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Abstract 

Distributed computing systems are becoming commonplace and offer interesting 
opportunities for new applications. In a practical system; the problems of 
synchronizing concurrent computations and recovering from failures must be dealt 
with effectively. Atomicity has been suggested as a tool that masks concurrency and 
failures from the users of a system. With synchronization and recovery mechanisms, 
atomic computations appear to execute indivisibly. This dissertation addresses the 
issues in implementing long atomic computations, such as computations that last for 
hours or even days. Long computations make synchronization more difficult 
because their execution is more overlapped. They are also more likely to encounter 
failures in their execution. 

Three issues are raised: 

1. Should long computations be executed atomically? Or should atomicity 
be replaced with other correctness criteria to increase the concurrency 
of a system? 

2. If long atomic computations can be implemented practically, are there 
implementation paradigms that application programmers can follow to 
simplify the programming effort? 

3. How can long atomic computations be made resilient to transient 
failures? 

This dissertation shows that by using the semantics of an application, a system that 
supports atomic computations can be made as concurrent as other systems that do 
not. Since atomicity is easier to understand than other correctness criteria, systems 
that support long atomic computations are preferable. 

Using the semantics of an application requires application-dependent 
synchronization and recovery code, which can be complicated and introduce subtle 
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errors easily. Several synchronization and recovery paradigms are investigated in 
this dissertation. The paradigms divide synchronization and recovery into levels so 
that the task at each level is simpler. A programming interface that hides the 
concurrency control algorithm used by a system implementation is also presented. 

Finally, this dissertation discusses the use of checkpoints and buffered messages to 
increase the resilience of long atomic computations. 

Thesis Supervisor: David D. Clark 
Title: Senior Research Scientist 

Keywords: Distributed Systems, Atomicity, Concurrency Control, Long. 
Computations, Recovery, Fault Tolerance, Reliability, Programming Methodology. 
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Chapter One 

Int reduction 

Distributed systems have become a reality with the increasing employment of 

workstations, home computers, and different types of computer communications 

equipment. Distributed computing has ottered many opportunities to build new types 

of applications. These applications are characterized by activities that span multiple 

sites of a distributed system. For example, a travel agent may make several 

reservations in different airline, hotel, and car rental reservation systems. A bank 

customer may withdraw money from his account over a geographically distributed 

banking network. An employee in an office ma~ schedule a meeting with several of 

his colleagues using a calendar system that runs on multiple workstations and 

portable computers. 

However, as the number of sites connected in a distributed system grows, it also 

becomes increasingly likely that some components of the system are broken at any 

given time. Furthermore, the job of synchronizing concurrent activities becomes 

more difficult. It is unrealistic to use any centralized scheduler when many users may 

be initiating activities at the same time. 

Atomicity (17, 28] has been suggested as a useful tool that alleviates these 

synchronization and reliability problems. Under the atomicity model, the activities in 

a distributed system are modelled as a collection of atomic computations. A 

computation is a unit of work initiated by a user or by the system itself. Atomic 

computations are computations that appear to execute serially in a certain 

serialization order. This serializability property trees the programmer from worrying 

about concurrent computations interleaving with one another. In addition to the 

serial behavior, an atomic computation is either committed or aborted. The effects of 
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a committed computation become visible to all computations executed subsequently. 

The effects are also permanent so that they are not lost with transient failures such 

as power outages. When a computation is aborted, any work performed by the 

computation is undone and the computation appears never to have executed. This 

all-or-nothing property is called failure atomicity. It lessens the burden on application 

programmers by undoing computations that are partially done. 

In this dissertation we consider how tong atomic computations can be supported in a 

distributed system. As the size of a distributed system becomes larger, it is inevitable 

that the lengths of computations also increase. With a large. system, it is unrealistic 

to expect every · component to be highly reliable given the high cost of such 

components. As a result, communication delays, network partitions, and 

unavailability of critical resources due to site crashes, are just some of the reasons 

why computations may execute· for a long time. In fact, long computations can be 

created simply because there is much work to be done as a single unit, or because a 

computation requires human interaction. Consequently, long computations are not 

limited to distributed systems. 

The increase in computation lengths exacerbates the synchronization and reliability 

problems. As each computation executes for a longer period of time, there is more 

overlapping of execution, which increases the likelihood of some of the computations 

being delayed. It also becomes more likely to encounter a failure during the 

execution of a long computation. Current distributed systems supporting atomic 

computations [31, 56) do not provide adequate support to long atomic computations. 

These systems do not provide any facilities for a computation to make Its 

intermediate state resilient to transient failures. Also, because of an implicit model of 

short computations, it is considered acceptable to delay one computation pending 

the completion of another. In a system with long computations, such delays are 

usually unacceptable. 

The rest of this chapter is divided in the following way. Section 1.1 describes our 
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definition of long computation more carefully and gives examples of such 

computations. Section 1.2 discusses the major problems in supporting long atomic 

computations. Section 1.3 summarizes our solutions and contributions toward 

solving these problems. Section 1.4 presents a roadmap for the thesis. Section 

1.5 gives an overview of related work. 

1.1 Long Atomic Computations 

A computation may execute for a long time because of extensive computing or 

waiting for 110 events (e.g., waiting for input from keyboard or network). For 

example, a computation that requires human interaction can last for minutes or even 

hours. Clearly, the length of a computation is a relative measure. Instead of using an 

absolute numerical definition for long computations, we concentrate on 

computations that may require special support due to their length. Whether such 

support is needed depends on the length of computations and on the characteristics 

of the system on which they are executed. For example, the concurrency control 

algorithms, the system usage characteristics, and the mean-time-between-failure ~ 

characteristics of the hardware are some of the factors that affect the response time 

and resilience of a system. In a typical distributed system that supports atomic 

computations [31, 56), computations that last hours or days can be considered long 

because they are prone to be aborted and induce long delays in concurrent 

computations. Shorter computations that last minutes or even seconds can also be 

considered long if the hardware is unreliable or the system is heavily used. 

In our discussions we will focus on long computations whose lengths can be 

attributed to long delays in network communication. Several factors can contribute 

to these long delays: 

- mobility of sites, such as disconnection of portable computers, 
- unreliable links in the network causing pertitiona, 
- slow links or switches, 
- economic reasons: sending messages batched is less expensive, 
• security that is enforced by isolation. 
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We believe that our work is also applicable to other types of long computations 

because of the similarity of the problems encountered in supporting them. 

Many applications require long computations. For example, a computation that 

schedules a meeting among several personal calendar servers can last for hours or 

days because some of the calendars reside on portable computers and are 

disconnected from the system. A replicated database [11] may propagate the 

updates to a replicated data object over a long period of time. A computation making 

several airline, hotel, and car rental reservations may last too long compared to the 

concurrency requirements of an airline reservation system. 

1.2 Concurrency and Resilience Problems 

In the prev9Js section we alluded to a concurrency problem and a resilience 

problem with long atomic computations. Intuitively, a system is bound to create a 

concurrency problem when it is trying to maintain an image of substantially 

overlapped computations executing serially. A resilience problem is also to be 

expected because it is more likely to encounter a transient failure in the execution of 

a long computation than in a short computation. This section describes these 

problems more concretely by describing how some systems [31, 48, 56) implement 

atomicity. We argue that a tong atomie computation causes long delays in 

concurrent computations and is prone to be aborted in these implementations. 

1.2.1 Concurrency Problem 

In most earlier work [46, 40, 48, 26, 7), a (distributed) system is modelled as a 

collection of objects with read/write operations. A computation is modelled as a 

sequence of read/write operations on the objects accesaed by the computation. In 

order to guarantee serializability and failure atomicity of atomic computations, each 

object is implemented to behave "atomically:" the values returned by the read 

operations should be identical to those returned had the committed computations 

been executed in some serial order common to all the objects. 
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In general, two different types of algorithms are used to ensure such atomic behavior. 

In a locking algorithm, an object is associated with a read/write lock [31, 56, 17). A 

read (write) lock is acquired before a read (write) operation is executed. Two locks 

conflict with each other unless they are both read locks. When a computation 

requests a lock, it is delayed until all other computations that had previously acquired 

conflicting locks are completed. This locking algorithm is called 2-phase 

locking [17). In a timestamp algorithm, computations are assigned timestamps when 

they are started [48]. A computation is aborted and restarted if it tries to write an 

object that had already been read by another computation with a larger timestamp. If 

a computation with a timestamp t tries to read an object, it is delayed until the 

computation that has the largest, yet smaller than t, timestamp among all the 

computations that had written that object is committed. 

When long computations are executed, neither type of algorithm results in a 

satisfactory level of concurrency. In the locking algorithm, a long computation 

causes other computations that attempt to acquire confHcting locks to be delayed 

until it is completed. Worse yet, computations can be deadlocked with one another, 

so that one of them has to be aborted. When a deadlock occurs, there is the cost of 

detection, which usually involves passing messages among sites [43), and the cost of 

restarting the computation. Although there is no empirical data on the frequency of 

deadlocks in a system with long computations, one can expect deadlocks to be more 

frequent than in a system with only short computations, as locks are held for longer 

periods of time. 

The long delays caused by incomplete computations are also possible in a timestamp 

algorithm. In addition, a long computation can be aborted due to other computations 

with larger timestamps reading the objects that it is going to write. Normally, to make 

sure that computations are serialized aJ)proximately in the order that they are 

invoked, timestamps are assigned from teal·time clocks. Consequently, a 

computation becomes more likely to be aborted when it gets longer, because more 

computations are started while it is being executed. 
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The following example illustrates the concurrency problem. Consider a personal 

calendar application that consists of many personal calendars, each owned by a 

different user. Each user can read his own calendar (read_calendar), reserve a time 

slot in his calendar (mark), and un-reserve a time slot (delete). Read_calendar returns 

a list of slots, some of which are reserved by previous mark operations. The mark 

operation can return okay or slot_tilled depending on whether the proposed slot has 

already been reserved. Delete un-reserves a slot and return~ okay if the user is 

permitted to do so. Otherwise cannot.delete is returned. All of these operations, 

except read.calendar, require updating a calendar. On top of these operations, the 

calendar application can construct computations that set up a meeting among 

several calendars (set_up_meeting), or computations that cancel a meeting 

(cancel_meeting). For example, set_up_meeting would invoke a mark operation at 

each of the calendars involved. 

A word of terminology is needed before we proceed with the example.· In this thesis, 

a computation is modelled as a sequer1,ee of operations on some objects. It should 

be emphasized that these objects are abstract objects supporting abstract 

operations, such as the calendar object described above. A simplified view of the 

system is to regard each operation, such as a mark operation, as relatively short, 

while a computation, such as a set_up_meeting computation, spends most of its time 

delivering messages across a network to Invoke operations. 

A computation that involves multiple· calendars may span a long period of time 

because some of the computers involved may be disconnected from the system 

either physically (because they are portable) or functionally (because they are not 

running the calendar software). Set_up_meetlng and cancel.meeting computations 

belong to this category. 

Obviously, if each calendar object is implemented with a single read/write lock, the 

level of concurrency would be unacceptably low. For example, it is unacceptable to 

render all the calendars of a meeting's participants Inaccessible until a disconnected 
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participant is reconnected to complete a set_up_meeting computation. The 

timestamp algorithm has similar problems. We will omit it in the discussion below 

unless it offers interesting alternatives to the locking algorithm. 

Concurrency can be increased by dividing a calendar into slots and associating a 

read/write lock with each slot. However, the concurrency of the implementation may 

still be unacceptably low. For example, consider the situation in which the owner of a 

calendar is trying to read his calendar when the calendar is the participant of an 

incomplete set_up_meeting computation. Following the read/write lock algorithm, the 

read_calendar operation will be delayed until the set_up_meeting computation is 

completed. This is clearly unacceptable. 

One may argue that a timestamp algorithm offers a solution in this situation. By 

choosing a smaller timestamp for the computation that invokes read_calendar than 

that of the set_up_meeting computation, the read_caJendar operation can return the 

state of the calendar before the set_up_meeting computation is executed. However, 

this solution is not without its problems. suppose the owner of the calendar decides 

to reserve the slot occupied by the set_up_meeting computation for some other 

purpose. The request cannot be accepted because the slot had already been 

promised to the set_up_meeting computation, albeit tentativety1. On the other hand, 

the request cannot be delayed or rejected either because an inconsistent picture will 

be presented: by observing the state of the calendar before the set_up_meeting 

computation is executed, the user is led to believe that the slot is empty and expects 

the request to readily succeed. 

One may consider this example as an argument against having long atomic 

computations. Arguing intuitively, we cannot expect an implementation to hide the 

1 Depending on how different sites of a dietributed computation decide whether the computation 
should be committed or aborted, a lite may be able to abort an inComplete computation unilaterally (17). 
However, there is al80 a window of vulnerability in which such unilal9ral abort& are not allowed. Thia 
window can span a long period of time if communication delays are Ieng. In any C8118, it i8 rather 
counterproductive to abort eny incomplete aet_up_meetino computationa whenever a calend• la read. 
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fact that there are multiple users using the system in substantially overlapped periods 

of time. Hence, atomicity may have to be replaced with some other correctness 

criterion. One of the contributions of this thesis is to show how atomicity can be 

employed even with long computations. Section 1.3 will describe how atomicity can 

be used in conjunction with non-determinism to solve the concurrency problem. 

Since atomicity is not abandoned, the simplicity offered by atomicity is preserved. 

In conclusion, the concurrency problem is caused by the uncertainty of whether an 

incomplete computation would eventually commit, and also the requirement that 

computations should appear to execute serially. when in fact they are invoked 

concurrently. The problem is more serious in a system with long computations 

because long computations take a long time to complete and overlap substantially. 

1.2.2 Resilience Problem 

In addition to the concurrency problem, one also needs to deal with a resilience 

problem in implementing long atomic computations. For a system with long 

computations, the failure atomicity requirement is both a blessing and a curse. On 

the one hand, the increased likelihood that a long computation would encounter 

some transient failure2 heightens our need for recovery mechanisms. Failure 

atomicity provides a simple interface to the application uaers because a computation 

is executed either in entirety or not at all. On the other hand, satisfying failure 

atomicity requires aborting computations interrupted by transient failures unless 

sufficient intermediate state of the computations has been saved. Some systems 

preserve the intermediate state of a computation through the use of replicated 

processors and memories (3, 13). However, theae systems require a degree of 

replication that may be too expensive for many applications. 

When a long computation is aborted, potentially much time and work can be wasted. 

The decomposition of a computation Into a nested tree of actions (40, 48] provides a 

2Source8 cf tranaient failure include site craehea and delldlockL 
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partial solution: an action can be aborted without undoing the effects of its sibling 

an,d ancestor actions. It is inadequate since actions near the top of the tree are still 

vulnerable. Transient failures that happen while these actions are waiting for their 

descendant actions to complete can cause most of the action tree to be aborted. For 

example, a set_up_meeting computation can be implemented with a parent action at 

the originator of the meeting, which creates a child action at each of the participant 

calendars. Although the computation is insulated from transient failures at the 

participants, it is still vulnerable to failures at the originator site. We will describe tne 

nested action model in greater detail in Chapter 2. 

1 .3 Contributions and Solutions 

Collectively, our contributions can be viewed as an argument for the feasibility of 

long atomic computations. More specifically, they can be viewed as solutions to the 

concurrency and resilience problems. We will start with· an enumeration of our major 

contributions, then we will give a more detailed summary of the solutions presented 

in this thesis. 

There are four major contributions in this thesis: 

1. We show that an application can trade off functionality for more 
concurrency. By functionality we refer to the behavior of the application 
when computations are executed serially in an environment without 
failures. Our approach, like other proposals [1, 25, 38, 50, 51], uses 
application semantics to increase concurrency. However, our approach, 
similar to (33], goes a step further and raises the possibility of 
"decreasing" functionality to increase concurrency. The decrease in 
functionality is achieved by introducing non-determinism. Our 
contribution is to show that this approach of decreasing functionality 
while maintaining atomicity is as "powerful" as other correctness 
definitions that have abandoned atomicity, such as the input consistency 
criterion described in [50]. We will show that the exact gain in 
concurrency through the use of these other correctness definitions can 
be realized through decreasing the functionality of the application. On 
this basis, we will claim that our atomicity definition is preferable, since in 
comparison it is equally powerful and easier to understand. 
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2. Our second contribution is the development of a conflict model that 
allows the programmer to determine an approximation of the level of 
concurrency achievable with a particular functionality of an application. 
The level of concurrency is expressed as conditions under which 
conflicts oecur. A conflict is created when an implementation is 
uncertain of how computations are serialized or whether a computation 
will eventually commit. When conflicts occur, computations are either 
delayed or restarted, depending on how the serialization order is 
determined. The model is useful in that it abstracts away the details of 
how to deal with a conflict and how the serialization order is determined. 
For example, the programmer can design the functionality of an 
application ·without worrying about whether a timestamp or locking 
algorithm is used. 

3. Our third contribution relates to the study of concurrency control 
algorithms, which determine the actions that are taken when conflicts 
arise and how a serialization· order is determined. Although the 
concurrency of an application is significantly influenced by its 
functionality, we argue that the concurrency control algorithm still has an 
effect on the overall level of concurrency of an implementation. For 
example, the cost of a conflict is relatively insignificant if it causes a long 
computation to be delayed until the completion of a short computation. 
The same is not true if the situation is reveraed. Our contribution lies in 
the design of novel concurrency control algorithms that can substantially 
reduce costly conllicts under certain conditio"'s. 

4. Finally, this thesis also discusses how applications can be implemented 
such that the concurrency of the implementations would improve with 
the relaxation of the application functionality. Our contribution is the 
design of a programming interlace that allows application semantics to 
be utilized without exposing the concurrency control algorithm 
underneath. Our programming interface allows a programmer to write 
programs for systems using different concurrency control algorithms 
without having to be familiar with all of the algorithms. The programs are 
also portable so that no modifications are necessary when the underlying 
concurrency control algorithm is changed. 

Having enumerated the major contributions, we now proceed to give a more detailed 

description of the solutions to the concurrency and resilience problems proposed in 

this thesis. 
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1.3.1 Functionality - Concurrency Trade-Off 

Consider the read_calendar operation discussed in section 1.2 again. Although we 

have described the concurrency problem using the locking and timestamp 

algorithms, the problem lies in fact in the functionality of the operation. The problem 

exists regardless of how atomicity is implemented. The functionality of the 

read_calendar operation that we described in section 1.2 is to present an up-to-date 

view of the state of a calendar. In addition, we also require the view to be accurate 

such that it reflects only committed computations. This is clearly unachievable given 

that a set_up_meeting computation had visited the calendar and the calendar has no 

knowledge as to whether the computation will be committed eventually. An 

implementation must either risk presenting an inaccurate view or choose an outdated 

one. 

The solution that we propose in this thesis is not to abandon atomicity, but rather, to 

change the functionality of the read.calendar operation. For example, one can 

incorporate non-determinism in the functionality of the read.calendar operation such 

that the set of reserved slots in the list of slots returned is required to be only a 

superset of the set of reserved slots in ·the accurate view. By allowing non

determinism in the result returned by read.calendar, read.calendar does not have to 

be delayed until all incomplete set_up_meeting computations are completed. 

Read_calendar can simply return all the slots reserved by incomplete or committed 

computations as reserved. The result returned by read.calendar is acceptable even if 

some of the incomplete computations tum out to be aborted later. The semantics of 

read_calendar does not require the result to contain only committed slots. We will 

define atomicity such that it allows a non-deterministic functionality of an application 

to be incorporated in the definition. Liskov et al. proposed the same solution In (33). 

Our example can also illustrate why atomicity, coupled with the functionality of the 

applications, is as powerful as some other correctness definitions. For example, 

consider an alternative in which set_up,.meeting is implemented as a coltection of 

atomic computations (15), one at each participant calendar of the meeting. If 
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set_up_meeting is to be abandoned, compensating atomic computations can be 

executed at each of the participants already visited. Concurrency is not a problem in 

this implementation because each of the atomic computations is short. Interestingly, 

the behavior of this implementation is the same as the one with the relaxed 

functionality of read_calendar described above. Because set_up_meeting is 

implemented as a collection of atomic computations, the atomic computation that 

executes read_calendar can be serialized between the atomic computation that 

reserves the slot for the meeting and a later compensating atomic computation. The 

result returned by read_calendar is just as up-to-date and tentative as that implied by 

the· relaxed functionality. The difference is that our approach provides an abstract 

specification of the behavior of the implementation, defined by atomicity and the 

relaxed functionality of the application. The abstract specification allows the users of 

the application to understand the behavior of the implementation more easily. 

1.3.2 Implementation Paradigms 

Relaxing the functionality of the application by itself is not sufficient to solve the 

concurrency problem. For example, if an implementation of the calendar application 

uses read/write locks, relaxing the functionality of read_calendar does not change 

the fact that a read_calendar operation trying to acquire the read lock would still be 

delayed by a set_up_meeting computation that is holding a write lock. In this thesis, 

we are also interested in how an application can be implemented such that the 

relaxed functionality of_.. application can· be utilized. To provide a summary of our 

programming paradigms, we will describe how System R, a relational database 

management system that supports atomic computations [18], increases its 

concurrency with the semantics of its index objects. We will draw analogies between 

System R's approach and our paradigms. 

There are two levels of objects in System R. At the upper level, there are RSS 

objects, such as an index to a relation. At the lower level, there are page objects. 

Invoking an operation on an index object involves accessing one or more page 
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objects. Accesses to page objects are synchronized with page locks, which can be 

viewed as read/write locks of the page objects. Because a page object that 

implements an index object may be accessed by many concurrent computations, 

locking a page for the entire duration of a computation is unacceptable. To increase 

concurrency, page locks are reteased at the end of an operation on an index object, 

instead of at the end of a computation. To preserve atomicity, an additional level of 

"logical locking" is implemented. Information about an index operation is recorded 

when the operation is executed. By examining the' history of past index operations, 

"conflicting" index operations that may lead to non-atomic behavior, such as 

inserting and reading from the same key value, are delayed. Furthermore, because 

the relevant page locks have been released, aborting an index operation cannot be 

achieved by restoring the previous contents of the modified pages. Rather, a logical 

undo operation is invoked during recovery. 

Our approach to implementing atomicity is similar to System R's in many ways. 

Moreover, we are interested in the following questions: 

1. Can System R's approach of utilizing the semantics of an index object be 
applied to other kinds of application-level objects? In particular, can the 
programs that perform the "logical" synchronization and recovery be 
made easier to write and understand by following a general 
implementation paradigm? 

2. Can a concurrency control algorithm akin to a timestamp algorithm, or 
some other hybrid algorithms (7], substitute for the locking protocol used 
in the page lock level or the logical locking level or both? Can a 
programming interface be designed such that an application 
programmer is not aware of the concurrency control algorithms ~ in 
the system implementation? 

The rest of this section gives a summary of our answers to these questions. 
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1.3.2.1 Level Atomicity 

Similar to System R's approach of implementing atomicity, ours also divides objects 

into multiple levels. This division is more than just a division of levels of abstraction. 

As will be d~ribed in this section, the division is a partitioning of the 

synchronization and recovery code of an implementation. For simplicity's sake, we 

will limit the discussion in this thesis to systems with only two levels. An object in the 

higher level is implemented using the objects in the lower level. For example, an 

index object is implemented using page obiectS-

To simplify the programs that access the higher-level objects, all the operations on 

the objects in the higher level are made to appear instantaneous to one another. For 
example, because of the page locks acquired by an index operation, index 

operations appear to be instantaneous to one another even though an index 

operation may access more than one page object. The logical locking in System R is 

simplified because index operations can be treated as instantaneous. The atomicity 

concept can be applied again to present this image of instantaneity. In other words, 

there are two kinds of atomic computations in our implementations. The first kind of 

atomic computations are the computations that we have been discussing In this 

chapter. They access the higher-level objecta and can last a long time. In System R, 

they may be queries or updates to the databBle. The second kind of atomic 

computations are the computations used to implement the operations on the higher· 

level objects. They make the operations on the higher-level objects appear 

instantaneous and simplify the programming of the first kind of atomic computations. 

They are probably short. In System R, they last for the duration of an index 

operation. To distinguish the two kinds of atomic computations, we call the first kind 

globally atomic computations and the second locally atomic computations because 

we expect in most applications the second kind will execute within a single site. 

Figure 1-1 describes this paradigm of ifnplementing globally atomic computations 

with locally atomic computations. 

The locally atomic computations are atomic in the senae that they make operations 
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e.g., page objects 

Figure 1-1 :A Globally Atomic Computation Implemented with 
Locally Atomic Computations 

on a higher-level object appear to be instantaneous to one another. On the other 

hand, they are not globally atomic in the sense that after one of these locally atomic 

computations (e.g., a1 in figure 1-1) is completed, its effects can be observed by 

other locally atomic Computations even though t~ globally atomic computation that 

invokes It (e.g., a in figure 1-1) Is not yet committed. For example, by releasing page 

locks at the end of an index operation o, changes made by o on the page objects can 

be observed by other index operations even when the globally atomic computation 

that invoked o is not yet committed. 
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Using the calendar example, each mark operation in a long globally atomic 

set_up_meeting computation can be executed as a short locally atomic computation. 

Obviously, we need the equivalent of the logical locks in System R to make sure that 

the collection of short locally atomic computations would appear to be a long globally 

atomic computation. For example, a read.calendar operation must be prevented 

from observing the effects of a mark operation if the result returned by read.calendar 

is supposed to be accurate. This is because the set_up_meeting computation that 

invoked the mark operations may be aborted later. The subject of logical locking will 

be discussed in the next section. 

By implementing operations on a higher-level object with locally atomic 

computations, the programs that invoke these operations can treat them as 

instantaneous regardless of the complexity of their implementations. The complexity 

of synchronization and recovery is reduced by dividing them into two levels. For 

example, synchronization is divided between the logi~ locks and the page locks in 

System R. In our calendar example, a read.calendar operation would never observe 

the state of a calendar with partially executed mark operations. We call this idea of 

implementing long globally atomic computations with . short locally atomic 

computations level atomicity. A similar idea has been presented by Beeri in [5] and 

Moss et al. in (42) although their work is not motivated by long atomic computations. 

The difference between our work and theirs lies in the different approaches used to 

implement logical locking. 

1.3.2.2 Confllct'Model 

In this section we briefly describe our solutions to the following two questions: 

1. How can the logical locking in System R be extended to different kinds of 
abstract objects? 

2. How can logical locking be extended to cover "logical timeStamping?" 

To answer these questions, we will generalize from the concurrency control 

algorithms synchronizing objects with only read/write operations. Examining the 



timestamp and locking algorithms, we can identify three common components of 

these algorithms: 

1. Determining how computations are serialized. It is determined by the 
order in which computations commit in a locking algorithm, and by the 
timestamp order in a timestamp algorithm. 

2. Determining when a "conflict" arises. For example, in a locking 
algorithm, a conflict arises for.a read operation when it tries to acquire a 
read lock and there is another incomplete computation holding a write 
lock. In a timestamp algorithm, a conflict arises for a write operation 
when there are previously executed read c>perations invoked by other 
computations with larger timestamps. 

3. Determining the action to take when a conflict arises. In a locking 
algorithm, operations are delayed. In a timestamp algorithm, operations 
are either restarted or delayed. 

Programming the logical locking needed for any abstract object can f°'low the 

pattern above. First, determining how computations are serialized can be achieved 

with the following: 

1. a concurrency control algorithm similar to the locking and timestamp 
algorithms, 

2. a programming interface from which an object implementation can 
determine the serialization order of the computations that had invoked 
operations on the object. 

Second, when conflicts are created is application~· and depends on the · 

functionality of an object. For example, whether a read.calendar operation creates a 

conflict depends on its functionality and, if it is required to return an accurate view of 

the calendar, whether there are ihcomplete set_up_meeting computations that may be 

serialized before it. In addition to capturing the aeriafization order, the programming 

interface that we described above should alao capture the history of previously 

invoked operations and the status (e.g., incomplete, committed) of the computations 

that invoked them. In the next section we wttt deacrtbe such a programming 

interface. It allows an object implementation to express the conditions under which a 

conflict arises. 



These conditions are expressed in such a way that they are insensitive to whether a 

locking or timestamp algorithm, or some other concurrency control algorithm, is 

used to determine the serialization order. For example, the condition under which a 

conflict arises for a write operation on a read/write object can be expressed as 

follows: previously executed read operations invoked by other computations may be 

serialized after this computation. 

With a locking algorithm, this condition translates into the following condition: read 

locks are held by other computations. With a tlmestamp algorithm, the equivalent 

condition is: previously executed read operations invoked by other computations 

have larger timestamps. Similarly, the condition under which a conflict arises for a 

read operation is that there are previously executed write operations invoked by 

other computations that are not committed or aborted and may be serialized before 

this computation. Notice that we have hidden underneath these conditions the 

choice of how to determine the serialization order. 

We will describe a process in which these conflict conditions can be systematically 

derived from the functionality of an abstract objeci. The conflict conditions provide 

an approximation of the level of concurrency that can be achieved with a certain 

functionality. 

Finally, the action that needs to be taken when a conflict arises depends on how the 

serialization order is determined. For example, some algorithms require that an 

operation be delayed whereas other algorithms 1'9Quire the computation that creates 

a conflict to be restarted. Similar to the conflict conditionSt these actions can be 

expressed without exposing the underlying concurrency control algorithm. 

1.3.2.3 Programming Interface 

To implement the conflict model that we have described above, we provide a 

programming interface that is characte.rtzed by the use of history objects. A history 

object captures the history of operations that had be8n executed in an abstract 
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object. Queries can be directed to the history object to determine whether a conflict 

condition is met. The · interface of the history objects wilt make the underlying 

concurrency control algorithm transparent to the application programmers. 

When a conflict arises, some of the actions that can be taken are delaying or 

restarting a computation that is involved in the conflict. Again, these actions can be 

made transparent to the programmer and expresaed in the programming interface as 

a generic resolve conf11ct statement. 

We will also discuss how recovery can be performed in our programming interface. 

For example, if the execution of an operation changes only the state of a history 

object, aborting a computation can be achieved by simply undoing the changes in 

the history object. This is a simple action and can be automated easily. 

1.3.2.4 Concurrency Control Algorithms 

Although we have provided a programming interface so that the programmer is 

unaware of the underlying control concurrency algorithm, the system implementation 

has to make a choice among the available options. The system implementation 

should also provide the necessary translation from the programming. interface to the 

option chosen. 

. We have argued that in some applications the concurrency problem can only be 

solved by changing the functionality of the application. It remains to be seen whether 

the choice of the concurrency control algorithm affecta the concurrency ot a system 

with long atomic computations significantly. We will argue that in some cases it does 

make a difference. We will present aome novei algorithms that minimize the 

likelihood that costly conflicts will arise. For example, the cost of restarting a short 

computation is much smaller than restarting a long computation. Consequently, an 

algorithm that makes restarting long computations lea lik8fY provides a higher level 

of concurrency. 
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1 .3.3 Resilience Problem and Its Solutions 

To increase the resilience of long computations, we propose a checkpoint 

mechanism and the use of relay message servers. Each checkpoint specifies some 

intermediate state of a computation; the state specified by the last checkpoint will be 

restored after a transient failure and the computation will be restarted from that 

checkpoint. In addition to limiting the effect of site crashes, checkpoints can also 

serve as fire walls to limit the rollback due to deadlocks. Relay message servers 

provide buffering and reliability when the network partitions frequently. Some other 

systems [10, 19) also use reliable communication primitives to slmplify the 

implementation of distributed atomic computations. The relay message service in 

this thesis is easier to implement because it does not provide any guarantees on the 

order that messages are delivered. 

1.4 Roadmap 

Chapter 2 describes our model of system hardware and assumptions. In particular, 

we do not assume a reliable communication network in which messages are not lost 

and are delivered in a bounded time. We believe that implementing such a network Is 

prohibitively expensive and any upper bounds on delivery times would be so large as 

to be useless. The hardware model is followed by a model of computation. Chapter 

2 concludes with a more careful definition of atomicity. 

Chapter 3 describes our conflict model and how functionality can be traded off for 

concurrency. · Chapter 4 describes our programming paradigms and presents 

examples of application programs. Chapter 5 compares concurrency control 

algorithms and argues that some algorithms would have better performance with 

certain types of applications. We will al8o present two novel algorithms: a 

hierarchical algorithm and a time-range algorithm. These algorithms minimize the 

occurrences of costly conflicts under certain conditions. Chapter 6 shows that 

atomicity is as powerful as some other conectnesa definitions [50, 38) in which 

atomicity Is abandoned and replaced with explicit descriptions of how computations 
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can interleave. In Chapter 7 we turn our attention to the resilience problem of long 

computations. We will describe a checkpoint mechanism and the use of relay 

message servers to buffer messages. Chapter 8 is the conclusion. 

1.5 Related Work 

In this section, we compare our work with related work on concurrency control and 

resilient computing. In our comparison of concurrency control, we focus on other 

systems that use application semantics to improve concurrency. Much work has 

been done in this area. Many proposals [e.g., 23, 24, 25, 5, 8) do not consider 

recovery issues and will not be covered in this section. Comparison with related work 

can also be found in the rest of this thesis as we describe more details of our 

proposal. 

1.5.1 Predicate Locks 

Eswaran et al .. (14) describe the use of predicate locks for a relational database 

management system. An operation must acquire a predicate lock before it can 

proceed. Two predicate tocks conflict if a tuple in a relation satisfies both predicates. 

Other than assuming a locking algorithm, the predicate locks differ from our conflict 

conditions in that the unit of concurrency is Hmited to. a tuple. For example, using 

predicate locks does not solve the concurrency problem of our calendar application 

if each slot is implemented as a tuple. There is al90 no obvious way in which a slot 

can be broken into smaller units to increaee concurrancy. 

1.5.2 Schwarz'• Theala 

Schwarz (50) defines correctness as the acyclicity of computations with respect to a 

set of dependency relations. A dependency betwMn two computations is formed if 

they each execute an operation at the same object. Correctness requires that the 

dependency graph be acyclic. The dependency relation8 se parameterized by the 

type of the Opel ations invoked and the value of the sguments. Dependency 
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relations are "insignificant" and ignored in the dependency graph if the two 

operations involved in the dependency commute. Serializability is viewed as a 

special case in a range of possibte correctness definitions with only the insignificant 

dependency relations ignored. Less restrictive correctness definitions can be 

obtained-by leaving out "significant" dependency relations in the dependency graph. 

The limitation of this approach is that the commutativity of two operations depends 

on many factors usually. It depends not only on the types of the operations and their 

arguments, but also on the history of operations invoked previously and the results 

returned by operations. For example, whether an operation to withdraw money from 

a bank account commutes with a previous withdraw operation depends on the 

balance of tlie account and the responses to these withdraw operations 

(insuff icient_tunds or okay). Whether an operation can proceed cannot in general be 

determined by pairwise dependencies with previously invoked operations. In other 

words, the limitation of Schwarz's approach is due to a static specification of the set 

of dependency relations included in the dependency graph. 

1.5.3 Allchin's Theala 

Allchin (2) describes several different mechaniams to synchronize concurrent 

computations. One of them uses locks with user-defined tock modes. This approach 

is similar to Schwarz'& and suffera from the same Hmitations. Allchin also suggests 

the use of a history mechanism similar to ours but tailored for a locking algorithm. 

Recovery is supported with recoverable objects that return to their initial values when 

a computation is aborted. The state of an implementation has to be carefully 

encoded with recoverable objects. In general, the changes made to a recoverable · 

object by two computations wilt be lost if the computation that made the first changes 

is aborted. The recovay paradigms diseu•ed in this thesis are different in that an 

application can invoke application-dependent recovery code explicitly. Two different 

recovery paradigms witl be diacU$8ed in thia theais. One of them allows application

dependent code to be executed to perform state changes when a computation 
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commits. The other allows application-dependent code to be executed when a 

computation aborts. 

1.5.4 Weihl's Thesis 

Our atomicity definition follows the work of Weihl (55). Weihl describes two types of 

objects called atomic and mutex objects. Mutex objects are in general locked for the 

duration of an operation whereas atomic objects are locked until the end of a 

computation. Two approaches, implicit and explicit, are suggested for 

synchronization and recovery. 

In the implicit approach, synchronization is achieved by testing whether an atomic 

object was accessed by a still incomplete computation. Presumably the programmer 

can set up enough atomic Objects to encode the history information needed for 

synchronization. For recovery, the programmer sets up the atomic objects so that 

when a computation aborts, its effects are nullified by the atomic objects reverting to 

their previous states. The effects of concurrent computations should not be undone 

in the process. In the explicit approach, objeCts are associated with undo records or 
intentions lists constructed explicitly by the programmer. The undo records or 

intentions lists can be examined to determine whether an operation can proceed. 

When a computation commits or aborts, the undo records or intentions lists are used 

to determine the state changes that need to be made. 

In the implicit approach, it is unclear how other types of concurrency control 

algorithms can be employed becauae the lock testing of atomic objects exposes the 

underlying algorithm. Although the explicit approach does not exclude using other 

concurrency control algorithms. it does not provide an interface that makes the 

concurrency control algorithm transparent. 
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1.5.5 Garcia-Molina's Semantic Consistency 

Garcia-Molina [38) describes a system in which computations are divided into steps 

and counter-steps. The counter-steps undo the previous steps if the computation is 

aborted. Two steps can proceed concurrently if they are "compatible" according to 

the compatibility sets of the computations to which they belong. A compatibility set is 

determined by the type of a computation and consiSts of sets of other types of 

computations that can interleave with this type. The limitation of the compatibility 

sets is similar to that of the dependency relations in Schwarz's thesis (50). Since the 

compatibility sets are defined statically, there are a large number of applications in 

which two computations are defined to be incompatible because they are 

incompatible for a small class of situations. It is also unclear how an application 

programmer can describe the behavior of an implementation in a high-level abstract 

specification. The compatibility sets and counter-steps are rather imptementation

oriented descriptions of the behavior. 

1.5.8 Montgomery's Thesis 

Montgomery (39) describes the use of polyvalues to repreaent the values of data 

objects accessed by incomplete computations. Each polyvalue represents the 

possible values that the object may take on depending on the outcomes of the 

concurrent computations. It deals with the problem of failure atomicity but not 

serializability, because two computations can access two objects in different orders 

and both commit. 

1.5.7 Gifford's Persistent Actions 

Gifford and Donahue [15) describe executing a computation as a persistent action. A 

persistent action consists of atomic actions and other persistent actions. Atomic 

actions in [15) can be equated with the atomic computations in this thesis. The 

results returned by the component actions of a peraistent action are logged in stable 

memory. .When a persistent action is interrupted by a site crash, it is restarted from 

the beginning. When it invokes a component action that had Its result logged, the 
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result can be reused instead of calling the component action again. Any non

idempotent operations, such as reading the time-of-the-day clock, have to be cast as 

component actions. The component actions of two persistent actions can interleave 

arbitrarily. 

