
Long Atomic Computations

by

PuiNg

August 1986

©Massachusetts Institute of Technology 1986

This research was supported by the Advanced Research ProjectR Agency

of the Department of Defense, monitored by the Office of Naval Research

under contract number N00014-83-K-0125.

Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge, Massachusetts 02139

1

2

Long Atomic Computations

by

PuiNg

Submitted to the
Department of Electrical Engineering and Computer Science
on August 26, 1986 in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy

Abstract

Distributed computing systems are becoming commonplace and offer interesting
opportunities for new applications. In a practical system; the problems of
synchronizing concurrent computations and recovering from failures must be dealt
with effectively. Atomicity has been suggested as a tool that masks concurrency and
failures from the users of a system. With synchronization and recovery mechanisms,
atomic computations appear to execute indivisibly. This dissertation addresses the
issues in implementing long atomic computations, such as computations that last for
hours or even days. Long computations make synchronization more difficult
because their execution is more overlapped. They are also more likely to encounter
failures in their execution.

Three issues are raised:

1. Should long computations be executed atomically? Or should atomicity
be replaced with other correctness criteria to increase the concurrency
of a system?

2. If long atomic computations can be implemented practically, are there
implementation paradigms that application programmers can follow to
simplify the programming effort?

3. How can long atomic computations be made resilient to transient
failures?

This dissertation shows that by using the semantics of an application, a system that
supports atomic computations can be made as concurrent as other systems that do
not. Since atomicity is easier to understand than other correctness criteria, systems
that support long atomic computations are preferable.

Using the semantics of an application requires application-dependent
synchronization and recovery code, which can be complicated and introduce subtle

3

errors easily. Several synchronization and recovery paradigms are investigated in
this dissertation. The paradigms divide synchronization and recovery into levels so
that the task at each level is simpler. A programming interface that hides the
concurrency control algorithm used by a system implementation is also presented.

Finally, this dissertation discusses the use of checkpoints and buffered messages to
increase the resilience of long atomic computations.

Thesis Supervisor: David D. Clark
Title: Senior Research Scientist

Keywords: Distributed Systems, Atomicity, Concurrency Control, Long.
Computations, Recovery, Fault Tolerance, Reliability, Programming Methodology.

4

Acknowledgments

First I would like to thank my advisor, Dave Clark, tor his guidance. He always

provided me with fresh insights and imparted his enthusiasm. In addition, I would like

to thank my readers, Dave Gifford and Bill Weihl, tor their patience and suggestions

that make the thesis more readable. Bill also offered. many detailed comments, which

forced me to think through many issues more thoroughly.

Numerous people on the fifth floor provided both technical and emotional support. In

particular, Jim Gibson, Brian Oki, and Lixia Zhang read drafts of my thesis and gave

useful suggestions. There are many others that showed their friendship and concern

through their words of encouragement. I thank them all.

Many brothers and sisters in my church had in a sense written this thesis together

with me. I cannot say enough to thank their support in prayer and in fellowship.

Their support started with my looking for a thesis tQPic and kept me going.

I thank Elaine for her encouragement, her love, and her patience with me.

Finally, my family members, especially my parents, had shown their unceasing love

and faith throughout the many years spent in writing this thesis. I would like to

express my deepest appreciation.

May all the glory be to God.

5

Table of Contents

Chapter One: Introduction

1.1 Long Atomic Computations
1.2 Concurrency and Resilience Problems

1.2.1 Concurrency Probtem
1.2.2 Resilience Problem

1.3 Contributions and Solutions
1.3.1 Functionality - Concurrency Trade-Off
1.3.2 Implementation Paradigms

1.3.2.1 Level Atomicity
1.3.2.2 Conflict Model
1.3.2.3 Programming Interface
1.3.2.4 Concurrency Control Algorithms

1.3.3 Resilience Problem and Its Solutions
1.4Roadmap
1.5 Related Work

1.5.1 Predicate Locks
1.5.2 Schwarz's Thesis
1.5.3 Allchin's Thesis
1.5.4 Weihl's Thesis
1.5.5 Garcia-Molina's Semantic Consistency
1.5.6 Montgomery's Thesis
1.5.7 Gifford's Persistent Actions
1.5.8 Sha's Thesis
1.5.9 Miscellaneous

Chapter Two: System Model

2.1 Physical Environment and Assumptions
2.2 Model of Computation
2.3 Atomicity

2.3.1 Event Model
2.3.2 State Machines
2.3.3 Atomic Histories

Chapter Three: Using Application Semantics

3.1 Conflict Model
3.1.1 Generating Atomic Histories
3.1.2 Guaranteeing Equivalence to Serial Histories
3.1.3 Generating Atomic Behavior

6

11

13
14
14
18
19
21
22
24
26
28
29
30
30
31
31
31
32
33
34
34
34
35
36

39

39
40
43
44
46
48

51

53
53
54
55

3.1 .4 Generating Valid Results
3.1.5 Conflicts
3.1.6 Conclusion

3.2 An Example
3.2.1 Read.Balance Operations
3.2.2 Withdraw Operations

3.3 Deriving Conflict Conditions
3.4 Increasing Concurrency

3.4.1 Reducing Precision of Numerical Results
3.4.2 Conditional Operations
3.4.3 Discussion

3.5Summary

Chapter Four: Implementing Atomic Objects

4.1 Overview of Implementation Paradigms
4.1.1 Lower-Level Synchronization and Recovery
4.1.2 Higher-Level Synchronization
4.1.3 Higher-Level Recovery

4.2 Global Atomicity and Locat Atomicity
4.2.1 Definitions of Global Atomicity and Local Atomicity
4.2.2 Implementing Locally Atomic Computations
4.2.3 Related Work

4.3 Synchronization
4.3.1 History Objects

4.3.1.1 Masking Concurrency Control Algorithms
4.3.1.2 Advantages and Disadvantages of Transparency

4.3.2 Resolving Conflicts
4.4 Recovery

4.4.1 Intentions list Paradigm
4.4.2 Undo Log Paradigm

4.5 Programming Interface
4.5.1 History Objects Continued
4.5.2 Transition Object&
4.5.3 Template Objects
4.5.4 Resource Managers

4.6 Program Examples
4. 7 Implementation Trade-Offs

4. 7 .1 Comparison of Recovery Paradigms
4. 7 .2 Implementing Atomic Ob;ectS with Atomic Objects

4. 7 .2.1 Two Approaches to Implement a Bank Object
4. 7.2.2 Comparison of the Two Approachea

4. 7.3 Partitioning and Replicating History Objects
4.8 Conclusion

7

56
57
58
59
59
60
63
64
65
67
69
70

71

73
73
75
76
77
77
78
80
80
81
82
84
85
87
88
90
93
94
95
96
97
99

106
106
107
112
117
121
126

Chapter Five: Concurrency Control Algorithms 128

5.1 Concurrency Control Algorithms 130
5.1.1 Static Concurrency Control Algorithms 130
5.1.2 Dynamic Concurrency Control Algorithms 133

5.2 Improving Concurrency with Concurrency Control Algorithms · 135
5.2.1 Hierarchical Concurrency Control Algorithm 136
5.2.2 Time-Range Concurrency Control Algorithm 138

5.3 Making Concurrency Control Algorithms Transparent 146
5.3.1 Implementation of History Operations 147
5.3.2 Implementation of Retry Statement 149

5.4 Commit Protocols 155
5.4.1 Two-Phase Commit Protocol 155
5.4.2 One-Phase Commit Protocol 157

5.5 Summary 159

Chapter Six: Power of Atomicity 180

6.1 Informal Proof of Power of Atomicity 164
6.2 Formal Proof of Power of Atomicity 167

6.2.1 Atomicity 167
6.2.2 Consistency 168
6.2.3 Proof 169

6.3 Objects with Simple Serial Specifications 176
6.3.1 Accurate Objects 1 n
6.3.2 Specifications of Accurate Objects can Be Reused 179
6.3.3 There Are Many Accurate Objects 181

6.4Conclusion 186

Chapter Seven: Resilience 188

7.1 Checkpoints 190
7.1.1 Checkpoint Time 191

7.1.1.1 Checkpointing a Program 192
7.1.1.2 Propagating a Checkpoint to Previously Invoked Sub- 194

Programs
7.1.1.3 Two Kinds of Checkpoints 195
7.1.1.4 Propagating a Checkpoint to Ancestor Programs 196
7.1.1.5 Checkpointing Parallel Sub-Actions 199

7.1.2 Restart Time 199
7.1.2.1 Identifying the Restartable Program 199
7.1.2.2 Restarting a Program 201
7.1.2.3 Other Types of Failures 202

7.2 Message Transfer Agents 202
7.3 Conclusion 205

8

Chapter Eight: Conclusion

8.1 Summary
8.2 Future Work

8.2.1 Other Communication Primitives
8.2.2 Hardware Configuration and Reliability
8.2.3 Replication
8.2.4 Implementation Experience

8.3 Conclusion

9

207

~7

210
210
211
212
213
214

Table of Figures

Figure 1-1: A Globally Atomic Computation Implemented with·Locally 25
Atomic Computations

Figure 2· 1: States of a Computation/ Action/Operation 42
Figure 2-2: A State Machine for a Set 47
Figure 3-1: A State Machine for a Bank Account Object 54
Figure 3-2: A History and a Transition Sequence 55
Figure 4-1: Interface of a History Object 82
Figure 4-2: Interface of a Transition Object 95
Figure 4-3: An Implementation of a Set RM with the Intention List 100

Paradigm
Figure 4-4: An Implementation of a Bank Aceount Object with the Undo 103

Log Paradigm
Figure 4-5: An Implementation of a Bank Account Object with the 108

Intention List Paradigm
Figure 4-6: A State Machine for a Bank Object 111
Figure 4· 7: An Implementation of a Bank Object with the Intention List 113

Paradigm ·
Figure 4-8: A Simple Implementation of a Bank Object 116
Figure 4·9: A Simple Implementation Of a Bank Account Object 117
Figure 4-10: Two Different Approaches of tmplementJng a Globally 118

Atomic Bank Object
Figure 4-11: A Specialized State Machine for a Bank Account Object 119
Figure 4-12: A State Machine for a Semi-Queue 123
Figure 4-13: An Implementation of a Semi-Queue Object 124
Figure 5-1: Implementations for Sub and Prior 148
Figure 6-1: Specification of a Bank Account Object in a Consistent 178

System
Figure 1-1·: Partitions that Prevent Communication 189
Figure 7-2: A Program Using Checkpoints 194
Figure 7·3: Propagating Checkpoints to Ancestor Programs 198
Figure 7-4: Using Parallel Sub-Actions to Specify Application Time-Out 200
Figure 7 ·5: Rollbacks due to Deadlocks or Invalid Dependency 203

Assumptions

10

Chapter One

Int reduction

Distributed systems have become a reality with the increasing employment of

workstations, home computers, and different types of computer communications

equipment. Distributed computing has ottered many opportunities to build new types

of applications. These applications are characterized by activities that span multiple

sites of a distributed system. For example, a travel agent may make several

reservations in different airline, hotel, and car rental reservation systems. A bank

customer may withdraw money from his account over a geographically distributed

banking network. An employee in an office ma~ schedule a meeting with several of

his colleagues using a calendar system that runs on multiple workstations and

portable computers.

However, as the number of sites connected in a distributed system grows, it also

becomes increasingly likely that some components of the system are broken at any

given time. Furthermore, the job of synchronizing concurrent activities becomes

more difficult. It is unrealistic to use any centralized scheduler when many users may

be initiating activities at the same time.

Atomicity (17, 28] has been suggested as a useful tool that alleviates these

synchronization and reliability problems. Under the atomicity model, the activities in

a distributed system are modelled as a collection of atomic computations. A

computation is a unit of work initiated by a user or by the system itself. Atomic

computations are computations that appear to execute serially in a certain

serialization order. This serializability property trees the programmer from worrying

about concurrent computations interleaving with one another. In addition to the

serial behavior, an atomic computation is either committed or aborted. The effects of

11

a committed computation become visible to all computations executed subsequently.

The effects are also permanent so that they are not lost with transient failures such

as power outages. When a computation is aborted, any work performed by the

computation is undone and the computation appears never to have executed. This

all-or-nothing property is called failure atomicity. It lessens the burden on application

programmers by undoing computations that are partially done.

In this dissertation we consider how tong atomic computations can be supported in a

distributed system. As the size of a distributed system becomes larger, it is inevitable

that the lengths of computations also increase. With a large. system, it is unrealistic

to expect every · component to be highly reliable given the high cost of such

components. As a result, communication delays, network partitions, and

unavailability of critical resources due to site crashes, are just some of the reasons

why computations may execute· for a long time. In fact, long computations can be

created simply because there is much work to be done as a single unit, or because a

computation requires human interaction. Consequently, long computations are not

limited to distributed systems.

The increase in computation lengths exacerbates the synchronization and reliability

problems. As each computation executes for a longer period of time, there is more

overlapping of execution, which increases the likelihood of some of the computations

being delayed. It also becomes more likely to encounter a failure during the

execution of a long computation. Current distributed systems supporting atomic

computations [31, 56) do not provide adequate support to long atomic computations.

These systems do not provide any facilities for a computation to make Its

intermediate state resilient to transient failures. Also, because of an implicit model of

short computations, it is considered acceptable to delay one computation pending

the completion of another. In a system with long computations, such delays are

usually unacceptable.

The rest of this chapter is divided in the following way. Section 1.1 describes our

12

definition of long computation more carefully and gives examples of such

computations. Section 1.2 discusses the major problems in supporting long atomic

computations. Section 1.3 summarizes our solutions and contributions toward

solving these problems. Section 1.4 presents a roadmap for the thesis. Section

1.5 gives an overview of related work.

1.1 Long Atomic Computations

A computation may execute for a long time because of extensive computing or

waiting for 110 events (e.g., waiting for input from keyboard or network). For

example, a computation that requires human interaction can last for minutes or even

hours. Clearly, the length of a computation is a relative measure. Instead of using an

absolute numerical definition for long computations, we concentrate on

computations that may require special support due to their length. Whether such

support is needed depends on the length of computations and on the characteristics

of the system on which they are executed. For example, the concurrency control

algorithms, the system usage characteristics, and the mean-time-between-failure ~

characteristics of the hardware are some of the factors that affect the response time

and resilience of a system. In a typical distributed system that supports atomic

computations [31, 56), computations that last hours or days can be considered long

because they are prone to be aborted and induce long delays in concurrent

computations. Shorter computations that last minutes or even seconds can also be

considered long if the hardware is unreliable or the system is heavily used.

In our discussions we will focus on long computations whose lengths can be

attributed to long delays in network communication. Several factors can contribute

to these long delays:

- mobility of sites, such as disconnection of portable computers,
- unreliable links in the network causing pertitiona,
- slow links or switches,
- economic reasons: sending messages batched is less expensive,
• security that is enforced by isolation.

13

We believe that our work is also applicable to other types of long computations

because of the similarity of the problems encountered in supporting them.

Many applications require long computations. For example, a computation that

schedules a meeting among several personal calendar servers can last for hours or

days because some of the calendars reside on portable computers and are

disconnected from the system. A replicated database [11] may propagate the

updates to a replicated data object over a long period of time. A computation making

several airline, hotel, and car rental reservations may last too long compared to the

concurrency requirements of an airline reservation system.

1.2 Concurrency and Resilience Problems

In the prev9Js section we alluded to a concurrency problem and a resilience

problem with long atomic computations. Intuitively, a system is bound to create a

concurrency problem when it is trying to maintain an image of substantially

overlapped computations executing serially. A resilience problem is also to be

expected because it is more likely to encounter a transient failure in the execution of

a long computation than in a short computation. This section describes these

problems more concretely by describing how some systems [31, 48, 56) implement

atomicity. We argue that a tong atomie computation causes long delays in

concurrent computations and is prone to be aborted in these implementations.

1.2.1 Concurrency Problem

In most earlier work [46, 40, 48, 26, 7), a (distributed) system is modelled as a

collection of objects with read/write operations. A computation is modelled as a

sequence of read/write operations on the objects accesaed by the computation. In

order to guarantee serializability and failure atomicity of atomic computations, each

object is implemented to behave "atomically:" the values returned by the read

operations should be identical to those returned had the committed computations

been executed in some serial order common to all the objects.

14

In general, two different types of algorithms are used to ensure such atomic behavior.

In a locking algorithm, an object is associated with a read/write lock [31, 56, 17). A

read (write) lock is acquired before a read (write) operation is executed. Two locks

conflict with each other unless they are both read locks. When a computation

requests a lock, it is delayed until all other computations that had previously acquired

conflicting locks are completed. This locking algorithm is called 2-phase

locking [17). In a timestamp algorithm, computations are assigned timestamps when

they are started [48]. A computation is aborted and restarted if it tries to write an

object that had already been read by another computation with a larger timestamp. If

a computation with a timestamp t tries to read an object, it is delayed until the

computation that has the largest, yet smaller than t, timestamp among all the

computations that had written that object is committed.

When long computations are executed, neither type of algorithm results in a

satisfactory level of concurrency. In the locking algorithm, a long computation

causes other computations that attempt to acquire confHcting locks to be delayed

until it is completed. Worse yet, computations can be deadlocked with one another,

so that one of them has to be aborted. When a deadlock occurs, there is the cost of

detection, which usually involves passing messages among sites [43), and the cost of

restarting the computation. Although there is no empirical data on the frequency of

deadlocks in a system with long computations, one can expect deadlocks to be more

frequent than in a system with only short computations, as locks are held for longer

periods of time.

The long delays caused by incomplete computations are also possible in a timestamp

algorithm. In addition, a long computation can be aborted due to other computations

with larger timestamps reading the objects that it is going to write. Normally, to make

sure that computations are serialized aJ)proximately in the order that they are

invoked, timestamps are assigned from teal·time clocks. Consequently, a

computation becomes more likely to be aborted when it gets longer, because more

computations are started while it is being executed.

15

The following example illustrates the concurrency problem. Consider a personal

calendar application that consists of many personal calendars, each owned by a

different user. Each user can read his own calendar (read_calendar), reserve a time

slot in his calendar (mark), and un-reserve a time slot (delete). Read_calendar returns

a list of slots, some of which are reserved by previous mark operations. The mark

operation can return okay or slot_tilled depending on whether the proposed slot has

already been reserved. Delete un-reserves a slot and return~ okay if the user is

permitted to do so. Otherwise cannot.delete is returned. All of these operations,

except read.calendar, require updating a calendar. On top of these operations, the

calendar application can construct computations that set up a meeting among

several calendars (set_up_meeting), or computations that cancel a meeting

(cancel_meeting). For example, set_up_meeting would invoke a mark operation at

each of the calendars involved.

A word of terminology is needed before we proceed with the example.· In this thesis,

a computation is modelled as a sequer1,ee of operations on some objects. It should

be emphasized that these objects are abstract objects supporting abstract

operations, such as the calendar object described above. A simplified view of the

system is to regard each operation, such as a mark operation, as relatively short,

while a computation, such as a set_up_meeting computation, spends most of its time

delivering messages across a network to Invoke operations.

A computation that involves multiple· calendars may span a long period of time

because some of the computers involved may be disconnected from the system

either physically (because they are portable) or functionally (because they are not

running the calendar software). Set_up_meetlng and cancel.meeting computations

belong to this category.

Obviously, if each calendar object is implemented with a single read/write lock, the

level of concurrency would be unacceptably low. For example, it is unacceptable to

render all the calendars of a meeting's participants Inaccessible until a disconnected

16

participant is reconnected to complete a set_up_meeting computation. The

timestamp algorithm has similar problems. We will omit it in the discussion below

unless it offers interesting alternatives to the locking algorithm.

Concurrency can be increased by dividing a calendar into slots and associating a

read/write lock with each slot. However, the concurrency of the implementation may

still be unacceptably low. For example, consider the situation in which the owner of a

calendar is trying to read his calendar when the calendar is the participant of an

incomplete set_up_meeting computation. Following the read/write lock algorithm, the

read_calendar operation will be delayed until the set_up_meeting computation is

completed. This is clearly unacceptable.

One may argue that a timestamp algorithm offers a solution in this situation. By

choosing a smaller timestamp for the computation that invokes read_calendar than

that of the set_up_meeting computation, the read_caJendar operation can return the

state of the calendar before the set_up_meeting computation is executed. However,

this solution is not without its problems. suppose the owner of the calendar decides

to reserve the slot occupied by the set_up_meeting computation for some other

purpose. The request cannot be accepted because the slot had already been

promised to the set_up_meeting computation, albeit tentativety1. On the other hand,

the request cannot be delayed or rejected either because an inconsistent picture will

be presented: by observing the state of the calendar before the set_up_meeting

computation is executed, the user is led to believe that the slot is empty and expects

the request to readily succeed.

One may consider this example as an argument against having long atomic

computations. Arguing intuitively, we cannot expect an implementation to hide the

1 Depending on how different sites of a dietributed computation decide whether the computation
should be committed or aborted, a lite may be able to abort an inComplete computation unilaterally (17).
However, there is al80 a window of vulnerability in which such unilal9ral abort& are not allowed. Thia
window can span a long period of time if communication delays are Ieng. In any C8118, it i8 rather
counterproductive to abort eny incomplete aet_up_meetino computationa whenever a calend• la read.

17

fact that there are multiple users using the system in substantially overlapped periods

of time. Hence, atomicity may have to be replaced with some other correctness

criterion. One of the contributions of this thesis is to show how atomicity can be

employed even with long computations. Section 1.3 will describe how atomicity can

be used in conjunction with non-determinism to solve the concurrency problem.

Since atomicity is not abandoned, the simplicity offered by atomicity is preserved.

In conclusion, the concurrency problem is caused by the uncertainty of whether an

incomplete computation would eventually commit, and also the requirement that

computations should appear to execute serially. when in fact they are invoked

concurrently. The problem is more serious in a system with long computations

because long computations take a long time to complete and overlap substantially.

1.2.2 Resilience Problem

In addition to the concurrency problem, one also needs to deal with a resilience

problem in implementing long atomic computations. For a system with long

computations, the failure atomicity requirement is both a blessing and a curse. On

the one hand, the increased likelihood that a long computation would encounter

some transient failure2 heightens our need for recovery mechanisms. Failure

atomicity provides a simple interface to the application uaers because a computation

is executed either in entirety or not at all. On the other hand, satisfying failure

atomicity requires aborting computations interrupted by transient failures unless

sufficient intermediate state of the computations has been saved. Some systems

preserve the intermediate state of a computation through the use of replicated

processors and memories (3, 13). However, theae systems require a degree of

replication that may be too expensive for many applications.

When a long computation is aborted, potentially much time and work can be wasted.

The decomposition of a computation Into a nested tree of actions (40, 48] provides a

2Source8 cf tranaient failure include site craehea and delldlockL

18

partial solution: an action can be aborted without undoing the effects of its sibling

an,d ancestor actions. It is inadequate since actions near the top of the tree are still

vulnerable. Transient failures that happen while these actions are waiting for their

descendant actions to complete can cause most of the action tree to be aborted. For

example, a set_up_meeting computation can be implemented with a parent action at

the originator of the meeting, which creates a child action at each of the participant

calendars. Although the computation is insulated from transient failures at the

participants, it is still vulnerable to failures at the originator site. We will describe tne

nested action model in greater detail in Chapter 2.

1 .3 Contributions and Solutions

Collectively, our contributions can be viewed as an argument for the feasibility of

long atomic computations. More specifically, they can be viewed as solutions to the

concurrency and resilience problems. We will start with· an enumeration of our major

contributions, then we will give a more detailed summary of the solutions presented

in this thesis.

There are four major contributions in this thesis:

1. We show that an application can trade off functionality for more
concurrency. By functionality we refer to the behavior of the application
when computations are executed serially in an environment without
failures. Our approach, like other proposals [1, 25, 38, 50, 51], uses
application semantics to increase concurrency. However, our approach,
similar to (33], goes a step further and raises the possibility of
"decreasing" functionality to increase concurrency. The decrease in
functionality is achieved by introducing non-determinism. Our
contribution is to show that this approach of decreasing functionality
while maintaining atomicity is as "powerful" as other correctness
definitions that have abandoned atomicity, such as the input consistency
criterion described in [50]. We will show that the exact gain in
concurrency through the use of these other correctness definitions can
be realized through decreasing the functionality of the application. On
this basis, we will claim that our atomicity definition is preferable, since in
comparison it is equally powerful and easier to understand.

19

2. Our second contribution is the development of a conflict model that
allows the programmer to determine an approximation of the level of
concurrency achievable with a particular functionality of an application.
The level of concurrency is expressed as conditions under which
conflicts oecur. A conflict is created when an implementation is
uncertain of how computations are serialized or whether a computation
will eventually commit. When conflicts occur, computations are either
delayed or restarted, depending on how the serialization order is
determined. The model is useful in that it abstracts away the details of
how to deal with a conflict and how the serialization order is determined.
For example, the programmer can design the functionality of an
application ·without worrying about whether a timestamp or locking
algorithm is used.

3. Our third contribution relates to the study of concurrency control
algorithms, which determine the actions that are taken when conflicts
arise and how a serialization· order is determined. Although the
concurrency of an application is significantly influenced by its
functionality, we argue that the concurrency control algorithm still has an
effect on the overall level of concurrency of an implementation. For
example, the cost of a conflict is relatively insignificant if it causes a long
computation to be delayed until the completion of a short computation.
The same is not true if the situation is reveraed. Our contribution lies in
the design of novel concurrency control algorithms that can substantially
reduce costly conllicts under certain conditio"'s.

4. Finally, this thesis also discusses how applications can be implemented
such that the concurrency of the implementations would improve with
the relaxation of the application functionality. Our contribution is the
design of a programming interlace that allows application semantics to
be utilized without exposing the concurrency control algorithm
underneath. Our programming interface allows a programmer to write
programs for systems using different concurrency control algorithms
without having to be familiar with all of the algorithms. The programs are
also portable so that no modifications are necessary when the underlying
concurrency control algorithm is changed.

Having enumerated the major contributions, we now proceed to give a more detailed

description of the solutions to the concurrency and resilience problems proposed in

this thesis.

20

1.3.1 Functionality - Concurrency Trade-Off

Consider the read_calendar operation discussed in section 1.2 again. Although we

have described the concurrency problem using the locking and timestamp

algorithms, the problem lies in fact in the functionality of the operation. The problem

exists regardless of how atomicity is implemented. The functionality of the

read_calendar operation that we described in section 1.2 is to present an up-to-date

view of the state of a calendar. In addition, we also require the view to be accurate

such that it reflects only committed computations. This is clearly unachievable given

that a set_up_meeting computation had visited the calendar and the calendar has no

knowledge as to whether the computation will be committed eventually. An

implementation must either risk presenting an inaccurate view or choose an outdated

one.

The solution that we propose in this thesis is not to abandon atomicity, but rather, to

change the functionality of the read.calendar operation. For example, one can

incorporate non-determinism in the functionality of the read.calendar operation such

that the set of reserved slots in the list of slots returned is required to be only a

superset of the set of reserved slots in ·the accurate view. By allowing non

determinism in the result returned by read.calendar, read.calendar does not have to

be delayed until all incomplete set_up_meeting computations are completed.

Read_calendar can simply return all the slots reserved by incomplete or committed

computations as reserved. The result returned by read.calendar is acceptable even if

some of the incomplete computations tum out to be aborted later. The semantics of

read_calendar does not require the result to contain only committed slots. We will

define atomicity such that it allows a non-deterministic functionality of an application

to be incorporated in the definition. Liskov et al. proposed the same solution In (33).

Our example can also illustrate why atomicity, coupled with the functionality of the

applications, is as powerful as some other correctness definitions. For example,

consider an alternative in which set_up,.meeting is implemented as a coltection of

atomic computations (15), one at each participant calendar of the meeting. If

21

set_up_meeting is to be abandoned, compensating atomic computations can be

executed at each of the participants already visited. Concurrency is not a problem in

this implementation because each of the atomic computations is short. Interestingly,

the behavior of this implementation is the same as the one with the relaxed

functionality of read_calendar described above. Because set_up_meeting is

implemented as a collection of atomic computations, the atomic computation that

executes read_calendar can be serialized between the atomic computation that

reserves the slot for the meeting and a later compensating atomic computation. The

result returned by read_calendar is just as up-to-date and tentative as that implied by

the· relaxed functionality. The difference is that our approach provides an abstract

specification of the behavior of the implementation, defined by atomicity and the

relaxed functionality of the application. The abstract specification allows the users of

the application to understand the behavior of the implementation more easily.

1.3.2 Implementation Paradigms

Relaxing the functionality of the application by itself is not sufficient to solve the

concurrency problem. For example, if an implementation of the calendar application

uses read/write locks, relaxing the functionality of read_calendar does not change

the fact that a read_calendar operation trying to acquire the read lock would still be

delayed by a set_up_meeting computation that is holding a write lock. In this thesis,

we are also interested in how an application can be implemented such that the

relaxed functionality of_.. application can· be utilized. To provide a summary of our

programming paradigms, we will describe how System R, a relational database

management system that supports atomic computations [18], increases its

concurrency with the semantics of its index objects. We will draw analogies between

System R's approach and our paradigms.

There are two levels of objects in System R. At the upper level, there are RSS

objects, such as an index to a relation. At the lower level, there are page objects.

Invoking an operation on an index object involves accessing one or more page

22

objects. Accesses to page objects are synchronized with page locks, which can be

viewed as read/write locks of the page objects. Because a page object that

implements an index object may be accessed by many concurrent computations,

locking a page for the entire duration of a computation is unacceptable. To increase

concurrency, page locks are reteased at the end of an operation on an index object,

instead of at the end of a computation. To preserve atomicity, an additional level of

"logical locking" is implemented. Information about an index operation is recorded

when the operation is executed. By examining the' history of past index operations,

"conflicting" index operations that may lead to non-atomic behavior, such as

inserting and reading from the same key value, are delayed. Furthermore, because

the relevant page locks have been released, aborting an index operation cannot be

achieved by restoring the previous contents of the modified pages. Rather, a logical

undo operation is invoked during recovery.

Our approach to implementing atomicity is similar to System R's in many ways.

Moreover, we are interested in the following questions:

1. Can System R's approach of utilizing the semantics of an index object be
applied to other kinds of application-level objects? In particular, can the
programs that perform the "logical" synchronization and recovery be
made easier to write and understand by following a general
implementation paradigm?

2. Can a concurrency control algorithm akin to a timestamp algorithm, or
some other hybrid algorithms (7], substitute for the locking protocol used
in the page lock level or the logical locking level or both? Can a
programming interface be designed such that an application
programmer is not aware of the concurrency control algorithms ~ in
the system implementation?

The rest of this section gives a summary of our answers to these questions.

23

1.3.2.1 Level Atomicity

Similar to System R's approach of implementing atomicity, ours also divides objects

into multiple levels. This division is more than just a division of levels of abstraction.

As will be d~ribed in this section, the division is a partitioning of the

synchronization and recovery code of an implementation. For simplicity's sake, we

will limit the discussion in this thesis to systems with only two levels. An object in the

higher level is implemented using the objects in the lower level. For example, an

index object is implemented using page obiectS-

To simplify the programs that access the higher-level objects, all the operations on

the objects in the higher level are made to appear instantaneous to one another. For
example, because of the page locks acquired by an index operation, index

operations appear to be instantaneous to one another even though an index

operation may access more than one page object. The logical locking in System R is

simplified because index operations can be treated as instantaneous. The atomicity

concept can be applied again to present this image of instantaneity. In other words,

there are two kinds of atomic computations in our implementations. The first kind of

atomic computations are the computations that we have been discussing In this

chapter. They access the higher-level objecta and can last a long time. In System R,

they may be queries or updates to the databBle. The second kind of atomic

computations are the computations used to implement the operations on the higher·

level objects. They make the operations on the higher-level objects appear

instantaneous and simplify the programming of the first kind of atomic computations.

They are probably short. In System R, they last for the duration of an index

operation. To distinguish the two kinds of atomic computations, we call the first kind

globally atomic computations and the second locally atomic computations because

we expect in most applications the second kind will execute within a single site.

Figure 1-1 describes this paradigm of ifnplementing globally atomic computations

with locally atomic computations.

The locally atomic computations are atomic in the senae that they make operations

24

invokes

implemented as

0

invokes

implemented as

Operations on

higher-level objects

e.g., index objects

Operations on

lower-level objects

e.g., page objects

Figure 1-1 :A Globally Atomic Computation Implemented with
Locally Atomic Computations

on a higher-level object appear to be instantaneous to one another. On the other

hand, they are not globally atomic in the sense that after one of these locally atomic

computations (e.g., a1 in figure 1-1) is completed, its effects can be observed by

other locally atomic Computations even though t~ globally atomic computation that

invokes It (e.g., a in figure 1-1) Is not yet committed. For example, by releasing page

locks at the end of an index operation o, changes made by o on the page objects can

be observed by other index operations even when the globally atomic computation

that invoked o is not yet committed.

25

Using the calendar example, each mark operation in a long globally atomic

set_up_meeting computation can be executed as a short locally atomic computation.

Obviously, we need the equivalent of the logical locks in System R to make sure that

the collection of short locally atomic computations would appear to be a long globally

atomic computation. For example, a read.calendar operation must be prevented

from observing the effects of a mark operation if the result returned by read.calendar

is supposed to be accurate. This is because the set_up_meeting computation that

invoked the mark operations may be aborted later. The subject of logical locking will

be discussed in the next section.

By implementing operations on a higher-level object with locally atomic

computations, the programs that invoke these operations can treat them as

instantaneous regardless of the complexity of their implementations. The complexity

of synchronization and recovery is reduced by dividing them into two levels. For

example, synchronization is divided between the logi~ locks and the page locks in

System R. In our calendar example, a read.calendar operation would never observe

the state of a calendar with partially executed mark operations. We call this idea of

implementing long globally atomic computations with . short locally atomic

computations level atomicity. A similar idea has been presented by Beeri in [5] and

Moss et al. in (42) although their work is not motivated by long atomic computations.

The difference between our work and theirs lies in the different approaches used to

implement logical locking.

1.3.2.2 Confllct'Model

In this section we briefly describe our solutions to the following two questions:

1. How can the logical locking in System R be extended to different kinds of
abstract objects?

2. How can logical locking be extended to cover "logical timeStamping?"

To answer these questions, we will generalize from the concurrency control

algorithms synchronizing objects with only read/write operations. Examining the

timestamp and locking algorithms, we can identify three common components of

these algorithms:

1. Determining how computations are serialized. It is determined by the
order in which computations commit in a locking algorithm, and by the
timestamp order in a timestamp algorithm.

2. Determining when a "conflict" arises. For example, in a locking
algorithm, a conflict arises for.a read operation when it tries to acquire a
read lock and there is another incomplete computation holding a write
lock. In a timestamp algorithm, a conflict arises for a write operation
when there are previously executed read c>perations invoked by other
computations with larger timestamps.

3. Determining the action to take when a conflict arises. In a locking
algorithm, operations are delayed. In a timestamp algorithm, operations
are either restarted or delayed.

Programming the logical locking needed for any abstract object can f°'low the

pattern above. First, determining how computations are serialized can be achieved

with the following:

1. a concurrency control algorithm similar to the locking and timestamp
algorithms,

2. a programming interface from which an object implementation can
determine the serialization order of the computations that had invoked
operations on the object.

Second, when conflicts are created is application~· and depends on the ·

functionality of an object. For example, whether a read.calendar operation creates a

conflict depends on its functionality and, if it is required to return an accurate view of

the calendar, whether there are ihcomplete set_up_meeting computations that may be

serialized before it. In addition to capturing the aeriafization order, the programming

interface that we described above should alao capture the history of previously

invoked operations and the status (e.g., incomplete, committed) of the computations

that invoked them. In the next section we wttt deacrtbe such a programming

interface. It allows an object implementation to express the conditions under which a

conflict arises.

These conditions are expressed in such a way that they are insensitive to whether a

locking or timestamp algorithm, or some other concurrency control algorithm, is

used to determine the serialization order. For example, the condition under which a

conflict arises for a write operation on a read/write object can be expressed as

follows: previously executed read operations invoked by other computations may be

serialized after this computation.

With a locking algorithm, this condition translates into the following condition: read

locks are held by other computations. With a tlmestamp algorithm, the equivalent

condition is: previously executed read operations invoked by other computations

have larger timestamps. Similarly, the condition under which a conflict arises for a

read operation is that there are previously executed write operations invoked by

other computations that are not committed or aborted and may be serialized before

this computation. Notice that we have hidden underneath these conditions the

choice of how to determine the serialization order.

We will describe a process in which these conflict conditions can be systematically

derived from the functionality of an abstract objeci. The conflict conditions provide

an approximation of the level of concurrency that can be achieved with a certain

functionality.

Finally, the action that needs to be taken when a conflict arises depends on how the

serialization order is determined. For example, some algorithms require that an

operation be delayed whereas other algorithms 1'9Quire the computation that creates

a conflict to be restarted. Similar to the conflict conditionSt these actions can be

expressed without exposing the underlying concurrency control algorithm.

1.3.2.3 Programming Interface

To implement the conflict model that we have described above, we provide a

programming interface that is characte.rtzed by the use of history objects. A history

object captures the history of operations that had be8n executed in an abstract

28

object. Queries can be directed to the history object to determine whether a conflict

condition is met. The · interface of the history objects wilt make the underlying

concurrency control algorithm transparent to the application programmers.

When a conflict arises, some of the actions that can be taken are delaying or

restarting a computation that is involved in the conflict. Again, these actions can be

made transparent to the programmer and expresaed in the programming interface as

a generic resolve conf11ct statement.

We will also discuss how recovery can be performed in our programming interface.

For example, if the execution of an operation changes only the state of a history

object, aborting a computation can be achieved by simply undoing the changes in

the history object. This is a simple action and can be automated easily.

1.3.2.4 Concurrency Control Algorithms

Although we have provided a programming interface so that the programmer is

unaware of the underlying control concurrency algorithm, the system implementation

has to make a choice among the available options. The system implementation

should also provide the necessary translation from the programming. interface to the

option chosen.

. We have argued that in some applications the concurrency problem can only be

solved by changing the functionality of the application. It remains to be seen whether

the choice of the concurrency control algorithm affecta the concurrency ot a system

with long atomic computations significantly. We will argue that in some cases it does

make a difference. We will present aome novei algorithms that minimize the

likelihood that costly conflicts will arise. For example, the cost of restarting a short

computation is much smaller than restarting a long computation. Consequently, an

algorithm that makes restarting long computations lea lik8fY provides a higher level

of concurrency.

29

1 .3.3 Resilience Problem and Its Solutions

To increase the resilience of long computations, we propose a checkpoint

mechanism and the use of relay message servers. Each checkpoint specifies some

intermediate state of a computation; the state specified by the last checkpoint will be

restored after a transient failure and the computation will be restarted from that

checkpoint. In addition to limiting the effect of site crashes, checkpoints can also

serve as fire walls to limit the rollback due to deadlocks. Relay message servers

provide buffering and reliability when the network partitions frequently. Some other

systems [10, 19) also use reliable communication primitives to slmplify the

implementation of distributed atomic computations. The relay message service in

this thesis is easier to implement because it does not provide any guarantees on the

order that messages are delivered.

1.4 Roadmap

Chapter 2 describes our model of system hardware and assumptions. In particular,

we do not assume a reliable communication network in which messages are not lost

and are delivered in a bounded time. We believe that implementing such a network Is

prohibitively expensive and any upper bounds on delivery times would be so large as

to be useless. The hardware model is followed by a model of computation. Chapter

2 concludes with a more careful definition of atomicity.

Chapter 3 describes our conflict model and how functionality can be traded off for

concurrency. · Chapter 4 describes our programming paradigms and presents

examples of application programs. Chapter 5 compares concurrency control

algorithms and argues that some algorithms would have better performance with

certain types of applications. We will al8o present two novel algorithms: a

hierarchical algorithm and a time-range algorithm. These algorithms minimize the

occurrences of costly conflicts under certain conditions. Chapter 6 shows that

atomicity is as powerful as some other conectnesa definitions [50, 38) in which

atomicity Is abandoned and replaced with explicit descriptions of how computations

30

can interleave. In Chapter 7 we turn our attention to the resilience problem of long

computations. We will describe a checkpoint mechanism and the use of relay

message servers to buffer messages. Chapter 8 is the conclusion.

1.5 Related Work

In this section, we compare our work with related work on concurrency control and

resilient computing. In our comparison of concurrency control, we focus on other

systems that use application semantics to improve concurrency. Much work has

been done in this area. Many proposals [e.g., 23, 24, 25, 5, 8) do not consider

recovery issues and will not be covered in this section. Comparison with related work

can also be found in the rest of this thesis as we describe more details of our

proposal.

