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Abstract 

A new technique for computer to computer communication is presented that can Increase the • 
generality and performance of distributed systems. This technique, called Remote Evaluation, lets 
one computer send another computer a request in the form of a program. A computer that receives 
such a request executes the program in the request and returns the results to the sending computer. 

Remote evaluation provides a new degree of flexibility in the design of distributed systems. In present 
distributed systems that use Remote Procedure Calls, server computers are designed to offer a fixed 
set of services. In a system that uses remote evaluation, server computers are more properly viewed 
as programmable soft abstractions. One consequence of this flexibility is that remote evaluation can 
reduce the amount of communication that is required to accomplish a given task. 

Our thesis is that it is possible to design a remote evaluation system that permits the processing of a 
program to be distributed among remote computers without changing the program's semantics. In 
support of this thesis our proposal for remote evaluation uses the same argument passing semantics 
for local and remote procedure Invocations (call by sharing); it provides atomic transactions to mask 
computer and communication failures; and it provides a static checkjng framework that Identifies 
procedures that can not be relocated from computer to computer. 

We discuss both the semantics of remote evaluation and our experience with a prototype 
implementation. The idea of a remote data type is introduced to let one computer name objects at a 
remote compu~~·. A de~ailed discu~on of t~e conu>il~~~n-time support necessary for 
remote evaluation 1s provided, along with a detailed sample appHt8tiOf't. 
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Chapter One 

Preliminaries 

Distributed computing systems have become commonplace: communication networks routinely link 

personal computers, professional workstations, and powerful. mainframes. A distributed computing 

system lets a system designer distribute functionality to improve performance, to increase availability, 

or to provide for incremental growth. Other systems are Inherently distributed In that their 

components are geographically dispersed. Remote procedure calls may be used to construct a 

program that runs on several computers, but as we shaft see this Idea has several drawbacks. This 

thesis proposes an alternative to remote procedure calls that remedies some of their drawbacks. 

The alternative construct for building distributed systems is remote evaluation (REV), which is the 

ability to evaluate an expression at a remote computer. A computer supporting remote evaluation 

evaluates each expression it receives and returns the results to the sender. This technique, which 

can simplify the design and implementation of distributed systems, can also improve performance. 

We have found a number of scenarios in which.the ability to send an algorithm to the data Is almost 

indispensable. Because the generality provided by REV does not have Inordinate costs, we feel that 

some form of REV should be routinely provided in distributed computing environments. REV 

generalizes the idea of a remote procedure call and has a novel argument passing semantics. The 

thesis covers the meaning, compile-time checkability, run-time requirements, and utility of REV 

requests. 

This chapter begins by introducing our model of a distributed system and then discusses how 

application programmers can build programs that use several computers. After introducing remote 

evaluation, we COJ!lpare it to existing methods for building distributed systems. We concentrate on 

the semantics and cost of these methods and describe . how they affect the generality and 

performance.of dlstrj.butecl systems. We als0 discuss systems thattrfll1S{erexecutabJe):ode ~ 

protection domains on the same or different computers. Finatly, we outline the contents of the thesis. 

1 .1 Distributed System .. Design 

. We view a distributed system as a collection .Qf computer$ linked by a communication system. For the 

purpose of this thesis, we will define a node to be a virtual processor with memory. A node resides on 

a single computer and consists of an address space of processes and objects. An object is an 
.fit • c 

fnsfance of an abstract data type. Although a singfe computer can simultaneously support several 
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nodes, nodes do not share memory and communicate only by sending messages. Thus we are 

concerned with loosely-coupled distributed systems. We assume programmers use an imperative 

programming language with abstract data types and strong type checking. In this thesis, code will 

mean a sequence of instructions. For the most part, we will not be concerned with the representation 

of code. 

The conventional, abstraction-based methodology for building large, centralized software systems 

[26) has been used in distributed systems, but as expfained below performance considerations can 

restrict its applicability. We will argue that REV makes it easier to apply this methodology to . 

distributed systems. In this methodology, a program is developed by decomposing the problem at 

hand, envisioning subsidiary abstractions that solve the subproblems, and then using the 

abstractions to solve the original problem. The same approach is applied to each subproblem, and 

the process continues until all the abstractions have been implemented or exist in the programming 

language. The methodology relies on the following software engineering principles, which control 

the complexity of a system: 

1. Information Hiding: Distinguish the specification (i.e., what something does) from its 
implementation (i.e., how it is accomplished). Release the specification, but keep the 
implementation private. 

2. Generality: When implementing an operation, make it as Independent of the intended 
application as possible. 

These principles promote the reuse of code and therefore can enhance programmer productivity. 

They are captured by the notion of an abstract data type. 

Designers of distributed systems regularly use information hiding, because it reduces complexity 

without significantly affecting performance. Because intemode communication is costly compared to 

the overhead of a local procedure call, designers of distributed systems try to minimize the number of 

times one node communicates with another node. Thus performance considerations usually limit the 

generality in distributed systems. REV will decouple generality from performance considerations and 

let designers of distributed systems use conventional software engineering methodology. 

In a distribut~ system built with this methodologyr~ch node~ (i.e., makes~available to other 
• ·, '· ' ' ,?_: .. ·_·' ·,< ·l-, • 

. nodes) a fixed set of general operations. When writing code that catls these . operafiOns, an 
application programmer uses their specification but not their implementation. Exporting generat 

eperationS'lets nodes accommodate unanticipa(ed appticatifmS Ud·$tylesd use, which is Important. 

when there is a large user community with diverse needs and expectations. ~ remote riottes, 

such as array processers, dispf~ys, l)rinters, and·SQDSOr8, 'May be· viewed as prograrnmable·delices. 

Other remote nodes, such as databases and me systems1 are information f'El)OSitqries .. SQth kinds of 

nodes are likely to be used differently by differefft applications, which means that application 

programmers want nodes to export general operations. 
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· Our goal is to simplify the construction of distributed applications that need both generality and good 

performance. Given the above model of a distributed system, we must answer several questions: 

1. In a single request, how many operations can one node invoke at another node? 
2. What does it mean to send arguments and results between nodes? 
3. What happens when nodes crash and communication links fail? 

These questions have been answered differently by programming language designers, systems 

programmers, and database designers. Section 1.3 reviews their choices and the reasons why the 

choices were made. Before we discuss these alternatives, we Introduce remote evaluation. 

1.2 Remote Evaluation 

Our goal is to give the application programmer fine-grained control over the location of processing in 

a distributed application. We meet this goal with REV, which is the ability to evaluate an expression at 

a remote node. 

In an REV request, the application programmer specifies a program fragment and a remote node that 

will execute the program fragment. The identity of the remote node may not be known until run time. 

As explained in this thesis, the compiler enforces strong type checking and ensures that every 

operation executed by the REV request at the remote node either exists at the node or accompanies 

the request. 

We illustrate how REV works with an example. Consider an REV request that relocates the execution 

of a procedure. Assume that this procedure has no free variables and that every procedure called by 

this procedure is exported by the remote node. Figure 1-1 outlines the processing behind this simple 

kind of REV request but ignores time-outs, retransmissions, and the suppression of duplicate 

requests. The client, which is the node that invokes the REV request, evaluates the expression that 

designates the service, which is the node that will execute the REV request. After determining the 

service, the client evaluates the procedure's arguments and .creates a message containing the 

procedure and its arguments. Then the client sends this request message to the service. When the 

service receives ·the message, it .extracts the procedure and arguments frc:>m the message. The 

service then uses an interpreter to 'eva:luate the procedure with the arguments. The results of the 

evaluation, if any, are placed in a message and sent to the client. When the client receives the reply 

message, it extracts the results, which are the value of the REV request. In short, the REV request 

causes the service to execute a procedure that the clienfwou&d execute if there were no REV request. 

REV requests can net1; i.e., one REV r~uest,ca·i\cont~in ftriOther RSV request. The ability to'nest 

REV requests supports modularity, because a programmer cat');reloeate the execution of a pr.~,edure 

without worrying whether the procedure itself contains REV requests. 

~d 'REV ~sf$ ar~ useful when an af)pllcation .pro'g'ram {1tfats with several remote ~ 
~:t~ 
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CLIENT SERVICE 

insert procedure into message 
insert arguments into message 
send the request message 
wait for a reply message 

receive the reply message 
extract results from message 
return the results 

receive a request message 
extract procedure from message 
extract arguments from message 
evaluate procedur~ with arguments 
insert results into message 
send the reply message 

Flgu re 1·1: A simple view of remote evaluation (REV). 

Consider a distributed mail system that contains registry nodes and maildrop nodes. A malldrop 

contains mailboxes for a subset of the mail system users, while a registry maintains the mapping from 

users to maildrops. Individual mailboxes are not reJ>licated on different maildrops. Assume a 

programmer wants to perform some function on the mailbox of many other users, say to send each a 

customized version of a form letter. The programmer could use REV to have a registry Iterate over the 

recipient list. The REV request would determine the maildrop for each recipient's- mailbox and use a 

nested REV request to customize the form letter at the appropriate maildrop. A more complicated 

program might have better performance, especially if the form letter is short and the recipient list Is 

large. The complicated program would use an REV request at the registry to partition recipients 

according to their maildrop. For each maildrop, the program would use a nested REV request to 

customize the form letter for the subset of recipients whose mailbox exists at the maildrop. 

We suggest the following programming methodology, which uses RE_V in different ways at different 

times. When first writing a program, the programmer concentrates on making the program correct 

without being too concerned about performance. The programmer uses REV to relocate the 

execution of those program fragments that the client can not or should not execute. For example, if 

the_ client does not implement the procedures called by a program fragment. it can not execute the 

fragment; If the net result of executing a program fragment depends on the node that executes the 

fragment, the specificatiOns for the program may require that the program fragment be executed by 

some node other than !he client. T~'RE'irequests that relocate the execution of these program 

fragments will in general change the semantics of the program. The semantics of a program is its 

vJsible behavior, including any results computed by the prtK.Jram and any visible side effects it causes. 

We- d(J rt(j_f include resource consumption, such as processor time; memo,.Y requirement$, and 
network traffic, if'l the (!efjn.ition of program semantics, 
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Once the program is debugged, the programmer may use REV in an attempt to improve performance 

or reduce communication. If REV requests introduced at this time do not affect program semantics, 

they will not introduce any bugs. In the thesis we explain how the compiler uses a conservative 

algorithm to decide whether relocating processing with each REV request changes program 

semantics. The programmer is free to heed or ignore the compi1er's findings. 

We can summarize REV by answering the three questions posed in the preceding section: 

1. Jn a single request, how many operations can one node invoke at another node? We 
achieve generality without degrading performance by letting a single request Invoke 
several operations. 

2. What does it mean to send arguments and results between nodes? We achieve 
uniformity by defining the argument passing semantics tor REV requests to be the 
argument passing semantics for local procedure calls. Because we will use the 
programming language CLU (24], the semantics will be call by sharing, which we 
describe in the next chapter. 

3. What happens when nodes crash and communication links fall? We mask such failures 
from the application programmer by using atomic transactions. 

The next section, which discusses related work, will show how our first two answers significantly 

depart from current remote procedure call mechanisms. Our treatment of failures, however, is similar 

to that found in Argus (25], which we also discuss. 

1.3 Related Work 

Ideas from both single-site and distributed systems are relevant to answering the three questions 

posed above. We explain below how remote procedure calls provide several advantages but suffer 

from a tradeoff between generality and good performance. We then discuss a technique from an 

early operating system that lets an application transmit a procedure to the operating system kernel, 

which then carefully executes the procedure. Because this technique of passing a procedure 

between protection domains is applicable to distributed systems, we survey work in this area. In 

particular1 researchers involved with multiprocessors, functtonal prtXJrWnming languages, and 

distributed systems have started to constder sending executab~ probecfure8· b~ nodes. Flnafly, 

we briefly examine remote and distributed databases, ·since efficient query processing in such 

databases requires the ability to invoke mulfij:Jte <)pef.afian&'in a siugte lleqlleSUo a remote node. 

1.3.1 Remote·Procedure-Call 

The idea of a ,:emote procedure call (RPC) h~s simplified the design and implementation of distributed 

systems. A remote procedure call occurs when one node (the client) uses a different node (the 

service) to execute a procedure stored at that node. Ttiis proee<turat itRena~Jaci1itates hitfl-..,vel 
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communication between heterogeneous nodes: RPC's let different nodes running different operating 

systems and supporting different programming languages communicate easily. A good RPC 

mechanism hides communication details, provides powerful but clean semantics, enforces strong 

type checking, and runs with acceptable performance. Neither the programmer implementing a 

remote procedure nor the application programmer that invokes the remote procedure must worr:y 

about these details. 