In the system described in (15], it is unclear how abstract specifications of the 

behavior of persistent actions can be provided. Another difference between our 

work and theirs is our emphasis on how application-dependent synchronization and 

recovery can be programmed. 

Our approach to resilience is also different. Instead of requiring the operations 

executed in a persistent action to be either idempotent or cast as a component 

action, the operations executed by the atomic computations in this thesis can be 

non-deterministic. A careful structuring of idempotent actions is not necessary. 

Checkpoints are specified explicitly. Stable memory access is necessary only at 

checkpoints instead of whenever a component action returns. 

1.5.8 Sha's Thesis 

Sha [51) describes a system in which data objects are partitioned into atomic data 

sets. Consistency constraints in the system cannot span atomic data sets. A 

computation is called a compound transaction, which is subdivided into consistency-

. preserving elementary transactions. The elementary transactions are further 

subdivided into atomic commit segments, each of which accesses a different atomic 

data set. When an atomic commit segment is finished, locks acquired to assure 

serializability are released, but write locks are retained to guarantee faUure atomicity. 

When an elementary transaction is finished, the write locks are released and 

recovery is achieved through compensating tranaactiona. 

The atomic data sets provide a relatively coars&-grained concurrency control. Two 

data objects have to belong to the same atomic data aet • long as there is at least 

one consistency constraint relating them. Furthermore, Sha's approach does not 
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take into consideration the semantics of the consistency constraint itself. Weakening 

a constraint does not increase the concurrency of a system untess the data objects 

can be divided into smaller atomic data sets as a result. 

To increase the resilience of a compound transaction, Sha suggests storing the 

values of local variables in stable memory at the end of each atomic commit segment. 

Our approach is different in that a computation can save a portion of its local state 

selectively. Also, we describe how a computation can save its state when part of the 

state· may be accessed by other computations conct.1rrently. 

1.5.9 Miscellaneous 

Other researchers [41, 53] have suggested the use of checkpoints to increase the 

resilience of a computation. Our work is similar to theirs but is motivated by 

computations that experience long communication delays. As a result, we 
emphasize how a caller of a remote program can checkpoint in response to, or 

anticipation of, long communication delays. To avoid restarting the remote program 

that is expected to return after a long delay, the calling program should probably 

checkpoint at the remote call. Mechanisms are also provided to allow the calling 

program and other ancestor programs to checkpoint if an unexpected delay arises. It 

seems that in [41, 53] a computation checkpoints the entire state accessible to it, 

whereas we expect programmers to specify explicitly a portion of the computation 

state to be preserved. 

Another approach to improving resilience is by replicating processors and memory, 

such a8 in Tandem and Auragen [3, 13]. These systems consist of a collection of 

logical processes. Each logical process is implemented by two physical processes, 

one primary and one: secondary, on two processors. In the Auragen syStem, the 

messages received by a logiCat process are automatically checkpointed by the 

system in the memory of a secondary processor. The secondary processor can take 

over by re-processing the messages to bring its memory up-to-date. Any non

deterministic processing, such as reading the time-of -the-day clock, has to be cast as 
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another logical process, communicating with this process through messages. The 

application is not aware of the checkpointing except for management duties, such as 

choosing the processors for the process pair. In the Tandem system, any state 

change in the primary processor is checkpointed on the secondary processor. Our 

checkpoint mechanism is more economical because it assumes only the availability 

of some permanent memory. It is not always possible to have an available secondary 

processor to process the checkpoint messages. A site may be disconnected from 

the rest of the system and the cost of a secondary processor may be· too high for 

some applications. 

Replication also provides a limited solution to the concurrency problem. By 

replicating objects (16, 20], computations can access nearby replicas and long 

communication delays can be avoided. Unfortunately, replication has its drawbacks. 

First, it is expensive. When objects are replicated, constraints are imposed on 

accesses of the objects to ensure consistency. For example, if an object can be read 

with any one of the replicas, all replicas have to be written when the object is 

updated. There i~ also the cost of extra storage. Second, replication d0es not 

eliminate all long computations. In the read-one-write-all rule described above, read 

accesses can be serviced readily as long as there is a replica nearby. The availability 

of write accesses is decreased, however. The length of a computation that perform 

updates is actually increased by replication. 

Another limited solution to the concurrency and reeilience problems is to abort and 

retry a computation when it cannot be· completed quickly. This is unacceptable as a 

general solution for the following reasons: 

- Previous work is wasted. 

- If the system does not retry the computation automatically, the user has 
to retry manually. 

- The computation is likely to take longer to complete than if it were 
allowed to suspend and wait for communication s>fOb1em8 to disappear. 
In fact, when the computation involves many 8itea and the network 
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partitions frequently or extensively, the computation is unlikely to be 
completed without encountering significant communication delay. 

- The deferral of the entire computation due to the unavailability of several 
sites may be unacceptable. For instance, it is undesirable to abort a 
computation that sets up a meeting among many personal calendars 
because a few of them are unavailable. Also, the likelihood of setting up 
the meeting successfully decreases with the passage of time. The 
proposed meeting, though it may be tentative, is prevented from 
appearing in the available calendars. Abandoning the unavailable 
participants and declaring the computation completed is also not the 
most appropriate behavior. 
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Chapter Two 

System Model 

In this chapter we give an account of a system model to prepare for discussion in 

later chapters. We start in section 2.1 by describing the hardware abstractions on 

which the distributed systems considered in this thesis are based. In section 2.2, we 
present a higher level view of these systems and describe how activities inside them 

can be modelled. Then, in section 2.3, we give a definition for atomicity based on the 

model. 

2.1 Physical Environment and Assumptions 

In this dissertation, a distributed system ts viewed as a collection of machines 

connected by a communication network. We calf the machines sites; they can be any 

type of machines ranging from portable computers to mainframes or large 

multiprocessor machines. Sites can be added to or removed from the system 

dynarriicaily. A site can send messages through the network .to communicate with 

other sites. Messages may be lost, duplicated, delayed for an arbitrary period of time, 

or arrive out of order, but garbled messages will be discarded. In particular, 

messages can be delayed for an arbitrary period of time because the communicating 

sites are partitioned. We assume, however, that partitioned sites wilt be able to 

communicate eventually. We will not attempt to handle Byzantine failures: the sites in 

the system are assumed to be cooperative, and redundant bits can be added to 

packets in the network to keep the probability of undetected garbled messages 

arbitrarily low. 

Each site possesses both volatile and stable merriory3. A site also possesses one or 

3inia is not strictly necessary. Sites without stable memory can employ remote stable storage 
servers. 
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more fail-stop processors: a processor may_ crash at any moment, but when it 

crashes, it immediately stops all_ processing before sending any erroneous messages 

or corrupting its site's stable memory. The implementation of fail-stop processors 

from unreliable hardware is beyond the scope of this thesis. See (49] for a discussion 

of the subject. We assume that all crashed sites will recover eventually. When a site 

recovers, it loses the content of its volatile memory but preserves that of its stable 

memory. 

When a site sends a message to another site, it may expect a response. If none 

arrives after a long time, it may be because: 

- the original message is lost or still on its way, or 
- the response message is lost or still on Its way, or 
- the two sites are partitioned, or 
- the responding site is crashed, or 
- the responding site is not ready to send the response. 

We do not assume that the sender can differentiate among all these cases. 

2.2 Model of Computation 

At a higher level than the hardware abstractions described above, a system can be 

viewed as a collection of objects. For example, there may be objects controlling 

access to personal calendars, and objects acting as printer spoolers. An object may 

reside at one site or may be distributed among many sites. Each object supplies 

several operation types; for example, a personal calendar object can support a mark 

operation and a delete operation. Arguments can be passed when an operation is 

invoked. Results can be returned with an operation. For instance, a time duration 

and a purpose can be passed to mark as arguments. Mark can return either okay or 

slot_tilled. 

Computations are the units of work in a system. Inside a computation, operations on 

different objects can be invoked. A computation can span multiple sites. 

Computations are atomic and serve as units for synchronization and recovery. 
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Atomicity, defined more carefully in section 2.3.3, guarantees that the system 

behaves as if the computations were executed serially and each computation were 

executed either in entirety or not at all. 

To provide a finer-grained unit in synchronization and recovery, a computation is 

decomposed into a nested tree of actions [40, 48, 34). Actions are divided into 

top-level actions and sub-actions. A computation is associated with a single top-level 

action. The boundaries of a computation coincide with that of its top-level action. A 

top-level action can create sub-actions and sub-actions can in tum create their own 

sub-actions. Operations are executed within an action; they must start and finish 

within the same action. A parent action can create several sub-actions in parallel, 

but the sub-actions will appear to have executed serially within the parent action. A 

parent action can also abort a sub-action without abandoning the work performed in 

the rest of itself. An aborted action should appear never to have been executed. 

Frequently, a computation creates a sub-action to execute an operation so that the 

effects of that operation can be undone by aborting the sub-action. However, an 

action should be distinguished from an operation because the former, like a 

computation, is merely a mechanism to define a unit of synchronization and 

recovery. It is not associated with any object. 

Aborts of an action may be caused by hardware failures such as site crashes or 

communication failures. For example, the creator of an action can decide to abort 

the action if the latter is executed on a remote site and, due to communication 

failures, the creator cannot determine whether the action has terminated. Aborts can 

also be initiated by an application program in the.absence of hardware failures. For 

example, an action that executes a mark operation in a set_up_meeting computation 

can be aborted if too few participants can attend. Depending on the concurrency 

control algorithm used in a system, an action can alao be aborted because of 

deadlocks. When an action is aborted, all its sub-actions are aborted.. A 

computation is aborted when a top-level action is aborted. In general, we will use the 
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same terminology to refer to an action and the operations that are executed within it: 

we say an ,operation is aborted when the action in which it is executed is aborted. 

A computation, its nested actions (excluding those aborted), and the operations 

executed within these actions are committed when the top-level action, terminates 

successfully. Committed computations, actions, or operations can not be aborted. A 

computation, action, or operation is finalized when it is committed or aborted. 

Otherwise it is tentative. The outcome of a computation, action, or operation is 

determined when the it is finalized. A nested action is still considered tentative 

during the time that it has terminated and the top-level action is still incomplete. See 

figure 2· 1 for the possible states that a computation, action, or operation can go 

through. 

Finalized 

Figure 2-1 :States of a Computation/ Action/Operation 
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2.3 Atomicity 

In this section we will give a more careful definition of the behavior of a system in 

which computations are atomic. Our goal is to define atomicity without constraining 

the system implementations unnecessarily. The definition will be stated only in terms 

of the observable behavior of a distributed system. More importantly, the observable 

behavior of a system will be cast in terms of the behavior of abstract objects with 

abstract operations instead of the behavior of objects with read/write operations. 

Using abstract objects in our definition allows atomicity to depend on the 

functionality of these abstract objects. Our definition is similar to that in [55) except 

that ours covers nested actions. 

We will describe our atomicity definition in three steps. First, we will describe an 

event model, which models the externally visible activities that happen at the 

interface of an abstract object with events. The activities in a distributed system are 

modelled with a sequence of events, which we call a history. The events in a history 

can be generated by different computations. Since the model does not include the 

details of how an object manipulates its internal state, the implementation of the 

object is not constrained to a particular type of implementation. 

Second, we will describe how applications can define their functionality by specifying 

serial specifications for the objects in a system. These serial specifications are 

· similar to the specifications that are usually used to define the semantics of abstract 

data types [32). They specify a set of states that an object can be in, and a set of 

operations that may cause a state transition. Pre-conditions on the state can be 

attached to the operations. 

Third, since a computation can be modelled as a sequence of events, we will define 

the behavior of a system which executes computations atomically as a set of atomic 

histories. Informally, a history is atomic if it is "equivaJent" to an acceptable "serial 

history." The set of acceptable serial histories is defined collectively by the serial 

specifications. 
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Section 2.3.1 describes the event model. Section 2.3.2 illustrates how a serial 

specification can be expressed conveniently with a state machine. The state 

machines help us capture the semantics of the example applications in later 

discussions more succinctly. As introducing a formal specification language is 

beyond the scope of this thesis, we will use informal notations to represent the state 

machines. Section 2.3.3 defines atomic histories with the event model and the serial 

specifications. 

2.3.1 Event Model 

In our event model, an event occurs when an operation is invoked or returned, or 

when an object is informed of the outcome of an action in which an operation of that 

object is executed. 4 Each event identifies the object and action that are involved with 

unique object identifiers and' action identifiers. In this thesis, action Identifiers are of 

the form a.b ••. m.n where a.b ••• m is the identifier of the parent action of a.b ••• m.n. 

There are four types of events in the model: 

invoke events: <operation_type_name(afguments), ObjectJD, ActionJD> 
The named operation type is invoked at ObjectJD. ActionJD is 
the unique identifier of the action in which· the operation is 
executed. 

return events: <result_type_name(results), ObjectJD, Action.ID> 
ObjectJD returns the result of an operation invoked previou8'y. 

commit events: <commit, ObjectJD, ActionJD> 
Object.ID is informed that the action identified by Action.JD Is 
committed. 

abort events: <abort, ObjectJD, ActionJD> 
ObjectJD is informed that the action identified by ActionJD is 
aborted. 

To simplify our notation, we assume that an action can only invoke an operation after 

the result to a previous operation is returned. Parallelism within an action can be 

4we will ignore 110 operations in our model although they .,. externally visible. 
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achieved with parallel sub-actions. The invoke and return events of an action can be 

paired in the obvious way. 

To illustrate the event model, suppose r1 and r2 are personal calendar objects, each 

providing a mark operation to reserve a slot in the calendar. Further suppose an 

implementation of set_up_meeting that creates sub-actions to execute the individual 

mark operations in the participating personal calendar objects. The following 

sequence of events may be observed when a user tries to set up a meeting between 

r1 and r2 in a top-level action a. 

<mark(time, description_ot_meeting), r1, a.b> 
<okay, r1, a.b> 

<mark(time, description_ot_meetlng), r2, a.c> 
<okay, r2, a.c> 

<commit, r1, a.b> 
<commit, r2, a.c> 

or the following may happen, where d is another action: 

<mark(time, description_ot_meettng), r1, a.b> 
<okay, r1, a.b> 

<mark(time, some_other_businesa), r2, d> 
<okay, r2, d> · 

<commit, r2, d> 
<mark(time, description_of_meeting), r2, a.c> 

<slot_fllled, r2, a.g> 
<abort, r1, a.b> 

Obviously, not every sequence of events is "well-formed." For example, a sequence 

of events should not have a commit event and an abort event for the same action. 

We will leave a more formal definition of welt-formed sequences until Chapter 

6 where we construct proofs using the event model. Meanwhile, we assume all the 

event sequences are well-formed in the sense that they represent some "reasonable" 

behavior of an implementation and call them histories. 

5we have left the outcome of a.c unspecified in this example. He>Wever, it makes little difference at 
r2. 

45 



2.3.2 State Machines 

The serial specification of an abstract object can be defined with a state machine. 

Intuitively, a state machine defines the abstract states that the object "passes 

through" as individual events are "processed." This section describes how a state 

machine is specified and gives an example. 

A state machine for an object r1 has four components: S1, 119 T1, and Nr S1 is the set 

of possible states of the state machine. 11 is the initial state .. T1 is the set of 

transitions; it corresponds to the set of possible invoke and return event pairs, since 

not only the invoke event, but also the result that has been returned, determine how 

the state is to be changed. N1 is a partial function which determines how and under 

what conditions the state machine would change its state. It takes two inputs: a 

"before" state and a transition, and returns an "after" state. 

N1 can be extended in the following way to accept a sequence of transitions as its 

second input: 

N1: 51 X T1• -P S1 

such that N1(a, 0) = a, 

N1(•, t .. qflt) = Ni(N.(s, t •• q>' t), If N,(s, tMCI) - .L 

.L, otherwise 

where <> is the empty sequence, s E S1, t E T1, tHCI E T1 • 

The partiality of N1 can be used to exclude undesirable transition sequences from the 

object. In other words, a serial specification can be viewed as defining a set of 

acceptable transition sequences. 

Suppose r 1 is an object representing a set of Integers. It supports three operations: 

insert, delete, and member. Each operation takes an integer as an argument. Insert 

adds the integer to the set and returns okay. Delete deletes the integer from the set if 

the integer is in the set and returns okay in any case. Member returns a boolean 

depending on whether the integer is an element of the set. The serial specification of 



this set object is defined in figure 2-2. Abbreviations of the form op_arg_result will be 

used for the transition <op(arg), ri, aXresult, r1, a>. 

51: sets of integers 

•1= 0 
T1: insert_x_okay = <insert(x), r1, aXokay, r1, a> 

delete_x_okay = <delete(x), r1, aXokay, r1, a> 
member_x_b = <member(x), rl' aXb, r1, a> 
where xis an integer, bis a boolean 

N1(s, insert_x_okay) = s U {x} 
N1(s, delete_x_okay) = a - {x} 
N1(s, member_x_b) = s If (xEs and b = true) or (x(a and b = false) 

Figure 2-2:A State Machine for a Set 

In figure 2-2, the object starts with an empty set as its initial state. Three kinds of 

transitions are possible. Each kind of transitions changes the state in the obvious 

~ay. Notice that N1 is defined only under the condition (xEs and b = true) or (x(s 

and b = false) for the state a and the transition member_x_b. For example, a 

sequence of transitions in which an inaert_x_okay transition is followed immediately 

by a member:..x_falae transition would be undefined with respect to N1 and hence 

unacceptable. 

We have introduced the terms "event" and "transition" in this section. Each of them 

denotes something similar to an operation. The ex~ution of an operation can be 

viewed as the generation of an invoke event and a return event, or as ·the generation 

of a transition.· Since different results can be returned by an operation, different 

transitions may be generated by the execution of an operation. For example, the 

member(x) operation generates either a member_x_true or a member_x_falae 

transition. 
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2.3.3 Atomic Histories 

In this section we will combine the event model and serial specifications to define a 

set of atomic histories. First, we will define what a serial history is. Second, we will 

describe how a set of acceptable serial histories can be defined using the serial 

specifications. Finally, we will define when a history is equivalent to a serial history. 

An atomic history is a history that is equivalent to an acceptable serial history. Again, 

we will rely on informal descriptions and leave a more formal notation until Chapter 6. 

A serial history is a history in which events from different actions are not interleaved, 

an invoke event is always paired with a returri event, and only invoke and return 

events exist. The events in a serial history are ordered by a linearization, which can 

be defined as a total ordering between every pair. of sibling actions (34). As a special 

case, the top-level actions can be considered as sibling actions. An action b is 

subsequent to a according to a llnearization L if either b or one of b's ancestors is 

after a or one of a's ancestors in L. An action a is prior to another action b if and 

only if b is subsequent to a.6 

Ideally, this prior/subsequent relationship should be extended to the operations 

executed in two actions in the obvious way. However, because more than one 

operation may be invoked at the same object by the same action or by actions that 

bear an ancestral-descendant relationship, the following more complicated definition 

is needed. An operation a is prior to another operation b at the same object 

according to a serial history sh if: 

6we assume that there are linguistic mechaniams for the application programmer to express the 
desired linearization constraints among sibling actiona. For example, if b ia created after a by the same 
parent action, then naturally b should be eubleQuent to a. In the reat of thia thesis. we only conllider 
linearizations that conform to lhelle conatrainta. Occaaionally, an action will create parallel aub·actiona 
and the order among them is left unspecified by the applieation. Any total ordering wiU be acceptable in 
thOll8 caaee. 

We do not provide any facility for the uaers to constrain the order among the top-level actions except 
a guarantee of external consiatency. If a linearization ia extemaUy conaiatent. a computation a ia 
ordered after another computation b if • i8 begun after b ia completed and the completion of b ia 
communicated to the human i.mr of a either exl'9mally (outaide Iha ayetem) or internally (through 
messages sent and received by the aitee in the system). 
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1. the action in which a is executed is prior to that of b according to the 
linearization of sh, or 

2. a and b are executed in the same action and a is executed before b in 
sh, or 

3. the actions that a and b are executed in bear an ancestral-descendant 
relationship and a is executed before b in sh. 

An operation a is subsequent to another b if and only if b is prior to a. This definition 

is well-formed because we assume that an action can execute only one operation at 

a time and a parent action cannot invoke any operation while a child action is not 

terminated. 

We define a serial history sh to be acceptable if, by partitioning sh according to the 

object that an event is associated with, each of the sub-histories is an acceptable 

transition sequence according to the serial specification of the object associated with 

, that sub-history. 

Finally, a history h is equivalent to a serial history sh if h is identical to sh after all but 

the committed invoke and return even- are removed from h and the events left 

behind are rearranged according to the linearization of sh. A history is atomic if it is 

equivalent to an acceptable serial history. A system is_ correct if it generates only 

atomic histories. The lineari%ation of sh is called a serialization order. By excluding 

. all but the committed events from a history h, we formalize the requirement on failure 

atomicity. By requiring h to be equivalent to a serial history in which events are not 

interleaved, we formalize the requirement on seriallzabtllty. 

Notice that our definition is different from some other atomicity definitions (46, 1]. In 

these definitions, an atomic history is defined as equivalent to a serial history if the 

two histories both cause the objects in the histories to reach the same states. Our 

definition requires that an atomic history haa the same external behavior as a serial 

history. Our requirement is sufficient as a user cannot determine the state of an 

object except through observing its visible behavior. For example, a bank customer 
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does not care about the internal state of a bank account object as long as he can 

withdraw what is in his account and the balance on a monthly report is not less than 

expected. Our definition also has the advantage that we do not have to define the 

states that the objects will be in after executing a possibly non-serial history. 

The major advantage of our atomicity definition, however, lies in its ability to 

incorporate serial specifications of abstract objects. If serial specifications are 

relaxed to enlarge the set of acceptable serial histories, the set of atomic histories is 

also enlarged and the system becomes more concurrent, provided an 

implementation can utilize the relaxed semantics. Thus concurrency is increased 

without sacrificing the simplicity offered by atomicity. 
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Chapter Three 

Using Application Semantics 

In this chapter we describe the increase of concurrency that can be achieved 

through the use of application semantics in an implementation. To avoid being 

encumbered by excessive implementation details, we ignore how the implementation 

is actually programmed in this chapter. Instead, we assume an idealized 

implementation that would illustrate how concurrency can be improved when 

compared to an implementation that, say, uses read/write locks and 2-phase locking. 

We will describe how the idealized implementation can be approximated by a 

practical implementation in Chapter 4. The concurrency level afforded by the 

idealized implementation is only an approximation of the actual concurrency level of 

a practical implementation. We will argue why it is a useful approximation later in the 

chapter. 

Our idealized implementation consists of multiple program modules. each 

implementing an abstract object. We assume that a program module has encoded a 

history of previously invoked operations and that the history information can be 

retrieved. Each of the objects7 has an associated queue of requests to invoke 

operations at that object. These requests are issued by computations running in the 

system. An object executes by taking a request from its queue, examining the 

request and the history of previous operations, and determining whether a result can 

be returned for the requested operation. A result can be returned when an object 

can guarantee that only atomic histories are generated. 

If a result can be returned, the request and the result will be added to the object's 

7 We will use the word "object" to refer to the program module implementing the object. 
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history. Otherwise, a conflict is created and we assume that some action will be 

taken against the request or the computation that issues the request. We leave these 

actions unspecified for the moment, since our purpose is to evaluate the 

concurrency of the implementation, which can be measured by how often a result 

can be returned to a request. In an actual implementation, the operation may be 

delayed or the computation that invokes the operation may be restarted when a 

conflict occurs. Thus, how often a conflict arises is a realistic measure of 

concurrency. We assume that an object can process a request instantaneously. 

Details such as how the internal state of an object is encoded and how recovery is 

performed will be left unspecified. However, we do assume that an object will learn 

of the outcomes of computations eventually. 

In order to illustrate how application semantics improves the concurrency of the 

idealized implementation, we will describe a conflict model, which is one of the 

contributions of this thesis. The conflict model allows a programmer to determine the 

condition under which a conflict is created based on the serial specification of the 

object. We call this condition a conflict condition. The model is useful in that it 

abstracts away the details of the concurrency control algorithm underneath. A 

conflict condition will remain the same regardless of whether the abstract objects in a 

system use timestamps assigned at the beginning of execution, or the order in which 

computations commit, to determine a serialization order. Conflict conditions can 

· serve as a guide when serial specifications are designed, so that concurrency can be 

traded off against functionality. 

In section 3.1 we describe our conflict model. In section 3.2 we use a bank account 

object to illustrate how conflict conditions can be derived and how concurrency is 

improved when compared to an implementation that uses. say, read/write locks and 

2-phase locking. A bank account example is used in this chapter to facilitate 

comparison with other work. In section 3.3 we discuas how conflict conditions can 

be derived for any abstract object. Because the practical implementations that will 

be described in Chapter 4 approximate the ldealizect implementation closely, the 
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process of deriving conflict conditions is also helpful to a programmer writing the 

practical implementations. In section 3.4 we describe how concurrency can be 

increased by relaxing the serial specification of an object. Relaxing the serial 

specification of an object makes conflicts I~ likely to arise. Using several 

examples, we will illustrate that there are interesting classes of applications in which 

the trade-off between concurrency and functionality can be usefully employed. In 

Chapter 6 we will show that this approach of increasing concurrency is as powerful 

as other correctness definitions that abandon atomicity [50, 38]. 

3. 1 Conflict Model 

This section describes our conflict model and defines conflicts more carefully. We 

show how the requirement of generating only atomic histories can be translated Into 

a requirement of detecting conflicts. 

3.1.1 Generating Atomic Histories 

To ensure that only atomic histories are generated by our idealized implementation, 

the objects in the implementation must guarantee that any history generated will be 

equivalent to some acceptable serial history. To provide this guarantee, the objects 

must agree on a particular serialization order, which, in an actual implementation, 

may be determined by the timestamps that are assigned at the beginning of 

execution, or by the order in which computations commit. How this serialization 

order is arrived at in an actual implementation depends on the concurrency control 

algorithm and is the subject of Chapter 5. · We refer to this serialization order 

determined by the concurrency control algorithm as the serialization order of the 

system. We assume that this is what is referred to when we speak about the 

serialization order among operations. 
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3.1.2 Guaranteeing Equivalence to Serial Histories 

To ensure that the history generated by the implementation is equivalent to an 

acceptable serial history defined by the serialization order, each object must ensure 

that the committed events involving itself, after being rearranged according to the 

serialization order, will be an acceptable transition sequence according to the 

object's serial specification. More informally, each object must make sure that the 

transitions that it generates are part of an acceptable serial history defined by the 

serialization order. We say that an object exhibits atomic behavior when this is 

satisfied. 

For example, consider a bank account object r1 with a serial specification described 

by the state machine in figure 3-1. To simplify our example, we assume the state of 

the bank account contains only its balance, which can be represented with a real 

number. The account object has three types of operations: deposit, withdraw, and 

read_balance. The first two take a real number as an argument. Depdsit increments 

the balance by the amount indicated in the argument and returns okay. Withdraw 

decrements the balance by the amount indicated in the argument and returns okay if 

the balance is large enough to cover the withdrawal. Otherwise it returns 

insufficient_funds. Read_balance returns the balance. 

5 1: real numbers 
I: 0 t1: <deposit(x), r1, aXokay, r1, a> = deposit_x_okay 

<withdraw(x), r1, aXokay, r1, a> = withdraw.x_okay 
<,wlthdraw(x), 'J' aXinaufficient_funda, r1, a> = withdraw_x_lnauf 
<read_balance(J, r1, aXx, r1, a> • read_x 
where a ls an action, x ls a positive real number. 

N1(s, depoait_x_okay) = s. + x 
N1(s, withdraw_x_okay) = s • x ifs~ x 
N1(s, withdraw_xJnsuf) = a if a< x 
N1(s, read_x) = s If a = x 

Figure 3· 1 :A State Machine for a Bank Account Object 
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Suppose the history depicted in figure 3-2(a) has action a serialized before action b. 

Because the transition sequence deposit_40.okay H read_balance.60 depicted in 

3-2(b) is not a member of the set of acceptable transition sequences defined by the 

state machine in 3-1, the history in figure 3-2(a) is not atomic, and hence the bank 

account object that generates the history in figure 3-2(a) does not exhibit atomic 

behavior. 

<depoait(40), r1, a> 
<okay, r1, a> 

<deposit(20), r1, c> 
<okay, r1, c> 

<read_balaneeO, r1, b> 
<60, r,, b> 

<abort, r1, c> 
<commit, r1, b> 
<commit, r1, a> 

(a) 

<deposit(40), r1, a> 
<okay, r1, a> 

<read_balanc80, r1, b> 
<80, r,, b) 

(b) 

Figure 3·2:A History and a Transition Sequence 

3.1.3 Generating Atomic Behavior 

To ensure atomic behavior, each of the results returned by an object must be valid. A 

result is valid if the corresponding transition8 causes a defined state change in the 

state machine representing the serial specification of the objeet, given that the state 

machine starts in a state defined by executing all the committed transitions serialized 

before this transition. For example, in the previous bank account example, the result 

60 is invalid because· the state machine has a state of 40 after executing the 

committed depoait_40_okay transition, and the state machine requires a 

read_balance_x transition to have its result x equal to the current state. Notice that 

when an object generates a result to an operation, it must ensure that not only the 

result is valid, but that all other results returned to previously invoked operations 

should remain valid. 

8Recal1 that a tranlition corresponds to a pair of invoke and ratt.wn a.1la. 
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3.1.4 Generating Valid Results 

Obviously, in many cases we need some knowledge of the serialization order to 

generate valid results. For example, to return a valid result to a read_balance 

operation invoked on a bank account object, we need to determine how the 

read.balance operation is serialized with respect to previously invoked deposit and 

withdraw operations. 

In addition to knowing the serialization order, we also need some knowledge of the 

outcomes of the operations that have been invoked. For example, knowing the 

serialization order between a read_balance operation and a deposit operation is not 

enough to determine a valid result for read.balance; we also need to know the 

outcome of the deposit operation if the read_balance operation is serialized after the 

deposit operation. How the knowledge of a computation outcome is disseminated to 

the objects that the computation had accessed is determined by a commit protocol. 

We will discuss commit protocols in Chapter 5. 

In our conflict model, each object is viewed as possessing some knowledge of the 

serialization order and the outcomes of the operations that have been invoked. An 

object may not possess complete knowledge because some operations are still 

tentative; they may be either aborted or committed later. In fact, a computation can 

be finalized already but the objects that it has accessed will not have the knowledge 

of its outcome until the outcome is propagated to these objects. In Chapter 5, we will 

discuss how the serialization order is determined. In some algorithms, it is pre

determined and an object always has complete knowledge of the serialization order 

among the operations that have been invoked. In some algorithms the order is 

determined dynamically. 

When determining whether a valid result can be returned while preserving the validity 

of all previous results, an object must be prepared for all the possible combinations 

of serialization orders and outcomes of the tentative operations that are consistent 

with the local knowledge. Informally, a conflict is created when no result can be 
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returned such that it and aH previously returned results will be valid under all 

circumstances consistent with the local knowledge of the serialization order and 

operation outcomes. For example, a read.balance operation invoked at a bank 

account object may create a conflict because the object lacks the knowledge of the 

serialization order between the read.balance operation and a previously invoked 

peposit operation. The serialization order determines the valid balance to return and 

there is not a result that will be valid under all circumstances. 

3.1.5 Conflicts 

A conflict may be created even when an object possesses complete knowledge of the 

serialization order and operation outcomes. For example, a deposit operation can 

create a conflict because the local knowledge dictates that the deposit operation is 

serialized before a previously invoked read.balance operation. Unless the deposit 

operation is refused, the result returned to the read.balance oper•ion may be 

invalidated when the deposit operation is committed. 

On the other hand, suppose we have a bank account object with an initial balance of 

$100 and the following history of events: 

<withdraw(40), r, a> 
<okay, r, a> 

<commit, r, a> 
<withdraw(30), r, b> 

<okay, r, b> 

No conflicts would be generated If a withdraw(20) operation were Invoked on the 

·account object, since an okay response to the withdraw operation is valid, and the 

okay responses to the previous withdraw operations are not invalidated, regardless 

of the serialization order and outcomes of the operations. 

Notice that whether conflicts are created depends not just on operations that are 

tentative or for which the serialization order with respect to the incoming operation is 

unknown, but actually on the entire history of events. In the previous example, 

conflicts would be created if action a had withdrawn more than $50, since whether 
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the incoming withdrawal can succeed would depend on the outcome of b. 

Conflicts can also disappear with the execution of new actions not already in the 

history. Suppose action a in the example above had withdrawn more than $50 and a 

conflict is created when an action c invokes withdraw(20) at the account object. The 

conflict will disappear if another action d executes a deposit operation, commits, is 

serialized before c, and the amount deposited by d is large enough to cover the 

withdrawal by c. 

When a conflict is created, it can be resolved in several ways: 

- delay the operation generating the conflict, e.g., 2-phase locking [17]; 
- restart the computation generating the conflict, e.g., timestamp 
algorithm (48]; 

- make an assumption about the serialization order or operation outcomes 
and verify the assumption later, e.g., optimistic algorithms (26]. 

In this chapter, we will not elaborate on how conflicts are resolved. The appropriate 

way to resolve a conflict is related to how the serialization order is determined. We 

will discuss the subject in Chapter 5 when we discuss concurrency control 

algorithms. Suffice it to say that resolving a conflict represents a potentially high 

cost. 

3.1.6 Conclusion 

In this section we have described how the requirement of generating only atomic 

histories can be translated into the requirement of detecting conflicts. The conflict 

conditions that can be derived from serial specifications are a useful indication of the 

level of concurrency of our idealized implementation because they abstract away the 

details of the concurrency control algorithm underneath. The conflict conditions are 

a good approximation of an actual implementation's concurrency if the actual 

implementation approximates closely the assumptions of our idealized 

implementation. For example, for a long computation whose length is attributed to 

communication delays, regarding the execution of an operation In the computation 

as instantaneous is a close approximation to the actual execution. Our model of the 
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structure of the idealized implementation is also sufficiently general so that for any 

implementation that conforms to this structure, the conflict conditions can be 

regarded as an indication of the upper bound on an implementation's concurrency 

level. Executing an operation non-instantaneously would only decrease 

concurrency. 

3.2 An Example 

In this section we will use the bank account object defined in figure 3-1 to show the 

following: 

1. How conflict conditions can be derived from a serial specification. 
2. How the semantics of an application can be used to increase 

concurrency over an implementation that uses, say, read/write locks and 
2-phase locking. 

3.2.1 Read.Balance Operations 

Consider when the operation read.balance is invoked on the bank account object r 1 

defined in figure 3-1. Since the read_balance_x transition does not mutate the state 

of r1, the results returned to the previously invoked operations will remain valid 

regardless of the outcome and the serialization order of read.balance. However, 

read.balance itself returns a result whose validity depends on the serialization order 

and outcomes of other operations. 

Among the set of transitions, only deposit_x_okay and withdraw_x_okay change 

the balance. Hence, a conflict is created if the foltowing condition is met: 

1. there are deposit or successful withdraw operations (ones that had 
returned okay) that are tentative and may be serialized before the 
read.balance operation, or 

2. there are committed deposit or successful withdraw operations that may 
be serialized either before or after the read.balance operation, 

In other words, the account object can not return any number to the read.balance 

operation that is guaranteed to be valid under all possible situations. Notice that we 
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have used the terms "may be serialized before/ after" and "tentative" in the conflict 

condition above. It reflects the view in our conflict model that an object possess 

some knowledge of the serialization order and operation outcom~. In the following 

discussions, we will use the terms "potentially prior" and "potentially subsequent as 

abbreviations for "may be serialized before" and "may be serialized after" 

respectively. The terms "definitely prior" and "definitely subsequent" are 

abbreviations for "definitely serialized before'' and "definitely serialized after" 

respectively. 

There is a remote possibility that some tentative deposit and withdraw operations 

may cancel one another's effects, and because they are executed by the same action 

or by sibling actions in the same computation, they are constrained to commit or 

abort together. In those cases, no conflicts are created although there are tentative 

deposit and withdraw operations. We will ignore such possibilities because it is 

rather unlikely for a computation to deposit as well as withdraw from the same 

account. 

Suppose we have an implementation that uses a read/write lock on the balance such 

that both deposit and withdraw would first acquire a read tock and then a write lock, 

and read.balance would acquire a read lock only. For the read.balance operation, 

there is no increase in concurrency with the use of the semantics of the account 

object. The situations under which conflicts are created for thia operation are exactly 

the same in our idealized implementation and the implementation that uses a 

read/write lock. 

3.2.2 Withdraw Operations 

The withdraw operations can illustrate how concurrency is increased with the use of 

application semantics. Consider when the operation witltdraw(x) is Invoked at r.

The result of the operation is either okay or insufflcient}unds, depending on whether 

x is less than the balance. Since an insufficient_tunds reply does not imply a change 

to the abstract state, no previous results returned wiH be invalidated. However, 
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because an insufficient_tunds reply implies that the balance is less than x, the reply 

can be returned only when the highest possible balance under the possible 

combinations of serialization orders and outcomes of the operations that may be 

serialized before the withdraw operation is less than x. This highest possible balance 

can be calculated by adding all the unaborted and potentially prior deposits to the 

initial balance and subtracting all the committed and definitely prior withdrawals. 

Briefly, as long as the balance is so low that there would not be sufficient funds under 

any circumstances, lnsufficient_tunds can be returned, even if there may be tentative 

update operations or update operations that may be serialized either before or after 

the withdraw operation. Consequently, some conflicts that would be created had a 

read/write semantics been imposed are avoided. Although this is not the most 

significant improvement in concurrency over an implementation using read/write 

locks, it does illustrate the use of the history of previous invocations, the current 

operation's argument values and results, and the types of operations in determining 

whether conflicts are created. This is in contrast to some other approaches that rely 

only on the operation type and argument values to determine whether conflicts are 

created [50]. 

A more significant improvement in concurrency happens when there is a large 

balance. Again consider the withdraw operation but this time consider an olcay reply . 

. Since an okay reply implies a decrement of the balance, the commitment of this 

operation may invalidate the results of the foHowing kinds of operations: 

1. a potentially subsequent read.balance operation, or 
2. a potentially subsequent and successful withdraw operation9. 

To avoid creating any conflicts, there must be no operations of either kind if an okay 

reply is to be returned. The number of conflicts can be further reduced if we 
recognize that potentially subsequent withdraw(x ') operations are permissible as 

' 

long as there is enough money to cover au the withdrawals. Or, more algorithmically, 

9rhe result of an unsucc111ful withdraw operation witf not be invalidated becauae the newly arrived 
withdraw operation wilt never increaae the blltmnce. 
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when the lowest balance under the possible combinations of serialization orders and 

outcomes of the operations potentially prior to the withdraw(x ') operation (with this 

operation included) is at least x '. 

Again, in addition to preserving the validity of the previous results, we must also make 

sure that the okay reply is valid before returning it to the withdraw operation. 

Because an okay repty implies that the balance is at least x, It can be returned only 

when the lowest balance under the possible combinations of serialization orders and 

outcomes of the operations potentially prior to the withdraw operation is at least x. 