1.5.1 Predicate Locks

Eswaran et al .. (14) describe the use of predicate locks for a relational database

management system. An operation must acquire a predicate lock before it can

proceed. Two predicate tocks conflict if a tuple in a relation satisfies both predicates.

Other than assuming a locking algorithm, the predicate locks differ from our conflict

conditions in that the unit of concurrency is Hmited to. a tuple. For example, using

predicate locks does not solve the concurrency problem of our calendar application

if each slot is implemented as a tuple. There is al90 no obvious way in which a slot

can be broken into smaller units to increaee concurrancy.

1.5.2 Schwarz'• Theala

Schwarz (50) defines correctness as the acyclicity of computations with respect to a

set of dependency relations. A dependency betwMn two computations is formed if

they each execute an operation at the same object. Correctness requires that the

dependency graph be acyclic. The dependency relation8 se parameterized by the

type of the Opel ations invoked and the value of the sguments. Dependency

31

relations are "insignificant" and ignored in the dependency graph if the two

operations involved in the dependency commute. Serializability is viewed as a

special case in a range of possibte correctness definitions with only the insignificant

dependency relations ignored. Less restrictive correctness definitions can be

obtained-by leaving out "significant" dependency relations in the dependency graph.

The limitation of this approach is that the commutativity of two operations depends

on many factors usually. It depends not only on the types of the operations and their

arguments, but also on the history of operations invoked previously and the results

returned by operations. For example, whether an operation to withdraw money from

a bank account commutes with a previous withdraw operation depends on the

balance of tlie account and the responses to these withdraw operations

(insuff icient_tunds or okay). Whether an operation can proceed cannot in general be

determined by pairwise dependencies with previously invoked operations. In other

words, the limitation of Schwarz's approach is due to a static specification of the set

of dependency relations included in the dependency graph.

1.5.3 Allchin's Theala

Allchin (2) describes several different mechaniams to synchronize concurrent

computations. One of them uses locks with user-defined tock modes. This approach

is similar to Schwarz'& and suffera from the same Hmitations. Allchin also suggests

the use of a history mechanism similar to ours but tailored for a locking algorithm.

Recovery is supported with recoverable objects that return to their initial values when

a computation is aborted. The state of an implementation has to be carefully

encoded with recoverable objects. In general, the changes made to a recoverable ·

object by two computations wilt be lost if the computation that made the first changes

is aborted. The recovay paradigms diseu•ed in this thesis are different in that an

application can invoke application-dependent recovery code explicitly. Two different

recovery paradigms witl be diacU$8ed in thia theais. One of them allows application

dependent code to be executed to perform state changes when a computation

32

commits. The other allows application-dependent code to be executed when a

computation aborts.

1.5.4 Weihl's Thesis

Our atomicity definition follows the work of Weihl (55). Weihl describes two types of

objects called atomic and mutex objects. Mutex objects are in general locked for the

duration of an operation whereas atomic objects are locked until the end of a

computation. Two approaches, implicit and explicit, are suggested for

synchronization and recovery.

In the implicit approach, synchronization is achieved by testing whether an atomic

object was accessed by a still incomplete computation. Presumably the programmer

can set up enough atomic Objects to encode the history information needed for

synchronization. For recovery, the programmer sets up the atomic objects so that

when a computation aborts, its effects are nullified by the atomic objects reverting to

their previous states. The effects of concurrent computations should not be undone

in the process. In the explicit approach, objeCts are associated with undo records or
intentions lists constructed explicitly by the programmer. The undo records or

intentions lists can be examined to determine whether an operation can proceed.

When a computation commits or aborts, the undo records or intentions lists are used

to determine the state changes that need to be made.

In the implicit approach, it is unclear how other types of concurrency control

algorithms can be employed becauae the lock testing of atomic objects exposes the

underlying algorithm. Although the explicit approach does not exclude using other

concurrency control algorithms. it does not provide an interface that makes the

concurrency control algorithm transparent.

33

... ' ~" .

1.5.5 Garcia-Molina's Semantic Consistency

Garcia-Molina [38) describes a system in which computations are divided into steps

and counter-steps. The counter-steps undo the previous steps if the computation is

aborted. Two steps can proceed concurrently if they are "compatible" according to

the compatibility sets of the computations to which they belong. A compatibility set is

determined by the type of a computation and consiSts of sets of other types of

computations that can interleave with this type. The limitation of the compatibility

sets is similar to that of the dependency relations in Schwarz's thesis (50). Since the

compatibility sets are defined statically, there are a large number of applications in

which two computations are defined to be incompatible because they are

incompatible for a small class of situations. It is also unclear how an application

programmer can describe the behavior of an implementation in a high-level abstract

specification. The compatibility sets and counter-steps are rather imptementation

oriented descriptions of the behavior.

1.5.8 Montgomery's Thesis

Montgomery (39) describes the use of polyvalues to repreaent the values of data

objects accessed by incomplete computations. Each polyvalue represents the

possible values that the object may take on depending on the outcomes of the

concurrent computations. It deals with the problem of failure atomicity but not

serializability, because two computations can access two objects in different orders

and both commit.

1.5.7 Gifford's Persistent Actions

Gifford and Donahue [15) describe executing a computation as a persistent action. A

persistent action consists of atomic actions and other persistent actions. Atomic

actions in [15) can be equated with the atomic computations in this thesis. The

results returned by the component actions of a peraistent action are logged in stable

memory. .When a persistent action is interrupted by a site crash, it is restarted from

the beginning. When it invokes a component action that had Its result logged, the

34

result can be reused instead of calling the component action again. Any non

idempotent operations, such as reading the time-of-the-day clock, have to be cast as

component actions. The component actions of two persistent actions can interleave

arbitrarily.

In the system described in (15], it is unclear how abstract specifications of the

behavior of persistent actions can be provided. Another difference between our

work and theirs is our emphasis on how application-dependent synchronization and

recovery can be programmed.

Our approach to resilience is also different. Instead of requiring the operations

executed in a persistent action to be either idempotent or cast as a component

action, the operations executed by the atomic computations in this thesis can be

non-deterministic. A careful structuring of idempotent actions is not necessary.

Checkpoints are specified explicitly. Stable memory access is necessary only at

checkpoints instead of whenever a component action returns.

1.5.8 Sha's Thesis

Sha [51) describes a system in which data objects are partitioned into atomic data

sets. Consistency constraints in the system cannot span atomic data sets. A

computation is called a compound transaction, which is subdivided into consistency-

. preserving elementary transactions. The elementary transactions are further

subdivided into atomic commit segments, each of which accesses a different atomic

data set. When an atomic commit segment is finished, locks acquired to assure

serializability are released, but write locks are retained to guarantee faUure atomicity.

When an elementary transaction is finished, the write locks are released and

recovery is achieved through compensating tranaactiona.

The atomic data sets provide a relatively coars&-grained concurrency control. Two

data objects have to belong to the same atomic data aet • long as there is at least

one consistency constraint relating them. Furthermore, Sha's approach does not

35

take into consideration the semantics of the consistency constraint itself. Weakening

a constraint does not increase the concurrency of a system untess the data objects

can be divided into smaller atomic data sets as a result.

To increase the resilience of a compound transaction, Sha suggests storing the

values of local variables in stable memory at the end of each atomic commit segment.

Our approach is different in that a computation can save a portion of its local state

selectively. Also, we describe how a computation can save its state when part of the

state· may be accessed by other computations conct.1rrently.

1.5.9 Miscellaneous

Other researchers [41, 53] have suggested the use of checkpoints to increase the

resilience of a computation. Our work is similar to theirs but is motivated by

computations that experience long communication delays. As a result, we
emphasize how a caller of a remote program can checkpoint in response to, or

anticipation of, long communication delays. To avoid restarting the remote program

that is expected to return after a long delay, the calling program should probably

checkpoint at the remote call. Mechanisms are also provided to allow the calling

program and other ancestor programs to checkpoint if an unexpected delay arises. It

seems that in [41, 53] a computation checkpoints the entire state accessible to it,

whereas we expect programmers to specify explicitly a portion of the computation

state to be preserved.

Another approach to improving resilience is by replicating processors and memory,

such a8 in Tandem and Auragen [3, 13]. These systems consist of a collection of

logical processes. Each logical process is implemented by two physical processes,

one primary and one: secondary, on two processors. In the Auragen syStem, the

messages received by a logiCat process are automatically checkpointed by the

system in the memory of a secondary processor. The secondary processor can take

over by re-processing the messages to bring its memory up-to-date. Any non

deterministic processing, such as reading the time-of -the-day clock, has to be cast as

36

another logical process, communicating with this process through messages. The

application is not aware of the checkpointing except for management duties, such as

choosing the processors for the process pair. In the Tandem system, any state

change in the primary processor is checkpointed on the secondary processor. Our

checkpoint mechanism is more economical because it assumes only the availability

of some permanent memory. It is not always possible to have an available secondary

processor to process the checkpoint messages. A site may be disconnected from

the rest of the system and the cost of a secondary processor may be· too high for

some applications.

Replication also provides a limited solution to the concurrency problem. By

replicating objects (16, 20], computations can access nearby replicas and long

communication delays can be avoided. Unfortunately, replication has its drawbacks.

First, it is expensive. When objects are replicated, constraints are imposed on

accesses of the objects to ensure consistency. For example, if an object can be read

with any one of the replicas, all replicas have to be written when the object is

updated. There i~ also the cost of extra storage. Second, replication d0es not

eliminate all long computations. In the read-one-write-all rule described above, read

accesses can be serviced readily as long as there is a replica nearby. The availability

of write accesses is decreased, however. The length of a computation that perform

updates is actually increased by replication.

Another limited solution to the concurrency and reeilience problems is to abort and

retry a computation when it cannot be· completed quickly. This is unacceptable as a

general solution for the following reasons:

- Previous work is wasted.

- If the system does not retry the computation automatically, the user has
to retry manually.

- The computation is likely to take longer to complete than if it were
allowed to suspend and wait for communication s>fOb1em8 to disappear.
In fact, when the computation involves many 8itea and the network

37

partitions frequently or extensively, the computation is unlikely to be
completed without encountering significant communication delay.

- The deferral of the entire computation due to the unavailability of several
sites may be unacceptable. For instance, it is undesirable to abort a
computation that sets up a meeting among many personal calendars
because a few of them are unavailable. Also, the likelihood of setting up
the meeting successfully decreases with the passage of time. The
proposed meeting, though it may be tentative, is prevented from
appearing in the available calendars. Abandoning the unavailable
participants and declaring the computation completed is also not the
most appropriate behavior.

38

Chapter Two

System Model

In this chapter we give an account of a system model to prepare for discussion in

later chapters. We start in section 2.1 by describing the hardware abstractions on

which the distributed systems considered in this thesis are based. In section 2.2, we
present a higher level view of these systems and describe how activities inside them

can be modelled. Then, in section 2.3, we give a definition for atomicity based on the

model.

2.1 Physical Environment and Assumptions

In this dissertation, a distributed system ts viewed as a collection of machines

connected by a communication network. We calf the machines sites; they can be any

type of machines ranging from portable computers to mainframes or large

multiprocessor machines. Sites can be added to or removed from the system

dynarriicaily. A site can send messages through the network .to communicate with

other sites. Messages may be lost, duplicated, delayed for an arbitrary period of time,

or arrive out of order, but garbled messages will be discarded. In particular,

messages can be delayed for an arbitrary period of time because the communicating

sites are partitioned. We assume, however, that partitioned sites wilt be able to

communicate eventually. We will not attempt to handle Byzantine failures: the sites in

the system are assumed to be cooperative, and redundant bits can be added to

packets in the network to keep the probability of undetected garbled messages

arbitrarily low.

Each site possesses both volatile and stable merriory3. A site also possesses one or

3inia is not strictly necessary. Sites without stable memory can employ remote stable storage
servers.

39

. . ;~

more fail-stop processors: a processor may_ crash at any moment, but when it

crashes, it immediately stops all_ processing before sending any erroneous messages

or corrupting its site's stable memory. The implementation of fail-stop processors

from unreliable hardware is beyond the scope of this thesis. See (49] for a discussion

of the subject. We assume that all crashed sites will recover eventually. When a site

recovers, it loses the content of its volatile memory but preserves that of its stable

memory.

When a site sends a message to another site, it may expect a response. If none

arrives after a long time, it may be because:

- the original message is lost or still on its way, or
- the response message is lost or still on Its way, or
- the two sites are partitioned, or
- the responding site is crashed, or
- the responding site is not ready to send the response.

We do not assume that the sender can differentiate among all these cases.

2.2 Model of Computation

At a higher level than the hardware abstractions described above, a system can be

viewed as a collection of objects. For example, there may be objects controlling

access to personal calendars, and objects acting as printer spoolers. An object may

reside at one site or may be distributed among many sites. Each object supplies

several operation types; for example, a personal calendar object can support a mark

operation and a delete operation. Arguments can be passed when an operation is

invoked. Results can be returned with an operation. For instance, a time duration

and a purpose can be passed to mark as arguments. Mark can return either okay or

slot_tilled.

Computations are the units of work in a system. Inside a computation, operations on

different objects can be invoked. A computation can span multiple sites.

Computations are atomic and serve as units for synchronization and recovery.

40

Atomicity, defined more carefully in section 2.3.3, guarantees that the system

behaves as if the computations were executed serially and each computation were

executed either in entirety or not at all.

To provide a finer-grained unit in synchronization and recovery, a computation is

decomposed into a nested tree of actions [40, 48, 34). Actions are divided into

top-level actions and sub-actions. A computation is associated with a single top-level

action. The boundaries of a computation coincide with that of its top-level action. A

top-level action can create sub-actions and sub-actions can in tum create their own

sub-actions. Operations are executed within an action; they must start and finish

within the same action. A parent action can create several sub-actions in parallel,

but the sub-actions will appear to have executed serially within the parent action. A

parent action can also abort a sub-action without abandoning the work performed in

the rest of itself. An aborted action should appear never to have been executed.

Frequently, a computation creates a sub-action to execute an operation so that the

effects of that operation can be undone by aborting the sub-action. However, an

action should be distinguished from an operation because the former, like a

computation, is merely a mechanism to define a unit of synchronization and

recovery. It is not associated with any object.

Aborts of an action may be caused by hardware failures such as site crashes or

communication failures. For example, the creator of an action can decide to abort

the action if the latter is executed on a remote site and, due to communication

failures, the creator cannot determine whether the action has terminated. Aborts can

also be initiated by an application program in the.absence of hardware failures. For

example, an action that executes a mark operation in a set_up_meeting computation

can be aborted if too few participants can attend. Depending on the concurrency

control algorithm used in a system, an action can alao be aborted because of

deadlocks. When an action is aborted, all its sub-actions are aborted.. A

computation is aborted when a top-level action is aborted. In general, we will use the

41

same terminology to refer to an action and the operations that are executed within it:

we say an ,operation is aborted when the action in which it is executed is aborted.

A computation, its nested actions (excluding those aborted), and the operations

executed within these actions are committed when the top-level action, terminates

successfully. Committed computations, actions, or operations can not be aborted. A

computation, action, or operation is finalized when it is committed or aborted.

Otherwise it is tentative. The outcome of a computation, action, or operation is

determined when the it is finalized. A nested action is still considered tentative

during the time that it has terminated and the top-level action is still incomplete. See

figure 2· 1 for the possible states that a computation, action, or operation can go

through.

Finalized

Figure 2-1 :States of a Computation/ Action/Operation

42

2.3 Atomicity

In this section we will give a more careful definition of the behavior of a system in

which computations are atomic. Our goal is to define atomicity without constraining

the system implementations unnecessarily. The definition will be stated only in terms

of the observable behavior of a distributed system. More importantly, the observable

behavior of a system will be cast in terms of the behavior of abstract objects with

abstract operations instead of the behavior of objects with read/write operations.

Using abstract objects in our definition allows atomicity to depend on the

functionality of these abstract objects. Our definition is similar to that in [55) except

that ours covers nested actions.

We will describe our atomicity definition in three steps. First, we will describe an

event model, which models the externally visible activities that happen at the

interface of an abstract object with events. The activities in a distributed system are

modelled with a sequence of events, which we call a history. The events in a history

can be generated by different computations. Since the model does not include the

details of how an object manipulates its internal state, the implementation of the

object is not constrained to a particular type of implementation.

Second, we will describe how applications can define their functionality by specifying

serial specifications for the objects in a system. These serial specifications are

· similar to the specifications that are usually used to define the semantics of abstract

data types [32). They specify a set of states that an object can be in, and a set of

operations that may cause a state transition. Pre-conditions on the state can be

attached to the operations.

Third, since a computation can be modelled as a sequence of events, we will define

the behavior of a system which executes computations atomically as a set of atomic

histories. Informally, a history is atomic if it is "equivaJent" to an acceptable "serial

history." The set of acceptable serial histories is defined collectively by the serial

specifications.

43

Section 2.3.1 describes the event model. Section 2.3.2 illustrates how a serial

specification can be expressed conveniently with a state machine. The state

machines help us capture the semantics of the example applications in later

discussions more succinctly. As introducing a formal specification language is

beyond the scope of this thesis, we will use informal notations to represent the state

machines. Section 2.3.3 defines atomic histories with the event model and the serial

specifications.

2.3.1 Event Model

In our event model, an event occurs when an operation is invoked or returned, or

when an object is informed of the outcome of an action in which an operation of that

object is executed. 4 Each event identifies the object and action that are involved with

unique object identifiers and' action identifiers. In this thesis, action Identifiers are of

the form a.b ••. m.n where a.b ••• m is the identifier of the parent action of a.b ••• m.n.

There are four types of events in the model:

invoke events: <operation_type_name(afguments), ObjectJD, ActionJD>
The named operation type is invoked at ObjectJD. ActionJD is
the unique identifier of the action in which· the operation is
executed.

return events: <result_type_name(results), ObjectJD, Action.ID>
ObjectJD returns the result of an operation invoked previou8'y.

commit events: <commit, ObjectJD, ActionJD>
Object.ID is informed that the action identified by Action.JD Is
committed.

abort events: <abort, ObjectJD, ActionJD>
ObjectJD is informed that the action identified by ActionJD is
aborted.

To simplify our notation, we assume that an action can only invoke an operation after

the result to a previous operation is returned. Parallelism within an action can be

4we will ignore 110 operations in our model although they .,. externally visible.

44

achieved with parallel sub-actions. The invoke and return events of an action can be

paired in the obvious way.

To illustrate the event model, suppose r1 and r2 are personal calendar objects, each

providing a mark operation to reserve a slot in the calendar. Further suppose an

implementation of set_up_meeting that creates sub-actions to execute the individual

mark operations in the participating personal calendar objects. The following

sequence of events may be observed when a user tries to set up a meeting between

r1 and r2 in a top-level action a.

<mark(time, description_ot_meeting), r1, a.b>
<okay, r1, a.b>

<mark(time, description_ot_meetlng), r2, a.c>
<okay, r2, a.c>

<commit, r1, a.b>
<commit, r2, a.c>

or the following may happen, where d is another action:

<mark(time, description_ot_meettng), r1, a.b>
<okay, r1, a.b>

<mark(time, some_other_businesa), r2, d>
<okay, r2, d> ·

<commit, r2, d>
<mark(time, description_of_meeting), r2, a.c>

<slot_fllled, r2, a.g>
<abort, r1, a.b>

Obviously, not every sequence of events is "well-formed." For example, a sequence

of events should not have a commit event and an abort event for the same action.

We will leave a more formal definition of welt-formed sequences until Chapter

6 where we construct proofs using the event model. Meanwhile, we assume all the

event sequences are well-formed in the sense that they represent some "reasonable"

behavior of an implementation and call them histories.

5we have left the outcome of a.c unspecified in this example. He>Wever, it makes little difference at
r2.

45

2.3.2 State Machines

The serial specification of an abstract object can be defined with a state machine.

Intuitively, a state machine defines the abstract states that the object "passes

through" as individual events are "processed." This section describes how a state

machine is specified and gives an example.

A state machine for an object r1 has four components: S1, 119 T1, and Nr S1 is the set

of possible states of the state machine. 11 is the initial state .. T1 is the set of

transitions; it corresponds to the set of possible invoke and return event pairs, since

not only the invoke event, but also the result that has been returned, determine how

the state is to be changed. N1 is a partial function which determines how and under

what conditions the state machine would change its state. It takes two inputs: a

"before" state and a transition, and returns an "after" state.

N1 can be extended in the following way to accept a sequence of transitions as its

second input:

N1: 51 X T1• -P S1

such that N1(a, 0) = a,

N1(•, t .. qflt) = Ni(N.(s, t •• q>' t), If N,(s, tMCI) - .L

.L, otherwise

where <> is the empty sequence, s E S1, t E T1, tHCI E T1 •

The partiality of N1 can be used to exclude undesirable transition sequences from the

object. In other words, a serial specification can be viewed as defining a set of

acceptable transition sequences.

Suppose r 1 is an object representing a set of Integers. It supports three operations:

insert, delete, and member. Each operation takes an integer as an argument. Insert

adds the integer to the set and returns okay. Delete deletes the integer from the set if

the integer is in the set and returns okay in any case. Member returns a boolean

depending on whether the integer is an element of the set. The serial specification of

this set object is defined in figure 2-2. Abbreviations of the form op_arg_result will be

used for the transition <op(arg), ri, aXresult, r1, a>.

51: sets of integers

•1= 0
T1: insert_x_okay = <insert(x), r1, aXokay, r1, a>

delete_x_okay = <delete(x), r1, aXokay, r1, a>
member_x_b = <member(x), rl' aXb, r1, a>
where xis an integer, bis a boolean

N1(s, insert_x_okay) = s U {x}
N1(s, delete_x_okay) = a - {x}
N1(s, member_x_b) = s If (xEs and b = true) or (x(a and b = false)

Figure 2-2:A State Machine for a Set

In figure 2-2, the object starts with an empty set as its initial state. Three kinds of

transitions are possible. Each kind of transitions changes the state in the obvious

~ay. Notice that N1 is defined only under the condition (xEs and b = true) or (x(s

and b = false) for the state a and the transition member_x_b. For example, a

sequence of transitions in which an inaert_x_okay transition is followed immediately

by a member:..x_falae transition would be undefined with respect to N1 and hence

unacceptable.

We have introduced the terms "event" and "transition" in this section. Each of them

denotes something similar to an operation. The ex~ution of an operation can be

viewed as the generation of an invoke event and a return event, or as ·the generation

of a transition.· Since different results can be returned by an operation, different

transitions may be generated by the execution of an operation. For example, the

member(x) operation generates either a member_x_true or a member_x_falae

transition.

47

2.3.3 Atomic Histories

In this section we will combine the event model and serial specifications to define a

set of atomic histories. First, we will define what a serial history is. Second, we will

describe how a set of acceptable serial histories can be defined using the serial

specifications. Finally, we will define when a history is equivalent to a serial history.

An atomic history is a history that is equivalent to an acceptable serial history. Again,

we will rely on informal descriptions and leave a more formal notation until Chapter 6.

A serial history is a history in which events from different actions are not interleaved,

an invoke event is always paired with a returri event, and only invoke and return

events exist. The events in a serial history are ordered by a linearization, which can

be defined as a total ordering between every pair. of sibling actions (34). As a special

case, the top-level actions can be considered as sibling actions. An action b is

subsequent to a according to a llnearization L if either b or one of b's ancestors is

after a or one of a's ancestors in L. An action a is prior to another action b if and

only if b is subsequent to a.6

Ideally, this prior/subsequent relationship should be extended to the operations

executed in two actions in the obvious way. However, because more than one

operation may be invoked at the same object by the same action or by actions that

bear an ancestral-descendant relationship, the following more complicated definition

is needed. An operation a is prior to another operation b at the same object

according to a serial history sh if:

6we assume that there are linguistic mechaniams for the application programmer to express the
desired linearization constraints among sibling actiona. For example, if b ia created after a by the same
parent action, then naturally b should be eubleQuent to a. In the reat of thia thesis. we only conllider
linearizations that conform to lhelle conatrainta. Occaaionally, an action will create parallel aub·actiona
and the order among them is left unspecified by the applieation. Any total ordering wiU be acceptable in
thOll8 caaee.

We do not provide any facility for the uaers to constrain the order among the top-level actions except
a guarantee of external consiatency. If a linearization ia extemaUy conaiatent. a computation a ia
ordered after another computation b if • i8 begun after b ia completed and the completion of b ia
communicated to the human i.mr of a either exl'9mally (outaide Iha ayetem) or internally (through
messages sent and received by the aitee in the system).

48

1. the action in which a is executed is prior to that of b according to the
linearization of sh, or

2. a and b are executed in the same action and a is executed before b in
sh, or

3. the actions that a and b are executed in bear an ancestral-descendant
relationship and a is executed before b in sh.

An operation a is subsequent to another b if and only if b is prior to a. This definition

is well-formed because we assume that an action can execute only one operation at

a time and a parent action cannot invoke any operation while a child action is not

terminated.

We define a serial history sh to be acceptable if, by partitioning sh according to the

object that an event is associated with, each of the sub-histories is an acceptable

transition sequence according to the serial specification of the object associated with

, that sub-history.

Finally, a history h is equivalent to a serial history sh if h is identical to sh after all but

the committed invoke and return even- are removed from h and the events left

behind are rearranged according to the linearization of sh. A history is atomic if it is

equivalent to an acceptable serial history. A system is_ correct if it generates only

atomic histories. The lineari%ation of sh is called a serialization order. By excluding

. all but the committed events from a history h, we formalize the requirement on failure

atomicity. By requiring h to be equivalent to a serial history in which events are not

interleaved, we formalize the requirement on seriallzabtllty.

Notice that our definition is different from some other atomicity definitions (46, 1]. In

these definitions, an atomic history is defined as equivalent to a serial history if the

two histories both cause the objects in the histories to reach the same states. Our

definition requires that an atomic history haa the same external behavior as a serial

history. Our requirement is sufficient as a user cannot determine the state of an

object except through observing its visible behavior. For example, a bank customer

49

does not care about the internal state of a bank account object as long as he can

withdraw what is in his account and the balance on a monthly report is not less than

expected. Our definition also has the advantage that we do not have to define the

states that the objects will be in after executing a possibly non-serial history.

The major advantage of our atomicity definition, however, lies in its ability to

incorporate serial specifications of abstract objects. If serial specifications are

relaxed to enlarge the set of acceptable serial histories, the set of atomic histories is

also enlarged and the system becomes more concurrent, provided an

implementation can utilize the relaxed semantics. Thus concurrency is increased

without sacrificing the simplicity offered by atomicity.

50

Chapter Three

Using Application Semantics

In this chapter we describe the increase of concurrency that can be achieved

through the use of application semantics in an implementation. To avoid being

encumbered by excessive implementation details, we ignore how the implementation

is actually programmed in this chapter. Instead, we assume an idealized

implementation that would illustrate how concurrency can be improved when

compared to an implementation that, say, uses read/write locks and 2-phase locking.

We will describe how the idealized implementation can be approximated by a

practical implementation in Chapter 4. The concurrency level afforded by the

idealized implementation is only an approximation of the actual concurrency level of

a practical implementation. We will argue why it is a useful approximation later in the

chapter.

Our idealized implementation consists of multiple program modules. each

implementing an abstract object. We assume that a program module has encoded a

history of previously invoked operations and that the history information can be

retrieved. Each of the objects7 has an associated queue of requests to invoke

operations at that object. These requests are issued by computations running in the

system. An object executes by taking a request from its queue, examining the

request and the history of previous operations, and determining whether a result can

be returned for the requested operation. A result can be returned when an object

can guarantee that only atomic histories are generated.

If a result can be returned, the request and the result will be added to the object's

7 We will use the word "object" to refer to the program module implementing the object.

51

history. Otherwise, a conflict is created and we assume that some action will be

taken against the request or the computation that issues the request. We leave these

actions unspecified for the moment, since our purpose is to evaluate the

concurrency of the implementation, which can be measured by how often a result

can be returned to a request. In an actual implementation, the operation may be

delayed or the computation that invokes the operation may be restarted when a

conflict occurs. Thus, how often a conflict arises is a realistic measure of

concurrency. We assume that an object can process a request instantaneously.

Details such as how the internal state of an object is encoded and how recovery is

performed will be left unspecified. However, we do assume that an object will learn

of the outcomes of computations eventually.

In order to illustrate how application semantics improves the concurrency of the

idealized implementation, we will describe a conflict model, which is one of the

contributions of this thesis. The conflict model allows a programmer to determine the

condition under which a conflict is created based on the serial specification of the

object. We call this condition a conflict condition. The model is useful in that it

abstracts away the details of the concurrency control algorithm underneath. A

conflict condition will remain the same regardless of whether the abstract objects in a

system use timestamps assigned at the beginning of execution, or the order in which

computations commit, to determine a serialization order. Conflict conditions can

· serve as a guide when serial specifications are designed, so that concurrency can be

traded off against functionality.

In section 3.1 we describe our conflict model. In section 3.2 we use a bank account

object to illustrate how conflict conditions can be derived and how concurrency is

improved when compared to an implementation that uses. say, read/write locks and

2-phase locking. A bank account example is used in this chapter to facilitate

comparison with other work. In section 3.3 we discuas how conflict conditions can

be derived for any abstract object. Because the practical implementations that will

be described in Chapter 4 approximate the ldealizect implementation closely, the

52

process of deriving conflict conditions is also helpful to a programmer writing the

practical implementations. In section 3.4 we describe how concurrency can be

increased by relaxing the serial specification of an object. Relaxing the serial

specification of an object makes conflicts I~ likely to arise. Using several

examples, we will illustrate that there are interesting classes of applications in which

the trade-off between concurrency and functionality can be usefully employed. In

Chapter 6 we will show that this approach of increasing concurrency is as powerful

as other correctness definitions that abandon atomicity [50, 38].

3. 1 Conflict Model

This section describes our conflict model and defines conflicts more carefully. We

show how the requirement of generating only atomic histories can be translated Into

a requirement of detecting conflicts.

3.1.1 Generating Atomic Histories

To ensure that only atomic histories are generated by our idealized implementation,

the objects in the implementation must guarantee that any history generated will be

equivalent to some acceptable serial history. To provide this guarantee, the objects

must agree on a particular serialization order, which, in an actual implementation,

may be determined by the timestamps that are assigned at the beginning of

execution, or by the order in which computations commit. How this serialization

order is arrived at in an actual implementation depends on the concurrency control

algorithm and is the subject of Chapter 5. · We refer to this serialization order

determined by the concurrency control algorithm as the serialization order of the

system. We assume that this is what is referred to when we speak about the

serialization order among operations.

53

,

3.1.2 Guaranteeing Equivalence to Serial Histories

To ensure that the history generated by the implementation is equivalent to an

acceptable serial history defined by the serialization order, each object must ensure

that the committed events involving itself, after being rearranged according to the

serialization order, will be an acceptable transition sequence according to the

object's serial specification. More informally, each object must make sure that the

transitions that it generates are part of an acceptable serial history defined by the

serialization order. We say that an object exhibits atomic behavior when this is

satisfied.

For example, consider a bank account object r1 with a serial specification described

by the state machine in figure 3-1. To simplify our example, we assume the state of

the bank account contains only its balance, which can be represented with a real

number. The account object has three types of operations: deposit, withdraw, and

read_balance. The first two take a real number as an argument. Depdsit increments

the balance by the amount indicated in the argument and returns okay. Withdraw

decrements the balance by the amount indicated in the argument and returns okay if

the balance is large enough to cover the withdrawal. Otherwise it returns

insufficient_funds. Read_balance returns the balance.

5 1: real numbers
I: 0 t1: <deposit(x), r1, aXokay, r1, a> = deposit_x_okay

<withdraw(x), r1, aXokay, r1, a> = withdraw.x_okay
<,wlthdraw(x), 'J' aXinaufficient_funda, r1, a> = withdraw_x_lnauf
<read_balance(J, r1, aXx, r1, a> • read_x
where a ls an action, x ls a positive real number.

N1(s, depoait_x_okay) = s. + x
N1(s, withdraw_x_okay) = s • x ifs~ x
N1(s, withdraw_xJnsuf) = a if a< x
N1(s, read_x) = s If a = x

Figure 3· 1 :A State Machine for a Bank Account Object

54

Suppose the history depicted in figure 3-2(a) has action a serialized before action b.

Because the transition sequence deposit_40.okay H read_balance.60 depicted in

3-2(b) is not a member of the set of acceptable transition sequences defined by the

state machine in 3-1, the history in figure 3-2(a) is not atomic, and hence the bank

account object that generates the history in figure 3-2(a) does not exhibit atomic

behavior.

<depoait(40), r1, a>
<okay, r1, a>

<deposit(20), r1, c>
<okay, r1, c>

<read_balaneeO, r1, b>
<60, r,, b>

<abort, r1, c>
<commit, r1, b>
<commit, r1, a>

(a)

<deposit(40), r1, a>
<okay, r1, a>

<read_balanc80, r1, b>
<80, r,, b)

(b)

Figure 3·2:A History and a Transition Sequence

3.1.3 Generating Atomic Behavior

To ensure atomic behavior, each of the results returned by an object must be valid. A

result is valid if the corresponding transition8 causes a defined state change in the

state machine representing the serial specification of the objeet, given that the state

machine starts in a state defined by executing all the committed transitions serialized

before this transition. For example, in the previous bank account example, the result

60 is invalid because· the state machine has a state of 40 after executing the

committed depoait_40_okay transition, and the state machine requires a

read_balance_x transition to have its result x equal to the current state. Notice that

when an object generates a result to an operation, it must ensure that not only the

result is valid, but that all other results returned to previously invoked operations

should remain valid.

8Recal1 that a tranlition corresponds to a pair of invoke and ratt.wn a.1la.

55

3.1.4 Generating Valid Results

Obviously, in many cases we need some knowledge of the serialization order to

generate valid results. For example, to return a valid result to a read_balance

operation invoked on a bank account object, we need to determine how the

read.balance operation is serialized with respect to previously invoked deposit and

withdraw operations.

In addition to knowing the serialization order, we also need some knowledge of the

outcomes of the operations that have been invoked. For example, knowing the

serialization order between a read_balance operation and a deposit operation is not

enough to determine a valid result for read.balance; we also need to know the

outcome of the deposit operation if the read_balance operation is serialized after the

deposit operation. How the knowledge of a computation outcome is disseminated to

the objects that the computation had accessed is determined by a commit protocol.

We will discuss commit protocols in Chapter 5.

In our conflict model, each object is viewed as possessing some knowledge of the

serialization order and the outcomes of the operations that have been invoked. An

object may not possess complete knowledge because some operations are still

tentative; they may be either aborted or committed later. In fact, a computation can

be finalized already but the objects that it has accessed will not have the knowledge

of its outcome until the outcome is propagated to these objects. In Chapter 5, we will

discuss how the serialization order is determined. In some algorithms, it is pre

determined and an object always has complete knowledge of the serialization order

among the operations that have been invoked. In some algorithms the order is

determined dynamically.

When determining whether a valid result can be returned while preserving the validity

of all previous results, an object must be prepared for all the possible combinations

of serialization orders and outcomes of the tentative operations that are consistent

with the local knowledge. Informally, a conflict is created when no result can be

56

returned such that it and aH previously returned results will be valid under all

circumstances consistent with the local knowledge of the serialization order and

operation outcomes. For example, a read.balance operation invoked at a bank

account object may create a conflict because the object lacks the knowledge of the

serialization order between the read.balance operation and a previously invoked

peposit operation. The serialization order determines the valid balance to return and

there is not a result that will be valid under all circumstances.

3.1.5 Conflicts

A conflict may be created even when an object possesses complete knowledge of the

serialization order and operation outcomes. For example, a deposit operation can

create a conflict because the local knowledge dictates that the deposit operation is

serialized before a previously invoked read.balance operation. Unless the deposit

operation is refused, the result returned to the read.balance oper•ion may be

invalidated when the deposit operation is committed.

On the other hand, suppose we have a bank account object with an initial balance of

$100 and the following history of events:

<withdraw(40), r, a>
<okay, r, a>

<commit, r, a>
<withdraw(30), r, b>

<okay, r, b>

No conflicts would be generated If a withdraw(20) operation were Invoked on the

·account object, since an okay response to the withdraw operation is valid, and the

okay responses to the previous withdraw operations are not invalidated, regardless

of the serialization order and outcomes of the operations.

Notice that whether conflicts are created depends not just on operations that are

tentative or for which the serialization order with respect to the incoming operation is

unknown, but actually on the entire history of events. In the previous example,

conflicts would be created if action a had withdrawn more than $50, since whether

57

the incoming withdrawal can succeed would depend on the outcome of b.

Conflicts can also disappear with the execution of new actions not already in the

history. Suppose action a in the example above had withdrawn more than $50 and a

conflict is created when an action c invokes withdraw(20) at the account object. The

conflict will disappear if another action d executes a deposit operation, commits, is

serialized before c, and the amount deposited by d is large enough to cover the

withdrawal by c.

When a conflict is created, it can be resolved in several ways:

- delay the operation generating the conflict, e.g., 2-phase locking [17];
- restart the computation generating the conflict, e.g., timestamp
algorithm (48];

- make an assumption about the serialization order or operation outcomes
and verify the assumption later, e.g., optimistic algorithms (26].

In this chapter, we will not elaborate on how conflicts are resolved. The appropriate

way to resolve a conflict is related to how the serialization order is determined. We

will discuss the subject in Chapter 5 when we discuss concurrency control

algorithms. Suffice it to say that resolving a conflict represents a potentially high

cost.

3.1.6 Conclusion

In this section we have described how the requirement of generating only atomic

histories can be translated into the requirement of detecting conflicts. The conflict

conditions that can be derived from serial specifications are a useful indication of the

level of concurrency of our idealized implementation because they abstract away the

details of the concurrency control algorithm underneath. The conflict conditions are

a good approximation of an actual implementation's concurrency if the actual

implementation approximates closely the assumptions of our idealized

implementation. For example, for a long computation whose length is attributed to

communication delays, regarding the execution of an operation In the computation

as instantaneous is a close approximation to the actual execution. Our model of the

58

structure of the idealized implementation is also sufficiently general so that for any

implementation that conforms to this structure, the conflict conditions can be

regarded as an indication of the upper bound on an implementation's concurrency

level. Executing an operation non-instantaneously would only decrease

concurrency.

3.2 An Example

In this section we will use the bank account object defined in figure 3-1 to show the

following:

1. How conflict conditions can be derived from a serial specification.
2. How the semantics of an application can be used to increase

concurrency over an implementation that uses, say, read/write locks and
2-phase locking.

3.2.1 Read.Balance Operations

Consider when the operation read.balance is invoked on the bank account object r 1

defined in figure 3-1. Since the read_balance_x transition does not mutate the state

of r1, the results returned to the previously invoked operations will remain valid

regardless of the outcome and the serialization order of read.balance. However,

read.balance itself returns a result whose validity depends on the serialization order

and outcomes of other operations.

Among the set of transitions, only deposit_x_okay and withdraw_x_okay change

the balance. Hence, a conflict is created if the foltowing condition is met:

1. there are deposit or successful withdraw operations (ones that had
returned okay) that are tentative and may be serialized before the
read.balance operation, or

2. there are committed deposit or successful withdraw operations that may
be serialized either before or after the read.balance operation,

In other words, the account object can not return any number to the read.balance

operation that is guaranteed to be valid under all possible situations. Notice that we

59

have used the terms "may be serialized before/ after" and "tentative" in the conflict

condition above. It reflects the view in our conflict model that an object possess

some knowledge of the serialization order and operation outcom~. In the following

discussions, we will use the terms "potentially prior" and "potentially subsequent as

abbreviations for "may be serialized before" and "may be serialized after"

respectively. The terms "definitely prior" and "definitely subsequent" are

abbreviations for "definitely serialized before'' and "definitely serialized after"

respectively.

There is a remote possibility that some tentative deposit and withdraw operations

may cancel one another's effects, and because they are executed by the same action

or by sibling actions in the same computation, they are constrained to commit or

abort together. In those cases, no conflicts are created although there are tentative

deposit and withdraw operations. We will ignore such possibilities because it is

rather unlikely for a computation to deposit as well as withdraw from the same

account.

Suppose we have an implementation that uses a read/write lock on the balance such

that both deposit and withdraw would first acquire a read tock and then a write lock,

and read.balance would acquire a read lock only. For the read.balance operation,

there is no increase in concurrency with the use of the semantics of the account

object. The situations under which conflicts are created for thia operation are exactly

the same in our idealized implementation and the implementation that uses a

read/write lock.