Remote procedure calls are fairly well-understood and are being used to construct real systems. The 

idea of using a remote procedure call for communication across a network has existed for many 

years. Early references to RPC were related to resource sharing in the Arpanet [46, 47]. More 

recently, several RPC mechanisms have been built (4, 48] or are under development [25, 36). 

Nelson's thesis (34] discusses RPC at some length and contains performance measurements as well 

as an annotated bibliography. In the absence of node and communication failures, there la 

agreement on RPC semantics: exactly-once. Under exactly-once semantics, the service executes the 

call once, and the client receives the results from the service. Although exactly-once $81ftantics are . 

desirable, node and communication failures force us to chooae an alternative semantics. In the 

presence of such failures, there is no firm consensus on RPC semantica. Nelson advocates last-one 

semantics; Liskov (25) advocates at-most-once semantics. 

•Under last-one semantics, the client receives the results from the very last call that 
executes. Side effects from each earlier call may exist, even if the earlier call did not 
complete. Results from earHer·ealls, however, are discarded. 

•Under at-most-once semantics, either the call executes exactly once and the client 
receives the results, or the service (effectively) never receivea the request and the client 
is so informed. Partial and multiple executions of an RPC can not occur. 

The proper semantics depends on the needs of the distributed applicatiofla and, to a lesser extent, on 

performance considerations. Because we want to give REV a simple aemantics in the presence of 

failures, we will prohibit partial and multiple executions of an REV request. Our REV semantics, 

however, is not at-most-once semantics. The following chapter describes their differences. 

There is a consensus on argument passing semantics for RPC's (25, 34]: arguments and results are 

passed by value. Call by value has an efficient implementation, and it keeps separate address spaces 

disjoint. Besides simplifying garbaQe eoltectkm·in a di~ribUted.system, disjoint address spaces are 
important because of performance, autonomy, and availabitity constderationa. A novel idea in this 

thesis' wiff' be how to k-eep separate address spaces disjoint without using call by value for REV 

Fe,quesfs. 

With synchronous RPC's, a client pro~ iiil'voking an RPC"wait& untP the RPC returns .before 

continuing. A client process may invoke only one remote procedure in each request sent to a service, 

which means that a programmer using RPC'.s can not realize the ~tages of REV. Our REV 

mechaf1{sm generalizes the ideaot.an RPC by allowing the,tr~nsQlission.ef code. This lets one node 

invoke several opera.hons.in a single reqdestSent tp another node. 
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RPC's simplify the task of implementing distributed systems but have several drawbacks. We address 

the following three drawbacks in this thesis. First, although high-performance RPC mechanisms exist 

[4], their performance is limited by the overhead of internode communication. Birrell and Nelson 

[4] measured the time to execute remote and local versions of trivial procedures that simply return 

their arguments. For procedures with fewer than five 16·blt arguments/results, a remote procedure 

was roughly 100 times as slow as a local procedure. We assume throughout the thesis that the 

overhead for invoking a remote procedure is much greater than the overhead for invoking a local 

procedure. As we shall see, this assumption is a key reason for using remote evaluation instead of 

RPC's. 

A second RPC drawback is the tradeoff between generality and performance. When RPC's are used, 

the latency of the communications mechanism demands a careful system. design that minimizes the 

expected number (and size) of messages sent between nodes. Because service designers often 

choose performance over generality, the procedures exported by services are usually designed for a 

specific application. Thus the exported procedures may not be useful to a programmer Implementing 

a different application. 

The final RPC drawback we consider is a restriction on remote procedures. In the standard RPC 

model, code is stationary, and the arguments must always be sent to the code. The inability to 

transmit code means that a remote procedure can not have a procedure as an argument. Algorithms 

that summarize or filter information can not be sent to a remote data repository using RPC's. 

Algorithms that search or plan based on the contents of the repository also can not be sent to the 

repository. Clients must use the techniques built-in by the repository programmers and perform the 

remaining processing locally. 

1.3.2 Nonlocal Evaluation 

The ability to pass a procedure as an argument to another procedure is a simple but powerful method 

that lets a programmer customize existing software. When a procedure is transmitted between 

protection domains, the recipient must execute the procedure with care. This section discusses such 

procedure transmission in the context of a single-site operating system, a distributed computing 

system, and a multiprocessor system that supports a functional programming language. 

Gaines [13] describes an operating system that lets an application process instruct the kemet to 

perform a complicated action that is not built into the kernel. The kernel supports a small set of 

primitive operations dealing witftJiles, integers, scheduling, interf'TI:>cess communisation, and $0Dn. 

The application programmer cetnbines these primitive operations into a superwsory if6mputer 

prcrgram that the kernel executes without interruption. The kernel interprets such a program and 

checks the arguments carefully. By prohibiting backward jumps and giving the program only one 

OJlf)Ortunity to handle an error, the kernel avoids ~nterminating..programs. 
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A supervisory computer program is more powerful than the corresponding sequence of calls on the 

operating system because it executes without interruption. Thus the application programmer does 

not need the ability to inhibit interrupts. By granting this ability in a controlled fashion, Gaines 

simplifies application programming and prevents an application from monopolizing a shared 

computer. 

This approach of using a supervisory computer program has two other advantages, both of which are 

related to the idea of generality. First, this approach needs only a small, stable, easily-debugged 

kernel. Supervisory computer programs let application programmers construct facilities normally 

found in a complete time-sharing system. Second, a supervisory computer program can be 

customized to the requirements of the application. 

Gaines' idea of transmitting an executable procedure between protection domains is applicable to 

distributed systems and multiprocessor systems. In such systems, one node sends executable code 
to another node. This ability, which lets a programmer compose several remote operations Into a 

single request, is more powerful than the notion of an RPC. We review work related to this idea 

below. 

Gifford (14] introduced remote form evaluation as the method by which one processor evaluates a 

function at a second processor. A detailed algorithm is presented that uses connections, achieves 

exactly-once semantics in the absence of failures, and detects processor restarts. Gifford, however, 

did not address type-checking, argument passing, protection, and implementation considerations. 

Burton [6] uses annotations to give the programmer control over parallelism in a distributed 

computing environment. The annotations declare wmch work may be transferred to another 

processor and in what form the work may be transferred. Burton remarks that transferring wof'.k to 

another processor is advantageous only if the computation requires more work than the transfer. 

Combinators are used to ensure that each transferred subexpression is self-contained. Only the 

required part of the environment is actually transferred. 

There are three differences between Burton's efforts and ours. First, Burton considers a simple, 

functional language, the lambda calculus. We consider an actual programmirtg. language, which 

supports mutable objects and persistent state at a processor. our. language ~ntaill$ several 

interesting features, such as exceptions, iterators, and abstract types. Second, Burton is interested In 

capitalizing on parallelism, whereas we are primarily interested in reducing the communication 

overhead in an apptication that uses the· data or peripherals at several nodes ... finally, BUrtol\•s 

annotations do not giVe the programmer control ovet'which proc0S$0r ex~µtes a relocated 

subetcpression. Ttttre is no notion of a remote interface; and there is no way to bind to a particular 

pi:ocessor. All processors are apparently equivalent, and some form of load balancing algorithm is 

assumed. In our model, the operations a processor exports, as':wen as it&;Aerlf1Stent state, physicai 

locafton, aftd peripherals, distfnguisll one processor fr;()Ql another. 
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1.3.3 Query Processing in Remote and Distributed Databases 

Efficient query processing in remote and distributed databases requires the ability to invoke multiple 

operations in a single request to a remote node. For concreteness, we discuss two real systems: the 

Datacomputer [9, 12, 29), a remote database accessible through the Arpanet; and R• [23), a 
distributed relational database system developed at the IBM Almaden Research Laboratory (formerty, 

the IBM San Jose Research Laboratory). 

The Datacomputer, which was developed by the Computer Corporation of America, was a network 

utility that provided shared use of a trillion-bit store. The intended user of the Datacomputer was a 

remote program. The Datacomputer supported a high-level language that contains lists, structures, 

strings, integers, and bytes. Communication with the Oatacomputer was through self-contained 

requests. Upon receipt of a request, the Datacomputer compiled the request, executed the compiled 

request, and then returned the results. The language supported by the Oatacomputer was designed 

to let a programmer efficiently retrieve a subset of the data stored on the Datacomputer. This 

language was high-level for performance and security reasons. Bandwidth limitations required a 

language with a good deal of expressive power. This improved performance by reducing the size of 

requests. The ability to compose multiple operations into a single request, which meant that 

intermediate data need not be sent between nodes, also improved performance. A high-level 

language provided security because the compiler ensured that no hostile user programs were 

executed. 

The Datacomputer supported a limited form of REV, because a request could contain multiple 

operations. It also addressed the security problem by having the compiler check each request. 

However, it did not deal with abstract data types, own variables, and other constructs found in a real 

programming language. Since there was only a single service, there was no need to support nested 

requests, services that exported different operations, or a remote binding mechanism. 

R• [23), a distributed database manager, supports a limited form of remote evaluation by evaluating 

ad hoc queries submitted by users. It uses virtual circuits to support request-response interactions 

between autonomous nodes. The planning, compiling, binding, and execution of queries that span 

more than a single node are done in a distributed fashion (7). A• also supports preplanned. 

transactions, which are again pro~ at compile time in a distributed fashion. Each remote 

fragment of a preplanned transaction is permanently stored at the relevant node as an access 
module. An access module is a low-level program whose representation is similar to the P-codes 

used in some Pa$Cal im~tions. Each node contains artiAterpreter tfiat evaluat~ the access 

modules when a distri6uted query is ·invoked. ThiS early binding of. distriDuted. queries improves 

performance. BY associatint dependencies .With compif8d hnsactions, R• detects relevant 

configuration changes and dynamically recompiles invalidated transactions. 

AS -we shattsee, there a~ two 'Si11nilarities< between R • aod f!EV. Firs1, ,both support diSttibuted 
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computation by transmitting program (query) fragments. Upon receipt of a program fragment, a node 

dynamically binds the code to its own code and data. Second, both assume a collection of 

autonomous, cooperating nodes governed by a shared transaction mechanism. 

The differences between R • and REV fall into two categories. The first major difference is the 

language level. R• deals with a constrained, high-level query language. Except for the ability to 

define new relations, the set of types is small and fixed. An application programmer or an end user 

declares what needs to be done and lets the query compiler decide how to accomplish the task. The 

language level gives the query compiler a moderate amount of freedom when it translates a query Into 

executable code. Remote evaluation, on the contrary, deals with a general-purpose programming 

language that includes variables, environments, mutable abstract objects, and numerous flow control 

constructs. Since programs are implementations rather than specifi~ations, an REV mechanism has 

little freedom to change a program without altering its semantics. 

The second major difference between R • and REV concerns binding. R • assumes the existence of a 

catalog that describes data to be accessed, including its current location and access paths. In 

contrast, an REV programmer makes no assumptions about data location at compile-time and uses 

primitive binding mechanisms at run time. 

The differences between R • and REV let R • realize seYeral benefits. The query compiler uses the 

catalog to estimate the processing, communication, and 110 costs for the plans it generates. 

Selecting the plan with the lowest expected cost achieves automatic program partitioning. 

Furthermore, a node does not need to act defensively when executing a program fragment, bec.Ause It 

created the fragment from an acceptable, high-level request. An REV programmer, on the other 

hand, must partition a program for distributed execution manually. The programmer knows much 

less about the relative and absolute locations of various pieces of data. A node executing an REV 

request must expect the worst and execute requests in a restricted protection domain~ 1 R• 

permanently stores code fragments at the appropriate nodes for preplanned transactions. Unless 

services cache REV requests, an REV mechanism always sends the code wtth each request. 

In conclusion, the language level and environmental assumptions let R• perform a specific task 

extremely well. Compile-time checking and optimization improve performance and place fewer 

requirements on the run-time execution environ~ent at each nede. The implementors and 

maiiltaiaers. of R.· provide a pleasant distributed-computing environment to application programmers 

and end users. REV makes, fewer assumptions and is applicable in mere, situations. REV 

programmers, however, mustpartiticm their own programs. 

\a.tef io the thesis we rlf!scuss hdw a strong type system, dig Ital signattltes-, and a truste4 compile-time request checker can 
eliminate this requirement. 
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1.3.4 Abstract Value Transmission 

Because a service and its clients have disjoint address spaces, the arguments and results of an RPC 

(or an REV request) must be sent between nodes. Values from both built-in and user-defined data 

types may be sent between nodes. Transmission involves the determination of the structure of an 

object in the original environment, the transfer of the information, and the creation of a new structure 

in the receiving environment. When both environments are the same and there is only a single 

concrete representation for each data type, transmission is a generalization of garbage collectlon, 

compaction, and reorganization (35]. 

An early reference to the transmission of data Is due to Morris [33]. An abstract data type Is 

transferable if its operations are powerful enough to translate between the type and a new encoding 

based on different types. Although Morris was concerned chiefly with the completeness and 

expressive power of a type's operations, this capability is useful for storing, retrieving, printing, and 

displaying Instances. 

