimal notation for clarity. 

Examples: 
BDOSO/o=PEEK(6) +PEEK(7) 256 
ENTRY%= PEEK(OEOOH) 
PARM1 0/0=PEEK(LOC.P1 %) 



CBASIC 631 

POS-returns the column position of the next print character 

The pas function returns the character number 
for the next character to be displayed or printed 
on the current line. 

Format: 
POS 

pas returns the number of characters to the 
output device. Cursor control characters are 
also counted even when the cursor has not 
been advanced. Thus, if the cursor has been po
sitioned by special characters or nonprinting 
control characters have been output, the pas 
function does not return the actual cursor 
position. 

Examples: 
PRINT TAB (POS+3);"#" 
LOC.CURSOR 0/0= POS 

RENAME-changes the name of a disk file 

The RENAME function changes the name of a 
disk file. 

Format: 
RENAME (string expression, 

string expression) 

The first string expression is the new file name. 
The second string expression is the current file 
name. The RENAME function returns an in
teger value of a (false) if the RENAME cannot 
be accomplished and a -1 (true) if the 
RENAME is successful. 



632 ,OSBORNE 1 REFERENCE GUIDE 

NOTE 

The file being renamed must not be open 
or an error will occur when the file is 
closed. 

Examples: 
IF RENAME ("MASTER.CUR", "MASTER.TMP")=OTHEN GOTO 500 
X%=RENAME(NEW.NAME$,OLD.NAME$) 

RIGHT$-returns the rightmost character of the argument 

The RIGHT$ function returns the rightmost 
characters of a string. 

Format: 
RIGHT$ (string expression, 

numeric expression) 

The numeric expression specifies the number 
of rightmost characters of the string to be 
returned. If the number of characters to be re
turned is greater than the length of the string 
expression, then the entire first argument is re
turned. If the numeric expression is 0, a null 
string is returned. A negative numeric expres
sion causes an error to occur. 

Examples: 
CHECK.DIGIT$= RIGHT$(ACCOUNT.NOS$,l) 
LAST .NAME= RIGHT$(NAME$,LEN(NAME$)-LEN(FIRST .NAME$) 



CBASIC 633 

RND-returns a random number 

The RND function returns a random number 
between 0 and 1. 

Format: 
RND 

The RND function generates the next random 
number in a sequence that is based on the cur
rent seed. The value returned is a real number. 
The RANDOMIZE statement must be executed 
to generate a seed and a random-number 
sequence. 

Example: 
PRINTRND 

SADD-returns the starting memory address of a string 

The SADD function returns the starting 
memory address of the string currently as
signed to the string variable. The first byte of 
the string is the length of the string. Subse
quent bytes hold characters of the string. 

Format: 

SADD (string variable) 

The string variable cannot be a string expres
sion. The value returned by SADD is an 
integer. A zero is returned for a null string 
unless the null strings have previously been 
assigned a test value. 



634 OSBORNE 1 REFERENCE GUIDE 

Examples: 
LOC.PARMO/o=SADD(NAME$) 
PTRO/o+SADD(A$) 

SGN - returns the sign of the argument 

The SGN function returns -1, 0, or 1, depend
ing on whether the argument is negative, 
zero, or positive respectively. 

Format: 
SGN (numeric expression) 

NOTE 

The value returned is an integer. 

Examples: 
IF SGN(TOTAL)= -1 THEN G9TO 200.20 
ON SGN(X) + 2 GOTO 10, 20, 30 

SIN -returns the sine of the argument 

The SIN function returns the sine of the 
argument. 

Format: 
SIN (numeric expression) 

The argument must be expressed in radians. 
The value returned is a real number. 



CBASIC 635 

Example: 
X=SIN(ANGLE) 

SIZE-returns the amount of reserved space 

The SIZE function returns the amount of space 
reserved by a file or a group of files. 

Format: 
SIZE (string expression) 

The string expression may be an ambiguous 
file name or the name of one file within the 
directory. Ambiguous file names allow the pro
grammer to determine the space being used 
by all of the files whose names have common 
characters. If no files within the directory 
match the expression, a 0 is returned. The size 
function returns an integer; the value returned 
is the number of blocks that the file is using. 
Each block is 128 bytes. 

Examples: 
AMOUNT$+ SIZE(WORKFILE) 
10/0= SIZEe'*.BAK") 
FREE. SPACE % = DISK. CAPACITY%- SIZE (" *. *") 

SQR-returns the square root of the argument 

The SQR function returns the square root of 
the argument. 

Format: 
SQR (real expression) 



636 OSBORNE 1 REFERENCE GUIDE 

The SQR function returns a real number. If the 
argument is negative, a warning appears on the 
console, and the absolute value of the argument 
is used in calculating the square root. 

Examples: 
HYP= SQR(X*X + Y*Y) 
PRINT SQR(X) 

STR$-returns a character string 

The STR$ function returns a text character that 
is the ASCII equivalent of the argument. 

Format: 
STR$ (real expression) 

The STR$ function converts a real number into 
its string equivalent. For example, the real num
ber 1.234 would convert to the string "1.234". 

Examples: 
A$=STR$(X) 
PRINT STR$ (ZIP) 

TAB-positions the cursor 

The TAB function is used to position the cursor 
at the character position the argument 
specifies. 

Format: 
TAB (integer expression) 



CBASIC 637 

The TAB function can be used only in PRINT 
statements. The cursor or printer, depending 
on whether LPRINTER is in effect, moves to 
the right of the selected column. The TAB does 
not move backwards. If the expression is less 
than the current cursor position, a new line 
starts and the TAB then occurs. 

If the argument exceeds the line width of the 
device receiving output, an error occurs. A 
semicolon should be used following a TAB; a 
comma could cause additional spacing. 

Examples: 
PRINTTAB(START.COLO/o)i NAME$ 
PRINT XiTAB(30)iY 

NOTE 

The TAB function counts characters 
output since the last carriage return 
and line feed. This could differ from the 
current cursor line position. Differences 
result if the program has output non
printing control characters or charac
ters that move the cursor. 

U CAS E$-converts a string to uppercase characters 

The UCASE$ function is used to convert a 
string to its uppercase equivalent. 

Format: 
UCASE$ (string expression) 



638 OSBORNE 1 REFERENCE GUIDE 

The value UCASE$ returns is a string. All 
lowercase alphabetic characters in the argu
ment are converted to uppercase characters. 
Other characters remain unaltered. 

Examples: 
U .CITY$= UCASE$(CITY$) 
X$= UCASE$(X$) 

VAL-converts a string to a real number 

The VAL function converts a string to a real 
number. 

Format: 
VAL (string expression) 

The VAL function converts a string to its real 
numeric equivalent. The string must be a valid 
text representation of a real number. For exam
ple, the string 1/1.234" is converted into the real 
number 1.234. The first character of the string 
must be a number or a plus or minus sign. An 
error is generated if the string includes any 
character that is not part of a valid real number. 
Zero is returned for a null string. 

Examples: 
X=VAL(A$) 
PI= VAL("3.1416") 

Compiler Directives 
Compiler directives control the compiler (CBAS2.COM). Except 
for the END statement, all directives are preceded by a percent 
sign in the first column. The compiler ignores any nondirective 
characters on the same line. 



CBASIC 639 

%LIST Begins listing a source file when it is encountered 
during compilation. 

%NOLIST Terminates listing of the source file initiated by 
%LIST. 

%PAGE <constant> Sets page length output to the printer. 
The default page length is 64. 

%EJECT Positions listing sent to the printer and disk at the top 
of the following page. 

%INCLUDE <file name> Causes named file to be compiled 
into the source file. %INCLUDE may be preceded by a drive 
identifier if needed. The file referenced by %INCLUDE must be 
of type .BAS. Each statement number in the referenced file is in
dicated by an equal sign after its assigned statement number. 
%INCLUDE(s) may be nested up to six levels. 

%CHAIN <constant>, <constant>, <constant> Sets the size 
of the main programs-constant, code, data, and variable area 
-to prevent overwrites. The first constant is the area used for 
real constants, the second is the size of the code area, the third 
is used to store value from DATA statements, and the fourth is 
the size of the area used to store variables. 

[ statement number>] END The END statement is optionally 
used to terminate reading of the source file. This statement must 
be the first on a line to cause all statements following it to be 
ignored. 

Compiler Toggles 
You set compiler toggle switches by following the program file 
name with a blank, a dollar sign, and the desired letters as 
follows: 

B Suppresses program listing to the console during compila
tion. (Default is OFF.) 



640 OSBORNE 1 REFERENCE GUIDE 

C Suppresses generation of an .INT file. Saves time when 
compiling for errors. (Default is OFF.) 

D Suppresses translation of lowercase to uppercase letters. 
(Default is OFF.) 

E Lists line numbers where errors have occurred. Toggle E 
must be ON when you use TRACE. (DEFAULT IS OFF.) 

F Sends the compiled output listing to the list device as well 
as the console. (Default is OFF.) 

G Sends a compiled output listing with the same name as 
the source, but of type .LST, to a disk file. A drive iden
tifier may be appended in parentheses after the toggle 
code. (Default is OFF.) 

Examples: 
B:CBAS2 A:ACCOUNTS $BGF 
CBAS2 PAYROLL $(G)EC 

Cross-Reference Lister 
(XREECOM) 
The utility program XREF.COM creates a disk file that lists al
phabetically every identifier used in a CBASIC program. The list 
indicates the usage of the identifiers (function, parameter, or 
global) and lists each line on which the identifier was used. 
Functions appear first in the list, with associated parameters 
and local variables immediately following. 

Format: 
XREF < file name > [disk ref] [$< toggles>] [' < title >'] 

The named source file must be of type .BAS. By default, the 
listing is sent to the disk on which the source file is located. A 



CBASIC 641 

drive identifier after the file name sends the cross-reference file 
to the drive specified. 

A file created by XREF has the same name as the source, but 
adds the extension .XRF. The standard output is 132 columns 
wide. You can use toggles in the XREF command to direct out
put of the cross-reference listing. A blank space, a dollar sign, 
and the following toggle letter codes direct output of the XREF 
file: 

A Outputs the cross-reference file to the list device and 
disk file. 

B Suppresses output to the disk. No output is produced if 
you specify only B. 

C Suppresses output to the disk but permits output to the 
list device. This toggle has the same effect as specifying 
A and B. 

D Produces 80-column output instead of 132. 

E Produces output of identifiers and their usage without line 
numbers. 

F(n) Lets you change the default page length (60 lines) to n. 

G Suppresses form-feeds and printing of heading lines. 

H Suppresses translation of lowercase to uppercase letters. 

The optional 'TITLE' field must be the last on the command line. 
The characters indicated. between the apostrophes are printed as 
the heading for each page. You can specify up to 30 characters 
when the output width is set to 132, and 20 if the column width 
is set to 80. 



642 OSBORNE 1 REFERENCE GUIDE 

TRACE 
The TRACE option allows run-time debugging of a program by 
printing the compiler-assigned line number of each statement as 
it is executed. 

Format: 
CRUN2 <filename> [TRACE] <Ln1> [,<Ln2>] ]] 

You must have used the E toggle in the source program in order 
for TRACE to work. The first number specifies the line number 
where tracing should begin and the second number specifies 
where tracing should end. You can use the first number alone to 
begin tracing at any desired line. If you don't specify a line 
number, the entire program is traced. 

Example: 
CRUN2 EXAMPLE TRACE 1,3 

would cause the following output: 

AT LINE 0001 
AT LINE 0002 
AT LINE 0003 



MBASIC 



644 OSBORNE 1 REFERENCE GUIDE 

Special Control Characters 

"G 
"H 
"I 
"J 
"0 
"R 
"S 
"Q 
"U 
"x 
<RETURN> 
<ESC> 

&Oor& 
&H 

? 

enters EDIT mode on current line or previously 
typed line. 

interrupt program execution; returns to BASIC 
command level. 

rings bell. 
deletes last character entered. 
advances to next tab stop (every 8 columns). 
divides logical line into physical lines. 
halts/resumes program output. 
retypes current line. 
suspends program execution. 
resumes execution following "S. 
deletes current line. 
deletes current line. 
ends every program line. 
leaves EDIT mode subcommands. 
defines current line for EDIT, RENUM, 

DELETE, LIST, LLIST. 
serves as a prefix for octal constant. 
serves as a prefix for hexadecimal constant. 
separates statements entered on the same line. 
serves as a PRINT statement equivalent. 

MBASIC Commands 

AUTO - automatically generates line numbers 

The AUTO command sequentially numbers 
program lines following each carriage return. 

Format: 

AUTO [line number [, increment] ] 



MBASIC 645 

Line numbering begins with the number fol
lowing AUTO and is incremented as specified 
by the next number; the default value for both 
is 10. The increment value specified by the most 
recent AUTO command is adopted when you 
use a comma but no increment value. 

An asterisk appears when AUTO generates an 
existing line number indicating that the con
tents of the existing line will be replaced. A car
riage return typed after the asterisk skips the 
existing line and generates the next line num
ber. "C terminates AUTO without saving the 
current line and returns to the command level. 

Examples: 
AUTO 15,5 Generates line numbers 

15,20,25,30,35 ... 
AUTO Generates line numbers 

10,20,30,40,50 ... 

CLEAR- reallocates memory space 

The CLEAR command is used to set numeric 
variables to zero, string variables to null, and, 
optionally, to set the end of memory and 
amount of stack space. 

Format: 
CLEAR [, [ < expression>] [, < expression>] ] 

The first expression, if present, sets the highest 
memory location available for use. The second 
expression reserves stack space. The default 
stack space setting is either 256 bytes or an 
eighth of the available memory, depending on 
which is smaller. 



646 OSBORNE 1 REFERENCE GUIDE 

Examples: 
CLEAR ,32554 Sets highest memory 

to 32554 
CLEAR ,,2999 Sets stack size 

to 2999 
CLEAR ,32554,2999 Sets highest memory 

to 32554 and stack 
size to 2999 

CONT -resumes program execution 

The CaNT command causes execution of the 
current program to continue following "C, 
STOP, or END statement. 

Format: 
CO NT 

Execution continues where it left off when a 
CaNT command is issued. If execution halted 
following a prompt for an INPUT statement, the 
prompt is redisplayed. CaNT is usually used 
with STOP to examine and change values or to 
resume execution following an error. 

Example: 
(See STOP statement.) 

DELETE -deletes program lines 

The DELETE command erases program lines 
between the first and second line numbers 
listed. 



MBASIC 647 

Format: 

DELETE [< first line number> ] 
[ < second line number> ] 

You can delete program lines from the begin
ning of the file to any desired line number by 
following DELETE with a hyphen and the last 
line to be eliminated. The command level al
ways returns following execution of a DELETE 
command. If a nonexistent line number is 
referenced, an "Illegal function call" error 
occurs. 