3.2.2 Withdraw Operations

The withdraw operations can illustrate how concurrency is increased with the use of

application semantics. Consider when the operation witltdraw(x) is Invoked at r.

The result of the operation is either okay or insufflcient}unds, depending on whether

x is less than the balance. Since an insufficient_tunds reply does not imply a change

to the abstract state, no previous results returned wiH be invalidated. However,

60

because an insufficient_tunds reply implies that the balance is less than x, the reply

can be returned only when the highest possible balance under the possible

combinations of serialization orders and outcomes of the operations that may be

serialized before the withdraw operation is less than x. This highest possible balance

can be calculated by adding all the unaborted and potentially prior deposits to the

initial balance and subtracting all the committed and definitely prior withdrawals.

Briefly, as long as the balance is so low that there would not be sufficient funds under

any circumstances, lnsufficient_tunds can be returned, even if there may be tentative

update operations or update operations that may be serialized either before or after

the withdraw operation. Consequently, some conflicts that would be created had a

read/write semantics been imposed are avoided. Although this is not the most

significant improvement in concurrency over an implementation using read/write

locks, it does illustrate the use of the history of previous invocations, the current

operation's argument values and results, and the types of operations in determining

whether conflicts are created. This is in contrast to some other approaches that rely

only on the operation type and argument values to determine whether conflicts are

created [50].

A more significant improvement in concurrency happens when there is a large

balance. Again consider the withdraw operation but this time consider an olcay reply .

. Since an okay reply implies a decrement of the balance, the commitment of this

operation may invalidate the results of the foHowing kinds of operations:

1. a potentially subsequent read.balance operation, or
2. a potentially subsequent and successful withdraw operation9.

To avoid creating any conflicts, there must be no operations of either kind if an okay

reply is to be returned. The number of conflicts can be further reduced if we
recognize that potentially subsequent withdraw(x ') operations are permissible as

'

long as there is enough money to cover au the withdrawals. Or, more algorithmically,

9rhe result of an unsucc111ful withdraw operation witf not be invalidated becauae the newly arrived
withdraw operation wilt never increaae the blltmnce.

61

when the lowest balance under the possible combinations of serialization orders and

outcomes of the operations potentially prior to the withdraw(x ') operation (with this

operation included) is at least x '.

Again, in addition to preserving the validity of the previous results, we must also make

sure that the okay reply is valid before returning it to the withdraw operation.

Because an okay repty implies that the balance is at least x, It can be returned only

when the lowest balance under the possible combinations of serialization orders and

outcomes of the operations potentially prior to the withdraw operation is at least x.

The discussion above shows that a withdraw operation will not create any conflicts

as long as the balance is either large enough to accept the withdrawal or small

enough to refuse the withdrawal, despite any uncertainty created by concurrent

updates. When compared to an implementation that uses read/write locks, it

represents a significant improvement on concurrency.

The withdraw operation is representative of a large class of operations that can avoid

the creation of conflicts moat, but not all, of the time. Whether a conflict is actually

created depends on the state of the object. The state of the object includes not only

what other concurrent operations are being executed, but also all previous

committed operations.

We will not discuss the conflicts that will be generated by a deposit operation, except

to note that because there is only one possible result (ol<ay), which is defined for all

input states, this result is always valid. However, deposit may still create conflicts

because it mutates the state of the account and so it May affect the validity of other

results. In Chapter 4 we will discuss how this bank account object may be

implemented practically. Two different implementations are shown in figures 4--4 and

4--5.

62

3.3 Deriving Conflict Conditions

In the previous section we illustrated, with the bank account object example, how

conflict conditions can be derived. In this section we will generalize from the bank

account example, and describe the process by which conflict conditions can be

derived from the serial specification of any abstract object. As will be seen in

Chapter 4, deriving these conflict conditions is an essential component of an actual

implementation.

In general, a conflict condition depends on the type of a transition. For example,

different conditions are required for a withdraw operation to reply with an okay or

insuff icient_funds response. A conflict is created for an operation if every possible

transition of that operation creates a conflict. For each transition, the process of

deriving the conflict condition can be expressed conceptually as follows:

1. Based on how the abstract state is mutated by the transition, determine
the set of potentially subsequent operations in the history of the object
whose results may be invalidated. For a transition that only observes the
abstract state; such as a withdraw _x_tnauf transition, the set Is empty.
For a withdraw _x_okay transition, the set includes any potentially
subsequent read.balance operations and ·other successful withdraw
operations.

2. Derive the condition c 1 under which the results of the set of operations
discussed in item 1, if the set is not empty, will remain valid with every
possible combination of serialization order and· outcomes of their
potentiaJly prior operations. For exampfe, in order to return okay to a
withdraw(x) operation, thel'.e must not be any potentially subsequent
read.balance operations, and, if there are any potentially subsequent
successful withdraw(x ') operations, the lowest balance under the
possible combinations of serialization order and . outcomes of the
operations potentially prior to the withdraw(x ') operation (with this
withdrawal included) should be at least x '.

3. Based on how the abstract state is mutated by other operations,
determine the set of potentiaJly prior operations whole· outcomes or
serialization order may affect the result to thia traneition. For example,
the set is empty for a depoalt_x~ok•Y transition because the deposit
operation can only return okay. For a withdraw _x_okay transition, the
set includes all deposit and successful withdraw operations that are

63

tentative and potentially prior to this transition, or that can be either prior
or subsequent to this transition.

4. Derive the condition c2 under which the result of this transition will
remain valid with every possible combination of serialization order and
outcomes of the set of operations discussed in item 3 (if the set is not
empty). For example, in order for an okay reply of a withdraw_x_okay
transition to be valid, the lowest balance under the possible
combinations of serialization order and outcomes of the operations
potentially prior to this transition should be at least x. This lowest
possible balance can be calculated by assuming that all the potentially
prior tentative deposit operations are either aborted or serialized after
this transition, and all the potentially prior and tentative successful
withdraw operations are committed and serialized before this transition.

5. The result of this transition can be generated without creating any
conflicts if the condition (c 1 and c2) is satisfied.

The result of following the process above is a conflict condition, - (c 1 and c2). The

conflict condition can be used as an indication of the concurrency that can be

achieved with the particular functionality assumed in the process.

The process described above can be simplified considerably when the concurrency

control algorithm is specified. For example, with a timestamp algorithm, there is only

one possible serialization order. It is not poesible for an incoming operation to be.

both potentially prior and subsequent to another operation.

3.4 Increasing Concurrency

In the last two sections we deacribed how conflict conditipn_s can be derived based

on the serial specification of an object and how the semantics of an application can

be used to increase the concurrency of a system. By relaxing a serial specification,

or more precisely, by increasing the set of acceptable transition sequences, conflicts

become less likely to ariae and concurrency is lncrealed. The same idea has been

suggested by Liskov and Weihl in [33). This section uaes several examples to

illustrate this trade-off between functionality and concurrency. We hope to convince

64

the reader of the usefulness of the trade-off. In Chapter 6 we will take a more formal

approach to show the power of our atomicity definition. We will show that our

atomicity definition is at least as powerful as other correctness definitions [50, 38]

that had abandoned atomicity. The same gain in concurrency through the use of

these correctness definitions can be achieved through trading off functionality in our

atomicity definition.

There are several interesting classes of situations in which the semantics of an

application can be changed to increase concurrency while the new semantics

remains useful. The following list is not intended to be exhaustive, but rather serves

to illustrate some interesting ways in which semantics can be changed.

3.4.1 Reducing Precision of Numerical Results

In one class, the precision of a nume~ result is reduced to allow for more

concurrency. For example, a bank account object can provide an operation

lower.bound.balance that does not take any argument and returns a value that is a

lower bound for the balance. The following can be added to the state machine in

figure 3· 1 on page 54.

Ti: <lower.bound.balanceO, r1, aXx, r1, a> = lbalance_x
N1(s, lbalance_xl = a If a~x ·

By returning the lowest balance under all possible combinations of serialization

orders and operation outcomes, the result is valid yet never create any conflicts.

Note that the increase in concurrency is "two-way." Not only does

lower_bound_balance never create a conflict, but a deposit operation invoked

afterwards will also avoid creating any conflict due to the possibility that it may be

serialized -before the lower~bound~balance operation.10 Although the result to

lower_bound_balance is not exact, it may be useful when the caller is using it as an

estimate.

1~. it is possible for a withdraw operation invoked afterwards to create a conflict due to the
lower.bound.balance opei'ation.

65

Similar operations that increase the concurrency of the account object are

upper_bound_batance, balance_range (which returns the upper and lower bounds),

and approximate_balance, which takes a fraction as an argument and returns a value

guaranteed to be within a range of the balance determined by the fraction.

T1: <approximate_balance(p), r1, axx, r 1, a> = abalance_p_x
N1(s, abalance_p_x) = s if s*(1-p) s; x S s•(1 + p)

Consider another example in which an application is implementing a distributed

ticketing agent. A fixed number of tickets is divided among several sites for

availability reasons. Each site can sell tickets from its allotment. Occasionally, a

computation may be started by one of the sites to record the number of tickets left in

other sites and re-distribute the tickets. Suppose we regard each site as a ticket

account, supplying operations identical to those of the bank account defined in

figure 3-1. The "balance" of the account represents the numbers of tickets un~d in

the allotment in this site. Re-distributing the tickets would involve two .phases: in the

first phase, read_balance operations are invoked at each of the sites; in the second

phase, based on the values returned by the read.balance operations, deposit and

withdraw operations will be invoked at the appropriate sites. The entire computation

can be aborted if one or more of the withdraw operations returns insufficient_tunds

(more accurately, insufficlent_tickets).

· One of the problems of this implementation is that the semantics of the read.balance

operation may prove to be too restricti"8. ~ are prevented from being sold

while the re-distribution is proceeding becaU89 aelting a ticket involves invoking

withdraw(1), which may create a conflict with a patentially subsequent read.balance

operation. Concurrency can be Improved if the value returned by read.balance is

treated as a hint. Although the withdraw operations in a re-distribution computation

may find the actual number of tickets available for re-distribution is not the same as

that claimed in the hint, correctness is not comproma.d. A re-distribution

computation, can always be aborted. In fact. the two phaaea · of the re-distribution

computation ~ be aeparated into two computations.· However, it- may become

66

counterproductive if the hint loses too much of its accuracy. A more appropriate

strategy is to keep the two phases in the same computation but use the

approximate_balance operation in the first phase to record the tickets left in each site.

Approximate_balance allows other update operations to proceed concurrently. On

the other hand, it sets a limit on the imprecision of the result returned so that in most

cases tickets are re-distributed "reasonably."

3.4.2 Conditional Operations

Another interesting class of situations in which the semantics of an application can

be relaxed to increase concurrency involves "conditional" operations. Consider a

change_meeting_ptace operation for the personal calendar object described in

section 1.2.1. The change_meeting_place operation takes two arguments, a unique

identifier of a meeting and a new place for the meeting. If it finds the meeting in the

calendar, it changes the place of the meeting and returns ol<ay. Otherwise, it returns

no.such.meeting. A portion of an informal definition of the state machine defining the

serial specification for the calendar object is as foHows:

T1: <change_meeting_place(m, p), r1, aXokay, r1, a> = change_place_m_p_okay
<change_meeting_place(m, p), r1, aXno_such .. meetlng, r1, a>

• change_place_m_p_none

N1(a, change_place_m_p_okay) = s' ifs contains the meeting m and a' = a
except that the place of m is changed to p

. N1(s, change_place_m_p_none) = a if a does not contain the meeting m

A global_change_meeting_place computation invokes a change_meeting_place

operation at each of the participants of a meeting. The problem with the semantics of

change_meeting_place is that if a global_change_meetingplace computation is started

before the corresponding set_up_meeting computation is committed, their operations

may arrive at different· calendars in different orders and conflicts may be created.11

11 The motivation for executing the set_up_meeting and atobet_ch•noe.meetlng.J)lac• computations
concurrently ia that at leeat thoee ~.participenta can be lrlformed of the place change• earty
as possible. We 8ll8Ufn8 that a participant can obMne a tentative tet_up_meeting computation Uling the
non-deterministic read.calend•r operationa deeCribed in a,..., 1.

The conflicts are created because the result to a change.;.meetingplace operation

depends on whether the meeting exists in the calendar. Restarts may be needed to

resolve these conflicts. The problem can be avoided with the semantics of

change_meetingplace modified to the following:

Ti: <change_meeting_place(m, p), r1, aXokay, r1, a> = change_place_m_p_okay
N1(s, change_place_m_p_okay) = s' if s contains the meeting m and a = a'

except the place of m is changed to p
s if a does not contain the meeting m

The new semantics implies that change_meetingplace wiH change the meeting place

to the new pjace if the meeting is in the calendar and return okay. Otherwise, no

changes are made but okay is still returned.

With the new semantics, the mark and change_meetingplace operations from two

computations can be exeeuted in different ... orders in different calendars. No conflicts

will be created. The only problem left is to make sure that set_up_meeting is serialized

before globa/_change_meetingplace. It can be accomplished with, for example, the

assignment of appropriate timestamps in a timestamp algorithm.

In this example, the change_meetingplace operation becomes "conditional"

because whether it makes any changes to the state depends on whether the meeting

exists. The reply okay does not indicate one way or another. A similar semantics can

be used for a cancel_meeting operation to reduce conflicts.

A similar but slightly different class of situations can be illustrated by the withdraw

operation in a bank account object. OriginaHy, we have:

N1(s, wlthdraw_xJnauf) = a If a< x

However, by changing the specification to:

N11a, ~lthdraw _xJnauf) • a

a withdraw operation can return insufticient_tunds whenever there is a possible

combination of serialization order and operation outcomes that would lead to

insufficient funds for the withdraw operation. Conflicts due to other withdraw or

deposit operations ~ minimized.

68

One can argue that a semantics similar to the more relaxed withdraw_x_insuf

transition above is necessary for a make_reservation operation in an airline

reservation object. The semantics is acceptable because most computations that

invoke make_reservation operations would probably not expect a reply of

insufficient_tickets to indicate that there are "absolutely" no tickets left. An airlihe

reservation object cannot afford to be blocked for other reservation operations

because a computation that had made a reservation is tentative. A computation may

last an arbitrarily long period of time, especially when some objects in the system are

unreliable. The application would rather tum away customers when·· it Is not

absolutely sure that there is a ticket to be sold.12

3.4.3 Discussion

A trade-off between precision and concurrency exists in all these examples.

Normally, if there are no communication problems and all computati~ns are short, it

. is probably not worthwhile to sacrifice the precision of the result in exchange for the

concurrency. However, concurrency becomes a much more serious concern in a

system with long atomic computations. The examples illustrate that there are many

. interesting situations in which an application would be willing to exchange the

precision for the extra concurrency.

Our approach of relaxing the semantics of the application is not without problems.

For instance, an implementation of lower _boundj)alance that always returns zero is a

correct implementation as zero is always a valid result. However, it is not very useful.

To eliminate this type of behavior, we need to impoee additional constraints on the

implementation. In this particular example, we need to assert, in addition to the

requirements in the serial specification, that there must be a serial history sh

consistent with the local knowledge of the account object, such that the result

retumed by lower_bound_balance is not smaller than the balance generated by

12The fact that atrlinea overbook their flights does not change our. arguments since there ia a limit on
how much overbooking is allowed.

69

executing operations in the order of sh. In other words, an implementation should

only return x when xis a "possible" balance.

Similarly, to eliminate uninteresting implementations that return insufficient_tunds to

a withdraw(x) operation unnecessarily, we assert that ·there must be a serial history

sh consistent with the local knowledge of the account object, such that x is larger

than the balance generated by executing operations in the order of ah.

3.5 Summary

In this chapter we described a conflict model, which aUows conflict conditions to be

derived from the serial specification of an object. We argued that the conflict
,.,,,,.~

conditions are useful indications of the concurrency level of an implementation of

that object due to the masking of the underlying concurrency control algorithms.

Based on the conflict conditions, a programmer can determine the appropriate trade

off between the functionality and concurrency of an application.

70

Chapter Four

Implementing Atomic Objects

In the last chapter we focused on the functionality of abstract objects. We described

how the semantics expressed in the serial specifications of abstract objects can be

used to increase concurrency over an implementation that uses read/write locks and

2-phase locking. We discussed how functionality can be traded off for concurrency.

In this chapter we will describe how abstract objects can be implemented with a

concurrency level approximating that of the idealized jmplementation in the last

chapter.

Like the idealized implementation described in the last chapter, the implementations

described in this chapter are object-oriented. To guarantee that computations

execute atomicaUy, we ensure that each of the abstract objects accessed by a

computation behaves atomically 13• We call an -object that behaves atomically an

atomic object. The advantage of an object-oriented implementation is its modularity.

When changes are made in the implementation of an atomic object, other program

modules are not affected as long as the serial specification of the object remains

unchanged.

A simple way to implement atomic objects is to build them from smaller atomic

objects. For example, Argus [31] supports atomic records and atomic arrays. These

objects are equipped with read/write locks and follow a 2-phase locking protocol.

Their recoverability is implemented using some logging or shadow mechanisms.

Because these "system-level" atomic objects provide the necessary synchronization

13Aeca11 that ., object that bahavea atomically guaranteea that the committed events involving iblelf,
after being rearranged 8ccording to the aeriaHzation order, wilt be an acceptabae transition aequenc:e
according to the obieCt'a 88rial apecification.

71

--------- -- --

and recovery, the implementation of abstract atomic objects on top of them can

ignore any concurrency or failures in the system. Unfortunately, as we have

illustrated in previous chapters, using these system-level atomic objects fails to take

advantage of the semantics of an application. The resulting concurrency level is too

low for a system with tong computations. So in this chapter we will explore how

abstract atomic objects can be implemented from objects that do not mask the

underlying concurrency and failures.

There are three goals in this chapter. First, we will introduce programming

paradigms that allow abstract atomic objects to be constructed easily. These

paradigms should not only simplify application programming, but also help the

programmer to convince himself of the correctness of the implementations. The

simplicity of an implementation is an important consideration because subtle

programming errors can be introduced easily, especially when the complexity of an

implementation increases with the desire to increase concurrency.

Second, our implementations should maximize concurrency while maintaining

reasonable performance in terms of the computing needed to execute an operation.

The performance requirements of our implementations are not as stringent as in

some real-time applications. Comparing long computations and short computations,

the former are not as sensitive to increases in execution time as the latter.

Third, the programming interface and programming paradigms used in this chapter

should make the underlying concurrency control algorithm transparent. Either a

timestamp algorithm or a locking algorithm, or maybe some other algorithms, could

be used to determine the serialization order and the actions to take when conflicts

arise. The motivation for this transparency is that a programmer can implement

atomic objects without having to learn different concurrency control algorithms.

Another motivation is that the programs written are portable when the underlying

concurrency control algorithm changes. Implicit in this goal is the belief that

different systems may use different concurrency control algorithms. We will justify

72

this belief in Chapter 5.

This chapter is structured in the following way. First, we present an overview of our

programming paradigms in section 4.1. For the next few sections (4.2 to 4.5) we

discuss individual aspects of our paradigms in more detail and provide motivation for

them. Section 4.6 presents some program examples illustrating our paradigms. To

illustrate that there is enough flexibility in our paradigms to optimize an -

implementation, we discuss some of the trade-offs of different implementation

techniques in section 4. 7.

4.1 Overview of Implementation Paradigms

When the underlying concurrency and failures are not masked, two issues have to be

addressed: synchronization and recovery. - The implementations described in this

chapter follow the structure of the idealized implementation in the last chapter

closely. To simplify synchronization and recovery, we divide them into two levels. At

the lower level, concurrent activities at an atomic object are executed such that they

appear to be instantaneous. Candidates for such activities are the processing of an

invocation request, or the processing of a message that conveys the outcome of a

computation. At the higher level, the execution of an atomic computation is viewed

as the execution of a collection of these instantaneous activities. Since the

collection of instantaneous activities of two atomic computations can interleave with

each other arbitrarily, synchronization is needed before processing a new invocation

request. An operation can only proceed when no conflicts are created. Recovery is

implemented by compensating activities when an object is Informed of the abort of a

computation.

4.1.1 Lower-Level Synchronization and Recovery

In section 4.2, we will dlScuss the lower·lev4tl synchronization and recovery: how to

make the concurTent activities at an atomic object appe• to be instantaneous. An

obvious solution is to apply the concept of atomicity again. Two kinds of atomic

73

computations can be used in an implementation. The first kind of atomic

computations are the one that we have been discussing in previous chapters. They

invoke operations on atomic objects and can last a long time. The second kind of

atomic computations are used to make the concurrent activities at an atomic object

appear to be instantaneous to one another. They are usually much shorter because

these activities are usually small portions of an atomic computation of the first kind.

To distinguish the two kinds of atomicity, we call them global atomicity for the long

atomic computations of the first kind, and local atomicity for the short atomic

computations of the second kind. The serialization order that the locally atomic

computations appear to be executing in bears no relationship to that of the globally

atomic computations. A localty atomic computation can also be committed before

the long globally atomic computation that it is executed in is committed. Globally

atomic computations appear to execute in a global serialization order and locally

atomic computations in a local serialization order.

Since our model of a computation is a sequence of operation invocations at various

objects, we are essentially implementing a long globally atomic computation with a

collection of short locally atomic computations. In Chapters 2 and 3 we described

how computations can be made atomic by accessing only atomic objects.

Corresponding to the two kinds of atomic computations are two kinds of atomic

objects: globally atomic objects and locally atomic objects. A different way to

understand our implementations is that we are implementing the globally atomic

objects with locally atomic ones.

An analogy can be drawn with the two level of objects in System R [14]. In System R,

a page object is locally atomic in the sense that the page locks and recovery

mechanisms make the RSS actions (e.g., an operation on an Index object, which iS a

globally atomic object) appear to be atomic to one another. However, since page

locks are released at the end of an RSS action, a page object is not globally atomic

and a higher level of synchronization and recovery is needed on top of the lower level

74

.of synchronization and recovery provided by the page· locks and recovery

mechanisms.

4.1.2 Higher-Level Synchronization

In section 4.3 we discuss how the higher-level synchronization is implemented.

Given that each operation on a globally atomic object is executed as a locally atomic

computation, there is still the task of determining whether a conflict is created with

each new operation invocation. In order to determine when conflicts are created,

each globally atomic object encodes a history of the operations invoked and the

results returned at that object. When a new invocation request arrives, the locally

atomic history object is examined to determine whether a conflict is creat~. If no

conflict is created, a result is returned and the transition 14 corresponding to the

operation and its result is added to the history object. Otherwise, a conflict is created

and must be resolved.

A history object captures the transitions that have been executed at a globally atomic

object. The important operations of the history objects are operations to insert a

transition, delete a transition, enumerate transitions, and update the status of a

transition, which indicates whether the globally atomic computation invoking that

transition is committed or tentative. Each operation invoked on a globally atomic

object will insert a transition into the history object associated with the globally

atomic object. To prevent a history object from growing indefinitely, committed

transitions are deleted periodically and "merged" into a more compact

representation. When transitions are enumerated from a history object, they can be

filtered by their status or the type of operation and results. The caller of the

enumerate operation can also supply another transition t and a condition c (e.g.,

"potentially subsequent according to the global serialization order") such that only

transitions that satisfy c with respect tot will be returned. The words "potentially"

14Reca11 that a transition i8 a pair of invoke and return evenla.

75

and "definitely" capture the local knowledge on the global serialization order. With

the use of the history objects and other locally atomic objects, an operation can

determine what other operations have been executed at the globally atomic object

and the possible combinations of serialization orders and operation outcomes. We

will describe the implementation of these history objects in more detail in section

4.3 and Chapter 5.

4.1.3 Higher-Level Recovery

In section 4.4 we discuss how the higher-level recovery is implemented. When locally

atomic objects are used to implement globally atomic objects, locally atomic

computations are committed before the corresponding globally atomic computation

is completed. The effects of the operations invoked on the locatly atomic objects

have to be explicitly undone when the globally atomic computation is aborted. The

combined effects of the original operations and the compensating operations should

make the globally atomic objects appear to be failure atomic.

We introduce two recovery paradigms in section 4.4. These paradigms are stylized

approaches to performing recovery for globally atomic objects implemented with

locally atomic objects. Their goal is to simplify the writing of application-dependent

recovery code. Simpler code makes it easier to convince ourselves that an

implementation is correct.

In the first paradigm, only one mutator operation is performed on locally atomic

objects during an operation on a globally atomic object: inserting a transition into

the locally atomic history object. When the globally atomic computation containing

the operation is committed, the transition can be used to determine other mutator

operations to be performed on other locally atomic objects in the representation of

the globally atomic object. This type of processing after the globally atomic

computation is committed is called commit processing. In that sense, the history

object serves as an intentions list. When the globally atomic computation is aborted,

the only compensating activity needed is to delete the transition from the history

76

object.

In the second paradigm, arbitrary operations can be invoked on the locally atomic

objects. Here, the goal is to minimize the work that needs to be done when the

globally atomic computation is committed. An undo operation is associated with

each of the tentative operations on a globally atomic object. The undo operation is
-

invoked when the tentative operation is aborted. The undo operation invokes

compensating operations on the underlying locally atomic objects. The history

object is a natural place to store names of the undo operations and their arguments.

In this case, the history object serves as an undo log.

4.2 Global Atomicity and Local Atomicity

The separation of synchronization and recovery into two levels allows division of

labor and greatly simplifies the task of programming application-dependent

synchronization and recovery. By limiting the higher-level synchronization to happen

at operation boundaries, each globally atomic computation will observe only a limited

set of well-defined interinediate states of another computation. Similarly, higher-level

recovery is simplified because the compensating activities, which can be executed as

locally atomic computations, start with a limited set of well-defined intermediate

states.

This section describes the idea of having two kinds of atomic objects in more detail.

We will describe how locally atomic objects can be implemented and compare our

paradigm of implementing globaUy atomic objects using locally atomic objects with

related work.

4.2.1 Definitions of Global Atomicity and Local Atomicity

With the introduction of the distinction between global atomicity and local atomicity,

we have separated the objects in a system into globally atomic objects and locally

atomic objects. Recall·that in Chapter 2 we have defined a history to be atomic If it is

77

· equivalent to an acceptable serial history. We have defined a serial history sh to be

acceptable if, by partitioning sh according to the object with which an event is

associated, .each of the sub-histories is an acceptable transition sequence according

to the serial specification of the object associated with·that sub-history. The same

definition can be used to define local atomicity if we limit our attention to locally

atomic objects.

A history is globally atomic if it is equivalent to an acceptable globally serial history.

A globally serial history is a history in which the events are rearranged according to a

linearization of the globally atomic computations. A globally serial history sh is

acceptable if, by partitioning sh according to the globally atomic object with which

an event is associated, each of the sub-histories is an acceptable transition sequence

according to the serial specification of the globally atomic object associated with that

sub-history. Local atomicity can be defined analogousty using the concept of a

locally serial history in which events are rearranged according to a Unearization of

the locally atomic computations. Notice that there is a local serialization order and a

global serialization order. The behavior of the locally atomic objects is not

necessarily valid according to the global serialization order.

4.2.2 Implementing Locally Atomic Computation•

We assume that a programmer can declare the boundaries of locally and globally

atomic computations. An access to a globally (locattY) atomic object should always

be enclosed in a globally (locally) atomic computation. Typically, a locally atomic

computation is a small portion of a globally atomic computation and should last only

a short time (e.g. executing an operation on a globally atomic object). A globally

atomic computation can contain several locally atomic computations. A locally

atomic computation is committed when it terminates successfully. The locally atomic

computation remains committed even though the globally atomic computation that

contains it may be aborted later. Notice that giwm the same aerial specification, the

concurrency of a locally atomic object is potentially much higher than a globa~ly

78

atomic object because of the shorter locally atomic computations. If a locking

algorithm are used to implement an atomic object, a shorter computation allows

locks to be released sooner.

Locally atomic objects can be implemented using a traditional concurrency control

algorithm and recovery mechanisms based on read/write semantics [17). With such

an implementation, it is in general inappropriate to access a locally atomic object in a

long locally atomic computation. The concurrency of the implementations described

in this chapter depends on the use of short locally atomic computations.

Alternatively, the same implementation paradigm described in this chapter can be

used to implement the locally atomic objects as well as the globally atomic objects. A

multiple-level atomicity model can be extended easily from the current dichotomy of

global atomicity and local atomicity. In section 4.7.2 we will explore the situations in

which the generality of multiple-level atomicity is needed.

In order for the effects of an atomic computation to remain permanent, the updates

made by the computation have to be stored into stable memory when the

computation commits. Afterwards, the updates will survive site crashes. If accessing

stable memory is expensive, the cost of implementing each operation to a globally

atomic object with a locally atomic computation may become prohibitive.

To avoid the cost of accessing stable memory every time a locally atomic

computation is committed, we can make use of the fact that locally atomic

computations are not invoked directly by human users. Consequently, the changes

made by a locally atomic computation a do not have to be stored in stable memory

until the globally atomic computation that contains a commits, or until other locally

atomic computations store their changes in stable memory. The latter condition is

needed because other locally atomic computations may have observed the effects of

a. Since these other locally atomic computations can alao delay their access to the

stable memory, all the accesses due to the commitments of locally atomic

computations can be piggybacked on a single access when some globally atomic

79

computation commits. The details of how a distributed computation coordinates its

. accesses to stable memory in different sites will be discussed in section 5.4.

4.2.3 Related Work

The same idea of having multiple levels of atomicity has been suggested by Beeri et

al. in [5] and Moss et al. in (42). The difference between our work and theirs lies in

how synchronization and recovery is performed. To implement serializability, Moss

proposes a conflict-based locking mechanism: locks to the level 1-1 objects are

released when the level I operation that accessed them is finished. However, a lock

at level I is retained so that conflicting level I operations are delayed. In [42) the

conditions under which "simple aborts" exists are also derived: recovery of a level I

object can be achieved by simply omitting the effects of the operations on the level

I· 1 objects. The conditions require that no conflicting level I· 1 operations have been

executed by other level I operations.

Weihl (55] describes how atomic objects can be built with other smaller atomic

objects and mutex objects. Mutex objectS behave like monitors [21). Programs can

acquire and release mutex objects to achieve mutu81 exclusion. The activities

performed while the mutex lock is held are serialized as a result. The mutex objects

can be viewed as a simple way to implement local atomicity.

4.3 Synchronization

Since locally atomic computations might not be serialized in the global serialization

order, a higher level of synchronization is needed so that the behavior of a globally

atomic object appears to be globally atomic. Our approach to the higher-level

synchronization is to capture sufficient information of the history of events generated

at a globally atomic object using history objects. so that it can be used to determine

whether conflicts are created. Since all the relevant local Information in our atomicity

definition is being captured by these history objects, our approach is "complete" in

the sense that unnecessary conflicts need not be created except when there is a lack ·

80

of global or future knowledge.

In [55] the state of an atomic object is encoded with smaller atomic objects and

monitor-like mutex objects. By encoding enough information in these objects, an

incoming operation can determine whether conflicts are created and delaying is

necessary. It is up to each application to determine how the state is to be encoded.

To simplify programming, we have provided a more stylized approach of using history

objects for the same purpose.

In general we can expect our programs that handle an invocation request to follow

the following pattern:

1f cond1tion1 then
1f cond1t1on2 then

1f cond1tionl then
resolve conflict

.
• • • I

.
• • • I

insert tt into history: return result! end
insert t2 into history: return result2 end

insert tN into history: return reaultN end

In the expressions conditioni the program determines whether certain transitions

can be generated without creating any conflicts. If an operation can proceed

immediately, a valid result is determined from the history object and other objects. A

transition for this operation can be inserted into the history object to be examined by

later operations before returning the result. If none of the condition i's are satisfied,

a conflict is created and must be resolved. In the rest of this section we will first

discuss the operations provided by a history object that ptays an important role in the

programming of the cond1t1on1 expressions. Then we will discuss· the resolve

confl i ct statement.

4.3. 1 History Objects

Figure 4-1 describes an informal specification of the interface of a history object. To

avoid a lengthy digression describing all the operations supported by a history

object, figure 4-1 is only a partial list and preeents only the operations relevant to our

approach of higher-level synchronization. We will continue our description of history

operations in section 4.5.1.

81

A history object can be pictured as a tree of transition objects. These transition

objects correspond to the different types of transitions in a serial specification. The

order of the transitions in the tree is determined by their global serialization order. A

tree instead of a linear list is used because a history object may not have complete

knowledge of the serialization order. We will not discuss the transition objects in this

section. A informal specification of their interface will be presented in section 4.5.2.

p_sub • proctdure(h: history. t: transition) returns(history)
X returns the largest sub-history of h in which all the transitions
I are potentially subsequent to t.

p_prior • procedure(h: history. t: transition) returns(h1story)
X returns the largest sub-history of h in which all the transitions
X are potentially prior to t.

d_suh • procedure(h: history. t: transition) returns(history)
X returns a sub-history of h in which all the transitions are
X definitely subsequent to t.

d_prior • procedure(h: history. t: transition) returns(history)
X returns a sub-history of h in which all the transitions are
X definitely prior to t.

p_between • procedure(h: history, tt. t2: transition) returns(history)
X returns a sub-history of h 1n which all the transitions are
I potentially subsequent to t1 and potentially prior to t2.

d_between • procedure(h: history, t1, t2: transition) returns(history)
I returns a sub-history of h in which all the transitions are
X definitely subsequent to t1 and definitely prior to t2.

Figure 4-1 :Interface of a History Object

4.3.1.1 Masking Concurrency Control Algorlthma

In order to mask the concurrency control algorithm used underneath the

programming interface. we follow the conflict model described in section 3. 1. We

assume that each history object has some knowledge of operation outcomes and the

global serialization order determined by the concurrency control algorithm

underneath. The operations p_sub, d_sub, pprior, dprlor, p_between, d_between

supported by a history object reflect the view. For example, p_sub takes a history

82

object as its first argument and a transition object as its second argument, and

returns the sub-history in which the transitions are serialized potentially before the

argument transition. How the transitions in the sub-history are ordered is again

determined by the global seriaJization order. The uncertainty about operation

outcomes can be reflected with an attribute on the transition objects, which are

either committed or tentative. Aborted transitions will be deleted from a history

object. We will describe the use of this attribute in sections 4.5.2 and 4.5.3.

These P. and d. operations can be implemented and optimized rather

straightforwardly given the underlying concurrency control algorithm. For example,

if the global serialization order is determined by timestamps assigned at the

beginning of a globally atomic computation, the tree in which the transition objects

are arranged degenerates to an ordered list, since the global serialization order is

known when an operation on an globally atomic object is invoked. There is also no

difference between the d_ and P. operations. A different implementation is required

for a concurrency control algorithm in which the global serialization order is

determined in a way similar to 2-phase locking. We will defer our discussion of

concurrency control algorithms and how these history operations can be

implemented until Chapter 5. Note that an implementation for these operations does

not necessarily have to copy the history object. A lazy evaluation scheme can be

used to enumerate the transitions in the returned history object without changing the

semantics of the operations.

With the p_ and d. operations to capture the global serialization order relationship

among the transitions In a history object, the concurrency control algorithm used by

the system becomes transparent to the application programmers. Although

application-dependent synchronization is needed In an implementation, the

programmer does not have to be aware of the choice of concurrency control

algorithm made by the system. This transparency is the primary characteristic that

distinguishes our proposal from alf previous ones that involve application-dependent

synchronization.

83

4.3.1.2 Advantages and Disadvantages of Transparency

There are both advantages and disadvantages of providing this transparency. There

are two advantages. First, programmers do not have to understand the details of

different concurrency control algorithms. The same conflict model can be used

during programming. Second, the application programs remain correct even when

the underlying concurrency control algorithm is changed. No program modification

is needed. One may question how often a concurrency control algorithm would

change underneath the application programs. A situation in which this may happen

is when application programs are ported, eepecially for "common" abstract objects

such as a FIFO-queue, a set, or some kind of table. Another possibility is for a system

to change its concurrency control algorithm in on:ter to combine with another system,

so that computations that span both systems can be executed.

One of the disadvantages of the transparency is its over-generality. Application

programs become more difficult to write than neceeaary. For example, given a

timestamp concurrency control algorithm, the serialization order is always known.

The difference between P. and d. disappears. Furthermore, the programmer does not

need to consider cases where a tranaitton Is both potentially subsequent and

potentially prior to another transition.

Another possible disadvantage· of the transparency is decreased efficiency. An

application program may require several paaaaa over a general history object to

determine whether a conflict Is created. On the other hand, because of the simpler

structure of a history ot>;ect when the concurrency control algorithm Is known, one

pass versions can be constructed more easily than when the concurrency control

algorithm is transparent.

Whether these disadvantages outweigh the advantages cannot be evaluated without

more experience implementing ab8tract atomic obieeta· On the other hand, it aeems

that without actual experience of the performance c:A different concurrency control

algorithms, a safer investment would be to emphasize pOrtability.

84

4.3.2 Resolving Conflicts

When an object decides that a conflict has been created: it must resolve the conflict.

Depending on the concurrency control algorithm, and why the conflict arises, the

range of actions that may be taken include delaying the current operation, restarting

the current computation, or making an assumption of the serialization order or some

other transition's outcome.

Ideally, a programming interface can provide a generic resolve conflict statement

which maintains the transparency of the concurrency control algorithm underneath.

An intelligent compiler or run-time system can generate code t~ determine the

actions to take, such as when to reschedule a request if delay is needed, or whether

to restart a computation or delay a request, or what assumptions to make. However,

supporting such a generic statement efficiently is difficult as conflict conditions can

be arbitrary expressions.

Depending on the concurrency control algorithm, simple--minded solutions can be

devised. For example, in some algorithms a request would be able to proceed given

that sufficient time has passed. In those algorithms, a simple solution is to

reschedule an invocation request periodically. For some other algorithms, in which

restarts and delays are the only two possible alternatives to resolve a conflict, the

more pessimistic restart can be chosen whenever delays do not guarantee eventual

. progress. For algorithms that makes assumptions on operation outcomes and the

serialization order, different assumptions can be tried to determine whether they can

maintain a valid behavior given that those assumptions are correct.

The drawback of these simple-minded solutions is the loss of concurrency in the

form of unnecessary delays, spurious reschedules, unnecessary restarts, or

unnecessary assumptions. To provide a compromise between this loss of

concurrency and a complicated programming interface, we replace the resolve

conflict statement with a retry statement and require the programmers to specify

a proceed condition with a retry statement. The purpoee of the proceed conditions

85

is to provide a hint to the language system as to when conflicts would not be created.

The structure of the proceed conditions is required to obey a well-lormedness

requirement described below so that a proceed condition can be analyzed by the

language system. Based on the proceed conditions, the language system can

determine whether a delay would lead to eventual progress, when to reschedule, or

what assumptions to make.

A proceed condition is taken as a hint to the condition under which an invocation

request would be able to proceed. However, in order to guarantee that a request is

not delayed indefinitely, a proceed condition should be well-formed. A well-formed

proceed condition satisfies the following requirements:

1. The proceed condition should be satisfied if:

a. new operations are not started, and
b. all current operations in the system, except the one being

considered, are finalized and the outcomes are known by all
history objects, and

c. the operation being considered is serialized after all existing
transitions and the global serialization order among e~isting
transitions are known.

2. It is· not satisfied currently.

3. It is constructed with boolean operations and the operations provided by
the history objects.

The first two requirements guarantee that by analyzing a proceed condition, a

language implementation can discover the set of "events" that may cause the

proceed condition to become satisfied. In some concurrency control algorithms,

these events may correspond to the finalization of incomplete computations. In some
•

algorithms, the events may involve a restart of the computation that invokes the

current operation. The first requirement prevents situations in which the proceed

condition is too restrictive. If a proceed condition is too restrictive, the current

operation may never be rescheduled, or un~ restarts may be Initiated.

Application programmers should expect the language implementation to make better

decisions in determining how to resolve a conflict if the proceed condition is a closer

86

approximation of the negation of the conflict condition. The second requirement

prevents situations in which the proceed condition is already satisfied. If the proceed

condition is already satisfied, the language implementation may not be able to

determine the set of events that can cause the current operation to resolve the

conflict. In that case, the only alternative is busy-waiting in the form of constantly

rescheduling or constantly restarting. It is probably not the most desirable solution.

The third requirement restricts the structure of a proceed condition so that it can be

analyzed by the language implementation. In Chapter 5 we will describe how a

language implementation can use the proceed conditions to determine the actions

that need to be taken to resolve a conflict.