Wallis [ 42] describes an external representation for user-defined types that permits instances to be 

stored on an external medium and to appear as program literals. The string-based representation 

does not accommodate pointers In the data structure. 

An earlier but more comprehensive machine-independent and language-independent transmission 

scheme is due to Atkinson [2]. A two-phase traversal handles arbitrary data structures and supports 

inter-machine communication and the external storage of data structures. Character strings are 

again the external representation. 

Intermetrics' Linear Graph package [30] converts arbitrary networks of interconnected data 

structures to sequential text files and reconstructs networks from the resulting files. A standard text 

editor can create or modify the external representation, which i8 verbose and human readable. This 

verbosity, however, has contributed significantly to the Inefficiency of translation between networks of 

data structures and text files. The Linear Graph package, which is used during the design .and 

implementation of compilers, arose from a similar syttem [22] developed as part of CMU's PQCC 

project. 

The aforementioned techniques do not distinguish betwe,en abstract objects and concrete 

representations. Herlihy [18, 19] addresaa tms. issue 8Ad describes a temp/ale, scheme in which the 

implementor of an abstract data type makes the lype; tt~e by writ.ing only two procedures: 

encode and decode. These procedures transJatethe GIC)nere&e representation of an irtstanceto &ltd 

from a common, external representation. Herfihy's ~rithmspreseAJe;shanng, accomfY10date cyclic 

structures, and aUow ·different concrete representations in different environments. Nevertheless, 

Herlihy and other researchers have not paid much attentton to the performance and possible 

optimizations of his templai, scheme; 
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Mamrak. et al. [27] solve the problem of converting between different types on different machines 

using different languages by adding a new layer to existing operating systems. However, details 

regarding the conversion method and the possibility of handling user·defined types are not given. 

The network is largely transparent to users and application programmers, but performance remains a 

problem (28]. 

Efficient transmission of abstract values requires a suitable space of message representations. 

Human·readable text strings are neither compact nor efficient. A better representation Is one similar 

to that used in the implementation of the programming language. Herfihy's thesis (18) contains an 

appropriate low-level representation. Nelson (34] details one possibility that Is suitable for remote 

procedure calls. 

Researchers have paid little attention to the problems of transmitting code, environments, and 

closures, but an extension to Simula [5] is relevant to this discussion. Minsky (31] modified Simula to 

let programs run in a persistent environment that included type definitions. Instances of user·defined 

types could be stored in protected files. Each file held instances of a single type along with relevant 

type and representation information. These files also contained code to encipher and decipher 

instances, check the validity of a file access, and translate instances to and from the file 

representation. In addition, procedures implementing the type's operations could be present In the 

file. Storing code with external data allowed any authorized user to access and manipulate 

informaUon even if the type had not been implemented in the programming environment. 

The address spaces of different nodes in a distributed system are typically disjoint for reasons of 

performance, availability, and autonomy. Hence a natural way to communicate information between 

nodes is by value. The preceding techniques for transmitting abstract values all implement call by 

value. Stroustrup [38, 39], in contrast, suggests the alternative approach of using a shared address 

space. If arguments to local procedure& are passed by reference, using call by reference Instead of 

call by value for RPC's unifies the semantics of argument passing and supports reconfiguration. 

Depending on the type specification for a remote procedure, the mechanism for passing an argument 

is either call by reference or call by value. Call by reference is accomplished by using a capability that 

is resolved in the global address space. We wiH also use global capabilities to let one node refer to an 

object kept at another node. This thes!S ~tends Stroustrup's approach by integrating this ability into 

the type system via remote data types. 

Our REV mechanism achieves Stroustrup's uniformity by using the argument passing semantics for 

local procedures (call by sharing) as \he argument passing semantieS tor REV requests. Although 

can by sharing is·similar to call by refe.-.n~ we~do not iml'.)~ment'<:atl by sharing Vlftfl,iJlobal 

capabifities or a similar mechanism. Our implementation for call by sharing io a distributed system, 

which transmits abstract values between nodes, is novel and efficient. Our implementation does not 

user~ data types, but it can coexistwith them. 
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1 .4 REV Advantages 

We designed REV to improve the performance of certain distributed applications that would otherwise 

be built with RPC's. The key idea is that REV is a more general mechanism than RPC's. As we 
explain in the thesis, this can simplify the design of distributed systems that require both generality 

and good performan9e. 

When there is a sequence of operations executed by the same remote node, a programmer using REV 

can execute all the operations with a single request, while a programmer using RPC's must execute 

each operation In a separate request. The REV approach amortizes the communications overhead 

over all the operations executed by the remote node. When the results of one operation are used only 

as Inputs to another operation in the message, the REV approach reduces the communication 

between the client and the service. We illustrate these advantages with an example that uses REV. 

WFS (40] is a remote file service that provides page-level access to files. WFS exports procedures to 

deallocate individual pages from a file and to delete a file with no pages, but it does not export a 

procedure that deallocates a nonempty file. Using RPC's, deleting a file with N pages requires N + 1 

requests. In contrast, a single REV request can delete the same file. 

A programmer using REV can partition a progra!11 into components for local and remote execution In 

a variety of ways, but a programmer using only RPC's does not have this ability. In the RPC model, a 

program has a unique decomposition into fragments for local and remote execution. The client 

executes local procedures; remote procedures are executed by the appropriate service. Service 

programmers, who attempt to accommodate all expected uses of a service, implicitly force a unique 

partition on each application program without seeing the program. REV supports a better division of 

labor in the construction of distri~uted systems: service programmers decide the semantics Qf the 

operations they implement, and application programmers ·partition their programs according to 

performance considerations, subject only to the procedures exported by the services. Figure 1 ·2, 

which shows a spectrum of possibilities for partitioning a hypothetical program, illustrates the point 

that REV allows many partlttonings, one of which is the RPC partitioning. 

REV I xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
RPC I x 

1-----------------------------------------------1 
0% 10-0% 

(All Local) {All Remote) 

Figure 1•2: Fraction of a hypothetic~ profitam exeeuled at remote nOdes. 

An REV .:>entice will expprt the operations built into the lanp119 aiJO man}' other qpes-~ #Jal 
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would never be remote procedures. For example, operations that perform arithmetic, manipulate 

strings, or access a record or an array, are performed so quickly by a processor that converting any of 

these operations into a painfully slow remote procedure is unthinkable. In contrast to the RPC model, 

REV lets services export such inexpensive operations without a drastic degradation in performance. 

The more operations a service exports, the more flexibility a programmer using REV has when 

partitioning a program. A programmer using REV can execute many service operations in a single 

REV request, but a programmer using RPC's can execute only one service operation in a remote 

invocation to the service. 

We believe REV is a general mechanism with many advantages. First, an REV mechanism Is more 

powerful than an RPC mechanism. An RPC is a simple REV request in which the code to be relocated 

is the invocation of a single remote procedure. The performance of an RPC implemented by REV 

should be comparable with traditional RPC performance. Thus we shalt assume that our system 

provides REV but not RPC's. 

Second, REV lets remote procedures have procedures and closures as arguments. A client using 

REV can easily customize a service routine that deals with a large amount of data. For example, a 

parameterized routine that searches, sorts, filters, summarizes, or plans can be tailored to a specific 

application. 

Third, a service programmer could let a client using REV extend the set of remote procedures 

exported by a service. 2 When a client binds to a service, It could send the "new" remote procedures 

to the service and request that the service install them. The syntax and semantics tor invoking new 
and old remote procedures would be identical. The service extension would be private; other clients 

could not access the extension. 

Fourth, REV simplifies the partitioning of a program into components for focal and remote execution. 

The programming methodology we suggested has two stages. During the first stage, the programmer 

uses REV to write a correct program. During the second stage, the application programmer, or 

perhaps someday an automatic aptimizer with a cost model of distributed computation, can use REV 

to improve performance without changing program semantics. For example, If the programmer 

. notices four REV requests in a row that are sent to the same service, the programmer can nest them 

Inside a larger request that is sent to the service. Beeause the pr~graRWler does not want to 
'-~' 

imr.QQuce bugs while improving performance, RSV r...,_..~ dt.trino ttte sec.Qfld .$tage should 

not chaRge program semantics. A location-indepeadem REY~ relocak!IS·eode whose meaning 

does not depend on the state of the node that execllteS itft' We Will defifll& REV eemantics ao that 

retocating proeessing Wfth a 1a.ation-independent reqdllt doeS not c~ Pft}grarw ee~antiGs. 

Thus the programmer wants to insert only loqtiQn-independent requests while improving 

2Tbece is, a paraHet between user-defined service interfaces' ahl:I user-derived interfaces tor applicatioft,i)fograms. SOme 
researcher,$ involl'ed with .. ser interface design advocalt! ~Ille~ toa ~MSef ~ad ot •~sa f 15}. 
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· performance. The thesis explains how the compiler uses a conservative algorithm to decide whether 

an REV request is location-independent. 

Finally, REV is applicable to loosely-coupled multiprocessor systems. As long as shared, mutable 

data is not communicated between processors, a busy processor could use REV to offload 

processing. When there are no processor or communication failures, our characterization of 

location-independent REV requests would guarantee that program semantics were unchanged. 

1.5 Thesis Overview 

REV gives an application programmer fine-grained control over the location of processing in a 

distributed application. We provide simple rules that let the programmer or compiler decide when the 

relocation of processing might change program semantics. To test the ideas described in the thesis, 

we built a working prototype. Because the generality provided by REV does not have inordinate 

costs, we feel that some form of REV should be routinely provided In distributed computing 

environments. 

The thesis does not address three important considerations. First, we do not consider the automatic 

partitioning of a program into fragments for local and remote execution [11). The general problem 

has been shown to be NP-complete, but for sufficiently restricted programs a polynomial-time · 

algorithm exists [10]. Second, we do not discuss how to build an REV mechanism with high 

performance. The interested reader should consult [4, 34] for performance lessons that are 

applicable to both RPC and REV implementations. Finally, although our REV mechanism is language 

independent, we do not consider the problems caused by multiple programming languages. 

Many constraints influenced our REV design. Since an REV mechanism is more general than an RPC 

mechanism, we immediately adopted Nelson's [34] five essential properties and six pleasant 

properties for a remote procedure mechanism (see Figure 1-3). Sound remote Interface design takes 

on an added meaning when REV is available, but the remaining pleasant properties are immediately 

applicable. There were four other ponstraints on our REV design: 

• Powerful Semantics: We impose minimal constraints'On REV requests to make them easy 
to use. All the constraints may be checked before run time. 

•Implementation Efficiency: The REV requests inserted after a program has been 
debugged are meant to be·optimitltions. 

• Ease of Use: REV should be simple to use and liltderstande :Being an optimization, 
location-independent REV requests should yield predictable 'NSults but require little 
programmer effort. 

• Language Independence: '''·With minor changes, our design should be applicable . to 
exi~ aQd :future programmrhg envirolimentS. 
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Essential Properties Pleasant Properties 

unifotnl cali semantics good perfotnlance of remote calls 

powerful binding and configuration sound remote interface design 

strong type checking atomic transactions 

excellent paramet~r functionality respect for auton001y 

standard concurrency control and type translation 
exception handling 

remote debugging 

Flgu re 1 ·3: Nelson's requirements for an RPC mechaniam. 

The thesis contributes in several areas: semantics of remote invocations and their effect on program 

semantics; procedure and closure transmission; remote data types; and an effic?ient implementation 

for the advanced semantics we advocate. Because the bulk of an REV mechanism is an RPC 

mechanism, our implementation diacussion must be viewed as a supplement to descriptions of high 

performance RPC mechanisms, such as (4, 34]. 

Chapter 2 defines the semantics for REV requests that relocate the invocation of a procedure. Our 

goal is to ensure that relocating processing with a location-independent REV request does not 

change program semantic~. even in the presence of concurrency, node failures, and communication 

link failures. We use atomic transactions and an unusual argument passing semantics (call by 

sharing) to achieve our goal. Besides defining REV semantics, Chapter 2 in.corporates REV into the 

programming language CLU [24). We provide linguistic support, extend the CL.U tvfle system to 

accommodate REV, and characterize location-independent REV requests. 

Chapter· 3, Which describes how to impJement REV,· compares an REV"'rnechanism · with an RPC 

mechanism by highligJiting their co111Pile-time and run-time differences. This chapterdesc~ our 
no.vet ifnptementation for call by !haring in a distributed system 8fld explajns how we transm1tted code 

between nodes. 

The· """t two chapters extend oor l!Simple model of REV. Chapter 4 e>ttends REV so that an 

~ppNcation programmer can send a closure to a remote node b'l*ad ,t;JI .a procedure. T~ 
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implementation of such requests is also described. Chapter 5 describes remote data types, which let 

a program running on one node refer to an object kept on another node. This chapter presents a 

syntax and semantics for remote data types, sketches an implementation, and evaluates their utility. 

