
NeXTstep Reference
Volume 1

NeXT Developer's Library

NeXT step

Draw upon the library of software contained in NeXTstep to develop your
applications. Integral to this development environment are the Application Kit and
Display PostScript.

Concepts
A presentation of the principles that define NeXTstep, including user interface
design, object-oriented programming, event handling, and other fundamentals.

Reference, Volumes 1 and 2
Detailed, comprehensive descriptions of the NeXT step Application Kit software.

Sound, Music, and Signal Processing

Let your application listen, talk, and sing by using the Sound Kit and the Music Kit.
Behind these capabilities is the DSP56001 digital signal processor. Independent
of sound and music, scientific applications can take advantage of the speed of
the DSP.

Concepts
An examination of the design of the sound and music software, including chapters
on the use of the DSP for other, nonaudio uses.

Reference
Detailed, comprehensive descriptions of each piece of the sound, music, and DSP
software.

~ NeXT Development Tools

A description of the tools used in developing a NeXT application, including the
Edit application, the compiler and debugger, and some performance tools.

------------ ----------------------- --------------- -----

~ NeXT Operating System Software

A description of NeXT's operating system, Mach. In addition, other low-level
software is discussed.

~ Writing Loadable Kernel Servers

How to write loadable kernel servers, such as device drivers and network protocols.

~ NeXT Technical Summaries

Brief summaries of reference information related to NeXT step, sound, music, and
Mach, plus a glossary and indexes.

------- ---

~ Supplemental Documentation

Information about PostScript, RTF, and other file formats useful to application
developers.

NeXTstep Reference
Volume 1

We at NeXT Computer have tried to make the information contained in this manual as accurate and reliable as possible.
Nevertheless, NeXT disclaims any warranty of any kind, whether express or implied, as to any matter whatsoever relating to this
manual, including without limitation the merchantability or fitness for any particular purpose. NeXT will from time to time revise
the software described in this manual and reserves the right to make such changes without obligation to notify the purchaser. In no
event shall NeXT be liable for any indirect, special, incidental, or consequential damages arising out of purchase or use of this
manual or the information contained herein.

Copyright ©1990 by NeXT Computer, Inc. All Rights Reserved.
[2909.00]

The NeXT logo and NeXTstep are registered trademarks of NeXT Computer, Inc., in the U.S. and other countries . NeXT, N eXTbus,
Digital Librarian, Digital Webster, Interface Builder, and Workspace Manager are trademarks of NeXT Computer, Inc. Display
PostScript and PostScript are registered trademarks of Adobe Systems Incorporated. UNIX is a registered trademark of AT&T.
Helvetica and Times arc registered trademarks of Linotype AG and/or its subsidiaries and are used herein pursuant to license.
WriteNow is a registered trademark of T/Maker Company. All other trademarks mentioned belong to their respective owners.

Notice to U.S. Government End Users:

Restricted Rights Legends

For civilian agencies: This software is licensed only with "Restricted Rights" and use, reproduction, or disclosure is subject
to restrictions set forth in subparagraph (a) through (d) of the Commercial Computer Software-Restricted Rights clause at
52.227 -19 of the Federal Acquisition Regulations.

Unpublished-rights reserved under the copyright laws of the United States and other countries.

For units of the Department of Defense: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in subparagraph (c)(I)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

NeXT Computer, Inc., 900 Chesapeake Drive, Redwood City, CA 94063.

Manual written by Don Larkin, Matt Morse, Jim Inscore, Sam Streeper, and Jackie Neider
Edited by Caroline Rose, Kathy Walrath, Roy West, Helen Casabona, Adrienne Wong, and Jeremy Brest
Book design by Eddie Lee
Illustrations by Jeff Yaksick and Don Donoughe
Production by Adrienne Wong, Jennifer Yu, and Katherine Arthurs
Publications management by Cathy Novak

Reorder Product #N6007B

Contents

Introduction

1-1 Chapter 1: Constants and Data Types
1-3 Constants
1-8 Data Types

2-1 Chapter 2: Class Specifications
2-3 How to Read the Specifications
2-11 Common Classes
2-63 Application Kit Classes

3-1 Chapter 3: C Functions
3-3 NeXT step Functions
3-148 Run-Time Functions

4-1 Chapter 4: PostScript Operators

5-1 Chapter 5: Data Formats

Index

Introduction

3 Using Documented API

4 How This Manual is Organized

4 Conventions
4 Syntax Notation

Intro-l

Intro-2

Introduction

This manual describes the Application Programming Interface (API) for the NeXTstep®
development environment. It's part of a collection of manuals called the NeXT™
Developer's Library; the illustration on the first page of this manual shows the complete set
of manuals in this Library.

In two volumes, this manual provides detailed descriptions of all classes, functions,
operators, and other programming elements that make up the API, listed alphabetically
within each category for easy reference. Some topics discussed here aren't covered in
detail; instead, you're referred to a generally available book on the subject, or to an on-line
source of the information (see "Suggested Reading" in the NeXT Technical Summaries
manual.

For many programmers, only a fraction of the information in this manual will have to be
learned; the more sophisticated the application, the more you'll need to understand.

This manual assumes you're familiar with the standard NeXT user interface. Some
experience using a NeXT application, such as the WriteNow® word processor, would be
helpful.

A version of this manual is stored on-line in the NeXT Digital Library (which is described
in the user's manual NeXT Applications). The Digital Library also contains Release Notes
that provide last-minute information about the latest release of the software.

Using Documented API

The API described in this manual provides all the functionality you need to make full use
of the NeXT step software. If you have questions about using the API, this documentation
and the NeXT Technical Support Department can help you use it correctly. If a feature in
the API doesn't work as described, it's considered a bug which NeXT will work to fix. If
API features change in future releases, these changes will be described in on-line release
notes and printed documentation.

Undocumented features are not part of the API. If you use undocumented features, you run
several risks. First, your application may be unreliable, because undocumented features
won't work the way you expect them to in all cases. Second, NeXT Technical Support can't
provide full assistance in fixing problems that arise, other than to recommend that you use
documented API. Finally, your application may be incompatible with future releases, since
undocumented features can and will change without notice.

Intro-3

How This Manual is Organized

The chapters in this manual are as follows:

Chapter 1, "Constants and Data Types," lists constants and data types used by the
methods, instance variables, and functions described in the remaining chapters. Not
listed in this chapter are constants and data types specific to a particular class; these are
documented with the associated class in Chapter 2.

Chapter 2, "Class Specifications," describes the classes defined in the Application Kit
as well as those that come with the NeXT implementation of the Objective-C language.
Each class specification details the instance variables the class declares, the methods it
defines, and any special constants and defined types it uses. There's also a general
description of the class and its place in the inheritance hierarchy.

• Chapter 3, "C Functions," describes in detail the C functions provided by NeXT (except
for Mach functions). It lists the functions in two groups, NeXT step functions and
run-time functions. Each function's calling sequence, its return value, and any
exceptions it raises are given, in addition to a description of what the function does.

• Chapter 4, "PostScript® Operators," describes NeXT's extensions to the Display
PostScript® system. It also lists the standard PostScript operators that have different or
additional effects in the NeXT implementation.

Chapter 5, "Data Formats," describes the standard data formats recognized by the
pasteboard.

Volume 1 includes the introductory material, all of Chapter 1, and Chapter 2 through the
OpenPanel class in the Application Kit. Volume 2 continues Chapter 2, beginning with the
PageLayout class; it includes Chapters 3, 4, and 5 and the index.

Conventions

Intro-4

Syntax Notation

Where this manual shows the syntax of a method, function, or other programming element,
the use of bold, italic, square brackets [], and ellipsis has special significance, as described
here.

Bold denotes words or characters that are to be taken literally (typed as they appear). Italic
denotes words that represent something else or can be varied. For example, the syntax

print expression

means that you follow the word print with an expression.

Square brackets [] mean that the enclosed syntax is optional, except when they're bold [],
in which case they're to be taken literally. The exceptions are few and will be clear from
the context. For example,

pointer [filename]

means that you type a pointer with or without a file name after it, but

[receiver message]

means that you specify a receiver and a message enclosed in square brackets.

Ellipsis (...) indicates that the previous syntax element may be repeated. For example:

Syntax

pointer ...

pointer [, pointer] ...

pointer [filename ...]

pointer [,filename] ...

Allows

One or more pointers

One or more pointers separated by commas

A pointer optionally followed by one or more file names

A pointer optionally followed by a comma and one or more
file names separated by commas

Intro-5

Intro-6

Chapter. 1
Constants and Data Types

1-3 Constants

1-8 Data Types

1-1

1-2

Constants

Chapter 1
Constants and Data Types

This chapter lists many of the constants and data types used in developing NeXTstep
applications. This list includes constants and types defined in the lusr/include
subdirectories objc, dpsclient, appkit, and streams. Not included are constants and types
defined in the header files for the common classes and Application Kit classes: these are
listed with the class descriptions in Chapter 2.

Constants and Data Types are presented in separate sections of this chapter. Each listing
includes a reference to the class header file where the constant or type is defined.

In most cases, the value defined for a constant is arbitrary; you don't need to know the value
to use the constant. In cases where a constant provides access to a meaningful value, the
definition of that value is included in parentheses next to the constant's name.

Name
CLS_CLASS
CLS_META
CLS_INITIALIZED
CLS_POSING
CLS_MAPPED
DPS_ALLCONTEXTS
DPS_ARRAY
DPS_BOOL
DPS_DEF_TOKENTYPE
DPS_ERRORBASE
DPS_EXEC
DPS_EXT_HEADER_SIZE
DPS_HEADER_SIZE
DPS_HCIEEE
DPS_HCNATIVE
DPS_IMMEDIATE
DPS_INT
DPS_LITERAL
DPS_LO_IEEE
DPS_LO_NATIVE
DPS_MARK
DPS_NAME

Defined In

objc/objc-class.h
objc/objc-class.h
objc/objc-class.h
objc/objc-class.h
objc/objc-class.h
dpsclient/dpsNeXT.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsclient.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h

Constants 1-3

DPS_NEXTERRORBASE
DPS_NULL
DPS_REAL
DPS_STRING
DPSSYSNAME
FALSE
NBITSCHAR
NBITSINT
nil
Nil
NO
NX_ABOVE
NX_ALLEVENTS
NX_ALLOC_ERROR
NX_ALPHAMASK
NX_ALPHASHIFTMASK
NX_ALTERNATEMASK
NX_APPBASE
NX_APPDEFINED
NX_APPDEFINEDMASK
NX_APPKITERRBASE
NX_ASCIISET
NX_BAD_TIFF _FORMAT
NX_BELOW
NX_BIGENDIAN
NX_BLACK (0.0)
NX_BROADCAST
NX_BVFFERED
NX_BYPSCONTEXT
NX_BYTYPE
NX_CANREAD
NX_CANSEEK
NX_CANWRITE
NX_CLEAR
NX_COLORBLACK
NX_COLORBLUE
NX_COLORBROWN
NX_COLORCLEAR
NX_COLORCYAN
NX_COLORDKGRAY
NX_COLORGRAY
NX_COLORGREEN
NX_COLORLTGRAY
NX_COLORMAGENTA
NX_COLORMASK
NX_COLORORANGE
NX_ CQI,-ORPURPLE
NX-,COLORRED
NX_COLORWHITE
NX_COLORYELLOW

1-4 Chapter 1,' Constants and Data Types

dpsclient/dpsclient.h
dpsclient/dpsfriends.h
dpsclient/dpsfriends.h
dpsc1ient/dpsfriends.h
dpsc1ient/dpsfriends.h
appkit/nextstd.h
appkit/nextstd.h
appkit/nextstd.h
objc/objc.h
objc/objc.h
objc/objc.h
dpsc1ient/dpsN eXT.h
dpsc1ient/event.h
appkit/tiff.h
appkit/graphics.h
dpsc1ient/event.h
dpsc1ient/event.h
appkit/errors.h
dpsclient/event.h
dpsc1ient/event.h
appkit/errors.h
dpsc1ient/event.h
appkit/tiff.h
dpsc1ient/dpsN eXT.h
appkit/tiff.h
appkit/graphics.h
dpsc1ient/event.h
dpsc1ient/dpsN eXT.h
dpsclient/event.h
dpsc1ient/event.h
streams/streams.h
streams/streams.h
streams/streams.h
dpsclient/dpsNeXT.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/graphics.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/color.h
appkit/color.h

NX_COMMANDMASK dpsc1ient/event.h
NX_COMPRESSION_NOT _YET_SUPPORTED

NX_CONTROLMASK
NX_COPY
NX_CURSORUPDATE
NX_CURSORUPDATEMASK
NX_DATA
NX_DATOP
NX_DEFAULTBUFSIZE (16 * 1024)
NX_DIN
NX_DINGBATSSET
NX_DKGRAY (1.0/3.0)
NX_DOUT
NX_DOVER
NX_EOS
NX_EVENTCODEMASK
NX_EXPLICIT
NX_FILE_IO _ERROR
NX_FIRSTEVENT
NX_FIRSTWINDOW
NX_FLAGSCHANGED
NX_FLAGSCHANGEDMASK
NX_FONTCHARDATA
NX_FONTCOMPOSITES
NX_FONTHEADER
NX_FONTKERNING
NX_FONTMETRICS
NX_FONTWIDTHS
NX_FOREVER
NX_FORMAT _NOT_YET _SUPPORTED
NX_FREEBUFFER
NX_FROMCURRENT
NX_FROMEND
NX_FROMSTART
NX_HIGHLIGHT
NX_IMAGE_NOT_FOUND
NX_JOURNALEVENT
NX_JOURNALEVENTMASK
NX_KEYDOWN
NX_KEYDOWNMASK
NX_KEYUP
NX_KEYUPMASK
NX_KITDEFINED
NX_KITDEFlNEDMASK
NX_LASTEVENT
NX_LASTKEY
NX_LASTLEFT
NX_LASTRIGHT
NX_LITTLEENDIAN

appkit/tiff.h
dpsclient/event.h
dpsclient/dpsN eXT.h
dpsc1ient/event.h
dpsclient/event.h
dpsc1ient/dpsN eXT.h
dpsc1ient/dpsNeXT.h
streams/streamsimpl.h
dpsclient/dpsNeXT.h
dpsc1ient/event.h
appkit/graphics.h
dpsc1ient/dpsN eXT.h
dpsclient/dpsNeXT.h
streams/streams.h
dpsc1ient/event.h
dpsclient/event.h
appkit/tiff.h
dpsc1ient/event.h
dpsclient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
appkit/afm.h
appkit/afm.h
appkit/afm.h
appkit/afm.h
appkit/afm.h
appkit/afm.h
dpsc1ient/dpsN eXT.h
appkit/tiff.h
streams/streams.h
streams/streams.h
streams/streams.h
streams/streams.h
dpsclient/dpsNeXT.h
appkit/tiff.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsclient/event.h
dpsc1ient/event.h
appkit/tiff.h

Constants 1-5

NX_LMOUSEDOWN
NX_LMOUSEDOWNMASK
NX_LMOUSEDRAGGED
NX_LMOUSEDRAGGEDMASK
NX_LMOUSEUP
NX_LMOUSEUPMASK
NX_LTGRAY (2.0/3.0)
NX_MESHED
NX_MONOTONICMASK
NX_MOUSEDOWN
NX_MOUSEDOWNMASK
NX_MOUSEDRAGGED
NX_MOUSEDRAGGEDMASK
NX_MOUSEENTERED
NX_MOUSEENTEREDMASK
NX_MOUSEEXITED
NX_MOUSEEXITEDMASK
NX_MOUSEMOVED
NX_MOUSEMOVEDMASK
NX_MOUSEUP
NX_MOUSEUPMASK
NX_MOUSEWINDOW
NX_NEXTCTRLKEYMASK
NX_NEXTLALTKEYMASK
NX_NEXTLCMDKEYMASK
NX_NEXTLSHIFfKEYMASK
NX_NEXTRALTKEYMASK
NX_NEXTRCMDKEYMASK
NX_NEXTRSHIFTKEYMASK
NX_NEXTWINDOW
NX_NOALPHA
NX_NOBUF
NX_NONRETAINED
NX_NOWINDOW
NX_NULLEVENT
NX_NULLEVENTMASK
NX_NUMERICPADMASK
NX_ONES
NX_OUT
NX_PAGEHEIGHT
NX_PLANAR
NX_PLUS
NX_PLUSD
NX_PLUSL
NX_READFLAG
NX_READONLY
NX_READWRITE
NX_RETAlNED
NX_RMOUSEDOWN
NX_RMOUSEDOWNMASK

1-6 Chapter 1,' Constants and Data Types

dpsclient/event.h
dpsc1ient/event.h
dpsclient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsclient/event.h
appkit/graphics.h
appkit/graphics.h
appkit/graphics.h
dpsclient/event.h
dpsclient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsclient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsclient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
appkit/color.h
streams/streams.h
dpsc1ient/dpsNeXT.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsc1ient/dpsN eXT.h
dpsclient/dpsNeXT.h
appkit/tiff.h
appkit/graphics.h
dpsclient/dpsNeXT.h
dpsc1ient/dpsN eXT.h
dpsclient/dpsN eXT.h
streams/streams.h
streams/streams.h
streams/streams.h
dpsclient/dpsNeXT.h
dpsc1ient/event.h
dpsc1ient/event.h

NX_RMOUSEDRAGGED
NX_RMOUSEDRAGGEDMASK
NX_RMOUSEUP
NX_RMOUSEUPMASK
NX_SATOP
NX_SAVEBUFFER
NX_SHIFTMASK
NX_SIN
NX_SOUT
NX_SOVER
NX_STREAMERRBASE
NX_SYMBOLSET
NX_SYSDEFINED
NX_SYSDEFINEDMASK
NX_TIFF _CANT_APPEND
NX_TIFF _COMPRESSION_CCITFAX3
NX_TIFF _COMPRESSION_JPEG
NX_TIFF _COMPRESSION_LZW
NX_TIFF _COMPRESSION_NEXT
NX_TIFF _COMPRESSION_NONE
NX_TIFF _COMPRESSION_PACKBITS
NX_TIMER
NX_TIMERMASK
NX_TOPWINDOW
NX_ TRANSMIT
NX_TRUNCATEBUFFER
NX_UNIQUEALPHABITMAP
NX_UNIQUEBITMAP
NX_USER_OWNS_BUF
NX_ WHITE (1.0)
NX_ WRITEFLAG
NX_ WRITEONLY
NX_XMAX
NX_XMIN
NX_XOR
NX_YMAX
NX_YMIN
NXSYSTEMVERSION
NXSYSTEMVERSION082
NXSYSTEMVERSION083
NXSYSTEMVERSION090
NXSYSTEMVERSION0900
NXSYSTEMVERSION0901
NXSYSTEMVERSION0905
NXSYSTEMVERSION0930
TRUE
TYPEDSTREAM_ERROR_RBASE
YES

dpsc1ient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsc1ient/dpsNeXT.h
streams/streams.h
dpsc1ient/event.h
dpsclient/dpsNeXT.h
dpsclient/dpsNeXT.h
dpsclient/dpsN eXT.h
streams/streams.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
appkit/tiff.h
appkit/tiff.h
appkit/tiff.h
appkit/tiff.h
appkit/tiff.h
appkit/tiff.h
appkit/tiff.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
dpsc1ient/event.h
streams/streams.h
appkit/obsoleteBitmap.h
appkit/obsoleteBitmap.h
streams/streams.h
appkit/graphics.h
streams/streams.h
streams/streams.h
appkit/graphics.h
appkit/graphics.h
dpsc1ient/dpsNeXT.h
appkit/graphics.h
appkit/graphics.h
objc/typedstream.h
objc/typedstream.h
objc/typedstream.h
objc/typedstream.h
objc/typedstream.h
objc/typedstream.h
objc/typedstream.h
objc/typedstream.h
appkit/nextstd.h
objc/typedstream.h
objc/objc.h

Constants 1-7

Data Types

BOOL

DEFINED IN objc/objc.h

typedef char BOOL;

Cache

DEFINED IN objc/objc-class.h

typedef struct objc cache *Cache;

Category

DEFINED IN objc/objc-class.h

typedef struct objc category *Category;

Class

DEFINED IN objc/objc.h

typedef struct objc_class *Class;

DPSBinObjRec

DEFINED IN dpsclient/dpsfriends.h

typedef struct
unsigned char attributedType;
unsigned char tag;
unsigned short length;
union {

long int integerVal;
float real Val;
long int nameVal;
long int booleanVal;
long int stringVal;

long int arrayVal;

val;
DPSBinObjRec, *DPSBinObj;

1-8 Chapter 1.- Constants and Data Types

1* offset

1* offset

1* offset

or index

*1
*1

*1

DPSBinObjGeneric

DEFINED IN dpsclient/dpsfriends.h

typedef struct
unsigned char attributedType;
unsigned char tag;
unsigned short length;
long int val;

DPSBinObjGeneric;

DPSBinObjReal

DEFINED IN dpsclient/dpsfriends.h

typedef struct
unsigned char attributedType;
unsigned char tag;
unsigned short length;
float realVal;

DPSBinObjReal;

DPSBinObjSeqRec

DEFINED IN dpsclient/dpsfriends.h

typedef struct
unsigned char tokenType;
unsigned char nTopElements;
unsigned short length;
DPSBinObjRec objects[lJ;

DPSBinObjSeqRec, *DPSBinObjSeq;

Data Types 1-9

DPSContextRec

DEFINED IN dpsc1ient/dpsfriends.h

typedef struct t DPSContextRec
char *priv;
DPSSpace space;
DPSProgramEncoding programEncoding;
DPSNameEncoding nameEncoding;
struct t DPSProcsRec const * procs;
void (*textProc) ();
void (*errorProc) () ;
DPSResults resultTable;
unsigned int resultTableLength;
struct _t_DPSContextRec *chainParent, *chainChild;
DPSContextType type; /* NeXT addition - denotes type of context */
} DPSContextRec, *DPSContext;

DPSContextType

DEFINED IN dpsclient/dpsfriends.h

typedef enum /* NeXT addition */
dps_machServer,/* a mach binary connection to a window server */
dps fdServer, /* a socket binary connection to a window server */
dps_stream /* an ascii NXStream */
} DPSContextType;

DPSDefinedType

DEFINED IN

typedef enum
dps_tBoolean,
dps_tChar, dps_tUChar,
dps_tFloat, dps_tDouble,
dps_tShort, dps_tUShort,
dps_tlnt, dps_tUlnt,
dps_tLong,

1-1 0 Chapter 1 : Constants and Data Types

dpsc1ient/dpsfriends.h

DPSDefinedType;

DPSErrorCode

DEFINED IN dpsclient/dpsclient.h

typedef enum _DPSErrorCode {
dps_err_ps = DPS_ERRORBASE,
dps_err_nameTooLong,
dps_err_resultTagCheck,

dps err_resultTypeCheck,
dps_err_invalidContext,
dps_err_select = DPS_NEXTERRORBASE,
dps err connectionClosed,
dps_err_read,
dps_err_write,
dps_err_invalidFD,

dps_err_invalidTE,
dps_err_invalidPort,

dps_err_outOfMemory,
dps_err_cantConnect

DPSErrorCode;

DPSErrorProc

DEFINED IN

typedef void (*DPSErrorProc)
DPSContext ctxt,
DPSErrorCode errorCode,
long unsigned int argl,
long unsigned int arg2);

DPSEventFilterFunc

DEFINED IN

dpsclient/dpsc1ient.h

dpsc1ient/dpsN eXT.h

typedef int (*DPSEventFilterFunc) (NXEvent *ev);

DPSExtendedBinObjSeq

DEFINED IN dpsc1ient/dpsfriends.h

typedef struct
unsigned char tokenType;
unsigned char escape; /* zero if this is an extended sequence */
unsigned short nTopElements;
unsigned long length;

DPSBinObjRec objects[l];
DPSExtendedBinObjSeqRec, *DPSExtendedBinObjSeq;

Data Types 1-11

DPSFDProc

DEFINED IN dpsc1ient/dpsNeXT .h:

typedef void (*DPSFDProc) (int fd, void *userData);

DPSN ameEncoding

DEFINED IN

typedef enum
dps_indexed,
dps strings
} DPSNameEncoding;

DPSNumberFormat

DEFINED IN

typedef enum DPSNumberFormat

dps float = 48,
dps_long = 0,
dps short = 32

DPSNumberFormat;

DPSPortProc

DEFINED IN

dpsclient/dpsfriends.h

dpsc1ient/dpsN eXT.h

dpsc1ient/dpsN eXT.h

typedef void (*DPSPortProc) (msg_header_t *msg, void *userData);

DPSProcs

DEFINED IN dpsclient/dpsfriends.h

typedef struct t DPSProcsRec
void (*BinObjSeqWrite) (

DPSContext ctxt,
const void *buf,
unsigned int count);

void (*WriteTypedObjectArray) (
DPSContext ctxt,
DPSDefinedType type,
const void *array,
unsigned int length);

1-12 Chapter 1: Constants and Data Types

void (*WriteStringChars)
DPSContext ctxt,
const char *buf,

unsigned int count);
void (*WriteData) (

DPSContext ctxt,
const void *buf,
unsigned int count);

void (*WritePostScript) (
DPSContext ctxt,
const void *buf,
unsigned int count);

void (*FlushContext) (DPSContext ctxt);
void (*ResetContext) (DPSContext ctxt);
void (*UpdateNameMap) (DPSContext ctxt);
void (*AwaitReturnValues) (DPSContext ctxt);
void (*Interrupt) (DPSContext ctxt);
void (*DestroyContext) (DPSContext ctxt);

void (*Wai tContext) (DP SContext ctxt);
void (*Printf) (

DPSContext ctxt,
const char *fmt,
va_list argList);

DPSProcsRec, *DPSProcs;

DPSProgramEncoding

DEFINED IN

typedef enum
dps_ascii,
dps_binObjSeq,
dps encodedTokens
} DPSProgramEncoding;

DPSResultsRec

DEFINED IN

typedef struct
DPSDefinedType type;

int count;
char *value;

dpsclient/dpsfriends.h

dpsclient/dpsfriends.h

} DPSResultsRec, *DPSResults;

Data Types 1-13

DPSSpaceRec

DEFINED IN dpsclient/dpsfriends.h

typedef struct
int lastNamelndex;
struct _t_DPSSpaceProcsRec const * procs;
} DPSSpaceRec, *DPSSpace;

DPSSpaceProcsRec

DEFINED IN dpsclient/dpsfriends.h

typedef struct _t_DPSSpaceProcsRec
void (*DestroySpace) (DPSSpace space);

/* See DPSDestroySpace() in dpsclient.h */
DPSSpaceProcsRec, *DPSSpaceProcs;

DPSTextProc

DEFINED IN

typedef void (*DPSTextProc) (
DPSContext ctxt,

const char *buf,
long unsigned int count);

DPSTimedEntry

DEFINED IN

dpsclient/dpsclient.h

dpsclient/dpsNeXT .h

typedef struct __ DPSTimedEntry *DPSTimedEntry;

1-14 Chapter 1.' Constants and Data Types

DPSUserPathAction

DEFINED IN dpsclient/dpsN eXT.h

typedef enum DPSUserPathAction
dps_uappend = 176,
dps_ufill = 179,
dps_ueofi1l = 178,
dps_ustroke = 183,
dps_ustrokepath = 364,
dps_inufill = 93,
dps_inueofill 92,
dps_inustroke = 312,
dps def = 51,
dps_put = 120

DPSUserPathAction;

DPSUserPathOp

DEFINED IN

id

typedef enum _DPSUserPathOp
dps_setbbox = 0,

dps_moveto,
dps_rmoveto,
dps_lineto,
dps rlineto,
dps_curveto,
dps_rcurveto,
dps_arc,
dps_arcn,
dps_arct,
dps_closepath,
dps_ucache

DPSUserPathOp;

DEFINED IN

typedef struct objc_object
Class isa;

} *id;

IMP

DEFINED IN

dpsc1ient/dpsNeXT .h

objc/objc.h

objc/objc.h

typedef id (*IMP) (id, SEL, ...);

Data Types 1-15

Ivar

DEFINED IN objc/objc-c1ass.h

typedef struct objc ivar *Ivar;

Method

DEFINED IN objc/objc-c1ass.h

typedef struct objc_method *Method;

Module

DEFINED IN objc/objc-runtime.h

typedef struct objc_module *Module;

NXAppkitErrorTokens

DEFINED IN appkit/errors.h

typedef enum _NXAppkitErrorTokens {
NX_IongLine NX_APPKITERRBASE,
NX_nuIISel, /* Text, operation attempted on empty

NX_wordTablesWrite,
NX_wordTablesRead,
NX textBadRead, -
NX_textBadWrite,
NX _powerOff,
NX_pasteboardComm,
NX_mallocError,
NX_printingComm,
NX abortModal, -
NX abortPrinting, -
NX illegalSelector,

-
NX appkitVMError, -
NX_badRtfDirective,
NX_badRtfFontTable,
NX_badRtfStyleSheet,
NX newerTypedStream, -
NX tiff Error

NXAppkitErrorTokens;

1-16 Chapter 1: Constants and Data Types

/*
/*
/*
/*
/*

/*
/*
/*

/*
/*
/*
/*

selection */
error while writing word tables */
error while reading word tables */
Text, error reading from file */
Text, error writing to file */

poweroff */
communications prob with pbs server */
malloc problem */
sending to npd problem */
used to abort modal panels */
used to abort printing */
bogus selector passed to appkit */
error from vm call */

NXAtom

DEFINED IN objc/hashtable.h

typedef const char *NXAtom;

NXCharMetrics

DEFINED IN appkit/afm.h

typedef struct /* per character info */
short charCode;
unsigned char numKernPairs;
unsigned char reserved;
float xWidth;
int name;
float bbox [4] ;
int kernPairlndex;

NXCharMetrics;

NXChunk

DEFINED IN appkit/chunk.h

typedef struct NXChunk
short growby;
int allocated;
int used;

NXChunk;

NXCoior

DEFINED IN

/* increment to grow by */

/* how much is allocated */
/* how much is used */

appkit/color.h

typedef struct _NXColor {
unsigned short colorField[8];

} NXColor;

Data Types 1 -17

NXColorSpace

DEFINED IN appkit/graphics.h

typedef enum _NXColorSpaceType
NX ONEISBLACK COLORS PACE 0,
NX ONEISWHITE COLORSPACE 1,
NX_RGB_COLORSPACE = 2,
NX CMYK COLORSPACE = 5

NXColorSpace;

NX CompositeChar

/* monochrome, 1 is black */

/* monochrome, 1 is white */

DEFINED IN appkit/afm.h

typedef struct

int numParts;

/* a composite char */

int firstPartIndex;
NXCompositeChar;

NX CompositeCharPart

DEFINED IN appkit/afm.h

typedef struct /* elements of the composite char array */

int partIndex;

float dx;
float dy;

NXCompositeCharPart;

NXCoord

DEFINED IN dpsc1ient/event.h

typedef float NXCoord

1-18 Chapter 1: Constants and Data Types

NXDefaults Vector

DEFINED IN appkit/defaults.h

typedef struct NXDefault
char *name;
char *value;

NXDefaultsVector[];

NXEncodedLigature

DEFINED IN appkit/afm.h

typedef struct /* elements of the encoded ligature array */
unsigned char firstChar;
unsigned char secondChar;
unsigned char ligatureChar;
unsigned char reserved;

NXEncodedLigature;

NXErrorReporter

DEFINED IN appkit/errors.h

typedef void NXErrorReporter(NXHandler *errorState);

NXEvent

DEFINED IN dpsc1ient/event.h

typedef struct NXEvent
int type; /* An event type from above */
NXPoint location;

/* Base coordinates in window, from lower-left */
long time /* vertical intervals since launch */
int flags;
unsigned int window;
NXEventData data;
DPSContext ctxt;

NXEvent, *NXEventPtr;

/* key state flags */
/* window number of assigned window */
/* type-dependent data */
/* context the event came from */

Data Types 1-19

NXEventData

DEFINED IN dpsc1ient/event.h

typedef union
struct { /* For mouse-down and mouse-up events */

short reserved;
short eventNum; /* unique identifier for this button */
int click; /* click state of this event */
int unused;

mouse;
struct { /* For key-down and key-up events */

short reserved;
short repeat; /* for key-down: nonzero if really a repeat */
unsigned short charSet; /* character set code */
unsigned short charCode;
unsigned short keyCode;

/* character code in that set */
/* device-dependent key number */
/* device-dependent info */ short

key;
struct {

short
short

keyData;

/* For mouse-entered and mouse-exited events */
reserved;
eventNum;

/* unique identifier from mouse down event */
int trackingNum; /* unique identifies from

settrackingrect */
int userData; /* uninterpreted integer from

settrackingrect */
tracking;

struct { /* For appkit-defined, sys-defined, and app-defined
events */

reserved; short
short
union

subtype; /* event subtype for compound events */

float F [2] ; /* for use in compound events
long L [2] ; /* for use in compound events
short S [4] ; /* for use in compound events
char C [8] ; /* for use in compound events

misc;
compound;

NXEventData;

NXExceptionRaiser

DEFINED IN objc/error.h

typedef void NXExceptionRaiser(int code,

1-20 Chapter 1: Constants and Data Types

canst void *datal,
canst void *data2);

*/
*/
*/
*/

NXFontMetrics

DEFINED IN appkit/afm.h

typedef struct NXFontMetrics
char *formatVersion;
char *name;
char *fullName;
char *familyName;
char *weight;
float italicAngle;
char isFixedPitch;
char isScreenFont;

1*
1*
1*
1*
1*
1*
1*
1*

version of afm file format *1
name of font for findfont *1
full name of font *1
"font family" name *1
weight of font *1
degrees ccw from vertical *1
is the font mono-spaced? *1
is the font a screen font? *1

short screenFontSize;
float fontBBox[4];
float underlinePosition;
float underlineThickness;
char *version;

1*
1*
1*
1*
1*

If it is, how big is it? *1
bounding box (llx lly urx ury) *1
dist from basline for underlines *1
thickness of underline stroke *1
version identifier *1

char *notice; 1* trademark or copyright *1
char *encodingScheme; 1* default encoding vector *1
float capHeight; 1* top of ' H' *1
float xHeight; 1* top of ' x' *1
float ascender; 1* top of ' d' *1
float descender; 1* bottom of 'p' *1
short hasYWidths; 1* do any chars have non-O y width? *1
float *widths; 1* character widths in x *1
unsigned int widthsLength;
char *strings; 1* table of strings and other info *1
unsigned int stringsLength;
char hasXYKerns; 1* Do any of the kern pairs have nonzero dy? *1
char reserved;

short *encoding;
float *yWidths;

1* 256 offsets into charMetrics *1

1* character widths in y. NOT in encoding *1
1* order, but a parallel array to the charMetrics array *1

NXCharMetrics

int
NXLigature
int
NXEncodedLigature

int

charMetrics; 1
numCharMetrics; 1*

ligatures; 1
numLigatures; 1*

encLigatures; 1

numEncLigatures; 1*

array of NXCharMetrics
num elements *1
array of NXLigatures *1
num elements *1
array of
NXEncodedLigatures *1
num elements *1

*1

Data Types 1-21

union {
NXKernPair
NXKernXPair

*kernPairs;
*kernXPairs;

/* array of NXKernPairs */
/* array of NXKernXPairs */

kerns;
int numKernPairs; /* num elements */
NXTrackKern *trackKerns; /* array of NXTrackKerns */
int
NXCompositeChar

int

numTrackKerns; /* num elements */
compositeChars; / array of

NXCompositeChar */
numCompositeChars; /* num elements */

NXCompositeCharPart *compositeCharParts; /* array of
NXCompositeCharPart */

int numCompositeCharParts; /* num elements */
NXFontMetrics;

NXHandler

DEFINED IN objc/error.h

typedef struct _NXHandler { /* a node in the handler chain
jmp_buf jumpState; /* place to longjmp to */
struct NXHandler *next; /* ptr to next handler */

/* error code of exception */ int code;
const void *datal, *data2; /* blind data for describing

NXHandler; /* error */

NXHashState

DEFINED IN objc/hashtable.h

typedef struct lint i; int j;} NXHashState;

NXHashTablePrototype

DEFINED IN objc/hashtable.h

typedef struct
unsigned (*hash) (const void *info, const void *data);
int

void

(*isEqual) (const void *info, const void *datal,
const void *data2);

(*free) (const void *info, void *data);

*/

*/

int style; /* reserved for future expansion; currently 0 */
} NXHashTablePrototype;

1-22 Chapter 1: Constants and Data Types

NXlmagelnfo

DEFINED IN appkit/tiff.h

typedef struct _NXlmagelnfo {

int width; /* image width in pixels */

int height; /* image height in pixels */

int bitsPerSample; /* number of bits per data channel */

int samplesPerPixel; /* number of channels per pixel */

int planarConfig; /* NX MESHED for mixed data channels */

/* NX_PLANAR for separate data planes */
int photolnterp; /* various bits set for various photometric */

/* interpretations, as in the table below */

NXlmagelnfo;

NXKernPair

DEFINED IN appkit/afm.h

typedef struct /* elements of the kern pair array */

int secondCharlndex;

float dx;

float dy;

NXKernPair;

NXKernXPair

DEFINED IN appkit/afm.h

typedef struct /* elements of the kern X pair array */

int secondCharlndex;

float dx;

NXKernXPair;

NXLigature

DEFINED IN appkit/afm.h

typedef struct /* elements of the ligature array */
int firstCharlndex;

int secondCharlndex;

int ligaturelndex;

NXLigature;

Data Types 1-23

NXPoint

DEFINED IN

typedef struct NXPoint
NXCoord x, y;

} NXPoint;

NXPrintfProc

DEFINED IN

dpsclient/event.h

/* point */

typedef void NXPrintfProc(NXStream *stream, void *item,
void *procData);

NXRect

DEFINED IN appkit/graphics.h

typedef struct NXRect
NXPoint origin;
NXSize size;

NXRect;

NXScreen

DEFINED IN appkit/screens.h

typedef struct _NXScreen {
int screenNumber;

NXRect screenBounds;

/* Screen number (may be used as */
/* argument to framebuffer op). */
/* Bounds of the screen. */

short _reservedShort[6]; /* Don't use these. */
NXWindowDepth depth; /* Depth of the frame buffer */
int _reserved[3]; /* Don't use these either. */

NXScreen;

NXSize

DEFINED IN dpsclient/event.h

typedef struct _NXSize { /* size */
NXCoord width, height;

} NXSize;

1-24 Chapter 1: Constants and Data Types

NXStream

DEFINED IN streams/streams.h

typedef struct _NXStream {
unsigned int magic_ number; 1* to check stream validity *1

data buffer *1 unsigned char
unsigned char

int
int
long
int
int

*buf base;
*buf _ptr;
buf size; -

buf left;
offset;
flags;
eof;

1*
1*
1*
1*
1*
1*

current buffer pointer *1
size of buffer *1
left till buffer operation */
position of beginning of buffer *1
info about stream *1

const struct stream functions *functions; 1* functions to
implement stream *1

1* stream specific info *1 void
NXStream;

NXStreamErrors

DEFINED IN

*info;

typedef enum NXStreamErrors

streams/streams.h

NX illegalWrite NX STREAMERRBASE,

NX_illegalRead,
NX illegal Seek,
NX_illegalStream,
NX streamVMError

NXStreamErrors;

NXTIFFInfo

DEFINED IN appkit/tiff.h

typedef struct NXTIFFlnfo
int imageNumber;

NXlmageInfo image;
int subfileType;

int rowsPerStrip;

1* only subfileType 1 is supported *1

int stripsPerImage;
int compression;
int numImages;
int endian;
int version;
int error;

1* compression id, 1 = no compression *1
1* number of images in tiff *1
1* either NX BIGENDIAN or NX LITTLEENDIAN *1
1* tiff version *1

int firstIFD; 1* offset of first IFD entry *1
unsigned int stripOffsets[NX_PAGEHEIGHT];
unsigned int stripByteCounts[NX_PAGEHEIGHT];

NXTIFFInfo;

Data Types 1-25

NXTopLevelError Handler

DEFINED IN appkit/errors.h

typedef void NXTopLevelErrorHandler(NXHandler *errorState);

NXTrackingTirner

DEFINED IN appkit/timer.h

typedef struct _NXTrackingTimer

double delay;
double period;
DPSTimedEntry te;
BOOL freeMe;
BOOL firstTime;
NXHandler *errorData;
int reservedl;
int reserved2;

NXTrackingTimer;

NXTrackKern

DEFINED IN appkit/afm.h

typedef struct 1* elements of the track kern array *1
int degree;
float minPointSize;
float minKernAmount;
float maxPointSize;
float maxKernAmount;

NXTrackKern;

NXTypedStrearn

DEFINED IN

typedef void NXTypedStream;

NXU ncaughtExceptionHandler

DEFINED IN

objc/typedstream.h

objc/error.h

typedef void NXUncaughtExceptionHandler(int code,

1-26 Chapter 1: Constants and Data Types

const void *datal,
const void *data2);

SEL

typedef struct objc selector *SEL;

STR

DEFINED IN objc/objc.h

typedef char *STR;

Symtab

DEFINED IN objc/objc-runtime.h

typedef struct objc symtab *Symtab;

TypedstreamErrors

DEFINED IN objc/typedstream.h

enum TypedstreamErrors

} ;

TYPEDSTREAM CALLER ERROR = TYPEDSTREAM_ERROR_RBASE,
TYPEDSTREAM_FILE INCONSISTENCY,
TYPEDSTREAM_CLASS_ERROR,
TYPEDSTREAM_TYPE_DESCRIPTOR_ERROR,
TYPEDSTREAM_WRITE_REFERENCE_ERROR,
TYPEDSTREAM INTERNAL ERROR

Data Types 1-27

1-28

Chapter 2
Class Specifications

Volume 1:

2-3 How to Read the Specifications
2-3 Organization
2-7 Method Descriptions
2-8 Implementing Your Own Version of a Method
2-8 Retaining the Kit's Version of a Method
2-9 Designated Initializer Methods
2-10 Sending a Message to Perform a Method

2-11 Common Classes
2-13 HashTable
2-19 List
2-27 NXStringTable
2-31 Object
2-53 Storage
2-59 StreamTable

2-63 Application Kit Classes
2-65 ActionCell
2-71 Application
2-105 Box
2-113 Button
2-123 ButtonCell
2-141 Cell
2-167 ClipView
2-179 Control
2-195 Font
2-205 FontManager
2-217 FontPanel
2-225 Form
2-235 FormCell
2-241 Listener
2-267 Matrix
2-295 Menu
2-303 MenuCell
2-307 NXBitmapImageRep
2-323 NXBrowser
2-345 NXBrowserCell
2-349 NXCachedImageRep
2-353 NXColorPanel

2-1

2-2

2-363 NXCoiorWell
2-369 NXCursor
2-375 NXCustomlmageRep
2-379 NXEPSlmageRep
2-385 NXlmage
2-411 NXlmageRep
2-417 NXJ ournaler
2-423 NXSplitView
2-429 Object Methods
2-433 OpenPanel

Volume 2:

2-437 Application Kit Classes (continued)
2-437 PageLayout
2-445 Panel
2-451 Pasteboard
2-459 PopUpList
2-465 Printlnfo
2-477 PrintPanel
2-483 Responder
2-491 SavePanel
2-499 Scroller
2-509 ScrollView
2-521 SelectionCell
2-525 Slider
2-529 SliderCell
2-537 Speaker
2-557 Text
2-625 TextField
2-633 TextFieldCell
2-639 View
2-681 Window

Chapter 2
Class Specifications

This chapter describes each of the classes defined in the Application Kit, as well as the
classes that come with the NeXT compiler for the Objective-C language. The classes that
come with the compiler can be used with any kit (and in programs that don't use the kits).

Each class specification details the instance variables the class declares, the methods it
defines, and any special constants and defined types it uses. There's also a general
description of the class and its place in the inheritance hierarchy. However, you won't find
a discussion of any kit's design or an explanation of how to go about using the kit to
program an application. You may occasionally encounter terms that assume some prior
knowledge about the kits, Mach, the Display PostScript system, or object-oriented
programming. These topics are covered in other volumes of the NeXT Developer's Library.

How to Read the Specifications

The class specifications are organized in two groups: common classes and Application Kit
classes. Within each of these groups, the specifications are arranged in alphabetical order
by class.

Organization

Information about a class is presented under the following headings:

INHERITS FROM

The first line of a class specification lists the classes that the class being described
inherits from. For example:

Panel : Window : Responder : Object

The first class listed (Panel, in this example) is the class's superclass. The last class
listed is always Object, the root of all inheritance hierarchies. The classes between
show the chain of inheritance from Object to the superclass. (This particular example
shows the inheritance hierarchy for the Menu class of the Application Kit.)

How to Read the Specifications 2-3

DECLARED IN

Each class lists the directory and header file in which its interface is declared.

In the Application Kit, a master header file includes almost all the other header files you
need to program with the kit:

/usr/include/appkit/appkit.h

There's also a master header file for the classes that come with the compiler:

/usr/include/objc/objc.h

If you include the master header file for the Application Kit, you don't need to also
include this file; it's included by the kit file.

Because the kits are written in the Objective-C language, they make use of constants
and types defined in the principal header file for Objective-C, objc.h. Only a handful
of these constants and types are used by the kits, but they're used pervasively. For
convenience, they're listed below.

Defined Types:

id

STR

SEL

BOOL

Constants:

nil
YES
NO

2-4 Chapter 2: Class Specifications

An object.

A C string. STR is a shorthand for (char *). It's used only for an
array of characters that's terminated by the null character.

A method selector. SEL is another shorthand for (char *), where
the character string can be thought of as a method name. However,
SEL is used only as a unique code for a method name, rather than
as a pointer to an actual occurrence of the name in memory.
Values should be assigned to SEL variables only with the
@selector operator:

SEL aMethod;
aMethod = @selector(moveTo::);

This allows selectors to be tested by matching the value of a SEL
code, rather than by comparing all the characters in a string.

A char that holds one of two values: YES (true) or NO (false).

A null object id, (id)O.
Boolean true, (BOOL)1.
Boolean false, (BOOL)O.

CLASS DESCRIPTION

This section gives a general description of the class. It tells how the class fits into the
general design of its kit and how your application can make use of it.

• Some classes define "off-the-shelf' objects: Your program can create direct
instances of the class, or modify it in a subclass definition.

Other classes are "abstract superclasses": You wouldn't create an instance of the
class itself, but only of its subclasses. The kits define some subclasses for each
abstract superclass; others can be defined by your application.

Occasionally, the class description will recommend that you define a subclass of a kit
class, even though the kit class isn't abstract. The subclass allows you to customize an
object to the needs of your application.

INSTANCE VARIABLES

The instance variables that are incorporated into each object belonging to the class,
including instance variables inherited from other classes, are listed next. The first
instance variable in all the lists is one inherited from the Object class, isa. isa identifies
the class that an object belongs to for the run-time system; it should never be altered or
read directly.

After all the instance variables are listed, those declared in the class being described are
explained.

However, instance variables that are for the internal use of the class are neither listed
nor explained. These instance variables all begin with an underscore (_) to prevent
collisions with names that you might choose for instance variables in a subclass you
define.

METHOD TYPES

Methods are next listed by name and grouped by type-for example, methods used to
draw are listed separately from methods used to handle events. This directory includes
all the principal methods defined in the class and some that are defined in classes it
inherits from. Inherited methods are followed by the name of the class where they're
defined; they're included in the directory to let you know which inherited methods you
might commonly use with instances of the class and where to look for a description of
those methods.

How to Read the Specifications 2-5

CLASS METHODS
INSTANCE METHODS,

A detailed description of each method defined in the class follows the classification by
type. Methods that are used by class objects are presented first; if a class has no class
methods, this section is left out. Methods that are used by instances (the objects
produced by the class) are presented next. The descriptions within each group are
ordered alphabetically by method name.

Each description begins with the syntax of the method's arguments and return values,
continues with an explanation of the method, and ends, where appropriate, with a list
of other related methods. Where a related method is defined in another class, it's
followed by the name of the other class within parentheses.

Some methods listed in a class specification are prototypes for methods that you may
want to implement in a subclass. A prototype is declared in the header file, but not
actually implemented by the class. The description for such methods states that they
are prototypes and describes the behavior and return value you should implement for
the method.

All methods except prototypes have reliable return values which are included in the
method description. Many methods return self; this allows you to chain messages
together:

[[[receiver message1] message2] message3];

Internal methods used to implement the class aren't listed. Since you shouldn't
override any of these methods, or use them in a message, they're excluded from both
the method directory and the method descriptions. However, you may encounter them
when looking at the call stack of your program from within the debugger. A private
method is easily recognizable by the underscore (_) that begins its name.

METHODS IMPLEMENTED BY ANOTHER OBJECT

If a class lets you define another object-a delegate-that can intercede on behalf of
instances of the class, the methods that the delegate can implement are described in a
separate section. These are not methods defined in the class; rather, they're methods
that you can define to respond to messages sent to the delegate.

If you define one of these methods, the delegate will receive automatic messages to
perform it at the appropriate time. For example, if you define a
windowDidBecomeKey: method for a Window's delegate, the delegate will receive
windowDidBecomeKey: messages whenever the Window becomes the key window.

Messages are sent only if the delegate has a method that can respond. If you don't
define a windowDidBecomeKey: method, no message will be sent.

2-6 Chapter 2: Class Specifications

Only certain classes provide for a delegate. In the Application Kit, they are:

Applicalion
Listener
NXBrowser
Speaker
Text
Window

You can set a delegate for instances of these classes or for instances that inherit from
these classes.

Some class specifications have separate sections with titles such as "Methods
Implemented by the SuperView" or "Methods Implemented by the Owner." The
methods described in these sections need to be implemented by another object, such as
the superview of an instance of that class or, in the case of the Pasteboard, the owner of
the Pasteboard instance. For example, the ClipView's superview needs to define the
scroIlClip:to: method to coordinate scrolling of multiple Clip Views. The owner of the
Pasteboard should define provideData: if certain promised data types won't be
immediately written to the Pasteboard. As is the case with the delegate methods, you
won't invoke these methods directly; messages to perform them will be sent
automatically when needed and only if they've been defined.

CONSTANTS AND DEFINED TYPES

If a class makes use of symbolic constants or defined types that are specific to the class,
they're listed in the last section of the class specification. Defined types are likely to
show up in instance variable declarations, and as return and parameter types in method
declarations. Symbolic constants typically define permitted return and argument
values.

Method Descriptions

By far, the major portion of each class specification is the description of methods defined
in the class. When reading these descriptions, be especially attentive to four kinds of
information that affect how the method can be used:

Whether you should implement your own version of the method

• Whether you should have your version of the method include the kit-defined version

• Which method is a class's designated initializer, the method to override if you
implement a subclass that performs initialization

Whether you should ever send a message to an object to perform the method

The next four sections examine these questions.

How to Read the Specifications 2-7

Implementing Your Own Version of a Method

For the most part, the methods in a class definition act as a private library for objects
belonging to that class. Just as programmers generally don't replace functions in the
standard C library with their own versions, you generally wouldn't write your own versions
of the methods provided for a class.

However, to add specific behavior to your application, you must override some of the
methods that are defined in the kits. Often, the kit-defined method will do little or nothing
that's of use to your application, but it will appear in messages initiated by other methods.
To give content to the method, your application must implement its own version.

To override a kit method with one of your own design, simply define a subclass of the
appropriate class and redefine the method. For example, the interface declaration for the
Circle View class illustrated below shows that it does nothing more than override the View
class's drawSelf:: method.

@interface CircleView : View {
- drawSelf: (NWRect *)drawRects : (int)rectCount;

@end

Circle View objects will perform its version of drawSelf:: rather than the empty default
version defined in View.

In contrast to methods that must be overridden, some methods should never be changed by
the application. The kit depends on these methods doing just what they're currently
programmed to do-nothing more and nothing less. While your application can use these
methods, it's important that you don't override them when defining a subclass.

Most methods fit between these two extremes: They can be overridden, but it's not
necessary for you to do so. If a method description is silent on the question of overriding
the kit method, you can be certain that it fits into this middle category. It's a method that
you can override, but like a function in the C library, you normally would have no reason to.

If a method is designed to be overridden, or if it should never be overridden, the method
description explicitly says so.

Retaining the Kit's Version of a Method

Some methods can be overridden, but only to add behavior, not to alter the default actions
of the kit-defined method. When your application overrides one of these methods, it's
important that it incorporate the very method it overrides. This is done by messaging super
to perform the kit-defined version of the method. For example, if you write a new version

2-8 Chapter 2: Class Specifications

of the kit method that moves a Window, you'd most likely still want it to move a Window.
The easiest way to have it do that is to include the old method in the new one through a
message to super.

- moveTo: (NWCoord)x : (NWCoord)y

[super moveTo:x :y];

/* your code goes here */

You may occasionally be required to implement a new version of a method while preserving
the behavior of the method you override. An example is the write: method, which archives
an object by writing it to a typed stream. When you define a kit subclass, you may need to
implement a version of this method that can archive the instance variables your subclass
declares. So that a write: message will archive all of an object's instance variables, not just
those declared in the subclass, your version of the method should begin by incorporating
the version used by its superclass.

- write: (NXTypedStream *)stream

[super write:stream];

/* your code goes here */

Method descriptions explicitly mention that you should incorporate a method you override
only when it's not obvious that you should preserve the default behavior in the new method.

Designated Initializer Methods

Initializer methods (those that begin with init ...) initialize a new instance of a class by
setting values for instance variables, creating support objects, and so on. Before a new
instance receives class-specific initialization, it must be initialized as an instance of each
class from which it inherits, in order, beginning with Object. To maintain this sequence,
each common and Application Kit class has designated initializers, init ... methods that
invoke a designated initializer in the superclass before doing their work. Since Object is
the root of the inheritance hierarchy, its designated initializer, the init method, is always the
first method to initialize an object. The designated initializer for most other classes is the
init. .. method with the most arguments (some classes have more than one designated
initializer to perform different types of initialization). Other init ... methods for a class
initialize objects by invoking a designated initializer. Designated initializers are identified
in their method descriptions.

In its discussion of the alloe and init methods, the Object class specification provides more
detail on how new instances are allocated and initialized. This discussion includes some
guidelines to follow when writing initializer methods in a subclass.

How to Read the Specifications 2-9

Sending a Message to Perform a Method

Some methods should never appear as messages in the code you write; you should never
directly ask an object to perform the method. Typically, these are methods that your
application will use indirectly, through other methods.

Most of these methods begin with a underscore and are treated as class-internal methods.
However, some don't have an underscore and are included in the method descriptions.
These are methods that your application can implement, even though it won't directly use
them in a message. The messages to perform these methods originate in the kit.

The most notable example of this is the drawSelf:: method that draws a View. Although
you must implement a drawS elf: : method for each View subclass you define, your code
should never send a drawSelf:: message. Instead, you send a display message; the display
method (such as display, displaylfNeeded, or display:::) sees to it that the drawing context
is properly set before initiating a drawSelf:: message to the View.

The methods that respond to event messages (such as mouseUp:, keyDown:, and
windowExposed:) also fall into this category. Event messages are initiated by the
Application Kit when it receives events from the Window Server; you shouldn't initiate
them in your own code.

The write: and read: methods for archiving and unarchiving are other examples of methods
that shouldn't be sent directly to objects. They're generated by functions, such as
NXWriteObjectO and NXReadObjectO.

If a method is designed to respond to messages generated by other methods or by a kit, the
method description will generally say so. If there's a penalty for generating the message
within the code you write (as there is for drawSelf::), the description will include an
explicit warning.

2-10 Chapter 2: Class Specifications

Common Classes

A handful of classes come with the NeXT compiler for the Objective-C language. They
include, most prominently, the Object class, which defines the basic functionality inherited
by all objects. The Object class is at the root of all inheritance hierarchies.

The other classes that come with the compiler are similar in that they also define
functionality that can serve a wide variety of applications. They can be used with any kit.
The five common classes are shown in Figure 2-1.

Figure 2-1. Inheritance Hierarchy of the Common Classes

Common Classes 2-11

2-12

HashTable

INHERITS FROM Object

DECLARED IN objc/HashTable.h

CLASS DESCRIPTION

The HashTable class defines objects that store associations of keys and values. You use
a HashTable object when you need a convenient and efficient way to store and access
unordered data. Hash tables double as their number of associations increase, thus
guaranteeing both constant average access time and linear size.

HashTable objects are convenient to use, but when even greater efficiency of storage
and access is required, consider using the C function interface to hash tables (see
NXCreateHashTable()). Two alternatives to the HashTable class are NXStringTable
and List. An NXStringTable is a HashTable that's designed to store associations
between keys and values that are both character strings. List is useful when you need
to store a collection of objects; however, it doesn't provide for storage of key/value
pairs. Also, the time required to access an element in a List object grows linearly with
the number of elements.

In a HashTable object, keys and values can be of type id, int, void *, char *, or any
other 32-bit quantity that can be described by a type string. The following outlines the
usage of key and value descriptions:

Hashing: A hash message is sent for object keys, a string hashing function is used for
string keys, and a generic integer hashing function is used for all other cases.

Equality: An isEqual: message is sent for object keys, and a string comparison is used
for string keys.

Descriptions must be invariant strings and are restricted to encode 32-bit quantities,
typically the following:

"@" (id) "*,, (char *) "i" (int) "!" (other)

Two other restrictions that a HashTable must satisfy are:

1. Keys must be invariant. In particular, when keys are strings, no copy is made, and
the string is assumed to never change until the association is removed from the
table.

2. If two keys are equal in the sense of isEqual:, then their hashed values must be
equal. If you're creating a HashTable of List or Storage objects, note that these
classes have an isEqual: method but no hash method; you can either subclass or
define a hash method.

Common Classes: HashTable 2-13

When freeing a HashTable, only object keys or object values are freed. Data is archived
according to its type description. When description is "%", hashing and equality are
same as for "*". On reading, however, the string is uniqued, using the
NXUniqueStringO function.

INSTANCE VARIABLES

Inheritedfrom Object

Declared in HashTable

count

keyDesc

valueDesc

METHOD TYPES

Initializing and freeing a HashTable

Copying a HashTable

Manipulating table associations

Iterating over all associations

Archiving

2-14 Chapter 2: Class Specifications

Class

unsigned
const char
const char

Isa;

count;
*keyDesc;
*valueDesc;

Current number of associations

Description of keys

Description of values

- init
- initKeyDesc:
- initKeyDesc:valueDesc:
- initKeyDesc:valueDesc:capacity:
- free
- free Objects
- freeKeys:values:
- empty

-copy
- copyFromZone:

- count
- isKey:
- valueForKey:
- insertKey:value:
- removeKey:

- initState
- nextState:key:value:

- read:
- write:

INSTANCE METHODS

copy
-copy

Returns a new HashTable. Keys nor values are copied.

copyFromZone:

- copyFromZone:

Returns a new HashTable. Memory for the new HashTable is allocated from zone.
Keys nor values are copied.

count

- (unsigned)count

Returns the number of objects in the table.

empty
- empty

Empties the HashTable but retains its capacity.

free
-free

Deallocates the table, but not the objects that are in the table.

freeKeys:values:

- freeKeys:(void (*)(void *»keyFunc values:(void (*)(void *»valueFunc

Conditionally deallocates the HashTable's associations but does not deallocate the table
itself.

freeObjects

- freeObjects

Deallocates every object in the HashTable, but not the HashTable itself. Strings are not
recovered.

Common Classes: HashTable 2-15

init

- init

Initializes a new HashTable to map object keys to object values. Returns self.

See also: - initKeyDesc:key:value:capacity:

initKeyDesc:

+ initKeyDesc:(const char *)aKeyDesc

Initializes a new HashTable to map keys as described by aKeyDesc to object values.
Returns self.

See also: - initKeyDesc:key:value:capacity:

initKey Desc:valueDesc:

- initKeyDesc:(const char *)aKeyDesc valueDesc:(const char *)aValueDesc

Initializes a new HashTable to map keys and values as described by aKeyDesc and
aValueDesc. Returns self.

See also: - initKeyDesc:key:value:capacity:

initKeyDesc:valueDesc:capacity:

- initKeyDesc:(const char *)aKeyDesc
valueDesc:(const char *)aValueDesc
capacity: (unsigned)aCapacity

Initializes a new HashTable. This is the designated initializer for HashTable objects:
If you subclass HashTable, your subclass's designated initializer must maintain the
initializer chain by sending a message to super to invoke this method. See the
introduction to the class specifications for more information.

A HashTable initialized by this method maps keys and values as described by aKeyDesc
and aValueDesc. aCapacity is given only as a hint; you can use 0 to create a table of
minimal size. As more space is needed, it will be allocated automatically. Returns self.

See also: - initKeyDesc:key:value:capacity:

2-16 Chapter 2: Class Specifications

initState
- (NXHashState)initState

Returns an NXHashState structure that's required when iterating through the
HashTable. Iterating through all associations of a HashTable involves setting up an
iteration state, conceptually private to HashTable, and then progressing until all entries
have been visited. An example of counting associations in a table follows:

unsigned count = 0;
const void *key;

void *value;
NXHashState state = [table initState);
while ([table nextState: &state key: &key value: &value))

count++;

See also: - nextState:key:value:

insertKey:value:
- (void *)insertKey:(const void *)aKey value:(void *)aValue

Adds or updates a key and value pair, as specified by aKey and aValue. If aKey is
already in the hash table, it's associated with aValue and its previously associated value
is returned. Otherwise, insertKey:value: returns nil.

See also: - removeKey:

isKey:
- (BOOL)isKey:(const void *)aKey

Returns YES if aKey is in the table, otherwise NO.

See also: - valueForKey:

nextState:key:value:

- (BOOL)nextState:(NXHashState *)aState
key:(const void **)aKey
value:(void **)aValue

Moves to the next entry in the HashTable and provides the addresses of pointers to its
key/value pair. No insertKey: or removeKey: should be done while iterating through
the table. Returns NO when there are no more entries in the table; otherwise, returns
YES.

See also: - initState

Common Classes: HashTable 2-17

read:
- read:(NXTypedStream *)stream

Reads the HashTable from the typed stream stream. Returns self.

See also: - write:

removeKey:
- (void *)removeKey:(const void *)aKey

Removes the hash table entry identified by aKey. Always returns nil.

See also: - insertKey:value:

valueForKey:
- (void *)valueForKey:(const void *)aKey

Returns the value mapped to aKey. Returns nil if aKey is not in the table.

See also: - isKey:

write:
- write:(NXTypedStream *)stream

Writes the HashTable to the typed stream stream. Returns self.

See also: - read:

2-18 Chapter 2: Class Specifications

List

INHERITS FROM Object

DECLARED IN objc/List.h

CLASS DESCRIPTION

A List is a collection of objects. The class provides an interface that permits easy
manipulation of the collection as a fixed or variable-sized list, a set, or an ordered
collection. Lists are implemented as arrays to allow fast random access using an index.
Indices start at O.

A List array contains object ids. An object isn't copied when it's added to a List; only
its id is. There are no empty slots within the array. nil objects can't be inserted in a
List, and the collection is contracted to fill in the empty space when an object is
removed.

Lists grow dynamically when new objects are added. The default mechanism
automatically doubles the capacity of the List when it becomes full, thus ensuring an
average constant time for insertions, independent of the size of the List.

For manipulating sets of structures that aren't objects, see the Storage class.

INSTANCE VARIABLES

Inheritedfrom Object

Declared in List

dataPtr

numElements

maxElements

Class

id
unsigned int
unsigned int

isa;

*dataPtr;
numElements;
maxElements;

The data managed by the List object (the array of
objects).

The actual number of objects in the array.

The total number of objects that can fit in
currently allocated memory.

Common Classes: List 2-19

METHOD TYPES

Initializing a new List object - init
- initCount:

Copying and freeing a List -copy
- copyFrornZone:
-free

Manipulating objects by index - insertObject:at:
- addObject:
- removeObjectAt:
- removeLastObject
- replaceObjectAt:with:
- objectAt:
- lastObject
- count

Manipulating objects by id - addObject:
- addObjectlfAbsent:
- removeObject:
- replaceObject:with:
-indexOf:

Comparing Lists - isEqual:

Emptying a List -empty
- freeObjects

Sending messages to the objects - makeObjectsPerform:
- makeObjectsPerform:with:

Managing the storage capacity - capacity
- setAvailableCapacity:

Archiving - read:
- write:

INSTANCE METHODS

addObject:

- addObject:anObject

Inserts anObject at the end of the List, and returns self. However, if anObject is nil,
nothing is inserted and nil is returned.

See also: - insertObject:at:

2-20 Chapter 2: Class Specifications

addObjectlfAbsent:
- addObjectIfAbsent:anObject

Inserts anObject at the end of the List and returns self, provided that anObject isn't
already in the List. If anObject is in the List, it won't be inserted, but self is still
returned.

If anObject is nil, nothing is inserted and nil is returned.

See also: - insertObject:at:

capacity

- (unsigned int)capacity

Returns the maximum number of objects that can be stored in the List without
allocating more memory for it. When new memory is allocated, it's taken from the
same zone that was specified when the List was created.

See also: - count, - setAvaiiableCapacity:

copy
-copy

Returns a new List object with the same contents as the receiver. The objects in the List
aren't copied; therefore, both Lists contain pointers to the same set of objects. Memory
for the new List is allocated from the same zone as the receiver.

See also: - copyFrornZone:

copyFrornZone:

- copyFrornZone:(NXZone *)zone

Returns a new List object, allocated from zone, with the same contents as the receiver.
The objects in the List aren't copied; therefore, both Lists contain pointers to the same
set of objects.

See also: - copy

count
- (unsigned int)count

Returns the number of objects currently in the List.

See also: - capacity

Common Classes: List 2-21

empty
-empty

Empties the List of all its objects without freeing them, and returns self. The current
capacity of the List isn't changed.

See also: - freeObjects

free

-free

Deallocates the List object and the memory it allocated for the array of object ids.
However, the objects themselves aren't freed.

See also: - freeObjects

freeObjects

- freeObjects

Removes every object from the List, sends each one of them a free message, and returns
self. The List object itself isn't freed and its current capacity isn't altered.

The methods that free the objects shouldn't have the side effect of modifying the List.

See also: - empty

indexOf:

init

- (unsigned int)indexOf:anObject

Returns the index of the first occurrence of anObject in the List, or
NX_NOT_IN_LIST if anObject isn't in the List.

- in it

Initializes the receiver, a new List object, but doesn't allocate any memory for its array
of object ids. It's initial capacity will be O. Minimal amounts of memory will be
allocated when objects are added to the List. Or an initial capacity can be set, before
objects are added, using the setAvaiiableCapacity: method. Returns self.

See also: - initCount:, - setAvaiiableCapacity:

2-22 Chapter 2: Class Specifications

initCount:
- initCount:(unsigned int)numSlots

Initializes the receiver, a new List object, by allocating enough memory for it to hold
numSlots objects. Returns self.

This method is the designated initializer for the class. It should be used immediately
after memory for the List has been allocated and before any objects have been assigned
to it; it shouldn't be used to reinitialize a List that's already in use.

See also: - capacity

insertObject:at:
- insertObject:anObject at:(unsigned int)index

Inserts anObject into the List at index, moving objects down one slot to make room. If
index equals the value returned by the count method, anObject is inserted at the end of
the List. However, the insertion fails if index is greater than the value returned by count
or anObject is nil.

If anObject is successfully inserted into the List, this method returns self. If not, it
returns nil.

See also: - count, - addObject:

isEqual:
- (BOOL)isEqual:anObject

Compares the receiving List to anObject. If anObject is a List with exactly the same
contents as the receiver, this method returns YES. If not, it returns NO.

Two Lists have the same contents if they each hold the same number of objects and the
ids in each List are identical and occur in the same order.

lastObject
- lastObject

Returns the last object in the List, or nil if there are no objects in the List. This method
doesn't remove the object that's returned.

See also: - removeLastObject

Common Classes: List 2-23

makeObjectsPerform:
- makeObjectsPerform:(SEL)aSelector

Sends an aSelector message to each object in the List in reverse order (starting with the
last object and continuing backwards through the List to the first object), and returns
self. The aSelector method must be one that takes no arguments. It shouldn't have the
side effect of modifying the List.

makeObjectsPerform:with:
- makeObjectsPerform:(SEL)aSelector with:anObject

Sends an aSelector message to each object in the List in reverse order (starting with the
last object and continuing backwards through the List to the first object), and returns
self. The message is sent each time with anObject as an argument, so the aSelector
method must be one that takes a single argument of type id. The aSelector method
shouldn't, as a side effect, modify the List.

objectAt:

- objectAt:(unsigned int)index

Returns the id of the object located at slot index, or nil if index is beyond the end of the
List.

See also: - count

read:

- read:(NXTypedStream *)stream

Reads the List and all the objects it contains from the typed stream stream.

See also: - write:

removeLastObject

- removeLastObject

Removes the object occupying the last position in the List and returns it. If there are
no objects in the List, this method returns nil.

See also: - lastObject, - removeObjectAt:

2-24 Chapter 2: Class Specifications

removeObject:
- removeObject:anObject

Removes the first occurrence of anObject from the List, and returns it. If anObject isn't
in the List, this method returns nil.

The positions of the remaining objects in the List are adjusted so there's no gap.

See also: - removeLastObject, - removeObjectAt:

removeObjectAt:
- removeObjectAt:(unsigned int)index

Removes the object located at index and returns it. If there's no object at index, this
method returns nil.

The positions of the remaining objects in the List are adjusted so there's no gap.

See also: - removeLastObject, - removeObject:

replaceObject:with:
- replaceObject:anObject with:newObject

Replaces the first occurrence of anObject in the List with newObject, and returns
anObject. However, if newObject is nil or anObject isn't in the List, nothing is replaced
and nil is returned.

See also: - replaceObjectAt:with:

replaceObjectAt:with:

- replaceObjectAt:(unsigned int)index with:newObject

Returns the object at index after replacing it with newObject. If there's no object at
index or newObject is nil, nothing is replaced and nil is returned.

See also: - replaceObject:with:

Common Classes: List 2-25

setA vaiiableCapacity:

- setAvailableCapacity:(unsigned int)numSlots

Sets the storage capacity of the List to at least numSlots objects and returns self.
However, if the List already contains more than numSlots objects (if the count method
returns a number greater than numSlots), its capacity is left unchanged and nil is
returned.

See also: - capacity, - count

write:
- write:(NXTypedStream *)stream

Writes the List, including all the objects it contains, to the typed stream stream.

See also: - read:

2-26 Chapter 2: Class Specifications

NXStringTable

INHERITS FROM HashTable : Object

DECLARED IN objc/NXStringTable.h

CLASS DESCRIPTION

NXStringTable defines an object that associates a key with a value. Both the key and
the value must be character strings. For example, these keys and values might be
associated in a particular NXStringTable:

Key Value

"Yes" "Oui"
"No" "Non"

By using an NXStringTable object to store your application's character strings, you can
reduce the effort required to adapt the application to different language markets.
Interface Builder give you direct access to NXStringTables, letting you create and
initialize a string table and connect it into your application.

A new NXStringTable instance can be created either through Interface Builder's
Classes window or through the inherited alloe .•. and init •.• methods. Similarly, you can
establish the contents of an NXStringTable either directly through Interface Builder or
programmatically through NXStringTable methods that read keys and values that are
stored in a file (see readFromFile: and readFromStream:). Each assignment in the
file can be of either of these formats:

"key" = "value";

"key";

If only key is present for a particular assignment, the corresponding value is taken to be
identical to key.

A valid key or value-a valid token-is composed of text enclosed in double quotes.
The text can't include double quotes or the null character. It can include the escape
sequences: \a, \b, \f, \0, \r, \1, \v, and \". The backslash is stripped for any other
character; consequently, numeric escape codes aren't interpreted. White space between
tokens is ignored. A key or value can't exceed MAX_NXSTRINGTABLE_LENGTH
characters.

The file can also include standard C-Ianguage comments which the NXStringTable
ignores. However, these comments can provide valuable information for a person
who's translating or documenting the application.

Common Classes: NXStringTable 2-27

To retrieve the value associated with a specific key, send a valueForStringKey:
message to the NXStringTable. For example, assuming myStringTable is an
NXStringTable containing the appropriate keys and values, this call would display an
attention panel announcing a problem opening a file:

NXRunAlertPanel([myStringTable valueForStringKey:"openTitle"],

[myStringTable valueForStringKey:"openError"],

"OK",
NULL,

NULL) ;

If you're accessing NXStringTables through Interface Builder, please note the
following. For efficiency, use several NXStringTables-each in its own interface file
rather than one large one. By using several NXStringTables, your application can load
only those strings that it needs at a particular time. For example, you might place all
the strings associated with a help system in an NXStringTable in one interface file and
those associated with error messages in another NXStringTable in another file. When
the user accesses the help system for the first time, the application can load the
appropriate NXStringTable. Also, instantiate only one copy of any individual
NXStringTable. Don't put an NXStringTable object in an interface file that will be
loaded more than once, since multiple copies of the same table will result.

INSTANCE VARIABLES

Inheritedfrom Object

Inherited from H ashTable

Declared in NXStringTable

METHOD TYPES

Class

unsigned
const char
const char

(none)

Initializing and freeing an NXStringTable
- init
-free

Querying an NXStringTable - valueForStringKey:

Reading and writing elements - readFromFile:
- writeToFile:
- readFromStream:
- writeToStream:

2-28 Chapter 2: Class Specifications

is a;

count;
*keyDesc;
*valueDesc;

INSTANCE METHODS

free
-free

init

Frees the string table and its strings. You should never send a freeObjects (HashTable)
message to an NXStringTable.