The retry statements are also paired with begin entry statements so that a

program that uses the retry statement has the following form:

begin entry
1f cond1t1on1 and

1f cond1t1on.I and
retry wh•naver c I c 11 a proceed condition

The semantics of the retry statement is to abort any work performed in the last retry

loop and retry from the matching begin entry statement. A retry might be attempted

after a certain delay, a computation restart, or the making of some assumptions. The

proceed condition c may or may not be satisfied when the loop is retried.

4.4 Recovery

When locally atomic objects are used to implement globally atomic objects, the

effects of a committed locally atomic computation have to be compensated explicitly

when the containing globally atomic computation aborts. This section describes how

these compensating activities can be programmaj. Similar ideas have been

proposed in (55, 38, 1). We will not present any compari&on since the purpose of this

section is merely to show that recovery paradigms compatible with the rest of our

implementation paradigm can be designed.

87

•

We will describe two different ,recovery paradigms in this section. One of them uses

the history objects as intentions lists and the other uses them as undo logs. The two

paradigms described in this section are not mutually exclusive methods; rather, they

represent two ends of a spectrum of possibilities. For example, an application may

use one paradigm for certain operations and the other paradigm for the other

operations. Depending on the type of an application, one paradigm may be more

efficient and/or convenient than the other.

In addition to performing compensating activities, it is also necessary to condense

the information contained in the history objects which would otherwise grow

indefinitely. We can condense the information contained In the transition objects

with a more compact representation after they are committed. How the compaction

is performed is related to the recovery paradigm.

4.4.1 Intentions Hat Paradigm

In the intentions list paradigm, the state of a globally atomic object is represented by

a collection of locally atomic objects (which will be called a snapshot) and a locally

atomic history object. The history object records the transitions of the operations

that have been invoked at the globalty atomic object. For committed transitions, the

application can specify a locally atomic computation which merges their effects into

the snapshot and deletes them from the history object. Aborted transitions can be

deleted without further action. This kind of commit processing can be viewed as

taking the processing "off.line" after the serialization order and the outcomes of the

transitions are known. To simplify the application, the committed transitions are

merged in the global serialization order. In other words, a committed transitions can

be merged only if there are no prior unmerged transitions in the history object.

When an operation is invoked on the globally atomic object, the snapshot and the

history object are examined to determine whether a conflict is created. If the

operation can proceed immediately, a valid result for the operation is also determined

from the snapshot and the history object. Before returning, the transition for this

88

operation is inserted into the history object. The accesses' to the snapshot and the

history object are executed in a locally atomic computation.

The intentions list paradigm minimizes the work performed when an operation on the

globally atomic object is aborted. If the operation is aborted before the locally atomic

computation is committed, changes to all the locally atomic objects will be undone. If

the operation is aborted afterwards, the only compensating activity needed is to

delete the corresponding transition from the history object. The deletion can be

executed as a short locally atomic computation.

Deleting transitions from the history object and merging them into the snapshot as

soon as they are committed may create a problem. Occasionally, a committed

transition may be needed in a history object to determine whether conflicts are

created for an incoming operation that can be serialized before it. Depending on the

concurrency control algorithm, committed transition may or may not be needed. In a

2-phase locking algorithm, a committed transition is never needed and a transition

can be deleted when it is merged. In a timestamp algorithm, a transition is useful in .

determining whether conflicts are generated when operations with older timestamps

are invoked. If committed transitions are deleted, incoming operations with older

timestamps must be refused.

A solution to this problem is to keep a sequence of pairs of snapshots and history

objects. Before deleting committed transitions from a history object and modifying

the snapshot, a copy of the history object and the snapshot can be kept. For an

incoming operation o, the appropriate pair of snapshot and history object that is the

most updated and yet contains all the transitions that may be serialized after o in the

history object can be chosen. A complication arises when inserting a transition.

Since the transition has to be inserted into all the history obj8ct versions, those that

have already deleted transitions prior to the transition being inserted have to be

discarded.

Since storage is limited, some of the pairs are also discarded when it becomes more

89

and more unlikely to have incoming operations that need to access the transitions in

those pairs. In a timestamp algorithm that assigns timestamps using a real-time

clock, transitions invoked by computations that are started before the currently

executing computations in a system can be discarded. Without global knowledge, a

transition can be deleted if it is estimated to be older than the currently executing

computations. If an older computation is still executing and access the history object

later, it has to be restarted. Notice that a language Implementation can make the

maintenance of a sequence of pairs of snapshot and history object transparent to the

programmer. It can also make the copying of history object and snapshot more

efficient by, for example, keeping one history object and having each history object

"version" be an index to this single history object.

4.4.2 Undo Log Paradigm

In the undo tog paradigm, the state of a globally atomic object is rep.resented by a

collection of locally atomic objects (which will be called a projection) and a locally

atomic history object. In this paradigm, instead of merging the committed transitions

during commit processing, the projection is mutated before an operation on the

globally atomic object returns. The transition for the operation is also inserted into

the history object. The projection should represent the correct abstract state

according to any globaJ serialization order in which the transitions in the history

object may be serialized, even though there may be many such orders. No extra

work is needed if all the tentative operations eventuatly commit. The accesaes to the

projection and the history object are executed in a locally atomic computation.

If an operation on the globally atomic object is aborted before the locally atomic

computation commits, changes made to the locally atomic objects will be undone.

No extra work from the application is necessary. If the operation is aborted after the

locally atomic computation is committed, the aborted transition will be deleted from

the history object and it will be "unmerged" from the projection with an undo

operation. The undo operation should compensate for the previous mutation of the

90

projection and preserve the failure atomicity of the globally atomic object. If two

operations are aborted because one of their common ancestor actions is aborted,

the undo operation of the operation serialized afterwards is invoked first. An undo

operation, along with its arguments, is specified by each operation on the globally

atomic object before the latter returns, and remembered in the transition in the

history object. The undo operation and the deletion of the transition from the history

object are executed in a locally atomic computation. The high-level synchronization

performed by an implementation, by guaranteeing that only atomic histories are

generated, ensures that this locally atomic computation does not encounter any

permanent failures. For example, the undo operation of a deposit operation in an

account object deducts the amount deposited from the projection. Since an

implementation should be prepared for the possibility of the deposit being aborted,

there is always enough funds in projection to cover the undo operation. Transient

failures that interrupt the undo operation, such as site crashes, can be masked by

retrying.

The projection and the history object will be used to determine a valid result that can . .

be returned to an operation Invoked at the globally atomic object, and to determine

whether conflicts are created. As will be discussed In section 4.7.1, the undo log

paradigm may be more efficient than the intentions list paradigm in some

applications. The comparison of the two recovery paradigms will be delayed until we
· have presented some example programs.

Two problems with the undo log paradigm prevent its applicability to general

applications. The first problem arises because the paradigm requires the projection

to be maintained such that it represents the correct abstract state according to any

global serialization order in which the transitions in the history object may be

serialized, even though there may be many such orders. For some applications, this

is not possible. For example, when the operations insert(i) and delete(/) are executed

on a set object, the correct projection state depends on the serialization order of the

two operations.

91

There are two possible solutions for this problem. One of them is to regard this

situation as the creation of a conflict. This is not ideal, as concurrency is decreased

unnecessarily. In the set example above, no conflicts are generated by the insert(;)

and delete(i) operations, since the only valid reply for both operations is okay, which

would remain valid regardless of the serialization order. Another possibility is to

allow the projection to be modified when the operation commits. This is also

undesirable because of the complexity introduced into the structure of the

projection.

The second problem arises because occasionally the projection and a history suffix

do not capture enough information on the entire history of previous invocations. For

example, suppose the projection is a locally atomic array object representing the

abstract state of a set object. Invoking an insert(e) operation causes e to be inserted

into the array. On the other hand, after inserting e from the array, we have lost the

information indicating whether e was in the array before the insert(e) operation was

invoked, unless the history object contains the transition for the last insert(e) or

delete(e) operation prior to this operation. This information is needed in case the

operation is aborted, and also to determine the result of a member(e) operation

serialized before the insert(e) operation. Selecting an undo operation based on the

state of the projection when the insert(e) operation is executed is not an adequate

solution either, since the state of the projection might be changed by other undo

operations.

As a remedy, we can delay the deletion of transitions from the history object, or add a

snapshot to the state. This raises the question of how transitions should be deleted

from the history object. A possibility is to declare all committed transitions which are

certain to be serialized before all other tentative transitions eligible for deletion.

However, this does not solve the problem described above. A more complicated

scheme in which the application makes the final decision over which transition is

deleted can be devised. However, It seems complicated and may add a significant

cost to accessing the history object.

92

The addition of a snapshot can be regarded as a combination of the two recovery

paradigms. Snapshots can be maintained as described in the last section. They can

also be derived more cheaply than described in the previous section by saving old

projections. After all the mutator operations that have been merged into the

projection are committed, the projection can be regarded as a snapshot.

A final possibility is to encode the necessary information in a more complicated way.

In the set example, we can associate an item in the array with a linked list of boolean

values. When a delete or insert operation is invoked/aborted, a boolean value can

be inserted/removed from the list. Boolean values at the beginning of the list can be

removed by a background process as long as there is a subsequent boolean value

inserted by a committed operation.

Despite these limitations and complications, the undo paradigm is still useful in many

applications which do not have "overwrite" operations. These overwrite operations,

such as insert(e) in a set object, have the characteristic that they destroy some

significant piece of information in the old state necessary for recovery. Without

"overwrite" operations, an operation can detemline all the· necessary Information

from the projection and the history object.

4.5 Programming Interface

This section describes some more programming constructs in order to present the

program examples in aection 4.6. However, this is not meant to be a language

proposal. There is a trade-off involved in introducing specialized constructs into a

language. While the. programs that motivate these constructs become more efficient

and easier to write, the language also becomea more complicated and specialized.

More detailed study is needed before deciding what linguistic constructs are

desirable.

93

4.5.1 History Objects Continued

The following is a continuation of the description of the operations provided by a

history object.

delete_first • procedura(h: history) returns(transition)
I returns the transition in h that is serialized before all other
I transitions and 1s co-itted. The transition returned is deleted
I fro• h.

match • iterator(h: history, t: t91tPlate) itarates(transition)
I iterates the transitions in h that .. tchas t.

exists • procedure(h: history, t: ·t .. plate,
p: proctype(tran1ition) returns(bool)) ~eturns(bool)

I returns true if there is a transition s in h 1uch that 1 •atches the
I template t and p(s) returns true. Otherwise false is returned.
I p 1s an optional arg.,..nt. If p is o11itt1d, only the teaplata t is
I used to filter transitions in h.

I The following operations are internal and invoked onl1 by the
I language sy1t•• i11Pl ... ntation that we will discuss.

insert • procedure(h: history, t: transition)
I inserts t into h. This operation is invoked by the language
I i11Ple .. ntation when an operation on a globally atot1ic object returns.

gat_transitions • iterator(h: history, a: action~id)
iterat11(transition1)

I iterates the transitions that are executed in a. · This operation is
I used by the language i11Pl ... ntation to search for transitions whose
I status should be updated when infor .. t1on about the outcOll8 of an
I action is received. we w111 not show the invocations of these
I operations in our progr ... in section 4.8. T_h• update of
I the status of a transition can be executed 1n a locally ato11ic
I ce>11putat1on.

In addition to the sub, prior, and between operations described in section 4.3.1, the

history objects also support an exists operation and a match operation which allow

for searching of particular transitions in a history object. The exists operation takes a

history object, a transition template, and a procedure as arguments. Transition

templates wiU be described in section 4.5.3. Both the transition template and the

procedure argument are used to filter the transitions in the history object. The

procedure in the procedure argument takes a transition as an argument and returns

a boolean. The exists operation also returns a boolean as its result. It returns true if

94

there is a transition in the argument history object that matches the template and true

is returned when the procedure argument is invoked with this transition. False is

returned otherwise.

In the example programs that we will present in section 4.6, we will in fact need a

closure rather than a procedure in most calls to exists. To allow closures to be

passed, the programmer can specify a multiple-argument procedure p:

p • procedure(arg1: T1, arg2: T2, •••• arg1: trana1t1on) returns{bool)

and the closure can be specified as p (a1 • a2 • • • • • -. .. 1) where a 1 is an object of

type T1·

4.5.2 Transition Objects

Figure 4-2 is an informal specification of the operations supported bY a transition

object. A transition object can be regarded as a type of record, with various

attributes.

get_arg1 • procedure(t: trans1t1on) return1(type_of _ar9t11)
I return the f1rat arg .. ent of th• operation repreaented by t.

I S1a11arly for get_arg2, get_arg3, ••• , get_resultt, •••

•atch • procedure(t: tran11t1on, t..,: teaplate) returna(bool)
I returns true 1f t utchea te11P. otherw1ae false 11 returned.

set_atatus • procedure(t: tran11t1on)
I aat th• status of t to be ca11a1tted.

sat_undo • procedure(t: trana1t1on, undo: proctype)
I r•••b•r• undo •• the undo operation of t.
I Th1s 11 needed only wlten th• undo recover1 parad1gll 11 used.

Figure 4·2:1nterface of a Transition Object

We assume that the language system supports abbreviations of the form:

15ro avoid cluttering our programs with exewive type information, we have abandoned etrict typing
here. However, lhia is not a wioua Ploblam • trwieition objeCta and hiatory obieCta can be
par'arneterized.

95

trans1t1onSget_argt(t) abbreviated as t.arg1
trans1t1onSset_undo(t, s) abbreviated as t.undo :• s

In our example programs, a procedure either returns normally or signals an

exception. We use a special keyword okay to represent the result of a transition

when no results are returned. The exception name is used as the result value when

an exception is signalled.

We also assume. that the language system supports a distinguished variable

th1s_trans1t1on. This variable can be regarded as the current transition being

executed. It can be implemented with· a value of the current action identifier which

allows comparison with other transitions to determine the relative global serialization

order. For example: h1storySp_1ub(h, th1s_trana1t1on) returns a history that

only has transitions that are potentially subsequent to the caller. We assume that a

program can execute

th11_tran11t1on.undo :• p

to indicate to the language system that the undo operation of the current transition is

p.

4.5.3 Template Objects

Template objects can be used to match against transitions and filter out irrelevant

transitions in a history object. When defining transition templates, programmers are

interested only in the status of a transition, the types of the operation and result, the

arguments, and the values of the results. We will ignore the action identifiers and

object identifiers of the transitions in the templates. For example, for the set object

defined in figure 2-2 on page 47, we assume that the language interpreter can parse

transition templates of the form:

co .. 1tted_ .. •b•r_x_true
committed transitions of the form <..-er(x)><true>.

tentat1ve_1nsert_x_okay
tentative transition of the form <1naer·t(x)><okay>.

96

Determining whether a transition is committed is slightly more complicated than one

would expect. Normally, one would expect an implementation of a transition object

to associate a status flag with a transition and determine the status accordingly. A

complication arises when an action currently executing belongs to the same

computation as some of the transitions in the history object. Since an operation may

expect to see the effects of other transitions in the same computation that are

definitely prior to and would not be aborted independently from itself, the set of

"co•1tted" transitions is defined to include these transitions also. Given that

another transition t is prior to the current operation o and belongs to the same

computation as o, and the names of the actions executing t an~ o are at and ao

respectively, determining whether t would abort independently from o can follow the

following algorithm:

1. If an ancestor of at (or at itself) and an ancestor of ao (or ao itself) are
parallel sibling actions, then t can be aborted independently from o,

2. otherwise it is not poaiible.

The action identifiers of at and ao can be used to determine the family relationship.

To avoid long template names in our programs, we assume that abbreviations can be

defined (e.g., 1 ns_x • 1nsert_x_okay). For similar reasons, we assume that

templates can be constructed from ·other templates using boolean operations. For

example, if a program defined successful_update • w1 thdraw_x_okay or

depos1t_x_okay, then a transition matches successful_update if it matches either

w1thdraw_x_okay or depo11t_x_okay. We also assume that templates with fixed

values in the transition arguments or results can be constructed. For example, if x is

an variable defined in a program, then 1nsert_x_otay defines a template that

matches any transition of an insert operation invoked with the object denoted by x.

4.5.4 Resource Managers

The program examples in this chapter are structured in modules called resource

managers, which are similar to the guardians in [30). In fact, many of the linguistic

constructs are copied from the Argus language described in [30).

97

At run time, an instance of a resource manager can be instantiated on a site. (In the

rest of this chapter, the term "resource manager" will be used to refer to an instance

of a resource manager and no distinction will be made.) Each resource manager can

be regarded as a virtual site in the system, with a name known by other resource

managers. We assume there are name servers (11, 45] which map resource manager

names to network addresses. The indirection allows a resource manager to be

·moved to a different physical site easily. . Multiple resource managers can be

instantiated on a single physical site.

A resource manager has associated with it a collection of procedures. These

procedures share some state, which only procedures from this resource manager

can access. A subset of these procedures are exported and can be called by

procedures outside the resource manager.

There are many possible ways in which top.level actions and sub-actions can be

declared. Since choosing the best way for these declarations is not relevant to the

ideas proposed in this thesis, we simply assume that all our example programs are

executed in some globally atomic computation. To insulate the caller of a procedure

from the site crashes at the resource manager invoked, we also assume that a sub

action surrounding the call would be created if the caller executes in a different

resource manager. We assume that the locally atomic computation boundaries are

defined by a begin entry • • . retry whenever c statement or a begin local

co•putation ••• end local C011Putationatatement.

The caller and callee of a procedure, if they are in different resource managers,

communicate using a remote procedure call (RPC) paradigm: the caller suspends

until the remote ·procedure returns. To facilitate the implementation of atomic

objects, we use a zero-or-once semantics: when the remote action returns, the action

invoked was executed exactly once; otherwise it is executed at most once. We

assume that the system will generate an exception to the application when a

response has not been received for a remote call after a system-defined timeout. In

98

Chapter 7 we will describe the measures that the application can take to handle these

communication failures. For the time being, we assume that the remote action will be

aborted.

Resource managers can be used to implement atomic objects. An object may be

implemented within a single resource manager, or with several resource managers.

Depending on the overhead of using a resource manager, an application may decide,

for example, to implement a single bank account with a resource manager, or many ·

accounts with a resource manager. Procedures in a resource manager can be used

to implement the operations on an object.

We assume that the objects used in our example programs are locally atomic unless

otherwise specified. Two kinds of locally atomic objects are used: history objects

and regular objects. Regular objects consist of the usual arra.r, record, ... 1 nt

types, which have the usual serial semantics expected for these types. .

For the time being, we assume each resource manager has a distinguished history

object called h11tory_suff1x. Several atomic objects implemented on the same

resource manager will share the same history objeot. To shorten our programs, we

also assume the distinguished history object is the first argument in a history

operation if it is not supplied. Transitions are Inserted into h1story_auff1x

automatically when an operation on a gtobally atomic object returns. When an action

is committed, the status of the transitions in h11tor.r_suff1x is updated ~

automatically. When an action is aborted, the aborted tranaitions in h1stor.r_suff1x

· are deleted automatically.

4.6 Program Examples

Figures 4-3 on page 100 and 4-4 on page 103 show two application programs. Agure

4-3 shows an implementation .of the set object of section 2.3.2 with the intentions list

paradigm. The implementation is parameterized by the type of the items in a set.

Three operations, insert, delete, and member, are supported. The. state.of the set is

99

I This example uses the intentions 11st parad1g11.

set[T] • resourca_managar 1s insert, delete, .. llber

I abbreviations for transition t .. plates
no_x • 11e•bar_x_falsa I <•ellber(x)><false>
yes_x • mellber_x_trua I <••ltb•r(x)><true>
dal_x • delate_x_okay I <dalete(x)><okay>
1ns_x • insert_x_okay I <insert(x)><okay>

par•anent state is
snapshot: array[T],
hist~ry_suffix: history

while true do I background process
begin local coaputation

end

t: transition :• history$delete_first()
if transitionlllatch(t, comittad_dal_x)

then .•• I re110va t.arg1 from snapshot
alseif transitionSliatch(t, c01111itted_ins_x)

then ••• I insert t.arg1 into snapsbot
end

and local computation

insert • procedure(x: T)
begin entry I begin local computation
if -historySexists(historySp_sub(this_transition), no_x,

not_changed(del_x))
then I insert this transition tnto htstory_suffix

return
end

I If no
I
I
I
I

< .. llbar(x)><false> transitions can be potentially
serialized·after th1s transition, or if there are but
the effect of thit transition is overwritten by another
COllllitted <dalet•(x)><oka7> transition, then this
operation can proceed and return.

retry whenever I and local COllPUtation
-historySexists(historylp_sub{thia_trans1t1on), no_x,

not_cbanted{del_x))
and insert

not_changed • procedure(op: template, t: transition) returns(bool)
raturn(-h1storySexists(h1atorySd_bet .. en(th1s_transition, t),

com1ttad..:,.,))
and not_changed

Figure 4·3:An Implementation of a Set RM with the lntentiOn List Paradigm

100

delete • procedure(x: T)
begin entry
1f -h1storySex1sts(h1storySp_sub(th1s_trans1t1on), ye1_x,

not_changed(1n1_x))
then I 1n1ert th1s trans1t1on 1nto h11tory_suffix

return
end

retry whenever -h11torySexists(h1storySp_sub(this_transit1on),
yea_x, not_changed(ina_x))

end delete

member • procedure(x: T) returns(bool)
beg1n entry
1f h11torySexi1ts(d_pr1or(thi1_tran1it1on), com11tted_del_x,

not_p_changed(1n1_x))

I
I
I
I

then I insert this transition into h1atory_suff1x
return(false)

end
If there 11 a ce>1111itted <delete(x)><okay> trans1t1on

ser1a11zed before this transition, and there are no
1nterven1ng <1nsert(x)><okay> transitions, then false
can be returned.

I The following three clau••• are 11•11ar.

if h1storySextats(d_pr1or(th1s_transit1on), co•1tt1d_in1_x,
not_p_changed(del_x))

then I insert this tran11t1on 1nto h11tory_1uff1x
return(true)

end

1f -historySexi1t1(historySp_prior(th11_tran1ition), in1_x)
and -array[T]Sllellber(snap1bot, x)
then. I insert th11 tranait1on into h11tory_suffix 1

return(false)
end

if -h1storySex11t1(historySp_prior(thi1_tran11tion), del_x)
and array[T]Sllellber(1nap1hot, x)
then I 1n1ert this trana1t1on into h11tory_1uffix

return(true)
end

retry whenever
hi1torySexi1ta(d_pr1or(this_tran1it1on),

co•1tted_del_x, not_p_changed(1na_x)) or
hi1torySexi1t1(d_prior(thia_tran11t1on),

c011111tted_1n1_x, not_p_changed(clel_x)} or
(-h11torySex11t1(h11torySp_pr1or(th11_tran1it1on), 1ns_x) and
-h11torySex11t1{b11torySp_pr1or(th11_tran1·1t1on}, del_x))

end,. ..

Figure 4·3, continued

101

not_p_changed·· procedure(op: te•plate, t: trans1t1on) returns(bool)
return(-h1storySex1sts(h1storySp_between(th1s_tran11t1on, t),

op))
end not_p_changed

end 1et

Figure 4·3, continued

represented by a locally atomic array and a locally atomic history object. When insert

and delete operations are committed, they are rnerged into the snapshot in an infinite

loop. The operation h1storySdelete_t1rst() returns the committed transition in

h1story_1utt1x that is serialized before all other transitions. Thus the committed

operations are merged in the global serialization order.

In the implementation of the insert operation, a test is made to ensure that no conflict

is created before returning okay. No conflict is created if there are not any potentially

subsequent •llb•r _x_ ta 1 se (i.e., no_x) transitions. Notice that the x ir- the template

refers to the x in the argument of the procedure. Furthermore, even if such a

transition does exist, no conflict is created if the effects Qf the insert operation are

overwritten by another committed delete_x_okay transition serialized between this

insert operation and the member operation. This extra filtering is achieved with the

closure not_changed(del_x). If a conflict is created, the current local computation

is aborted. The proceed condition specified in the retr1 statement is used as a hint

to determine how the conflict can be resolved. The implementations of delete and

member follow a similar pattern.

Figure 4-4 shows an implementation of the bank account object of section 3.2 with

the undo log paradigm. Instead of merging the committed transitions in an infinite

loop, the projection in the implementation is modified when the operation is

executed. Each transition is paired with an undo operation. The undo operation is

invoked when the transition is aborted. Changes to the projection are undone. The

correct undo operation to invoke depends on the nlSUlt of the original operation.

102

I This_ example uses the undo log paradigm
account • resource_manager is read_balance, deposit, withdraw

I transition template abbreviations
read • read_balance_x I <read_balance()><x>
dep • deposit_x_okay I <depoait(x)><oka.y>
withdr • withdraw_x_okay I <withdraw(x)><okay>
successful_update • dep or withdr
insuf_funds • withdraw_x_insufficient_fund1

I <withdraw(x)><inaufficient_fund1>

per .. nent stat• is
projection: real I th• balance of the account
history_suffix: history

while true do I background proce11
begin local co11Putation

hiatorySdelete_tirst()
end local COllPUtation

end

deposit • procedure(x: real)
begin entry
if -hi1torySexi1t1(historySp_1ub(thi1_tran1ition), read) and

-hi1tor1Sex11t1(hi1torySp~1ub(th11_tran1ition),
insuf_funda, higb(x))

then projection :• projection + x

end

I declare undo operation for depo11t
this_transition.undo :• un_depoait(x)
I insert th1s tranaition into hi~tory_suff1x
return

retry whenever
-hi1torySexi1t1(h11torySp_1ub(thi1_tran1ition), read) and
-historySexi1t1(hi1torySp_1ub(th11_tran1it1on), in1uf_fund1)
end depo11t

un_depoait • procedvre(x: real)
I this procedure, together with the update of the status of
I th• deposit tran11t1on, are ·~•cuted •• a local COllPUtat1on
projection :• projection - x
end un_depo11t.

h1gh • procedure(x: real, t: trana1t1on) returna(bool)
return(h1ghe1t_po111ble_balance_at(t) + x ~ t.argt)
end high

Figure 4·4:An Implementation of a Bank Account Object
with the Undo Log Pwadigm

103

h1ghest_poss1ble_balance_at • procedure(t: trans1t1on) returns(real)
raturn(project1on - daf1n1te(dep, t) + poss1ble(w1thdr, t))
I Un•erga effects of deposits that are definitely subsequent
I to t and withdrawals that are tentative or potentially
I subsequent to t.
end highest_possible_balance_at

low• procedure(x: real, t: transition) returns{bool)
return(lowest_possible_balance_at{t) - x < t.argt)
end low

lowest_possible_balance_at • procedure(t: transition) returns{real)
return(projection - po1sible{dep, t) + definite(withdr, t))
end lowest_possible_balance_at

definite • procedure(opn ... : t911Plate, t: transition) returns(real)
value: real :• O
for each s: transition in h1storySaatch{h1storySd_sub{t),

opn-) do
value :• value + s.arg1
end

return(value)
end def 1n1te

possible • procedure(opn ... : t911Plate, t: transition) returns(real)
value: real :• 0
for each s: trans1t1on 1n h1storySaatch{h1storySp_sub{t),

opn_.) do
value :• value + s.arg1
end

X Add in the values of potentially subsequent transitions.

for each s: transition in histor,rs.atch{d_prior(t),
tentat1ve_opn-) do

value :• value + 1.ar11
end -

X Add in the values of tentative transitions, but avoid
X repeating those above.
retur.n{value)
end posailtle

Figure 4·4, continued

104

------------- ---- ------- ------~

read_balance • ,rocedvre{) returna(r .. 1)
Hf'ln entt'J ·
if -tt11to~1~ta(ltilt.or,.._...Wr'ftJtt1 tru11t1on), t.•t.ative_.__..,.1_.....,

-tti1to..,..t.U(J11•tffflt · .. <• · tw(
t1t11_.tt'..-i••). ._ tt1oa) • - .. ')

then thta_t.r•aittoa i• •11....,...•• ... •
·1 t i., -·.
I t ... rt t•ta.\rMlitt• ..._. ,.....,.,_..,ft1x
rewra(11t,....,_,.. •• .__,......_ ta_traa1tt1 ..))

w1tbdr• • ,rocewe(a: real) 1i .. al1(·taadf1ct•t_f .. a)
"91• • .,, -
1f llt.-....... t.•'M-••1••-•<•••-•-t&tM) < x

t"-_tata_V-t\iM :• •11 t•••re .
S ..._, ate lrwt4• .._ ,_ltlffia
....... 1...,f1c1..._ ... _ - ..

106

un_withdraw • procedure(x: real)
projection :• projection + x
end un_withdraw

end account

Figure 4-4, continued

4. 7 Implementation Trade-Offs

In this section we discuss several trade-offs that an implementor of a globally atomic

object may have to make. Section 4. 7 .1 compares the two recovery paradigms.

Section 4. 7 .2 explores the possibility of implementing globally atomic objects with

other globally atomic objects. We have not considered this possibility for

concurrency reasons. However, such an implementation may have sufficient

concurrency if the underlying globally atomic objeCts are highly concurrent. For

example, in implementing a bank object which consists of· many bank accounts,

implementing the bank object with globaHy atomic bank account objects is a viable

alternative to the paradigm that we have been describing in this chapter. Finally,

section 4. 7 .3 discusses how history objects can be partitioned to reduce the cost of

accessing them.

4. 7 .1 Comparison of Recovery Paradigm•

Before comparing the two recovery paradigms, it should be emphasized that the

recovery paradigm is a local choice. Each resource manager can be coded with a

different recovery paradigm. In fact, the two paradigms can be combined. Both

snapshots and projections can be_ maintained, and each operation can derive its

result from the appropriate objects. The comparison below is based on efficiency

and programmability. We have commented in section 4.4.2 that occasionally a

simple projection and a history object cannot capture the entire state of an object. In

those cases, either a more complicated projection is needed or an intentions list

paradigm should be used.

Figure 4-5 shows an implementation of the bank account object using an intentions

106

list paradigm. Comparing with the implementation that uses the undo log paradigm

in figure 4-4 on page 103, we see that the undo log paradigm is more efficient in

observing a "recent" state of the object, in other words, when there are few prior

operations whose effect needs to be "unmerged" from the projection. For example,

in executing the procedure highe1t_po11ible_balanc:e_at(t), if there are few

tentative withdr transitions in hhtory_1uffix and tis a recent transition, then only

those few transitions potentially subsequent to t and the tentative withdraw

transitions need to be "unmerged" from the projection. On the other hand, the

effects of all the withdr transitions definitely prior to t and deposit transitions

potentially prior to t have to be merged with the snapshot. Conversely, the intentions

list paradigm is more efficient in observing an "old" state.

The efficiency of the paradigms atso depends on the frequency of aborted

operations. If an operation is aborted, the undo log paradigm has to. undo the

changes made to the projection, in addition to wasting the effort expended in

changing the projection when the operation is invoked. With an intentions list

paradigm, little work is needed. However, we anticipate aborted operations to be

uncommon.

The intentions list paradigm is easier to program with because the programmer does

not have to provide undo operations. With the undo log paradigm, undoing is

needed not only during recovery, but also when the effect of operations has to be

"unmerged" from the projection, such as when determining the result to a

read.balance operation. The fact that the state has to be merged and unmerged may

complicate programming.

4.7 .2 Implementing Atomic Objects with Atomic Objects

In previous sections we have discussed how to implement globally atomic objects

using locally atomic objects. The implementations are characterized by appllcation

dependent synchronization and recovery because a locally atomic computation is

committed before the globally atomic computation in which. it executes is committed.

107

.' - ••. .-....?:,_,....,...,..:-..

I This exa1111>le uses the intentions list paradigm

account • resource_manager is read_balance, deposit, withdraw

I transition abbreviations
read • read_balance_x I <read_balance()><x>
dep • deposit_x_okay I <deposit(x)><oka,>
withdr • w1thdraw_x_okay I <withdraw(x)><oka,>
successful_update • dep or withdr
insuf_funds • w1thdraw_x_insuffic1ent_funda

I <withdraw(x)><1naufftcient_funds>

per•anent state ts
snapshot: real
history_suff1x: history

I background proce11
while true do

begin local CQllPutatton

end

t: tranaition :• historySdelete_ftrst(h1story_suff1x)
if transit1onSllatch(t, c-ttted_deft)

then 1nap1hot :• 1nap1hot + t.arg1
elsetf trans1t1onSllatch(t, c011a1tted_wtthdr)

then snapabot :• 1nap1h•t - t.arg1.
end

end local cOllputat1on

deposit • procedure(x: real)
begin entry
1f -h1storySex1sts(h1storySp_sub(th1s_trans1tion), read) and

-h1atorySex1sts(h1storySp_1ub(th1s_tran11t1on), 1nsuf_funda,
htgh(x))

then I insert this tranaittan tnto h11tory_1uff1x
return

end
retry whenever
-h1storySext1t1(hi1torySp_sub(th1s_tran11t1on), read) and
-historySex11t1{h11torySp_1ub(th11_tran11t1on), 1n1ut_fund1)
end depo11t

high • procedure(x:· real, t: trana1t1on) returna(bool)
return(h1ghest_poss1ble_balance_at(t) + x ~ t.arg1)
end 111111

h1ghest_poss1ble_balance_at • procedure(t: trans1tton) returna(real)
return(1nap1hot - deftntte(wtthdr, t) + poaatble(dep, t))
end htg1te1t_po111b1e_balance_at

Figure 4·5:An Implementation of a Bank Account Object
with the Intention U8t Paradigm

108

lowest_possible_balance_at • procedure(t: transition) returns(real)
return(snapshot - possible(w1thdr, t) + def1nite(dep. t))
end lowest_poss1ble_balance_at

low• procedure(x: real. t: transition) returns(bool)
return(lowest_possible_balance_at(t) - x < t.argt)
end low

definite • procedure(opn ... : te11Plate. t: tran1it1on) return1(real)
value: real :• O
for each s: trans1t1on in h11toryS.atch(h11torySd_prior(t),

co .. 1tted_opn ...) do
value :• value + s.arg1
end

return(value)
end definite

possible • procedure(opn .. e: t .. plate, t: transition) returns(real)
value: real :• 0
for each 1: tran11tion 1n h11toryS..tch(hi1torySp_pr1or(t),

opn-) do
value :• value + 1.argt
end

return(value)
end po11ible

read_balance • procedure() returna(real)
begin entry
1f -h1storySex11t1(h1storySp_pr1or(th11_tran11t1on),

tentative_1ucce11ful_update) and
-h1storySexists(h11torySp_1uh(h11torySp_pr1or(

th11~tran11t1on), tb11_tran11tion),
comm1tted_1ucce11ful_&qHlate)

then I insert this tran11t1on into hi1tory_1uff1x
return(h1ghe1t_po111ble_balance_at(th11_trans1t1on))

end
retry whenever

-h11torylex11t1(h11torylp_pr1or(th11_tran11t1on),
tentat1ve_1ucce11ful_update) and

-h1storySex11t1(hi1torylp_1utt(h11ter,Sp_prior(
thi1_tran1it1on), th1l_traa11t1on),
c ... 1tted_1ucce11ful_update)

end read_balance

Figure 4·5, continued

109

. ~- ::t..,i<

withdraw • procedure(x: real) signals(insufficient_funds)
begin entry
if highest_possible_balance_at(this_transition) < x

then I insert this transition into history_suffix
signal insuff icient_funds

and

if -h1storySex1sts(h1storySp_sub(this_transition), read) and
-historySexist1(hi1torySp_1ub(thi1_tran1ition), withdr,

low(x)) and .
lowest_possible_balance_at(this_transition) ~ x
then I insert this tran1it1on into h11tory_1ufftx

ret\JrR
end

retry whenever
-ht1torySext1t1(historySp_sub(thts~tran11t1on), read) and
-h1storySex11t1(hi1torySp_1ub(th1s_trans~t1on), wtthdr) and
-htstorySex1sts(b1storySp_pr1or(tb1s_trans1t1on),

tantat1ve_1ucce11ful_update) an•
-h11tor1Sexi1t1(hi1torySp_1ub(ht1tor1Sp_pr1or(

th1s_trans1t1on), th11_tran1ttton),
C01111itted_succe11ful_update)

end wtthdr•

and account

Figure 4-5, continued

The locally atomic computations are also serialized in a different order than the

globally atomic computations. An alternative is to construct globally atomic objects

with globally atomic objects. For example, instead of U8ing locally atomic record

objects, a bank account can be constructed with globally atomic record ob,iects. No

application-dependent synchronization or recovery is needed. Application programs

can be written as if there were no concurrency or failure&.

We argued that using globally atomic record objects to construct globally atomic

account objects is not cc>ncurrent enough when a globally atomic computation can

last a long time. The semantics of the record objects does not allow sufficient

concurrency. However, this approach of implementing a globally atomic object with

smaller globally atomic objects may be viable if the underlying globally atomic objects

110

------------ ----------------------------------

In this section we will illustrate two different approaches of implementing a bank

object. A bank object consists of many bank accounts. The semantics of a bank

object is described in figure 4-6. Notice the difference between a bank object and a

bank account object. At first glance, a bank object may look similar to a bank

account object because they both support withdraw, deposit, and read.balance

operations. However, the bank object is in fact capturing the state of a collection of

bank accounts; hence it also supports a transfer operation that transfers funds

between two accounts and an audit_sum operation that returns a sum of the balances

in all the accounts.

51: a ma.pping s from account numbers to real numbers
11: undefined for any account number yet
T1: <deposit(an, x), r1, aXokay, r1, a> = deposlt.an_x_okay

<withdraw(an, x), r1, aXokay, r1, a> = withdraw_an_x_okay
<wlthdraw(an, x), r1, aXinsufficient_funds, r1, a> • wtthdraw_an_x_insuf
<read_balance(an), r1, aXx, r1, a> = read_an_x
<transfer(an1, an2, x), r1, aXokay, r1, a> = tranafer_an1_an2_x_okay
<transfer(an1, an2, x), r\' aXtnaufficient_funds, r1, a> = ·

· transfer_an1_an2_x_ nauf
<audit_sum(), r1, aXx, r1, a> = audlt_sum_x
where a is an action, anl'a are account numbers,

x ia a positive real number.

N1(s, deposit_an_x_okay) = s' wheres'= a except a'(an) = a(an) + x
N1(s, withdraw_an_x_okay) = s' If a(an) ~ x, where a'= s except a'(an) = a(an)-x
N1(s, withdraw _an_xJnauf) = a If a(an) < x
N1(s, read_an_x) = a If s(an) • x
N1(s, transfer_an1_an2_x_okay) = a' If s(an1) ~ x,

wherea'•aexcepts'(an1) • •·x,s'(an2) • a+x
Ni(a, tranafer_an1_an2_x_insuf) a a If s(an1)< x
N1(s, audit_aum_x) • a If :I1s(an1) • x

Figure 4·8:A State Machine for a Bank Object

We will assume that an operation on the bank object last for only a short period of

time, even though the operation may involve more than one account. This is possible

if, for example, the bank object is Implemented on a single site. However, we assume

that there are long computations in this application because some computations

111

might access multiple bank objects.

An obvious approach to implement the bank object is to implement it using locally

atomic record/array/history objects and the paradigm described in this chapter.

The semantics of the bank object is used to increase concurrency. A different

approach is to implement the bank object out of the globally atomic bank account

objects that we have described in this chapter. The implementation is simple

because the account objects are globally atomic and hide the concurrency and

failures in a system. The complexity is instead hidden in the implementation of the

account objects. Notice that in this approach the semantics of the account objects is

used to increase concurrency.

We will compare these two approaches of implementing a bank object. The

difference lies in one approach using the semantics of a bank object to increase

concurrency, while the other using the semantics of the account objects. We will

argue that concurrency and complexity of the implementations can be comparable.

However, there are several potentially significant differences also.

4. 7 .2.1 Two Approaches to Implement a Bank Object

In figure 4-7 we show a partial implementation of a bank object using the

implementation paradigm described in this chapter and some locally atomic record,

array and history objects. Each bank operation is executed as a local computation,

in which locally atomic record, array, and history objects are accessed. We have not

shown the locally atomic record and array objects in fegure 4-7 because they are

hidden in the implementation of the locally atomic d1 rector1 object.

Figure 4-8 shows an implementation of a bank object that uses globally atomic

account objects. Notice that because concurrency and failures are hidden by the

implementation of the account objects, the implementation in figure 4-8 is relatively

simple.