The discussion above shows that a withdraw operation will not create any conflicts 

as long as the balance is either large enough to accept the withdrawal or small 

enough to refuse the withdrawal, despite any uncertainty created by concurrent 

updates. When compared to an implementation that uses read/write locks, it 

represents a significant improvement on concurrency. 

The withdraw operation is representative of a large class of operations that can avoid 

the creation of conflicts moat, but not all, of the time. Whether a conflict is actually 

created depends on the state of the object. The state of the object includes not only 

what other concurrent operations are being executed, but also all previous 

committed operations. 

We will not discuss the conflicts that will be generated by a deposit operation, except 

to note that because there is only one possible result (ol<ay), which is defined for all 

input states, this result is always valid. However, deposit may still create conflicts 

because it mutates the state of the account and so it May affect the validity of other 

results. In Chapter 4 we will discuss how this bank account object may be 

implemented practically. Two different implementations are shown in figures 4--4 and 

4--5. 
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3.3 Deriving Conflict Conditions 

In the previous section we illustrated, with the bank account object example, how 

conflict conditions can be derived. In this section we will generalize from the bank 

account example, and describe the process by which conflict conditions can be 

derived from the serial specification of any abstract object. As will be seen in 

Chapter 4, deriving these conflict conditions is an essential component of an actual 

implementation. 

In general, a conflict condition depends on the type of a transition. For example, 

different conditions are required for a withdraw operation to reply with an okay or 

insuff icient_funds response. A conflict is created for an operation if every possible 

transition of that operation creates a conflict. For each transition, the process of 

deriving the conflict condition can be expressed conceptually as follows: 

1. Based on how the abstract state is mutated by the transition, determine 
the set of potentially subsequent operations in the history of the object 
whose results may be invalidated. For a transition that only observes the 
abstract state; such as a withdraw _x_tnauf transition, the set Is empty. 
For a withdraw _x_okay transition, the set includes any potentially 
subsequent read.balance operations and ·other successful withdraw 
operations. 

2. Derive the condition c 1 under which the results of the set of operations 
discussed in item 1, if the set is not empty, will remain valid with every 
possible combination of serialization order and· outcomes of their 
potentiaJly prior operations. For exampfe, in order to return okay to a 
withdraw(x) operation, thel'.e must not be any potentially subsequent 
read.balance operations, and, if there are any potentially subsequent 
successful withdraw(x ') operations, the lowest balance under the 
possible combinations of serialization order and . outcomes of the 
operations potentially prior to the withdraw(x ') operation (with this 
withdrawal included) should be at least x '. 

3. Based on how the abstract state is mutated by other operations, 
determine the set of potentiaJly prior operations whole· outcomes or 
serialization order may affect the result to thia traneition. For example, 
the set is empty for a depoalt_x~ok•Y transition because the deposit 
operation can only return okay. For a withdraw _x_okay transition, the 
set includes all deposit and successful withdraw operations that are 
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tentative and potentially prior to this transition, or that can be either prior 
or subsequent to this transition. 

4. Derive the condition c2 under which the result of this transition will 
remain valid with every possible combination of serialization order and 
outcomes of the set of operations discussed in item 3 (if the set is not 
empty). For example, in order for an okay reply of a withdraw_x_okay 
transition to be valid, the lowest balance under the possible 
combinations of serialization order and outcomes of the operations 
potentially prior to this transition should be at least x. This lowest 
possible balance can be calculated by assuming that all the potentially 
prior tentative deposit operations are either aborted or serialized after 
this transition, and all the potentially prior and tentative successful 
withdraw operations are committed and serialized before this transition. 

5. The result of this transition can be generated without creating any 
conflicts if the condition (c 1 and c2) is satisfied. 

The result of following the process above is a conflict condition, - (c 1 and c2). The 

conflict condition can be used as an indication of the concurrency that can be 

achieved with the particular functionality assumed in the process. 

The process described above can be simplified considerably when the concurrency 

control algorithm is specified. For example, with a timestamp algorithm, there is only 

one possible serialization order. It is not poesible for an incoming operation to be. 

both potentially prior and subsequent to another operation. 

3.4 Increasing Concurrency 

In the last two sections we deacribed how conflict conditipn_s can be derived based 

on the serial specification of an object and how the semantics of an application can 

be used to increase the concurrency of a system. By relaxing a serial specification, 

or more precisely, by increasing the set of acceptable transition sequences, conflicts 

become less likely to ariae and concurrency is lncrealed. The same idea has been 

suggested by Liskov and Weihl in [33). This section uaes several examples to 

illustrate this trade-off between functionality and concurrency. We hope to convince 
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the reader of the usefulness of the trade-off. In Chapter 6 we will take a more formal 

approach to show the power of our atomicity definition. We will show that our 

atomicity definition is at least as powerful as other correctness definitions [50, 38] 

that had abandoned atomicity. The same gain in concurrency through the use of 

these correctness definitions can be achieved through trading off functionality in our 

atomicity definition. 

There are several interesting classes of situations in which the semantics of an 

application can be changed to increase concurrency while the new semantics 

remains useful. The following list is not intended to be exhaustive, but rather serves 

to illustrate some interesting ways in which semantics can be changed. 

3.4.1 Reducing Precision of Numerical Results 

In one class, the precision of a nume~ result is reduced to allow for more 

concurrency. For example, a bank account object can provide an operation 

lower.bound.balance that does not take any argument and returns a value that is a 

lower bound for the balance. The following can be added to the state machine in 

figure 3· 1 on page 54. 

Ti: <lower.bound.balanceO, r1, aXx, r1, a> = lbalance_x 
N1(s, lbalance_xl = a If a~x · 

By returning the lowest balance under all possible combinations of serialization 

orders and operation outcomes, the result is valid yet never create any conflicts. 

Note that the increase in concurrency is "two-way." Not only does 

lower_bound_balance never create a conflict, but a deposit operation invoked 

afterwards will also avoid creating any conflict due to the possibility that it may be 

serialized -before the lower~bound~balance operation.10 Although the result to 

lower_bound_balance is not exact, it may be useful when the caller is using it as an 

estimate. 

1~. it is possible for a withdraw operation invoked afterwards to create a conflict due to the 
lower.bound.balance opei'ation. 
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Similar operations that increase the concurrency of the account object are 

upper_bound_batance, balance_range (which returns the upper and lower bounds), 

and approximate_balance, which takes a fraction as an argument and returns a value 

guaranteed to be within a range of the balance determined by the fraction. 

T1: <approximate_balance(p), r1, axx, r 1, a> = abalance_p_x 
N1(s, abalance_p_x) = s if s*(1-p) s; x S s•(1 + p) 

Consider another example in which an application is implementing a distributed 

ticketing agent. A fixed number of tickets is divided among several sites for 

availability reasons. Each site can sell tickets from its allotment. Occasionally, a 

computation may be started by one of the sites to record the number of tickets left in 

other sites and re-distribute the tickets. Suppose we regard each site as a ticket 

account, supplying operations identical to those of the bank account defined in 

figure 3-1. The "balance" of the account represents the numbers of tickets un~d in 

the allotment in this site. Re-distributing the tickets would involve two .phases: in the 

first phase, read_balance operations are invoked at each of the sites; in the second 

phase, based on the values returned by the read.balance operations, deposit and 

withdraw operations will be invoked at the appropriate sites. The entire computation 

can be aborted if one or more of the withdraw operations returns insufficient_tunds 

(more accurately, insufficlent_tickets). 

· One of the problems of this implementation is that the semantics of the read.balance 

operation may prove to be too restricti"8. ~ are prevented from being sold 

while the re-distribution is proceeding becaU89 aelting a ticket involves invoking 

withdraw(1), which may create a conflict with a patentially subsequent read.balance 

operation. Concurrency can be Improved if the value returned by read.balance is 

treated as a hint. Although the withdraw operations in a re-distribution computation 

may find the actual number of tickets available for re-distribution is not the same as 

that claimed in the hint, correctness is not comproma.d. A re-distribution 

computation, can always be aborted. In fact. the two phaaea · of the re-distribution 

computation ~ be aeparated into two computations.· However, it- may become 
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counterproductive if the hint loses too much of its accuracy. A more appropriate 

strategy is to keep the two phases in the same computation but use the 

approximate_balance operation in the first phase to record the tickets left in each site. 

Approximate_balance allows other update operations to proceed concurrently. On 

the other hand, it sets a limit on the imprecision of the result returned so that in most 

cases tickets are re-distributed "reasonably." 

3.4.2 Conditional Operations 

Another interesting class of situations in which the semantics of an application can 

be relaxed to increase concurrency involves "conditional" operations. Consider a 

change_meeting_ptace operation for the personal calendar object described in 

section 1.2.1. The change_meeting_place operation takes two arguments, a unique 

identifier of a meeting and a new place for the meeting. If it finds the meeting in the 

calendar, it changes the place of the meeting and returns ol<ay. Otherwise, it returns 

no.such.meeting. A portion of an informal definition of the state machine defining the 

serial specification for the calendar object is as foHows: 

T1: <change_meeting_place(m, p), r1, aXokay, r1, a> = change_place_m_p_okay 
<change_meeting_place(m, p), r1, aXno_such .. meetlng, r1, a> 

• change_place_m_p_none 

N1(a, change_place_m_p_okay) = s' ifs contains the meeting m and a' = a 
except that the place of m is changed to p 

. N1(s, change_place_m_p_none) = a if a does not contain the meeting m 

A global_change_meeting_place computation invokes a change_meeting_place 

operation at each of the participants of a meeting. The problem with the semantics of 

change_meeting_place is that if a global_change_meetingplace computation is started 

before the corresponding set_up_meeting computation is committed, their operations 

may arrive at different· calendars in different orders and conflicts may be created.11 

11 The motivation for executing the set_up_meeting and atobet_ch•noe.meetlng.J)lac• computations 
concurrently ia that at leeat thoee ~.participenta can be lrlformed of the place change• earty 
as possible. We 8ll8Ufn8 that a participant can obMne a tentative tet_up_meeting computation Uling the 
non-deterministic read.calend•r operationa deeCribed in a,..., 1. 



The conflicts are created because the result to a change.;.meetingplace operation 

depends on whether the meeting exists in the calendar. Restarts may be needed to 

resolve these conflicts. The problem can be avoided with the semantics of 

change_meetingplace modified to the following: 

Ti: <change_meeting_place(m, p), r1, aXokay, r1, a> = change_place_m_p_okay 
N1(s, change_place_m_p_okay) = s' if s contains the meeting m and a = a' 

except the place of m is changed to p 
s if a does not contain the meeting m 

The new semantics implies that change_meetingplace wiH change the meeting place 

to the new pjace if the meeting is in the calendar and return okay. Otherwise, no 

changes are made but okay is still returned. 

With the new semantics, the mark and change_meetingplace operations from two 

computations can be exeeuted in different ... orders in different calendars. No conflicts 

will be created. The only problem left is to make sure that set_up_meeting is serialized 

before globa/_change_meetingplace. It can be accomplished with, for example, the 

assignment of appropriate timestamps in a timestamp algorithm. 

In this example, the change_meetingplace operation becomes "conditional" 

because whether it makes any changes to the state depends on whether the meeting 

exists. The reply okay does not indicate one way or another. A similar semantics can 

be used for a cancel_meeting operation to reduce conflicts. 

A similar but slightly different class of situations can be illustrated by the withdraw 

operation in a bank account object. OriginaHy, we have: 

N1(s, wlthdraw_xJnauf) = a If a< x 

However, by changing the specification to: 

N11a, ~lthdraw _xJnauf) • a 

a withdraw operation can return insufticient_tunds whenever there is a possible 

combination of serialization order and operation outcomes that would lead to 

insufficient funds for the withdraw operation. Conflicts due to other withdraw or 

deposit operations ~ minimized. 
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One can argue that a semantics similar to the more relaxed withdraw_x_insuf 

transition above is necessary for a make_reservation operation in an airline 

reservation object. The semantics is acceptable because most computations that 

invoke make_reservation operations would probably not expect a reply of 

insufficient_tickets to indicate that there are "absolutely" no tickets left. An airlihe 

reservation object cannot afford to be blocked for other reservation operations 

because a computation that had made a reservation is tentative. A computation may 

last an arbitrarily long period of time, especially when some objects in the system are 

unreliable. The application would rather tum away customers when·· it Is not 

absolutely sure that there is a ticket to be sold.12 

3.4.3 Discussion 

A trade-off between precision and concurrency exists in all these examples. 

Normally, if there are no communication problems and all computati~ns are short, it 

. is probably not worthwhile to sacrifice the precision of the result in exchange for the 

concurrency. However, concurrency becomes a much more serious concern in a 

system with long atomic computations. The examples illustrate that there are many 

. interesting situations in which an application would be willing to exchange the 

precision for the extra concurrency. 

Our approach of relaxing the semantics of the application is not without problems. 

For instance, an implementation of lower _boundj)alance that always returns zero is a 

correct implementation as zero is always a valid result. However, it is not very useful. 

To eliminate this type of behavior, we need to impoee additional constraints on the 

implementation. In this particular example, we need to assert, in addition to the 

requirements in the serial specification, that there must be a serial history sh 

consistent with the local knowledge of the account object, such that the result 

retumed by lower_bound_balance is not smaller than the balance generated by 

12The fact that atrlinea overbook their flights does not change our. arguments since there ia a limit on 
how much overbooking is allowed. 
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executing operations in the order of sh. In other words, an implementation should 

only return x when xis a "possible" balance. 

Similarly, to eliminate uninteresting implementations that return insufficient_tunds to 

a withdraw(x) operation unnecessarily, we assert that ·there must be a serial history 

sh consistent with the local knowledge of the account object, such that x is larger 

than the balance generated by executing operations in the order of ah. 

3.5 Summary 

In this chapter we described a conflict model, which aUows conflict conditions to be 

derived from the serial specification of an object. We argued that the conflict 
,.,,,,.~ 

conditions are useful indications of the concurrency level of an implementation of 

that object due to the masking of the underlying concurrency control algorithms. 

Based on the conflict conditions, a programmer can determine the appropriate trade

off between the functionality and concurrency of an application. 
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Chapter Four 

Implementing Atomic Objects 

In the last chapter we focused on the functionality of abstract objects. We described 

how the semantics expressed in the serial specifications of abstract objects can be 

used to increase concurrency over an implementation that uses read/write locks and 

2-phase locking. We discussed how functionality can be traded off for concurrency. 

In this chapter we will describe how abstract objects can be implemented with a 

concurrency level approximating that of the idealized jmplementation in the last 

chapter. 

Like the idealized implementation described in the last chapter, the implementations 

described in this chapter are object-oriented. To guarantee that computations 

execute atomicaUy, we ensure that each of the abstract objects accessed by a 

computation behaves atomically 13• We call an -object that behaves atomically an 

atomic object. The advantage of an object-oriented implementation is its modularity. 

When changes are made in the implementation of an atomic object, other program 

modules are not affected as long as the serial specification of the object remains 

unchanged. 

A simple way to implement atomic objects is to build them from smaller atomic 

objects. For example, Argus [31] supports atomic records and atomic arrays. These 

objects are equipped with read/write locks and follow a 2-phase locking protocol. 

Their recoverability is implemented using some logging or shadow mechanisms. 

Because these "system-level" atomic objects provide the necessary synchronization 

13Aeca11 that ., object that bahavea atomically guaranteea that the committed events involving iblelf, 
after being rearranged 8ccording to the aeriaHzation order, wilt be an acceptabae transition aequenc:e 
according to the obieCt'a 88rial apecification. 
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and recovery, the implementation of abstract atomic objects on top of them can 

ignore any concurrency or failures in the system. Unfortunately, as we have 

illustrated in previous chapters, using these system-level atomic objects fails to take 

advantage of the semantics of an application. The resulting concurrency level is too 

low for a system with tong computations. So in this chapter we will explore how 

abstract atomic objects can be implemented from objects that do not mask the 

underlying concurrency and failures. 

There are three goals in this chapter. First, we will introduce programming 

paradigms that allow abstract atomic objects to be constructed easily. These 

paradigms should not only simplify application programming, but also help the 

programmer to convince himself of the correctness of the implementations. The 

simplicity of an implementation is an important consideration because subtle 

programming errors can be introduced easily, especially when the complexity of an 

implementation increases with the desire to increase concurrency. 

Second, our implementations should maximize concurrency while maintaining 

reasonable performance in terms of the computing needed to execute an operation. 

The performance requirements of our implementations are not as stringent as in 

some real-time applications. Comparing long computations and short computations, 

the former are not as sensitive to increases in execution time as the latter. 

Third, the programming interface and programming paradigms used in this chapter 

should make the underlying concurrency control algorithm transparent. Either a 

timestamp algorithm or a locking algorithm, or maybe some other algorithms, could 

be used to determine the serialization order and the actions to take when conflicts 

arise. The motivation for this transparency is that a programmer can implement 

atomic objects without having to learn different concurrency control algorithms. 

Another motivation is that the programs written are portable when the underlying 

concurrency control algorithm changes. Implicit in this goal is the belief that 

different systems may use different concurrency control algorithms. We will justify 
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this belief in Chapter 5. 

This chapter is structured in the following way. First, we present an overview of our 

programming paradigms in section 4.1. For the next few sections (4.2 to 4.5) we 

discuss individual aspects of our paradigms in more detail and provide motivation for 

them. Section 4.6 presents some program examples illustrating our paradigms. To 

illustrate that there is enough flexibility in our paradigms to optimize an -

implementation, we discuss some of the trade-offs of different implementation 

techniques in section 4. 7. 

4.1 Overview of Implementation Paradigms 

When the underlying concurrency and failures are not masked, two issues have to be 

addressed: synchronization and recovery. - The implementations described in this 

chapter follow the structure of the idealized implementation in the last chapter 

closely. To simplify synchronization and recovery, we divide them into two levels. At 

the lower level, concurrent activities at an atomic object are executed such that they 

appear to be instantaneous. Candidates for such activities are the processing of an 

invocation request, or the processing of a message that conveys the outcome of a 

computation. At the higher level, the execution of an atomic computation is viewed 

as the execution of a collection of these instantaneous activities. Since the 

collection of instantaneous activities of two atomic computations can interleave with 

each other arbitrarily, synchronization is needed before processing a new invocation 

request. An operation can only proceed when no conflicts are created. Recovery is 

implemented by compensating activities when an object is Informed of the abort of a 

computation. 

4.1.1 Lower-Level Synchronization and Recovery 

In section 4.2, we will dlScuss the lower·lev4tl synchronization and recovery: how to 

make the concurTent activities at an atomic object appe• to be instantaneous. An 

obvious solution is to apply the concept of atomicity again. Two kinds of atomic 
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computations can be used in an implementation. The first kind of atomic 

computations are the one that we have been discussing in previous chapters. They 

invoke operations on atomic objects and can last a long time. The second kind of 

atomic computations are used to make the concurrent activities at an atomic object 

appear to be instantaneous to one another. They are usually much shorter because 

these activities are usually small portions of an atomic computation of the first kind. 

To distinguish the two kinds of atomicity, we call them global atomicity for the long 

atomic computations of the first kind, and local atomicity for the short atomic 

computations of the second kind. The serialization order that the locally atomic 

computations appear to be executing in bears no relationship to that of the globally 

atomic computations. A localty atomic computation can also be committed before 

the long globally atomic computation that it is executed in is committed. Globally 

atomic computations appear to execute in a global serialization order and locally 

atomic computations in a local serialization order. 

Since our model of a computation is a sequence of operation invocations at various 

objects, we are essentially implementing a long globally atomic computation with a 

collection of short locally atomic computations. In Chapters 2 and 3 we described 

how computations can be made atomic by accessing only atomic objects. 

Corresponding to the two kinds of atomic computations are two kinds of atomic 

objects: globally atomic objects and locally atomic objects. A different way to 

understand our implementations is that we are implementing the globally atomic 

objects with locally atomic ones. 

An analogy can be drawn with the two level of objects in System R [14]. In System R, 

a page object is locally atomic in the sense that the page locks and recovery 

mechanisms make the RSS actions (e.g., an operation on an Index object, which iS a 

globally atomic object) appear to be atomic to one another. However, since page 

locks are released at the end of an RSS action, a page object is not globally atomic 

and a higher level of synchronization and recovery is needed on top of the lower level 
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.of synchronization and recovery provided by the page· locks and recovery 

mechanisms. 

4.1.2 Higher-Level Synchronization 

In section 4.3 we discuss how the higher-level synchronization is implemented. 

Given that each operation on a globally atomic object is executed as a locally atomic 

computation, there is still the task of determining whether a conflict is created with 

each new operation invocation. In order to determine when conflicts are created, 

each globally atomic object encodes a history of the operations invoked and the 

results returned at that object. When a new invocation request arrives, the locally 

atomic history object is examined to determine whether a conflict is creat~. If no 

conflict is created, a result is returned and the transition 14 corresponding to the 

operation and its result is added to the history object. Otherwise, a conflict is created 

and must be resolved. 

A history object captures the transitions that have been executed at a globally atomic 

object. The important operations of the history objects are operations to insert a 

transition, delete a transition, enumerate transitions, and update the status of a 

transition, which indicates whether the globally atomic computation invoking that 

transition is committed or tentative. Each operation invoked on a globally atomic 

object will insert a transition into the history object associated with the globally 

atomic object. To prevent a history object from growing indefinitely, committed 

transitions are deleted periodically and "merged" into a more compact 

representation. When transitions are enumerated from a history object, they can be 

filtered by their status or the type of operation and results. The caller of the 

enumerate operation can also supply another transition t and a condition c (e.g., 

"potentially subsequent according to the global serialization order") such that only 

transitions that satisfy c with respect tot will be returned. The words "potentially" 

14Reca11 that a transition i8 a pair of invoke and return evenla. 
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and "definitely" capture the local knowledge on the global serialization order. With 

the use of the history objects and other locally atomic objects, an operation can 

determine what other operations have been executed at the globally atomic object 

and the possible combinations of serialization orders and operation outcomes. We 

will describe the implementation of these history objects in more detail in section 

4.3 and Chapter 5. 

4.1.3 Higher-Level Recovery 

In section 4.4 we discuss how the higher-level recovery is implemented. When locally 

atomic objects are used to implement globally atomic objects, locally atomic 

computations are committed before the corresponding globally atomic computation 

is completed. The effects of the operations invoked on the locatly atomic objects 

have to be explicitly undone when the globally atomic computation is aborted. The 

combined effects of the original operations and the compensating operations should 

make the globally atomic objects appear to be failure atomic. 

We introduce two recovery paradigms in section 4.4. These paradigms are stylized 

approaches to performing recovery for globally atomic objects implemented with 

locally atomic objects. Their goal is to simplify the writing of application-dependent 

recovery code. Simpler code makes it easier to convince ourselves that an 

implementation is correct. 

In the first paradigm, only one mutator operation is performed on locally atomic 

objects during an operation on a globally atomic object: inserting a transition into 

the locally atomic history object. When the globally atomic computation containing 

the operation is committed, the transition can be used to determine other mutator 

operations to be performed on other locally atomic objects in the representation of 

the globally atomic object. This type of processing after the globally atomic 

computation is committed is called commit processing. In that sense, the history 

object serves as an intentions list. When the globally atomic computation is aborted, 

the only compensating activity needed is to delete the transition from the history 
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object. 

In the second paradigm, arbitrary operations can be invoked on the locally atomic 

objects. Here, the goal is to minimize the work that needs to be done when the 

globally atomic computation is committed. An undo operation is associated with 

each of the tentative operations on a globally atomic object. The undo operation is 
-

invoked when the tentative operation is aborted. The undo operation invokes 

compensating operations on the underlying locally atomic objects. The history 

object is a natural place to store names of the undo operations and their arguments. 

In this case, the history object serves as an undo log. 

4.2 Global Atomicity and Local Atomicity 

The separation of synchronization and recovery into two levels allows division of 

labor and greatly simplifies the task of programming application-dependent 

synchronization and recovery. By limiting the higher-level synchronization to happen 

at operation boundaries, each globally atomic computation will observe only a limited 

set of well-defined interinediate states of another computation. Similarly, higher-level 

recovery is simplified because the compensating activities, which can be executed as 

locally atomic computations, start with a limited set of well-defined intermediate 

states. 

This section describes the idea of having two kinds of atomic objects in more detail. 

We will describe how locally atomic objects can be implemented and compare our 

paradigm of implementing globaUy atomic objects using locally atomic objects with 

related work. 

4.2.1 Definitions of Global Atomicity and Local Atomicity 

With the introduction of the distinction between global atomicity and local atomicity, 

we have separated the objects in a system into globally atomic objects and locally 

atomic objects. Recall·that in Chapter 2 we have defined a history to be atomic If it is 
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· equivalent to an acceptable serial history. We have defined a serial history sh to be 

acceptable if, by partitioning sh according to the object with which an event is 

associated, .each of the sub-histories is an acceptable transition sequence according 

to the serial specification of the object associated with·that sub-history. The same 

definition can be used to define local atomicity if we limit our attention to locally 

atomic objects. 

A history is globally atomic if it is equivalent to an acceptable globally serial history. 

A globally serial history is a history in which the events are rearranged according to a 

linearization of the globally atomic computations. A globally serial history sh is 

acceptable if, by partitioning sh according to the globally atomic object with which 

an event is associated, each of the sub-histories is an acceptable transition sequence 

according to the serial specification of the globally atomic object associated with that 

sub-history. Local atomicity can be defined analogousty using the concept of a 

locally serial history in which events are rearranged according to a Unearization of 

the locally atomic computations. Notice that there is a local serialization order and a 

global serialization order. The behavior of the locally atomic objects is not 

necessarily valid according to the global serialization order. 

4.2.2 Implementing Locally Atomic Computation• 

We assume that a programmer can declare the boundaries of locally and globally 

atomic computations. An access to a globally (locattY) atomic object should always 

be enclosed in a globally (locally) atomic computation. Typically, a locally atomic 

computation is a small portion of a globally atomic computation and should last only 

a short time (e.g. executing an operation on a globally atomic object). A globally 

atomic computation can contain several locally atomic computations. A locally 

atomic computation is committed when it terminates successfully. The locally atomic 

computation remains committed even though the globally atomic computation that 

contains it may be aborted later. Notice that giwm the same aerial specification, the 

concurrency of a locally atomic object is potentially much higher than a globa~ly 
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atomic object because of the shorter locally atomic computations. If a locking 

algorithm are used to implement an atomic object, a shorter computation allows 

locks to be released sooner. 

Locally atomic objects can be implemented using a traditional concurrency control 

algorithm and recovery mechanisms based on read/write semantics [17). With such 

an implementation, it is in general inappropriate to access a locally atomic object in a 

long locally atomic computation. The concurrency of the implementations described 

in this chapter depends on the use of short locally atomic computations. 

Alternatively, the same implementation paradigm described in this chapter can be 

used to implement the locally atomic objects as well as the globally atomic objects. A 

multiple-level atomicity model can be extended easily from the current dichotomy of 

global atomicity and local atomicity. In section 4.7.2 we will explore the situations in 

which the generality of multiple-level atomicity is needed. 

In order for the effects of an atomic computation to remain permanent, the updates 

made by the computation have to be stored into stable memory when the 

computation commits. Afterwards, the updates will survive site crashes. If accessing 

stable memory is expensive, the cost of implementing each operation to a globally 

atomic object with a locally atomic computation may become prohibitive. 

To avoid the cost of accessing stable memory every time a locally atomic 

computation is committed, we can make use of the fact that locally atomic 

computations are not invoked directly by human users. Consequently, the changes 

made by a locally atomic computation a do not have to be stored in stable memory 

until the globally atomic computation that contains a commits, or until other locally 

atomic computations store their changes in stable memory. The latter condition is 

needed because other locally atomic computations may have observed the effects of 

a. Since these other locally atomic computations can alao delay their access to the 

stable memory, all the accesses due to the commitments of locally atomic 

computations can be piggybacked on a single access when some globally atomic 
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computation commits. The details of how a distributed computation coordinates its 

. accesses to stable memory in different sites will be discussed in section 5.4. 

4.2.3 Related Work 

The same idea of having multiple levels of atomicity has been suggested by Beeri et 

al. in [5] and Moss et al. in (42). The difference between our work and theirs lies in 

how synchronization and recovery is performed. To implement serializability, Moss 

proposes a conflict-based locking mechanism: locks to the level 1-1 objects are 

released when the level I operation that accessed them is finished. However, a lock 

at level I is retained so that conflicting level I operations are delayed. In [42) the 

conditions under which "simple aborts" exists are also derived: recovery of a level I 

object can be achieved by simply omitting the effects of the operations on the level 

I· 1 objects. The conditions require that no conflicting level I· 1 operations have been 

executed by other level I operations. 

Weihl (55] describes how atomic objects can be built with other smaller atomic 

objects and mutex objects. Mutex objectS behave like monitors [21 ). Programs can 

acquire and release mutex objects to achieve mutu81 exclusion. The activities 

performed while the mutex lock is held are serialized as a result. The mutex objects 

can be viewed as a simple way to implement local atomicity. 

4.3 Synchronization 

Since locally atomic computations might not be serialized in the global serialization 

order, a higher level of synchronization is needed so that the behavior of a globally 

atomic object appears to be globally atomic. Our approach to the higher-level 

synchronization is to capture sufficient information of the history of events generated 

at a globally atomic object using history objects. so that it can be used to determine 

whether conflicts are created. Since all the relevant local Information in our atomicity 

definition is being captured by these history objects, our approach is "complete" in 

the sense that unnecessary conflicts need not be created except when there is a lack · 
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of global or future knowledge. 

In [55] the state of an atomic object is encoded with smaller atomic objects and 

monitor-like mutex objects. By encoding enough information in these objects, an 

incoming operation can determine whether conflicts are created and delaying is 

necessary. It is up to each application to determine how the state is to be encoded. 

To simplify programming, we have provided a more stylized approach of using history 

objects for the same purpose. 

In general we can expect our programs that handle an invocation request to follow 

the following pattern: 

1f cond1tion1 then 
1f cond1t1on2 then 

1f cond1tionl then 
resolve conflict 

. 
• • • I . . . . . 

. 
• • • I 

insert tt into history: return result! end 
insert t2 into history: return result2 end 

insert tN into history: return reaultN end 

In the expressions conditioni the program determines whether certain transitions 

can be generated without creating any conflicts. If an operation can proceed 

immediately, a valid result is determined from the history object and other objects. A 

transition for this operation can be inserted into the history object to be examined by 

later operations before returning the result. If none of the condition i's are satisfied, 

a conflict is created and must be resolved. In the rest of this section we will first 

discuss the operations provided by a history object that ptays an important role in the 

programming of the cond1t1on1 expressions. Then we will discuss· the resolve 

confl i ct statement. 

4.3. 1 History Objects 

Figure 4-1 describes an informal specification of the interface of a history object. To 

avoid a lengthy digression describing all the operations supported by a history 

object, figure 4-1 is only a partial list and preeents only the operations relevant to our 

approach of higher-level synchronization. We will continue our description of history 

operations in section 4.5.1. 
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A history object can be pictured as a tree of transition objects. These transition 

objects correspond to the different types of transitions in a serial specification. The 

order of the transitions in the tree is determined by their global serialization order. A 

tree instead of a linear list is used because a history object may not have complete 

knowledge of the serialization order. We will not discuss the transition objects in this 

section. A informal specification of their interface will be presented in section 4.5.2. 

p_sub • proctdure(h: history. t: transition) returns(history) 
X returns the largest sub-history of h in which all the transitions 
I are potentially subsequent to t. 

p_prior • procedure(h: history. t: transition) returns(h1story) 
X returns the largest sub-history of h in which all the transitions 
X are potentially prior to t. 

d_suh • procedure(h: history. t: transition) returns(history) 
X returns a sub-history of h in which all the transitions are 
X definitely subsequent to t. 

d_prior • procedure(h: history. t: transition) returns(history) 
X returns a sub-history of h in which all the transitions are 
X definitely prior to t. 

p_between • procedure(h: history, tt. t2: transition) returns(history) 
X returns a sub-history of h 1n which all the transitions are 
I potentially subsequent to t1 and potentially prior to t2. 

d_between • procedure(h: history, t1, t2: transition) returns(history) 
I returns a sub-history of h in which all the transitions are 
X definitely subsequent to t1 and definitely prior to t2. 

Figure 4-1 :Interface of a History Object 

4.3.1.1 Masking Concurrency Control Algorlthma 

In order to mask the concurrency control algorithm used underneath the 

programming interface. we follow the conflict model described in section 3. 1. We 

assume that each history object has some knowledge of operation outcomes and the 

global serialization order determined by the concurrency control algorithm 

underneath. The operations p_sub, d_sub, pprior, dprlor, p_between, d_between 

supported by a history object reflect the view. For example, p_sub takes a history 
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object as its first argument and a transition object as its second argument, and 

returns the sub-history in which the transitions are serialized potentially before the 

argument transition. How the transitions in the sub-history are ordered is again 

determined by the global seriaJization order. The uncertainty about operation 

outcomes can be reflected with an attribute on the transition objects, which are 

either committed or tentative. Aborted transitions will be deleted from a history 

object. We will describe the use of this attribute in sections 4.5.2 and 4.5.3. 

These P. and d. operations can be implemented and optimized rather 

straightforwardly given the underlying concurrency control algorithm. For example, 

if the global serialization order is determined by timestamps assigned at the 

beginning of a globally atomic computation, the tree in which the transition objects 

are arranged degenerates to an ordered list, since the global serialization order is 

known when an operation on an globally atomic object is invoked. There is also no 

difference between the d_ and P. operations. A different implementation is required 

for a concurrency control algorithm in which the global serialization order is 

determined in a way similar to 2-phase locking. We will defer our discussion of 

concurrency control algorithms and how these history operations can be 

implemented until Chapter 5. Note that an implementation for these operations does 

not necessarily have to copy the history object. A lazy evaluation scheme can be 

used to enumerate the transitions in the returned history object without changing the 

semantics of the operations. 

With the p_ and d. operations to capture the global serialization order relationship 

among the transitions In a history object, the concurrency control algorithm used by 

the system becomes transparent to the application programmers. Although 

application-dependent synchronization is needed In an implementation, the 

programmer does not have to be aware of the choice of concurrency control 

algorithm made by the system. This transparency is the primary characteristic that 

distinguishes our proposal from alf previous ones that involve application-dependent 

synchronization. 
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4.3.1.2 Advantages and Disadvantages of Transparency 

There are both advantages and disadvantages of providing this transparency. There 

are two advantages. First, programmers do not have to understand the details of 

different concurrency control algorithms. The same conflict model can be used 

during programming. Second, the application programs remain correct even when 

the underlying concurrency control algorithm is changed. No program modification 

is needed. One may question how often a concurrency control algorithm would 

change underneath the application programs. A situation in which this may happen 

is when application programs are ported, eepecially for "common" abstract objects 

such as a FIFO-queue, a set, or some kind of table. Another possibility is for a system 

to change its concurrency control algorithm in on:ter to combine with another system, 

so that computations that span both systems can be executed. 

One of the disadvantages of the transparency is its over-generality. Application 

programs become more difficult to write than neceeaary. For example, given a 

timestamp concurrency control algorithm, the serialization order is always known. 

The difference between P. and d. disappears. Furthermore, the programmer does not 

need to consider cases where a tranaitton Is both potentially subsequent and 

potentially prior to another transition. 

Another possible disadvantage· of the transparency is decreased efficiency. An 

application program may require several paaaaa over a general history object to 

determine whether a conflict Is created. On the other hand, because of the simpler 

structure of a history ot>;ect when the concurrency control algorithm Is known, one

pass versions can be constructed more easily than when the concurrency control 

algorithm is transparent. 

Whether these disadvantages outweigh the advantages cannot be evaluated without 

more experience implementing ab8tract atomic obieeta· On the other hand, it aeems 

that without actual experience of the performance c:A different concurrency control 

algorithms, a safer investment would be to emphasize pOrtability. 
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4.3.2 Resolving Conflicts 

When an object decides that a conflict has been created: it must resolve the conflict. 

Depending on the concurrency control algorithm, and why the conflict arises, the 

range of actions that may be taken include delaying the current operation, restarting 

the current computation, or making an assumption of the serialization order or some 

other transition's outcome. 

Ideally, a programming interface can provide a generic resolve conflict statement 

which maintains the transparency of the concurrency control algorithm underneath. 

An intelligent compiler or run-time system can generate code t~ determine the 

actions to take, such as when to reschedule a request if delay is needed, or whether 

to restart a computation or delay a request, or what assumptions to make. However, 

supporting such a generic statement efficiently is difficult as conflict conditions can 

be arbitrary expressions. 

Depending on the concurrency control algorithm, simple--minded solutions can be 

devised. For example, in some algorithms a request would be able to proceed given 

that sufficient time has passed. In those algorithms, a simple solution is to 

reschedule an invocation request periodically. For some other algorithms, in which 

restarts and delays are the only two possible alternatives to resolve a conflict, the 

more pessimistic restart can be chosen whenever delays do not guarantee eventual 

. progress. For algorithms that makes assumptions on operation outcomes and the 

serialization order, different assumptions can be tried to determine whether they can 

maintain a valid behavior given that those assumptions are correct. 

The drawback of these simple-minded solutions is the loss of concurrency in the 

form of unnecessary delays, spurious reschedules, unnecessary restarts, or 

unnecessary assumptions. To provide a compromise between this loss of 

concurrency and a complicated programming interface, we replace the resolve 

conflict statement with a retry statement and require the programmers to specify 

a proceed condition with a retry statement. The purpoee of the proceed conditions 
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is to provide a hint to the language system as to when conflicts would not be created. 

The structure of the proceed conditions is required to obey a well-lormedness 

requirement described below so that a proceed condition can be analyzed by the 

language system. Based on the proceed conditions, the language system can 

determine whether a delay would lead to eventual progress, when to reschedule, or 

what assumptions to make. 

A proceed condition is taken as a hint to the condition under which an invocation 

request would be able to proceed. However, in order to guarantee that a request is 

not delayed indefinitely, a proceed condition should be well-formed. A well-formed 

proceed condition satisfies the following requirements: 

1. The proceed condition should be satisfied if: 

a. new operations are not started, and 
b. all current operations in the system, except the one being 

considered, are finalized and the outcomes are known by all 
history objects, and 

c. the operation being considered is serialized after all existing 
transitions and the global serialization order among e~isting 
transitions are known. 

2. It is· not satisfied currently. 

3. It is constructed with boolean operations and the operations provided by 
the history objects. 

The first two requirements guarantee that by analyzing a proceed condition, a 

language implementation can discover the set of "events" that may cause the 

proceed condition to become satisfied. In some concurrency control algorithms, 

these events may correspond to the finalization of incomplete computations. In some 
• 

algorithms, the events may involve a restart of the computation that invokes the 

current operation. The first requirement prevents situations in which the proceed 

condition is too restrictive. If a proceed condition is too restrictive, the current 

operation may never be rescheduled, or un~ restarts may be Initiated. 