- in it

Initializes a new NXStringTable. This is the designated initializer for the
NXStringTable class. Returns self.

readFromFile:
- readFromFile:(const char *)jileName

Reads an ASCII representation of the NXStringTable's keys and values fromjileName.
The NXStringTable opens a stream on the file and then sends itself a
readFromStream: message to load the data. See "Class Description" above for the
format of the data. Returns nil on error; otherwise, returns self.

See also: - readFromStream:

readFromStream:
- readFromStream:(NXStream *)stream

Reads an ASCII representation of the NXStringTable's keys and values from stream.
See "Class Description" above for the format of the data. Returns nil on error;
otherwise, returns self.

See also: - readFromFile:

valueForStringKey:
- (const char *)valueForStringKey:(const char *)aString

Searches the string table for the value that corresponds to the key aString. Returns
NULL if and only if no value is found for that key; otherwise, returns a pointer to the
value.

Common Classes: NXStringTable 2-29

writeToFile:

- writeToFile:(const char *)fileName

Writes an ASCII representation of the NXStringTable's keys and values to fileName.
The NXStringTable opens a stream on the file and then sends itself a writeToStream:
message. See "Class Description" above for the format of the data. Returns nil if an
error occurs; otherwise, returns self.

See also: - writeToStream:

writeToStream:

- writeToStream:(NXStream *)stream

Writes an ASCII representation of the NXStringTable's keys and values to stream. See
"Class Description" above for the format of the data. Returns self.

See also: - writeToFile:

CONSTANTS AND DEFINED TYPES

#define MAX NXSTRINGTABLE LENGTH 1024 - -

2-30 Chapter 2: Class Specifications

Object

INHERITS FROM none (Object is the root class.)

DECLARED IN objc/Object.h

CLASS DESCRIPTION

Object is an abstract superclass that defines a basic interface to the Objective-C
run-time system that other classes use and build upon. It's the root of all Objective-C
inheritance hierarchies, the only class that has no superclass. All other classes inherit
from Object.

Among other things, the Object class provides its subclasses with a framework for
creating, initializing, freeing, copying, comparing, and archiving objects, for
performing methods selected at run-time, for querying an object about its methods and
its position in the inheritance hierarchy, and for forwarding messages to other objects.
For example, to query an object about what class it belongs to, you'd send it a class or
a name message. To find out whether it implements a particular method, you'd send it
a respondsTo: message.

This type of information is obtained through the object's isa instance variable, which
points to a class structure that describes the object to the run-time system. Because all
objects directly or indirectly inherit from the Object class, they all have this variable.
The installation of the class structure (the initialization of isa) is one of the
responsibilities of the alloc, allocFromZone:, and new methods, the same methods
that create (allocate memory for) new instances of a class. The defining characteristic
of an "object" is that its first instance variable is an isa pointer to a class structure.

INSTANCE VARIABLES

Declared in Object Class isa;

isa A pointer to the instance's class structure.

METHOD TYPES

Initializing the class + initialize

Common Classes: Object 2-31

Creating, copying, and freeing instances

Initializing a new instance

Identifying classes

+ alloc
+ allocFrornZone:
+ new
-copy
- copyFromZone:
-zone
-free
+ free

- init

- class
+ class
-name
- superClass
+ superClass

Identifying and comparing instances
-hash

Testing inheritance relationships

Testing class functionality

- isEqual:
- self

- isKindOf:
- isKindOfGivenName:
- isMemberOf:
- isMemberOfGivenName:

+ instancesRespondTo:
- respondsTo:

Sending messages determined at run time
-perform:

Forwarding messages

Obtaining method handles

Posing

Enforcing intentions

Error handling

2-32 Chapter 2: Class Specifications

- perform:with:
- perform:with:with:

- forward::
- performv::

+ instanceMethodFor:
- methodFor:

+poseAs:

- notImplemented:
- sUbclassResponsibility:

- doesNotRecognize:
- error:

Dynamic loading

Archiving

CLASS METHODS

alloc

+ alloc

+ finishLoading:
+ startUnloading

- read:
- write:
- startArchiving:
- awake
- finishUnarchiving
+ setVersion:
+ version

Returns a new instance of the receiving class. The isa instance variable of the new
object is initialized to a data structure that describes the class; otherwise the object isn't
initialized. A version of the init method should be used to complete the initialization
process. For example:

id newObject = [[TheClass alloc] init]i

Subclasses shouldn't override alloc to add code that initializes the new instance.
Instead, class-specific versions of the init method should be implemented for that
purpose. Versions of the new method can also be implemented to combine allocation
and initialization.

Note: The alloc method doesn't invoke allocFromZone:. The two methods work
independently.

See also: + allocFromZone:, - init, + new

allocFromZone

+ allocFromZone:(NXZone *)zone

Returns a new instance of the receiving class. The isa instance variable of the new
object is initialized to a data structure that describes the class; its other instance
variables aren't initialized. Memory for the new object is allocated from zone.

This method is always used in conjunction with an init method that completes the
initialization of the new instance. For example:

id newObject = [[TheClass allocFromZone:someZone] init]i

Common Classes: Object 2-33

The allocFromZone: method shouldn't be overridden to include any initialization
code. Instead, class~specific versions of the init method should be implemented for tha
purpose.

When one object creates another, it's often a good idea to make sure they're both
allocated from the same region of memory. The zone method can be used for this
purpose; it returns the zone where the receiver is located. For example:

id myCompanion = [[TheClass allocFromZone: [self zone)) init);

See also: + alloc, - zone, - in it

class

+ class

Returns self. Since this is a class method, it returns the class object.

See also: - name, - class

finishLoading:

+ finishLoading:(struct mach_header *)header

Implemented by subclasses to integrate a newly loaded class or category into a runninl
program. A finishLoading: message is sent to the class object immediately after the
class, or a category of the class, has been dynamically loaded-if the newly loaded
class or category implements a method that can respond. header is a pointer to the
structure that describes the modules that were just loaded.

Once a dynamically loaded class is used, it will also receive an initialize message.
However, because the finishLoading: message is sent immediately after the class is
loaded, it always precedes the initialize message, which is sent only when the class
receives its first message from the program.

A finishLoading: method is specific to the class or category where it's defined, and
isn't inherited by subclasses or shared with the rest ofthe class. Thus a class that hal
four categories can define a total of five finishLoading: methods, one in each categor:
and one in the main class definition. The method that's performed is the one defined iJ
the class or category just loaded.

There's no default finishLoading: method. The Object class declares a protocol for
this method, but doesn't implement it.

See also: + startUnloading

2-34 Chapter 2: Class Specifications

free

+ free

Returns nil. This method is implemented to prevent class objects, which are "owned"
by the Objective-C run-time system, from being accidentally freed. To free an instance,
use the instance method free.

See also: - free

initialize

+ initialize

Initializes the class before it's used (before it receives its first message). The
Objective-C run-time system generates an initialize message to each class just before
the class, or any class that inherits from it, is sent its first message from within the
program. Each class object receives the initialize message just once. Superclasses
receive it before subclasses do.

For example, if the first message your program sends is this,

[Application alloc]

the run-time system will generate these three initialize messages,

[Object initialize];

[Responder initialize];

[Application initialize];

since Application is a subclass of Responder and Responder is a subclass of Object. All
the initialize messages precede the alloc message and are sent in the order of
inheritance, as shown.

If your program later begins to use the Text class,

[Text instancesRespondTo:someSelector]

the run-time system will generate these initialize messages,

[View initialize];

[Text initialize];

since the Text class inherits from Object, Responder, and View. The
instancesRespondTo: message is sent only after all these classes are initialized. Note
that the initialize messages to Object and Responder aren't repeated; each class is
initialized only once.

You can implement your own versions of initialize to provide class-specific
initialization as needed.

Common Classes: Object 2-35

Because initialize methods are inherited, it's possible for the same method to be
invoked many times, once for the class that defines it and once for each inheriting class.
To prevent code from being repeated each time the method is invoked, it can be
bracketed as shown in the example below:

+ initialize

if (self == [MyClass class])
/* put initialization code here */

return self;

See also: - init, - class

instanceMethodFor:

+ (IMP)instanceMethodFor:(SEL)aSelector

Locates and returns the address of the implementation of the aSelector instance
method. An error is generated if instances of the receiver can't respond to aSelector
messages.

This method, and the function pointer that it returns, are subject to the same constraints
as those described for the instance method methodFor:.

See also: - methodFor:

inst.:ncesRespondTo:

+ (BOOL)instancesRespondTo:(SEL)aSelector

Returns YES if instances of the class are capable of responding to aSelector messages,
and NO if they're not. The application is responsible for determining whether a NO
response should be considered an error.

If an instance can successfully forward aSelector messages to other objects, it will be
able to receive the message without error even though instancesRespondTo: returns
NO.

See also: - respondsTo:

2-36 Chapter 2: Class Specifications

new

+ new

Creates a new instance of the receiving class, sends it an init message, and returns the
initialized object returned by init.

As defined in the Object class, new is essentially a combination of alloc and init. Like
alloc, it initializes the isa instance variable of the new object so that it points to the class
data structure; it leaves the initialization of other instance variables up to the init
method.

Unlike alloc, new is sometimes reimplemented in subclasses to have it invoke a
class-specific initialization method. If the init method includes arguments, they're
typically reflected in the new method. For example:

+ newArg: (int)tag arg: (struct info *)data

return [[self allocl initArg:tag arg:data];

However, there's little point in implementing new ••• methods if they're simply
shorthand for alloc and init ... , like the one shown above. Often new ... methods will do
more than just allocation and initialization. In some classes, they manage a set of
instances, returning the one with the requested properties if it already exists, allocating
and initializing a new one only if necessary. For example:

+ newArg: (int)tag arg: (struct info *)data

id thelnstance;

if (thelnstance = findTheObjectWithTheTag(tag)
return thelnstance;

return [[self alloc] initArg:tag arg:datal;

Although it's appropriate to define new new ... methods in this way, the alloc and
allocFromZone: methods should never be augmented to include initialization code.

See also: - init, + alloc, + allocFromZone:

Common Classes: Object 2-37

poseAs:

+ poseAs:aClassObject

Permits the receiver to "pose as" the aClassObject class. All messages to aClassObject
will actually be sent to the receiver. The receiver should be defined as a subclass of
aClassObject and shouldn't declare any instance variables of its own. A poseAs:
message should be sent before any instances of aClassObject are created.

This facility allows you to add methods to an existing class by defining them in a
subclass and having the subclass pose as the existing class. The new method definitions
will be inherited by all subclasses of the existing class. Care should be taken to ensure
that this doesn't generate errors.

Posing is useful as a debugging tool, but category definitions are a less complicated and
more efficient way of augmenting existing classes.

Posing has only one feature that categories lack: The methods added by a posing class
can override methods already defined for the existing class. You can therefore use
posing to replace existing methods with new versions.

Returns self.

set Version:

+ setVersion:(int)aVersion

Sets the class version number to aVersion, and returns self. The version number is
helpful when instances of the class are to be archived and reused later.

See also: + version

start Unloading

+ startUnloading

Implemented by subclasses to prepare for the class or category being unloaded from a
running program. A startUnloading message is sent to the class object immediately
before the class, or category of the class, is unloaded-if a method that can respond is
implemented in the class or category about to be unloaded.

A startUnloading method is specific only to the class or category where it's defined,
and isn't inherited by subclasses or shared with the rest of the class. Thus a class that
has four categories can define a total of five startUnloading methods, one in each
category and one in the main class definition. The method that's performed is the one
defined in the class or category that will be unloaded.

There's no default startUnloading method. The object class declares a protocol for
this method but doesn't implement it.

See also: + finishLoading:

2-38 Chapter 2: Class Specifications

superClass

+ superClass

Returns the class object for the receiver's superclass.

See also: + class, - superClass

version

+ (int)version

Returns the version number assigned to the class. If no version has been set, this will
beO.

See also: + setVersion:

INSTANCE METHODS

awake

-awake

Implemented by subclasses to reinitialize the receiving object after it has been
unarchived (by read:). An awake message is automatically sent to every object after
it has been unarchived and after all the objects it refers to are in a usable state.

The default version of the method defined here merely returns self.

You can implement an awake method in any class to provide for more initialization
than can be done in the read: method. Each implementation of awake should limit the
work it does to the scope of the class definition, and incorporate the initialization of
classes farther up the inheritance hierarchy through a message to super. For example:

- awake

[super awake];

/* class-specific initialization goes here */

return self;

All implementations of awake should return self.

See also: - read:, - finishUnarchiving

Common Classes: Object 2-39

class

- class

Returns the class object for the receiver s class.

See also: + class

copy

-copy

Returns a new instance that s an exact copy of the receiver. This method creates only
one new object. If the receiver has instance variables that point to other objects, the
instance variables in the copy will point to the same objects. The values of the instance
variables are copied, but the objects they point to aren t.

See also: - copyFromZone:

copyFrornZone:

- copyFromZone:(NXZone *)zone

Returns a new instance that s an exact copy of the receiver. Memory for the new
instance is allocated from zone. This method creates only one new object; it works
exactly like the copy method, except that it allows you to determine where the copy will
reside in memory.

See also: - copy, - zone

doesNotRecognize:

- doesNotRecognize:(SEL)aSelector

Handles aSelector messages that the receiver doesn t recognize. The Objective-C
run-time system invokes this method whenever an object receives an aSelector message
that it can t respond to or forward. It, in tum, invokes the error: method to generate an
error message and abort the current process.

doesNotRecognize: messages should be sent only by the run-time system. Although
they re sometimes used in program code to prevent a method from being inherited, it s
better to use the error: method directly. For example, an Object subclass might
renounce the copy method by reimplementing it to include an error: message as
follows:

- copy

[self error:" %s objects should not be sent %s messages\n",

[self name], sel_getName(_cmd)];

2-40 Chapter 2: Class Specifications

This code prevents instances of the subclass from recognizing or forwarding copy
messages although the respondsTo: method will still report that the receiver has
access to a copy method.

(The _ cmd variable identifies to the current selector; in the example above, it identifies
the selector for the copy method. The sel~etNameO function returns the method
name corresponding to a selector code; in the example, it returns the name copy.)

See also: - error:, - subclassResponsibility:, - name

error:

- error:(STR)aString, •••

Generates a formatted error message, in the manner of printfO, from aString followed
by a variable number of arguments. For example:

[self error:"index %d exceeds limit %d\n", index, limit];

The message specified by aString is preceded by this standard prefix (where <class>
is the name of the receiver s class):

"error: <class> "

This method doesn t return. After generating the error message, it calls abortO to
create a core file and terminate the process. It works through the Objective-C run-time
error function.

See also: - subclassResponsibility:, - notlmplemented:, - doesNotRecognize:

finish U narchiving

- finish U narchiving

Implemented by subclasses to replace an unarchived object with a new object if
necessary. A finishUnarchiving message is sent to every object after it has been
unarchived (using read:) and initialized (by awake), but only if a method has been
implemented that can respond to the message.

The finishUnarchiving message gives the application an opportunity to test an
unarchived and initialized object to see whether it s usable, and, if not, to replace it with
another object that is. This method should return nil if the unarchived instance (self) is
OK; otherwise, it should free the receiver and return another object to take its place.

There s no default implementation of the finishUnarchiving method. The Object class
declares this method, but doesn t define it.

See also: - read:, - awake, - startArchiving:

Common Classes: Object 2-41

forward::

- forward:(SEL)aSelector :(marg_list)argFrame

Implemented by subclasses to forward messages to other objects. When an object is
sent an aSelector message, and the run-time system can't find an implementation of the
method for the receiving object, it sends the object a forward:: message to give it an
opportunity to delegate the message to another object. (If that object can't respond to
the message either, it too will be given a chance to forward it.)

The forward:: message thus allows an object to establish relationships with other
objects that will, for certain messages, act on its behalf. The forwarding object is, in a
sense, able to "inherit" some of the characteristics of the object it forwards the message
to.

A forward:: message is generated only if the aSelector method isn't implemented by
the receiving object's class or by any of the classes it inherits from.

An implementation of the forward:: method can do more than just forward messages.
It can, for example, locate code that responds to a variety of different messages, thus
avoiding the necessity of having to write a separate method for each selector. A
forward:: method might also involve several other objects in the response to a
message, rather than forward it to just one.

If implemented to forward messages, a forward:: method has two tasks:

• To locate an object that can respond to the aSelector message. This need not be the
same object for all messages.

• To send the message to that object, using the performv:: method.

In the simple case, in which an object forwards messages to just one destination (such
as the hypothetical friend instance variable in the example below), a forward:: method
could be as simple as this:

- forward: (SEL)aSelector : (marg_list)argFrame

if ([friend respondsTo:aSelector))

return [friend performv:aSelector :argFrame);
return [self doesNotRecognize:aSelector);

argFrame is a pointer to the arguments included in the original aSelector message. It's
passed directly to performv:: without change.

The default version of forward:: implemented in the Object class simply invokes the
doesNotRecognize: method. It doesn't forward messages. Thus if you choose not to
implement forward:: methods, unrecognized messages will be handled in the usual
way.

See also: - performv::, - doesNotRecognize:

2-42 Chapter 2: Class Specifications

free

- free

Frees the memory occupied by the receiver and returns nil. This method also sets the
isa pointer of the freed object to nil, so that subsequent messages to the object will
generate an error indicating that a message was sent to a freed object.

This method uses object _ deallocateO to free the receiver's memory.

hash

init

- (unsigned int)hash

Returns an unsigned integer that's guaranteed to be the same for any two objects which
are equal according to the isEqual: method. The integer is derived from the id of the
receiver.

See also: - isEqual:

- init

Implemented by subclasses to initialize a new object (the receiver) immediately after
memory for it has been allocated. An init message is generally coupled with an alloc
or allocFromZone: message in the same line of code:

id newObject = [[TheClass alloc] init];

Subclass versions of this method should return the new object (self) if it has been
successfully initialized. If it can't be initialized, they should free the object and return
nil. The version of the method defined here simply returns self.

Every class must guarantee that the init method returns a fully functional instance of
the class. This typically means overriding the method to add class-specific
initialization code. Subclass versions of the method need to incorporate the
initialization code for the classes they inherit from, through a message to super:

- in it

[super init];

/* class-specific initialization goes here */

return self;

Note that the message to super precedes the initialization code added in the method.
This ensures that initialization proceeds in the order of inheritance.

Common Classes: Object 2-43

Subclasses often add arguments to the init method to allow specific values to be set.
The more arguments a method has, the more freedom it gives you to determine the
character of initialized objects. Classes often have a set of init .•. methods, each with a
different number of arguments. For example:

- init;

- initArg: (int)tag;

- initArg: (int)tag arg: (struct info *)data;

The convention is that at least one of these methods, usually the one with the most
arguments, includes a message to super to incorporate the initialization of classes
higher up the hierarchy. This method is the designated initializer for the class. The
other init. .. methods defined in the class directly or indirectly invoke the designated
initializer through messages to self. In this way, all init ... methods are chained together.
For example:

- init

return [self initArg:-l];

- initArg: (int)tag

return [self initArg:tag arg:NULL];

- initArg: (int)tag arg: (struct info *)data

[super init. . .];

/* class-specific initialization goes here */

In this example, the initArg:arg: method is the designated initializer for the class.

If a subclass does any initialization of its own, it must define its own designated
initializer. This method should begin by sending a message to super to perform the
designated initializer of its superclass. Suppose, for example, that the three methods
illustrated above are defined in the B class. The C class, a subclass of B, might have
this designated initializer:

- initArg: (int)tag arg: (struct info *)data arg:anObject

[super initArg:tag arg:data];

/* class-specific initialization goes here */

If inherited init ... methods are to successfully initialize instances of the subclass, they
must all be made to (directly or indirectly) invoke the new designated initializer. To
accomplish this, the subclass is obliged to cover (override) only the designated
initializer of the superclass. For example, in addition to its designated initializer, the C
class would also implement this method:

2-44 Chapter 2: Class Specifications

- initArg: (int)tag arg: (struct info *)data

return [self initArg:tag arg:data arg:nil];

This ensures that all three methods inherited from the B class also work for instances
of the C class.

Often the designated initializer of the subclass overrides the designated initializer of the
superclass. If so, the subclass need only implement the one init ... method.

These conventions maintain a direct chain of init ... links, and ensure that the new
method and all inherited init ... methods return usable, initialized objects. They also
prevent the possibility of an infinite loop wherein a subclass method sends a message
(to super) to perform a superclass method, which in tum sends a message (to self) to
perform the subclass method.

The Object class also has a designated initializer-this in it method. Subclasses that do
their own initialization should override it, as described above.

See also: + new, + alloc, + allocFromZone:

isEqual:

- (BOOL)isEqual:anObject

Returns YES if the receiver is the same as anObject, and NO if it isn't. This is
determined by comparing the id of the receiver to the id of anObject.

The hash method is guaranteed to return the same integer for both objects when this
method returns YES.

See also: hash

isKindOf:

- (BOOL)isKindOf:aClassObject

Returns YES if the receiver is an instance of aClassObject or an instance of any class
that inherits from aClassObject. Otherwise, it returns NO. For example, in this code
isKindOf: would return YES:

id aMenu = [[Menu alloc] init];

if ([aMenu isKindOf: [Window class]]

In the Application Kit, the Menu class inherits from Window.

See also: - isMemberOf:

Common Classes: Object 2-45

isKindOfGivenName:

- (BOOL)isKindOfGivenName:(STR)aClassName

Returns YES if the receiver is an instance of aClassName or an instance of any class
that inherits from aClassName. This method is the same as isKindOf:, except it takes
the class name, rather than the class id, as its argument.

STR is defined, in objc/objc.h, as a character pointer (char *).

See also: - isMemberOfGivenName:

isMemberOf:

- (BOOL)isMemberOf:aClassObject

Returns YES if the receiver is an instance of aClassObject. Otherwise, it returns NO.
For example, in this code, isMemberOf: would return NO:

id aMenu = [[Menu alloc] init];

if ([aMenu isMemberOf: [Window class]])

See also: - isKindOf:

isMemberOfGivenName:

- (BOOL)isMemberOfGivenName:(STR)aClassName

Returns YES if the receiver is an instance of aClassName, and NO if it isn't. This
method is the same as isMemberOf:, except it takes the class name, rather than the
class id, as its argument.

STR is defined, in objc/objc.h, as a character pointer (char *).

See also: - isKindOfGivenName:

methodFor:

- (IMP)methodFor:(SEL)aSelector

Locates and returns the address of the receiver's implementation of the aSelector
method. An error is generated if the receiver has no implementation of the method (if
it can't respond to aSelector messages).

IMP is defined (in the objc/objc.h header file) as a pointer to a function that takes a
variable number of arguments and returns an id. It's the only prototype provided for
the function pointer that methodFor: returns. Therefore, ifthe aSelector method takes
any arguments or returns anything but an id, its function counterpart will be
inadequately prototyped. Lacking a prototype, the compiler will promote floats to
doubles and chars to ints, which the implementation won't expect. It will therefore

2-46 Chapter 2: Class Specifications

behave differently (and erroneously) when called as a function than when performed as
a method.

To remedy this situation, it's necessary to provide your own prototype. In the example
below, IMPEqual is used to prototype the implementation of the isEqual: method. It's
defined as pointer to a function that returns a BOOL and takes an id in addition to the
two "hidden" arguments (self, the current receiver, and _ cmd, the current selector) that
are passed to every method implementation.

typedef BOOL (*IMPEqual) (id, SEL, id);

IMPEqual tester;

tester = (IMPEqual) [target methodFor:@selector(isEqual:)];

while !tester(target, @selector(isEqual:), someObject))

Note that turning a method into a function by obtaining the address of its
implementation "unhides" the self and _ cmd arguments.

See also: + instanceMethodFor:

name

- (const char *)name

Returns a character string with the name of the receiver's class. This information is
often used in error messages or debugging statements.

See also: + class

notlmplemented:

- notlmplemented:(SEL)aSelector

U sed in the body of a method definition to indicate that the programmer intended to
implement the method, but left it as a stub for the time being. aSelector is the selector
for the unimplemented method; notlmplemented: messages are sent to self. For
example:

- methodNeeded

[self notlmplemented:_cmd];

When a methodNeeded message is received, notlmplemented: will invoke the error:
method to generate an appropriate error message and abort the process. (In this
example, _cmd refers to the methodNeeded selector.)

See also: - subclassResponsibility:, - error:

Common Classes: Object 2-47

perform:

- perform:(SEL)aSelector

Sends an aSelector message to the receiver and returns the result of the message. This
allows you to send messages that aren't determined until run time. For example, all
three of the following messages do the same thing:

id myClone

id myClone

id myClone

[anObject copy);
[anObject perform:@selector(copy));

[anObject perform:sel_getUid("copy"));

aSelector should identify a method that takes no arguments. If the method returns
anything but an object, the return must be cast to the correct type. For example:

char *myClass;

myClass = (char *) [anObject perform: @selector (name)) ;

Casting works for any integral type (char, short, int, long, or enum) or any pointer.
However, it doesn't work if the return is a floating type (float or double) or a structure
or union. This is because the C language doesn't permit a pointer (like id) to be cast to
these types.

Therefore, perform: shouldn't be asked to perform any method that returns a floating
type, structure, or union. An alternative is to get the address of the method
implementation (using methodFor:) and call it as a function. For example:

float grayValue;

grayValue = ((float (*) ()) [anObject methodFor:@selector(gray))) ();

See also: - perform:with:, - perform:with:with:, - methodFor:

perform:with:

- perform:(SEL)aSelector with:anObject

Sends an aSelector message to the receiver with anObject as an argument. This method
is the same as perform:, except that you can supply an argument for the aSelector
message. aSelector should identify a method that takes a single argument of type id.

See also: - perform:

2-48 Chapter 2: Class Specifications

perform :with :with:

- perform:(SEL)aSelector
with:objectl
with:object2

Sends the receiver an aSelector message with objectl and object2 as arguments. This
method is the same as perform:, except that you can supply two arguments for the
aSelector message. aSelector should identify a method that can take the two arguments
of type id.

See also: - perform:

performv::

- performv:(SEL)aSelector :(marg_list)argFrame

Sends the receiver an aSelector message with the arguments in argFrame. performv::
messages are used within implementations of the forward:: method. Both arguments,
aSelector and argFrame, are identical to the arguments the run-time system passes to
forward::. They can be taken directly from that method and passed through without
change to performv::.

performv:: should be restricted to implementations of the forward:: method.
Although it may seem like a more flexible way of sending messages than perform:,
perform:with:, or perform:with:with:, in that it doesn't restrict the number of
arguments in the aSelector message or their type, it's not an appropriate substitute for
those methods. First, it's more expensive than they are. The run-time system must
parse the arguments in argFrame based on information stored for aSelector. Second,
in future releases performv:: may not work in contexts other than the forward::
method.

See also: - forward::, - perform:

Common Classes: Object 2-49

read:
- read:(NXTypedStream *)stream

Implemented by subclasses to read the receiver's instance variables from the typed
stream stream. You need to implement a read: method for any class you create, if you
want its instances (or instance of classes that inherit from it) to be archivable.

The method you implement should unarchive the instance variables defined in the class
in a manner that matches they way they were archived by write:. In each class, the
read: method should begin with a message to super:

- read: (NXTypedStream *)stream

[super read:stream)i
/* class-specific code goes here */
return selfi

This ensures that all inherited instance variables will also be unarchived.

All implementations of the read: method should return self.

After an object has been read, it's sent an awake message so that it can reinitialize
itself, and may also be sent a finishUnarchiving message.

See also: - awake, - finishUnarchiving, - write:

respondsTo:
- (BOOL)respondsTo:(SEL)aSelector

Returns YES if the receiver implements or inherits a method that can respond to
aSelector messages, and NO if it doesn't. The application is responsible for
determining whether a NO response should be considered an error.

Note that if the receiver is able to forward the aSelector message to another object, it
will be able to respond to the message (albeit indirectly), even though this method
retumsNO.

See also: - forward::, + instancesRespondTo:

self
- self

Returns the receiver.

See also: + class

2-50 Chapter 2: Class Specifications

startArchiving:

- startArchiving:(NXTypedStream *)stream

Implemented by subclasses to prepare an object for being archived-that is, for being
written to the typed stream stream. A startArchiving: message is sent to an object just
before it's archived-but only if it implements a method that can respond. The message
gives the object an opportunity to do anything necessary to get itself, or the stream,
ready before a write: message begins the archiving process.

There's no default implementation of the startArchiving: method. The Object class
declares the method, but doesn't define it.

See also: - awake, - finishUnarchiving, - write:

subclassResponsibility:

- subclassResponsibility:(SEL)aSelector

Used in an abstract superclass to indicate that its subclasses are expected to implement
aSelector methods. If a subclass fails to implement the method, the method is inherited
from the superclass and an error is generated.

For example, if subclasses are expected to implement doSomething methods, the
superclass would define this version of the method:

- doSomething
{

[self subclassResponsibility:_cmd]i

When this method is invoked, subclassResponsibility: will, working through Object's
error: method, abort the process and generate an appropriate error message.

The _ cmd variable identifies the current method selector, just as self identifies the
current receiver. In the example above, it identifies the selector for the doSomething
method.

Subclass implementations of the aSelector method shouldn't include messages to
super to incorporate the superclass version. If they do, they'll also generate an error.

See also: - doesNotRecognize:, - notlmplemented:, - error:

superClass

- superClass

Returns the class object for the receiver's superclass.

See also: + superClass

Common Classes: Object 2-51

write:

- write:(NXTypedStream *)stream

Implemented by subclasses to write the receiver's instance variables to the typed stream
stream. You need to implement a write: method for any class you create if you want
to be able to archive its instances (or instances of classes that inherit from it).

The methods you implement should archive only the instance variables defined in the
class, but should begin with a message to super so that all inherited instance variables
will also be archived:

- write: (NXTypedStream *)stream

[super write:stream];

/* class-specific archiving code goes here */

return self;

All implementations of the write: method should return self.

During the archiving process, write: methods may be performed twice, so they
shouldn't do anything other than write instance variables to a typed stream.

See also: - read:, - startArchiving:

zone

- (NXZone *)zone

Returns a pointer to the zone from which the receiver was allocated. Objects created
without specifying a zone are allocated from the default zone, which is returned by
NXDefaultMallocZoneO.

See also: + allocFromZone:, + alloc, + copyFromZone:

2-52 Chapter 2: Class Specifications

Storage

INHERITS FROM Object

DECLARED IN objc/Storage.h

CLASS DESCRIPTION

The Storage class implements a general storage allocator. Each Storage object
manages an array containing data elements of an arbitrary type. When an element is
added to the object, it's copied into the array.

As is the case with List objects, Storage arrays grow dynamically when necessary.
Their capacity doesn't need to be explicitly adjusted.

Because a Storage object holds elements of an arbitrary type, you don't have to define
a special class for each type of data you want to store. When setting up a new instance
of the class, you specify the size of the elements and a description of their type. The
type description is needed for archiving the object and must agree with the specified
element size. It's encoded in a string using the descriptor codes listed below:

Type Code Type Code

char c Class #
char * * id @
NXAtom % SEL
int int (ignored)
short s structure {<types> }
float f array [<count> <types>]
double d

For example, "[15d]" means an array of fifteen doubles, and" {csi*@}" means a
structure containing a char, a short, an int, a character pointer, and an object. The
descriptor "%" specifies a unique string pointer. When it's unarchived, the
NXUniqueStringO function is used to make sure that it's also unique within the new
context. The "!" descriptor requires that the data be the same size as an int; the data
won't be archived.

INSTANCE VARIABLES

Inheritedfrom Object

Declared in Storage

Class

void
const char
unsigned int
unsigned int
unsigned int

is a;

*dataPtr;
*description;
numElements;
maxElements;
elementSize;

Common Classes: Storage 2-53

dataPtr

description

numElements

maxElements

elementSize

METHOD TYPES

A pointer to the data stored by the object.

A string encoding the type of data stored.

The number of elements actually in the Storage
array.

The total number of elements that can fit within
currently allocated memory.

The size of each element in the array.

Initializing a new Storage instance - init
- initCount:elementSize:description:

Copying and freeing Storage objects
-copy
- copyFromZone:
- free

Getting, adding, and removing elements
- addElement:
- insert at
- removeAt
- removeLastElement
- replace:at:
- empty
- elementAt:

Comparing Storage objects - isEqual:

Managing the storage capacity and type
- count
- description
- setAvailableCapacity:
- setNumSlots:

Archiving - read:
- write:

2-54 Chapter 2: Class Specifications

INSTANCE METHODS

addElement:

- addElement:(void *)anElement

Adds anElement at the end of the Storage array and returns self. The size of the array
is increased if necessary.

See also: - insert:at:

copy

-copy

Returns a new Storage object containing the same data as the receiver. The data as well
as the object is copied, but the two objects share the same description string. Memory
for the copy is taken from the same zone as the receiver.

See also: - copyFromZone:

copyFromZone:

- copyFromZone:(NXZone *)zone

Returns a new Storage object containing the same data as the receiver. The data as well
as the object is copied, and memory for both is taken from zone. The two objects share
the same description string.

See also: - copy

count

- (unsigned)count

Returns the number of elements currently in the Storage array.

See also: - setNumSlots:

description

- (const char *)description

Returns the string encoding the data type of elements in the Storage array.

See also: - initCount:elementSize:description:

Common Classes: Storage 2·55

elementAt:

- (void *)elementAt:(unsigned)index

Returns a pointer to the element at index in the Storage array. If no element is stored at
index (index is beyond the end of the array), a NULL pointer is returned.

Before using the pointer that's returned, you must convert it into the appropriate type
by a cast. The pointer can be used either to read the element at index or to alter it.

See also: - replace:at:, - insert:at:

empty

- empty

Empties the Storage array of all its elements and returns self. The current capacity of
the array remains unchanged.

See also: - free

free

init

- free

Frees the Storage object and all the elements it contains. Pointers stored in the object
will be freed, but the data they point to won't be (unless the data is also stored in the
object). You might want to free the data before freeing the Storage object. The
description string isn't freed.

See also: - empty

- init

Initializes the Storage object so that it's ready to store object ids. The initial capacity
of the array isn't set. In general, it's better to store object ids in a List object. Returns
self.

See also: - initCount:elementSize:description:, - initCount: (List)

2-56 Chapter 2: Class Specifications

initCount:elementSize:description:
- initCount:(unsigned)count

elementSize: (unsigned)sizei nBytes
description:(const char *)string

Initializes the Storage object so that it will have room for at least count elements. Each
element is of size sizelnBytes and of the type described by string. If string is NULL,
the object won't be archivable. Once set, the description string should never be
modified. Returns self.

This method is the designated initializer for the class. It's used to initialize Storage
objects immediately after they have been allocated; it should never be used to
reinitialize a Storage object that's already been used.

insert:at:
- insert:(void *)anElement at: (unsigned)index

Puts anElement in the Storage array at index. All elements between index and the last
element are shifted to make room. The size of the array is increased if necessary.
Returns self.

See also: - addElement:, - setNumSlots:

isEqual:
- (BOOL)isEqual:anObject

Compares the receiver with anObject, and returns YES if they're the same and NO if
they're not. Two Storage objects are considered to be the same if they have the same
number of elements and the elements at each position in the array match.

read:
- read:(NXTypedStream *)stream

Reads the Storage object and the data it stores from the typed stream stream.

See also: - write:

removeAt:
- removeAt:(unsigned)index

Removes the element located at index from the Storage array and returns self. All
elements between index and the last element are shifted to close the gap.

See also: - removeLastElement

Common Classes: Storage 2-57

removeLastElement
- removeLastElement

Removes the last element from the Storage array and returns self.

See also: - removeAt:

replace:at:
- replace:(void *)anElement at:(unsigned)index

Replaces the data at index with the data pointed to by anElement. However, if no
element is stored at index (index is beyond the end of the array), nothing is replaced.
Returns self.

See also: - elementAt:, - insert:at:

setA vailableCapacity:

- setAvaiiableCapacity:(unsigned)numSlots

Sets the storage capacity of the array to at least numSlots elements and returns self. If
the array already contains more than numSlots elements, its capacity is left unchanged
and nil is returned.

See also: - setNumSlots:, - count

setNumSlots:

- setNumSlots:(unsigned)numSlots

Sets the number of elements in the Storage array to numSlots and returns self. If
numSlots is greater than the current number of elements in the array (the value returned
by count), the new slots will be filled with zeros. If numSlots is less than the current
number of elements in the array, access to all elements with indices equal to or greater
than numSlots will be lost.

If necessary, this method increases the capacity ofthe storage array so there's room for
at least numSlots elements.

See also: - setAvaiiableCapacity:, - count

write:
- write:(NXTypedStream *)stream

Writes the Storage object and its data to the typed stream stream.

See also: - read:

2-58 Chapter 2: Class Specifications

StreamTable

INHERITS FROM HashTable : Object

DECLARED IN objc/StreamTable.h

CLASS DESCRIPTION

This class reads and writes a set of independent data structures on streams. Its goal is
to provide incremental saving of files, as a cheap way to implement very primitive data
bases. Both read and write operations are lazy, e.g., reading a StreamTable file only
implies reading of the directory.

Although StreamTable inherits from HashTable, very few methods can be directly
inherited because internal representations of values differ. Nevertheless, the HashTable
abstraction is retained, and StreamTable is described as an object class in order to
simplify usage and implementation. The only inherited methods are count and isKey:.
In order to read and write a StreamTable, the usual read: and write: methods can be
performed.

INSTANCE VARIABLES

Inheritedfrom Object

Inherited from H ashTable

Declared in StreamTable

METHOD TYPES

Creating and freeing a StreamTable

Manipulating table elements

Iterating over all elements

Archiving

Class

unsigned
const char
const char

(none)

-free
- freeObjects
+ new
+ newKeyDesc:

isa;

count;
*keyDesc;
*valueDesc;

- insertStreamKey:value:
- removeStreamKey:
- valueForStreamKey:

- initStreamState
- nextStreamState:key:value:

- read:
- write:

Common Classes: StreamTable 2-59

CLASS METHODS

new

+ new

Returns a new StreamTable with objects as keys.

newKeyDesc:

+ newKeyDesc:(const char *)aKeyDesc

Returns a new StreamTable. Keys must be 32-bit quantities described by aKeyDesc.

INSTANCE METHODS

free

- free

Deallocates the table, but not the objects that are in the table.

freeObjects

- freeObjects

Deallocates every object in the Stream Table, but not the StreamTable itself. Strings are
not recovered.

initStreamState

- (NXHashState)initStreamState

Iterating over all elements of a StreamTable involves setting up an iteration state,
conceptually private to StreamTable, and then progressing until all entries have been
visited. An example of counting elements in a table follows:

unsigned count = 0;
const void *key;
void *value;
NXHashState state = [table initStreamState];
while ([table nextStreamState:&state key:&key value: &value])

count++;

initState begins the process of iteration through the StreamTable.

See also: nextStreamState:key:value:

2-60 Chapter 2: Class Specifications

insertStreamKey:value:

- (id)insertStreamKey:(const void *)aKey value:(id)aValue

Adds or updates akey/avalue pair.

nextStreamState:key:value:

- (BOOL)nextStreamState:(NXHashState *)aState
key:(const void **)aKey
value:(id *)aValue

Moves to the next entry in the StreamTable. No insertStreamKey: or
removeStreamKey: should be done while iterating through the table.

See also: initStreamState

read:

- read:(NXTypedStream *)stream

Reads the StreamTable from the typed stream stream.

removeStreamKey:

- (id)removeStreamKey:(const void *)aKey

Removes akey/avalue pair. Always returns nil.

valueForStreamKey:

- (id)valueForStreamKey:(const void *)aKey

Returns the value mapped to aKey. Returns nil if aKey is not in the table.

write:

- write:(NXTypedStream *)stream

Writes the StreamTable to the typed stream stream.

Common Classes: StreamTable 2-61

2-62

Application Kit Classes

The class specifications for the Application Kit describe over 50 classes. The inheritance
hierarchy for these classes is shown in Figure 2-2.

Application Kit Classes 2-63

Figure 2-2. Application Kit Inheritance Hierarchy

2-64 Chapter 2: Class Specifications

ActionCell

INHERITS FROM Cell: Object

DECLARED IN appkit/ ActionCell.h

CLASS DESCRIPTION

An ActionCell defines the active area inside a control (an instance of Control or one of
its subclasses). You can set an ActionCell's control only by sending the
drawSelf:in View: message to the ActionCell, passing the control as the second
argument.

A single control may have more than one ActionCell. An integer tag, provided as the
instance variable tag, is used to identify an ActionCell object; this is of particular
importance to controls that contain more than one ActionCell. Note, however, that no
checking is done by the ActionCell object itself to ensure that the tag is unique. See
the Matrix class for an example of a subclass of Control that contains multiple
ActionCells.

ActionCell defines the target and action instance variables and methods for setting
them. These define the ActionCell's target object and action method. As the user
manipulates a control, ActionCell's trackMouse:inRect: ofView: method (inherited
from Cell) sends the action message to the target object with the id of the Control object
as the only argument.

Many of the methods that define the contents and look of an ActionCell, such as
setFont: and setBordered:, are reimplementations of methods inherited from Cell.
They're subclassed to ensure that the ActionCell is redisplayed if it's currently in a
control.

INSTANCE VARIABLES

Inherited/rom Object

Inherited/rom Cell

Declared in ActionCell

tag

target

action

Class

char
id
struct _cFlagsl
struct _cFlags2

int
id
SEL

isa;

*contents;
support;
cFlagsl;
cFlags2;

tag;
target;
action;

Reference number for the object.

The object's notification target.

The message to send to the target.

Application Kit Classes: ActionCell 2-65

METHOD TYPES

Configuring the ActionCell - setAlignment:
- setBezeled:
- setBordered:
- setEnabled:
- setFloatingPointFormat:left:right:
- setFont:
- setIcon:

Manipulating ActionCell values - double Value
- floatValue
- intValue
- setStringValue:
- setStringValueNoCopy:shouldFree:
- stringValue

Displaying - controlView
- drawSelf:in View:

Target and action - action
- setAction:
- setTarget:
- target

Assigning a tag - setTag:
-tag

Archiving -read:
- write:

INSTANCE METHODS

action

- (SEL)action

Returns the selector for the receiver's action method. Keep in mind that the argument
to an ActionCell's action method is the object's Control (the object returned by
controlView).

See also: - setAction:

2-66 Chapter 2: Class Specifications

controlView

- control View

Returns the Control object in which the receiver was most recently drawn. In general,
you should use the object returned by this method only to (indirectly) redisplay the
receiver. For example, the subclasses of ActionCell defined by the Application Kit
invoke this method in order to send the returned object a message such as
updateCelllnside: .

The Control in which an ActionCell is drawn is set through the drawSelf:in View:
method (only).

See also: - drawSelf:in View:

double Value

- (double)double Value

Returns the receiver's contents as a double.

See also: - setDoubleValue:(Cell), - doubleValue (Cell)

drawS elf: in View:

- drawSelf:(const NXRect *)cellFrame inView:controlView

Displays the ActionCell by sending

[super drawSelf:cellFrame inView:controlView];

Sets the receiver's Control (the controlView instance variable) to controlView if and
only if controlView is a Control object (in other words, an instance of Control or a
subclass thereof).

See also: - drawSelf:in View: (Cell)

floatValue

- (float)floatValue

Returns the receiver's contents as a float.

See also: - setFloatValue:(Cell), - floatValue (Cell)

Application Kit Classes: ActionCell 2-67

intValue
- (int)intValue

Returns the receiver's contents as an int.

See also: - setlntValue:(Cell), - intValue (Cell)

read:
- read:(NXTypedStream *)stream

Reads and returns an object of class ActionCell from stream.

setAction:
- setAction:(SEL)aSelector

Sets the receiver's action method to aSelector. Keep in mind that the argument to an
ActionCell's action method is the object's Control (the object returned by
controIView). Returns self.

See also: - setTarget:, - sendAction:to: (Control)

setAlignment:
- setAlignment:(int)mode

If the receiver is a text Cell (type NX_ TEXTCELL), this sets its text alignment to mode,
which should be NXLEFTALIGNED, NX_CENTERED, or NX_RIGHTALIGNED.
If it's currently in a Control view, the receiver is redisplayed. Returns self.

setBezeled:
- setBezeled:(BOOL)jlag

Adds or removes the receiver's bezel, asjlag is YES or NO. Adding a bezel will remove
the receiver's (flat) border, if any. If it's currently in a Control view, the receiver is
redisplayed. Returns self.

See also: - setBordered:

setBordered:
- setBordered:(BOOL)jlag

Adds or removes the receiver's border, asjlag is YES or NO. The border is black and
has a width of 1.0. Adding a border will remove the receiver's bezel, if any. If it's
currently in a Control view, the receiver is redisplayed. Returns self.

See also: - setBezeled:

2-68 Chapter 2: Class Specifications

setEnabled:
- setEnabled:(BOOL)jlag

Enables or disables the receiver's ability to receive mouse events asjlag is YES or NO.
If it's currently in a Control view, the receiver is redisplayed. Returns self.

setFloatingPointFormat:left:right:
- setFloatingPointFormat:(BOOL)autoRange

left:(unsigned int)leftDigits
right:(unsigned int)rightDigits

Sets the receiver's floating point format. If it's currently in a Control view, the receiver
is redisplayed. Returns self.

See also: - setFloatingPointFormat:left:right: (Cell)

setFont:
- setFont:fontObj

If the receiver is a text Cell (type NX_TEXTCELL), this sets its font to fontObj. In
addition, if it's currently in a Control view, the receiver is redisplayed. Returns self.

setlcon:
- setIcon:(const char *)iconName

Sets the receiver's icon to iconName and sets its Cell type to NX_ICONCELL. If it's
currently in a Control view, the receiver is redisplayed. Returns self.

See also: - setlcon: (Cell)

setStringValue:
- setStringValue:(const char *)aString

Sets the receiver's contents to a copy of aString. If it's currently in a Control view, the
receiver is redisplayed. Returns self.

See also: - setStringValue: (Cell)

Application Kit Classes: ActionCell 2-69

setStringValueNoCopy:shouldFree:
- setStringValueNoCopy:(char *)aString shouldFree:(BOOL)jlag

Sets the receiver's contents to a aString. Ifjlag is YES, aString will be freed when the
receiver is freed. If it's currently in a Control view, the receiver is redisplayed. Returns
self.

See also: - setStringValueNoCopy:shouldFree: (Cell)

setTag:
- setTag:(int)an/nt

Sets the receiver's tag to an/nt. Returns self.

setTarget:
- setTarget:anObject

Sets the receiver's target to anObject. Returns self.

See also: - setAction:

stringValue
- (const char *)stringValue

Returns the receiver's contents as a string. Returns self.

See also: - setStringValue:, - string Value (Cell)

tag
- (int)tag

Returns the receiver's tag.

target
- target

Returns the receiver's target.

write:
- write:(NXTypedStream *)stream

Writes the receiver to stream. Returns self.

2-70 Chapter 2: Class Specifications

Application

INHERITS FROM Responder: Object

DECLARED IN appkit/ Application.h

CLASS DESCRIPTION

The Application class provides the framework for program execution; every program
must have exactly one Application object. Creating the object connects the program to
the Window Server and initializes its PostScript environment. The Application object
maintains a list of all the Windows in the application, thereby allowing it to retrieve
every View in the application. To make it readily accessible to other objects, the
Application object for your program is assigned to the global variable NXApp.

The main task of the Application object is to receive events from the Window Server
and distribute them to the proper Responders .. System events are handled by the
Application object itself. Window events are translated into event messages for the
affected Window object. Key-down events that occur when the Command key is
pressed are translated into commandKey: messages that every Window has an
opportunity to respond to. Other keyboard and mouse events are sent to the Window
associated with the event; the Window then distributes them to the objects in its view
hierarchy.

Subclassing the Application class is discouraged. Instead of placing the functionality
of your program in an Application object, you should place that functionality in one or
more modules which are subclasses of the Object class. Your program will then tend
to be more reusable, and can be invoked from a small dispatcher object rather than
being closely tied to the Application code.

The Application object can be assigned a delegate that responds to notification
messages on the Application object's behalf. The easiest way to make your own object
the Application object's delegate is to Control-drag a connection from the File's Owner
icon to your object in Interface Builder, and connect it as the delegate. Many of the
notification methods are sent back to the Application object if the delegate doesn't
respond, but the preferred technique is to have the delegate respond to these messages.
The notification messages are listed below, divided into two categories:

Delegate Only

appDidHide:
appDidU nhide:
app WillUpdate:
appDidUpdate:
appDidBecomeActive:
appDidResignActive:
powerOff:

Delegate or Application subclass

appAcceptsAnotherFile:
app:openFile:type:
app: openTempFile: type:
appDidInit:
app:powerOffln:andSave:
app:unmounting:
applicationDefined:

Application Kit Classes: Application 2-71

Note that ofthe methods in the second category the Application class implements only
the applieationDefined: method, and that it implements that method only to forward
the message to the delegate.

Since an application must have one and only one Application object, you must use new
to create it. You can't use alIoe, alIoeFrornZone:, or init to create or initialize an
Application object.

INSTANCE VARIABLES

Inheritedfrom Object

Inheritedfrom Responder

Declared in Application

appName

currentEvent

windowList

keyWindow

2-72 Chapter 2: Class Specifications

Class isa;

id nextResponder;

char *appName;
NXEvent currentEvent;
id window List;
id keyWindow;
id main Window;
id delegate;
int *hiddenList;
int hiddenCount;
const char *hostName;
DPSContext context;
int contextNum;
id appListener;
id appSpeaker;
porCt replyPort;
NXSize screenSize;
short running;
struct _appFlags {

unsigned int hidden: 1;
unsigned int autoupdate: 1;
unsigned int active: 1;

appFlags;

The name of your application; used by the
defaults system and the application's Listener
object.

The event most recently retrieved from the event
queue.

A List of all the windows belonging to the
application.

The Window that receives keyboard events.

mainWindow

delegate

hiddenList

hidden Count

hostName

context

contextNum

appListener

appSpeaker

replyPort

screenSize

running

appFlags.hidden

appFlags.autoupdate

appFlags.active

The Window that receives menu commands and
action messages from a Panel.

The object that responds to delegated messages.

The Window Server's List for Windows in the
application at the time the application is hidden.

The number of windows referred to by
hidden List.

The name of the machine running the Window
Server.

The Display PostScript context connected to the
Window Server.

A number identifying the application's Display
PostScript context.

The Application object's Listener.

The Application object's Speaker.

A general purpose reply port for the Application
object's Speakers.

The size of the screen that this application is
running on.

The nested level of run and runModaIFor:.

YES if the application's windows are currently
hidden.

YES if the Application object is to send an
update message to each Window after an event
has been processed.

YES if the application is the active application.

Application Kit Classes: Application 2-73

METHOD TYPES

Initializing the class

Creating and freeing instances

Setting up the application

Changing the active application

Running the event loop

Getting and peeking at events

2-74 Chapter 2: Class Specifications

+ initialize

+ new
-free

- loadNibFile:owner:
-loadNibFile:owner:withNames:
-loadNibFile:owner:withNames:fromZone:
- loadNibSection:owner:
-loadNibSection:owner:withNames:
-loadNibSection:owner:withNames:

fromHeader:
- loadNibSection:owner:withNames:

fromZone:
-loadNibSection:owner:withNames:

fromHeader:fromZone:
- appName
- setMainMenu:
-mainMenu

- activate:
- activateSelf:
- activeApp
- becomeActiveApp
- deactivateS elf
- isActive
- resignActiveApp

-run
- stop:
- runModalFor:
- stopModal
- stopModal:
- abortModal
- beginModaISession:for:
- runModalSession:
- endModalSession:
- delayedFree:
- isRunning
- sendEvent:

- currentEvent
- getNextEvent:
- getNextEvent:waitFor:threshold:
- peekAndGetNextEvent:
- peekNextEventinto:
- peekNextEventinto:waitFor:threshold:

Joumaling - isJoumalable
- setJoumalable:
- masterJoumaler
- slaveJoumaler

Handling user actions and events - applicationDefined:
- hide:
- isHidden
-unhide
- unhide:
- unhide WithoutActivation:
-powerOff:
- powerOffln:andSave:
- rightMouseDown:
- unmounting:ok:

Sending action messages - sendAction:to:from:
- tryToPerform:with:
- ca1cTargetForAction:

Remote messaging - setAppListener:
- appListener
- setAppSpeaker:
- appSpeaker
- appListenerPortName
- replyPort

Managing Windows - appIcon
- findWindow:
- getWindowNumbers:count:
-keyWindow
- main Window
- make WindowsPerform:inOrder:
- setAutoupdate:
- update Windows
- windowList

Managing the Windows menu - setWindowsMenu:
- windowsMenu
- arrangeInFront:
- addWindowsltem:title:filename:
- remove Windowsltem:
- change Windowsltem:title:filename:
- update WindowsItem:

Managing the Services menu - setServicesMenu:
- servicesMenu
- registerServicesMenuSendTypes:

andRetumTypes:
- validRequestorForSendType:andRetumType:

Application Kit Classes: Application 2-75

Managing screens - mainScreen
- colorScreen
- getScreens:count:
- getScreenSize:

Querying the application - context
-focusView
-hostName

Language - systemLanguages

Opening files - openFile:ok:
- openTempFile:ok:

Printing - setPrintInfo:
- printInfo
- runPageLayout:

Color - orderFrontColorPanel:

Terminating the application - terminate:

Assigning a delegate - setDelegate:
- delegate

CLASS METHODS

alloc

Generates an error message. This method cannot be used to create an Application
object. Use new instead.

See also: + new

allocFrornZone:

Generates an error message. This method cannot be used to create an Application
object. Use new instead.

See also: + new

initialize

+ initialize

Registers defaults used by the Application class. You never send this message directly;
it's sent for you when your application starts. Returns self.

2-76 Chapter 2: Class Specifications

new

+ new

Creates a new Application object and assigns it to the global variable NXApp. A
program can have only one Application object, so this method just returns NXApp if
the Application object already exists. This method also makes a connection to the
Window Server, loads the PostScript procedures the application needs, and completes
other initialization. Your program should generally invoke this method as one of the
first statements in mainO; this is done for you if you create your application with
Interface Builder. The Application object is returned.

See also: - run

INSTANCE METHODS

abortModal
- (void)abortModal

Aborts the modal event loop by raising the NX_abortModal exception, which is caught
by runModaIFor:, the method that started the modal loop. Since this method raises an
exception, it never returns; runModaIFor:, when stopped with this method, returns
NX_RUNABORTED. This method is typically invoked from procedures registered
with DPSAddTimedEntryO, DPSAddPortO, or DPSAddFDO. Note that you can't
use this method to abort modal sessions, where you control the modal loop and
periodically invoke runModaISession:.

See also: - runModaIFor:, - stopModal, - stopModal:

activate:

- (int)activate:(int)contextNumber

Makes the application identified by contextNumber the active application.
contextNumber is the PostScript context number of the application to be activated.
Nonnally, you shouldn't invoke this method; the Application Kit is responsible for
proper activation. The previously active application's PostScript context number is
returned.

See also: - isActive, - activateSelf:, - deactivateSelf

Application Kit Classes: Application 2-77

activateSelf:

- (int)activateSelf:(BOOL)jlag

Makes the receiving application the active application. Ifjlag is NO, the application is
activated only if no other application is currently active. Normally, this method is
invoked withjlag set to NO. When the WorkSpace Manager launches an application,
it deactivates itself, so activateSelf:NO allows the application to become active if the
user waits for it to launch, but the application remains unobtrusive if the user activates
another application. Ifjlag is YES, the application will always activate. Regardless of
the setting ofjlag, there may be a time lag before the application activates; you should
not assume that the application will be active immediately after sending this message.

Note that you can make one of your Windows the key window without changing the
active application; when you send a makeKeyWindow message to a Window, you
simply ensure that the Window will be the key window when the application is active.

You should rarely have a need to invoke this method. Under most circumstances the
Application Kit takes care of proper activation. However, you might find this method
useful if you implement your own methods for inter-application communication. This
method returns the PostScript context number of the previously active application.

See also: - activeApp, - activate:, - deactivateSelf, - makeKeyWindow (Window)

activeApp

- (int)activeApp

Returns the active application's PostScript context number. If no application is active,
returns zero.

See also: - isActive, - activate:

addWindowsltem:title:filename:

- addWindowsItem:aWindow title:(const char *)aString
filename: (BOOL)isFilename

Adds an item to the Windows menu corresponding to the Window aWindow. If
isFilename is NO, aString appears literally in the menu. If isFilename is YES, aString
is assumed to be a converted name with the filename preceding the path, as placed in a
Window title by Window's setTitleAsFilename: method. If an item for aWindow
already exists in the Windows menu, this method has no effect. You rarely invoke this
method because an item is placed in the Windows menu for you whenever a Window's
title is set. Returns self.

See also: - changeWindowsItem:title:filename:, - setTitle: (Window),
- setTitleAsFilename: (Window)

2-78 Chapter 2: Class Specifications

applcon
-applcon

Returns the Window that represents the application in the Workspace Manager.

applicationDefined:
- applicationDefined:(NXEvent *)theEvent

Handles the application-defined (NX_APPDEFINED) event theEvent. The default
implementation forwards the message to the receiver's delegate (if the delegate
responds to the message). You should either provide a delegate implementation or
override this method in your subclass of Application if you want to handle such events.
If the delegate responds to this message, the delegate's return value is returned;
otherwise returns self.

appListener
- appListener

Returns the Application object's Listener-the object that will receive messages sent
to the port that's registered for the application's name. If you don't send a
setAppListener: message before your application starts running, an instance of
Listener is created for you.

See also: - setAppListener:, - appListenerPortName, - run

appListenerPortName
- (const char *)appListenerPortName

Returns the name used to register the Application object's Listener. The default is the
same name that's returned by the Application object's appName method. If a different
name is desired, this method should be overridden. Messages sent by name to
appListenerPortName will be received by your Application object.

See also: - checklnAs: (Listener), - appName, NXPortFromNameO

appName
- (const char *)appName

Returns the name under which the Application object has been registered for defaults.
This name is also used for messaging unless the messaging name was changed with an
override of appListenerPortName.

See also: - appListenerPortName

Application Kit Classes: Application 2-79

appSpeaker

- appSpeaker

Returns the Application object's Speaker. You can use this object to send messages to
other applications.

See also: - setSendPort: (Speaker)

arrangelnFront:

- arrangeInFront:sender

Arranges all of the windows listed in the Windows menu in front of all other windows.
Windows associated with the application but not listed in the Windows menu are not
ordered to the front. Returns self.

See also: - removeWindowsltem:, - makeKeyAndOrderFront: (Window)

becomeActiveApp

- becomeActiveApp

Sends the appDidBecomeActive: message to the Application object's delegate. This
method is invoked when the application is activated. You never send a
becomeActiveApp message directly, but you can override this method in a subclass.
Returns self.

See also: - activateSelf:, - appDidBecomeActive: (delegate)

beginModaISession:for:

- (NXModalSession *)beginModaISession:(NXModaISession *)session
for:theWindow

Prepares the application for a modal session with theWindow. In other words, prepares
the application so that mouse events get to it only if they occur in theWindow. If session
is NULL, a NXModalSession is allocated; otherwise the given storage is used. (The
sender could declare a local NXModalSession variable for this purpose.) theWindow
is made the key window and ordered to the front.

beginModaISession:for: should be balanced by endModaISession:. If an exception
is raised, beginModaISession:for: arranges for proper cleanup. Do NOT use
NX_DURING constructs to send an endModalSession: message in the event of an
exception. Returns the NXModalSession pointer that's used to refer to this session.

See also: - runModaISession:, - endModalSession:

2-80 Chapter 2: Class Specifications

calcTargetFor Action:

- calcTargetFor Action: (SEL)theAction

Returns the first object in the responder chain that responds to the message theAction.
The message isn't actually dispatched. Note that this method doesn't test the value that
the responding object would return should the message be sent; specifically, it doesn't
test to see if the responder would return nil. Returns nil if no responder is found.

See also: - sendAction:to:from:

change Windowsltem : title : filename:

- changeWindowsItem:aWindow title:(const char *)aString
filename: (BOOL)isFilename

Changes the item for aWindow in the Windows menu to aString. If aWindow doesn't
have an item in the Windows menu, this method adds the item. If isFilename is NO,
aString appears literally in the menu. If isFilename is YES, aString is assumed to be a
converted name with the filename preceding the path, as placed in a Window title by
Window's setTitleAsFilename: method. Returns self.

See also: - addWindowsItem:title:filename:, - setTitle: (Window),
- setTitleAsFilename: (Window)

color Screen

- (const NXScreen *)colorScreen

Returns the screen that can best represent color. This method will always return a
screen, even if no color screen is present.

See also: NXBPSFromDepthO

context

- (DPSContext)context

Returns the Application object's Display PostScript context.

currentEvent

- (NXEvent *)currentEvent

Returns a pointer to the last event the Application object retrieved from the event queue.
A pointer to the current event is also passed with every event message.

See also: - getNextEvent:waitFor:threshold:,
- peekNextEvent:waitFor:threshold:

Application Kit Classes: Application 2-81

deactivateSelf

- deactivateSelf

Deactivates the application if it's active. Normally, you shouldn't invoke this method;
the Application Kit is responsible for proper deactivation. Returns self.

See also: - activeApp, - activate:, - activateSelf:

delayedFree:

- delayedFree:theObject

Frees theObject by sending it the free message after the application finishes responding
to the current event and before it gets the next event. If this method is performed during
a modal loop, theObject is freed after the modal loop ends. Returns self.

delegate

- delegate

Returns the Application object's delegate.

See also: - setDelegate:

endModalSession:

- endModaISession:(NXModalSession *)session

Cleans up after a modal session. session should be from a previous invocation of
beginModaISession:for: .

See also: - runModaISession:, - beginModaISession:for:

findWindow:

- findWindow:(int)windowNum

Returns the Window object that corresponds to the window number windowNum. This
method is of primary use in finding the Window object associated with a particular
event.

See also: - windowNum (Window)

focusView

- focusView

Returns the View that is currently focused on, or nil if no View is focused on.

See also: -lockFocus (View)

2-82 Chapter 2: Class Specifications

free
-free

Closes all the Application object's windows, breaks the connection to the Window
Server, and frees the Application object.

getNextEvent:
- (NXEvent *)getNextEvent:(int)mask

Gets the next event from the Window Server and returns a pointer to its event record.
This method is similar to getNextEvent:waitFor:threshold: with an infinite timeout
and a threshold of NX_MODALRESPTHRESHOLD.

See also: - getNextEvent:waitFor:threshold, - run, - runModaIFor:,
- currentEvent

getNextEvent:waitFor:threshold:
- (NXEvent *)getNextEvent:(int)mask

waitFor:(double)timeout
threshold:(int)level

Gets the next event from the Window Server and returns a pointer to its event record.
Only events that match mask are returned; getNextEvent:waitFor:threshold: goes
through the event queue, starting from the head, until it finds an event matching mask.
Events that are skipped are left in the queue. Note that
getNextEvent:waitFor:threshold: doesn't alter the window event masks that
determine which events the Window Server will send to the application.

If an event matching the mask doesn't arrive within timeout seconds, this method
returns a NULL pointer.

You can use this method to short circuit normal event dispatching and get your own
events. For example, you may want to do this in response to a mouse-down event in
order to track the mouse while it's down. In this case, you would set mask to accept
mouse-dragged, mouse-entered, mouse-exited, or mouse-up events.

level determines what other tasks should be performed when the event queue is
examined. Tasks that may be performed include procedures to deal with timed-entries,
procedures to handle messages received on ports, or procedures to read new data from
files. Any such procedure that needs to be called will be called if its priority (specified
when the procedure is registered) is equal to or higher than level.

In general, modal responders should pass NX_MODALRESPTHRESHOLD for level.
The main run loop uses a threshold of NX_BASETHRESHOLD, allowing all
procedures (except those registered with priority 0) to be checked and invoked if
needed.

See also: - peekNextEvent:waitFor:threshold:, - run, - runModalFor:

Application Kit Classes: Application 2-83

getScreens:count:

- getScreens:(const NXScreen **)list count:(int *)numScreens

Gets screen information for every screen connected to the system. A pointer to an array
of NXScreen structures is placed in the variable indicated by list, and the number of
NXScreen structures in that array is placed in the variable indicated by numScreens.
Returns self.

getScreenSize:

- getScreenSize:(NXSize *)theSize

Gets the size of the main screen, in units of the screen coordinate system, and places it
in the structure pointed to by theSize. Returns self.

getWindowNumbers:count:

- getWindowNumbers:(int **)list count:(int *)numWindows

Gets the window numbers for all the Application object's Windows. A pointer to a
non-NULL-terminated int array is placed in the variable indicated by list. The number
of entries in this array is placed in the integer indicated by numWindows. The order of
window numbers in the array is the same as their order in the Window Server's screen
list, which is their front-to-back order on the screen. The application is responsible for
freeing the list array when done. Returns self.

See also: NXWindowListO

hide:

- hide:sender

Collapses the application's graphics-including all its windows, menus, and panels
into a single small window. The hide: message is usually sent using the Hide command
in the application's main menu. Returns self.

See also: - unhide:

hostName

- (const char *)hostName

Returns the name of the host machine on which the Window Server that serves the
Application object is running. This method returns the name that was passed to the
receiving Application object through the NXHost default; this name is set either from
its value in the defaults database or by providing a value for NXHost through the
command line. If a value for NXHost isn't specified, NULL is returned.

2-84 Chapter 2;' Class Specifications

isActive

- (BOOL)isActive

Returns YES if the application is currently active, and NO if it isn't.

See also: - activateSelf:, - activate:

isHidden

- (BOOL)isHidden

Returns YES if the application is currently hidden, and NO if it isn't.

isJ ournalable

- (BOOL)isJournalable

Returns YES if the application can be journaled, and NO if it can't. By default,
applications can be journaled.

See also: - setJournalable:

isRunning

- (BOOL)isRunning

Returns YES if the application is running, and NO if the stop: method has ended the
main event loop.

See also: - run, - stop:, - terminate:

keyWindow

-keyWindow

Returns the key window-the Window that receives keyboard events. If there is no key
window, or if the key window belongs to another application, this method returns nil.

See also: - mainWindow, - isKeyWindow (Window)

loadNibFile:owner:

-loadNibFile:(const char *)filename owner:anOwner

Loads objects from the specified interface file. This method is a cover for
loadNibFile:owner:withNames:fromZone:. The objects and their names are read
from the specified interface file into storage allocated from the default zone. Returns
non-nil if the file filename is successfully opened and read; otherwise it returns nil.

See also: -loadNibFile:owner:withNames:fromZone:, NXDefaultMallocZoneO

Application Kit Classes: Application 2-85

loadNibFile:owner:withNarnes:

-loadNibFile:(const char *)filename
owner:anObject
withNames: (BaaL)flag

Loads objects from the specified interface file. This method is a cover for
loadNibFile:owner:withNames:fromZone:. The objects are read from the specified
interface file into storage allocated from the default zone. Returns non-nil if the file
filename is successfully opened and read; otherwise it returns nil.

See also: -loadNibFile:owner:withNames:fromZone:, NXDefaultMallocZoneO

loadNibFile:owner:withNarnes:frornZone:

-loadNibFile:(const char *)filename
owner:anObject
withNames:(BOOL)flag
fromZone:(NXZone *)zone

Loads objects from the specified interface file into memory allocated from zone. This
method returns non-nil if the file filename is successfully opened and read; otherwise it
returns nil.

anObject is the object that corresponds to the "File's Owner" object in Interface
Builder's File window. As the objects are loaded, the outlet initialization methods in
anObject are invoked to bind the outlets.

If flag is YES, the names of the objects are loaded. If you use only the outlet
mechanism to get to objects in the interface file, you can save some memory by
specifying NO as the value offlag. However, you won't be able to use
NXGetNamedObjectO to get at the objects.

See also: -loadNibSection:owner:withNames:fromZone:

loadNibSection:owner:

-loadNibSection:(const char *)sectionName owner:anObject

Loads objects and their names from the specified section of the application's executable
file into memory allocated from the default zone. This method returns non-nil if the
section is successfully loaded; otherwise it returns nil.

See also: -loadNibSection:owner:withNames:fromZone:,
NXDefaultMallocZoneO

2-86 Chapter 2: Class Specifications

loadNibSection:owner:withNames:

-loadNibSection:(const char *)name
owner:anObject
withNames:(BOOL)jlag

Loads objects from the interface data in the specified section in the _NIB segment of
the executable file into memory allocated from the default zone. This method returns
non-nil if the section is successfully loaded; otherwise it returns nil (for example if
section name doesn't exist).

See also: -loadNibSection:owner:withNames:fromZone:,
NXDefaultMallocZoneO

loadNibSection:owner:withNames:fromHeader:

-loadNibSection:(const char *)name
owner:anObject
withN ames: (BOOL)jlag
fromHeader:(const struct mach_header *)header

Loads objects from a dynamically loaded header into memory allocated from the
default zone. A class can use this method in its + finishLoading method to load
associated interface data.

See also: -loadNibSection:owner:withNames:fromZone:,
NXDefaultMallocZoneO

loadNibSection:owner:withNames:fromHeader:fromZone:

-loadNibSection:(const char *)name
owner:anObject
withNames:(BOOL)jlag
fromHeader:(const struct mach_header *)header
fromZone:(NXZone *)zone

Loads objects from a dynamically loaded header into memory allocated from the
specified zone. A class can use this method in its + load method to load associated
interface data.

See also: - loadNibSection:owner:withNames:fromZone:

Application Kit Classes: Application 2-87

loadNibSection:owner:withNames:fromZone:
-loadNibSection:(const char *)name

owner:anObject
withNames:(BOOL)jlag
fromZone:(NXZone *)zone

Loads objects from the interface data in the specified section in the _NIB segment of
the executable file into memory allocated from the specified zone. This method returns
non-nil if the section is successfully loaded; otherwise it returns nil (for example if
section name doesn't exist).

anObject is the object that corresponds to the "File's Owner" object in the Interface
Builder's File window. As the objects are loaded, the outlet initialization methods in
anObject are performed to bind the outlets.

Ifjlag is YES, the names of the objects are loaded. If you use only the outlet
mechanism to get to objects in the interface section, you can save some memory by
specifying NO as the value of jlag. In that case you won't be able to use
NXGetNamedObjectO to get the id of objects.

See also: - loadNibSection:owner:withNames:fromZone:

mainMenu

-mainMenu

Returns the Application object's main menu.

mainScreen
- (const NXScreen *)mainScreen

Returns the main screen. If there is only one screen, that screen is returned. Otherwise,
this method attempts to return the key window's screen. If there is no key window, it
attempts to return the main menu's screen. If there is no main menu, this method
returns the screen that contains the screen coordinate system origin.

See also: - screen (Window)

mainWindow

- main Window

Returns the main window. This method returns nil if there is no main window, if the
main window belongs to another application, or if the application is hidden.

See also: - keyWindow, - isMainWindow (Window)

2-88 Chapter 2: Class Specifications

make WindowsPerform:inOrder:

- makeWindowsPerform:(SEL)aSelector inOrder:(BOOL)jlag

Sends the Application object's Windows a message to perfonn the aSelector method.
The message is sent to each Window in turn until one of them returns YES; this method
then returns that Window. If no Window returns YES, this method returns nil.

Ifjlag is YES, the Application object's Windows receive the aSelector message in the
front-to-back order in which they appear in the Window Server's window list. Ifjlag is
NO, Windows receive the message in the order they appear in the Application object's
window list. This order generally reflects the order in which the Windows were
created.

The aSelector method can't take any arguments.

master Journaler

- master Journaler

Returns the Application object's master journaler.

See also: - slaveJounaler

openFile:ok:

- (int)openFile:(const char *)fullPath ok:(int *)jlag

Responds to a remote message requesting the application to open a file. The
openFile:ok: message is typically sent to the application from the Workspace
Manager, although other applications can send it directly to a specific application. The
Application object's delegate is queried with the appAcceptsAnotherFile: message
and if the result is YES, it's sent the app:openFile:type: message. If the delegate
doesn't respond to either of these messages, they're sent to the Application object (if it
implements them).

The variable pointed to by jlag is set to YES if the file is successfully opened, NO if the
file is not successfully opened, and (-1) if the application does not accept another file.
Returns zero.

See also: - app:openFile:type: (Application delegate), - openFile:ok: (Speaker)

openTempFile:ok:

- (int)openTempFile:(const char *)fullPath ok:(int *)jlag

Same as the openFile:ok: method, but app:openTempFile:type: is sent. Returns zero.

See also: - app:openTempFile:type: (Application delegate),
- openTempFile:ok: (Speaker)

Application Kit Classes: Application 2-89

order FrontColor Panel:
- orderFrontColorPanel:sender

Displays the color panel. Returns self.

peekAndGetNextEvent:

- (NXEvent *)peekAndGetNextEvent:(int)mask

This method is similar to getNextEvent:waitFor:threshold: with a zero timeout and
a threshold of NX_MODALRESPTHRESHOLD.

See also: - getNextEvent:waitFor:threshold, - run, - runModaIFor:,
- currentEvent

peekNextEvent:into:

- (NXEvent *)peekNextEvent:(int)mask into:(NXEvent *)eventPtr

This method is similar to peekNextEvent:into:waitFor:threshold: with a zero
timeout and a threshold of NX_MODALRESPTHRESHOLD.

See also: - peekNextEvent:into:waitFor:threshold, - run, - runModaIFor:,
- currentEvent

peekNextEvent:into:waitFor:threshold:
- (NXEvent *)peekNextEvent:(int)mask

into:(NXEvent *)eventPtr
waitFor:(float)timeout
threshold: (int)level

This method is similar to getNextEvent:waitFor:threshold: except the matching
event isn't removed from the event queue nor is it placed in currentEvent; instead, it's
copied into storage pointed to by eventPtr.