112

I Th1s 1mplamentat1on uses an 1ntent1ons 11st paradigm.

bank • rasourca_managar 1s raad_balanca. deposit, withdraw, transfer,
aud1t

I abbrev1at1ons for templates
I <raad_balanca(an)><x> or <aud1t_su•()><x>
read_an • read_balance_an_x or aud1t_11111_x

I <dapos1t(an, x)><okay> or <tranafar(an', an, x)><okay>
deposit_an_x • dapo11t_an_x_okay or transfar_an'_an_x_okay

I <w1thdraw(an, x)><okay> or <transfar(an, an', x)><okay>
w1thdraw_an_x • w1thdraw_an_x_okay or tranafer_an_an'_x_okay

I <dapos1t(an, x)><okay> or <w1thdraw(an, x)><okay>
successful_updata • depoa1t_an_x_okay or w1th4raw_an_x_oka1

I <w1thdraw(an, x)><1nsuff1c1ent_fund1> or
I <transfer.(an, an'. x)><1n1uff1c1ent_fund1>
1nsuf_funda • w1thdraw_an_x_1nauff1c1ant_fund1 or

tran1far_an_an•_x_1n1uff1c1ent_fund1

permanent state i1
snapshot: d1rector1[account_nUllbar, real]
h1story_suff1x: histor1

while true do I background proce11
begin local computation

end

t: transition :• hi1torySdalete_t1r1t()
1f trans1tionS•atch(t, c01111ittad_depo1it_an_x)

then snapahot(t.argt) :• snapahot(t.argt) + t.arg2
alsa1f tran11t1onS .. tch(t, c011111tted_withdraw_an_x)

then 1napahot(t.argt) :• snapahot(t.arg2) - t.arg2
end
and local computation

deposit • procedure(an: account_nUllber, x: real)
begin entr1
1f -h11torySexi1ts(histor1Sp_sub(thi1_tran11t1on), read_an) and

-historySexists(historySp_sub(thia_transit1on), in1uf_fund1,
h1gb(an, x))

then I insert this transition into hi1tor1_1uffix
return

end

Figure 4· 7 :An Implementation of a Bank Object
with the Intention List Paradigm

113

retry whenever
-h1storySex1sts(h1storySp_sub(th1s_trans1tion), raad_an) and
-h1storySex1sts(h1storySp_sub(th1s_tranait1on), 1nsuf_funda)

and deposit

high • procedure(an: account_nllltber, x: real, t: transition)
return1(bool)

return(h1ghe1t_po11ible_balance_at(an. t) + x :> t.argt)
end high

h1ghest_poss1ble_balance_at • procedure(an: account_nuaber,
t: transition) returns(real)

return(snapahot(an) -
def1n1te(withdraw, an, t) + po11ible(depo11t, an, t))

end highe1t_po111ble_balance_at

audit_su• • procedure() returna(real)
begin entry
if -hi1torySex11t1(hi1torySp_prior(thi1_tran11t1on).

tentative_1ucce11ful_update) and
-historySex1sts(h1storySp_sub{h1storySp_pr1or(

th11_tran1ition), this_trana1t1on).
co .. 1tted_1ucce11ful_update)

then r: real :• o
for an: account_nUllber in

d1rectorySel ... nt1(1nap1hot) do
r :• r + balance_at(an, thia_tranaftfon)
end

s insert this transition into h11tory_1uff1x
return(r)

end
retry whenever
-historySexf1ts(h1storySp_prior(thi1_tran11tion),

tentat1ve_1ucce11ful_update) and
-h1storySex1sts(h1storySp_sub(h1storySp_pr1or(th11_tran1ftion),

th1a_tranaitfon). C0111ftted_1ucce11ful_update)
end audf t_11111

definite • procedure(opn ... : template, an: account_n1111ber.
t: transition) returna(real)

value: real :• O
for each t: tranaftfon in hf1torySaatch(h11torySd_prfor(t),

c0111f tted_opn ... _an_x) do
value :• value + x
end

return(value)
end detfnf te

Figure 4· 7, continued

114

possible • procedure(opnaM: t9t1plate, an: account_ntlllber,
t: trana1t1on) returna(real)

value: real :• o
for each t: trana1t1on 1n h11torySaatch(h11torySp_pr1or(t),

opn .. _an_x) do
value :• value + x
and

return(value)
end po111ble

balance_at • procedure(an: account_nullber, t: tran11t1on) raturna(real)
return(1nap1hot(an) -

end bank

det1n1te(w1thdraw, an, t) + def1n1te(depoa1t, an, t))
end balance_at

Figure 4· 7, continued

Depending on how the globally atomic account objects are implemented, our bank

application may or may not have enough concurrency. An application that uses a

combination of the implementation in figure 4-8 with the implementation of globally

atomic bank accounts in figure 4-9 is probably not concurrent enough in a system

with long computations, since no semantics of the applieatk>n has been utilized. On

the other hand, if the application uses the globally atomic bank account

implementations described in figures 4-4 and +5, which make use of the semantics

of a bank account, the resulting application allows much more concurrency.

Notice that there Is some similarity between figures 4-5 and 4-7. For example, the

depoa 1 t operations in the figures are almost identical. However, part of this similarity

is due to clever encoding of the transition templates. The read_an transition

template in figure 4-7 stands tor either a read_ba lance_x transition or an

aud1t_11111_x transition that involves an, whereaa the read transition template In

figure 4-5 stands for a read_ba 1 ance_x transition only.

Figure 4-10 depicts the two different approaches to implement a globally atomic bank

object. Notice that both Approach 1 and Approach 2 use the implementation

115

bank • resource manager is deposit, withdraw, read_balance, audit,
tr an sf er

per•anent state is
dir: directory(account_nUltber, account_resource_•anager]
I this is a directory that .. pa account nUllbers to the account
I resource .. nager that i11Pleunts th• account. To si11Pl1fJ
I our ex&11ple, we assllll8 all input account nuabers are valid.

deposit • procedure(•: account_nUllber, r: real)
dir(a).daposit(r)
I dir(a) looks up the resource •nager corresponding to a.
I The syntax •resource_Mnager_n procedure_na .. (argUll8nt1)•
I 11 used to call a procedure in another resource •nager.
end deposit

withdraw • procedure(a: account_nUllber, r: real)
s1gnals(insufficient_fuad1)

d1r(a).w1thdraw(r) resignal inauff1c1ent_fund1
I The resignal state .. nt catch•• an1 1nsuff1c1ent_fund
I signal froa the withdraw procedure of th• bank account object
I and re1ignal1 it to the caller of this withdraw procedure.
end withdraw

read_balance • procedure(a: account_nUllber) returns(real)
return(d1r(a).read_balance())
end read_balance

aud1t_sum • procedure() return (real)
result: real :• O
for an: account_nullber 1n d1rectorySel-nts(d1r) do

result :• re1ult + reu_ttalance(an)
end

return(reault)
end aud1t_1•

transfer • procadure(frOll, to: account_nullber, amount: real)

and bank

· s1gnals(inauffic1ent_tunda)
w1thdraw(froe, amount) re1i9nal 1ntuft1c1ent_fund1
depoait(to, amount)
end transter

Figure 4-8:A Simple Implementation of a Bank Object

116

account • resource manager is deposit, withdraw, read_balance
I Procedures exported

permanent state is
state: globally_ato•ic_record(balance: real, •••.]

deposit • procedure(r: real)
state.balance :• state.balance + r
end deposit

withdraw • procedure(r: real) signal1(1nauffic1ent_fund1)
1f state.balance < r then signal 1nsuff1c1ent_funda end
state.balance :• state.balance - r
end withdraw

read_balance • procedure{) returns(real)
return(state.balance)
and read_balance

and account

Figure 4·9:A Simple Implementation of a Bank Account Object

paradigm described in this chapter, though at different levels of abstraction.

4.7.2.2 Comparison of the Two Approachea ·

In this section we compare Approach 1 and Approach 2. The two approaches are

comparable in complexity and concurrency. However, there are also some subtle

differences. The complexity of Approach 1 is in the implementation of the globally

atomic bank objects using locaUy atomic objects, whereas the complexity of

Approach 2 is in the implementation of the globally atomic bank account objects.

Building globally atomic bank objects from globally atomic account objects is a

simple task, because the necessary synchronization and recovery have been

implemented with the underlying globally atomic account objects.

Concurrency and Complexity

It is not obvious whether Approach 1 or Approach · 2 is more desirable. In an

implementation that follows Approach 1 (figure 4-7), the transfer and audit.sum

operations can avoid creating any conflicts with each. another as tong as the other is

117

Globally atomic

bank object

Locaffy atomic

record and

history objects

Approach 1

Globally atomic

bank object

l
Globally atomic

account objects

I
Locally atomiC

record and

history objects

Approach2

Figure 4·10:Two Different Approaches of Implementing a
Globally Atomic Bank Obied

finished but maybe tentative. Because a transfer or audlt_sum operation can be part

of a much longer computation, this period of being finished but tentative can be quite

long. The concurrency is due to the semantics of audit_sum, which only requires the

result returned to be a sum of the balances, and that of transfer, which keeps the

total balance constant although it changes individual balances. As a result, when

one of the operations Is completed, the other operation can proceed even when the

first operation is not committed.

If the bank object is implemented using globally atomic account objects, the transfer

and audit.sum operations will be translated into withdraw/deposit and read_balance

operations on the bank account objects. Theae operations interfere with one

another and cause conflicts to be created even after the higher-level operations at

118

the bank object are already finished.

One may be tempted to implement the transfer and audit_sum operations with special

versions of the lower-level operations. In fact, a possible implementation is to define

the globally atomic bank accounts with the semantics in figure 4-11.

S1: [s1, s2) where s1 and s2 are real numbers
Ii: [O, OJ . .
T1: <deposit(x), r1, aXokay, r1, a> = deposit_x_okay

<withdraw(x), r1, aXokay, r1, a> = withdraw_x_okay
<withdraw(x), r1, aXinsufficlent_funds, r1, a> = withdraw_x_lnsuf
<tdeposit(x), r1, aXokay, r1, a> = tdepoait_x_okay
<twithdraw(x), r1, aXokay, r1, a> = twithdraw_x_okay
<twithdraw(x), rl' aXlnsufflcient_funde, r1, a> = twlthdraw_xJnsuf
<read_balance(), r1, aXx, r1, a> = read.x
<aread_balanceO, r1, aXx, r1, a> = aread_x
where a is an action, x is a positive real number.

N1([s1,s2],depoait_x_okay) = [s1 +x,s2+x]
N1([s1, s2], tdeposit_x_okay) = [•1 + x, s2]
N1([s1,s2),withdraw_x_okay) = (a1-x,s2-x)lfa12!x
N1([s1, s2), withdraw_xJnsuf) = [a1, s2] if s1 < x
N1((s1, s2), twlthdraw_x_okay) = (s1-x, a2] If a1 2! x
N1([s 1, s2], twithdraw _x_insuf) = (s 1, a2] If a1 < x
N1([s1, s2], read_x) = [s1, s2] If s1 = x
N1([s 1, s2], aread_x) = (s 1, a2] If a2 = x

Figure 4-11 :A Specialized State Machine for a Bank Account Object

Special operations tdeposit and twithdra._. are provided for the implementation of

transfer, and an aread operation is provided for audlt_sum. In essence, each bank

account keeps track of two "balances." The first balance is the normal one. The

second "balance" is updated when the update is not Invoked by a transte; operation.

The second balance is read to calculate the sum of the balances. As a result, no

conflicts are created between an audit.sum operation and a transfer operation.

This technique does not work in general situations because the cost of keeping extra

state information can be prohibitive. For example, suppose a database of employee

records is partitioned among several sites. The appltcatlon provides operations to

119

transfer employee records from one partition to another, update information in the

employee records, and to evaluate queries. The interference between the transfer

and query operations poses a problem similar to the interference between transfer

and audit.sum in the bank application. However, keeping an extra copy of an

employee record at the old partition when it is transferred does not seem to be

acceptable. Not only is extra storage required, updating the employee records

becomes more costly also. A more appropriate solution in this example would be to

allow the partitions to return a superset of the records in that partition. The

coordinator of the query can ignore redundant records collected from the partitions.

If a record is being transferred from one partition from another, both partitions can

return the record before the transfer computation is finalized. When a record is

deleted, both partitions must be informed.

Although the examples above do not show that concurrency is necessarily

decreased when globally atomic objects are implemented with other globally atomic

objects, they do illustrate that the semantics of the lower-level globally atomic objects

have to be customized. The customization increaaes the complexity of implementing

a globally atomic object.

Reliability and Efficiency

A possible disadvantage of implementing the bank object with locally atomic objects

is the centralization of synchronization and recovery information. When compared to

an implementation in which the history objects are distributed among many account

objects, the history object used by a bank object contains more transitions and is

more expensive to access. In addition, the reliability of the application can be

reduced because its functioning depends on the availability of the centralized history

object of the bank object. A possible solution to overcome these disadvantages Is to

partition or replicate the state (directory) of the bank object. We will describe how

history objects can be partitioned and/or replicated in the next aection.

Another possible problem of implementing globally atomic objects with locally atomic

120

objects is the limitation in the length of locally atomic computations. Since locally

atomic objects are implemented with other Jocally atomic objects, such as locally

atomic arrays or records, the lengths of the locally atomic computations have to be

kept short to minimize the cost of conflicts created in accessing locally atomic

objects. Keeping locally atomic computations short is not always possible, especially

when a locally atomic object may be partitioned or replicated. To minimize the cost

of these conflicts, we can have a multiple-layered model of atomicity, instead of the

dichotomy of local atomicity and global atomicity. A layer I atomic object can be

implemented with a layer I + 1 atomic object. The semantics of the objects in each

layer can be utilized. For example, a layer I· 1 atomic bank object can be

implemented with a layer I atomic history object and a layer I atomic bank account

object, which can in turn be implemented with a layer I + 1 atomic history object and

a layer I + 1 atomic record object.

4. 7 .3 Partitioning and Replicating History Objects

When computations are long, their transitions may remain tentative and be kept in a

history object for a long period of time. Performance can become a problem when

there are too many transitions in a history object. An obvious solution to this problem

is to partition history objects into smaller history objecta.

In our previous program examples, we assume one history object is shared by all the

atomic objects implemented in a resource manager. Thia is not necessary and can

be ·changed by having multiple history objects declared in the resource manager,

with history operations specifying the history object being operated on explicitly.

More complicated schemes of partitioning the history object are possible. For

example, if an operation x is only interested in a subset of the different types of

transitions, a sub-history can be created containing onty those transitions. The cost

of inserting a transition, which happens once, may become higher because the

transition may have to be Inserted into several sub-histories. However, the cost of x

accessing a history object is lowered because there are probably fewer transitions in

121

the sub-history in which x is interested.

For example, the history of a set object can be partitioned according to properties of

the items involved. For example, if a set object is a set of integers, the history object

can be partitioned according to the range of values of the arguments. A more

complicated example can be illustrated with the history object in the implementation

of a globally atomic employee file object. The application may decide to partition the

history object and the snapshot/projection objects according to the de~rtment that

a transition is related to. For example, if a transition involves an employee in

Department X, then only the partition of Department X needs to be accessed. When

an employee is transferred from Department X to Department Y, a transition is

inserted into each of the partitions of the two departments. If a query involves

potentially every department, all the partitions need to be accessed.

In these examples, the locally atomic and logically centralized history object is

implemented with locaUy atomic history partitions. The aemantics of the partitions

reduces the number of partitions that need to be accessed. If only a few partitions

are accessed, the cost of accessing the entire history is reduced and the operation

can proceed even when some partitions are not available.

In [20) a history object is partitioned and replicated for availability reasons. The

history object is not partitioned according to properties of the transitions but rather

the availability of the replicas (partitions). Each transition has ari initial quorum and a

final quorum. When the history object is read, an initial quorum of replicas is read to

guarantee that every transition relevant to the current operation is contained in at

least one of the replicas. When a transition is inaerted into the history object, a final

quorum of replicas is accessed. For example, in determining whether conflicts are

created for an obserVer operation, other observer transitions are irrelevant

Consequently, the replicas read may not overlap with the replicas updated when

previous observer transitions are inserted.

A ·simpler scheme of replicating the entire history object can be used to Increase

122

availability, though not performance, over an un-replicated implementation.

However, because a history object is usually both read and written, a read-one-write

all algorithm will not increase availability. A slightly more complicated read-write

quorum scheme (16) is needed.

Another way of partitioning the history object can be illustrated by the example in the

previous section. By implementing the bank object with globally atomic bank

account objects, no history needs to be kept for the bank object; rather, the history

information is partitioned among the account objects. This partitioning is simpler

ttian those described above because no centralized image is necessary.

Unfortunately, as the example has illustrated, this partitiOning may cause a loss of

concurrency.

Finally, there is a possibility of avoiding the cost of accessing the history object

altogether in some applications. Consider the semi-queue object specified in figure

4-12.

S1: sets of Items (we assume items enqueued are unique)
l:IZJ . .
t 1: <enqueue(x), r1, •Xokay> = enqueue.x.okay

<dequeue(), r1, aXx, r1, a> = dequeue_x
<dequeue(), r1, aXempty, r1, a> = dequeue.empty
where a is an action, x la an Item.

N1(s, enqueue_x_okay) = a U {x}
N1(s, dequeue_x) = a • x If x E a
N1(s, dequeue.empty) = • If a • IZJ

Figure 4·12:A State Machine for a Semi.Queue

An implementation using an intentions list recovery paradigm can be found in figure

4-13. In the implementation of the dequeue operation, we find that when there are

items in the snapshot, the history object has to be accaaaed to make sure the items

have not been dequeued by previous dequeue operations. To avoid this access, the

snapshot object can be partitioned into two arrays, say at and a2. The idea is to put

all the items which are definitely not dequeued into at ·and items which may have

123

I This example uses the intentions list parad1911.

semiq(item] • resource_manager 1s enqueue, dequeue

I transitions in history suffix
I dequeue_x • <dequeue()><x>
I dequeue_empty • <dequeue()>< .. pty>
I enqueue_x_okay • <enqueue(x)><okay>

peraanent state 1s
snapshot: array[1t ..],
h1story_suff1x: history

wh11e true do
begin local computation

- <

t: trans1t1on :• h1storySdelete_f1rat()

end

if trans1t1onS•atch(t, COllll1tted_dequeue_x)
then ••• I re110ve x frOll snapshot

else1f transitionlllatclt(t, c~itted_enqueue_x_okay)
then ••• I insert x into snapshot

end
end local ce>11putation

dequeue • procedure() returns(ite•) 1ignal1(911Pty)
begin entr1
for x: it .. in array[it ..]Sel ... nts(snapabot) do

if -historySexists(dequeue_x) tlt9• return(x) end
end

if hi1tor1Sex11ts(hi1tor7Sd_prior(thi1_transition),
COllllitted_enqueue_x_okay, not_used)

then I insert this transition into hiator7_suffix
return(x)

end

if -historySex1sts(h1storySp_prior(this_trans1t1on),
enqueue_x_okay, not_d_used) and 911Pty_snapshot()

then I insert this transition into hiatory_auffix
signal ..,i.y

end

retry whenever
-historySex1sta(h1storySp_pr1or(th1s_trana1tion),

tantative_enqueue_x_ok&J)
and -h1stor1Sex11ts(tentat1ve_de _x)

end dequeue

Figure 4·13:An Implementation of a Semi-Queue Object

124

enqueue • procedure(x: ite•)
begin entry
if -historySexists(historySp_sub(this~transition),

dequeue_911pty)
then I insert this transition into hiatory_suffix

return
end

retry whenever
-historySex1sts{h1atorySp_aub{th1s_trana1t1on), dequeue_ .. pty)
and enqueue ·

not_used • procedure(t: trana1t1on)
x: 1te• :• t.argt
return(-h1storySex1sts{h1storySd_sub(t), dequeue_x))
and not_uaed

not_d_used • procedure(t: trans1t1on)
x: 1te• :• t.argt
return(-h1storySex1sts(h1storySd_sub(t), COllll1tted_dequeue_x))
end not_d_used

empty_snapahot • procedure() returna(bool)
for x: 1t•• 1n array[1t ..]Se1 ... nt1(1napshot) do

1f -h1storySex11t1(c011111tted_de.,.ue_x)
then return(false)
end

end
return(true)
end a.pty_snapshot

end se•1q

Figure 4-13, continued

been dequeued into a2. When a committed enqueue transition is merged, the item

can be inserted into a2 if there is a subseQuent dequeue transition of that item, and

into at otherwise. When the dequeue operation is invoked, it can enumerate at first.

If there is an item in at, it can be deleted from at, inserted into a2, and returned to the

caller, without ever accessing the history object. If no items are found in at, a2 can

be searched. Occasionally, a dequeue operation may be aborted after the item has

been moved into a2. The item may stay in aZ without affecting the correctness of the

implementation; a background process can move such items back to at.

125

4.8 Conclusion

In this chapter we have described programming paradigms that an implementation of

an atomic object can follow. These paradigms simplify the writing of application

dependent synchronization and recovery code. With simpler code, arguing the

correctness of an implementation becomes easier. In particular, we introduce the

notion of locally atomic objects and locally atomic computations. Synchronization

and recovery are partitioned into those performed by the locally atomic objects and

those performed by the implementation of the atomic object. This partitioning helps

the programmer convince himself that the implementation is correct.

In this chapter, we have also introduced the use of history objects, which capture all

the relevant local information needed by an object to determine whether conflicts are

created. The interface provided by theae history objects makes the underlying

concurrency control algorithm transparent to the programmers. This transparency

provided by the history objects, together with the transparency provided by the

conflict model, allow the programmer to design the functionality and program the

implementations of an application without having to understand the details of the

underlying concurrency control algorithm.

For recovery, we have discussed an intentions list paradigm and an undo log

paradigm. By imposing constraints on how an operation may mutate the locally

atomic objects, the recovery activities become a more structured proces.

We have presented several program examples and Illustrated the use of the

paradigms we introduced.

Finally, we have discussed several Implementation strategies and their trade-offs.

First, there is the local choice of the recovery paradigm. Second, globally atomic

objects can be implemented using locally atomic ob;ecta a1 other globally atomic

objects. Finally, the cost of accessing history objects CM be minimized by various

ways of partitioning them. . These options provide opportunities to customize the

126

implementation to specific needs.

127

Chapter Five

Concurrency Control Algorithms

In our conflict model and programming interface, each atomic object is assumed to

possess some knowledge of the serialization order and operation outcomes. Based

on this knowledge, an object can express conflict conditions without knowing the

details of how the serialization order and operation outcomes are arrived at. In this

chapter we discuss how the objects arrive at a serialization order through a

concurrency control algorithm. The protocol that different entities in a distributed

system use to arrive at a consensus of the outcome of a computation is called a

commit protocol. Many pa~ (17, 37, 52) have been written on the subject and we
will discuss it only briefly at the end of this chapter.

This chapter seeks. to fulfill two goals. First, we will show that the programming

interface that we present in Chapter 4 can be implemented on top of a large dass of

concurrency control algorithms. In particular, we show how the history operations,

such as p_sub and dprior, can be implemented. We will also show how the retr.r

statement can be implemented so that the appropriate actions are taken when

conflicts are created.

Second, we wil.1 argue that in some situations the concurrency of a system can be

significantly affected by how the serialization order is determined. In deriving conflict

conditions, we find that whether a conflict arises depends on the functionality of the

operations of an application and the local knowledge of the serialization order and

. . operation outcomes. Previous chapters have focused on how the functionality of an

operation determines the likelihood of conflicts. Thia chapter shows that there are

special situations in which some concurrency control algorithms can reduce the

likelihood of costly conflicts significantly when compared to other algorithms. For

128

example, suppose long computations are rare in a system and it is unlikely for two

long computations to overlap their execution. Given these conditions, it may be

possible to develop concurrency control algorithms that distinguish between long

computations and short computations so that only short computations will be

restarted or cause delays in other computations. Given that, the overaH cost of

conflicts in these algorithms can be much smaller than that incurred by existing

algorithms. One of the contributions of this thesis is the design of two novel

concurrency control algorithms that are adapted to systems with long atomic

_ computations.

Section 5.1 briefly describes some of the existing concurrency controt algorithms

and compares the likelihood of costly conflicts in these algorithms. Section

5.2 describes two novel concurrency controt algorithms and explains the situations in

which_ these algorithms can reduce the overall cost of conflicts significantly. Section

5.3 describes the implementation of the programming interface in Chapter 4 given

that different concurrency controt algorithms can be used underneath. Section

5.4 discusses commit protocols briefly.

To separate our consideration of concurrency control algorithms and the

functionality of an application, we will use the terms "observer" and "mutator" in this

chapter to refer to two classes of operations. The functionality_ of the first class

observes the abstract state of an object. The second class mutates the abstract

state. For example, a read~balance operation Is an observer, a deposit operation Is a

mutator, a successful withdraw operation is both because it obserVes that there are

sufficient funds and mutates the abstract state. To simplify our discussion, we will

assume that conflicts are created when:

1. an observer may be serialized after a tentative mutator, or

2. a mutator may be serialized before an observer previously Invoked.

This is not true in all cases, such as When the obeerver is a withdraw operation and

the mutator is a deposit operation. No conflicts would be created if there were

129

sufficient funds for the withdrawal regardless of the deposit.

Also, we exclude the possibility of parallel sub-actions in our description of

concurrency control algorithms. A computation executes with only one locus of

control and sub-actions within a computation are serialized by the order they

execute. In most cases, it is straightforward to extend the algorithms to handle

parallel sub-actions. We will give brief explanations of how an algorithm can be

extended when the extension is not obvious.

5.1 Concurrency Control Algorithms

The goal of a concurrency control algorithm is to ensure that a serialization order

among the committed computations exists. It also determines the actions that need

to be taken when a conflict arises.

Many different concurrency control algorithms have been proposed. Some of

them [48) use the order in which computations are started as a serialization order,

some [17) use the order in which computations commit as a serialization order. The

actions that are taken when conflicts arise depend very .much on how a serialization

order is arrived at. In sections 5.1.1 and 5.1.2 we enumerate some of the well-known

concurrency control algorithms that have been proposed in the literature and discuss

the likelihood of costly conflicts in these algorithms. Enumerating all the algorithms

proposed in the literature would be impossible. However, the performance of the

algorithms described in section 5.1.1 and 5. 1.2 is repreaentative of a large class of

algorithms.

5.1.1 Static Concurrency Control Algorithms

In general, concurrency control algorithms can be classified according to the time

that the serialization order is determined. In atatic algorithms, the serialization order

is determined at the beginning of a computation. When a ~putation Is started, a

unique timestamp is associated with the computation, and the value of the timestamp

130

determines the serialization order16. In the rest of this section, we will use Reed's

multi-version timestamp algorithm [48] as an example of static concurrency control

algorithms. In his algorithm, computations with larger timestamps are serialized after

computations with smaller timestamps.

Recall that conflicts are created under two types of situations:

1. when a mutator m 1 is invoked and It may be serialized before an
observer 01, or

2. when an observer o2 is invoked and it may be serialized after a tentative
mutator m2.

In [48],_the mutator m1 is refused and the computation that invokes m1 is restarted

with a larger timestamp. Restarting a computation with a larger timestamp is the only

way to change the serialization order. The observer o2 is delayed until the tentative

mutator m2 is finalized.

An alternative to refusing m 1 is to abort some of the previously invoked operations,

such as the observer 01. However, this is not always possible as those operations

may have committed. Furthermore, a race condition may develop in deciding to

commit or abort those operations. The sites making the decisions must be

synchronized.

The concurrency problem created by the fonnation of conflicts can be evaluated with

the likelihood of formation and costs of the conflicts. The likelihood and cost of a

conflict can be classified according to the two types of situations In which it is

created. Besides depending on the functionality of the operations of an application,

the likelihood that the first type of conflicts are created in a static algorithm depends

on whether operations are arriving at an object in the predetermined static order.

The more operations ~ve in that order, the less likely It is that the first fype of

conflicts are created. However, considering that the time between when the

16r=or paraHal eub·actions, it aufficee to extend the timeatamps to non-overlapping time rangee. with
sub-actions llUbdividing the parent'• time r811(18. For dat8ila .. [48).

131

computation begins (the timestamp assigned) and when the object is accessed has a

larger variance in our system than in systems with only short c0mputations, we may

have a significantly larger percentage of operations arriving in an order that differs

from the static serialization order. In particular, an operation from a remote caller

may find that many local computations with larger timeStamps have been executed,

and probably committed, during the time the call travelled from the caller to the callee

site. Obviously, when a computation may remain tentative for a long period of time,

the second type of conflicts is also more likely to ariae in a system with long

computations than in a system with only short computations.

In static algorithms, the cost of the first fype of conflicts is a restart of the refused

computation. This is pOtentially disastrous as the refused computation may have

executed for a long period of time.. In addition to lost work, restarts also cause

delays. If the top-level action of the refused computation is executed at a remote site,

the restart is likely to be expensive: it adds an extra round-trip delay· at least. Note·

that when a conflict of the first type is created in a static algorithm, the operation that

creates the conflict is likely to be invoked from a remote site. It is also possible that a

restarted computation may encounter another conflict and have to be restarted

again.

The cost of the second type of conflicts depends on how long the tentative operation

m2 remains tentative. An alternative to delaying the observer o2 is to restart the

computation that Invokes o2 with a smaller tirnestamp. It is not always the most

appropriate action as the CO(nputation may encounter some other conflicts of the first

type because of the smaller timestamp. However, concurrency may be increased if:

1. the computation does not invoke mutator operations and cannot create
the first type of conflicts, and

2. the computation has only been started recently and restarting it has a
small cost, and

3. the mutator m2 is invoked by a long computation and may not be
finalized until after a significant delay.

If the conditions described above can be evaluated at run time, the concurrency

132

control algorithm can minimize the cost of the conflict accordingly.

Although the likelihood of formation and costs of conflicts are generally higher in a

system with long computations than in a system with only short computations, there

are some situations under which we can expect the two kinds of systems to have a

similar concurrency level. In a static algorithm, short computations are less likely to

create the first type of conflicts than long computations. This is because they are

less likely to encounter operations with larger timestamps already executed. The

cost of restarting a short computation is also lower. Short computations may include

single-site computations and computations that execute within a tightly-coupled

group of sites that can communicate wtth short delay. Consequently, if all the

mutator computations are short and only read-only . computations are long, short

computations can usually succeed without incurring costly conflicts. Moreover,

because read-only computations are. never restarted unless a restart is cheaper than

a delay, the long read-only computations are only delayed by short· mutator

computations.

5.1.2 Dynamic Concurrency Control Algorithm•

In dynamic algorithms, the serialization order is determined during the execution o~

the computations at the objects. Typically, the serialization order between two

computations in a dynamic algorithm is determined by the order in which they finish

accessing the last Object. The moment immediately after the last object is accessed

is called a computation's locked point (6), which, to simplify matters, can be equated

with the moment at which the computation is finalized.

Dynamic concurrency control algorithms have the property that an operation . is

always serialized after all other finalized operations. Other tentative operations can

be either prior or subsequent to this operation in the eerlalization order. Given these

. properties and that a conflict of the first type is created (i.e., a mutator m 1 is invoked

and it may be serialized before an observer o1), the observer o1 must be tentative.

133

Usually the mutator m 1 is delayed until the observer is finalized. 17 Delaying the

mutator eliminates the possibility that it can be serialized before the observer. When

a conflict of the second type is created (i.e., an observer o2 is invoked and it may be

serialized after a tentative mutator m2), the observer o2 is delayed until the mutator

m2 is finalized. 18

Occasionally, several computations may be deadlocked, each waiting for another to

finalize. A deadlock detection algorithm [43) can be used to detect and break the

deadlock by restarting some computation in the cycle. After the victim computation

has been chosen, one of its actions that causes the delay of other actions can be

aborted and its parent action can be notified. If the parent action has not proceeded

beyond the end of the victim action (e.g., the victim action has not finished, or the

parent action has created several parallel sub-actions and is waiting for all of them to

finish), the parent action can abort the victim action and start a new instance of it.

Otherwise, the parent action becomes a victim action also. The process is repeated

until the top-level action is reached. The top-level action could not have been

committed since it is deadlocked.

The likelihood of formation of both types of conflicts in a dynamic algorithm

increases with the number of tentative operations at an object. Unfortunately, the

likelihood will be higher in a system with long computations than in one with only

short computations. This Is because the time between when an object is accessed

and when the computation is finalized is, in general, longer in a system with long

computations. To make matters worse, the delay caused by a conflict adds to the

length of a computation and make the expected number of tentative operations even

17 An alternative is to delay the commitment of the mutator untff the obaerver is finalized. In this
alternative, the mutator operation can proceed but cannot commit until the obearver le finalized.

18 An alternative is to delay the commitment of the obael var until the mutator le committed. The
observer can proceed but may be aborted later if the mutator is aborted. Depending on the likelihood of
a computation being aborted, this alternative may or may not hnpr'cMt concunancy. Howewtr, the
improvement is not significant becaul8 the obaerver has to wait for the mutator to commit In any caaa.

134

'· -,,."' ··.

larger.

In dynamic algorithms, the cost of a conflict is a possibly long delay. Moreover, when

the probability of being delayed is high, there is a possibility of cascaded delaying: a

tentative operation delaying other operations is in turn delayed by another tentative

operation.

In addition to cascaded delaying, there is also the cost of deadlocks. There is some

empirical evidence [18) that deadlocks are uncommon in systems with short

computations. However, it is unclear whether this is still valid when computations are

long. When a deadlock occurs, there is the cost of detection, which usually involves

passing messages around [43), and the cost of restarting a victim action.

5.2 Improving Concurrency with Concurrency Control Algorithms

In this section we suggest some novel concurrency control algorithms. We will show

that these algorithms can reduce the likelihood that costly conflicts will arise in a

system with long atomic computations. In particular, we will describe a hierarchical

conflict algorithm that preserves the advantages of a static algorithm over a dynamic

algorithm (short computations are less likely than long computations to encounter

conflicts and less expensive to restart, and observer operations create conflicts only

when a restart is cheaper than a delay}, and generates less conflicts for long

computations.

We will also describe a time-range concurrency control. algorithm in which each

computation is associated with a time-range instead of a tlmestamp. The static arid
dynamic algorithms can be shown to be special cases of this algorithm. The time

range algorithm allows the user to choose a "privileged" class of computations that

can be made to be serialized after all other computation& except those also in the

privileged class. . The ability to do so reducea the possibility that a privileged mutator

computation is restarted or dela)9d.

135

5.2.1 Hierarchical Concurrency Control Algorithm

Suppose each computation is given a period identifier and a serialization identifier.

The serialization identifiers can be assigned with unique timestamps {from a real-time

clock). The two identifiers are concatenated, with the period identifier more

significant, and used to determine the serialization order of the computations.19

Period identifiers are not necessarily unique. Computations receive their period

identifiers from period counters. We assume each site has its own period counter,

which is updated with the current clock value when a distributed computation is

started at this site, or when the period identifier of an incoming distributed

computation is larger than the current period counter. 20 The period counter will lag

behind the clock most of the time, assuming that most computations are local.

Notice that, although the period identifiers are not unique and lag behind the real

time clock, the same is not true for serialization identifiers. Local computations in

this algorithm are similar to those in the static algorithm in that they are unlikely to be

restarted in their short duration and can be restarted inexpensively.

Distributed computations perform better in this algorithm than in a static algorithm.

Consider a distributed computation c started at clock time t; it will have a period

identifier and a serialization identifier, both approximately t. Consider the period

counters at the remote sites that c will visit. If they are also tat the time c is started,

then this algorithm will have the same performance as the static algorithm because it

is just as likely that conflicts will be created. tf they are greater or smaller than t, then

this algorithm Wilt perform more poorly or better respectively. Given that a period

counter at a site a is updated only when there are other distributed computations

visiting or started at a, the period counters at the remote sites that c will visit are Ukely

19.rhe serialization identifiera can be extended to non-ovartapping time rangea to handle parallel
sub-actions.

20we a.ume that whether a computation ia local or cli8tribut8d c.n be determined, for Instance, from
the syntax of the program. In any caae, thia information is only a hint and doe8 not affect the
correctneaa of the algorithm.

136

to be less than t at the time c is started. An exception is when the clocks at those

remote sites are running ahead of the one used to generate t and other distributed

computations have visited or been started at those remote sites recently. If we

assume distributed computations to be rare or clocks to be closely synchronized, the

exception is unlikely to happen.

Given that the period counters of the remote sites that c will visit are smaller than t, it

will be less likely for c to be aborted due to an old timestamp when c finally arrives at

a remote site a. This is because the local computations started at a before s's period

counter exceeds the period identifier of c will be serialized before c, and not cause c

to be restarted. This algorithm performs better when distributed computations are

infrequent.

Note that incrementing the period counters is an optimization and does not affect the

correctness of the algorithm. A period counter can be left unchanged when, say, a

distributed computation that only involves nearby sites is started. To avoid these

distributed computations being restarted, the period counters of the nearby sites can

be synchronized frequently by bringing the smaller counters to the values of the

larger counters.

The hierarchical algorithm can be useful in a system in which distributed

computations and long computations are rare. For example, most of the

computations in a calendar application will be local. Occasionally a distributed

computation involving a meeting is started. Also, in many distributed databases. the

majority of computations will be local if the data is partitioned according to locality of

reference.

Consider the two kinds of conflicts that can arise in a system in which distributed

computations and long computations are rare. First, a mutator m 1 may be restarted

if there is an observer 01 serialized potentially after it. However, with our assumption

that distributed computations are rare, only short mutator computations are likely to

be restarted and the cost of restarting a short mutator computation is small. Second,

137

an observer o2 may be delayed if there is a tentative mutator m2 serialized

potentially before it. If m2 is invoked by a short computation, the cost of waiting for

m2 to be finalized is ~all. If m2 is invoked by a long computation, a possible

solution is to restart the computation that invokes o2 with a smaller timestamp. If

long computations are rare, we may expect the execution of two long computations

to seldom overlap with each other. Hence, given that m2 . belongs to a long

computation, we may expect o2 to be invoked by a short computation most of the

time and the cost of restart of o2 is small. However, restarting a computation with a

smaller timestamp is not always possible as the computation may invoke mutator

operations. Hence short computations that invoke both observer operations and

mutator operations may have to incur a high cost in being delayed by a long mutator

computation. 21

In a system where objects support only read/write operations, it is unreasonable to

expect that short computations would invoke either only observer operations or only

mutator operations. In a system where objects support abstract operations. this

expectation is more likely to be valid. If the system also has the characteristic that

distributed computations and long computations are rare, the hierarchical algorithm

can be used to minimize costly conflicts. The hierarchical algorithm is also

preferable to the dynamic algorithm because an incomplete long computation,

though infrequent, can cause many other subsequently started short computations to

· be delayed.

5.2.2 Time-Range Concurrency Control Algorithm

The time-range algorithm we are going to describe is similar to the dynamic

timestamp allocation protocol described by Bayer in [4] but with several important

differences. We will describe Bayer's algorithm first and then the differences.

21 Long computations that invoke both obearver operatione and mutator operations are lees likely to
be delayed by other long computations becauae we expect an overlap of execution of two long
computatione to be

138

Bayer's Algorithm

In Bayer's algorithm each computation is associated with a time range (t1 , t2) such

. that if the upper time bound of a computation a is less than or equal to the lower time

bound of another computation b, then a is serialized before b. These time ranges

can be shrunk dynamically but not expanded. The range will be shrunk to a single

unique value when the corresponding computation is finalized. The upper time

bound can initially assume the value infinity while the lower bound can assume

negative infinity. It should be noted that for external consistency reasons, a

computation probably should not be started with a lower time bound much smaller

than the current time.

The static and dynamic algorithms are obvious special cases of this algorithm. The

static algorithm starts with a time range with a single value. The dynamic algorithm

has each computation associated with a time range in which the lower time bound is

the current time, and the upper time bound is infinity, since the locked point· of the

computation can happen any time between the current time and the indefinite Mure.

The utility of this algorithm lies in its ability to shrink the time ranges dynamically so

that conflicts can be avoided. For example, if computation a has a time range of

(t1, t2) and computation b has a range of (t3. t4), then a can be serialized after b by

raising t1 or shrinking t4 until t1 is greater than or equal to t4. Obviously this is not

possible when t2 is less than or equal to 1·3. In those cases shrinking is disallowed

and a has. to be restarted if it is trying to invoke a mutator operation and b has

invoked an observer operation. 22

Our Time-Range Algorithm

In our time-range algorithm, time ranges are extended to a more general form:

22Paratlel eub-actiona can be serialized by sub-dividing the time range of the parent action into
non-overlapping time rangea.