Chapter 6 presents an extended example using REV and remote data types. Chapter 7 describes our 

prototype REV implementation, summarizes our findings, and presents areas for future work. 
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Chapter Two 

Semantics and Linguistic Support 

The purpose of this chapter is to incorporate REV into CLU (24], a programming language with strong 

type checking. Our goal is to let the application programmer relocate processing with REV. In many 

cases this relocation of processing will not change program semantics. When the relocation does 

change program semantics, the compiler will inform the application programmer. We explain how: (1) 

transactions; (2) a nontraditional argument-passing semantics for REV (a restricted form of call by 

sharing); and (3) a labeling of routines exported by services let the compiler decide whether an REV 

request changes program semantics. To support modularity, we let REV requests nest. 

In this chapter we define what an REV request means (its semantics) and how one Is written (its 

syntax). We defer implementation issues until a later chapter. 

2.1 Programming Language Support for REV 

Although the idea of remote evaluation is language independent, for pedagogical reasons our 

discussions and examples are based on the programming language CLU (24]. The thesis assumes 

familiarity with CLU. Because a complete introduction to CLU is not relevant to our mission, we refer 

the interested reader to the CLU manual [24]. Section 2.1.1 mentions those aspects of CLU that will 

be relevant to REV and our examples. Our REV semantics will require a transaction mechanism, as 

we want to avoid partially executed requests. Therefore, Section 2.1.2 incorporates into CLU a simple 

model of nested transactions. Finally, Section 2.1.3 incorporates services tnto CLU. 

2.1.1 CLU 

CLU is a real programming language that supports program development according to the 

methodology of problem decomposition and the use of abstract data types. The type system in CLU 

lets a programmer define abstract data ·types and enforces strong type checking. A cluster is a 

module that implements an abstraotdata type, which is a set of objects and a set,of routines to create 

and manipulate those objects. ·A programmer implementing an abstract data type chooses a concrete 

representation for the type that may use·both Dbilt..fn and user-definecf.JYpes. A CLU compilation 

en11irufl'meflt, which contains compiled specifications for abstract data types, permits separate 

co1TgJilatron while retaining strong type checking across module boundaries. 

Each duster operation, such as stac~$push, is an oper~ion for sofne abstract data fyf.>e. A dollar 
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sign ($) separates the type name from the operation name. Equates may be used to abbreviate 

constants with a lengthy textual representation. For instance, programmers would balk at writing 

"stack[set[int])" every time this type appeared in a program. Including In a program the equate 

SISets • stack[set[int]] I stack of 1nteg•r sets 

lets the programmer write "SISets" instead. 

A CLU program consists of a collection of clusters and routines, where each routine is either a 

procedure or an iterator. An iterator can be thought of as a procedure with two arguments: a 
collection of objects and a closure. A closure consists of code and an environment in which to 

evaluate the code. An iterator computes a sequence of objects from the collection and applies the 

closure to each object in the sequence. 

A CLU program manipulates objects in heap storage. An object can refer to other objects, including 

itself. Objects have names, and one object refers to another object by containing its name. Variables 

in CLU refer to objects. Variables and objects, however, do not refer to variables. An object is 

mutable if its state can change; otherwise, it is immutable. An object exists as long as it Is accessible; 

inaccessible objects are automatically reclaimed. 

CLU uses call by sharing to pass arguments to procedures. In call by sharing, the caller and called 

routine share the argument objects, i.e., both refer to the object. Mutations of arguments performed 

by the called routine are visible to the caller. The called routine, however, is unable to modify any of 

the caller's variables. Catt by sharing, which is different from oatl by value and call by reference, is 

similar to argument passing in LISP. 

Parameterization lets procedures, iterators, and clusters define a class of related abstractions. CLU 

distinguishes arguments from parameters. An argument !& an object passed to an iterator or 
procedure at run time. A parameter is a value that Is computable at compile time. A programmer 

instantiates a parameterized module by supplying parameters of the appropriate type. For example, 

array(t:type) is~ parameterized cluster. Until parameter t is suppHed, the operations In the cluster 

can not be invoked. Using Int for type t yields array(int], an ordinary cluster that defines a set of 

objects (integer arrays) and a set of primitive routines to create and manipulate integer arrays. In this 

example, int is the parameter; its value is known at compile time. 

CLU uses the termination model of ~xceptions. Raising an exception terminates the currant 

activation, which can not be resumed. Each routine lists the exceptions it raises in its signals clause. 

Exceptions do not propagate ·automatically across procedure boundaries. Unhandled exteJ>tions 

become failure exceptions. The failure exception, which has a single argument of type string, is a 

special exception. Since every procedure can raise a failure exception, failure never appears in the 

signals clause of a procedure declaration. When a procedure does not handle failure, failure 

Pf'Of)agates unchanged to the caMer. 
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2.1.2 Atomic Transactions 

Since our REV semantics will require atomic transactions, we define transactions and atomic data 

and then incorporate them into CLU. A transaction [17) is an activity that is both recoverable and 

serializable. Recoverable means that the net effect of an activity is all-or-nothing: either all the 

changes the activity makes to data happen, or none of the changes happen. Transactions are 

serializable in that the net effect of executing several concurrent transactions Is equivalent to 

executing them in some sequential order. A transaction either completes successfully (commits) or 
has no effect (aborts). 

Transactions have been useful in conjunction with databases. By masking concurrency, crashes, and 

communication failures, transactions simplify the construction of programs that access on-line data 

that must remain consistent despite concurrent access and failures. A programmer need not 

consider partially executed requests or interference from other programs. A program that works 

correctly in isolation will work correctly in the presence of concurrency and failures. 

We assume every abstract data type is atomic. An atomic data type [43, 44) provides synchronization 

and recovery mechanisms for all objects of that type. In order to read or write an atomic object, a 

process must run as part of a transaction. Conceptually, atomic data types mask concurrency In the 

distributed system by serializing access to atomic objects. Atomic data types also coordinate updates 

to atomic objects, as all changes made to atomic objects during a transaction take effect when the 

· transaction commits. Aborting a transaction undoes the changes made to atomic objects during that 

transaction. Immutable types are automaticaHy atomic, since they provide the appropriate 

synchronization and recovery. 

Nested transactions, which let a programmer introduce concurrency within a transaction, also let a 

programmer limit the scope of failures. A subtransaction is· a transaction that runs as part of some 
other transaction. Aborting a subtransaction undoes all the changes It made to atomic data. 

Committing a subtransaction is actually conditional upon the committing of all (sub)transactions that 

contain the subtransaction. Therefore, If a parent (sub)transaction aborts, the effects of all its 

descendants are automatically undone. We can two subtransactions sitNings if they are part of the 

same top-level transaction but neither is part of the other. Two slbUngs can commit or abort 

· independently of each Other. 

We assume an atomic transaction mechanism spans the entire distributed system. Real transaction 

system& such as Argus [25) prome many U&eful features, sud1 as c:oncul'flJncy meohanisms. and 

nested top-level transactions. We illustrate the flavor of such,,systems without becoming deeply 

involved in the, details by incorporating a simple model of nested transacti00$ into CLU. We use two 

new reserved words: -TRANSACTION and ABORT. A programmer constructs a transaction by annotating 

.a.JJSG.rN-END block: 

beain [ transact:toft l, bod:¥ end 



The square brackets surrounding TRANSACTION mean that it is optional. The TRANSACTION qualifier 

causes body to execute as a subtransaction or a top-level transaction, depending on whether or not 

the process is already running as a transaction. Control flow statements that exit body, such as 
return or signal, implicitly commit the transaction unless they are qualified with ABORT. If a top-level 

transaction can not commit, the begin-end block raises the exception failure("commit failed"). The 

failure exception aborts every transaction that it exits. The same applies to unhandled exceptions. 

Note that this extension to CLU lets the programmer use nested transaction& 

Programmers must use transactions with care, because the transaction mechanism does not apply to 

all aspects of the distributed computer system. For instance, variables fall outside the transaction 

mechanism. When a transaction aborts, the system does not automatically undo every assignment 

made by the transaction. In addition, the system does not synchronize access to variables shared by 

several transactions. Hence a transaction should not use variables to communicate with another 

transaction. 

Until a transaction commits, it should not perform external actions. An external action is an action 

whose visible effects fall outside the transaction mechanism. For example, firing a missile and 

dispensing cash from an automated teller machine are external actions. Since an external action can 

not be undone by aborting the transaction in which it occurred, we assume that external actions 

requested during a transaction are performed (shortly) after the transaction commits. Without this 

assumption, transactions would not be recoverable. 

Since we assume that every data type is atomic, if programmers follow ·the. above rules concerning 

communication via variables and the timing of external actions, all transactions are serializable and 

recoverable. This will simplify the semantics of REV, which .makes it easier for the compiler to 

determine which REV requests change program semantlca. 

2.1.3 Services 

Before incorporating REV into CLU, we add the notion of a service to CLU. A service is a node that 

exports some of the routines it implements. Other nodes can use REV requests to invoke the routines 

exported by the -service. we. explain below how a service programmer declares which routiMis a 
service exports. A later section in this chapter explains how the compiler uses this information to 

decide if an REV request can be.executedby the service .. 

Because a service can export many routines, we use a two-level 'description to ,structure service 

definitions. A s&rvice dtWnition·consists of. a set of interlaces, and an interface defines a set of 

routin~. '!le f)l'esent theJsyntax and give examples of both'interlace& andservicesby beginning wfth 

the syntax for interfaces: 

i.n<terfa.ce : :"' idn " [locatton...,1nde9udtntJ 1nterfac•tt>arms] [wttere}·1t 
rout ineSpet, . . . elfd idn 
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rout1neSpec ::= procSpec I 1terSpec 

procSpec ::• 1dn = proc [parms] args [returns] [signals] [where] 

iterSpec ::• idn • 1ter [parms] args [yields] [signals] [where] 

The nonterminals parms, returns, yields, signals, where, and args are defined as in the CLU manual. 

To avoid name conflicts, we assume interface names are globally unique. 

An interface is a collection of type specifications for routines. Whether an interface defines a type or 

simply gathers together a collection of related routines without defining a type is irrelevant to this 

discussion. A routine is either a procedure or an iterator. No two interface routines may have the 

same name. A CLU cluster, which implements an interface, exports each routine listed in the 

interface. Interfaces let the programmer separate specifications of routines from their 

implementations. 

LOCATION_INDEPENDENT is a new reserved word. We say a routine Pis location-independent if it does 

not depend on which node executes P. For example, logical operations on booleans, such as and 

and or, are location-independent. Functional routines, array operations, and record operations are 

also location-independent. Other routines, such as GetMyNetworkAddress, GetNearestPrlnter, 

and Loca1File$0pen are location-dependent: the semantics of each such routine depends on the 

state of the node that executes It. 

· If LOCATION_INDEPENDENT is present in an interface, all routines defined by the interface are location· 

independent. Otherwise, the routines In the interface are assumed to be location-dependent. 

Although LOCATtON_tNDEPENDENT could annotate individual routines, we assume it annotates only 

interfaces and clusters. Section 2.4 explains how the compiler uses LOCATtON_INDEPENDENT 

annotations. 

We illustrate Interfaces and location independence with two examples. Figure 2-1 defines the 

abstract data type point, which has location-independent routines. The point routines do not 

depend on the internal state or the physical location of the node that executes. them. Figure 2-2 

defines an interface for a mail system without defining a new abstract data type. Because the 

postOffice routines can be affected by the internal state of the node implementing the routines, the 

· reserved word LOCATION_tNDEPENDENT is not present. For instance, It make5'··9· diffe~ence whether an 

administrator removes Jones from the Dallas registry or the Chi&.go registry. 

Having c:Uscussed interfaces, we turn to service definitions, which ar• sets of interfaces. A 

programmer defines a service by a Hst al identifiers: 

service : : " 1dn • service 11 idn, ... end 

Each identifier names an interface or another service, and SERVICE is a new reserved word. The 

-me&ning of a service definition is the set of routines contributed by the Identifiers. An interface 

identifier contributes the. routines it defines, while -a service identifier contributes the routines it 

exports. 



point = 1ocat1on_1ndependent interface 11 

create • proc (x, y: int) returns {point) 

x = proc {p: point) return• (int) 

y • proc (p: point) return• {int) 

r • proc (p: point) return• (real) 

theta • proc (p: point) return• (real) 

distance • proc (p, q: P.Oint) return• (real) 

end point 
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Flgu re 2· 1: An interface defining the abstract data type point. 

postOffice • interface 11 

addUser • proc (requester, user: uaerID) 119nal1 (uaerAlreadyExiats) 
x requester must be a system ma1ntainer 

removeUser • proc (requester: userID, user: string) 1111al1 (noSuchUaer) 
X requester must be the user or a system 1111nta1ner 

readMa11 • proc (user: userID) returns (array[atring]) 1tgnal1 (noSuchUser,unreadable) 

anyMail • proc (user: userID) returns (bool) 

sendMail • proc (user: userID, msg: string) a19nal1 (undeliverable) 

end post0ff1ce 

Figure 2·2: An interface for a mail system. 