Examples: 

DELETE 10 
DELETE 10-50 
DELETE -100 

EDIT -enters edit mode 

The EDIT command lets you edit a specified 
program line. Once in the edit mode you use 
subcommands to move the cursor, insert, 
delete, replace, or search for data. 

Format: 

EDIT <line number> 

When you issue the EDIT command, the speci
fied line number is listed followed by a space. 
Alternatively, I\A can be used to enter the edit 
mode for the line currently being written. 
When I\A is issued, the edit mode is indicated 
by a carriage return and an exclamation mark. 
If a syntax error occurs during program execu
tion, the edit mode is automatically entered. 



648 OSBORNE 1 REFERENCE GUIDE 

A number may precede many of these subcom
mands, indicating that the command should 
execute that many times; (n) represents any 
number. The editing subcommands are sum
marized below: 

(n) SPACE moves the cursor right (n) 
number of characters. 

(n) ~ or "H moves cursor left (n) number 
of characters (destructive in insert mode). 

(n) D deletes (n) number of characters to 
the right of the cursor. 

I (string) inserts the specified (string) at the 
cursor position. 

H (string) deletes all characters right of the 
cursor and inserts the specified (string). 

X (string) moves the cursor to the end of 
the line and inserts the specified (string). 

(n) S (target) finds the (n)th occurrence of 
the specified (target) character. 

(n) K (target) deletes all characters to the 
(n)th occurrence of the specified (target) 
character. 

(n) C (list) changes the next (n) characters 
to the specified (list) of characters. 

A restores original line for reediting. 

L lists the remainder of the line and 
repositions the cursor at the beginning. 

Q abandons the edit mode and returns to 
the command level without saving changes. 

RETURN saves the newly edited line and 
exits from the edit mode. 

E saves the newly edited line without 
displaying the remainder. 



MBASIC 649 

NOTE 

If you enter an unrecognized edit 
subcommand or parameter, the bell will 
ring. 

FILES-lists files on the currently active drive 

The FILES command is used like the CP/M 
DIR command to view a directory of the files 
residing on the current disk. 

Format: 

FILES [< filename> ] 

You can list all files or a specific file on the ac
tive drive, or you can view a category of files. 
The standard CP/M wildcard conventions can 
be used. 

Examples: 

FILES 
Files *.BAS 
Files MBASIC.BA? 

LIST -lists program lines 

The LIST command causes specified program 
lines to be listed on the screen. 

Format: 
LIST [<line number> [ -[<line number>]]] 



650 OSBORNE 1 REFERENCE GUIDE 

Typing the LIST command while you are in the 
command mode provides a listing of all pro
gram lines in memory. A single line number or 
a range of lines between a first and second line 
number may be listed. A hyphen used in place 
of either the first or the second line number 
lists all program lines beginning or ending at 
the indicated line number. 

Examples: 
LIST 
LIST 10 
LIST 10-100 
LIST -50 
LIST 50-

LLIST -prints program lines 

The LLIST command causes specified program 
lines to be listed at the printer instead of at the 
console. 

Format: 
LLIST [<line number> [-[ <line number> 11] 

The LLIST command functions exactly as the 
previously described LIST command, except 
that the printer serves as the output device. 

LOAD-loads a program file 

The LOAD command causes a named disk file 
to be loaded in memory. 

Format: 

LOAD <file name> [,Rl 



MBASIC 651 

The file name is the name under which the file 
was saved and whose default extension, . BAS, 
is supplied by CP/M. When LOAD is issued, all 
files are closed and memory is cleared before 
the specified file is loaded. The R option leaves 
data files open and automatically runs the 
newly loaded program. You use the R option to 
chain programs that share common data. 

Example: 
LOAD IJNEWFYL", R Assumes file type of . BAS 

MERGE-combines two programs 

The MERGE command references and combines 
a disk file with the program in memory. 

Format: 

MERGE <filename> 

The file name is the name you assigned to the 
file when you saved it. Only files saved in 
ASCII format may be merged, or else a "Bad file 
mode" error will occur. CP/M automatically fur
nishes a . BAS-type extension. Lines in the file 
being merged replace those in the calling file if 
line numbers are duplicated. The command 
mode returns following a MERGE command. 

Example: 
MERGE IJDATAFYL" 



652 OSBORNE 1 REFERENCE GUIDE 

NAME- renames a file 

The NAME command renames a disk file. 

Format: 
NAME <old filename> AS <new filename> 

You list the name of the file to be renamed first, 
followed by AS and the new name that will 
identify the file. If the old file name does not 
exist, or if the new file name is already being 
used, an error occurs. 

Example: 
NAME 1I0LDFYL" AS "NEWFYL" 

NEW - deletes current program from memory 

The NEW command deletes all variables and 
clears the current program from memory. 

Format: 
NEW 

Issue NEW to clear memory and prepare for a 
new program to be loaded. This command is 
'usually used on unwanted files or ones that 
have already been saved. The command mode 
returns following the NEW command. 

Example: 
NEW 



MBASIC 653 

NULL- sets the number of nulls to follow each program line 

The NULL command establishes the number 
of nulls that are to· follow each line in the 
program. 

Format: 
NULL < integer expression> 

The integer expression signifies the number of 
nulls output after each line. The default value is 
zero. You should use 0 or 1 for most 1200-baud 
or parallel printers, 2 or 3 for 30-cps hard copy 
printers, and 3 or larger for 10-character-per
second tape punches or typewriter printers. 

Examples: 
NULL 2 

RENUM - renumbers program lines 

The RENUM command sequentially renumbers 
program lines. 

Format: 
RENUM [[ <new number>] [ ,[ <old number>] [ ,<increment.] ]] 

The new line number replaces the old line 
number, which is incremented as specified. By 
default, line numbering begins with the first 
line number of the program, starting with line 
10 and incremented by 10. The newly specified 
line numbering is also supplied for all existing 
statements that reference lines by their old 
numbers. Line numbers cannot be renumbered 
out of sequence or extend beyond 65529 or an 
"Illegal function call" will occur. 



654 OSBORNE 1 REFERENCE GUIDE 

Examples: 
RENUM 
RENUM 300,,50 
RENUM 1000,900,20 

RESET -closes files and updates the directory 

The RESET command closes all open disk files 
and updates the directory information. 

Format: 

RESET 

You should normally issue RESET before 
removing a diskette to ensure that all files 
have been closed and to maintain an accurate 
directory. 

RUN-executes a program 

The RUN command executes either the pro
gram currently in memory or a program stored 
in a disk file. 

Format: 

RUN <line number> 

The above format executes the program in 
memory. Optionally, the program may be ex
ecuted from a specific line number specified 
after the command. 



MBASIC 655 

Format: 
RUN <file name> [,Rl 

This form of the RUN command executes a par
ticular program stored in a disk file. When the 
file is loaded, all other files are closed and 
everything residing in memory clears. The R 
option can be used to leave data files in 
memory in an open condition. 

Examples: 
RUN 100 
RUN"ANYFILE" ,R 

SAVE-saves named file 

The SAVE command saves the contents of 
memory to a named disk file. 

Format: 
SAVE"<file name>" [,A] [,P] 

You can save the contents of memory under any 
valid file name. CP/M automatically supplies a 
default-type extension of . BAS if you don't 
supply it. If the name you assign to the file 
already exists, the contents of the existing file 
are written over. 

Files are saved in binary format; however, you 
can save the file in ASCII format by placing a 
comma and the letter A after the file name. You 
can protect the file from unauthorized access 
by appending P to the end of the statement. 
The P option prevents lines in the program 
from being subsequently listed or edited. 



656 OSBORNE 1 REFERENCE GUIDE 

Examples: 
SAVE IJCOMFYL", A 
SAVE IJPROGRAM", P 
SAVE IJBINARY" 

Saves ASCII 
Saves protected 
Saves binary 

SYSTEM-closes files, then relinquishes control to CP/M 

The SYSTEM command causes all open files to 
be closed, updates the directory, and returns to 
the CP/M command level. Note: I\C does not 
exit from MBASIC-80 to CP/M. 

Format: 
SYSTEM 

TRO NITRO FF - enables/disables tracing 

The TRON command is used to turn tracing 
ON. When tracing is ON, the line number cur
rently being executed appears within brackets. 
Execution of a TROFF or NEW command turns 
tracing OFF. 

Formats: 
TRON 

TROFF 



Example: 
TRON 
AUTO 10,10 
10A=5 
20 PRINT A 
30 END 
40l\C 
RUN 
[10][20]5 
[ 30] 
TROFF 

WIDTH-sets line width 

MBASIC 657 

The WIDTH command establishes the length 
of lines displayed on the screen or optionally 
output to the printer. 

Format: 
WIDTH [LPRINT] < integer expression> 

This command affects the width of lines dis
played at the console. The optional LPRINT 
clause sets the width of lines output to the 
printer. The integer expression specifies the 
number of characters, ranging between 15 and 
255, that occupy a line; the default line width is 
72. A line width of 255 is considered infinite, so 
carriage returns do not occur automatically at 
the end of lines. When you position the 
printhead or cursor using the pas or LPaS 
functions, it returns to zero after reaching 
position 255. 

Examples: 
WIDTH 52 
WIDTH LPRINT 255 



658 OSBORNE 1 REFERENCE GUIDE 

MBASIC Statements 

CALL-links to an assembly-language subroutine 

The CALL statement transfers program flow to 
an assembly-language subroutine. 

Format: 
CALL <variable name> [«argument list»] 

The variable name contains the starting 
memory address for the subroutine, and it can
not be an array variable name. The argument 
list holds arguments passed to the subroutine. 
The argument list cannot contain literals. 

Example: 

10 ROUTINE= &HDOOO 
20 CALL ROUTINE (I,J ,K) 

CHAIN-passes variables between programs 

A CHAIN statement transfers control and then 
passes variables to a referenced program. 

Format: 
CHAIN [MERGE] <filename> [,[<line number>] [,ALL] 
[,DELETE <range>] ] 

The file name identifies the program being 
referenced. The line number or expression 
evaluates to the line where execution of the 
called program begins. If you omit the line 
number or expression, execution begins at 
the first line. 



MBASIC 659 

If you use the ALL option, all variables are 
passed to the called program. You have to use 
a COMMON statement in conjunction with 
CHAIN when passing partial variables. 

The MERG~ option lets you bring in a sub
routine as an overlay. A MERGE operation is 
performed with the current and the called pro
grams. The called program must be an ASCII 
file if it is to be merged. 

To remove an overlay so another overlay can be 
brought in, use the DELETE option. The line 
numbers specified in the range are modified 
accordingly by RENUM. 

NOTE 

The MERGE option leaves files open 
and preserves the current OPTION 
BASE setting. If MERGE is omitted, 
CHAIN does not preserve variable 
types or user-defined functions. 

Examples: 
CHAIN IIPROG" 
CHAIN IIPROG", 30, ALL 
CHAIN MERGE IIPROG", 30 
CHAIN MERGE IIPROG",30, DELETE, 30-110 



660 OSBORNE 1 REFERENCE GUIDE 

CLOSE-closes disk files 

The CLOSE statement concludes input and 
output to disk files. 

Format: 
CLOSE [ [#] <file number> [/[ #] <filenumber ... >]] 

The same number under which a file was 
opened is used to close the file. The closed file's 
number is released and may subsequently be 
used to open another file. If you don't specify a 
file number, all files are closed. 

A CLOSE statement issued' for a sequential 
output file writes the final buffer of output. 

NOTE 

Files automatically close when the com
puter encounters an END statement or 
a NEW command. 

Examples: 
CLOSE #1 
CLOSE 
CLOSE FILE.1,FILE.2 Where FILE.1 and 

FILE.2 are valid 
variables that con
tain the appropri
ate file numbers. 



MBASIC 661 

CO MM 0 N - specifies common variables 

The COMMON statement specifies simple 
and subscripted variables that are retained in 
a common area of memory and are passed 
between chained programs. 

Format: 
COMMON <list of variables> 

Common statements should appear at the 
beginning of the program. You cannot use the 
same variable in more than one COMMON 
statement. To specify an array variable, append 
opened and closed parentheses" ()" to the 
variable name. 

NOTE 

If you use the BASIC compiler, you 
must declare common arrays in preced
ing DIM statements. 

Example: 
10 COMMON A,B,C,D(),G$ 
20 CHAIN ~/PROGRAM.TYP", 10 



662 OSBORNE 1 REFERENCE GUIDE 

DATA-holds a data list within a program 

DATA statements define string and numeric 
constants, which are stored until you assign. 
them to variables through READ statements. 

Format: 

DATA <list of constants> 

You can use DATA statements anywhere in a 
program to list string, integer, or real constants. 
Any number of DATA statements are permissi
ble, each occupying one line exclusively. You 
can list as many constants, delimited by com
mas, that can fit on a line. The constants from 
all of the DATA statements are stored in 
memory in the same sequential order in which 
they appear in the program. These constants 
are then· assigned to variables within the READ 
statements being executed. 

Constants in DATA statements and variables in 
READ statements that reference them, must be 
of the same type. The list of constants can con
tain any combination of numeric formats except 
numeric expressions. String constants that con
tain commas, colons or leading/trailing blanks 
must be surrounded by quotation marks. An at
tempt to read past the available data constants 
will cause an error. 



MBASIC 663 

NOTE 

The RESTORE statement can be used 
to reset the data pointer, causing the 
data to be reread. 

Example: 
110 DATA 1, 2, 2.1, 22.1 
111 DATA "Sample, with comma", Sample 
without comma 

DEF FN - defines user-written function 

The DEF FN statement is used to define and 
name a function that the user writes. 

Format: 
DEF FN <name> [«parameter list»] = <function definition> 

The function name must be a valid variable 
name preceded by the letters FN. The parame
ter list contains variable names that correspond 
to those used by an expression in the function 
definition. When the named function is refer
enced, the values in the parameter list are sub
stituted for the variable names in the function 
definition. Each variable name in the parameter 
list must be set off from the next by a comma. 

The function definition consists of an expres
sion,' that when referenced, performs the re
quired operation. Variables in the expression 
are interpreted only in the context of the func
tion. If the variable is not explicitly stated in 
the parameter list, the current value of the 
variable is assumed. 



664 OSBORNE 1 REFERENCE GUIDE 

User-defined functions can be either string or 
numeric. When a type is specified in the func
tion name, the value of the expression is forced 
to match it before returning to the calling file. If 
the type of the function name and the argu
ment are different, then a "TYPE MISMATCH" 
error' will occur. An error also occurs if the DEF 
FN is not executed prior to the function it 
defines. 

Example: 
100 DEF FNEF (X,Y)=X 1\2+ Y 1\2 
110 A=FNEF (3,4) (A wquld equal 25 in 

this example.) 

DEF INT/SNG/DBL/STR-de!ines variable types 

The DEF statement identifies variable names 
that begin with a predetermined letter as being 
either integer, single- or double-precision, or 
string-type variables. 