139

(max(L 1, L2, •.• , Lm), min(U1, U2, ••• ,Un))

where Li and Ui can be either a constant real number or a computation identifier. In

the algorithm that we have described above, there is no way to ensure that a

computation a will be serialized before/after b by shrinking a's time range if b's

lower/upper time bound is negative infinity/positive infinity and cannot be

changed23• To overcome this limitation, we allow the computation identifier of b to

appear in a's lower/upper time bounds, which implies that b must be serialized

before/after a. Initially a's time range can start with (negative) infinity or a constant

in its upper or lower bound. The time range can be shrunk and computation

identifiers of other computations, such as b's, can be added to ensure particular

serialization order relationships.

We assume that each computation is associated with a site, called its coordinator,

that keeps track of the final timestamp value of that computation. When b is finalized

and the time range of b is shrunk to a single constant value, the sites that keep

copies of a's time range can request this value from b's coordinator and replace the.

computation identifier with the constant. We call this process the binding of the

computation identifiers. We will discuss how binding information can be propagated

later.

To make sure that the time range is not empty, i.e. the lower bound is smaller than the ·

upper bound, a computation should not commit until all the computation identifiers in

its time range are bound. Any computation with an empty time range is aborted. This

rule guarantees that if a cycle of serialization orderings is formed with each

computation in the cycle assumed to be serialized before the next computation, at

least one of the computations in the cycle will be prevented from committing. This is

because one of the computations in the cycle must have an empty time range.

When a computation is aborted, infinity can be assigned to its computation identifier

23Changing b'a time bound may involve eending m11sagea to other aitaa and require a long delay.

140

if it is used as an upper time bound, or negative infinity if it is used as a lower time

bound. This rule implies that when a computation a is to be serialized after two other

computations band c, a must include both b's and e's identifiers in its lower time

bounds, even when b is constrained to be serialized after c. If a includes only the

computation identifier of b in its time range and bis aborted later, the serialization

ordering between a and c is expressed in neither a's nor e's time range.

When a cycle is formed, two different scenarios may happen. In the first scenario,

some of the computations in the cycle wiH commit and at least one of the other

computations will discover that it has an empty time range. For example, if the time

ranges of the computations a, b, and c are as follows:

a: (t1 t t2)
b: (max(a, t3), mln{c, t4))

c: (tS, min(a, t8))

assuming that t1 < t2, ts< t6, and the system chooses a final tlmestamp value for a

in (t1, t2) that is larger than ts. a and c will be committed eventually but b will be

aborted because e's final timestamp value is leas than a's.

Deadlock Resolution

In the second scenario, a deadlock will develop, such as when:

a: (b, t1)
b: (a, t2)

A deadlock detection algorithm can be used to abort one of the computations in the

cycle. However, not all deadlocks represent a cycle in the serialization orderings.

For example, we may have:

a: (b, t1)
b: (t2, a)

where t1 > t2. In this example, a is assumed to be serialized after b and b is

assumed to be serialized before a. These assumptions are obviously compatible and

a serialization order is not ruled out by them. However, a deadlock is developed

because both a and b are waiting for the other to finalize.

141

To avoid aborting any computation when these deadlocks occur, we can rely on the

deadlock detection algorithm to switch the "direction" of waiting. For example, if a

appears in the upper time bound of b 's time range and hence b is waiting for a to

finalize, b's computation identifier can be added to a's lower time bound and then a's

computation identifier can be removed from b's time range and replaced with the

upper time bound of a. In our previous example:

a: (b, t1)-+ (max(b, b), t1) = (b, t1)
b: (t2, a) - (t2, t1)

The switching preserves the correctness of our algorithm because at least one of a

and b is waiting for the other to finalize at all times. After the switch, a is waiting for b

instead. In our example, b can proceed with its commitment and a can be committed

if t2 is less than t1.

To avoid having switchings that nullify one another's effects and to ensure that the

deadlock will be resolved eventually, the switching can be limited to one direction.

For example, we can limit the algorithm to remove computation identifiers only from

upper time bounds and insert then only into lower time bounds. To avoid creating

deadlocks with the switching when there are not any, identifiers can only be removed

from the upper time bounds if there are not any other computation identifiers in the

lower time bounds. In other words, the removal should allow the computation to

commit. In the previous example involving computations a, b, and c, we will never

have:

a: (t1, t2)-+ (max(c, t1), t2)
b: (max(a, t3), min(c, t4)) -+ (max(a, t3), t4)

c: (t5, min(a, t8)) -+ (max(b, t5), t8)

Binding Computation Identifiers

To make sure that every computation identifier used by a time range will be bound

eventually, we· have to make sure that the final tirnestamp value of a committed

computation c (we will discuss aborted computations later) will be sent to each site

that it had visited. In addition, since other computations that had visited those sites

142

: .. . ·~ ~- - .

might have included c 's computation identifier in their time ranges and caused it to

appear in other sites, the final timestamp value of c has to be propagated to those

other sites as well. Notice that because of the indirect propagation of e's identifier,

the sites visited by c may not overlap with the set of sites visited by another

computation d that has c in its time bounds.

In order to make sure the computation identifiers can be bound eventually, we

assume the coordinator of each computation c remembers the following in stable

memory when c commits:

1. e's final timestamp value,
2. a list of all the sites that c had visited,
3. the computation identifiers that c had used in its time bounds.

After commitment, the coordinator wilt send c's.timestamp value to au the sites that c

had visited, which can be piggybacked on the messages that the coordinator uses to

convey the outcome of c (see section 5.4). The coordinator will also try to find out

the final timestamp values of the computation identifiers that c had used and send

those values to the sites that c had visited. This is necessary as other computations

may have learned those computation identifiers from c. Only then all these messages

are acknowledged can the coordinator discard the information that it had stored

during commitment. At each site being visited by c, each copy of the computation

identifiers, if there is more than one, will be replaced with the final timestamp value

before acknowledgment.

To see that every comput~tion an that has the computation identifier of a

computation a1 in its time range will eventually learn of the final timestamp value of

a1 , consider the path of computations a1 , a2 , ... , an along which an learns about the

computation identifier of a1 . (The computation a2 .accesaes an object accessed by

a1 and includes a1 's identifier in its time range. Then a3 accesses an object

·accessed by a2 and includes a1 's identifier in its time range. Eventually an accesses

an object~ by •n.1 and includes a1 's identif181" in its time range.) Note that

each pair of adjacent computations on this path visited some site in common. Since

143

the coordinator of a1 makes sure that each site that it visited learns about its final

timestamp value, the coordinator of a2 ean find out a1 's final timestamp value from

the shared site, where a2 first learned about a1 's computation identifier. Similarly,

after a2 sends that value to every site that it had visited, a3 can learn about the value

from the shared site between a2 and a3. The process is repeated until an learns

about a1 's final timestamp vaJue.

A complication arises when some of the a1's are aborted. In the algorithm that we

described above, an will be waiting indefinitely for the final timestamp value of a1• A

solution is for a1• 1 to remember a list of all the sites and the name of the actions

(e.g., the name of a1) from which it has learned about a 1 along with the name of a 1 in

stable memory when it commits. Instead of waiting for a1 to propagate the final

timestamp value of a 1, a1 ... 1 can send queries to each of ·the sites in -the list. If

records about those actions from which a1 + 1 learns about a 1 cannot be found in any

of the sites in the list and none of those sites is in the process of sending out a1 's

final timestamp value, a1+ 1 can propagate the value of positive infinity to a1+ 2 if a1 's

identifier is used as an upper time bound by a1 + 1, or negative infinity if it is used as a

lower time bound. This is because the serialization constraint is established between

a1 and a1• 1, instead of between a1 and a1 + 1• This solution is correct only if a1 + 1

limits the propagation of the infinity value to a1 + 2 and not to any other computation

that happens to use a1 's identifier. So when a site receives an infinity value from

· a1 + 1, it should bind an a 1 identifier in its memory only when the identifier has been

learned from a1 + 1•

Privileged Computations

In the rest of this section we will describe an optimization that will allow the

computations in the system to have different priorities. In particular, we can use the

optimization to make mutator computations tesa Hkely to be restarted. &appose there

is a class of computations with the following form of time ranges:

(max(L 1, L2, ••• , Lm), CO)

144

and the property that the identifiers of these computations are not allowed to be used

in the lower time bounds of any computation. Consequently, the finaJ timestamp

values of these computations are never required to be smaller than any other value,

and since they have no upper bound, we can always find real constants that exceed

their lower time bounds. In other words, these computations can commit even when

there are unbound computation identifiers in their lower time bounds. Choosing final

timestamp values for these computations has to be delayed until the unbound

computation identifiers are bound, however.

These computations are "privileged" becau8" they can always avoid being restarted

by including the upper time bounds or the identifiers of other computations (except

those in the privileged class) in their lower time bounds. It should be noted, however,

that a privileged computation may still be delayed due to tentative mutators that are

serialized potentially before itself.

Because privileged computations can commit without binding their time ranges, a

deadlock involving committed computations can be developed. Because of the

restriction that identifiers of privileged computations cannot be used in the lower time

bounds of other computations, a deadlock must involve non-privileged computations,

which must be uncommitted and can be chosen as victims to be aborted.

The time-range algorithm is useful in a system where the only long computations are

mutator computations. By assigning the· 1ong mutator computations as privileged

computations, the mutator computations can avoid being restarted by other observer

computations. Mutator computations are also not delayed by tentative computations

because they do not observe any state. Short observer computations in the system

can avoid being delayed by tentative long mutator computations by restarting with

smaller timestamps. The cost of restart is low. However, this may not be possible if a

short computation invokes both observer and mutator computations. Compared to

other multi-version algorithms [9, 48), our algorithm has the advantage that the long

mutator computations are never restarted by the concurrency control algorithm. The

145

cost of our time-range algorithm lies in the complexity of manipulating time ranges

and sending messages around to bind the computation identifiers.

Examples of applications that have only long mutator computations and short

observer computations are databases that are replicated on many sites for availability

and efficiency of observer operations. Mutating the state of one of these databases

is a long computation because of the large number of replicas. Frequently, a mutator

computation also does not observe the state of the database, such as when old data

values are overwritten with new data values. On the other hand, usually only short

queries are directed at database because most data is available from the local site.

5.3 Making Concurrency Control Algorithms Transparent

In the previous two sections we have described various concurrency control

algorithms. We have shown that under special situations concur:rency control

algorithms can be adapted to minimize costly conflicts. For example, in the case of

the hierarchical algorithm, long computations would not suffer from repeated restarts

when they are rare.

Given that different concurrency control algorithms might be appropriate in different

applications, we have designed a programming interface which hides the

concurrency control algorithm used underneath. The history operations, such as

p_sub or d_prior, make the algorithm in which the aeriaHiation order is determined

transparent. The retry statement also makes the actions that need to be taken when

a conflict arise transparent.

This section describes how to implement such a programming interface given a

particular concurrency control algorithm. In section 5.3.1 we will describe the

implementation of the history operations that capture the serialization order. In

section 5.3.2 we will describe the implementation of the retr1 statement.

146

5.3.1 Implementation of History Operations

In this section we will describe how the history operations p_sub, p_prior, d_sub, and

d_prior can be implemented given that a static or a dynamic concurrency control

algorithm is used. Our goal is to show that these operations can be implemented and

our descriptions will not focus on efficiency. The operation p_between can be

implemented by filtering a history object with p_prior and p_sub. D_between can be

implemented with d_prior and d_sub similarly.

Figure 5-1 defines the subset of transitions that should be returned by the sub and

prior operations for a static and a dynamic concurrency control algorithm. In the

dynamic algorithm, we assume that each transition is labelled with two timestamps

from a Lamport clock (27): an operation timestamp and a commit timestamp. The

operation timestamp is read immediately before the corresponding operation returns,

and the commit timestamp is read when the computation commits. For the operation

being executed currently, the current clock value can be used as its operation ,

timestamp. We assume that these timestamps are remembered in a history object. A

commit timestamp can be piggybacked on a message that informs a site of a

computation's outcome and. recorded in a history object when the computation's

status in the history object is updated.

Implementations for other concurrency control algorithms are similar to those in

figure 5-1. For example, the implementations for the hierarchical algorithm. and the

static algorithm are the same except that the two timestamps for a computation are

concatenated for comparison in the former and a single timestamp is used in the

latter. In an implementation for the time-range algorithm. a transition can be

serialized potentially before or after another transition if their time ranges can

possibly overlap. Otherwtset one of them is serialized definitely before the other.

147

........ ...;.. ... -

Static serialization concurrency control algorith•:
(Implementations for the d_ counterparts are identical.)

p_sub • procadure(h: history, t: transition) raturns(history)
return transitions in h with larger ti .. stamps than t
and p_sub

p_prior • procadure(h: history, t: transition) returns(hfstory)
return transitions in h with .. aller ti .. st .. ps than t
end p_prior

Dyn .. ic serialization concurrency control algorithlt:

p_sub • procedure(h: history, t: transition) return1(hi1tory)
if t has a co .. it ti .. St&llP c

then return all finalized transitions that have larger
c01111it timeat .. ps than c and all tentative transitions
in h

else return all tentative tran1ftion1 in h and all finalized
transitions that have larger cOlllft ti .. ata.ps than
the operation ti .. lt8llfl of t

end
end p_sub

d_sub • procedure(h: history, t: transition) return1{hi1tory)
if t haa·a co .. it ti•eat .. p c

then return all finalized tran1ftfon1 that have larger
co .. it ti .. 1t .. p1 than c and all tentative transitions
that have larger operation ti .. ltlllPS than c in h

else return an ..,ty set
end

and d_aub

p_prior • procedure(h: history, t: transition) returns{histor1)
return (all transition• in b - d_sub(h, t))
end p_pr1or

d_prior • procedure(h: history, t: transition) returns(hi1tor1)
return (all transitions in h - p_sub(h, t))
end d_prior

Figure 5-1 :Implementations for Sub and Prior

148

5.3.2 Implementation of Retry Statement

This section describes how the retry statement can be implemented given a

concurrency control algorithm. In particular, we will use a static algorithm as an

example. We will also describe implementations for other concurrency control

algorithms, although more briefly. Our description of implementations will focus on

their feasibility, but brief references to efficiency will be made occasionally. We will

first present an example of the kind of decision making that is involved in the

execution of a retry statement. Then we will describe an implementation.

When a retry statement is executed in a system with a static algorithm, the language

system should decide whether the computation executing the statement should be

delayed or restarted, and if it is delayed, when it should be rescheduled. With a

dynamic algorithm, the only possibility is to delay a computation. The only decision is

when to reschedule a computation. With a time-range algorithm, the decisions are

more complicated. A computation can be delayed, restarted, or have.its time range

shrunk in different ways.

When the system is faced with these decisions, there are no optimal decisions

without knowledge of the future. Heuristics are needed to determine the relative

likelihood of correctness and cost of each of the choices. For example, it is

reasonable to expect that a tentative transition is more likely to commit than to abort

and make decisions accordingly. We will also assume that it is unlikely to have an

operation invoked in the future serialized before some existing operations.

An Example ,

Consider the proceed condition

-h1storySex1sta(h1atorySp_aub(th1a_trana1t1on). no_x.
not_changed(del_x))

in the insert procedure in figure 4-3 where

149

not_changed • procedure(op: templat•, t: trans1t1on) returns(bool)
return(h1storySex1sts(h1storySd_between(th1s_trans1t1on, e)),

co .. 1tted_del_x))
end not_changed

Suppose the proceed condition evaluates to fa 1 se and a transition t is the only no_x

transition that causes the condition to be false. The proceed condition will be

satisfied when either:

1. t is aborted, or
2. t is serialized definitely before the invoked operation, or
3. a co-1 t ted_de l_x transition is serialized definitely between the invoked

operation and t

Item 1 is unlikely to happen, regardless of the concurrency control algorithm used.

Suppose a static concurrency control algorithm is used. Item 2 will only happen with

a restart because the predetermined serialization order does not change. Item 3 is

only likely to happen if there is already an tentative del_x transition serialized

between the invoked operation and t. In those cases, the invoked operation can be

delayed until the dal_x transition is finalized. In other cases, the invocation request

should be refused and the computation that invokes it restarted. Although it is

possible that the restart is unnecessary after all, it is the most appropriate choice

under our assumptions.

If a dynamic concurrency control algorithm is used, delaying the current operation

. cannot cause item 3 to become true. In fact, it would achieve the opposite effect.

Also, a del_x transition may not exist after all. Item 2 can be fulfilled by delaying the

current operation until t is finalized, the most appropriate step to take in this case.

If a time-range concurrency control algorithm Is used, the system may have several

choices. The time range of the current computation may be shrunk, if necessary and

possible, in such a way that item 2 ls satisfied. If a com1tted_del_x transition exists

and it is definitely serialized before t, the time range of this action may be shrunk

such that item 3 is satisfied.~ If a tent.at.1ve_del_x tranaition exists and it is serialized

potentially before t., the current operation can be delayed until the serialization order

150

--~

is known and the transition committed.

An Implementation for a Static Algorithm

Since we have limited our proceed conditions to be constructed with boolean

operations and history operations, program analysis can be used to decide the action

to take when a retry statement is executed. The goal of the program analysis is to

determine whether a proceed condition is likely to be satisfied eventually without a

restart. Only when should an operation be delayed. We assume that when a system

is confronted with a choice of delaying or refusing an operation, delaying is

preferred. A more sophisticated decision can be based on the expected costs of the

delay and the restart.

Choofina Between Delay and Reatad

To shorten our presentation, assume that a boolean operation can be either and, or,

or negate. However, we would eliminate all the negate operations that are not

immediately applied to the result of an ex 11t1 operation by making suitable program

transformations. For example, if a proceed condition is of the form:

-(ex11t1(h, t, p) and ex11t1(h', t', p'))

we change it to:

-ex11t.s(h, t, p) or -ex1lt.1(h', t', p')

If a proceed condition c is of the form:

1. c1 and c2: then c is likely only if both c1 and cz are likely.

2. c1 or c2: then c is likely only if at least one of c1 and c2 is likely.

Other than the two forms above, c can also be of the form ex11t.1(h, t, p) or

-ex11t.1(h, t, p) where his a history object, tis a transition template, and pis a

procedure. In order to allow the language system to determine the likelihood of an

ex 11t1 or -ex 11 ta expression, we limit p to be of the form:

p • procedure(arg: trana1t1on) returna(boo1)
return(•)
end p

151

where• is subjected to the same restrictions as proceed conditions. If c is of the

form:

1. ex1sts(h, t, p): then c is likely only if t is of the form
co•1 t ted_op_ .•. , and there is a transition tr in h that matches op_ .•.
and p(tr) is likely.

2. -•x1ats(h, t, p): then c is likely only if for all the transitions tr in h,
either a committed version of tr does not match tor -P(tr) is likely.

Determining whether an ex 1 sts expression is likely involves searching the history

object hat run time. The same process can be used to determine whether p(tr) or

-P (tr) is likely after replacing references to arg in •with tr at run time.

oetermining Be1cbeclule1

Given that a proceed condition is likely to be satisfied without a restart, the language

system should determine when the current invoke request should be rescheduled. In

other words, the language system should detemrine when the proceed condition

becomes likely.

There are many options for determining what kinds of events and processing are

allowed to trigger the rescheduling of a suspended operation. For example, a simple

scheme is to allow only the finalization of a fixed aet of transitions determined at the

execution . of the retry statement to trigger rescheduling. A more complicated

alternative is to also allow the finalization of subsequently invoked transitions and

evaluation of arbitrary expressions to determine when rescheduling is appropriate.

Since the goal of this aaction Is to show the feasibility of an implementation that can

resolve a conflict in a reasonable, but not nec111arily optimal, fashion, we will use the

simpler scheme. Another reason to use the simpler scheme is to minimize the cost of

scheduling. One of the necessary consequences of using the simpler scheme is that

we cannot guarantee that a proceed condition will be met when an operation is

rescheduled, as some other operations may have executed between the suspension

and the rescheduling. However, this is conaidered accepteble by our pr,ogramming

interface.

152

Suppose s is a set of transitions such that the finalization of a transition in s should

trigger the rescheduling of an operation with a proceed condition c. A program

analysis similar to the one above can be used to determine a non-empty s. If c is of

the form:

1. ct and c2: thens is the union of the sets that trigger ct and c2.

2. ct or c2: same as above.

3. ex1sts(h, t, p): if tr is a tentative transition in h such that if it is
committed, it would match t and p(tr) would return true, then tr is in
s.24 .

4. -ex 11 ts (h , t , p): if tr is a tentative transition in h that matches t and
p (tr) returns true, then tr is in a.

All Delayed Operation• are Rescheduled Eventually

To show that this implementation is correct, in the sense that if an operation is

delayed, it will be rescheduled eventually, we need to show thats is not empty. We

will now describe an informal argument showing that it is indeed the case.

Recall that a well-formed proceed condition satisfies the following requirements:

1. The proceed condition should be satiafied if:

a. new operations are not started, and
b. all current operations in the system, except the one being

considered, are finalized and the outcomes are known by all
history objects, and

c. the operation being considered is serialized . after all existing
transitions and the seriaUzation order among existing transitions
are known.

2. It is not satisfied currently.

3. It is constructed with boolean operations and the operations provided by
the history objects.

Given that a proceed condition c is not satisfied currently, there must be some

24More accurately, the commitment of tr ia in a, aince aborting tr would not make c become likely.

153

ex1sts(h, t, p) or -ex1sts{h. t, p) expressions not satisfied currently. Given

that c is not restarted and hence likely to become satisfied eventually, at least one of

these expressions is likely to become satisfied eventually. Suppose an ex1sts(h,

t, p) expression is likely to become satisfied eventually. Following our definition of

when ex hts (h, t. p) is likely, we know that there is a transition tr in h such that

either:

1. tr does not match t because tr is tentative, or
2. p (tr) is not satisfied currently but is likely to be satisfied eventually.

Given our rules for adding transitions to the triggering set, tr will be in the set if the

first case is true. If the second case is true, induction can be used to argue that the

program analysis of p(tr) will lead to the addition of some transitions in the

triggering set. A similar argument can be used when an -ex11t1(h, t, p)

expression is not satisfied currently but likely to become satisfied eventually.

Piscussion

In addition to guaranteeing that an operation will be eventually rescheduled if it is

delayed, there is also a performance issue that unnecessary restarts should be

avoided. This is achieved with the first requirement for the· well-formedness of

proceed conditions. By requiring a proceed condition to be satisfiable given the

conditions 1.a, 1.b, and 1.c, we prevent an application from specifying a proceed

condition which is unlikely to become satisfied when in fact an operation is likely to

be able to proceed eventually.

For systems that use a dynamic or time-range concurrency control algorithm, rules

similar to those above can be used to determine whether to restart or delay an

operation, and, if the operation is delayed, when it is rescheduled. Correctness in the

sense that a delayed operation is eventually rescheduled i8 not difficult to achieve as

long as every delayed operation is rescheduled occasionally. The complexity of an

implementation is in determining which set of even1s should trigger rescheduling and

whether restart, delay, or some particular way of shrinking a time range should be

employed. It is debatable whether a programmer or a language system

154

implementation can make better decisions. For example, we have discussed that the

relative merits of restarts and delays depend on their expected costs. Having a

language implementation calculate these costs avoids cluttering a program with

optimizations. However, one may argue that a programmer has a better knowledge

of these costs.

5.4 Commit Protocols

When a distributed computation commits or aborts, the sites that participated in the

computation have to agree on its outcome. At any time during the process of

reaching an agreement, site crashes or communication failures can occur. Once a

computation is committed, each site should make sure that the. computation would

appear to have executed despite site crashes and communication failures. The sites

that participated in an action should also be informed of the action's outcome as

soon as possible, so that other actions will not be delayed. The protocol followed by

the sites to reach agreement is called a commit protocol.

Section .5.4.1 reviews the two-phase commit protocol (17). Section 5.4.2 describes

an alternative, the one-phase commit protocol, and compares the two. We argue that

the one-phase commit protocol is more suitable in our environment. In the

description of these protocols, we assume that call and return messages are used to

invoke processing on remote sites and to return results of those efforts.

5.4.1 Two-Phase Commit Protocol

The most common commit protocols used by distributed syStems are two-phase

commit protocols. In a two-phase commit protocol, one of the sites plays the role Of a

coordinator and the other sites become subordinates. We assume that the site that

initiates the top-level action plays the coordinator role, and the other sites that have

participated in the computation are subordinates.

At the end of the computation, If commitment is desired, the coordinator will send

155

prepare messages to the subordinates and wait for their replies. In a system with

nested actions, only the subordinates with non-aborted sub-actions need to receive

these prepare messages. At the subordinates, a yes vote is returned if commitment is_

desired. A no vote is returned otherwise. Before a yes vote is returned, the

subordinates can decide to abort the computation unilateralty. In those cases, a no

vote can be returned when prepare messages arrive.

At the coordinator, if au the votes are yes votes, the computation can be committed

by ' writing the decision to stable memory atomically. Afterwards,

commit_computation messages will be sent to the subordinates. If any of the votes

returned is a no vote, or the coordinator has given up waiting for all the votes to

return, abort_computation messages can be sent to the subordinates that had sent

yes votes. Abort_computation messages can also be sent anytime during the

execution of the computation. A parent action can also aend abort_action messages

to abort sub-actions before the end of a computation.

Commit_computation messages and abort_computation messages are mutually

exclusive. A computation should never send both types of messages. Through the

commit_computation and abort_computation messages, the subordinates will learn

that the computation Is finalized. The sending of prepare and vote messages is the

first phase, and the sending of commit/abort_computatlon messages the second.

When sending messages to the subordinates, either the coordinator can send to

each subordinate directly, or the messages can be relayed by other subordinates. A

convenient strategy Is to have the site of a parent action relay the messages to Its

sub-actions (37). The first messages are sent by the site that executes the top-level

action, the coordinator of the computation. The strategy is convenient because each

parent action knows the names of Its sub-actions, wher8 they are executed, and

whether they should be aborted or committed. However, having the coordinator

send the messages directly avoids any delay. in relaying. To do so, each action

should include the names of its sub-actions, where they are executed, and whether

158

they should be aborted or committed when it returns to its parent. In this way, the

top-level action will collect all the necessary information to send the messages

directly.

5.4.2 One-Phase Commit Protocol

An alternative to the 2-phase commit protocol is a 1-phase commit protocol. In the

1-phase commit protocol, no prepare or vote messages are sent. A site is prepared

to commit when it sends a return message. It stays prepared until notified by the

coordinator to commit or abort. The 1-phase commit protocol takes one less round

trip delay to finish. In a system with long communication delays, this is an important

savings. In a simple 2-site distributed computation using a 2-phase commit protocol,

the coordinator and the subordinate are informed of the outcome of the computation

after 2 and 2.5 round-trip delays respectively. With a 1-phase commit protocol, the

delays are reduced to 1 and 1.5 round-trips respectively.

One of the advantages of the 2-phase commit protocol over the 1-phase commit

protocol is that a subordinate retains the privilege to abort a computation unilaterally

until it has responded yes to a prepare message. Presumably, by aborting an

tentative computation, a site can recover the resources held by that computation.

It is not clear whether this window of vulnerability, during which a subordinate has to

wait for a decision from its coordinator,. is in fact shorter in a 2-phase commit

protocol than in a 1-phase protocol. In a 2-phase commit protocol, the length of the

window is at least the time required for a vote to tra~ to the coordinator and the

decision to come back to the participant. In addition, assuming that most

computations commit, the coordinator has to wait for alt the votes before sending out

the decision in most cases. In a 1 ·phase commit protocol, the length of the window is

determined by the time required to execute the rest of the computation after a

subordinate has returned plus the time needed for the coordinator to send a

decision. If a site is accessed near the end of a computation and sending massages

to sites accessed in the beginning of the computation from the coordinator leads to

157

long delays, then the site accessed near the end of the computation has a shorter

window with a 1-phase commit protocol. On the other hand, the window is probably

longer for sites accessed in the beginning of a computation if the computation

accesses more than two sites serially. In a simple 2-site distributed computation the

window of vulnerability is approximately a round-trip delay in length for both

protocols if we ignore the time the coordinator uses to compute after it has received

a reply from the subordinate. This period of computation should be negligible

compared to the round-trip delay. The same argument can. be applied to an n·site

distributed computation in which the coordinator invokes the n-1 participants in

parallel.

In a 2-·phase commit protocol, by delaying the preparation of an action until the

coordinator is ready to commit, there is a possibility that several actions'

preparations can be piggybacked in a single write to stable memory. In a 1-phase

protocol, a sub-action that executes in the same site as some of its ancestors can

delay its preparation until the oldest ancestor returns because a site crash before its

preparation would also abort the ancestor. Otherwise, it has to be prepared before it

returns. The 2-phase commit protocol is more efficient if accessing stable memory is

an expensive operation.

A compromise between the 2-phase and 1-phase commit protocols is to leave a

choice in the protocol. When a subordinate returns, it can set a flag in the return

message to indicate whether it has prepared. If it has not, the coordinator has to

send a prepare message and wait for a yes vote from that subordinate before the

coordinator can commit. Meanwhile, the subordinate can piggyback its preparation

with a later stable memory access; afterwards, as an optimization, it can send a yes

vote to "catch up" with its return. In other words, the preparation can become an

asynchronous process as long as it is performed before the computation is

committed. In Chapter 7 we will discuss the use of checkpoints, of which an early

preparation is a special case, to increase the resilience of a computation.

158

There are other commit protocols proposed in the literature. Skeen proposed a 3-

phase non-blocking commit protocol in [52). In addition to the extra delay, the

assumptions about the communication network in his protocol are incompatible with

our model. We believe that the 1-phase commit protocol is more appropriate in a

system with long computations because of the reduced delay with one less phase of

messages.

5.5 Summary

This chapter discussed how the programming interface described in Chapter 4 can

be supported. In partrcular, we showed that it is possible to mask the concurrency

control algorithm used in a system. We have described how history operations, such

as p_sub or dprior, and the retry statement can be implemented in different

concurrency control algorithms. We have also proposed two novel concurrency

control algorithms which minimize the likelihood of costty conflicts given that special

conditions are met. We have described commit protocols briefly and described a

1-phase protocol which has a shorter delay between an action returning and its being

finalized. A compromise between a 1-phase protocol and a 2-phase protocol using

an asynchronous preparation allows the cost of accessing stable storage to be

reduced.

159

Chapter Six

Power of Atomicity

In this chapter we compare our atomicity definition with other correctness definitions

in which atomicity is abandoned. Atomicity is used in this thesis to model

computations because it is easy to understand and reason about. We have also

shown that the concurrency of a system can be increased by using semantics in an

implementation. In particular, by incorporating the functionality of an application into

the atomicity definition, ·our approach allows a trade-off between functionality and

concurrency. However, if there were other correctness definitions which permitted

more concurrency, the importance of concurrency might outweigh the simplicity of

atomicity, especially in a system with tong computations. In this chapter we will show

that our atomicity definition permits . as much concurrency as some non-atomic

correctness definitions. On this basis, we will claim that our model of correct

behavior is preferable, since in comparison it is equally powerful and easier to

understand.

The class of correctness definitions that we use to compare against our atomicity

definition is one in which the application defines explicitly pairs of transitions that

"conflict." These definitions insure that computations that invoke conflicting

transitions are ·executed in the same order at all obiects. A representiitive of this

class of correctness definitions can be found in (50]. A slightly different but similar

correctness definition can be found in (38). We wiH describe a correctness definition

which is slightly more general tnan the one in [50). We will call the definition we are

going to deseribe the consistency definition.

As we have described earlier, the consistency definition insures that computations

executing conflicting transitions are executed In the same order at all sites. For

160

example, suppose computation a executes two transitions a 1 and a2 and

computation b executes two transitions b1 and b2. Furthermore, suppose a1

conflicts with b1 and a2 conflicts with b2. The consistency definition requires that

either a1 precedes b1 and a2 precedes b2, or b1 pr99edes a1 and b2 precedes

a2. More precisely, the consistency definition can be defined with a graph acyclicity

requirement. The nodes in the graph are computations. Two computations are

linked by an edge if they execute a pair of conflicting transitions at an object. The.

direction of the edge is determined by the order of execution of the transitions. A

history of transitions is said to be consistent if the graph is acyclic. A system that

only generates consistent histories is called a consistent system.

An equivalent way of stating the same requirement is to require that there exists a

total order among the computations in the system: If two computations a and b

execute a pair of conflicting transitions at an object With a's transition executed

before b's, then a is ordered before b in the total order. Notice that this total order is

different from a serialization order in an atomicity definition, since only conflicting

pairs of transitions are required to be ordered in this total order. Non-conflicting

pairs of transitions can be ordered in different orders in different objects. There may

be more than one such total order.

An example may help in the understanding of the consistency definition. Consider a

banking account with deposlt_x_okay, wlthdraw_y_okay, wlthdraw_y_insuf, and

read_balance_z transitions. If the application does not define read_balance_z to be

conflicting with depoalt_x_okay or wlthdraw_y_okay transitions, then a transfer

between two accounts, compoaed of a withdrawal and a deposit, can interleave with

an audit attempting to find the . sum of the balance in two accounts with two

read.balance operations. In one of the accounts, the read_balance_z1 transition

may be executed before the withdraw_y_okay transitk>n, whereas in the other

account, the other read_batance_z2 transition may be executed after the

deposlt_y _okay transition. In this example, the amount being transferred is counted

twice by the audit. However, we must assume that this b8havior is acceptable to the

161

application, since it does not choose to exclude it by the definition of conflicting

transitions.

This behavior is typical of what real banking systems exhibit in practice. A transfer of

funds between two accounts is done in two separate parts, certainly when the two

accounts belong to two different banks and often when the accounts belong to

different branches of the same bank. In the case of transfer by check, the deposit

occurs first, and the withdrawal occurs only after the check has "cleared." The

clearing of the check involves physical transport of the check and makes the entire

transfer of funds a tong computation. During the time the check clears. the money

appears to be in two places, which is a way of $8ying that read_balance_z does not

conflict with deposit_x_okay or withdraw_y_okay. People have attempted to take

advantage of the intonsistency by investing the double-counted money In various

ingenious ways. The banks have not corrected this problem by imposing atomicity

across the Federal Reserve System; rather, they tolerate the problem to a degree and

control abuses by regulation and law. The builders of banking systems appear to

believe, as a practical matter, that the imposition of a total ordering among alJ the

computations would produce intolerable loas of concurrency.

The consistency definition may seem more powerful than atomicity because an

application can specify conflicting transitions explicitly. However, we will show that

. atomicity is at least as powerful as the consistency definition. In the banking example

above, we can show that by defining the functionality of the read.balance, withdraw,

and deposit operations appropriately, the behavior described above can be modelled

by our atomi~ity definition. Our proof does not· make the transfer of funds into a short

computation, nor does it enable the audit computation to predict whether a check will

clear and to return accurate and up-to-date answers. However, by casting the

uncertainty in the answers returned with an atomicity model and providing the same

level of concurrency as a consistency system, we provide a simpler .model to

understand the behavior of an application than the consistency definition. The better

understanding in tum provides a better framework for the users to deal with the

162

inconsistencies that they might observe. Thus the power of atomicity that we show is

of more than academic interest.

Our proof is by construction. We show that given any system of objects, their

transitions, and a set of conflicting transitions, we can construct a system with an

"equivalent" set of objects, an "equivalent" set of transitions, and serial

specifications for the equivalent objects, such that the set of consistent histories is

identical to the set of "equivalent" atomic histories. Consequently, the two systems

have the same behavior and concurrency. The equivalence is defined with mappings

from one system to the other. The mappings can be used to "simulate" one system

with the other.

The problem with the "equivalent" atomic system that we construct is that its serial

specifications are too complicated to maintain our claim that atomicity is easy to

understand. Hence our proof only shows that atomicity is at least as powerful, but

not always easier to understand. We show a second result in this chapter. We show

that for a class of objects atomicity is as powerful and easier to understand. We also

argue that this class of objects is a large class.

Section 6.1 presents an informal version of our proof that atomicity is at least as

powerful as the consistency definition. Section 6.2 defines atomicity and consistency

with more formal notations and presents a formal version of the same proof. Section

6.3 defines a class of objects called accurate objects and shows that atomicity is as
;'

powerful and easier to understand for accurate objects. Although some objects in a

system may not be accurate, modefting the behavior of the non-accurate objects with

atomicity allows the behavior of the accurate objects to be understood more easily

than with a consistency definition. If we abandon atomicity in the non-accurate

objects, we abandon atomicity in the accurate objects also.

The correctness requirements to handle situations in which failures can happen are

usually not specified clearly in the consistency definitions in the literature. However,

failure atomicity can be incorporated into these definitions in a straightforward

163

manner: only committed transitions are considered in determining whether a history

is consistent. We will ignore failure atomicity in our proofs and assume that aH

transitions will be committed. The addition of failure atomicity, which is orthogonal to

the serializability and consistency concepts, does not change our results.

6.1 Informal Proof of Power of Atomicity

Recall that conflicting transitions are required to be executed in a total order of the

computations in a consistent system. We will call this total order a consistent order.

Similar to an atomic system, a concurrency controt algorithm is needed to determine

a global consistent order followed by every object in the consistent system. Also, just

as in an implementation of an atomic system, conflicts can be created when, for

example, there is insufficient knowledge of the consistent order. Using the

terminology of the conflict model developed in this thesis, a conflict is created by a

new transition when there are other transitions that have the following properties:

1. these transitions are conflicting with respect to the new transition, and

2. they are potentially ordered after· the new. transition according to the
global consistent order.

If no conflicts are created, an object can proceed to determine the result to be

returned. In a consistent system, the result is computed based on the order in which

transitions are executed in an object, which we will call the local execution order.

The core of our proof is to construct an equivalent atomic system in whjch conflicts

are created at the same situations and the same ,_,.Its are returned when there are

no conflicts. Since conflicts are created at the same situations, the atomic system

h~ the same level of concurrency as the consistent system. Since the same results

are returned, the atomic system has the same "behavior," More rigorously, since the

conflict conditions and the validity Of results in an atomic system are determined by

the serial specificationa. we need to construct 98rial specifications that guarantee

that a history in the atomic system is atomic if and omy if the equivalent history in the

consistent system Is consistent.

164

Before describing these serial specifications, we will describe how the atomic objects

in the equivalent atomic system can be implemented. Presumably, one can argue

that the same implementation that implements the objects in the consistent system

can be used to implement the atomic objects. However, we will describe an

implementation using the mech~nisms that we described in Chapter 4, which may

help in understanding the equivalence between the atomic system and the consistent

system.

Just as in the implementations in Chapter 4, each transition executed at an atomic

object is recorded in a history object. When a new operation is invoked, the history

object is queried to determine whether there are previously invoked conflicting

transitions that can potentially be serialized after the new transition. If there are, a

conflict is created and has to be resolved. If no conflict is created, the

implementation has to determine a valid result to return. Since results are computed

according to the local execution order in a consistent system, the results in the

atomic system should be computed in the same way. In a practical implementation,

the transitions in the history object should be merged according to the local

execution order, so that the snapshot/projection object can be used to determine the

result efflcientry. The local execution order has to be encoded in the transitions so

that they can be merged accordingly.

We will now describe the serial specifications for the objects in the atomic system

that create the same conflicts as the objects in the consistent system. Suppose that

in a consistent system a transition t1 Is executed before another transition t2 in an

object o and t1 and t2 are a pair of conflicting transitions. From our definitions, t1

must be ordered before t2 in any consistent order. If we can make sure that, for their

equivalent transitions t1' and t2', t1' must be ordered before t2' in any serialization

order, then a serialization order exists only it a consistent order exists. Also, If the

ordering of any such pairs of t1' and t2' is the only requirement on a serialization

order, then a serialization order exists if a consi8tent order exists. To make sure that

t1' is ordered before t2' in a serialization order, we can require the collection of

165

conflicting transitions that are executed before t2 ', such as t 1 ', to be serialized

before t2'. To express this requirement in the serial specifications, we can encode

this collection of transitions in t2' and compare this collection with the collection of

transitions that are serialized before t2 '. Since a serialization order exists if and only

if a consistent order exists, conflicts are created under the same situations.

An additional requirement on the serial specifications of the equivalent atomic

objects is needed. In addition to guaranteeing that conflicts are created under the

same situation, we must also require that the results returned in the equivalent

atomic system are those returned by the consistent system. In a consistent system,

the validity of a result is determined by specifications like the serial specifications.