If no matching event is found, NULL is returned; otherwise, eventPtr is returned.

See also: - getNextEvent:waitFor:threshold:, - run, - runModaIFor:,
- currentEvent

2-90 Chapter 2: Class Specifications

power Off:

- powerOff:(NXEvent *)theEvent

A powerOff: message is generated when a power-off event is sent from the Window
Server. If the application was launched by the Workspace Manager, this method does
nothing; instead, the Application object will wait for the powerOffIn:andSave:
message from the Workspace Manager. If the application wasn't launched from the
Workspace Manager, this method sends the delegate a powerOff: message, assuming
there's a delegate and it implements the method. Returns self.

powerOffln:andSave:

- (int)powerOffIn:(int)ms andSave:(int)aFlag

You never invoke this method directly; it's sent from the Workspace Manager. The
delegate or your subclass of Application will be given the chance to receive the
app:powerOffIn:andSave message. This method raises an exception, so it never
returns.

See also: - app:powerOffIn:andSave: (delegate)

printlnfo

- printInfo

Returns the Application object's global PrintInfo object. If none exists, a default one
is created.

registerServicesMenuSendTypes: andReturnTypes:

- registerServicesMenuSendTypes:(const char *const *)sendTypes
andReturnTypes:(const char *const *)returnTypes

Registers pasteboard types that the application can send and receive in response to
service requests. If the application has a Services menu, a menu item is added for each
service provider that can accept one of the specified send types or return one of the
specified return types. This method should typically be invoked at application startup
time or when an object that can use services is created. It can be invoked more than
once; its purpose is to ensure that there is a menu item for every service that may be
used by the application. The individual items will be dynamically enabled and disabled
by the event handling mechanism to indicate which services are currently appropriate.
An application (or object instance that can cut or paste) should register every possible
type that it can send and receive. Returns self.

See also: - validRequestorForSendType:andReturnType: (Responder),
- readSelectionFromPasteboard: (Object method),
- writeSelectionToPasteboard: (Object method)

Application Kit Classes: Application 2-91

remove Windowsltem:

- removeWindowsltem:aWindow

Removes the item for aWindow in the Windows menu. Returns self.

See also: - changeWindowsltem:title:filename:

replyPort

- (porCt)replyPort

Returns the Application object's reply port. This port is allocated for you automatically
by the run method, and is the default reply port which can be shared by all the
Application object's Speakers.

See also: - setReplyPort: (Speaker)

resignActiveApp

- resignActiveApp

This method is invoked immediately after the application is deactivated. You never
send resignActiveApp messages directly, but you could override this method in your
Application object to notice when your application is deactivated. Alternatively, your
delegate could implement appDidResignActive:. Returns self.

See also: - deactivateSelf:, - appDidResignActive: (delegate)

rightMouseDown:

- rightMouseDown:(NXEvent *)theEvent

Pops up the main menu. Returns self.

run

-run

Initiates the Application object's main event loop. The loop continues until a stop: or
terminate: message is received. Each iteration through the loop, the next available
event from the Window Server is stored, and is then dispatched by sending the event to
the Application object using sendEvent:

A run message should be sent as the last statement from mainO, after the application's
objects have been initialized. Returns self if terminated by stop:, but never returns if
terminated by terminate:.

See also: - runModaIFor:, - sendEvent:, - stop:, - terminate:,
- appDidlnit: (delegate)

2-92 Chapter 2: Class Specifications

~unModaIFor:

- (int)runModaIFor:theWindow

Establishes a modal event loop for theWindow. Until the loop is broken by a
stopModal, stopModal:, or abortModal message, the application won't respond to
any mouse, keyboard, or window-close events unless they're associated with
theWindow. If stopModal: is used to stop the modal event loop, this method returns
the argument passed to stopModal:. If stop Modal is used, it returns the constant
NX_RUNSTOPPED. If abortModal is used, it returns the constant
NX_RUNABORTED. This method is functionally similar to the following:

NXModalSession session;

[NXApp beginModalSession:&session for:theWindow];
for (;;) {

if ([NXApp runModalSession:&session] != NX_RUNCONTINUES)

break;

[NXApp endModalSession:&session];

See also: - stopModal, - stopModal:, - abortModal, - runModalSession:

runModalSession:

- (int)runModaISession:(NXModaISession *)session

Runs a modal session represented by session, as defined in a previous invocation of
beginModaISession:for:. A loop using this method is similar to a modal event loop
run with runModaIFor:, except that with this method the application can continue
processing between method invocations. When you invoke this method, events for the
window of this session are dispatched as normal; this method returns when there are no
more events. You must invoke this method frequently enough that the window remains
responsive to events.

If the modal session was not stopped, this method returns NX_RUNCONTINUES. If
stop Modal was invoked as the result of event procession, NX_RUNSTOPPED is
returned. If stopModal: was invoked, this method returns the value passed to
stopModal:. The NX_abortModal exception raised by abortModal isn't caught.

See also: - beginModaISession:, - endModalSession, - stopModal:, - stopModal,
- runModalFor:

runPageLayout:

- runPageLayout:sender

Brings up the Application object's Page Layout panel, which allows the user to select
the page size and orientation. Returns self.

Application Kit Classes: Application 2-93

sendAction:to:from:

- (BOOL)sendAction:(SEL)aSeiector to:aTarget from:sender

Sends an action message to an object. If aTarget is nil, the message is sent down the
responder chain. Returns YES if the action is applied; otherwise returns NO.

sendEvent:

- sendEvent:(NXEvent *)theEvent

Sends an event to the Application object. You rarely send sendEvent: messages
directly although you might want to override this method to perform some action on
every event. sendEvent: messages are sent from the main event loop (the run method).
sendEvent is the method that dispatches events to the appropriate responders; the
Application object handles application events, the Window indicated in the event
record handles window related events, and mouse and key events are forwarded to the
appropriate Window for further dispatching. Returns self.

See also: - setAutoupdate:

servicesMenu

- services Menu

Returns the Application object's Services menu. Returns nil if no Services menu has
been created.

See also: - setServicesMenu:

setAppListener:

- setAppListener:aListener

Sets the Listener that will receive messages sent to the port that's registered for the
application. If you want to have a special Listener reply to these messages, you must
either send a setAppListener: message before the run message is sent to the
Application object, or send this message from the delegate method appWiIIlnit:, so
that aListener is properly registered. This method doesn't free the Application object's
previous Listener object. Returns self.

See also: - appListenerPortName, - appWiIllnit: (delegate)

2-94 Chapter 2: Class Specifications

setAppSpeaker:
- setAppSpeaker:aSpeaker

Sets the Application object's Speaker. If you don't send a setAppSpeaker: message
before the Application object initializes, a default Speaker is created for you. This
method doesn't free the Application object's previous Speaker object.

See also: - appWilIlnit: (delegate)

setAutoupdate:
- setAutoupdate:(BOOL)jlag

Turns on or off automatic updating of windows. If automatic updating is on, update is
sent to each of the application's Windows after each event has been processed. This
can be used to keep the appearance of menus and panels synchronized with your
application. Returns self.

setDelegate:
- setDelegate:anObject

Sets the Application object's delegate. The notification messages that a delegate can
expect to receive are listed at the end of the Application class specifications. The
delegate doesn't need to implement all the methods. Returns self.

See also: - delegate

setJournalable:
- setJournalable:(BOOL)jlag

Sets whether the application is joumalable. Returns self.

setMainMenu:
- setMainMenu:aMenu

Makes aMenu the Application object's main menu. Returns self.

See also: - mainMenu

setPrintlnfo:
- setPrintlnfo:injo

Sets the Application object's global PrintInfo object. Returns the previous PrintInfo
object, or nil if there was none.

Application Kit Classes: Application ·2-95

setServicesMenu:

- setServicesMenu:aMenu

Makes aMenu the Application object's Services menu. Returns self.

setWindowsMenu:

- setWindowsMenu:aMenu

Makes aMenu the Application object's Windows menu. Returns self.

slaveJ ollrnaler

- slaveJournaler

Returns the Application object's slave journaler.

stop:

- stop:sender

Stops the main event loop. This method will break the flow of control out of the run
method, thereby returning to the mainO function. A subsequent run message will
restart the loop.

If this method is applied during a modal event loop, it will break that loop but not the
main event loop. Returns self.

See also: - terminate:, - run, - runModaIFor:, - runModalSession:

stop Modal

- stopModal

Stops a modal event loop. This method should always be paired with a previous
runModalFor: or beginModaISession:for: message. When runModalFor: is
stopped with this method, it returns NX_RUNSTOPPED. This method will stop the
loop only if it's executed by code responding to an event. If you need to stop a
runModalFor: loop from a procedure registered with DPSAddTimedEntryO,
DPSAddPortO, or DPSAddFDO, use the abortModal method. Returns self.

See also: - runModaIFor:, - runModaISession:, - abortModal

2-96 Chapter 2: Class Specifications

stopModal:

- stopModal:(int)returnCode

Just like stop Modal except argument return Code allows you to specify the value that
runModalFor: will return. Returns self.

See also: - stopModal, - runModaIFor:, - abortModal

systemLanguages

- (const char *const *)systemLanguages

Returns a NULL-terminated list of NULL-terminated strings which specify the user's
preferred languages (human languages, not computer languages) in order of
preference. If this method returns NULL, the user has no preference. This should be
used to do any localization of your application.

terminate:

- terminate:sender

Terminates the application. This method invokes app WiIlTerminate: to notify the
delegate that the application will terminate. If app WiIlTerminate: returns nil,
terminate: returns self; control is returned to the main event loop, and the application
isn't terminated. Otherwise, this method frees the Application object and terminates
the application by using exitO. terminate: is the default action method for the
application's "Quit" menu item. Note that you should not put final cleanup code in your
application's mainO function; it will never be executed.

See also: - stop, - appWiIlTerminate: (delegate), exitO

tryToPerform:with:
- (BOOL)tryToPerform:(SEL)aSelector with:anObject

Aids in dispatching action messages. The Application object tries to perform the
method selector aSelector using its inherited Responder method tryToPerform:with:.
If the Application object doesn't perform aSelector, the delegate is given the
opportunity to perform it using its inherited Object method perform:with:. If either
the Application object or the Application object's delegate accept aSelector, this
method returns YES; otherwise it returns NO.

See also: - tryToPerform:with: (Responder), - respondsTo: (Object),
- perform:with: (Object)

Application Kit Classes: Application 2-97

unhide
- (int)unhide

Responds to an unhide message sent from Workspace Manager. You shouldn't invoke
this method; invoke unhide: instead. Returns zero.

See also: - unhide:

unhide:

- unhide:sender

Restores a hidden application to its former state (all of the windows, menus, and panels
visible), and makes it the active application. This method is usually invoked as the
result of double-clicking in the icon for the hidden application. Returns self.

See also: - hide:, - unhideWithoutActivation:, - activateSelf:

unhide WithoutActivation:

- un hide WithoutActivation:sender

Unhides the application but does not make it the active application. You might want to
invoke activateSelf:NO after invoking this method to make the receiving application
active if there is no active application. Returns self.

See also: - hide:, - activateSelf:

unmounting:ok:

- (int)unmounting:(const char *)fullPath ok:(int *)jlag

Replies to an unmounting:ok: message sent from the Workspace Manager. You
shouldn't directly send unmounting:ok: messages. This method attempts to invoke
the app:unmounting: method of the Application object's delegate or of the
Application object itself. If neither object implements app:unmounting:, and the
current working directory is on the same volume as fullPath, this method changes the
working directory to the user's home directory. Returns zero.

update Windows

- updateWindows

Sends an update message to the Application object's visible Windows. If automatic
updating is enabled, this method is invoked automatically in the main event loop after
each event. An application can also send update Windows messages at other times to
have Windows update themselves.

2-98 Chapter 2: Class Specifications

If the delegate implements app WiIIUpdate:, that message is sent to the delegate before
the windows are updated. Similarly, ifthe delegate implements appWiIIUpdate:, that
message is sent to the delegate after the windows are updated. Returns self.

See also: - setAutoupdate:, - appWiIIUpdate: (delegate),
- appDidUpdate: (delegate)

update Windowsltem:

- updateWindowsltem:win

Updates the item for aWindow in the Windows menu to reflect the edited status of
aWindow. You rarely need to invoke this method because it is invoked automatically
when the edited status of a Window is set. Returns self.

See also: - changeWindowsltem:title:filename:, - setDocEdited: (Window)

validRequestorForSendType:andReturnType:

- validRequestorForSendType:(NXAtom)sendType
andReturnType:(NXAtom)returnType

Passes this message on to the Application object's delegate, if the delegate can respond
(and isn't a Responder with its own next responder). If the delegate can't respond or
returns nil, this method returns nil, indicating that no object was found that could
supply typeSent data for a remote message from the Services menu and accept back
typeReturned data. If such an object was found, it is returned.

Messages to perform this method are initiated by the Services menu. This method
might not be in the Application class header file at this time.

See also: - validRequestorForSendType:andReturnType: (Responder),
- registerServicesMenuSendTypes:andReturnTypes:,
- writeSelectionToPasteboard:types: (Object Method),
- readSelectionFromPasteboard: (Object Method)

windowList

- windowList

Returns the List object used to keep track of the Application object's Windows.

windowsMenu

- windowsMenu

Returns the Application object's Windows menu. Returns nil if no Windows menu has
been created.

Application Kit Classes: Application 2-99

METHODS IMPLEMENTED BY THE DELEGATE

app:openFile:type:

- (int)app:sender openFile:(const char *)filename type:(const char *)aType

Invoked from within openFile:ok: after it has been determined that the application can
open another file. The method should attempt to open the file filename with the
extension aType, returning YES if the file is successfully opened, and NO otherwise.

This method is also invoked from within openTempFile:ok: if neither the delegate nor
the Application subclass responds to app:openTempFile:type:

See also: - openFile:ok:, - openTempFile:ok:

app:openTempFile:type:

- (int)app:sender openTempFile:(const char *)filename type:(const char *)aType

Invoked from within openTempFile:ok: after it has been determined that the
application can open another file. The method should attempt to open the file filename
with the extension aType, returning YES if the file is successfully opened, and NO
otherwise.

By design, a file opened through this method is assumed to be temporary; it's the
application's responsibility to remove the file at the appropriate time.

See also: - openTempFile:ok:

app:powerOffln:andSave:

- app:sender powerOffIn:(int)ms andSave:(int)aFlag

Invoked when the Application object receives a power-off event through the
powerOffIn:andSave: method. This method is invoked only if the application was
launched from the Workspace Manager. ms is the number of milliseconds to wait
before powering down or logging out. aFlag has no particular meaning at this time.
You can ask for additional time by sending the extendPowerOffBy:actual: message
to the Workspace Manager. The Workspace Manager will power the machine down (or
log out the user) as soon as all applications terminate, even ifthere's time remaining on
the time extension.

See also: - extendPowerOffBy:actual: (Speaker)

2-100 Chapter 2: Class Specifications

app:unmounting:

- (int)app:sender unmounting:(const char *)fullPath

Invoked when the device mounted atfullPath is about to be unmounted. This method
is invoked from unmounting:ok: and is invoked only if the application was launched
from the Workspace Manager. The Application object or its delegate should do
whatever is necessary to allow the device to be unmounted. Specifically, all files on the
device should be closed and the current working directory should be changed if it's on
the device.

appAcceptsAnotherFile:

- (BOOL)appAcceptsAnotherFile:sender

Invoked from within Application's openFile:ok: and openTempFile:ok: methods, this
method should return YES if it's okay for the application to open another file, and NO
if isn't. If neither the delegate nor the Application object responds to the message, then
the file shouldn't be opened.

See also: - openFile:ok:, - openTempFile:ok:

appDidBecomeActive:

- appDidBecomeActive:sender

Invoked immediately after the application is activated.

appDidHide:

- appDidHide:sender

Invoked immediately after the application is hidden.

appDidlnit:

- appDidlnit:sender

Invoked after the application has been launched and initialized, but before it has
received its first event. The delegate or the Application subclass can implement this
method to perform further initialization.

See also: - appWillInit: (delegate)

appDidResignActive:

- appDidResignActive:sender

Invoked immediately after the application is deactivated.

Application Kit Classes: Application 2-101

appDidUnhide:
- appDidUnhide:sender

Invoked immediately after the application is unhidden.

appDidUpdate:

- appDidUpdate:sender

Invoked immediately after the Application object updates its Windows.

applicationDefined:

- applicationDefined:(NXEvent *)theEvent

Invoked when the application receives an application-defined (NX_APPDEFINED)
event. See the description of this method under INSTANCE METHODS, above.

app Willlnit:

- app WilIInit:sender

Invoked before the Application object is initialized. This method is invoked before the
Application object has initialized its Listener and Speaker objects and before any
app:openFile:type: messages are sent to your delegate. The Application object's
Listener and Speaker objects will be created for you immediately after invoking this
method if they have not been previously created.

See also: - appDidInit: (delegate), - appListener, - appSpeaker

app WillTerminate:

- appWilITerminate:sender

Invoked from within the terminate: method immediately before the application
terminates. If this method returns nil, the application is not terminated, and control is
returned to the main event loop. If you want to allow the application to terminate, you
should put your clean up code in this method and return non-nil.

See also: - terminate:

appWillUpdate:

- app WilIUpdate:sender

Invoked immediately before the Application object updates its Windows.

2-102 Chapter 2: Class Specifications

powerOff:

- powerOff:(NXEvent *)theEvent

Invoked when the Application object receives a power-off event through the powerOff:
method. Note that powerOff: (and so, too, this method) is invoked only if the
application wasn't launched from the Workspace Manager.

CONSTANTS AND DEFINED TYPES

/* KITDEFINED subtypes */

#define NX WINEXPOSED 0

#define NX APPACT 1

#define NX APPDEACT 2

#define NX WINRESIZED 3

#define NX WINMOVED 4

#define NX SCREENCHANGED 8

/* SYSDEFINED subtypes */

#define NX POWEROFF 1

/* Additional flags */

#define NX JOURNALFLAG 31
#define NX JOURNALFLAGMASK (1 « NX_JOURNALFLAG)

/* Thresholds passed to DPSGetEvent() and DPSPeekEvent(). */

#define NX BASETHRESHOLD 1

#define NX RUNMODALTHRESHOLD 5
#define NX MODALRESPTHRESHOLD 10

/*
* Predefined return values for runModalFor: and

* runModalSession:. All values below these (-1003, -1004, and

* so on) are also reserved.

*/
#define NX RUNSTOPPED (-1000)

#define NX RUNABORTED (-1001)
#define NX RUNCONTINUES (-1002)

Application Kit Classes: Application 2-103

/*
* The NXModalSession structure contains information used by the
* system between beginModalSession:for: and endModalSession:
* messages. This structure can either be allocated on the stack
* frame of the caller, or by beginModalSession:for:. The
* application should not access any of the elements of this
* structure.
*/

typedef struct NXModalSession
id app;
id window;
struct NXModalSession *prevSession;
int oldRunningCount;

BOOL oldDoesHide;
BOOL freeMe;
int winNum;
NXHandler *errorData;
int reservedl;
int reserved2;

NXModalSession;

2-104 Chapter 2: Class Specifications

Box

INHERITS FROM View : Responder: Object

DECLARED IN appkit/Box.h

CLASS DESCRIPTION

A Box is a View that visually groups other Views. A Box has one subview, its content
view, which is used to group the Box's contents. A Box also typically displays a title
and a border around its content view. The Box class includes methods to change the
Box's border style and title position, and to set the text and font of the title. In addition,
you can add subviews to the Box's content view and then resize the Box to fit around
these subviews.

INSTANCE VARIABLES

Inheritedfrom Object

Inherited from Responder

Inheritedfrom View

Declared in Box

cell

contentView

offsets

borderRect

Class isa;

id nextResponder;

NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct _ vFlags vFlags;

id cell;
id contentView;
NXSize offsets;
NXRect borderRect;
NXRect titleRect;
struct _bFlags {

unsigned int borderType:2;
unsigned int titlePosition:3;
unsigned int transparent: 1 ;

bFlags;

The cell that draws the Box's title.

The Box's subview that contains the Views that
are grouped within the Box.

Offset of the content view from the Box's border.

The Box's border rectangle.

Application Kit Classes: Box 2-105

titleRect The location of the title cell.

bFlags. borderType Indicates the Box's border type.

bFlags. titlePosition Indicates the Box's title position.

bFlags. transparent Reserved. Do not use.

METHOD TYPES

Initializing a new Box object - initFrame:

Freeing a Box object -free

Modifying graphic attributes - setBorderType:
- borderType
- setOffsets::
- getOffsets:

Modifying the title - cell
- setFont:
-font
- setTitle:
- title
- setTitlePosition:
- titlePosition

Putting Views in the Box - addSubview:
- setContentView:
- contentView

Resizing the Box - setFrameFromContentFrame:
- sizeTo::
- sizeToFit

Drawing the Box - drawSelf::

Archiving - awake
- read:
- write:

2-106 Chapter 2: Class Specifications

INSTANCE METHODS

addSubview:

- addSubview:aView

Adds aView as a subview of the Box's content view. Since the content view is a
subview of the Box, the frame rectangles of Views added to the Box should reflect their
position within the content rectangle rather than the Box's bounds rectangle. After
you've added a subview, you'll probably want to use the sizeToFit method to adjust the
Box's size to accommodate its new subview. Returns self.

See also: - sizeToFit

awake

-awake

Lays out the Box during the unarchiving process so that it can be displayed. You should
never directly invoke this method.

borderType

cell

- (int)borderType

Returns the Box's border type, which is NX_LINE, NX_GROOVE, NX_BEZEL, or
NX_NOBORDER.

See also: - setBorderType:

- cell

Returns the cell used to display the title of the Box.

content View

- contentView

Returns the Box's content view.

See also: - setContentView:

Application Kit Classes: Box 2-107

drawSelf::

- drawSelf:(const NXRect *)rects :(int)rectCount

Draws the Box. You never invoke this method directly; it's invoked from Box's
inherited display methods. Returns self.

See also: - display (View)

font

- font

Returns the id of the font object used to draw the title of the Box.

See also: - setFont:

free
- free

Releases the storage for the Box and all its subviews.

See also: - free (View)

getOffsets:

- getOffsets:(NXSize *)theSize

Gets the horizontal and vertical distances between the border of the Box and the content
view, and places them in the structure indicated by theSize. Returns self.

See also: - setOffsets::

initFrame:

- initFrame:(const NXRect *)frameRect

Initializes the Box, which must be a newly allocated Box instance. The Box's frame
rectangle is made equivalent to that pointed to by frameRect. The title is "Title," the
border type is NX_GROOVE, the title position is NX_ATTOP, and the offsets are
5.0-by-5.0. The Box's content view is created, but it has no size; you will probably
want to set its size with the sizeToFit method. This method is the designated initializer
for the Box class, and can be used to initialize a Box allocated from your own zone.
Returns self.

See also: - initFrame (View), + alloe (Object), + alloeFromZone: (Object),
- addSubview:, - sizeToFit

2-108 Chapter 2: Class Specifications

read:

- read:(NXTypedStream *)stream

Reads the Box from the typed stream stream. Returns self.

See also: - write:

setBorderType:

- setBorderType:(int)aType

Sets the border type to aType, which must be NX_LINE, NX_GROOVE, NX_BEZEL,
or NX_NOBORDER. The default is NX_GROOVE. Returns self.

See also: - borderType

setContent View:

- setContentView:aView

Replaces the Box's content view with aView and recalculates the size ofthe Box based
on the size of the new content view. The old content view is returned.

See also: - addSubview:, - contentView, - sizeToFit

setFont:

- setFont:jontObj

Sets the title's font to jontObj. By default, the title will be displayed using 12-point
Helvetica.

See also: + newFont:size: (Font)

setFrameFromContentFrame:

- setFrameFromContentFrame:(const NXRect *)contentFrame

Resizes the Box so that its content view lies on contentFrame. contentFrame is in the
coordinate system of the Box's superview. Returns self.

See also: - setOffsets::, - setFrame: (View)

Application Kit Classes: Box 2-109

setOffsets::

- setOffsets:(NXCoord)w :(NXCoord)h

Sets the horizontal and vertical distance between the border of the Box and its content
view. w refers to the horizontal offset and h refers to the vertical offset; these offsets
are applied to both sides of the content view. After changing the offsets, you'll want to
resize the Box using the setFrameFromContentFrame: method. This method returns
self. In the following example, the offsets are modified but the content view's size and
location within the Box's superview remain unchanged:

id contentView;

NXRect contentRect;

NXCoord w = 10.0, h = 10.0;

contentView = [myBox contentView];

[contentView getFrame:&contentRect];

[myBox convertRectToSuperview:&contentRect];

[myBox setOffsets:w :h];

[myBox setFrameFromContentFrame:&contentRect];

See also: - setFrameFromContentFrame:, - convertRectToSuperview: (View)

setTitle:

- setTitle:(const char *)aString

Sets the title to aString. The default title is "Title." Returns self.

See also: - setFont:

setTitlePosition:

- setTitlePosition:(int)aPosition

Sets the title position to aPosition, which can be one of the values listed in the following
table. The default position is NX_ATTOP. Returns self.

aPosition value

NX_NOTITLE
NX_ABOVETOP
NX_ATTOP
NX_BELOWTOP
NX_ABOVEBOTTOM
NX_ATBOTTOM
NX_BELOWBOTTOM

2-110 Chapter 2: Class Specifications

Meaning

The Box has no title
Title positioned above the Box's top border
Title positioned within the Box's top border
Title positioned below the Box's top border
Title positioned above the Box's bottom border
Title positioned within the Box's bottom border
Title positioned below the Box's bottom border

sizeTo::

- sizeTo:(NXCoord)width :(NXCoord)height

Resizes the Box to width and height. The Box is laid out to fit inside this new boundary.
If the new width or height of the Box is too small to accommodate its border or offsets,
the respective dimension of the content view will be zero. Returns self.

See also: - setFrameFromContentFrame:, - getOffsets:

sizeToFit

- sizeToFit

Calculates the appropriate size for the Box's content rectangle so that it just encloses
all the content view's subviews. A setFrameFromContentFrame: message is then
sent to resize the Box to enclose the new content rectangle. Returns self.

See also: - setFrameFromContentFrame:

title

- (const char *)title

Returns the title of the Box.

See also: - setTitle:

titiePosition

- (int)titlePosition

Returns an integer representing the title position. See the description for
setTitiePosition: for possible title position values.

See also: - setTitiePosition:

write:

- write:(NXTypedStream *)stream

Writes the receiving Box to the typed stream stream. Returns self.

See also: - read:

Application Kit Classes: Box 2-111

2-112

Button

INHERITS FROM Control: View: Responder: Object

DECLARED IN appkit/Button.h

CLASS DESCRIPTION

A Button is a Control subclass that intercepts mouse-down events and sends an action
message to a target object whenever the Button is pressed.

Button essentially provides the Control view needed to display a ButtonCell object.
Most of its methods simply delegate to the same method in ButtonCel1. To change the
look or behavior of a Button, create a subclass of ButtonCell and use the method
setCellClass: to get the Button class to use it.

Buttons can display any NXImage object. The icon methods altlcon, icon,
setAltlcon:, and setlcon: are provided for use with named images. The corresponding
image methods altlmage, image, setAltlmage:, and setlmage: are provided for use
with the ids of image objects.

The initFrame:icon:tag:target:action:key:enabled: method is the designated
initializer for Buttons that display icons. Buttons that display text have the designated
initializer initFrame:text:tag:target:action:key:enabled:. Override one of these
methods if you create a subclass of Button that performs its own initialization.

INSTANCE VARIABLES

Inherited/rom Object Class isa;

Inherited/rom Responder id nextResponder;

Inherited/rom View NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct _ vFlags vFlags;

Inherited/rom Control int tag;
id cell;
struct 30nFlags conFlags;

Declared in Button (none)

Application Kit Classes: Button 2-113

METHOD TYPES

Setting Button's Cell Class + setCellClass:

Initializing a Button Instance - init
- initFrame:
- initFrame:icon:tag:target:action:key:enabled:
- initFrame:title:tag:target:action:key:enabled:

Setting the Button Type - setType:

Setting the State - setState:
- state

Setting Button Repeat - getPeriodicDelay:andInterval:
- setPeriodicDelay:andInterval:

Modifying the Title - altTitle
- setAltTitle:
- setTitle:
- setTitleNoCopy:
- title

Modifying the Icon - altIcon
- altImage
- icon
-image
- iconPosition
- setAltIcon:
- setAltImage:
- setIcon:
- setImage:
- setIcon:position:
- setIconPosition:

Modifying Graphic Attributes - isBordered
- isTransparent
- setBordered:
- setTransparent:

Displaying - display
- highlight:

Handling Events and Action Messages
- acceptsFirstMouse
- keyEquivalent
- perform Click:
- performKeyEquivalent:
- setKeyEquivalent:

2-114 Chapter 2: Class Specifications

Setting the Sound - setSound:
- sound

CLASS METHODS

setCellClass:

+ setCellClass:classld

Initializes the Button to work with a subclass of ButtonCell. The classld will usually
be the value returned by the message [myButtonCell class], where myButtonCell is an
instance of the subclass. Returns self.

INSTANCE METHODS

acceptsFirstMouse

- (BOOL)acceptsFirstMouse

Returns YES. Buttons always accept the mouse-down event that activates a Window.

altlcon

- (const char *)altIcon

Returns the Button's alternate icon by name. This icon will appear on the Button when
it's in its alternate state.

altlmage
- altImage

Returns the Button's alternate icon by id. This image will appear on the Button when
it's in its alternate state.

altTitie

- (const char *)altTitie

Returns the current value of the Button's alternate title. This is the string that appears
on the Button when it's in its alternate state.

display
- display

Overridden from View so that displayFromOpaqueAncestor::: is called if the Button
has some non-opaque parts. Returns self.

Application Kit Classes: Button 2-115

getPeriodicDelay:andlnterval:
- getPeriodicDelay:(float *)delay andlnterval:(float *)interval

This method returns self explicitly and two values by reference. delay returns the
amount of time (in seconds) that a continuous button will pause before starting to
periodically send action messages to the target object. interval returns the amount of
time (also in seconds) between those messages.

See also: - setContinuous: (Control), - setPeriodicDelay:andlnterval:

highlight:

- highlight:(BOOL)flag

If the highlighted flag of the cell is not equal to flag, the Button is highlighted and the
highlighted flag of the cell is set to flag. Issues a flush Window after highlighting the
Button. Returns self.

See also: - perform Click:

icon
- (const char *)icon

Returns the Button's icon by name.

iconPosition
- (int)iconPosition

Returns a constant representing the position of the icon on the Button. See
setIconPosition: for the list of position constants.

image

init

- image

Returns the id of the Button's icon.

See also: - altlmage, - setAltlcon:, - setAltlmage:

- init

Initializes and returns the receiver, a new Button instance. The new instance displays
the word "Button" and has no icon associated with it. You usually invoke
initFrame: {title,icon} :tag:target:action:key:enabled: to initialize a Button.

2-116 Chapter 2: Class Specifications

initFrame:

- initFrame:(const NXRect *)frameRect

Initializes and returns the receiver, a new Button instance, with default parameters in
the given frame. The default title is "Button," the default action is NULL and the
default target is nil. You usually invoke
initFrame: {title,icon} :tag:target:action:key:enabled: to initialize a Button.

initFrame:icon:tag:target:action:key:enabled:

- initFrame:(const NXRect *)frameRect
icon:(const char *)aString
tag: (int)anInt
target:anObject
action: (SEL)aSelector
key: (unsigned short)charC ode
enabled: (BOOL).flag

Initializes and returns the receiver, a new Button instance that displays an icon. The
arguments and operation of this method are exactly like those of
initFrame:title:tag:target:action:key:enabled:, except that the Button displays the
named icon represented by aString rather than displaying a text string. This method is
the designated initializer for Buttons that display icons.

initFrame:title:tag:target:action:key:enabled:

- initFrame:(const NXRect *)frameRect
title:(const char *)aString
tag:(int)anInt
target:anObject
action: (SEL)aSelector
key:(unsigned short)charCode
enabled: (BOOL).flag

Initializes and returns the receiver, a new Button instance that displays a text string.
anInt is a unique tag to identify your Button View. frameRect is the rectangle the
Button will occupy in its superview's coordinates. aString contains the title for the
Button. anObject is the target that will be notified via the action message aSelector
when the Button is successfully pressed. If anObject is nil, the target will default to the
Button's superview. aSelector should be a valid selector. charCode is the key
equivalent for this Button . .flag determines whether your Button is initially enabled.
This method is the designated initializer for Buttons that display text.

Application Kit Classes: Button 2-117

isBordered

- (BOOL)isBordered

Returns YES if the Button has a border, NO otherwise.

See also: - setBordered:

isTransparent

- (BOOL)isTransparent

Returns YES if the Button is transparent, NO otherwise.

See also: - setTransparent:

keyEquivalent

- (unsigned short)keyEquivalent

Returns the key equivalent character of the Button.

See also: - performKeyEquivalent:

performClick:

- performClick:sender

Highlights the Button, sends its action message to the target object, then unhighlights
the Button. Invoke this method when you want the Button to behave exactly as if the
user had clicked it with the mouse.

performKeyEquivalent:

- (BOOL)performKeyEquivalent:(NXEvent *)theEvent

Simulates the user clicking the Button and returns YES if the character in the event
record matches the Button's key equivalent. Otherwise, does nothing and returns NO.

See also: - key Equivalent

2-118 Chapter 2: Class Specifications

setAltlcon:
- setAltIcon:(const char *)iconName

Sets the Button's alternate icon by name; iconName is the name of an image to be
displayed. Does not display the Button even if autodisplay is on.

See also: - setIcon:

setAltlmage:
- setAltImage:altImage

Sets the Button's alternate icon by id; altImage is the id ofthe image to be displayed.
Does not display the Button even if autodisplay is on.

See also: - setImage:

setAltTitle:

- setAItTitle:(const char *)aString

Sets the alternate title of your Button to aString, the title that will display when the
Button is clicked. Does not display the Button even if autodisplay is on.

setBordered:

- setBordered:(BOOL)jlag

Ifjlag is YES, the Button displays a border; if NO, no border is displayed. This method
redraws the Button if the bordered state is changed. Returns self.

setlcon:

- setIcon:(const char *)iconName

Sets the Button's icon by name; iconName is the name of an image to be displayed.
Returns self.

See also: - getBitmapFor: (Bitmap)

setlcon:position:

- setIcon:(const char *)iconName position:(int)aPosition

Combines setIcon: and setIconPosition: into one message. Returns self.

Application Kit Classes: Button 2-119

setlconPosition:

- setlconPosition:(int)aPosition

Sets the position of the icon when a Button simultaneously displays both text and an
icon. aPosition can be one of the following constants:

NX_ TITLEONLY
NX_ICONONLY
NX_ICONLEFT
NX_ICONRIGHT
NX_ICONBELOW
NX_ICONABOVE
NX_ICONOVERLAPS

title only (no icon on the Button)
icon only (no text on the Button)
icon is to the left of the text
icon is to the right of the text
icon is below the text
icon is above the text
icon and text overlap

If the position is top or bottom, the alignment of the text will be set to
NX_CENTERED. This behavior can be overridden with a subsequent setAlignment:.
Returns self.

setlmage:

- setlmage:image

Sets the Button's icon by id; image is the id of the image to be displayed. Returns self.

See also: + findlmageNamed:(NXImage)

setKeyEquivalent:

- setKeyEquivalent:(unsigned short)charCode

Sets the key equivalent character of the Button. Returns self.

See also: - keyEquivalent, - performKeyEquivalent:

setPeriodicDelay:andInterval:

- setPeriodicDelay:(float)delay andlnterval:(float)interval

Sets two values that are in effect if the Button is set to continuously send the action
message to the target object while tracking the mouse. delay is the amount of time (in
seconds) that a continuous button will pause before starting to periodically send action
messages to the target object. interval is the amount of time (also in seconds) between
those messages. Returns self.

See also: - getPeriodicDelay:andlnterval:, - setContinuous(Control)

2-120 Chapter 2: Class Specifications

setSound:
- setSound:soundObj

Sets the sound played when the Button is pressed. Returns self.

setS tate:
- setState:(int)value

Sets the Button's state to value and redraws the Button. Returns self.

setTitle:
- setTitle:(const char *)aString

Sets the title of the Button to aString. Returns self.

setTitieNoCopy:
- setTitleNoCopy:(const char *)aString

Similar to setTitle: but does not make a copy of aString. Returns self.

setTransparent:
- setTransparent:(BOOL)jlag

Sets whether the Button is transparent. A transparent Button tracks the mouse and
sends its action, but it doesn't draw anything. Returns self.

Application Kit Classes: Button 2-121

setType:
- setType:(int)aType

Sets the way the Button shows its state and highlighting, and returns self. aType can be
one of five constants:

NX_MOMENTARYPUSH (the default). States 0 and 1 are displayed in the same
manner. Highlighting is shown by the Button's "pushing in" to the screen.

NX_MOMENTARYCHANGE. States 0 and 1 look identical. When the Button is
highlighted, the alternate icon or alternate text will be displayed. The miniaturize
Button in the window frame is a good example of this type of Button.

NX_PUSHONPUSHOFF. State 1 differs from state 0 by the fact that different colors
are used. Highlighting is achieved by "pushing in."

NX_ TOGGLE. State 1 uses the altContents and/or altlcon. Highlighting is performed
by "pushing in."

NX_SWITCH. A variant of NX_ TOGGLE that has no border, and that has a default
icon called "switch."

sound

- sound

Returns the sound played when the button is pressed.

state
- (int)state

Returns the Button's state (0 or O.

title

- (const char *)title

Returns a pointer to the current string value of the Button's title.

2-122 Chapter 2: Class Specifications

ButtonCell

INHERITS FROM ActlOnCell : Cell: Object

DECLARED IN appkit!B uttonCell.h

CLASS DESCRIPTION

The ButtonCell class is a subclass of Cell that is used to implement Button. Different
modes of button operation are distinguished according to the values of the changeXXX
and lightByXXX bitfields.

changeXXX refers to what changes when the state changes. Thus, if change Gray is
set, then, when a button is in state 1, all light gray areas in the button become white, and
all white areas become light gray. If change Background is set, then the background
in state 1 is white instead of the default light gray used in state O. If changeContents
is set, then altContents and/or icon.bmap.alternate are used to draw the button when it
is in state 1. If both changeBackground and change Gray are set, then the ButtonCell
will use change Gray unless the ButtonCell has an icon and alpha values, in which case
it will use changeBackground. The lightByXXX flags have similar meanings, but are
used when the button is pressed to highlight the button. The pushIn flag is used to
determine whether the button appears to "push in" to the screen when pressed. This
only has meaning when the bordered flag is set.

For all ButtonCells, the "default" icon is the keyEquivalent for the button. Therefore,
if you want the button to display its keyEquivalent, just use setIconPosition: to
determine where on the button the keyEquivalent should appear. MenuCells use this,
for example (by issuing a setIconPosition:NX_ICONRIGHT). If you set an icon (or
an altIcon) for the button, then the icon will be displayed instead of the keyEquivalent,
so if you want the keyEquivalent, don't invoke setIcon:!

ButtonCells can display any type of image. The icon methods altIcon, icon,
setAltIcon:, and setIcon: work with named images. The corresponding image
methods altImage, image, setAltlmage:, and setImage: work with ids of image
objects.

The initIconCell: method is the designated initializer for ButtonCells that display
icons. The initTextCell: method is the designated initializer for ButtonCells that
display text. Override one of these methods if you create a subclass of ButtonCell that
does its own initialization.

Application Kit Classes: ButtonCell 2-123

INSTANCE VARIABLES

Inherited/rom Object

Inherited/rom Cell

Inherited/rom ActionCell

Declared in ButtonCell

2-124 Chapter 2: Class Specifications

Class

char
id
struct _cFlagsl
struct 3Flags2

int
id
SEL

char
union _icon {

struct _bmap {
id

id

id
}
struct _ke {

id
float

}

struct _bcFlags 1 {
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

}
struct _bcFlags2 {

unsigned int
unsigned int

}
unsigned short
unsigned short

isa;

*contents;
support;
cFlagsl;
cFlags2;

tag;
target;
action;

*a1tContents;

normal;
alternate;

bmap;

font;
descent;

ke;
icon;
sound;

pushIn:l;
changeContents: 1;
changeBackground: 1;
changeGray: 1;
lightByContents: 1;
lightByBackground: 1;
lightByGray: 1;
hasAlpha: 1;
bordered: 1;
iconOverlaps: 1;
horizontal: 1;
bottomOrLeft: 1;
iconAndText: 1;
lastS tate: 1;
iconSizeDiff: 1;
iconIsKey Equivalent: 1;

bcFlagsl;

keyEquivalent:8;
transparent: 1 ;

bcFlags2;
periodicDelay;
periodicInterval;

altContents

bmap.normal

bmap.alternate

ke.font

ke.descent

sound

bcFlags 1. pushln

bcFlags I.changeContents

bcFlags I.changeBackground

bcFlags I.changeGray

bcFlags I.lightByContents

bcFlags I.lightBy Background

bcFlags I.lightByGray

bcFlags I.hasAlpha

bcFlags 1. bordered

bcFlags I.iconOverlaps

bcFlags I.horizontal

bcFlags 1. bottomOrLeft

bcFlags I.iconAndText

bcFlags I.lastState

bcFlags I.iconSizeDiff

bcFlags I.iconlsKey Equivalent

bcFlags2.key Equivalent

Alternate contents used instead of contents in
certain state configurations.

N arne of the icon for this button.

Name of the alternate icon.

Font used to draw the key equivalent.

The descent of descenders in the key equivalent
font.

The button's sound.

Button appears to push into the screen when
pressed.

Show alternate state by using alternate contents.

Show alternate state by changing the background.

Show alternate state by inverting the button.

Show highlighting by using alternate contents.

Show highlighting by changing the background.

Show highlighting by inverting the button.

Icon has alpha values.

Button has border.

Icon overlaps text.

Icon to side of text.

Icon on left or bottom.

Button has icon and text.

Last state drawn.

Alternate icon is a different size than the normal
Icon.

The icon is the key equivalent.

The key equivalent.

Application Kit Classes: ButtonCell 2-125

bcFlags2. transparent

periodicDelay

periodic Interval

METHOD TYPES

Whether to draw.

The delay before sending the first send by a
continuous button.

The interval at which a continuous button sends
its action.

Copying, Initializing and Freeing a ButtonCell
- copyFrornZone
- init
- initIconCell:
- initTextCell:
-free

Determining Component Sizes - calcCellSize:inRect:
- getDrawRect:
- getIconRect:
- getTitleRect:

Modifying the Title - altTitle
- setAltTitle:
- setFont:
- setTitle:
- setTitleNoCopy:
- title

Modifying the Icon - altlcon
- altlmage
- icon
-image
- iconPosition
- setAltlcon:
- setAltlmage:
- setlcon:
- setImage:
- setlconPosition:

Modifying the Sound - setSound:
- sound

2-126 Chapter 2: Class Specifications

Setting the State - double Value
- floatValue
- intValue
- setDouble Value:
- setFloatValue:
- setIntValue:
- setStringValue:
- setStringValueNoCopy:
- stringValue

Setting the Button Repeat - getPeriodicDelay:andlnterval:
- setPeriodicDelay:andlnterval:

Tracking the Mouse - trackMouse:inRect:ofView:

Setting the Key Equivalent - keyEquivalent
- setKeyEquivalent:
- setKeyEquivalentFont:
- setKeyEquivalentFont:size:

Setting Parameters - getParameter:
- setParameter:to:

Modifying Graphic Attributes - highlightsBy
- isBordered
- isOpaque
- isTransparent
- setBordered:
- setHighlightsBy:
- setShowsStateBy:
- setTransparent:
- setType:
- showsStateBy

Simulating a Click - performClick:

Displaying - drawInside:inView:
- drawSelf:in View:
- highlight: in View:lit:

Archiving -read:
- write:

Application Kit Classes: ButtonCell 2-127

INSTANCE METHODS

altlcon
- (const char *)altIcon

Returns the ButtonCell's alternate icon by name. This icon will appear on the Button
when it is in its alternate state. If there is no alternate icon, it returns NULL. This is
the icon that will be displayed if the iconPosition is not NX_TITLEONLY and the
changeContents or IightByContents flag is set.

altlmage

- altImage

Returns the ButtonCell's alternate icon by id. This image will appear on the Button
when it is in its alternate state. If there is no alternate image, it returns nil. This is the
image that will be displayed if the iconPosition is not NX_TITLEONLY and the
changeContents or IightByContents flag is set.

altTitie

- (const char *)aItTitle

Returns the ButtonCell's alternate title. This is the text string that will appear on the
button if the icon Position is not NX_ICONONLY and the changeContents or
IightByContents flag is set.

caIcCellSize:inRect:

- caIcCeIlSize:(NXSize *)theSize inRect:(const NXRect *)aRect

Returns, by reference, the minimum width and height required for displaying the button
in aRect. The computation is done as follows:

1. The size of the contents instance variable is computed.

2. The size of the altContents is computed.

3. The maximum width and height are set in theSize.

4. If the button has an additional icon, its width and height are calculated; if either is
bigger than the contents size, the size is increased to accommodate the icon.

5. If the button has a border, then the width and the height are incremented by the
border width.

2-128 Chapter 2: Class Specifications

copyFrornZone

- copyFromZone:(NXZone *)zone

Allocates, initializes, and returns a copy of the ButtonCell. Allocates the copy from
zone.

double Value

- (double)doubleValue

Returns the ButtonCell's state cast as a double (0.0 or 1.0).

draw Inside:in View:

- drawlnside:(const NXRect *)aRect inView:controLView

Draws the inside of the ButtonCell (the text and the icon and their background, but not
the bezel). This method is called by drawSelf:in View: and by the Control classes'
drawCelllnside: method. It is provided so that when a ButtonCell's state is set (via
setState:, setlntValue:, and others), a minimal update ofthe ButtonCell's visual
appearance can occur. If you subclass ButtonCell and override drawSelf:in View: you
MUST override this method as well (however, you are free to override only this method
and not drawSelf:in View: as long as your subclass draws inside the same area as
ButtonCell does). Returns self.

See also: - drawlnside:in View: (Cell)

drawSelf:in View:

- drawSelf:(const NXRect *)cellFrame inView:controLView

Displays the ButtonCell in the given rectangle of the given view. Focus must be locked
on controLView. It draws the border of the ButtonCell if necessary, then calls
drawlnside:inView:. Returns self.

floatValue

- (float)floatValue

Returns the ButtonCell's state cast as a float (0.0 or 1.0).

free

- free

Disposes of the memory used by the ButtonCell and returns nil.

Application Kit Classes: ButtonCeli 2-129

getDrawRect:

- getDrawRect:(NXRect *)theRect

Returns self and, by reference, the bounds of the area into which the text and/or icon
will be drawn. You must pass the bounds of the ButtonCell in theRect(the same bounds
passed to drawSelf:inView:). It assumes that the ButtonCell is being drawn in a
flipped view.

getlconRect:

- getIconRect:(NXRect *)theRect

Returns self and, by reference, the bounds of the area into which the icon of the
ButtonCell will be drawn. If the button has no icon, then theRect will not be touched.
You must pass the bounds of the ButtonCell in theRect (the same bounds passed to
drawSelf:inView:). It assumes that the ButtonCell is being drawn in a flipped view.

getParameter:

- (int)getParameter:(int)aParameter

Returns the state of a number of frequently accessed flags for a ButtonCell. The
following constants correspond to the different flags:

NX_CELLDISABLED
NX_CELLSTATE
NX_CELLHIGHLIGHTED
NX_CELLEDITABLE
NX_CHANGECONTENTS
NX_CHANGEBACKGROUND
NX_CHANGEGRAY
NX_LIGHTBYCONTENTS
NX_LIGHTBYBACKGROUND
NX_LIGHTBYGRAY
NX_PUSHIN
NX_OVERLAPPINGICON
NX_ICONHORIZONTAL
NX_ICONONLEFTORBOTTOM
NX_ICONISKEYEQUIVALENT

You don't normally invoke this method since all of these flags are available via normal
querying methods (e.g., isEnabled, highlightsBy:, etc.).

2-130 Chapter 2: Class Specifications

getPeriodicDelay: andlnterval:

- getPeriodicDelay:(float *)delay andlnterval:(float *)interval

Returns two values: The amount of time (in seconds) that a continuous button will
pause before starting to periodically send action messages to the target object, and the
interval (also in seconds) at which those messages are sent. Returns self.

See also: - setContinuous: (Cell), - setPeriodicDelay:andlnterval:

getTitleRect:

- getTitleRect:(NXRect *)theRect

Returns self and, by reference, a copy of the bounds of the area into which the text of
the ButtonCell will be drawn. You must pass the bounds of the ButtonCell in theRect
(the same bounds passed to drawSelf:in View:). It assumes that the ButtonCell is being
drawn in a flipped view.

highlight:in View:lit:

- highlight:(const NXRect *)cellFrame
in View:controlView
lit: (BOOL)flag

Highlights the ButtonCell if its highlighted flag is not equal to flag. You must
lockFocus on controlView before calling this method. If possible, this method tries to
use NXHighlightRect (i.e., if the button is not pushIn and changeContents and
IightByContents are not set). If it cannot use NXHighlightRect, then it simply calls
drawSelf:in View: or drawlnside:in View: dependent upon whether the border of the
button is involved in the highlighting process (e.g., in a pushIn button). Does nothing
if the button is disabled or transparent. Returns self.

highlightsBy

- (int)highlightsBy

Returns the logical OR of one or more flags that indicate the way the ButtonCell
highlights when the button is pressed. See setHighlightsBy: for the list of flags.

icon

- (const char *)icon

Returns the ButtonCell's icon by name .. If there is no icon displayed in the ButtonCell,
or if the icon is the key equivalent, then it returns NULL.

See also: - setIcon:

Application Kit Classes: ButtonCell 2-131

iconPosition

- (int)iconPosition

Returns the position of the ButtonCell's icon. See setIconPosition: for the valid
positions. The default is NX_TITLEONLY if the ButtonCell is created with
newTextCell: or NX_ICONONLY if created with newlconCell:.

image

init

- image

Returns the ButtonCell's icon by id. If there is no image displayed in the ButtonCell,
or if the image is the key equivalent, then it returns nil.

See also: - setImage:

- init

Initializes and returns the receiver, a new ButtonCell, as a text cell with the word
"Button" on it.

initlcon Cell:

- initIconCell:(const char *)iconName

Initializes and returns the receiver, a new ButtonCell, with default size. By default, the
ButtonCell is bordered and is pushIn. None of the changeXXX flags is set. The
lightByGray and lightByBackground flags are set. This means that, when pressed,
the button will perform NXHighlightRectO if the icon has no alpha or will change the
background (from light gray to white) if the icon does have alpha values. An icon is a
named NXImage; see the NXImage class for details. This is the designated initializer
for ButtonCells that display icons.

See also: - findlmageNamed: (NXImage)

initTextCell:

- initTextCell:(const char *)aString

Initializes the receiver, a new ButtonCell, with default size, font, title, and centered
alignment. By default, the ButtonCell is bordered and is pushIn. None of the
changeXXX is set and the button will "light up" when pressed (lightByGray and
lightByBackground are set). This is the designated initializer for ButtonCells that
display text.

2-132 Chapter 2: Class Specifications

intValue

- (int)intValue

Returns the ButtonCell's state (0 or 1).

isBordered

- (BOOL)isBordered

Returns YES if the button has a border, NO if not.

isOpaque
- (BOOL)isOpaque

Returns YES if drawing the ButtonCell touches all the bits in its frame, NO if not. The
ButtonCell is opaque if it is not transparent and if it has a border.

isTransparent

- (BOOL)isTransparent

Returns YES if the ButtonCell is transparent, NO if not.

See also: - setTransparent:

key Equivalent

- (unsigned short)keyEquivalent

Returns the key equivalent character of the ButtonCell.

perform Click:

- performClick:sender

If this ButtonCell is contained in a Control, then invoking this method causes the
ButtonCell to act exactly as if the user had clicked the button.

read:

- read:(NXTypedStream *)stream

Reads the ButtonCell from the typed stream stream.

Application Kit Classes: ButtonCell 2-133

setAltlcon:

- setAltIcon:(const char *)iconName

Sets the ButtonCell's alternate icon by name; iconName is the name of an image to be
displayed. This icon is displayed if the changeContents or lightByContents flag is
set; these are set by the setShowsStateBy: and setHighlightsBy: methods,
respectively. Note that no icon will be displayed in a ButtonCell unless setlcon: or
setlmage: is invoked (thus, setAltlcon: by itself has no affect on the appearance ofthe
button). Returns self.

See also: - setlcon:

setAltImage:

- setAltlmage:altImage

Sets the ButtonCell's alternate icon by id; altImage is the id ofthe image to be
displayed. This image is displayed if the changeContents or lightByContents flag is
set; these are set by the setShowsStateBy: and setHighlightsBy: methods,
respectively. Note that no image will be displayed in a ButtonCell unless setlcon: or
setlrnage: is invoked (thus, setAltlmage: by itself has no effect on the appearance of
the button). Returns self.

See also: - setlmage:

setAItTitle:

- setAltTitle:(const char *)aString

Invoke this method to set the alternate title to a copy of aString. If the ButtonCell was
not an NX_ TEXTCELL, it is automatically converted, in which case its support
instance variable is set to the default font. If there is an icon associated with this
ButtonCell, then the iconAndText flag is set. Returns self.

setBordered:

- setBordered:(BOOL)jlag

Ifjlag is YES, sets the ButtonCell to display a border; ifjlag is NO, it has none.
Redraws the ButtonCell if its bordered status changes. Returns self.

setDouble Value:

- setDoubleValue:(double)aDouble

Sets the ButtonCell's state to 1 if aDouble is nonzero, 0 otherwise. Returns self.

2-134 Chapter 2: Class Specifications

setFloat Value:

- setFloatValue:(tloat)aFloat

Sets the ButtonCell's state to 1 if aFloat is non-zero, 0 otherwise. Returns self.

setFont:

- setFont:fontObj

Sets the font to be used when displaying text. Does nothing if the cell type is not
NX_TEXTCELL. Returns self.

setHighlightsB y:

- setHighlightsBy:(int)aType

Sets the way the button highlights itself. aType can be the logical OR of one or more
of the following constants:

NX_PUSHIN
NX_NONE
NX_CONTENTS
NX_CHANGEGRAY
NX_CHANGEBACKGROUND

The button "pushes in" when pressed (default)
No difference when highlighted
Use the alternate contents
Light gray -> white, white -> light gray
Same as NX_CHANGEGRAY, but only
touches background

If you specify both NX_CHANGEGRAY and NX_CHANGEBACKGROUND, then a
choice will be made between the two based on whether the icon of your button (if any)
has any alpha. If it does, then NX_ CHANGEBACKGROUND will be used; otherwise,
NX_CHANGEGRAY will be used. If your button has no icon, then
NX_CHANGEGRAY will be used. Returns self.

setIcon:

- setlcon:(const char *)iconName

Sets the ButtonCell's icon by name; iconName is the name of an image to be displayed.
If there is no text associated with the ButtonCell, then it is converted to
NX_ICONCELL; otherwise, the iconOverlaps flag is set. An icon is a named
NXImage. Returns self.

See also: - findlmageNamed: (NXImage)

Application Kit Classes: ButtonCeli 2-135

setIconPosition:

- setIconPosition:(int)aPosition

Sets the position of the icon for this ButtonCell. aPosition can be one of the following
constants:

NX_TITLEONLY = title only
NX_ICONONLY = icon only
NX_ICONLEFT = icon left of the text
NX_ICONRIGHT = right of the text
NX_ICONBELOW = below the text
NX_ICONABOVE = above the text
NX_ICONOVERLAPS = overlapping

(iconAndText = 0, iconOveriaps = 0)
(iconAndText = 0, iconOveriaps = 1)
(iconAndText = 1, iconOverlaps = 0)
(iconAndText = 1, iconOveriaps = 0)
(iconAndText = 1, iconOveriaps = 0)
(iconAndText = 1, iconOveriaps = 0)
(iconAndText = 1, iconOveriaps = 1)

If the position is top or bottom, the alignment of the text will be set to
NX_CENTERED. This can be overridden with a subsequent setAlignment:. Returns
self.

setImage:

- setlmage:image

Sets the ButtonCell's icon; image is the id of an image to be displayed. Returns self.

setIntValue:

- setlntValue:(int)anlnt

Sets the ButtonCell's state to 1 if anlnt is nonzero, 0 otherwise. Returns self.

setKeyEquivalent:

- setKeyEquivalent:(unsigned short)charCode

Sets the key equivalent character of the ButtonCell. The key equivalent will appear on
the button only if there is no icon set (with setlcon: or setAItIcon:) and the
icon Position is not NX_TITLEONLY or NX_ICONONLY or NX_ICONOVERLAPS.
The canonical way to put the key equivalent character on your button is to invoke
setKeyEquivalent:, then invoke setIconPosition:NX_ICONRIGHT (or LEFT or
ABOVE or BELOW). Menu entries (which inherit from ButtonCell) are usually the
only ButtonCells with key equivalents. Returns self.

A ButtonCell's key equivalent can be tested by sending it a keyEquivalent message.

See also: - keyEquivalent, - performClick: (Matrix, Button)

2-136 Chapter 2: Class Specifications

set Key EquivalentFont:

- setKey Equiva!entFont:jontO b j

Sets the font used to draw the key Equivalent. Does nothing if there is already an icon
associated with this ButtonCell. The default font is the same as that used to draw the
text on the ButtonCell. Returns self.

setKeyEquivalentFont:size:

- setKeyEquivalentFont:(const char *)fontName size:(float)fontSize

Convenient form of setKeyEquivalent: that sets both the font and font size used to
draw the key Equivalent. Returns self.

setParameter:to:

- setParameter:(int)aParameter to:(int)value

Sets the most usual flags of a ButtonCell. See getParameter: for the list of usual flags.
You do not usually invoke this method; instead use the appropriate set ... methods to set
flags. Returns self.

setPeriodicDelay:andlnterval:

- setPeriodicDelay:(float)delay andlnterval:(tloat)interval

This method sets two values: The amount of time (in seconds) that a continuous button
will pause before starting to periodically send action messages to the target object, and
the interval (also in seconds) at which those messages are sent. The maximum delay
or interval is 60.0 seconds. Returns self.

See also: - setContinuous: (Cell)

Application Kit Classes: ButtonCell 2-137

setShowsStateBy:

- setShowsStateBy:(int)aType

Sets the way the button shows its alternate state. aType should be the logical OR of one
or more of the following constants:

NX_PUSHIN
NX_NONE
NX_CONTENTS
NX_CHANGEGRAY
NX_CHANGEBACKGROUND

The button "pushes in" when pressed (default)
No difference when highlighted
Use the alternate contents
Light gray -> white, white -> light gray
Same as NX_CHANGEGRAY, but only
touches background

If you specify both NX_ CHANGEGRAY and NX_ CHANGEBACKGROUND, then a
choice will be made between the two based on whether the icon of your button (if any)
has any alpha. If it does, then NX_ CHANGEBACKGROUND will be used, else
NX_CHANGEGRAY. If your button has no icon, then NX_CHANGEGRAY will be
used. Returns self.

setSound:

- setSound:aSound

Sets the sound that will be played when the mouse goes down in the ButtonCell. If you
use a sound on your button, you must link your application against the soundkit.
Returns self.

setStringVaIue:

- setStringValue:(const char *)aString

Sets the state of the ButtonCell. If aString is a non-null string, the state is set to 1; if
aString is null, the state is set to O. Returns self.

setString VaIueN oCopy:

- setStringValueNoCopy:(const char *)aString

Same as setStringValue:.

setTitIe:

- setTitle:(const char *)aString

Sets the text that is displayed on the button to aString. If there is already an icon
associated with the button, then the iconAndText flag is set to YES. Returns self.

2-138 Chapter 2: Class Specifications

setTitieNoCopy:

- setTitieNoCopy:(const char *)aString

Similar to setTitle: but does not make a copy of aString. Returns self.

setTransparent:

- setTransparent:(BOOL)jlag

Sets whether the ButtonCell is transparent. A transparent button never draws anything,
but it does track the mouse and send its action normally. This method is useful for
sensitizing an area on the screen so that an action gets sent to a target when the area
receives a mouse click. Returns self.

setType:

- setType:(int)aType

Sets standard button types. The ButtonCell does not record the type directly; instead,
this method sets the changeXXX and lightByXXX flags appropriately. The
NX_SWITCH and NX_RADIOBUTTON types also set the icon to the default icon for
that type of button (only ifthere is not already an icon set). aType can be one of the
following constants:

NX_MOMENTARYPUSH
NX_MOMENTARYCHANGE
NX_PUSHONPUSHOFF
NX_TOGGLE
NX_SWITCH
NX_RADIOBUTTON

This method is invoked by Button's setType: method. It is very useful for creating
prototype cells in a matrix of radio buttons. Returns self.

See also: - setType: (Button)

showsStateBy

- (int)showsStateBy

Returns flags reflecting the way that the button shows its alternate state. See
setShowsStateBy: for list of appropriate flags. Returns self.

sound

- sound

Returns the sound object that is sent a play message on a mouse-down event in the
ButtonCell.

See also: - setSound:

Application Kit Classes: ButtonCell 2-139

stringValue

- (const char *)stringValue

Returns the ButtonCell's state as a string. If the state is 1, "" (empty string) is returned,
otherwise, NULL is returned. This is an unusual method to invoke (since the
stringValue of a button doesn't make much sense) and is included only for
completeness.

title

- (const char *)titie

Returns ButtonCell's text if the receiving ButtonCell displays any text; otherwise it
returns NULL.

trackMouse:inRect:ofView:

- (BOOL)trackMouse:(NXEvent *)theEvent
inRect:(const NXRect *)cellFrame
ofView:controlView

Tracks the mouse by starting the sound (if any) and calling
[super trackMouse:theEvent inRect:cellFrame ofView:controlView]. Returns YES if
the mouse button goes up with the cursor in the cell, NO otherwise.

See also: - trackMouse:inRect:ofView: (Cell)

write:

- write:(NXTypedStream *)stream

Writes the receiving ButtonCell to the typed stream stream. Returns self.

CONSTANTS AND DEFINED TYPES

/* Button Types */

#define NX MOMENTARYPUSH 0

#define NX PUSHONPUSHOFF 1

#define NX TOGGLE 2

#define NX SWITCH 3

#define NX RADIOBUTTON 4

#define NX MOMENTARYCHANGE 5

2-140 Chapter 2: Class Specifications

Cell

INHERITS FROM

DECLARED IN appkit/Cell.h

CLASS DESCRIPTION

Cell is an abstract super class that provides many useful functions needed for displaying
text or icons without the overhead of a full View subclass. In particular, it provides
most of the functionality of a Text class by providing access to a shared Text object that
can be used by all instances of Cell in an Application. Cell is used heavily by the
Control classes to implement their internal workings. Some subclasses of Control
(notably Matrix) allow multiple Cells to be grouped and act together in some
cooperative manner. Thus, with a Matrix, a group of radio buttons can be implemented
without needing a View for each button (and without needing a Text object for the text
on each button). Cells are also extremely useful for placing titles or icons at will in a
custom subclass of View.

The Cell class provides primitives for displaying text or an icon, editing text, formatting
floating point numbers, maintaining state, highlighting, and tracking the mouse. It has
several subclasses: SelectionCell, NXBrowserCell, and ActionCell (which in turn has
the subclasses ButtonCell, SliderCell, TextFieldCell, and FormCell). Cell's
trackMouse:inRect:ofView: method supports the target object and action method
used to implement controls. However, Cell implements these features abstractly,
deferring the details of implementation to ActionCel1.

The initIconCell: method is the designated initializer for Cells that display icons. The
initTextCell: method is the designated initializer for Cells that display text. Override
one of these methods if you implement a subclass of Cell that performs its own
initialization.

Application Kit Classes: Cell 2-141

INSTANCE VARIABLES

Inherited/rom Object

. Declared in Cell

contents

support

cFlags 1. state

cFlags l.highlighted

cFlags l.disabled

cFlags l.editable

cFlags 1. type

cFlags l.freeText

cFlags l.alignment

2-142 Chapter 2: Class Specifications

Class

char
id
struct _cFlagsl {

unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

struct 3Flags2 {
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
}

isa;

*contents;
support;

state: 1;
highlighted: 1;
disabled: 1;
editable: 1;
type:2;
freeText:l;
alignment:2;
bordered: 1;
bezeled:l;
selectable: 1;
scrollable: 1;
entryType:3;

cFlagsl;

continuous: 1;
actOnMouseDown: 1;
floatLeft:4;
floatRight:4;
auto Range: 1;
actOnMouseDragged: 1;
noWrap:l;
dontActOnMouseUp: 1;

cFlags2;

String for a TextCell, name of the icon for an
IconCell.

Font for TextCell, NXImage for IconCell.

Current state of the Cell (0 or 1).

Whether Cell is highlighted.

Whether Cell is disabled.

Whether text in the Cell is editable.

NULLCELL, TEXTCELL, or ICONCELL.

Whether to free contents when freeing the Cell.

Text justification.

cFlags l.bordered

cFlags 1. bezeled

cFlags l.selectable

cFlags l.scrollable

cFlags l.entryType

cFlags2.continuous

Whether the Cell has a border.

Whether the Cell has a bezeled border.

Whether the text is selectable.

Whether the text is scrollable.

Type of data accepted.

Sends action continuously to target while control is
active.

cFlags2.actOnMouseDown Sends action on the mouse-down (rather than the
mouse-up).

cFlags2.floatLeft Digits to left of decimal when text is floating-point
number.

cFlags2.floatRight Digits to right of decimal when text is floating-point
number.

cFlags2.autoRange Autorange decimal when text is floating point
number.

cFlags2.actOnMouseDragged Send action every time the mouse changes position.

cFlags2.noWrap 0 = word wrap, 1 = character wrap.

cFlags2.dontActOnMouseUp Don't send the action on the mouse-up event.

METHOD TYPES

Copying, initializing, and freeing a Cell
-copy
- copyFrornZone:
- init
- initlconCell:
- initTextCell:
-free

Determining component sizes - calcCellSize:
- calcCellSize:inRect:
- calcDrawlnfo:
- getDrawRect:
- getIconRect:
- getTitleRect:

Application Kit Classes: Cell 2-143

Setting the Cell's type - setType:
-type

Setting the Cell's state - incrementState
- setState:
- state

Enabling and disabling the Cell - isEnabled
- setEnabled:

Modifying the Icon -icon
- setIcon:

Setting Cell values - double Value
- floatValue
- intValue
- setDouble Value:
- setFloatValue:
- setIntValue:
- setStringValue:
- setStringValueNoCopy:
- setStringValueNoCopy:shouldFree:
- stringValue

Modifying text attributes - alignment
-font
- isEditable
- isScrollable
- isSelectable
- setAlignment:
- setEditable:
- setFont:
- setScrollable:
- setSelectable:
- setTextAttributes:
- setWrap:

Editing text - edit: in View:editor:delegate:event:
- endEditing:
- select:in View:editor:delegate: start: length:

Validating input - entryType
- isEntry Acceptable:
- setEntryType:

Formatting data - setFloatingPointFormat:left:right:

2-144 Chapter 2: Class Specifications

Modifying graphic attributes

Setting parameters

Interacting with other Cells

Displaying

Target and action

Assigning a tag

Handling keyboard alternatives

Tracking the mouse

Managing the cursor

Archiving

- isBezeled
- isBordered
- isOpaque
- setBezeled:
- setBordered:

- getParameter:
- setParameter:to:

- takeDouble ValueFrom:
- takeFloatValueFrom:
- takeIntValueFrom:
- takeStringValueFrom:

- control View
- drawInside:inView:
- drawSelf:in View:
- highlight: in View: lit:
- isHighlighted

- action
- getPeriodicDelay:andInterval:
- isContinuous
- sendActionOn:
- setAction:
- setContinuous:
- setTarget:
- target

- setTag:
-tag

- keyEquivalent

- continueTracking: at: in View:
- mouseDownFlags
+ prefersTrackingUntilMouseUp
- startTrackingAt:in View:
- stopTracking:at:in View:mouseIsUp:
- trackMouse:inRect:ofView:

- resetCursorRect:in View:

- awake
- read:
- write:

Application Kit Classes: Cell 2-145

CLASS METHODS

prefersTrackingUntilMouseUp

+ (BOOL)prefersTrackingUntilMouseUp

Returns NO by default. Override this method to return YES if the Cell should, after a
mouse-down event, track mouse-dragged and mouse-up events even if they occur
outside the Cell's frame. This method is overridden to ensure that a SliderCell in a
matrix doesn't stop responding to user input (and its neighbor start responding) just
because the knob isn't dragged in a perfectly straight line.

INSTANCE METHODS

action

- (SEL)action

Returns a null selector. This method is overridden by Action Cell and its subclasses,
which actually implement the target object and action method.

alignment

- (int)alignment

Returns the alignment of text in the Cell. The return value can be one of three
constants: NX_LEFTALIGNED, NX_CENTERED, or NX_RIGHTALIGNED.

awake

-awake

U sed during unarchiving; initializes static variables for the Cell class. Returns self.

calcCellSize:

- calcCellSize:(NXSize *)theSize

Returns self and, by reference, the minimum width and height required for displaying
the Cell. It's implemented by calling calcCellSize:inRect: with the rectangle argument
set to a rectangle with very large width and height. This should be overridden if that is
not the proper way to calculate the minimum width and height required for displaying
the Cell (SliderCell overrides this method for that reason).

2-146 Chapter 2: Class Specifications

caIcCellSize:inRect:

- caIcCeIlSize:(NXSize *)theSize inRect:(const NXRect *)aRect

Returns self and, by reference, the minimum width and height required for displaying
the Cell in a given rectangle. If it's not possible to fit, the width and/or height could be
bigger than the ones of the rectangle. The computation is done by trying to size the Cell
so that it fits in the rectangle argument (by wrapping the text for instance). If a choice
must be made between extending the width or height of aRect to fit the text, the height
will be extended.

calcDrawlnfo:

- calcDrawlnfo:(const NXRect *)aRect

Objects using Cells generally maintain a flag that informs them if any of their Cells has
been modified in such a way that the location or size of the Cell should be recomputed.
If so a method (usually named calcSize) is automatically invoked before displaying the
Cell; this method invokes Cell's calcDrawlnfo: for each Cell. Subclasses of Cell can
override calcDrawlnfo: to cache some information that could speed up the drawing of
the Cell. In Cell, this method does nothing and returns self.

See also: - calcSize (Matrix)

continueTracking:at:in View:

- (BOOL)continueTracking:(const NXPoint *)lastPoint
at:(const NXPoint *)currentPoint
in View:controlView

Returns YES if it's OK to keep tracking. This method is invoked by
trackMouse:inRect:ofView: as the mouse is dragged around inside the Cell. By
default, this method returns YES when the cFlags2.continuous or
cFlags2.actOnMouseDragged is set to YES. This method is often overridden to
provide more sophisticated tracking behavior.

controlView

- control View

Returns nil. This method is implemented abstractly, since Cell doesn't have an instance
variable for the view in which an instance is drawn. It's overridden by ActionCell and
its subclasses, which use the controlView's id as the only argument in the action
message when it's sent to the target.

See also: - control View (Action Cell)

Application Kit Classes: Cell 2-147

copy

-copy

Allocates and returns a copy of the receiving Cell. The copy is allocated from the
default zone and is assigned the contents of the receiver.

copyFrornZone:

- copyFrornZone:(NXZone *)zone

Allocates and returns a copy of the receiving Cell. The copy is allocated from zone and
is assigned the contents of the receiver. When you subclass Cell, override this method
to send the message [super copyFrornZone:], then copy each of the subclass's unique
instance variables separately.

double Value

- (double)double Value

Returns the receiver's double value by converting its contents to a double using the C
function atofO. Returns 0 if the cell type is not NX_TEXTCELL.

drawlnside:in View:

- drawInside:(const NXRect *)eellFrame inView:eontrolView

Draws the inside of the Cell; it's the same as drawSelf:inView: except that it does not
draw the bezel or border if there is one. All subclasses of Cell which implement
drawSelf:in View: must implement drawInside:in View:. drawInside:in View:
should never invoke drawSelf:in View:, but drawSelf:in View: can invoke
drawInside:inView: (in fact, it often does). drawInside:inView: is invoked from the
Control class's drawCelllnside: method and is used to cause minimal drawing to be
done in order to update the value displayed by the Cell when the contents is changed.
This becomes more important in more complex Cells such as ButtonCell and
SliderCell. The passed eellFrame should be the frame of the Cell (i.e., the same
eellFrame passed to drawSelf:in View:), not the rectangle returned by getDrawRect:!
Be sure to lock focus on the eontrolView before invoking this method. If
cFlagsl.highlighted is YES, then the Cell is highlighted (by changing light gray to
white and white to light gray throughout eeliFrame). Returns self.

2-148 Chapter 2: Class Specifications

drawSelf:in View:

- drawSelf:(const NXRect *)celiFrame inView:controlView

Displays the contents of a Cell in a given rectangle of a given view. Lock the focus on
the controlView before invoking this method. It draws the border or bezel (if any), then
invokes drawlnside:inView:. A text Cell displays its text in the rectangle by using a
global Text object, an icon Cell displays its icon centered in the rectangle if it fits in the
rectangle, by setting the icon origin on the rectangle origin if it does not fit. Nothing is
displayed for NX_NULLCELL. You can override this method if you want a display
that is specific to your own subclass of Cell. Returns self.