Format: 
DEF < type> < range(s) of letters> 

The type is defined as INT (integer), SNG 
(single-precision), DBL (double-precision), or 
STR (string). The range of letters listed after 
the type declaration identify variable names 
that begin with the indicated letters as being 
a specific type of variable. However, type
declaration characters have precedence over 
these DEF statements in the typing of variables. 
Undefined variables without declaration 
characters are assumed to be single-precision 
variables. 



Example: 
100 DEFSTR A-F 
110DEFDBL G 
120 DEFINT H-M, N-S 

MBASIC 665 

DEF USR-defines assembly subroutine entry point 

The DEF USR statement defines the starting 
address of an assembly-language subroutine. 

Format: 
DEF USR [< digit>] = < starting address> 

A digit from 0 to 9 corresponds to the number 
of the USR routine whose starting address fol
lows; USR 0 is assumed if no digit is specified. 
You can use any number of DEF USR state
ments in a program to redefine subroutine 
starting addresses so as many subroutines as 
necessary can be accessed. 

Example: 
100 DEF USR9= 2200 
110 A= USR9 (X 1\2/2.14) 

DIM-allocates storage for an array 

The DIM statement allocates storage for an ar
ray and defines the upper limit of each sub
script; a lower-bound limit of zero is assumed. 

Format: 
DIM <list of subscripts> 



666 OSBORNE'} REFERENCE GUIDE 

The subscript list indicates the number and 
extent of dimensions for the array being 
declared. The minimum value of a subscript is 
considered to be a unless an OPTION BASE 
statement designates otherwise. Subscripted 
variables that are not dimensioned have an 
upper-bound limit of 10. If a subscript larger 
than the value specified in the DIM statement 
is encountered, a "Subscript out of range" error 
occurs. 

Example: 
10 DIM X(20) 
20 FORY=O to 20 
30 READ X (Y) 
40NEXTY 

END- terminates program execution 

The END statement halts program execution, 
closes all files, and returns to the command 
level. 

Format: 
END 

You may place END anywhere in the program 
to terminate program execution. An END 
statement is not required at the end of a file. 

Example: 
10 IFA=20THEN END ELSE GOTO 20 



MBASle 667 

ERAS E-eliminates specified arrays 

The ERASE statement erases previously 
defined arrays. Following their erasure, the 
space occupied by the arrays is released, and 
you can use it to redimension the arrays. 

Format: 
ERASE <array variable list> 

If you make an attempt to redimension an array 
without first erasing it, a "Redimensioned 
array" error will occur. 

Example: 
10 ERASE X,Y 
20 DIMY(50) 

ERROR-allows user-defined error codes or simulates error 

The ERROR statement allows error codes to 
be defined, or may be used to simulate the 
occurrence of a specified error. 

Format: 
ERROR < integer expression> 

The value of the integer expression must be 
between 0 and 255. To define an error code, 
specify a value greater than any existing 
MBASIC error codes. An error-trapping routine 
can then handle the user-defined error code. 
Errors are simulated, with an integer expres
sion corresponding to the desired MBASIC 
error code, which causes the associated error 
message to be printed. If the ERROR statement 
references a code for which no error message 
has been designed, an "Unprintable error" 



668 OSBORNE 1 REFERENCE GUIDE 

message appears. If no error-trap routine is as
sociated with the error, then an 'error message 
appears and execution is terminated. 

Examples: 
10 ON ERROR GOTO 100 
20 INPUT "TYPE A NUMBER FROM 1 TO 10"; N 
30 IF N<l or N>10THEN ERROR 200 

ERR and ERL-serve as variables in error routine 

The ERR and ERL variables direct program flow 
in an error-handling subroutine. The ERR vari
able contains the error code, and ERL lists the 
line number where the error was detected. 

Format: 

IF ERR = error code THEN .. . 
IF ERL = line number THEN .. . 

Since ERR and ERL are reserved variables, they 
cannot be placed to the left of the equal sign in 
a LET statement. The applicable error codes 
are listed in the section on MBASIC error 
messages. 

FIELD-defines a field in a random file buffer 

The field statement allocates space for variables 
in a random file buffer. A FIELD statement 
must execute before you can use a GET or PUT 
statement to extract or insert data in the ran
dom file buffer. 

Format: 

FIELD [ # ] < file number> ,< field width> AS < string variable> 



MBASIC 669 

The same number used to open the file iden
tifies the file whose variable fields are to be 
defined. The number of character spaces to be 
reserved in the buffer for the string variable is 
determined by the field width. The total num
ber of bytes allocated by the field width cannot 
be larger than the record length specified when 
the file was opened. As many field statements 
as necessary can execute for the same file, with 
all being in effect simultaneously. 

NOTE 

Variables whose fields have been al
located should not be used in INPUT or 
LET statements. Once a variable field 
is defined, any subsequent input will 
move the pointer in the random file 
buffer. 

Example: 
FIELD #1,5 AS FIRSTS, 10 AS SECONDS 

FO R . . . NEXT - establishes loop parameters 

The FOR statement defines an index, estab
lishes an initial and terminal inde~ value, and 
initiates a loop. The NEXT statement diverts 
execution back to the corresponding FOR 
statement. 



670 OSBORNE 1 REFERENCE GUIDE 

Format: 
FOR < index> = < initial> TO< terminal> [ STEP< degree> J 

NEXT [< index> J [,< index> ... J 

The index is used as the counter and must be 
an un.subscripted variable. The initial value of 
the counter is established by the first numeric 
expression, with the terminal value being spec
ified by the second expression. The counter is 
either increased or decreased each time the 
loop is completed and incremented by one 
unless modified by STEP. 

You can use the STEP option to increment the. 
index by degree. A positive STEP value causes 
the loop to be executed until the index value ex
ceeds the terminal value. STEP can be negative, 
however, in which case the index is decrement
ed until the counter value is less than the initial 
value. You can nest FOR/NEXT loops, as long as 
each has its own unique index variable. 

The NEXT statement causes the associated 
FOR statement to execute until the loop is ter
minated. If you use an index variable, it must 
match the index variable in the corresponding 
FOR statement. More than one FOR/NEXT loop 
may be terminated by a single NEXT statement 
listing all the index variables. If no index vari
able is listed, the most recently encountered 
FOR statement is terminated. When you nest 
FOR/NEXT loops, the NEXT statement for the 
inside loop must appear before that for the 
outside loop. 



MBASIC 671 

Example: 
10A=1 
20 FOR A=1 to 1000 STEP 2 
30 PRINT A 
40 NEXT A 

GET - reads record from random disk file 

<---. 
: Loop 

The GET statement reads a random-disk file 
record into a random buffer. 

Format: 
GET [#l <file number> [,<record number>l 

The file number is the number you assign to 
the file when you open it. The specified record 
number is read into the buffer, where an 
INPUT# or LINE INPUT# statement can sub
sequently access it. If no record number is 
indicated, the next sequential record following 
that most recently read is assumed. The highest 
record number that can be read is 32767. 

Example: 
GET #1, 17*1+1 

GOSUB ... RETURN -executes a subroutine 

The GOSUB statement directs program 
execution to the beginning line number of a 
subroutine. The RETURN statement causes 
execution to continue with the statement after 
the most recent GOSUB. 



672 OSBORNE 1 REFERENCE GUIDE 

Format: 

GOSUB <line number> 

RETURN 

A subroutine can be referenced many times, 
and, if necessary, from within another sub
routine. Nesting of subroutines is limited only 
by available memory. More than one RETURN 
statement may be located in a subroutine, each 
executing a return where needed. Subroutines 
should be preceded by a STOP, END, or GOTO 
statement to prevent unintentional execution. 

Example: 
10 GOSUB40. 
20 PRINT "Executing main program again" 
30 END 
40 PRINT "This is the SUBROUTINE" <--------. 
50 RETURN < -------- Subroutine 

GOTO-branches as specified 

The GOTO statement causes program execu
tion to continue, beginning at a specified line. 

Format: 

GOTO <line number> 

Program execution is diverted to the indicated 
line number and continues with the first 
executable statement. 



Example: 
10 READ A 
20 PRINT "A=";A, 
30 B=3.14 * A"2 
40 PRINT "AREA=" ;B 
50 GOTO 10 
60 DATA 1, 2, 3,4,5 

MBASIC 673 

<---------

Note: Endless loop caused by GOTO 10 

IF(GOTO)-THEN-ELSE-directs conditional branch 

An IF-THEN-ELSE statement either branches to 
a particular line number or executes a group of 
statements, depending on the value of an ex
pression. An IF-GOTO-ELSE statement func
tions in the same manner but is strictly for 
branching to a specific line number. 

Formats: 
IF < expression> THEN [< statements>] or 

<line number> 
[ELSE] [<statements>] or <line number> 

IF < expression> GOTO < line number> 
[ELSE] <statements> or <line number> 

When the conditional expression following IF is 
true (not zero), execution of the line number or 
group of statements following THEN (or line 
number after GOTO) takes place. When the 
expression is false (zero), the next executable 
statement is processed. The ELSE option may 
execute a group of statements or branch to a 
specific line. 



674 OSBORNE 1 REFERENCE GUIDE 

Nesting of IF (THEN, GaTa) ELSE statements 
is limited only by line length. When you use 
multiple ELSE clauses, the closest THEN or 
GaTa statement is matched. 

Examples: 
IF STATE> 49 THEN HAWAII = NAMEN 
IF STATE = 48 THEN ALASKA = NAMEN 

ELSE GOTO 410 
IF (HOT=TRUE) GOTO 7734 

INPUT -assigns data to variables 

The INPUT statement prompts for data on 
the screen to be entered and, subsequently, 
assigned to variables. 

Format: 
INPUT [;l [</lprompt string">;l 

< list of variables> 

A semicolon following INPUT prevents a car
riage return entered via the keyboard from 
being echoed as a line feed. The prompt string 
is an optional message (in quotes) that requests 
the appropriate data during program execution. 
In the absence of a prompt, a question mark is 
displayed indicating that data is expected. The 
semicolon after the prompt string is necessary, 
but you can use a comma in its place to sup
press the prompt question mark. 

Variables to be defined are listed at the end of 
the INPUT statement. The data items supplied 
for a given variable are separated by commas. 
Data entered in response to the prompt is as
signed sequentially to the variable list. The 



MBASIC 675 

number of data items must correspond to the 
listed number of variables. The type of data 
item must agree with the type of variable. If 
the data entered is the wrong type or does not 
match the number of listed variables, the 
message Redo from start" appears. 

Example: 
10 INPUT upick a number and get one free"; A 
20 PRINT A uPLUS 1 IS"; A+1 
30 END 

INPUT# -assigns stored data to variables 

The INPUT# statement reads data from a disk 
file and assigns it to variables. 

Format: 
INPUT# <file number>, <variable list> 

The file number identifies which disk file con
tains the data to be assigned to the variable list. 
The data items should be stored in the file as if 
entered at the keyboard. Numeric values are 
delimited by a space, carriage return, linefeed, 
or comma. String items are delimited in the 
same way but may be enclosed in quotes if one 
of these delimiters is intended for the string. A 
data item cannot exceed 255 characters. If end
of-file is reached while inputting data, remain
ing item(s) are ignored. 

Example: 
10 OPEN uI", #1, uDATA" 
20 INPUT#1,N$, D#, H$ 
30 IF RIGHT$ (H$,2)= u78"THEN PRINT N$ 
40 GOTO 20 



676 OSBORNE 1 REFERENCE GUIDE 

INSTR-searches for a given string 

INSTR looks for the first occurrence of a string 
in another string and returns its position. The 
string to be searched is listed first, followed by 
the string portion being searched for. An op
tional offset can precede both of these strings 
to define the starting position of the search. 
INSTR returns a 0 if starting position is null or 
greater than the string being searched, or if 
the string being searched for cannot be found. 
If the string being searched for is null, a 1 is 
returned. 

Format: 
INSTR ([ position] ,<search string>, 

< string being searched» 

Example: 
10 A$ = "SEARCH STRING" 
20 B$ = "S" 
30 PRINT INSTR (4,A$,B$) 
RUN 
8 

INT - returns the integer portion of the argument 

The INT function eliminates the fractional por
tion of the argument and returns the integer 
portion. If the argument is a real number, it is 
first converted to an integer and then converted 
back to a real number. 



MBASIC 677 

Format: 

INT « numeric expression> ) 

Example: 
PRINT INT (9.8) 

KILL-deletes a disk file 

The KILL statement deletes a given file from 
the current diskette. 

Format: 
KILL <filename> 

Only closed files may be eliminated with the 
KILL. If KILL is specified for an open file, a 
"file already open" error will occur. You can ex
punge any type of file with the KILL statement. 

Example: 
100 KILL "DATA.FYL" 
110 KILL "data.fyl" <------ Useful for 

eliminating 
lowercase 
file names 

LET - assigns value to variable 

The LET statement assigns the value of an 
expression to a variable. 

Format: 
[ LET] <variable> = < expression> 

The word LET is optional and may be omitted; 
the equal sign itself denotes an assignment. 



678 OSBORNE 1 REFERENCE GUIDE 

Example: 
10 LET A=12 
20 B=A+1 

LINE INPUT -assigns data to a string variable 

The LINE INPUT statement asks for a line of 
data that, when entered via the keyboard, is 
assigned to a string variable. 

Format: 
LINE INPUT [i] [,"prompt string"] 

,<string variable> 

LINE INPUT may be followed by a semicolon, 
in which case the carriage return used to enter 
the line is not echoed. The prompt string is a 
literal that appears on the screen asking for the 
line to be input. The line entered at the key
board can be up to 254 characters long. The 
input line is entered by following it with a car
riage return. You can use "C to escape from a 
LINE INPUT statement and return to the com
mand level, if necessary; CONTresumes execu
tion at the LINE INPUT. 

Example: 
10 LINE INPUT, AS 
20 LINE INPUT i "NAME" iNS 

LINE INPUT # - reads line from disk file 

The LINE INPUT# statement reads a line up to 
254 characters long from a sequential disk file 
and assigns this data to a string variable. 



MBASIC 679 

Format: 

LINE INPUT# <file number>, <string variable> 

The file number identifies the file containing 
the data to be assigned to the string variable. 
The data for one LINE INPUT# statement is 
delimited from the next by a carriage-return 
linefeed. You usually use LINE INPUT# when 
you've broken lines of a data file into fields or 
when a program is reading an ASCII-saved 
program file into another program. 

Example: 
10 LINE INPUT#2, B$ 

LPRINT -outputs data to the line printer 

The LPRINTand LPRINT USING statements 
perform the same action as the PRINT 
[USING] statements, except that data is out
put to the printer instead of on the screen. 

Format: 

LPRINT [< list of expressions> ] 

Lines printed through the LPRINT statement 
assume a 132-character-wide line. 

LSET -stores left-justified data in random file buffer 

The LSET statement transfers data from 
memory to a random file buffer, or you can 
use it with a nonfielded string variable to 
left-justify a string in a given field. 