The ability to define a service by extending another aerv~ provides programming convenience. A 

service definition is meaningless, however, if it is directly or indirectly recursive. For example, a 

programmer can not defirte serviCe $1 in terms of SfrV~ $2 if service 52 is defined in terms of 

service S 1 . The compiler "flattens''· a serviCe · deti~, tNlt' depends on another service. Two 

service definitions are equivalent if their compilation results in the same set of routines. 

The following three service defitjitions..areweH-defined taecauathey ate t'lbt .. recumve: 

built-ins " aervtce 1a int, bool, char,· real, sfl"ing, wtray 0 recorcf'•d 

mathematics "' sarvtce ts int, real, ~omplex, matrix, polynQllial; .trig"' alg~ra ,end 

graphics = sarv1ce ta bit.111ap, point, 11ne, polygon, font, built-ins end 

BIMl·ios is ~coUection of useful t)Cpes tnet'mosq,r ~t servieles should ~pport .. Besides being a 

bona fK1e $i!!llVioe~ auilt·ins can be part of andthei 9'H'vioe definiti~n'':\s./en Q'S grapttfC. A ...-
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supporting built·ins exports the seven interfaces in the definition of built-Ins. A node supporting 

graphics exports the twelve interfaces in the definition of graphics. Five interfaces are mentioned 

explicitly, while the other seven are inherited from bullt·ina. A node supporting only mathematics 

supports only straight-line code, because it does not export boot. To avoid this problem, we shall 

assume that every service runs CLU and therefore automaticaffy exports bullt·lna. 

A service that exports interface T must implement interface T, all the types mentioned in interface T, 

all the types mentioned in the interfaces for these types, and so on. An easy way of extending a 

service without increasing the number of interfaces that its instances must implement is to take the 

type closure of a service. Chapter 7 presents the details. 

When a service definition contains a parameterized interface, such as array[t:type), for simplicity 

we restrict type parameters to those types exported by the service. For instance, a graphics service 

supports operations on objects with type array[array[llne]]J since it exports both array and line. 

A graphics service, however, does not support objects with type arraY{matrlx], since It does not 

export matrix. This restriction on type parameters does not reflect any fundamental limitation on the 

transmission of code in a network, since It is possible to transmit a cluster implementing matrix to a 

graphics service. We made this decision to avoid problems that ariae when clusters with own data 

are sent between nodes. Specifically, a service that implements but does not export a type with own 

data might otherwise find itself with several sets of own data for the same type. 

We distinguish between the specification (I.e., definition) of a service~ its instances. A service 

instance is a node that exports the Interfaces in the service specification. Such a node can have 

internal state by using own variables. A node can be an instance of many services simultaneously. 

For example, a node exporting graphics to one client.can export built·ln• to another (or the same) 

client. A service is a view of a node: it guarantees that the node expo~ a certain set of interfaces, but 

does notprevent the node from exporting additional interfaces. 

The separation between specification and implementation imposes a parfla1 order on the compilation 

of interfaces, service definitions, and programs. The compiler rejects any service definition that 

names an interface or service whose definition is not in the compilation eny,tronment. This rejection 

prohibits recursive service .definitiOf\S. Similarly, the compiler rejects any program that names.an 

interface or service whose definition is~ot in the compilation environment. This rejection, which lets · 

tbe,cQl»Qiler perform strong type. checking across moduJe. boundaries, win. let the.oomp;ler determine

whether a service can execute an REV request. Section 2.3 presents the details. 

Before an application program can SEN1ft· an REV request to an instance of service 5, it must bind to 

the· instance. Two intPQrtant issues ie distributed bindiAg are naming and~ location (4). A client 

specifies. what constitutes an acceptable service, and a network facility such as Grapevine {3] uses 

the ~iption to locate ao~appropRate instance of the service .. at run time. we~.focua on naming 

isswes, Uf1d'er the belief that the cerresponding focation m(jchtmisms may be-built. 



Our remote binding model consists of two procedures which we discuss in turn. A programmer 

needing any instance of a service uses the foUowing procedure to bind to a node exporting the 

service: 

Servfce[s:servfceName]SAny • proc () return1 (s) 11gaa11 (NoneAva11able) 

This procedure, which is part of the run-time system, consults a network facility to locate some 

instance of the specified service. Service(a]SAny returns a node that exports at least service a. 
Because the programmer has no control over which instance is selected, the service s should be a 

location-independent service. A service is location-Independent If all Its Instances are 

indistinguishable except for performance. For example, consider a room containing ten Identical 

nodes, and assume no node contains a local file system. If each node compiles Fortran programs, 

they are indistinguishable to a user. The appropriate node is the least busy. If Fortran la a location· 

independent service that compiles Fortran programs, the following statement finds an instance of this 

service: 

compiler: Fortran :• Servfce[Fortran]SAny() 

No particular Fortran compilation service is requested, since they are all equivalent. 

A programmer needing some Instance of a service uses the following procedure to bind to an 

appropriate node exporting the service: 

Servfce[s:servfceName]Slookup • proc (string) ·rttUM91 (s) 11gna11 (NotAva11ab1•) 

Service[s]$Lookup returns a node that exports at least servk;e sand corresponds in some way to 

the string argument. As expfained below, the interpretation of the string argument depends on the 

service a. 

Servlce[s]Slookup gives the programmer some control over which Instance is found, which is 

useful when the programmer wants to use a location-dependent service. A service .is locatlon

dependent If its instances are distinguishable because of their data or physical locations. For 

example, a user may prefer the instance of the print service down the hall instead of the instance 

across town. Similarly, many services may contain street maps and export_ retevant operations, but a 

user may want one containing a map of Boston. 

Suppose Map is the name of a location-dependent service that contains street maps and provides 

operations on the maps. The following statement finds a~iceeontaining a map of Boston: 

BeanTown: "Map :~ Service{Map)Slookup("Bo.&ton") 

Since all Map services do not c<>ntain a Boston 11Ult:J, the progr~mer mU$l specify which instan1es 

are acceptat:M. As we mentioned above, the inteo:>retatiln of bf string argument ("Boston") 

' depends on the service (Map). A single $Iring mav co~ndto zero, one, or sever~Unstaoces- of 

the service. 

Each of the t'«o binding routines presenteq ()bov• :normally returns a capability for ~ SeNiceJnstance'. 
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A capability for service instance S lets a node execute REV requests at S. Service capabilities are 

first-class objects. They may be assigned to variables, stored in data structures, passed as 

arguments, or returned as results. Service capabilities may also be sent between nodes; Chapter 5 

presents the details. 

Although a client that has finished interacting with a service is expected to notify the service, for 

simplicity we do not include a Service[s]$flnlshed routine in the discussion or any examples in the 

thesis. Such a routine would invalidate the service capability, break the binding between the client 

and the service, and let the service reclaim any resources it devoted to the binding. An REV request 

whose destination is an invalid service capability does not run. Instead, it raises the exception 

failure(" invalid service capability"). 

A service can unilaterally invalidate any service capability it issued. For example, if a service crashes 

and then recovers, it can declare that all its outstanding service capabilities are invalid. Slmlfarly, a 

service unable to communicate with a client can declare that the capability issued to the client is 

invalid. When either the client or the service Invalidates the service capability for a binding, the 

service reclaims the resources it devoted to the binding. 

2.2 REV Requests 

Having extended CLU with services and a simple model of nested transactions, we now Incorporate 

REV into CLU by defining what an REV request means (Its semantics) and how one is written (Its 

syntax). This chapter assumes an REV request relocates the execution of a procedure. Consider a 

procedure P that is not exported by a service S, and assume an REV request relocates the execution 

of P to S. For simplicity, assume the body of P invokes only procedures exported by service S. The 

run-time system for a client executing the REV request places the body of P and the arguments into a 

request message; sends the request message to the service; and waits for a reply message. When the 

service receives the request message, It extracts the procedure body and arguments from the 

message; evaluates the procedure with the arguments; and then pJaoes the procedure's results into a 
repty message. The service sends the reply message to the client, which extracts the results-and 

continues execution. We formilfize the semantiCs of su~h a~':REV req0est after ptesenting the sYftt8lC. 

An· application programmer writing an REV request specifies the procedure, the arguments, and the· 

servfce<that·executes the REV request; We·use the extended BNF defined in the CLU manual (24) to 

psesent REV syntax: 

rev_a1i9ress ion : : = at express i,on eval i nvocatlltn 

AT and EVAL are two new reserved words, and expression must have a service type. A relocated 

oirMlc:atioo has the same syntax as an ordinary procech . .ire in¥ocation: 

iitll.o:e~'ti:ein : := primary([express-t:~n, .... ]) 

---- --- -------~· --------------------
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The nonterminal primary, which is one kind of CLU expression, produces literals, identifiers, and 

invocations. We extend primary to produce REV requests, which are relocated invocations: 

primary ::• ... (as 1n CLU manual) ... I rev_expression 

A client executing an REV request evaluates the expression following the reserved word AT to 

determine a service. After evaluating the relocated invocation's primary and arguments, the client 

sends the request to· the service, which performs the invocation and returns the results to the client. 

We present restrictions on REV requests and define their semantics below. 

An REV request that is executed by service S is valid if the procedure and arguments may be 

transmitted to S and the results may be transmitted to the client. If T is any type other than code, an 

object of type T may be transmitted between two nodes if T is a transmissible type and both nodes 

implement type T. The transmissibility of code is more involved. As explained in Section 2.3, the 

request message contains enough code for the service to execute the invocation. This code, which 

the compiler must be able to determine at link time, is self -contained in that it never refers to nonlocal 

variables. Moreover, every routine invoked by the code at the service is either in the request message 

or exported by the service. 

An REV request lets an application programmer relocate the execution of a procedure. If the 

procedure is location-dependent, relocating execution with REV may change program semantics. 

The meaning or semantics of a program is its visible behavior, Including any results computed by the 

program and any visible side effects it causes. We do not include resource consumption, such as 

processor time, memory requirements, and network traffic, in the definition of program semantics. 

Using REV to relocate the invocation of a location-dependent procedure may change program 

semantics. On the other hand, if the procedure is location-independent, we would like the REV 

request not to change program semantics. Section 2.4 argues that the following argument passing 

semantics and crash semantics for REV requests achieve this goal. 

Botb REV requests and ordinary procedure catls have the same argument passing semantics: call by 

sharing. Conceptually, the client places the names of the arguments in the request message sent to 

the service. Because such an implementation would be hopelessly inefficient, we discuss a novel 

implementation for call by sharing in a distributed system in Ctu1pt&r3. 

Having specified the argi1ment passing semantics for REV requests, we must define their crash 

semantics: how do node and communication failures affect the meaning of an REV request? We 

simplify the construction of distributed applications by masking node and communication failures 

with atomitHransactions. Each REV request must run as part of a transaction that aborts if the REV 

request does not complete.3 Invoking an REV request outside the scope of an transactions raises the 

3.rtansactioo may mean lop-level transaction or subtransaction in this discussion. 
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exception failure("No current transaction"). In this case, the REV request is not executed. The 

normal completion of an REV· request does not affect the status of the current transaction. In 

contrast, unilateral termination of an REV request by the client's run-time system aborts the current 

transaction. For instance, if the client's REV mechanism can not periodically elicit a low-level 

response from the service, it might conclude that further attempts at communication are worthless 

and abort the transaction. When the transaction is aborted, the nearest enclosing transaction block 

raises the exception failure(reason: string). Being part of a transaction that modifies only atomic 

objects, each REV request has the following semantics: either the service executes the REV request 

and returns the results to the client, or the REV request has no effect on both the service and the 

client. In the absence of failures, REV requests have exactly-once semantics since each request is 

executed once. 

Figure 2·3 contains an example of REV. Suppose a remote array processor supports addition, 

subtraction, and multiplication of matrices. A programmer who wants to exponentiate a square matrix 

can use REV to implement an exponentiate procedure that executes at the array processor. For 

simplicity, we assume that the matrix is square and the power is a nonnegative integer. The algorithm 

calculates the result by successive squaring. 