For example, if a withdraw operation returns okay, then there must be enough

deposits executed before the withdraw operation to cover the withdrawal. Since the

serialization order, though identical with the consistent order, may not be the same

as the local execution order, we cannot use the serialization order to compute the

results. In other words, the validity of the results in the atomic system should be

determined with the local execution order instead of the serialization order.

Consequently, an additional requirement on the serial specifications is that each

transition should encode the sequence of previously invoked transitions in the local

execution order and ensure that this transition's result is valid according to that

order.

Since the concurrency levels in the two systems are the same, and the results

returned are identical with the exception that a sequence of previously invoked

transitions have been encoded in the transitions generated In the atomic system, we
claim that the two systems have the same behavior. The same implementations can

be used to implement the two systems. The only difference between the two is the

modelling of the acceptable behavior of the syatem.

168

6.2 Formal Proof of Power of Atomicity

This section presents a more formal version of the argument described in the last

section. Atomicity and consistency are defined more formally in sections 6.2.1 and

6.2.2. The formal proof is in section 6.2.3.

6.2.1 Atomicity

Some terminology is needed before presenting the definition of an atomic system.

Suppose h is a sequence of events, r is an object, and a is an action. We define hlr

to be the subsequence of h involving rand hfa to be the subsequence of h involving

a but not a 's sub-actions. An event in a sequence h is committed if there is a commit

event of the same action identifier in h. We define committed(h) to be the

subsequence of h that involves only invoke and return events that are committed.

Aborted(h) is defined similarly. The sign "H" denotes concatenation of sequences.

We will omit the concatenation signs for sequences whenever it is convenient. For

example, t1t2 ••• refers to t 1Ut21···· Also, we will use the "€" sign to refer to an

element being part of a sequence. So for example, we say t2 € t 1 t 2 ••••

A sequence of events h is well-tormed if it satisfies the following conditions:

1. Ignoring commit and abort events, the subsequence hfa should have
alternating invoke and return events, starting with an invoke event, and
with each pair involving the same object.

2. committed(h) and aborted(h) do not have any common events.

3. If a commit event of an action a appears in h, then hfa consists of an
alternating sequence of invoke and return events (starting with an Invoke
event and ending with a return event) and soma commit events at
different objects.

A well-formed sequence of events is caned a history.

We define a function Serial which takes a history and a linearization of the actions In

that history as inputs, and returns the history ~ according to the

linearizati.on. More formally, if an action a or an ancestor of a is prior to another

167

' '~ '

action b or an ancestor of b in the linearization L, then h)a precedes hf b in Serial(h,

L). The order between events of a and events of a's sub-actions is preserved in

Serial(h, L).

We define Globally_Atomic.Objects as the set of globalty atomic objects in the

system. A history h is globally atomic iff:

3L Vr1EG1obally_Atomic.Objects: N1(ll, Serial(committed(hfr1, L))) ;i .L
where L Is a linearization for actions n h,

N1 is the state transition function of the serial specification of r1,
11 is the initial state of the state machine.

A system is atomic if it generates only atomic histories.

To simplify our proofs, we will ignore nested actions. Hence, instead of a

linearization, only a total ordering of the computations in a history is needed. We will

also limit a history to be a sequence of transitions and commit and abort events. In

other words, an invoke event must be foUowed immediately by the corresponding

return event. Transitions from different computations can still be interleaved. The

limitation is imposed to simplify the mapping between histories in an atomic system

and a consistent system. The simplification does not make any difference to our

results as the positions of the invoke events in a history are irrelevant.

Without failure atomicity and nested actions, the set of. atomic histories can be re

defined as follows: a history h is globaUy atomic iff

3L Vr1EG1obally.Atomic_Objects: N1(11, Serlal(hJr1, L)) 9t .L
where Lia a total ordering for computations In h

Notice that since we assume that every transition is committed, no commit or abort

events need to appear in h, which becomes a sequence of transitions.

6.2.2 Consistency

To distinguish the objects in a consistent system and an atomic system, we use the

symbol r Cl to refer to an object in a consistent system, where C in the subscript Cl

refers to the set of conflicting transitions pairs.

168

C = { (t1, t2) I t1 and t2 are conflicting transitions of some object rc1}

We assume that there is some mechanism for an application to define C.

The semantics of each object r Cl is defined with a state machine similar to those

used to define serial specifications of atomic objects. The state machine used to

define the semantics of 'ci has four components: NCI' SCI' •ci' and T Cl'

corresponding to NI' SI' 11 and T1 in a serial specification.

A history he is consistent iff:

Gch is acyclic and Vrc1: Nc10c1, hclrc1> =- .L c
where Gch = { (CompCa' Compcb> E Computatlons(hc) X Computatione(hc)

c
such that he = ••. tca···tcb"""' (tea' tcb>Ec, tea ECompCa'

tcb ECompCb' Compca =- <?omPcJ

Computations(hc) = set of computations that appear in he

In the definition above, Gch is a graph of edges between the computations that
c

appear in he· An edge exists between two distinct computations Compca and

CompCb iff they have executed a pair of conflicting transitions tea and tcb· To make

sure that conflicting transitions executed by different computations are not

interleaved, Gch must be acyclic. Furthermore, the transitions must be valid c .
according to specifications of the objects in the system. Notice that there is no

· global total ordering governing the order in which computations appear in heir er

6.2.3 Proof

Suppose a consistent system is defined with a set of conflicting transitions C, the

objects r Ct' and the specifications of these objects, which are in tum defined by NCI,

Sci• •c1, and Tei· Our goal is to construct an equivalent atomic system defined with a

set of equivalent objects r1 and the serial specifications of theae objects, which are

defined by N1, S1, 11, and Tr A 1-1 mapping M wilt be defined to map histories in the

atomic system to those in the consistent system. The set of atomic histories in the

189

atomic system should map to the set of consistent histories in the consistent system.

We will first show how the serial specifications in the atomic system are defined.

Then we prove lemma 1 which states that if a history he is consistent then the history

M"1(hc) in the atomic system is atomic, and lemma 2 which states the reverse: if a

history h is atomic then the history M(h) in the consistent system is consistent.

Construction of Serial Specifications in Equivalent Atomic System

In our informal version of the proof, we argued that for each transition tea that

executes at the object r Ct in the consistent system, It is necessary to encode the

entire history of transitions that execute at rc1 before tea in t 8 • The set of equivalent

transitions T1 at the equivalent object r1 can be defined as:

Tl =Tel x Tei·

where T Ct is the set of possible transitions in the object rc1,

T Ci• is the set of all possible sequences of transitions in T Cl

The first component of a transition t
8

in T1 corresponds to the equivalent transition

tea in T Cl. The second component encodes the sequence of transitions that were
executed at rc1 previous to •ca· To make sure that the second component does

encode such a sequence and the histories in the atomic system has a 1-1 mapping

with those in the consistent system, we constrain the set of histories H in the atomic

system to be coherent:

1 • if h = ..• t
8

••• E H

and t• = <tea' t•ca>, tea ET Cl' tsea ET Cl•

and Vtd = (tCd' tscd> such that h = ... td ••• t 8 ••• : tCct~T Cl

thent•ea = O

(i.e., if t
8

is the first transition that belongs to r1 in h, then the aecond component of t 8

should be an empty sequence.)

170

2. if h = •.. t
8

••• tb ... E H

and ta = <•ca' tsca>' tb = (tCb' tscb>' •ca• tcb ET Cl' tsea, tscb ET Cl•

and Vtd = (tCd' tscd> such that h = ... t 8 ••• td ... tb ... : tcdf:T Cl

then tscb = tsca I tea

(i.e., if t
8

and tb are consecutive transitions that belong to the same object, then the

second component of tb should be the concatenation of the second and first

components of t
8

.)

The coherence requirement is an additional requirement that we need to impose on

the atomic histories because it can not be expressed with the serial specifications.

Since the coherence requirement deals with histories rather than serial histories, it

exposes the concurrency in a system. When serial specifications are used to reason

about the behavior of a system, concurrency can be ignored. This is not true for the

coherence requirement. In section 3.4.3, we have talked about a similar requirement

that requires exposing the concurrency in a system. In that section, we described a

lower_bound_balance operation on an account object. In order to guarantee that an

implementation does not return trivial results, such as zero, we require that a result

has to be one of the possible results given the many possibilities of serialization

orders and operation outcomes. Since this guarantee is a separate requirement from

the serial specification, we cannot assume any non-trivial results when we reason

about the behavior of lower_bound_balance using only the serial specifications.

Given that histories in H are coherent, there is an obvious 1-1 mapping M and its

reverse M" 1 between H and He, the set of possible histories In the consistent system:

M((tC•' tsca> I (tCb' tscb> I ···) = tc.tcb ...

M"
1
(tca•cb···> = <tea' O) I (tCb' O) I··· if tc.ETc1, tcbETCJ' i'*J

<tea•<» I (tCb' tea> I ··· if tea ET Cl' tcb ET Cl

We will reuse the symbols M and M" 1 to stand for the obvious mappings between the

computations in h and he, or the mappings between GCh and a corresponding
c

171

graph in Computations(h) X Computations(h). For notational convenience, we

assume:

VhEH, \ft8 Eh: t 8 = (tea' tac.>

Note that if •ca appears in he at the object r Cl' then t•ca is the concatenation of all

the transitions that execute before tea at rel' In other words, tsc
8
ltc8 is an initial

subsequence of hcfr ca·

We now proceed to finish our definition of the state machine of r1 by defining S1 (the

set of states), 11 (the initial state), and N1 (the state transition function).

Let s1 = Tc1•

'• = 0

critical(tb, tscd> = {tcx Etscd I <•ex' tcb>Ec}

N1(tsca' tb) = t•cJltcb iff critical(tb, t•ea> ~ criticel(tb, tscb>

and Nc10cl' 18cbltcb> • J.
In the definition of N1 above, two conditions have to be satisfied in order for

N1(t•ca' tb) to be defined. The first condition requires that critlcal(tb, t•ca> is a

subset of crltlcal(tb, tscb>. In other words, all the conflicting transitions that

execute before tcb are serialized before tb. The ·second condition requires that

Nc1<•c1, tscbltcb> is defined. In other words, the transition tb must be valid

according to the local execution order at r1, since this is required in the consistency

definition.

The following two lemmas will show that a history he is atomic If and only if the

equivalent history M"1 (he) is consistent.

172

~ ::

Lemma 1: if he is a consistent history then M"1(hc) is an atomic history

Proof:

Suppose he is a consistent history, let M"1(hc) = h

Let L be a total order of all the computations in Computatlons(h)

such that it is consistent with M" 1 (Geh)
c

Suppose Serial(hfr1, U = t 8 tb ••• tk.1 tk

We will use induction 6n k to show that N1(11, Serlal(hlr1, U) =-: .L

Basic Step:

From the definition of critical, we know: crltical(t
8

, O) = IZJ

=> critical(t8 , <>) = flJ ~ critlcal(t8 , t•ca>

Also, since tsc.ltca is an initial subsequence of hcfr Cl

and Nc10c11 hcl1c1> - .L

=> NCl(ICI' 18ca11ea> - .L

Hence N1(o, t
8

) • tea • .L

173

Induction Step:

Suppose N1(11, 1a1b···1k·1) • .L

From the definition of N1, we know: N1(11, t 8 tb ••• tk_1) = tea•eb···tek.1

Suppose tx E critical(tk, •ea•eb···'ek.1)

=> 1ex E 1ea1eb···1ek-1 and <•ex• tC.k) EC

=> (CompCx' Compck> E Gch and (tCx' •ck> EC c
=> he = ... tcx···tck""" and (tCx' tck) € C .

=> •ex e ••ck and (tCx' tck> E c
=> tcx E critical(tk, tack>

Hence critlcal(tk, tc8 tcb···'ck·1) ~ critical(tk, tack>

Also, since tsckltCk is an initial subsequence of hclrc1

and Nc10e1' heir a>• .L:

=> NCl(ICI' 18ekltek> - .L

=> N,<•ca1eb···1ck·1' tk> • .L

~ N101, t 8 tb ••• tk) :vt .L

Hence h is an atomic history

QED

174

Lemma 2: if h is an atomic history then M(h) is a consistent history

Proof:

Let he = M(h)

Suppose he is not a consistent history

=> 3rc1 3tcaEhclrct= Nc10c1' 18ea11ea> = .L

or a cycle of transitions exists:

3<tcm2' 1ca1>, <•ca2' 1eb1), .•. , (tCl2' 1em1> EC

s.t. he = ···1cm2···1ea1 ••. , he = ···1ca2···1eb1 ••• , ••• , he = ···1e12···1em1 •••

and 1cat' 1ca2 E Compca; 1ebt' tcb2 E Compeb; ••• ; 1emt' 1em2 E ComPcm

Suppose 3rCI 3tc8 Ehcfrc1: Nc10c1, t•cJtca> • .L

=> 3r1 3t8 Ehtr1: Nc10el' tscJtea> = .L

=> 3r1 3t
8
Ehfr1:N1(s,t

8
) = .LtorallposaibleaES1

=> h is not an atomic history, contradiction

Suppose the cycle of transitions exists.

Since h is an atomic history

=> 3 a total order L of Computationa(h) s.t. Vr1 N1(11, Serlal(hlr1, L)) • .L

=> 3(Comp1, Comp.)€L s.t. <tc.2 , tc11 >Ec,

tc.2 ECompC•' tc11 ECompet, and he = ... tc.2 ••• tc11 ••• ,

=> t11 E Prefix, where Serlal(hfr1, U = Prefix I t.2 1 Suffix

=> tctt E crltlcal(t.2 , N1(11, Prefix))

Since •e11 f t•c.2

=> tc11 f critlcal(t82, t•c.2>

=> N1(11, Prefix I t.2> = J.

=> h is not an atomic history, contradiction

175

Hence he is a consistent history

QED

From Lemmas 1 and 2, we know that given any set of objects r Cl, their specifications

which are defined with NCI' Sci' lei' and T Cl' and a set of conflicting pairs of

transitions C, we can construct an equivalent set of objects r1, their serial

specifications which are defined with N1, S1, 11, and T1, so that:

he Is a consistent history iff M.1 (he) la an atomic history

6.3 Objects with Simple Serial Specifications

With lemma 1 and lemma 2, we have shown that atomicity is at feast as powerful as
the consistency definition. However, the serial specifications that we have

constructed above are impractical in that they require encoding the entire previous

history in a transition. The more complicated a seriaJ specification becomes, the

more difficult it is to understand. Thus, although atomicity is as powerful, it is not

always easier to understand. In this section, we will argue that the serial

specifications can be simplified in many cases and still have the same behavior and

concurrency. In particular, we will show that for a particular class of objects in a

consistent system, their specifications can be used as the serial specifications for

their equivalent atomic objects. 'No complicated artificial serial specifications have to

be constructed~ Since the specifications in the two systems are just as easy to

understand and the concept of atomicity is easier to understand than the concept of

the consistency definition, we will claim that our approach is preferable.

We will first define this class of objects, which we call accurate objects. Then we

prove a lemma which shows that the set of consistent histories is a subset of the

equivalent atomic histories when accurate objects reuse the specifications of their

counterparts as serial specifications. Finally we argue that the class of accurate

objects is a large claas.

176

6.3.1 Accurate Objects

Ignoring the requirement that a consistent order must exist, the only difference

between a consistent system and an atomic system is that the former can execute its

transitions in a local execution order, whereas Jhe latter has to make its transitions

appear to be executed in a global serialization order. In general, this results in less

concurrency for the atomic system. Informally, because a pair of transitions may not

"commute", an implementation of the atomic system may create conflicts in the

process of making sure that the pair appears to execute In the serialization order. A

pair of transitions tea and teb commutes if:

v he, he' E Tei·

Nc10c1' he U tea I 1eb D he'> = .L lff Nc10c1' he I 1cb I 1ca 1 he'> = .L

Consider an object r ca in a consistent system with the property that all non

commutative pairs of transitions are conflicting. Suppose we constru¢ an equivalent

object r1 in an atomic system using the specification of 'ei as its serial specification.

Suppose a transition t2 is executed after a transition t1 . There are two possible

scenarios: either t1 and t2 commute or they do not. In the first scenario, since t1

and t2 commute, no conflicts will be created in either system. Regardless of the

serialization order or the consistent order, the transitions t1 and t2 will be valid. In

the $eCOnd scenario, t 1 and t2 do not commute. In a conaiatent system, because t 1

and t2 are also conflicting, t2 can only proceed If the implementation is sure that t2

is ordered after t 1 in the consistent order. Reusing the consistent order as the

serialization order, we can achieve the same concurrency In the atomic system: t2

can only proceed if the implementation is sure that t2 Is ordered after t 1 in the

serialization order.

This property of r Cl can be defined more formally as follows:

'Vtca' 1eb E T e1= if Ne10e1' he I 1ea 11eb I he'> 1111 J.

and Nc10c1, he I teb I tea I he') • J. for some he, he' E T ci •

then <tea' teb> e c

r Ci has the property that whenever a pair of transitions does not commute, then it is

conflicting and belongs in C .. We call r Cl an accurate object.

Notice that commutativity depends on the definition of Ncr For example, suppose

the specification of a bank account object is defined with the state machine in figure

6-1. This specification is similar to the one we defined in figure 3-1 except that

insufficient_tunds may be returned even when the balance is more than enough to

cover the withdrawal. The motivation of this non-determinism is to allow a

pessimistic reply to be returned immediately instead of being delayed by tentative

updates.

In the state machine in figure 6-1, the only pairs of transitions that do not commute

are (read_balance_x, deposit_y_okay), (depoait_y_okay, raad_balance_x),

(read_balance_x, wtthdraw_y_okay), (wtthdraw_y_okay, read_balance_x), and

(deposit_x_okay, wtthdraw_y_okay). The transition pair (wtthdraw_y_okay,

depostt_x_okay) commutes since the extra deposit does not invalidate the

withdrawal. Also, the transition wtthdraw _xJnsuf commutes with all other

transitions, even though "normally" we would expect It not to commute with

deposit_y_okay and withdraw_y_okay transitions.

Sc1: real numbers
Tc1: <deposit(x), rc1, aXokay, rCI' a> = depoait_x_okay

<withdraw(x), rCI' aXokay, rCI' a> = wtthdraw_x_okay
<withdraw(x), rCI' aXinsufficientJunda, 'ca• a> • withdraw_xJnsuf
<read_balanceO, 'c•' axx, 'Cl' a> = react_x
where a is a computation, x is a positive real number.

1c1= 0

Nc1<s, deposit_x_okay) • s + x
Nc1(s, wtthdraw _x_okay) = s • x If a ~ x
Nc1(s, withdraw_xJnsuf) = s
Nc1<s, read_x) = a If a = x

Figure 6-1 :Specification of a Bank Account Object in a Consistent System

178

6.3.2 Specifications of Accurate Objects Can Be Reused

We will show that if r Ci is accurate and the serial specification of the equivalent

object ri is defined as:

1i = 1c1' SI = SCI' Tl = T Cl' NI = NCI

then the set of atomic histories includes the set of consistent histories. An

equivalence in behavior and concurrency is achieved without defining artificial serial

specifications for r ci· Rather, the same specification used in the consistent system is

used.

The current consistency definition precludes the two sets of histories from being

equal. ~owever, the stronger requirement of equality is not necessary as histories

that are atomic but not consistent are indistinguishable from the other atomic ones in

the sense that all the atomic histories can be generated by some serial execution.

Equality can be proved if we use the following more general consistency definition:

he is a consistent history iff

GCTh is acyclic and Vr1 3L1: Nc10c1, Serlal(hcfrc1, L1)) • .L
c .

where L1 is a total order of the transitions In hcfrca

GCTh = { (CompCa' Compcb> E Computationa(hc) X Computattons(hc)
c

such that <tea• tcb>EL1 for some I, <tea, tcb>EC, tea EComPca•

tcb ECompCb' Compea :;11: Compcb}

Using the new definition does not change our previous results except that N1 in

section 6.2.3 has to be redefined. In the following proof, we will use the old

definition.

Lemma 3: if he is a consistent history then M"1(hc) Is an atomic history

(The mappings M and M"1 can be extended in the obvious way. For example,

suppose tcb is a transition of an accurate object whereas tea and tee are not.

179

M((tca• tsca> U tcb H <•cc• tscc> H ••• > = •ca•cb•cc···

M·
1
<•ca•cb•cc···> = <tea•<>) I 1cb H <tee•<>) I···

<tea•<» H •cb I <tee• •ca> I···

if •ca ET Cl' •cc ET CJ' i:;tj

if tea ET Cl' tee ET Cl

If all the objects in the system are accurate, then M and M"1 become the identity

mapping.)

Proof:

Let Commut.attve1 C T Cl• X T Cl• s.t. (hca• hCI ') E Commutatlve1 iff

1. Nc10c., hc1> :;11: .L, and

2 • NCl(ICI' hc1') 116 .L, and

3. hc1 = hflt1l•2lh', hc1' = hfft2llt1lh' where •1• t2 ET Cl' or hc1 = hc1'

Let Reachable1 be the transitive closure of Commutatlve1

Suppose he is a consistent history, let M" 1 (he) • h

Let L be a total order of all the computations in Computations(h)

such that it is consistent with M" 1 (GCh)
c

For non-accurate objects, we can show that N1(11, Serlalthlr1, U) • .L as

before.

For accurate objects rc1, let hclrc1 = hfr1 = t 1t 2 ••• tm.1tm

In the rest of the proof we wiH use induction on k to show that:

(Serial(t 1 ••• tk, L)ltk • 1 ••• tm, heir Cl) E Reachabte1 Vk • 1,2, •• ,m

In particular, since it is true fork= m:

=> (Serial(t 1 ••• tm, L), heir ca> E Reachable1

=> Nc10c1, Serlal(t1 ••• tm, U) II* .L

=> N1(11, Serlal(hfr1, U) • ..+
=> M· 1 (he) is an atomic history

180

Basic Step: k = 1

It is obvious that (t1 ••. tm, heir ci> E Reachable1 as:

t 1 • .. tm = heir Cl and Nc1Uc1' heir c1> ;if& J.

Induction Step:

Suppose (Serial(t 1 ... tk, L)Utk + 1 ••• tm, heir Cl) E Reachable1

Let Serial(t1 ••• tk, L) = u 1 ••• uk

Let Serial(t1 ... tk+ 1, L) = u 1 ••• uJtk+ 1uJ+ 1 ••• uk

From the definition of L, we know: (tk + 1 , uJ + 1), ••• , (tk + 1 , uk) (C

=> Nc1Uc1, u 1 ••• uk·ttk. 1uktk• 2 ... tm) ;if& J. since 'ca is accurate

• (u1 ••• uk.1 tk+ 1 uktk+ 2 ••• tm, u1 ••• uk.1 uktk+ 1tk• 2 ••• tm) E Reachabte1

=> (u 1 ••• u1tk• 1uJ+ 1 ••• uktk+ 2 ••• tm, u 1 ••• uk.1uktk+ 1tk+ 2 ... tm) E Reachable1

• (Serial(t1 ••• tk+ 1 , Ultk. 2 ... tm, hclrc1) E Reachable1

QED

6.3.3 There Are Many Accurate Object•

There are three possible kinds of pairs of non-commutative transitions:

1. mutator • observer
2. mutator • mutator
3. observer • mutator

Notice that case 3 is different from case 1 because a mutator transition and an

observer transition can be defined as conflicting if they execute in one order but

non-conflicting in the other order. We will argue that in most cases, an application

181

' .. '•;~

would define the three kinds of non-commutative transitions as conflicting. Hence

most objects are accurate.

Mutator • Observer

The main reason for a mutator-observer pair to be cq>nflicting is that there is no

concurrency gained by making them non-conflicting. TypicaJly, when a mutator

observer pair does not commute, the vaJidity of the result returned by the observer

also depends on the outcome of the mutator. Consequently, because the observer

has to be delayed in any case, making them conflicting does not cause any loss in

concurrency.

The bank account object with its Nc1 defined in figure 6-1 can be used to illustrate

this argument. Suppose the account object has the following pairs of transitions in

C:

(read_balance_x, deposit_y~okay), (read_balance_x, wlthdraw_y_okay),
(depoait_y_okay, read_balance_x), (withdraw_y_okay, read_balance_x)

These conflicting transition pairs in C prevent audit computations from interleaving

with fund transfer computations. However, because (depoalt_x_okay,

withdraw_y_okay) is not in C, the account object is not accurate. We will show that

no concurrency is gained by making the account object not accurate.

Consider an implementation of a consistent system In which an algorithm similar to a

dynamic concurrency control algorithm is used to guarantee that a consistent order

exists. An incoming transition tis delayed until any previously executed transition t'

is finalized if (t', t) € C. Also, to guarantee that NCl(ICI' he) :;t ..l, 8

withdraw_x_okay transition is generated only when previous committed deposits in

h are sufficient to cover the unaborted withdrawals. A withdraw _x_lnauf transition

can be generated anytime without creating any oonftlcta.

The same implementation can be used if we define the account object as atomic with

Nc1 as its seriat specification and u8e a dynamic concurrency control algorithm. This

182

is true despite the fact that successful withdraw transitions and deposit transitions

are not commutative. Two factors contribute to this equivalence. First, the

implementation has the property that the conflicting transition pairs in a history

generated by the implementation are ordered by their commit timestamps. Second, if

a withdraw transition depends on some previous deposit transitions, it must be

committed only after they are committed. Consequently, if we compare the actual

execution order and the serialization order, a successful withdraw transition is

ordered after a deposit transition in both orders if the withdrawal depends on the

deposit.

To present our arguments more rigorously, consider a sequence of transitions

s = u1 ••• urdxwyv1 ••• v. such that

Nc1(1CI' U1···urdxwyv1···v.) :;t .L

where dx la a deposit_x_okay transition,

wy Is a wlthdraw_y_okay transition.

Consider the sequence with the two transitions dx and w Y reversed:

s' = u1 ••• u,wydxv1 ••• v ••

Since NCl(ICI' •> - .L

• Nc10c1• u1 ••• u,>-= .L

Also, if NCl(ICI' U1 ••• u,wy) - .L

then Nc10c1, s') :;t .L, since the v1's are not affected by the order of the

withdraw and deposit transition•

If the system is implemented with the dynamic algorithm that we described above, we

know that the order in which the computations commit, L, is consistent with Gch .
c

Obviously, either wy is committed after dx or dx is committed after wy. If the former

is true, we know that w Y is serialized after dx according to L and we would not have

to "switch" wy in front of dx during the induction step in lemma 3. In other words,

we do not have to worry about the validity of s'.

183

If dx is serialized after w y• it must be uncommitted when w Y is executed.

Furthermore, due to the property of the concurrency control algorithm, all the

committed deposits at the time w Y is executed must be represented in u 1 ••• u ,.

Assuming that the bank object cannot predict whether uncommitted deposits will

commit, it implies that:

NCl(ICI' U1 ••• u,wy) - .l.

Consequently, we know that for any consistent he generated by the implementation

that we described above, (Serial(hclrcl' U, hclrc1) € Reachable1 despite the fact

the account object rc1 is not accurate. Making (depoaH_x_okay, withdraw_y_okay)

non-conflicting does not gain any concurrency.

Mutator • Mutator

Before describing the reasons why a mutator-mutator pair should be conflicting, we

should observe that there are many mutator-mutator pairs that commute. For

example, all the mutators in the bank account example commute with one another

because increments and decrements commute. Similarly, in an airline reservation

system, increments and decrements of seat counts commute with one another. The

concurrency problem that we encounter in theee applications is usually due to

conflicts between observers and mutators.

. Nevertheless, there are also many examples in which two mutators do not commute.

One of them involves an "overwrite" transition, such as resetting the value of a

counter, which does not commute with other mutator transitions. In a calendar

application, changing the meeting place of a meeting appointment does not

commute with another transition that changes the meeting place of the same

appointment. In a FIFO-queue, the order in which items are enqueued determines

the order in which items are dequeued. Two enqueue transitions do not commute.

There are several reasons why these non-commutative transition pairs should be

. conflicting. First, making them conflicting is the only meana to maintain consistency

184

within a set of objects. For example, in a replicated object, if a computation that

performs an "overwrite" operation at each replica can interleave with other mutator

computations, the state that results at each replica is no longer consistent. This is

probably not acceptable to the application. Similarly, if two computations that

change the meeting place of a meeting appointment are executed concurrently, the

desirable behavior is to serialize the mutators at each participant calendar in the

same order, so that at least all the participants would go to the same place for the

meeting. Making the transitions that change the meeting place conflicting is the only

way to guarantee such a behavior. The question of why there are two such

computations initiated concurrently in the first place should be left for arbitration at a

higher level.

Second, making two mutators non-conflicting does not improve concurrency in many

cases. In the implementations that we have described In previous chapters, the

validity of the results of two mutator transitions does not depend on the outcome of

other transitions or the serialization order. For example, both inserting an item x and

removing x from a set object return okay in any case. It is only when there are other

observer transitions whose validity depends on the serialization order or outcomes of

these mutator transitions that conflicts may be created. For example, In the

implementation of a set objact in figure 4-3 on page 100, the only condition under

which a conflict is created by a delete(x) operation is when the delete(x) operation

may be serialized between an insert(x) operation .-Id a member(x) operation that had

returned true. If the implementation uees a dynamic concurrency control algorithm,

the only situation that such a condition can be met is when the inaert(x) operation is

committed and the member(x) operation tentative. In an implementation of a

consistent system, whether a conflict would also be created under such a condition

depends on whether member(x) and delete(x) are confttcting, which we will discuss

below.

Observer • Mutator

185

----- ------ ------ --~------------- -----· ---~-----.. . ~ -· .-...~ -· .

In an atomic system, a conflict condition depends on the functionality of the

application. In particular, whether a conflict is created by a mutator that executes

after an observer depends on the functionality of the mutator and observer. For

example, in the bank account example described in figure 6-1, no conflicts are

created by any mutator that executes after the transition withdraw ... xJnsuf because

insutficient}unds does not guarantee that the balance is less than the amount to be

withdrawn.

Similarly, the relaxed semantics of insutficient_tunds can be used to increase

concurrency in a consistent system. A pessimistic answer can be returned by

withdraw if there are tentative mutators. Given -that insutficient_tunds has a relaxed

functionality, defining wlthdraw_xJnauf and depoaH_y_.ay as conflicting does

not increase concurrency over an atomic system. In other words, defining an

observer-mutator pair to be conflicting may not increaae concurrency because the

functionality of the observer may have been relaxed to avoid conflict between a

mutator-observer pair of transitions.

In summary, since defining each of the thf98 possible type of non-commutative

transition pairs as non-conflicting is unlikely to increase concurrency, defining them

as conflicting does not decrease concurrency either. Consequently, the set of

accurate objects is Hkety to be a large aet.

6.4 Conclusion

In this chapter we have shown that atomicity is at least as powerful as a consistency

definition that is similar to some other correctnees definitions proposed in the

literature. By ·a11owing serial specifications to be defined by an application, a

programmer can construct an atomic system equivalent to a consistent system in

terms of its concurrency and behavior. However, the~ specifications of the

equivalent atomic system are too complicated to IUltain our daim that our atomicity

definition Is easier to understand than the consi8tency definition. We showed that for

186

a class of accurate objects the specification used in a consistency system can be

used as the serial specification in the equivalent atomic system. Since the

specifications in the two systems are as easy to understand and the concept of

serializability is easier to understand than the concept of consistency, we claim that

atomicity is at least as powerful and easier to understand in the case of accurate

objects. We argued that the class of accurate objects is a large class because it is

unlikely to have non-conflicting non-commutative transition pairs.

This chapter finishes our discussion of concurrency. In the next chapter we will tum

our attention to resilience problems in a system with long computations.

187

Chapter Seven

Resilience

When the execution of a computation spans a long period of time, the probability of

its encountering some transient failure increases. After a failure, a computation may

have lost its program state (e.g. local variables) before the failure and be unable to

resume its execution. Unless precautions are taken to guard against these transient

failures, a computation becomes more and more unlikely to be completed

successfully when its length increases. Other than site crashes, transients failures

also include deadlocks and invalid assumptions in concurrency control algorithms.

Two kinds of resilience problems are dealt with in this chapter. The first kind of

resilience problems is concerned with limiting the amount of lost work when a failure

occurs. The use of nested actions is a partial solution: aborting a sub-action in

progress does not undo the sibling actions or the parent action. However, using

sub-actions alone is not sufficient. If a sub-actiot1 is aborted after it had finished and

the abort is not initiated by the parent action, the parent action has to be aborted

also. Since the execution of the sub-action may be non-deterministic and have

affected the subsequent execution of the parent action, a mere re-execution of the

sub-action is inadequate. Storing the modifications of the sub-action in stable

memory 90ly helps occasionally, as aborts may be cauaect by deadlocks and invalid

assumptions iti concurrency control algorithms, as well aa by Site craShes.

Conversely,·when an action is aborted, all Its sub-actions have to be aborted also.

Significant delay can be added to the response time when these sub-actions are

executed at remote sites. Re-executing the aborted action but not the sub-actions is

not acceptable in general. The. execution of the aborted action can be non·

deterministic such that a different set of sub-actions may be created in the re-

188

execution.

The second kind of resilience problems is related to communication. In a

communication network where partitions are frequent, a message may never reach

the destination site if resending from the origin site is the only measure to mask

partitions. Consider the communication path between two sites to consist of

switches linked by direct communication links. If the receiver or one of these

switches or links is non-operational, a partition is created. Even though individual

partitions disappear over time,· and the sender site can resend the message

repeatedly, the system may be partitioned in such a manner that the sender and

receiver sites never establish a connection along which all the components would be

operational simultaneously (figure 7·1). A special case of this situation is when the

sender and receiver sites are connected to the communication network at non

overtapping periods of time.

x-G
x-G

Figure 7 -1 :Partitions that Prevent Communication

189

.,•·'"'· -.

With most current communication protocol implementations, an end-to-end

connection from sender to receiver is assumed. While switches may resend to

recover from a transient failure, they currently· do not have the capability to buffer

messages for an extended period of time, so that the ultimate resending

responsibility falls back on the sender. If partitions develop, these assumptions

prevent successful communication.

In section 7.1, we describe a checkpointing mechanism which allows a program

interrupted by failures to restart itself at the last checkpoint. A "program" can be

equated with a procedure in a resource manager. Checkpointing has been

suggested in the literature [41, 53) to increase the resilience of a computation; our

goal is to work out a checkpointing mechanism compatible with the implementation

paradigm described in this thesis. In addition, because of our assumption that

communication delays can be significantly long, we will discuss how to minimize

aborting remote sub-actions · by coordinating the checkpoints with remote

invocations. Another difference between our work and other wark on checkpointing

mechanisms relates to the amount of information stored in a checkpoint. In order to

avoid checkpointing every piece of information accessible to a program, we will

describe how the program can specify a subset of its state to be preserved across

checkpoints.

. In section 7.2, we describe how messages can be relayed through message transfer

agents (MTA 's). The protocol between two MTA's or an MTA and its client is simple,

minimizing the state that needs to be kept on both sideS. MTA's are capable of

buffering messages as well as storing messages jn stable memory so that messages

are not lost with site crashes while waiting for partitions to disappear.

7.1 Checkpoints

This section describes how a program can checkpoint its state during execution. At

a checkpoint, all the updates to the shared objects accessed or created by this

190

program should be stored in stable memory. These shared objects include all the

objects accessible from the per•anant state of the resource manager. In addition,

any objects local to this program (e.g., local variables) must have their updates

remembered in a known location in stable memory. Since it may be too expensive to

copy all the accessible local state into stable memory, we will describe .how the

application program can specify a subset of the local state. Only objects in this

subset are accessible after the checkpoint.

Due to our decision that only a subset of the state accessible to a program Is

preserved by a checkpoint, and because a procedure is a "19r& convenient unit than

a process to specify the subset, we will equate a program with a procedure.

Obviously, ·Check.pointing only the state of a program is not sufficient. To guard

against site crashes, all the ancestor programs on the call stack at the same site must

also be checkpointed. It may also be appropriate to extend the checkpointing

beyond this site.

Our approach may provide less availability than a system in which the checkpointed

state is replicated in another site with relatively independent failure characteristics.

To determine the appropriate trade-off, availability should be evaluated against the

cost and complexity of replication. Complexity can be reduced at the cost of special

hardware support (e.g., dual-ported disks).

In the remainder of this section we describe our checkpoint mechanism in greater

detail. We will describe the actions taken at checkpoint time and faUure occurrences.

7. 1 • 1 Checkpoint Time

Our discussion of the actions taken at checkpoint time will start with a brief

description of the local state that needs to be stored by a checkpointing program.

Storing the local state accessed by a program is not enough to guarantee resilience,

however. We will also discuss how the objects accessed by previously Invoked sub

programs can be stored in stable memory, and how checkpoints can be propagated

191

to ancestor programs.

7. 1. 1 . 1 Check pointing a Program

At a checkpoint, a program can specify a collection of local variables in a checkpoint

record. Together with the peraanent state of the resource manager, a checkpoint

record constitutes the accessible state after the checkpoint.

Since abstract atomic objects of an application are eventually implemented using

globally atomic objects or locally atomic objects supported by the language system,

storing the accessible state requires storing these system·~ objects into stable

memory. For concreteness, we will assume that the system· level objects are

implemented using read/write I~ and storing the objects into stable memory

requires writing log information that contains new values of modified objects into

stable memory [44]. Other algorithms are possible (48, 17).

When the log records that contain the values of modified objects are written out, they

are associated_ with the corresponding checkpoint so that a consistent set of values

can be restored after a failure. The order in which log records are stored can be

used to determine the order of different checkpoints taken by a computation. The

creation and preparation of a sub-action can be regarded as special checkpoints and

ordered with other regular checkpoints in the log. When a restart is needed later, the

ordering in the log can be used to determine the latest checkpoint to rollback to. To

model checkpoints taken by parallel actions, an acyctic directed graph instead of a

total order can be used to model the order.

When a checkpoint is taken, an object checkpointed may be locked or a previously

acquired lock may have been released. If the object is still locked, this can be

indicated in the log record so that the lock can be retained when the object is

restored. If the lock is released, it is becau8& the object i8 a locally atomic object and

the local computation that acquired the original lock had committed. If any changes

made by the locally ·atomic computation had _been written out to stable memory, no

192

further work needs to be done. Otherwise, any changes made by the locally atomic

computation, including the decision to commit the locally atomic computation, can

be flushed to stable memory.

One complication remains. If a locally atomic object is checkpointed while a lock is

held and the lock is subsequently released, it may not be possible to rollback to that

checkpoint because some other locatty atomic computation could have accessed the

object and possibly committed. One of the solutions is to disallow checkpointing a

locally atomic object when it is locked. This is not a severe restriction because we

expect cheekpoints to be taken between, and not during, short locally atomic

computations. Linguistically, a checkpoint can be taken as the end of a locally

atomic computation, which forces tocks to be released at the checkpoint. Another

possibility is to discard the checkpoint as if it had never been done when locks are

released tater. The decision to discard a checkpoint can be written to stable memory

together with the decision to commit the locally ·atomic computation and release

locks.

Log records about a checkpoint can be discarded ·when the action in which the

checkpoint is executed is finalized25•

Linguistically, in order to enforce the scope of the local variables so that the program

after the checkpoint can only access those objects contained in the· checkpoint

record or per•nent state, we require the program to continue in a separate

program module after a checkpoint. We call this program module a continuation

procedure, the name of which is stored in stable memory and associated with the

checkpoint. The permanent state is accessible to atl program modules in the

resource .. nager. The checkpoint record can be made accessible to the

continuation procedure as its "arguments." See figure 7-2 for an example.

25tt the only source of failur. is iite craahe8, a chackpoint can be di8carded once the action
executes a later checkpoint°' iB pr9p81'8d.

193

calendar• resource aaanagar i1 •••
permanent state ii

a: tabla[1lot]

maka_appointatent •procedure(•••)
1oca11: integer

chackpoint(localt, •••)
.continua at contt
and aaka_appo1ntllent

contt • procedura(clocalt: integer, •••)

••• clocal t •••

• • • • • • •
and contt

Figure 7-2:A Program Using Checkpoints

7 .1.1.2 Propagating a Checkpoint to Previously Invoked Sub-Programs

In addition to the local objects accessed by this programt other objects accessed by

the sub-programs previously invoked by this program should also be stored in stable

memory. Si nee these sub-programs had already returned, no local variables need to

be stored. Only the objects in the parunent atata of the resource managers in

which these sub-programs executed have to be written out to stable memory. If a

sub-program and its parent execute at the same alte, a single stable memory access

can be used to write out all the log records. If they execute on different- sites, the

parent has to send messages to inform the sub-program of the checkpoint.