Application programmers should expect the language implementation to make better 

decisions in determining how to resolve a conflict if the proceed condition is a closer 
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approximation of the negation of the conflict condition. The second requirement 

prevents situations in which the proceed condition is already satisfied. If the proceed 

condition is already satisfied, the language implementation may not be able to 

determine the set of events that can cause the current operation to resolve the 

conflict. In that case, the only alternative is busy-waiting in the form of constantly 

rescheduling or constantly restarting. It is probably not the most desirable solution. 

The third requirement restricts the structure of a proceed condition so that it can be 

analyzed by the language implementation. In Chapter 5 we will describe how a 

language implementation can use the proceed conditions to determine the actions 

that need to be taken to resolve a conflict. 

The retry statements are also paired with begin entry statements so that a 

program that uses the retry statement has the following form: 

begin entry 
1f cond1t1on1 and 

1f cond1t1on.I and 
retry wh•naver c I c 11 a proceed condition 

The semantics of the retry statement is to abort any work performed in the last retry 

loop and retry from the matching begin entry statement. A retry might be attempted 

after a certain delay, a computation restart, or the making of some assumptions. The 

proceed condition c may or may not be satisfied when the loop is retried. 

4.4 Recovery 

When locally atomic objects are used to implement globally atomic objects, the 

effects of a committed locally atomic computation have to be compensated explicitly 

when the containing globally atomic computation aborts. This section describes how 

these compensating activities can be programmaj. Similar ideas have been 

proposed in (55, 38, 1). We will not present any compari&on since the purpose of this 

section is merely to show that recovery paradigms compatible with the rest of our 

implementation paradigm can be designed. 
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We will describe two different ,recovery paradigms in this section. One of them uses 

the history objects as intentions lists and the other uses them as undo logs. The two 

paradigms described in this section are not mutually exclusive methods; rather, they 

represent two ends of a spectrum of possibilities. For example, an application may 

use one paradigm for certain operations and the other paradigm for the other 

operations. Depending on the type of an application, one paradigm may be more 

efficient and/or convenient than the other. 

In addition to performing compensating activities, it is also necessary to condense 

the information contained in the history objects which would otherwise grow 

indefinitely. We can condense the information contained In the transition objects 

with a more compact representation after they are committed. How the compaction 

is performed is related to the recovery paradigm. 

4.4.1 Intentions Hat Paradigm 

In the intentions list paradigm, the state of a globally atomic object is represented by 

a collection of locally atomic objects (which will be called a snapshot) and a locally 

atomic history object. The history object records the transitions of the operations 

that have been invoked at the globalty atomic object. For committed transitions, the 

application can specify a locally atomic computation which merges their effects into 

the snapshot and deletes them from the history object. Aborted transitions can be 

deleted without further action. This kind of commit processing can be viewed as 

taking the processing "off.line" after the serialization order and the outcomes of the 

transitions are known. To simplify the application, the committed transitions are 

merged in the global serialization order. In other words, a committed transitions can 

be merged only if there are no prior unmerged transitions in the history object. 

When an operation is invoked on the globally atomic object, the snapshot and the 

history object are examined to determine whether a conflict is created. If the 

operation can proceed immediately, a valid result for the operation is also determined 

from the snapshot and the history object. Before returning, the transition for this 
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operation is inserted into the history object. The accesses' to the snapshot and the 

history object are executed in a locally atomic computation. 

The intentions list paradigm minimizes the work performed when an operation on the 

globally atomic object is aborted. If the operation is aborted before the locally atomic 

computation is committed, changes to all the locally atomic objects will be undone. If 

the operation is aborted afterwards, the only compensating activity needed is to 

delete the corresponding transition from the history object. The deletion can be 

executed as a short locally atomic computation. 

Deleting transitions from the history object and merging them into the snapshot as 

soon as they are committed may create a problem. Occasionally, a committed 

transition may be needed in a history object to determine whether conflicts are 

created for an incoming operation that can be serialized before it. Depending on the 

concurrency control algorithm, committed transition may or may not be needed. In a 

2-phase locking algorithm, a committed transition is never needed and a transition 

can be deleted when it is merged. In a timestamp algorithm, a transition is useful in . 

determining whether conflicts are generated when operations with older timestamps 

are invoked. If committed transitions are deleted, incoming operations with older 

timestamps must be refused. 

A solution to this problem is to keep a sequence of pairs of snapshots and history 

objects. Before deleting committed transitions from a history object and modifying 

the snapshot, a copy of the history object and the snapshot can be kept. For an 

incoming operation o, the appropriate pair of snapshot and history object that is the 

most updated and yet contains all the transitions that may be serialized after o in the 

history object can be chosen. A complication arises when inserting a transition. 

Since the transition has to be inserted into all the history obj8ct versions, those that 

have already deleted transitions prior to the transition being inserted have to be 

discarded. 

Since storage is limited, some of the pairs are also discarded when it becomes more 
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and more unlikely to have incoming operations that need to access the transitions in 

those pairs. In a timestamp algorithm that assigns timestamps using a real-time 

clock, transitions invoked by computations that are started before the currently 

executing computations in a system can be discarded. Without global knowledge, a 

transition can be deleted if it is estimated to be older than the currently executing 

computations. If an older computation is still executing and access the history object 

later, it has to be restarted. Notice that a language Implementation can make the 

maintenance of a sequence of pairs of snapshot and history object transparent to the 

programmer. It can also make the copying of history object and snapshot more 

efficient by, for example, keeping one history object and having each history object 

"version" be an index to this single history object. 

4.4.2 Undo Log Paradigm 

In the undo tog paradigm, the state of a globally atomic object is rep.resented by a 

collection of locally atomic objects (which will be called a projection) and a locally 

atomic history object. In this paradigm, instead of merging the committed transitions 

during commit processing, the projection is mutated before an operation on the 

globally atomic object returns. The transition for the operation is also inserted into 

the history object. The projection should represent the correct abstract state 

according to any globaJ serialization order in which the transitions in the history 

object may be serialized, even though there may be many such orders. No extra 

work is needed if all the tentative operations eventuatly commit. The accesaes to the 

projection and the history object are executed in a locally atomic computation. 

If an operation on the globally atomic object is aborted before the locally atomic 

computation commits, changes made to the locally atomic objects will be undone. 

No extra work from the application is necessary. If the operation is aborted after the 

locally atomic computation is committed, the aborted transition will be deleted from 

the history object and it will be "unmerged" from the projection with an undo 

operation. The undo operation should compensate for the previous mutation of the 
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projection and preserve the failure atomicity of the globally atomic object. If two 

operations are aborted because one of their common ancestor actions is aborted, 

the undo operation of the operation serialized afterwards is invoked first. An undo 

operation, along with its arguments, is specified by each operation on the globally 

atomic object before the latter returns, and remembered in the transition in the 

history object. The undo operation and the deletion of the transition from the history 

object are executed in a locally atomic computation. The high-level synchronization 

performed by an implementation, by guaranteeing that only atomic histories are 

generated, ensures that this locally atomic computation does not encounter any 

permanent failures. For example, the undo operation of a deposit operation in an 

account object deducts the amount deposited from the projection. Since an 

implementation should be prepared for the possibility of the deposit being aborted, 

there is always enough funds in projection to cover the undo operation. Transient 

failures that interrupt the undo operation, such as site crashes, can be masked by 

retrying. 

The projection and the history object will be used to determine a valid result that can . . 

be returned to an operation Invoked at the globally atomic object, and to determine 

whether conflicts are created. As will be discussed In section 4.7.1, the undo log 

paradigm may be more efficient than the intentions list paradigm in some 

applications. The comparison of the two recovery paradigms will be delayed until we 
· have presented some example programs. 

Two problems with the undo log paradigm prevent its applicability to general 

applications. The first problem arises because the paradigm requires the projection 

to be maintained such that it represents the correct abstract state according to any 

global serialization order in which the transitions in the history object may be 

serialized, even though there may be many such orders. For some applications, this 

is not possible. For example, when the operations insert(i) and delete(/) are executed 

on a set object, the correct projection state depends on the serialization order of the 

two operations. 

91 



There are two possible solutions for this problem. One of them is to regard this 

situation as the creation of a conflict. This is not ideal, as concurrency is decreased 

unnecessarily. In the set example above, no conflicts are generated by the insert(;) 

and delete(i) operations, since the only valid reply for both operations is okay, which 

would remain valid regardless of the serialization order. Another possibility is to 

allow the projection to be modified when the operation commits. This is also 

undesirable because of the complexity introduced into the structure of the 

projection. 

The second problem arises because occasionally the projection and a history suffix 

do not capture enough information on the entire history of previous invocations. For 

example, suppose the projection is a locally atomic array object representing the 

abstract state of a set object. Invoking an insert(e) operation causes e to be inserted 

into the array. On the other hand, after inserting e from the array, we have lost the 

information indicating whether e was in the array before the insert(e) operation was 

invoked, unless the history object contains the transition for the last insert(e) or 

delete(e) operation prior to this operation. This information is needed in case the 

operation is aborted, and also to determine the result of a member(e) operation 

serialized before the insert(e) operation. Selecting an undo operation based on the 

state of the projection when the insert(e) operation is executed is not an adequate 

solution either, since the state of the projection might be changed by other undo 

operations. 

As a remedy, we can delay the deletion of transitions from the history object, or add a 

snapshot to the state. This raises the question of how transitions should be deleted 

from the history object. A possibility is to declare all committed transitions which are 

certain to be serialized before all other tentative transitions eligible for deletion. 

However, this does not solve the problem described above. A more complicated 

scheme in which the application makes the final decision over which transition is 

deleted can be devised. However, It seems complicated and may add a significant 

cost to accessing the history object. 
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The addition of a snapshot can be regarded as a combination of the two recovery 

paradigms. Snapshots can be maintained as described in the last section. They can 

also be derived more cheaply than described in the previous section by saving old 

projections. After all the mutator operations that have been merged into the 

projection are committed, the projection can be regarded as a snapshot. 

A final possibility is to encode the necessary information in a more complicated way. 

In the set example, we can associate an item in the array with a linked list of boolean 

values. When a delete or insert operation is invoked/aborted, a boolean value can 

be inserted/removed from the list. Boolean values at the beginning of the list can be 

removed by a background process as long as there is a subsequent boolean value 

inserted by a committed operation. 

Despite these limitations and complications, the undo paradigm is still useful in many 

applications which do not have "overwrite" operations. These overwrite operations, 

such as insert(e) in a set object, have the characteristic that they destroy some 

significant piece of information in the old state necessary for recovery. Without 

"overwrite" operations, an operation can detemline all the· necessary Information 

from the projection and the history object. 

4.5 Programming Interface 

This section describes some more programming constructs in order to present the 

program examples in aection 4.6. However, this is not meant to be a language 

proposal. There is a trade-off involved in introducing specialized constructs into a 

language. While the. programs that motivate these constructs become more efficient 

and easier to write, the language also becomea more complicated and specialized. 

More detailed study is needed before deciding what linguistic constructs are 

desirable. 

93 



4.5.1 History Objects Continued 

The following is a continuation of the description of the operations provided by a 

history object. 

delete_first • procedura(h: history) returns(transition) 
I returns the transition in h that is serialized before all other 
I transitions and 1s co-itted. The transition returned is deleted 
I fro• h. 

match • iterator(h: history, t: t91tPlate) itarates(transition) 
I iterates the transitions in h that .. tchas t. 

exists • procedure(h: history, t: ·t .. plate, 
p: proctype(tran1ition) returns(bool)) ~eturns(bool) 

I returns true if there is a transition s in h 1uch that 1 •atches the 
I template t and p(s) returns true. Otherwise false is returned. 
I p 1s an optional arg.,..nt. If p is o11itt1d, only the teaplata t is 
I used to filter transitions in h. 

I The following operations are internal and invoked onl1 by the 
I language sy1t•• i11Pl ... ntation that we will discuss. 

insert • procedure(h: history, t: transition) 
I inserts t into h. This operation is invoked by the language 
I i11Ple .. ntation when an operation on a globally atot1ic object returns. 

gat_transitions • iterator(h: history, a: action~id) 
iterat11(transition1) 

I iterates the transitions that are executed in a. · This operation is 
I used by the language i11Pl ... ntation to search for transitions whose 
I status should be updated when infor .. t1on about the outcOll8 of an 
I action is received. we w111 not show the invocations of these 
I operations in our progr ... in section 4.8. T_h• update of 
I the status of a transition can be executed 1n a locally ato11ic 
I ce>11putat1on. 

In addition to the sub, prior, and between operations described in section 4.3.1, the 

history objects also support an exists operation and a match operation which allow 

for searching of particular transitions in a history object. The exists operation takes a 

history object, a transition template, and a procedure as arguments. Transition 

templates wiU be described in section 4.5.3. Both the transition template and the 

procedure argument are used to filter the transitions in the history object. The 

procedure in the procedure argument takes a transition as an argument and returns 

a boolean. The exists operation also returns a boolean as its result. It returns true if 
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there is a transition in the argument history object that matches the template and true 

is returned when the procedure argument is invoked with this transition. False is 

returned otherwise. 

In the example programs that we will present in section 4.6, we will in fact need a 

closure rather than a procedure in most calls to exists. To allow closures to be 

passed, the programmer can specify a multiple-argument procedure p: 

p • procedure(arg1: T1, arg2: T2, •••• arg1: trana1t1on) returns{bool) 

and the closure can be specified as p ( a1 • a2 • • • • • -. .. 1 ) where a 1 is an object of 

type T1· 

4.5.2 Transition Objects 

Figure 4-2 is an informal specification of the operations supported bY a transition 

object. A transition object can be regarded as a type of record, with various 

attributes. 

get_arg1 • procedure(t: trans1t1on) return1(type_of _ar9t11) 
I return the f1rat arg .. ent of th• operation repreaented by t. 

I S1a11arly for get_arg2, get_arg3, ••• , get_resultt, ••• 

•atch • procedure(t: tran11t1on, t..,: teaplate) returna(bool) 
I returns true 1f t utchea te11P. otherw1ae false 11 returned. 

set_atatus • procedure(t: tran11t1on) 
I aat th• status of t to be ca11a1tted. 

sat_undo • procedure(t: trana1t1on, undo: proctype) 
I r•••b•r• undo •• the undo operation of t. 
I Th1s 11 needed only wlten th• undo recover1 parad1gll 11 used. 

Figure 4·2:1nterface of a Transition Object 

We assume that the language system supports abbreviations of the form: 

15ro avoid cluttering our programs with exewive type information, we have abandoned etrict typing 
here. However, lhia is not a wioua Ploblam • trwieition objeCta and hiatory obieCta can be 
par'arneterized. 
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trans1t1onSget_argt(t) abbreviated as t.arg1 
trans1t1onSset_undo(t, s) abbreviated as t.undo :• s 

In our example programs, a procedure either returns normally or signals an 

exception. We use a special keyword okay to represent the result of a transition 

when no results are returned. The exception name is used as the result value when 

an exception is signalled. 

We also assume. that the language system supports a distinguished variable 

th1s_trans1t1on. This variable can be regarded as the current transition being 

executed. It can be implemented with· a value of the current action identifier which 

allows comparison with other transitions to determine the relative global serialization 

order. For example: h1storySp_1ub(h, th1s_trana1t1on) returns a history that 

only has transitions that are potentially subsequent to the caller. We assume that a 

program can execute 

th11_tran11t1on.undo :• p 

to indicate to the language system that the undo operation of the current transition is 

p. 

4.5.3 Template Objects 

Template objects can be used to match against transitions and filter out irrelevant 

transitions in a history object. When defining transition templates, programmers are 

interested only in the status of a transition, the types of the operation and result, the 

arguments, and the values of the results. We will ignore the action identifiers and 

object identifiers of the transitions in the templates. For example, for the set object 

defined in figure 2-2 on page 47, we assume that the language interpreter can parse 

transition templates of the form: 

co .. 1tted_ .. •b•r_x_true 
committed transitions of the form <..-er(x)><true>. 

tentat1ve_1nsert_x_okay 
tentative transition of the form <1naer·t(x)><okay>. 
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Determining whether a transition is committed is slightly more complicated than one 

would expect. Normally, one would expect an implementation of a transition object 

to associate a status flag with a transition and determine the status accordingly. A 

complication arises when an action currently executing belongs to the same 

computation as some of the transitions in the history object. Since an operation may 

expect to see the effects of other transitions in the same computation that are 

definitely prior to and would not be aborted independently from itself, the set of 

"co•1tted" transitions is defined to include these transitions also. Given that 

another transition t is prior to the current operation o and belongs to the same 

computation as o, and the names of the actions executing t an~ o are at and ao 

respectively, determining whether t would abort independently from o can follow the 

following algorithm: 

1. If an ancestor of at (or at itself) and an ancestor of ao (or ao itself) are 
parallel sibling actions, then t can be aborted independently from o, 

2. otherwise it is not poaiible. 

The action identifiers of at and ao can be used to determine the family relationship. 

To avoid long template names in our programs, we assume that abbreviations can be 

defined (e.g., 1 ns_x • 1nsert_x_okay). For similar reasons, we assume that 

templates can be constructed from ·other templates using boolean operations. For 

example, if a program defined successful_update • w1 thdraw_x_okay or 

depos1t_x_okay, then a transition matches successful_update if it matches either 

w1thdraw_x_okay or depo11t_x_okay. We also assume that templates with fixed 

values in the transition arguments or results can be constructed. For example, if x is 

an variable defined in a program, then 1nsert_x_otay defines a template that 

matches any transition of an insert operation invoked with the object denoted by x. 

4.5.4 Resource Managers 

The program examples in this chapter are structured in modules called resource 

managers, which are similar to the guardians in [30). In fact, many of the linguistic 

constructs are copied from the Argus language described in [30). 
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At run time, an instance of a resource manager can be instantiated on a site. (In the 

rest of this chapter, the term "resource manager" will be used to refer to an instance 

of a resource manager and no distinction will be made.) Each resource manager can 

be regarded as a virtual site in the system, with a name known by other resource 

managers. We assume there are name servers (11, 45] which map resource manager 

names to network addresses. The indirection allows a resource manager to be 

·moved to a different physical site easily. . Multiple resource managers can be 

instantiated on a single physical site. 

A resource manager has associated with it a collection of procedures. These 

procedures share some state, which only procedures from this resource manager 

can access. A subset of these procedures are exported and can be called by 

procedures outside the resource manager. 

There are many possible ways in which top.level actions and sub-actions can be 

declared. Since choosing the best way for these declarations is not relevant to the 

ideas proposed in this thesis, we simply assume that all our example programs are 

executed in some globally atomic computation. To insulate the caller of a procedure 

from the site crashes at the resource manager invoked, we also assume that a sub

action surrounding the call would be created if the caller executes in a different 

resource manager. We assume that the locally atomic computation boundaries are 

defined by a begin entry • • . retry whenever c statement or a begin local 

co•putation ••• end local C011Putationatatement. 

The caller and callee of a procedure, if they are in different resource managers, 

communicate using a remote procedure call (RPC) paradigm: the caller suspends 

until the remote ·procedure returns. To facilitate the implementation of atomic 

objects, we use a zero-or-once semantics: when the remote action returns, the action 

invoked was executed exactly once; otherwise it is executed at most once. We 

assume that the system will generate an exception to the application when a 

response has not been received for a remote call after a system-defined timeout. In 
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Chapter 7 we will describe the measures that the application can take to handle these 

communication failures. For the time being, we assume that the remote action will be 

aborted. 

Resource managers can be used to implement atomic objects. An object may be 

implemented within a single resource manager, or with several resource managers. 

Depending on the overhead of using a resource manager, an application may decide, 

for example, to implement a single bank account with a resource manager, or many · 

accounts with a resource manager. Procedures in a resource manager can be used 

to implement the operations on an object. 

We assume that the objects used in our example programs are locally atomic unless 

otherwise specified. Two kinds of locally atomic objects are used: history objects 

and regular objects. Regular objects consist of the usual arra.r, record, ... 1 nt 

types, which have the usual serial semantics expected for these types. . 

For the time being, we assume each resource manager has a distinguished history 

object called h11tory_suff1x. Several atomic objects implemented on the same 

resource manager will share the same history objeot. To shorten our programs, we 

also assume the distinguished history object is the first argument in a history 

operation if it is not supplied. Transitions are Inserted into h1story_auff1x 

automatically when an operation on a gtobally atomic object returns. When an action 

is committed, the status of the transitions in h11tor.r_suff1x is updated ~ 

automatically. When an action is aborted, the aborted tranaitions in h1stor.r_suff1x 

· are deleted automatically. 

4.6 Program Examples 

Figures 4-3 on page 100 and 4-4 on page 103 show two application programs. Agure 

4-3 shows an implementation .of the set object of section 2.3.2 with the intentions list 

paradigm. The implementation is parameterized by the type of the items in a set. 

Three operations, insert, delete, and member, are supported. The. state.of the set is 
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I This example uses the intentions 11st parad1g11. 

set[T] • resourca_managar 1s insert, delete, .. llber 

I abbreviations for transition t .. plates 
no_x • 11e•bar_x_falsa I <•ellber(x)><false> 
yes_x • mellber_x_trua I <••ltb•r(x)><true> 
dal_x • delate_x_okay I <dalete(x)><okay> 
1ns_x • insert_x_okay I <insert(x)><okay> 

par•anent state is 
snapshot: array[T], 
hist~ry_suffix: history 

while true do I background process 
begin local coaputation 

end 

t: transition :• history$delete_first() 
if transitionlllatch(t, comittad_dal_x) 

then .•• I re110va t.arg1 from snapshot 
alseif transitionSliatch(t, c01111itted_ins_x) 

then ••• I insert t.arg1 into snapsbot 
end 

and local computation 

insert • procedure(x: T) 
begin entry I begin local computation 
if -historySexists(historySp_sub(this_transition), no_x, 

not_changed(del_x)) 
then I insert this transition tnto htstory_suffix 

return 
end 

I If no 
I 
I 
I 
I 

< .. llbar(x)><false> transitions can be potentially 
serialized·after th1s transition, or if there are but 
the effect of thit transition is overwritten by another 
COllllitted <dalet•(x)><oka7> transition, then this 
operation can proceed and return. 

retry whenever I and local COllPUtation 
-historySexists(historylp_sub{thia_trans1t1on), no_x, 

not_cbanted{del_x)) 
and insert 

not_changed • procedure(op: template, t: transition) returns(bool) 
raturn(-h1storySexists(h1atorySd_bet .. en(th1s_transition, t), 

com1ttad..:,.,)) 
and not_changed 

Figure 4·3:An Implementation of a Set RM with the lntentiOn List Paradigm 
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delete • procedure(x: T) 
begin entry 
1f -h1storySex1sts(h1storySp_sub(th1s_trans1t1on), ye1_x, 

not_changed(1n1_x)) 
then I 1n1ert th1s trans1t1on 1nto h11tory_suffix 

return 
end 

retry whenever -h11torySexists(h1storySp_sub(this_transit1on), 
yea_x, not_changed(ina_x)) 

end delete 

member • procedure(x: T) returns(bool) 
beg1n entry 
1f h11torySexi1ts(d_pr1or(thi1_tran1it1on), com11tted_del_x, 

not_p_changed(1n1_x)) 

I 
I 
I 
I 

then I insert this transition into h1atory_suff1x 
return( false) 

end 
If there 11 a ce>1111itted <delete(x)><okay> trans1t1on 

ser1a11zed before this transition, and there are no 
1nterven1ng <1nsert(x)><okay> transitions, then false 
can be returned. 

I The following three clau••• are 11•11ar. 

if h1storySextats(d_pr1or(th1s_transit1on), co•1tt1d_in1_x, 
not_p_changed(del_x)) 

then I insert this tran11t1on 1nto h11tory_1uff1x 
return(true) 

end 

1f -historySexi1t1(historySp_prior(th11_tran1ition), in1_x) 
and -array[T]Sllellber(snap1bot, x) 
then. I insert th11 tranait1on into h11tory_suffix 1 

return( false) 
end 

if -h1storySex11t1(historySp_prior(thi1_tran11tion), del_x) 
and array[T]Sllellber(1nap1hot, x) 
then I 1n1ert this trana1t1on into h11tory_1uffix 

return( true) 
end 

retry whenever 
hi1torySexi1ta(d_pr1or(this_tran1it1on), 

co•1tted_del_x, not_p_changed(1na_x)) or 
hi1torySexi1t1(d_prior(thia_tran11t1on), 

c011111tted_1n1_x, not_p_changed(clel_x)} or 
(-h11torySex11t1(h11torySp_pr1or(th11_tran1it1on), 1ns_x) and 
-h11torySex11t1{b11torySp_pr1or(th11_tran1·1t1on}, del_x)) 

end ....,. .. 

Figure 4·3, continued 
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not_p_changed·· procedure(op: te•plate, t: trans1t1on) returns(bool) 
return(-h1storySex1sts(h1storySp_between(th1s_tran11t1on, t), 

op)) 
end not_p_changed 

end 1et 

Figure 4·3, continued 

represented by a locally atomic array and a locally atomic history object. When insert 

and delete operations are committed, they are rnerged into the snapshot in an infinite 

loop. The operation h1storySdelete_t1rst() returns the committed transition in 

h1story_1utt1x that is serialized before all other transitions. Thus the committed 

operations are merged in the global serialization order. 

In the implementation of the insert operation, a test is made to ensure that no conflict 

is created before returning okay. No conflict is created if there are not any potentially 

subsequent •llb•r _x_ ta 1 se (i.e., no_x) transitions. Notice that the x ir- the template 

refers to the x in the argument of the procedure. Furthermore, even if such a 

transition does exist, no conflict is created if the effects Qf the insert operation are 

overwritten by another committed delete_x_okay transition serialized between this 

insert operation and the member operation. This extra filtering is achieved with the 

closure not_changed(del_x). If a conflict is created, the current local computation 

is aborted. The proceed condition specified in the retr1 statement is used as a hint 

to determine how the conflict can be resolved. The implementations of delete and 

member follow a similar pattern. 

Figure 4-4 shows an implementation of the bank account object of section 3.2 with 

the undo log paradigm. Instead of merging the committed transitions in an infinite 

loop, the projection in the implementation is modified when the operation is 

executed. Each transition is paired with an undo operation. The undo operation is 

invoked when the transition is aborted. Changes to the projection are undone. The 

correct undo operation to invoke depends on the nlSUlt of the original operation. 
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I This_ example uses the undo log paradigm 
account • resource_manager is read_balance, deposit, withdraw 

I transition template abbreviations 
read • read_balance_x I <read_balance()><x> 
dep • deposit_x_okay I <depoait(x)><oka.y> 
withdr • withdraw_x_okay I <withdraw(x)><okay> 
successful_update • dep or withdr 
insuf_funds • withdraw_x_insufficient_fund1 

I <withdraw(x)><inaufficient_fund1> 

per .. nent stat• is 
projection: real I th• balance of the account 
history_suffix: history 

while true do I background proce11 
begin local co11Putation 

hiatorySdelete_tirst() 
end local COllPUtation 

end 

deposit • procedure(x: real) 
begin entry 
if -hi1torySexi1t1(historySp_1ub(thi1_tran1ition), read) and 

-hi1tor1Sex11t1(hi1torySp~1ub(th11_tran1ition), 
insuf_funda, higb(x)) 

then projection :• projection + x 

end 

I declare undo operation for depo11t 
this_transition.undo :• un_depoait(x) 
I insert th1s tranaition into hi~tory_suff1x 
return 

retry whenever 
-hi1torySexi1t1(h11torySp_1ub(thi1_tran1ition), read) and 
-historySexi1t1(hi1torySp_1ub(th11_tran1it1on), in1uf_fund1) 
end depo11t 

un_depoait • procedvre(x: real) 
I this procedure, together with the update of the status of 
I th• deposit tran11t1on, are ·~•cuted •• a local COllPUtat1on 
projection :• projection - x 
end un_depo11t. 

h1gh • procedure(x: real, t: trana1t1on) returna(bool) 
return(h1ghe1t_po111ble_balance_at(t) + x ~ t.argt) 
end high 

Figure 4·4:An Implementation of a Bank Account Object 
with the Undo Log Pwadigm 
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h1ghest_poss1ble_balance_at • procedure(t: trans1t1on) returns(real) 
raturn(project1on - daf1n1te(dep, t) + poss1ble(w1thdr, t)) 
I Un•erga effects of deposits that are definitely subsequent 
I to t and withdrawals that are tentative or potentially 
I subsequent to t. 
end highest_possible_balance_at 

low• procedure(x: real, t: transition) returns{bool) 
return(lowest_possible_balance_at{t) - x < t.argt) 
end low 

lowest_possible_balance_at • procedure(t: transition) returns{real) 
return(projection - po1sible{dep, t) + definite(withdr, t)) 
end lowest_possible_balance_at 

definite • procedure(opn ... : t911Plate, t: transition) returns(real) 
value: real :• O 
for each s: transition in h1storySaatch{h1storySd_sub{t), 

opn-) do 
value :• value + s.arg1 
end 

return( value) 
end def 1n1te 

possible • procedure(opn ... : t911Plate, t: transition) returns(real) 
value: real :• 0 
for each s: trans1t1on 1n h1storySaatch{h1storySp_sub{t), 

opn_.) do 
value :• value + s.arg1 
end 

X Add in the values of potentially subsequent transitions. 

for each s: transition in histor,rs.atch{d_prior(t), 
tentat1ve_opn-) do 

value :• value + 1.ar11 
end -

X Add in the values of tentative transitions, but avoid 
X repeating those above. 
retur.n{value) 
end posailtle 

Figure 4·4, continued 
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read_balance • ,rocedvre{) returna(r .. 1) 
Hf'ln entt'J · 
if -tt11to~1~ta(ltilt.or,.._...Wr'ftJtt1 .... tru11t1on), t.•t.ative_.__..,.1_....., ..... . 

-tti1to..,..t.U(J11•tffflt .... · .. < ....• · tw( 
t1t11_.tt'..-i••). ._ tt1oa) • ................ - .. ') 

then thta_t.r•aittoa .... i• •11....,...•• ... • 
·1 ...... t ...... i., -·. 
I t ... rt t•ta.\rMlitt• ..._. ,.....,.,_..,ft1x 
rewra(11t,....,_,.. •• .__,......_ ...... ta_traa1tt1 .. )) 

w1tbdr• • ,rocewe(a: real) 1i .. al1(·taadf1ct•t_f .. a) 
"91• • .,, -
1f llt.-....... t.•'M-••1••-•<•••-•-t&tM) < x 

t"-_tata_V-t\iM ...... :• •11 ...... t•••re . 
S ..._, ate lrwt4• .._ ...... ,_ltlffia 
....... 1...,f1c1..._ ... _ - .. 
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un_withdraw • procedure(x: real) 
projection :• projection + x 
end un_withdraw 

end account 

Figure 4-4, continued 

4. 7 Implementation Trade-Offs 

In this section we discuss several trade-offs that an implementor of a globally atomic 

object may have to make. Section 4. 7 .1 compares the two recovery paradigms. 

Section 4. 7 .2 explores the possibility of implementing globally atomic objects with 

other globally atomic objects. We have not considered this possibility for 

concurrency reasons. However, such an implementation may have sufficient 

concurrency if the underlying globally atomic objeCts are highly concurrent. For 

example, in implementing a bank object which consists of· many bank accounts, 

implementing the bank object with globaHy atomic bank account objects is a viable 

alternative to the paradigm that we have been describing in this chapter. Finally, 

section 4. 7 .3 discusses how history objects can be partitioned to reduce the cost of 

accessing them. 

4. 7 .1 Comparison of Recovery Paradigm• 

Before comparing the two recovery paradigms, it should be emphasized that the 

recovery paradigm is a local choice. Each resource manager can be coded with a 

different recovery paradigm. In fact, the two paradigms can be combined. Both 

snapshots and projections can be_ maintained, and each operation can derive its 

result from the appropriate objects. The comparison below is based on efficiency 

and programmability. We have commented in section 4.4.2 that occasionally a 

simple projection and a history object cannot capture the entire state of an object. In 

those cases, either a more complicated projection is needed or an intentions list 

paradigm should be used. 

Figure 4-5 shows an implementation of the bank account object using an intentions 

106 



list paradigm. Comparing with the implementation that uses the undo log paradigm 

in figure 4-4 on page 103, we see that the undo log paradigm is more efficient in 

observing a "recent" state of the object, in other words, when there are few prior 

operations whose effect needs to be "unmerged" from the projection. For example, 

in executing the procedure highe1t_po11ible_balanc:e_at(t), if there are few 

tentative withdr transitions in hhtory_1uffix and tis a recent transition, then only 

those few transitions potentially subsequent to t and the tentative withdraw 

transitions need to be "unmerged" from the projection. On the other hand, the 

effects of all the withdr transitions definitely prior to t and deposit transitions 

potentially prior to t have to be merged with the snapshot. Conversely, the intentions 

list paradigm is more efficient in observing an "old" state. 

The efficiency of the paradigms atso depends on the frequency of aborted 

operations. If an operation is aborted, the undo log paradigm has to. undo the 

changes made to the projection, in addition to wasting the effort expended in 

changing the projection when the operation is invoked. With an intentions list 

paradigm, little work is needed. However, we anticipate aborted operations to be 

uncommon. 

The intentions list paradigm is easier to program with because the programmer does 

not have to provide undo operations. With the undo log paradigm, undoing is 

needed not only during recovery, but also when the effect of operations has to be 

"unmerged" from the projection, such as when determining the result to a 

read.balance operation. The fact that the state has to be merged and unmerged may 

complicate programming. 

4.7 .2 Implementing Atomic Objects with Atomic Objects 

In previous sections we have discussed how to implement globally atomic objects 

using locally atomic objects. The implementations are characterized by appllcation

dependent synchronization and recovery because a locally atomic computation is 

committed before the globally atomic computation in which. it executes is committed. 
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I This exa1111>le uses the intentions list paradigm 

account • resource_manager is read_balance, deposit, withdraw 

I transition abbreviations 
read • read_balance_x I <read_balance()><x> 
dep • deposit_x_okay I <deposit(x)><oka,> 
withdr • w1thdraw_x_okay I <withdraw(x)><oka,> 
successful_update • dep or withdr 
insuf_funds • w1thdraw_x_insuffic1ent_funda 

I <withdraw(x)><1naufftcient_funds> 

per•anent state ts 
snapshot: real 
history_suff1x: history 

I background proce11 
while true do 

begin local CQllPutatton 

end 

t: tranaition :• historySdelete_ftrst(h1story_suff1x) 
if transit1onSllatch(t, c-ttted_deft) 

then 1nap1hot :• 1nap1hot + t.arg1 
elsetf trans1t1onSllatch(t, c011a1tted_wtthdr) 

then snapabot :• 1nap1h•t - t.arg1. 
end 

end local cOllputat1on 

deposit • procedure(x: real) 
begin entry 
1f -h1storySex1sts(h1storySp_sub(th1s_trans1tion), read) and 

-h1atorySex1sts(h1storySp_1ub(th1s_tran11t1on), 1nsuf_funda, 
htgh(x)) 

then I insert this tranaittan tnto h11tory_1uff1x 
return 

end 
retry whenever 
-h1storySext1t1(hi1torySp_sub(th1s_tran11t1on), read) and 
-historySex11t1{h11torySp_1ub(th11_tran11t1on), 1n1ut_fund1) 
end depo11t 

high • procedure(x:· real, t: trana1t1on) returna(bool) 
return(h1ghest_poss1ble_balance_at(t) + x ~ t.arg1) 
end 111111 

h1ghest_poss1ble_balance_at • procedure(t: trans1tton) returna(real) 
return(1nap1hot - deftntte(wtthdr, t) + poaatble(dep, t)) 
end htg1te1t_po111b1e_balance_at 

Figure 4·5:An Implementation of a Bank Account Object 
with the Intention U8t Paradigm 
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lowest_possible_balance_at • procedure(t: transition) returns(real) 
return(snapshot - possible(w1thdr, t) + def1nite(dep. t)) 
end lowest_poss1ble_balance_at 

low• procedure(x: real. t: transition) returns(bool) 
return(lowest_possible_balance_at(t) - x < t.argt) 
end low 

definite • procedure(opn ... : te11Plate. t: tran1it1on) return1(real) 
value: real :• O 
for each s: trans1t1on in h11toryS.atch(h11torySd_prior(t), 

co .. 1tted_opn ... ) do 
value :• value + s.arg1 
end 

return(value) 
end definite 

possible • procedure(opn .. e: t .. plate, t: transition) returns(real) 
value: real :• 0 
for each 1: tran11tion 1n h11toryS..tch(hi1torySp_pr1or(t), 

opn-) do 
value :• value + 1.argt 
end 

return( value) 
end po11ible 

read_balance • procedure() returna(real) 
begin entry 
1f -h1storySex11t1(h1storySp_pr1or(th11_tran11t1on), 

tentative_1ucce11ful_update) and 
-h1storySexists(h11torySp_1uh(h11torySp_pr1or( 

th11~tran11t1on), tb11_tran11tion), 
comm1tted_1ucce11ful_&qHlate) 

then I insert this tran11t1on into hi1tory_1uff1x 
return(h1ghe1t_po111ble_balance_at(th11_trans1t1on)) 

end 
retry whenever 

-h11torylex11t1(h11torylp_pr1or(th11_tran11t1on), 
tentat1ve_1ucce11ful_update) and 

-h1storySex11t1(hi1torylp_1utt(h11ter,Sp_prior( 
thi1_tran1it1on), th1l_traa11t1on), 
c ... 1tted_1ucce11ful_update) 

end read_balance 

Figure 4·5, continued 
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withdraw • procedure(x: real) signals(insufficient_funds) 
begin entry 
if highest_possible_balance_at(this_transition) < x 

then I insert this transition into history_suffix 
signal insuff icient_funds 

and 

if -h1storySex1sts(h1storySp_sub(this_transition), read) and 
-historySexist1(hi1torySp_1ub(thi1_tran1ition), withdr, 

low(x)) and . 
lowest_possible_balance_at(this_transition) ~ x 
then I insert this tran1it1on into h11tory_1ufftx 

ret\JrR 
end 

retry whenever 
-ht1torySext1t1(historySp_sub(thts~tran11t1on), read) and 
-h1storySex11t1(hi1torySp_1ub(th1s_trans~t1on), wtthdr) and 
-htstorySex1sts(b1storySp_pr1or(tb1s_trans1t1on), 

tantat1ve_1ucce11ful_update) an• 
-h11tor1Sexi1t1(hi1torySp_1ub(ht1tor1Sp_pr1or( 

th1s_trans1t1on), th11_tran1ttton), 
C01111itted_succe11ful_update) 

end wtthdr• 

and account 

Figure 4-5, continued 

The locally atomic computations are also serialized in a different order than the 

globally atomic computations. An alternative is to construct globally atomic objects 

with globally atomic objects. For example, instead of U8ing locally atomic record 

objects, a bank account can be constructed with globally atomic record ob,iects. No 

application-dependent synchronization or recovery is needed. Application programs 

can be written as if there were no concurrency or failure&. 