APS • ArrayProcessorServ1ce I an equate 

exponentiate a proc (m: matrix, power: int) rtturna (matrix) 
signals (unavailable(str1ng)) 

begin transaction 
ap: APS :z Service[APS]SlooJwp() 

except when NotAva1lable: abort signal unavailable(•No ap•s•)•Rd 
answer: matrix := at ap eval exp(m, power) 
return (answer) 

end except when fa 11 ure (reason: str1 ng:): 
X REV or commit prob1t• 
signal unavailable(rea•on) end 

end exponentiate 

exp • proc (m: matrix, p: int) returns (matrix) 
X calculate mf'p by success1ve squaring 

square: matrix :• m 
ans: matrix : = matrb.$1.dent ity(matrixSlengtJt(m)) 
while p>O do 

if int$mod(p, 2)=1 X 1s p odd? 
tben ans :• matrixSmul't1ply(au. square) ta~. 

squar..e := matrixSmult1ply(sq11aN, square) 
p :• p/2 

tfld 
rMvr'• fans} 

.... ,eic,. 

Figure 2·3: Using.REV to enhance a remote array processor. 
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· Since procedure exp in Figure 2-3 does not depend on the state of the node that executes it, exp is a 

location-independent procedure. We argue in Section 2.4 that using REV to relocate the execution of 

a location-independent procedure does not change program semantics. In other words, removing 

the phrase "at ap eval" in exponentiate does not change program semantics. Whether the client 

executes exp (as an ordinary procedure invocation) or the service executes exp (as an REV request) 

does not change the results calculated by exp. Because exp causes no side effects, we do not need 

transactions to ensure this particular REV request does not change program semantics. Other 

examples in the thesis, however, show that transactions are often necessary. 

A programmer can nest REV requests, as shown in Figure 2-4. Procedure R uses REV to relocate the 

execution of procedure P, which in turn uses REV to relocate the execution of procedure Q. As 

explained in Section 2.3, the compiler determines the code the client sends to s 1 and the code s 1 

sends to s2. The code sent to s2, which probably Includes the body of a, is first sent to service s1 

which treats the code as a black box. The code sent to s2 depends on Q and s2 but not on s1. 

end R 

end P 

Figure 2·4: A nested REV request. 

REV requests can nest to an arbitrary depth. For instance, if procedure Q invoked procedure P, they 

would be mutually recursive. In .general, their dynamic nesting depth could not be predicted at 

compile time. 

The transmissibility of service capabHities facilitates nested REV requests. If s2 is (contained in) an 

argument to procedure P, the service denoted by s2 accompanies P to service s 1. If service 

capabilities were not transmis$ible, t~ progr4inmer would have to establish a binding .in procedure P 

to relocate the execution of pr~edure Q. 
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2.3 The Code Portion for an REV Request 

The code portion for an REV request consists of all routine implementations and routine names the 

client sends to the service, excluding the code portions for all nested REV requests. The code portion 

represents the smallest amount of code that the client must send to the service for the service to 

execute the REV request. When determining the code portion for an REV request, we treat nested 

requests as self-contained, black boxes, because a nested REV request may be executed by another 

service and therefore may be unintelligible to the intermediate service. 

At this point, we explain in detail the three restrictions we impose on REV requests. The first 

restriction, which we impose for semantic reasons, applies to the routines invoked by an REV request 

at the service that executes the request. We say the code portion for an REV request imports a 

routine if: 

1. the REV request uses the routine at the service executing the request; and 
2. the request message sent to the service does not contain an Implementation for the 

routine. 

Given this definition, our first restriction is that every routine imported by an REV request is exported 

by the service executing the request. Otherwise, a service could receive a request that asks the 

service to execute a routine the service does not implement. 

The second restriction, which is also imposed for semantic reasons, prohibits the code portion from 

having free variables and own variables. Unlike LISP, we use type Information to distinguish free 

variables from free procedure names. Since CLU does not let a progr&mmer define a routine In the 

b()(ly of another routine, the only free variables a routine can have are own variables. Hence this 

restriction is equivalent to one that prohibits own variables in the code portion of an REV request. 

This restriction on own variables does not reflect any fundamental limitation on the transmission of 

code in a network, since it is possible to transmit the objects bound to the own variables appearing In 

the code portion of a request. If we allow own variables in the code portion, implementing REV so 

that location-independent requests preserve program semantics is difficult because of our 

assumption that variables'fall outside the scope of the transaction mechanism. This restriction and 

the preceding restriction ensure the code portion is self ·contained a8 long as it is executed by an 

instance of the apJlto.ptiale,aeadc.e. 

Our third and final restriction on REV requests, whichis imposed for pragmaiic reasons, requires that 

the compHer be able to determine the code portion at link time. This restriction supports early error 

detection, since the compiler can ch*k the above two restrictions. This restriction also let$ the 

compiler encode each code portion. Enco<;tirTO an objeet results in a sequence of bits that represents 

the abstract value of the object in a node-independent way. Sllch .. ~. bit .sequence may be ·sent 

between nodes in messages. Having the compiler encode the code portion of each REV request can 

~time:perfoonance. 
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The code portion for an REV request depends on the service executing the request. Consider the 

REV request in Figure 2·5, which relocates the execution of procedure P to a instance of service S. 

Assume no procedures are used as arguments to A, 8, C, or P. If service S exports P, the code 

portion consists of the name P. This case is comparable to a remote procedure call, which shows 

that remote evaluation includes remote procedure call as a special case. If service S exports A, B, 

and C but not P, the code portion consists of the body of P. If service S exports only A and B, the 

code portion consists of the bodies of P and C. If 5 does not supply enough routines, the code 

portion may not exist. For example, assume S exports only B and C, and assume that A is a system 

routine that is not implemented in CLU. If only CLU routines may be transmitted between nodes, A Is 

not transmissible and no self-contained code portion exists. 

p • proc c••args••) return• (••results••) 
A( .. ) 
B( .. ) 
return cc••) 

end P 

c • proc c••args••) return• (••results••) 
if ec••,> 

then return P(••) 
•1•• return A(••) 

end 
end C 

somewhere: S :• Service[S]SAny() 
at somewhere eval P( .. args .. ) 

Figure 2·5: An REV request that relocates the execution of procedure P. 

We call the procedure whose execution Is relocated by an REV request the relocated procedure for 

that request. In the preceding example, P is the relocated procedure. The relocated procedure is 

independent of the service that executes th,rrequest. In particular, it does not matter whether the 

service exports the relocated procedure or whether the body of the relocated procedure 

accompanies the request message sent to the service. We cafl any other routine whose body 

accompanies the REV request to the service a client-supplied routine. As we saw in the previous 

example, the client-supplied routines depem:t on th·e service· executing the. request. For example, if 

the service exports only A and B, then C is a clienkupptied routine. 

We describe trow the compi~er determines the code portion for an REV request by first assuming that 

routines are not first-class objects. Under this assumption, a programmer can write routines and 

invoke routines, but can do nothing else with routines.. While linking the program, the compiler 
... 

determines the code portion for each1'RE\I request by generating part of the pr0gram call graph, 
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which· represents the "who-calls-who" relation for routines. Because routines are not first-class 

objects, the program call graph can be readily constructed at link time. For each REV request, the 

compiler begins with the relocated procedure and decides whether the client must send the 

procedure's name or body to the service. In the latter case, the compiler must also decide whether 

the client must send the name or body of each routine invoked by the relocated procedure, and so on. 

In the worst case, the compiler must determine all routines reachable from the relocated procedure. 

If the compiler comes across a nested REV request, it recursively calls itself on the nested REV 

request and then continues processing the current REV request. If no code portion exists or if the 

code portion contains an own variable, the compiler informs the programmer via a fatal diagnostic 

and continues checking for other link-time errors, but the compiler does not produce an executable 

program. On the other hand, if the compiler finds the smallest self-contained code portion, it encodes 

the code portion and continues linking the program. 

Using routines as first-class objects complicates the task of determining the code portion for an REV 

request, since arguments and results may be routines. The compiler rejects an REV request with. 

routines as arguments if any of the routine arguments are unknown at link time. Similarly, the 

compiler rejects an REV request whose relocated procedu.re is unknown at link time. The compiler 

also rejects any argument to the REV request that contains code, such as an array of procedures, by 

prohibiting any external representation that contains code. Without an acceptable external 

representation, an abstract data type is not transmissible, which means that the REV request Is not 

valid. These restrictions ensure the code portion of an REV request is apparent at link time. 

In a distributed system with REV, routine names are bound to their implementations at different times. 

We will use Figure 2·6 to show the different times at which binding occurs. A, B, C, and D are 

clusters. Service S 1 exports C and D, and service 82 expo~ C. Consider a program running at the 

client that contains REV requests. Assume modules A and B are compiled once, linked together, and 

then loaded at the client. 

Consider an invocation of a routine that is not in the code portion of any REV request. Such an 

ordinary invocation is bound early and only once. If the routine is invoked in the same cluster as it is 

defined, binding occurs at compile time .. for instance, a routine in cluster A could invoke· another 

routine in A. Otherwise, If the"fOutineis'in'VOtted in one cluster and implemented in another cluster, 

the invocation is bound to an implementation when the modules comprilllng the client program are 

linkect For example, a routine in A could invoke a routine in 8. 

A routine that iS: invoked itt.an REV reqt.(~t but~is not impOrted by the REV requeStmust accompany 

· the REV request. Such invocations a@ b.,ncf early and onf.y pnce. SudPilse an REV r~ sent to 

service 51 invokes the routin8''9$op~ Since S1 does not,.export BrBSop. must accompanytthe 

'J'eqllfeSt. The binding occurs when the modules comprising the client program are linked. 

A...rliwtmedftaf isimpo.r.ted by an REV request is bQund•attanktime. Consider rul' REV request that 
'"': ~ ' ... ' 
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CLIENT SERVICE St 

SERVICES2 

Figure 2-6: A simple distributed system. 

imports the routine C$op and is sent to a service that exports C such as S2. The invocation of C$op 

is bound to an implementation for C$op every time the REV request is executed by S2. The binding 

can occur many times at the same service or many times at.many services. For instance, the REV 

request could also be executed several times by S 1. 

2.4 Location Independence 

A location-indep&FJdent ReV·request is a valid REV request that imports only location-independent 

routines. The code portion for such an REV request is a composition of location-independent 

routines, which means that it is also location-independent. Our goat is to let the programmer relocate 

execution with location-independent REV requests without affecting program semantics. In 'Other 

words, every executiongequence of aprogram containing a location-independent REV request must 

be equivalent to some execution sequence of 'the corresponding program without th~ AEV'request 

and vice versa. This section argues that relocating execution with a location:independent REV 

request has no effect on program semantics. It also discusses how location ind.apendence affects 

appfioation prograR'lmers and'service programmers. 
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We being by arguing that relocating execution with a location-independent REV request has no effect 

on program semantics, provided that the expression that specifies the service is side-effect free. Let 

R be an REV request of the form: 

at somewhere eval P( ••args••) 

where somewhere is an expression with no side effects and Pis a location-independent procedure. 

All of P's observable side effects must be modifications to its arguments, because otherwise P would 

be location-dependent. Assume R is always evaluated during a transaction. The following shows that 

replacing expression R with expression P( • •a rgs • •) has no effect on program semantics: 

• The argument passing semantics for R and P are identical. Both use call by sharing. 
Since P is location-independent, the arguments are modified in the same way whether 
the client or the service executes P. 

• The results computed by R and P are identical. Since P is location-independent, the 
objects returned by P(• •args• •) do not depend on the node that executes it. 
Therefore, it does not matter whether the client or the service executes P. 

•The crash semantics for Rand Pare identical. In both cases either p(• •args• •) Is 
completely evaluated or it appears that p(• •arga• •) was never evaluated. The 
transaction mechanism masks all node and communication failures that might affect the 
evaluation of P(* •arga• •)or R. 

Hence we may conclude that location-independent REV requests preserve program semantics. Each 

. execution sequence of a program containing location-independent REV requests is equivalent to 

some execution sequence of the corresponding program without these REV requests and vice versa. 

Our suggested programming methodology is based on the ideas of location dependence and location 

independence. The application programmer first writes and debugs an application using REV only as 

a way of fixing the execution site of location-dependent procedures that are not executed by . the 

client. We recommend that the service expression in such an REV request be location-independent. 

so that the entire REV request will a location-independent program fragment. For example, let M be 

an REV request of the form: 

at someService eval Q(••args••) 

where someService is a location-independent expression and Q is a tocatJon-dependent procedure. 

· No matter which node begins to execute M, the specified service· ultimately executes a. Thus the 

location dependence of the relocated procedure Q does not affect the location independence of the 

entire REV request M. This kind of request is a prmie candidate.for becoming a nested request, as 

explained below. 

Location-independent, requests will normally be used du(ing 1he second stage of our suggest0d 
programming methodology. Once the application has been debugged, the application programmer 

inserts location-independent REV requests to improve performance. For example, consjder a 

proceoore with five REV requests to the SBrAe ;service. The J>rOgrarnmer can ;:try to us~ .REV to 

relet::ate'ttre-execulion of the entire procedure to that service; wf1ich wm make the five REV requests 
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· in the procedure nested requests. The programmer need not worry about introducing new bugs at 

this stage, as location-independent requests preserve program semantics, and the compiler can 

check whether each new REV request is location-Independent. This programming methodology 

facilitates the automatic insertion of location-independent requests to improve performance, a topic 

that is beyond the scope of this thesis. 