680 OSBORNE 1 REFERENCE GUIDE 

Format: 
LSET < string variable> = < string expression> 

LSET left-justifies a string expression in a cor
responding string variable. If the string exceeds 
the field length, the material on the right is 
truncated. If numeric values are to be affected, 
you must first convert them to a string, using 
an MK (I,S,D)$ function. 

Example: 
10 LSET A$= MKS$(MAX) 
20 LSET B$= "JOHN DOE" 

MID$- replaces portion of a string 

The MID$ statement substitutes characters in 
an existing string with replacement characters. 

Format: 
MID$ «string exp1>,n [,m] )=<string exp2> 

The characters in the first string expression, 
beginning at the nth character position, will be 
replaced with the characters in the second ex
pression. You can use the m parameter to sig
nify the number of characters involved in the 
replacement. A MID$-initiated replacement 
may never exceed the character length of the 
original expression. 

Example: 
10 A$= "1981" 
20 MID$(A$,4)="2" or 
MID$ (A$,3 ,2) = "82" 
30 PRINTA$ 



MBASIC 681 

ON ERROR GOTO-enables error-trap routine 

The ON ERROR GOTO statement executes an 
error-handling subroutine when an error is 
encountered. 

Format: 

ON ERROR GOTO <line number> 

ON ERROR GOTO enables error trapping. 
When an error is encountered following this 
statement, the error-handling subroutine begin
ning at the specified line number executes. To 
disable error trapping so subsequent errors halt 
execution and display the appropriate error 
message, execute an ON ERROR GOTO 
a statement. You can disable error trapping 
within an error-handling subroutine when you 
expect errors for which you haven't formulated 
a recovery action. 

Example: 
10 ON ERROR GOTO 500 

ON GOTO (GOSUB)-conditional branch 

The ON GOTO statement directs program ex
ecution to one of several line numbers, depend
ing on the value of an expression. The ON 
GOSUB statement conditionally executes a sub
routine, beginning at one of several line num
bers, depending on the value of an expression. 

Formats: 
ON <expression> GOTO <list of line numbers> 

ON <expression> GOSUB <list of line numbers> 



682 OSBORNE 1 REFERENCE GUIDE 

The expression value determines which of the 
line numbers will execute: fractions are round
ed. If the expression is zero, or greater than the 
number of items in the list (without exceeding 
255), the next valid statement is executed. 
If the value of the expression is negative or 
greater than 255, an "illegal function call" error 
occurs. Use a RETURN statement to terminate 
each subroutine. 

Example: 
10 ON A % GOTO 100,200,300, 
20 ON BO/o GOSUB 400,100,200 

OPEN - activates an existing file 

The OPEN statement allows I/O operations to 
be performed on a named file. When this state
ment is executed, buffer space is allocated for 
the indicated file, and the mode of access to be 
used with the buffer is defined. 

Format: 

OPEN <mode>, [#] <file number>, <file name>, [<reelen>] 

The first character of a string expression indi
cates the desired mode of access. The letter 0 
indicates a sequential output mode, I indicates 
a sequential input mode, and R indicates either 
a random input or output mode of access. The 
file number may be 1, 2 or 3. To open files num
bered from 4 to 15, reinitialize with A> MBASIC 
/F: (4-15). In all cases the file must be currently 
unoccupied. You will subsequently use the as
signed file number to access the file. The file 



MBASIC 683 

name is the name you gave to the file when 
you saved it. The default record length is 128 
bytes, but you can alter it by specifying a 
length at the end of the statement. A file you 
open for sequential input or random access can 
occupy more than one file number; however, a 
file opened for output can be associated with 
only one file number. 

OPTION BASE-declares subscript array value 

The OPTION BASE statement declares the min
imum value for an array subscript. The default 
base value is 0, and the highest base value 
possible is 1. 

Format: 
OPTION BASE (1 or 0) 

Example: 
OPTION BASE 1 

OUT - sends byte to port 

The OUT statement outputs a specific byte of 
data to a hardware output port. 

Format: 
OUT <port>, <byte> 

The integer expression, representing the port 
and byte of data to be output, must range 
between 0 and 255. 



684 OSBORNE 1 REFERENCE GUIDE 

NOTE 

The Osborne 1 uses memory map I/O; 
the OUT instruction is used strictly for 
switching banks. (See the chapter on 
system specifications in the User 
Guide.) 

Example: 
10 OUT 20, 100 

POKE-writes byte in memory 

The POKE statement writes a specific byte of 
data to memory address. 

Format: 
POKE < address>, <byte> 

The memory address to be referenced precedes 
the byte of data to be written. The address must 
be in the range of 0 to 65536, and the specified 
byte must range between 0 and 255. POKE is 
usually used in association with the PEEK 
function. 

Example: 
10 POKE &H5AOO, &HFF 

PRINT - outputs data to the console 

The value of each expression listed in a PRINT 
statement is displayed on the screen. 



MBASIC 685 

Format: 
PRINT [< list of expressions> ] 

Numeric and string expressions listed in 
the PRINT statement are evaluated and then 
printed on the screen. String expressions 
must be surrounded by quotation marks. If 
no expression is listed, a blank line is output. 

You dictate the format of printed values 
through the use of punctuation characters. 
Each line is divided into print fields of 14 
spaces each. A carriage return is output at the 
end of each PRINT statement line unless you 
suppress it with a comma or a semicolon. A 
comma after an expression indicates that the 
next value printed should start in the next field. 
Spaces or a semicolon after an expression mean 
that the next value to be printed should con
tinue immediately after the value before it. 
When a comma or semicolon terminates the 
statement, the values printed for one PRINT 
statement may continue with those from 
another. 

Positive numbers are printed with a leading 
space, while negative numbers are preceded 
by a minus sign; all numbers are followed by 
a space. Single-precision numbers that can be 
represented with less than 6 digits or double
precision numbers that can be represented with 
less than 16 digits are so printed. 

NOTE 

A question mark may be substituted for 
the word PRINT. 



686 OSBORNE 1 REFERENCE GUIDE 

Example: 

10A=10 
20 PRINT "TEN PLUS ONE EQUALS"; 

A+l 
(or? IITEN PLUS ONE EQUALS"; A+l) 

30 END 

PRINT USING-prints formatted data 

The PRINT USING statement outputs format
ted data on the screen. 

Format: 

PRINT USING < string expression> ; 
< expression list> 

The string expression consists of data-field 
specifiers and possible literals enclosed in 
quotation marks. These field specifiers define 
the format to be used when values for the ex
pression list are output. Each expression in the 
list is delimited by a semicolon and will be 
printed in the specified format. String-field 
specifications used to define formatting are 
described below: 

Literal Characters: 

Characters that are not part of a string- or 
numeric-field format are assumed to be literal 
characters. Blank spaces, for example, are fre
quently used to separate fields. You can ex
plicitly identify a character as a literal by 
preceding it with a slash character (\). 



MBASIC 687 

Examples: 

PRINT USING "### ###";A$ 
PRINT USING "NO: ###";B$ 
PRINT USING "\ $"; C 

Numeric Fields: 

Numeric integer fields are indica ted by one # 
character per digit. Specify a real numeric with 
a decimal point by placing the period where 
you need it. You can format numeric fields with 
commas by positioning them anywhere in the 
field. The position of the comma is irrelevant, 
since it will appear after every third character. 

Examples: 

PRINT USING "###.##"; A 
PRINT USING "# # # # ,# # # #"; B 

You can specify exponential numeric format by 
appending one or more carets (1\) to the end of 
the numeric-field definition. The decimal-point 
position affects the exponent's value, since four 
character positions are always added for the 
exponent. 

Example: 

PRINT USING "#.####1\"; A 

You can pad a numeric field with leading as
terisks. A dollar sign will appear in front of the 
first nonblank digit if the numeric-field defini
tion begins with two dollar signs ($$). You can 
place a leading or trailing minus sign wherever 
you want it. 



688 OSBORNE 1 REFERENCE GUIDE 

Examples: 

PRINT USING 11**##### .##";A 
PRINT USING 11$$####.##"; B 
PRINT USING 11_#####"; C 

String Variables: 

Specify variable-length fields with ampersands. 
A fixed -length field is defined by a slash (I) 
before and after it. An exclamation indicates a 
single-character string field. 

PRINT USING# -outputs data to disk 

The PRINT# and PRINT USING# statements 
function like the PRINT and PRINT USING 
statements, except that the data is written to a 
sequential disk file. 

Format: 

PRINT# <filenumber>, 
[USING <string exp>;] <list of exps> 

The file number is the number you assigned to 
the file when you opened it. The string expres
sion consists of the field specifiers you need for 
formatting. The numeric or string expressions 
in the list will be written to the specified disk 
file. An exact image of the data is output, so 
pay careful attention to the use of formatting 
specifiers. 

PUT -writes data from buffer to disk 

The PUT statement writes a record from a 
random buffer to a random disk file. 



MBASIC 689 

Format: 
PUT [#] <file number> [,<recordnumber>] 

The file number assigned to the disk file when 
you opened it references the file in this state
ment. The file number is followed by the num
ber of the record to be written. The record 
number can range between 1 and 32767. You 
usually use a PUT statement to recover data 
stored in the buffer by a PRINT#, PRINT 
USING#, orWRITE# statement. 

Example: 
PUT #3,4 

RANDO MIZE - seeds random-number generator 

The RANDOMIZE statement is used to seed 
the random-number generator. 

Format: 
RANDOMIZE [<expression>] 

The expression indicates the number to be 
seeded and may range from -32768 to 32767. 
If you omit it, program execution stops, the 
message "Random Number Seed ( -32768 to 
32767)?" is displayed; execution resumes when 
you supply this number. If not reseeded, the 
RND function will return the same sequence of 
random numbers. 

Example: 
LIST 
5 PRINT"START?"; 
10 DUMMY$=INKEY$ 
15 S=S+1 



690 OSBORNE 1 REFERENCE GUIDE 

20 IF 5=32769! THEN 5= -32768! 
25 IF DUMMY$< >"Y" THEN 10 
30 RANDOMIZE 5 
35 FOR A=1 TO 50 5TEP 2 
40 PRINT INT(RND*100)i 
45 NEXT A 

READ - assigns values to variables 

READ statements extract values from DATA 
statements and assign them sequentially to 
variables. 

Format: 

READ <list of variables> 

The numeric and string values in DATA state
ments are assigned sequentially to READ state
ment variables in the same order in which they 
appear in the program. The type of listed 
variables must match the data values used. One 
READ statement may read more than one 
DATA statement, and a single data statement 
may supply variables for multiple READ 
statements. If there are more READ variables 
than DATA items, an "Out of data" error oc
curs. If there are fewer READ variables than 
DATA items, variables are read from the next 
READ statement, if present, or are ignored. 

NOTE 

Use RESTORE statement for reading 
data from the start of a program. 



Example: 
10 FOR A=1 TO 10 
20 READ B (A) 
30 NEXT A 
40 DATA I, 2, 3, 4, 5, 6, 7 
50 DATA 8, 9, 10 

REM - indicates a remark 

MBASle 691 

All characters to the right of a REM statement 
are considered remarks and are ignored by 
program execution. 

Format: 
REM < any characters> 

You can continue a REM statement on the fol
lowing line by using a backslash. You can use 
these statements as a target when branching 
execution through the use of a GOTO or 
GOSUB statement. Indicate remarks in mid
line with an apostrophe (') instead of the state
ment word REM. 

Example: 
REM COMPUTING THE MEAN 
REM EQUIVALENT 
REM' MEANING THE COMPUTER 
REM EQUIVALENT 

RESTORE-restores data-list pointer 

The RESTORE statement provides a method by 
which DATA statements can be read, beginning 
at any location in the program. 



692 OSBORNE 1 REFERENCE GUIDE 

Format: 
RESTORE [<line number>] 

Execution of the RESTORE statement causes 
subsequent READ statements to access data 
beginning with the first DATA statement or a 
specified line number. 

Examples: 
RESTORE 
RESTORE 20 

RESUME- resumes execution after an error routine 

A RESUME statement is located in an error-trap 
routine to cause the resumption of execution 
following an error-recovery procedure. 

Format: 
RESUME [0] [NEXT] [<linenumber>] 

Both RESUME and RESUME 0 cause execution 
to resume with the statement where the error 
occurred. RESUME NEXT resumes execution 
with the statement following the one that 
caused the error. You can specify a line number 
where execution should resume. 

RSET -stores right-justified data in a random file buffer 

The RSETstatement transfers data from mem
ory to a random file buffer, or you can use 



MBASIC 693 

it with a nonfielded string variable to right
justify a string in a given field. 

Format: 
RSET < string variable> = < string expression> 

RSET right-justifies a string expression in a cor
responding string variable. If the string exceeds 
the field length, characters are dropped from 
the right. Numeric values must be converted to 
string in order to be affected. 

Example: 
90 A$= SPACES (10) 
100 RSET A$= B$ 

S TO P - terminates program execution 

When the STOP statement is encountered, pro
gram execution is halted and control returns to 
the command level. 

Format: 
STOP 

A STOP statement may appear anywhere in a 
program to terminate execution. When execu
tion halts with STOP, the message "Break in 
line " appears, indicating the number 
of the last line executed. Execution may be 
continued with a CONT statement. 

Example: 
STOP 



694 OSBORNE 1 REFERENCE GUIDE 

SWAP -exchanges variable values 

A SWAP statement is used to exchange the 
value of one variable for that of another. 

Format: 
SWAP <variable>, <variable> 

Single-precision, double-precision, string, or 
integer variables may be exchanged. The swap
ped variables must, however, be of the same 
type or a "Type mismatch" error will occur. 

Example: 
5WAPA$,B$ 

WAIT - suspends execution and monitors port status 

The WAIT statement temporarily halts program 
execution while the status of a hardware port is 
evaluated. Execution resumes when a particu
lar bit pattern is achieved. 

Format: 
WAIT < port number>, I [ ,J] 

The port number is exclusive OR'ed with the 
expression J, and then AND'ed with I. If J is 
omitted, its value is assumed to be 1. The port 
data is read repeatedly until the value is other 
than 0, in which case the next executable state
ment is processed. (This statement has little 
utility on the OSBORNE 1.) 



MBASIC 695 

NOTE 

If an infinite loop occurs, the machine 
must be reset. 

Examples: 

WAIT 32,3 
WAIT 32,3,2 

WHILE/WEND-performs a conditional loop 

The WHILE portion of the statement initiates 
the loop, which is repeated until the value of 
the expression is false (0). The WEND portion 
of the statement terminates the loop when the 
expression is deemed true (not zero). 

Format: 

WHILE < expression> 

WEND 

Looping continues until the value of the ex
pression is zero. The loop may contain any 
number of statements, including other 
WHILE/WEND statements. When WHILE/ 
WEND statements are nested, each WEND 
matches the most recent WHILE. When the 
expression is evaluated as other than zero, 
execution continues with the statement follow
ingWEND. 