We argued that using globally atomic record objects to construct globally atomic 

account objects is not cc>ncurrent enough when a globally atomic computation can 

last a long time. The semantics of the record objects does not allow sufficient 

concurrency. However, this approach of implementing a globally atomic object with 

smaller globally atomic objects may be viable if the underlying globally atomic objects 
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In this section we will illustrate two different approaches of implementing a bank 

object. A bank object consists of many bank accounts. The semantics of a bank 

object is described in figure 4-6. Notice the difference between a bank object and a 

bank account object. At first glance, a bank object may look similar to a bank 

account object because they both support withdraw, deposit, and read.balance 

operations. However, the bank object is in fact capturing the state of a collection of 

bank accounts; hence it also supports a transfer operation that transfers funds 

between two accounts and an audit_sum operation that returns a sum of the balances 

in all the accounts. 

51: a ma.pping s from account numbers to real numbers 
11: undefined for any account number yet 
T1: <deposit(an, x), r1, aXokay, r1, a> = deposlt.an_x_okay 

<withdraw(an, x), r1, aXokay, r1, a> = withdraw_an_x_okay 
<wlthdraw(an, x), r1, aXinsufficient_funds, r1, a> • wtthdraw_an_x_insuf 
<read_balance(an), r1, aXx, r1, a> = read_an_x 
<transfer(an1, an2, x), r1, aXokay, r1, a> = tranafer_an1_an2_x_okay 
<transfer(an1, an2, x), r\' aXtnaufficient_funds, r1, a> = · 

· transfer_an1_an2_x_ nauf 
<audit_sum(), r1, aXx, r1, a> = audlt_sum_x 
where a is an action, anl'a are account numbers, 

x ia a positive real number. 

N1(s, deposit_an_x_okay) = s' wheres'= a except a'(an) = a(an) + x 
N1(s, withdraw_an_x_okay) = s' If a(an) ~ x, where a'= s except a'(an) = a(an)-x 
N1(s, withdraw _an_xJnauf) = a If a(an) < x 
N1(s, read_an_x) = a If s(an) • x 
N1(s, transfer_an1_an2_x_okay) = a' If s(an1) ~ x, 

wherea'•aexcepts'(an1) • •·x,s'(an2) • a+x 
Ni(a, tranafer_an1_an2_x_insuf) a a If s(an1)< x 
N1(s, audit_aum_x) • a If :I1s(an1) • x 

Figure 4·8:A State Machine for a Bank Object 

We will assume that an operation on the bank object last for only a short period of 

time, even though the operation may involve more than one account. This is possible 

if, for example, the bank object is Implemented on a single site. However, we assume 

that there are long computations in this application because some computations 
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might access multiple bank objects. 

An obvious approach to implement the bank object is to implement it using locally 

atomic record/array/history objects and the paradigm described in this chapter. 

The semantics of the bank object is used to increase concurrency. A different 

approach is to implement the bank object out of the globally atomic bank account 

objects that we have described in this chapter. The implementation is simple 

because the account objects are globally atomic and hide the concurrency and 

failures in a system. The complexity is instead hidden in the implementation of the 

account objects. Notice that in this approach the semantics of the account objects is 

used to increase concurrency. 

We will compare these two approaches of implementing a bank object. The 

difference lies in one approach using the semantics of a bank object to increase 

concurrency, while the other using the semantics of the account objects. We will 

argue that concurrency and complexity of the implementations can be comparable. 

However, there are several potentially significant differences also. 

4. 7 .2.1 Two Approaches to Implement a Bank Object 

In figure 4-7 we show a partial implementation of a bank object using the 

implementation paradigm described in this chapter and some locally atomic record, 

array and history objects. Each bank operation is executed as a local computation, 

in which locally atomic record, array, and history objects are accessed. We have not 

shown the locally atomic record and array objects in fegure 4-7 because they are 

hidden in the implementation of the locally atomic d1 rector1 object. 

Figure 4-8 shows an implementation of a bank object that uses globally atomic 

account objects. Notice that because concurrency and failures are hidden by the 

implementation of the account objects, the implementation in figure 4-8 is relatively 

simple. 
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I Th1s 1mplamentat1on uses an 1ntent1ons 11st paradigm. 

bank • rasourca_managar 1s raad_balanca. deposit, withdraw, transfer, 
aud1t 

I abbrev1at1ons for templates 
I <raad_balanca(an)><x> or <aud1t_su•()><x> 
read_an • read_balance_an_x or aud1t_11111_x 

I <dapos1t(an, x)><okay> or <tranafar(an', an, x)><okay> 
deposit_an_x • dapo11t_an_x_okay or transfar_an'_an_x_okay 

I <w1thdraw(an, x)><okay> or <transfar(an, an', x)><okay> 
w1thdraw_an_x • w1thdraw_an_x_okay or tranafer_an_an'_x_okay 

I <dapos1t(an, x)><okay> or <w1thdraw(an, x)><okay> 
successful_updata • depoa1t_an_x_okay or w1th4raw_an_x_oka1 

I <w1thdraw(an, x)><1nsuff1c1ent_fund1> or 
I <transfer.( an, an'. x)><1n1uff1c1ent_fund1> 
1nsuf_funda • w1thdraw_an_x_1nauff1c1ant_fund1 or 

tran1far_an_an•_x_1n1uff1c1ent_fund1 

permanent state i1 
snapshot: d1rector1[account_nUllbar, real] 
h1story_suff1x: histor1 

while true do I background proce11 
begin local computation 

end 

t: transition :• hi1torySdalete_t1r1t() 
1f trans1tionS•atch(t, c01111ittad_depo1it_an_x) 

then snapahot(t.argt) :• snapahot(t.argt) + t.arg2 
alsa1f tran11t1onS .. tch(t, c011111tted_withdraw_an_x) 

then 1napahot(t.argt) :• snapahot(t.arg2) - t.arg2 
end 
and local computation 

deposit • procedure(an: account_nUllber, x: real) 
begin entr1 
1f -h11torySexi1ts(histor1Sp_sub(thi1_tran11t1on), read_an) and 

-historySexists(historySp_sub(thia_transit1on), in1uf_fund1, 
h1gb( an, x)) 

then I insert this transition into hi1tor1_1uffix 
return 

end 

Figure 4· 7 :An Implementation of a Bank Object 
with the Intention List Paradigm 
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retry whenever 
-h1storySex1sts(h1storySp_sub(th1s_trans1tion), raad_an) and 
-h1storySex1sts(h1storySp_sub(th1s_tranait1on), 1nsuf_funda) 

and deposit 

high • procedure(an: account_nllltber, x: real, t: transition) 
return1(bool) 

return(h1ghe1t_po11ible_balance_at(an. t) + x :> t.argt) 
end high 

h1ghest_poss1ble_balance_at • procedure(an: account_nuaber, 
t: transition) returns(real) 

return(snapahot(an) -
def1n1te(withdraw, an, t) + po11ible(depo11t, an, t)) 

end highe1t_po111ble_balance_at 

audit_su• • procedure() returna(real) 
begin entry 
if -hi1torySex11t1(hi1torySp_prior(thi1_tran11t1on). 

tentative_1ucce11ful_update) and 
-historySex1sts(h1storySp_sub{h1storySp_pr1or( 

th11_tran1ition), this_trana1t1on). 
co .. 1tted_1ucce11ful_update) 

then r: real :• o 
for an: account_nUllber in 

d1rectorySel ... nt1(1nap1hot) do 
r :• r + balance_at(an, thia_tranaftfon) 
end 

s insert this transition into h11tory_1uff1x 
return(r) 

end 
retry whenever 
-historySexf1ts(h1storySp_prior(thi1_tran11tion), 

tentat1ve_1ucce11ful_update) and 
-h1storySex1sts(h1storySp_sub(h1storySp_pr1or(th11_tran1ftion), 

th1a_tranaitfon). C0111ftted_1ucce11ful_update) 
end audf t_11111 

definite • procedure(opn ... : template, an: account_n1111ber. 
t: transition) returna(real) 

value: real :• O 
for each t: tranaftfon in hf1torySaatch(h11torySd_prfor(t), 

c0111f tted_opn ... _an_x) do 
value :• value + x 
end 

return(value) 
end detfnf te 

Figure 4· 7, continued 
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possible • procedure(opnaM: t9t1plate, an: account_ntlllber, 
t: trana1t1on) returna(real) 

value: real :• o 
for each t: trana1t1on 1n h11torySaatch(h11torySp_pr1or(t), 

opn .. _an_x) do 
value :• value + x 
and 

return( value) 
end po111ble 

balance_at • procedure(an: account_nullber, t: tran11t1on) raturna(real) 
return(1nap1hot(an) -

end bank 

det1n1te(w1thdraw, an, t) + def1n1te(depoa1t, an, t)) 
end balance_at 

Figure 4· 7, continued 

Depending on how the globally atomic account objects are implemented, our bank 

application may or may not have enough concurrency. An application that uses a 

combination of the implementation in figure 4-8 with the implementation of globally 

atomic bank accounts in figure 4-9 is probably not concurrent enough in a system 

with long computations, since no semantics of the applieatk>n has been utilized. On 

the other hand, if the application uses the globally atomic bank account 

implementations described in figures 4-4 and +5, which make use of the semantics 

of a bank account, the resulting application allows much more concurrency. 

Notice that there Is some similarity between figures 4-5 and 4-7. For example, the 

depoa 1 t operations in the figures are almost identical. However, part of this similarity 

is due to clever encoding of the transition templates. The read_an transition 

template in figure 4-7 stands tor either a read_ba lance_x transition or an 

aud1t_11111_x transition that involves an, whereaa the read transition template In 

figure 4-5 stands for a read_ba 1 ance_x transition only. 

Figure 4-10 depicts the two different approaches to implement a globally atomic bank 

object. Notice that both Approach 1 and Approach 2 use the implementation 
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bank • resource manager is deposit, withdraw, read_balance, audit, 
tr an sf er 

per•anent state is 
dir: directory(account_nUltber, account_resource_•anager] 
I this is a directory that .. pa account nUllbers to the account 
I resource .. nager that i11Pleunts th• account. To si11Pl1fJ 
I our ex&11ple, we assllll8 all input account nuabers are valid. 

deposit • procedure(•: account_nUllber, r: real) 
dir(a).daposit(r) 
I dir(a) looks up the resource •nager corresponding to a. 
I The syntax •resource_Mnager_n .... procedure_na .. (argUll8nt1)• 
I 11 used to call a procedure in another resource •nager. 
end deposit 

withdraw • procedure(a: account_nUllber, r: real) 
s1gnals(insufficient_fuad1) 

d1r(a).w1thdraw(r) resignal inauff1c1ent_fund1 
I The resignal state .. nt catch•• an1 1nsuff1c1ent_fund 
I signal froa the withdraw procedure of th• bank account object 
I and re1ignal1 it to the caller of this withdraw procedure. 
end withdraw 

read_balance • procedure(a: account_nUllber) returns(real) 
return(d1r(a).read_balance()) 
end read_balance 

aud1t_sum • procedure() return (real) 
result: real :• O 
for an: account_nullber 1n d1rectorySel-nts(d1r) do 

result :• re1ult + reu_ttalance(an) 
end 

return(reault) 
end aud1t_1• 

transfer • procadure(frOll, to: account_nullber, amount: real) 

and bank 

· s1gnals(inauffic1ent_tunda) 
w1thdraw(froe, amount) re1i9nal 1ntuft1c1ent_fund1 
depoait(to, amount) 
end transter 

Figure 4-8:A Simple Implementation of a Bank Object 
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account • resource manager is deposit, withdraw, read_balance 
I Procedures exported 

permanent state is 
state: globally_ato•ic_record(balance: real, •••. ] 

deposit • procedure(r: real) 
state.balance :• state.balance + r 
end deposit 

withdraw • procedure(r: real) signal1(1nauffic1ent_fund1) 
1f state.balance < r then signal 1nsuff1c1ent_funda end 
state.balance :• state.balance - r 
end withdraw 

read_balance • procedure{) returns(real) 
return( state.balance) 
and read_balance 

and account 

Figure 4·9:A Simple Implementation of a Bank Account Object 

paradigm described in this chapter, though at different levels of abstraction. 

4.7.2.2 Comparison of the Two Approachea · 

In this section we compare Approach 1 and Approach 2. The two approaches are 

comparable in complexity and concurrency. However, there are also some subtle 

differences. The complexity of Approach 1 is in the implementation of the globally 

atomic bank objects using locaUy atomic objects, whereas the complexity of 

Approach 2 is in the implementation of the globally atomic bank account objects. 

Building globally atomic bank objects from globally atomic account objects is a 

simple task, because the necessary synchronization and recovery have been 

implemented with the underlying globally atomic account objects. 

Concurrency and Complexity 

It is not obvious whether Approach 1 or Approach · 2 is more desirable. In an 

implementation that follows Approach 1 (figure 4-7), the transfer and audit.sum 

operations can avoid creating any conflicts with each. another as tong as the other is 
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Globally atomic 

bank object 

Locaffy atomic 

record and 

history objects 

Approach 1 

Globally atomic 

bank object 

l 
Globally atomic 

account objects 

I 
Locally atomiC 

record and 

history objects 

Approach2 

Figure 4·10:Two Different Approaches of Implementing a 
Globally Atomic Bank Obied 

finished but maybe tentative. Because a transfer or audlt_sum operation can be part 

of a much longer computation, this period of being finished but tentative can be quite 

long. The concurrency is due to the semantics of audit_sum, which only requires the 

result returned to be a sum of the balances, and that of transfer, which keeps the 

total balance constant although it changes individual balances. As a result, when 

one of the operations Is completed, the other operation can proceed even when the 

first operation is not committed. 

If the bank object is implemented using globally atomic account objects, the transfer 

and audit.sum operations will be translated into withdraw/deposit and read_balance 

operations on the bank account objects. Theae operations interfere with one 

another and cause conflicts to be created even after the higher-level operations at 
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the bank object are already finished. 

One may be tempted to implement the transfer and audit_sum operations with special 

versions of the lower-level operations. In fact, a possible implementation is to define 

the globally atomic bank accounts with the semantics in figure 4-11. 

S1: [s1, s2) where s1 and s2 are real numbers 
Ii: [O, OJ . . 
T1: <deposit(x), r1, aXokay, r1, a> = deposit_x_okay 

<withdraw(x), r1, aXokay, r1, a> = withdraw_x_okay 
<withdraw(x), r1, aXinsufficlent_funds, r1, a> = withdraw_x_lnsuf 
<tdeposit(x), r1, aXokay, r1, a> = tdepoait_x_okay 
<twithdraw(x), r1, aXokay, r1, a> = twithdraw_x_okay 
<twithdraw(x), rl' aXlnsufflcient_funde, r1, a> = twlthdraw_xJnsuf 
<read_balance(), r1, aXx, r1, a> = read.x 
<aread_balanceO, r1, aXx, r1, a> = aread_x 
where a is an action, x is a positive real number. 

N1([s1,s2],depoait_x_okay) = [s1 +x,s2+x] 
N1([s1, s2], tdeposit_x_okay) = [•1 + x, s2] 
N1([s1,s2),withdraw_x_okay) = (a1-x,s2-x)lfa12!x 
N1([s1, s2), withdraw_xJnsuf) = [a1, s2] if s1 < x 
N1((s1, s2), twlthdraw_x_okay) = (s1-x, a2] If a1 2! x 
N1([s 1, s2], twithdraw _x_insuf) = (s 1, a2] If a1 < x 
N1([s1, s2], read_x) = [s1, s2] If s1 = x 
N1([s 1, s2], aread_x) = (s 1, a2] If a2 = x 

Figure 4-11 :A Specialized State Machine for a Bank Account Object 

Special operations tdeposit and twithdra._. are provided for the implementation of 

transfer, and an aread operation is provided for audlt_sum. In essence, each bank 

account keeps track of two "balances." The first balance is the normal one. The 

second "balance" is updated when the update is not Invoked by a transte; operation. 

The second balance is read to calculate the sum of the balances. As a result, no 

conflicts are created between an audit.sum operation and a transfer operation. 

This technique does not work in general situations because the cost of keeping extra 

state information can be prohibitive. For example, suppose a database of employee 

records is partitioned among several sites. The appltcatlon provides operations to 
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transfer employee records from one partition to another, update information in the 

employee records, and to evaluate queries. The interference between the transfer 

and query operations poses a problem similar to the interference between transfer 

and audit.sum in the bank application. However, keeping an extra copy of an 

employee record at the old partition when it is transferred does not seem to be 

acceptable. Not only is extra storage required, updating the employee records 

becomes more costly also. A more appropriate solution in this example would be to 

allow the partitions to return a superset of the records in that partition. The 

coordinator of the query can ignore redundant records collected from the partitions. 

If a record is being transferred from one partition from another, both partitions can 

return the record before the transfer computation is finalized. When a record is 

deleted, both partitions must be informed. 

Although the examples above do not show that concurrency is necessarily 

decreased when globally atomic objects are implemented with other globally atomic 

objects, they do illustrate that the semantics of the lower-level globally atomic objects 

have to be customized. The customization increaaes the complexity of implementing 

a globally atomic object. 

Reliability and Efficiency 

A possible disadvantage of implementing the bank object with locally atomic objects 

is the centralization of synchronization and recovery information. When compared to 

an implementation in which the history objects are distributed among many account 

objects, the history object used by a bank object contains more transitions and is 

more expensive to access. In addition, the reliability of the application can be 

reduced because its functioning depends on the availability of the centralized history 

object of the bank object. A possible solution to overcome these disadvantages Is to 

partition or replicate the state (directory) of the bank object. We will describe how 

history objects can be partitioned and/or replicated in the next aection. 

Another possible problem of implementing globally atomic objects with locally atomic 
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objects is the limitation in the length of locally atomic computations. Since locally 

atomic objects are implemented with other Jocally atomic objects, such as locally 

atomic arrays or records, the lengths of the locally atomic computations have to be 

kept short to minimize the cost of conflicts created in accessing locally atomic 

objects. Keeping locally atomic computations short is not always possible, especially 

when a locally atomic object may be partitioned or replicated. To minimize the cost 

of these conflicts, we can have a multiple-layered model of atomicity, instead of the 

dichotomy of local atomicity and global atomicity. A layer I atomic object can be 

implemented with a layer I + 1 atomic object. The semantics of the objects in each 

layer can be utilized. For example, a layer I· 1 atomic bank object can be 

implemented with a layer I atomic history object and a layer I atomic bank account 

object, which can in turn be implemented with a layer I + 1 atomic history object and 

a layer I + 1 atomic record object. 

4. 7 .3 Partitioning and Replicating History Objects 

When computations are long, their transitions may remain tentative and be kept in a 

history object for a long period of time. Performance can become a problem when 

there are too many transitions in a history object. An obvious solution to this problem 

is to partition history objects into smaller history objecta. 

In our previous program examples, we assume one history object is shared by all the 

atomic objects implemented in a resource manager. Thia is not necessary and can 

be ·changed by having multiple history objects declared in the resource manager, 

with history operations specifying the history object being operated on explicitly. 

More complicated schemes of partitioning the history object are possible. For 

example, if an operation x is only interested in a subset of the different types of 

transitions, a sub-history can be created containing onty those transitions. The cost 

of inserting a transition, which happens once, may become higher because the 

transition may have to be Inserted into several sub-histories. However, the cost of x 

accessing a history object is lowered because there are probably fewer transitions in 
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the sub-history in which x is interested. 

For example, the history of a set object can be partitioned according to properties of 

the items involved. For example, if a set object is a set of integers, the history object 

can be partitioned according to the range of values of the arguments. A more 

complicated example can be illustrated with the history object in the implementation 

of a globally atomic employee file object. The application may decide to partition the 

history object and the snapshot/projection objects according to the de~rtment that 

a transition is related to. For example, if a transition involves an employee in 

Department X, then only the partition of Department X needs to be accessed. When 

an employee is transferred from Department X to Department Y, a transition is 

inserted into each of the partitions of the two departments. If a query involves 

potentially every department, all the partitions need to be accessed. 

In these examples, the locally atomic and logically centralized history object is 

implemented with locaUy atomic history partitions. The aemantics of the partitions 

reduces the number of partitions that need to be accessed. If only a few partitions 

are accessed, the cost of accessing the entire history is reduced and the operation 

can proceed even when some partitions are not available. 

In [20) a history object is partitioned and replicated for availability reasons. The 

history object is not partitioned according to properties of the transitions but rather 

the availability of the replicas (partitions). Each transition has ari initial quorum and a 

final quorum. When the history object is read, an initial quorum of replicas is read to 

guarantee that every transition relevant to the current operation is contained in at 

least one of the replicas. When a transition is inaerted into the history object, a final 

quorum of replicas is accessed. For example, in determining whether conflicts are 

created for an obserVer operation, other observer transitions are irrelevant 

Consequently, the replicas read may not overlap with the replicas updated when 

previous observer transitions are inserted. 

A ·simpler scheme of replicating the entire history object can be used to Increase 
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availability, though not performance, over an un-replicated implementation. 

However, because a history object is usually both read and written, a read-one-write

all algorithm will not increase availability. A slightly more complicated read-write 

quorum scheme (16) is needed. 

Another way of partitioning the history object can be illustrated by the example in the 

previous section. By implementing the bank object with globally atomic bank 

account objects, no history needs to be kept for the bank object; rather, the history 

information is partitioned among the account objects. This partitioning is simpler 

ttian those described above because no centralized image is necessary. 

Unfortunately, as the example has illustrated, this partitiOning may cause a loss of 

concurrency. 

Finally, there is a possibility of avoiding the cost of accessing the history object 

altogether in some applications. Consider the semi-queue object specified in figure 

4-12. 

S1: sets of Items (we assume items enqueued are unique) 
l:IZJ . . 
t 1: <enqueue(x), r1, •Xokay> = enqueue.x.okay 

<dequeue(), r1, aXx, r1, a> = dequeue_x 
<dequeue(), r1, aXempty, r1, a> = dequeue.empty 
where a is an action, x la an Item. 

N1(s, enqueue_x_okay) = a U {x} 
N1(s, dequeue_x) = a • x If x E a 
N1(s, dequeue.empty) = • If a • IZJ 

Figure 4·12:A State Machine for a Semi.Queue 

An implementation using an intentions list recovery paradigm can be found in figure 

4-13. In the implementation of the dequeue operation, we find that when there are 

items in the snapshot, the history object has to be accaaaed to make sure the items 

have not been dequeued by previous dequeue operations. To avoid this access, the 

snapshot object can be partitioned into two arrays, say at and a2. The idea is to put 

all the items which are definitely not dequeued into at ·and items which may have 
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I This example uses the intentions list parad1911. 

semiq(item] • resource_manager 1s enqueue, dequeue 

I transitions in history suffix 
I dequeue_x • <dequeue()><x> 
I dequeue_empty • <dequeue()>< .. pty> 
I enqueue_x_okay • <enqueue(x)><okay> 

peraanent state 1s 
snapshot: array[1t .. ], 
h1story_suff1x: history 

wh11e true do 
begin local computation 

- < 

t: trans1t1on :• h1storySdelete_f1rat() 

end 

if trans1t1onS•atch(t, COllll1tted_dequeue_x) 
then ••• I re110ve x frOll snapshot 

else1f transitionlllatclt(t, c~itted_enqueue_x_okay) 
then ••• I insert x into snapshot 

end 
end local ce>11putation 

dequeue • procedure() returns(ite•) 1ignal1(911Pty) 
begin entr1 
for x: it .. in array[it .. ]Sel ... nts(snapabot) do 

if -historySexists(dequeue_x) tlt9• return(x) end 
end 

if hi1tor1Sex11ts(hi1tor7Sd_prior(thi1_transition), 
COllllitted_enqueue_x_okay, not_used) 

then I insert this transition into hiator7_suffix 
return(x) 

end 

if -historySex1sts(h1storySp_prior(this_trans1t1on), 
enqueue_x_okay, not_d_used) and 911Pty_snapshot() 

then I insert this transition into hiatory_auffix 
signal ..,i.y 

end 

retry whenever 
-historySex1sta(h1storySp_pr1or(th1s_trana1tion), 

tantative_enqueue_x_ok&J) 
and -h1stor1Sex11ts(tentat1ve_de ..... _x) 

end dequeue 

Figure 4·13:An Implementation of a Semi-Queue Object 
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enqueue • procedure(x: ite•) 
begin entry 
if -historySexists(historySp_sub(this~transition), 

dequeue_911pty) 
then I insert this transition into hiatory_suffix 

return 
end 

retry whenever 
-historySex1sts{h1atorySp_aub{th1s_trana1t1on), dequeue_ .. pty) 
and enqueue · 

not_used • procedure(t: trana1t1on) 
x: 1te• :• t.argt 
return(-h1storySex1sts{h1storySd_sub(t), dequeue_x)) 
and not_uaed 

not_d_used • procedure(t: trans1t1on) 
x: 1te• :• t.argt 
return(-h1storySex1sts(h1storySd_sub(t), COllll1tted_dequeue_x)) 
end not_d_used 

empty_snapahot • procedure() returna(bool) 
for x: 1t•• 1n array[1t .. ]Se1 ... nt1(1napshot) do 

1f -h1storySex11t1(c011111tted_de.,.ue_x) 
then return(false) 
end 

end 
return(true) 
end a.pty_snapshot 

end se•1q 

Figure 4-13, continued 

been dequeued into a2. When a committed enqueue transition is merged, the item 

can be inserted into a2 if there is a subseQuent dequeue transition of that item, and 

into at otherwise. When the dequeue operation is invoked, it can enumerate at first. 

If there is an item in at, it can be deleted from at, inserted into a2, and returned to the 

caller, without ever accessing the history object. If no items are found in at, a2 can 

be searched. Occasionally, a dequeue operation may be aborted after the item has 

been moved into a2. The item may stay in aZ without affecting the correctness of the 

implementation; a background process can move such items back to at. 
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4.8 Conclusion 

In this chapter we have described programming paradigms that an implementation of 

an atomic object can follow. These paradigms simplify the writing of application

dependent synchronization and recovery code. With simpler code, arguing the 

correctness of an implementation becomes easier. In particular, we introduce the 

notion of locally atomic objects and locally atomic computations. Synchronization 

and recovery are partitioned into those performed by the locally atomic objects and 

those performed by the implementation of the atomic object. This partitioning helps 

the programmer convince himself that the implementation is correct. 

In this chapter, we have also introduced the use of history objects, which capture all 

the relevant local information needed by an object to determine whether conflicts are 

created. The interface provided by theae history objects makes the underlying 

concurrency control algorithm transparent to the programmers. This transparency 

provided by the history objects, together with the transparency provided by the 

conflict model, allow the programmer to design the functionality and program the 

implementations of an application without having to understand the details of the 

underlying concurrency control algorithm. 

For recovery, we have discussed an intentions list paradigm and an undo log 

paradigm. By imposing constraints on how an operation may mutate the locally 

atomic objects, the recovery activities become a more structured proces. 

We have presented several program examples and Illustrated the use of the 

paradigms we introduced. 

Finally, we have discussed several Implementation strategies and their trade-offs. 

First, there is the local choice of the recovery paradigm. Second, globally atomic 

objects can be implemented using locally atomic ob;ecta a1 other globally atomic 

objects. Finally, the cost of accessing history objects CM be minimized by various 

ways of partitioning them. . These options provide opportunities to customize the 
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implementation to specific needs. 
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Chapter Five 

Concurrency Control Algorithms 

In our conflict model and programming interface, each atomic object is assumed to 

possess some knowledge of the serialization order and operation outcomes. Based 

on this knowledge, an object can express conflict conditions without knowing the 

details of how the serialization order and operation outcomes are arrived at. In this 

chapter we discuss how the objects arrive at a serialization order through a 

concurrency control algorithm. The protocol that different entities in a distributed 

system use to arrive at a consensus of the outcome of a computation is called a 

commit protocol. Many pa~ (17, 37, 52) have been written on the subject and we 
will discuss it only briefly at the end of this chapter. 

This chapter seeks. to fulfill two goals. First, we will show that the programming 

interface that we present in Chapter 4 can be implemented on top of a large dass of 

concurrency control algorithms. In particular, we show how the history operations, 

such as p_sub and dprior, can be implemented. We will also show how the retr.r 

statement can be implemented so that the appropriate actions are taken when 

conflicts are created. 

Second, we wil.1 argue that in some situations the concurrency of a system can be 

significantly affected by how the serialization order is determined. In deriving conflict 

conditions, we find that whether a conflict arises depends on the functionality of the 

operations of an application and the local knowledge of the serialization order and 

. . operation outcomes. Previous chapters have focused on how the functionality of an 

operation determines the likelihood of conflicts. Thia chapter shows that there are 

special situations in which some concurrency control algorithms can reduce the 

likelihood of costly conflicts significantly when compared to other algorithms. For 
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example, suppose long computations are rare in a system and it is unlikely for two 

long computations to overlap their execution. Given these conditions, it may be 

possible to develop concurrency control algorithms that distinguish between long 

computations and short computations so that only short computations will be 

restarted or cause delays in other computations. Given that, the overaH cost of 

conflicts in these algorithms can be much smaller than that incurred by existing 

algorithms. One of the contributions of this thesis is the design of two novel 

concurrency control algorithms that are adapted to systems with long atomic 

_ computations. 

Section 5.1 briefly describes some of the existing concurrency controt algorithms 

and compares the likelihood of costly conflicts in these algorithms. Section 

5.2 describes two novel concurrency controt algorithms and explains the situations in 

which_ these algorithms can reduce the overall cost of conflicts significantly. Section 

5.3 describes the implementation of the programming interface in Chapter 4 given 

that different concurrency controt algorithms can be used underneath. Section 

5.4 discusses commit protocols briefly. 

To separate our consideration of concurrency control algorithms and the 

functionality of an application, we will use the terms "observer" and "mutator" in this 

chapter to refer to two classes of operations. The functionality_ of the first class 

observes the abstract state of an object. The second class mutates the abstract 

state. For example, a read~balance operation Is an observer, a deposit operation Is a 

mutator, a successful withdraw operation is both because it obserVes that there are 

sufficient funds and mutates the abstract state. To simplify our discussion, we will 

assume that conflicts are created when: 

1. an observer may be serialized after a tentative mutator, or 

2. a mutator may be serialized before an observer previously Invoked. 

This is not true in all cases, such as When the obeerver is a withdraw operation and 

the mutator is a deposit operation. No conflicts would be created if there were 
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sufficient funds for the withdrawal regardless of the deposit. 

Also, we exclude the possibility of parallel sub-actions in our description of 

concurrency control algorithms. A computation executes with only one locus of 

control and sub-actions within a computation are serialized by the order they 

execute. In most cases, it is straightforward to extend the algorithms to handle 

parallel sub-actions. We will give brief explanations of how an algorithm can be 

extended when the extension is not obvious. 

5.1 Concurrency Control Algorithms 

The goal of a concurrency control algorithm is to ensure that a serialization order 

among the committed computations exists. It also determines the actions that need 

to be taken when a conflict arises. 

Many different concurrency control algorithms have been proposed. Some of 

them [48) use the order in which computations are started as a serialization order, 

some [17) use the order in which computations commit as a serialization order. The 

actions that are taken when conflicts arise depend very .much on how a serialization 

order is arrived at. In sections 5.1.1 and 5.1.2 we enumerate some of the well-known 

concurrency control algorithms that have been proposed in the literature and discuss 

the likelihood of costly conflicts in these algorithms. Enumerating all the algorithms 

proposed in the literature would be impossible. However, the performance of the 

algorithms described in section 5.1.1 and 5. 1.2 is repreaentative of a large class of 

algorithms. 

5.1.1 Static Concurrency Control Algorithms 

In general, concurrency control algorithms can be classified according to the time 

that the serialization order is determined. In atatic algorithms, the serialization order 

is determined at the beginning of a computation. When a ~putation Is started, a 

unique timestamp is associated with the computation, and the value of the timestamp 
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determines the serialization order16. In the rest of this section, we will use Reed's 

multi-version timestamp algorithm [48] as an example of static concurrency control 

algorithms. In his algorithm, computations with larger timestamps are serialized after 

computations with smaller timestamps. 

Recall that conflicts are created under two types of situations: 

1. when a mutator m 1 is invoked and It may be serialized before an 
observer 01, or 

2. when an observer o2 is invoked and it may be serialized after a tentative 
mutator m2. 

In [48],_the mutator m1 is refused and the computation that invokes m1 is restarted 

with a larger timestamp. Restarting a computation with a larger timestamp is the only 

way to change the serialization order. The observer o2 is delayed until the tentative 

mutator m2 is finalized. 

An alternative to refusing m 1 is to abort some of the previously invoked operations, 

such as the observer 01. However, this is not always possible as those operations 

may have committed. Furthermore, a race condition may develop in deciding to 

commit or abort those operations. The sites making the decisions must be 

synchronized. 

The concurrency problem created by the fonnation of conflicts can be evaluated with 

the likelihood of formation and costs of the conflicts. The likelihood and cost of a 

conflict can be classified according to the two types of situations In which it is 

created. Besides depending on the functionality of the operations of an application, 

the likelihood that the first type of conflicts are created in a static algorithm depends 

on whether operations are arriving at an object in the predetermined static order. 

The more operations ~ve in that order, the less likely It is that the first fype of 

conflicts are created. However, considering that the time between when the 

16r=or paraHal eub·actions, it aufficee to extend the timeatamps to non-overlapping time rangee. with 
sub-actions llUbdividing the parent'• time r811(18. For dat8ila .. [48). 
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computation begins (the timestamp assigned) and when the object is accessed has a 

larger variance in our system than in systems with only short c0mputations, we may 

have a significantly larger percentage of operations arriving in an order that differs 

from the static serialization order. In particular, an operation from a remote caller 

may find that many local computations with larger timeStamps have been executed, 

and probably committed, during the time the call travelled from the caller to the callee 

site. Obviously, when a computation may remain tentative for a long period of time, 

the second type of conflicts is also more likely to ariae in a system with long 

computations than in a system with only short computations. 

In static algorithms, the cost of the first fype of conflicts is a restart of the refused 

computation. This is pOtentially disastrous as the refused computation may have 

executed for a long period of time.. In addition to lost work, restarts also cause 

delays. If the top-level action of the refused computation is executed at a remote site, 

the restart is likely to be expensive: it adds an extra round-trip delay· at least. Note· 

that when a conflict of the first type is created in a static algorithm, the operation that 

creates the conflict is likely to be invoked from a remote site. It is also possible that a 

restarted computation may encounter another conflict and have to be restarted 

again. 

The cost of the second type of conflicts depends on how long the tentative operation 

m2 remains tentative. An alternative to delaying the observer o2 is to restart the 

computation that Invokes o2 with a smaller tirnestamp. It is not always the most 

appropriate action as the CO(nputation may encounter some other conflicts of the first 

type because of the smaller timestamp. However, concurrency may be increased if: 

1. the computation does not invoke mutator operations and cannot create 
the first type of conflicts, and 

2. the computation has only been started recently and restarting it has a 
small cost, and 

3. the mutator m2 is invoked by a long computation and may not be 
finalized until after a significant delay. 

If the conditions described above can be evaluated at run time, the concurrency 
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control algorithm can minimize the cost of the conflict accordingly. 

Although the likelihood of formation and costs of conflicts are generally higher in a 

system with long computations than in a system with only short computations, there 

are some situations under which we can expect the two kinds of systems to have a 

similar concurrency level. In a static algorithm, short computations are less likely to 

create the first type of conflicts than long computations. This is because they are 

less likely to encounter operations with larger timestamps already executed. The 

cost of restarting a short computation is also lower. Short computations may include 

single-site computations and computations that execute within a tightly-coupled 

group of sites that can communicate wtth short delay. Consequently, if all the 

mutator computations are short and only read-only . computations are long, short 

computations can usually succeed without incurring costly conflicts. Moreover, 

because read-only computations are. never restarted unless a restart is cheaper than 

a delay, the long read-only computations are only delayed by short· mutator 

computations. 

5.1.2 Dynamic Concurrency Control Algorithm• 

In dynamic algorithms, the serialization order is determined during the execution o~ 

the computations at the objects. Typically, the serialization order between two 

computations in a dynamic algorithm is determined by the order in which they finish 

accessing the last Object. The moment immediately after the last object is accessed 

is called a computation's locked point (6), which, to simplify matters, can be equated 

with the moment at which the computation is finalized. 

Dynamic concurrency control algorithms have the property that an operation . is 

always serialized after all other finalized operations. Other tentative operations can 

be either prior or subsequent to this operation in the eerlalization order. Given these 

. properties and that a conflict of the first type is created (i.e., a mutator m 1 is invoked 

and it may be serialized before an observer o1 ), the observer o1 must be tentative. 
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Usually the mutator m 1 is delayed until the observer is finalized. 17 Delaying the 

mutator eliminates the possibility that it can be serialized before the observer. When 

a conflict of the second type is created (i.e., an observer o2 is invoked and it may be 

serialized after a tentative mutator m2), the observer o2 is delayed until the mutator 

m2 is finalized. 18 

Occasionally, several computations may be deadlocked, each waiting for another to 

finalize. A deadlock detection algorithm [43) can be used to detect and break the 

deadlock by restarting some computation in the cycle. After the victim computation 

has been chosen, one of its actions that causes the delay of other actions can be 

aborted and its parent action can be notified. If the parent action has not proceeded 

beyond the end of the victim action (e.g., the victim action has not finished, or the 

parent action has created several parallel sub-actions and is waiting for all of them to 

finish), the parent action can abort the victim action and start a new instance of it. 

Otherwise, the parent action becomes a victim action also. The process is repeated 

until the top-level action is reached. The top-level action could not have been 

committed since it is deadlocked. 

The likelihood of formation of both types of conflicts in a dynamic algorithm 

increases with the number of tentative operations at an object. Unfortunately, the 

likelihood will be higher in a system with long computations than in one with only 

short computations. This Is because the time between when an object is accessed 

and when the computation is finalized is, in general, longer in a system with long 

computations. To make matters worse, the delay caused by a conflict adds to the 

length of a computation and make the expected number of tentative operations even 

17 An alternative is to delay the commitment of the mutator untff the obaerver is finalized. In this 
alternative, the mutator operation can proceed but cannot commit until the obearver le finalized. 

18 An alternative is to delay the commitment of the obael var until the mutator le committed. The 
observer can proceed but may be aborted later if the mutator is aborted. Depending on the likelihood of 
a computation being aborted, this alternative may or may not hnpr'cMt concunancy. Howewtr, the 
improvement is not significant becaul8 the obaerver has to wait for the mutator to commit In any caaa. 
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larger. 

In dynamic algorithms, the cost of a conflict is a possibly long delay. Moreover, when 

the probability of being delayed is high, there is a possibility of cascaded delaying: a 

tentative operation delaying other operations is in turn delayed by another tentative 

operation. 