See also: - drawlnside:in View:

edit:in View:editor:delegate:event:

- edit:(const NXRect *)aRect
in View:controlView
editor:textObj
delegate:anObject
event:(NXEvent *)theEvent

Use this method to edit the text of a Cell by using the Text object textObj in response
to an NX_MOUSEDOWN event. The aRect argument must be the one you have used
when displaying the Cell. theEvent is the NX_MOUSEDOWN event. anObject is
made the delegate of the Text object textObj used for the editing: it will receive the
methods such as textDidEnd:endChar:, textWillEnd, textDidResize,
textWillResize, and others sent by the Text object while editing. If the cell type is not
equal to NX_ TEXTCELL no editing is performed, otherwise the Text object is sized to
aRect and its superview is set to controlView, so that it exactly covers the Cell. Then
it's activated and editing begins. It's the responsibility of the delegate to end the
editing, remove any data from the textObj and invoke endEditing: on the Cell in the
textDidEnd:endChar: method. Returns self.

endEditing:

- endEditing:textObj

Use this method to end the editing you began with edit:in View:editor:delegate:event:
or select:in View:editor:delegate:start:length:. Usually this method is called by the
textDidEnd:endChar: method ofthe object you are using as the delegate for the Text
object (most often a Matrix or TextField). It removes the Text object from the view
hierarchy and sets its delegate to nil. Returns self.

entryType

- (int)entryType

Returns the type of data allowed in the Cell. See setEntryType: for the list of valid
types.

Application Kit Classes: Cell 2-149

floatValue
- (float)floatValue

Returns the receiver's float value by converting its contents to a float using the C
function atofO. Returns 0.0 if the cell type is not NX_TEXTCELL.

font
-font

Returns the font used to display text in the Cell. Returns nil if the Cell is not of type
NX_TEXTCELL.

free
-free

Frees all disposable storage used by the Cell. If cFlagsl.freeText is YES, then the
contents instance variable is freed. Returns nil.

getDrawRect:
- getDrawRect:(NXRect *)theRect

Returns self and, by reference, the rectangle into which the Cell will draw its "insides."
In other words, this method usually returns the rectangle which is touched by
drawInside:inView:. Pass the bounds of the Cell in theRect.

getlconRect:
- getlconRect:(NXRect *)theRect

Returns self and, by reference, the rectangle into which the icon will be drawn. Pass
the bounds of the Cell in theRect. If this Cell does not draw an icon, theRect is
untouched.

getParameter:
- (int)getParameter:(int)aParameter

Returns the most usual flags of a Cell. The following constants corresponds to the
different flags:

NX_CELLDISABLED
NX_CELLSTATE
NX_CELLHIGHLIGHTED
NX_CELLEDITABLE

It is, in general, much better to invoke the "is" methods (isEnabled, isHighlighted,
isEditable) rather than use getParameter:.

2-150 Chapter 2: Class Specifications

I

getPeriodicDelay:andlnterval:

- getPeriodicDelay:(float*)delay andInterval:(float*)interval

Sets two values: the amount of time (in seconds) that a continuous button will pause
before starting to periodically send action messages to the target object, and the interval
(also in seconds) at which those messages are sent. Periodic messaging behavior is
controlled by Cell's sendActionOn: and setContinuous: methods. (By default, Cell
sends the action message on mouse up events.) The default values returned by this
method are 0.2 seconds delay and 0.025 seconds interval. Can be overridden. Returns
self.

getTitleRect:
- getTitleRect:(NXRect *)theRect

Returns self and, by reference, the rectangle into which the text will be drawn. Pass the
bounds of the Cell in theRect. If this Cell does not draw any text, theRect is untouched.

highlight:in View:lit:

- highlight:(const NXRect *)celIFrame
in View:controLView
lit: (BOOL)flag

If cFlagsl.highlighted is not equal to flag, it's set to flag and the rectangle eellFrame
is highlighted in controLView. (You must lockFocus on eontroLView before calling this
method.) The default is simply to composite with NX_HIGHLIGHT inside the bounds
of the eel/Frame. Override this method if you want a more sophisticated highlighting
behavior in a Cell subclass. Note that the highlighting that the base Cell class does will
not appear when printed (although subclasses like TextFieldCell, SelectionCell, and
ButtonCell can print themselves highlighted). This is due to the fact that the base Cell
class is transparent, and there is no concept of transparency in printed output. Returns
self.

icon
- (const char *)icon

Returns the name of the icon currently used by the Cell. Returns NULL if the cell type
is not NX_ICONCELL.

Application Kit Classes: Cell 2-151

incrementS tate

init

- incrementS tate

Adds 1 to the state of the Cell, wrapping around to 0 from maximum value (for the base
Cell class, 1 wraps to 0). Subclasses may want to change the meaning of this method
(for multistate Cells, for example). Remember that if you want the visual appearance
of the Cell to reflect a change in state, you must invoke drawSelf:in View: after altering
the state (and your drawSelf:inView: must draw the different states in different
ways-the default implementation of the Cell class does not visually distinguish
differences in state). Returns self.

- init

Initializes and returns the receiver, a new Cell instance, as type NX_NULLCELL. This
method is the designated initializer for null cells.

initlconCell:

- initIconCell:(const char *)iconName

Initializes and returns the receiver, a new Cell instance, as type NX_ICONCELL. The
icon is set to iconName. This method is the designated initializer for icon Cells.

See also: - findImageFor: (NXImage), - name (NXImage)

initTextCell:

- initTextCell:(const char *)aString

Initializes and returns the receiver, a new Cell instance, as type NX_ TEXTCELL. The
string value is set to aString. This method is the designated initializer for text Cells.

intValue

- (int)intValue

Returns the Cell's integer value by converting its contents to an integer using the C
function atoiO. Returns 0 if the cell type is not NX_TEXTCELL.

isBezeled

- (BOOL)isBezeled

Returns YES if the Cell has a bezeled border, NO otherwise.

2-152 Chapter 2: Class Specifications

isBordered

- (BOOL)isBordered

Returns YES if the Cell is surrounded by a I-pixel black frame, NO otherwise. The
default is NO.

is Continuous

- (BOOL)isContinuous

Returns YES if the Cell continuously sends its action message to the target object when
tracking. This usually has meaning only for subclasses of Cell that implement target
and action instance variables (ActionCell and its subclasses), although some Control
subclasses will send a default action to a default target even if the Cell does not itself
have a target and action.

isEditable

- (BOOL)isEditable

Returns YES if the text in the Cell is editable, NO otherwise. The default is NO.

isEnabled

- (BOOL)isEnabled

Returns YES if the Cell is enabled, NO otherwise. The default is YES.

isEntry Acceptable:

- (BOOL)isEntryAcceptable:(const char *)aString

Tests whether aString matches the Cell's entry type, set by the setEntryType: method.
Returns YES if it aString is acceptable by the receiving Cell, NO otherwise. This
method is invoked by Form, Matrix, and other Controls to see if a new text string is
acceptable for this Cell. This method doesn't check for overflow. It can be overridden
to enforce specific restrictions on what the user can type into the Cell. If aString is
NULL or empty, this method returns YES.

See also: - setEntryType:

isHighlighted

- (BOOL)isHighlighted

Returns YES if the Cell is currently highlighted, NO otherwise. The Cell can be
highlighted by calling highlight:in View:lit:.

Application Kit Classes: Cell 2-153

isOpaque

- (BOOL)isOpaque

Returns YES if the Cell is opaque (i.e., it touches every pixel in its bounds), NO
otherwise. The base Cell class is opaque if and only if it has a bezeL Subclasses which
draw differently should override this appropriately.

isScrollable

- (BOOL)isScrollable

Returns YES if typing past the end of the text in the Cell will cause the Cell to scroll to
follow the typing. The default return value is NO.

isS electable

- (BOOL)isSelectable

Returns YES if the text in the Cell is selectable, NO otherwise. The default return value
is NO.

keyEquivalent

- (unsigned short)keyEquivalent

Returns O. Should be overridden by subclasses to return a key equivalent for the
receiver.

mouseDownFlags

- (int)mouseDownFlags

Returns the flags (e.g., NX_SHIFTMASK) that were set when the mouse went down to
start the current tracking session. This is useful if you want to use these flags, but don't
want the overhead of having to add NX_MOUSEDOWNMASK to the sendActionOn:
mask just to get those flags. This method is only valid during tracking and does not
work if the target of the Cell initiates another Cell tracking loop as part of its action
method (for example, like PopUpLists do).

read:

- read:(NXTypedStream *)stream

Reads the Cell from the typed stream stream.

2-154 Chapter 2: Class Specifications

resetCursor Rect:in View:

- resetCursorRect:(const NXRect *)eeIlFrame in View:eontrolView

If the type of the Cell is NX_ TEXTCELL, then a cursor rectangle is added to
eontrolView (via addCursorRect:cursor:).

See also: - addCursorRect:cursor: (View, Control)

select:in View:editor:delegate:start:length:

- select:(const NXRect *)aReet
in View:eontrolView
editor:textObj
delegate :anO b jeet
start: (int)seIStart
length:(int)seILength

Similar to edit:in View:editor:delegate:event: but you can invoke it in any situation,
not only on a mouse-down event. You must specify the beginning and the length of the
selection.

sendActionOn:

- (int)sendActionOn:(int)mask

Resets flags to determine when the action is sent to the target while tracking. Can be
any combination of:

NX_MOUSEUPMASK
NX_MOUSEDOWNMASK
NX_MOUSEDRAGGEDMASK
NX_PERIODICMASK

The default is NX_MOUSEUPMASK. You can use the setContinuous: method to
turn on the bit in the NX_PERIODICMASK or the NX_MOUSEDRAGGEDMASK
(whichever is appropriate to the given subclass of Cell) in the current mask.

Returns the old mask.

setAction:

- setAction:(SEL)aSeleetor

Does nothing. Should be overridden by subclasses that implement target and action
instance variables (ActionCell and its subclasses). Returns self.

Application Kit Classes: Cell 2-155

setAlignment:

- setAlignment:(int)mode

Sets the alignment of text in the Cell and returns self. mode should be one of three
constants: NX_LEFfALIGNED, NX_CENTERED, or NX_RIGHTALIGNED.

setBezeled:

- setBezeled:(BOOL)jlag

Ifjlag is YES, then the Cell is surrounded by a bezel, otherwise it's not. setBordered:
and setBezeled: are mutually exclusive options. Returns self.

setBordered:

- setBordered:(BOOL)jlag

Ifjlag is YES, then the Cell is surrounded by a I-pixel black frame, otherwise it's not.
setBordered: and setBezeled: are mutually exclusive options. Returns self.

setContinuous:

- setContinuous: (BOOL)jlag

Sets whether a Cell continuously sends its action message to the target object when
tracking. Normally, this method will simply add NX_PERIODICMASK or
NX_MOUSEDRAGGEDMASK to the mask set with sendActionOn:, depending on
which setting is appropriate to the subclass implementing it. In the base Cell class, this
method adds NX_PERIODICMASK to the mask. These settings usually have meaning
only for ActionCell and its subclasses which implement instance variables for the target
object and action method. However, some Control subclasses will send a default action
to a default target when the Cell itself doesn't define target and action instance
variables.

See also: - sendActionOn:

setDouble Value:

- setDouble Value: (double)aDouble

Sets the receiver to represent aDouble, by replacing the contents with the character
string representing aDouble. Does nothing if the cell type is not NX_ TEXTCELL.
Returns self.

2-156 Chapter 2: Class Specifications

setEditable:

- setEditable:(BOOL)jlag

Sets the editable state of the Cell. Ifjlag is YES, then the text is also set to be selectable.
Ifjlag is NO, then the text is set not selectable. Returns self.

See also: - edit:in View:editor:delegate:event:

setEnabled:

- setEnabled:(BOOL)jlag

Sets the enabled state of the Cell. Returns self.

setEntryType:

- setEntryType:(int)aType

This method sets the type of data allowed in the Cell. aType is one of these four
constants:

NX_ANYTYPE
NX_(POS)INTTYPE
NX_(POS)FLOATTYPE
NX_(POS)DOUBLETYPE

If the Cell is not oftype NX_TEXTCELL, it's automatically converted, in which case
its support instance variable is set to the default font (Helvetica 12.0), and its string
value is set to "Cell" (the default).

The entry type is checked by the isEntry Acceptable: method. That method is used by
Controls that contain editable text (such as Matrix and TextField) to validate that what
the user has typed is correct. If you want to have a custom Cell accept some specific
type of data (other than those listed above), you can override the is Entry Acceptable:
method to check for the validity of the data the user has entered.

See also: - isEntry Acceptable:, - setFloatingPointFormat:left:right:

Application Kit Classes: Cell 2-157

setFloatingPointFormat:left:right:
- setFloatingPointFormat: (BOOL)autoRange

left: (unsigned)leftD igits
right: (unsigned)rightDigits

Sets whether floating -point numbers are autoranged, and sets the size of the fields to the
left and right of the decimal point. leftDigits must be between ° and 10. rightDigits
must be between ° and 14. If leftDigits is 0, then the number is not formatted. If
rightDigits is 0, then the fractional part of the floating-point number is truncated (i.e.,
the floating-point number is printed as if it were an integer). Otherwise, leftDigits
specifies the number of digits to the left of the decimal point, and rightDigits specifies
the number of digits to the right. If autoRange is YES, the number will be fit into a field
that's leftDigits + rightDigits + 1 spaces wide and the decimal point will be autoranged
to fit that field (the field will also be padded with zeros). To turn off formatting, simply
invoke this routine with leftDigits = 0. If the entryType of the Cell is not already
NX_FLOATTYPE, NX_POSFLOATIYPE, NX_DOUBLETYPE, or
NX_POSDOUBLETYPE, it's set to NX_FLOATTYPE. Returns self.

setFloatValue:

- setFloatValue:(float)aFloat

Sets cell-specific float value, by replacing its contents by the character string
representing the float. Does nothing if the cell type is not NX_ TEXTCELL. Returns
self.

setFont:

- setFont:fontObJ

Sets the font to be used when displaying text in the Cell. Does nothing if the Cell is not
of type NX_ TEXTCELL. Returns self.

setIcon:
- setlcon:(const char *)iconName

Invoke this method to set the icon of the Cell to the icon represented by iconName (an
icon is a named NXImage-see the NXImage class). If the Cell was not an
NX_ICONCELL, it's automatically converted. Sets the support instance variable to
iconName, and sets the contents instance variable to the result of sending the name
message to that NXImage. If you specify an invalid NXlmage name, you will get a
default icon (you can verify that the NXImage you requested was valid by checking the
result of sending the icon message to the Cell to be sure it matches the iconName you
supplied). Returns self.

See also: - findlmageNamed (NXImage), - name (NXlmage)

2-158 Chapter 2,' Class Specifications

setlntValue:

- setlntValue:(int)anInt

Sets cell-specific integer value by replacing its contents by the character string
representing anI nt. Does nothing if the cell type is not NX_ TEXTCELL. Returns self.

setParameter:to:

- setParameter:(int)aParameter to:(int)value

Sets the most usual flags of a Cell. Calling this method could result in unpredictable
results in subclasses. It's much safer to invoke the appropriate set. .. method to set a
specific flag. Returns self.

See also: - getParameter:, - highlightlnView:lit:, - setEditable:, - setEnabled:,
- setState:

setScrollable:

- ~etScrollable:(BOOL)flag

Sets whether, while editing, the Cell will scroll to follow typing. Returns self.

See also: - edit:in View:editor:delegate:event:

setSelectable:

- setSelectable: (BOOL)flag

Ifflag is YES, then the text is selectable but not editable. If NO, then the text is static
(not editable or selectable). Returns self.

See also: - edit:in View:editor:delegate:event:

setS tate:
- setState:(int)value

Sets the state of the Cell to 0 if value is 0, to 1 otherwise. Returns self.

See also: - incrementS tate

Application Kit Classes: Cell 2-159

setStringValue:

- setStringValue:(const char *)aString

Invoke this method to set the contents instance variable to a copy of aString. If the Cell
was not of type NX_ TEXTCELL, it's automatically converted, in which case its
support instance variable is set to the default font (Helvetica 12.0). If floating point
parameters have been set (via setFloatingPointParameters:left:right:) and the type
of the Cell is NX_(POS) {FLOAT,DOUBLE } TYPE, then the string will be tested for
being a float or a double. If it's a float or a double, then the appropriate
parameterization will be applied; otherwise, the string will be copied directly. Returns
self.

setStringValueNoCopy:

- setStringValueNoCopy:(const char *)aString

Similar to setStringValue: but does not make a copy of aString. The Cell records that
it does not have to dispose of its contents instance variable when it receives the free
message. Note that if you set a string this way, then the floating-point parameters will
not be applied (since no copy of the string is being made). Returns self.

set String ValueN oCopy :shouldFree:

- setStringValueNoCopy:(char *)aString shouldFree:(BOOL)jlag

Similar to setStringValueNoCopy:, but the caller can specify if the contents instance
variable will be freed when the Cell receives the free message. Note that if you set a
string this way, then the floating-point parameters will not be applied (since no copy of
the string is being made). If aString == contents, then ifjlag is NO, cFlags1.freeText
will be set to NO. Returns self.

setTag:

- setTag:(int)anlnt

Does nothing. This method is overridden by ActionCell and its subclasses to support
multiple-Cell controls (Matrix and Form). Returns self.

setTarget:

- setTarget:anObject

Does nothing. This method is overridden by ActionCell and its subclasses that
implement the target object and action method. Returns self.

2-160 Chapter 2: Class Specifications

setTextAttributes:

- setTextAttributes:textObj

Invoked just before any drawing or editing occurs in the Cell. It's intended to be
overridden. If you do override this method you must invoke
[super setTextAttributes:textObJl first. If you do not, you risk inheriting drawing
attributes from the last Cell which drew any text. You should invoke only the following
two Text instance methods:

setBackgroundGray:
setTextGray:

Do not set any other parameters in the Text object.

You should return textObj as the return value of this method. Therefore, if you want to
substitute some other Text object to draw with (but not edit, editing always uses the
window's field editor), you can return that object instead of textObj and it will be used
for the draw that caused setTextAttributes: to be called.

TextFieldCell, a subclass of ActionCell, allows you to set the grays without creating
your own subclass of Cell. You only need to subclass Cell to control the gray values if
you don't want all of the functionality (and instance variable usage) of an ActionCell.

Defaults: If the Cell is disabled, its text gray will be NX_DKGRAY, otherwise it will
be NX_BLACK. If the Cell has a bezel, then its background gray will be NX_ WHITE,
otherwise it will be NX_LTGRAY. The Text object does not paint the background gray
before drawing; it only uses the background gray to erase characters while editing. The
Cell class does paint the NX_ WHITE background when it draws a bezeled Cell, but
does not paint any background (i.e., it's transparent) otherwise.

Note that most of the other text object attributes can be set via Cell methods (setFont:,
setAlignment:, setWrap:) so you need only override this method if you need to set the
gray values. Returns self. •

setType:

- setType:(int)aType

Sets the type of the Cell. It should be NX_TEXTCELL, NX_ICONCELL, or
NX_NULLCELL. If aType is NX_ TEXTCELL and the current type is not
NX_ TEXTCELL, then the font is set to the default font (Helvetica 12.0), and the string
value of the Cell is set to the default string, "Cell". If aType is NX_ICONCELL and
the current type is not NX_ICONCELL, then the icon for the Cell is set to be the default
icon, "square16".

Application Kit Classes: Cell 2-161

setWrap:
- setWrap:(BOOL)flag

Ifflag is YES, then the text (when displaying, not editing) will be wrapped to word
breaks. Otherwise, it will not. The default is YES.

startTrackingAt:in View:

- (BOOL)startTrackingAt:(const NXPoint *)startPoint in View:controlView

This method returns YES if and only if the Cell is continuous, that is, if
cFlags2.continuous or cFlags2.actOnMouseDragged is YES. Called via
trackMouse:inRect:otView: the first time the mouse appears in the Cell needing to be
tracked. Default is to do nothing. Should return YES if it's OK to track based on this
starting point, otherwise it returns NO. This method is often overridden to provide
more sophisticated tracking behavior.

state
- (int)state

Returns the state of the Cell (0 or 1). The default is O.

stopTracking:at:in View:mouseIsUp:

- stopTracking:(const NXPoint *)lastPoint
at:(const NXPoint *)stopPoint
in View:controlView
mouseIsUp:(BOOL)flag

Invoked via trackMouse:inRect:otView: when the mouse has left the bounds of the
Cell, or the mouse button has gone up. flag is YES if the mouse button went up to cause
this method to be invoked. The default method does nothing and returns self. This
method is often overridden to provide more sophisticated tracking behavior. Returns
self.

stringValue

tag

- (const char *)stringValue

Returns a pointer to the contents instance variable.

- (int)tag

Returns -1. Overridden by subclasses such as ActionCell to provide a way to identify
Cells in a multiple-Cell Control such as Matrix or Form.

2-162 Chapter 2: Class Specifications

takeDouble ValueFrom:

- takeDouble ValueFrom:sender

Sets the receiving Cell's double-precision floating point value to the value returned by
sender's doubleValue method. Returns self.

This method can be used in action messages between Cells. It permits one Cell
(sender) to affect the value of another Cell (the receiver). For example, a TextFieldCell
can be made the target of a SliderCell, which will send it takeDoubleValueFrom:
action message. The TextFieldCell will get the SliderCell's double value, turn it into
a text string, and display it.

See also: - takeDoubleValueFrom: (Control), - setDoubleValue:, - doubleValue

takeFloatValueFrom:

- takeFloatValueFrom:sender

Sets the receiving Cell's single-precision floating-point value to the value returned by
sender's tloatValue method. Returns self.

This is the same as takeDoubleValueFrom: except it works with floats rather than
doubles.

See also: - takeFloatValueFrom: (Control), - setFloatValue:, - tloatValue

takelntValueFrom:

- takelntValueFrom:sender

Sets the receiving Cell's integer value to the value returned by sender's intValue
method. Returns self.

This is the same as takeDouble ValueFrom: except it works with ints rather than
doubles.

See also: - takelntValueFrom: (Control), - setlntValue:, - intValue

takeStringValueFrom:

- takeStringValueFrom:sender

Sets the receiving Cell's string value to the value returned by sender's stringValue
method. Returns self.

This is the same as takeDoubleValueFrom: except it works with strings rather than
doubles.

See also: - takeStringValueFrom: (Control), - stringValue, - setStringValue:

Application Kit Classes: Cell 2-163

target

- target

Returns nil. This method is overridden by ActionCell and its subclasses that implement
target and action instance variables. Returns self.

trackMouse:inRect:ofView:

- (BOOL)trackMouse:(NXEvent *)theEvent
inRect:(const NXRect *)eeliFrame
ofView:eontrolView

This method is called by Controls to implement the tracking behavior of a Cell. It's
generally not overridden since the default implementation provides a simple interface
to some other, simpler, tracking routines:

(BOOL)startTrackingAt:(NXPoint *)startPoint
in View: control View

(BOOL)continueTracking: (NXPoint *)lastPoint
at:(NXPoint *)currentPoint
in View: control View

stopTracking:(NXPoint *)lastPoint
at:(NXPoint *)endPoint
in View:controlView
mouseIsUp:(BOOL)tlag

This method invokes startTrackingAt:in View: first, then, as mouse-dragged events
are intercepted, continueTracking:at:inView: is called, and, finally, when the mouse
leaves the bounds (if eellFrame is NULL, then the bounds are considered infinitely
large), orifthe mouse button goes up, stopTracking:at:inView:mouseIsUp: is called.
If this interface is insufficient for the needs of your Cell, you may override
trackMouse:inRect:ofView: directly. It's this method's responsibility to invoke the
controlView's sendAction:to: method when appropriate (before, during, or after
tracking) and to return YES if and only if the mouse goes up within the Cell during
tracking. If the Cell's action is sent on mouse down, then startTrackingAt:in View: is
called before the action is sent and the mouse is tracked until it goes up or out of
bounds. If the Cell sends its action periodically, then the action is sent periodically to
the target even if the mouse is not moving (although continueTracking:at:inView: is
only called when the mouse changes position). If the Cell's action is sent on mouse
dragged, then continueTracking:at:in View: is called before the action is sent. The
state ofthe Cell is incremented (via incrementState) before the action is sent and after
stopTracking:at:in View: is called when the mouse goes up. Returns self.

type

- (int)type

Returns the type of the Cell. Can be one of NX_NULLCELL, NX_ICONCELL or
NX_TEXTCELL.

2-164 Chapter 2: Class Specifications

write:

- write:(NXTypedStream *)stream

Writes the Cell to the typed stream stream. Returns self.

CONSTANTS AND DEFINED TYPES

/* Cell Data Types */

#define NX ANYTYPE 0
#define NX INTTYPE 1
#define NX POSINTTYPE 2
#define NX FLOATTYPE 3
#define NX POSFLOATTYPE 4
#define NX DATETYPE 5
#define NX DOUBLE TYPE 6
#define NX POSDOUBLETYPE 7

/* Cell Types */

#define NX NULLCELL 0
#define NX TEXTCELL 1
#define NX ICONCELL 2

/* Cell & ButtonCell */

#define NX CELLDISABLED 0
#define NX CELLSTATE 1
#define NX CELLEDITABLE 3
#define NX CELLHIGHLIGHTED 5
#define NX LIGHTBYCONTENTS 6
#define NX LIGHTBYGRAY 7
#define NX LIGHTBYBACKGROUND 9
#define NX_ICONISKEYEQUIVALENT 10
#define NX HASALPHA 11
#define NX BORDERED 12
#define NX OVERLAPPINGICON 13
#define NX ICONHORIZONTAL 14
#define NX ICONONLEFTORBOTTOM 15
#define NX CHANGECONTENTS 16

/* ButtonCell icon positions */

#define NX TITLEONLY 0
#define NX ICONONLY 1
#define NX ICONLEFT 2
#define NX ICONRIGHT 3
#define NX ICONBELOW 4
#define NX ICONABOVE 5
#define NX ICONOVERLAPS 6

Application Kit Classes: Cell 2-165

/* ButtonCell highlightsBy and showsStateBy mask */

#define NX NONE 0

#define NX CONTENTS 1

#define NX PUSH IN 2

#define NX CHANGE GRAY 4

#define NX CHANGE BACKGROUND 8

/* Cell whenActionIsSent mask flag */

#define NX PERIODICMASK (1 « (NX_LASTEVENT+1))

2-166 Chapter 2: Class Specifications

ClipView

DECLARED IN appkit/Clip View.h

CLASS DESCRIPTION

The Clip View class provides basic scrolling behavior by displaying a portion of a
document that may be larger than the ClipView's frame rectangle. It also provides
clipping to ensure that its document is not drawn outside the Clip View's frame. The
Clip View has one subview, the document view, which is the view to be scrolled. Since
a subview's coordinate system is positioned relative to its superview's origin, the
Clip View changes the displayed portion of the document by translating the origin of its
own bounds rectangle.

When the Clip View is instructed to scroll its document view, it copies as much of the
previously visible document as possible, unless it received a setCopyOnScroll:NO
message. The Clip View then sends its document view a message to either display or
mark as invalidated the newly exposed region(s) of the ClipView. By default it will
invoke the document view's display:: method, but ifthe ClipView received a
setDisplayOnScroll:NO message, it will invoke the document view's invalidate::
method.

The ClipView sends its superview (usually a ScrollView) a reflectScroll: message to
notify it whenever the relationship between the Clip View and the document view has
changed. This allows the superview to update any controls it manages to reflect the
change. You don't normally use the ClipView class directly; it is used by ScrollView
which provides standard controls to allow the user to perform scrolling. However, you
might use the ClipView class to implement a class similar to ScrollView.

INSTANCE VARIABLES

Inherited from Object Class IS a;

Inheritedfrom Responder id nextResponder;

Inheritedfrom View NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct _ vFlags vFlags;

Declared in Clip View float backgroundGray;
id docView;
id cursor;

Application Kit Classes: ClipView 2-167

background Gray

docView

cursor

METHOD TYPES

Initializing the class object

The gray value used to fill the area of the
Clip View not covered by the opaque portions of
the document view.

The ClipView's document view.

The cursor that's used inside the ClipView's
frame rectangle.

+ initialize

Initializing and freeing a Clip View - initFrame:
-free

Modifying the frame rectangle -moveTo::
- rotateTo:
- sizeTo::

Modifying the coordinate system - rotate:
- scale::
- setDrawOrigin::
- setDrawRotation:
- setDrawSize::
- translate::

Managing component Views -docView
- setDocView:
- getDocRect:
- getDoc VisibleRect:
- resetCursorRects
- setDocCursor:

Modifying graphic attributes and displaying
- backgroundGray
- setBackgroundGray:
- background Color
- setBackgroundColor:
- drawSelf::

Scrolling - autoscroll:
- constrainS croll:
- rawScroll:
- setCopyOnScroll:
- setDisplayOnScroll:

Coordinating with other Views - descendantFlipped:
- descendantFrameChanged:

2-168 Chapter 2: Class Specifications

Archiving - awake
- read:
- write:

CLASS METHODS

initialize

+ initialize

Sets the current version of the Clip View class. You never send an initialize message;
it's sent for you when the application starts. Returns self.

INSTANCE METHODS

autoscroll:

- autoscroll:(NXEvent *)theEvent

Performs automatic scrolling of the document. This message is sent to the document
view when the mouse is dragged from a position within the Clip View to a position
outside it. The document view then sends this message to its Clip View. You never send
an autoscroll: message directly to a Clip View. Returns nil if no scrolling occurs;
otherwise returns self.

See also: - autoscroll: (View)

awake

-awake

Overrides View's awake method to ensure additional initialization. After a ClipView
has been read from an archive file, it will receive this message. You should not invoke
this method directly. Returns self.

background Color

- (NXColor)backgroundColor

Returns the color of the Clip View's background. If the background gray value has been
set but no color has been set, the color equivalent of the background gray value is
returned. If neither value has been set, the background color of the Clip View's window
is returned.

See also: - backgroundGray, - setBackgroundColor:, - setBackgroundGray:,
- backgroundColor (Window), NXConvertGrayToColorO

Application Kit Classes: Clip View 2-169

backgroundGray

- (float)backgroundGray

Returns the gray value of the ClipView's background. If no value has been set, the gray
value of the ClipView's window is returned.

See also: - background Color, - setBackgroundGray:,
- background Gray (Window)

constrainS croll :

- constrainS croll: (NXPoint *)newOrigin

Ensures that the document view is not scrolled to an undesirable position. This method
is invoked by the private method that all scrolling messages go through before it
invokes rawScroll: or scroIlClip:to:. The default implementation keeps as much of
the document view visible as possible. You may want to override this method to
provide alternate constraining behavior. newOrigin is the desired new origin of the
ClipView's bounds rectangle and is given in Clip View coordinates. Returns self.

See also: - rawScroll:

descendantFlipped:

- descendantFlipped:sender

Notifies the Clip View that the orientation of the coordinate system of its document view
has changed (from unflipped to flipped, or vice versa). The orientation of the Clip View
is changed to match the orientation of its document view. You should not invoke this
method directly, or override it. Returns self.

See also: - notifyWhenFlipped: (View), - setDocView:

descendantFrameChanged:

- descendantFrameChanged:sender

Notifies the Clip View that its document view has been resized or moved. The Clip View
may then scroll and/or display the document view, and the Clipview may also notify its
superview to reflect the changes in the scroll position. You should not invoke this
method directly, or override it. Returns self.

See also: - moveTo:: (View), - sizeTo:: (View), - reflectScroll: (ScrollView),
- notifyAncestorWhenFrameChanged: (View), - setDocView:

2-170 Chapter 2: Class Specifications

docView

- docView

Returns the ClipView's document view.

See also: - setDocView:

drawSelf::
- drawSelf:(const NXRect *)rects :(int)rectCount

Overrides View's drawSelf:: method to fill the portions of the Clip View that are not
covered by opaque portions of the document view. If a color value has been set and the
Clip View is drawing itself on a color screen, the Clip View draws its background with
the color value, otherwise it draws its background using its background gray value.
Returns self.

See also: - backgroundColor:, - backgroundGray:, - drawSelf:: (View)

free

-free

Deallocates the memory used by the receiving Clip View. The Clip View is removed
from the view hierarchy, and all its subviews are also freed.

getDocRect:

- getDocRect:(NXRect *)aRect

Places the ClipView's document rectangle into the structure specified by aRect. The
origin of this rectangle is equal to the origin of the document view's frame rectangle.
The document rectangle's height and width are set to the maximum corresponding
values from the document view's frame size and the content view's bounds size. The
document rectangle is used in conjunction with the ClipView's bounds rectangle to
determine values for any indicators of relative position and size between the Clip View
and the document view. The ScrollView uses these rectangles to set the size and
position of the Scrollers' knobs. Returns self.

See also: - reflectScroll: (ScrollView)

Application Kit Classes: ClipView 2-171

getDoc VisibleRect:

- getDocVisibleRect:(NXRect *)aRect

Gets the portion of the document view that's visible within the ClipView. The
ClipView's bounds rectangle, transformed into the document view's coordinates, is
placed in the structure specified by aRect. This rectangle represents the portion of the
document view's coordinate space that's visible through the ClipView. However, this
rectangle doesn't reflect the effects of any clipping that may occur above the Clip View
itself. Thus, if the Clip View is itself clipped by one of its superviews, this method
returns a different rectangle than the one returned by the getVisibleRect: method,
because the latter reflects the effects of all clipping by superviews. Returns self.

See also: - getVisibleRect: (View)

initFrame:

- initFrame:(const NXRect *)ft-ameRect

Initializes the ClipView, which must be a newly allocated Clip View instance. The
ClipView's frame rectangle is made equivalent to that pointed to by frameRect. This
method is the designated initializer for the Clip View class, and can be used to initialize
a Clip View allocated from your own zone. By default, clipping is enabled, and the
Clip View is set to opaque. A Clip View is initialized without a document view. Returns
self.

See also: - setDocView:, - initFrame: (View), + alloc (Object),
+ allocFromZone: (Object)

moveTo::

- moveTo:(NXCoord)x :(NXCoord)y

Moves the origin ofthe ClipView's frame rectangle to (x, y) in its superview's
coordinates. Returns self.

See also: - moveTo:: (View)

rawScroll:

- rawScroll:(const NXPoint *)newOrigin

Performs scrolling of the document view. This method sets the Clip View's bounds
rectangle origin to newOrigin. Then, it copies as much of the previously visible
document as possible, unless it received a setCopyOnScroll:NO message. It then
sends its document view a message to either display or mark as invalidated the newly
exposed region(s) of the ClipView. By default it will invoke the document view's
display:: method, but ifthe ClipView received a setDisplayOnScroll:NO message, it
will invoke the document view's invalidate:: method. The rawScroll: method does
not send a reflectScroll: message to its superview; that message is sent by the method

2-172 Chapter 2: Class Specifications

that invokes rawScroll:. Note also that while the ClipView provides clipping to its
frame, it does not clip to the update rectangles.

This method is used by a private method through which all scrolling passes, and is
invoked if the Clip View's superview does not implement the scrollClip:to: method. If
the ClipView's superview does implement scroliClip:to:, that method should invoke
rawScroll:. The ClipView's typical superview (Scrollview) doesn't implement the
scrollClip:to: method. This mechanism is provided so that the ClipView's superview
can coordinate scrolling of mUltiple tiled Clip Views. Returns self.

read:
- read:(NXTypedStream *)stream

Reads the Clip View and its document view from the typed stream stream. Returns self.

See also: - write:

resetCursorRects
- resetCursorRects

Resets the cursor rectangle for the document view to the bounds of the Clip View.
Returns self.

See also: - setDocCursor:, - addCursorRect:cursor: (View)

rotate:
- rotate:(NXCoord)angle

Disables rotation of the ClipView's coordinate system. You also should not rotate the
ClipView's document view, nor should you install a Clip View as a subview of a rotated
view. The proper way to rotate objects in the document view is to perform the rotation
in your document view's drawSelf:: method. Returns self.

rotateTo:

- rotateTo:(NXCoord)angle

Disables rotation ofthe ClipView's frame rectangle. This method also disables
ClipView's inherited rotateBy: method. Returns self.

See also: - rotate:

Application Kit Classes: ClipView 2-173

scale::

- scale:(NXCoord)x :(NXCoord)y

Rescales the Clip View's coordinate system by a factor of x for its x axis, and by a factor
of y for its yaxis. Since the document view's coordinate system is measured relative
to the ClipView's coordinate system, the document view is redisplayed and a
reflectScroll: message may be sent to the ClipView's superview. Returns self.

See also: - reflectS croll: (ScrollView)

setBackgroundColor:

- setBackgroundColor:(NXColor)color

Sets the color of the ClipView's background. This color is used to fill the area inside
the Clip View that's not covered by opaque portions of the document view. If no
background gray has been set for the Clip View, this method sets it to the gray
component of the color. Returns self.

See also: - background Color, - background Gray, - setBackgroundGray,
NXGrayComponentO

setBackgroundGray:

- setBackgroundGray:(float)value

Sets the gray value ofthe ClipView's background. This gray is used to fill the area
inside the Clip View that's not covered by opaque portions of the document view. value
must lie in the range from 0.0 (black) to 1.0 (white). Returns self.

See also: - background Color, - backgroundGray, - setBackgroundColor

setCopyOnScroll:

- setCopyOnScroll:(BOOL)jlag

Determines whether the buffered bits will be copied when scrolling occurs. Ifjlag is
YES, scrolling will copy as much of the ClipView's bitmap as possible to scroll the
view, and the document view is responsible only for updating the newly exposed
portion of itself. Ifjlag is NO, the document view is responsible for updating the entire
ClipView. This should only rarely be changed from the default value (YES). Returns
self.

2-174 Chapter 2: Class Specifications

setDisplayOnScroll:

- setDisplayOnScroll:(BOOL)jlag

Determines whether the results of scrolling will be immediately displayed. Ifjlag is
YES, the results of scrolling will be immediately displayed. Ifjlag is NO, the Clip View
is marked as invalid but is not displayed. In either case, when a scroll occurs, the
Clip View first copies as much of its buffered bitmap as possible, assuming the default
case where setCopyOnScroll: YES was sent. This should only rarely be changed from
the default value (YES). Returns self.

See also: - rawScroll:, - display:: (View), - invalidate:: (View)

setDocCursor:

- setDocCursor:anObj

Sets the cursor to be used inside the ClipView's bounds. anObj should be a NXCursor
object. Returns the old cursor.

setDoc View:

- setDocView:aView

Sets aView as the ClipView's document view. There is one document view per
Clip View, so if there was already a document view for this Clip View it is replaced. This
method initializes the document view with
notify AncestorWhenFrameChanged: YES and notifyWhenFlipped: YES
messages. The origin of the document view's frame is initially set to be coincident with
the origin of the ClipView's bounds. If the ClipView is contained within a ScrollView,
you should send the ScrollView the setDocView: message and have the ScrollView
pass this message on to the Clip View. Returns the old document view, or nil if there
was none.

See also: - setDocView: (ScrollView)

setDrawOrigin: :

- setDrawOrigin:(NXCoord)x :(NXCoord)y

Overrides the View method so that changes in the ClipView's coordinate system are
reflected in the displayed document view. This method may redisplay the document
view, and a reflectScroll: message may be sent to the ClipView's superview. Returns
self.

See also: - setDrawOrigin:: (View)

Application Kit Classes: ClipView 2-175

setDrawRotation:

- setDrawRotation:(NXCoord)angie

Disables rotation of the Clip View's coordinate system. The proper way to rotate
objects in the document view is to perform the rotation in your document view's
drawS elf: : method. Returns self.

See also: - rotate:

setDrawSize: :

- setDrawSize:(NXCoord)width :(NXCoord)height

Overrides the View method so that rescaling of the Clip View's coordinate system is
reflected in the displayed document view. This method may redisplay the document
view, and a reflectScroll: message may be sent to the ClipView's superview. Returns
self.

See also: - setDrawSize:: (View)

sizeTo::

- sizeTo:(NXCoord)width :(NXCoord)height

Overrides the View method so that resizing of the ClipView's frame rectangle is
reflected in the displayed document view. This method may redisplay the document
view, and a reflectScroll: message may be sent to the ClipView's superview. Returns
self.

See also: - sizeTo:: (View)

translate: :

- translate:(NXCoord)x :(NXCoord)y

Overrides the View method so that translation of the ClipView's coordinate system is
reflected in the displayed document view. This method may redisplay the document
view, and a reflectScroll: message may be sent to the ClipView's superview. Returns
self.

See also: - translate:: (View)

write:

- write:(NXTypedStream *)stream

Writes the receiving Clip View and its document view to the typed stream stream.
Returns self.

See also: - write:

2-176 Chapter 2: Class Specifications

METHODS IMPLEMENTED BY CLIPVIEW'S SUPERVIEW

reflectS croll :
- reflectScroll:aClipView

Notifies the ClipView's superview that either the ClipView's bounds rectangle or the
document view's frame rectangle has changed, and that any indicators of the scroll
position need to be adjusted. ScrollView implements this method to update its
Scrollers.

scrollClip:to:

- scrollClip:aClipView to:(const NXPoint *)newOrigin

Notifies the ClipView's superview that the ClipView needs to set its bounds rectangle
origin to newOrigin. The ClipView's superview should then send the ClipView the
rawScroll: message. This mechanism is provided so that the ClipView's superview
can coordinate scrolling of multiple tiled ClipViews. Note that the default ScrollView
class does not implement this method.

See also: - rawScroll: (ClipView)

Application Kit Classes: ClipView 2-177

2-178

Control

INHERITS FROM View : Responder: Object

DECLARED IN appkit/Contro1.h

CLASS DESCRIPTION

Control is an abstract superclass that provides three fundamental features for
implementing user interface devices. First, as a subclass of View, Control has a bounds
rectangle in which to draw the on-screen representation of the device. Second, it
provides a mouseDown: method and a position in the responder chain; together these
features enable Control to receive and respond to user-generated events within its
bounds. Third, it implements the sendAction:to: method through which Control sends
an action message to its target object. Subclasses of Control defined in the Application
Kit are Button, Form, Matrix, NXBrowser, NXColorWell, Slider, Scroller, and
TextField.

Target objects and action methods provide the mechanism by which Controls interact
with other objects in an application. A target is an object that a Control has affect over.
An action method is defined by the target class to enable its instances to respond to user
input; the id of the Control is the only argument to the action method. When it receives
an action message, a target can use the id to send a message requesting additional
information from the Control about its status. Targets and actions can be set explicitly
by application code. You can also set the target to nil and allow it to be determined at
run time. When the target is nil, the Control that's about to send an action message
must look for an appropriate receiver. It conducts its search in a prescribed order:

• It begins with the first responder in the current key window and follows
nextResponder links up the responder chain to the Window object. After the
Window object, it tries the Window's delegate.

• If the main window is different from the key window, it then starts over with the
first responder in the main window and works its way up the main window's
responder chain to the Window object and its delegate.

• Next, it tries the Application object, NXApp, and finally the Application object's
delegate. NXApp and its delegate are the receivers of last resort.

Control provides methods for setting and using the target object and action method.
However, these methods require that Control's cell instance variable be set to some
subclass of Cell that provides the instance variables target and action, such as
ActionCell and its subclasses.

Target objects and action methods demonstrate the close relationship between Controls
and Cells. In most cases, a user interface device consists of an instance of a Control
subclass paired with one or more instances of a Cell subclass. Each implements
specific details of the user interface mechanism. For example, Control's mouseDown:

Application Kit Classes: Control 2-179

method sends a trackMouse:inRect:ofView: message to Cell, which handles
subsequent mouse and keyboard events; Cell sends Control a sendAction:to: message
in response to particular events. Control's drawSelf:: method is implemented by
sending a drawSelf:in View: message to Cell. As another example, Control provides
methods for setting and formatting its contents; these methods send corresponding
messages to Cell, which owns the contents instance variable.

A Control subclass doesn't have to use a Cell subclass to implement itself; Scroller and
NXColorWell don't. However, such subclasses have to take care of details that Cell
would otherwise handle. Specifically, they have to overwrite methods designed to work
with a Cell. What's more, they cannot be used in a Matrix-a subclass of Control
designed specifically for managing multiple Cell arrays such as radio buttons. You
usually implement a unique user interface device by creating a subclass of Cell or
ActionCell rather than Control.

In general, Interface Builder is the easiest way to add both kit-defined and your own
subclasses of Control to an application.

The initFrame: method is the designated initializer for the Control class. Override this
method if you create a subclass of Control that performs its own initialization.

See also: ActionCell, Cell

INSTANCE VARIABLES

Inherited/rom Object

Inherited from Responder

Inherited/rom View

Declared in Control

tag

2-180 Chapter 2: Class Specifications

Class

id

NXRect
NXRect
id
id
id
struct _ vFlags

int
id
struct _conFlags{

unsigned int
unsigned int
unsigned int
unsigned int
}

Isa;

nextResponder;

frame;
bounds;
superview;
subviews;
window;
vFlags;

tag;
cell;

enabled: 1;
editing Valid: 1;
ignoreMultiClick: 1;
calcSize:1;

conFlags;

An integer that identifies the Control; can be used
by View's findViewWithTag: method to find a
Control in a view hierarchy.

cell

conFlags.enabled

conFlags.editing Valid

conFlags.ignoreMultiClick

conFlags.calcSize

METHOD TYPES

The id of the Control's cell (if it has only one).

True if the Control is enabled; relevant for
multi-cell controls only.

True if editing has been validated.

True if the Control ignores double- or
triple-clicks.

True if the cell should recalculate its size and
location before drawing.

Initializing and freeing a Control - initFrame:
- free

Setting the Control's Cell - cell
- setCell:
+ setCellClass:

Enabling and disabling the Control - isEnabled
- setEnabled:

Identifying the selected Cell - selectedCell
- selectedTag

Setting the Control's value - setFloatValue:
- floatValue
- setDouble Value:
- double Value
- setIntValue:
- intValue
- setStringValue:
- setStringValueNoCopy:
- setString ValueN oCopy: shouldFree:
- stringValue

Formatting text - setFont:
-font
- setAlignment:
- alignment
- setFloatingPointFormat:left:right:

Managing the field editor - abortEditing
- currentEditor
- validateEditing

Application Kit Classes: Control 2-181

Managing the cursor - resetCursorRects

Interacting with other Controls - takeDouble ValueFrom:
- takeFloatValueFrom:
- takeIntValueFrom:
- takeStringValueFrom:

Resizing the Control - calcSize
- sizeTo::
- sizeToFit

Displaying the Control and Cell - drawCell:
- drawCellInside:
- drawSelf::
- selectCell:
-update
- updateCell:
- updateCellInside:

Target and action - action
- isContinuous
- sendAction:to:
- sendActionOn:
- setAction:
- setContinuous:
- setTarget:
- target

Assigning a tag - setTag:
-tag

Tracking the mouse - ignoreMultiClick:
- mouseDown:
- mouseDownFlags

Archiving - read:
- write:

CLASS METHODS

setCellClass:

+ setCellClass:classld

This abstract method does nothing and returns the id of the receiver. It's implemented
by subclasses of Control, which use this method to set their cell instance variable.

2-182 Chapter 2: Class Specifications

---~---

INSTANCE METHODS

abortEditing

- abortEditing

Terminates and discards any editing of text displayed by the receiving Control. Returns
self or, if no editing was going on in the receiving Control, nil. Does not redisplay the
old value of the Control-you must explicitly do that.

See also: - endEditingFor: (Window), - validateEditing

action

- (SEL)action

Returns the action message sent by the Control. To get the action message, this method
sends an action message to the Control's cell.

See also: - setAction:

alignment

- (int)alignment

Returns the justification mode. The return value can be one of three constants:
NX_LEFTALIGNED, NX_CENTERED or NX_RIGHTALIGNED.

calcSize

cell

- calc Size

Recomputes any internal sizing information for the Control, if necessary, by invoking
calcDrawlnfo: on its cell. This can be useful for caching any information needed to
make the drawing of a cell faster. Does not draw. Can be used for more sophisticated
sizing operations as well (for example, Form). This is automatically invoked whenever
the Control is displayed and something has changed (as recorded by the calc Size flag).

See also: - calcSize (Matrix, Form), - sizeToFit

- cell

Returns the Control's cell. Should not be used by the action method of the target of the
Control (use selectedCell).

Application Kit Classes: Control 2-183

currentEditor

- currentEditor

If the receiving Control is being edited (that is, the user is typing or selecting text in the
Control), this method returns the editor (the Text object) being used to perform that
editing. lithe Control is not being edited, this method returns nil.

double Value

- (double)doubleValue

Returns the value of the Control as a double-precision floating point number. If the
Control contains many cells (for example, Matrix), then the value of the currently
selectedCell is returned. If the Control is in the process of editing the affected cell, then
validateEditing is invoked before the value is extracted and returned.

See also: - setDouble Value:

drawCell:

- drawCell:aCeli

If aCeli is the cell used to implement this Control, then the Control is displayed. This
is provided primarily in support of a consistent interface with a multiple cell Control's
drawCell:. Returns self.

See also: - drawCell: (Matrix), - updateCell:

drawCellInside:

- drawCellInside:aCell

Same as drawCell: except that only the "inside" of the Control is drawn (using the
cell's drawlnside:inView: method). This method is used by setStringValue: and
similar content-setting methods to provide a minimal update of the Control when its
value is changed. Returns self.

See also: - drawlnside:in View: (Cell), - drawCellInside: (Matrix),
- updateCellInside:

drawSelf::

- drawSelf:(const NXRect *)rects :(int)rectCount

Draws the Control. It simply invokes the Control's cell's drawSelf:inView: method.
Must override if you have a multi-cell control. Returns self.

2-184 Chapter 2: Class Specifications

floatValue

- (float)floatValue

Returns the value of the Control as a single-precision floating point number (see
double Value for more details).

See also: - setFloatValue:

font

-font

Returns the font object used to draw the text (if any) of the Control.

free

-free

Frees the memory used by the Control and its cells. Aborts editing if the text of the
Control was currently being edited. Returns nil.

ignoreMultiClick:

- ignoreMultiClick:(BOOL)jlag

Sets the Control to ignore multiple clicks ifjlag is YES. By default, double-clicks (and
higher order clicks) are treated the same as single clicks. You can use this method to
"debounce" a control.

initFrame:

- initFrame:(const NXRect *)frameRect

Initializes and returns the receiver, a new instance of Control, by settingframeRect as
its frame rectangle. Sets the new instance as opaque. Since Control is an abstract class,
messages to perform this method should appear only in subclass methods. initFrame:
is the designated initializer for the Control class.

intValue

- (int)intValue

Returns the value of the Control as an integer (see doubleValue for more details).

See also: - setIntValue:

Application Kit Classes: Control 2-185

is Continuous

- (BOOL)isContinuous

Returns YES if the Control continuously sends its action to its target during mouse
tracking.

See also: - setContinuous:

isEnabled

- (BOOL)isEnabled

Returns YES if the Control is enabled, NO otherwise.

mouseDown:

- mouseDown:(NXEvent *)theEvent

Invoked when the mouse button goes down while the cursor is within the bounds of the
Control. The Control is highlighted and the Control's Cell tracks the mouse until it
goes outside the bounds, at which time the Control is unhighlighted. If the cursor goes
back into the bounds, then the Control highlights again and its Cell starts tracking
again. This behavior continues until the mouse button goes up. If it goes up with the
cursor in the Control, the state of the Control is changed, and the action is sent to the
target. If the mouse button goes up with the cursor outside the Control, no action is
taken.

mouseDownFlags

- (int)mouseDownFlags

Returns the event flags (for example, NX_SHIFTMASK) that were in effect at the
beginning of tracking. The flags are valid only in the action method that is sent to the
Control's target.

See also: - mouseDownFlags (Cell), - sendAction:to:

read:

- read:(NXTypedStream *)stream

Reads the Control from the specified typed stream stream.

2-186 Chapter 2: Class Specifications

resetCursor Reets

- resetCursorRects

If the Control's cell is editable, then resetCursorRect:inView: is sent to the cell
(which will, in tum, send addCursorRect:cursor: back to the Control). Causes the
cursor to be an I-beam when the mouse is over the editable portion of the cell.

seleetCell

- selectCell:aCeli

If aCell is the receiving Control's cell and is currently unselected, this method selects
aCeli and redraws the Control. Returns self.

seleetedCell

- selectedCell

This method should be used by the target of the Control when it wants to get the cell of
the sending Control. Note that even though the cell method will return the same value
for single cell Controls, it's strongly suggested that this method be used since it will
work both for multiple and single cell Controls.

See also: - sendAction:to:, - selectedCell (Matrix)

selectedTag

- (int)selectedTag

The action method in the target of the Control should use this method to get the
identifying tag of the sending Control's cell. You should use the setTag: and tag
methods in conjunction with findViewWithTag:. This is equivalent to [[self
selected Cell] tag]. Returns -1 ifthere is no currently selected Cell. The cell's tag can
be set with ActionCell's setTag: method. When you set a single-cell Control's tag in
Interface Builder, it sets both the Control's and the cell's tag (as a convenience).

See also: - sendAction:to:

Application Kit Classes: Control 2-187

sendAction:to:
- sendAction:(SEL)theAction to:theTarget

Sends a sendAction:to: message to NXApp, which in tum sends a message to
theTarget to perform theAction. This method adds the Control's id as the action
method's only argument. If theAction is NULL, no message is sent.

This method is invoked primarily by Cell's trackMouse:inRect:ofView:.

If theTarget is nil, NXApp looks for an object that can respond to the message-that is,
for an object that implements a method matching the theAction selector. It begins with
the first responder of the key window. If the first responder can't respond, it tries the
first responder's next responder and continues following next responder links up the
responder chain. If none of the objects in the key window's responder chain can handle
the message and if the main window is different from the key window, it begins again
with the first responder in the main window. If objects in neither the key window nor
the main window can respond, NXApp tries to handle the message itself. If NXApp
cannot respond, then the message is sent to NXApp's delegate.

Returns nil if the message could not be delivered; otherwise returns self.

See also: - setAction:, - setTarget:, - trackMouse:inRect:ofView: (Cell)

sendActionOn:

- (int)sendActionOn:(int)mask

Sets a mask of the events that cause sendAction:to: to be invoked during tracking of
the mouse (done in Cell's trackMouse:inRect:ofView:). Returns the old event mask.

See also: - sendActionOn: (Cell), - trackMouse:inRect:ofView: (Cell)

setAction:

- setAction:(SEL)aSelector

Makes aSelector the Control's action method.

See also: - sendAction:to:

setAIignment:

- setAlignment:(int)mode

Sets the justification mode. The mode should be one of: NX_LEFTALIGNED,
NX_CENTERED or NX_RIGHTALIGNED.

2-188 Chapter 2: Class Specifications

setCell:

- setCell:aCell

Sets the cell of the Control to be cell. Use this method with great care as it can
irrevocably damage your Control. Returns the old cell.

setContinuous:

- setContinuous:(BOOL)jlag

Sets whether the Control should continuously send its action to its target as the mouse
is tracked.

See also: - setContinuous: (ButtonCell, SliderCell), - sendActionOn:

setDouble Value:

- setDoubleValue:(double)aDouble

Sets the value of the Control to be aDouble (a double-precision floating point number).
If the Control contains many cells, then the currently selected Cell 's value is set to
aDouble. If the affected cell is currently being edited, then that editing is aborted and
the value being typed is discarded in favor of aDouble. If autodisplay is on, then the
cell's "inside" is redrawn.

See also: - double Value, - abortEditing, - drawlnside:in View: (Cell)

setEnabled:

- setEnabled:(BOOL)jlag

Sets the flag determining whether the Control is active or not. Redraws the entire
Control if autodisplay is on. Subclasses may want to override this to redraw only a
portion of the Control when the enabled state changes (Button and Slider do this).

setFloatValue:

- setFloatValue:(float)aFloat

Same as setDoubleValue:, but sets the value as a single-precision floating point
number.

See also: - floatValue

Application Kit Classes: Control 2-189

setFloatingPointFormat:left:right:
- setFloatingPointFormat: (BOOL)autoRange

left: (unsigned)lejtDigits
right: (unsigned)rightDigits

Sets the floating point number format of the Control. Does not redraw the cell. Affects
only subsequent settings of the value using setFloatValue:.

See also: - setFloatPointFormat:left:right: (Cell)

setFont:

- setFont:fontObj

Sets the font used to draw the text (if any) in the Control. You only need to invoke this
method if you do not want to use the default font (Helvetica 12.0). If autodisplay is on,
then the inside of the cell is redrawn.

setlntValue:

- setIntValue:(int)anlnt

Same as setDoubleValue:, but sets the value as an integer.

See also: - intValue

setStringValue:

- setStringValue:(const char *)aString

Same as setDoubleValue:, but sets the value as a string.

See also: - stringValue, - setStringValueNoCopy:, - setIntValue:

setStringValueNoCopy:

- setStringValueNoCopy:(const char *)aString

Like setStringValue:, but doesn't copy the string.

See also: - stringValue, - setStringValue:, - setStringValueNoCopy:shouldFree:

setString ValueNoCopy:shouldFree:

- setStringValueNoCopy:(char *)aString shouldFree:(BOOL)jlag

Like setStringValueNoCopy:, but lets you specify whether the string should be freed
when the Control is freed.

See also: - stringValue, -setStringValueNoCopy:

2-190 Chapter 2: Class Specifications

setTag:

- setTag:(int)anInt

Makes anInt the receiving Control's tag.

See also: - tag, - selected Tag, - findViewWithTag: (View)

setTarget:
- setTarget:anObject

Sets the target for the Control's action message.

See also: - sendAction:to:

sizeTo::

- sizeTo:(NXCoord)width :(NXCoord)height

Changes the width and the height of the Control's frame. Redisplays the Control if
autodisplay is on.

sizeToFit

- sizeToFit

Changes the width and the height of the Control's frame so that they get the minimum
size to contain the cell. If the Control has more than one cell, then you must override
this method.

See also: - sizeToFit (Matrix), - sizeToCells (Matrix)

stringValue

- (const char *)stringValue

Returns the value of the Control as a string (see doubleValue for more details).

See also: - setStringValue:, - setStringValueNoCopy:

tag
- (int)tag

Returns the receiving Control's tag (not the Control's cell's tag).

See also: - setTag:, - selectedTag

Application Kit Classes: Control 2-191

takeDouble ValueFrom:
- takeDouble ValueFrom:sender

Sets the receiving Control's double-precision floating-point value to the value obtained
by sending a double Value message to sender.

This method can be used in action messages between Controls. It permits one Control
(sender) to affect the value of another Control (the receiver) by sending this method in
an action message to the receiver. For example, a TextField can be made the target of
a Slider. Whenever the Slider is moved, it will send a takeDoubleValueFrom:
message to the TextField. The TextField will then get the Slider's floating-point value,
tum it into a text string, and display it, thus tracking the value of the Slider.

See also: - setDoubleValue:, - doubleValue

takeFloatValueFrom:

- takeFloatValueFrom:sender

Sets the receiving Control's single-precision floating-point value to the value obtained
by sending a floatValue message to sender.

See setDouble Value: for an example.

See also: - setFloatValue:, - floatValue

takelntValueFrom:

- takelntValueFrom:sender

Sets the receiving Control's integer value to the value returned by sending an intValue
message to sender.

See setDouble Value: for an example.

See also: - setlntValue:, - intValue

takeStringValueFrom:

- takeStringValueFrom:sender

Sets the receiving Control's character string to a string obtained by sending a
stringValue message to sender.

See setDoubleValue: for an example.

See also: - stringValue, - setStringValue:

2-192 Chapter 2: Class Specifications

target

- target

Returns the target for the Control's action message.

See also: - setTarget:

update

- update

Same as View's update, but also makes sure that calcSize gets performed.

updateCell:

- updateCell:aCeli

If aCell is a cell used to implement this Control, and if autodisplay is on, then draws
the Control; otherwise, sets the needsDisplay and calcSize flags to YES.

updateCellInside:

- updateCellInside:aCeli

If aCeli is a cell used to implement this Control, and if auto display is on, draws the
inside portion of the cell; otherwise sets the needsDisplay flag to YES.

validateEditing

- validateEditing

Causes the value of the field currently being edited (if any) to be absorbed as the value
ofthe Control. Invoked automatically from stringValue, intValue, and others, so that
partially edited field's values will be reflected in the values returned by those methods.

This method doesn't end editing; to do that, invoke Window's endEditingFor: or
abortEditing.

See also: - endEditingFor: (Window)

write:

- write:(NXTypedStream *)stream

Writes the Control to the specified typed stream stream.

Application Kit Classes: Control 2-193

2-194

Font

INHERITS FROM Object

DECLARED IN Font.h

CLASS DESCRIPTION

The Font class provides objects that correspond to PostScript fonts. Each Font object
records a font's name, size, style, and matrix. When a Font object receives a set
message, it establishes its font as the current font in the Window Server's current
graphics state.

For a given application, only one Font object is created for a particular PostScript font.
When the Font class object receives a message to create a new object for a particular
font, it first checks whether one has already been created for that font. If so, it returns
the id of that object; otherwise, it creates a new object and returns its id. This system
of sharing Font objects minimizes the number of objects created. It also implies that
no one object in your application can know whether it has the only reference to a
particular Font object. Thus, Font objects shouldn't be freed; Font's free method
simply returns self.

A Font object's fontNum instance variable stores a number (a PostScript user object)
that refers to the actual font dictionary within the Window Server. You shouldn't
change the value of this variable.

INSTANCE VARIABLES

Inheritedfrom Object

Declared in Font

name

size

Class

char
float
int
float
int
NXFaceInfo
id
struct jF1ags {

unsigned int
unsigned int
unsigned int

The font's name.

The font's size.

isa;

*name;
size;
style;
*matrix;
fontNum;
*faceInfo;
otherFont;

usedByWS:l;
usedByPrinter: 1;
isScreenFont: 1 ;

fFlags;

Application Kit Classes; Font 2-195

style The font's style.

matrix The font's matrix.

fontNum The user object referring to this font.

faceInfo The font's face information.

otherFont The associated screen font for this font.

fFlags.usedByWS True if the font is stored in the Window Server.

fFlags. usedByPrinter True if the font is stored in the printer.

fFlags.isScreenFont True if the font is a screen font.

METHOD TYPES

Initializing the Class object + initialize
+ useFont:

Creating and freeing a Font object + newFont:size:

Querying the Font object

Setting the font

Archiving

2-196 Chapter 2,' Class Specifications

+ newFont:size:matrix:
+ new Font: size: style: matrix:
-free

-fontNum
- getWidthOf:
- hasMatrix
- matrix
- metrics
-name
- pointSize
- readMetrics:
- screenFont
- style

- set
- setStyle:

- awake
- finishUnarchiving
-read:
- write:

CLASS METHODS

alloc

Disables the inherited alloc method to prevent multiple Font objects from being created
for a single PostScript font. Create Font objects by using newFont:size:style:rnatrix:,
newFont:size:rnatrix:, or newFont:size:. These methods ensure that no more than
one Font object is created for any PostScript font. Returns an error message.

See also: + newFont:size:style:rnatrix:, + newFont:size:rnatrix:, + newFonl:size:

allocFrornZone:

Disables the inherited allocFrornZone: method to prevent multiple Font objects from
being created for a single PostScript font. Create Font objects by using
newFont:size:style:rnatrix:, newFont:size:rnatrix:, or newFont:size:. These
methods ensure that no more than one Font object is created for any PostScript font.
Returns an error message.

See also: + newFont:size:style:rnatrix:, + newFont:size:rnatrix:, + newFont:size:

initialize

+ initialize

Initializes the Font class object. The class object receives an initialize message before
it receives any other message. You never send an initialize message directly.

See also: + initialize (Object)

newFont:size:

+ newFont:(const char *)JontName size:(float)!ontSize

Returns a Font object for fontJontName of sizeJontSize. This method invokes the
newFont:size:style:rnatrix: method with the style set to 0 and the matrix set to
NX_FLIPPEDMATRIX.

See also: + newFont:size:style:rnatrix:, + newFont:size:rnatrix:

Application Kit Classes: Font 2-197

newFont:size:matrix:
+ newFont:(const char *)fontName

size: (float)fontSize
matrix:(const float *)fontMatrix

Returns a Font object for fontfontName of sizefontSize. This method invokes the
newFont:size:style:matrix: method with the style set to O.

See also: + newFont:size:style:matrix:, + newFont:size:

newFont:size:style:matrix:
+ newFont:(const char *)fontName

size:(float)fontSize
style: (int)fontStyle
matrix:(const float *)fontMatrix

Returns a Font object for fontfontName, of sizefontSize, and matrixfontMatrix.
fontStyle is currently ignored. If an appropriate Font object was previously created, it's
returned; otherwise, a new one is created and returned. If an error occurs, this method
returns nil. This is the designated new ..• method for the Font class.

There are two constants available for thefontMatrix parameter:

• NX_IDENTITYMATRIX. Use the identity matrix.

• NX_FLIPPEDMATRIX. Use a flipped matrix. (Appropriate for a flipped View
like the Text object.)

The fontStyle parameter is stored in the Font object, and is preserved by the
FontManager's convertFont: method, but is not used by the Application Kit. It can be
used to store application-specific font information.

Note: If this method is invoked from a subclass (through a message to super), a new
object is always created. Thus, your subclass should institute its own system for
sharing Font objects.

See also: + newFont:size:matrix:, + newFont:size:

2-198 Chapter 2: Class Specifications

useFont:

+ useFont:(const char *)fontName

Registers that the font identified by fontName is used in the document. Returns self.

The Font class object keeps track of the fonts that are being used in a document. It does
this by registering the font whenever a Font object receives a set message. When a
document is called upon to generate a conforming PostScript language version of its
text (such as during printing), the Font class provides the list of fonts required for the
% % DocumentFonts comment. (See Document Structuring Conventions by Adobe
Systems Inc.)

The useFont: method augments this system by providing a way to register fonts that
are included in the document but not set using Font's set method. Send a useFont:
message to the class object for each font of this type. Returns self.

See also: - set

INSTANCE METHODS

awake

-awake

Reinitializes the Font object after it's been read in from a stream. This method makes
sure that the Font object doesn't assume it has data cached in the Window Server.

An awake message is automatically sent to each object of an application after all
objects of that application have been read in. You never send awake messages directly.
The awake message gives the object a chance to complete any initialization that read:
couldn't do. If you override this method in a subclass, the subclass should send this
message to its superclass:

[super awake 1 ;

Returns self.

See also: - read:, - write:, - tinishUnarchiving

finish U narc hiving

- tinishUnarchiving

A tinishUnarchiving message is sent after the Font object has been read in from a
stream. This method checks if a Font object for the particular PostScript font already
exists. If so, self is freed and the existing object is returned.

See also: - read:, - write:, - awake

Application Kit Classes: Font 2-199

fontNum
- (int)fontNum

Returns the PostScript user object that corresponds to this font. The Font object must
set the font in the Window Server before this method will return a valid user object.
Sending a Font object the set message sets the font in the Window Server. The
fontNum method returns 0 if the Font object hasn't previously received a set message
or if the font couldn't be set. >

See also: - set, DPSDefineUserObjectO

free
- free

Has no effect. Since only one Font object is allocated for a particular font, and since
you can't be sure that you have the only reference to a particular Font object, a Font
object shouldn't be freed.

getWidthOf:
- (float)getWidthOf:(const char *)string

Returns the width of string using this font. This method has better performance than
the Window Server routine PSstringwidthO.

hasMatrix

- (BOOL)hasMatrix

Returns YES if the Font object's matrix is different from the identity matrix,
NX_IDENTITYMATRIX; otherwise, returns NO.

See also: + newFont:size:style:matrix:, - matrix

matrix
- (const float *)matrix

Returns a pointer to the matrix for this font.

See also: - hasMatrix

2-200 Chapter 2,' Class Specifications

metrics
- (NXFontMetrics *)metrics

Returns a pointer to the NXFontMetrics record for the font. See the header file
appkit/afm.h for the structure of an NXFontMetrics record.

See also: - readMetrics:

name
- (const char *)name

Returns the name of the font.

pointSize
- (float)pointSize

Returns the size of the font in points.

read:
- read:(NXTypedStream *)stream

Reads the Font object's instance variables from stream. A read: message is sent in
response to archiving; you never send this message.

See also: - write:, - read: (Object)

readMetrics:
- (NXFontMetrics *)readMetrics:(int)flags

Returns a pointer to the NXFontMetrics record for this font. The flags argument
determines which fields of the record will be filled in. flags is built by ORing together
constants such as NX_FONTHEADER, NX_FONTMETRICS, and
NX_FONTWIDTHS. See the header file appkit/afm.h for the complete list of
constants and for the structure of the NXFontMetrics record.

See also: - metrics

screenFont
- screenFont

Provides the screen font corresponding to this font. If the receiver represents a printer
font, this method returns the Font object for the associated screen font (or nil if one
doesn't exist). If the receiver represents a screen font, it simply returns self.

Application Kit Classes: Font 2-201

set
-set

Makes this font the current font in the current graphics state. Returns self.

When a Font object receives a set message, it registers with the Font class object that
its PostScript font has been used. In this way, the Application Kit, when called upon to
generate a conforming PostScript language document file, can list the fonts used within
a document. (See Document Structuring Conventions by Adobe Systems Inc.) If the
application uses fonts without sending set messages (say through including an BPS
file), such fonts must be registered by sending the class object a useFont: message.

See also: + useFont:

setStyle:
- setStyle:(int)aStyle

Sets the Font's style. Setting a style isn't recommended but is minimally supported
a Font object's style isn't interpreted in any way by the Application Kit. You can use
it for your own non-PostScript language font styles (a drop-shadow style, for example).

Be very careful using this method since it causes the Font to stop being shared. You
must reassign the pointer to the Font to the return value of setStyle:.

font = [font setStyle:12];

Returns self.

See also: - style

style
- (int)style

Returns the style of the font. For Font objects created by the Application Kit, this
method returns O.

See also: - setStyle:

write:
- write:(NXTypedStream *)stream

Writes the Font object's instance variables to stream. A write: message is sent in
response to archiving; you never send this message directly.

See also: - read:, - write: (Object)

2-202 Chapter 2: Class Specifications

CONSTANTS AND DEFINED TYPES

/* Flipped matrix */
#define NX IDENTITYMATRIX
#define NX FLIPPEDMATRIX

/* Space characters */
#define NX FIGSPACE

/* Font information */

((float *) 0)
((float *) -1)

((unsigned short)Ox80)

typedef struct NXFaceInfo
NXFontMetrics *fontMetrics; /* Information from afm file. */

/* Which font info is present. */

/* Keeps track of font usage for

int flags;
struct fontFlags {

Conforming PS */
unsigned int usedInDoc:1; /* Has font been used in document?*/
unsigned int usedInPage:1;
unsigned int usedInSheet:1;

unsigned int _PADDING: 13;
fontFlags;

struct NXFaceInfo *nextFInfo;
NXFaceInfo;

/*
/*

Has font been used in page?
Has font been used in sheet?
(There can be more than one
page printed on a sheet of
paper.) */

/* Next record in list. */

*/

Application Kit Classes: Font 2-203

2-204

FontManager

INHERITS FROM Object

DECLARED IN FontManager.h

CLASS DESCRIPTION

The FontManager is the center of activity for font conversion. It accepts messages from
font conversion user-interface objects (such as the Font menu or the Font panel) and
appropriately converts the current font in the selection by sending a changeFont:
message up the responder chain. When an object receives a changeFont: message, it
should query the FontManager (by sending it a convertFont: message), asking it to
convert the font in whatever way the user has specified. Thus, any object containing a
font that can be changed should respond to the changeFont: message by sending a
convertFont: message back to the FontManager for each font in the selection.

To use the FontManager, you simply insert a Font menu into your application's menu.
This is most easily done with Interface Builder, but, alternatively, you can send a
getFontMenu: message to the FontManager and then insert the menu that it returns
into the application's main menu. Once the Font menu is installed, your application
automatically gains the functionality of both the Font menu and the Font panel.

The FontManager can be used to convert a font or find out the attributes of a font. It
can also be overridden to convert fonts in some application-specific manner. The
default implementation of font conversion is very conservative: The font isn't
converted unless all traits of the font can be maintained across the conversion.

INSTANCE VARIABLES

Inherited/rom Object Class isa;

Declared in FontManager id panel;
id menu;
SEL action;
int whatToDo;
NXFontTraitMask traitToChange;
id selFont;
struct _fmFlags {

unsigned int multipleFont: 1;
unsigned int disabled: 1;

fmFlags;

panel The Font panel.

menu The Font menu.

Application Kit Classes: FontManager 2-205

action

whatToDo

traitToChange

selFont

fmFlags.multipleFont

fmFlags.disabled

METHOD TYPES

Creating the FontManager

Converting fonts

Setting parameters

Querying parameters

Target and action methods

Archiving the FontManager

2-206 Chapter 2: Class Specifications

The action to send.

What to do when a convertFont: message is
received.

The trait to change if whatToDo ==
NX_CHANGETRAIT.

The font of the current selection.

True if the current selection has multiple fonts.

True if the Font panel and menu are disabled.