696 OSBORNE 1 REFERENCE GUIDE 

Example: 
WHILE AMOUNT <=MAX <---------
WEND Loop 

WRITE-outputs data at console 

The WRITE statement sends specified data to 
the console. 

Format: 

WRITE [< list of expressions> ] 

Numeric and/or string expressions in the list 
are evaluated and displayed on the screen. 
Each expression in the list must be separated 
from the next with a comma. If the list of ex
pressions is omitted, a blank line is output. A 
carriage return is supplied following the last 
item in the list. 

Example: 
10 A=10: B=20: C$= liTHE END" 
20 WRITE A,B,C$ 

WRITE # -writes data to disk 

The WRITE# statement outputs specified data 
to a named sequential disk file. 

Format: 
WRITE# < filenumber>, < list of expressions> 

You must open a file in the output mode before 
you can write data to it. The file to be written to 



MBASIC 697 

is subsequently referenced by the same number 
you assigned the file when it was opened. 
Commas in the list delimit string and numeric 
expressions. 

The WRITE# statement performs essentially the 
same function as the PRINT# statement, except 
that delimiters are supplied when the data is 
written to disk. 

Example: 
WRITE #l,A$,B$ 

MBASIC Functions 

ABS-returns absolute value 

The ABS function returns the absolute value of 
a numeric expression. 

Format: 
ABS « numeric expression> ) 

Example: 
COST-ABS (5*40 (-5» 
PRINT ABS(COST-PROFIT) 

ASC-returns an ASCII value 

The ASC function returns the ASCII integer 
value for the first character of the argument. 
Only the first character is considered. If the ex
pression is evaluated as a null string, or if the 
argument is numeric, an error will occur: 



698 OSBORNE 1 REFERENCE GUIDE 

Format: 
ASC « string expression> ) 

Example: 
IO/o=ASC (STRINGS) 
FIRST% = ASC (FIRST. AMES) 

ATN - returns arctangent of the argument 

The ATN function is used to return the 
arctangent of an argument. The argument must 
be expressed in radians. The value returned is a 
real number. The arctangent returned can be 
used to compute various inverse trigonometric 
functions. 

Format: 
ATN (numeric expression) 

Examples: 
ANGLE = ATN (X) 
ASIN = ATN (X/SQR(1.0-X*X» 

COBL-converts argument to double precision 

The CBDL function converts a numeric 
expression to a double-precision argument. 

Format: 
CDBL «numeric expression» 

Example: 
10 A = 126.67 
20 PRINT A; CDBL (A) 



MBASIC 699 

CHR$- returns ASCII string equivalent of the argument 

The CHR$ function converts the argument to 
a single-character string. The argument is 
assumed to be an ASCII code. The function 
returns the ASCII character represented by the 
argument. If the argument is greater than 255, 
the high-order byte is ignored. 

Format: 
CHR$ « numeric expression» 

Example: 
BELL$ = CHR$ (7) 

CINT -converts the argument to an integer 

The CINT function converts a numeric expres
sion to an integer by rounding the fractional 
portion. An overflow error occurs if the 
numeric expression is less than -32768 or 
larger than 32767. 

Format: 
CINT «numeric expression» 

Example: 
PRINT CINT (9.6) 

COS-returns the cosine of the argument 

The COS function returns the cosine of the 
argument. The argument must be expressed in 
radians. The value returned is a real number. 



700 OSBORNE 1 REFERENCE GUIDE 

Format: 
COS (numeric expression) 

Example: 
10 A=3*COS (.5) 
20 PRINT A 

eSNG-converts the argument to single precision 

The CSNG function converts a numeric 
expression to a single-precision number. 

Format: 
CSNG « numeric expression> ) 

Example: 
10 A# = 123.345 
20 PRINT A#; CSNG (A#) 

eVI, evs, eVD-convert string value to numeric value 

The CV (I, S, D) functions convert string to 
numeric values. CVI converts a two-byte string 
value to an integer, CVS converts a four-byte 
string to a single-precision number, and CVD 
converts an eight-byte string to a double
precision number. 

Formats: 
CVI (2-byte string) 
CVS (4-byte string) 
CVD (8-byte string) 



MBASIC 701 

Example: 
10 FIELD #1, 4 AS N$, 12 AS B$, ... 
20 GET #1 
30Y=CVS (N$) 

EO F - checks for end of file 

The EOF function returns -1 (true) if the end 
of a sequential file has been reached. This func
tion is used to test for the end of file before 
inputting from it, to avoid "Input past end" 
errors. 

Format: 

EOF «file number» 

Example: 
10 OPEN III" ,2, IIDATA" 
20B=0 
30 IF EOF (2) THEN 100 
40 INPUT #2, M(B) 
50 B=B+l:GOTO 30 

EXP - returns the exponent of the argument 

The EXP function returns the value of the con
stant raised to the power of the argument. The 
value returned is a real number, even if the 
value is an integer. 

Format: 
EXP « numeric expression» 

Example: 

lOX = 2 
20 PRINT EXP (X-I) 



702 OSBORNE 1 REFERENCE GUIDE 

FIX-returns integer portion of the argument 

The FIX function returns the truncated integer 
portion of a numeric expression. FIX performs 
the same function as the formula SGN (X) * 
INT(ABS (X», except that the next lower num
ber for negative X is not returned. 

Format: 
FIX (numeric expression) 

Example: 
PRINT FIX (49.75) 

FRE-shows amount of data memory area remaining 

The FRE function returns the number of avail
able memory bytes in the dynamic, or free, 
storage area. The value FRE returns is a real 
number. Free storage may consist of two or 
more noncontiguous memory blocks. Using 
FRE(" ") forces a "garbage collection" before 
returning the number of free bytes (may take 1 
to 11/2 minutes). 

Format: 
FRE (0 or string expression) 

Example: 
PRINT FRE (0) 

HEX$- returns the hex value of the argument 

The HEX$ function returns a string represent
ing the hexadecimal value of the decimal argu-



MBASIC 703 

Format: 
HEX$ «numeric expression» 

Example: 
10 INPUT X 
20 A$ = HEX$ (X) 
30 PRINT X "DECIMAL IS" A$ 

"HEXADECIMAL" 

INKEY$- returns character string from console 

The INKEY$ function returns either a one
character string which is read from the console 
or a null string if no character is pending. All 
characters are passed to the program, except 
for I\C, which causes the program to be 
terminated. 

Format: 
INKEY$ 

Example: 
1000 'TIMED INPUT SUBROUTINE 
1010 RESPONSE$= II " 

1020 FOR 1%=1 TOTIMELIMIT% 
1025 A$ = II" 
1030 A$= INKEY$ : IF LEN (A$) = 0 

THEN 1060 
1040 IF ASC (A$) = 13 THEN TIMEOUT% 

= 0: RETURN 
1050 RESPONSE$ = RESPONSE$ + A$ 
1060 NEXT 1% 
1070 TIMEOUT% = 1 : RETURN 



704 OSBORNE 1 REFERENCE GUIDE 

INP - returns a byte from an I/O port 

The INP function returns a byte from a selected 
input/output port. INP returns an integer that 
is the value read from the port addressed by 
the integer expression. This function has little 
utility on the Osborne 1. 

Format: 
INP (integer expression (0-255» 

Example: 
100 A=INP (255) 

INPUT$- returns string read from console or disk 

The INPUT$ function returns a string of charac
ters read from the terminal or, optionally, from 
a disk file. If the terminal is the source of the 
input, no characters are echoed, and all control 
characters with the exception of J\C are passed 
through to the program. 

Format: 
INPUT$ (numeric expression) [ ,#filenumber] 

Example: 
10 PRINT "Enter P to continue or S to stop" 
20 X$= INPUT$ (1) 
30 IF X$ = liP" THEN 500 
40 IF X$ = liS" THEN GOTO 100 



MBASIC 705 

LEFT$- returns leftmost characters 

The LEFT$ function returns the leftmost 
characters of the argument. The numeric ex
pression specifies the number of characters to 
be returned. If the number of characters to be 
returned is greater than the length of the string 
expression, the entire first argument is re
turned. If the numeric expression is zero, a null 
string is returned; if it is negative, an error will 
occur. 

Format: 

Example: 

LEFT$( < string expression> , 
< integer expression» 

10 A$ = "LEFTMOST" 
20 B$ = LEFT$ (AS ,4) 
30 PRINT B$ 
RUN 
LEFT 
OK 

LEN - returns the number of characters in a string 

The LEN function returns the number of 
characters in a string expression. It returns 0 
for a null string. 

Format: 
LEN « string expression> ) 

Example: 
10 X$ = "NUMBER OF CHARACTERS" 
20 PRINT LEN (X$) 



706 OSBORNE 1 REFERENCE GUIDE 

LOC-shows next random record or sequential sector 

The LOC function, when invoked for a random 
file, returns the next default record number to 
be accessed. When you use LOC for a sequen
tial file, the number of sectors read from or 
written to the file since its return is shown. 

Format: 
LOC « file number> ) 

Example: 
10 IF LOC (1) > 50 THEN STOP 

LOG- returns the natural logarithm of the argument 

The LOG function returns the the natural 
logarithm of the specified argument. The argu
ment must be greater than zero, or an error will 
occur. You can use this function to calculate 
logarithms to other bases. 

Format: 
LOG «numeric expression» 

Example: 
PRINT LOG (45/7) 

LPOS-returns print strike position 

The LPOS function returns the assumed cur
rent position of the line printer hammer within 
the line printer buffer. LPOS does not necessar
ily give the physical position of the printhead. 
A numeric expression is used as a dummy 
argument. 



MBASIC 707 

Format: 

LPOS « numeric expression» 

Example: 
10 IF LPOS (X) > 60 THEN LPRINT CHR$ (13) 

MID$- returns a portion of a string 

The MID$ function returns a string that may be 
any portion of another string. MID$ can ac
complish the same function as either RIGHT$ 
or LEFT$, but, in addition, MID$ can return a 
string from the middle of another string. 

Format: 

MID$ « string expression> , 
< integer expression> , [ integer] ) 

A portion of the string expression is returned, 
beginning at the position defined by the integer 
expression that follows it. An optional integer 
expression specifies the length of the string to 
be returned. If the last expression specifies a 
character position beyond the end of the string, 
then characters from the position specified by 
the first integer expression up to the end of the 
string are returned. A null string is returned if 
the starting position specified by the second 
expression is greater than the length of the 
string, or if the third expression is zero. 

Example: 

10 A$ = "EXTRACT" 
20 B$ = "SEARCH STRING EXPRESSION" 
30 PRINT A$i MID$ (B$,8,6) 



708 OSBORNE 1 REFERENCE GUIDE 

MKI$, MKS$, MKD$-converts numeric value to string 

The MK(I,S,D)$ functions convert numeric 
values to string values. MKI$ converts an in
teger to a two-byte string, MKS$ converts a 
single-precision number to a four-byte string, 
and MKD$ converts a double-precision number 
to an eight-byte string. These functions must 
be used on numeric values that are placed in 
a random file buffer with an LSETor RSET 
statement. 

Formats: 
MKI$ « integer expression> ) 
MKS$ « single precision expression> ) 
MKD$ «double precision expression» 

Example: 
10 AMT = (K+T) 
20 FIELD #1, 8 AS D$, 20 AS N$ 
30 LSET D$ = MKS$(AMT) 
40 LSET N$ = A$ 
50 PUT #1 

OCT$- returns octal value of the argument 

The OCT function returns a string that 
represents the octal value of the decimal argu
ment. The argument is rounded to an integer 
before being evaluated. 

Format: 
OCT$ « numeric expression> ) 

Example: 
PRINT OCT$ (24) 
30 



MBASIC 709 

PEEK- returns contents of memory location 

The PEEK function returns the contents of a se
lected memory location. The numeric expres
sion represents the memory location to be 
examined. PEEK returns an integer value equal 
to the contents of the specified memory loca
tion. For memory locations greater than 32767 
the argument must be negative, in which case 
you should express the argument in hexa
decimal notation for clarity. 

Format: 
PEEK < numeric expression> 

Example: 
BDOSO/o = PEEK (6)+ PEEK (7)*256 

POS-returns position of the next print character 

The POS function returns the current cursor 
position. The leftmost column is position 1. 

Format: 
POS «numeric expression» 

Example: 
IF POS (X»60 THEN PRINT CHR$ (13) 

RIGHT$-returns rightmost characters of a string 

The RIGHT$ function returns the rightmost 
characters of the argument. The numeric ex
pression specifies the number of characters to 
be returned. If the number of characters to be 



710 OSBORNE 1 REFERENCE GUIDE 

returned is greater than the length of the string 
expression, the entire first argument is re
turned. If the numeric expression is zero, a null 
string is returned; a negative numeric expres
sion causes an error to occur. 

Format: 

Example: 

RIGHT$ «string expression>, 
< integer expression> ) 

10 A$ = IISTRING EXPRESSION" 
20 B$ = 'RIGHT$ (A$,4) 
30 PRINT B$ 
RUN 
SION 

RND-returns a random number 

The RND function returns a random number 
between 0 and 1. The RND function generates 
the next random number in a sequence based 
on the current seed. The value returned is a 
real number. The RANDOMIZE statement must 
be executed to generate a seed and a random 
number sequence. An optional numeric expres
sion may direct the sequence. If the expression 
is less than 0, then the sequence repeats; if it is 
greater than 0 or omitted, the next random 
number in the sequence is generated. If the 
expression equals 0, then the same sequence 
repeats. 

Format: 
RND ([ numeric expression] ) 



Example: 
10 FOR I = 1 to 5 
20 PRINT INT(RND*100); 
30 NEXT 
RUN 
24 30 31 51 5 
Ok 

SGN-returns the sign of the argument 

MBASIC 711 

The SGN function returns -1, 0, or 1, depend
ing on whether the argument is negative, zero, 
or positive, respectively. 

Format: 
SGN «numeric expression» 

Example: 
IF SGN(TOTAL) = -1 THEN GOSUB 200 
ON SGN(X) + 2 GOTO 10, 20, 30 

SIN - returns the sine of the argument 

The SIN function returns the sine of a numeric 
expression in radians. The expression is calcu
lated in single precision. 

Format: 
SIN « numeric expression» 

Example: 
PRINT SIN (2.7) 



712 OSBORNE 1 REFERENCE GUIDE 

SP ACE$- returns a specified number of spaces 

The SP ACE$ function returns a string of spaces 
of a specified length. The argument represent
ing the length must range between 0 and 255 
and will be rounded to an integer. 

Format: 
SPACE$( <numeric expression» 

Example: 
10 FOR I = 1 TO 5 
20 X$ = SPACE$(I) 
30 PRINT X$;I 
40 NEXT I 

SPC-outputs blanks 

The SPC function outputs a specified number 
of blanks in conjunction with PRINT or LPRINT 
statements. The number specified can range 
between 0 and 255. 

Format: 
SPC « integer expression> ) 

Example: 
"SPACED" SPC (20) "OUT" 

SQR-returns the square root 

The SQR function returns the square root of an 
argument which must be larger than O. 