Our notion of location independence involves the service programmer, who must declare whether 

each interface exported by a service contains location-independent routines or location-dependent 

routines. The compiler uses this information when checking the location independence of an REV 

request. The following approach can statically check the location Independence of service routines. 

System programmers label the built-in routines as to their location independence, while service 

programmers label the routines they implement. The compiler ensures that every routine Invoked or 

named by a location-independent routine is location-independent. This approach, however, may be 

too conservative, since a routine can invoke location-dependent routines yet remain location· 

independent. 

Application programmers need not decide whether their routines are location-independent, since the 

compiler infers their location independence when· checking the location independence of an REV 

request. This division of labor between application programmers, service programmers, and the 

compiler reflects an important theme in the thesis. Whenever possible, we place the burden on the 

compiler and service programmer rather than on the application programmer in an attempt to simplify · 

the construction of distributed applications. A handful of expert language designers and compiler 

writers can support a small number good service programmers, who in turn can make life easier for 

the hordes of application programmers. This division of labor Increases the leverage of language 

designers, compiler writers, and service programmers. 

2.5 Discussion 

To facilitate (automatic) program optimization, we defined REV semantics so that location

independent requests would not Ghange program semantics. Since an REV request refocates the 

execution of a procedure, wtt had to ensure that procec:tures and REV requests had identical 

semantics. We also wanted to minimize the changes to CLU; since we were concerned with 

programming style and the efficiency of CLU procedures. Because our goals were different tha11 

those of RPC researchers, our REV semantics is unlike any RPC aemantics. 

Our argument p~ing semantics for REV requ~ts, <:aJI by sharing, is unusual in a distributed system. 

Most RPC systems use call by value, but CLU 'uses call by sharing. Unifying the semantics of local 

procedures and REV requests forced us to choose call by sharing for REV requests. Although.call by 

sttanng and 'Call by value are equiv~t for imltiutabJe,fyQes,we did not want to uee catlby Wll;ue for 

~requests and limit their arguments and results to immutable·types because we tttmugtit ma.flt 

would constra1n the application-programmer (and optimizer) too much. 
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Chapter 3 describes our novel implementation for call by sharing in a distributed system. In terms of 

performance, our implementation is shown to be comparable to an implementation for call by value. 

Chapter 3 also discusses how we keep separate address spaces disjoint, even though REV requests 

use call by sharing. 

We masked node and communication failures with atomic transactions so that location-independent 

REV requests would not change program semantics. Our crash semantics, however, is slightly 

different than the semantics found in transaction-based RPC systems like Argus [25), which 

automatically enclose each RPC In a transaction. If we used the same approach and automatically 

enclosed each REV request in a transaction, at least part of the transaction structure of a program 

would depend on how the program is partitioned into components for local and remote execution. 

This in turn means that program semantics depend on how the prqgram is partitioned. Relocating 

execution with a (location-Independent) REV request would alter the transaction structure and in 

general change program semantics. 

Besides helping us ensure that location-independent REV request preserve program semantics, 

transactions simplify the construction of distributed applications by masking node and 

communication failures. When failures are visible to the application programmer, building a 

distributed system, especially one that must maintain the consistency of distributed data, is a difficult 

task. Independent failure modes complicate the behavior of the system, because a client with an 

outstanding REV request may not be able to communicate with the service purportedly executing the 

request. In such cases, the client is unable to determine whether the service received and (partially) 

executed the request. 

2.6 An Example 

We highlight the important points in the chapter with an example that uses a location-independent 

REV request to improve ~rformance without affecting program semantics. Consider the problem of 

Sending a form letter to several peaple. Current mail systems let a user send ttte·same message to 

several recipients. A user who wants to customize each copy of the letter, however, must send 

separate messages. Assume the customization can be automated. For example, the user may want 

to insert "Dear John," in the message to John, "Dear Sue," in the message to Sue, and so on. 

Furthermore, fi6fllM atl ~.of the message are in the sam .. mail regiStry. 

Let maif be a service that expatts the registry, maildrop, set, and striAg interfaces. Customize, 

the procedure in Figure 2-7, uses REV to customize the message at the mail service and returns those 

recipients without a mailbox. Without REV, the user would be forced to customize the message at the 

client,and send each copy to the mail service. If there are many recipients or if the message is loog, 

Re\/sfl'Oofdimprove performance sub$antialfy. 
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ss • set[string] I an 11quate 

customize • proc (user, password, msg, registry: string, friends: ss) 
returns (ss) signals (NotAvailable) 

begin transaction 
postOffice: mail :• Service[mail]SLookup(registry) abort resignal NotAvailable 
badNames: ss : • at postOfrice eval 

customizeMsg(postOffice, friends, user, password, msg) 
return (badNames) 

end except when failure (reason: string): 
I REV or commit problem 
signal NotAvailable end 

end customize 

customizeMsg • proc (po: mail, friends: ss, user, pwd, msg: string) return• (ss) 

badNames: ss :• ssSnew() 
newMsg, firstName: string 

for friend: string in ssSelements(friends) do 
firstName :• at po eval registry$first~ame(fr1end) 

except when noSuchUser: 
ssSinsert(badNames, friend) 
continue I start the ne~t fteratfon 

end 
newMsg :•"Dear "llfirstName((msg I strfng concatenatfon 
at po eval ma1ldropSsend(user, pwd, friend, newNsg) 

end 

return (badNames) 
end customizeMsg 

Figure 2· 7: Using REV to customize a fqrm ,letter. 

The REV request that relocates customlzeMsg is location-independent, since its code portion 

imports only set and string operations, which are location-independent. Although customizeMsg 

invokes location-dependent registry and maildrop routines, It does not import them. This is 

because the code portion for an REV request by deftnttion.doea not include the code portion for any 

nested requests. Following our suggested methodology, the appHcation programmer writes and 

debugs custon:aizeMsg using REV to fix the ex~J.Jtjon sites of .location-dependent registry and 

maildrop procedures. Later, the programmer can easHy convert any invocation of customizeMsg 

to an REV request without changing program semantics. Both pr<>CQdurt;ts and REV requests use call 

by·sharing, and the app!ication programmer does not'have to worry about keeping separate address 

spaces disjoint. 

Making location-indet)endent REV requests be an optimization SimP,ifies apptie@tion p110gramming. 

For example, the application programmer can relOcate the execution of cu$lomizeMsg without 

changing program ".semantics. To imprcve performance, the programmer could relocate 

C.~omjzeMsg froiifthe client to the" mail Service,_ that CON(lins th~I~ipient's mailboxes, as shown 
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in Figure 2· 7. Even if the programmer accidentally relocates customlzeMsg to the wrong mail 

service, performance may degrade but the net effect of the REV request will be unchanged because 

the nested REV requests are executed by the correct service. Which node executes a location· 

independent REV request can affect program performance but not program semantics. 

This example also shows how transactions make location-independent REV requests be an 

optimization. Whether customizeMsg is part of an REV request or simply an ordinary procedure has 

no effect on program semantics. When REV is used to relocate the execution of customizeMag, the 

client sends only a single REV request to the service. The service sends the REV requests inside 

customlzeMsg to itself. Removing the phrase "at postOffice eval" in customize replaces the REV 

request with an ordinary invocation of customizeMsg. The number of REV requests the client now 

sends to the service depends on the number of recipients and the number of recipients with 

mailboxes. The failure of any REV request causes the transaction to abort and customize to raise 

the exception NotAvailable. Either ail the friends with mailboxes receive customized messages or 

none of them do. These two outcomes are also the only possible outcomes when REV is used to . 

relocate the execution of customlzeMsg. Hence the possible outcomes are independent of whether 

the client or the service executes cuatomlzeMsg. 

One final point to note about this example is how REV can extend the set of routines "exported" by a 

service. Whether the code portion contains the name or the body of customlzeMsg is transparent to 

the application programmer in terms of syntax, semantics, and performance. The only difference Is 

whether the procedure exists at the service or accompanies the REV request. 

2.7 Summary 

REV is the ability to relocate the execution of a procedure. REV requests, which give the application 

programmer fine-grained control over the location of processing in a distributed application, use call 

by sharing. Instead of automatically enclosing each REV request in a transaction, we require that 

every REV request run as part of some transaction. If the client's REV mechanism unilateral1y 

terminates an REV request. it aborts the associated transaction and then raises the exception failure. 

Transactions, which mask concurrency, node crashes~·and communication link failures, manipulate 

only atomic objects. 

We restrict REV requests so the compiler can verify the validity of each REV reguest and encode its 

code portion. An REV request is vatid if its arguments ind r~lts aretnmwmissiblebetween the client 

and the service and the code portion is self-contain~ an~~~nt atttink time. In particular, the 

code portion must not contain any own variables;. every procedure argument .must be known at link 

time; and every routine imported by the code portion must be exported by service executing•the 

·request. Valid requests·may be encoded by.the compiler. 
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A location-independent REV request is a valid REV request that imports only location-Independent 

routines. A routine is location-independent if its semantics does not depend on the node that 

executes the routine. Location-independent REV requests do not change program semantics. 

To determine the validity and location independence of an REV request, the compiler consults the 

appropriate service definition, which is a set of interfaces. An interface specifies a collection of 

routines. A service programmer defining an Interface must specify whether the interface defines 

location-independent routines. 

An instance of a service, which is a node exporting one or more interfaces, advertises its existence by 

registering with some network facility. A program that uses REV binds to one or more services. This 

binding typically occurs at run time. An invocation of a routine imported by an REV request is usually 

bound late and often. Other Invocations of routines are bound early and only once. 
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Chapter Three 

Implementing REV 

The preceding chapter presented an integrated set of new ideas including REV, services, and call by 

sharing in a distributed system. This chapter, which explains how to implement these ideas, is based 

on a prototype REV mechanism we constructed. Because of the similarity between RPC and REV 

mechanisms, we focus on the major innovations in our Implementation. 

3.1 Overview 

We begin by surveying the compile-time and run-time tasks of an REV mechanism. An REV 

mechanism has two tasks at compile time. First, It verifies the validity of REV requests and determines 

their location independence. Recall that a valid request is one the compiler can encode and the 

service can execute, while a location-independent request is a valid request that does not change 

program semantics. Compared to run-time checking, this static checking can Improve performance 

and detect errors earlier. 

The second compile-time task of an REV mechanism is to generate stubs. A stub is a procedure that 

encodes or decodes arguments and results at run time. Stubs Interface the application program with 

the communication system and free the application programmer from worrying about communication 

details. Generating stubs at compile time rather than at run time Improves run-time performance. 

At run time, an REV mechanism has six tasks: 

1. Service Binding: A program with REV requests must locate the services that will execute 
the requests and bind to these services. 

2. Reliable CommuaiQlllUw.: Iwo nodes must reliably e~ch8:Qge messages of arbitrary length 
over an unreliable network that may be based on packets. 

3. Failure Recovery: Each REV request must run as part of some transaction that aborts If 
the request does not complete. Thus node and communication failures are hidden by 
atomic transa;tions. 

4. Call by Sharing: Our a,mument p&$Slng semantics for REV request$ is.call by sharing. An 
efficient implementation for call by sharing in a distributed system is the major innovation 
in this chapter. 

5. .CGtiEt Transmission: A client musftransmit routine implementation$ ~d routine names to 
'1' .. -:· ,,, ','<.tf~~;.:~.\~··- ',:''~ 
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a service. We will evaluate several alternatives for the external representation for code 
and discuss scenarios in which each alternative is appropriate. 

6. Request Interpretation: If the external representaJlon for code is somethjng other than 
compiled code, each service needs an interpreter to evaluate REV request&. · 

The difference between an REV mechanism and an RPC mechanism is small. In a remote procedure 

call, data and results are transmitted between the client and service. The RPC request message 

names one procedure that resides at the service (Figure 3-1). A client using REV, in contrast, 

transmits the "remote" procedure along with its arguments (Figure 3-2). The procedure sent from the 

client can name several procedures residing at the service. 

proc name ..... 
proc 1 ..... 

argument 1 
D proc 2 

argument 2 

• D proc3 

• . 
D • proc4 

argumentn D proc5 

The RPC request message The Service 

Figure 3· 1: An RPC received by a service. 