+ new

- convertFont:
- convertWeight:of:
- convert:toFamily:
- convert:toHaveTrait:
- convert:toNotHaveTrait:
- findFont:traits:weight:size:
- getFamily:traits:weight:size:ofFont:

- setAction:
+ setFontPanelFactory:
- setSeIFont:isMultiple:
- setEnabled:

- action
- availableFonts
- getFontMenu:
- getFontPanel:
- isMultiple
- selFont
- isEnabled

- modifyFont:
- addFontTrait:
- removeFontTrait:
- modifyFontViaPanel:
- orderFrontFontPanel:
- sendAction

- finishUnarchiving

CLASS METHODS

alloc

Disables the inherited alloc method to prevent multiple FontManagers from being
created. There's only one FontManager object for each application; you access it using
the new method. Returns an error message.

See also: + new

allocFrornZone:

Disables the inherited allocFrornZone method to prevent multiple FontManagers from
being created. There's only one FontManager object for each application; you access
it using the new method. Returns an error message.

See also: + new

new

+ new

Returns a FontManager object. An application has no more than one FontManager
object, so this method either returns the previously created object (if it exists) or creates
a new one. This is the designated new method for the FontManager class.

setFontPanelFactory:
+ setFontPanelFactory:factoryI d

Sets the class object that will be used to create the FontPanel object when the user
chooses Font Panel from the Font menu and no Font panel has yet been created. Unless
you use this method to specify another class, the FontPanel class will be used.

INSTANCE METHODS

action
- (SEL)action

Returns the action that's sent to the first responder when the user selects a new font
from the Font panel or from the Font menu.

See also: - setAction:

Application Kit Classes: FontManager 2-207

addFontTrait:
- addFontTrait:sender

Causes the FontManager's action message (by default, changeFont:) to be sent up the
responder chain. When the responder replies with a convertFont: message, the font is
converted to add the trait specified by sender.

Before the action message is sent up the responder chain, the FontManager sets its
traitToChange variable to the value returned by sending sender a seiectedTag
message. The FontManager also sets its whatToDo variable to NX_ADDTRAIT.
When the convertFont: message is received, the FontManager converts the supplied
font by sending itself a convert:toHaveTrait: message.

See also: - removeFontTrait:, - convertFont:, - convert:toHaveTrait:,
- seiectedTag (Control)

avaiiableFonts
- (char **)availableFonts

Returns by reference a NULL-terminated list of NULL-terminated PostScript font
names of all the fonts available for use by the Window Server. The returned names are
suitable for creating new Fonts using the newFont:size: class method of the Font class.
The fonts are not in any guaranteed order, but no font name is repeated in the list. It's
the sender's responsibility to free the list when finished with it.

See also: + newFont:size: (Font)

convert:toFamily:
- convert:fontObj toFamily:(const char *)family

Returns a Font object whose traits are the same as those offontObj except as specified
by family. If the conversion can't be made, the method retumsfontObj itself. This
method can be used to convert a font, or it can be overridden to convert fonts in a
different manner.

See also: - convert:toHaveTrait:, convertWeight:of:

2-208 Chapter 2: Class Specifications

convert:toHaveTrait:

- convert:jontObj toHaveTrait:(NXFontTraitMask)traits

Returns a Font object whose traits are the same as those ofJontObj except as altered by
the addition of the traits specified by traits. Of course, conflicting traits (such as
NX_CONDENSED and NX_EXPANDED) have the effect of turning each other off.
If the conversion can't be made, the method returns jontObj itself. This method can be
overridden to convert fonts in a different manner.

See also: - convert:toNotHaveTrait:, - convert:toFamily:, - convertWeight:of:

convert:toNotHaveTrait:

- convert:jontObj toNotHaveTrait:(NXFontTraitMask)traits

Returns a Font object whose traits are the same as those ofJontObj except as altered by
the removal of the traits specified by traits. lithe conversion can't be made, the method
returnsjontObj itself. This method can be overridden to convert fonts in a different
manner.

See also: - convert:toHaveTrait:, - convert:toFamily:, - convertWeight:of:

convertFont:

- convertFont:jontObj

ConvertsjontObj according to the user's selections from the Font panel or menu.
Whenever you receive a changeFont: message from the FontManager, you should send
a convertFont: message for each font in the selection.

This method determines what to do to the jontObj by checking the whatToDo instance
variable and applying the appropriate conversion method. Returns the converted font.

convertWeight:of:

- convertWeight:(BOOL)upFlag of:jontObj

Attempts to increase (if upFlag is YES) or decrease (if upFlag is NO) the weight of the
font specified by jontObj. If it can, it returns a new font object with the higher (or
lower) weight. If it can't, it returnsjontObj itself. By default, this method converts the
weight only if it can maintain all of the traits ofthe originaljontObj. This method can
be overridden to convert fonts in a different manner.

See also: - convert:toHaveTrait:, - convert:toNotHaveTrait:, - convert:toFamily:

Application Kit Classes: FontManager 2-209

findFont:traits:weight:size:

- findFont:(const char *)jamily
traits: (NXFontTraitMask)traits
weight: (int)weight
size: (float)size

If there's a font on the system with the specifiedjamily, traits, weight, and size, then it's
returned; otherwise, nil is returned. If NX_BOLD or NX_ UNBOLD is one of the
traits, weight is ignored.

finish U narchiving

- finish U narchiving

Finishes the unarchiving task by instantiating the one application-wide instance of the
FontManager class if necessary.

getFamily:traits:weight:size:ofFont:

- getFamily:(const char **)jamily
traits: (NXFontTraitMask *)traits
weight:(int *)weight
size: (float*)size
ofFont:jontObj

For the given font objectjontObj, copies the font family, traits, weight, and point size
information into the storage referred to by this method's arguments.

getFontMenu:

- getFontMenu:(BOOL)create

Returns a menu suitable for insertion in an application's menu. The menu contains an
item that brings up the Font panel as well as some common accelerators (such as Bold
and Italic). If the create flag is YES, the menu is created if it doesn't already exist.

See also: - getFontPanel:

2-210 Chapter 2: Class Specifications

getFontPanel:

- getFontPanel:(BOOL)create

Returns the FontPanel that will be used when the user chooses the Font Panel command
from the Font menu. If the create flag is YES, the FontPanel is created if it doesn't
already exist.

Unless you've specified a different class (by sending a setFontPanelFactory: message
to the FontManager class before creating the FontManager object), an object of the
FontPanel class is returned.

See also: - getFontMenu:

isEnabled

- (BOOL)isEnabled

Reports whether the controls in the Font panel and the commands in the Font menu are
enabled or disabled.

See also: - setEnabled:

isMultiple

- (BOOL)isMultiple

Returns whether the current selection has multiple fonts.

modifyFont:

- modifyFont:sender

Causes the FontManager's action message (by default, changeFont:) to be sent up the
responder chain. When the responder replies with a convertFont: message, the font is
converted in a way specified by the selected Tag of the sender of this message. The
Larger, Smaller, Heavier, and Lighter commands in the Font menu invoke this method.

See also: - addFontTrait:, - removeFontTrait:

Application Kit Classes: FontManager 2-211

modifyFontViaPanel:
- modifyFontViaPanel:sender

Causes the FontManager's action message (by default, changeFont:) to be sent up the
responder chain. When the receiver replies with a convertFont: message, the
FontManager sends a panelConvertFont: message to the FontPanel to complete the
conversion.

This message is almost always sent by a Control in the Font panel itself. Usually, the
panel uses the FontManager's convert routines to do the conversion based on the
choices the user has made.

See also: - panelConvertFont: (FontPanel)

orderFrontFontPanel:
- orderFrontFontPanel:sender

Sends orderFront: to the FontPanel. If there's no Font panel yet, a new message is
sent to the FontPanel class object, or to the object you specified with the FontManager's
setFontPanelFactory: class method.

removeFontTrait:
- removeFontTrait:sender

Causes the FontManager's action message (by default, changeFont:) to be sent up the
responder chain. When the responder replies with a convertFont: message, the font is
converted to remove the trait specified by sender.

Before the action message is sent up the responder chain, the FontManager sets its
traitToChange variable to the value returned by sending sender a selected Tag
message. The FontManager also sets its whatToDo variable to NX_REMOVETRAIT.
When the convertFont: message is received, the FontManager converts the supplied
font by sending itself a convert:toNotHaveTrait: message.

See also: - convertFont:, - convert:toHaveTrait:, - selectedTag (Control)

2-212 Chapter 2: Class Specifications

selFont

- selFont

Returns the last font set with setSeIFont:isMultiple:.

If you receive a changeFont: message from the FontManager and want to find out what
font the user has selected from the Font panel, use the following (assuming
theFontManager is the application's FontManager object):

selectedFont = [theFontManager convertFont: [theFontManager selFont]]

See also: - setSeIFont:isMultiple:, - modifyFont:

sendAction

- send Action

Sends the FontManager's action message (by default, changeFont:) up the responder
chain. The sender is always the FontManager object regardless of which user-interface
object initiated the sending of the action. The whatToDo and possibly traitToChange
variables should be set appropriately before sending a sendAction message.

You rarely, if ever, need to send a sendAction message or to override this method. The
message is sent by the target/action messages sent by different user-interface objects
that allow users to manipUlate the font of the current text selection (for example, the
Font panel and the Font menu).

See also: - setAction:

setAction:

- setAction:(SEL)aSelector

Sets the action that's sent when the user selects a new font from the Font panel or from
the Font menu. The default is changeFont:.

See also: - send Action

Application Kit Classes: FontManager 2-213

setEnabled:

- setEnabled:(BOOL)jlag

Sets whether the controls in the Font panel and the commands in the Font menu are
enabled or disabled. By default, these controls and commands are enabled. Even when
disabled, the Font panel allows the user to preview fonts. However, when the Font
panel is disabled, the user can't apply the selected font to text in the application's main
window.

You can use this method to disable the user interface to the font selection system when
its actions would be inappropriate. For example, you might disable the font selection
system when your application has no document window.

See also: - isEnabled

setSeIFont:isMultiple:

- setSelFontifontObj isMultiple:(BOOL)jlag

Sets the font that the Font panel is currently manipulating. An object containing a
document should send this message every time its selection changes. If the selection
contains multiple fonts,jlag should be YES.

An object shouldn't send this message as part of its handling of a changeFont:
message, since doing so will cause subsequent convertFont: messages to have no
effect. This is because if you are converting a font based on what is set in the Font panel
and you reset what's in the panel (by sending a setSeIFont:isMultiple: message), the
FontManager can no longer sensibly convert the font since the information necessary
to convert it has been lost.

See also: - selFont

2-214 Chapter 2: Class Specifications

CONSTANTS AND DEFINED TYPES

typedef unsigned int NXFontTraitMask;

/*

* Font Traits. This list should be kept small since the more traits
* that are assigned to a given font, the harder it will be to map it
* to some other family. Some traits are mutually exclusive, such as
* NX EXPANDED and NX CONDENSED.
*/

#define NX ITALIC OxOOOOOOOl
#define NX BOLD OxOOOOOOO2
#define NX UNBOLD OxOOOOOOO4
#define NX NONSTANDARDCHARSET OxOOOOOOO8
#define NX NARROW OxOOOOOO1O
#define NX EXPANDED OxOOOOOO20
#define NX CONDENSED OxOOOOOO40
#define NX SMALLCAPS OxOOOOOO80
#define NX POSTER OxOOOOO1OO
#define NX COMPRESSED OxOOOOO200

/* whatToDo values */
#define NX NOFONTCHANGE 0
#define NX VIAPANEL 1
#define NX ADD TRAIT 2
#define NX SIZEUP 3

#define NX SIZEDOWN 4
#define NX HEAVIER 5

#define NX LIGHTER 6

#define NX REMOVETRAIT 7

Application Kit Classes: FontManager 2-215

2-216

FontPanel

INHERITS FROM Panel : Window : Responder: Object

DECLARED IN FontPanel.h

CLASS DESCRIPTION

The FontPanel is a user-interface object that lets the user preview fonts and change the
font of the text that's selected in the application's main window. The actual changes
are made through conversion messages sent to the FontManager. There is only one
FontPanel object for each application.

In general, you add the facilities of the FontPanel (and of the other components of the
font conversion system: the FontManager and the Font menu) to your application
through Interface Builder. You do this by dragging a Font menu into one of your
application's menus. At runtime, when the user chooses the Font Panel command for
the first time, the FontPanel object will be created and hooked into the font conversion
system. You can also create (or access) the FontPanel through either of the new ...
methods.

A FontPanel can be customized by adding an additional View object or hierarchy of
View objects (see setAccessoryView:). If you want the FontManager to instantiate a
panel object from some class other than FontPanel, use the FontManager's
setFontPanelFactory: method.

INSTANCE VARIABLES

Inherited/rom Object Class isa;

Inherited/rom Responder id nextResponder;

Inherited/rom Window NXRect frame;
id contentView;
id delegate;
id firstResponder;
id lastLeftHit;
id lastRightHit;
id counterpart;
id fieldEditor;
int winEventMask;
int windowNum;
float backgroundGray;
struct _ wFlags wFlags;
struct _ wFlags2 wFlags2;

Inherited/rom Panel (none)

Application Kit Classes: FontPanel 2-217

Declared in FontPanel

faces

families

preview

current

size

sizes

manager

selFont

selMetrics

curTag

accessory View

currentBox

setButton

separator

sizeTitle

2-218 Chapter 2: Class Specifications

id faces;
id families;
id preview;
id current;
id size;
id sizes;
id manager;
id selFont;
NXFontMetrics *seIMetrics;
int curTag;
id accessoryView;
id setButton;
id separator;
id sizeTitle;
char *lastPreview;
struct jpFlags {

unsigned int multipleFont: 1;
unsigned int dirty: 1;

fpFlags;

The Typeface browser.

The Family browser.

The preview field.

The current font field.

The Size field.

The Size browser.

The FontManager object.

The font of the current selection.

The metrics of selFont.

The tag of the currently displayed font.

The application-customized area.

The box displaying the current font.

The Set button.

The line separating buttons from upper part of
panel.

The title over the Size field and Size browser.

lastPreview The last font previewed.

fpFlags.multipleFont True if selection has multiple fonts.

fpFlags.dirty True if panel was updated while not visible.

METHOD TYPES

Creating a FontPanel + new
+ new Content: style: backing: buttonMask:defer:

Setting the font - panelConvertFont:
- setPaneIFont:isMultiple:

Configuring the FontPanel - accessoryView
- setAccessoryView:
- setEnabled:
- isEnabled
- works WhenModal

Editing the FontPanel's fields - textDidGetKeys:isEmpty:
- textDidEnd:endChar:

Displaying the FontPanel - orderWindow:relativeTo:

Resizing the FontPanel - windowDidResize:
- windowWillResize:toSize:

CLASS METHODS

alloc

Disables the inherited alloc method to prevent multiple FontPanels from being created.
There's only one FontPanel object for each application; you access it through either of
the new ... methods. Returns an error message.

See also: + new, + newContent:style:backing:buttonMask:defer:

allocFromZone:

Disables the inherited allocFromZone method to prevent multiple FontPanels from
being created. There's only one FontPanel object for each application; you access it
through either of the new ... methods. Returns an error message.

See also: + new, + newContent:style:backing:buttonMask:defer:

Application Kit Classes: FontPanel 2-219

new

+ new

Returns a FontPanel object by invoking the
newContent:style:backing:buttonMask:defer: method. An application has no more
than one Font panel, so this method either returns the previously created object (if it
exists) or creates a new one.

See also: + new

newContent:style: backing: buttonMask:defer:

+ newContent:(const NXRect *)contentRect
style: (int)aStyle
backing:(int)bujferingType
buttonMask:(int)mask
defer: (BOOL)flag

Returns a FontPanel object. An application has no more than one Font panel, so this
method either returns the previously created object (if it exists) or creates a new one.
The arguments are ignored. This is the designated new ... method of the FontPanel
class.

See also: + new

INSTANCE METHODS

accessory View

- accessoryView

Returns the application-customized View set by setAccessoryView:.

See also: - setAccessoryView:

isEnabled

- (BOOL)isEnabled

Reports whether the Font panel's Set button is enabled.

See also: - setEnabled:

2-220 Chapter2: Class Specifications

orderWindow:relativeTo:
- orderWindow:(int)place relativeTo:(int)otherWin

Repositions the panel in the screen list and updates the panel if it was changed while
not visible. place can be one of:

NX_ABOVE
NX_BELOW
NX_OUT

If it's NX_OUT, the panel is removed from the screen list and otherWin is ignored. If
it's NX_ABOVE or NX_BELOW, otherWin is the window number of the window that
the Font Panel is to be placed above or below. If otherWin is 0, the panel will be placed
above or below all other windows.

See also: - orderWindow:relativeTo: (Window), - makeKeyAndOrderFront:
(Window)

panelConvertFont:

- panelConvertFont:jontObj

Returns a Font object whose traits are the same as those ofjontObj except as specified
by the users choices in the Font Panel. If the conversion can't be made, the method
retumsjontObj itself. The FontPanel makes the conversion by using the
FontManager's methods that convert fonts. A panelConvertFont: message is sent by
the FontManager whenever it needs to convert a font as a result of user actions in the
Font panel.

setAccessoryView:

- setAccessory View:a View

Customizes the Font panel by adding aView above the action buttons at the bottom of
the panel. The FontPanel is automatically resized to accommodate aView.

aView should be the top View in a view hierarchy. If aView is nil, any existing
accessory view is removed. If aView is the same as the current accessory view, this
method does nothing. Returns the previous accessory view or nil if no accessory view
was previously set.

See also: - accessoryView

Application Kit Classes: FontPanel 2-221

setEnabled:

- setEnabled:(BOOL)jlag

Sets whether the Font panel's Set button is enabled (the default state). Even when
disabled, the Font panel allows the user to preview fonts. However, when the Font
panel is disabled, the user can't apply the selected font to text in the application's main
window.

You can use this method to disable the user interface to the font selection system when
its actions would be inappropriate. For example, you might disable the font selection
system when your application has no document window.

See also: - isEnabled

setPaneIFont:isMultiple:

- setPanelFont:jontObj isMultiple:(BOOL)jlag

Sets the font that the FontPanel is currently manipUlating. This message should only
be sent by the FontManager. Do not send a setPaneIFont:isMultiple: message
directly.

textDidEnd:endChar:

- textDidEnd:textObject endChar:(unsigned short)endChar

A textDidEnd:endChar: message is sent to the FontPanel object when editing is
completed in the Size field. This method updates the Size browser and the preview
field.

See also: - textDidGetKeys:isEmpty:, - textDidEnd:endChar: (Text)

textDidGetKeys:isEmpty:

- textDidGetKeys:textObject isEmpty:(BOOL)jlag

A textDidGetKeys:isEmpty: message is sent to the FontPanel object whenever the
Size field is typed in or emptied.

See also: - textDidEnd:endChar:, - textDidGetKeys:isEmpty: (Text)

windowDidResize:

- windowDidResize:sender

Adjusts the width of the browser columns and the accessory view in response to
window resizing.

See also: - windowDidResize: (Window)

2-222 Chapter 2: Class Specifications

windowWillResize:toSize:

- windowWiIIResize:sender toSize:(NXSize *)jrameSize

Keeps the FontPanel from being sized too small to accommodate the browser columns
and accessory view.

See also: - windowWiIIResize:toSize: (Window)

works WhenModal

- (BOOL)worksWhenModal

Returns whether the FontPanel will operate while a modal panel is displayed within the
application. By default, this method returns YES.

See also: - worksWhenModal (Panel)

CONSTANTS AND DEFINED TYPES

/* Tags of View objects in the FontPanel */

#define NX FPPREVIEWFIELD 128

#define NX FPSIZEFIELD 129

#define NX FPREVERTBUTTON 130

#define NX FPPREVIEWBUTTON 131

#define NX FPSETBUTTON 132

#define NX FPSIZETITLE 133

#define NX FPCURRENTFIELD 134

Application Kit Classes: FontPanel 2-223

2-224

Form

INHERITS FROM Matrix : Control : View : Responder: Object

DECLARED IN appkit/Form.h

CLASS DESCRIPTION

A Form is a Control that contains titled entries into which a user can type data values.
An example:

Name:
Address:
Telephone:

These entries are indexed starting with zero as the topmost entry. A mouse click event
in an entry starts text editing in that entry. A mouse click event outside the Form or a
RETURN key event while editing an entry causes the action of the entry to be sent to
the target of the entry if there is such an action; otherwise the action of the Form is sent
to the target of the Form. If the user presses the Tab key, the next entry is selected.

INSTANCE VARIABLES

Inherited from Object Class isa;

Inherited from Responder id nextResponder;

Inheritedfrom View NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct _ vF1ags vF1ags;

Inherited from Control int tag;
id cell;
struct _conFlags conFlags;

Application Kit Classes: Form 2-225

Inherited/rom Matrix id cellList;
id target;
SEL action;
id selectedCell;
int selectedRow;
int selectedCol;
int numRows;
int numCols;
NXSize cell Size;
NXSize intercell;
float background Gray;
float cellBackgroundGray;
id font;
id proto Cell;
id cellClass;
id nextText;
id previousText;
SEL doubleAction;
SEL errorAction;
id textDelegate;
struct _rnFlags mFlags;

Declared in Form (none)

METHOD TYPES

Setting the Cell Class + setCellClass:

Initializing a Form Object - initFrame:

Laying Out the Form - addEntry:
- addEntry:tag:targetaction:
- insertEntry:at
- insertEntry:at:tag:target:action:
- removeEntry At:
- setInterline:

Resizing the Form - calcSize
- setEntryWidth:
- sizeTo::
- sizeToFit

2-226 Chapter 2: Class Specifications

Setting FOTIn Values - double ValueAt:
- floatValueAt:
- intValueAt:
- setDouble Value: at:
- setFloatValue:at:
- setIntValue:at:
- setStringValue:at:
- stringValueAt:

Returning the Index - findIndex WithTag:
- selectedlndex

Modifying Text Attributes - setFont:
- setTextAlignment:
- setTextFont:
- setTitle:at:
- setTitleAlignment:
- setTitleFont:
- titleAt:

Editing Text - selectTextAt:

Modifying Graphic Attributes - setBezeled:
- setBordered:

Displaying - drawCellAt:

Target and Action - setAction:at:
- setTarget:at:

Assigning a Tag - setTag:at:

CLASS METHODS

setCellClass:

+ setCellClass:classld

This method initializes the subclass of Cell used in the FOTIn. The default is FormCell.
Use this when you subclass FOTInCell to modify the behavior of a Form:, by sending
this method with the class id of your subclass as the argument.

Application Kit Classes: Form 2-227

INSTANCE METHODS

addEntry:

- addEntry:(const char *)title

Adds a new entry with the given title at the bottom of the Form. Returns the FormCell
used to implement the entry. Does not redraw the Form even if autodisplay is on.

addEntry:tag:target:action:

- addEntry:(const char *)title
tag: (int)anlnt
target:anObject
action: (SEL)aSelector

Adds a new entry with the given title at the bottom of the Form. The tag, target, and
action of the corresponding entry are set to the given values. Returns the FormCell used
to implement the entry. Does not redraw the Form even if autodisplay is on.

calcSize

- calcSize

Invoke this method before drawing after you have modified any of the cells in the Form
in such a way that the size of the cells or the size of the title part of the cells has changed.
Automatically invoked before any drawing is done after a setTitle:at:, setFont:,
setBezeled: or some other similar method has been invoked.

See also: - validateSize: (Matrix)

double ValueAt:

- (double)double ValueAt:(int)index

Returns the entry at position index, converted to a float by the C function atofO then
cast as a double.

drawCellAt:

- drawCellAt:(int)index

Displays the entry at the specified index in the Form.

2-228 Chapter 2: Class Specifications

findlndexWithTag:

- (int)findlndexWithTag:(int)aTag

Returns the index which has the corresponding tag, -1 otherwise.

See also: - findCellWithTag: (Matrix)

floatValueAt:

- (float)floatValueAt:(int)index

Returns the entry at position index, converted to a float by the C function atofO.

initFrame

- initFrame:(const NXRect *)frameRect

Initializes and returns the receiver, a new instance of Form, with default parameters in
the given frame. The default Form has no entries. Newly created entries will have the
following default characteristics: Titles will be right justified, text will be left justified
with bezeled border, background colors will be white, text color black, fonts will be the
system font 12.0, the interline spacing will be 1.0, and the action selectors will be
NULL. This method is the designated initializer for Form; override it if you create a
subclass of Form that performs its own initialization.

Note that Form doesn't override the Matrix class's designated initializers
initFrame:mode:ceIlClass:numRows:numCols: or
initFrame:mode:prototype:numRows:numCols:. Don't use those methods to
initialize a new instance of Form.

insertEntry:at:

- insertEntry:(const char *)title at:(int)index

Inserts a new entry with the given title at position index. Returns the FormCell used to
implement the entry. Does not redraw the Form even if autodisplay is on.

insertEntry:at:tag:target:action:

- insertEntry:(const char *)title
at: (int)index
tag: (int)anlnt
target:anObject
action: (SEL)aSelector

Inserts a new entry with the given title at position index. The tag, target, and action of
the corresponding entry are set to the given values. Returns the FormCell used to
implement the entry. Does not redraw the Form even if autodisplay is on.

Application Kit Classes: Form 2-229

intValueAt:
- (int)intValueAt:(int)index

Returns the entry at position index converted to an integer by the C function atoiO.

rernoveEntry At:

- removeEntryAt:(int)index

Removes the entry at the given index and disposes of the associated memory. Note that
if you use Matrix's removeRowAt:andFree: method to remove an entry, the widths of
the titles in the entries will not be readjusted, so use this method instead. Does not
redraw the Form even if autodisplay is on. Returns self.

selectTextAt:

- selectTextAt:(int)index

Enters text editing on the entry at index and selects all of its contents. Do not invoke
this function before inserting your Form in a view hierarchy with a window at the root;
it will have no effect. Returns the id of the Cell located at index.

selectedlndex

- (int)selectedIndex

Returns the index of the currently selected entry if any, -1 otherwise. The currently
selected entry is the one being edited or, if none of the entries is being edited, then it's
the last edited entry.

setAction:at:

- setAction:(SEL)aSelector at:(int)index

Sets the action of the FormCell associated with the entry at position index in the Form
to aSelector. Returns self.

setBezeled:

- setBezeled:(BOOL)jlag

Sets whether to draw a bezeled frame around the text in the Form (YES is the default).
Redraws the Form if autodisplay is on. Returns self.

setBordered:

- setBordered:(BOOL)jlag

Sets whether to draw a I-pixel black frame around the text in the Form (rather than the
default bezel). Redraws the Form if autodisplay is on. Returns self.

2-230 Chapter 2: Class Specifications

setDouble Value:at:

- setDouble Value:(double)aDouble at:(int)index

Sets the text of the entry at position index to aDouble. Redraws the entry. Returns self.

setEntryWidth:

- setEntryWidth:(NXCoord)width

Sets the width of all the entries (including the title part). You should invoke sizeToFit
after invoking this method. Returns self.

setFloatValue:at:

- setFloatValue:(float)aFloat at:(int)index

Sets the text of the entry at position index to aFloat. Redraws the entry. Returns self.

setFont:

- setFont:jontObj

Sets the font used to draw both the titles and the editable text in the Form. It's generally
best to keep the title font and the text font the same (or at least the same size); therefore,
this method is preferred to setTitleFont: and setTextFont:. Redraws the Form if
autodisplay is on. Returns self.

setIntValue:at:

- setIntValue:(int)anInt at:(int)index

Sets the text of the entry at position index to anInt. Returns self.

setInterline:

- setInterline: (NXCoord)spacing

Changes the value of the interline spacing. Does not redraw the matrix even if
autodisplay is on. Returns self.

setString Value:at:

- setStringValue:(const char *)aString at:(int)index

Sets the text of the entry at position index to a copy of aString. Thc entry is redrawn.
Returns self.

Application Kit Classes: Form 2-231

setTag:at:

- setTag:(int)an/nt at:(int)index

Sets the tag of the FormCell associated with the entry at position index in the Form to
an/nt. Returns self.

setTarget:at:

- setTarget:anObject at:(int)index

Sets the target of the FormCell associated with the entry at position index in the Form
to anObject.

setTextAlignment:

- setTextAlignment:(int)mode

Sets the justification mode for the editable text in the Form. mode can be one of three
constants: NX_LEFTALIGNED, NX_CENTERED or NX_RIGHTALIGNED.
Redraws the Form if autodisplay is on, and returns self.

setTextFont:

- setTextFont:fontObj

Sets the font used to draw the editable text in the Form. Redraws the Form if
autodisplay is on, and returns self.

See also: - setFont:

setTitle:at:

- setTitle:(const char *)aString at:(int)index

Changes the title of the entry at position index to aString.

setTitieAlignment:

- setTitieAlignment:(int)mode

Sets the justification mode for titles in the Form. mode can be one of three constants:
NX_LEFTALIGNED, NX_CENTERED or NX_RIGHTALIGNED. Redraws the
Form if autodisplay is on, and returns self.

2-232 Chapter 2: Class Specifications

setTitleFont:

- setTitieFont:fontObj

Sets the font used to draw the titles in the Form. Redraws the Form if autodisplay is on
and returns self.

See also: - setFont:

sizeTo::

- sizeTo:(NXCoord)width :(NXCoord)height

Resizes the entry width to reflect width, then resizes the Form to width and height.
Returns self.

sizeToFit

- sizeToFit

Adjusts the width of the Form so that it s the same as the width of the entries. Adjusts
the height of the Form so that it will just contain all of the cells. Returns self.

See also: - setEntryWidth:

string ValueAt:

- (const char *)stringValueAt:(int)index

Returns a pointer to the text (contents) of the entry at position index.

titleAt:

- (const char *)titleAt:(int)index

Returns a pointer to the title of the entry at position index.

Application Kit Classes: Form 2-233

2-234

FormCell

INHERITS FROM ActionCell : Cell: Object

DECLARED IN appkit/FormCell.h

CLASS DESCRIPTION

This class is used to implement the details of the Form class. Form is a subclass of
Matrix, and this is the cell which goes in that Matrix. The title Cell is used to draw the
title of the FormCell. The titleWidth is the width of the title (in pixels). If it's -1.0,
then the title is autosized to the width of the titieCell. The titleEndPoint is the
coordinate at which the title ends and the editable text begins.

If you want to change the look of a Form, then you should subclass FormCell. When
you do so, remember to implement both drawSelf:in View: and drawlnside:in View:.
The initTextCell: method is the designated initializer for FormCell; override this
method if your subclass performs its own initialization.

INSTANCE VARIABLES

Inheritedfrom Object

Inheritedfrom Cell

Inherited from ActionCell

Declared in FormCell

titleWidth

titleCell

titleEndPoint

Class isa;

char *contents;
id support;
struct _cFlagsl cFlagsl;
struct _cFlags2 cFlags2;

int tag;
id target;
SEL action;

NXCoord title Width;
id titleCel1;
NXCoord titleEndPoint;

The width of the title field.

The cell used to draw the title.

The coordinate that separates the title from the
text area.

Application Kit Classes: FormCell 2-235

METHOD TYPES

Copying, Initializing, and Freeing a FormCell
-copy
- init
- initTextCell:
-free

Detennining the FormCell's Size - calcCellSize:inRect:

Enabling and Disabling the FormCell
- setEnabled:

Modifying the Title - setTitle:
- setTitleAlignment
- setTitleFont:
- setTitle Width:
- title
- titleAlignment
- titleFont
- title Width
- title Width:

Modifying Graphic Attributes - isOpaque

Displaying - drawInside:inView:
- drawSelf:in View:

Managing the Cursor - resetCursorRectin View:

Tracking the Mouse - trackMouse:inRect:ofView:

Archiving - read:
- write:

INSTANCE METHODS

caIcCellSize:inRect:

- calcCellSize:(NXSize *)theSize inRect:(const NXRect *)aRect

Calculates the size of the FormCell assuming it's constrained to fit within aRect.
Returns the size in theSize.

copy

-copy

Creates and returns a copy of the receiving FormCell instance.

2-236 Chapter 2: Class Specifications

drawlnside:in View:

- drawlnside:(const NXRect *)ceIlFrame inView:controlView

Draws only the text inside the FormCell (not the bezels or the title of the FormCell).
This is called from the Control method drawCellInside: (which is called from Cell
setTypeValue: methods). If you subclass FormCell and override drawSelf:inView:
you MUST implement this method as well. Returns self.

drawSelf:in View:

- drawSelf:(const NXRect *)ceIlFrame inView:controlView

Draws the FormCell by sending drawSelf:in View: to the titleCell with the frame
width set to the title Width (if the title Width is -1.0, then the width is calculated), and
then sending drawSelf:inView: to super. Does not invoke [super drawSelf:inView:]
nor does it invoke [self drawlnside:inView:] (it does, however, invoke [super
drawlnside:inView:]). Returns self.

free

init

- free

Frees the storage used by the FormCell (the title Cell) and returns nil.

- init

Initializes and returns the receiver, a new instance of FormCell, with its contents set to
the empty string ("") and its title set to "Field."

initTextCell :

- initTextCell:(const char *)aString

Initializes and returns the receiver, a new instance of FormCell, with its contents set to
the empty string ("") and its title set to aString. This method is the designated initializer
for FormCell.

isOpaque

- (BOOL)isOpaque

Returns YES if the FormCell is opaque, NO otherwise. If the FormCell has a title, then
it's NOT opaque (since the title field is not opaque).

Application Kit Classes: FormCeli 2-237

read:

- read:(NXTypedStream *)stream

Reads the FormCell from the typed stream stream.

resetCursorRect:in View:

- resetCursorRect:(const NXRect *)celIFrame inView:controlView

Sets up an appropriate cursor rectangle in controlView.

setEnabled:

- setEnabled:(BOOL)jlag

Enables or disables the FormCell.

setTitle:

- setTitle:(const char *)aString

Sets the title of the FormCell.

setTitleAlignment:

- setTitieAlignment:(int)mode

Sets the alignment of the title. mode can be one of three constants:
NX_LEFTALIGNED, NX_CENTERED, or NX_RIGHTALIGNED.

setTitieFont:

- setTitleFont:jontObj

Sets the font used to draw the title of the FormCell.

setTitle Width:

- setTitle Width: (NXCoord)width

Sets the width of the title field. Can be "unset"by providing -1.0 as the width.

title

- (const char *)title

Returns the title of the FormCell.

2-238 Chapter 2: Class Specifications

titieAlignment

- (int)titleAlignment

Returns the alignment of the title. The return value will match one of three constants:
NX_LEFTALIGNED, NX_CENTERED, or NX_RIGHTALIGNED.

titleFont

- titleFont

Returns the font used to draw the title of the FormCell.

titleWidth
- (NXCoord)titleWidth

Ifthe width of the title has already been set (i.e., it's not -1.0), then that value is
returned. Otherwise, it's calculated (not constrained to any rectangle) and returned.

title Width:

- (NXCoord)titleWidth:(const NXSize *)aSize

If the title width is already set (i.e., it's not -1.0), then it's returned. Otherwise, the
width is calculated constrained to aSize.

trackMouse:inRect:ofView:

- (BOOL)trackMouse:(NXEvent*)event
inRect:(const NXRect*)aRect
ofView:controLView

Does nothing since clicking in a FormCell causes editing to occur.

write:
- write:(NXTypedStream *)stream

Writes the receiving FormCell to the typed stream stream and returns self.

Application Kit Classes: FormCell 2-239

2-240

Listener

INHERITS FROM Object

DECLARED IN appkit/Listener.h

CLASS DESCRIPTION

The Listener class, with the Speaker class, supports communication between
applications (tasks) through Mach messaging. Mach messages are the standard way of
performing remote procedure calk(RPCs) in the Mach operating system. The Listener
class implements the receiving end of a remote message, and the Speaker class
implements the sending end.

Remote messages are sent to ports, which act something like mailboxes for the tasks
that have the right to receive the messages delivered there. Each Listener corresponds
to a single Mach port to which its application has receive rights. Since a port has a fixed
size-usually there's room for only five messages in the port queue-when the port is
full, a new message must wait for the Listener to take an old message from the queue.

To initiate a remote message, you send an Objective-C message to a Speaker instance.
The Speaker method that responds to the message translates it into the proper Mach
message protocol and dispatches it to the port of the receiving task. The Mach message
is received by the Listener instance associated with the port. The Listener verifies that
it understands the message, that the Speaker has sent the correct parameters for the
message, and that all data values are well formed-for example, that character strings
are null-terminated. The Listener translates the Mach message back into an
Objective-C message, which it sends to itself. It's as if an Objective-C message sent to
a Speaker in one task is received by a Listener in another task.

Delegation

The Listener methods that receive remote Objective-C messages simply pass those
messages on to a delegate. The Listener's job is just to get the message and find another
object to respond to it.

The setDelegate: method assigns a delegate to the Listener. There's no default
delegate, but before the Application object gets its first event, it registers a Listener for
the application and makes itself the Listener's delegate. You can register your own
Listener (with Application's setAppListener: method) in start-up code, but when you
send the Application object a run message, it will become the Listener's delegate.

If an object has its own delegate when it becomes the Listener's delegate, the Listener
looks first to its delegate's delegate and only then to its own delegate when searching
for an object to entrust with a remote message. This means that you can implement the
methods that respond to remote messages in either the Application object's delegate or
in the Application object. (You can also implement the methods directly in a Listener
subclass, or in another object you make the Listener's delegate.)

Application Kit Classes: Listener 2-241

Setting Up a Listener

Two methods, checklnAs: and usePrivatePort, allocate a port for the Listener:

• With the checkInAs: method, the Listener's port is given a name (usually the name
of the application) and is registered with the network name server. This makes the
port publicly available so that other applications can find it. Applications get send
rights to a public port through the NXPortFromNameO function.

Alternatively, the Listener's port can be kept private (with the usePrivatePort
method). Send rights to the port can then be doled out only to selected applications.

Once allocated, the port must be added (with the addPort method) to the list of those
that the client library monitors. A procedure will automatically be called to read Mach
messages from the port queue and begin the Listener's process of transforming the
Mach message back into an Objective-C message. The procedure is called between
events, provided the priority of getting remote messages is at least as high as the priority
of getting the next event.

A Listener is typically set up as follows:

myListener = [[Listener alloc] init];

[myListener setDelegate:someOtherObject];

/*
* Sets the object responsible for handling

* messages received.
*/

[myListener checklnAs:"portname"];

/* or [myListener usePrivatePort] */

[myListener addPort];

/*
* Now, between events, the client library

* will check to see if a message has arrived

* in the port queue.

*/

[myListener free];

/* When we no longer need the Listener. */

An application may have more than one Listener and Speaker, but it must have at least
one of each to communicate with the Workspace Manager and other applications. If
your application doesn't create them, a default Listener and Speaker are created for you
at start-up before Application's run method gets the first event.

If a Listener is created for you, it will be checked in automatically under the name
returned by Application's appListenerPortName method. Normally, this is the name
assigned to the application at compile time. The port will also be added to the list of
those the client library monitors, so the Listener will be scheduled to receive messages
asynchronously.

2-242 Chapter 2: Class Specifications

Remote Methods

The Listener and Speaker classes implement a number of methods that can be used to
send and receive remote messages. You can add other methods in Listener and Speaker
subclasses. The msgwrap program can be used to generate subclass definitions from
a list of method declarations. Most programmers will use msgwrap instead of
manually subclassing the Listener class. See the man page for msgwrap for details.

The Listener class declares the same set of remote methods as the Speaker class.
However, applications will use some of these methods only in their Speaker versions to
send messages and others only in their Listener versions to receive messages. For
example, launchProgram:ok: messages are normally sent by applications to the
Workspace Manager, which has the responsibility for launching applications, so in
general only the Speaker version of the method will be used. On the other hand,
unmounting:ok: messages are received by applications when the Workspace Manager
is ready to unmount an optical disk. Since the Workspace Manager is in charge of
mounting and unmounting disks, applications won't send this message but will use the
Listener version of the method to receive it.

Some remote methods, especially those with the prefix "msg", are designed to allow an
application to run under program control rather than user control. By implementing
these methods, you'll permit a controlling application to run your application in
conjunction with others as part of a script.

Argument Types

Remote messages take two kinds of arguments-input arguments, which pass values
from the Speaker to the Listener, and output arguments, which are used to pass values
back from the Listener to the Speaker. The Listener sends return information back to
the Speaker in a separate Mach message to a port provided by the Speaker. The Speaker
reformats this information so that it's returned by reference in variables specified in the
original Objective-C message.

A method can take up to NX_MAXMSGPARAMS arguments. Arguments are
constrained to a limited set of permissible types. Internally, the Listener and Speaker
identify each permitted type with a unique character code. Input argument types and
their identifying codes are listed below. Note that an array of bytes counts as a single
argument, even though two Objective-C parameters are used to refer to it-a pointer to
the array and an integer that counts the number of bytes in the array. A character string
must be null-terminated.

Category Type Character Code

integer (int)
double (double) d
character string (char *) c
byte array (char *), (int) b
receive rights (port) (poret) r
send rights (port) (poret) s

Application Kit Classes: Listener 2-243

There's a matching output argument for each of these categories. Since output
arguments return information by reference, they're declared as pointers to the
respective input types:

Category

integer
double
character string
byte array
receive rights (port)
send rights (port)

Type

(int *)
(double *)
(char **)

Character Code

I

(char **), (int *)
(poret *)
(port_t *)

D
C
B
R
S

The validity of all input parameters is guaranteed for the duration of the remote
message. The memory allocated for a character string or a byte array is freed
automatically after the Listener method returns. If you want to save a string or an array,
you must copy it. When the amount of input data is large, you can use the
NXCopyInputDataO function to take advantage of the out-of-line data feature of
Mach messaging. This function is passed the index of the argument to be copied (the
combination of a pointer and an integer for a byte array counts as a single argument)
and returns a pointer to an area obtained through the vm _ allocateO function. This
pointer must be freed with vm _ deallocateO, rather than freeO. Note that the size of
the area allocated is rounded up to the next page boundary, and so will be at least one
page. Consequently, it is more efficient to mallocO and copy amounts up to about half
the page size.

The application is responsible for deallocating all port parameters received with the
port_deallocateO function when they're no longer needed.

Return Values

All remote methods return an int that indicates whether or not the message was
successfully transmitted. A return of 0 indicates success.

The Listener methods that receive remote messages use the return value to signal
whether they're able to delegate a message to another object. If a method can't entrust
its message to the delegate (or the delegate's delegate), it returns a value other than O.
If, on the other hand, it's successful in delegating the message, it passes on the
delegate's return value as its own. In general, delegate methods should always return O.

The Listener doesn't pass the return value back to the Speaker that initiated the remote
message. However, if the Speaker is expecting return information from the Listener
that is, if the remote message has output arguments-a nonzero return causes the
Listener to send an immediate message back to the Speaker indicating its failure to find
a delegate for the remote message. The Speaker method then returns -1.

Note that the return value indicates only whether the message got through; it doesn't
say anything about whether the action requested by the message was successfully
carried out. To provide that information, a remote message must include an output
argument.

2-244 Chapter 2: Class Specifications

INSTANCE VARIABLES

Inheritedfrom Object

Declared in Listener

portName

listenPort

signaturePort

delegate

timeout

priority

METHOD TYPES

Initializing the class

Class

char
poret
poret
id
int
int

isa;

*portName;
listenPort;
signaturePort;
delegate;
timeout;
priority;

The name under which the port is registered.

The port where the Listener receives remote
messages.

The port used to authenticate registration.

The object responsible for responding to remote
messages received by the Listener.

How long, in milliseconds, that the Listener will
wait for its return results to be placed in the port
queue of the sending application.

The priority level at which the Listener will
receive messages.

+ initialize

Initializing a new Listener instance - init

Freeing a Listener -free

Setting up a Listener - addPort
- removePort
- checkInAs:
- usePrivatePort
- checkOut
- listenPort
- signaturePort
-portName
- setPriority:
- priority
- setTimeout:
- timeout
+ run

Application Kit Classes: Listener 2-245

Standard remote methods

Handing off an icon

Providing for program control

Getting file information

Receiving remote messages

Assigning a delegate

Archiving

2-246 Chapter 2: Class Specifications

- openFile:ok:
- openTempFile:ok:
- launchProgram:ok:
- powerOffIn:andSave:
- extendPowerOffBy:actua1:
- unhide
- unmounting:ok:

- iconEntered:at: :icon Window:iconX:icon Y:
icon Width:iconHeight:pathList:

- iconMovedTo::
- iconReleasedAt: :ok:
- iconExitedAt::
- registerWindow:toPort:
- unregisterWindow:

-msgCalc:
- msgCopyAsType:ok:
- msgCutAsType:ok:
- msgDirectory:ok:
- msgFile:ok:
- msgPaste:
- msgPosition:posType:ok:
- msgPrint:ok:
- msgQuit:
- msgSelection:length:asType:ok:
- msgSetPosition:posType:andSelect:ok:
- msgVersion:ok:

- getFileInfoFor:app:type:ilk:ok:
- getFileIconFor:TIFF:TIFFLength:ok:

- messageReceived:
- performRemoteMethod:paramList:
- remoteMethodFor:

- setDelegate:
- delegate
- setServicesDelegate:
- servicesDelegate

-read:
- write:

CLASS METHODS

initialize

+ initialize

Sets up a table that instances of the class use to recognize the remote messages they
understand. The table lists the methods that can receive remote messages and specifies
the number of parameters for each and their types. An initialize message is sent to the
class the first time it's used; you should never invoke this method.

run

+ run

Sets up the necessary conditions for Listener objects to receive remote messages if
they're used in applications that don't have an Application object and a main event
loop. In other words, if an application doesn't send a run message to the Application
object,

[NXApp run];

it will need to send a run message to the Listener class

[Listener run];

for instances of the class to work. This method never returns, so your application will
probably need to be dispatched by messages to its Listener instances.

INSTANCE METHODS

addPort

-addPort

Enables the Listener to receive messages by adding its port to the list of those that the
client library monitors. The Listener will then be scheduled to receive messages
between events. Returns self.

See also: - removePort, DPSAddPortO

Application Kit Classes: Listener 2-247

checklnAs:
- (int)checklnAs:(const char *)name

Allocates a port for the Listener, and registers that port as name with the Mach network
name server. This method also allocates a signature port that's used to protect the right
to remove name from the name server. This method returns 0 if it successfully checks
in the application with the name server, and a Mach error code if it doesn't. The Mach
error code is most likely to be one of those defined in the header files netname _ defs.h
and sys/kern Jeturn.h

See also: - usePrivatePort, - checkOut

checkOut
- (int)checkOut

Removes the Listener's port from the list of those registered with the network name
server. This makes the port private. This method will always be successful and
therefore always returns O.

See also: - checklnAs:

delegate

- delegate

Returns the Listener's delegate. The default delegate is nil, but just before the first
event is received, the Application object is made the delegate of the Listener registered
as the Application object's Listener. The delegate is expected to respond to the remote
messages received by the Listener, although it may do this by sending messages to its
own delegate. Here is an example of how this can work: When the Application object's
Listener receives an openFile:ok: message, it passes this message to its delegate,
which is the Application object. The Application object, in tum, queries its delegate to
see if it accepts another file, and if it does, the Application object sends its delegate a
app:openFile:type: message.

See also: - setDelegate:, - setAppListener: (Application)

extendPowerOfffiy:actual:
- (int)extendPowerOffBy:(int)requestedMs actual:(int *)actuaIMs

Receives a remote message requesting the Workspace Manager for more time before
logging out or turning the power off. Other applications use the Speaker version of this
method to send the Workspace Manager extendPowerOffBy:actual: requests.

See also: - extendPowerOffBy:actual: (Speaker), - powerOffIn:andSave:,
- app:powerOffIn:andSave: (Application delegate)

2.-248 Chapter 2: Class Specifications

free

- free

Frees the Listener object and deallocates its listen port and its signature port. If the
Listener's port is registered with the network name server, it is unregistered.

See also: - allocFromZone: (Object), - init

getFileIconFor:TIFF:TIFFLength:ok:

- (int)getFilelconFor:(char *)fullPath
TIFF:(char **)tiff
TIFFLength:(int *)length
ok:(int *)flag

Receives a remote message to obtain information about an icon. The Workspace
Manager implements a method that responds to this message. For information on how
to use getFileIconFor:TIFF:TIFFlength:ok: messages to get information from the
Workspace Manager, see the Speaker class.

See also: - getFileIconFor:TIFF:TIFFLength:ok: (Speaker)

getFilelnfoFor:app:type:ilk:ok:

- (int)getFilelnfoFor:(char *)fullPath
app:(char **)appName
type:(char **)aType
ilk:(int *)anIlk
ok:(int *)flag

Receives a remote message to obtain information about a file. The Workspace Manager
implements a method that can respond to this message. For information on how to use
getFilelnfoFor:app:type:ilk:ok: messages to get information from the Workspace
Manager, see the Speaker class.

See also: - getFilelnfoFor:app:type:ilk:ok: (Speaker)

Application Kit Classes: Listener 2-249

iconEntered:at: :icon Window:iconX:icon Y : icon Width:iconHeight:pathList:

- (int)iconEntered:(int)windowNum
at:(double)x
: (double)y
icon Window:(int)icon WindowNum
iconX:(double)iconX
icon Y:(double)iconY
icon Width:(double)icon Width
iconHeight:(double)iconH eight
pathList:(const char *)pathList

Receives a remote message from the Workspace Manager that the user has dragged an
icon into the windowNum window. This message is received when the icon first enters
the window, but only if windowNum was previously registered through a
registerWindow:toPort: message to the Workspace Manager:

unsigned int windowNum;

id speaker = [NXApp appSpeaker];

NXConvertWinNumToGlobal([myWindow windowNum], &windowNum);

[speaker setSendPort:NXPortFromName(NX_WORKSPACEREQUEST, NULL)];

[speaker registerWindow:windowNum toPort: [myListener listenPort]];

windowNum is the global window number of the window the icon entered. (The global
window number is the one assigned by the Window Server, not the user object
maintained within an application.)

x and y specify the cursor's location in screen coordinates.

iconWindowNum is the global window number of the off-screen window where the icon
image is cached. The icon can be compo sited from that window to your own. The four
arguments iconX, iconY, iconWidth, and iconHeight locate the rectangle occupied by
the icon in iconWindow's base coordinates.

pathList is the null-terminated pathname of the file represented by the icon. If the icon
represents a number of files, pathList will contain a list of tab-separated paths.

You will probably want to save a copy of the file icon and/or the path list so you can use
them in your iconMovedTo:: and iconReleasedAt::ok: methods. The following
implementation of this method saves both:

char *iconPathList = NULL;

NXSize size = {48.0, 48.0};

myFilelcon = [[NXlmage alloc] initSize:&size];

- (int)iconEntered: (int)windowNum at: (double)winX : (double) winY

iconWindow: (int)iconWindowNum iconX: (double) x iconY: (double)y

iconWidth: (double)w iconHeight: (double)h

pathList: (char *)pathList

2-250 Chapter 2: Class Specifications

/* lock focus on the image so we can use the pswrap function */

/* to copy the icon from the icon's window */

[myFilelcon 10ckFocus];

copylconPicture (iconWindowNum, (float) x, (float) y,

(float)w, (float)h);

[myFilelcon unlockFocus];

/* The icon now has a copy of the picture. Let's make */

/* a copy of the path list */

if (iconPathList) NX_FREE(iconPathList);

/* allocate space for the path list and copy the string */

iconPathList = NXCopyStringBuffer(pathList);

/* Don't forget to free your copy of the path list in your */

/* iconReleasedAt::ok: and iconExitedAt:: methods. You will */

/* also need to set iconPathList to NULL */

return 0;

In order to copy the icon to your image, you'll need a copylconPictureO function. Put
the following pswrap in a file with an extension of .psw:

defineps copylconPicture(int win; float x; float y; float w; float h)

x y w h gsave win windowdeviceround gstate grestore 0 0

Copy composite

endps

See also: - registerWindow:toPort: (Speaker), - iconMovedTo::,
- iconReleasedAt::ok:, - dragFile:fromRect:slideBack:event: (View)

iconExitedAt: :

- (int)iconExitedAt:(double)x :(double)y

Receives a remote message from the Workspace Manager that the user has dragged an
icon out of a registered window. An iconExitedAt:: message will be received only
after the application has been notified that the icon entered the window. The two
arguments, x and y, specify the cursor's location in screen coordinates when the icon
exited the window.

See also:
- iconEntered:at: :icon Window:iconX:icon Y:icon Width:iconHeight:pathList:

Application Kit Classes: Listener 2-251

iconMovedTo: :

- (int)iconMovedTo:(double)x :(double)y

Receives a remote message from the Workspace Manager that the user has dragged an
icon to the cursor location (x, y) in screen coordinates. You will probably want to use
Window's convertScreenToBase: method to convert these points to window
coordinates, and View's convertPoint:fromView: method to then convert them to the
coordinate system of a particular View. iconMovedTo:: messages are repeatedly
received while the icon is being dragged within a registered window. They're received
only after the application has been notified that the icon entered the window and before
it has been notified that the icon exited the window.

See also:
- iconEntered:at: : icon Window: iconX: icon Y:icon Width:iconHeight:pathList:,
- convertScreenToBase: (Window), - convertPoint:fromView: (View),
- iconReleasedAt: :ok:

iconReleasedAt: :ok:

- (int)iconReleasedAt:(double)x
: (double)y
ok:(int *)jlag

Receives a remote message from the Workspace Manager when the user releases an
icon over a registered window. The Workspace Manager sends an
iconReleasedAt: :ok: message only after notifying the application that the icon entered
the window. Your iconEntered:at: ... method should save the icon's image and
pathname if you need them for this method.

The first two arguments, x and y, specify the location of the cursor in screen coordinates
when the user let go of the mouse button to stop dragging the icon.

The iconReleasedAt: :ok: method you implement should set the integer referred to by
jlag to 1 if you want the Workspace Manager to hide the icon window the user was
dragging, or to 0 if you want the Workspace Manager to animate the icon back to its
source window (indicating to the user that your window didn't accept it).

See also:
- iconEntered:at: :icon Window:iconX:icon Y:icon Width:iconHeight:pathList:,
- iconMovedTo::

2-252 Chapter 2: Class Specifications

init

- init

Initializes the Listener which must be a newly allocated Listener instance. The new
instance has no port name, its priority is set to NX_BASETHRESHOLD, its timeout is
initialized to 30,000 milliseconds, its listen port and signature port are both
PORT_NULL, and it has no delegate. Returns self.

See also: + alloc (Object), + allocFromZone: (Object), + new (Object),
- setPriority:, - setTimeout:, - setDelegate:, - checklnAs:

launchProgram:ok:

- (int)launchProgram:(const char *)name ok:(int *)flag

Receives requests to launch an application. The Workspace Manager is the application
that properly responds to these requests. See the Speaker class for information on how
to send launchProgram:ok: messages to the Workspace Manager.

See also: - launchProgram:ok: (Speaker)

listenPort

- (porCt)listenPort

Returns the port at which the Listener receives remote messages. This port is never set
directly, but is allocated by either checklnAs: or usePrivatePort. It's deallocated by
the free method. The Listener caches this port as its IistenPort instance variable.

See also: - checklnAs:, - usePrivatePort, - free

messageReceived:

- messageReceived:(NXMessage *)msg

Begins the process of translating a Mach message received at the Listener's port into an
Objective-C message. This method verifies that the Mach message is well formed, that
it corresponds to an Objective-C method understood by the Listener, and that the
method's arguments agree in number and type with the fields of the Mach message.

messageReceived: messages are initiated whenever a Mach message is to be read from
the Listener's port; you shouldn't initiate them in the code you write. Returns self.

See also: - performRemoteMethod:paramList:

Application Kit Classes: Listener 2-253

msgCalc:

- (int)msgCalc:(int *)flag

Receives a remote message to perform any calculations that are necessary to bring the
current window up to date. The method you implement to respond to this message
should set the integer specified by flag to YES if the calculations will be performed, and
to NO if they won't.

msgCopy AsType:ok:

- (int)msgCopyAsType:(const char *)aType ok:(int *)flag

Receives a remote message requesting the application to copy the current selection to
the pasteboard as aType data. aType should be one of the standard pasteboard types
defined in appkit/Pasteboard.h. The method you implement to respond to this request
should set the integer referred to by flag to YES if the selection is copied, and to NO if
it isn't.

msgCutAsType:ok:

- (int)msgCutAsType:(const char *)aType ok:(int *)flag

Receives a remote message requesting the application to delete the current selection
and place it in the pasteboard as aType data. aType should be one of the standard
pasteboard types defined in appkitiPasteboard.h. The method you implement to
respond to this request should set the integer referred to by flag to YES if the requested
action is carried out, and to NO if it isn't.

msgDirectory:ok:

- (int)msgDirectory:(char *const *)fuIlPath ok:(int *)flag

Receives a remote message asking for the current directory. The method you
implement to respond to this message should place a pointer to the full path of its
current directory in the variable specified by fullPath. The integer specified by flag
should be set to YES if the directory will be provided, and to NO if it won't.

The current directory is application-specific, but is probably best described as the
directory the application would show in its Open panel were the user to bring it up.

2-254 Chapter 2: Class Specifications

msgFile:ok:

- (int)msgFile:(char *const *)fuIlPath ok:(int *)jlag

Receives a remote message requesting the application to provide the full pathname of
its current document. The current document is the file displayed in the main window.

The method you implement to respond to this request should set the pointer referred to
by fullPath so that it points to a string containing the full pathname of the current
document. The integer specified by jlag should be set to YES if the pathname is
provided, and to NO if it isn't.

msgPaste:

- (int)msgPaste:(int *)jlag

Receives a remote message requesting the application to replace the current selection
with the contents of the pasteboard, just as if the user had chosen the Paste command
from the Edit menu. The method you implement to respond to this message should set
the integer referred to by jlag to YES if the request is carried out, and to NO if it isn't.

msgPosition:posType:ok:

- (int)msgPosition:(char *const *)aString
posType:(int *)anlnt
ok:(int *)jlag

Receives a remote message requesting a description of the current selection.

The method you implement to respond to this request should describe the selection in
a character string and set the pointer referred to by aString so that it points the
description. The integer referred to by anlnt should be set to one of the following
constants to indicate how the current selection is described:

NX_ TEXTPOSTYPE

NX_REGEXPRPOSTYPE

NX_LINENUMPOSTYPE

NX_CHARNUMPOSTYPE

NX_APPPOSTYPE

As a character string to search for

As a regular expression to search for

As a colon-separated range of line numbers, for
example" 10: 12"

As a colon-separated range of character positions,
for example "21:33"

As an application-specific description

The integer referred to by jlag should be set to YES if the requested information is
provided in the other two output arguments, and to NO if it isn't.

Application Kit Classes: Listener 2-255

msgPrint:ok:

- (int)msgPrint:(const char *)fuliPath ok:(int *)flag

Receives a remote message requesting the application to print the document whose path
is fullPath. The method you implement to respond to this request should set the integer
referred to by flag to YES if the document is printed, and to NO if it isn't. The
document file should be closed after it's printed.

msgQuit:

- (int)msgQuit:(int *)flag

Receives a remote message for the application to quit. The method you implement to
respond to this message should set the integer specified by flag to YES if the application
will quit, and to NO if it won't.

msgSelection:length:asType:ok:

- (int)msgSelection:(char *const *)bytes
length:(int *)numBytes
asType:(const char *)aType
ok:(int *)flag

Receives a remote message asking the application for its current selection as aType
data. aType will be one of the following standard data types for the pasteboard (or an
application-specific type):

NXAsciiPboardType
NXPostScriptPboardType
NXTIFFPboardType
NXRTFPboardType
NXSoundPboardType
NXFilenamePboardType
NXTabularTextPboardType

The method you implement to respond to this request should set the pointer referred to
by bytes so that it points to the selection and also place the number of bytes in the
selection in the integer referred to by numBytes. The integer referred to by flag should
be set to YES if the selection is provided, and to NO if it's not.

msgSetPosition:posType:andSelect:ok:

- (int)msgSetPosition:(const char *)aString
posType:(int)anlnt
andSelect: (int)se lectF lag
ok:(int *)flag

Receives a remote message requesting the application to scroll the current document
(the one displayed in the main window) so that the portion described by aString is

2-256 Chapter 2: Class Specifications

visible. aString should be interpreted according to the anlnt constant, which will be
one of the following:

NX_ TEXTPOSTYPE

NX_REGEXPRPOSTYPE

NX_LINENUMPOSTYPE

NX_CHARNUMPOSTYPE

NX_APPPOSTYPE

aString is a character string to search for.

aString is a regular expression to search for.

aString is a colon-separated range of line
numbers, for example "10:12".

aString is a colon-separated range of character
positions, for example "21:33".

aString is an application-specific description of a
portion of the document.

The msgSetPosition:posType:andSelect:ok: method you implement should set the
integer referred to by jlag to YES if the document is scrolled, and to NO if it isn't. If
selectFlag is anything other than 0, the portion of the document described by aString
should also be selected.

msgVersion:ok:

- (int)msgVersion:(char *const *)aString ok:(int *)jlag

Receives a remote message requesting the current version of the application. The
method you implement to respond to this request should set the pointer referred to by
aString so that it points to a string containing current version information for your
application. The integer specified by jlag should be set to YES if version information
is provided, and to NO if it's not.

openFile: ok:

- (int)openFile:(const char *)fullPath ok:(int *)jlag

Receives a remote message asking the application to open a file. The file is identified
by an absolute pathname,fullPath.

The Application object, NXApp, has an openFile:ok: method that can respond to this
message. Much of the task of opening and displaying the file is left to the application,
however. This can be done by implementing an appOpenFile:type: method, either for
NXApp's delegate or in an Application subclass, rather than a version of openFile:ok:.

If you implement your own version of openFile:ok:, it should set the output argument
specified by jlag to YES if the application will open the file, and to NO if it won't. It
should return ° to indicate that the remote message was handled.

See also: - app:openFile:type: (Application delegate), - openFile:ok: (Application)

Application Kit Classes: Listener 2-257

openTempFile:ok:

- (int)openTempFile:(const char *)fullPath ok:(int *)flag

Receives a remote message asking the application to open a temporary file. The
temporary file is identified by an absolute pathname,fullPath. The application that
receives this message should delete the file when it's no longer needed.

The Application class implements a openTempFile:ok: method that can respond to
this message.

See also: - app:openTempFile:type: (Application delegate),
- openTempFile:ok: (Application), - openFile:ok: (Application)

performRemoteMethod:paramList:

- (int)performRemoteMethod: (NXRemoteMethod *)method
paramList:(NXParam Value *)params

Matches the data received in the Mach message with the corresponding Objective-C
method and initiates the Objective-C message to self. The Listener method that
receives the message will then try to delegate it to another object. method is a pointer
to the method structure returned by remoteMethodFor: and params is a pointer to the
list of arguments.

The msgwrap program automatically generates a
performRemoteMethod:paramList: method for a Listener subclass. Each Listener
subclass must define its own version of the method.

performRemoteMethod:paramList: messages are initiated when the Listener reads
a Mach message from its port queue.

See also: msgwrap (in the Unix manual)

portName

- (const char *)portName

Returns the name under which the Listener's port (the port returned by the listenPort
method) is registered with the network name server.

See also: - checklnAs:, -listenPort, - appListenerPortName (Application)

2-258 Chapter 2: Class Specifications

powerOff1n:andSave:

- (int)powerOffln:(int)ms andSave:(int)aFlag

Receives a remote message from the Workspace Manager that the machine will be
powered down, or the user will be logged out, in ms milliseconds. The second
argument, aFlag, should be ignored. If ms is insufficient time, the application can ask
for additional time by sending an extendPowerOfffiy:actual: to the Workspace
Manager.

The Application class implements a powerOffIn:andSave: method that can respond
to this message. It raises an exception that's caught by the main event loop, which then
notifies the Application object's delegate with an appPowerOffln:andSave: message.

See also: - app:powerOffln:andSave: (Application delegate),
- powerOffln:andSave: (Application)

priority

- (int)priority

Returns the priority level for receiving remote messages. This value is cached as the
Listener's priority instance variable.

See also: - setPriority:

read:

- read:(NXTypedStream *)stream

Reads the Listener from the typed stream stream.

See also: - write:

registerWindow:toPort:

- (int)register Window: (int)windowN um toPort: (poret)aPort

Receives a remote message registering windowNum to receive icons the user drags into
the window. The Workspace Manager implements a method that responds to this
message. Other applications will use the Speaker version of the method to send the
Workspace Manager registerWindow:toPort: messages.

See also: - registerWindow:toPort: (Speaker), - iconEntered:at: ...

Application Kit Classes: Listener 2-259

remoteMethodFor:

- (NXRemoteMethod *)remoteMethodFor:(SEL)aSelector

Looks up aSelector in the table of remote messages the Listener understands and
returns a pointer to the table entry. A NULL pointer is returned if aSelector isn't in the
table.

Each Listener subclass must define its own version of this method and send a message
to super to perform the Listener version. The msgwrap program produces subclass
method definitions automatically. The version of the method produced by msgwrap
uses the NXRemoteMethodFromSelO function to do the look up.

remoteMethodFor: messages are initiated automatically when the Listener reads a
Mach message from its port queue.

See also: - performRemoteMethod:paramList:, msgwrap (in the Unix manual)

removePort

- removePort

Removes the Listener's port from the list of those that the client library monitors.
Remote messages sent to the port will pile up in the port queue until they are explicitly
read; they won't be read automatically between events.

See also: - addPort

servicesDelegate

- servicesDelegate

Returns the Listener's services delegate, the object that will respond to remote
messages sent from the Services menus of other applications. The services delegate
should contain the methods that a service providing application uses to provide services
to other applications.

See also: - setServicesDelegate:

setDelegate:

- setDelegate:anObject

Sets the Listener's delegate to anObject. The delegate is expected to respond to the
remote messages received by the Listener. However, if anObject has a delegate of its
own at the time the setDelegate: message is sent, the Listener will first check to see if
that object can handle a remote message before checking anObject. In other words, the
Listener recognizes a chain of delegation.

2-260 Chapter 2: Class Specifications

The delegate assigned by this method will be overridden if the Listener is registered as
the Application object's appListener and the assignment is made before the
Application object is sent a run message. Before getting the first event, the run method
makes the Application object the appListener's delegate.

See also: - delegate, - setAppListener: (Application)

setPriority:

- setPriority:(int)level

Sets the priority for receiving remote messages to level. Whenever the application is
ready to get another event, the priority level is compared to the threshold at which the
application is asking for the next event. For the Listener to be able to receive remote
messages from its port queue, the priority level must be at least equal to the event
threshold.

Priority values can range from ° through 30, but three standard values are generally
used:

NX_MODALRESPTHRESHOLD 10
NX_RUNMODALTHRESHOLD 5
NX_BASETHRESHOLD 1

These constants are defined in the appkitl Application.h header file.

• At a priority equal to NX_BASETHRESHOLD, the Listener will be able to receive
messages whenever the application asks for an event in the main event loop, but not
during a modal loop associated with an attention panel nor during a modal loop
associated with a control such as a button or slider.

At a priority equal to NX_RUNMODALTHRESHOLD, the Listener will receive
remote messages in the main event loop and in the event loop for an attention panel,
but not during a control event loop.

• At a priority equal to NX_MODALRESPTHRESHOLD, remote messages are
received even during a control event loop.

The default priority level is NX_BASETHRESHOLD.

A new priority takes effect when the Listener receives an addPort message. To change
the default, you must either set the Listener's priority before sending it an addPort
message, or you must send it a removePort message then another addPort message.

See also: - priority, - addPort

Application Kit Classes: Listener 2-261

setServicesDelegate:

- setServicesDelegate:anObject

Registers anObject as the object within a service provider that will respond to remote
messages. This method returns self. As an example, consider an application called
Thinker that provides a ThinkAboutlt service that ponders the meaning of Ascii text it
receives on the pasteboard. Thinker would need to have something like the following
in the _services section of its _ICON segment in its Mach-O file:

Message: thinkMethod

Port: Thinker

Send Type: NXAsciiPboardType

Menu Item: ThinkAboutlt

To get this information in your Mach-O file you could put the above text in a file called
services. txt and then include the following line in your Makefile.preamble file:

LDFLAGS = -segcreate ICON services services.txt

Alternatively, if the services the application can provide are not known at compile time,
the application can build a services file at run time; see NXUpdateDynamicServicesO.

Then, in order to provide the ThinkAboutIt service you must implement a
thinkMethod:userData:error: method in an object which is the services delegate of
a Listener which is listening on the Thinker port. (If the application is named
"Thinker", then by default NXApp's Listener listens on this port.) Here is an example
method that could be used to provide the ThinkAboutlt service:

- thinkMethod: (id)pb

userData: (const char *)userData

error: (char **)msg

char *data;

int length;

char *const *s; /* We use s to go through types. */

char *const *types = [pb types];

for (s = types; *s; s++)

if (!strcmp(*s, NXAsciiPboardType)) break;

if (*s && [pb readType:NXAsciiPboardType

data:&data length:&length])

/* doSomething is your own method ... */
[self doSomething:data :length];

/* free the memory allocated by readType: ... */
vm_deallocate(task self(), data, length);

/* now make msg point to an error string if */

/* anything went wrong, and return ... */

return self;

2-262 Chapter 2: Class Specifications

See also: - servicesDelegate,
- registerServicesMenuSendTypes:andReturnTypes: (Application),
- validRequestorForSendType:andReturnType: (Responder)

setTimeout:

- setTimeout:(int)ms

Sets, to ms milliseconds, how long the Listener will persist in attempting to send a
return message back to the Speaker that initiated the remote message. If ms is 0, there
will be no time limit. The default is 30,000 milliseconds. Returns self.

See also: - timeout

signaturePort

- (porCt)signaturePort

Returns the port that's used to authenticate the Listener's port to the network name
server. This port is never set directly, but is allocated by checklnAs: and deallocated
by free. The Listener caches this port as its signaturePort instance variable.

See also: - checklnAs:, - free, netname_check_inO, netname_check_outO

timeout

- (int)timeout

Returns the number of milliseconds the Listener will wait for a return message to the
Speaker to be successfully placed in the port designated by the Speaker. This value is
cached by the Listener as its timeout instance variable. If it's 0, there's no time limit.

See also: - setTimeout:

un hide

- (int)unhide

Receives a remote message asking the application to unhide its windows and become
the active application. When the user double-clicks a freestanding or docked icon for
a running application, the Workspace Manager sends the application an un hide
message. The Application object has an unhide method that can respond appropriately
to this message. The Application object notifies its delegate with an appDidUnhide
message, if its delegate can respond. Returns the delegate's return value if the
Listener's delegate responds to this message, otherwise returns -1.

See also: - un hide (Application)

Application Kit Classes: Listener 2-263

unmounting:ok:

- (int)unmounting:(const char *)fuliPath ok:(int *)jlag

Receives a remote message from the Workspace Manager that a disk is about to be
unmounted. fuliPath is the full pathname of a directory on the disk that will be
unmounted.

The Application class implements an unmounting:ok: method that responds to this
message. Application's method first tries to assign responsibility for the message to its
delegate by sending the delegate an appUnmounting: message. Failing that, it tries to
change the current working directory so that it's not on the disk.

If you implement your own version of unmounting:ok:, it should set the integer
specified by jlag to YES if it's OK for the Workspace Manager to unmount the disk,
and to NO if it's not. Most applications will implement appUnmounting: instead of
unmounting:ok:. Returns the delegate's return value if the Listener's delegate
responds to this message, otherwise returns -1.

See also: - unmounting:ok: (Application)

unregisterWindow:

- (int)unregister Window: (int)windowN um

Receives a remote message to cancel the registration of windowNum. The Workspace
Manager implements a method that responds to this message. Other applications will
send the Workspace Manager unregisterWindow: messages when they no longer want
to be notified of icons dragged into the window. See the Speaker class for information
on sending these messages.

See also: - unregisterWindow: (Speaker), - registerWindow:toPort: (Speaker),
- iconEntered:at: ...

usePrivatePort

- (int)usePrivatePort

Allocates a listening port for the Listener, but doesn't register it publicly. Other tasks
can send messages to this Listener only if they are explicitly given the address of the
port in a message; the port is not available through the Network Name Server. This
method is an alternative to checkInAs:. It returns 0 on success and a Mach error code
if it can't allocate the port. The error code will be one of those defined in the
kern Jeturn.h header file in lusr/include/sys.

See also: - checkInAs:

2-264 Chapter 2: Class Specifications

write:

- write:(NXTypedStream *)stream

Writes the Listener to the typed stream stream.