MBASIC 713 

Format: 
SQR « numeric expression» 

Example: 
10 FOR X = 10 TO 25 STEP 5 
20 PRINT X, SQR (X) 
30 NEXT 

STR$- returns string representation 

The STR$ function returns the string represen
tation of the argument. 

Format: 
STR$ «numeric expression» 

Example: 
PRINT STRS (35) 

STRINGS-returns a string 

The STRING$ function returns a string whose 
length is specified by the first integer expres
sion. The characters in the returned string have 
the same ASCII code as specified by the second 
integer expression or begin with the first char
acter of the specified string expression. 

Format: 

Example: 

STRINGS <integer exp>, 
< integer or string exp> 

AS = STRINGS(75, liN') 
BS = STRINGS (75, 25) 



714 OSBORNE 1 REFERENCE GUIDE 

TAB-positions cursor 

The TAB function positions the cursor at the 
column specified by the argument. If the cursor 
is already positioned beyond the specified col
umn, the cursor moves to that position on the 
next line. TAB may be used only in PRINT 
statements and must range between 1 and 255. 

Format: 
TAB «integer expression» 

Example: 
PRINT TAB (20),A$ 

TAN-returns the tangent in radians 

The TAN function returns the tangent of a 
numeric expression in radians, which calculates 
as a single-precision expression. If an overflow 
occurs, the "OVERFLOW" message is dis
played, the machine infinity is supplied, and 
execution continues. 

Format: 
TAN «numeric expression» 

Example: 
A= TAN (3.14) 

USR-calls a user routine 

The USR function calls an assembly-language 
subroutine identified by the specified argu
ment. The user number, which may range from 



MBASIC 715 

o to 9, corresponds to the user number the 
DEF USR statement assigns. User number 0 is 
assumed if you don't specify one. 

Format: 
USR [user number] « numeric expression» 

Example: 
x = USR9 (Y) 

VAL-converts a string to a real number 

The VAL function converts a string into a real 
number. The real number VAL returns equals 
the number the string expression represents. 
This conversion is equivalent to numeric key
board input in response to an INPUT statement. 

Format: 
VAL (string expression) 

Example: 
PRINT VAL ("3.1") 

VARPTR- returns starting address of the argument 

The VARPTR function returns the beginning 
address of a variable name or a disk I/O buffer 
assigned to a file number. Any type of var
iable name (numeric, string, array) may be 
examined, with the address returned being 
in the range 32767 to -32768. When a negative 
address is returned, add it to 65536 to obtain 
the actual address. This function is usually for 



716 OSBORNE 1 REFERENCE GUIDE 

finding the address of a variable or array and 
then for passing it to an assembly-language 
subroutine. 

Format: 
VARPTR «variable name» or 

(#<file number» 

Example: 
A= VARPTR (X) 
B= VARPTR #(9) 

Initialization Options 

IF:# 

IM:# 

if you want to open more than 3 MBASIC files 
at one time. The maximum numer is 15. 

(decimal or hex) sets the highest memory loca
tion to be used by MBASIC; when you want to 
leave some empty RAM space for other 
purposes. 

IS: # # # must be used to access random files 
larger than 128 bytes per record. 



Software 
Error Messages 

This section provides a complete listing and 
explanation of CP/M, Wordstar, SuperCalc, 

CBASIC, and MBASIC error messages. 



718 OSBORNE 1 REFERENCE GUIDE 

CP/M Error Messages 
l:tlll.I::I;I;'11;J 

This message, repeated endlessly (or until the 
RESET button is pressed) indicates that drive A con
tains no diskette, an unformatted diskette, a disk
ette without a CP/M operating system, or simply the 
wrong kind of diskette; or that the diskette door is 
improperly latched. 

Several CP/M error messages print due to error 
conditions encountered by the 8080 assembler: 

Inl"'ls or NO SOURCE FILE PRESENT 

The specified file was not found. 

NO DIRECTORY SPACE 

The diskette directory is full. 

SOURCE FILE NAME ERROR 

An improper file name was found. 

SOURCE FILE READ ERROR 

The assembler could not read the source code 
correctly. 

OUTPUT FILE WRITE ERROR 

The assembler could not read the source code 
correctly. 



CP/M SOFTWARE ERROR MESSAGES 719 

Assembly Language 
The error-flag codes and their line numbers are echoed at the 
console when errors occur within an assembly-language 
program: 

Data error. Data statement element cannot be placed 
in the specified area. 

Expression error. Expression is improperly formed 
and cannot be computed. 

Label error. Illegal label context. 

Not implemented. The mnemonic used refers to 
MAC assembler mnemonics, not ASM. 

Overflow error. Expression is too complicated. 

Phase error. Inconsistent label value encountered. 

Register error. Value specified as register not 
compatible with the operation code. 

Value error. Improperly formed operand in the 
expression. 



720 OSBORNE 1 REFERENCE GUIDE 

ED 
The Digital Research editor (ED) uses the following error codes: 

Unrecognized command. 

EI 
Memory buffer full. 

Cannot apply command number of times specified. 

Cannot open LIB file in R command. 

The following BDOS errors may be encountered: 

BOOS ERR ON X: BAO SECTOR 

CP/M could not read from or write to the diskette in 
question. 

BOOS ERR ON X: SELECT ERROR 

CP/M does not recognize the drive selected. 

BOOS ERR ON X: RIO 

The diskette you attempted to write information 
onto is write-protected. 

WordStar Error Messages 

' •• _&1 
File WSMSGS.OVR not found. Menus & messages will 

display as @ @ @ @ only 



WORDSTAR SOFTWARE ERROR MESSAGES 721 

Indicates that the message file cannot be located and 
most messages will appear as @@@@; under this 
condition the help level is automatically set to O. 
Under some circumstances, you may not be able to 
continue editing. 

EDIT FUNCTION ERROR MESSAGES: 

* * * INTERRUPTED * * * Press ESCAPE key [ . ] 

This message occurs when a function is in progress 
and the interrupt command I\U is typed. 

* * * NOT FOUND: string * * * Press ESCAPE Key [ ] 

This message indicates that a search initiated by a 
FIND (I\QF), REPLACE (I\QA), or FIND, REPLACE 
AGAIN (I\L) command could not locate the specified 
string. 

* * * ERROR E5: THAT MARKER NOT SET * * * 
Press ESCAPE Key [ ] 

Reference to a marker which you did not set during 
the current editing session. 

* * * ERROR E6: BLOCK BEGINNING NOT MARKED 

(OR MARKER IS UNDISPLAYED) * * * 
Press ESCAPE Key [ ] 

Reference to a beginning block marker that has 
either not been set or is currently hidden. 

* * * ERROR E7: BLOCK END NOT MARKED 

(OR MARKER IS UNDISPLA YED) * * * 
Press ESCAPE Key [ ] 

Reference to an end block marker that has either not 
been set or is currently hidden. 



722 OSBORNE 1 REFERENCE GUIDE 

* * * ERROR E8: BLOCK END MARKER BEFORE BLOCK 

BEGINNING MARKER * * * Press ESCAPE Key [ ] 

The block-end marker has been set before the block
beginning marker. 

* * * ERROR E9: BLOCK TOO LONG-MOVE OR COpy IN 

TWO SMALLER BLOCKS * * * Press ESCAPE Key [ J 

The size of the text in the currently' marked block ex
ceeds the amount that WordS tar can handle. Divide 
the block and move it in portions. There is no limit 
to the size of blocks that can be written. 

* * * ERROR E10: CURSOR NOT IN RANGE FOR 

COLUMN MOVE/COPY * * * Press ESCAPE Key [ ] 

A column block move or copy cannot be accom
plished because the cursor lies in a negative print 
position or past column 240. 

* * * ERROR E11: THAT FILE EXISTS ON DESTINATION 

DISK, DELETE EXISTING FILE FIRST, OR USE A DIFFERENT 

DISKETTE. * * * Press ESCAPE Key [ ] 

This message is caused by an attempted file transfer 
to a diskette that already contains a file of the same 
name. If such a transfer were successful, the original 
file would be replaced. 

* * * ERROR E12: DISK FULL * * * 
Press ESCAPE Key [ ] 

Indicates that the capacity of the diskette to which 
data is being sent has been reached. You should take 
preventive measures to ensure that this catastrophic 
error does not occur. If this error occurs while you 
are moving the cursor toward the beginning of a 
large file, try moving the cursor to the end of the 
file and then saving with "Ks. If the error occurred 



WORDSTAR SOFTWARE ERROR MESSAGES 723 

while you were saving a file, press ESCAPE and 
delete some files with "KJ, or try writing a portion 
of the file to the A drive. 

* * * ERROR E13: COLUMN READ/WRITE NOT 

ALLOWED * * * Press ESCAPE Key [ ] 

This message indicates that reading and writing of 
blocked columns between files is not currently im
plemented. You can accomplish this maneuver by 
reading or writing a regular block containing the col
umn and then copying or moving the column and 
erasing the remainder. 

NOTE 

You should note internal errors 115, 116, 
117, 118, 119, and 136, and if you can 
reproduce them, you should report them to 
Osborne Computer Corporation and 
MicroPro International. 

FILE NAME ERRORS: 

filename.typ NOT FOUND 

The file name you supplied for a FILE NAME? 
prompt cannot be located. 

INVALID FILE NAME: string entered 

The string you entered in response to a FILE 
NAME? prompt is invalid. 

Can't edit a file type.BAK or. $ $ $ - rEname or cOpy 

the file before editing 



724 OSBORNE 1 REFERENCE GUIDE 

This message occurs when you make an attempt to 
edit (D or N) a WordS tar backup or temporary file. 
The file can be renamed or read into another file if 
your intent is to edit the file. 

File WS.COM Not Found - Can't Run program unless 

WS.COM is available 

The message means the main WordS tar program 
(WS.COM or other if changed through installation) 
cannot be found. 

File x:filename.typ ALREADY EXISTS 

The name being assigned to a file through the 
RENAME command E already exists; choose a 
different name or rename the original. 

FILE x:filename.typ NOT ON SAME DRIVE 

This message tells you that a file cannot be renamed 
from one drive to another. 

FILE x:filename.typ EXISTS-OVERWRITE? (YIN): [ ] 

This message appears when you try to copy a file to 
an already existing file name. If you want to copy 
over the original file, simply type Y for yes. 

MailMerge Error and 
Warning Messages 

MailMerge has several warning and error messages. 
An error message always appears when an invalid 
DOT command is encountered. Error messages also 
occur when a referenced file cannot be found, or 
when the contents of a data file do not correspond 
to the keywords listed by .RV in the document file. 

MailMerge displays a warning message on en
countering certain special conditions. Processing 



WORDSTAR SOFTWARE ERROR MESSAGES 725 

continues even though the warning messages are 
displayed. Errors indicated on the screen remain in 
the file being processed. 

Some messages inform you of conditions that might 
not have adverse consequences but that you should 
nevertheless consider. Review all messages that ac
cumulate on the screen and note any conditions that 
require action. Edit the file to correct any mistakes 
that you might have made while creating the file. 

The following warning and error messages appear when 
problems are detected: 

* * * Invalid DOT command ignored 

A DOT command not used in its proper form or con
text will cause this error message. The DOT com
mand in question is displayed on the following line. 
A more specific error rri.essagemay accompany this 
message in some cases. 

* * * Insert diskette with file {:} filename.typ 

then press RETURN 

Requests insertion of the diskette containing the 
named file into the indicated drive (shown after the 
message). This message results when you process a 
. DF or .FI command with the word CHANGE after 
the file name. 

* * * Cannot change disk in drive {:}, request ignored 

Displayed when you have specified a diskette 
change for the drive holding the program files. To 
avoid this type of error, limit a diskette change to 
the B disk drive. Art attempt to access the specified 
file will take place, just in case the file is on the 
specified drive (or the logged drive if you did not 
specify one). If the file cannot be found, then the 
following message is displayed: 



726 OSBORNE 1 REFERENCE GUIDE 

* * * file (:) filename.typ not found 

Indicates that the file name called for could not be 
found in the specified drive (or the logged drive if 
no drive was specified). Both drives are searched in 
order to locate the specified file. If the file cannot 
be found, processing will continue without it. 

* * * but found, and will use, (:) filename.typ 

When a file cannot be located on the specified drive, 
a search of the other drive occurs. The message 
above is displayed if a file with the specified name 
is found. This message tells you where the file was 
loca ted, allowing you to determine if this is the file 
you intended to reference. 

* * * No .DF before .RV 

No data.file with the name you specified in 
. DF could be found, or the . DF command itself 
could not be found. If a "file not found" message 
does not accompany this message, then check the 
file to make sure that a .DF was used and that it was 
placed before .RV. Printing of the document file will 
continue without data for the keywords. 

* * * WARNING: Overlong data value truncated 

Displayed when data items contain more than the 
maximum 200 allowable characters. Only the first 
200 characters are used, the excess may be omitted 
or may be used as data for the next variable read by 
.RV. This message might indicate an error in the 
format of the data file. 

* * * Invalid variable name in .RV command ignored 

Means that one or more of the keywords identified 
in the . RV command were not in their valid form. 
Ampersands should not be used in the keywords 
listed by .RV. 



WORDSTAR SOFTWARE ERROR MESSAGES 727 

* * * WARNING: data exhausted, null value(s) used 

Displayed when data from the data file is exhausted 
before all the keywords listed in . RV have been read. 
The variable identifiers for which there is no data 
will be assigned a null value consisting of no charac
ters. Printing will usually stop before the next copy 
is printed after this message is displayed. 

This type of error usually occurs when the last 
record of a data file is being processed. The error 
condition might be present anywhere in the data 
file, even though the error is not detected until pro
cessing of the file is almost complete. This type of 
error is typically caused by a lack of proper commas 
and carriage returns. Sometimes the error is caused 
by the presence of the wrong data file. 

NOTE 

When a document file containing .DF or .RP 
is processed, MailMerge searches ahead after 
each printed document looking for data to be 
used in the next document. If no data item is 
encountered, then processing will terminate 
without the above message being printed. 

MISCELLANEOUS ERRORS: 

* * * ERROR E38 (-42): BAD OVERLAY FILE, OR 

WRONG VERSION OVERLAY FILE * * * 
Press ESCAPE Key [ ] 

* * * ERROR E43 (44): WRONG VERSION OVERLAY 

' ...... . 



728 OSBORNE 1 REFERENCE GUIDE 

Occurs when the wrong version of an overlay file 
(.OVR) is being used; sometimes caused by a 
damaged diskette. 

E46: Overlay file WSOVL Y.OVR Not found * * * 
Press ESCAPE Key [ ] 

The file named WSOVLY. OVR is missing from the 
current version of WordS tar. 

* * * ERROR E47: FILE MERGEPRN.OVR NOT FOUND 

(The separately supplied file MERGEPRIN.OVR is required 

for use of MailMerge) * * * Press ESCAPE Key [ ] 

This message appears when a MailMerge operation 
is attempted and the MailMerge program file 
(MERGEPRIN.OVR) cannot be located on the cur
rently logged drive. 