In addition to cascaded delaying, there is also the cost of deadlocks. There is some 

empirical evidence [ 18) that deadlocks are uncommon in systems with short 

computations. However, it is unclear whether this is still valid when computations are 

long. When a deadlock occurs, there is the cost of detection, which usually involves 

passing messages around [43), and the cost of restarting a victim action. 

5.2 Improving Concurrency with Concurrency Control Algorithms 

In this section we suggest some novel concurrency control algorithms. We will show 

that these algorithms can reduce the likelihood that costly conflicts will arise in a 

system with long atomic computations. In particular, we will describe a hierarchical 

conflict algorithm that preserves the advantages of a static algorithm over a dynamic 

algorithm (short computations are less likely than long computations to encounter 

conflicts and less expensive to restart, and observer operations create conflicts only 

when a restart is cheaper than a delay}, and generates less conflicts for long 

computations. 

We will also describe a time-range concurrency control. algorithm in which each 

computation is associated with a time-range instead of a tlmestamp. The static arid 
dynamic algorithms can be shown to be special cases of this algorithm. The time

range algorithm allows the user to choose a "privileged" class of computations that 

can be made to be serialized after all other computation& except those also in the 

privileged class. . The ability to do so reducea the possibility that a privileged mutator 

computation is restarted or dela)9d. 
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5.2.1 Hierarchical Concurrency Control Algorithm 

Suppose each computation is given a period identifier and a serialization identifier. 

The serialization identifiers can be assigned with unique timestamps {from a real-time 

clock). The two identifiers are concatenated, with the period identifier more 

significant, and used to determine the serialization order of the computations.19 

Period identifiers are not necessarily unique. Computations receive their period 

identifiers from period counters. We assume each site has its own period counter, 

which is updated with the current clock value when a distributed computation is 

started at this site, or when the period identifier of an incoming distributed 

computation is larger than the current period counter. 20 The period counter will lag 

behind the clock most of the time, assuming that most computations are local. 

Notice that, although the period identifiers are not unique and lag behind the real 

time clock, the same is not true for serialization identifiers. Local computations in 

this algorithm are similar to those in the static algorithm in that they are unlikely to be 

restarted in their short duration and can be restarted inexpensively. 

Distributed computations perform better in this algorithm than in a static algorithm. 

Consider a distributed computation c started at clock time t; it will have a period 

identifier and a serialization identifier, both approximately t. Consider the period 

counters at the remote sites that c will visit. If they are also tat the time c is started, 

then this algorithm will have the same performance as the static algorithm because it 

is just as likely that conflicts will be created. tf they are greater or smaller than t, then 

this algorithm Wilt perform more poorly or better respectively. Given that a period 

counter at a site a is updated only when there are other distributed computations 

visiting or started at a, the period counters at the remote sites that c will visit are Ukely 

19.rhe serialization identifiera can be extended to non-ovartapping time rangea to handle parallel 
sub-actions. 

20we a.ume that whether a computation ia local or cli8tribut8d c.n be determined, for Instance, from 
the syntax of the program. In any caae, thia information is only a hint and doe8 not affect the 
correctneaa of the algorithm. 
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to be less than t at the time c is started. An exception is when the clocks at those 

remote sites are running ahead of the one used to generate t and other distributed 

computations have visited or been started at those remote sites recently. If we 

assume distributed computations to be rare or clocks to be closely synchronized, the 

exception is unlikely to happen. 

Given that the period counters of the remote sites that c will visit are smaller than t, it 

will be less likely for c to be aborted due to an old timestamp when c finally arrives at 

a remote site a. This is because the local computations started at a before s's period 

counter exceeds the period identifier of c will be serialized before c, and not cause c 

to be restarted. This algorithm performs better when distributed computations are 

infrequent. 

Note that incrementing the period counters is an optimization and does not affect the 

correctness of the algorithm. A period counter can be left unchanged when, say, a 

distributed computation that only involves nearby sites is started. To avoid these 

distributed computations being restarted, the period counters of the nearby sites can 

be synchronized frequently by bringing the smaller counters to the values of the 

larger counters. 

The hierarchical algorithm can be useful in a system in which distributed 

computations and long computations are rare. For example, most of the 

computations in a calendar application will be local. Occasionally a distributed 

computation involving a meeting is started. Also, in many distributed databases. the 

majority of computations will be local if the data is partitioned according to locality of 

reference. 

Consider the two kinds of conflicts that can arise in a system in which distributed 

computations and long computations are rare. First, a mutator m 1 may be restarted 

if there is an observer 01 serialized potentially after it. However, with our assumption 

that distributed computations are rare, only short mutator computations are likely to 

be restarted and the cost of restarting a short mutator computation is small. Second, 
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an observer o2 may be delayed if there is a tentative mutator m2 serialized 

potentially before it. If m2 is invoked by a short computation, the cost of waiting for 

m2 to be finalized is ~all. If m2 is invoked by a long computation, a possible 

solution is to restart the computation that invokes o2 with a smaller timestamp. If 

long computations are rare, we may expect the execution of two long computations 

to seldom overlap with each other. Hence, given that m2 . belongs to a long 

computation, we may expect o2 to be invoked by a short computation most of the 

time and the cost of restart of o2 is small. However, restarting a computation with a 

smaller timestamp is not always possible as the computation may invoke mutator 

operations. Hence short computations that invoke both observer operations and 

mutator operations may have to incur a high cost in being delayed by a long mutator 

computation. 21 

In a system where objects support only read/write operations, it is unreasonable to 

expect that short computations would invoke either only observer operations or only 

mutator operations. In a system where objects support abstract operations. this 

expectation is more likely to be valid. If the system also has the characteristic that 

distributed computations and long computations are rare, the hierarchical algorithm 

can be used to minimize costly conflicts. The hierarchical algorithm is also 

preferable to the dynamic algorithm because an incomplete long computation, 

though infrequent, can cause many other subsequently started short computations to 

· be delayed. 

5.2.2 Time-Range Concurrency Control Algorithm 

The time-range algorithm we are going to describe is similar to the dynamic 

timestamp allocation protocol described by Bayer in [4] but with several important 

differences. We will describe Bayer's algorithm first and then the differences. 

21 Long computations that invoke both obearver operatione and mutator operations are lees likely to 
be delayed by other long computations becauae we expect an overlap of execution of two long 
computatione to be ..... 
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Bayer's Algorithm 

In Bayer's algorithm each computation is associated with a time range (t1 , t2) such 

. that if the upper time bound of a computation a is less than or equal to the lower time 

bound of another computation b, then a is serialized before b. These time ranges 

can be shrunk dynamically but not expanded. The range will be shrunk to a single 

unique value when the corresponding computation is finalized. The upper time 

bound can initially assume the value infinity while the lower bound can assume 

negative infinity. It should be noted that for external consistency reasons, a 

computation probably should not be started with a lower time bound much smaller 

than the current time. 

The static and dynamic algorithms are obvious special cases of this algorithm. The 

static algorithm starts with a time range with a single value. The dynamic algorithm 

has each computation associated with a time range in which the lower time bound is 

the current time, and the upper time bound is infinity, since the locked point· of the 

computation can happen any time between the current time and the indefinite Mure. 

The utility of this algorithm lies in its ability to shrink the time ranges dynamically so 

that conflicts can be avoided. For example, if computation a has a time range of 

(t1, t2) and computation b has a range of (t3. t4), then a can be serialized after b by 

raising t1 or shrinking t4 until t1 is greater than or equal to t4. Obviously this is not 

possible when t2 is less than or equal to 1·3. In those cases shrinking is disallowed 

and a has. to be restarted if it is trying to invoke a mutator operation and b has 

invoked an observer operation. 22 

Our Time-Range Algorithm 

In our time-range algorithm, time ranges are extended to a more general form: 

22Paratlel eub-actiona can be serialized by sub-dividing the time range of the parent action into 
non-overlapping time rangea. 
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(max(L 1, L2, •.• , Lm), min(U1, U2, ••• ,Un)) 

where Li and Ui can be either a constant real number or a computation identifier. In 

the algorithm that we have described above, there is no way to ensure that a 

computation a will be serialized before/after b by shrinking a's time range if b's 

lower/upper time bound is negative infinity/positive infinity and cannot be 

changed23• To overcome this limitation, we allow the computation identifier of b to 

appear in a's lower/upper time bounds, which implies that b must be serialized 

before/after a. Initially a's time range can start with (negative) infinity or a constant 

in its upper or lower bound. The time range can be shrunk and computation 

identifiers of other computations, such as b's, can be added to ensure particular 

serialization order relationships. 

We assume that each computation is associated with a site, called its coordinator, 

that keeps track of the final timestamp value of that computation. When b is finalized 

and the time range of b is shrunk to a single constant value, the sites that keep 

copies of a's time range can request this value from b's coordinator and replace the. 

computation identifier with the constant. We call this process the binding of the 

computation identifiers. We will discuss how binding information can be propagated 

later. 

To make sure that the time range is not empty, i.e. the lower bound is smaller than the · 

upper bound, a computation should not commit until all the computation identifiers in 

its time range are bound. Any computation with an empty time range is aborted. This 

rule guarantees that if a cycle of serialization orderings is formed with each 

computation in the cycle assumed to be serialized before the next computation, at 

least one of the computations in the cycle will be prevented from committing. This is 

because one of the computations in the cycle must have an empty time range. 

When a computation is aborted, infinity can be assigned to its computation identifier 

23Changing b'a time bound may involve eending m11sagea to other aitaa and require a long delay. 
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if it is used as an upper time bound, or negative infinity if it is used as a lower time 

bound. This rule implies that when a computation a is to be serialized after two other 

computations band c, a must include both b's and e's identifiers in its lower time 

bounds, even when b is constrained to be serialized after c. If a includes only the 

computation identifier of b in its time range and bis aborted later, the serialization 

ordering between a and c is expressed in neither a's nor e's time range. 

When a cycle is formed, two different scenarios may happen. In the first scenario, 

some of the computations in the cycle wiH commit and at least one of the other 

computations will discover that it has an empty time range. For example, if the time 

ranges of the computations a, b, and c are as follows: 

a: (t1 t t2) 
b: (max(a, t3), mln{c, t4)) 

c: (tS, min(a, t8)) 

assuming that t1 < t2, ts< t6, and the system chooses a final tlmestamp value for a 

in (t1, t2) that is larger than ts. a and c will be committed eventually but b will be 

aborted because e's final timestamp value is leas than a's. 

Deadlock Resolution 

In the second scenario, a deadlock will develop, such as when: 

a: (b, t1) 
b: (a, t2) 

A deadlock detection algorithm can be used to abort one of the computations in the 

cycle. However, not all deadlocks represent a cycle in the serialization orderings. 

For example, we may have: 

a: (b, t1) 
b: (t2, a) 

where t1 > t2. In this example, a is assumed to be serialized after b and b is 

assumed to be serialized before a. These assumptions are obviously compatible and 

a serialization order is not ruled out by them. However, a deadlock is developed 

because both a and b are waiting for the other to finalize. 
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To avoid aborting any computation when these deadlocks occur, we can rely on the 

deadlock detection algorithm to switch the "direction" of waiting. For example, if a 

appears in the upper time bound of b 's time range and hence b is waiting for a to 

finalize, b's computation identifier can be added to a's lower time bound and then a's 

computation identifier can be removed from b's time range and replaced with the 

upper time bound of a. In our previous example: 

a: (b, t1)-+ (max(b, b), t1) = (b, t1) 
b: (t2, a) - (t2, t1) 

The switching preserves the correctness of our algorithm because at least one of a 

and b is waiting for the other to finalize at all times. After the switch, a is waiting for b 

instead. In our example, b can proceed with its commitment and a can be committed 

if t2 is less than t1. 

To avoid having switchings that nullify one another's effects and to ensure that the 

deadlock will be resolved eventually, the switching can be limited to one direction. 

For example, we can limit the algorithm to remove computation identifiers only from 

upper time bounds and insert then only into lower time bounds. To avoid creating 

deadlocks with the switching when there are not any, identifiers can only be removed 

from the upper time bounds if there are not any other computation identifiers in the 

lower time bounds. In other words, the removal should allow the computation to 

commit. In the previous example involving computations a, b, and c, we will never 

have: 

a: (t1, t2)-+ (max(c, t1 ), t2) 
b: (max(a, t3), min(c, t4)) -+ (max(a, t3), t4) 

c: (t5, min(a, t8)) -+ (max(b, t5), t8) 

Binding Computation Identifiers 

To make sure that every computation identifier used by a time range will be bound 

eventually, we· have to make sure that the final tirnestamp value of a committed 

computation c (we will discuss aborted computations later) will be sent to each site 

that it had visited. In addition, since other computations that had visited those sites 
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might have included c 's computation identifier in their time ranges and caused it to 

appear in other sites, the final timestamp value of c has to be propagated to those 

other sites as well. Notice that because of the indirect propagation of e's identifier, 

the sites visited by c may not overlap with the set of sites visited by another 

computation d that has c in its time bounds. 

In order to make sure the computation identifiers can be bound eventually, we 

assume the coordinator of each computation c remembers the following in stable 

memory when c commits: 

1. e's final timestamp value, 
2. a list of all the sites that c had visited, 
3. the computation identifiers that c had used in its time bounds. 

After commitment, the coordinator wilt send c's.timestamp value to au the sites that c 

had visited, which can be piggybacked on the messages that the coordinator uses to 

convey the outcome of c (see section 5.4). The coordinator will also try to find out 

the final timestamp values of the computation identifiers that c had used and send 

those values to the sites that c had visited. This is necessary as other computations 

may have learned those computation identifiers from c. Only then all these messages 

are acknowledged can the coordinator discard the information that it had stored 

during commitment. At each site being visited by c, each copy of the computation 

identifiers, if there is more than one, will be replaced with the final timestamp value 

before acknowledgment. 

To see that every comput~tion an that has the computation identifier of a 

computation a1 in its time range will eventually learn of the final timestamp value of 

a1 , consider the path of computations a1 , a2 , ... , an along which an learns about the 

computation identifier of a1 . (The computation a2 .accesaes an object accessed by 

a1 and includes a1 's identifier in its time range. Then a3 accesses an object 

·accessed by a2 and includes a1 's identifier in its time range. Eventually an accesses 

an object~ by •n.1 and includes a1 's identif181" in its time range.) Note that 

each pair of adjacent computations on this path visited some site in common. Since 
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the coordinator of a1 makes sure that each site that it visited learns about its final 

timestamp value, the coordinator of a2 ean find out a1 's final timestamp value from 

the shared site, where a2 first learned about a1 's computation identifier. Similarly, 

after a2 sends that value to every site that it had visited, a3 can learn about the value 

from the shared site between a2 and a3. The process is repeated until an learns 

about a1 's final timestamp vaJue. 

A complication arises when some of the a1's are aborted. In the algorithm that we 

described above, an will be waiting indefinitely for the final timestamp value of a1• A 

solution is for a1• 1 to remember a list of all the sites and the name of the actions 

(e.g., the name of a1) from which it has learned about a 1 along with the name of a 1 in 

stable memory when it commits. Instead of waiting for a1 to propagate the final 

timestamp value of a 1, a1 ... 1 can send queries to each of ·the sites in -the list. If 

records about those actions from which a1 + 1 learns about a 1 cannot be found in any 

of the sites in the list and none of those sites is in the process of sending out a1 's 

final timestamp value, a1+ 1 can propagate the value of positive infinity to a1+ 2 if a1 's 

identifier is used as an upper time bound by a1 + 1, or negative infinity if it is used as a 

lower time bound. This is because the serialization constraint is established between 

a1 and a1• 1, instead of between a1 and a1 + 1• This solution is correct only if a1 + 1 

limits the propagation of the infinity value to a1 + 2 and not to any other computation 

that happens to use a1 's identifier. So when a site receives an infinity value from 

· a1 + 1, it should bind an a 1 identifier in its memory only when the identifier has been 

learned from a1 + 1• 

Privileged Computations 

In the rest of this section we will describe an optimization that will allow the 

computations in the system to have different priorities. In particular, we can use the 

optimization to make mutator computations tesa Hkely to be restarted. &appose there 

is a class of computations with the following form of time ranges: 

(max(L 1, L2, ••• , Lm), CO) 
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and the property that the identifiers of these computations are not allowed to be used 

in the lower time bounds of any computation. Consequently, the finaJ timestamp 

values of these computations are never required to be smaller than any other value, 

and since they have no upper bound, we can always find real constants that exceed 

their lower time bounds. In other words, these computations can commit even when 

there are unbound computation identifiers in their lower time bounds. Choosing final 

timestamp values for these computations has to be delayed until the unbound 

computation identifiers are bound, however. 

These computations are "privileged" becau8" they can always avoid being restarted 

by including the upper time bounds or the identifiers of other computations (except 

those in the privileged class) in their lower time bounds. It should be noted, however, 

that a privileged computation may still be delayed due to tentative mutators that are 

serialized potentially before itself. 

Because privileged computations can commit without binding their time ranges, a 

deadlock involving committed computations can be developed. Because of the 

restriction that identifiers of privileged computations cannot be used in the lower time 

bounds of other computations, a deadlock must involve non-privileged computations, 

which must be uncommitted and can be chosen as victims to be aborted. 

The time-range algorithm is useful in a system where the only long computations are 

mutator computations. By assigning the· 1ong mutator computations as privileged 

computations, the mutator computations can avoid being restarted by other observer 

computations. Mutator computations are also not delayed by tentative computations 

because they do not observe any state. Short observer computations in the system 

can avoid being delayed by tentative long mutator computations by restarting with 

smaller timestamps. The cost of restart is low. However, this may not be possible if a 

short computation invokes both observer and mutator computations. Compared to 

other multi-version algorithms [9, 48), our algorithm has the advantage that the long 

mutator computations are never restarted by the concurrency control algorithm. The 
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cost of our time-range algorithm lies in the complexity of manipulating time ranges 

and sending messages around to bind the computation identifiers. 

Examples of applications that have only long mutator computations and short 

observer computations are databases that are replicated on many sites for availability 

and efficiency of observer operations. Mutating the state of one of these databases 

is a long computation because of the large number of replicas. Frequently, a mutator 

computation also does not observe the state of the database, such as when old data 

values are overwritten with new data values. On the other hand, usually only short 

queries are directed at database because most data is available from the local site. 

5.3 Making Concurrency Control Algorithms Transparent 

In the previous two sections we have described various concurrency control 

algorithms. We have shown that under special situations concur:rency control 

algorithms can be adapted to minimize costly conflicts. For example, in the case of 

the hierarchical algorithm, long computations would not suffer from repeated restarts 

when they are rare. 

Given that different concurrency control algorithms might be appropriate in different 

applications, we have designed a programming interface which hides the 

concurrency control algorithm used underneath. The history operations, such as 

p_sub or d_prior, make the algorithm in which the aeriaHiation order is determined 

transparent. The retry statement also makes the actions that need to be taken when 

a conflict arise transparent. 

This section describes how to implement such a programming interface given a 

particular concurrency control algorithm. In section 5.3.1 we will describe the 

implementation of the history operations that capture the serialization order. In 

section 5.3.2 we will describe the implementation of the retr1 statement. 
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5.3.1 Implementation of History Operations 

In this section we will describe how the history operations p_sub, p_prior, d_sub, and 

d_prior can be implemented given that a static or a dynamic concurrency control 

algorithm is used. Our goal is to show that these operations can be implemented and 

our descriptions will not focus on efficiency. The operation p_between can be 

implemented by filtering a history object with p_prior and p_sub. D_between can be 

implemented with d_prior and d_sub similarly. 

Figure 5-1 defines the subset of transitions that should be returned by the sub and 

prior operations for a static and a dynamic concurrency control algorithm. In the 

dynamic algorithm, we assume that each transition is labelled with two timestamps 

from a Lamport clock (27): an operation timestamp and a commit timestamp. The 

operation timestamp is read immediately before the corresponding operation returns, 

and the commit timestamp is read when the computation commits. For the operation 

being executed currently, the current clock value can be used as its operation , 

timestamp. We assume that these timestamps are remembered in a history object. A 

commit timestamp can be piggybacked on a message that informs a site of a 

computation's outcome and. recorded in a history object when the computation's 

status in the history object is updated. 

Implementations for other concurrency control algorithms are similar to those in 

figure 5-1. For example, the implementations for the hierarchical algorithm. and the 

static algorithm are the same except that the two timestamps for a computation are 

concatenated for comparison in the former and a single timestamp is used in the 

latter. In an implementation for the time-range algorithm. a transition can be 

serialized potentially before or after another transition if their time ranges can 

possibly overlap. Otherwtset one of them is serialized definitely before the other. 
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Static serialization concurrency control algorith•: 
(Implementations for the d_ counterparts are identical.) 

p_sub • procadure(h: history, t: transition) raturns(history) 
return transitions in h with larger ti .. stamps than t 
and p_sub 

p_prior • procadure(h: history, t: transition) returns(hfstory) 
return transitions in h with .. aller ti .. st .. ps than t 
end p_prior 

Dyn .. ic serialization concurrency control algorithlt: 

p_sub • procedure(h: history, t: transition) return1(hi1tory) 
if t has a co .. it ti .. St&llP c 

then return all finalized transitions that have larger 
c01111it timeat .. ps than c and all tentative transitions 
in h 

else return all tentative tran1ftion1 in h and all finalized 
transitions that have larger cOlllft ti .. ata.ps than 
the operation ti .. lt8llfl of t 

end 
end p_sub 

d_sub • procedure(h: history, t: transition) return1{hi1tory) 
if t haa·a co .. it ti•eat .. p c 

then return all finalized tran1ftfon1 that have larger 
co .. it ti .. 1t .. p1 than c and all tentative transitions 
that have larger operation ti .. ltlllPS than c in h 

else return an ..,ty set 
end 

and d_aub 

p_prior • procedure(h: history, t: transition) returns{histor1) 
return (all transition• in b - d_sub(h, t)) 
end p_pr1or 

d_prior • procedure(h: history, t: transition) returns(hi1tor1) 
return (all transitions in h - p_sub(h, t)) 
end d_prior 

Figure 5-1 :Implementations for Sub and Prior 
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5.3.2 Implementation of Retry Statement 

This section describes how the retry statement can be implemented given a 

concurrency control algorithm. In particular, we will use a static algorithm as an 

example. We will also describe implementations for other concurrency control 

algorithms, although more briefly. Our description of implementations will focus on 

their feasibility, but brief references to efficiency will be made occasionally. We will 

first present an example of the kind of decision making that is involved in the 

execution of a retry statement. Then we will describe an implementation. 

When a retry statement is executed in a system with a static algorithm, the language 

system should decide whether the computation executing the statement should be 

delayed or restarted, and if it is delayed, when it should be rescheduled. With a 

dynamic algorithm, the only possibility is to delay a computation. The only decision is 

when to reschedule a computation. With a time-range algorithm, the decisions are 

more complicated. A computation can be delayed, restarted, or have.its time range 

shrunk in different ways. 

When the system is faced with these decisions, there are no optimal decisions 

without knowledge of the future. Heuristics are needed to determine the relative 

likelihood of correctness and cost of each of the choices. For example, it is 

reasonable to expect that a tentative transition is more likely to commit than to abort 

and make decisions accordingly. We will also assume that it is unlikely to have an 

operation invoked in the future serialized before some existing operations. 

An Example , 

Consider the proceed condition 

-h1storySex1sta(h1atorySp_aub(th1a_trana1t1on). no_x. 
not_changed(del_x)) 

in the insert procedure in figure 4-3 where 
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not_changed • procedure(op: templat•, t: trans1t1on) returns(bool) 
return(h1storySex1sts(h1storySd_between(th1s_trans1t1on, e)), 

co .. 1tted_del_x)) 
end not_changed 

Suppose the proceed condition evaluates to fa 1 se and a transition t is the only no_x 

transition that causes the condition to be false. The proceed condition will be 

satisfied when either: 

1. t is aborted, or 
2. t is serialized definitely before the invoked operation, or 
3. a co-1 t ted_de l_x transition is serialized definitely between the invoked 

operation and t 

Item 1 is unlikely to happen, regardless of the concurrency control algorithm used. 

Suppose a static concurrency control algorithm is used. Item 2 will only happen with 

a restart because the predetermined serialization order does not change. Item 3 is 

only likely to happen if there is already an tentative del_x transition serialized 

between the invoked operation and t. In those cases, the invoked operation can be 

delayed until the dal_x transition is finalized. In other cases, the invocation request 

should be refused and the computation that invokes it restarted. Although it is 

possible that the restart is unnecessary after all, it is the most appropriate choice 

under our assumptions. 

If a dynamic concurrency control algorithm is used, delaying the current operation 

. cannot cause item 3 to become true. In fact, it would achieve the opposite effect. 

Also, a del_x transition may not exist after all. Item 2 can be fulfilled by delaying the 

current operation until t is finalized, the most appropriate step to take in this case. 

If a time-range concurrency control algorithm Is used, the system may have several 

choices. The time range of the current computation may be shrunk, if necessary and 

possible, in such a way that item 2 ls satisfied. If a com1tted_del_x transition exists 

and it is definitely serialized before t, the time range of this action may be shrunk 

such that item 3 is satisfied.~ If a tent.at.1ve_del_x tranaition exists and it is serialized 

potentially before t., the current operation can be delayed until the serialization order 
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is known and the transition committed. 

An Implementation for a Static Algorithm 

Since we have limited our proceed conditions to be constructed with boolean 

operations and history operations, program analysis can be used to decide the action 

to take when a retry statement is executed. The goal of the program analysis is to 

determine whether a proceed condition is likely to be satisfied eventually without a 

restart. Only when should an operation be delayed. We assume that when a system 

is confronted with a choice of delaying or refusing an operation, delaying is 

preferred. A more sophisticated decision can be based on the expected costs of the 

delay and the restart. 

Choofina Between Delay and Reatad 

To shorten our presentation, assume that a boolean operation can be either and, or, 

or negate. However, we would eliminate all the negate operations that are not 

immediately applied to the result of an ex 11t1 operation by making suitable program 

transformations. For example, if a proceed condition is of the form: 

-(ex11t1(h, t, p) and ex11t1(h', t', p')) 

we change it to: 

-ex11t.s(h, t, p) or -ex1lt.1(h', t', p') 

If a proceed condition c is of the form: 

1. c1 and c2: then c is likely only if both c1 and cz are likely. 

2. c1 or c2: then c is likely only if at least one of c1 and c2 is likely. 

Other than the two forms above, c can also be of the form ex11t.1(h, t, p) or 

-ex11t.1(h, t, p) where his a history object, tis a transition template, and pis a 

procedure. In order to allow the language system to determine the likelihood of an 

ex 11t1 or -ex 11 ta expression, we limit p to be of the form: 

p • procedure(arg: trana1t1on) returna(boo1) 
return(•) 
end p 
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where• is subjected to the same restrictions as proceed conditions. If c is of the 

form: 

1. ex1sts(h, t, p): then c is likely only if t is of the form 
co•1 t ted_op_ .•. , and there is a transition tr in h that matches op_ .•. 
and p(tr) is likely. 

2. -•x1ats(h, t, p): then c is likely only if for all the transitions tr in h, 
either a committed version of tr does not match tor -P( tr) is likely. 

Determining whether an ex 1 sts expression is likely involves searching the history 

object hat run time. The same process can be used to determine whether p(tr) or 

-P (tr) is likely after replacing references to arg in •with tr at run time. 

oetermining Be1cbeclule1 

Given that a proceed condition is likely to be satisfied without a restart, the language 

system should determine when the current invoke request should be rescheduled. In 

other words, the language system should detemrine when the proceed condition 

becomes likely. 

There are many options for determining what kinds of events and processing are 

allowed to trigger the rescheduling of a suspended operation. For example, a simple 

scheme is to allow only the finalization of a fixed aet of transitions determined at the 

execution . of the retry statement to trigger rescheduling. A more complicated 

alternative is to also allow the finalization of subsequently invoked transitions and 

evaluation of arbitrary expressions to determine when rescheduling is appropriate. 

Since the goal of this aaction Is to show the feasibility of an implementation that can 

resolve a conflict in a reasonable, but not nec111arily optimal, fashion, we will use the 

simpler scheme. Another reason to use the simpler scheme is to minimize the cost of 

scheduling. One of the necessary consequences of using the simpler scheme is that 

we cannot guarantee that a proceed condition will be met when an operation is 

rescheduled, as some other operations may have executed between the suspension 

and the rescheduling. However, this is conaidered accepteble by our pr,ogramming 

interface. 
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Suppose s is a set of transitions such that the finalization of a transition in s should 

trigger the rescheduling of an operation with a proceed condition c. A program 

analysis similar to the one above can be used to determine a non-empty s. If c is of 

the form: 

1. ct and c2: thens is the union of the sets that trigger ct and c2. 

2. ct or c2: same as above. 

3. ex1sts(h, t, p): if tr is a tentative transition in h such that if it is 
committed, it would match t and p( tr) would return true, then tr is in 
s.24 . 

4. -ex 11 ts ( h , t , p): if tr is a tentative transition in h that matches t and 
p (tr) returns true, then tr is in a. 

All Delayed Operation• are Rescheduled Eventually 

To show that this implementation is correct, in the sense that if an operation is 

delayed, it will be rescheduled eventually, we need to show thats is not empty. We 

will now describe an informal argument showing that it is indeed the case. 

Recall that a well-formed proceed condition satisfies the following requirements: 

1. The proceed condition should be satiafied if: 

a. new operations are not started, and 
b. all current operations in the system, except the one being 

considered, are finalized and the outcomes are known by all 
history objects, and 

c. the operation being considered is serialized . after all existing 
transitions and the seriaUzation order among existing transitions 
are known. 

2. It is not satisfied currently. 

3. It is constructed with boolean operations and the operations provided by 
the history objects. 

Given that a proceed condition c is not satisfied currently, there must be some 

24More accurately, the commitment of tr ia in a, aince aborting tr would not make c become likely. 
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ex1sts(h, t, p) or -ex1sts{h. t, p) expressions not satisfied currently. Given 

that c is not restarted and hence likely to become satisfied eventually, at least one of 

these expressions is likely to become satisfied eventually. Suppose an ex1sts(h, 

t, p) expression is likely to become satisfied eventually. Following our definition of 

when ex hts ( h, t. p) is likely, we know that there is a transition tr in h such that 

either: 

1. tr does not match t because tr is tentative, or 
2. p ( tr) is not satisfied currently but is likely to be satisfied eventually. 

Given our rules for adding transitions to the triggering set, tr will be in the set if the 

first case is true. If the second case is true, induction can be used to argue that the 

program analysis of p(tr) will lead to the addition of some transitions in the 

triggering set. A similar argument can be used when an -ex11t1(h, t, p) 

expression is not satisfied currently but likely to become satisfied eventually. 

Piscussion 

In addition to guaranteeing that an operation will be eventually rescheduled if it is 

delayed, there is also a performance issue that unnecessary restarts should be 

avoided. This is achieved with the first requirement for the· well-formedness of 

proceed conditions. By requiring a proceed condition to be satisfiable given the 

conditions 1.a, 1.b, and 1.c, we prevent an application from specifying a proceed 

condition which is unlikely to become satisfied when in fact an operation is likely to 

be able to proceed eventually. 

For systems that use a dynamic or time-range concurrency control algorithm, rules 

similar to those above can be used to determine whether to restart or delay an 

operation, and, if the operation is delayed, when it is rescheduled. Correctness in the 

sense that a delayed operation is eventually rescheduled i8 not difficult to achieve as 

long as every delayed operation is rescheduled occasionally. The complexity of an 

implementation is in determining which set of even1s should trigger rescheduling and 

whether restart, delay, or some particular way of shrinking a time range should be 

employed. It is debatable whether a programmer or a language system 
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implementation can make better decisions. For example, we have discussed that the 

relative merits of restarts and delays depend on their expected costs. Having a 

language implementation calculate these costs avoids cluttering a program with 

optimizations. However, one may argue that a programmer has a better knowledge 

of these costs. 

5.4 Commit Protocols 

When a distributed computation commits or aborts, the sites that participated in the 

computation have to agree on its outcome. At any time during the process of 

reaching an agreement, site crashes or communication failures can occur. Once a 

computation is committed, each site should make sure that the. computation would 

appear to have executed despite site crashes and communication failures. The sites 

that participated in an action should also be informed of the action's outcome as 

soon as possible, so that other actions will not be delayed. The protocol followed by 

the sites to reach agreement is called a commit protocol. 

Section .5.4.1 reviews the two-phase commit protocol (17). Section 5.4.2 describes 

an alternative, the one-phase commit protocol, and compares the two. We argue that 

the one-phase commit protocol is more suitable in our environment. In the 

description of these protocols, we assume that call and return messages are used to 

invoke processing on remote sites and to return results of those efforts. 

5.4.1 Two-Phase Commit Protocol 

The most common commit protocols used by distributed syStems are two-phase 

commit protocols. In a two-phase commit protocol, one of the sites plays the role Of a 

coordinator and the other sites become subordinates. We assume that the site that 

initiates the top-level action plays the coordinator role, and the other sites that have 

participated in the computation are subordinates. 

At the end of the computation, If commitment is desired, the coordinator will send 
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prepare messages to the subordinates and wait for their replies. In a system with 

nested actions, only the subordinates with non-aborted sub-actions need to receive 

these prepare messages. At the subordinates, a yes vote is returned if commitment is_ 

desired. A no vote is returned otherwise. Before a yes vote is returned, the 

subordinates can decide to abort the computation unilateralty. In those cases, a no 

vote can be returned when prepare messages arrive. 

At the coordinator, if au the votes are yes votes, the computation can be committed 

by ' writing the decision to stable memory atomically. Afterwards, 

commit_computation messages will be sent to the subordinates. If any of the votes 

returned is a no vote, or the coordinator has given up waiting for all the votes to 

return, abort_computation messages can be sent to the subordinates that had sent 

yes votes. Abort_computation messages can also be sent anytime during the 

execution of the computation. A parent action can also aend abort_action messages 

to abort sub-actions before the end of a computation. 

Commit_computation messages and abort_computation messages are mutually 

exclusive. A computation should never send both types of messages. Through the 

commit_computation and abort_computation messages, the subordinates will learn 

that the computation Is finalized. The sending of prepare and vote messages is the 

first phase, and the sending of commit/abort_computatlon messages the second. 

When sending messages to the subordinates, either the coordinator can send to 

each subordinate directly, or the messages can be relayed by other subordinates. A 

convenient strategy Is to have the site of a parent action relay the messages to Its 

sub-actions (37). The first messages are sent by the site that executes the top-level 

action, the coordinator of the computation. The strategy is convenient because each 

parent action knows the names of Its sub-actions, wher8 they are executed, and 

whether they should be aborted or committed. However, having the coordinator 

send the messages directly avoids any delay. in relaying. To do so, each action 

should include the names of its sub-actions, where they are executed, and whether 
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they should be aborted or committed when it returns to its parent. In this way, the 

top-level action will collect all the necessary information to send the messages 

directly. 

5.4.2 One-Phase Commit Protocol 

An alternative to the 2-phase commit protocol is a 1-phase commit protocol. In the 

1-phase commit protocol, no prepare or vote messages are sent. A site is prepared 

to commit when it sends a return message. It stays prepared until notified by the 

coordinator to commit or abort. The 1-phase commit protocol takes one less round

trip delay to finish. In a system with long communication delays, this is an important 

savings. In a simple 2-site distributed computation using a 2-phase commit protocol, 

the coordinator and the subordinate are informed of the outcome of the computation 

after 2 and 2.5 round-trip delays respectively. With a 1-phase commit protocol, the 

delays are reduced to 1 and 1.5 round-trips respectively. 

One of the advantages of the 2-phase commit protocol over the 1-phase commit 

protocol is that a subordinate retains the privilege to abort a computation unilaterally 

until it has responded yes to a prepare message. Presumably, by aborting an 

tentative computation, a site can recover the resources held by that computation. 

It is not clear whether this window of vulnerability, during which a subordinate has to 

wait for a decision from its coordinator,. is in fact shorter in a 2-phase commit 

protocol than in a 1-phase protocol. In a 2-phase commit protocol, the length of the 

window is at least the time required for a vote to tra~ to the coordinator and the 

decision to come back to the participant. In addition, assuming that most 

computations commit, the coordinator has to wait for alt the votes before sending out 

the decision in most cases. In a 1 ·phase commit protocol, the length of the window is 

determined by the time required to execute the rest of the computation after a 

subordinate has returned plus the time needed for the coordinator to send a 

decision. If a site is accessed near the end of a computation and sending massages 

to sites accessed in the beginning of the computation from the coordinator leads to 
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long delays, then the site accessed near the end of the computation has a shorter 

window with a 1-phase commit protocol. On the other hand, the window is probably 

longer for sites accessed in the beginning of a computation if the computation 

accesses more than two sites serially. In a simple 2-site distributed computation the 

window of vulnerability is approximately a round-trip delay in length for both 

protocols if we ignore the time the coordinator uses to compute after it has received 

a reply from the subordinate. This period of computation should be negligible 

compared to the round-trip delay. The same argument can. be applied to an n·site 

distributed computation in which the coordinator invokes the n-1 participants in 

parallel. 

In a 2-·phase commit protocol, by delaying the preparation of an action until the 

coordinator is ready to commit, there is a possibility that several actions' 

preparations can be piggybacked in a single write to stable memory. In a 1-phase 

protocol, a sub-action that executes in the same site as some of its ancestors can 

delay its preparation until the oldest ancestor returns because a site crash before its 

preparation would also abort the ancestor. Otherwise, it has to be prepared before it 

returns. The 2-phase commit protocol is more efficient if accessing stable memory is 

an expensive operation. 

A compromise between the 2-phase and 1-phase commit protocols is to leave a 

choice in the protocol. When a subordinate returns, it can set a flag in the return 

message to indicate whether it has prepared. If it has not, the coordinator has to 

send a prepare message and wait for a yes vote from that subordinate before the 

coordinator can commit. Meanwhile, the subordinate can piggyback its preparation 

with a later stable memory access; afterwards, as an optimization, it can send a yes 

vote to "catch up" with its return. In other words, the preparation can become an 

asynchronous process as long as it is performed before the computation is 

committed. In Chapter 7 we will discuss the use of checkpoints, of which an early 

preparation is a special case, to increase the resilience of a computation. 
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There are other commit protocols proposed in the literature. Skeen proposed a 3-

phase non-blocking commit protocol in [52). In addition to the extra delay, the 

assumptions about the communication network in his protocol are incompatible with 

our model. We believe that the 1-phase commit protocol is more appropriate in a 

system with long computations because of the reduced delay with one less phase of 

messages. 