See also: - read:

CONSTANTS AND DEFINED TYPES

/* Port for sending messages to the Workspace Manager */

#define NX_WORKSPACEREQUEST NXWorkspaceName

/* Port for acknowledging launch by Workspace Manager */

#define NX WORKSPACEREPLY NXWorkspaceReplyName

/* Reserved message numbers */

#define NX SELECTORPMSG 35555

#define NX SELECTORFMSG

#define NX RESPONSEMSG

#define NX ACKNOWLEDGE

35556

35557

35558

/* RPC return result error returns. */
#define NX INCORRECTMESSAGE -20000

/* Maximum number of remote method parameters allowed */

#define NX MAXMSGPARAMS 20

#define NX MAXMESSAGE (2048-sizeof(msg_header t)-\

sizeof(msg_type_t)-sizeof(int)-\

sizeof(msg_type_t)-8)

/* A message sent via Mach */

typedef struct _NXMessage {

msg header_t header;

msg_type_t sequenceType;

int sequence;

msg_type_t actionType;

char action[NX_MAXMESSAGE];

NXMessage;

/* A message received via Mach */
typedef struct _NXResponse {

msg_header_t header;

msg_type_t sequenceType;

int sequence;

NXResponse;

/* every message has one */

/* sequence number type */

/* sequence number */

/* selector string */

/* every message has one */

/* sequence number type */
/* sequence number */

Application Kit Classes: Listener 2-265

/* For acknowledging a message via Mach */

typedef struct _NXAcknowledge

msg header_t header;

msg_type_t sequenceType;

int sequence;

msg_type_t errorType;
int error;

NXAcknowledge;

/* every message has one */

/* sequence number type */

/* sequence number */

/* error number type */

/* error number, 0 is ok */

/* defines method understood by Listener */

typedef struct NXRemoteMethod

SEL key;
char *types;

NXRemoteMethod;

/* Objective-C selector */

/* defines types of parameters */

/* used to pass parameters to method */
typedef union {

/*

int ivaI;

double dval;

port_t pval;

struct bval

char *p;

int len;

bval;

NXParamValue;

* permissible values for the second argument of

* msqSetPosition:posType: andSelect: ok: and msqPostion:posType:ok:
*/

#define NX TEXTPOSTYPE 0
#define NX REGEXPRPOSTYPE I

#define NX LINENUMPOSTYPE 2

#define NX CHARNUMPOSTYPE 3
#define NX APPPOSTYPE 4

2-266 Chapter 2: Class Specifications

Matrix

INHERITS FROM Control: View: Responder: Object

DECLARED IN appkit/Matrix.h

CLASS DESCRIPTION

The Matrix class allows creation of matrices of Cells of the same or of different types.
The main restriction is that all Cells must have the same size. You can add rows and
columns to a Matrix by using addRow, insertRow At:, add Col, or insertColAt:. Cells
created by the Matrix to fill its rows and columns will be instances of the Cell subclass
stored in the cell Class instance variable or copies of the prototype Cell stored in the
protoCell instance variable.

There are four modes of operation for a Matrix:

NX_TRACKMODE is the most basic mode of operation. All that happens in this mode
is that the Cells are asked to track the mouse via trackMouse:inRect:ofView:
whenever the mouse is inside their bounds. No highlighting is performed. An example
of this mode might be a "graphic equalizer" Matrix of Sliders. Moving the mouse
around would cause the sliders to move under the mouse.

NX_HIGHLIGHTMODE is a modification of TRACKMODE. In this mode, a Cell is
highlighted before it is asked to track the mouse, then unhighlighted when it is done
tracking. Useful for mUltiple unconnected Cells which use highlighting to inform the
user that they are being tracked (like buttons).

NX_RADIOMODE is used when you want no more than one Cell to be selected at a
time. Used in conjunction with allowEmptySel:NO, it can be used to create a set of
buttons of which one and only one is selected. Any time a Cell is selected, that Cell's
action (if any) is sent to its target (or the Matrix's target if the Cell has none). The
canonical example of this mode is a set of radio buttons.

NX_LISTMODE allows multiple Cells to be highlighted. The Cell is not given the
opportunity to track the mouse; it is only highlighted. This can be used to select a range
of text values, for example. The method sendAction:to:for AllCells:NO can be used
to iterate through the highlighted Cells and perform various functions on them.
Highlighting can be done in many ways including dragging to select, using the shift key
to make disjoint selections, and using the alternate key to extend selections.

Application Kit Classes: Matrix 2-267

INSTANCE VARIABLES

Inherited from Object Ciass is a;

Inherited/rom Responder id nextResponder;

Inherited/rom View NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct _ vFlags vFlags;

Inherited/rom Control int tag;
id cell;
struct _conFlags conFlags;

Declared in Matrix id cellList;
id target;
SEL action;
id selectedCell;
int selectedRow;
int selectedCol;
int numRows;
int numCols;
NXSize cellSize;
NXSize intercell;
float backgroundGray;
float cellBackgroundGray;
id font;
id protoCell;
id cellClass;
id nextText;
id previousText;
SEL doubleAction;
SEL errorAction;
id textDelegate;
struct _mFlags {

unsigned int highlightMode: 1;
unsigned int radioMode:l;
unsigned int listMode:l;
unsigned int allowEmptySel: 1;
unsigned int autoscroll: 1;
unsigned int reaction: 1;

mFlags;

cellList The List of Cells.

target Target of the Matrix.

2-268 Chapter 2: Class Specifications

action

selected Cell

selectedRow

selectedCol

numRows

numCols

cellSize

intercell

backgroundGray

cellBackgroundGray

font

proto Cell

cellClass

nextText

previousText

doubleAction

errorAction

textDelegate

mFlags.highlightMode

mFlags.radioMode

mFlags.listMode

mFlags. allow EmptySel

mFlags.autoscroll

mFlags.reaction

Action of the Matrix.

The currently selected Cell.

The row number of selectedCell.

The column number of selectedCell.

Number of rows.

Number of columns.

Width & height of the Cells.

Vertical and horizontal spacing between Cells.

Background gray.

Cells background gray.

Font of Cells.

Prototypical Cell.

Factory for new Cells.

Object to select when Tab key is pressed.

Object to select when Shift-Tab is pressed.

Action sent on double click.

Action to apply for edit errors.

Object to which textDidEnd:endChar:, etc. is
forwarded.

NX_HIGHLIGHTMODE.

NX_RADIOMODE.

Whether no selection is allowed in
NX_RADIOMODE.

Autoscroll when in a ScrollView.

sendAction caused the Cell to change.

Application Kit Classes: Matrix 2-269

METHOD TYPES

Initiaiizing the Matrix Ciass Object + initiaiize

Initializing and Freeing a Matrix

Creating a new Cell

Laying out the Matrix

Modifying the Matrix

Modifying the Cells

2-270 Chapter 2: Class Specifications

+ setCellClass:

- initFrame:
- initFrame:mode:cellClass:numRows:

numCols:
- initFrame:mode:prototype:numRows:

numCols:
-free

- makeCellAt::
- prototype
- setCellClass:
- setPrototype:

- addCol
-addRow
- cellCount
- getCellFrame:at::
- getCellSize:
- getIntercell:
- getNumRows:numCols:
- getRow:andCol:forPoint:
- getRow:andCol:ofCell:
- insertColAt:
- insertRow At:
- removeCoIAt:andFree:
- removeRow At:andFree:
- renewRows:cols:
- setCellSize:
- setIntercell:

- putCell:at::
- setMode:
- setPreviousText:

- sendAction:to:forAllCells:
- setEnabled:
- setFont:
- setIcon:at::
- setState:at::
- setTarget:at::
- setTitle:at::

Editing Text - selectAll:
- selectText:
- selectTextAt::
- setNextText:
- setTextDelegate:
- textDidGetKeys:isEmpty:
- textDelegate
- textDidChange:
- textDidEnd:endChar:
- textWillChange:
- textWillEnd:

Selecting and Identifying Cells - allowEmptySel:
- cellAt::
- cellList
- c1earSelectedCell
- findCellWithTag:
- selectCell:
- selectCellAt::
- selectCellWithTag:
- selected Cell
- selectedCol
- selectedRow

Modifying Graphic Attributes - backgroundColor
- backgroundGray
- cellBackgroundColor
- cellBackgroundGray
- font
- isBackgroundTransparent
- isCellBackgroundTransparent
- setBackgroundColor:
- setBackgroundGray:
- setBackgroundTransparent:
- setCellBackgroundColor:
- setCellBackgroundGray:
- setCellBackgroundTransparent:

Resizing the Matrix and Cells - doesAutosizeCells
- calcSize
- setAutosizeCells:
- sizeTo::
- sizeToCells
- sizeToFit
- validateSize:

Scrolling - scrollCellTo Visible::
- setAutoscroll:
- setScrollable:

Application Kit Classes: Matrix 2-271

Displaying - display
- drawCell:
- drawCellAt::
- drawCellInside:
- drawS elf: :
- highlightCellAt: :lit:

Target and Action - action
- doubleAction
- errorAction
- sendAction
- sendAction:to:
- sendDoubleAction
- setAction:
- setAction:at::
- setDoubleAction:
- setErrorAction:
- setReaction:
- setTarget:
- target

Assigning a Tag - setTag:at::
- setTag:target:action:at::

Handling Event and Action Messages
- acceptsFirstMouse
- mouseDown:
- mouseDownFlags
- performKeyEquivalent:

Managing the Cursor - resetCursorRects

Archiving -read:
- write:

CLASS METHODS

initialize

+ initialize

Sets the current version of the Matrix class.

2-272 Chapter 2: Class Specifications

setCellClass:

+ setCellClass:factoryld

This method initializes the subclass of Cell used by the Matrix class when the
initFrame: method is used to initialize a Matrix. You rarely need to invoke this method
since you usually set the cellClass or a prototype Cell by invoking the methods
initFrame:mode: {prototype,cellClass} :numRows:numCols: when the Matrix is
first initialized.

See also: - initFrame:, - initFrame:mode:cellClass:numRows:numCols:,
- initFrame:mode:prototype:numRows:numCols:

INSTANCE METHODS

acceptsFirstMollse

- (BOOL)acceptsFirstMouse

Returns NO if the Matrix is in NX_LISTMODE, YES if the Matrix is in any other
mode. The Matrix does not accept first mouse in NX_LISTMODE.

action

- (SEL)action

Returns the default action of the Matrix. If a Cell which has no action receives an event
which causes an action message to be sent to a target object (normally an
NX_MOUSEUP event), this action is sent to the Matrix's target.

addCol

-addCol

Adds a new column of Cells to the right of the existing columns by invoking
insertCoIAt:. New Cells are created with makeCellAt::. Does not redraw even if
autodisplay is on. If the number of rows or columns in the Matrix has been changed
via renewRows:cols: then makeCellAt: is invoked only if a new one is needed (since
renewRows:cols: doesn't free any Cells). This fact can be used to your advantage
since you can grow and shrink a Matrix without repeatedly creating and freeing the
Cells.

See also: - insertCoIAt:, - makeCellAt::

Application Kit Classes: Matrix 2-273

addRow

-addRow

Adds a new row of Cells at the bottom of the existing rows by invoking insertRow At:.
New Cells are created with makeCellAt::. Does not redraw even if autodisplay is on.
If the number of rows or columns in the Matrix has been changed via renewRows:cols:
then makeCellAt: is invoked only if a new one is needed (since renewRows:cols:
doesn't free any Cells). This fact can be used to your advantage since you can grow
and shrink a Matrix without repeatedly creating and freeing the Cells.

See also: - insertColAt:, - makeCellAt::

allowEmptySel:

- allowEmptySel:(BOOL)jlag

Ifjlag is YES, then the Matrix will allow one or zero Cells to be selected. Ifjlag is NO,
then the Matrix will allow one and only one Cell (not zero Cells) to be selected. This
setting has effect only in NX_RADIOMODE.

background Color

- (NXColor)backgroundColor

Returns the background color of the matrix.

background Gray

- (float)backgroundGray

Returns the background gray. A backgroundGray of -1.0 implies no background
gray; the Matrix is transparent.

calcSize

- calc Size

You never invoke this method. It is invoked automatically by the system if it has to
recompute some size information about the Cells. It invokes calcDrawInfo: on each
Cell in the Matrix. Can be overridden to do more if necessary (Form overrides
calcSize, for example). Returns self.

See also: - calc Size (Control, Form), - validateSize:

ceIlAt::

- cellAt:(int)row :(int)col

Returns the Cell at row row and column col.

2-274 Chapter 2: Class Specifications

cellBackgroundColor

- (NXColor)cellBackgroundColor

Returns the background color used to fill the background of a Cell.

cellBackgroundGray

- (float)cellBackgroundGray

Returns the gray value used to fill the background of a Cell before the Cell is drawn. If
-1.0, then no fill is done behind the Cell before drawing (the cell is transparent).

cellCount

- (int)cellCount

Returns the number of Cells in the Matrix.

cellList

- celIList

Returns the List object that tracks the Cells of the Matrix.

See also: the List class

clearSelectedCell

- c1earSelectedCelI

Sets selected Cell to be no selection. Does no drawing. Doesn't end the previous text
editing if any and doesn't invoke selectTextAt::. Will not allow clearing of selected
Cell if NX_RADIOMODE and an empty selection is not allowed. Returns whatever
Cell used to be the selected Cell. You rarely invoke this method since
selectCeIIAt:-l :-1 will clear the selected Cell and redraw.

See also: - alIowEmptySel:

display

- display

Invokes displayFromOpaqueAncestor::: if the Matrix is not opaque and either there
is an interCell spacing or one or more of the Cells is not opaque. Invokes display:::
otherwise. The Matrix is considered to be opaque if the background Gray is
non-negative (or if it was setOpaque: explicitly). If cellBackgroundGray is
non-negative, then all of the Cells are treated as if they were opaque.

Application Kit Classes: Matrix 2-275

doesAutosizeCells
- (BOOL)doesAutosizeCells

Determines whether Cells will automatically resize when the size of the matrix
changes.

doubleAction

- (SEL)doubleAction

Returns the action that is sent on a double-click on a Cell in the Matrix.

drawCell:
- drawCell:aCell

If aCell is in the Matrix, then it is drawn. Does nothing otherwise. Useful for
constructs like: [matrix drawCell:[[matrix cellAt:row :col] setSomething:args]]].

drawCellAt: :

- drawCellAt:(int)row :(int)eol

Displays the Cell at (row, col) in the Matrix.

drawCelllnside:
- drawCellInside:aCell

If aCell is in the Matrix, then its inside is drawn (Le., drawInside:inView: is invoked
on the Cell).

drawSelf::

- drawSelf:(const NXRect *)reets :(int)reetCount

Displays the Cells in the Matrix which intersect any of the reets.

error Action

- (SEL)errorAction

Returns the action that is sent to the target of the Matrix upon text editing errors.

See also: setErrorAction:

2-276 Chapter 2: Class Specifications

findCeliWithTag:

- findCellWithTag:(int)anInt

Returns the Cell which has a tag matching anInt. If no Cell in the Matrix matches
anI nt, then nil is returned.

See also: - setTag: (ActionCell), - setTag:at::, - setTag:target:action::,
- selectCellWithTag:

font

-font

Returns the font that will be used to display text in any Cells.

free

-free

Deallocates the storage for the Matrix and all its Cells and returns nil.

getCeliFrame:at: :

- getCellFrame:(NXRect *)theRect
at: (int)row
: (int)col

Returns the frame of the Cell at the specified row and col.

getCeliSize:

- getCellSize:(NXSize *)theSize

Gets the width and the height of the Cells in the Matrix.

getlntercell :

- getIntercell:(NXSize *)theSize

Gets the vertical and horizontal spacing between Cells.

getNumRows:numCols:

- getNumRows:(int *)rowCount numCols:(int *)colCount

Returns, by reference, the number of rows and columns in the Matrix.

Application Kit Classes: Matrix 2-277

getRow:andCol:forPoint:

- getRow:(int *)row
andCol:(int *)col
forPoint:(const NXPoint *)aPoint

Returns the Cell at aPoint in the Matrix. If aPoint is outside the bounds of the Matrix
or in an intercell spacing, getRow:andCol:forPoint: returns nil. Fills *row and *col
with the row and column position of the Cell. aPoint must be in the Matrix's coordinate
system.

getRow:andCol:ofCell:
- getRow:(int *)row

andCol:(int *)col
ofCell:aCell

Gets the row and column position of aCell in the Matrix. Fills *row and *col with the
row and column position of the Cell. Returns the Cell (or nil if aCell is not in the
Matrix).

highlightCellAt: :lit:

- highlightCellAt:(int)row
: (int)col
lit: (BOOL)flag

Highlights or unhighlights the Cell at (row, col) in the Matrix by sending the
highlight:in View:lit: message to the Cell. The focus must be locked on the Matrix.
Returns self.

initFrame:

- initFrame:(const NXRect *)frameRect

Initializes and returns the receiver, a new instance of Matrix, with default parameters in
the given frame. The default font is Helvetica 12.0, the default cellSize is
1 00.0-by-l7 .0, the default intercell is 1.0-by-1.0, the default background Gray is -1
(transparent), and the default cellBackgroundGray is -1. The new Matrix contains no
rows or columns. The default mode is NX_RADIOMODE.

2-278 Chapter 2: Class Specifications

initFrame:mode:cellClass:numRows:numCols:
- initFrame:(const NXRect *)frameRect

mode: (int)aMode
cellClass:cellId
numRows:(int)numRows
numCols:(int)numCols

Initializes and returns the receiver, a new instance of Matrix, with numRows rows and
numCols columns. Sets the Matrix's mode to aMode. aMode can be one of four
constants:

NX_TRACKMODE
NX_HIGHLIGHTMODE
NX_RADIOMODE
NX_LISTMODE

Just track the mouse inside the Cells
Highlight the Cell, then track, then unhighlight
Allow no more than one selected Cell
Allow multiple selected Cells

These constants are described in the "CLASS DESCRIPTION." The new Matrix adds
new Cells by sending alloc and init messages to the Cell subclass represented by
classld (the value returned when sending a class message to Cell or a subclass of Cell).

This method is the designated initializer for Matrices that add Cells by creating
instances of a Cell subclass.

initFrame:mode:prototype:numRows:numCols:
- initFrame:(const NXRect *)frameRect

mode: (int)aMode
prototype:aCell
numRows:(int)numRows
numCols:(int)numCols

Initializes and returns the receiver, a new instance of Matrix, with numRows rows and
numCols columns. Sets the Matrix's mode to aMode. aMode can be one of the four
constants listed in the previous method.

These constants are described in the "CLASS DESCRIPTION." The new Matrix adds
new Cells by copying aCell, and instance of Cell or a subclass of Cell. If you do not
plan to add any more Cells to this Matrix, invoke [[matrix setPrototype:nil] free] after
creating the Matrix.

This method is the designated initializer for Matrices that add Cells by copying an
instance of a Cell subclass.

Application Kit Classes: Matrix 2-279

insertColAt:

- insertColAt:(int)col

Inserts a new column of Cells before column col. New Cells are created with
makeCellAt::. This method doesn't redraw even if autodisplay is on. Most of the
time, you'll want to perform sizeToCells after performing this method to resize the
Matrix View to fit the newly added Cells. Returns self.

insertRow At:

- insertRowAt:(int)row

Inserts a new row of Cells before row row. New Cells are created with makeCellAt::.
This method doesn't redraw even if autodisplay is on. Most ofthe time, you'll want to
perfonn sizeToCells after performing this method to resize the Matrix View to fit the
newly added Cells. Returns self.

isBackgroundTransparent

- (BOOL)isBackgroundTransparent

Returns YES if the Matrix background is transparent, NO otherwise.

isCellBackgroundTransparent

- (BOOL)isCellBackgroundTransparent

Returns YES if Cells in the Matrix are created with transparent backgrounds, NO
otherwise.

makeCellAt: :

- makeCellAt:(int)row :(int)col

If there is a protoCell, then it is cloned by sending it a copy message; otherwise, a new
Cell is created by sending new to the class object referenced by the cell Class instance
variable. You never invoke this method directly; it's invoked by addRow and other
methods. It may be overridden if desired.

See also: - addCol, - addRow, - insertColAt:, - insertRowAt:

2-280 Chapter 2: Class Specifications

mouseDown:

- mouseDown:(NXEvent *)theEvent

You never invoke this method but may override it to implement subclassses of the
Matrix class. The response of the Matrix depends on the mode set when it was first
initialized:

In NX_ TRACKMODE, each Cell is given the opportunity to track the mouse while it
is in its bounds.

In NX_HIGHLIGHTMODE, each Cell is given the opportunity to track the mouse
while it is in its bounds and the currently tracking Cell is highlighted.

In NX_RADIOMODE, each Cell is given the opportunity to track the mouse while it
is in its bounds, the currently tracking Cell is highlighted, and no more than one Cell
can have a non-zero state at any time.

In NX_LISTMODE, Cells are not given the opportunity to track the mouse, rather, they
are merely highlighted as the mouse is dragged over them. Shift-mousedown can be
used to extend the selection, Command-mousedown can be used to make disjoint
selections.

In any mode, a mousedown in an editable Cell immediately enters text editing mode.
Also, a double-click in any Cell sends the doubleAction to the target in addition to the
regular action.

See also: - initFrame:mode:cellClass:numRows:numCols:,
- initFrame:mode:prototype:numRows:numCols:

mouseD own Flags

- (int)mouseDownFlags

Returns the flags (e.g., NX_SHIFTMASK) that were in effect when the mouse went
down to start the current tracking session. Use this method if you want to access these
flags, but don't want the overhead of having to add NX_MOUSEDOWNMASK to the
sendActionOn: mask in every Cell to get them. This method is valid only during
tracking; it's not useful if the target of the Matrix initiates another Matrix tracking loop
as part of its action method.

performKeyEquivalent:

- (BOOL)performKeyEquivalent:(NXEvent *)theEvent

Returns YES if a Cell in the matrix responds to the key equivalent in theEvent, NO if
no Cell responds. If a Cell responds to the key equivalent, it is sent the messages
highlight:inView:lit:YES, then incrementState, and finally
highlight:inView:lit:NO. You do not send this message; it is sent when the Matrix or
one of its superviews is the first responder and the user presses a key.

Application Kit Classes: Matrix 2-281

prototype
- prototype

Returns the prototype Cell set by initFrame:mode:prototype:numRows:numCols:
or setPrototype:.

See also: - initFrame:mode:prototype:numRows:numCols:, - setPrototype:

putCell:at: :

- putCell:newCell
at: (int)row
: (int)col

Replaces the Cell at (row, col) by newCell, and returns the old Cell at that position.
Draws the new Cell if autodisplay is on.

read:

- read:(NXTypedStream *)stream

Reads the Matrix from the typed stream stream. Returns self.

removeCoIAt:andFree:

- removeColAt:(int)col andFree:(BOOL)jlag

Removes the column at position col. Ifjlag is YES then the Cells in that column are
freed. Doesn't redraw even if autodisplay is on. You nonnally need to invoke
sizeToCells after invoking this method to resize the Matrix to fit the reduced Cell count.
Returns self.

removeRow At:andFree:

- removeRowAt:(int)row andFree:(BOOL)jlag

Removes the row at position row. Ifjlag is YES then the Cells in that column are freed.
Doesn't redraw even if autodisplay is on. You nonnally need to invoke sizeToCells
after invoking this method to resize the Matrix to fit the reduced Cell count. Returns
self.

2-282 Chapter 2: Class Specifications

renewRows:cols:

- renewRows:(int)newRows cols:(int)newCols

Changes the number of rows and columns in the Matrix, but uses the same Cells as
before (creates new Cells ifthe new size is larger). Since renewing the number ofrows
and columns often requires that the size of the Matrix itself change (by sending a
sizeToCells message, for example), renewRows:cols: doesn't automatically display
the Matrix even if autodisplay is on. You will normally want to invoke sizeToCells to
resize your Matrix View after invoking this method. The selectedCell is cleared.
Returns self.

resetCursor Rects

- resetCursorRects

Cycles through the Cells asking each to resetCursorRects:in View:. If one of the Cells
has a cursor rectangle to set up, it will send the message addCursorRect:cursor: back
to the Matrix. Returns self.

scrollCellTo Visible::

- scrollCellTo Visible: (int)row :(int)col

If the Matrix is in a scrolling view, then the Matrix will scroll to make the Cell at
(row, col) visible. Returns self.

selectAll:

- selectAIl:sender

If the mode of the Matrix is not NX_RADIOMODE, then all the Cells in the Matrix are
selected. The currently selected Cell is unaffected. Editable Cells are not affected. The
Matrix is redisplayed. Returns self.

See also: - selectText:, - selectCeIlAt::

selectCell:

- selectCell:aCel!

If aCel! is in the Matrix, then the Cell is selected, the Matrix is redrawn, and the
selected Cell is returned. Returns nil if the Cell is not in the Matrix.

Application Kit Classes: Matrix 2-283

selectCellAt: :

- selectCellAt:(int)row :(int)col

Sets selectedCell to be the Cell at (row, col), selectedRow to be row and selectedCol
to be col. Ends any editing going on in the window and invokes selectTextAt:row :col
if the Cell at (row, col). If row or col is -1, then the current selection is cleared (unless
the Matrix is in NX_RADIOMODE and does not allow empty selection). Redraws the
affected Cells and returns self.

selectCellWithTag:

- selectCellWithTag:(int)theTag

Finds the Cell in the Matrix with the given tag and selects it. Returns the Matrix id or
nil if no Cell has theTag.

selectedCell

- selected Cell

Returns the currently selected Cell.

selected Col

- (int)selectedCol

Returns the column number of the currently selected Cell. If Cells in multiple columns
are selected, this method returns the number of the last column in which a cell was
selected. If no Cells are selected, this method returns -1.

selectedRow

- (int)selectedRow

Returns the row number of the currently selected Cell. If Cells in multiple rows are
selected, this method returns the number of the last row in which a cell was selected. If
no Cells are selected, this method returns -1.

selectText:

- selectText:sender

Selects the text of an editable Cell in the Matrix, if any. If sender is nextText, the first
Cell is selected; otherwise, the last Cell is selected. Don't invoke this method before
inserting the receiving Matrix in a window's view hierarchy and drawing it. Returns
self.

2-284 Chapter 2: Class Specifications

selectTextAt: :

- selectTextAt:(int)row :(int)col

Select the text of the Cell at (row, col) in the Matrix if any. Don't invoke this method
before inserting the receiving Matrix in a window's view hierarchy and drawing it.
Returns self.

sendAction

- sendAction

If the selected Cell has an action and a target, its action is sent to its target. If the Cell
has an action but no target, its action is sent to the Matrix's target. If the Cell doesn't
have an action or target, the Matrix's action is sent to its target.

See also: - action, - setAction:, - setTarget:, - target

sendAction:to:

- sendAction:(SEL)theAction to:theTarget

Sends theAction to theTarget and returns self. You don't normally invoke this method.
It is invoked by event handling methods such as Cell's trackMouse:inRect:otView: to
send an action to a target in response to an event within the Matrix.

sendAction:to:for AllCells:

- sendAction:(SEL)aSelector
to:anObject
forAllCells:(BOOL)flag

Repeatedly sends the message [anObject aSelector:aCell] for each Cell in the matrix.
The process begins with aCell being the Cell in the first row and column of the Matrix
and proceeds row by row. If the flag is NO, then only highlighted Cells are sent in the
message; this is useful for performing actions when multiple Cells are selected in an
NX_LISTMODE Matrix. The method aSelector should return YES if it wants to
continue looping for remaining cells, NO otherwise.

Note: This method is not invoked to send action messages to target objects in response
to mouse-down events in the Matrix. Instead, you can invoke it if you want to have
mUltiple Cells in a Matrix interact with an object.

This method returns self.

Application Kit Classes: Matrix 2-285

sendDoubleAction

- sendDoubleAction

You don't invoke this method; it is sent in response to a double-click event in the
Matrix. The method sends an action message to a target object, depending on the
actions and targets of the Matrix and the selected Cell. If the selected Cell has an
action, then it sends that action to the selected cell's target. Otherwise, if the Matrix
has a doubleAction message, it sends that message to the Matrix's target. Finally, if
the Matrix doesn't have a doubleAction, it sends the Matrix's action to its target.
Returns self.

setAction:

- setAction:(SEL)aSelector

Sets the default action of the Matrix. If it has an action, a Cell in the Matrix can respond
to certain events (usually NX_MOUSEUP events) within its frame by sending its action
to its target. If a Cell doesn't have an action, the Matrix can respond to the event by
sending its action to its target (not to the Cell's target). This method sets the action sent
by the Matrix in such cases. Returns self.

setAction:at: :

- setAction:(SEL)aSelector
at:(int)row
: (int)col

Sets the action of the Cell at (row, col) to aSelector. Returns self.

setAutoscroll:

- setAutoscroll:(BOOL)jlag

If jlag is YES and the Matrix is in a scrolling view, it will be autoscrolled whenever a
the mouse is dragged outside the Matrix after a mouse-down event within its bounds.
Returns self.

setAutosizeCells:

- setAutosizeCells:(BOOL)jlag

Sets Cells in the Matrix to automatically resize when the size of the Matrix
changes. Returns self.

2-286 Chapter 2: Class Specifications

setBackground Color:

- setBackgroundColor: (NXColor)C olorvalue

Sets the background color for the Matrix. This is the color used to fill the space
between Cells or the space behind any non-opaque Cells. If autodisplay is on, the entire
Matrix is redrawn. Returns self.

setBackgroundGray:

- setBackgroundGray: (float)value

Sets the background gray for the Matrix (a background Gray of -1.0 means there is no
background gray: the Matrix is transparent). This is the gray used to fill the spaces
between Cells or the space behind any non-opaque Cell if cellBackgroundGray is
-1.0. If autodisplay is on, the entire Matrix is redrawn. Returns self.

See also: - background Gray

setBackgroundTransparent:

- setBackgroundGray:(BOOL)jlag

Sets the background of the Matrix to transparent. With the background transparent, the
spaces between Cells are transparent, as is the space behind any non-opaque Cell. If
autodisplay is on, the entire Matrix is redrawn.

See also: - isBackgroundTransparent

setCellBackgroundColor:

- setCeIlBackgroundColor:(NXColor)value

Sets the background color for the Cells. If autodisplay is on, the entire Matrix is
redrawn.

setCellBackgroundGray:

- setCeIlBackgroundGray:(float)value

Sets the background gray for the Cells. If value is -1.0, then no background gray is
drawn behind the Cells. If autodisplay is on, the entire Matrix is redrawn.

setCellBackgroundTransparent:

- setCeIlBackgroundTransparent:(BOOL)jlag

Sets the background of the Cells to transparent. If autodisplay is on, the entire Matrix
is redrawn.

See also: - isCellBackgroundTransparent

Application Kit Classes: Matrix 2-287

setCellClass:

- setCellClass:class/d

Sets the cellClass instance variable to class/d, the value returned by sending a class
message to Cell or a subclass of Cell. This class will be used by makeCellAt:: to create
new Cells if there is no prototype Cell. The default is set with the setCellClass: class
method.

See also: + setCellClass:, - setPrototype:

setCellSize:

- setCellSize:(const NXSize *)aSize

Sets the width and the height of each of the C~lls. Does not redraw the Matrix (even if
autodisplay is on).

setDoubleAction:

- setDoubleAction:(SEL)aSelector

Sets aSelector as the action to be sent to the Matrix's target (in addition to the regular
action) when the user double-clicks on a Cell. If there is no doubleAction, then
double-clicks are treated as single-clicks. Setting a double action also sets
allowMultiClick: to YES. Returns self.

See also: - allowMultiClick:

setEnabled:

- setEnabled:(BOOL)jlag

Ifjlag is YES, enables all Cells in the Matrix; if NO, disables all Cells. If autodisplay
is on, this redraws the entire Matrix. Returns self.

setError Action:

- setError Action: (SEL)aSelector

Sets aSelector as the action sent to the target of the Matrix when any text editing errors
occur. An error can occur when the user types something into a Cell and the value
returned when isEntry Acceptable: is sent to the Cell is NO. This is a convenient
method for enforcing some restrictions on what a user can type into a Cell. However,
if you want to impose some restriction such as a range restriction (e.g., a typed number
must be within some bounds), it is probably more convenient simply to check the value
in your action method and, if it is not acceptable, invoke selectTextAt::) to notify the
user that the value must be retyped. Returns self.

2-288 Chapter 2: Class Specifications

setFont:
- setFont:JontObj

Sets the font of the Matrix to JontObj. This will cause all current Cells to have their
font changed to JontObj as well as cause all future Cells to have that font. If autodisplay
is on, this redraws the entire Matrix. Returns self.

setlcon:at::
- setlcon:(const char *)iconName

at: (int)row
: (int)col

Sets the icon of the Cell at (row, col) to iconName. If autodisplay is on, then the Cell
is redrawn. Returns self.

See also: - setlcon: (ButtonCell, Cell)

setlntercell :
- setlntercell:(const NXSize *)aSize

Sets the width and the height of the space between Cells without redrawing the Matrix,
even if autodisplay is on. Returns self.

setMode:
- setMode:(int)aMode

Sets the mode of the Matrix. aMode can be one of four constants:

NX_TRACKMODE
NX_HIGHLIGHTMODE
NX_RADIOMODE
NXJ-ISTMODE

See also: - mouseDown:

setNextText:
- setNextText:anObject

Just track the mouse inside the Cells
Highlight the Cell, then track, then unhighlight
Allow no more than one selected Cell
Allow multiple selected Cells

Sets the nextText instance variable. When the user presses the Tab key while the last
editable entry of the Matrix is being edited, the selectText: method is sent to the object
represented by nextText. A backwards link is automatically created, so that pressing
Shift-Tab will move backwards to the previous text via setPreviousText:. Returns self.

Application Kit Classes: Matrix 2-289

setPreviousText:
- setPreviousText:anObject

Normally you never invoke this method. It is invoked automatically by some other
object's setNextText: method. It sets the object which will be sent selectText: when
Shift-Tab is pressed in the Matrix and there are no more fields. Returns self.

setPrototype:
- setPrototype:aCell

Sets the protoCell instance variable to aCell and returns the id of the previous
protoCell. As the new prototype, aCell is copied to make any future Cells added to the
Matrix.

If you implement your own Cell subclass, then instantiate it as the prototype for your
Matrix and make sure your Cell does the right thing when it receives a copy message.
For example, remember that Object's copy copies only pointers, not what they point
to-sometimes this is what you want, sometimes not. The best way to implement copy
when you subclass Cell is to invoke [super copy], then copy instance variable values in
your subclass individually. Be especially careful that freeing the prototype will not
damage any of the copies that were made and put into the Matrix (for example, due to
shared pointers).

To stop prototyping, invoke this method with nil as the argument, then free the old
prototype Cell if no more Cells of that type will be created. If you want to use a
prototype cell in other places in the application, it may be useful to copy your prototype
when invoking this method, for example:

myCellPrototype = [[myCell alloc] init];

[myMatrix setPrototype: [myCellPrototype copy]];

This prevents your version of the prototype from being freed when the Matrix is freed.

setReaction:
- setReaction:(BOOL)jlag

Ifjlag is NO, prevents the cell from changing back to its previous state; if YES, allows
it to revert to reflect unhighlighting. Invoke this from an action method if the action
causes the Cell to change in such a way that trying to unhighlight it would be incorrect;
for example, if the Cell is deleted or its visual appearance completely changes. Returns
self.

2-290 Chapter 2: Class Specifications

setScrollable:

- setScrollable:(BOOL)jlag

Sets all the Cells to be scrollable. Returns self.

See also: - setScrollable: (Cell)

setState:at: :
- setState:(int)value

at: (int)row
: (int)col

Sets the state of the Cell at row row and column col to value. For NX_RADIOMODE
Matrices, this is identical to selectCellAt:: except that the state can be set to any
arbitrary value. If autodisplay is on, redraws the affected Cell; if the Matrix is in
NX_RADIOMODE, the Cell is redrawn regardless of the setting of autodisplay.
Returns self.

setTag:at: :
- setTag:(int)anlnt

at:(int)row
: (int)col

Sets the tag of the Cell at (row, col) to anlnt and returns self.

setTag:target:action:at: :

- setTag:(int)anlnt
target:anObject
action: (SEL)aSelector
at: (int) row
: (int)col

Sets the tag, target object and action method of the Cell at row row and column col.
Returns self.

setTarget:
- setTarget:anObject

Sets the target object of the Matrix. This is the target to which actions will be sent
during tracking in any Cells that do not have their own target. Returns self.

See also: - action, - setAction, - target

Application Kit Classes: Matrix 2-291

setTarget:at: :
- setTarget:anObject

at: (int) row
: (int)col

Sets the target of the Cell at row row and column col to anObject. Returns self.

setTextDelegate:

- setTextDelegate:anObject

Sets the object to which the Matrix will forward any messages from the field editor (for
example, text:isEmpty:, textWillEnd:, textDidEnd:endChar:, textWillChange:
and textDidChange:). Returns self.

See also: the Text class

setTitle:at: :

- setTitle:(const char *)aString
at: (int)row
: (int)col

Invoke this method to set the title of the Cell at row row and column col to aString. If
autodisplay is on, then the Cell is redrawn. Returns self.

See also: - setTitle: (ButtonCell)

sizeTo::
- sizeTo:(float)width :(float)height

If editing is going on in the Matrix, this aborts the editing, then, after the View is
resized, reselects the text to allow editing to continue. Returns self.

sizeToCells

- sizeToCells

Changes the width and the height of the Matrix frame so that the Matrix's frame
contains exactly the Cells. Does not redraw the Matrix. Returns self.

sizeToFit
- sizeToFit

Changes cellSize to accommodate the Cell with the largest contents in the Matrix.
Then changes the width and the height of the Matrix frame so that the Matrix's frame
contains exactly the Cells. Doesn't redraw the Matrix. Returns self.

2-292 Chapter 2: Class Specifications

target
- target

Returns the id of the Matrix's target object.

See also: - setTarget:.

textDelegate

- textDelegate

Returns the id of the Matrix's text delegate: the object that receives messages from the
field editor. The field editor is the Text object used to draw text in all cells in the
window. Messages are forwarded to the text delegate by the Matrix.

See also: - getFieldEditor:for: (Window)

textDidChange:

- textDidChange:textObject

This message is forwarded to the textDelegate if the Matrix has one.

See also: - textDelegate

textDidEnd:endChar:

- textDidEnd:textObject endChar:(unsigned short)whyEnd

Invoked automatically by the system when the text editing ends. If editing ends
because the Return key is pressed, then the message [self sendAction] is sent. To get
the id of the Cell in which editing is being performed, use the selectedCell method; to
access its row or column, use selectedRow or selected Col. If editing ends because the
Tab key is pressed and the Cell being edited was not the last in the Matrix, then the next
Cell is selected. If the Cell is the last one and the nextText instance variable is nil, the
first Cell in the Matrix is selected. Otherwise the selectText: message is sent to the
object stored in nextText. The textDelegate (if any) is sent the textDidEnd:endChar:
message. Returns self.

textDidGetKeys:isEmpty:

- textDidGetKeys:textObject isEmpty:(BOOL)jlag

Forwarded to the textDelegate (if any). Returns self.

textWillChange:

- (BOOL)textWiIIChange:textObject

Forwarded to the textDelegate (if any). Returns self.

Application Kit Classes: Matrix 2-293

textWilIEnd:

- (BOOL)textWillEnd:textObject

Invoked automatically by the system before text editing ends. It sends the error Action
to the target ifisEntryAcceptable:. The textDelegate gets a chance to cancel as well.
Returns self.

validateSize:

- validateSize:(BOOL)jlag

Allows control over whether the Matrix will invoke calcSize the next time it draws. If
jlag is YES, then the size information in the Matrix is assumed correct and will not be
recomputed. Ifjlag is NO, then calcSize will be invoked before any further drawing is
done. Returns self.

See also: - calcSize:

write:

- write:(NXTypedStream *)stream

Writes the receiving Matrix to the typed stream stream. Returns self.

CONSTANTS AND DEFINED TYPES

/* Matrix Constants */

#define NX RADIOMODE 0

#define NX HIGHLIGHTMODE 1

#define NX LISTMODE 2

#define NX TRACKMODE 3

2-294 Chapter 2: Class Specifications

Menu

INHERITS FROM Panel: Window : Responder: Object

DECLARED IN appkit/Menu.h

CLASS DESCRIPTION

The Menu class defines a Panel that contains a single Control object: a Matrix that
displays a list of MenuCells.

There are methods for adding both command and submenu items to the Menu. The
Menu window can be resized to exactly fit the matrix.

Exactly one Menu created by the application is designated as the "main menu" for the
application. This Menu is displayed on top of all other windows whenever the
application is active, and it has no close box.

Menus can be made submenus of other menus. A submenu is associated with a
particular item in another menu, its "supermenu." Whenever the user clicks the item,
the submenu it controls is brought to the screen and "attached" to the controlling
supermenu. An item can control only one submenu.

Note that you can drag Menus into your application from Interface Builder's Palettes
panel. Several menu items are initialized to work correctly without any additional
effort on your part. You can easily set other menu items to display the commands and
perform the actions associated with your specific application.

INSTANCE VARIABLES

Inheritedfrom Object Class isa;

Inherited from Responder id nextResponder;

Inheritedfrom Window NXRect frame;
id contentView;
id delegate;
id firstResponder;
id lastLeftHit;
id lastRightHi t;
id counterpart;
id fieldEditor;
int winEventMask;
int windowNum;
float backgroundGray;
struct _ wFlags wFlags;
struct _ wFlags2 wFlags2;

Application Kit Classes: Menu 2-295

Inheritedfrom Panel

Declared in Menu

supermenu

matrix

attachedMenu

lastLocation

reserved

menuFlags.sizeFitted

menuFlags.autoupdate

menuFlags.attached

menuFlags.tornOff

menuFlags. wasAttached

menuFlags. wasTornOff

METHOD TYPES

Creating a Menu zone

Initializing a new Menu

2-296 Chapter 2: Class Specifications

(none)

id
id
id
NXPoint
id
struct _menuFlags {

unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

supermenu;
matrix;
attachedMenu;
lastLocation;
reserved;

sizeFitted: 1;
autoupdate: I;
attached: 1;
tornOff:l;
wasAttached: 1;
wasTornOff: 1;

menuFlags;

The Menu that this Menu is a submenu of.

The Matrix object used to hold MenuCells.

The submenu that is currently attached to this
Menu. When the user moves or closes a Menu,
the attached submenu performs with it.

Last menu location.

Reserved for future use.

Set if the menu has been sized to fit the matrix.

Set if the menu wants automatic updating.

Set if the menu is attached to its supermenu.

Set if the menu has been torn off of its supermenu.

Set if the menu was attached before tracking.

Set if the menu was torn off before tracking.

+menuZone
+ setMenuZone:

- init
- initTitle:

Setting up the commands - addItem: action: key Equivalent:
- findCellWithTag:
- itemList
- setltemList:
- setSubmenu:forItem:
- submenuAction:

Managing menu windows - close
- getLocation:forSubmenu:
- moveTopLeftTo::
- sizeToFit
- windowMoved:

Displaying the Menu - display
- setAutoupdate:
- update

Handling events - mouseDown:
- rightMouseDown:

Archiving - awake
- read:
- write:

CLASS METHODS

menu Zone

+ (NXZone *)menuZone

Creates and returns a zone with the name "Menus" in which to allocate new Menus.
After invoking this method, you should allocate new Menu instances from this zone.

See also: - alloe (Object)

setMenuZone

+ setMenuZone:(NXZone *)aZone

Sets the zone from which menus will be allocated to aZone.

See also: - alloe (Object)

Application Kit Classes: Menu 2-297

INSTANCE METHODS

addltem:action:keyEquivalent:

- addltem:(const char *)aString
action: (SEL)aSelector
keyEquivalent:(unsigned short)charC ode

Creates a new MenuCell, appends it to the receiving Menu, and returns the id of the
new cell.

The MenuCell displays aString as the command name for the menu item. aSelector is
the action method the command will invoke. The key equivalent charCode becomes
the key equivalent for the cell.

The new MenuCell's target is nil, it's automatically enabled, and it has no tag or
alternate character string to display. You can change these and other properties of the
Cell, including the submenu attribute, by sending direct messages to the returned id.

This method doesn't automatically redisplay the Menu. Upon the next display
message, the menu is automatically sized to fit.

See also: - setSubmenu:forltem:

awake

-awake

Reinitializes and returns a Menu as it's unarchived. Do not invoke this method directly;
it's invoked by the read: method.

close
- close

Overrides Panel's close method. If a submenu is attached to the Menu, the attached
submenu is also removed from the screen.

See also: - close (Window)

display

- display

This overrides window's display method to provide automatic size-to-fit of the menu
window to its matrix. All changes to the matrix that go through the menu methods
cause a resizing the next time the Menu is displayed.

See also: - sizeToFit

2-298 Chapter 2: Class Specifications

findCellWithTag:

- findCellWithTag:(int)aTag

Returns the MenuCell that has aTag as its tag; returns nil if no such cell can be found.

getLocation:forSubmenu:

init

- getLocation:(NXPoint *)theLocation forSubmenu:aSubmenu

1,'his message is sent whenever the submenu location is needed. By default, the
submenu is to the right of its supermenu, with its titlebar aligned with the supermenu's.
You never directly use this method, but may override it to cause the submenu to be
attached with a different strategy.

- init

Initializes and returns the receiver, a new instance of Menu, displaying the title "Menu."
All other features are as described in the initTitle: method below.

initTitle:

- initTitle:(const char *)aTitle

Initializes and returns the receiver, a new instance of Menu, displaying the title aTitle.
The Menu is positioned in the upper left comer of the screen. The Menu's Matrix is
initially empty.

The Menu is created as a buffered window initially out of the Window Server's screen
list. It must be sent one message to display itself (into the buffer), and another message
to move itself on-screen before it will be visible.

The Menu has a style of NX_MENUSTYLE and it has an NX_CLOSEBUTTON
button mask. The button isn't shown until the Menu is tom off of its supermenu.

A default matrix is created to contain MenuCell items to display without any
intervening space in a single column. The Matrix will use 12-point Helvetica by default
to display the items. The matrix will be empty.

Items can be added to the Menu through the addltem:action:keyEquivalent: method.
The action and key equivalent may both be null. To make a submenu, a
setSubmenu:forltem: message is sent directly to the Menu.

All Menus have an event mask that excludes keyboard events; they therefore will never
become the key window or main window for your application.

See also: - addltem:action:keyEquivalent:

Application Kit Classes: Menu 2-299

itemList
- itemList

Returns the matrix of MenuCells used by the Menu.

mouseDown:

- mouseDown:(NXEvent *)theEvent

Overrides the View method to allow MenuCell to delegate tracking control to the
Menu. Returns self.

moveTopLeftTo: :

- moveTopLeftTo:(NXCoord)x :(NXCoord)y

Repositions the Window on the screen. The arguments specify the new location of the
Window's top left comer-the top left comer of its frame rectangle-in screen
coordinates.

See also: - dragFrom::eventNum: (Window), - moveTo:: (Window)

read:

- read:(NXTypedStream *)stream

Reads the Menu from the typed stream stream. Returns self.

rightMouseDown:

- rightMouseDown:(NXEvent *)theEvent

Saves the current state of the menu (and its submenus), and pops it up under the mouse
position. The menu is tracked as normal, and then the menu's state is restored.

setAutoupdate:

- setAutoupdate:(BOOL)jlag

Ifjlag is YES, the menu will respond to the update message sent by the Application to
all visible Windows after each event (if Application's autoupdating has been enabled).
If NO, the Menu won't respond.

See also: - update

2-300 Chapter 2: Class Specifications

setltemList:

- setItemList:aMatrix

Sets the Menu's Matrix to aMatrix. Subsequent display will size to fit. The previous
Matrix is returned.

setSubmenu:forltem:

- setSubmenu:aMenu forItem:aCell

Sets aMenu as the submenu controlled by the MenuCell aCell.

sizeToFit

- sizeToFit

Adjusts the size of the Menu window to its Matrix subview so that they exactly
encompass all the commands. Use this method after you're through adding items,
modifying the strings they display, or altering the font used to display them. When the
Menu is resized, its upper left corner remains fixed. After any resizing that might be
necessary, this method will redisplay the Menu.

See also: - sizeToFit (Matrix)

submenuAction:
- submenuAction:sender

This message is the action message sent to a submenu by the MenuCell attached to that
submenu. If sender is in a visible Menu, this action message causes the receiving Menu
to attach itself to the menu containing sender. Returns self.

update

- update

Sent to Menu to have the menu update its display. It does this by getting the
updateAction for each cell and sending it to NXApp. If the updateMethod returns
YES, the Menu's Matrix is told to redraw the cell using drawCellAt::. For this method
to have any effect, you must have sent a prior setAutoupdate: YES message.

See also: - setUpdate:

windowMoved:

- windowMoved:(NXEvent *)theEvent

Overrides Window method to detach the receiving Menu from its supermenu.

See also: - windowMoved: (Window)

Application Kit Classes: Menu 2-301

write:

- write:(NXTypedStream *)stream

Writes the receiving Menu to the typed stream stream and returns self.

METHODS IMPLEMENTED BY THE DELEGATE

submenuAction:

- submenuAction:sender

2-302 Chapter 2: Class Specifications

MenuCell

INHERITS FROM ButtonCell : ActionCell : Cell: Object

DECLARED IN appkit/MenuCell.h

CLASS DESCRIPTION

MenuCell is a subclass of ButtonCells that appear in Menus. They draw their text
left-justified and show an optional key equivalent or submenu arrow on the right.

INSTANCE VARIABLES

Inheritedfrom Object

Inheritedfrom Cell

Inherited from ActionCeli

Inherited from ButtonCeli

Declared in MenuCell

updateAction

METHOD TYPES

Initializing a new MenuCell

Setting the Update Action

Querying the MenuCell

Class isa;

char *contents;
id support;
struct _cFlagsl cFlagsl;
struct 3Flags2 cFlags2;

int tag;
id target;
SEL action;

char *altContents;
union _icon icon;
id sound;
struct _bcFlagsl bcFlagsl;
struct _bcFlags2 bcFlags2;
unsigned short periodicDelay;
unsigned short periodicInterva1;

SEL updateAction;

Action used to keep MenuCell's enabled state in
synch with the Application.

- init
- initTextCell:

- setUpdateAction:forMenu:
- updateAction

- has Submenu

Application Kit Classes: MenuCell 2-303

Tracking the Mouse

Setting User Key Equivalents

Archiving

- trackMouse:inRect:ofView:

+ useUserKeyEquivalents:
- userKeyEquivalent

-read:
- write:

INSTANCE METHODS

hasSubmenu

init

- (BOOL)hasSubmenu

Return YES if the MenuCell invokes a submenu, NO otherwise.

- in it

Initializes and returns the receiver, a new instance of MenuCell, with the default title
"MenuItem."

initTextCell:

- initTextCell:(const char *)aString

Initializes and returns the receiver, a new instance of MenuCell, with aString as its title.
This method is the designated initializer for the MenuCell class; override this method
if you create a subclass of MenuCell that performs its own initialization.

read:

- read:(NXTypedStream *)stream

Reads the MenuCell from the typed stream stream. Returns self.

2-304 Chapter 2: Class Specifications

set U pdateAction:for Menu:

- setUpdateAction:(SEL)aSelector forMenu:aMenu

Sets the updateAction for the MenuCell. The updateAction is a method that when
invoked should set the MenuCell to reflect the current state of the application. This may
include enabling or disabling the item, changing the string displayed, or setting the
item's state. The updateAction takes a single argument, the id of the Cell to update.

The updateAction shouldn't redisplay the Cell itself. Rather it should return YES or
NO depending upon whether the Cell needs to be redisplayed.

When an updateAction is set for a MenuCell, the Menu passed in aMenu is set so it
will be automatically updated after each event is processed.

See also: - update: (Menu), - updateWindows: (Application)

trackMouse:inRect:ofView:

- (BOOL)trackMouse:(NXEvent *)theEvent
inRect:(const NXRect *)cellFrame
ofView:controlView

Delegates the first event it gets to the Menu. All mouse tracking is handled by Menu.

updateAction

- (SEL)updateAction

Returns selector for the updateAction method.

userKeyEquivalent

- userKeyEquivalent

Returns the user-assigned key equivalent for the receiving MenuCell.

useUserKeyEquivalents:

+ useUserKeyEquivalents:(BOOL)jlag

If jlag is YES, then MenuCells can accept user key equivalents. If NO, user key
equivalents are disabled.

write:

- write:(NXTypedStream *)stream

Writes the receiving MenuCell to the typed stream stream and returns self.

Application Kit Classes: MenuCell 2-305

2-306

NXBitmaplmageRep

INHERITS FROM NXImageRep : Object

DECLARED IN appkit/NXBitmapImageRep.h

CLASS DESCRIPTION

An NXBitmapImageRep is an object that can render an image from bitmap data. The
data can be in Tag Image File Format (TIFF), or it can be raw image data. If it's raw
data, the object must be informed about the structure of the image-its size, the number
of color components, the number of bits per sample, and so on-when it's first
initialized. If it's TIFF data, the object can get this information from the various TIFF
fields included with the data.

Although NXBitmapImageReps are often used indirectly, through instances of the
NXImage class, they can also be used directly-to render bitmap images or to produce
TIFF representations of them.

Setting Up an NXBitmaplmageRep

A new NXBitmapImageRep is passed bitmap data for an image--or told where to find
it-when it's first initialized:

• TIFF data can be read from a stream, from a file, or from a section of the _TIFF
segment of the application executable. If it's stored in a section or a separate file,
the object will delay reading the data until it's needed.

• Raw bitmap data is placed in buffers, and pointers to the buffers are passed to the
object.

An NXBitmapImageRep can also be created from bitmap data that's read from an
existing (already rendered) image. The object created from this data is able to
reproduce the image.

Although the NXBitmapImageRep class inherits NXImageRep methods that set image
attributes, these methods shouldn't be used. Instead, you should either allow the object
to find out about the image from the TIFF fields or use methods defined in this class to
supply this information when the object is initialized.

Application Kit Classes: NXBitmaplmageRep 2-307

TIFF Compression

TIFF data can be read and rendered after it has been compressed using anyone of the
three schemes briefly described below:

LZW

PackBits

JPEG

Compresses and decompresses without information loss,
achieving compression ratios of anywhere from 2: 1 to 3: 1. It may
be somewhat slower to compress and decompress than the
PackBits scheme.

Compresses and decompresses without information loss, but may
not achieve the same compression ratios as LZW.

Compresses and decompresses with some information loss, but
can achieve compression ratios anywhere from 10: 1 to 100: 1. The
ratio is determined by a user-settable factor ranging from 1.0 to
255.0, with higher factors yielding greater compression. More
information is lost with greater compression, but 15:1
compression is safe for publication quality. Some images can be
compressed even more. JPEG compression can be used only for
images that specify at least 4 bits per sample.

An NXBitmapImageRep can also produce compressed TIFF data for its image using
any ofthese schemes.

INSTANCE VARIABLES

Inherited/rom Object Class is a;

Inherited/rom NXImageRep NXSize size;

Declared in NXBitmapImageRep (none)

METHOD TYPES

Initializing a new NXBitmapImageRep object

2-308 Chapter 2: Class Specifications

- initFromSection:
- initFromFile:
- initFromStream:
- initData:fromRect:
- initData:pixels Wide:pixelsHigh:

bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpace:
bytesPerRow: bitsPerPixel:

- initDataPlanes:pixelsWide:pixelsHigh:
bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpace:
bytesPerRow: bitsPerPixel:

Creating a List of NXBitmaplmageReps
+ newListFromSection:
+ newListFromSection:zone:
+ newListFromFile:
+ newListFromFile:zone:
+ newListFromStream:
+ newListFromStream:zone:

Reading information from a rendered image
+ sizelmage:
+ sizelmage:pixels Wide:pixelsHigh:

bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpace:

Copying and freeing an NXBitmaplmageRep
-copy
-free

Getting information about the image
- bitsPerPixel
- samplesPerPixel
- bitsPerSample (NXlmageRep)
- isPlanar
- numPlanes
- numColors (NXlmageRep)
- hasAlpha (NXlmageRep)
- bytesPerPlane
- bytesPerRow
- colorSpace
- pixels Wide (NXlmageRep)
- pixelsHigh (NXlmageRep)

Getting image data - data
- getDataPlanes:

Drawing the image -draw
-drawln:
- draw At: (NXlmageRep)

Producing a TIFF representation of the image
- writeTIFF:
- writeTIFF:usingCompression:
- writeTIFF:usingCompression:andFactor:

Archiving - read:
- write:

Application Kit Classes: NXBitmaplmageRep 2-309

CLASS METHODS

newListFromFile:

+ (List *)newListFromFile:(const char *)filename

Creates one new NXBitmapImageRep instance for each TIFF image specified in the
filename file, and returns a List object containing all the objects created. If no
NXBitmapImageReps can be created (for example, iffilename doesn't exist or doesn't
contain TIFF data), nil is returned. The List should be freed when it's no longer
needed.

Each new NXBitmapImageRep is initialized by the initFromFile: method, which
reads information about the image fromfilename, but not the image data. The data will
be read when it's needed to render the image.

See also: + newListFromFile:zone:, - initFromFile:

newListFromFile:zone:

+ (List *)newListFromFile:(const char *)filename zone:(NXZone *)aZone

Returns a List of new NXBitmapImageRep instances, just as newListFromFile: does,
except that the List object and the NXBitmapImageReps are allocated from memory
located in aZone.

See also: + newListFromFile:, - initFromFile:

newListFromSection:

+ (List *)newListFromSection:(const char *)name

Creates one new NXBitmapImageRep instance for each TIFF image specified in the
name section of the _TIFF segment in the executable file, and returns a List object
containing all the objects created. If not even one NXBitmapImageRep can be created
(for example, if the name section doesn't exist or doesn't contain TIFF data), nil is
returned. The List should be freed when it's no longer needed.

Each new NXBitmapImageRep is initialized by the initFromSection: method, which
reads information about the image from the section, but doesn't read image data. The
data will be read when it's needed to render the image.

See also: + newListFromSection:zone:, - initFromSection:

2-310 Chapter 2: Class Specifications

new ListFromSection: zone:

+ (List *)newListFromSection:(const char *)name zone:(NXZone *)aZone

Returns a List of new NXBitmapImageRep instances, just as newListFromSection:
does, except that the List object and the NXBitmapImageReps are allocated from
memory located in aZone.

See also: + newListFromSection:, - initFromSection:

newListFromStream:

+ (List *)newListFromStream:(NXStream *)stream

Creates one new NXBitmapImageRep instance for each TIFF image that can be read
from stream, and returns a List object containing all the objects created. If not even one
NXBitmapImageRep can be created (for example, if the stream doesn't contain TIFF
data), nil is returned. The List should be freed when it's no longer needed.

The data is read and each new object initialized by the initFromStream: method.

See also: + newListFromStream:zone:, - initFromStream:

newListFromStream:zone:

+ (List *)newListFromStream:(NXStream *)stream zone:(NXZone *)aZone

Returns a List of new NXBitmapImageRep instances, just as newListFromStream:
does, except that the NXBitmapImageReps and the List object are allocated from
memory located in aZone.

See also: + newListFromStream:, - initFromStream:

sizelmage:

+ (int)sizelmage:(const NXRect *)reet

Returns the number of bytes that would be required to hold bitmap data for the rendered
image bounded by the reet rectangle. The rectangle is located in the current window
and is specified in the current coordinate system.

See also: + sizelmage:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpace:, - initData:fromRect:

Application Kit Classes: NXBitmaplmageRep 2-311

sizelmage:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:hasAlpha:
isPlanar:colorSpace:

+ (int)sizelmage:(const NXRect *)reet
pixelsWide:(int *)width
pixelsHigh:(int *)height
bitsPerSample:(int *)bps
samplesPerPixel:(int *)spp
hasAlpha:(BOOL *)alpha
isPlanar:(BOOL *)eonfig
colorSpace:(NXColorSpace *)spaee

Returns the number of bytes that would be required to hold bitmap data for the rendered
image bounded by the reet rectangle. The rectangle is located in the current window
and is specified in the current coordinate system.

Every argument but reet is a pointer to a variable where the method will write
information about the image. For an explanation of the information provided, see the
description of the initDataPlanes: ... method

See also: - initDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:
samplesPerPixel:hasAlpha:isPlanar:colorSpace:bytesPerRow:bitsPerPixel:

INSTANCE METHODS

bitsPerPixel
- (int)bitsPerPixel

Returns the number of bits allocated for each pixel in each plane of data. This is
normally equal to the number of bits per sample or, if the data is in meshed
configuration, the number of bits per sample times the number of samples per pixel. It
can be explicitly set to another value (in the initData: ... or initDataPlanes: ... method)
in case extra memory is allocated for each pixel. This may be the case, for example, if
pixel data is aligned on byte boundaries.

However, in the current release, an NXBitmapImageRep cannot render an image that
has empty memory separating pixel specifications.

bytesPerPlane

- (int)bytesPerPlane

Returns the number of bytes in each plane or channel of data. This will be figured from
the number of bytes per row and the height of the image.

See also: - bytesPerRow

2-312 Chapter 2: Class Specifications

bytesPerRow
- (int)bytesPerRow

Returns the minimum number of bytes required to specify a scan line (a single row of
pixels spanning the width of the image) in each data plane. If not explicitly set to
another value (in the initData: ... or initDataPlanes: ... method), this will be figured
from the width of the image, the number of bits per sample, and, if the data is in a
meshed configuration, the number of samples per pixel. It can be set to another value
to indicate that each row of data is aligned on word or other boundaries.

However, in the current release, an NXBitmapImageRep can't render an image that has
empty space at the end of a scan line.

colorSpace

- (NXColorSpace)colorSpace

Returns one of the following enumerated values, which indicate how bitmap data is to
be interpreted:

NX_ OneIsBlack
NX_ OneIs White
NX_RGBColorSpace
NX_ CMYKColorSpace

A gray scale where 1 means black and 0 means white
A gray scale where 0 means black and 1 means white
Red, green, and blue color values
Cyan, magenta, yellow, and black color values

These values are defined in the header file appkit/graphics.h.

See also: - numColors (NXImageRep)

copy

-copy

Returns a new NXBitmapImageRep instance that's an exact copy of the receiver. The
new object will have its own copy of the bitmap data, unless the receiver merely
references the data. In that case, both objects will reference the same data.

The new object doesn't need to be initialized.

data
- (unsigned char *)data

Returns a pointer to the bitmap data. If the data is in planar configuration, this pointer
will be to the first plane. To get separate pointers to each plane, use the getDataPlanes:
method.

See also: - getDataPlanes:

Application Kit Classes: NXBitmaplmageRep 2-313

draw
- (BOOL)draw

Renders the image at (0.0, 0.0) in the current coordinate system on the current device
using the appropriate PostScript imaging operator. This method returns YES if
successful in producing the image, and NO if not.

See also: - drawAt: (NXImageRep), - drawIn:

drawln:
- (BOOL)drawIn:(const NXRect *)rect

Renders the image so that it fits inside the rectangle referred to by recto The current
coordinate system is translated and scaled so the image will appear at the right location
and fit within the rectangle. The draw method is then invoked to render the image.
This method passes through the return value of the draw method, which indicates
whether the image was successfully drawn.

The coordinate system is not restored after it has been altered.

See also: - draw, - draw At: (NXImageRep)

free
-free

Deallocates the NXBitmapImageRep. This method will not free any bitmap data that
the object merely references-that is, raw data that was passed to it in a initData: ... or
initDataPlanes: ... message.

getDataPlanes:
- getDataPlanes:(unsigned char **)thePlanes

Provides bitmap data for the image separated into planes. thePlanes should be an array
of five character pointers. If the bitmap data is in planar configuration, each pointer will
be initialized to point to one of the data planes. If there are less than five planes, the
remaining pointers will be set to NULL. If the bitmap data is in meshed configuration,
only the first pointer will be initialized; the others will be NULL. Returns self.

Color components in planar configuration are arranged in the expected order-for
example, red before green before blue for RGB color. All color planes precede the
coverage plane.

See also: - data, - isPlanar

2-314 Chapter 2: Class Specifications

init

Generates an error message. This method cannot be used to initialize an
NXBitmapImageRep. Instead, use one of the methods listed under "See also" below.

See also: - initFromSection:, - initFromFile:, - initFromStream:,
- initDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpace: bytesPer Row: bitsPer Pixel:,
- initData:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpace:bytesPerRow:bitsPerPixel:, - initData:fromRect:

initData:fromRect:
- initData:(unsigned char *)data fromRect:(const NXRect *)reet

Initializes the receiver, a newly allocated NXBitmapImageRep object, with bitmap data
read from a rendered image. The image that's read is located in the current window and
is bounded by the reet rectangle as specified in the current coordinate system.

This method uses PostScript imaging operators to read the image data into the data
buffer; the object is then created from that data. The object is initialized with
information about the image obtained from the Window Server.

If data is NULL, the NXBitmapImageRep will allocate enough memory to hold bitmap
data for the image. In this case, the buffer will belong to the object and will be freed
when the object is freed.

If data is not NULL, you must make sure the buffer is large enough to hold the image
bitmap. You can determine how large it needs to be by sending a sizelmage: message
for the same rectangle. The NXBitmapImageRep will only reference the data in the
buffer; the buffer won't be freed when the object is freed.

If for any reason the new object can't be initialized, this method frees it and returns nil.
Otherwise, it returns the initialized object (self).

See also: + sizelmage:

Application Kit Classes: NXBitmaplmageRep 2-315

initData:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:hasAlpha:
isPlanar:colorSpace: bytesPer Row: bitsPer Pixel:

- initData:(unsigned char *)data
pixelsWide:(int)width
pixelsHigh:(int)height
bitsPerSample:(int)bps
samplesPerPixel:(int)spp
hasAlpha:(BOOL)alpha
isPlanar:(BOOL)config
colorS pace: (NXColorSpace)space
bytesPerRow:(int)rowBytes
bitsPerPixel:(int)pixeIBits

Initializes the receiver, a newly allocated NXBitmaplmageRep object, so that it can
render the image specified in data and described by the other arguments. If the object
can't be initialized, this method frees it and returns nil. Otherwise, it returns the object
(self).

data points to a buffer containing raw bitmap data. If the data is in planar configuration
(config is YES), all the planes must follow each other in the same buffer. The
initDataPlanes: ... method can be used instead of this one if there are separate buffers
for each plane.

If data is NULL, this method allocates a data buffer large enough to hold the image
described by the other arguments. You can then obtain a pointer to this buffer (with the
data or getDataPlanes: method) and fill in the image data. In this case the buffer will
belong to the object and will be freed when it's freed.

If data is not NULL, the object will only reference the image data; it won't copy it. The
buffer won't be freed when the object is freed.

All the other arguments to this method are the same as those to initDataPlanes:... See
that method for descriptions.

See also: - initDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:
samplesPerPixel:hasAlpha:isPlanar:colorSpace:bytesPerRow:bitsPerPixel:

2-316 Chapter 2: Class Specifications

initDataPlanes:pixelsWide:pixelsHigb:bitsPerSample:samplesPerPixel:
basAlpba:isPlanar:colorSpace: bytesPer Row: bitsPer Pixel:

- initDataPlanes:(unsigned char **)planes
pixelsWide:(int)width
pixelsHigh:(int)height
bitsPerSample:(int)bps
samplesPerPixel:(int)spp
hasAlpha:(BOOL)alpha
isPlanar:(BOOL)conjig
colorSpace:(NXColorSpace)space
bytesPerRow:(int)rowBytes
bitsPerPixel:(int)pixelBits

Initializes the receiver, a newly allocated NXBitmapImageRep object, so that it can
render the image specified in planes and described by the other arguments. If the object
can't be initialized, this method frees it and returns nil. Otherwise, it returns the object
(self).

planes is an array of character pointers, each of which points to a buffer containing raw
image data. If the data is in planar configuration, each buffer holds one component
one plane-of the data. Color planes are arranged in the standard order-for example,
red before green before blue for RGB color. All color planes precede the coverage
plane.

If the data is in meshed configuration (conjig is NO), only the first buffer is read. The
initData: ... method can be used instead of this one for data in meshed configuration.

If planes is NULL or if it's an array of NULL pointers, this method allocates enough
memory to hold the image described by the other arguments. You can then obtain
pointers to this memory (with the getDataPlanes: or data method) and fill in the image
data. In this case, the allocated memory will belong to the object and will be freed when
it's freed.

If planes is not NULL and the array contains at least one data pointer, the object will
only reference the image data; it won't copy it. The buffers won't be freed when the
object is freed.

Each of the other arguments (besides planes) informs the NXBitmapImageRep object
about the image. They're explained below:

• width and height specify the size of the image in pixels. The size in each direction
must be greater than O.

• bps (bits per sample) is the number of bits used to specify one pixel in a single
component of the data. All components are assumed to have the same bits per
sample.

Application Kit Classes: NXBitmaplmageRep 2-3/7

• spp (samples per pixel) is the number of data components. It includes both color
components and the coverage component (alpha), if present. Meaningful values
range from 1 through 5. An image with cyan, magenta, yellow, and black (CMYK)
color components plus a coverage component would have an spp of 5; a gray-scale
image that lacks a coverage component would have an spp of 1.

• alpha should be YES if one of the components counted in the number of samples
per pixel (spp) is a coverage component, and NO if there is no coverage component.

• config should be YES if the data components are laid out in a series of separate
"planes" or channels ("planar configuration"), and NO if component values are
interwoven in a single channel ("meshed configuration").

For example, in meshed configuration, the red, green, blue, and coverage values for
the first pixel of an image would precede the red, green, blue, and coverage values
for the second pixel, and so on. In planar configuration, red values for all the pixels
in the image would precede all green values, which would precede all blue values,
which would precede all coverage values.

• space indicates how data values are to be interpreted. It should be one of the
following enumerated values (defined in the header file appkit/graphics.h):

NX_ OneIsBlack
NX_ OneIs White
NX_RGBColorSpace
NX_ CMYKColorSpace

A gray scale between 1 (black) and ° (white)
A gray scale between ° (black) and 1 (white)
Red, green, and blue color values
Cyan, magenta, yellow, and black color values

• rowBytes is the number of bytes that are allocated for each scan line in each plane
of data. A scan line is a single row of pixels spanning the width of the image.

Normally, rowBytes can be figured from the width of the image, the number of bits
per pixel in each sample (bps), and, if the data is in a meshed configuration, the
number of samples per pixel (spp). However, if the data for each row is aligned on
word or other boundaries, it may have been necessary to allocate more memory for
each row than there is data to fill it. rowBytes lets the object know whether that's
the case. In the current release, an NXBitmapImageRep cannot render an image
with empty space at the end of a scan line.

If rowBytes is 0, the NXBitmapImageRep assumes that there's no empty space at
the end of a row.

2-318 Chapter 2: Class Specifications

pixelBits informs the NXBitmapImageRep how many bits are actually allocated
per pixel in each plane of data. If the data is in planar configuration, this normally
equals bps (bits per sample). If the data is in meshed configuration, it normally
equals bps times spp (samples per pixel). However, it's possible for a pixel
specification to be followed by some meaningless bits (empty space), as may
happen, for example, if pixel data is aligned on byte boundaries. In the current
release, an NXBitmapImageRep cannot render an image if this is the case.

If pixelBits is 0, the object will interpret the number of bits per pixel to be the
expected value, without any meaningless bits.

This method is the designated initializer for NXBitmapImageReps that handle raw
image data.

See also: - initData:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpace:bytesPerRow:bitsPerPixel:

initFromFile:

- initFromFile:(const char *)jilename

Initializes the receiver, a newly allocated NXBitmapImageRep object, with the TIFF
image found in the jilename file. This method reads some information about the image
fromjilename, but not the image itself. Image data will be read when it's needed to
render the image.

If the new object can't be initialized for any reason (for example,jilename doesn't exist
or doesn't contain TIFF data), this method frees it and returns nil. Otherwise, it returns
self.

This method is the designated initializer for NXBitmapImageReps that read image data
from a file.

See also: + newListFromFile:, - initFromSection:

Application Kit Classes: NXBitmaplmageRep 2-319

initFromSection:

- initFromSection:(const char *)name

Initializes the receiver, a newly allocated NXBitmapImageRep object, with the TIFF
image found in the name section in the _TIFF segment of the application executable.
This method reads some information about the image from the section, but not the
image itself. Image data is read only when it's needed to render the image.

If the new object can't be initialized for any reason (for example, the name section
doesn't exist or doesn't contain TIFF data), this method frees it and returns nil.
Otherwise, it returns self.

This method is the designated initializer for NXBitmapImageReps that read image data
from a section ofthe _TIFF segment.

See also: + newListFromSection:, - initFromFile:

initFromStream:

- initFromStream:(NXStream *)stream

Initializes the receiver, a newly allocated NXBitmapImageRep object, with the TIFF
image read from stream. If the new object can't be initialized for any reason (for
example, stream doesn't contain TIFF data), this method frees it and returns nil.
Otherwise, it returns self.

This method is the designated initializer for NXBitmapImageReps that read image data
from a stream.

See also: + newListFromStream:

is Planar

- (BOOL)isPlanar

Returns YES if image data is segregated into a separate plane for each color and
coverage component (planar configuration), and NO if the data is integrated into a
single plane (meshed configuration).

See also: - samplesPerPixel

2:320 Chapter 2: Class Specifications

numPlanes

- (int)numPlanes

Returns the number of separate planes that image data is organized into. This will be
the number of samples per pixel if the data has a separate plane for each component
(isPlanar returns YES) and 1 if the data is meshed (isPlanar returns NO).

See also: - isPlanar, - samplesPerPixel, - hasAlpha, - numColors (NXImageRep)

read:

- read:(NXTypedStream *)stream

Reads the NXBitmapImageRep from the typed stream stream.

See also: - write:

samplesPer Pixel

- (int)samplesPerPixel

Returns the number of components in the data. It includes both color components and
the coverage component, if present.

See also: - hasAlpha, - numColors (NXImageRep)

write:

- write:(NXTypedStream *)stream

Writes the NXBitmapImageRep to the typed stream stream.

See also: - read:

writeTIFF:

- writeTIFF:(NXStream *)stream

Writes a TIFF representation of the image to stream. This method is equivalent to
writeTIFF:usingCompression:andFactor: when
NX_TIFF _COMPRESSION_NONE is passed as the second argument. The TIFF data
is not compressed.

See also: - writeTIFF:usingCompression:andFactor:

Application Kit Classes: NXBitmap/mageRep 2-321

writeTIFF:usingCompression:

- writeTIFF:(NXStream *)stream usingCompression:(int)compression

Writes a TIFF representation of the image to stream, compressing the data according
to the compression scheme. This method is equivalent to
writeTIFF:usingCompression:andFactor: when 0.0 is passed as the third argument.
If compression is NX_TIFF _COMPRESSION_JPEG, the default compression factor
will be used. This and the other compression constants are listed under the next
method.