* * * ERROR 52: PROGRAM IS AN EMPTY FILE!? * * * 
Press ESCAPE Key [ ] 

This message appears when an invalid program is 
referenced through the RUN-A-PROGRAM 
command, R. 

* * * ERROR E53: PROGRAM TOO BIG FOR 

MEMORY AVAILABLE UNDER WordStar * * * 
Press ESCAPE Key [ ] 

The program trying to be run is too large to be run 
through WordStar. 

WARNINGS: 

* * * WARNING: WORD TOO LONG TO FIT MARGINS 

This warning appears when too many characters are 
strung together on a line. 



WORDSTAR SOFTWARE ERROR MESSAGES 729 

CAN'T DISPLAY PAGE BREAKS IN A NON-DOCUMENT FILE 

The Page-Break display command, "OP, was issued 
and is not valid in the nondocument mode. 

PUT AT FILE BEGINNING FOR CORRECT PAGE-BREAK 

Indicates that the DOT commands being used 
should be located at the beginning of the file 
so that the page breaks can be determined 
accurately. 

A lingering question mark appears in the rightmost 
flag column when you specify an erroneous or in
complete DOTcommand, a missing numeric argu
ment, an unrecognizable code, or an excessive 
number. 

* * * WARNING: WRONG VERSION OF WSMSGS.OVR-

SOME MESSAGES MAY BE INCORRECT * * * 
This warning is telling you that the version of the 
message file (WSMSGS.OVR) you are using is 
incompatible with the version ofWS.COM being 
used. 

* * * WARNING: DISK FULL, DELETING OLD .BAK FILE 

TO MAKE SPACE (NORMALLY, THE PREVIOUS BACKUP 

FILE IS DELETED ONLY AFTER EDIT IS SUCCESSFULLY 

COMPLETED). 

This warning message informs you that the diskette 
being written to is becoming full. You should take 
action immediately to avoid serious complications. 



730 OSBORNE 1 REFERENCE GUIDE 

WARNING: You are editing the same file as you are printing. 

WordStar will not allow you to save the edited version until 

the print has completed or has been abandoned. 

Indicates that the file being printed cannot be 
simultaneously edited. 

NOTE 

Occasionally the Osborne 1 beeps and the 
screen fills with lines of exclamation points. 
This condition occurs when you are issuing 
more commands than the computer can 
handle. 

PRINTING MESSAGES: 

filename.typ NOT FOUND 

The file named for printing could not be located on 
the logged or indicated drive. 

INVALID FILE NAME: string 

The string you entered in response to a print prompt 
is invalid. 

WARNING: You are printing the same file as you are editing. 

The last saved version will be printed, not reflecting unsaved 

changes. Furthermore, WordStar will not allow you to save 

the edited version while the print is in progress. 

Indicates that the file referenced for printing is cur
rently being edited and the backup version will be 
printed if it is available. 



WORDSTAR SOFTWARE ERROR MESSAGES 731 

* * * PRINT OUTPUT DISK FULL. PRINT PAUSED. * * * 
Occurs when the diskette onto which the print
output file is being written becomes full. Delete 
unneeded files when applicable. 

INFORMATION MESSAGES: 

FINISHING PRINT BEFORE EXIT (type A U to cancel exit 

command) ... 

Occurs when you try to exit to CP/M while a print 
operation is in progress. 

FINISHING PRINT OF SAME FILE BEFORE SAVING 

(type A U to cancel Save command) ... 

Occurs when you try to save a file that is currently 
being printed. 

FINISHING PRINT OF .BAK FILE BEFORE SAVING 

(type A U to cancel Save command) ... 

Occurs when you try to save a file you are editing 
while its backup version is printing. 

NOTE 

If a FATAL error occurs, call your authorized 
Osborne dealer. 



732 OSBORNE 1 REFERENCE GUIDE 

SuperCalc Error Messages
Causes and Cures 
The following material provides you with a detailed description 
of the error messages that you may receive while using the 
SuperCalc program. They are discussed in alphabetical order. 
For each error message, we have included a brief explanation 
of its cause and a procedure for correcting the situation that 
resulted in the message. 

Here is a list of errors considered: 

Column ERROR 

Incorrect specification of a column. Correct 
specification is a letter from A to Z or two letters 
fromAA to BK. To correct: use the in-line editor to 
correct the entry and reenter the command, or 
cancel the command with "Z. 

l,m'I"" 
The disk designated to receive the file does not have 
enough space. The SuperCalc program will ask if 
you want to redo the operation (Y) or not (N). If you 
want to redo it, remove the disk and insert another 
one that has enough space; then press Y If you 
press N, the operation is aborted, and you return to 
the SuperCalc program. 

Drive not ready 

This is a system error message from the BIOS por
tion of your CP/M operating system. It is possible 
that the drive will become ready and that retrying 
will work. Check to make sure that the disk drive 
is closed. 

File NOT on disk 

This occurs with the load command. The file name 



SUPERCALC SOFTWARE ERROR MESSAGES 733 

given is not found on the disk drive specified or 
implied in the entry. Check your command entry. 

1. Check the drive designation. If you did not 
specify one, the SuperCalc program as
sumes you mean the current default drive. 

2. Check the spelling of the file name. 

3. Check to see that the correct diskette is in 
the drive. 

In cases 1 or 2, use the in-line editor to correct the 
drive designation or the file name and reenter the 
command. 

In case 3, either place the correct disk in the drive 
or, if this is not feasible, cancel the commmand 
with "Z. 

Formula ERROR 

There are two possible causes. 

1. You entered text without a leading ". 
SuperCalc assumes that you intended to 
enter a formula, and it cannot make sense 
out of the entry as a formula. 

2. There is some error in the way you speci
fied a formula. Check it for correct specifi
cation of function name, correct use of 
expressions, balanced parentheses, valid 
cell names, etc. 

To correct: use the in-line editor to correct your 
entry and reenter, or cancel the entry with "Z. 

Memory FULL 

Too much content in the worksheet. (This is a differ
ent case from Worksheet Full, described below, in 



734 OSBORNE 1 REFERENCE GUIDE 

which there are too many cell stubs on the work
sheet.) To correct: blank any contents that you can 
spare. If you can, move material to the upper left of 
the worksheet, trying to preserve a roughly rectan
gular shape. Save the worksheet, ZAP the screen, 
and reload the worksheet. 

If this does not free enough space, then you must 
break the worksheet into convenient portions for fu
ture work. To do this, ZAP the screen and reload se
lected portions of the saved worksheet. Build two or 
more worksheets out of these portions, saving them 
as separate worksheets. 

Overlay ERROR 

This is a serious error that prevents the SuperCalc 
program from being used. There are two possible 
causes: 

The SuperCalc program has (1) not been 
"installed" or (2) has been "installed" incor
rectly. Installing the SuperCalc program 
means customizing it for your computer sys
tem. This customizing involves specifying the 
terminal that you are using, the disk drives 
available, the memory space available, and the 
version of the CP/M operating system that you 
use. SuperCalc comes correctly installed for 
the Osborne 1. See the Appendix for informa
tion on SuperCalc Installation procedures. 

To correct: 

1. If you are installing the SuperCalc program 
yourself, reinstall it, checking the installa
tion documentation carefully as you 
proceed. 

2. Consult your authorized Osborne 1 dealer 
for information and assistance. 



SUPERCALC SOFTWARE ERROR MESSAGES 735 

Protected Entry 

This message can appear as the result of an error, or 
it may appear as an informational note. If the mes
sage is the result of an error, it will appear during 
data entry or the edit commmand. You are attempt
ing to enter data into an active cell that is protected. 
You must either remove the data from the entry line 
or cancel the edit command. 

/ 

This message may appear as an informational note 
during a blank, copy, load, or replicate command. If 
there are protected cells in the area being blanked or 
in the destination area of the copy, load, or replicate 
command, the protected cells in the area remain 
unchanged; the other cells in the area have been 
changed. If you meant to leave the protected cells 
unchanged, all is well. If not, you may wish to 
unprotect them and redo the command. 

Range ERROR 

Incorrect specification of a range. A range may be a 
single cell, a partial column, or a partial row. To cor
rect: use the in-line editor to correct the entry and 
reenter the command, or cancel the command 
with "z. 

Incorrect specification for a row. Correct specifica
tion is a number from 1 to 254. Use the in-line editor 
to correct the entry and reenter the command, or 
cancel the command with "Z. 

Replicate Definition ERROR 

The destination may be specified incorrectly, or the 
destination area may be too small. 

1. Specification error for the destination. 



736 OSBORNE 1 REFERENCE GUIDE 

a. If the source is a single cell, the desti
nation should be specified as a partial 
column or partial row. 

b. If the source is a partial column, the 
destination should be specified as cells 
on the upper row of the destination. 
This will look like a partial row. 

c. If the source is a partial row, the des
tination should be specified as cells 
in the column on the left of the des
tination. This will look like a partial 
column. 

2. Destination area is too small (will not fit). 

Given the size of the source and the location of the 
destination, the result will not fit within the work
sheet boundaries. Correct the specification using 
the in-line editor and reenter the command, or 
cancel the command with "Z. (Note: SuperCalc 
caught the error before attempting to execute the 
command.) 

Window Parameter ERROR 

This occurs during the window command when you 
attempt to split the screen when the active cell is at 
the left or right edge or the top or bottom row of the 
display screen. Because of the way that the com
mand works, the split cannot take place at the edges 
of the screen. 

Either move the active cell away from the edge of 
the display window or scroll the screen to provide 
an additional column or row between the edge and 
the location you desire for the split. 

Worksheet FULL 

The worksheet is too large in size; there are too 
many cell stubs. (This is different from the case 



CBASIC SOFTWARE ERROR MESSAGES 737 

described above in Memory Full, where the work
sheet has too much content.) 

If you can, blank any unnecessary contents and 
move the other contents to the upper left, trying to 
preserve a roughly rectangular shape. Then save the 
worksheet, ZAP the screen, and reload. 

''Memory Use-Hints and Concepts" in the Super
Calc reference section explains how it is possible to 
unintentionally create many more cell stubs than 
necessary. You may get a Worksheet Full message 
even though you have few contents and they are at 
the upper left. In such a case, saving the worksheet, 
ZAPping the screen, and reloading the worksheet 
will get rid of unnecessary cell stubs. 

CBASIC Error Messages 

CBASIC COMPILER ERRORS: 

The following compiler error messages can appear during 
compilation of a source file: 

NO SOURCE FILE: < filename> .BAS-

The source file could not be found on the indica ted 
drive. 

OUT OF DISK SPACE 

The compiler encountered insufficient disk space 
while writing the .INT or . LST file. 

OUT OF DIRECTORY SPACE 

The compiler ran out of directory entries while 
attempting to create or extend an .INT or . LST file. 



738 OSBORNE 1 REFERENCE GUIDE 

BOOS ERROR ON (A,B) 

This CP/M error message indicates that an error 
occurred while the computer was reading from or 
writing to a disk file. 

PROGRAM CONTAINS n UNMATCHED FOR STATEMENT(S) 

n FOR statements have no associated NEXT 
statements. 

PROGRAM CONTAINS n UNMATCHED WHILE STATEMENT(S) 

n WHILE statements have no associated WEND 
statements. 

PROGRAM CONTAINS 1 UNMATCHED DEF STATEMENT 

A multiple line function was not terminated with a 
FEND statement, possibly causing further errors. 

WARNING INVALID CHARACTER IGNORED 

An invalid character was detected in the last line, 
then was replaced by a question mark and ignored. 

INCLUDE NESTING TOO DEEP NEAR LINE n 

An INCLUDE statement exceeded the maximum 
nesting level near line n. 

COMPILER ERROR CODES: 

The following two-letter error codes display with the line 
number and position of the error: 

Invalid branch into a multiple line from outside of 
the function. 



CBASIC SOFTWARE ERROR MESSAGES 739 

Invalid numeric constant was encountered. 

Improper filename used in an %INCLUDE directive. 

The COMMON statement was not the first program 
statement preceded only by a directive, remark, or 
blank line. 

A subscripted variable in a COMMON statement 
was not properly defined. 

Duplication of the same line number, an undefined 
function, or a DIM statement that does not precede 
all referenced arrays, was detected. 

A DIM variable was previously defined in another 
DIM statement or was used as a simple variable. 

A function name not used in the function was 
encountered to the left of the equal sign in an 
assignment statement. 

A function name is the same in two DEF statements. 



740 OSBORNE 1 REFERENCE GUIDE 

An incorrect mixed-mode expression exists in a FOR 
statement, usually the expression following TO is 
involved. 

The FOR loop index is not an unsubscripted
numeric variable expression. 

An incorrect number of parameters are used in the 
function reference. 

The function-reference parameter type does not 
match that in the DEF statement. 

An undefined function has been referenced. 

The IF statement expression is erroneously 
evaluated as type string. 

The FILE statement variable is type numeric instead 
of type string. 

An input prompt string was not enclosed in quotes. 

A subscripted variable was not dimensioned before 
it was referenced. 



I1!l 

CBASIC SOFTWARE ERROR MESSAGES 741 

Indicates that an invalid compiler directive was 
issued. 

A DEF-statement defined array was not subscripted. 

A variable was defined more than once in a 
COMMON statement. 

The expression is evaluated as type string instead of 
type numeric. 

An invalid mixed mode was encountered, usually 
caused by a mixture of string and numeric types in 
an expression. 

A numeric instead of a string expression was used. 

A DEF statement could not be found for a corres
ponding FEND statement. 

A NEXT variable reference did not match that 
referenced by the associated FOR statement. 

A NEXT statement occurred without an associated 
FOR statement. 



742 OSBORNE 1 REFERENCE GUIDE 

An illegal branch from within a line function was 
attempted. 

The ON statement limit of 40 was exceeded. 

A DE:t statement was encountered within a multiple 
line ftinction. Functions cannot be nested. 

A syntax error occurred in the source line, usually as 
the result of an improperly formed statement or 
misspelled keyword. 

A numeric instead of a string expression was used in 
a SAVEMEM statement. Check for quotes around 
string cons tan ts. 

An incorrect number of subscripts were found in a 
subscripted variable, or a DIM variable was previ
ously used with a different number of dimensions. 

A statement that is too complex should be simplified 
in order to be compiled. 

Indicates a symbol table overflow, meaning the pro
gram is too large for the current Osborne 1 memory 
configuration. 



CBASIC SOFTWARE ERROR MESSAGES 743 

You have referenced a nonexistent line number. 

A string was terminated with a carriage return, 
rather than quotes. 

Variable names are too long for one statement. 

The expression following the WHILE statement is 
not numeric. 

The nesting level of WHILE statements (12) has been 
exceeded. 

A WEND without an associated WHILE statement 
was encountered. 