5.5 Summary 

This chapter discussed how the programming interface described in Chapter 4 can 

be supported. In partrcular, we showed that it is possible to mask the concurrency 

control algorithm used in a system. We have described how history operations, such 

as p_sub or dprior, and the retry statement can be implemented in different 

concurrency control algorithms. We have also proposed two novel concurrency 

control algorithms which minimize the likelihood of costty conflicts given that special 

conditions are met. We have described commit protocols briefly and described a 

1-phase protocol which has a shorter delay between an action returning and its being 

finalized. A compromise between a 1-phase protocol and a 2-phase protocol using 

an asynchronous preparation allows the cost of accessing stable storage to be 

reduced. 
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Chapter Six 

Power of Atomicity 

In this chapter we compare our atomicity definition with other correctness definitions 

in which atomicity is abandoned. Atomicity is used in this thesis to model 

computations because it is easy to understand and reason about. We have also 

shown that the concurrency of a system can be increased by using semantics in an 

implementation. In particular, by incorporating the functionality of an application into 

the atomicity definition, ·our approach allows a trade-off between functionality and 

concurrency. However, if there were other correctness definitions which permitted 

more concurrency, the importance of concurrency might outweigh the simplicity of 

atomicity, especially in a system with tong computations. In this chapter we will show 

that our atomicity definition permits . as much concurrency as some non-atomic 

correctness definitions. On this basis, we will claim that our model of correct 

behavior is preferable, since in comparison it is equally powerful and easier to 

understand. 

The class of correctness definitions that we use to compare against our atomicity 

definition is one in which the application defines explicitly pairs of transitions that 

"conflict." These definitions insure that computations that invoke conflicting 

transitions are ·executed in the same order at all obiects. A representiitive of this 

class of correctness definitions can be found in (50]. A slightly different but similar 

correctness definition can be found in (38). We wiH describe a correctness definition 

which is slightly more general tnan the one in [50). We will call the definition we are 

going to deseribe the consistency definition. 

As we have described earlier, the consistency definition insures that computations 

executing conflicting transitions are executed In the same order at all sites. For 
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example, suppose computation a executes two transitions a 1 and a2 and 

computation b executes two transitions b1 and b2. Furthermore, suppose a1 

conflicts with b1 and a2 conflicts with b2. The consistency definition requires that 

either a1 precedes b1 and a2 precedes b2, or b1 pr99edes a1 and b2 precedes 

a2. More precisely, the consistency definition can be defined with a graph acyclicity 

requirement. The nodes in the graph are computations. Two computations are 

linked by an edge if they execute a pair of conflicting transitions at an object. The. 

direction of the edge is determined by the order of execution of the transitions. A 

history of transitions is said to be consistent if the graph is acyclic. A system that 

only generates consistent histories is called a consistent system. 

An equivalent way of stating the same requirement is to require that there exists a 

total order among the computations in the system: If two computations a and b 

execute a pair of conflicting transitions at an object With a's transition executed 

before b's, then a is ordered before b in the total order. Notice that this total order is 

different from a serialization order in an atomicity definition, since only conflicting 

pairs of transitions are required to be ordered in this total order. Non-conflicting 

pairs of transitions can be ordered in different orders in different objects. There may 

be more than one such total order. 

An example may help in the understanding of the consistency definition. Consider a 

banking account with deposlt_x_okay, wlthdraw_y_okay, wlthdraw_y_insuf, and 

read_balance_z transitions. If the application does not define read_balance_z to be 

conflicting with depoalt_x_okay or wlthdraw_y_okay transitions, then a transfer 

between two accounts, compoaed of a withdrawal and a deposit, can interleave with 

an audit attempting to find the . sum of the balance in two accounts with two 

read.balance operations. In one of the accounts, the read_balance_z1 transition 

may be executed before the withdraw_y_okay transitk>n, whereas in the other 

account, the other read_batance_z2 transition may be executed after the 

deposlt_y _okay transition. In this example, the amount being transferred is counted 

twice by the audit. However, we must assume that this b8havior is acceptable to the 
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application, since it does not choose to exclude it by the definition of conflicting 

transitions. 

This behavior is typical of what real banking systems exhibit in practice. A transfer of 

funds between two accounts is done in two separate parts, certainly when the two 

accounts belong to two different banks and often when the accounts belong to 

different branches of the same bank. In the case of transfer by check, the deposit 

occurs first, and the withdrawal occurs only after the check has "cleared." The 

clearing of the check involves physical transport of the check and makes the entire 

transfer of funds a tong computation. During the time the check clears. the money 

appears to be in two places, which is a way of $8ying that read_balance_z does not 

conflict with deposit_x_okay or withdraw_y_okay. People have attempted to take 

advantage of the intonsistency by investing the double-counted money In various 

ingenious ways. The banks have not corrected this problem by imposing atomicity 

across the Federal Reserve System; rather, they tolerate the problem to a degree and 

control abuses by regulation and law. The builders of banking systems appear to 

believe, as a practical matter, that the imposition of a total ordering among alJ the 

computations would produce intolerable loas of concurrency. 

The consistency definition may seem more powerful than atomicity because an 

application can specify conflicting transitions explicitly. However, we will show that 

. atomicity is at least as powerful as the consistency definition. In the banking example 

above, we can show that by defining the functionality of the read.balance, withdraw, 

and deposit operations appropriately, the behavior described above can be modelled 

by our atomi~ity definition. Our proof does not· make the transfer of funds into a short 

computation, nor does it enable the audit computation to predict whether a check will 

clear and to return accurate and up-to-date answers. However, by casting the 

uncertainty in the answers returned with an atomicity model and providing the same 

level of concurrency as a consistency system, we provide a simpler .model to 

understand the behavior of an application than the consistency definition. The better 

understanding in tum provides a better framework for the users to deal with the 
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inconsistencies that they might observe. Thus the power of atomicity that we show is 

of more than academic interest. 

Our proof is by construction. We show that given any system of objects, their 

transitions, and a set of conflicting transitions, we can construct a system with an 

"equivalent" set of objects, an "equivalent" set of transitions, and serial 

specifications for the equivalent objects, such that the set of consistent histories is 

identical to the set of "equivalent" atomic histories. Consequently, the two systems 

have the same behavior and concurrency. The equivalence is defined with mappings 

from one system to the other. The mappings can be used to "simulate" one system 

with the other. 

The problem with the "equivalent" atomic system that we construct is that its serial 

specifications are too complicated to maintain our claim that atomicity is easy to 

understand. Hence our proof only shows that atomicity is at least as powerful, but 

not always easier to understand. We show a second result in this chapter. We show 

that for a class of objects atomicity is as powerful and easier to understand. We also 

argue that this class of objects is a large class. 

Section 6.1 presents an informal version of our proof that atomicity is at least as 

powerful as the consistency definition. Section 6.2 defines atomicity and consistency 

with more formal notations and presents a formal version of the same proof. Section 

6.3 defines a class of objects called accurate objects and shows that atomicity is as 
;' 

powerful and easier to understand for accurate objects. Although some objects in a 

system may not be accurate, modefting the behavior of the non-accurate objects with 

atomicity allows the behavior of the accurate objects to be understood more easily 

than with a consistency definition. If we abandon atomicity in the non-accurate 

objects, we abandon atomicity in the accurate objects also. 

The correctness requirements to handle situations in which failures can happen are 

usually not specified clearly in the consistency definitions in the literature. However, 

failure atomicity can be incorporated into these definitions in a straightforward 
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manner: only committed transitions are considered in determining whether a history 

is consistent. We will ignore failure atomicity in our proofs and assume that aH 

transitions will be committed. The addition of failure atomicity, which is orthogonal to 

the serializability and consistency concepts, does not change our results. 

6.1 Informal Proof of Power of Atomicity 

Recall that conflicting transitions are required to be executed in a total order of the 

computations in a consistent system. We will call this total order a consistent order. 

Similar to an atomic system, a concurrency controt algorithm is needed to determine 

a global consistent order followed by every object in the consistent system. Also, just 

as in an implementation of an atomic system, conflicts can be created when, for 

example, there is insufficient knowledge of the consistent order. Using the 

terminology of the conflict model developed in this thesis, a conflict is created by a 

new transition when there are other transitions that have the following properties: 

1. these transitions are conflicting with respect to the new transition, and 

2. they are potentially ordered after· the new. transition according to the 
global consistent order. 

If no conflicts are created, an object can proceed to determine the result to be 

returned. In a consistent system, the result is computed based on the order in which 

transitions are executed in an object, which we will call the local execution order. 

The core of our proof is to construct an equivalent atomic system in whjch conflicts 

are created at the same situations and the same ,_,.Its are returned when there are 

no conflicts. Since conflicts are created at the same situations, the atomic system 

h~ the same level of concurrency as the consistent system. Since the same results 

are returned, the atomic system has the same "behavior," More rigorously, since the 

conflict conditions and the validity Of results in an atomic system are determined by 

the serial specificationa. we need to construct 98rial specifications that guarantee 

that a history in the atomic system is atomic if and omy if the equivalent history in the 

consistent system Is consistent. 
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Before describing these serial specifications, we will describe how the atomic objects 

in the equivalent atomic system can be implemented. Presumably, one can argue 

that the same implementation that implements the objects in the consistent system 

can be used to implement the atomic objects. However, we will describe an 

implementation using the mech~nisms that we described in Chapter 4, which may 

help in understanding the equivalence between the atomic system and the consistent 

system. 

Just as in the implementations in Chapter 4, each transition executed at an atomic 

object is recorded in a history object. When a new operation is invoked, the history 

object is queried to determine whether there are previously invoked conflicting 

transitions that can potentially be serialized after the new transition. If there are, a 

conflict is created and has to be resolved. If no conflict is created, the 

implementation has to determine a valid result to return. Since results are computed 

according to the local execution order in a consistent system, the results in the 

atomic system should be computed in the same way. In a practical implementation, 

the transitions in the history object should be merged according to the local 

execution order, so that the snapshot/projection object can be used to determine the 

result efflcientry. The local execution order has to be encoded in the transitions so 

that they can be merged accordingly. 

We will now describe the serial specifications for the objects in the atomic system 

that create the same conflicts as the objects in the consistent system. Suppose that 

in a consistent system a transition t1 Is executed before another transition t2 in an 

object o and t1 and t2 are a pair of conflicting transitions. From our definitions, t1 

must be ordered before t2 in any consistent order. If we can make sure that, for their 

equivalent transitions t1' and t2', t1' must be ordered before t2' in any serialization 

order, then a serialization order exists only it a consistent order exists. Also, If the 

ordering of any such pairs of t1' and t2' is the only requirement on a serialization 

order, then a serialization order exists if a consi8tent order exists. To make sure that 

t1' is ordered before t2' in a serialization order, we can require the collection of 
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conflicting transitions that are executed before t2 ', such as t 1 ', to be serialized 

before t2'. To express this requirement in the serial specifications, we can encode 

this collection of transitions in t2' and compare this collection with the collection of 

transitions that are serialized before t2 '. Since a serialization order exists if and only 

if a consistent order exists, conflicts are created under the same situations. 

An additional requirement on the serial specifications of the equivalent atomic 

objects is needed. In addition to guaranteeing that conflicts are created under the 

same situation, we must also require that the results returned in the equivalent 

atomic system are those returned by the consistent system. In a consistent system, 

the validity of a result is determined by specifications like the serial specifications. 

For example, if a withdraw operation returns okay, then there must be enough 

deposits executed before the withdraw operation to cover the withdrawal. Since the 

serialization order, though identical with the consistent order, may not be the same 

as the local execution order, we cannot use the serialization order to compute the 

results. In other words, the validity of the results in the atomic system should be 

determined with the local execution order instead of the serialization order. 

Consequently, an additional requirement on the serial specifications is that each 

transition should encode the sequence of previously invoked transitions in the local 

execution order and ensure that this transition's result is valid according to that 

order. 

Since the concurrency levels in the two systems are the same, and the results 

returned are identical with the exception that a sequence of previously invoked 

transitions have been encoded in the transitions generated In the atomic system, we 
claim that the two systems have the same behavior. The same implementations can 

be used to implement the two systems. The only difference between the two is the 

modelling of the acceptable behavior of the syatem. 

168 



6.2 Formal Proof of Power of Atomicity 

This section presents a more formal version of the argument described in the last 

section. Atomicity and consistency are defined more formally in sections 6.2.1 and 

6.2.2. The formal proof is in section 6.2.3. 

6.2.1 Atomicity 

Some terminology is needed before presenting the definition of an atomic system. 

Suppose h is a sequence of events, r is an object, and a is an action. We define hlr 

to be the subsequence of h involving rand hfa to be the subsequence of h involving 

a but not a 's sub-actions. An event in a sequence h is committed if there is a commit 

event of the same action identifier in h. We define committed(h) to be the 

subsequence of h that involves only invoke and return events that are committed. 

Aborted(h) is defined similarly. The sign "H" denotes concatenation of sequences. 

We will omit the concatenation signs for sequences whenever it is convenient. For 

example, t1t2 ••• refers to t 1Ut21···· Also, we will use the "€" sign to refer to an 

element being part of a sequence. So for example, we say t2 € t 1 t 2 •••• 

A sequence of events h is well-tormed if it satisfies the following conditions: 

1. Ignoring commit and abort events, the subsequence hfa should have 
alternating invoke and return events, starting with an invoke event, and 
with each pair involving the same object. 

2. committed(h) and aborted(h) do not have any common events. 

3. If a commit event of an action a appears in h, then hfa consists of an 
alternating sequence of invoke and return events (starting with an Invoke 
event and ending with a return event) and soma commit events at 
different objects. 

A well-formed sequence of events is caned a history. 

We define a function Serial which takes a history and a linearization of the actions In 

that history as inputs, and returns the history ~ according to the 

linearizati.on. More formally, if an action a or an ancestor of a is prior to another 
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action b or an ancestor of b in the linearization L, then h)a precedes hf b in Serial(h, 

L). The order between events of a and events of a's sub-actions is preserved in 

Serial(h, L). 

We define Globally_Atomic.Objects as the set of globalty atomic objects in the 

system. A history h is globally atomic iff: 

3L Vr1EG1obally_Atomic.Objects: N1(ll, Serial(committed(hfr1, L))) ;i .L 
where L Is a linearization for actions n h, 

N1 is the state transition function of the serial specification of r1, 
11 is the initial state of the state machine. 

A system is atomic if it generates only atomic histories. 

To simplify our proofs, we will ignore nested actions. Hence, instead of a 

linearization, only a total ordering of the computations in a history is needed. We will 

also limit a history to be a sequence of transitions and commit and abort events. In 

other words, an invoke event must be foUowed immediately by the corresponding 

return event. Transitions from different computations can still be interleaved. The 

limitation is imposed to simplify the mapping between histories in an atomic system 

and a consistent system. The simplification does not make any difference to our 

results as the positions of the invoke events in a history are irrelevant. 

Without failure atomicity and nested actions, the set of. atomic histories can be re

defined as follows: a history h is globaUy atomic iff 

3L Vr1EG1obally.Atomic_Objects: N1(11, Serlal(hJr1, L)) 9t .L 
where Lia a total ordering for computations In h 

Notice that since we assume that every transition is committed, no commit or abort 

events need to appear in h, which becomes a sequence of transitions. 

6.2.2 Consistency 

To distinguish the objects in a consistent system and an atomic system, we use the 

symbol r Cl to refer to an object in a consistent system, where C in the subscript Cl 

refers to the set of conflicting transitions pairs. 
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C = { (t1, t2) I t1 and t2 are conflicting transitions of some object rc1} 

We assume that there is some mechanism for an application to define C. 

The semantics of each object r Cl is defined with a state machine similar to those 

used to define serial specifications of atomic objects. The state machine used to 

define the semantics of 'ci has four components: NCI' SCI' •ci' and T Cl' 

corresponding to NI' SI' 11 and T1 in a serial specification. 

A history he is consistent iff: 

Gch is acyclic and Vrc1: Nc10c1, hclrc1> =- .L c 
where Gch = { (CompCa' Compcb> E Computatlons(hc) X Computatione(hc) 

c 
such that he = ••. tca···tcb"""' (tea' tcb>Ec, tea ECompCa' 

tcb ECompCb' Compca =- <?omPcJ 

Computations(hc) = set of computations that appear in he 

In the definition above, Gch is a graph of edges between the computations that 
c 

appear in he· An edge exists between two distinct computations Compca and 

CompCb iff they have executed a pair of conflicting transitions tea and tcb· To make 

sure that conflicting transitions executed by different computations are not 

interleaved, Gch must be acyclic. Furthermore, the transitions must be valid c . 
according to specifications of the objects in the system. Notice that there is no 

· global total ordering governing the order in which computations appear in heir er 

6.2.3 Proof 

Suppose a consistent system is defined with a set of conflicting transitions C, the 

objects r Ct' and the specifications of these objects, which are in tum defined by NCI, 

Sci• •c1, and Tei· Our goal is to construct an equivalent atomic system defined with a 

set of equivalent objects r1 and the serial specifications of theae objects, which are 

defined by N1, S1, 11, and Tr A 1-1 mapping M wilt be defined to map histories in the 

atomic system to those in the consistent system. The set of atomic histories in the 
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atomic system should map to the set of consistent histories in the consistent system. 

We will first show how the serial specifications in the atomic system are defined. 

Then we prove lemma 1 which states that if a history he is consistent then the history 

M"1(hc) in the atomic system is atomic, and lemma 2 which states the reverse: if a 

history h is atomic then the history M(h) in the consistent system is consistent. 

Construction of Serial Specifications in Equivalent Atomic System 

In our informal version of the proof, we argued that for each transition tea that 

executes at the object r Ct in the consistent system, It is necessary to encode the 

entire history of transitions that execute at rc1 before tea in t 8 • The set of equivalent 

transitions T1 at the equivalent object r1 can be defined as: 

Tl =Tel x Tei· 

where T Ct is the set of possible transitions in the object rc1, 

T Ci• is the set of all possible sequences of transitions in T Cl 

The first component of a transition t
8 

in T1 corresponds to the equivalent transition 

tea in T Cl. The second component encodes the sequence of transitions that were 
executed at rc1 previous to •ca· To make sure that the second component does 

encode such a sequence and the histories in the atomic system has a 1-1 mapping 

with those in the consistent system, we constrain the set of histories H in the atomic 

system to be coherent: 

1 • if h = ..• t
8 

••• E H 

and t• = <tea' t•ca>, tea ET Cl' tsea ET Cl• 

and Vtd = (tCd' tscd> such that h = ... td ••• t 8 ••• : tCct~T Cl 

thent•ea = O 

(i.e., if t
8 

is the first transition that belongs to r1 in h, then the aecond component of t 8 

should be an empty sequence.) 
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2. if h = •.. t
8 

••• tb ... E H 

and ta = <•ca' tsca>' tb = (tCb' tscb>' •ca• tcb ET Cl' tsea, tscb ET Cl• 

and Vtd = (tCd' tscd> such that h = ... t 8 ••• td ... tb ... : tcdf:T Cl 

then tscb = tsca I tea 

(i.e., if t
8 

and tb are consecutive transitions that belong to the same object, then the 

second component of tb should be the concatenation of the second and first 

components of t
8

.) 

The coherence requirement is an additional requirement that we need to impose on 

the atomic histories because it can not be expressed with the serial specifications. 

Since the coherence requirement deals with histories rather than serial histories, it 

exposes the concurrency in a system. When serial specifications are used to reason 

about the behavior of a system, concurrency can be ignored. This is not true for the 

coherence requirement. In section 3.4.3, we have talked about a similar requirement 

that requires exposing the concurrency in a system. In that section, we described a 

lower_bound_balance operation on an account object. In order to guarantee that an 

implementation does not return trivial results, such as zero, we require that a result 

has to be one of the possible results given the many possibilities of serialization 

orders and operation outcomes. Since this guarantee is a separate requirement from 

the serial specification, we cannot assume any non-trivial results when we reason 

about the behavior of lower_bound_balance using only the serial specifications. 

Given that histories in H are coherent, there is an obvious 1-1 mapping M and its 

reverse M" 1 between H and He, the set of possible histories In the consistent system: 

M((tC•' tsca> I (tCb' tscb> I ···) = tc.tcb ... 

M"
1
(tca•cb···> = <tea' O) I (tCb' O) I··· if tc.ETc1, tcbETCJ' i'*J 

<tea•<» I (tCb' tea> I ··· if tea ET Cl' tcb ET Cl 

We will reuse the symbols M and M" 1 to stand for the obvious mappings between the 

computations in h and he, or the mappings between GCh and a corresponding 
c 
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graph in Computations(h) X Computations(h). For notational convenience, we 

assume: 

VhEH, \ft8 Eh: t 8 = (tea' tac.> 

Note that if •ca appears in he at the object r Cl' then t•ca is the concatenation of all 

the transitions that execute before tea at rel' In other words, tsc
8
ltc8 is an initial 

subsequence of hcfr ca· 

We now proceed to finish our definition of the state machine of r1 by defining S1 (the 

set of states), 11 (the initial state), and N1 (the state transition function). 

Let s1 = Tc1• 

'• = 0 

critical(tb, tscd> = {tcx Etscd I <•ex' tcb>Ec} 

N1(tsca' tb) = t•cJltcb iff critical(tb, t•ea> ~ criticel(tb, tscb> 

and Nc10cl' 18cbltcb> • J. 
In the definition of N1 above, two conditions have to be satisfied in order for 

N1(t•ca' tb) to be defined. The first condition requires that critlcal(tb, t•ca> is a 

subset of crltlcal(tb, tscb>. In other words, all the conflicting transitions that 

execute before tcb are serialized before tb. The ·second condition requires that 

Nc1<•c1, tscbltcb> is defined. In other words, the transition tb must be valid 

according to the local execution order at r1, since this is required in the consistency 

definition. 

The following two lemmas will show that a history he is atomic If and only if the 

equivalent history M"1 (he) is consistent. 
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Lemma 1: if he is a consistent history then M"1(hc) is an atomic history 

Proof: 

Suppose he is a consistent history, let M"1(hc) = h 

Let L be a total order of all the computations in Computatlons(h) 

such that it is consistent with M" 1 (Geh ) 
c 

Suppose Serial(hfr1, U = t 8 tb ••• tk.1 tk 

We will use induction 6n k to show that N1(11, Serlal(hlr1, U) =-: .L 

Basic Step: 

From the definition of critical, we know: crltical(t
8

, O) = IZJ 

=> critical(t8 , <>) = flJ ~ critlcal(t8 , t•ca> 

Also, since tsc.ltca is an initial subsequence of hcfr Cl 

and Nc10c11 hcl1c1> - .L 

=> NCl(ICI' 18ca11ea> - .L 

Hence N1(o, t
8

) • tea • .L 
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Induction Step: 

Suppose N1(11, 1a1b···1k·1) • .L 

From the definition of N1, we know: N1(11, t 8 tb ••• tk_1) = tea•eb···tek.1 

Suppose tx E critical(tk, •ea•eb···'ek.1) 

=> 1ex E 1ea1eb···1ek-1 and <•ex• tC.k) EC 

=> (CompCx' Compck> E Gch and (tCx' •ck> EC c 
=> he = ... tcx···tck""" and (tCx' tck) € C . 

=> •ex e ••ck and (tCx' tck> E c 
=> tcx E critical(tk, tack> 

Hence critlcal(tk, tc8 tcb···'ck·1) ~ critical(tk, tack> 

Also, since tsckltCk is an initial subsequence of hclrc1 

and Nc10e1' heir a>• .L: 

=> NCl(ICI' 18ekltek> - .L 

=> N,<•ca1eb···1ck·1' tk> • .L 

~ N101, t 8 tb ••• tk) :vt .L 

Hence h is an atomic history 

QED 
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Lemma 2: if h is an atomic history then M(h) is a consistent history 

Proof: 

Let he = M(h) 

Suppose he is not a consistent history 

=> 3rc1 3tcaEhclrct= Nc10c1' 18ea11ea> = .L 

or a cycle of transitions exists: 

3<tcm2' 1ca1>, <•ca2' 1eb1), .•. , (tCl2' 1em1> EC 

s.t. he = ···1cm2···1ea1 ••. , he = ···1ca2···1eb1 ••• , ••• , he = ···1e12···1em1 ••• 

and 1cat' 1ca2 E Compca; 1ebt' tcb2 E Compeb; ••• ; 1emt' 1em2 E ComPcm 

Suppose 3rCI 3tc8 Ehcfrc1: Nc10c1, t•cJtca> • .L 

=> 3r1 3t8 Ehtr1: Nc10el' tscJtea> = .L 

=> 3r1 3t
8
Ehfr1:N1(s,t

8
) = .LtorallposaibleaES1 

=> h is not an atomic history, contradiction 

Suppose the cycle of transitions exists. 

Since h is an atomic history 

=> 3 a total order L of Computationa(h) s.t. Vr1 N1(11, Serlal(hlr1, L)) • .L 

=> 3(Comp1, Comp.)€L s.t. <tc.2 , tc11 >Ec, 

tc.2 ECompC•' tc11 ECompet, and he = ... tc.2 ••• tc11 ••• , 

=> t11 E Prefix, where Serlal(hfr1, U = Prefix I t.2 1 Suffix 

=> tctt E crltlcal(t.2 , N1(11, Prefix)) 

Since •e11 f t•c.2 

=> tc11 f critlcal(t82, t•c.2> 

=> N1(11, Prefix I t.2> = J. 

=> h is not an atomic history, contradiction 
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Hence he is a consistent history 

QED 

From Lemmas 1 and 2, we know that given any set of objects r Cl, their specifications 

which are defined with NCI' Sci' lei' and T Cl' and a set of conflicting pairs of 

transitions C, we can construct an equivalent set of objects r1, their serial 

specifications which are defined with N1, S1, 11, and T1, so that: 

he Is a consistent history iff M.1 (he) la an atomic history 

6.3 Objects with Simple Serial Specifications 

With lemma 1 and lemma 2, we have shown that atomicity is at feast as powerful as 
the consistency definition. However, the serial specifications that we have 

constructed above are impractical in that they require encoding the entire previous 

history in a transition. The more complicated a seriaJ specification becomes, the 

more difficult it is to understand. Thus, although atomicity is as powerful, it is not 

always easier to understand. In this section, we will argue that the serial 

specifications can be simplified in many cases and still have the same behavior and 

concurrency. In particular, we will show that for a particular class of objects in a 

consistent system, their specifications can be used as the serial specifications for 

their equivalent atomic objects. 'No complicated artificial serial specifications have to 

be constructed~ Since the specifications in the two systems are just as easy to 

understand and the concept of atomicity is easier to understand than the concept of 

the consistency definition, we will claim that our approach is preferable. 

We will first define this class of objects, which we call accurate objects. Then we 

prove a lemma which shows that the set of consistent histories is a subset of the 

equivalent atomic histories when accurate objects reuse the specifications of their 

counterparts as serial specifications. Finally we argue that the class of accurate 

objects is a large claas. 
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6.3.1 Accurate Objects 

Ignoring the requirement that a consistent order must exist, the only difference 

between a consistent system and an atomic system is that the former can execute its 

transitions in a local execution order, whereas Jhe latter has to make its transitions 

appear to be executed in a global serialization order. In general, this results in less 

concurrency for the atomic system. Informally, because a pair of transitions may not 

"commute", an implementation of the atomic system may create conflicts in the 

process of making sure that the pair appears to execute In the serialization order. A 

pair of transitions tea and teb commutes if: 

v he, he' E Tei· 

Nc10c1' he U tea I 1eb D he'> = .L lff Nc10c1' he I 1cb I 1ca 1 he'> = .L 

Consider an object r ca in a consistent system with the property that all non

commutative pairs of transitions are conflicting. Suppose we constru¢ an equivalent 

object r1 in an atomic system using the specification of 'ei as its serial specification. 

Suppose a transition t2 is executed after a transition t1 . There are two possible 

scenarios: either t1 and t2 commute or they do not. In the first scenario, since t1 

and t2 commute, no conflicts will be created in either system. Regardless of the 

serialization order or the consistent order, the transitions t1 and t2 will be valid. In 

the $eCOnd scenario, t 1 and t2 do not commute. In a conaiatent system, because t 1 

and t2 are also conflicting, t2 can only proceed If the implementation is sure that t2 

is ordered after t 1 in the consistent order. Reusing the consistent order as the 

serialization order, we can achieve the same concurrency In the atomic system: t2 

can only proceed if the implementation is sure that t2 Is ordered after t 1 in the 

serialization order. 

This property of r Cl can be defined more formally as follows: 

'Vtca' 1eb E T e1= if Ne10e1' he I 1ea 11eb I he'> 1111 J. 

and Nc10c1, he I teb I tea I he') • J. for some he, he' E T ci • 

then <tea' teb> e c 



r Ci has the property that whenever a pair of transitions does not commute, then it is 

conflicting and belongs in C .. We call r Cl an accurate object. 

Notice that commutativity depends on the definition of Ncr For example, suppose 

the specification of a bank account object is defined with the state machine in figure 

6-1. This specification is similar to the one we defined in figure 3-1 except that 

insufficient_tunds may be returned even when the balance is more than enough to 

cover the withdrawal. The motivation of this non-determinism is to allow a 

pessimistic reply to be returned immediately instead of being delayed by tentative 

updates. 

In the state machine in figure 6-1, the only pairs of transitions that do not commute 

are (read_balance_x, deposit_y_okay), (depoait_y_okay, raad_balance_x), 

(read_balance_x, wtthdraw_y_okay), (wtthdraw_y_okay, read_balance_x), and 

(deposit_x_okay, wtthdraw_y_okay). The transition pair (wtthdraw_y_okay, 

depostt_x_okay) commutes since the extra deposit does not invalidate the 

withdrawal. Also, the transition wtthdraw _xJnsuf commutes with all other 

transitions, even though "normally" we would expect It not to commute with 

deposit_y_okay and withdraw_y_okay transitions. 

Sc1: real numbers 
Tc1: <deposit(x), rc1, aXokay, rCI' a> = depoait_x_okay 

<withdraw(x), rCI' aXokay, rCI' a> = wtthdraw_x_okay 
<withdraw(x), rCI' aXinsufficientJunda, 'ca• a> • withdraw_xJnsuf 
<read_balanceO, 'c•' axx, 'Cl' a> = react_x 
where a is a computation, x is a positive real number. 

1c1= 0 

Nc1<s, deposit_x_okay) • s + x 
Nc1(s, wtthdraw _x_okay) = s • x If a ~ x 
Nc1(s, withdraw_xJnsuf) = s 
Nc1<s, read_x) = a If a = x 

Figure 6-1 :Specification of a Bank Account Object in a Consistent System 
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6.3.2 Specifications of Accurate Objects Can Be Reused 

We will show that if r Ci is accurate and the serial specification of the equivalent 

object ri is defined as: 

1i = 1c1' SI = SCI' Tl = T Cl' NI = NCI 

then the set of atomic histories includes the set of consistent histories. An 

equivalence in behavior and concurrency is achieved without defining artificial serial 

specifications for r ci· Rather, the same specification used in the consistent system is 

used. 

The current consistency definition precludes the two sets of histories from being 

equal. ~owever, the stronger requirement of equality is not necessary as histories 

that are atomic but not consistent are indistinguishable from the other atomic ones in 

the sense that all the atomic histories can be generated by some serial execution. 

Equality can be proved if we use the following more general consistency definition: 

he is a consistent history iff 

GCTh is acyclic and Vr1 3L1: Nc10c1, Serlal(hcfrc1, L1)) • .L 
c . 

where L1 is a total order of the transitions In hcfrca 

GCTh = { (CompCa' Compcb> E Computationa(hc) X Computattons(hc) 
c 

such that <tea• tcb>EL1 for some I, <tea, tcb>EC, tea EComPca• 

tcb ECompCb' Compea :;11: Compcb} 

Using the new definition does not change our previous results except that N1 in 

section 6.2.3 has to be redefined. In the following proof, we will use the old 

definition. 

Lemma 3: if he is a consistent history then M"1(hc) Is an atomic history 

(The mappings M and M"1 can be extended in the obvious way. For example, 

suppose tcb is a transition of an accurate object whereas tea and tee are not. 
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M((tca• tsca> U tcb H <•cc• tscc> H ••• > = •ca•cb•cc··· 

M·
1
<•ca•cb•cc···> = <tea•<>) I 1cb H <tee•<>) I··· 

<tea•<» H •cb I <tee• •ca> I··· 

if •ca ET Cl' •cc ET CJ' i:;tj 

if tea ET Cl' tee ET Cl 

If all the objects in the system are accurate, then M and M"1 become the identity 

mapping.) 

Proof: 

Let Commut.attve1 C T Cl• X T Cl• s.t. (hca• hCI ') E Commutatlve1 iff 

1. Nc10c., hc1> :;11: .L, and 

2 • NCl(ICI' hc1') 116 .L, and 

3. hc1 = hflt1l•2lh', hc1' = hfft2llt1lh' where •1• t2 ET Cl' or hc1 = hc1' 

Let Reachable1 be the transitive closure of Commutatlve1 

Suppose he is a consistent history, let M" 1 (he) • h 

Let L be a total order of all the computations in Computations(h) 

such that it is consistent with M" 1 (GCh ) 
c 

For non-accurate objects, we can show that N1(11, Serlalthlr1, U) • .L as 

before. 

For accurate objects rc1, let hclrc1 = hfr1 = t 1t 2 ••• tm.1tm 

In the rest of the proof we wiH use induction on k to show that: 

( Serial(t 1 ••• tk, L)ltk • 1 ••• tm, heir Cl ) E Reachabte1 Vk • 1,2, •• ,m 

In particular, since it is true fork= m: 

=> (Serial(t 1 ••• tm, L), heir ca> E Reachable1 

=> Nc10c1, Serlal(t1 ••• tm, U) II* .L 

=> N1(11, Serlal(hfr1, U) • ..+ 
=> M· 1 (he) is an atomic history 
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Basic Step: k = 1 

It is obvious that (t1 ••. tm, heir ci> E Reachable1 as: 

t 1 • .. tm = heir Cl and Nc1Uc1' heir c1> ;if& J. 

Induction Step: 

Suppose ( Serial(t 1 ... tk, L)Utk + 1 ••• tm, heir Cl ) E Reachable1 

Let Serial(t1 ••• tk, L) = u 1 ••• uk 

Let Serial(t1 ... tk+ 1, L) = u 1 ••• uJtk+ 1uJ+ 1 ••• uk 

From the definition of L, we know: (tk + 1 , uJ + 1 ), ••• , (tk + 1 , uk) ( C 

=> Nc1Uc1, u 1 ••• uk·ttk. 1uktk• 2 ... tm) ;if& J. since 'ca is accurate 

• ( u1 ••• uk.1 tk+ 1 uktk+ 2 ••• tm, u1 ••• uk.1 uktk+ 1tk• 2 ••• tm ) E Reachabte1 

=> ( u 1 ••• u1tk• 1uJ+ 1 ••• uktk+ 2 ••• tm, u 1 ••• uk.1uktk+ 1tk+ 2 ... tm ) E Reachable1 

• ( Serial(t1 ••• tk+ 1 , Ultk. 2 ... tm, hclrc1 ) E Reachable1 

QED 

6.3.3 There Are Many Accurate Object• 

There are three possible kinds of pairs of non-commutative transitions: 

1. mutator • observer 
2. mutator • mutator 
3. observer • mutator 

Notice that case 3 is different from case 1 because a mutator transition and an 

observer transition can be defined as conflicting if they execute in one order but 

non-conflicting in the other order. We will argue that in most cases, an application 
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would define the three kinds of non-commutative transitions as conflicting. Hence 

most objects are accurate. 

Mutator • Observer 

The main reason for a mutator-observer pair to be cq>nflicting is that there is no 

concurrency gained by making them non-conflicting. TypicaJly, when a mutator

observer pair does not commute, the vaJidity of the result returned by the observer 

also depends on the outcome of the mutator. Consequently, because the observer 

has to be delayed in any case, making them conflicting does not cause any loss in 

concurrency. 

The bank account object with its Nc1 defined in figure 6-1 can be used to illustrate 

this argument. Suppose the account object has the following pairs of transitions in 

C: 

(read_balance_x, deposit_y~okay), (read_balance_x, wlthdraw_y_okay), 
(depoait_y_okay, read_balance_x), (withdraw_y_okay, read_balance_x) 

These conflicting transition pairs in C prevent audit computations from interleaving 

with fund transfer computations. However, because (depoalt_x_okay, 

withdraw_y_okay) is not in C, the account object is not accurate. We will show that 

no concurrency is gained by making the account object not accurate. 

Consider an implementation of a consistent system In which an algorithm similar to a 

dynamic concurrency control algorithm is used to guarantee that a consistent order 

exists. An incoming transition tis delayed until any previously executed transition t' 

is finalized if (t', t) € C. Also, to guarantee that NCl(ICI' he) :;t ..l, 8 

withdraw_x_okay transition is generated only when previous committed deposits in 

h are sufficient to cover the unaborted withdrawals. A withdraw _x_lnauf transition 

can be generated anytime without creating any oonftlcta. 

The same implementation can be used if we define the account object as atomic with 

Nc1 as its seriat specification and u8e a dynamic concurrency control algorithm. This 
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is true despite the fact that successful withdraw transitions and deposit transitions 

are not commutative. Two factors contribute to this equivalence. First, the 

implementation has the property that the conflicting transition pairs in a history 

generated by the implementation are ordered by their commit timestamps. Second, if 

a withdraw transition depends on some previous deposit transitions, it must be 

committed only after they are committed. Consequently, if we compare the actual 

execution order and the serialization order, a successful withdraw transition is 

ordered after a deposit transition in both orders if the withdrawal depends on the 

deposit. 

To present our arguments more rigorously, consider a sequence of transitions 

s = u1 ••• urdxwyv1 ••• v. such that 

Nc1(1CI' U1···urdxwyv1···v.) :;t .L 

where dx la a deposit_x_okay transition, 

wy Is a wlthdraw_y_okay transition. 

Consider the sequence with the two transitions dx and w Y reversed: 

s' = u1 ••• u,wydxv1 ••• v •• 

Since NCl(ICI' •> - .L 

• Nc10c1• u1 ••• u,>-= .L 

Also, if NCl(ICI' U1 ••• u,wy) - .L 

then Nc10c1, s') :;t .L, since the v1's are not affected by the order of the 

withdraw and deposit transition• 

If the system is implemented with the dynamic algorithm that we described above, we 

know that the order in which the computations commit, L, is consistent with Gch . 
c 

Obviously, either wy is committed after dx or dx is committed after wy. If the former 

is true, we know that w Y is serialized after dx according to L and we would not have 

to "switch" wy in front of dx during the induction step in lemma 3. In other words, 

we do not have to worry about the validity of s'. 
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If dx is serialized after w y• it must be uncommitted when w Y is executed. 

Furthermore, due to the property of the concurrency control algorithm, all the 

committed deposits at the time w Y is executed must be represented in u 1 ••• u ,. 

Assuming that the bank object cannot predict whether uncommitted deposits will 

commit, it implies that: 

NCl(ICI' U1 ••• u,wy) - .l. 

Consequently, we know that for any consistent he generated by the implementation 

that we described above, (Serial(hclrcl' U, hclrc1) € Reachable1 despite the fact 

the account object rc1 is not accurate. Making (depoaH_x_okay, withdraw_y_okay) 

non-conflicting does not gain any concurrency. 