See also: - writeTIFF:usingCompression:andFactor:

writeTIFF:usingCompression:andFactor:

- writeTIFF:(NXStream *)stream
usingCompression: (int) compression
andFactor:(tloat)factor

Writes a TIFF representation of the image to stream. If the stream isn't currently
positioned at location 0, this method assumes that it contains another TIFF image. It
will try to append the TIFF representation it writes to that image. To do this, it must
read the header of the image already in the stream. Therefore, the stream must be
opened with NX_READWRITE permission.

The second argument, compression, indicates whether or not the data should be
compressed and, if so, which compression scheme to use. It should be one of the
following constants:

NX_TIFF _COMPRESSION_LZW
NX_TIFF _COMPRESSION_PACKBITS
NX_TIFF _COMPRESSION_JPEG
NX_TIFF _COMPRESSION_NONE

LZW compression
PackBits compression
JPEG compression
No compression

The third argument, factor, is used in the JPEG scheme to determine the degree of
compression. Iffactor is 0.0, the default compression factor of 10.0 will be used.
Otherwise,jactor should fall within the range 1.0-255.0, with higher values yielding
greater compression but also greater information loss.

The compression schemes are discussed brietly under "CLASS DESCRIPTION"
above.

2-322 Chapter 2: Class Specifications

NXBrowser

INHERITS FROM Control: View: Responder: Object

DECLARED IN appkit/NXBrowser.h

CLASS DESCRIPTION

NXBrowser provides a user interface for displaying and selecting hierarchically
organized data such as directory paths. The levels of the hierarchy are displayed in
columns. Columns are numbered from left to right, beginning with O. Each column
consists of a ScrollView or Clip View containing a Matrix filled with NXBrowserCells.
NXBrowser must have a delegate; the delegate's role is to provide the data that fills the
columns as the user navigates through the hierarchy.

You can implement one of three delegate types-normal, lazy, or very-Iazy
depending on your needs for performance and memory use. A normal delegate
implements the browser:fillMatrix:inColumn: method; implemented alone, this
method may improve performance if the data space is small, since it always creates and
loads all the entries in a column. A lazy delegate implements the
browser:fillMatrix:inColumn: and browser:loadCell:atRow:inColumn: methods;
lazy delegates create all cells in a column, but they load only those that are displayed.
A very-lazy delegate implements the browser:loadCell:atRow:inColumn: and
browser:getNumRowslnColumn: methods. Very-lazy delegates make spare use of
memory by not creating a cell for an entry until it's to be displayed; this is useful for
large, potentially open-ended data spaces. A delegate must implement either the
normal, lazy, or very-lazy methods; however, it shouldn't implement both the
browser:fiIlMatrix:inColumn: and browser:getNumRowslnColumn: methods.

An entry in NXBrowser's columns can be either a branch node (such as a directory) or
a leaf node (such as a file). As the delegate loads an entry in a Cell, it invokes
NXBrowserCell's setLeaf: method to specify the type of entry. When the user selects
a single branch node entry in a column, the NXBrowser sends itself the add Column
message, which messages the delegate to load the next column. NXBrowser can be set
to allow selection of multiple entries in a column, or to limit selection to a single entry.
When set for multiple selection, it can also be set to limit multiple selection to leaf
nodes only, or to allow selection of both types of nodes together.

As a subclass of Control, NXBrowser has a target object and action message. Each
time the user selects one or more entries in a column, the action message is sent to the
target.

You can change the appearance and user interface features of NXBrowser in a number
of ways. Columns in the NXBrowser may have up and down scroll buttons, scroll bars,
both, or neither. The NXBrowser itself mayor may not have left and right scroll
buttons. You generally won't create NXBrowser without scrollers; if you do, you must
make sure the bounds rectangle of the NXBrowser is large enough that all its rows and
columns can be displayed. The NXBrowser's columns may be bordered and titled,

Application Kit Classes: NXBrowser 2-323

bordered and untitled, or unbordered and untitled. A column's title may be taken from
the selected entry in the column to its left, or may be provided explicitly by NXBrowser
or its delegate.

You can drag NXBrowser into an application from the Interface Builder Palettes panel.
Interface Builder provides easier ways to set many of the user interface features
described previously.

INSTANCE VARIABLES

Inheritedfrom Object

Inherited from Responder

Inheritedfrom View

Inheritedfrom Control

Defined in NXBrowser

target

delegate

action

doubleAction

matrixClass

pathSeparator

2-324 Chapter 2: Class Specifications

Class isa;

id nextResponder;

NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct _vFlags vFlags;

int tag;
id cell;
struct 30nFlags conFlags;

id target;
id delegate;
SEL action;
SEL doubleAction;
id matrixClass;
id cellPrototype;
unsigned short pathSeparator;

The object notified by NXBrowser when one or
more items are selected in a column.

The object providing the data which is browsed
by the NXBrowser.

The message sent to the target when one or more
entries are selected in a column.

The message sent to the target when an entry in
the NXBrowser is double~clicked.

The class used to instantiate the matrices in the
columns of NXBrowser; Matrix by default.

The character which separates the substrings of a
path (see getPath:ToColumn:, setPath:).

METHOD TYPES

Initializing and freeing - initFrame:
- free

Setting the delegate - delegate
- setDelegate:

Setting target and action - action
- setAction:
- target
- setTarget:
- doubleAction
- setDoubleAction:

Setting the Matrix class - setMatrixClass:

Setting the Cell class - setCellClass:
- cellPrototype
- setCellPrototype:

Setting NXBrowser behavior - allowMultiSel:
- allowBranchSel:
- reuseColumns:
- acceptArrowKeys:
- acceptsFirstResponder
- setEnabled:
- hideLeftAndRightScrollButtons:
- useScrollButtons:
- useScrollBars:

Setting NXBrowser appearance - setMinColumn Width:
- minColumn Width
- setMaxVisibleColumns:
- max VisibleColurnns
- num VisibleColumns
- firstVisibleColumn
-lastVisibleColurnn
- lastColurnn
- separateColumns:
- columnsAreSeparated

Application Kit Classes: NXBrowser 2-325

Manipulating columns - loadColumnZero
-isLoaded
- addColumn
- reloadColumn:
- displayColumn:
- display AllColumns
- setLastColumn:
- selectAll:
- selectedColumn
-columnOf:
- validate VisibleColumns

Manipulating column titles - getTitleFromPreviousColumn:
- isTitled
- setTitled:
- getTitleFrame:ofColumn:
- setTitle:ofColumn:
- drawTitle:inRect:ofColumn:
- clearTitleInRect:ofColumn:
- titleHeight
- titleOfColumn:

Scrolling the NXBrowser - scrollColumnsRightBy:
- scrollColumnsLeftBy:
- scrollColumnTo Visible:
- scrollUpOrDown:
- reflectS croll:

Event handling - mouseDown:
-keyDown:
- doClick:
- doDoubleClick:

Getting column Matrices and Cells - getLoadedCeUAtRow:inColumn:
- matrixInColumn:

Getting column frames - getFrame:ofColumn:
- getFrame:ofInsideOfColumn:

Paths - setPathSeparator:
- setPath:
- getPath:toColumn:

Drawing - drawSelf::

Resizing the NXBrowser - sizeTo::
- sizeToFit

Arranging NXBrowser components
- tile

2-326 Chapter 2: Class Specifications

INSTANCE METHODS

acceptArrowKeys:

- acceptArrowKeys:(BOOL)jlag

Sets NXBrowser handling of arrow key input. Ifjlag is YES, then the keyboard arrow
keys move the selection whenever the NXBrowser or one of its subviews is the first
responder; ifjlag is NO, arrow key input has no effect. Returns self.

acceptsFirstResponder

- (BOOL)acceptsFirstResponder

Returns YES if the NXBrowser accepts arrow key input; NO otherwise. The default
setting is NO.

See also: - acceptArrowKeys:

action
- (SEL)action

Returns the action sent to the target by the NXBrowser when the user makes a selection
in one of its columns.

See also: - doubleAction, - setAction:, - setDoubleAction:

addColumn

-addColumn

Adds a column to the right of the last column in the NXBrowser and, if necessary,
scrolls the NXBrowser so that the new column is visible. You never invoke this
method; it's invoked by doClick: and keyDown: when the user selects a single branch
node entry in the NXBrowser, and by setPath: when it matches a path substring with a
branch node entry. Returns self.

See also: -loadColumnZero, - reloadColumn:, - setPath:

allow BranchSel:

- allowBranchSel:(BOOL)jlag

Sets whether the user can select multiple branch and leaf node entries. If jlag is YES
and multiple selection is enabled (by allowMultiSel:), then multiple branch and leaf
node entries can be selected. By default, a user can choose only multiple leaf node
entries when multiple entry selection is enabled. Returns self.

See also: - allowMultiSel:

Application Kit Classes: NXBrowser 2-327

allowMultiSel:
- allowMultiSel:(BOOL)jlag

Sets whether the user can select multiple entries in a column. Ifjlag is YES, the user
can choose any number of leaf entries in a column (or leaf and branch entries if enabled
byallowBranchSel:). By default, the user can choose just one entry in a column at a
time. Returns self.

See also: - allowBranchSel:

cell Prototype

- cell Prototype

Returns the NXBrowser's prototype cell. This cell is copied to create new cells in the
columns of the NXBrowser.

See also: - setCellPrototype:

clearTitlelnRect:ofColumn:

- c1earTitlelnRect:(const NXRect *)aRect of Column: (int)column

Clears the title displayed in aRect above column. You don't invoke this method
directly; it's called whenever a title of a column needs to be cleared. You can override
this method if you draw your own column titles. aRect is in the NXBrowser's
coordinate system. Returns self.

column Of:
- (int)columnOf:matrix

Returns the index of the column containing matrix; the leftmost (root) column is O.
Returns -1 if no column contains matrix.

See also: - matrixlnColumn:

columnsAreSeparated

- (BOOL)columnsAreSeparated

Returns YES if columns are separated by a bezeled bar; NO otherwise. If the
NXBrowser is set to display column titles, its columns are automatically separated by
bezels; however, the value returned by this method is not changed by the setTitled:
method.

See also: - separateColumns:, - setTitled:

2-328 Chapter 2: Class Specifications

delegate

- delegate

Returns the delegate of the NXBrowser, the object that provides the data to be browsed.

See also: - setDelegate:, "METHODS IMPLEMENTED BY THE DELEGATE"

display AllColumns

- display AllColumns

Causes columns currently visible in the NXBrowser to be redisplayed. You can call this
to update the NXBrowser after manipulating it with display disabled in the window.
Returns self.

displayColumn:

- displayColumn:(int)column

Validates and displays column number column. You can call this method to update the
NXBrowser after manipulating it with display disabled in column. Returns self.

See also: - display AllColumns

doClick:

- doClick:sender

You never invoke this method. This is the action message sent to the NXBrowser by a
column's Matrix when a mouse-down event occurs in a column. It sets the lastColumn
to that of the Matrix where the click occurred, and removes any columns to the right
that were previously loaded in the NXBrowser. If a single branch node entry is selected
by the event, this method sends addColumn to self to display the corresponding data
in the column to the right. It sends the NXBrowser's action message to its target and
returns self.

See also: - action, - setAction, - setTarget, - target

doDoubleClick:

- doDoubleClick:sender

You never invoke this method. This is the action message sent to the NXBrowser by a
column's Matrix when a double-click occurs in a column. This method simply sends
the doubleAction message to the target; if no doubleAction message is set, it sends the
action. Override this method to add specific behavior for double-click events. Returns
self.

See also: - doubleAction, - setDoubleAction, - setTarget, - target

Application Kit Classes: NXBrowser 2-329

doubleAction

- (SEL)doubleAction

Returns the action sent by the NXBrowser to its target when the user double-clicks on
an entry. If no doubleAction message is specified, this method returns the action.

See also: - setDoubleAction:

drawSelf::

- drawSelf:(const NXRect *)rects :(int)rectCount

Draws the NXBrowser; loads column 0 if it has not been loaded. Override this method
if you change the way NXBrowser draws itself. You never invoke this method; it's
invoked by the display method. Returns self.

drawTitle:inRect:ofColumn:

- drawTitle:(const char *)title
inRect:(const NXRect *)aRect
of Column: (int)column

You never invoke this method. It's invoked whenever the NXBrowser needs to draw a
column title. You may override it if you draw your own column titles. Returns self.

first Visible Column

- (int)firstVisibleColumn

Returns the index of the leftmost visible column.

See also: -lastVisibleColumn

free

- free

Frees the NXBrowser and all the objects it manages: scrollviews, matrices, cells, scroll
buttons, prototypes, and so on. Returns nil.

getFrame:ofColumn:

- (NXRect *)getFrame:(NXRect *)theRect ofinsideOfColumn:(int)column

Returns a pointer to the rectangle (in NXBrowser coordinates) containing column; the
pointer is returned both explicitly by the method and implicitly in theRect. The
returned rectangle includes the bezel area surrounding the column. If column isn't
currently loaded or displayed, this method returns NULL explicitly, without changing
the coordinates of the rectangle represented in theRect. It also returns NULL if theRect
is NULL.

2-330 Chapter 2.' Class Specifications

getFrame: ofinsideOfColumn:

- (NXRect *)getFrame:(NXRect *)theRect ofinsideOfColumn:(int)column

Returns a pointer to the rectangle (in NXBrowser coordinates) containing the "insides"
of column; the pointer is returned both explicitly by the method and implicitly in
theRect. The "insides" are defined as the area in the column that contains the cells and
only that area (i.e., no bezels). If column isn't currently loaded or displayed, this
method returns NULL explicitly, without changing the coordinates of the rectangle
represented in theRect. It also returns NULL if theRect is NULL.

getLoadedCellAtRow:inColumn:

- getLoadedCellAtRow:(int)row inColumn:(int)column

Returns the cell at row in column, if that column is currently in the NXBrowser. This
method creates and loads the cell if necessary. It's the safest way to get a particular cell
in a column, since lazy delegates don't load every cell in a matrix and very-lazy
delegates don't even create all cells until they're displayed. This method is preferred
to the Matrix method cellAt::. If the specified column isn't in the NXBrowser, or if row
doesn't exist in column, returns nil.

getPath:toColumn:

- (char *)getPath:(char *)thePath toColumn:(int)column

Returns a pointer to the string representing the path to column, both explicitly and in
thePath. Before invoking this method, you must allocate sufficient memory to accept
the entire path string, and set thePath as a pointer to that memory. column must
currently be loaded in the NXBrowser. If column isn't loaded or thePath is a null
pointer, this method returns NULL.

The path is constructed by concatenating the string values in the selected cells in each
column, preceding each with the pathSeparator. For example, consider a pathSeparator
"@" and an NXBrowser with two columns. If the selected cell in the left column has
the string value "foo" and the selected cell in the right column has the string value "bar,"
the resulting path is "@foo@bar." The default pathSeparator is the slash character
("/,,).

See also: - pathSeparator, - setPath:, - setPathSeparator:

getTitleFrame :ofColumn:

- (NXRect *)getTitleFrame:(NXRect *)theRect of Column: (int)column

Returns theRect, a pointer to the rectangle (in NXBrowser coordinates) enclosing the
title of column number column. If the NXBrowser isn't displaying titles or the
specified column isn't loaded, returns NULL.

Application Kit Classes: NXBrowser 2-331

getTitieFromPreviousColumn:

- getTitleFromPreviousColumn:(BOOL)jlag

Ifjlag is YES, sets the NXBrowser so that each column takes its title from the string
value in the selected cell in the column to its left, leaving column 0 untitled; use
setTitle:ofColumn: to give column 0 a title. This method affects the receiver only
when it is titled (isTitled returns YES).

By default, the NXBrowser is set to get column titles from the previous column. Send
this message with NO as the argument if your delegate implements the
browser:titleOfColumn: method or if you use the setTitle:ofColumn: method to
set all column titles. Returns self.

See also: - isTitled, - setTitle:ofColumn:, - setTitled:, - browser:titleOfColumn:
in "METHODS IMPLEMENTED BY THE DELEGATE"

hideLeftAndRightScrollButtons:

- hideLeftAndRightScrollButtons:(BOOL)jlag

Ifjlag is YES, sets the NXBrowser to hide left and right scroll buttons. Generally, you
shouldn't hide left and right scroll buttons unless your data is nonhierarchical, thus
limited to a single column, or restricted so that the NXBrowser will always display
enough columns for all data. Returns self.

initFrame

- initFrame:(const NXRect *)frameRect

Initializes a new instance of NXBrowser with a bounds offrameRect. The initialized
NXBrowser is set to have column titles, to get titles from previous columns, and to use
scrollbars. The minimum column width is set to 100 and the path separator is set to the
slash ("f') character. The NXBrowser is set not to clip. This method invokes the tile
method to arrange the components of the NXBrowser (titles, scroll bars, matrices, and
so on).

is Loaded

- (BOOL)isLoaded

Returns YES if any of the NXBrowser's columns are loaded.

See also: load Column Zero

2-332 Chapter 2: Class Specifications

isTitled

- (BOOL)isTitled

Returns YES if the NXBrowser's columns are displayed with titles above them; NO
otherwise.

See also: - getTitleFromPreviousColumn:, - setTitled:

keyDown

- keyDown:(NXEvent *)theEvent

Handles arrow key events. This method is invoked when the NXBrowser or one of its
subviews is the first responder. If the NXBrowser has been set to accept arrow keys,
and the key represented in theEvent is an arrow key, this method scrolls through the
NXBrowser in the direction indicated.

See also: - acceptArrowKeys:, - acceptsFirstResponder

lastVisibleColumn

- (int)lastVisibleColumn

Returns the index of the rightmost visible column. This may be less than the value
returned by lastColumn if the NXBrowser has been scrolled left.

See also: - firstVisibleColumn, -lastColumn

lastColumn

- (int)lastColumn

Returns the index of the last column in the NXBrowser.

load Column Zero

- loadColumnZero

Loads and displays data in column 0 of the NXBrowser, unloading any columns to the
right that were previously loaded. Invoke this method to force the NXBrowser to be
loaded. You may want to override this method if you subclass NXBrowser.

See also: - addColumn, - reload Column:

matrixInColumn:

- matrixlnColumn:(int)column

Returns the matrix found in column number column. Returns nil if column number
column isn't loaded in the NXBrowser.

Application Kit Classes: NXBrowser 2-333

max Visible Columns

- (int)maxVisibleColumns

Returns the maximum number of visible columns allowed. No matter how many
loaded columns the NXBrowser contains, or how large the NXBrowser is made (for
example, by resizing its window), it will never display more than this number of
columns. If the number of loaded columns can exceed the value returned by this
method, the NXBrowser must display left and right scroll buttons.

See also: - hideLeftAndRightScroliButtons, - setMaxVisibleColumns

min Column Width

- (int)minColumn Width

Returns the minimum width of a column in PostScript points (rounded to the nearest
integer). No column will be smaller than the returned value unless the NXBrowser
itself is smaller than that. The default setting is 100 points.

See also: - setMinColumnWidth

mouseDown:

- mouseDown:(NXEvent *)theEvent

Handles a mouse down in the NXBrowser's left or right scroll buttons. Returns self.

num VisibleColumns

- (int)num VisibleColumns

Returns the number of columns which can be visible at the same time in the
NXBrowser (that is, the current width, in columns, of the NXBrowser). This may be
less than the value returned by maxVisibleColumns if the window containing the
NXBrowser has been resized.

See also: - setMaxVisibleColumns

reflectScroll :

- reflectScroll:clipView

This method updates scroll bars in the column containing clipView. Scroll bars are
enabled if a column contains more data than can be displayed at once and disabled if
the column can display all data. Returns self.

See also: - useScrollBars

2-334 Chapter 2.' Class Specifications

reloadColumn:

- reloadColumn:(int)column

Reloads column number column by sending a message to the delegate to update the
Cells in its Matrix, then reselecting the previously selected Cell if it's still in the Matrix.
Redraws the column and returns self.

reuseColumns:

- reuseColumns:(BOOL)jlag

Sets whether the NXBrowser saves a column's Matrix and ClipView or ScrollView
when the column is removed, and whether it then reuses these subviews when the
column is reloaded. Ifjlag is YES, the NXBrowser reuses columns for somewhat faster
display of columns as they are reloaded. Ifjlag is NO, the NXBrowser frees columns
as they're unloaded, reducing average memory use. Returns self.

scrollColumnsLeftBy:

- scrollColumnsLeftBy:(int)shiftAmount

Scrolls the NXBrowser left (toward the first column) by shiftAmount columns. If
shiftAmount exceeds the number of columns to the left of the first visible column, then
the NXBrowser scrolls left until the column 0 is visible. Redraws and returns self.

See also: - scrollColumnsRightBy:

scrollColumnsRightBy:

- scrollColumnsRightBy:(int)shiftAmount

Scrolls the NXBrowser right (toward the last column) by shiftAmount columns. If
shiftAmount exceeds the number of loaded columns to the right of the first visible
column, then the NXBrowser scrolls right until the last loaded column is visible.
Redraws and returns self.

See also: - scrollColumnsLeftBy:

scrollColumnTo Visible:

- scrollColumnTo Visible: (int) column

Scrolls the NXBrowser to make column number column visible. If there's no column
in the NXBrowser, this method scrolls to the right as far as possible. Redraws and
returns self.

Application Kit Classes: NXBrowser 2-335

scrollUpOrDown:

- scrollUpOrDown:sender

Scrolls a column up or down. You don't send this message; NXBrowser receives it
from a column's scroll buttons. Returns self.

selected Column

- (int)selectedColumn

Returns the column number of the rightmost column containing a selected celL
Returns -1 if no column in the NXBrowser contains a selected cell.

selectAll

- selectAll:sender

Selects all entries in the last column loaded in the NXBrowser if multiple selection is
allowed. Returns self.

See also: - allowMultiSel:

separateColumns:

- separateColumns:(BOOL)jlag

Ifjlag is YES, sets NXBrowser so that columns have bezeled borders separating them;
if NO, the borders are removed. When titles are set to display (by setTitled:), columns
are automatically separated; however, the flag set by this method is unchanged.
Redraws the NXBrowser and returns self.

See also: - setTitled:

setAction:

- setAction:(SEL)aSelector

Sets the action of the NXBrowser. aSelector is the selector for the message sent to the
NXBrowser's target when a mouse-down event occurs in a column of the NXBrowser.
Returns self.

See also: - action, - doubleAction, - doClick, - doDoubleClick, - setTarget,
- target

2-336 Chapter 2: Class Specifications

setCellClass:
- setCellClass:classld

Sets the class of Cell used when adding Cells to a Matrix in a column of the
NXBrowser. classld must be the value returned when sending the class message to
NXBrowserCell or a subclass of NXBrowserCell. Returns self.

See also: - cell Class, - setCeliPrototype

setCellPrototype:

- setCeliPrototype:aCell

Sets aCell as the Cell prototype copied when adding Cells to the Matrices in the
columns of NXBrowser. aC ell must be an instance of NXBrowserCell or a subclass of
NXBrowserCell. Returns self.

See also: - celiPrototype

setDelegate:

- setDelegate:anObject

Sets the delegate of the NXBrowser to anObject and returns self. If anObject is of a
class that implements the browser:fiIiMatrix:inColumn: method (normal or lazy
delegates) or the browser:loadCell:atRow:inColumn and
browser:getNumRowslnColumn: methods (very lazy delegate), it's set as the
NXBrowser's delegate; otherwise, the delegate is set to nil. Returns self.

See also: - delegate, "METHODS IMPLEMENTED BY THE DELEGATE"

setDoubleAction:

- setDoubleAction:(SEL)aSelector

Sets the double action of the NXBrowser. aSelector is the selector for the action
message sent to the target when a double-click occurs in one of the columns of the
NXBrowser. Returns self.

setEnabled:

- setEnabled:(BOOL)jlag

Enables the NXBrowser whenjlag is YES; disables it whenjlag is NO. Returns self.

Application Kit Classes: NXBrowser 2-337

setLastColumn:

- setLastColumn:(int)column

Sets the last column loaded in and displayed by the NXBrowser. Removes any columns
to the right of column from the NXBrowser. Scrolls columns in the NXBrowser to
make the new last column visible if it wasn't previously. If column is to the right of the
last column in the NXBrowser, this method does nothing. Returns self.

setMatrixClass:

- setMatrixClass:classld

Sets the matrixClass instance variable, representing the class used when adding new
columns to the NXBrowser. classId must be the value returned by sending the class
message to Matrix or a subclass of Matrix; otherwise this method retains the previous
setting for matrixClass. Returns self.

setMax Visible Columns :

- setMax VisibleColumns: (int)columnC ount

Sets the maximum number of columns that may be displayed by the NXBrowser.
Returns self.

To set the number of columns displayed in a new NXBrowser, first send it a
setMinColumnWidth: message with a small argument (I for example) to ensure that
the desired number of columns will fit in the NXBrowser's frame. Then invoke this
method to set the number of columns you want your NXBrowser to display.

See also: - maxVisibleColumns, - setMinColumnWidth:

setMinColumn Width:

- setMinColumnWidth:(int)columnWidth

Sets the minimum width for each column to columnWidth and redisplays the
NXBrowser with columns set to the new width. column Width is measured in PostScript
points rounded to the nearest integer. The default setting is 100. Returns self.

See also: - minColumn Width

2-338 Chapter 2: Class Specifications

setPath:
- setPath:(const char *)path

Parses aPath-a string consisting of one or more substrings separated by the path
separator-and selects column entries in the NXBrowser that match the substrings. If
the first character in aPath is the path separator, this method begins searching for
matches in column 0; otherwise, it begins searching in the last column loaded. If no
column is loaded, this method loads column 0 and begins the search there. While
parsing the current substring, it tries to locate a matching entry in the search column.
If it finds an exact match, this method selects that entry and moves to the next column
(loading the column if necessary) to search for the next substring.

If this method finds a valid path (one in which each substring is matched by an entry in
the corresponding column), it returns self. If it doesn't find an exact match on a
substring, it stops parsing aPath and returns nil; however, column entries that it has
already selected remain selected.

See also: - getPath:toColumn, - pathSeparator, - setPathSeparator

setPathSeparator:

- setPathSeparator:(unsigned short)charCode

Sets the character used as the path separator; the default is the slash character ("/").
Returns self.

See also: - getPath:toColumn, - pathSeparator, - setPath:

setTarget:

- setTarget:anObject

Sets the target of the NXBrowser. Returns self.

setTitle:ofColumn:

- setTitle:(const char *)aString ofColumn:(int)column

Sets the title of column number column in the NXBrowser to aString. Returns self.

See also: - browser:TitleOfColumn: in "METHODS IMPLEMENTED BY THE
DELEGATE," - getTitieFromPreviousColumn:, and - setTitled:

Application Kit Classes: NXBrowser 2-339

setTitled:

- setTitled:(BOOL)jlag

Ifjlag is YES, columns display titles and are separated by bezeled borders. Returns
self.

See also: - browser:TitleOfColumn: in "METHODS IMPLEMENTED BY THE
DELEGATE," - getTitleFromPreviousColumn:, and - setTitle:ofColumn:

sizeTo::

- sizeTo:(NXCoord)width :(NXCoord)height

Resizes the NXBrowser to the new width and height. Usually sent by the window.
Returns self.

sizeToFit

- sizeToFit

Resizes the NXBrowser to contain all the columns and controls displayed in it. Returns
self.

target

tile

- target

Returns the target for the NXBrowser's action message.

See also: - action, - doClick, - doDoubleClick, - doubleAction, - setAction,
- setDoubleAction, - setTarget:

- tile

Arranges the various subviews of NXBrowser-scrollers, columns, titles, and so on
without redrawing. You shouldn't send this message. Rather, it's invoked any time the
appearance of the NXBrowser changes; for example, when scroll buttons or scroll bars
are set, a colurnn is added, and so on. Override this method if you change the
appearance of the NXBrowser, for example, if you draw your own titles above columns.
Returns self.

titleHeight

- (NXCoord)titleHeight

Returns the height of titles drawn above the columns of the NXBrowser. Override this
method if you display your own titles above the NXBrowser's columns.

2-340 Chapter 2: Class Specifications

titleOfColumn:

- (const char *)titleOfColumn:(int)column

Returns a pointer to the title string displayed above column number column. If no such
column is loaded in the NXBrowser, returns NULL.

useScrollBars:

- useScrollBars: (BOOL)jlag

Ifjlag is YES, sets NXBrowser to use scroll bars for its columns. By default,
NXBrowser does use scroll bars. Redraws and returns self.

See also: - useScrollButtons

useScrollButtons:

- useScrollButtons:(BOOL)jlag

Ifjlag is YES, sets the NXBrowser to use scroll buttons for its columns. When the
NXBrowser is also set to use scroll bars, this method causes scroll buttons to display at
the base of the scroll bars. Redraws and returns self.

See also: - useScrolIBars

validate VisibleColumns

- validate VisibleColumns

Validates the columns visible in the NXBrowser by invoking the delegate method
browser:columnIsValid: for all visible columns. Use this method to confirm that the
entries displayed in each visible column are valid before redrawing.

See also: browser:columnIsValid in "METHODS IMPLEMENTED BY THE
DELEGATE"

METHODS IMPLEMENTED BY THE DELEGATE

browser:columnIsValid:

- (BOOL)browser:sender columnIsValid:(int)column

This method is invoked by NXBrowser's validateVisibleColumns method to
determine whether the contents currently loaded in column number column need to be
updated. Returns YES if the contents are valid; NO otherwise.

Application Kit Classes: NXBrowser 2-341

browserDidScroll:

- browserDidScroll:sender

Notifies the delegate when the browser has finished scrolling. Returns self.

browser: fillMatrix: inColumn:

- (int)browser:sender
fillMatrix:matrix
inColumn:(int)column

Invoked by the NXBrowser to query a normal or lazy browser for the contents of
column. This method should create NXBrowserCells by sending addRow or
insertRow At: messages to matrix. A normal delegate should then load each new
NXBrowserCell and send them the messages setLoaded: and setLeaf:. A lazy
delegate loads Cells only when they are about to be displayed. This method returns the
number of entries in column.

If you implement this method, don't implement the delegate method
browser:getN umRowslnColumn:.

browser:getNumRowsInColumn:

- (int)browser:sender getNumRowslnColumn:(int)column

Implemented by very-lazy delegates, this method is invoked by the NXBrowser to ask
the delegate for the number of rows in column number column. This method allows the
NXBrowser to resize its scroll bar for a column, without loading all the cells in that
column. Returns the number of rows in column.

If you implement this method, don't implement the delegate method
browser:fiIlMatrix:inColumn: .

browser:loadCell:atRow:inColumn:

- browser:sender
loadCell:celi
atRow:(int)row
inColumn:(int)column

Implemented by lazy and very-lazy delegates. This method loads the entry in cell in
the specified row and column in the NXBrowser. This method should send setLoaded:
and setLeaf: messages to cell. Returns self (the id of the delegate).

2-342 Chapter 2: Class Specifications

browser:selectCell:inColumn:

- (BOOL)browser:sender
selectCell:(const char *)entry
inColumn:(int)column

Asks NXBrowser's delegate to validate and select an entry in column number column.
This method should load entry if necessary and send it setLoaded: and setLeaf:
messages to indicate its state. Returns YES if the method successfully selects entry in
column; NO otherwise.

browser:titleOfColumn:

- (const char *)browser:sender title Of Column: (int)column

Invoked by NXBrowser to get the title for column from the delegate. This method is
invoked only when the NXBrowser is titled and has received a
getTitleFromPreviousColumn: message with NO as the argument. By default, the
NXBrowser makes each column title the string value of the selected cell in the previous
column. Returns the string representing the title belonging above column.

See also: - getTitledFromPreviousColumn:, - setTitle:ofColumn:, - setTitled:

browser WillScroll:

- browserWillScroll:sender

This method notifies the delegate when the browser is about to scroll. Returns self.

Application Kit Classes: NXBrowser 2-343

2-344

NXBrowserCell

INHERITS FROM Cell : Object

DECLARED IN appkit/NXBrowserCell.h

CLASS DESCRIPTION

NXBrowserCell is the subclass of Cell used to display data in the column Matrices of
NXBrowser. Many of NXBrowserCell's methods are designed to interact with
NXBrowser and NXBrowser's delegate. The delegate implements methods for loading
the Cells in NXBrowser by setting their values and status. If you need access to a
specific NXBrowserCell, you can use the NXBrowser method
getLoadedCeIlAtRow:inColumn:.

You may find it useful to subclass NXBrowserCell to alter its behavior and to enable it
to work with and display the type of data you wish to represent. Use NXBrowser's
setCellClass: or setCellPrototype: methods to use your subclass.

See also: NXBrowser

INSTANCE VARIABLES

Inherited from Object

Inheritedfrom Cell

METHOD TYPES

Creating an NXBrowserCell

Determining icons

Determining component sizes

Displaying

Highlighting behavior

Class

char
id
struct 3Flags 1
struct _cFlags2

- init
- initTextCell:

+ branchlcon
+ branchIconH

- calcCellSize:inRect:

- drawInside:in View:
- drawSelf:in View:

- highlight: in View:lit:

isa;

*contents;
support;
cFlagsl;
cFlags2;

Application Kit Classes: NXBrowserCell 2-345

Placing in browser hierarchy - isLeaf
- setLeaf:

Determining loaded status - isLoaded
- setLoaded:

Determining reset status - reset

Modifying graphic attributes - isOpaque

CLASS METHODS

branchIcon

+ branchIcon

Returns the id of the NXImage object "NXMenuArrow." This is the icon displayed to
indicate a branch node in an NXBrowserCell. Override this method if you want to
display a different branch icon.

See also: - isBranch, - setBranch

branchIconH

+ branchIconH

Returns the id of the NXImage object "NXMenuArrow H." This is the highlighted icon
displayed to indicate a branch node in an NXBrowserCell. Override this method if you
want to display a different branch icon.

See also: - isBranch, - setBranch

INSTANCE METHODS

caIcCellSize:inRect:

- caIcCeIlSize:(NXSize *)theSize inRect:(const NXRect *)aRect

Calculates the minimum width and height required for displaying the NXBrowserCell
in a given rectangle. Makes sure theSize remains large enough to accommodate the
branch arrow icon. If it isn't possible for the NXBrowserCell to fit in aRect, the width
and/or height returned in theSize could be bigger than those of the rectangle. The
computation is done by trying to size the NXBrowserCell so that it fits in the rectangle
argument (by wrapping the text, for instance). If a choice must be made between
extending the width or height of aRect to fit the text, the height will be extended.
Returns self and, by reference, the minimum size for the NXBrowserCell.

2-346 Chapter 2: Class Specifications

drawlnside:in View:

- drawlnside:(const NXRect *)cellFrame inView:controlView

Draws the inside of the NXBrowserCell (that is, it's the same as drawSelf:inView:
except that it doesn't draw the bezel or border if there is one). Returns self.

drawS elf: in View:

- drawSelf:(const NXRect *)celIFrame inView:controlView

Draws the NXBrowserCell, including the bezel or border. Returns self.

See also: - drawlnside:in View:

highlight:in View:lit:

init

- highlight:(const NXRect *)cellFrame inView:controlView lit:(BOOL)lit

Sets the highlighted state to lit and redraws the NXBrowserCell. Returns self.

See also: - reset

- init

Initializes and returns the receiver, a new NXBrowserCell instance, by invoking the
initTextCell: method. Sets the NXBrowserCell's string value to "Browserltem" and
returns self.

initTextCell:

- initTextCell:(const char *)aString

Initializes the receiver, a new NXBrowserCell instance, by sending the message
[super initTextCell:aString]. Sets the NXBrowserCell so it doesn't wrap text.
Returns self. This method is the designated initializer for the NXBrowserCell class.
Override this method if you create a subclass of NXBrowserCell that performs its own
initialization.

isLeaf

- (BOOL)isLeaf

Determines whether the entry in the receiver represents a leaf node (such as a file) or
branch node (such as a directory). This method is invoked by NXBrowser to check
whether to display the branch icon in the Cell and, when an NXBrowserCell is selected,
whether to load a column to the right of the column containing the receiving Cell.
Returns YES if the cell represents a leaf, NO if the cell represents a branch.

See also: - setLeaf:

Application Kit Classes: NXBrowserCell 2-347

isLoaded
- (BOOL)isLoaded

Returns YES if the NXBrowserCell is loaded, NO if it isn't. Used by NXBrowser to
determine if a particular Cell is loaded in a column. When an NXBrowserCell is
created, this value is YES. NXBrowser and its delegate change the value returned by
this method using the setLoaded: method to reflect the current status of the cell.

See also: - setLoaded:

is Opaque

- (BOOL)isOpaque

Returns YES if the NXBrowserCell is opaque (that is, it touches every pixel in its
bounds).

reset

- reset

Sets the NXBrowserCell's state to 0, sets the highlighted flag to NO, and returns self.

See also: - highlight:in View:lit

setLeaf:
- setLeaf:(BOOL)flag

Invoked by NXBrowser's delegate when it loads an NXBrowserCell. Whenflag is
YES, the NXBrowserCell represents a leaf node; it will display without the branch
icon. When flag is NO, the NXBrowserCell represents a branch node; it will display
with the branch icon.

See also: - branchIcon, - branchIconH, - isLeaf

setLoaded:

- setLoaded:(BOOL)flag

Sets the loaded status of the NXBrowser cell to flag. This method is invoked by
NXBrowser or its delegate to set the status of the NXBrowserCell. The delegate should
send the setLoaded: message with YES as the argument when it loads the cell.

See also: - isLoaded, "METHODS IMPLEMENTED BY THE DELEGATE"
(NXBrowser)

2-348 Chapter 2: Class Specifications

NXCachedImageRep

INHERITS FROM NXImageRep : Object

DECLARED IN appkit/NXCachedImageRep.h

CLASS DESCRIPTION

An NXCachedImageRep is a rendered image in a window, typically a window that
stays off-screen. The only data that's available for reproducing the image is the image
itself. Thus an NXCachedImageRep differs from the other kinds of NXImageReps
defined in the Application Kit, all of which can reproduce an image from the
information originally used to draw it.

Instances of this class are generally used indirectly, through an NXImage object. An
NXCachedImageRep must be able to provide the NXImage with some information
about the image-so that the NXImage can match it to a display device, for example,
or know whether to scale it. Therefore, it's a good idea to use these inherited methods
to inform the NXCachedImageRep object about the image in the cache:

setNumColors:
setAlpha:
setPixelsHigh:
setPixels Wide:
setB itsPerS ample:

These methods are all defined in the NXImageRep class.

INSTANCE VARIABLES

Inheritedfrom Object Class

Inheritedfrom NXlmageRep NXSize

Declared in NXCachedlmageRep (none)

isa;

size;

Application Kit Classes: NXCachedlmageRep 2-349

METHOD TYPES

Initializing a new NXCachedImageRep
- initFrom Window:rect:

Freeing an NXCachedImageRep - free

Getting the representation - getWindow:andRect:

Drawing the image -draw

Archiving - read:
- write:

INSTANCE METHODS

draw

- (BOOL)draw

Reads image data from the cache and reproduces the image from that data. The
reproduction is rendered in the current window at location (0.0, 0.0) in the current
coordinate system.

It's much more efficient to reproduce an image by compositing it, which can be done
through the NXImage class. An NXBitmapImageRep can also be used to reproduce an
existing image.

This method returns YES if successful in reproducing the image, and NO if not.

See also: - drawln: (NXImageRep), - drawAt: (NXImageRep),
- initData:fromRect: (NXBitmapImageRep)

free

- free

Deallocates the NXCachedImageRep.

getWindow:andRect:

- getWindow:(Window **)theWindow andRect:(NXRect *)theRect

Copies the id of the Window object where the image is located into the variable referred
to by theWindow, and copies the rectangle that bounds the image into the structure
referred to by theRect. If theRect is NULL, only the Window id is provided. Returns
self.

2-350 Chapter 2: Class Specifications

init

Generates an error message. This method cannot be used to initialize an
NXCachedImageRep. Use the initFromWindow:rect: method instead.

See also: - initFrom Window:rect:

initFrom Window:rect:

- initFromWindow:(Window *)aWindow rect:(const NXRect *)aReet

Initializes the receiver, a new NXCachedImageRep instance, for an image that will be
rendered within the aReet rectangle in aWindow, and returns the initialized object. The
rectangle is specified in aWindow's base coordinate system. The size of the image is
set from the size of the rectangle.

You must draw the image in the rectangle yourself; there are no NXCachedImageRep
methods for this purpose.

read:

- read:(NXTypedStream *)stream

Reads the NXCachedImageRep from the typed stream stream.

write:

- write:(NXTypedStream *)stream

Writes the NXCachedImageRep to the typed stream stream.

Application Kit Classes: NXCachedlmageRep 2-351

2-352

NXColorPanel

INHERITS FROM Panel: Window : Responder: Object

DECLARED IN appkit/NXColorPaneLh

CLASS DESCRIPTION

NXColorPanel provides a standard user interface for selecting color in an application.
It provides seven color selection modes, including four that correspond to
industry-standard color models. It allows the user to set swatches containing frequently
used colors. Once set, these swatches are displayed by NXColorPanel in any
application where it is used, giving the user color consistency between applications.
The NXColorPanel also enables the user to capture a color anywhere on the screen for
use in the active application, and to drag colors between views in an application.

The color mask determines which of the color modes are enabled for NXCoiorPaneL
This mask is set by using color mask constants when you initialize a new instance of
NXCoiorPaneL When an instance of NXColorPanel is masked for more than one color
mode, your program can set its mode by invoking the setMode: method with a color
mode constant as its argument; the user can set the mode by clicking buttons on the
panel. Here are the color modes with corresponding mask and mode constants:

Mode Color Mask/Color Mode Constants

Grayscale-Alpha NX_ GRAYMODEMASK
NX_GRAYMODE

Red-Green-Blue NX_RGBMODEMASK
NX_RGBMODE

Cyan-Yellow-Magenta-Black NX_CMYKMODEMASK
NX_CMYKMODE

Hue-Saturation-Brightness NX_HSBMODEMASK
NX_HSBMODE

TIFF image NX_CUSTOMPALETTEMODEMASK
NX_CUSTOMPALETTEMODE

Custom color lists NX_CUSTOMCOLORMODEMASK
NX_CUSTOMCOLORMODE

Color wheel NX_BEGINMODEMASK
NX_BEGINMODE

All of the above NX_ALLMODESMASK
none

Application Kit Classes: NXColorPanel 2-353

NX_ALLMODESMASK represents the logical OR of the other color mask constants.
When NXColorPanel is initialized using NX_ALLMODESMASK, it can be set to any
of the modes. When initializing a new instance of NXColorPanel, you can logically
OR any combination of color mask constants to restrict the available color modes.

In grayscale-alpha, red-green-blue, cyan-magenta-yellow-black, and
hue-saturation-brightness modes, the user adjusts colors by manipulating sliders. In the
custom palette mode, the user can load a TIFF file into the NXColorPanel, then select
colors from the TIFF image. In custom color list mode, the user can create and load
lists of named colors. The two custom modes provide PopUpLists for loading and
saving files. Finally, color wheel mode provides a simplified control for selecting
colors; by default, it's the initial mode when the NX_ALLMODESMASK constant is
used to initialize the NXColorPanel.

NXColorPanel's action message is sent to the target object when the user changes the
current color.

An application has only one instance of NXColorPanel, the shared instance. Once the
shared instance has been created, invoking any of the new methods returns the shared
instance rather than a new NXColorPanel.

One of NXColorPanel's methods, dragColor:withEvent:from View:, allows colors to
be moved between Views in an application. For example, NXColorWell invokes this
method from its mouseDown: method to allow you to move colors from a well to other
views. Any View can implement the acceptColor:atPoint: method to accept a color
dragged from an NXColorWell or NXColorPanel.

You can put NXColorPanel in any application created with Interface Builder by adding
the "Colors ... " item from the Menu palette to the application's menu.

See also: NXColorWell

INSTANCE VARIABLES

Inheritedfrom Object Class isa;

Inheritedfrom Responder id nextResponder;

2-354 Chapter 2: Class Specifications

Inheritedfrom Window

Inheritedfrom Panel

Declared in NXColorPanel

METHOD TYPES

Creating a New NXColorPanel

Setting NXColorPanel Behavior

Setting Color

Target and Action

NXRect frame;
id contentView;
id delegate;
id firstResponder;
id lastLeftHit;
id lastRightHit;
id counterpart;
id fieldEditor;
int winEventMask;
int windowNum;
float backgroundGray;
struct _ wFlags wFlags;
struct _wFlags2 wFlags2;

(none)

(none)

+ newContentstyle:backing:buttonMask:defer:
+ newContent: style: backing: buttonMask:defer:

colorMask:
+ newMask:
+ sharedInstance:

- colorMask
- setColorMask:
- setContinuous:
- setMode:
- setAccessoryView:
- setS how Alpha:

+ dragColor:withEventfrom View:
- color
- setColor:
- updateCustomColorList

- setAction:
- setTarget:

Application Kit Classes: NXColorPanel 2-355

CLASS METHODS

dragColor:withEvent:from View:

+ (BOOL)dragColor:(NXColor)color
withEvent:(NXEvent*)theEvent
from View:controlView

Allows colors to be dragged between views in an application. This method is usually
invoked by the mouseDown: method of controlView; the mouseDown: method sets up
a modal loop until the subsequent NX_MOUSEUP event occurs, then sends this
message to the NXColorPanel class object. theEvent is always the NX_MOUSEUP
event; this method uses the cursor coordinates from theEvent to determine the receiving
View.

To accept the dragged color, the receiving view must implement the method
acceptColor:(NXColor)color atPoint:(NXPoint)mouseUpPoint. The only View
subclass in the application kit that implements this method is NXColorWell.
Implementing acceptColor:atPoint: in a View subclass is described in "METHODS
IMPLEMENTED BY A VIEW SUBCLASS" at the end of this section.

Because it is a class method, dragColor:withEvent:from View: can be used whether
or not an instance of NXColorPanel exists. Returns YES.

See also: - mouseDown: (NXColorWell), - acceptColor:atPoint: in "METHODS
IMPLEMENTED BY A VIEW SUBCLASS" below and in NXColorWell

newContent: style: backing: buttonMask: defer:

+ newContent:(const NXRect *)contentRect
style: (int)aStyle
backing: (int)bujJeringType
buttonMask: (int)mask
defer: (BOOL)jlag

Invokes the newContent:style: backing: buttonMask:defer:colorMask: method with
NX_ALLMODESMASK as the argument. This method is implemented to override the
method inherited from the Panel class.

See also: + newContent:style:backing:buttonMask:defer:colorMask:

2-356 Chapter 2: Class Specijications

newContent:style:backing:buttonMask: defer: colorMask:

+ newContent:(const NXRect *)contentRect
style: (int)aStyle
backing: (int)bufferingType
buttonMask:(int)mask
defer: (BOOL)jlag
color Mask:(int)colormask

Creates, if necessary, and returns the shared instance of NXColorPanel. Only one
instance of NXColorPanel can be created in an application. This method allocates a
new instance of NXColorPanel from its own zone, then initializes it by invoking the
initContent:style:backing:buttonMask:defer:colorMask: method. The
newColorMask: method below lists the constants to use for colormask.

See also: + newColorMask:

newColor Mask:

+ newMask:(int)colormask

Creates, if necessary, and returns the shared instance of the NXColorPanel. Only one
instance of NXColorPanel can be created in an application. This method allocates a
new instance of NXColorPanel from its own zone, then initializes it by invoking the
initColorMask: method.

To set the color selection modes available in a new instance of NXColorPanel, use one
of the following constants for colormask:

NX_GRAYMODEMASK
NX_RGBMODEMASK
NX_CMYKMODEMASK
NX_HSBMODEMASK
NX_CUSTOMPALETTEMODEMASK
NX_CUSTOMCOLORMODEMASK
NX_BEGINMODEMASK
NX_ALLMODESMASK

To enable multiple selection modes for the new NXColorPanel, use a colormask
expression containing the logical OR of two or more color mask constants.
NX_ALLMODESMASK represents the logical OR of all the other masks.

To change the color selection modes available in an existing instance of
NXColorPanel, use the setColorMaskmethod.

See also: - colorMask, - setColorMask, - setMode

Application Kit Classes: NXColorPanel 2-357

sharedlnstance:

+ sharedInstance:(BOOL)create

Tests for the shared instance of NXColorPanel. If create is NO and the shared instance
exists, this method returns its id; if no instance of NXColorPanel exists, returns nil. If
create is YES, this method creates, if necessary, and returns the id of the shared
NXColorPanel.

INSTANCE METHODS

alloc

Generates an error message. This method cannot be used to create NXColorPanel
instances. Use the newFrame: method instead.

See also: + newFrame:

allocFromZone

Generates an error message. This method cannot be used to create NXColorPanel
instances. Use the newFrame: method instead.

See also: + newFrame:

color

- (NXColor)color

Returns the current color selection of the NXColorPanel.

See also: - setColor

colorMask

- (int)colorMask

Returns the color mask. The return value will be one of the color mask constants
described in the newMask: method or a logical OR of two or more of the constants.

See also: + newMask:

2-358 Chapter 2: Class Specifications

setAccessory View:

- setAccessoryView:aView

Sets the accessory view displayed in the NXColorPanel to aView. The accessory View
can be any custom View that you want to display with NXColorPanel, for example, a
View offering patterns or brush shapes in a drawing program. The accessory View is
displayed below the regular controls in the NXColorPanel. The NXColorPanel
automatically resizes to accommodate the accessory View. Returns self.

setAction:

- setAction:(SEL)aSelector

Sets the action of the NXColorPanel to aSelector. Returns self.

setColor:

- setColor:(NXColor)color

Sets the color setting of the NXColorPanel to color and redraws the panel. Returns self.

setColor Mask:

- setColorMask:(int)colormask

Sets the color mode mask of the NXColorPanel. Returns self.

setContinuous:

- setContinuous:(BOOL)jlag

Sets the NXColorPanel to send the action message to its target continuously as the color
of the NXColorPanel is set by the user. Send this message withjlag YES if, for
example, you want tot continuously update the color of the target. Returns self.

Application Kit Classes: NXColorPanel 2-359

setMode:

- setMode:(int)mode

Sets the mode of the NXColorPanel if mode is one of the modes allowed by the color
mask. The color mask is set when you first create the shared instance of NXColorPanel
for an application. mode can be one of seven constants:

NX_GRAYMODE
NX_RGBMODE
NX_CMYKMODE
NX_HSBMODE
NX_CUSTOMPALETTEMODE
NX_CUSTOMCOLORMODE
NX_BEGINMODE

Color modes and masks are described in more detail in "CLASS DESCRIPTION" at
the beginning of this discussion.

Returns self.

See also: "CLASS DESCRIPTION"

setS how Alpha:

- setShowAlpha:(BOOL)jlag

Ifjlag is YES, sets the NXColorPanel to show alpha. Returns self.

setTarget:

- setTarget:anObject

Sets the target of the NXColorPanel. The NXColorPanel's target is the object to which
the action message is sent when the user selects a color. Returns self.

See also: - setAction, - setContinuous

updateCustomColorList

- updateCustomColorList

Updates the custom color list to reflect the current entries. This method is invoked by
Controls on the NXColorPanel in NX_CUSTOMCOLORMODE.

2-360 Chapter 2: Class Specifications

METHODS IMPLEMENTED BY A VIEW SUBCLASS

acceptColor:atPoint:

- acceptColor:(NXColor)color atPoint:(NXPoint *)aPoint

Allows the View to accept color when aPoint is a point within its bounds. Implement
this method if you want to be able to drag a color from an NXColorPanel or
NXColorWell into your subclass of View. This method is invoked by NXColorPanel's
class method dragColor:withEvent:fromView:. Returns self.

See also: - acceptColor:atPoint: in NXColorWell,
+ dragColor:withEvent:from View:

CONSTANTS

#define NX GRAYMODE

#define NX RGBMODE

#define NX CMYKMODE

#define NX HSBMODE

#define NX CUSTOMPALETTEMODE

#define NX CUSTOMCOLORMODE

#define NX BEGINMODE

#define NX GRAYMODEMASK

#define NX RGBMODEMASK

#define NX CMYKMODEMASK
#define NX HSBMODEMASK

#define NX CUSTOMPALETTEMODEMASK

#define NX CUSTOMCOLORMODEMASK

#define NX BEGINMODEMASK

#define NX ALLMODESMASK \

(NX_GRAYMODEMASKI \

NX_RGBMODEMASKI \

NX_CMYKMODEMASKI \
NX_HSBMODEMASKI \

NX_CUSTOMPALETTEMODEMASKI \

NX_CUSTOMCOLORMODEMASKI \

NX_BEGINMODEMASK)

0

1

2

3

4

5

6

1

2

4

8

16
32

64

Application Kit Classes: NXColorPanel 2-361

2-362

NXColorWell

INHERITS FROM Control: View: Responder: Object

DECLARED IN appkit/NXColorWell.h

CLASS DESCRIPTION

NXColorWell is a Control for selecting and displaying a single color value. An
example of NXColorWell is found in NXColorPanel, which uses a well to display the
current color selection. NXColorWell is available from the Palettes panel of Interface
Builder.

An application can have one or more active NXColorWells. You can activate multiple
NXColorWells by invoking the activate: method with NO as its argument. You can set
the same color for all active color wells by invoking the class method
activeWellsTakeColorFrom:. You can deactivate multiple wells using the class
method deactivateAIlWells. When a mouse-down event occurs in an NXColorWell, it
becomes the only active well.

The mouseDown: method enables an instance of NXColorWell to send its color to
another NXColorWell or any other subclass of View that implements the
acceptColor:atPoint: method. NXColorWell's mouseDown: method invokes
NXColorPanel's dragColor:withEvent:fromView: class method, which sends an
acceptColor:atPoint: message to the receiving View.

See also: NXColorPanel

INSTANCE VARIABLES

Inherited from Object Class is a;

Inherited from Responder id nextResponder;

Inherited from View NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct _ vFlags vFlags;

Inheritedfrom Control int tag;
id cell;
struct _conFlags conFlags;

Defined in NXColorWeli NXCoior color;

color The current color value of the NXColorWell

Application Kit Classes: NXColorWell 2-363

METHOD TYPES

Initializing an NXColorWell

Multiple NXColorWells

Drawing

Handling events

Activating and enabling

Setting color

Target and action

CLASS METHODS

active WellsTakeColorFrom:

- initFrame:

+ active WellsTakeColorFrom:
+ active WellsTakeColorFrom:continuous:
+ deactivateAllWells

- drawSelf::
- drawWellInside:

- acceptsFirstMouse
- mouseDown:
- isContinuous
- setContinuous:

- activate:
- deactivate
- isActive
- setEnabled:

- acceptColor:atPoint:
- setColor:
- color
- takeColorFrom:

- target
- action
- setTarget:
- setAction:

+ active WellsTakeColorFrom:sender

This method changes the color of all active NXColorWells by invoking their
takeColorFrom: method with sender as the argument. Returns the NXColorWell class
object.

See also: - activate:, + activeWellsTakeColorFrom:continuous:, - deactivate,
+ deactivateAllWells, - takeColorFrom:

2-364 Chapter 2: Class Specifications

active WellsTakeColorFrom:continuous

+ active WellsTakeColorFrom:sender continuous: (BaaL)flag

Ifflag is YES, this method continuously changes the color of all active NXColorWells
that are continuous; If NO, all active NXColorWells, continuous or not, change their
color just once. NXColorWells are updated by invoking their takeColorFrom: method
with sender as the argument. Use this method with YES as the flag in a modal event
loop if you want active NXColorWells to continuously update to reflect the current
color of sender. Returns the NXColorWell class object.

See also: - activate:, - deactivate, + deactivateAllWells, - isContinuous,
- setContinuous:, - takeColorFrom:

deactivateAllWells

+ deactivateAllWells

Deactivates all currently active NXColorWells. Returns the NXColorWell class object.

See also: - activate:, - deactivate

INSTANCE METHODS

acceptColor:atPoint:

- acceptColor:(NXColor)color atPoint:(NXPoint *)aPoint

Changes the color value of the NXColorWell to color when aPoint is a point within the
bounds of the NXColorWell. This method is invoked by the NXColorPanel method
dragColor:withEvent:from View: to move color into an NXColorWell. Returns self.

Note that any subclass of View can accept colors from an NXColorWell by
implementing a version of this method.

See also: - dragColor:withEvent:from View: (NXColorPanel)

acceptsFirstMouse

- acceptFirstMouse

Returns YES.

action
- action

Returns the action sent by the NXColorWell to the target.

Application Kit Classes: NXColorWell 2-365

activate:
- (int)activate:(int)exclusive

If exclusive is YES, this method activates the receiving NXColorWell and deactivates
any other active NXColorWells. If NO, this method activates the receiving
NXColorWell and keeps previously active NXColorWells active. Redraws the receiver.
An active NXColorWell will have its color updated as the NXColorPanel's current
color changes.

This method returns the number of active NXColorWells.

See also: + activeWellsTakeColorFrom:, - deactivate

color

- (NXColor)color

Returns the color of the NXColorWell.

See also: - acceptColor:atPoint, - setColor:, - takeColorFrom:

deactivate

- deactivate

Sets the NXColorWell to inactive and redraws it. Returns self.

drawSelf::

- drawSelf:(const NXRect *)rects:(int)rectCount

Draws the entire NXColorWell, including its border. Returns self.

drawWelllnside:

- drawWelllnside:(const NXRect *)insideRect

Draws the inside of the NXColorWell only, the area where the color is displayed.
Returns self.

initFrame:

- initFrame:(NXRect const *)theFrame

Initializes and returns the receiver, a new instance of NXColorPanel within theFrame.
By default, the color is NX_COLORWHlTE and the NXColorWell is bordered and
inactive. Returns self.

2-366 Chapter 2: Class Specifications

is Active

- (BOOL)isActive

Returns YES if the receiving NXColorWell is active, NO if not active.

rnouseDown:

- mouseDown:(NXEvent *)theEvent

Makes the receiver the only active NXColorWell. If theEvent occurs within the colored
area of the NXColorWell (not on its border), then this method invokes NXColorPanel's
dragColor:withEvent:from View: method. The user can then drag the color from the
NXColorWell to another View that has an acceptColor:atPoint: method, such as
another NXColorWell. Returns self.

You never invoke this method. It's sent when an NX_MOUSEDOWN event occurs
within the bounds of the NXColorWell.

See also: - acceptColor:atPoint:, - activate, - deactivate,
+ dragColor:withEvent:fromView: (NXColorPanel), - isActive

setAction:

- setAction:(SEL) aSelector

Sets the default action method of the NXColorWell. The action message is sent to the
target by NXColorWell's acceptColor:atPoint: and takeColorFrom: methods.
Returns self.

setColor:

- setColor:(NXColor)color

Sets the color of the NXColorWell to color and redraws it. Returns self.

setContinuous:

- setContinuous:(BOOL)jlag

Ifjlag is YES, the NXColorWell continuously updates its color and sends its action
message to its target in response to an activeWellsTakeColorFrom:continuous:. If
NO, the NXColorWell doesn't respond to this message. Returns self.

Application Kit Classes: NXColorWell 2-367

setEnabled:
- setEnabled:(BOOL)jlag

Ifjlag is YES, the receiving NXColorWell is enabled. If NO, the receiver is disabled.
An NXColorWell cannot be both disabled and active; enabling an NXColorWell
doesn't activate. Returns self.

See also: - activate, - deactivate, - isActive

setTarget:

- setTarget:anObject

Sets the target of the NXColorWell. The action message is sent to the target by
NXColorWell's acceptColor:atPoint: and takeColorFrom: methods. Returns self.

takeColorFrom
- takeColorFrom:sender

Causes the receiving NXColorWell to set its color by sending a color message to
sender. Sends the NXColorWell's action message to its target and returns self.

See also: - color

target
- target

Returns the target of the NXColorWel1. The action message is sent to the target by
NXColorWell's acceptColor:atPoint: and takeColorFrom: methods. Returns self.

See also: - setTarget:

2-368 Chapter 2: Class Specifications

NXCursor

INHERITS FROM Object

DECLARED IN appkit/NXCursor

CLASS DESCRIPTION

An NXCursor object holds an image that can become the image the Window Server
displays for the cursor. A set message makes the receiver the current cursor:

[myNXCursor set];

For automatic cursor management, an NXCursor can be assigned to a cursor rectangle
within a window. When the window is the key window and the user moves the cursor
into the rectangle, the NXCursor is set to be the current cursor. It ceases to be the
current cursor when the cursor leaves the rectangle. The assignment is made using
View's addCursorRect:cursor: method, usually inside a resetCursorRects method:

- resetCursorRects

[self addCursorRect:&someRect cursor:theNXlmageObject];

return self;

This is the recommended way of associating a cursor with a particular region inside a
window. However, the NXCursor class provides two other ways of setting the cursor:

• The class maintains its own stack of cursors. Pushing an NXCursor instance on the
stack sets it to be the current cursor. Popping an NXCursor from the stack sets the
next NXCursor in line, the one that's then at the top of the stack, to be the current
cursor.

• An NXCursor can be made the owner of a tracking rectangle and told to set itself
when it receives a mouse-entered or mouse-exited event.

The Application Kit provides two ready-made NXCursor instances and assigns them to
global variables:

NXArrow
NXIBeam

The standard arrow cursor
The cursor that's displayed over editable or selectable text

There's no NXCursor instance for the wait cursor. The wait cursor is displayed
automatically by the system, without any required program intervention.

Application Kit Classes: NXCursor 2-369

INSTANCE VARIABLES

Inheritedfrom Object

Declared in NXCursor

hotSpot

cFlags.onMouseExited

cFlags.onMouseEntered

image

METHOD TYPES

Class

NXPoint
struct _csrFlags {

unsigned int
unsigned int

id

isa;

hotSpot;

onMouseExited: 1;
onMouseEntered: 1;

cFlags;
image;

The point in the cursor image whose location on
the screen is reported as the cursor's location.

A flag indicating whether to set the cursor when
the Cursor object receives a mouse-exited event.

A flag indicating whether to set the cursor when
the Cursor object receives a mouse-entered event.

The cursor image, an NXImage object.

Initializing a new NXCursor object - init

Defining the cursor

Setting the cursor

Archiving

2-370 Chapter 2: Class Specifications

- initFromImage:

- setImage:
- image
- setHotSpot:

-push
-pop
+ pop
- set
- setOnMouseEntered:
- setOnMouseExited:
- mouseEntered:
- mouseExited:
+ currentCursor

- read:
- write:

CLASS METHODS

currentCursor

+ currentCursor

Returns the last NXCursor to have been set.

See also: - set, - push, + pop, - mouseEntered:, - mouseExited:,

pop

+ pop

Removes the NXCursor currently at the top of the cursor stack, and sets the NXCursor
that was beneath it (but is now at the top of the stack) to be the current cursor. Returns
self (the class object).

This method can be used in conjunction with the push method to manage a group of
cursors within a local context. Every push should be balanced by a subsequent pop.
When the last remaining cursor is popped from the stack, the Application Kit restores
a cursor appropriate for the larger context.

The pop instance method provides the same functionality as this class method.

See also: - push

INSTANCE METHODS

image

init

- image

Returns the NXImage object that supplies the cursor image for the receiving NXCursor.

See also: - initFromImage:, - setlmage:

- init

Initializes the receiver, a newly allocated NXCursor instance, by sending it an
initFromImage: message with nil as the argument. This doesn't assign an image to
the object. An image must then be set (with the setlmage: method) before the cursor
can be used. Returns self.

See also: - setlmage:, - initFromImage:

Application Kit Classes: NXCursor 2-371

initFromlmage:

- initFromImage:image

Initializes the receiver, a newly allocated NXCursor instance, by setting the image it
will use to image, an NXImage object. For a standard cursor, the image should be 16
pixels wide by 16 pixels high. The default hot spot is at the upper left corner of the
image.

This method is the designated initializer for the class. Returns self.

See also: - setHotSpot:

mouseEntered:

- mouseEntered:(NXEvent *)theEvent

Responds to a mouse-entered event by setting the NXCursor to be the current cursor,
but only if enabled to do so by a previous setOnMouseEntered: message. This
method does not push the receiver on the cursor stack. Returns self.

See also: - setOnMouseEntered:

mouseExited:

- mouseExited:(NXEvent *)theEvent

Responds to a mouse-exited event by setting the NXCursor to be the current cursor, but
only if enabled to do so by a previous setOnMouseExited: message. This method does
not push the receiver on the cursor stack. Returns self.

See also: - setOnMouseExited:

pop
-pop

Removes the topmost NXCursor object, not necessarily the receiver, from the cursor
stack, and makes the next NXCursor down the current cursor. Returns self.

This method is an interface to the class method with the same name.

See also: + pop, - push

2-372 Chapter 2: Class Specifications

push

-push

Puts the receiving NXCursor on the cursor stack and sets it to be the Window Server's
current cursor. Returns self.

This method can be used in conjunction with the pop method to manage a group of
cursors within a local context. Every push should be matched by a subsequent pop.

See also: + pop

read:

set

- read:(NXTypedStream *)stream

Writes the NXCursor, including the image, to stream.

See also: - write:

- set

Makes the NXCursor the current cursor displayed by the Window Server, and returns
self. This method doesn't push the receiver on the cursor stack.

setHotSpot:

- setHotSpot:(const NXPoint *)aPoint

Sets the point on the cursor that will be used to report its location. The point is specified
relative to a flipped coordinate system with an origin at the upper left corner of the
cursor image and coordinate units equal to those of the base coordinate system. The
point should not have any fractional coordinates, meaning that it should lie at the corner
of four pixels. The point selects the pixel below it and to its right. This pixel is the one
part of the cursor image that's guaranteed never to be off-screen.

When the pixel selected by the hot spot lies inside a rectangle (say a button), the cursor
is said to be over the rectangle. When the pixel is outside the rectangle, the cursor is
taken to be outside the rectangle, even if other parts of the image are inside.

The default hot spot is at the upper left corner of the image. Returns self.

Application Kit Classes: NXCursor 2-373

setlmage:

- setlmage:image

Sets a new image for the NXCursor, and returns the old image. The new image should
be an NXImage object. If the old image is of no further use, it should be freed.
Resetting the image while the cursor is displayed may have unpredictable results.

See also: - image, - initFromImage:

setOnMouseEntered:

- setOnMouseEntered:(BOOL)jlag

Determines whether the NXCursor should set itself to be the current cursor when it
receives a mouseEntered: event message. To be able to receive the event message, an
NXCursor must first be made the owner of a tracking rectangle by Window's
setTrackingRect:inside:owner:tag:left:right: method.

Cursor rectangles are a more convenient way of associating cursors with particular
areas within a window.

Returns self.

See also: - mouseEntered:, - setTrackingRect:inside:owner:tag:left:right:
(Window)

setOnMouseExited:

- setOnMouseExited:(BOOL)jlag

Determines whether the NXCursor should set itself to be the current cursor when it
receives a mouseExited: event message. To be able to receive the event message, an
NXCursor must first be made the owner of a tracking rectangle by Window's
setTrackingRect:inside:owner:tag:left:right: method.

Cursor rectangles are a more convenient way of associating cursors with particular
areas within windows.

Returns self.

See also: - mouseExited:, - setTrackingRect:inside:owner:tag:left:right:
(Window)

write:

- write:(NXTypedStream *)stream

Writes the NXCursor and its image to stream.

See also: - read:

2-374 Chapter 2: Class Specifications

NXCustomlmageRep

INHERITS FROM NXImageRep : Object

DECLARED IN appkit/NXCustomImageRep.h

CLASS DESCRIPTION

An NXCustomImageRep is an object that uses a delegated method to render an image.
When called upon to produce the image, it sends a message to have the method
performed.

Like most other kinds of NXImageReps, an NXCustomImageRep is generally used
indirectly, through an NXImage object. To be useful to the NXImage, it must be able
to provide some information about the image. The following methods, inherited from
the NXlmageRep class, inform the NXCustomlmageRep about the size of the image,
whether it can be drawn in color, and so on. Use them to complete the initialization of
the object.

setSize:
setNumColors:
setAlpha:
setPixelsHigh
setPixels Wide
setBitsPerSample:

INST ANCE VARIABLES

Inheritedfrom Object Class isa;

Inheritedfrom NXlmageRep NXSize size;

Declared in NXCustomlmageRep SEL draw Method;
drawObject;

drawMethod

drawObject

id

The method that draws the image.

The object that receives messages to perform the
drawMethod.

Application Kit Classes: NXCustomlmageRep 2-375

METHOD TYPES

Initializing a new NXCustomImageRep
- initDrawMethod:inObject:

Drawing the image -draw

Archiving -read:
- write:

INSTANCE METHODS

draw

init

- (BOOL)draw

Sends a message to have the image drawn. Returns YES if the message is successfully
sent, and NO if not. The message will not be sent if the intended receiver is nil or it
can't respond to the message.

See also: - drawAt: (~XImageRep), - drawln: (NXImageRep)

Generates an error message. This method cannot be used to initialize an
NXCustomImageRep. Use initDrawMethod:inObject: instead.

See also: - initDrawMethod:inObject:

initDrawMethod:inObject:

- initDrawMethod:(SEL)aSelector inObject:anObject

Initializes the receiver, a newly allocated NXCustomImageRep instance, so that it
delegates responsibility for rendering the image to anObject. When the
NXCustomImageRep receives a draw message, it will in tum send a message to
anObject to perform the aSelector method. The aSelector method should take only one
argument, the id of the NXCustomImageRep. It should draw the image at location
(0.0,0.0) in the current coordinate system.

Returns self.

read:

- read:(NXTypedStream *)stream

Reads the NXCustomImageRep from the typed stream stream.

See also: - write:

2-376 Chapter 2: Class Specifications

write:

- write:(NXTypedStream *)stream

Writes the NXCustomlmageRep to the typed stream stream. The object that's
delegated to draw the image is not explicitly written.

See also: - read:

Application Kit Classes: NXCustomlmageRep 2-377

2-378

NXEPSImageRep

INHERITS FROM NXImageRep : Object

DECLARED IN appkit/NXEPSImageRep

CLASS DESCRIPTION

An NXEPSImageRep is an object that can render an image from encapsulated
PostScript code (EPS). The size of the object is set from the bounding box specified in
the EPS header comments. Other information about the image should be supplied
using inherited NXImageRep methods.

Like most other kinds of NXImageReps, an NXEPSImageRep is generally used
indirectly, through an NXImage object.

INSTANCE VARIABLES

Inheritedfrom Object Class isa;

Inherited from NXImageRep NXSize size;

Declared in NXEPSImageRep (none)

METHOD TYPES

Initializing a new NXEPSImageRep instance
- initFromSection:
- initFromFile:
- initFromStream:

Creating a List of NXEPSImageReps
+ newListFromSection:
+ new ListFromSection:zone:
+ newListFromFile:
+ newListFromFile:zone:
+ newListFromStream:
+ newListFromStream:zone:

Copying and freeing an NXEPSImageRep
-copy
-free

Getting the rectangle that bounds the image
- getBoundingBox:

Application Kit Classes: NXEPSlmageRep 2-379

Getting image data - getEPS:length:

Drawing the image - prepareGState
- drawIn:
-draw

Archiving - read:
- write:

newListFromFile:

+ (List *)newListFromFile:(const char *)filename

Creates one new NXEPSImageRep instance for each EPS image specified in the
filename file, and returns a List object containing all the objects created. If no
NXEPSImageReps can be created (for example, iffilename doesn't exist or doesn't
contain EPS code), nil is returned. The List should be freed when it's no longer needed.

Each new NXEPSImageRep is initialized by the initFromFile: method, which reads a
minimal amount of information about the image from the header comments in the file.
The PostScript code will be read when it's needed to render the image.

See also: + newListFromFile:zone:, - initFromFile:

newListFromFile:zone:

+ (List *)newListFromFile:(const char *)filename zone:(NXZone *)aZone

Returns a List of new NXEPSImageRep instances, just as newListFromFile: does,
except that the NXEPSImageReps and the List object are allocated from memory
located in aZone.

See also: + newListFromFile:, - initFromFile:

newListFromSection:

+ (List *)newListFromSection:(const char *)name

Creates one new NXEPSImageRep instance for each image specified in the name
section of the _EPS segment in the executable file, and returns a List object containing
all the objects created. If not even one NXEPSImageRep can be created (for example,
if the name section doesn't exist or doesn't contain EPS code), nil is returned. The List
should be freed when it's no longer needed.

Each new NXEPSImageRep is initialized by the initFromSection: method, which
reads reads a minimal amount of information about the image from the EPS header
comments. The PostScript code will be read only when it's needed to render the image.

See also: + newListFromSection:zone:, - initFromSection:

2-380 Chapter 2: Class Specifications

newListFromSection: zone:
+ (List *)newListFromSection:(const char *)name zone:(NXZone *)aZone

Returns a List of new NXEPSImageRep instances, just as newListFromSection: does,
except that the List object and the NXEPSImageReps are allocated from memory
located in aZone.

See also: + newListFromSection:, - initFromSection:

newListFromStream:
+ (List *)newListFromStream:(NXStream *)stream

Creates one new NXEPSImageRep instance for each EPS image that can be read from
stream, and returns a List object containing all the objects created. If not even one
NXEPSImageRep can be created (for example, if the stream doesn't contain EPS
code), nil is returned. The List should be freed when it's no longer needed.

The data is read and each new object initialized by the initFromStream: method.

See also: + newListFromStream:zone:, - initFromStream:

newListFromStream:zone:

+ (List *)newListFromStream:(NXStream *)stream zone:(NXZone *)aZone

Returns a List of new NXEPSImageRep instances, just as newListFromStream: does,
except that the List object and the NXEPSImageReps are allocated from memory
located in aZone.