RUN-TIME ERRORS: 

The following run-time error messages are displayed below the 
most recent screen line, to indicate conditions which usually 
terminate program execution. 

NO INTERMEDIATE FILE 

A file name of type . INT could not be located on the 
specified drive. 

IMPROPER INPUT-REENTER 

The fields you entered at the keyboard do not match 
those specified in the INPUT statement. 



744 OSBORNE 1 REFERENCE GUIDE 

WARNING CODES: 

Two-letter codes preceded by the word WARNING indicate 
errors that do not prevent execution of a program but should 
be attended to. These codes are: 

A number divided by zero resulted in the largest 
CBASIC number. 

A field length greater than 255 bytes was encoun
tered during a READ LINE; the remainder is 
ignored. 

A LOG function argument was zero or negative; the 
value of the argument is returned. 

A negative number before the raise to a power oper
ator (A) was encountered, resulting in the absolute 
value of the parameter being calculated. 

A real-variable calculation produced an overflow. 
The result is set to the largest valid CBASIC real 
number. Overflow is not detected with integer 
arithmetic. 

A negative number was specified in the SQR 
function. The absolute value is used. 



CBASIC SOFTWARE ERROR MESSAGES ,745 

RUN-TIME ERROR CODES: 

The following two-letter codes are preceded by the word 
ERROR and cause execution to terminate: 

An ASC function string argument was evaluated as 
a null string. 

The BUFF value in either the OPEN or CREATE 
statement is less than 1 or greater than 52. 

The CHAINed program code area is greater than 
the calling program's code area. Use %CHAIN for 
adjustment. 

The CHAINed program data area is greater than 
the calling program's data area. Use %CHAIN for 
adjustment. 

The file being closed could not be found in the 
directory. 

The CHAINed program constant area is greater than 
the calling program's constant area. Use %CHAIN 
for adjustment. 

The CHAINed program variable storage area is 
greater than the calling program's variable storage 
area. Use %CHAIN. 



746 OSBORNE 1 REFERENCE GUIDE 

The CHAINed program reserved a different amount 
of memory with a SAVEMEM statement than the 
calling program. 

An inactive file number was specified in the CLOSE 
statement. 

An already active file number was specified in an 
OPEN or CREATE statement. 

An inactive file number was specified by a DELETE 
statement. 

Indicates a write to a file for which no IF END 
statement has been executed; may occur if the disk 
directory is full. 

Indicates a read past an end of file for which no IF 
END statement has been executed. 

A write to a record whose length exceeds the maxi
mum record length specified by an OPEN, CREATE, 
or FILE statement was attempted. 

The renamed file name already exists. 



CBASIC SOFTWARE ERROR MESSAGES 747 

A read or write operation to an inactive file was 
attempted. 

An invalid file name was specified. 

A record number of zero was specified. 

Execution of an INT file created by a version 1 com
piler was attempted. Recompile using version 2 
compiler. 

A FEND statement was encountered before 
execution of a RETURN statement. 

A full directory resulted in an error while you were 
creating or extending a file. 

A third MATCH function parameter was zero or 
negative. 

A file number less than 1 or greater than 20 was 
specified, or a file statement was executed when 20 
files were already active. 

Not enough memory was available to load the 
program. 



748 OSBORNE 1 REFERENCE GUIDE 

A PRINT-USING statement could not print a num
ber because no numeric data field could be found in 
the USING string. 

A READ statement was executed with no 
corresponding data. 

Invalid execution of an OPEN statement for a non
existent file when no prior IF END statement had 
executed. 

An ON GOSUB expression, or an ON GOTO state
ment was evaluated as a number less than 1, or 
greater than the number of line numbers in the 
statement. 

Current program exceeded available memory. Close 
unneeded opened files, nullify unused strings, and 
read data from a disk file. 

A PRINT string contained a quotation mark and 
could not be written to the specified file. 

Attempted random access to a file activated with 
BUFF where more than one buffer was specified. 

Attempted read past the end of a record in a 
fixed file. 



II! 

CBASIC SOFTWARE ERROR MESSAGES 749 

A RETURN was issued for which there was no 
associated GOSUB statement. 

A random read or print to a file that was not fixed 
was attempted. 

An ARRAY subscript exceeded the defined 
boundaries. 

A string longer than 255 bytes resulted from a 
concatenation operation. 

The file specified in SAVEMEM was not on the indi
cated disk. 

The second parameter in the MID$ function, or the 
last parameter in the LEFT$ or RIGHT$ was nega
tive or zero. 

The TAB statement parameter was less than 1 or 
greater than the current line width. 

A PRINT USING statement contained a null edit 
string, or an escape character (\) was the last in an 
edit string. 



750 OSBORNE 1 REFERENCE GUIDE 

An attempt was made to write to a file after it had 
been read but before it had been read to the end of 
the file. 

MBASIC Error Messages 

11m 
NEXT without FOR 

A NEXT statement variable was encountered 
without a corresponding FOR statement variable. 

Syntax Error 

An incorrect sequence of characters was 
encountered. 

Return without GOSUB 

A RETURN statement was encountered for which 
no previously executed GOSUB could be matched. 

Out of data 

Indicates that a READ statement was executed for 
which no unread DATA statements could be found. 

Illegal function call 

possibly as the result of: 

a) Too large or negative subscript 
b) Negative or zero LOG argument 
c) Negative argument to SQR 



MBASle SOFTWARE ERROR MESSAGES 751 

d) Negative mantissa with noninteger 
exponent 

e) Illegal call to USR function with no defined 
starting address 

f) Improper argument to MID$, LEFT$, 
RIGHT$, INP, OUT, WAIT, PEEK, TAB, 
SPC, STRING$, SPACE$, INSTR, 
ON ... GOTO 

Overflow 

Result of calculation exceeds upper limit of MBASIC 
80 number format and thus cannot be displayed. 

Out of memory 

Indicates that the program is too long, or has too 
many loops, variables, or expressions. 

Undefined line 

A nonexistent line number was referenced in a 
GOTO, GOSUB, IF ... THEN ... ELSE, or 
DELETE statement. 

Subscript out of range 

The array element being referenced is outside the 
array dimensions or has the wrong number of 
subscripts. 

Redimensioned array 

Indicates that more than one DIM statement was 
given for the same array. May also be caused when 



752 OSBORNE 1 REFERENCE GUIDE 

a DIM statement is given for an array after the 
default dimension of 10 has already been 
established. 

Division by zero 

Division by zero was encountered in an expression, 
or the operation of involution resulted in zero being 
raised to a negative power. 

Illegal direct 

Execution of a statement that is illegal in direct 
mode was attempted. 

Type mismatch 

A variable name of the wrong type was assigned, or 
a function was given the wrong type argument. 

Out of string space 

The remaining free memory has been exceeded 
because of string variables. 

String too long 

An attempt to create a string longer than the 
maximum length of 255 characters was made. 

String formula too complex 

An expression that is too long or too complicated to 
process was encountered. 



MBASIC SOFTWARE ERROR MESSAGES 753 

Cannot continue 

Indicates an unsuccessful attempt to continue a pro
gram that was halted because of an error or was 
modified during a break in execution, or a program 
that does not even exist. 

Undefined user function 

An undefined USR function is being referenced 
without being defined by a DEF statement. 

No RESUME 

No RESUME statement has been specified for the 
error-trapping routine in progress. 

RESUME without error 

A RESUME statement has been encountered before 
an error-trapping routine has been entered. 

Unprintable error 

An error for which no message has been defined has 
been encountered. 

Missing operand 

An expression containing an operator was encoun
tered that had no operand following it. 



754 OSBORNE 1 REFERENCE GUIDE 

Line buffer overflow 

Indicates that the line being input contains too 
many characters. 

FOR without NEXT 

A FOR statement for which no corresponding NEXT 
statement has been specified has been encountered. 

WHILE without WEND 

A WHILE statement for which no corresponding 
WEND statement has been specified has been 
encountered. 

WEND without WHILE 

A WEND statement for which no corresponding 
WHILE statement has been specified has been 
encountered. 

Field overflow 

The record length allocated by a FIELD statement for 
a random file is being exceeded. 

Internal error 

An internal malfunction has occurred; report this 
error to your dealer. 



MBASIC SOFTWARE ERROR MESSAGES 755 

Bad file number 

The file number being used to reference a file is ei
ther out of the range specified at initialization or is a 
file number that has not been OPENed. 

File not found 

The file being referenced by a LOAD, KILL, or 
OPEN statement does not exist on the currently 
logged drive. 

Bad file mode 

An illegal attempt has been made to LOAD a se
quential file using PUT, GET, or LOF. Can also be 
caused by execution of an OPEN statement for 
which a file mode other than I, 0, or R has been 
specified. 

File already open 

A sequential output mode OPEN statement is issued 
for an already open file. Can also be caused by a 
KILL statement issued for an open file. 

Disk I/O error 

A fatal error occurred during an input or output 
operation. 

File already exists 

The file name supplied in the NAME statement 
already exists on the specified drive. 



756 OSBORNE 1 REFERENCE GUIDE 

Disk full 

The message shows that there is no space left on the 
currently logged drive. 

Input past end 

Indicates that an INPUT statement was issued 
after all the data in the file had been used, or for a 
null file. 

NOTE 

Use the EOF function to detect the end 
of file. 

Bad record number 

The record number specified in the PUT or GET 
statement is either greater than the maximum 
allowed (32767) or equal to zero. 

Bad file name 

An invalid file name was used in a LOAD, SAVE, 
KILL, or OPEN statement. 

Direct statement in file 

A direct statement used to load an ASCII-format file 
caused execution of the LOAD statement to be 
terminated. 



MBASIC SOFTWARE ERROR MESSAGES 757 

Too many files 

Attempt to create a new file using SAVE or OPEN 
cannot be accomplished because all 255 directory 
entries are full. 



• 



APPENDIX 4-
Single- & 

Double-Density 
Differences 



760 OSBORNE 1 USER'S GUIDE 

Technical Specifications 

The Osborne 1 double-density can read data from and write 
data to the following diskette formats: 

• Osborne single-density 
• Osborne double-density 
• Xerox 820 single-density 
• Cromemco single-density 
• IBM Personal Computer using CP/M-86 
• DEC VT-180 

Exact technical specifications for these formats are as follows: 

OSBORNE ALTERNATE 

Single- Double- Xerox & IBM 
Density Density Cromemco CP/M-86 DEC 

tracks per diskette 40 40 40 40 40 
physical sectors per track 10 5 18 8 9 
logical sectors per track 20 40 18 32 36 
bytes per sector 256 1024 128 512 512 
total diskette capacity lOOK 200K 90K 160K 180K 
reserved tracks 3 3 3 1 2 
directory track 4 4 3 1 2 
data storage capacity 92K 185K 74K 156K 171K 
CCP starting location OCFOOh OCBOOh 
BIOS starting location OE5GOh OE100h 
sector skew factor 2 1 5 1 2 

Using Different Diskette Formats 

The double-density Osborne, when started (e.g., "booted") 
using double-density Osborne diskettes, recognizes, reads data 
from, and writes data to any of the diskette formats listed in the 
chart above, if those diskettes are placed in the B drive. Some 
programs on the alternate format or Osborne single-density 
diskettes are also usable. 



SINGLE- & DOUBLE-DENSITY DIFFERENCES 761 

The Osborne can only write to the format of the alternate format 
diskette that is actually present in the computer; it will not 
create an alternate diskette format on its own (i.e., you cannot 
use the Osborne FORMAT program to create alternate format 
diskettes) . 

If an Osborne single-density diskette is used to start a double
density Osborne, the computer will then act like a single
density Osborne; in this case, the computer can only recognize 
single-density Osborne diskettes, just as if it were a single
density Osborne. 

There is a way, however, to start the computer using single
density Osborne diskettes or the alternate format diskettes. This 
is done by copying double-density system tracks onto the alter
nate format or Osborne single-density format diskettes, by 
using the CP/M SYSGEN utility as follows: 

Put your (double-density) CP/M diskette into drive A and 
boot. Leave HELP by pressing ESC. Type SYSGEN and 
press RETURN. 

Put your Osborne single-density or alternate format 
diskettes in drive B. 

Respond to SOURCE? by typing the letter A. Respond to 
DESTINATION? by typing the letter B. 

The alternate diskette can now be used as the boot diskette in 
the same manner as a double-density diskette. This operation 
does not alter the data on the diskette. It will, however, prevent 
the Osborne single-density or alternate format diskettes from 
being used in their original machines. The converted Osborne 
single-density diskettes can be converted back by using the 
SYSGEN utility to copy the system tracks from a single-density 
diskette. Alternate format diskettes might possibly be likewise 
reconverted by using the system generation facilities of their 
original machines; see their reference manuals for this 
information. 



762 OSBORNE 1 USER'S GUIDE 

Changing Single-Density Diskettes to 
Double-Density 

Diskettes included with the Osborne 1 double-density computer 
are all double-density format and come with double-density 
SYSGEN. Osborne-approved software, however, is sold in 
single-density format and with no operating system, so that it 
can be used by either single- or double-density Osbornes. (The 
Extended Utilities diskette provided with the double-density 
upgrade is also single-density format; however it will boot 
double-density as if it were a double-density diskette.) 

You can use single-density working copies of such software in 
a double-density Osborne by putting double-density SYSGEN 
on them. Or you can convert them to double-density in this 
manner: 

Boot up the double-density CP/M diskette in drive A, or 
your Extended Utilities diskette, in the case of a double
density upgrade. Press ESC to leave HELP. 

Place a blank diskette in drive B. Format this diskette in 
DOUBLE-DENSITY as described in chapter 3. 

Type the word PIP and press RETURN. The PIP program 
loads and an asterisk (*) appears on the screen. 

Remove the CP/M diskette from the A drive. Replace 
it with the single-density program diskette you want 
to copy. 

N ow type the following, exactly as shown: 

B:=A:*.* 

and press RETURN. Make sure you have typed it exactly 
as shown. 



SINGLE- & DOUBLE-DENSITY DIFFERENCES 763 

The screen displays the files as they are transferred from the A 
disk to the B disk. When the transfer is completed, the asterisk 
reappears on the screen. The double-density diskette in drive B 
is now a double-density copy of the single-density diskette in 
drive A. 

Now place your double-density CP/M (or Extended Utilities) 
diskette back in drive A, press RESET, and then press RETURN. 
Then follow the SYSGEN procedure described earlier to copy 
system tracks onto your double-density diskette. 

You may use your double-density CP/M (or Extended Utilities) 
diskette to make a COpy of this diskette, and the copy will also 
be double-density. 

Use this same PIP procedure to consolidate several programs 
onto one double-density diskette. Check that the recipient disk
ette has room for the programs. You may also PIP selected files, 
as described in chapter 3 of the User's Guide or in the CP/M sec
tion of the Reference Guide. PIP can also transfer the other way, 
from double- to single-density. In each case, dotIble-density 
must be "booted" (used to start the computer). 