Mutator • Mutator 

Before describing the reasons why a mutator-mutator pair should be conflicting, we 

should observe that there are many mutator-mutator pairs that commute. For 

example, all the mutators in the bank account example commute with one another 

because increments and decrements commute. Similarly, in an airline reservation 

system, increments and decrements of seat counts commute with one another. The 

concurrency problem that we encounter in theee applications is usually due to 

conflicts between observers and mutators. 

. Nevertheless, there are also many examples in which two mutators do not commute. 

One of them involves an "overwrite" transition, such as resetting the value of a 

counter, which does not commute with other mutator transitions. In a calendar 

application, changing the meeting place of a meeting appointment does not 

commute with another transition that changes the meeting place of the same 

appointment. In a FIFO-queue, the order in which items are enqueued determines 

the order in which items are dequeued. Two enqueue transitions do not commute. 

There are several reasons why these non-commutative transition pairs should be 

. conflicting. First, making them conflicting is the only meana to maintain consistency 
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within a set of objects. For example, in a replicated object, if a computation that 

performs an "overwrite" operation at each replica can interleave with other mutator 

computations, the state that results at each replica is no longer consistent. This is 

probably not acceptable to the application. Similarly, if two computations that 

change the meeting place of a meeting appointment are executed concurrently, the 

desirable behavior is to serialize the mutators at each participant calendar in the 

same order, so that at least all the participants would go to the same place for the 

meeting. Making the transitions that change the meeting place conflicting is the only 

way to guarantee such a behavior. The question of why there are two such 

computations initiated concurrently in the first place should be left for arbitration at a 

higher level. 

Second, making two mutators non-conflicting does not improve concurrency in many 

cases. In the implementations that we have described In previous chapters, the 

validity of the results of two mutator transitions does not depend on the outcome of 

other transitions or the serialization order. For example, both inserting an item x and 

removing x from a set object return okay in any case. It is only when there are other 

observer transitions whose validity depends on the serialization order or outcomes of 

these mutator transitions that conflicts may be created. For example, In the 

implementation of a set objact in figure 4-3 on page 100, the only condition under 

which a conflict is created by a delete(x) operation is when the delete(x) operation 

may be serialized between an insert(x) operation .-Id a member(x) operation that had 

returned true. If the implementation uees a dynamic concurrency control algorithm, 

the only situation that such a condition can be met is when the inaert(x) operation is 

committed and the member(x) operation tentative. In an implementation of a 

consistent system, whether a conflict would also be created under such a condition 

depends on whether member(x) and delete(x) are confttcting, which we will discuss 

below. 

Observer • Mutator 
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In an atomic system, a conflict condition depends on the functionality of the 

application. In particular, whether a conflict is created by a mutator that executes 

after an observer depends on the functionality of the mutator and observer. For 

example, in the bank account example described in figure 6-1, no conflicts are 

created by any mutator that executes after the transition withdraw ... xJnsuf because 

insutficient}unds does not guarantee that the balance is less than the amount to be 

withdrawn. 

Similarly, the relaxed semantics of insutficient_tunds can be used to increase 

concurrency in a consistent system. A pessimistic answer can be returned by 

withdraw if there are tentative mutators. Given -that insutficient_tunds has a relaxed 

functionality, defining wlthdraw_xJnauf and depoaH_y_.ay as conflicting does 

not increase concurrency over an atomic system. In other words, defining an 

observer-mutator pair to be conflicting may not increaae concurrency because the 

functionality of the observer may have been relaxed to avoid conflict between a 

mutator-observer pair of transitions. 

In summary, since defining each of the thf98 possible type of non-commutative 

transition pairs as non-conflicting is unlikely to increase concurrency, defining them 

as conflicting does not decrease concurrency either. Consequently, the set of 

accurate objects is Hkety to be a large aet. 

6.4 Conclusion 

In this chapter we have shown that atomicity is at least as powerful as a consistency 

definition that is similar to some other correctnees definitions proposed in the 

literature. By ·a11owing serial specifications to be defined by an application, a 

programmer can construct an atomic system equivalent to a consistent system in 

terms of its concurrency and behavior. However, the~ specifications of the 

equivalent atomic system are too complicated to IUltain our daim that our atomicity 

definition Is easier to understand than the consi8tency definition. We showed that for 
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a class of accurate objects the specification used in a consistency system can be 

used as the serial specification in the equivalent atomic system. Since the 

specifications in the two systems are as easy to understand and the concept of 

serializability is easier to understand than the concept of consistency, we claim that 

atomicity is at least as powerful and easier to understand in the case of accurate 

objects. We argued that the class of accurate objects is a large class because it is 

unlikely to have non-conflicting non-commutative transition pairs. 

This chapter finishes our discussion of concurrency. In the next chapter we will tum 

our attention to resilience problems in a system with long computations. 
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Chapter Seven 

Resilience 

When the execution of a computation spans a long period of time, the probability of 

its encountering some transient failure increases. After a failure, a computation may 

have lost its program state (e.g. local variables) before the failure and be unable to 

resume its execution. Unless precautions are taken to guard against these transient 

failures, a computation becomes more and more unlikely to be completed 

successfully when its length increases. Other than site crashes, transients failures 

also include deadlocks and invalid assumptions in concurrency control algorithms. 

Two kinds of resilience problems are dealt with in this chapter. The first kind of 

resilience problems is concerned with limiting the amount of lost work when a failure 

occurs. The use of nested actions is a partial solution: aborting a sub-action in 

progress does not undo the sibling actions or the parent action. However, using 

sub-actions alone is not sufficient. If a sub-actiot1 is aborted after it had finished and 

the abort is not initiated by the parent action, the parent action has to be aborted 

also. Since the execution of the sub-action may be non-deterministic and have 

affected the subsequent execution of the parent action, a mere re-execution of the 

sub-action is inadequate. Storing the modifications of the sub-action in stable 

memory 90ly helps occasionally, as aborts may be cauaect by deadlocks and invalid 

assumptions iti concurrency control algorithms, as well aa by Site craShes. 

Conversely,·when an action is aborted, all Its sub-actions have to be aborted also. 

Significant delay can be added to the response time when these sub-actions are 

executed at remote sites. Re-executing the aborted action but not the sub-actions is 

not acceptable in general. The. execution of the aborted action can be non· 

deterministic such that a different set of sub-actions may be created in the re-
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execution. 

The second kind of resilience problems is related to communication. In a 

communication network where partitions are frequent, a message may never reach 

the destination site if resending from the origin site is the only measure to mask 

partitions. Consider the communication path between two sites to consist of 

switches linked by direct communication links. If the receiver or one of these 

switches or links is non-operational, a partition is created. Even though individual 

partitions disappear over time,· and the sender site can resend the message 

repeatedly, the system may be partitioned in such a manner that the sender and 

receiver sites never establish a connection along which all the components would be 

operational simultaneously (figure 7·1 ). A special case of this situation is when the 

sender and receiver sites are connected to the communication network at non

overtapping periods of time. 

x-G 
x-G 

Figure 7 -1 :Partitions that Prevent Communication 
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With most current communication protocol implementations, an end-to-end 

connection from sender to receiver is assumed. While switches may resend to 

recover from a transient failure, they currently· do not have the capability to buffer 

messages for an extended period of time, so that the ultimate resending 

responsibility falls back on the sender. If partitions develop, these assumptions 

prevent successful communication. 

In section 7.1, we describe a checkpointing mechanism which allows a program 

interrupted by failures to restart itself at the last checkpoint. A "program" can be 

equated with a procedure in a resource manager. Checkpointing has been 

suggested in the literature [41, 53) to increase the resilience of a computation; our 

goal is to work out a checkpointing mechanism compatible with the implementation 

paradigm described in this thesis. In addition, because of our assumption that 

communication delays can be significantly long, we will discuss how to minimize 

aborting remote sub-actions · by coordinating the checkpoints with remote 

invocations. Another difference between our work and other wark on checkpointing 

mechanisms relates to the amount of information stored in a checkpoint. In order to 

avoid checkpointing every piece of information accessible to a program, we will 

describe how the program can specify a subset of its state to be preserved across 

checkpoints. 

. In section 7.2, we describe how messages can be relayed through message transfer 

agents (MTA 's). The protocol between two MTA's or an MTA and its client is simple, 

minimizing the state that needs to be kept on both sideS. MTA's are capable of 

buffering messages as well as storing messages jn stable memory so that messages 

are not lost with site crashes while waiting for partitions to disappear. 

7.1 Checkpoints 

This section describes how a program can checkpoint its state during execution. At 

a checkpoint, all the updates to the shared objects accessed or created by this 

190 



program should be stored in stable memory. These shared objects include all the 

objects accessible from the per•anant state of the resource manager. In addition, 

any objects local to this program (e.g., local variables) must have their updates 

remembered in a known location in stable memory. Since it may be too expensive to 

copy all the accessible local state into stable memory, we will describe .how the 

application program can specify a subset of the local state. Only objects in this 

subset are accessible after the checkpoint. 

Due to our decision that only a subset of the state accessible to a program Is 

preserved by a checkpoint, and because a procedure is a "19r& convenient unit than 

a process to specify the subset, we will equate a program with a procedure. 

Obviously, ·Check.pointing only the state of a program is not sufficient. To guard 

against site crashes, all the ancestor programs on the call stack at the same site must 

also be checkpointed. It may also be appropriate to extend the checkpointing 

beyond this site. 

Our approach may provide less availability than a system in which the checkpointed 

state is replicated in another site with relatively independent failure characteristics. 

To determine the appropriate trade-off, availability should be evaluated against the 

cost and complexity of replication. Complexity can be reduced at the cost of special 

hardware support (e.g., dual-ported disks). 

In the remainder of this section we describe our checkpoint mechanism in greater 

detail. We will describe the actions taken at checkpoint time and faUure occurrences. 

7. 1 • 1 Checkpoint Time 

Our discussion of the actions taken at checkpoint time will start with a brief 

description of the local state that needs to be stored by a checkpointing program. 

Storing the local state accessed by a program is not enough to guarantee resilience, 

however. We will also discuss how the objects accessed by previously Invoked sub

programs can be stored in stable memory, and how checkpoints can be propagated 
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to ancestor programs. 

7. 1. 1 . 1 Check pointing a Program 

At a checkpoint, a program can specify a collection of local variables in a checkpoint 

record. Together with the peraanent state of the resource manager, a checkpoint 

record constitutes the accessible state after the checkpoint. 

Since abstract atomic objects of an application are eventually implemented using 

globally atomic objects or locally atomic objects supported by the language system, 

storing the accessible state requires storing these system·~ objects into stable 

memory. For concreteness, we will assume that the system· level objects are 

implemented using read/write I~ and storing the objects into stable memory 

requires writing log information that contains new values of modified objects into 

stable memory [44]. Other algorithms are possible (48, 17). 

When the log records that contain the values of modified objects are written out, they 

are associated_ with the corresponding checkpoint so that a consistent set of values 

can be restored after a failure. The order in which log records are stored can be 

used to determine the order of different checkpoints taken by a computation. The 

creation and preparation of a sub-action can be regarded as special checkpoints and 

ordered with other regular checkpoints in the log. When a restart is needed later, the 

ordering in the log can be used to determine the latest checkpoint to rollback to. To 

model checkpoints taken by parallel actions, an acyctic directed graph instead of a 

total order can be used to model the order. 

When a checkpoint is taken, an object checkpointed may be locked or a previously 

acquired lock may have been released. If the object is still locked, this can be 

indicated in the log record so that the lock can be retained when the object is 

restored. If the lock is released, it is becau8& the object i8 a locally atomic object and 

the local computation that acquired the original lock had committed. If any changes 

made by the locally ·atomic computation had _been written out to stable memory, no 
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further work needs to be done. Otherwise, any changes made by the locally atomic 

computation, including the decision to commit the locally atomic computation, can 

be flushed to stable memory. 

One complication remains. If a locally atomic object is checkpointed while a lock is 

held and the lock is subsequently released, it may not be possible to rollback to that 

checkpoint because some other locatty atomic computation could have accessed the 

object and possibly committed. One of the solutions is to disallow checkpointing a 

locally atomic object when it is locked. This is not a severe restriction because we 

expect cheekpoints to be taken between, and not during, short locally atomic 

computations. Linguistically, a checkpoint can be taken as the end of a locally 

atomic computation, which forces tocks to be released at the checkpoint. Another 

possibility is to discard the checkpoint as if it had never been done when locks are 

released tater. The decision to discard a checkpoint can be written to stable memory 

together with the decision to commit the locally ·atomic computation and release 

locks. 

Log records about a checkpoint can be discarded ·when the action in which the 

checkpoint is executed is finalized25• 

Linguistically, in order to enforce the scope of the local variables so that the program 

after the checkpoint can only access those objects contained in the· checkpoint 

record or per•nent state, we require the program to continue in a separate 

program module after a checkpoint. We call this program module a continuation 

procedure, the name of which is stored in stable memory and associated with the 

checkpoint. The permanent state is accessible to atl program modules in the 

resource .. nager. The checkpoint record can be made accessible to the 

continuation procedure as its "arguments." See figure 7-2 for an example. 

25tt the only source of failur. is iite craahe8, a chackpoint can be di8carded once the action 
executes a later checkpoint°' iB pr9p81'8d. 
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calendar• resource aaanagar i1 ••• 
permanent state ii 

a: tabla[1lot] 

maka_appointatent •procedure( ••• ) 
1oca11: integer 

chackpoint(localt, ••• ) 
.continua at contt 
and aaka_appo1ntllent 

contt • procedura(clocalt: integer, ••• ) 

••• clocal t ••• 

• • • • • • • 
and contt 

Figure 7-2:A Program Using Checkpoints 

7 .1.1.2 Propagating a Checkpoint to Previously Invoked Sub-Programs 

In addition to the local objects accessed by this programt other objects accessed by 

the sub-programs previously invoked by this program should also be stored in stable 

memory. Si nee these sub-programs had already returned, no local variables need to 

be stored. Only the objects in the parunent atata of the resource managers in 

which these sub-programs executed have to be written out to stable memory. If a 

sub-program and its parent execute at the same alte, a single stable memory access 

can be used to write out all the log records. If they execute on different- sites, the 

parent has to send messages to inform the sub-program of the checkpoint. 

To simplify our discussion, we assume that all remote sub-programs are executed in 

sub-actions. If these remote sub-actions have already prepared, no extra work is 

needed. Otherwise, prepare messages should be aent to the remote sub-actions. If a 

no vote is returned by a sub-action, this action has to be rolled back to a checkpoint 

taken before the sub-action is created. We wiH diecuss rollbacks In the next section. 
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It is not necessary for the parent to wait for a remote sub-action to prepare before 

proceeding. However, when the parent prepares later, it has to make sure that the 

sub-action has also prepared. 

7 .1.1 .3 Two Kinds of Checkpoints 

Two kinds of checkpoints are allowed in this proposal. The first kind of checkpoints 

is associated with a procedure call. Under our model, the length of a computation is 

attributed to communication delays. Consequently, if a program expects a long delay 

in the return of a remote procedure call, it should execute a checkpoint immediately 

after evaluating any arguments but before the call. If the site in which the caller 

resides crashes during the wait, any previous work, such as calling some other 

remote procedures, and the ongoing call would not have to be aborted. Executing 

the checkpoint before the call minimizes the possibility that the caller will be aborted. 

By associating the procedure call with the checkpoint, we guar~ntee that the 

checkpoint will be immediately before the call and the deterministic processing in 

between would not invalidate the invoke message. 

The second kind of checkpoints is not associated with any procedure calls. These 

checkpoints are executed when a program arrives at some "logical breaks." At 

these logical breaks, the remaining tasks in the program are relatively independent of 

previous tasks. Little or no local state is required to. be stored for the continuation 

procedure. However, if we assume that a program spends relatively little time 

between remote calls, there is less motivation for these checkpoints. 

When a checkpoint associated with a procedure call is executed, the arguments and 

a unique frame identifier of the callee will be stored along with other information in 

stable memory. A frame identifier uniquely identifies a program. We assume that 

frame identifiers are unique over the lifetime of a system. Storing the frame identifier 

of a _callee ensures that a program is aware of its waiting for another program to 

return when It is restarted. The continuation procedure will only be invoked when the 

procedure call finally returns. A handle can be provided to access the results of the 
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call in the continuation procedure. The use of frame identifiers will be discussed 

further in the next section. 

A program can anticipate the delay in calling a remote procedure and execute a 

checkpoint at the time of the call. On the other hand, a program can also delay the 

checkpoint until it is informed by the system of the difficulty in communicating with 

the remote site. We expect the system to convey such difficulties through some 

system-defined exceptions.. In the discussion below, we assume that an 

unavailable exception is raised at a remote call when communication with the 

remote site is not possible. It is possible that the invoke message might have been 

delivered and the remote call is actually executing. 

The alternatives available to a program when an unavailable exception is raised 

depends on the exception model. With a resumption model [36), a program can 

execute . a checkpoint and resume the outstanding call. With a termination 

model [29), the outstanding call is abandoned. The resumption model has the 

advantage that the call will not be aborted if it had been, or will be, started. The 

program also has the choice of abandoning the call, and pursuing some other 

alternatives, in which case the sub-action associated with the call will be aborted if it 

is ever going to be started. After the checkpoint and resumption, the state of the 

program is as if the checkpoint had been anticipated. 

7 .1.1.4 Propagating a Checkpoint to Ancestor Programs 

In the discussion above, we have ignored the interaction between a program that 

executes a checkpoint and its ancestor programs. In fact, the resilience of the 

computation is not much improved if only the current program is cheekpointed. In 

order to notify the caller of a checkpolnting program, executing a checkpoint 

statement will also cause a special exception to be raiaed inside the caller. At the risk 

. of a slight misnomer, we can reuse the.name unava 11alt1• for the special exception • 

• Unless the caller had anticipated the delay by a previous checkpoint, the c811er has to 

provide a handler for the exception. To handle the exception, the caller can decide 
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to checkpoint its state and resume the callee. The exception can be avoided if the 

callee knows that the caller has a checkpoint associated with the call. 

If the caller did not anticipate the checkpoint and decides to checkpoint when it 

receives the exception, it would in tum cause an exception to be raised in its own 

caller.. Thus, checkpoints are propagated along the call chain (see figure 7 ·3). This 

propagating of checkpoints can be thought of as translating volatile stack frames i~to 

a chain of "stable stack frames," each .of Which consists of the follOWing: 

1. a checkpoint record, 
2. the frame identlfterS of this program and Its caller, 
3. a continuation procedure 
4. the frame identifier of the callee and the arguments of the call if the 

checkpoint is associated with a procedure call. 

During a checkpoint, storing updated objects and the stable stack frame into stable 

memory, notifying the caller, and executing the continuation procedure can all 

proceed in parallel. If the caller does not resume this program, the current action can 

be aborted asynchronously. The parallelism is needed as the caller may be from a 

remote site, creating. a long delay in notification; If the caller and callee are at the 

same site, their checkpoints can be synchronized in such a manner that the storing 

of their states into stable memory can be buffered in a single access to stable 

memory. On the other hand, there may be applications that may prefer to minimize 

the probability of rollbacks before starting the continuation procedure. A 

synchronous checkpoint can be provided; the continuation procedure will only be 

invoked after the following has happened: 

1. the caller has resumed this program, 
2. the objects updated by this program and its sub·programs have been 

stored in stable memory, 
3. the procedure call associated with the checkpoint haa returned. 
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Figure 7·3:Propagating Checkpoints to Ancestor Programs 
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7 .1.1.5 Checkpointing Parallel Sub-Actions 

Consider when a checkpointing program is one of the parallel sub-actions invoked by 

a parent action. Like other checkpoints, the program has to supply a continuation 

procedure and a checkpoint record. The creator of these parallel sub-actions is also 

notified so that it can checkpoint if it had not anticipated the delay. In its checkpoint, 

it will . remember the sub-actions that have not yet finished. Its continuation 

procedure will be invoked only after all the remaining sub-actions are finished. 

Parallel sub-actions can be used to specify an application time-out. Figure 

7-4 describes a scenario in which a parent action creates two parallel sub-actions: 

one of them sends out requests to set up a meetingt the other contains a checkpoint 

statement and remembers a deadline. The continuation procedure of the timer sub· 

action will sleep until the deadline Is reached. When the timer sub-action is 

awakened, it will abort the sibling action or perform other necessary tasks. If the 

sibling action is finished before the deadlinet it will abort the timer sub-action and 

return. We assume that there are mechanisms to abort sibling actions. 

7 .1.2 Restart Time 

This section describes the process of restoring the state of a program to a 

checkpoint. First, the restartable programs have to be identified. This Is not a 

straightforward operation as checkpoints can be asynchronous at different sites. 

Then the states of the sites involved have to be restored to those recorded by the 

checkpoints and the programs associated with the checkpoints are restarted. We 

will focus on the case where the failure is caused by a site crash. Later we will 

describe variations to handle other types of failures. 

7.1.2.1 Identifying the Restartable Program 

After a failuret the system should consult the record of the checkpoints. The goal is 

to identify the last checkpoint executed by a program whose caller is still expecting 

the program to return. If the failure Is caused by a site crash, the system can retrieve 
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make-appointment = procedure( ... ) 

coenter 

remote-mark-subaction( ... ) 

timer-subaction( ... ) . 

end except when available: 

checkpoint( ... ) 

resume % subactions 

·continue at contm 

end 

. end make-appointment 

remote-mark-subaction ... procedure( ... ) 

... % invoke remote subaction 

checkpoint( ... ) 

continue at contr 

end remote-mark-subaction 

timer·subaction • procedure( ... ) 

... % calculate deadline and wait for 

.. . % short time before checkpoint 

checkpoint( deadline) 

continue at contt 

end timer-subaction 

contm = procedure( ... ) 

if expired signalled 

then % abandon 

end 

endcontm 

contr • procedure( ... ) 

... % examine result of 

... % remote subactlon 

abort sibling and return 

endcontr 

contt • procedure(t: time) 

afeep-until(t) 

abort sibling and 

signal expired 

endcontt 

Figure 7-4:Using Parallel Sub-Actions to Specify Application Time-Out 
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all the checkpoint records that belong to unprepared actions from stabfe memory. 

Recall that the checkpoints ~reated by a program are ordered in their execution 

order and that sub-action creation and preparation can be regarded as special 

checkpoints. Only programs that were executed by unprepared actions need to be 

restarted. Programs that had returned before an ancestor program executed a 

checkpoint need not be restarted either. 

A program can be top-level if it executes the top-levet action, in which case, the state 

of its caller, if the program has any, is irrelevant for recovery purposes. For the non

top-level programs that potentially need to be restarted, - the frame identifiers 

recorded during a checkpoint can be used to identify their callers. A caller can be in 

a remote site and not necessarily checkpointed. If the caller is local, one of the 

checkpoints of the caller should be associated with a procedure call and expecting 

this program to return. 

To determine whether the caller of a program has a checkpoint at the call or is still 

waiting for the call to return, a message has to be sent to a remote site if the caller is 

executing remotely. If a caller neither has a checkpoint at the call nor is it waiting for 

the call to return, the callee should be asked to abort. If the caller is still waiting for 

the call to return, no more work -needs to be done and the callee can restart. If the 

caller is not waiting for the call to return but has a checkpoint at the call, the caller 

can continue up the chain and determine whether the caller itself can restart at that 

checkpoint. If the caller can restart at that checkpoint, the callee can restart also. 

7. 1.2 .2 Restarting a Program 

In order to restart a program as quickly as possible, two optimizations can be 

introduced. First, the sending of an inquiry m111age to a remote caller and a restart 

can proceed in parallel. This is crucial as th.a may be a long delay before an 

answer is returned. Second, a call meaaage that Invokes a remote callee can 

indicate whether the caller is checkpointed at the call. If It is. no inquiry messages 

are needed later. Also, positive replies of an inquiry manage can be saved and later 
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inquiry messages directed to the same caller can be omitted. 

When a program is restarted at a checkpoint, all the work performed after the 

checkpoint, including any changes to the local objects and any sub-action created, 

should be undone or aborted. The values of the local objeets are restored according 

to the values recorded by the checkpoint. See (54, 35) for a discussion of detecting 

orphan sub-actions that are still running even when they are supposed to be,aborted. 

To avoid committing supposedly aborted sub-actions, the return, prepare, and 

commit.computation messages should contain the tree of action identifiers that 

ought to be committed. An action should refuse preparation if the action tree 

contains sub-actions that should have been aborted. 

To restart a program on a crashed site, the continuation procedure associated with 

the checkpoint can be invoked directly if the checkpoint is not associated with a 

procedure call. Otherwise, the program can re-invoke its callee. 

7.1.2.3 Other Types of Failures 

Dealing with other types of failure is similar. If an operation a is the victim of a 

deadlock, or a has made an invalid assumption In an optimistic concurrency control 

algorithm, the checkpoint before a can be considered as the "last" checkpoint 

before a "crash" (see figure 7-5). All WOrk performed after the "last" checkpoint has 

to be undone. Determining this checkpoint requires remembering the ordering of the 

checkpoints and the points at which operations occur. If this is too expensive, the 

beginning of the action that a is executed in can be used as the last checkpoint. 

7.2 Message Transfer Agents 

In the introduction, we described a communication problem due to the improbability 

of having all the components along a communication path operational at the same 

tir:ne. This section describes how to alleviate the problem with Message Transfer 

Agents (MTA 's). 
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If a destination resource manager has a fixed network address, the system can 

determine which MTA is "closest" simply by some table lookup. However, a resource 

manager can occasionally be relocated from one address to another. For example, a 

resource manager can be reincarnated in a different machine when a previous one 

crashes, and portable computers can be carried around and reconnected to the 

network at different locations. If the new address has not been propagated in the 

system, the table lookup may not return the closest MT A. 

This problem can be alleviated in two ways. First, the source and destination of a 

message can be expressed in resource manager identifiers, instead of network 

addresses. Each relaying MTA can perform a table lookup for the best MT A to send 

to. Another possible solution is to allow each resource manager to specify a set of 
. . 

MTA's as its home MTA's. For example, a user may specify MTA's which are closest 

to his home or office as the home MTA's for his portable calendar resource manager. 

Messages can be replicated and sent to each of these home MTA's. Although extra 

resources are required for replication, these replicated messages are otherwise 

harmless because they are detected by the destination resource manager. A home 

MT A that receives a message will try to send the message to the destination resource 

manager periodically. A resource manager can also poll its home MTA's periodically 

or when it is conscious of its being reconnected to the network • 

. To avoid keeping messages in an MTA for an extended period of time and employing 

complicated algorithms to inform an MTA when messages can be deleted, an MTA 

assumes that it can delete a message when its delivery has been acknowledged by 

the destination resource manager or the next MT A on the path. If the delivery is not 

acknowledged (e.g., the acknowledgment message is lost), the MT A can try another 

path without having to worry about a possible replicated message which is harmless. 

tn fact, a message can be replicated intentionally and relayed through different 

routes to increase reliability and minimize delay even when there is only one home 

MTA. To avoid lost me1:11ages, messages can be stored in stable memory along the 

route. To avoid an MTA being "stuck" with a message, each message is associated 
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with an expiration time and the message can be dropped when it expires. The sender 

of a message is responsible for resending when the message expires. 

Several other protocols [47, 22, 57] provide a similar relaying service. A Simple Mail 

Transfer Protocol which provides a relaying service across transport service 

environments for mail is described in [47]. Sites that are connected to different 

transport services are chosen as relaying points. An asynchronous data distribution 

service for general distributed applications for the SNA architecture is describe in 

[22). A similar service for the CCITI standard is described in (57]. 

The protocol we described above is not meant to be a complete specification but 

rather an outline of the main features. One of the features in our protocol is our 

assumption that a recipient can detect and discard duplicate messages. It allows us 

to simplify our protocol and increase reliability by replicating messages. Also, an 

MT A can discard messages when they expire. It allows the resources of an MT A to 

be reclaimed easily. 

7 .3 Conclusion 

This chapter described the resilience problems that a computation may encounter 

when partitions in the network are frequent. In addition to the increased possibility of 

site crashes during the long execution of a computation, there is also a higher 

likelihood of deadlocks. To avoid a computation being aborted whenever a failure 

occurs, a program can execute checkpoints from which it can be restarted. We have 

described how the state of the program can be specified at these checkpoints. In 

view of the possible long communication delay between two sites, we have shown 

how their checkpoints can be coordinated. A program can execute a checkpoint in 

anticipation of or in response to a long delay iri communication. A program can also 

inform its caller when it is performing a checkpoint. 

A different resilience problem arises when it is unlikely for the sender and receiver of 

a message to communicate synchronously. We described a relaying service which 
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has a simple protocol due to its assumption that duplicate messages can be detected 

by the receiver. 
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Chapter Eight 

Conclusion 

This chapter summarizes our work and suggests future work. 

8.1 Summary 

As the size and complexity of a system grow, it becomes more difficult to understand 

the behavior of the system. Atomicity provides a useful tool to handle this problem. 

In this dissertation we have investigated how long atomic computations can be 

supported. 

There are several questions that we tried to answer: 

1. How to improve the concurrency of a · system with long atomic 
computations? 

2. Given that answers to the previous question may require application
dependent synchronization and recovery, how can the process of 
implementing an application be simplified? 

3. Is atomicity the right model for long computations after all? 
4. How can a long computation be resill~t to transient failures? 

· Two solutions to the concurrency problem have been proposed in this thesis. The 

first solution involves the use of application semantics, which is not a new idea. The 

basis of the solution is to define atomicity using the serial specifications of abstract 

objects, which are specifications of the abstract objects' behavior in an environment 

without concurrency or failures. As long as the external behavior of an abstract 

object appears to be atomic, how the object masks the internal concurrency and 

failures is immaterial. This approach of defining atomicity naturally leads to a trade

off between functionality and concurrency. By relaxing aerial specifications, 

concurrency is increased. Being able to trade off functionality for concurrency Is an 

important requirement in a system with long computations. Given that an 
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implementation cannot predict whether tentative computations will commit and that 

computations can be initiated asynchronously and interleave, a concurrency 

problem is unavoidable unless a "weak" functionality is used. 

The ability to define atomicity based on objects' serial specifications also makes 

atomicity at least as powerful as other correctness definitions that abandons 

atomicity. We have shown that given a consistent system [50], an equivalent atomic 

system can be defined such that the set of atomic histories Is identical to the set of 

equivalent consistent histories. We have also argued that in many cases, the serial 

specifications in the equivalent atomic system are identicat to the specifications used 

in the consistent system. Consequently, atomicity is at least as powerful and easier 

to understand. This result assures us that our atomicity definition is a useful tool. 

In implementing an application, an application programmer is confronted with two 

problems. First, how can the serial specification of an object be defined such that 

there is "enough" concurrency? Second, how can abstract· objects that behave 

atomically be implemented? We introduced a conffict model that measures the level 

of concurrency with how frequent conflicts are created. We have described a 

process with which a programmer can derive conflict conditions from the serial 

specification of an object. Since a conflict condition is a useful ind.ication of the level 

of concurrency in an implementation, the serial specification of the object can be 

designed accordingly. An important characteristic of the conflict model is the 

masking of the underlying concurrency control algorithm. Hence, the designer of a 

serial specification does not have to be knowledgeable or aware of details of the 

underlying concurrency control algorithm. 

The implementation paradigm that we suggested for the implementation of an atomic 

object follows the ~nflict model closely. When an operation is invok8d, it first tests 

whether a conflict is created. If a conflict is created, it must be resolved. Otherwise 

the operation can proceed. We emphaslze simplicity in our implementation 

paradigm. Not only do programs become easier to write, their correctness can also 
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be argued more easily. History. objects are used to capture the necessary 

information that determines whether a conflict is created. We described two 

recovery paradigms that govern how recovery is achieved. 

An important feature of a history object is that, similar to the conflict model, it masks 

the underlying concurrency control algorithm from the application programmer. An 

application programmer can write programs without having to know the underlying 

concurrency control algorithm and its details. The programs written can also be 

ported on systems with different concurrency control algorithms. This portability is 

important when systems with different algorithms may be merged. It is also helpful 

when little actual experience is available to determine the optimal concurrency 

control algorithm. We have shown how the programming interface can be 

implemented with different concurrency control algorithms. 

Another implementation mechanism suggested is the concept of local atomicity 

versus global atomicity. By executing (short) portions of a globally atomic 

computation as locally atomic computations, the programming of application

dependent synchronization and recovery is simplified. A parallel with recursion can 

be drawn. The implementation of long atomic computations is simplified by making 

portions of them atomic to one another. The power of the atomicity concept is 

reused at a different level. 

The motivation for these Implementation mechanisms is to provide a stylized and 

well-understood way of implementing atomic objects. By using the history objects to 

derive conflict conditions, the recovery paradigms to perform recovery, and local 

atomicity to decompose synchronization and recovery, globally atomic objects can 

be implemented easily. 

The second solution that we provide to the concurrency problem is a limited one. We 

have designed two novel concurrency control algorithms that minimize the 

occurrences of costly conflicts. These algorithms provide a limited solution because 

they are effective only under special conditions. For example, for the hierarchical 
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algorithm, costly restarts and long delays can be avoided if distributed computations 

and computations that both observe and mutate are rare. 

Finally, we have discussed a checkpointing mechanism and a reliable message 

delivery service that alleviate some of the resilience problems. In view of the possible 

long delay to communicate between two sites, we have shown how the checkpoints 

within a computation can be coordinated. A program invoking another possibly 

remote program can execute a checkpoint in anticipation of, or in response to, a long 

delay in communication. It can also inform its own caller so that its caller can in tum 

prepare for the delay. Due to the possibly tong communication delay and cost in 

accessing stable memory, the checkpointing process proceeds asynchronously at 

each site. 

8.2 Future Work 

In this section we will discuss a number of areas for further investigation. 

8.2.1 Other Communication Primitives 

In this thesis, we have chosen RPC as the communication primitive. Although it has 

its limitations, such 8s in dealing with interactions that resembles coroutines, RPC is 

relatively more understood and familiar to programmers. The tree of call and returns 

· also fit nicety with the nested action tree. However, the requirement that each call 

must be paired with a return may pose some efficiency probl8m in an environment 

with long communication delays. It is not uncommon to have computations 

consisted of work that need to be done sequentially at several (more than two) sites. 

The arrangement that requires that shortest communication delay wilt have the first 

site invoke the second, the second' invoke the third, and ao on, until the last return to 

the first. This is not possible within the RPC paradigm. 

Another type of communication primitivea that has been proposed is broadcast 

messages [12). Communication cost can be reduced when implementing, say, 
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replicated objects. In particular; the messages thatneed to be relayed through the 

MTA's described in Chapter 7 can be minimized. 

Incorporating new communication primitives requires much rethinking of the deSign 

and implementation of a system. For instance, it is unclear how a nested action tree 

can be defined when the control structure of the computation does not follow a 

nested tree of invokes and returns. 

There is also the problem of language design. A simple semantics of the 

communication primitives should be. presented to the programmers. When the 

communication primitives are implemented on an unreliable network, the 

implementation should be efficient and yet conform to the semantics. 

8.2.2 Hardware Configuration and Reliability 

We have assumed in this thesis that each site is equipped with stable memory. This 

is not necessarily true for most personal workstatit>na. ·One solution is to provide 

stable memory servers shared by the sites without stable memory. The protocol 

between the sites and the stable memory servers must not only be efficient, but aJso 

provide a reliable service seldom interrupted by site crashes. For example, if the site 

on which a resource manager resides crashes, one should be able to reincarnate the 

resource manager on a different site with the help of the stable memory server, 

without waiting for the original site to be. recovered. By concentrating the stable 

memory of a system into fewer stable memory servers, better maintenance can be 

provided to these machines and the system becomes more reliable as a result. 

A more difficult requirement is for a resource manager to be able to continue its 

service using another stable memory server when the original server crashes, with or 

without aborting ongoing computations. The problem is difficult as the resource 

manager may not have a copy of its entire state~ A less ambitious goal is to provide 

some limited service, such as only allowing prepared actions to be committed. Since 

prepared actions have their changes written In the crashed stable memory server, the 
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new stable memory server can record the commitment and retrieve the changes from 

the crashed server later. 

Instead of stable memory servers, a system can replicate the state of a resource 

manager on multiple sites. If these sites have relatively independent failure 

characteristics, the storage reliability may be as high as that provided by stable 

memory. Similar to the stable memory servers described above, the replicated state 

information can also be used to increase availabUity when the resource manager 

crashes. 

A natural extension of this scheme is to replicate not only the state that needs to be 

stored in stable memory, but also that on volatile memory. Long computations 

interrupted by site crashes are not aborted and they can resume execution as soon 

as one of the "backup" sites where the state information is replicated is chosen as 

the "primary." Obviously, a resource manager cannot afford to broadcast every 

memory update to its backups. A checkpointing scheme not unlike the one 

described in Chapter 7 can be used to coordinate the updates at the backups. 

8.2.3 Replication 

A different form of replication can be used to reduce communication defay and 

increase availability of the system. The replication in the previous section can be 

regarded as the replication of system-level objects. RepHcation can also be 

implemented at the application level. Conceivably, an application-level object can be 

replicated in several sites with different repreaentationa. 

Replicating at the application level has the advantage that the semantics of the 

application can be utilized to reduce the number of replicas that have to be 

accessed. Herlihy (20) discusses using the type of an operation to determine the 

quorums of replicas that need to accessed. Different kinds of semantic information 

can be used. For example, the state of an airline reeervation database can be 

replicated in several sites. Each site can sell tiCkelB aftd update their own replica. 
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The updates can be propagated to other sites after they are committed. The number 

of tickets sold can be kept under a ceiling as long as each site is limited to sell only a 

portion of the total tickets left. Periodically the number of tickets left can be 

recalculated. 

The implementation of replicated objects in our system would present an interesting 

(but not mutually exclusive) alternative to the solutions we have proposed for long 

computations. Long communication delays can be avoided if only nearby replicas 

are accessed. Implementing the replicated objects with the programming paradigms 

and mechanisms proposed in this thesis would be an interesting test for these ideas. 

8.2.4 lmplementatlon Experience 

Because the ideas proposed in this thesis have not been implemented, many of the 

system issues are not discussed. There is no doubt that much fine tuning of the 

system is needed to produce a practical implementation. For example, the scheduler 

of the system has to be "fair" and efficient, since there may be many pending 

processes waiting to be scheduled, some of them having been delayed for a long 

time. 

Another critical component of the system is the stable memory manager. In many of 

our arguments, we have relied on the piggybacking of stable memory accesses to 

· make the costs of our algorithms acceptable. Careful coding is required. If the 

stable memory manager is implemented with a remote stable memory server, the 

system performance becomes even more aenaitive to the frequency of stable memory 

accesses. 

The implementation of the communication subsystem is also left unspecified in this 

thesis. In particular, the timeout interval is an important parameter. Too short an 

interval leads to wasted effort in checkpointlng. Too long an interval may jeopardize 

an uncheckpointed computation and delay the appUcation from taking other 

appropriate actions, such as informing the user. 
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