See also: + newListFromStream:, - initFromStream:

INSTANCE METHODS

copy

-copy

Returns a new NXEPSImageRep instance that's an exact copy of the receiver. The new
object will have its own copy of the image data. It doesn't need to be initialized.

Application Kit Classes: NXEPSlmageRep 2-381

draw

- (BOOL)draw

Draws the image at (0.0,0.0) in the current coordinate system on the current device.
This method returns YES if successful in rendering the image, and NO if not.

An NXEPSImageRep draws in a separate PostScript context and graphics state. Before
the EPS code is interpreted, all graphics state parameters-with the exception of the
CTM and device-are set to the Window Server's defaults and the defaults required by
EPS conventions. If you want to change any of these defaults, you can do so by
implementing a prepareGState method in an NXEPSImageRep subclass. The draw
method invokes prepareGState just before sending the EPS code to the Window
Server. For example, if you need to set a transfer function or halftone screen that's
specific to the image, prepareGState is the place to do it.

See also: - drawAt: (NXImageRep), - drawln:, - prepareGState

drawln:

- (BOOL)drawln:(const NXRect *)rect

Draws the image so that it fits inside the rectangle referred to by recto The current
coordinate system is translated and scaled so the image will appear at the right location
and fit within the rectangle. The draw method is then invoked to produce the image.
This method passes through the return value of the draw method, which indicates
whether the image was successfully drawn.

The coordinate system is not restored after it has been altered.

See also: - draw, - draw At: (NXImageRep)

free

- free

Deallocates the NXEPSImageRep.

getBoundingBox:

- getBoundingBox:(NXRect *)theRect

Provides the rectangle that bounds the image. The rectangle is copied from the
"%%BoundingBox:" comment in the EPS header to structure referred to by theRect.
Returns self.

2-382 Chapter 2: Class Specifications

getEPS:length:

init

- getEPS:(char **)theEPS length:(int *)numBytes

Sets the pointer referred to by theEPS so that it points to the EPS code. The length of
the code in bytes is provided in the integer referred to by numBytes. Returns self.

Generates an error message. This method can't be used to initialize an
NXEPSImageRep. Use one of the other init ... methods instead.

See also: - initFromSection:, - initFromFile:, - initFromStream:

initFromFile:

- initFromFile:(const char *)filename

Initializes the receiver, a newly allocated NXEPSImageRep object, with the EPS image
found in the filename file. Some information about the image is read from the EPS
header comments, but the PostScript code won't be read until it's needed to render the
image.

If the new object can't be initialized for any reason (for example,filename doesn't exist
or doesn't contain EPS code), this method frees it and returns nil. Otherwise, it returns
self.

This method is the designated initializer for NXEPSImageReps that read EPS code
from a file.

See also: + newListFromFile:, - initFromSection:

initFromSection:

- initFromSection:(const char *)name

Initializes the receiver, a newly allocated NXEPSImageRep object, with the image
found in the name section in the _EPS segment of the application executable. Some
information about the image is read from the EPS header comments, but the PostScript
code won't be read until it's needed to render the image.

If the new object can't be initialized for any reason (for example, the name section
doesn't exist or doesn't contain EPS code), this method frees it and returns nil.
Otherwise, it returns self.

This method is the designated initializer for NXEPSImageReps that read image data
from the _EPS segment..

See also: + newListFromSection:, - initFromFile:

Application Kit Classes: NXEPSlmageRep 2-383

initFrornStrearn:

- initFromStream:(NXStream *)stream

Initializes the receiver, a newly allocated NXEPSImageRep object, with the EPS image
read from stream. If the new object can't be initialized for any reason (for example,
stream doesn't contain EPS code), this method frees it and returns nil. Otherwise, it
returns self.

This method is the designated initializer for NXEPSImageReps that read image data
from a stream.

See also: + newListFromStream:

prepareGState

- prepareGState

Implemented by subclasses to initialize the graphics state before the image is drawn.
The draw method sends a prepareGState message just before rendering the EPS code.
This default implementation of the method does no initialization; it simply returns self.

See also: - draw

read:

- read:(NXTypedStream *)stream

Reads the NXEPSImageRep from the typed stream stream.

See also: - write:

write:

- write:(NXTypedStream *)stream

Writes the NXEPSImageRep to the typed stream stream.

See also: - read:

2-384 Chapter 2: Class Specifications

NXlmage

INHERITS FROM Object

DECLARED IN appkit/NXlmage.h

CLASS DESCRIPTION

An NXImage object contains an image that can be composited anywhere without first
being drawn in any particular View. It manages the image by:

Reading image data from the _ICON, _TIFF, or _EPS segments of the
application executable, from a separate file, or from an NXStream.

• Keeping multiple representations of the same image.

• Choosing the representation that's appropriate for any given display device.

Caching the representations it uses by rendering them in off-screen windows.

• Optionally retaining the data used to draw the representations, so that they can be
reproduced when needed.

• Compositing the image from the off-screen cache to where it's needed on-screen.

Reproducing the image for the printer so that it matches what's displayed
on-screen, yet is the best representation possible for the printed page.

Defining an Image

An image can be created from various types of data:

• Encapsulated PostScript code (EPS)
• Bitmap data in Tag Image File Format (TIFF)

Untagged (raw) bitmap data

If TIFF or EPS image data is placed in a section of the application executable or in a
separate file, the NXlmage object can access the data whenever it's needed to create the
image. If TIFF or EPS data is read from a stream, the NXImage object may need to
retain the data itself.

Application Kit Classes: NXlmage 2-385

Images can also be defined by the program, in two ways:

• By drawing the image in an off-screen window maintained by the NXImage object.
In this case, the NXImage maintains only the cached image.

By defining a method that can be used to draw the image when needed. This allows
the NXImage to delegate responsibility for producing the image to some other
object.

Image Representations

An NXImage object can keep more than one representation of an image. Multiple
representations permit the image to be customized for the display device. For example,
different hand-tuned TIFF images can be provided for monochrome and color screens,
and an EPS representation or a custom method might be used for printing. All
representations are versions of the same image.

An NXImage returns a List of its representations in response to a representationList
message. Each representation is a kind of NXImageRep object:

NXEPSImageRep An image that can be recreated from EPS data that's either
retained by the object or at a known location in the file
system.

NXBitmapImageRep An image that can be recreated from bitmap or TIFF data.

NXCustomImageRep An image that can be redrawn by a method defined in the
application.

NXCachedImageRep An image that has been rendered in an off-screen cache
from data or instructions that are no longer available. The
image in the cache provides the only data from which the
image can be reproduced.

You can also define other NXImageRep subclasses for objects that render images from
other kinds of source information.

Choosing and Caching Representations

The NXImage object will choose the representation that best matches the rendering
device. By default, the choice is made according to the following set of ordered rules.
Each rule is applied in turn until the choice of representation is narrowed to one:

6. Choose a color representation for a color device, and a gray-scale representation for
a monochrome device.

2 -386 Chapter 2: Class Specifications

7. Choose a representation with a resolution that matches the resolution of the device,
or if no representation matches, choose the one with the highest resolution.

By default, any image representation with a resolution that's an integer multiple of
the device resolution is considered to match. If more than one representation
matches, the NXImage will choose the one that's closest to the device resolution.
However, you can force resolution matches to be exact by passing NO to the
setMatchedOnMultipleResolution: method.

Rule 2 prefers TIFF and bitmap representations, which have a defined resolution,
over EPS representations, which don't. However, you can use the
setEPSPreferredOnResolutionMismatch: method to have the NXImage choose
an EPS representation in case a resolution match isn't possible.

8. If all else fails, choose the representation with a specified bits per sample that
matches the depth of the device. If no representation matches, choose the one with
the highest bits per sample.

By passing NO to the setColorMatchPreferred: method, you can have the NXImage
try for a resolution match before a color match. This essentially inverts the first and
second rules above.

When first asked to composite the image, the NXImage object chooses the
representation that's best for the destination display device. It renders the
representation in an off-screen window on the same device, then composites it from this
cache to the desired location. Subsequent requests to composite the image use the same
cache. Representations aren't cached until they're needed for compositing.

When printing, the NXImage tries not to use the cached image. Instead, it attempts to
render on the printer-using the appropriate EPS or TIFF data, or a delegated
method-the best version of the image that it can. Only as a last resort will it image
the cached bitmap.

Image Size

Before an NXImage can be used, the size of the image must be set, in units of the base
coordinate system. If a representation is smaller or larger than the specified size, it can
be scaled to fit.

If the size of the image hasn't already been set when the NXImage is provided with an
EPS or TIFF representation, the size will be set from the EPS or TIFF data. The EPS
bounding box and TIFF "ImageLength" and "Image Width" fields specify an image
size.

Application Kit Classes: NXlmage 2-387

Coordinate Systems

Images have the horizontal and vertical orientation of the base coordinate system; they
can't be rotated or flipped. When composited, an image maintains this orientation, no
matter what coordinate system it's composited to. (The destination coordinate system
is used only to determine the location of a compo sited image, not its size or
orientation.)

It's possible to refer to portions of an image when compo siting (or when defining
subimages), by specifying a rectangle in the image's coordinate system, which is
identical to the base coordinate system, except that the origin is at the lower left corner
of the image.

Named Images

An NXImage object can be identified either by its id or by a name. Assigning an
NXImage a name adds it to a database kept by the class object; each name in the
database identifies one and only one instance of the class. When you ask for an
NXImage object by name (with the findImageNamed: method), the class object
returns the one from its database, which also includes all the system bitmaps provided
by the Application Kit. If there's no object in the database for the specified name, the
class object tries to create one by looking in the _ICON, _EPS, and _TIFF segments
of the application's executable file, and then in the directory of the executable file (the
file package).

If a section or file matches the name, an NXImage is created from the data stored there.
You can therefore create NXImage objects simply by including EPS or TIFF data for
them within the executable file, or in files inside the application's file package.

The job of displaying an image within a View can be entrusted to a Cell object. A Cell
identifies the image it's to display by the name of the NXImage object. The following
code sets myCell to display one of the system bitmaps:

id myCel1 = [[Cell alloe] initleonCell:"NXswiteh"];

INSTANCE VARIABLES

Inherited/rom Object Class isa;

Declared in NXImage char *name;

name The name assigned to the image.

2-388 Chapter 2: Class Specifications

METHOD TYPES

Initializing a new NXImage instance
- init
- initSize:
- initFromSection:
- initFromFile:
- initFromStream:
- initFromImage:rect:

Freeing an NXImage object -free

Setting the size of the image - setSize:
- getSize:

Referring to images by name - setName:
-name
+ findImageN amed:

Specifying the image - useDraw Method:inObject:
- useFromSection:
- useFromFile:
- useRepresentation:
- useCache WithDepth:
- 10adFromStream:
-lockFocus
- 10ckFocusOn:
- unlockFocus

V sing the image - composite:toPoint:
- composite:fromRect:toPoint:
- dissolve:toPoint:
- dissolve:fromRect:toPoint:

Choosing which image representation to use
- setColorMatchPreferred:
- isColorMatchPreferred
- setEPSU sedOnResolutionMismatch:
- isEPSUsedOnResolutionMismatch
- setMatchedOnMultipleResolution:
- isMatchedOnMultipleResolution

Getting the representations - lastRepresentation
- bestRepresentation
- representationList
'- removeRepresentation:

Application Kit Classes: NXlmage 2-389

Determining how the image is stored
- setUnique:
- isUnique
- setDataRetained:
- isDataRetained
- setCacheDepthBounded:
- isCacheDepthBounded
- getlmage:rect:

Determining how the image is drawn
- setFlipped:
- isFlipped
- setScalable:
- isScalable
- setBackgroundColor:
- backgroundColor
- drawRepresentation:inRect:
- recache

Assigning a delegate - setDelegate:
- delegate

Producing TIFF data for the image - write TIFF:
- writeTIFF:allRepresentations:

Archiving - read:
- write:
- finishUnarchiving

CLASS METHODS

findlmageNamed:

+ findlmageNamed:(const char *)name

Returns the NXlmage instance associated with name. The returned object can be:

• One that's been assigned a name with the setName: method,
One of the named system bitmaps provided by the Application Kit, or
One that's been created and named by this method.

If there's no known NXlmage with name, this method tries to create one by searching
for image data in the _ICON, _EPS, and _TIFF segments of the application
executable and in the directory (file package) where the executable resides:

1. It looks first in the _ICON segment for a name section containing either
Encapsulated PostScript code (EPS) or Tag Image File Format (TIFF) data.

2-390 Chapter 2: Class Specifications

2. Failing to find image data there, it looks next for a section with TIFF data in the
_TIFF segment if name includes a ".tiff' extension, or for a section containing
EPS data in the _EPS segment if name includes a ".eps" extension. If name has
neither extension, both segments are searched, first after adding the appropriate
extension to name, then for name alone, without an extension. If it finds sections
in both segments, it creates both EPS and TIFF representations of the image.

3. If this method can't find a EPS or TIFF representation in any segment, it searches
for name.eps and name.tiff files in the directory containing the application
executable (the file package). This allows you to keep image data in separate files
during the development phase (so that you won't have to relink every time the
image changes), then later insert the data in a segment of the finished executable.

If a section or file contains data for more than one image, a separate representation is
created for each one. If an image representation can't be found for name, no object is
created and nil is returned.

The preferred way to name an EPS or TIFF image is to ask for a name without the
".eps" or ". tiff' extension, but to include the extension on the section name or file name.

This method treats all images found in the _ICON segment as application or document
icons, since the point of putting an image in that segment rather than in _TIFF or
_EPS is to advertise it to the Workspace Manager. The Workspace Manager requires
icons to be no more than 48 pixels wide by 48 pixels high. Therefore, an NXlmage
created from an _ICON section has its size set to 48.0 by 48.0 and is made scalable.

See also: - setName:, - name

INSTANCE METHODS

background Color

- (NXColor)backgroundColor

Returns the background color of the rectangle where the image is cached. If no
background color has been specified, NX_COLORCLEAR is returned, indicating a
totally transparent background.

The background color will be visible when the image is compo sited only if the image
doesn't completely cover all the pixels within the area specified for its size.

See also: - setBackgroundColor:

Application Kit Classes: NXlmage 2-391

bestRepresentation

- (NXImageRep *)bestRepresentation

Returns the image representation that best matches the display device with the deepest
frame buffer currently available to the Window Server.

See also: - representationList

composite:fromRect:toPoint:

- composite:(int)op
fromRect:(const NXRect *)aReet
toPoint:(const NXPoint *)aPoint

Composites the area enclosed by the aReet rectangle to the location specified by aPoint
in the current coordinate system. The op and aPoint arguments are the same as for
composite:toPoint:. The source rectangle is specified relative to a coordinate system
that has its origin at the lower left corner of the image, but is otherwise the same as the
base coordinate system.

This method doesn't check to be sure that the rectangle encloses only portions of the
image. Therefore, it can conceivably composite areas that don't properly belong to the
image, if the aReet rectangle happens to include them. If this turns out to be a problem,
you can prevent it from happening by having the NXImage cache its representations in
their own individual windows (with the setUnique: method). The window's clipping
path will prevent anything but the image from being composited.

Compositing part of an image is as efficient as compositing the whole image, but
printing just part of an image is not. When printing, it's necessary to draw the whole
image and rely on a clipping path to be sure that only the desired portion appears.

If successful in compositing (or printing) the image, this method returns self. If not, it
returns nil.

See also: - composite:toPoint:, - setUnique:

composite:toPoint:

- composite:(int)op toPoint:(const NXPoint *)aPoint

Composites the image to the location specified by aPoint. The first argument, op,
names the type of compo siting operation requested. It should be one of the following
constants:

NX_CLEAR
NX_COPY
NX_PLUSD
NX_PLUSL

2-392 Chapter 2: Class Specifications

NX_SOVER
NX_SIN
NX_SOUT
NX_SATOP

NX_DOVER
NX_DIN
NX_DOUT
NX_DATOP

aPoint is specified in the current coordinate system-the coordinate system of the
currently focused View-and designates where the lower left corner of the image will
appear. The image will have the orientation of the base coordinate system, regardless
of the destination coordinates.

The image is composited from its off-screen window cache. Since the cache isn't
created until the image representation is first used, this method may need to render the
image before compositing.

When printing, the compo siting methods do not composite, but attempt to render the
same image on the page that compo siting would render on the screen, choosing the best
available representation for the printer. The op argument is ignored.

If successful in compo siting (or printing) the image, this method returns self. If not, it
returns nil.

See also: - composite:fromRect:toPoint:, - dissolve:toPoint:

delegate

- delegate

Returns the delegate of the NXImage object, or nil if no delegate has been set.

See also: - setDelegate:

dissolve:fromRect:toPoint:

- dissolve:(float)delta
fromRect:(const NXRect *)aReet
toPoint:(const NXPoint *)aPoint

Composites the aReet portion of the image to the location specified by aPoint, just as
composite:fromRect:toPoint: does, but uses the dissolve operator rather than
composite. delta is a fraction between 0.0 and 1.0 that specifies how much ofthe
resulting composite will come from the NXImage.

When printing, this method is identical to composite:fromRect:toPoint:. The delta
argument is ignored.

If successful in compositing (or printing) the image, this method returns self. If not, it
returns nil.

See also: - dissolve:toPoint:, - composite:fromRect:toPoint:

Application Kit Classes: NXlmage 2-393

dissolve:toPoint:
- dissolve:(float)delta toPoint:(const NXPoint *)aPoint

Composites the image to the location specified by aPoint, just as composite:toPoint:
does, but uses the dissolve operator rather than composite. delta is a fraction between
0.0 and 1.0 that specifies how much of the resulting composite will come from the
NXlmage.

To slowly dissolve one image into another, this method (or
dissolve:fromRect:toPoint:) needs to be invoked repeatedly with an ever-increasing

. delta. Since delta refers to the fraction of the source image that's combined with the
original destination (not the destination image after some of the source has been
dissolved into it), the destination image should be replaced with the original destination
before each invocation. This is best done in a buffered window before the results of the
composite are flushed to the screen.

When printing, this method is identical to composite:toPoint:. The delta argument is
ignored.

If successful in compo siting (or printing) the image, this method returns self. If not, it
returns nil.

See also: - dissolve:fromRect:toPoint:, - composite:toPoint:

drawRepresentation:inRect:
- (BOOL)drawRepresentation:(NXlmageRep *)imageRep

inRect:(const NXRect *)rect

Fills the specified rectangle with the background color, then sends the imageRep a
drawln: message to draw itself inside the rectangle (if the NXlmage is scalable), or a
draw At: message to draw itself at the location of the rectangle (if the NXlmage is not
scalable). The rectangle is located in the current window and is specified in the current
coordinate system.

This method is not ordinarily used in program code; the NXlmage uses it to cache its
representations and to print them. By overriding it in a subclass, you can change how
representations appear in the cache, and thus how they'll appear when composited. For
example, you could scale or rotate the coordinate system, then send a message to super
to perform this version of the method.

This method passes through the return of the drawln: or drawAt: method, which
indicates whether or not the representation was successfully drawn. When NO is
returned, the NXlmage will ask another representation, if there is one, to draw the
image.

If the background color is fully transparent and the image is not being cached by the
NXlmage, the rectangle won't be filled before the representation draws.

See also: - drawln (NXlmageRep), - drawAt: (NXlmageRep)

2-394 Chapter 2: Class Specifications

finish Unarchiving

- finishUnarchiving

Registers the name of the newly unarchived receiver, if it has a name, and returns nil.
It also returns nil if the receiving NXlmage doesn't have a name. However, if the
receiver has a name that can't be registered because it's already in use, this method frees
the receiver and returns the existing NXlmage with that name, thus replacing the
unarchived object with one that's already in use.

finishUnarchiving messages are generated automatically (by NXReadObject()) after
the object has be unarchived (by read:) and initialized (by awake).

free

-free

Deallocates the NXlmage and all its representations. If the object had been assigned a
name, the name is removed from the class database.

getImage:rect:

- getlmage:(NXlmage **)the/mage rect:(NXRect *)theRect

Provides information about the receiving NXlmage object, if it's a subimage of another
NXlmage. The parent NXlmage is assigned to the variable referred to by the/mage,
and the rectangle where the receiver is located in that NXlmage is copied into the
structure referred to by theRect.

If the receiver is not a subimage of another NXImage object (if it wasn't initialized by
initFromImage:rect:), the variable referred to by the/mage is set to nil and the
rectangle is not modified.

Returns self.

See also: - initFromImage:rect:

getSize:

- getSize:(NXSize *)theSize

Copies the size of the image into the structure specified by theSize. !fno size has been
set, all values in the structure will be set to 0.0. Returns self.

See also: - setSize:

Application Kit Classes: NXimage 2-395

init

- init

Initializes the receiver, a newly allocated NXImage instance, but does not set the size
of the image. The size must be set, and at least one image representation provided,
before the NXImage object can be used. The size can be set either through a setSize:
message or by providing an image from data (EPS or TIFF) that specifies a size.

See also: - initSize:, - setSize:

initFromFile:

- initFromFile:(const char *)jilename

Initializes the receiver, a newly allocated NXImage instance, with the image specified
injilename, which can be a full or relative pathname. The file should contain EPS or
TIFF data for one or more versions of the image. An image representation will be
created and added to the NXImage for each image specified. The size of the NXlmage
is set from information found in the TIFF fields or the EPS bounding box comment.

After finishing the initialization, this method returns self. However, if the new instance
can't be initialized, it's freed and nil is returned.

This method invokes the useFromFile: method to findjilename and create
representations for the NXImage. It's equivalent to a combination of init and
useFromFile: .

See also: - useFromFile:, - initSize:

initFromlmage:rect:

- initFromImage:(NXlmage *)image rect:(const NXRect *)reef

Initializes the receiver, a newly allocated NXImage instance, so that it's a subimage for
the reef portion of another NXlmage object, image. The size of the new object is set
from the size of the reef rectangle. Returns self.

Once initialized, the new instance can't be altered and will remain dependent on the
original image. Changes made to the original will also change the subimage.

Subimages should be used only as a way of avoiding composite:fromRect:toPoint:
and dissolve:fromRect:toPoint: messages. They permit you to divide a large image
into sections and assign each section a name. The name can then be passed to those
Button and Cell methods that identify images by name rather than id.

See also: - getlmage:rect:, - initSize:

2-396 Chapter 2: Class Specifications

initFromSection:

- initFromSection:(const char *)name

Initializes the receiver, a newly allocated NXlmage instance, with the image specified
in the name section of the _BPS or _TIFF segment of the application executable. If
the section contains BPS or TIFF data for more than one version of the image, a
representation will be created and added to the NXlmage for each image specified. The
size of the NXlmage is set from information taken from the TIFF fields or the BPS
bounding box comment.

After finishing the initialization, this method returns self. However, if the new instance
can't be initialized, it's freed and nil is returned.

This method uses the useFromSection: method to find the name section and create
representations for the NXlmage. It's equivalent to a combination of init and
useFromFile: .

See also: - useFromSection:, - initSize:

initFromStream:
- initFromStream:(NXStream *)stream

Initializes the receiver, a newly allocated NXlmage instance, with the image or images
specified in the data read from stream, and returns self. If the receiver can't be
initialized for any reason, it's freed and nil is returned.

Since this method must store the data read from the stream or render the specified
image immediately, it's less preferred than initFromSection: or initFromFile:, which
can wait until the image is needed.

The stream should contain recognizable image data, either BPS or TIFF. It's read using
the loadFromStream: method, which will set the size of the NXlmage from
information found in the TIFF fields or the BPS bounding box comment. This method
is equivalent to a combination of init and loadFromStream:.

See also: -loadFromStream:, - initSize:

Application Kit Classes: NXlmage 2-397

initSize:

- initSize:(const NXSize *)aSize

Initializes the receiver, a newly allocated NXImage instance, to the size specified and
returns self. The size should be specified in units of the base coordinate system. It must
be set before the NXImage can be used.

This method is the designated initializer for the class (the method that incorporates the
initialization of classes higher in the hierarchy through a message to super). All other
init... methods defined in this class work through this method.

See also: - setSize:

isCacheDepthBounded

- (BOOL)isCacheDepthBounded

Returns YES if the depth ofthe off-screen windows where the NXImage's
representations are cached are bounded by the application's default depth limit, and NO
if the depth of the caches can exceed that limit. The default is YES.

See also: - setCacheDepthBounded:, + defaultDepthLimit (Window)

is Color MatchPreferred

Returns YES if, when selecting the representation it will use, the NXImage first looks
for one that matches the color capability of the rendering device (choosing a gray-scale
representation for a monochrome device and a color representation for a color device),
then if necessary narrows the selection by looking for one that matches the resolution
of the device. If the return is NO, the NXImage first looks for a representation that
matches the resolution of the device, then tries to match the representation to the color
capability ofthe device. The default is YES.

See also: - setColorMatchPreferred:

isDataRetained

- (BOOL)isDataRetained

Returns YES if the NXImage retains the data needed to render the image, and NO if it
doesn't. The default is NO. If the data is available in a section of the application
executable or in a file that won't be moved or deleted, or if responsibility for drawing
the image is delegated to another object with a custom method, there's no reason for the
NXImage to retain the data. However, if the NXImage reads image data from a stream,
you may want to have it keep the data itself.

See also: - setDataRetained:, -loadFromStream:

2-398 Chapter 2: Class Specifications

isEPSUsedOnResolutionMismatch

- (BOOL)isEPSUsedOnResolutionMismatch

Returns YES if an EPS representation of the image should be used whenever it's
impossible to match the resolution of the device to the resolution of another
representation of the image (a TIFF representation, for example). By default, this
method returns NO to indicate that EPS representations are not necessarily preferred.

See also: - setEPSUsedOnResolutionMismatch:

isFlipped

- (BOOL)isFlipped

Returns YES if a flipped coordinate system is used when drawing the image, and NO
if it isn't. The default is NO.

See also: - setFlipped:

isMatchedOnMultipleResolution

- (BOOL)isMatchedOnMultipleResolution

Returns YES if the resolution of the device and the resolution specified for the image
are considered to match if one is a multiple of the other, and NO if device and image
resolutions are considered to match only if they are exactly the same. The default is
YES.

See also: - setMatchedOnMultipleResolution:

isScalable

- (BOOL)isScalable

Returns YES if image representations are scaled to fit the size specified for the
NXlmage. If representations are not scalable, this method returns NO. The default is
NO.

Representations created from data that specifies a size (for example, the
"ImageLength" and "Image Width" fields of a TIFF representation or the bounding box
of an EPS representation) will have the size the data specifies, which may differ from
the size of the NXlmage.

See also: - setScalable:

Application Kit Classes: NXlmage 2-399

isUnique

- (BOOL)isUnique

Returns YES if each representation of the image is cached alone in an off-screen
window of its own, and NO if they can be cached in off-screen windows together with
other images. A return of NO doesn't mean that the windows are, in fact, shared, just
that they can be. The default is NO.

See also: - setUnique:

lastRepresentation

- (NXImageRep *)lastRepresentation

Returns the last representation that was specified for the image (the last one added with
methods like useCacheWithDepth:, loadFromStream:, and initFromStream:). If
the NXImage has no representations, this method returns nil.

See also: - representationList, - bestRepresentation

loadFromStream:

- (BOOL)loadFromStream:(NXStream *)stream

Creates an image representation from the data read from stream and adds it to the
receiving NXImage's list of representations. The data must be of a recognizable type,
either TIFF or EPS. If the size of the NXImage hasn't yet been set, it will be set from
information found in the TIFF fields or from the EPS bounding box comment. If the
stream contains data specifying more than one image, a separate representation is
created for each one.

If the NXImage object doesn't retain image data (isDataRetained returns NO), the
image will be rendered in an off-screen window and the representations will be of type
NXCachedImageRep. If the data is retained, the representations will be of type
NXBitmapImageRep or NXEPSImageRep, depending on the data.

If successful in creating at least one representation, this method returns YES. If not, it
returns NO.

See also: - initFromStream:

2-400 Chapter 2: Class Specifications

lockFocus

- (BOOL)lockFocus

Focuses on the best representation for the NXImage, by making the off-screen window
where the representation will be cached the current window and a coordinate system
specific to the area where the image will be drawn the current coordinate system. The
best representation is the one that best matches the deepest available frame buffer; it's
the same object returned by the bestRepresentation method.

If the NXImage has no representations, lockFocus creates one with the
useCacheWithDepth: method, specifying the best depth for the deepest frame buffer
currently in use. To add additional representations, useCacheWithDepth: messages
must be sent explicitly.

This method returns YES if it's successful in focusing on the representation, and NO if
not. A successfullockFocus message must be balanced by a subsequent unlockFocus
message to the same NXImage. These messages bracket the code that draws the image.

If lockFocus returns NO, it will not have altered the current graphics state and should
not be balanced by an unlockFocus message.

See also: -lockFocusOn:, -lockFocus (View), - unlockFocus,
- useCacheWithDepth:, - bestRepresentation

lockFocusOn:

- (BOOL)lockFocusOn:(NXImageRep *)imageRep

Focuses on the imageRep representation, by making the off-screen window where it
will be cached the current window and a coordinate system specific to the area where
the image will be drawn the current coordinate system.

This method returns YES if it's successful in focusing on the representation, and NO if
it's not. A successfullockFocusOn: message must be balanced by a subsequent
unlockFocus message to the same receiver. These messages bracket the code that
draws the image. The useCache WithDepth: method will add a representation
specifically for this purpose. For example:

[myNXlmage useCacheWithDepth:NX_TwoBitGrayDepth];

if ([myNXlmage lockFocusOn: [mylmage lastRepresentation]]) {
/* drawing code goes here */

[myNXlmage unlockFocus];

If lockFocusOn: returns NO, it will not have altered the current graphics state and
should not be balanced by an unlockFocus message.

See also: -lockFocus, -lockFocus (View), - unlockFocus, -lastRepresentation

Application Kit Classes: NXlmage 2-401

name
- (const char *)name

Returns the name assigned to the NXImage, or NULL if no name has been assigned.

See also: - setName:, + findImageNamed:

read:
- read:(NXTypedStream *)stream

Reads the NXImage and all its representations from the typed stream stream.

See also: - write:

recache
- recache

Invalidates the off-screen caches of all representations and frees them. The next time
any representation is composited, it will first be asked to redraw itself in the cache.
NXCachedImageReps are not destroyed by this method.

If an image is likely not to be used again, it's a good idea to free its caches, since that
will reduce that amount of memory consumed by your program and therefore improve
performance.

Returns self.

removeRepresentation:
- removeRepresentation:(NXImageRep *)imageRep

Frees the imageRep representation after removing it from the NXImage's list of
representations. Returns self.

See also: - representationList

representationList
- (List *)representationList

Returns the List object containing all the representations of the image. The List
belongs to the NXImage object, and there's no guarantee that the same List object will
be returned each time. Therefore, rather than saving the object that's returned, you
should ask for it each time you need it.

See also: - bestRepresentation, - lastRepresentation

2-402 Chapter 2: Class Specifications

setBackgroundColor:

- setBackgroundColor:(NXColor)aCo[or

Sets the background color of the image. The default is NX_COLORCLEAR,
indicating a totally transparent background. The background color will be visible only
for representations that don't touch all the pixels within the image when drawing.
Returns self.

See also: - backgroundColor

setCacheDepthBounded:

- setCacheDepthBounded:(BOOL)jlag

Determines whether the depth of the off-screen windows where the NXImage's
representations are cached should be limited by the application's default depth limit. If
jlag is NO, window depths will be determined by the specifications of the
representations, rather than by the current display devices. The default is YES. Returns
self.

See also: - isCacheDepthBounded, + defaultDepthLimit (Window)

setColor MatchPreferred:

- setColorMatchPreferred:(BOOL)jlag

Determines how the NXImage will select which representation to use. Ifjlag is YES,
it first tries to match the representation to the color capability of the rendering device
(choosing a color representation for a color device and a gray-scale representation for
a monochrome device), and then if necessary narrows the selection by trying to match
the resolution of the representation to the resolution of the device. Ifjlag is NO, the
NXImage first tries to match the representation to the resolution of the device, and then
tries to match it to the color capability of the device. The default is YES. Returns self.

See also: - is Color Match Preferred

setDataRetained:

- setDataRetained:(BOOL)jlag

Determines whether the NXImage retains the data needed to render the image. The
default is NO. If the data is available in a section of the application executable or in a
file that won't be moved or deleted, or if responsibility for drawing the image is
delegated to another object with a custom method, there's no reason for the NXImage
to retain the data. However, if the NXImage reads image data from a stream, you may
want to have it keep the data itself.

See also: - isDataRetained

Application Kit Classes: NXlmage 2-403

;;:;;; ,AAi • ;

setDelegate:

- setDelegate:anObject

Makes anObject the delegate of the NXImage. Returns self.

See also: - delegate

setEPSUsedOnResolutionMismatch:

- setEPSUsedOnResolutionMismatch:(BOOL)jlag

Determines whether EPS representations will be preferred when there are no
representations that match the resolution of the device. The default is NO. Returns
self.

See also: - isEPSUsedOnResolutionMismatch

setFlipped:

- setFlipped:(BOOL)jlag

Determines whether the polarity of the y-axis is inverted when drawing an image. If
flag is YES, the image will have its coordinate origin in the upper left comer and the
positive y-axis will extend downward. This method affects only the coordinate system
used to draw the image, whether through a method assigned with the
useDrawMethod:object: method or directly by focusing on a representation. It
doesn't affect the coordinate system for specifying portions of the image for methods
like composite:fromRect:toPoint: or initFromImage:rect:.

See also: - isFlipped

setMatchedOnMultipleResolution:

- setMatchedOnMultipleResolution:(BOOL)jlag

Determines whether image representations with resolutions that are exact multiples of
the resolution of the device are considered to match the device. The default is NO.
Returns self.

See also: - isMatchedOnMultipleResolution

2-404 Chapter 2: Class Specifications

setName:

- (BOOL)setName:(const char *)string

Sets string to be the name of the NXImage object and registers it under that name. If
the object already has a name, that name is discarded. If string is already the name of
another object or if the receiving NXImage is one of the system bitmaps provided by
the Application Kit, the assignment fails.

If successful in naming or renaming the receiver, this method returns YES. Otherwise
it returns NO.

See also: + findlmageNamed:, - name

setScalable:

- setScalable:(BOOL)flag

Determines whether representations with sizes that differ from the size of the NXImage
will be scaled to fit. The default is NO.

Generally, representations that are created through NXImage methods (such as
useCacheWithDepth: or initFromSection:) have the same size as the NXImage.
However, a representation that's added with the useRepresentation: method may have
a different size, and representations created from data that specifies a size (for example,
the "ImageLength" and "Image Width" fields of a TIFF representation or the bounding
box of an EPS representation) will have the size specified.

Returns self.

See also: - isScalable

setSize:

- setSize:(const NXSize *)aSize

Sets the width and height of the image. The size referred to by aSize should be in units
of the base coordinate system. The size of an NXImage must be set before it can be
used. Returns self.

The size of an NXImage can be changed after it has been used, but changing it
invalidates all its caches and frees them. When the image is next composited, the
selected representation must draw itself in an off-screen window to recreate the cache.

See also: - getSize:, - initSize:

Application Kit Classes: NXlmage 2-405

setUnique:

- setUnique:(BOOL)jlag

Determines whether each image representation will be cached in its own off-screen
window or in a window shared with other images. Hjlag is YES, each representation
is guaranteed to be in a separate window. Ifjlag is NO, a representation can be cached
together with other images, though in practice it might not be. The default is NO.

If an NXImage is to be resized frequently, it's more efficient to cache its representations
in unique windows.

This method does not invalidate any existing caches. Returns self.

See also: - isUnique

unlockFocus

- unlockFocus

Balances a previous lockFocus or lockFocusOn: message. All successfullockFocus
and lockFocusOn: messages (those that return YES) must be followed by a subsequent
unlockFocus message. Those that return NO should never be followed by
unlockFocus.

Returns self.

See also: - lockFocus, - lockFocusOn:

useCache WithDepth:

- (BOOL)useCache WithDepth: (NXWindowDepth)depth

Creates a representation of type NXCachedImageRep and adds it to the NXImage' s list
of representations. Initially, the representation is nothing more than an empty area
equal to the size of the image in an off-screen window with the specified depth. You
must focus on the representation and draw the image. The following code shows how
an NXImage might be created with the same appearance as a View.

id mylmage;

NXRect theRect;

[myView getFrame:&theRectJ;
mylmage = [[NXlmage allocJ initSize:&theRect.sizeJ;

[mylmage useCacheWithDepth:NX_DefaultDepthJ

if ([mylmage lockFocusJ) {

[myView drawSelf: (NXRect *)0 :OJ;

[mylmage unlockFocusJ;

2-406 Chapter 2: Class Specifications

depth should be one of the following enumerated values, defined in the header file
appkit/graphics.h:

NX_DefaultDepth
NX_ TwoBitGrayDepth
NX_EightBitGrayDepth
NX_ TwelveBitRGBDepth
NX_ TwentyFourBitRGBDepth

If successful in adding the representation, this method returns YES. If the size of the
image has not been set or the cache can't be created for any other reason, it returns NO.

useDrawMethod:inObject:

- (BOOL)useDrawMethod:(SEL)aSelector inObject:anObject

Creates a representation of type NXCustomImageRep and adds it to the NXImage
object's list of representations. aSelector should name a method that can draw the
image in the NXImage object's coordinate system, and that takes a single argument, the
id of the NXCustomImageRep. anObject should be the id of an object that can perform
the method.

This type of representation allows you to delegate responsibility for creating an image
to another object within the program.

This method returns YES if it's successful in creating the representation, and NO if it's
not.

useFromFile:

- (BOOL)useFromFile:(const char *)filename

Creates an image representation from the data found infilename, which can be a full or
relative path, and adds the representation to the receiving NXImage. The data must be
of a recognizable type, either EPS or TIFF. If the size of the NXImage has not yet been
set, it will be set from information found in the TIFF fields or from the EPS bounding
box comment.

If a representation can be added to the NXImage, this method returns YES. If not, it
returns NO. In the current implementation, it may return YES even if the filename file
doesn't exist or it contains bad data.

Iffilename contains data specifying more than one image, a separate representation is
added for each one.

See also: - initFromFile:

Application Kit Classes: NXlmage 2-407

useFromSection:
- (BOOL)useFromSection:(const char *)name

Creates an image representation from the data found in the name section of the _EPS
or _TIFF segment of the application executable, and adds the representation to the
NXlmage. The data must be of a recognizable type, either EPS or TIFF. If the size of
the NXlmage has not yet been set, it will be set from information found in the TIFF
fields or from the EPS bounding box comment.

If name includes a ".tiff" extension, this method looks in the _TIFF segment for a
TIFF representation of the image; if name includes a ".eps" extension, it looks in the
_EPS segment for an EPS representation. If name has neither extension, both
segments are searched after adding the appropriate extension. Failing to find a section
that matches the extended name, both segments are searched again for a section that
matches name alone, without the extensions.

If no section is found that matches name, with or without the extension, this method
searches for name.tiff and name.eps files in the directory where the application
executable resides.

If sections that match the name are found in both the _EPS and _TIFF segments (or
both ".eps" and ".tiff" files are found), this method creates both EPS and TIFF
representations for the image. If the data in a section or file specifies more than one
image, a separate representation is created for each one.

This method returns YES if a representation can be added to the NXlmage, and NO if
not. In the current implementation, it may return YES even if the section matching
name contains bad data or no such section can be found.

See also: - initFromSection:

useRepresentation:

- (BOOL)useRepresentation:(NXlmageRep *)imageRep

Adds imageRep to the receiving NXlmage object's list of representations. If successful
in adding the representation, this method returns YES. If not, it returns NO.

Any representation that's added by this method will belong to the NXlmage and will
be freed when the NXlmage is freed. Representations can't be shared among
NXlmages.

See also: - representationList

2-408 Chapter 2: Class Specifications

write:
- write:(NXTypedStream *)stream

Writes the NXImage and all its representations to the typed stream stream.

See also: - read:

writeTIFF:
- writeTIFF:(NXStream *)stream

Writes TIFF data for the representation that best matches the display device with the
deepest frame buffer to stream. This method is a shorthand for
writeTIFF:allRepresentations: with aflag of NO. Returns self.

writeTIFF:allRepresentations:
- writeTIFF:(NXStream *)stream

allRepresentations:(BOOL)flag

Writes TIFF data for the representations to stream. Ifflag is YES, data will be written
for each of the representations. Ifflag is NO, data will be written only for the
representation that best matches the display device with the deepest frame buffer.
Returns self.

If stream is positioned anywhere but at the beginning of the stream, this method will
append the representation(s) it writes to the TIFF data it assumes is already in the
stream. To do this, it must be able to read the TIFF header from the stream. Therefore,
the stream must be opened for NX_READWRITE permission.

METHOD IMPLEMENTED BY THE DELEGATE

imageDidNotDraw:inRect:
- (NXImage *)imageDidNotDraw:sender inRect:(NXRect *)aRect

Implemented by the delegate to respond to a message sent by the sender NXImage
when the sender was unable, for whatever reason, to composite its image. The delegate
can return another NXImage to draw in the sender's place. If not, it should return nil
to indicate that sender should give up the attempt at drawing the image.

Application Kit Classes: NXlmage 2-409

2-410

NXlmageRep

INHERITS FROM Object

DECLARED IN appkit/NXImageRep.h

CLASS DESCRIPTION

NXImageRep is an abstract superclass for objects that know how to render an image.
Each of its subclasses defines an object that can draw an image from a particular kind
of source data. There are four subclasses defined in the Application Kit:

Subclass

NXBitmapImageRep
NXEPSImageRep
NXCustomImageRep
NXCachedImageRep

Source Data

Tag Image File Format (TIFF) and other bitmap data
Encapsulated PostScript code (EPS)
A delegated method that can draw the image
A rendered image, usually in an off-screen window

An NXImageRep can be used simply to render an image, but is more typically used
indirectly, through an NXImage object. An NXImage manages a group of
representations, choosing the best one for the current output device.

INSTANCE VARIABLES

Inherited/rom Object Class isa;

Declared in NXImageRep NXSize size;

size The size of the image in screen pixels.

METHOD TYPES

Setting the size of the image - setSize:
- getSize:

Specifying information about the representation
- setNumColors:
-numColors
- setAlpha:
- hasAlpha
- setBitsPerSample:
- bitsPerSample
- setPixelsHigh:
- pixelsHigh
- setPixelsWide:
- pixels Wide

Application Kit Classes: NXlmageRep 2-411

Drawing the image -draw
- drawAt:
-drawIn:

Archiving -read:
- write:

INSTANCE METHODS

bitsPerSample
- (int)bitsPerSample

Returns the number of bits used to specify a single pixel in each component of the data.
If the image isn't specified by pixel values, but is device-independent, the return value
will be NX_MATCHESDEVICE.

See also: - setBitsPerSample:

draw
- (BOOL)draw

Implemented by subclasses to draw the image at location (0.0, 0.0) in the current
coordinate system. Subclass methods return YES if the image is successfully drawn,
and NO if it isn't. This version of the method simply returns YES.

See also: - drawAt:, - drawln:

drawAt:
- (BOOL)drawAt:(const NXPoint *)point

Translates the current coordinate system to the location specified by point and has the
receiver's draw method draw the image at that point.

This method returns NO without translating or drawing if the size of the image has not
been set. Otherwise, it passes through the return of the draw method, which indicates
whether the image is successfully drawn.

The coordinate system is not restored after it has been translated.

See also: - draw, - drawln:

2-412 Chapter 2: Class Specifications

drawln:

- (BOOL)drawln:(const NXRect *)rect

Draws the image so that it fits inside the rectangle referred to by recto The current
coordinate system is first translated to the point specified in the rectangle and is then
scaled so the image will fit within the rectangle. The receiver's draw method is then
invoked to draw the image.

This method returns NO without translating, scaling, or drawing if the size of the image
has not been set. Otherwise it passes through the return of the draw method, which
indicates whether the image is successfully drawn.

The previous coordinate system is not restored after it has been altered.

See also: - draw, - draw At:

getSize:

- getSize:(NXSize *)theSize

Copies the size of the image to the structure referred to by theSize, and returns self. The
size is provided in units of the base coordinate system.

See also: - setSize:

has Alpha

- (BOOL)hasAlpha

Returns YES if the receiver has been informed that the image has a coverage
component (alpha), and NO if not.

See also: - setAlpha:

numColors

- (int)numColors

Returns the number of color components in the image. For example, the return value
will be 4 for images specified by cyan, magenta, yellow, and black (CMYK) or any
other four components. It will be 3 for images specified by red, green, and blue (RGB),
hue, saturation, and brightness (HSB), or any other three components. And it will be 1
for images that use only a gray scale. NX_MATCHESDEVICE is a meaningful return
value for representations that vary their drawing depending on the output device.

See also: - setNumColors:

Application Kit Classes: NXlmageRep 2-413

pixelsHigb

- (int)pixelsHigb

Returns the height of the image in pixels, as specified in the image data. If the image
isn't specified by pixel values, but is device-independent, the return value will be
NX_MATCHESDEVICE.

See also: - setPixelsHigb:

pixelsWide

- (int)pixelsWide

Returns the width of the image in pixels, as specified in the image data. If the image
isn't specified by pixel values, but is device-independent, the return value will be
NX_MATCHESDEVICE.

See also: - setPixelsWide:

read:

- read:(NXJYpedStream *)stream

Reads the NXImageRep from the typed stream stream.

See also: - write:

setAlpba:

- setAlpba:(BOOL)jlag

Informs the NXImageRep whether the image has an alpha component. jlag should be
YES if it does, and NO if it doesn't. Returns self.

See also: - basAlpba

setBitsPerSample:

- setBitsPerSample:(int)anlnt

Informs the NXImageRep that the image has anlnt bits of data for each pixel in each
component. If the image isn't specified by pixel values, but is device-independent,
anlnt should be NX_MATCHESDEVICE. Returns self.

See also: - bitsPerSample

2-414 Chapter 2: Class Specifications

setNumColors:

- setNumColors:(int)anInt

Informs the NXImageRep that the image has anInt number of color components. For
color images with cyan, magenta, yellow, and black (CMYK) components, anInt
should be 4, for color images with red, green, and blue (RGB) components, it should
be 3, and for images that use only a gray scale, it should be 1. The alpha component is
not included. NX_MATCHESDEVICE could be a meaningful value, if the
representation varies its drawing depending on the output device. Returns self.

See also: - numColors

setPixelsHigh:

- setPixelsHigh:(int)anInt

Informs the NXImageRep that the data specifies an image anI nt pixels high. If the
image isn't specified by pixel values, but is device-independent, anInt should be
NX_MATCHESDEVICE. Returns self.

See also: - pixelsHigh

setPixels Wide:

- setPixelsWide:(int)anInt

Informs the NXImageRep that the data specifies an image anInt pixels wide. If the
image isn't specified by pixel values, but is device-independent, anInt should be
NX_MATCHESDEVICE. Returns self.

See also: - pixels Wide

setSize:

- setSize:(const NXSize *)aSize

Sets the size of the image in units of the base coordinate system, and returns self. This
determines the size of the image when it's rendered; it's not necessarily the same as the
width and height of the image in pixels as specified in the image data.

See also: - getSize:

write:

- write:(NXTypedStream *)stream

Writes the NXImageRep to the typed stream stream.

See also: - read:

Application Kit Classes: NXlmageRep 2-415

CONSTANTS AND DEFINED TYPES

/*
* NX_MATCHESDEVICE indicates a value that's variable, depending
* on the output device. It can be passed to the setNumColors:,
* setBitsPerSample:, setPixelsWide:, and setPixelsHigh: methods,
* and is returned by their counterparts.
*/

#define NX MATCHESDEVICE (0)

/*

* Names of segments

*/
#define NX EPSSEGMENT EPS"

#define NX TIFF SEGMENT " TIFF"

#define NX ICON SEGMENT " ICON"

2-416 Chapter 2: Class Specifications

NXJournaler

INHERITS FROM Object

DECLARED IN appkit/NXJ ournaler.h

CLASS DESCRIPTION

The NXJournaler class defines an object that lets an application record and play back
events and sounds, a process calledjournaling. By using an NXJournaler object, an
application can journal events flowing to one or more applications-including itself.
Optionally, sound can be recorded synchronously with the events. Later, the recorded
events and sound can be played back, reenacting the activities as they occurred during
the recording. With joumaling, you can implement event-based macros or complete
self-running demonstrations for your application. See the ShowAndTell application in
INextDeveloperlDemos for an example of journaling.

Journaling is initiated by creating a new NXJournaler object and sending it a
setEventStatus:soundStatus:eventStream:soundfile: message. The status
arguments may have the values NX_STOPPED, NX_PLAYING, and
NX_RECORDING. The event stream argument is a stream to record to or play back
from. If you're recording, any data in the stream will be overwritten. It's not currently
possible to add to the end of an existing event stream. The sound file argument is the
name of a sound file to record to or play back from.

When recording, by default all events going to any application are captured.
Sometimes, you may not want certain applications to be recorded. For example, you
might want to prevent the application that's recording the journal from being recorded.
There are two ways to control this: with the defaults system and by sending a
setJournalable: message to the Application object. Of the two, the defaults system is
the more general.

To use the defaults system to control journaling, add this code to the initialize method
of the object that will be controlling the journaling:

+ initialize

static NXDefaultsVector myDefaults
{"NXAllowJournaling", "NO"},
{NULL} } ;

NXRegisterDefaults([NXApp appNamej, myDefaults);

return self;

This will prevent the application that contains the object from being journaled unless a
user overrides the default for that application in the user's default database.

Application Kit Classes: NXJournaler 2-417

Users can also disallow journaling of any given application by adding an entry to their
defaults database for that application. This would be done by entering the following
command line in a Terminal window:

dwrite applicationName NXAllowJournaling NO

A less common way of allowing or disallowing journaling in an application is to send
a setJournalable: message to the Application object. This allows more precise
runtime control over journaling in that application.

Event recording may be aborted by clicking the right mouse button while holding down
the Alternate key. (Note: For this to work, you must have the right mouse button
enabled in the Preferences application.) Event playback can be aborted by typine; ;]
character with any key on the keyboard.

INSTANCE VARIABLES

Inherited/rom Object Class

Declared in NXJournaler (none)

METHOD TYPES

Initializing and freeing an NXJournaler

Controlling journaling

Identifying associated objects

2-418 Chapter 2: Class Specifications

- init
- free

- setEventStatus:
soundStatus:
eventStream:
soundfile:

- getEventStatus:
soundStatus:
eventStream:
soundfile:

- setRecordDevice:
- recordDevice

- speaker
-listener
- setDelegate:
- delegate

is a;

INSTANCE METHODS

delegate

- delegate

Returns the NXJournaler's delegate.

See also: - setDelegate:

free

- free

Frees the NXJournaler. Send this message to an NXJournaler after you're completely
done with it.

getEventStatus:soundStatus:eventStream:soundfile:

init

- getEventStatus:(int *)eventStatusPtr
soundStatus:(int *)soundStatusPtr
eventStream:(NXStream **) streamPtr
soundfile: (char **)soundfilePtr

Provides status information about the NXJournaler. Values returned at eventStatusPtr
and soundStatusPtr can be NX_PLAYING, NX_RECORDING, or NX_STOPPED.
streamPtr is the address of a pointer to the event stream. soundfilePtr is the address of
a pointer to the name of the sound file. Any of the arguments may be NULL if you
don't want that piece of information. Returns self.

See also: - setEventStatus:soundStatus:eventStream:soundfile:

- init

Initializes a newly allocated NXJournaler object. The delegate of the new object is nil.
This is the designated initializer for an NXJoumaler object. Returns self.

listener

-listener

Returns the listener used by the NXJournaler to communicate with other applications.

See also: - speaker

Application Kit Classes: NXlournaler 2-419

recordDevice

- (int)recordDevice

Returns whether sound is recorded from the CODEC microphone or from the DSP. The
return value is either NX_CODEC or NX_DSP.

See also: - setRecordDevice:

setDelegate:

- setDelegate:anObject

Sets the delegate used by the NXJournaler. The delegate is sent the method
journalerDidEnd: when either playing or recording the journal finishes. If the journal
was aborted, the delegate will first receive the message journalerDidUser Abort:.
Returns self.

See also: - delegate

setEventStatus:soundStatus:eventStream:soundfile:

- setEventStatus:(int)eventStatus
soundStatus:(int)soundStatus
eventStream:(NXStream *)stream
soundfile:(const char *)soundfile

Controls the recording and playback of events and sounds. This is the main control
point of the NXJournaler. The arguments eventStatus and soundStatus may be
independently set to NX_STOPPED, NX_PLAYING, NX_RECORDING. By setting
eventStatus to NX_RECORDING and soundStatus to NX_STOPPED, it's possible to
record events without the sound. By setting eventStatus to NX_PLAYING and
soundStatus to NX_RECORDING, it's possible to dub new sound over an existing
event track.

The stream argument is the stream to record events to or playback events from. When
recording, any preexisting data in the stream will be overwritten. It's not currently
possible to record onto the end of an existing event stream.

The sound file argument is the name of the file to record sound to or playback sound
from.

See also: - getEventStatus:soundStatus:eventStream:soundfile:

2-420 Chapter 2: Class Specifications

setRecordDevice:

- setRecordDevice:(int)device

Sets whether sound is recorded from the CODEC microphone (the default device) or
from the DSP. The constants NX_CODEC and NX_DSP can be used to specify the
device.

See also: - recordDevice

speaker

- speaker

Returns the speaker used by the NXJ ournaler to communicate with the other
applications.

See also: - listener

METHODS IMPLEMENTED BY THE DELEGATE

j ournaler DidEnd:

- journalerDidEnd:journaler

Responds to a message informing the delegate that recording or playback of the journal
is finished or has been aborted.

See also: - journalerDidUserAbort:

journalerDidUser Abort:

- journalerDidUser Abort:journaler

Responds to a message informing the delegate that the user has aborted the recording
or playback session. A journalerDidUser Abort: message is sent when the
NXJournaler in the controlling application receives notice from one of the controlled
applications that the user has generated an abort event during recording or playback.
The delegate receives this message just before the NXJournaler stops the recording or
playback.

See also: - journalerDidEnd:

Application Kit Classes: NXJournaler 2-421

CONSTANTS AND DEFINED TYPES

/* NX~JOURNALEVENT subtypes */

#define NX WINDRAGGED 0

#define NX MOUSELOCATION 1

#define NX LASTJRNEVENT 2

/* Window encodings in .evt file */

#define NX KEYWINDOW (-1)

#define NX MAINWINDOW (-2)
#define NX MAINMENU (-3)

#define NX MOUSEDOWNWINDOW (-4)

#define NX APPICONWINDOW (-5)

#define NX UNKNOWNWINDOW (-6)

/* Values for eventStatus and soundStatus */

#define NX STOPPED (0)

#define NX PLAYING (1)

#define NX RECORDING (2)

/* Values for recordDevice */

#define NX CODEC 0

#define NX DSP 1

#define NX JOURNALREQUEST "NXJournalerRequest"

typedef struct {

int
unsigned int

unsigned int

unsigned int

unsigned int

}NXJournalHeader;

2-422 Chapter 2: Class Specifications

version;
offsetToAppNames;

lastEventTime;

reservedl;

reserved2;

NXSplitView

INHERITS FROM View: Responder: Object

DECLARED IN appkit/NXSplit View.h

CLASS DESCRIPTION

The NXSplitView class defines an object that lets several Views share a region within
a window. The NXSplitView resizes its subviews so that each subview is the same
width as the NXSplitView, and the total ofthe subviews' heights is equal to the height
of the NXSplitView. The NXSplitView positions its subviews so that the first subview
is at the top of the NXSplitView, and each successive subview is positioned below.
The user can set the height of two subviews by moving a horizontal bar called the
divider, which makes one subview smaller and the other larger.

To add a View to an NXSplitView, you use the addSubview: View method. When the
NXSplitView is displayed (as a result of a sending a display message, or because it was
resized), it checks to see if its subviews are properly tiled. If not, it attempts to invoke
the splitView:resizeSubviews: delegate method. If the delegate doesn't respond to
this message, the adjustSubviews method is invoked to yield the default tiling
behavior. If you want to set the height of a single subview to a specific value, you can
simply set the height of its frame rectangle to that value. Remember, however, that the
sum of the heights of the subviews plus the sum of the heights of the dividers must
equal the frame height of the NXSplitView; otherwise, the NXSplitView will retile
(and possibly resize) all its subviews. You can get the height of a divider with the
dividerHeight method.

When a mouse event occurs in an NXSplitView, the NXSplitView determines if the
event occurred in one of the dividers. If so, the NXSplitView determines the limits for
the divider's travel, allows the delegate to limit the travel, and tracks the mouse to allow
the user to drag the divider within the previously set limits. If the divider gets
repositioned, the NXSplitView resizes the two affected subviews, informs the delegate
that subviews were. resized, and displays the affected Views and divider.

INSTANCE VARIABLES

Inherited from Object Class isa;

Inherited from Responder id nextResponder;

Inheritedfrom View NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;
struct _vFlags vFlags;

Application Kit Classes: NXSplitView 2-423

Declared in NXSplitView

delegate

METHOD TYPES

Initializing a new NXSplitView

Handling Events

Managing component Views

Assigning a delegate

INSTANCE METHODS

acceptsFirstMouse

- (BOOL) acceptsFirstMouse

id delegate;

The object that receives notification messages
from the NXSplitView.

- initFrame:

- mouseDown:
- acceptsFirstMouse

- adjustSubviews
- resizeSubviews:
- dividerHeight
- drawS elf: :
- drawDivider:
- setAutoresizeSubviews:

- delegate
- setDelegate:

Overrides the View method to allow the NXSplitView to respond to the mouse event
that made its window the key window. Returns YES.

See also: - acceptsFirstMouse (View)

adjustSubviews

- adjustSubviews

Adjusts the heights of the NXSplitView's subviews so that the total of the subviews'
heights fill the NXSplitView. The subviews are resized proportionally; the size of a
subview relative to the other subviews doesn't change. This method is invoked if the
NXSplitView's delegate doesn't respond to a splitView:resizeSubviews: message.
Returns self.

See also: - setDelegate:, - splitView:resizeSubviews: (delegate),
- setFrame: (View)

2-424 Chapter 2: Class Specifications

delegate

- delegate

Returns the NXSplitView's delegate.

See also: - setDelegate:

divider Height

- (NXCoord)dividerHeight

Returns the height of the divider. You can override this method to change the divider's
height, if necessary; the value that this method returns is used as the divider's height.

See also: - drawDivider:

draw Divider:

- drawDivider:(const NXRect *)aReet

Draws a divider between two of the NXSplitView's subviews. aReet describes the
entire divider rectangle in the NXSplitView's coordinates, which are flipped. The
default implementation simply composites an image to the center of aReet; if you
override this method and use a different icon to identify the divider, you may want to
change the height of the divider. Returns self.

See also: - dividerHeight, - drawSelf::, + findImageNamed: (NXImage),
- composite:toPoint: (NXImage)

drawSelf::

- drawSelf:(const NXRect *) reets :(int)reetCount

Draws the NXSplitView. This method first checks all the NXSplitView's subviews to
ensure that they are positioned properly: Each subview should be the width of the
NXSplitView and butted against the left edge of its frame rectangle. Each subview
should also be butted against the divider for the previous subview. If the subviews
aren't positioned properly, this method invokes resizeSubviews: to reposition and
resize the subviews. This method then fills the NXSplitView's background area and
invokes the drawDivider: method one or more times to draw all the required dividers.
This method is invoked by the View methods for display; you shouldn't invoke this
method directly. Returns self.

See also: - drawDivider:, - resizeSubviews:, - display: (View)

Application Kit Classes: NXSplitView 2-425

initFrame:

- initFrame:(const NXRect *)frameRect

Initializes the NXSplitView, which must be a newly allocated NXSplitView instance.
The NXSplitView 's frame rectangle is made equivalent to that pointed to by frameRect.
IfframeRect is NULL the default frame containing all zeros is unaltered. The
NXSplitView's coordinate system is flipped so that its origin is at its upper left comer,
and a flag is set so the NXSplitView automatically resizes its subviews when it's
resized. This method is the designated initializer for the NXSplitView class. Returns
self.

See also: - setAutoresizeSubviews: (View)

mouseDown:

- mouseDown:(NXEvent *)theEvent

Overrides the Responder method so that the user can resize the NXSplitView's
subviews. If the mouse-down event occurs in one of the NXSplitView's dividers, the
NXSplitView determines the limits within which the divider can be dragged. It then
gives the delegate the opportunity to modify the divider's minimum and maximum
limits. This method then tracks the mouse to allow the user to resize the subviews
within the previously set limits. It then resizes the appropriate subviews, informs the
delegate that the subviews were resized, and displays the appropriate area of the
NXSplitView and its subviews. Returns self.

See also: - splitView:getMinY:maxY:ofSubviewAt: (delegate),
- splitViewDidResizeSubviews: (delegate), - setFrame: (View)

resizeSubviews:

- resizeSubviews:(const NXSize *)oldSize

Ensures that the NXSplitView's subviews are properly sized to fill the NXSplitView. If
the delegate implements the splitView:resizeSubviews: method, that method is
invoked to resize the subviews; otherwise, the adjustSubviews method is invoked to
resize the subviews. In either case, this method then informs the delegate that the
subviews were resized. oldSize is the previous bounds rectangle size. Returns self.

See also: - splitView:resizeSubviews: (delegate), - adjustSubviews,
- splitViewDidResizeSubviews: (delegate), - resizeSubviews: (View)

setAutoresizeSubviews:

- setAutoresizeSubviews:(BOOL)jlag

Overrides View's setAutoresizeSubviews: method to ensure that automatic resizing of
subviews will not be disabled. You should never invoke this method. Returns self.

2-426 Chapter 2: Class Specifications

setDelegate:

- setDelegate:anObject

Makes anObject the NXSplitView's delegate. The notification messages that the
delegate can expect to receive are listed at the end of the NXSplitView class
specifications. The delegate doesn't need to implement all the delegate methods.
Returns self.

See also: - delegate

METHODS IMPLEMENTED BY THE DELEGATE

split View:getMin Y :max Y :ofSubview At:

- splitView:sender
getMinY:(NXCoord *)minY
maxY:(NXCoord *)maxY
ofSubview At: (int)offset

Allows the delegate to constrain the y coordinate limits of a divider when the user drags
the mouse. This method is invoked before the NXSplitView begins tracking the mouse
to position a divider. When this method is invoked, the limits have already been set and
are stored in minY (the topmost limit) and maxY (the bottommost limit). You may
further constrain the limits by setting the variables indicated by minY and maxY, but you
cannot extend the divider limits. minY and maxY are specified in the NXSplitView's
flipped coordinate system. The divider to be repositioned is indicated by offset; the
divider between the first two subviews is indicated by an offset of zero.

See also: - mouseDown:

split View:resizeSubviews:

- splitView:sender
resizeSubviews:(const NXSize *)oldSize

Allows the delegate to specify custom sizing behavior for the subviews of the
NXSplitView. If the delegate implements this method, splitView:resizeSubviews: is
invoked after the NXSplitView is resized; otherwise, adjustSubviews is invoked to
retile the subviews. The old size of the NXSplitView is indicated by oldSize; the
subviews should be resized to fill the NXSplitView's new frame rectangle size. You
may find it convenient to use NX ADDRESSO to get the address of the array of the
ids of the subviews in order to step through the subview list.

See also: - adjustSubviews, - divider Height, - setFrame: (View),
NX _ ADDRESSO

Application Kit Classes: NXSplitView 2-427

split ViewDidResizeSubviews:
- splitViewDidResizeSubviews:sender

Infonns the delegate that the sizes of some or all of the NXSplitView's subviews were
changed. This method is invoked when the NXSplitView resizes all its subviews
because its frame rectangle changed, and also after the NXSplitView resizes two
subviews in response to the repositioning of a divider.

See also: - resizeSubviews:, - mouseDown:

2-428 Chapter 2: Class Specifications

Object Methods

INHERITS FROM none (Object is the root class.)

DECLARED IN appkit/ Application.h

CLASS DESCRIPTION

The methods described here are declared in the Application Kit as additions to the
Object class. However, the Object class itself is a "common class," not part of the Kit.
For a description of the class and the other methods it defines, see "Object" in the
"Common Classes" section above.

METHOD TYPES

Sending messages determined at run time
- perform:with:afterDelay:canceIPrevious:

Saying whether to run the Print panel
- shouldRunPrintPanel:

Services menu support - readSelectionFromPasteboard:
- writeSelectionToPasteboard:types:

INSTANCE METHODS

perform:with:afterDelay:canceIPrevious:

- perform:(SEL)aSelector
with:anObject
after Delay:(int)ms
canceIPrevious:(BOOL)flag

Registers a timed entry to send an aSelector message to the receiver after a delay of at
least ms milliseconds, and returns self. The aSelector method should not have a
significant return value and should take a single argument of type id; anObject will be
the argument passed in the message. Since timed entries are checked only when the
application goes to get another event, program activity could delay the aSelector
message well beyond ms milliseconds.

Ifflag is YES and another perform:with:afterDelay:canceIPrevious: message is sent
to the same receiver to have it perform the same aSelector method, the first request to
perform the aSelector method is canceled. Thus successive
perform:with:afterDelay:canceIPrevious: messages can repeatedly postpone the
aSelector message.

Application Kit Classes: Object Methods 2-429

Ifjlag is NO, each perform:with:afterDelay:canceIPrevious: message will cause
another delayed aSelector message to be sent.

This method permits you to register an action in response to a user event (such as a
click), but delay it in case subsequent events alter the environment in which the action
would be performed (for example, if the click turns out to be double-click). It can also
be used to delay a free message to an object until after the application has finished
responding to the current event, or to postpone a message that updates a display until
after a number of changes have accumulated.

See also: - perform:with: (Object)

readSelectionFromPasteboard:

- readSelectionFromPasteboard:pboard

Implemented by subclasses to replace the current selection with data read from the
Pasteboard object pboard. The data would have been placed in the pasteboard by
another application in response to a remote message from the Services menu. A
readSelectionFromPasteboard: message is sent to the same object that previously
received a writeSelectionToPasteboard:types: message.

There's no default readSelectionFromPasteboard: method. The Application Kit
declares a prototype for this method in the Object class, but doesn't implement it.

See also: - writeSelectionToPasteboard:types:

shouldRunPrintPanel:

#import <appkitNiew.h>
- (BOOL)shouldRunPrintPanel:aView

Implemented by subclasses to indicate whether the Print panel (or Fax panel) should be
run before printing (or faxing) a View or a Window.

Printing requests are initiated by sending a View or Window a message to perform one
of these two methods:

printPSCode: (View and Window)
smartPrintPSCode: (Window only)

Each method takes an id argument, which usually identifies the initiator of the print
request (the object that sent the message). A shouldRunPrintPanel: message is sent
back to that object, if the object can respond to the message. The aView argument
identifies the View being printed.

If shouldRunPrintPanel: returns YES, the Print panel is run before printing begins.
If it returns NO, the panel is not run, and the previous settings of the Print panel are
used. The Print panel is also run if this method is not implemented.

2-430 Chapter 2: Class Specifications

Requests to fax a View or a Window can be initiated (by users) from within the Print
panel. An application can also bypass the Print panel using either of the following two
methods, which parallel the printing methods listed above:

faxPSCode: (View and Window)
smartFaxPSCode: (Window only)

Like the printing methods, these methods each take an id argument, and the argument
is sent a shouldRunPrintPanel: message if it can respond. However, in this case, the
value returned by shouldRunPrintPanel: indicates whether the Fax panel (not the
Print panel) should be run.

There's no default implementation of the shouldRunPrintPanel: method. The
Application Kit declares a prototype for this method in the Object class, but doesn't
define it.

See also: - printPSCode: (View and Window), - smartPrintPSCode: (Window),
- faxPSCode: (View and Window), - smartFaxPSCode: (Window)

writeSelectionToPasteboard:types:

- (BOOL)writeSelectionToPasteboard:pboard types: (NXAtom *)types

Implemented by subclasses to write the current selection to the Pasteboard object
pboard. The selection should be written as one or more ofthe data types listed in types.
After writing the data, this method should return YES. If for any reason it can't write
the data, it should return NO.

A writeSelectionToPasteboard:types: message is sent to the first responder when the
user chooses a command from the Services menu, but only if the receiver didn't return
nil to a previous validRequestorForSendType:andReturnType: message. After the
data is written to the pasteboard, a remote message is sent to the application that
provides the service the user requested. If the service provider supplies return data to
replace the selection, the first responder will receive a subsequent
readSelectionFromPasteboard: message.

There's no default writeSelectionToPasteboard:types: method. The Application Kit
declares a prototype for this method in the Object class, but doesn't implement it.

See also: - validRequestorForSendType:andReturnType: (Responder),
- readSelectionFromPasteboard:

Application Kit Classes: Object Methods 2-431

2-432

OpenPanel

INHERITS FROM SavePanel : Panel: Window: Responder: Object

DECLARED IN appkit/OpenPanel.h

CLASS DESCRIPTION

The OpenPanel provides a convenient way for an application to query the user for the
name of a file to open. It can only be run modally (the user should use the directory
browser in the Workspace for non-modal opens). It allows the specification of certain
types (i.e., file name extensions) of files to be opened.

Every application has one and only one OpenPanel, and the new method returns a
pointer to it. Do not attempt to create a new OpenPanel using the methods alloc or
allocFromZone; these methods are inherited from SavePanel, which overrides them to
return errors if used.

See the class description for SavePanel for more information.

INSTANCE VARIABLES

Inherited/rom Object Class isa;

Inherited/rom Responder id nextResponder;

Inherited/rom Window NXRect frame;
id contentView;
id delegate;
id firstResponder;
id lastLeftHit;
id lastRightHit;
id counterpart;
id fieldEditor;
int winEventMask;
int windowNum;
float backgroundGray;
struct _wFlags wFlags;
struct _wFlags2 wFlags2;

Inherited/rom Panel (none)

Application Kit Classes: OpenPanei 2-433

Inheritedfrom SavePanel id form;
id browser;
id okButton;
id accessory View;
id separator;
char *filename;
char * directory;
const char **filenames;
char *requiredType;
struct _spFlags spFlags;
unsigned short directorySize;

Declared in OpenPanel char * *filterTypes;

filterTypes File types allowed to open

METHOD TYPES

Creating and Freeing an OpenPanel + new

Filtering files

Querying the chosen files

Running the OpenPanel

CLASS METHODS

new

+ new

+ newContent: sty Ie: backing: buttonMask:defer:
- free

- allowMultipleFiles:

- filenames

- runModaIForDirectory:file:
- runModalForDirectory:file:types:
- runModalForTypes:

Creates, if necessary, and returns the shared instance of OpenPanel. Each application
has just one instance of OpenPanel. This method is implemented to override the
inherited new method to assure that only one instance of OpenPanel is created in an
application.

2-434 Chapter 2: Class Specifications

newContent:style: backing: buttonMask:defer:

+ newContent:(const NXRect *)contentRect
style: (int)aStyle
backing: (int)bufferingType
buttonMask:(int)mask
defer:(BOOL)jlag

Don't use this method, invoke new instead. This method is implemented to override
the newContent:style:backing:buttonMask:defer: method inherited from
SavePanei. Returns self.

See also: + new

INSTANCE METHODS

allowMultipleFiles:

- allowMultipleFiles:(BOOL)jlag

Ifjlag is YES, then the user can select more than one file in the browser. If mUltiple
files are allowed, then the filenames method will be non-NULL only if one and only
one file was selected. The filenames method will always return the selected files (even
if only one file was selected). Note further that, though filenames always returns a
fully-specified path, filenames never returns a fully-specified path (the files in the list
are always relative to the path returned by directory). Returns self.

See also: - filenames

filenames

- (const char *const *)filenames

Returns a NULL terminated list of files (relative to the path returned by directory).
This will be valid even if allowMultipleFiles is NO. This is the preferred way to get
the name or names of any files that the user has chosen.

free

- free

Frees the storage used by the shared OpenPanel object and returns nil. The next time
new is sent to the OpenPanel, it will be recreated. You probably never need to invoke
this method since there is one shared instance of the OpenPanel.

See also: + new

Application Kit Classes: OpenPanel 2-435

runModalFor Directory:file:

- (int)runModaIForDirectory:(const char *)path file:(const char *)filename

Initializes the panel to the file specified by path and filename, then displays it and
begins its event loop. Returns self.

runModaIForDirectory:file:types:

- (int)runModaIForDirectory:(const char *)path
file:(const char *)filename
types:(const char *const *)fileTypes

Loads up the directory specified in path and optionally sets filename as the default file
to open. fileTypes is a NULL-terminated list of suffixes (not including the "."'s) to be
used to filter which files the user is given the opportunity to open. If the FIRST item in
the list is a NULL, then all ASCII files will be included. Returns self.

runModalForTypes:

- (int)runModaIForTypes:(const char *const *)fileTypes

Same as runModaIForDirectory:file:types: except that the last directory from which
a file was chosen is used. Returns self.

CONSTANTS AND DEFINED TYPES

/* Tags for the Views in a SavePanel */
#define NX OPICONBUTTON NX SPICONBUTTON

#define NX OPTITLEFIELD NX SPTITLEFIELD

#define NX OPCANCELBUTTON NX SPCANCELBUTTON
#define NX OPOKBUTTON NX SPOKBUTTON

#define NX OPFORM NX SPFORM

2-436 Chapter 2: Class Specifications

NeXT Computer, Inc.
900 Chesapeake Drive
Redwood City, CA 94063

Printed in U.SA
2909.00
12/90

Text printed on Il:\
recycled paper ~