To simplify our discussion, we assume that all remote sub-programs are executed in

sub-actions. If these remote sub-actions have already prepared, no extra work is

needed. Otherwise, prepare messages should be aent to the remote sub-actions. If a

no vote is returned by a sub-action, this action has to be rolled back to a checkpoint

taken before the sub-action is created. We wiH diecuss rollbacks In the next section.

194

It is not necessary for the parent to wait for a remote sub-action to prepare before

proceeding. However, when the parent prepares later, it has to make sure that the

sub-action has also prepared.

7 .1.1 .3 Two Kinds of Checkpoints

Two kinds of checkpoints are allowed in this proposal. The first kind of checkpoints

is associated with a procedure call. Under our model, the length of a computation is

attributed to communication delays. Consequently, if a program expects a long delay

in the return of a remote procedure call, it should execute a checkpoint immediately

after evaluating any arguments but before the call. If the site in which the caller

resides crashes during the wait, any previous work, such as calling some other

remote procedures, and the ongoing call would not have to be aborted. Executing

the checkpoint before the call minimizes the possibility that the caller will be aborted.

By associating the procedure call with the checkpoint, we guar~ntee that the

checkpoint will be immediately before the call and the deterministic processing in

between would not invalidate the invoke message.

The second kind of checkpoints is not associated with any procedure calls. These

checkpoints are executed when a program arrives at some "logical breaks." At

these logical breaks, the remaining tasks in the program are relatively independent of

previous tasks. Little or no local state is required to. be stored for the continuation

procedure. However, if we assume that a program spends relatively little time

between remote calls, there is less motivation for these checkpoints.

When a checkpoint associated with a procedure call is executed, the arguments and

a unique frame identifier of the callee will be stored along with other information in

stable memory. A frame identifier uniquely identifies a program. We assume that

frame identifiers are unique over the lifetime of a system. Storing the frame identifier

of a _callee ensures that a program is aware of its waiting for another program to

return when It is restarted. The continuation procedure will only be invoked when the

procedure call finally returns. A handle can be provided to access the results of the

195

call in the continuation procedure. The use of frame identifiers will be discussed

further in the next section.

A program can anticipate the delay in calling a remote procedure and execute a

checkpoint at the time of the call. On the other hand, a program can also delay the

checkpoint until it is informed by the system of the difficulty in communicating with

the remote site. We expect the system to convey such difficulties through some

system-defined exceptions.. In the discussion below, we assume that an

unavailable exception is raised at a remote call when communication with the

remote site is not possible. It is possible that the invoke message might have been

delivered and the remote call is actually executing.

The alternatives available to a program when an unavailable exception is raised

depends on the exception model. With a resumption model [36), a program can

execute . a checkpoint and resume the outstanding call. With a termination

model [29), the outstanding call is abandoned. The resumption model has the

advantage that the call will not be aborted if it had been, or will be, started. The

program also has the choice of abandoning the call, and pursuing some other

alternatives, in which case the sub-action associated with the call will be aborted if it

is ever going to be started. After the checkpoint and resumption, the state of the

program is as if the checkpoint had been anticipated.

7 .1.1.4 Propagating a Checkpoint to Ancestor Programs

In the discussion above, we have ignored the interaction between a program that

executes a checkpoint and its ancestor programs. In fact, the resilience of the

computation is not much improved if only the current program is cheekpointed. In

order to notify the caller of a checkpolnting program, executing a checkpoint

statement will also cause a special exception to be raiaed inside the caller. At the risk

. of a slight misnomer, we can reuse the.name unava 11alt1• for the special exception •

• Unless the caller had anticipated the delay by a previous checkpoint, the c811er has to

provide a handler for the exception. To handle the exception, the caller can decide

196

to checkpoint its state and resume the callee. The exception can be avoided if the

callee knows that the caller has a checkpoint associated with the call.

If the caller did not anticipate the checkpoint and decides to checkpoint when it

receives the exception, it would in tum cause an exception to be raised in its own

caller.. Thus, checkpoints are propagated along the call chain (see figure 7 ·3). This

propagating of checkpoints can be thought of as translating volatile stack frames i~to

a chain of "stable stack frames," each .of Which consists of the follOWing:

1. a checkpoint record,
2. the frame identlfterS of this program and Its caller,
3. a continuation procedure
4. the frame identifier of the callee and the arguments of the call if the

checkpoint is associated with a procedure call.

During a checkpoint, storing updated objects and the stable stack frame into stable

memory, notifying the caller, and executing the continuation procedure can all

proceed in parallel. If the caller does not resume this program, the current action can

be aborted asynchronously. The parallelism is needed as the caller may be from a

remote site, creating. a long delay in notification; If the caller and callee are at the

same site, their checkpoints can be synchronized in such a manner that the storing

of their states into stable memory can be buffered in a single access to stable

memory. On the other hand, there may be applications that may prefer to minimize

the probability of rollbacks before starting the continuation procedure. A

synchronous checkpoint can be provided; the continuation procedure will only be

invoked after the following has happened:

1. the caller has resumed this program,
2. the objects updated by this program and its sub·programs have been

stored in stable memory,
3. the procedure call associated with the checkpoint haa returned.

197

resume
execution

of a

resume
execution

·ofb

resume

execution

of c

a = procedure(...)
invokeb

except when unavailable:

\. _.. check Point ..
resume

I
continue at Conta

end

... ...
end a

b • procedure(...)
invokec

except when unavailable:

\.. . .. checkpoint

resume
f

continue at Comb

end

... ...
endb

• •
•
•
•

.....-

_..
""".'

•

""""

generate

unavailable signal

at caller of a

generate

unavailable signal

at caller of b

generate

unavailable signal

at caller at c

Figure 7·3:Propagating Checkpoints to Ancestor Programs

198

7 .1.1.5 Checkpointing Parallel Sub-Actions

Consider when a checkpointing program is one of the parallel sub-actions invoked by

a parent action. Like other checkpoints, the program has to supply a continuation

procedure and a checkpoint record. The creator of these parallel sub-actions is also

notified so that it can checkpoint if it had not anticipated the delay. In its checkpoint,

it will . remember the sub-actions that have not yet finished. Its continuation

procedure will be invoked only after all the remaining sub-actions are finished.

Parallel sub-actions can be used to specify an application time-out. Figure

7-4 describes a scenario in which a parent action creates two parallel sub-actions:

one of them sends out requests to set up a meetingt the other contains a checkpoint

statement and remembers a deadline. The continuation procedure of the timer sub·

action will sleep until the deadline Is reached. When the timer sub-action is

awakened, it will abort the sibling action or perform other necessary tasks. If the

sibling action is finished before the deadlinet it will abort the timer sub-action and

return. We assume that there are mechanisms to abort sibling actions.

7 .1.2 Restart Time

This section describes the process of restoring the state of a program to a

checkpoint. First, the restartable programs have to be identified. This Is not a

straightforward operation as checkpoints can be asynchronous at different sites.

Then the states of the sites involved have to be restored to those recorded by the

checkpoints and the programs associated with the checkpoints are restarted. We

will focus on the case where the failure is caused by a site crash. Later we will

describe variations to handle other types of failures.

7.1.2.1 Identifying the Restartable Program

After a failuret the system should consult the record of the checkpoints. The goal is

to identify the last checkpoint executed by a program whose caller is still expecting

the program to return. If the failure Is caused by a site crash, the system can retrieve

199

make-appointment = procedure(...)

coenter

remote-mark-subaction(...)

timer-subaction(...) .

end except when available:

checkpoint(...)

resume % subactions

·continue at contm

end

. end make-appointment

remote-mark-subaction ... procedure(...)

... % invoke remote subaction

checkpoint(...)

continue at contr

end remote-mark-subaction

timer·subaction • procedure(...)

... % calculate deadline and wait for

.. . % short time before checkpoint

checkpoint(deadline)

continue at contt

end timer-subaction

contm = procedure(...)

if expired signalled

then % abandon

end

endcontm

contr • procedure(...)

... % examine result of

... % remote subactlon

abort sibling and return

endcontr

contt • procedure(t: time)

afeep-until(t)

abort sibling and

signal expired

endcontt

Figure 7-4:Using Parallel Sub-Actions to Specify Application Time-Out

200

all the checkpoint records that belong to unprepared actions from stabfe memory.

Recall that the checkpoints ~reated by a program are ordered in their execution

order and that sub-action creation and preparation can be regarded as special

checkpoints. Only programs that were executed by unprepared actions need to be

restarted. Programs that had returned before an ancestor program executed a

checkpoint need not be restarted either.

A program can be top-level if it executes the top-levet action, in which case, the state

of its caller, if the program has any, is irrelevant for recovery purposes. For the non

top-level programs that potentially need to be restarted, - the frame identifiers

recorded during a checkpoint can be used to identify their callers. A caller can be in

a remote site and not necessarily checkpointed. If the caller is local, one of the

checkpoints of the caller should be associated with a procedure call and expecting

this program to return.

To determine whether the caller of a program has a checkpoint at the call or is still

waiting for the call to return, a message has to be sent to a remote site if the caller is

executing remotely. If a caller neither has a checkpoint at the call nor is it waiting for

the call to return, the callee should be asked to abort. If the caller is still waiting for

the call to return, no more work -needs to be done and the callee can restart. If the

caller is not waiting for the call to return but has a checkpoint at the call, the caller

can continue up the chain and determine whether the caller itself can restart at that

checkpoint. If the caller can restart at that checkpoint, the callee can restart also.

7. 1.2 .2 Restarting a Program

In order to restart a program as quickly as possible, two optimizations can be

introduced. First, the sending of an inquiry m111age to a remote caller and a restart

can proceed in parallel. This is crucial as th.a may be a long delay before an

answer is returned. Second, a call meaaage that Invokes a remote callee can

indicate whether the caller is checkpointed at the call. If It is. no inquiry messages

are needed later. Also, positive replies of an inquiry manage can be saved and later

201

inquiry messages directed to the same caller can be omitted.

When a program is restarted at a checkpoint, all the work performed after the

checkpoint, including any changes to the local objects and any sub-action created,

should be undone or aborted. The values of the local objeets are restored according

to the values recorded by the checkpoint. See (54, 35) for a discussion of detecting

orphan sub-actions that are still running even when they are supposed to be,aborted.

To avoid committing supposedly aborted sub-actions, the return, prepare, and

commit.computation messages should contain the tree of action identifiers that

ought to be committed. An action should refuse preparation if the action tree

contains sub-actions that should have been aborted.

To restart a program on a crashed site, the continuation procedure associated with

the checkpoint can be invoked directly if the checkpoint is not associated with a

procedure call. Otherwise, the program can re-invoke its callee.

7.1.2.3 Other Types of Failures

Dealing with other types of failure is similar. If an operation a is the victim of a

deadlock, or a has made an invalid assumption In an optimistic concurrency control

algorithm, the checkpoint before a can be considered as the "last" checkpoint

before a "crash" (see figure 7-5). All WOrk performed after the "last" checkpoint has

to be undone. Determining this checkpoint requires remembering the ordering of the

checkpoints and the points at which operations occur. If this is too expensive, the

beginning of the action that a is executed in can be used as the last checkpoint.

7.2 Message Transfer Agents

In the introduction, we described a communication problem due to the improbability

of having all the components along a communication path operational at the same

tir:ne. This section describes how to alleviate the problem with Message Transfer

Agents (MTA 's).

202

b·~ ...)

current_....,_

progrMt

couMlr'

~ ...)
cuc...,•conlb
endb

.•.

. . __. ,_ __
1 ~111111 ge

2.

If lie YJ•,• 1l 011f111Dna ._

ID ~tf .J,rt1•11t_._.
~•t1.B1'c.

An MTA providee ot m , ot a n'IHllQt cennot
communac.wlhtheNC,. AMlllPtr.t••••d - - . - . - .

MTA'a befcq IWhing Ila ftMI dllfAllllft. l1Ml••••r111i...,...
relaya·ie more ._tow1.1d._ ... ,..,.. ... ,, ••••• tn ttte t*h to be

oper1ltioMI limullW wumlnf tllll ... ,..., Giii the mlH181

"cloe•"tolladHll~ It tllff9E ••. dl! ... 1 ;irttrylng.toeend
' "-.

a m1111ge d , w.r.:1J.IHN ·--

routing....,. ... to 1111ct ._ MrA'•__. .. .,, ... , •. 111 tea ad11t1111do.

If a destination resource manager has a fixed network address, the system can

determine which MTA is "closest" simply by some table lookup. However, a resource

manager can occasionally be relocated from one address to another. For example, a

resource manager can be reincarnated in a different machine when a previous one

crashes, and portable computers can be carried around and reconnected to the

network at different locations. If the new address has not been propagated in the

system, the table lookup may not return the closest MT A.

This problem can be alleviated in two ways. First, the source and destination of a

message can be expressed in resource manager identifiers, instead of network

addresses. Each relaying MTA can perform a table lookup for the best MT A to send

to. Another possible solution is to allow each resource manager to specify a set of
. .

MTA's as its home MTA's. For example, a user may specify MTA's which are closest

to his home or office as the home MTA's for his portable calendar resource manager.

Messages can be replicated and sent to each of these home MTA's. Although extra

resources are required for replication, these replicated messages are otherwise

harmless because they are detected by the destination resource manager. A home

MT A that receives a message will try to send the message to the destination resource

manager periodically. A resource manager can also poll its home MTA's periodically

or when it is conscious of its being reconnected to the network •

. To avoid keeping messages in an MTA for an extended period of time and employing

complicated algorithms to inform an MTA when messages can be deleted, an MTA

assumes that it can delete a message when its delivery has been acknowledged by

the destination resource manager or the next MT A on the path. If the delivery is not

acknowledged (e.g., the acknowledgment message is lost), the MT A can try another

path without having to worry about a possible replicated message which is harmless.

tn fact, a message can be replicated intentionally and relayed through different

routes to increase reliability and minimize delay even when there is only one home

MTA. To avoid lost me1:11ages, messages can be stored in stable memory along the

route. To avoid an MTA being "stuck" with a message, each message is associated

204

with an expiration time and the message can be dropped when it expires. The sender

of a message is responsible for resending when the message expires.

Several other protocols [47, 22, 57] provide a similar relaying service. A Simple Mail

Transfer Protocol which provides a relaying service across transport service

environments for mail is described in [47]. Sites that are connected to different

transport services are chosen as relaying points. An asynchronous data distribution

service for general distributed applications for the SNA architecture is describe in

[22). A similar service for the CCITI standard is described in (57].

The protocol we described above is not meant to be a complete specification but

rather an outline of the main features. One of the features in our protocol is our

assumption that a recipient can detect and discard duplicate messages. It allows us

to simplify our protocol and increase reliability by replicating messages. Also, an

MT A can discard messages when they expire. It allows the resources of an MT A to

be reclaimed easily.

7 .3 Conclusion

This chapter described the resilience problems that a computation may encounter

when partitions in the network are frequent. In addition to the increased possibility of

site crashes during the long execution of a computation, there is also a higher

likelihood of deadlocks. To avoid a computation being aborted whenever a failure

occurs, a program can execute checkpoints from which it can be restarted. We have

described how the state of the program can be specified at these checkpoints. In

view of the possible long communication delay between two sites, we have shown

how their checkpoints can be coordinated. A program can execute a checkpoint in

anticipation of or in response to a long delay iri communication. A program can also

inform its caller when it is performing a checkpoint.

A different resilience problem arises when it is unlikely for the sender and receiver of

a message to communicate synchronously. We described a relaying service which

205

has a simple protocol due to its assumption that duplicate messages can be detected

by the receiver.

206

Chapter Eight

Conclusion

This chapter summarizes our work and suggests future work.

8.1 Summary

As the size and complexity of a system grow, it becomes more difficult to understand

the behavior of the system. Atomicity provides a useful tool to handle this problem.

In this dissertation we have investigated how long atomic computations can be

supported.

There are several questions that we tried to answer:

1. How to improve the concurrency of a · system with long atomic
computations?

2. Given that answers to the previous question may require application
dependent synchronization and recovery, how can the process of
implementing an application be simplified?

3. Is atomicity the right model for long computations after all?
4. How can a long computation be resill~t to transient failures?

· Two solutions to the concurrency problem have been proposed in this thesis. The

first solution involves the use of application semantics, which is not a new idea. The

basis of the solution is to define atomicity using the serial specifications of abstract

objects, which are specifications of the abstract objects' behavior in an environment

without concurrency or failures. As long as the external behavior of an abstract

object appears to be atomic, how the object masks the internal concurrency and

failures is immaterial. This approach of defining atomicity naturally leads to a trade

off between functionality and concurrency. By relaxing aerial specifications,

concurrency is increased. Being able to trade off functionality for concurrency Is an

important requirement in a system with long computations. Given that an

207

--------- ----------~-

implementation cannot predict whether tentative computations will commit and that

computations can be initiated asynchronously and interleave, a concurrency

problem is unavoidable unless a "weak" functionality is used.

The ability to define atomicity based on objects' serial specifications also makes

atomicity at least as powerful as other correctness definitions that abandons

atomicity. We have shown that given a consistent system [50], an equivalent atomic

system can be defined such that the set of atomic histories Is identical to the set of

equivalent consistent histories. We have also argued that in many cases, the serial

specifications in the equivalent atomic system are identicat to the specifications used

in the consistent system. Consequently, atomicity is at least as powerful and easier

to understand. This result assures us that our atomicity definition is a useful tool.

In implementing an application, an application programmer is confronted with two

problems. First, how can the serial specification of an object be defined such that

there is "enough" concurrency? Second, how can abstract· objects that behave

atomically be implemented? We introduced a conffict model that measures the level

of concurrency with how frequent conflicts are created. We have described a

process with which a programmer can derive conflict conditions from the serial

specification of an object. Since a conflict condition is a useful ind.ication of the level

of concurrency in an implementation, the serial specification of the object can be

designed accordingly. An important characteristic of the conflict model is the

masking of the underlying concurrency control algorithm. Hence, the designer of a

serial specification does not have to be knowledgeable or aware of details of the

underlying concurrency control algorithm.

The implementation paradigm that we suggested for the implementation of an atomic

object follows the ~nflict model closely. When an operation is invok8d, it first tests

whether a conflict is created. If a conflict is created, it must be resolved. Otherwise

the operation can proceed. We emphaslze simplicity in our implementation

paradigm. Not only do programs become easier to write, their correctness can also

208

be argued more easily. History. objects are used to capture the necessary

information that determines whether a conflict is created. We described two

recovery paradigms that govern how recovery is achieved.

An important feature of a history object is that, similar to the conflict model, it masks

the underlying concurrency control algorithm from the application programmer. An

application programmer can write programs without having to know the underlying

concurrency control algorithm and its details. The programs written can also be

ported on systems with different concurrency control algorithms. This portability is

important when systems with different algorithms may be merged. It is also helpful

when little actual experience is available to determine the optimal concurrency

control algorithm. We have shown how the programming interface can be

implemented with different concurrency control algorithms.

Another implementation mechanism suggested is the concept of local atomicity

versus global atomicity. By executing (short) portions of a globally atomic

computation as locally atomic computations, the programming of application

dependent synchronization and recovery is simplified. A parallel with recursion can

be drawn. The implementation of long atomic computations is simplified by making

portions of them atomic to one another. The power of the atomicity concept is

reused at a different level.

The motivation for these Implementation mechanisms is to provide a stylized and

well-understood way of implementing atomic objects. By using the history objects to

derive conflict conditions, the recovery paradigms to perform recovery, and local

atomicity to decompose synchronization and recovery, globally atomic objects can

be implemented easily.

The second solution that we provide to the concurrency problem is a limited one. We

have designed two novel concurrency control algorithms that minimize the

occurrences of costly conflicts. These algorithms provide a limited solution because

they are effective only under special conditions. For example, for the hierarchical

209

algorithm, costly restarts and long delays can be avoided if distributed computations

and computations that both observe and mutate are rare.

Finally, we have discussed a checkpointing mechanism and a reliable message

delivery service that alleviate some of the resilience problems. In view of the possible

long delay to communicate between two sites, we have shown how the checkpoints

within a computation can be coordinated. A program invoking another possibly

remote program can execute a checkpoint in anticipation of, or in response to, a long

delay in communication. It can also inform its own caller so that its caller can in tum

prepare for the delay. Due to the possibly tong communication delay and cost in

accessing stable memory, the checkpointing process proceeds asynchronously at

each site.

8.2 Future Work

In this section we will discuss a number of areas for further investigation.

8.2.1 Other Communication Primitives

In this thesis, we have chosen RPC as the communication primitive. Although it has

its limitations, such 8s in dealing with interactions that resembles coroutines, RPC is

relatively more understood and familiar to programmers. The tree of call and returns

· also fit nicety with the nested action tree. However, the requirement that each call

must be paired with a return may pose some efficiency probl8m in an environment

with long communication delays. It is not uncommon to have computations

consisted of work that need to be done sequentially at several (more than two) sites.

The arrangement that requires that shortest communication delay wilt have the first

site invoke the second, the second' invoke the third, and ao on, until the last return to

the first. This is not possible within the RPC paradigm.

Another type of communication primitivea that has been proposed is broadcast

messages [12). Communication cost can be reduced when implementing, say,

210

replicated objects. In particular; the messages thatneed to be relayed through the

MTA's described in Chapter 7 can be minimized.

Incorporating new communication primitives requires much rethinking of the deSign

and implementation of a system. For instance, it is unclear how a nested action tree

can be defined when the control structure of the computation does not follow a

nested tree of invokes and returns.

There is also the problem of language design. A simple semantics of the

communication primitives should be. presented to the programmers. When the

communication primitives are implemented on an unreliable network, the

implementation should be efficient and yet conform to the semantics.

8.2.2 Hardware Configuration and Reliability

We have assumed in this thesis that each site is equipped with stable memory. This

is not necessarily true for most personal workstatit>na. ·One solution is to provide

stable memory servers shared by the sites without stable memory. The protocol

between the sites and the stable memory servers must not only be efficient, but aJso

provide a reliable service seldom interrupted by site crashes. For example, if the site

on which a resource manager resides crashes, one should be able to reincarnate the

resource manager on a different site with the help of the stable memory server,

without waiting for the original site to be. recovered. By concentrating the stable

memory of a system into fewer stable memory servers, better maintenance can be

provided to these machines and the system becomes more reliable as a result.

A more difficult requirement is for a resource manager to be able to continue its

service using another stable memory server when the original server crashes, with or

without aborting ongoing computations. The problem is difficult as the resource

manager may not have a copy of its entire state~ A less ambitious goal is to provide

some limited service, such as only allowing prepared actions to be committed. Since

prepared actions have their changes written In the crashed stable memory server, the

211

new stable memory server can record the commitment and retrieve the changes from

the crashed server later.

Instead of stable memory servers, a system can replicate the state of a resource

manager on multiple sites. If these sites have relatively independent failure

characteristics, the storage reliability may be as high as that provided by stable

memory. Similar to the stable memory servers described above, the replicated state

information can also be used to increase availabUity when the resource manager

crashes.

A natural extension of this scheme is to replicate not only the state that needs to be

stored in stable memory, but also that on volatile memory. Long computations

interrupted by site crashes are not aborted and they can resume execution as soon

as one of the "backup" sites where the state information is replicated is chosen as

the "primary." Obviously, a resource manager cannot afford to broadcast every

memory update to its backups. A checkpointing scheme not unlike the one

described in Chapter 7 can be used to coordinate the updates at the backups.

8.2.3 Replication

A different form of replication can be used to reduce communication defay and

increase availability of the system. The replication in the previous section can be

regarded as the replication of system-level objects. RepHcation can also be

implemented at the application level. Conceivably, an application-level object can be

replicated in several sites with different repreaentationa.

Replicating at the application level has the advantage that the semantics of the

application can be utilized to reduce the number of replicas that have to be

accessed. Herlihy (20) discusses using the type of an operation to determine the

quorums of replicas that need to accessed. Different kinds of semantic information

can be used. For example, the state of an airline reeervation database can be

replicated in several sites. Each site can sell tiCkelB aftd update their own replica.

212

The updates can be propagated to other sites after they are committed. The number

of tickets sold can be kept under a ceiling as long as each site is limited to sell only a

portion of the total tickets left. Periodically the number of tickets left can be

recalculated.

The implementation of replicated objects in our system would present an interesting

(but not mutually exclusive) alternative to the solutions we have proposed for long

computations. Long communication delays can be avoided if only nearby replicas

are accessed. Implementing the replicated objects with the programming paradigms

and mechanisms proposed in this thesis would be an interesting test for these ideas.

8.2.4 lmplementatlon Experience

Because the ideas proposed in this thesis have not been implemented, many of the

system issues are not discussed. There is no doubt that much fine tuning of the

system is needed to produce a practical implementation. For example, the scheduler

of the system has to be "fair" and efficient, since there may be many pending

processes waiting to be scheduled, some of them having been delayed for a long

time.

Another critical component of the system is the stable memory manager. In many of

our arguments, we have relied on the piggybacking of stable memory accesses to

· make the costs of our algorithms acceptable. Careful coding is required. If the

stable memory manager is implemented with a remote stable memory server, the

system performance becomes even more aenaitive to the frequency of stable memory

accesses.

The implementation of the communication subsystem is also left unspecified in this

thesis. In particular, the timeout interval is an important parameter. Too short an

interval leads to wasted effort in checkpointlng. Too long an interval may jeopardize

an uncheckpointed computation and delay the appUcation from taking other

appropriate actions, such as informing the user.

213

~--~--~"-"'~""-* U(___ J)i,•~~-,:;;;;pap H,$@_1!@!,f..!'ft~-!l!!i.42- __ 1£S$!4L@U% .i_.faj--4.4 P?A~-!!' lfflll!*!~~;:.411ru'1!!~~-Y
• . . ' .··· •• ,,..f· • • . . ,. , • .· -·

Finally, the usefulness of the ideas propoeld-ifil IUI thllil cannot be fuHy teated

unless some applications .,. implllma1led. For the ~ of the .tat

specificationa to specify the behaviot of .. .,.. -•••c•1 • ~ help ua.ewaluate -
the practica&ity of our com1Ctn1u-dafiftll0n. ~ fltlll••alion would ateo provide useful c:tata tn determining ... ,,. f:I_.,_.9RCY canttol atgorllhml.

recovery paradigml, ---.................. , 1 .. ., in .. th11f1

8.3 Conctuaion

Atomtctty is a powertut COMept tltllt m11hs ~-- tellurea tn a~
ayatem. LOi'l9 CORIPA11fW .. cllled fOr llt...-WQJIA••-- to lanO d1_1_.1n

communication or oltllt" ..,_ d tlO ••• ,._,.._ ift • th1111 provide

-~to tbe _.........., ar ruln.t•tlie••tlJ_. •,. wlltt Iona lllOmiC

computatlona may eneauattl:r;

214

[11

[2]

[3]

[4]

[5]

[6]

[7]

References

J. E. Allchin.
An Architecture for Reliable Decentralized Systems.
PhD thesis, Georgia Institute of Technology, September, 1963.

J. E. Allchin and M. S. McKendry.
Synchronization and Recovery of Actions.
In Proceedings of ACM Second Annual Symposium on Principles of

Distributed Computing, pages 31-44. ACM, 1983.

J. F. Barlett.
A NonStop Kernel.
In Proceedings of the Eighth Symposium on Operating Systems Principles,

pages22-29. ACM, 1981.

R. Bayer et al.
Dynamic Timestamp Allocation for Transactions in Distributed Systems.
North-Holland, 1982, pages 9-20.

c. Beeri et al.
A Concurrency Control Theory for Nested Transactions.
In Proceedings of ACM Second Annual Symposium on Principles of

Distributed Computing, pages 45-82. ACM, 1983.

P. A. Bernstein, D. W. Shipman, and W. S. Wong.
Formal Aspects of Serializability in Database Concurrency Control.
IEEE Transactions on Software Engineering SE-5(3):203-215, May, 1979.

P.A. Bernstein and N. Goodman.
Concurrency Control in Distributed Database Systems.
Computing Surveys 13(2):185-221, June, 1981.

215

[8]

[9]

[10)

(11]

(12)

[13)

[14]

[15]

P. A. Bernstein.
Two Part Proof Schema for Database Concurrency Control.
In Proceedings of the Fifth Berkeley Workshop on Distributed Data

Management and Computer Networks, pages 71-84. IEEE, February,
1981.

P. A. Bernstein and N. Goodman.
Multiversion Concurrency Control • Theory and Algorithms.
ACM Transactions on Database Systems 8(4):~483, December, 1983.

K. P. Birman.
Replication and Fault-Tolerance in the ISISSystem.
In Proceedings of the Tenth Symposium on Operating Systems Principles,

pages 79-88. ACM, 1985.

A. D. Birrell, R. Levin, R. M. Needham, and M. D. Schroeder.
Grapevine: An Exercise in Distributed Computing.
Communications of ACM 25(4):280-274, April, 1982.

D.R. Boggs.
Internet Broadcasting.
PhD thesis, Stanford University, October, 1983.

A. Borg, J. Baumbach, and S. Glazer.
A Message System Supporting Fault Tolerance.
In Proceedings of the Ninth Symposium on Operating Systems Principles,

pages 9Q.99. ACM, 1983.

K. P. Eswaran et at.
The Notions of Consistency and Predicate Locks in a Database System.
Communications of ACM 19(11):624-833. November, 1976.

D. K. Gifford and J. Donahue.
Coordinating Independent Atomic Action8.
In Proceedings of COMPCON. IEEE, 1885.

216

[16)

[17)

(18)

(19)

(20]

(21)

(22)

[23)

D. K. Gifford.
Weighted Voting for Replicated Data.
In Proceedings of the Seventh Symposium on Operating Systems Principles.

ACM SIGOPS, December, 1979. .

J. N. Gray.
Notes on Data Base Operating Systems.
In Operating Systems: An Advanced Course, Lecture Notes in Computer

Science Vol. 60, pages 393-481. Springer-Verlag, 1978.

J. N. Gray et al.
The Recovery Manager of the System R Database Manager.
Computing Surveys 13(2):222-242, June, 1981.

M. Hammer and D. Shipman.
Reliability Mechanisms for SDD-1: A System for Distributed Databases.
ACM Transactions on Database Systems 5(4):431.4186, December, 1980.

M. P. Herlihy.
Replicated Methods for Abstract Data Types.
PhD thesis, Massachusetts Institute of Technology, May, 1984.

C. A. R. Hoare.
Monitors: An Operating System Structuring Concept.
Communications of ACM 17(10):549--557, October, 1974.

B. C. Housel and C. J. Scopinich.
SNA Distribution Service.
IBM Systems Journal 22(4):319-343, 1983.

z. Kedem and A. Silberschatz.
Non-Two-Phase Locking Protocols with Shared and Exclusive Locks.
In Proceedings of Sixth International Conference on Very Large Data Bases,

pages 309-317. ACM, 1980.

217

(24]

[25)

(26)

(27]

[28)

[29)

[00)

[31)

H.F. Korth.
A Deadlock-Free, Variable Granularity Locking Protocol.
In Proceedings of the Fifth Berkeley Workshop on Distributed Data

Management and Computer Networks, pages 106-121. IEEE, February,
1981.

H.F. Korth.
Locking Primitives in a Database System.
Journal of the ACM 00(1):55-79, January, 1983.

H. T. Kung and J. T. Robinson.
On Optimistic Methods for Concurrency Control.
Communications ot ACM 6(2):213-228, June, 1981.

L. Lamport.
Time, Clocks, and the Ordering of Events In a Distributed System.
Communications ot ACM 21(7):558-585, July, 1978.

B. Lampson.
Atomic Transactions.
In Distributed Systems: Architecture and Implementation, Lecture Notes in

Computer Science Vol. 100, chapter 11. Springer-Verlag, 1980.

B. H. Liskov and A. Synder.
Exception Handling in CLU.
IEEE Transactions on Software Engineering SE-5(6):546-558, November,

1979.

B. H. Liskov and R. Scheffler.
Guardians and Actions: Linguistic Support for Robust, Distributed Programs.
ACM Transactions on Programming Languages and Systems 5(7):381-404,

July, 1983.

B. H. Liskov.
The Argus Language and System.
In Goos and HartmaniS, editors, Distributed Systems: Methods and Tools tor

Specification; An Advanced Course, Lecture Notes in Computer Science
Vol. 190, pages 343-430. Springer-Verlag, Berlin, 1985.

218

[32]

(33]

(34]

(35)

(36]

[37)

. [38]

[39)

B. H. Liskov and J. Guttag.
Abstraction and Specification in Program De.velopment.
MIT Press, 1986.

B. H. Liskov and W. Weihl.
Specifications of Distributed Programs.
Distributed Computing 1(2), April, 1986.

N. A. Lynch.
Concurrency Control for Resilient Nested Transactions.
In Proceedings of ACM SIGACT-SIGMOD Symposium on Principles of

Database Systems, pages 166-181. ACM, 1983.

M. S. McKendry and M. Herlihy.
Time-Driven Orphan Elimination.
In Proceedings of the Fifth Symposium on Reliability in Distributed Software

and Database Systems. IEEE, 1986.

Mesa Language Manual, Version 5.0.
1979.

C. Mohan and B. Lindsay.
Efficient Commit Protocols for the Tree of PrOC8118S Model of Distributed

Transactions.
Operating Systems Review 19(2):40-52, April, 1985 .

H. Garcia-Molina.
Using Semantic Knowledge for Transaction Proceaaing in a Distributed

Databaae.
ACM Transactions on Database Systems 8(2):188·213, June, 1983.

W. A. Montgomery.
Robust Concurrency Control for a Distributed Information System.
PhD thesis, Massachusetts Institute of Technology, December, 1978.

219

-----~--------------------------

[40)

[41)

[42)

[43)

[44)

[45)

[46]

[47)

(48]

J.E. Moss.
Nested Transactions: An Approach to Reliable Distributed Computing.
Technical Report TR-260, MIT Laboratory for Computer Science, 1981.

J.E. Moss.
Checkpoint and Restart in Distributed Transaction Systems.
In Proceedings of the .Third Symposium on Reliability in Distributed Software

and Database Systems, pages 85-89. IEEE, 1983.

J. E. Moss, et al.
Abstraction In Concurrency Control and Recovery Management.
Technical Report 86-20, COINS, University of Ma81achusetts, Amherst, 1986.

R. Obermarck.
Global Deadlock Detection Algorithm.
ACM Transactions on Database Systems 7(2):187-208, June, 1982.

B. M.Oki.
Reliable Object Storage to Support Atomic Actions.
Technical Report TR-308, MIT Laboratory for Computer Science, 1983.

D. C. Oppen and Y. K.Dalal.
The Clearinghouse: A Decentralized Agent for Locating Named Objects in a

Distributed Environment.
ACM Transactions on Office Information Systems 1(3):230-253, July, 1983.

C.H. Papadimitriou.
The Seriatizability of Concurrent Database Updates.
Journal of the ACM 28(4):831-653. October, 1979.

J. B. Postel.
Simple Mall Transfer Protocol.
Technical Report RFC 821, ISi, University of Southern California, 1982.

D. P. Reed.
Naming and Synchronization in a Decentralized Computer System.
PhD thesis, Massachusetts Institute of TechnQlogy, 1978.

220

(49)

(50)

[51)

(52)

(53)

[54)

[fiS]

(57)

F. B~ Schnelder.
Byzantine Oenerela.in Action: tmpte..._fflit .. Proc111tn.
ACM Tr~ atteom,,,_,s,wu,,. t8M.

P. M. Schwarz and A. Z. Spector.
~ ... edtlll .. .,,...
ACM T,.,,....•on~tSJlf•••:--. Ato• 1184.

LSha.
ModulM Concuneltcy Control MtJ ,,.,. "'°°,.". OonMltenc:v.

Conwctwllftd-.-.,.
PttD·th11i1,CMt•lf• Miian UN•--........
D.Sh11n.
Non..alocldng CoaWt PM•DOia.
In lllfrJ011-.1ot~blflJll•d1•ColtJf1190Ceon ~OI

o..,pq11•1• ~--·

E. F. W...
OrphM 0...flon ln·tlfft ~ .,_..~
Taehnllll R111 llft'fR.am. Wl'L._...,:..,·Oo11•1•r80ilnce, 1184.

w. E. Weihl.
Spedlcellelt atlll
PhD11a1111Mln1•u11• 11 ..__,~•ll•t~

R.WIU--••·
· · R•:AnO..-urin,d11teAtdllll-....

In ,.,.,,.tillfll Q DllM••• lmpft)vlnfl
111111.,.., 5 ; --.-~

CCl1T VIUth,.,.,,.,, Alie_,,-~·· WI ·/fepOtf It a
1114. .

221

Un cl assifi eel
SECURITY CLASSIFICATION OF THIS PAGE (When Dale En••t•d)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER 12, GOVT ACCESSION NO. l. RECIPIENT'S CAT AL.CG NUMBER

MIT /LCS/ 377
4. TITLE (end Sublll/e) S. TYPE OF REPORT 6 PERIOD COVERED

Long Atomic Computations
6. PERFORMltlG ORG. REPORT NUMBER

7. AUTHOR(•) a. CONTRACT OR GRANT NUMBER(•)

Pui Ng Office of Naval Research
Contract,.N00014-83-K-0125

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

MIT Laboratory for Computer Science
AREA 6 WORK UNIT NUMBERS

545 Technology Square
Cambridge, MA 02139

II. CONTROL.LING OFFICE NAME AND ADDRESS 12. REPORT DATE

DARPA/DOD September, 1986
1400 Wilson Blvd. 13. NUMBER OF PAGES

Arlington, VA 22217 221
14. MONITORING AGENC,¥. NAME & ADORESS(ll dllt•renl trom Controlllnf Otllce) 15. SECURITY CL.ASS. (ot lhl• t•pott)

Unclassified
15•. DECL.ASSI Fl CATION/ DOWN GRACING

SCHEDULE

16. OISTRI BUTION ST AT EM ENT (ol lhl• R•potl)

Approved for Public Release; distribution is unlimited

17. DISTRIBUTION STATEMENT (ol the eb•rt•ct ent•t•d In Bloclr 20. II different ltotn Report)

unlimited

18. SUPPLEMENTARY NOTES

19.

20.

DD

KEY WORDS (Continue on t•v•••• •Id• II nee•••.,,. -d Identity by block n-b•t)

distributed systems, atomicity, concurrency control, long computations,
recovery, fault tolerance, reliability, progranuning methodology.

ABSTRACT (Continue - t•¥•t•• elde II n•c•••.,,.. -d Identify by bloclr mmtbet)

Distributed computing systems are becoming commonplace and offer inter-
esting opportunities for new applications. In a practical system, the
problems of synchronizing concurrent computations and recovering from
failures must be dealt with effectively. Atomicity has been suggested
as a tool that masks concurrency and failures from the users of a
system. With synchronization and recovery mechanisms, atomic compu-
tations appear to execute indivisibly. This dissertation addresses the

FORM
1 JAN 7J 1473 EDITION OF I NOV II IS OBSOLETE

S/N 0 102•014• 6601 I Unclassified
SECUfUTY CLASSIP"ICATlON OF THIS flAGE (""en Del• ... t•ed)

Unclassified
;.L..C.U~TY CLASSIFICATION OF THIS PAGE(Wfl- D•I• Bnl•red)

issues in implementing ..lQ!!.g_ atomic computations, such as computations
that last for hours or even days. Long computations make synchro
nization more difficult because their execution is more overlapped.
They are also more likely to encounter failures in their execution.
Three issues are raised:

1. Should long computations be executed automatically? Or should
atomicity be replaced with other correctness criteria to increase the
concurrency of a system?

2. If long atomic computations can be implemented practically,
are there implementation paradigms that application programmers can
follow to simplify the programming effort?

3. How can long atomic computations be made resilient to transient
failures?

This dissertation shows that by using the semantics of an appli
cation, a system that supports atomic computations can be made as
concurrent as other systems that do not. Since atomicity is easier
to understand than other correctness criteria, systems that support

·long atomic computations are preferable.
Using the semantics of an application requires application

dependent synchronization and recovery code, which can be complicated
and introduce subtle errors easily. Several synchronization and re
covery parad;j.gms are investigated in this dissertation. The paradigms
divide synchronization and recovery into levels so that the task at
each level is simpler. A programming interface taht hides the con
currency control algorithm used by a system implementation is also
presented.

Finally, this dissertation discusses the use of checkpoints and
buffered messages to increase the resilience of long atomic compu
tations.

llnclassjfied
Sl!:CUIUTY CLASSIFICATION OF THIS l"AG£(1'11- D•l'I Bnt•rH)