The remainder of the chapter is structured as follows. Section 3.2 explains our technique for 

implementing. call by sharing for REV requests. Section 3.3 discuases theccompife.time actlvitieS,,of 

an REV mechanism in some detail, while Section 3.4 does the same for the run-time activities. 
Because of the similarity between an REV mechanism and an RPC mechanism, these two sections 

facu,s on the REV tasks:. that are not found in an RPC mechanism: verUying the validiW oLREV 

requests· and determining their'tocation jndependence; in;iplertl$riting call by sharing in a ¢stributed 

system; and transmitting code between nodes. The . REV tasks that are also found in an RPC 

mechanism arediscuSsed briefly. 
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a procedure 

.... proc 1 .... 
argument 1 

D proc2 
argument2 

.... proc3 .... 
• 
• .... proc4 • .... 

.... procS argument n ..... 

The REV request message Tlte Senlce 

Figure 3-2: An REV request received by a service. 

3.2 Call by Sharing in a Distributed Syetem 

A straightforward implementation of call by sharing for REV requests uses object names that are 

resolved in a global address space shared by all nodes. Thia BPP.roach has two drawbacks. First, 

call-backs will cause poor performance. A call-back is a nested REV request sent from the recipient 

of the outer REV request to the sender of the outer request. ThefoUewinSJ eKample shows how gfobal 

names in an REV reque~t can cause call-backs. Let A be an arg~t to an REV recsuesf Sent to the 

service. If A is represented by a global name that refers to an object kept at the cti~t. accessing A 

during.: the, REV request requires a call-back. If a single REV request 1"9qtriresdoums t1f call-backs, 

most of the performance ad¥antages.of REV will disappear. 

Second, a straightforward implementation of call by sharing will not 1(eep nbde ~dress aces 

disjoint. A service that holds onto the arguments of an REV request wilt refer to client objects~ If the 

NB'l*9 et tne REV request are service obj •• the client witt refer 10 98Mce abjects. Call by shli1.ring 

semantics dictates that an accessible reference be vatKr fqr all time. Thi$ r«1uiren1'J')l compl~tes 
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garbage collection in a distributed system without disjoint address spaces. Other arguments for 

keeping node address spaces disjoint are based on availability, autonomy, and performance 

considerations. 

We avoid these two drawbacks by implementing call by sharing for REV requests with call by 

value-overwrite, a new argument passing technique that has an efficient implementation in a 

distributed system. Before presenting the details of call by value-overwrite, we illustrate the basic 

idea with an example and then list the problems we must solve to have a complete and correct 

implementation of call by sharing. 

Consider an REV request with one argument, an array of integers, and no results. Suppose the 

request appends a 3 to the high end of the array. Part (a) of Figure 3-3 represents the state of the 

client and the service before the REV request. The circle represents the array argument to the REV 

request. Under call by value-overwrite, the client sends a copy of the array to the service. Both the 

client and the service have a copy of the array, as shown in part (b). The service executes the request 

and modifies its copy of the array without affecting the client's copy, as shown in part (c). During the 

REV request, the client must not access its copy of· the array, since It may be out of date. At the end 

of the REV request, the service uses the reply message to send its copy of the array to the client. The 

client then overwrites its copy with the value sent from the service, as shown In part (d). Once the 

request completes, if the service does not retain a pointer to Its copy of the array, it appears as if call 

by sharing was used. 

The following list presents all of the problems we must solve so that call by value-overwrite 

implements call by sharing: 

1. Faithful Data Transmission: The abstract value of an object, rather than its name, is 
transmitted between nodes. This transmission must not have any visible side effects 
once the REV request completes. Furthermore, It must preserve sharing within an 
argument and between arguments. 

2. Argument Modification: Call by sharing lets a procedure communicate to its caller by 
modifying its arguments .. Call by value-overwrite must also provide this capability. 

3. Arguroent-~t..sbali,og: ,c.atlJlv sharing lets a procedure return some of its arguments 
as results. Calt by value-overwrite must also provide thls capabftiij. 

4. Time of Updates: Updates happen to objects in real time with call by sharing, but.updatfitS 
to arguments are delayed until the end of the request with call by va1ue·o\ferwrite. We 
must hide this timin~f difference: in··ihe ,Pre8et'1Ce of concurrency, node faitures, anG 
communication faiiures.""~ · 

5. Disjoint Address Spaces: Call by value-overwrite keeps separate·address spaces disjoint, 
since one node can not refer to an object at another l'\ode. Therefore, we must prohibit 
programs that would not keep separate acf9ress spaces, disjoint· if calf'by sh~Wet"Er 
fuUy irnpfemented, 
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CLIENT SERVICE 

(a) 0 
request ... 
~ 

(b} 0 0 

(c) 0 
reply 

~ 

~ 
(d) 

Figure 3-3: Call by value-overwrite .. 

We will discuss each of the above problems in turn and describe how to solve It. For some problems 

we augment our algorithm for call by value-overwrite, and for other problems we impose compiler· 

enforced restrictions on service programmers. Section 3.4.1 presents the details of our calf by value· 

overwrite implementation. 

An important consequence of soMng these problems is the flexibility we give .to the REV medlan1sm. 

For each REV request, the REV mechanism can choose whether to use catt~by vafue-overwrite or a 

more traditional implementation of call bY sharing. If the client and sewiCEfllre two different nodes, 

the REV mechanism wiff use call byvalue-overwrite. However, if the client and service are the same 

node, the REV mechanism can short-circuit the request; i.e., the client can execute the request as a 

~ procedure and use a traditional, efficient implementation of call byiSharint. 

~it<seems·unfikefythatmany requests can be short-circuited, ousrprogramm:ing methodotagy 
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will make such requests common. In the first stage of our programming methodology, the 

programmer uses REV to fix the execution site of location-dependent procedures. After the program 

is debugged, the optimizer uses REV to improve performance during the second stage. The optimizer 

may be the programmer, but someday we hope it wilt be part of the compiler. The REV requests 

inserted during second stage will make some of the REV requests inserted during the first stage 

nested requests. As explained below, these nested requests are candidates for short-circuiting. 

Assume a procedure P contains several REV requests and sends them all to the same service. If the 

service is one of P's arguments, the optimizer can use REV to relocate every invocation of P to the 

appropriate service. If an REV request that relocates P is location-independent, the new requests are 

acceptable to the optimizer because they do not change program semantics. In this case the 

requests inside P become nested requests, and each service that executes P will send these nested 

requests to itself. Either the compiler or the service's run-time system can short-circuit these 

requests. The compiler short-circuits a request by removing the "AT •.• EVAL" part of the request, 

assuming the service expression is side-effect free. The run-time system short-circuits a request by 

avoiding the communication aspects of the request. 

3.2.1 Faithful Data Transmission 

Call by value-overwrite requires that arguments and results be sent between the client and the 

service. Our approach to sending abstract values between nodes is based on Herllhy's template 

scheme for call by value in a distributed system (18, 19]. Because Section 3.4.1 extends an 

implementation for call by value into one for call by value-overwrite .• at this point we simply review 

Herlihy's scheme. 

A type is transmissible if every abstract value of the type may be sent in a message between nodes. 

The built-in scalar types, such as integer, real, and boolean, are transmissible. The transmissibility 

of a parameterized type, such as array[T), depends on the tranamissibility of the component type T. 

User-defined types, such lists, sets, and .queues, can also be tranam1aslbte. 

For any transmissible type T, T$put converts the abstract value of an instance of T into a 

transmissible format and appends this lnformatiOn onto a mel8age. Jn general, T$put linearizes an 

arbitrary graph structure. T$get removes information from a message and produces an instance of 

T. In general, T$get converts linear informa~n inte an arbitrary graph structure. As the client and 

service may implement an abstract data type differently, a canontc:al format is needed to 

communicate values of a transmissible type. This standard, which ia· catted 'the ~xternal 

representation for the typefmust be transmissible. 

A programmer implementing a transmissible type plays a small role in making the type transmissible, 

\dereas tbe system generates much of the codeautematicatf: Let. XT be the external represemation 

ff)t; ~pe· T .. A programmer implementing. T makes.,ittian~rJNi~ ;~ i~me.~if)JI !~9 r.QU.lines that 

c.o~ert between T and XT: ··· 
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TSdecode = proc (XT) returns (T) 
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T$encode maps the concrete representation into the external representation, while T$decode does 

the opposite. Imagine T is an integer set, and XT is an array of integers. If a programmer implements 

the set as a binary tree, T$encode creates an array with the same etements as its one argument, a 

binary tree. Given an array of integers, T$decode creates a binary tree with the same elements. 

Herlihy's scheme automatically extends T$encode and T$decode into T$put and T$get, 

respectively. 

In Herlihy's scheme decoding a cyclic object from its external representation may require lazy 

evaluation. Lazy evaluation is not essential, since it simply enlarges the set of transmissible abstract 

values. Moreover, suitably restricting decode procedures for types with cyclic values avoids this 

problem [19]. For these reasons we ignore the difficulties caused by lazy evaluation. This concludes 

our review of Herlihy's scheme. 

When one node transmits the abstract value of an object Oto another node, the abstract value of 

every object accessible from O may also have to be transmitted. We formalize this key fact with the 

following definition. Let P be a procedure whose execution is relocated by an REV request. The 

argument objects for an invocation of P are all objects forming the arguments to P just before P Is 

invoked. The argument objects include the objects passed to P (i.e., the top-level arguments) as well 

as all objects accessible from these objects. 

We are now ready to tackle the first problem: faithful data transmission. Because we have not 

introduced the other problems, the worst case we must handle is an REV request executing in the 

absence of concurrency and failures. The procedure relocated by the request can not modify any of 

its arguments, and the arguments and results do not overlap. Furthermore, the service can not hold 

onto any of the arguments or results. Because call by value provides the right semantics under these 

conditions, we can use Herlihy's scheme. Programmers implementing encode and decode for 

transmissible typea ·must ensure these routines have the following properties: 

1. they are side-effect free; and 
2. they preserve sharing, both within an argument and between arguments. 

If these properties held, the -JMtt .and get routi~es generale~i' by the system will not produce any Mte 

effects that are visible once the REV request completes. Furthermore, these system-generated 

routines·~ll preserve sharing, both within an argument and between arguments. Cyclic structures 

will also be handled correctly. In other words-; these'properties provide taithtul data transmiSsion. 

3.2.2 Argument ·Modlfk:ation 

tbe second problem we solve is how to support an REV request tha~ modifies ita~.,-guments. Because 

Section 3.4.1 presents ,tbe implemeatatioa .. Qet<;tils, this section describes our $'.>IUUon af a high tevel 
·'·-· .. •· · .. · . . ' , -· : ' 
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and then illustrates it with an example. In this section only, we assume the request does not return an 

argument object as a result. 

Under call by sharing, a procedure can arbitrarily modify any of its argument objects as long as it 

adheres to the type system. We support such arbitrary modification by having the service send the 

following information to the client. At the end of the REV request, the service's run-time system sends 

the final abstract value of every argument object, and the client uses this information to bring the 

argument objects at the client up to date. In particular, the client modifies (i.e., overwrites) each 

argument object with the final abstract value it had at the service. We call this modification a delayed 

update. Because an immutable object can not change its immediate state, only mutable argument 

objects need a delayed update. Before we discuss how the client knows which abstract value 

corresponds to which argument object, we pause for an ex~ple. 

Suppose we use REV to relocate the execution of procedure P, which is shown at the top of Figure 

3·4. Assume the argument to Pis array A, which is shown In the middle of the figure. Procedure P 

puts a 4 in lntBox B, creates a new lntBox containing a 5, and then overwrites A[1] with the new 

lntBox. This detaches lntBox B from array A, as shown at the bottom of the figure. Our objective Is to 

transform the current state of the client, which is shown in the middle of the figure, into the state 

shown at the bottom of the figure. We will accomplish this by having the service send the client the 

final abstract value of every mutable argument object. 

When a service receives an REV request, its run-time system re~embers all the argument objects. In 

this example, the argument objects are the array A, the lntBox B, and the integer 3. The first two are 

mutable objects, while the third one is immutable. At the end of the REV request, the service sends 

the explicit results and every mutable argument object back to the client. This example has no 

explicit results, but it has two mutable argument objects, A ~d B. Thus the service sends A to the 

client, which means that B' and 5 are sent. The service also sends B to the client, which means that 4 

is sent. Since 3 is immutable and no mutable argument object refers to it directly, the service does 

not send 3 to the client. The service uses a reply message to send the cUent the explicit results and 

the mutable argument objects. 

After extr:acting the expUcit resutts from the reply message, the client's run-time system extracts 

abstract values from the message and performs delayed updates until the message is empty. In our 

example, the client extracts the final value of array A and overwrites A with this value. As a 

consequence, the client creates a new integer, 5, and a new lntBox that refers to the integer. Array A 

now refers to the new lntBox. Next, the client extracts the final value of lntBox Band pertorm8the 

delayed update on B. This causes the client to create a new integer, 4. In summary, when·the REV 

request retums, the client overwrites every mutable argument object with the final value it had at the 

service. This may entail the creation of new obje~ at the client. 

Wit.Jag.objects so that the~client knows which object to,.over:write with which value. The client's 



" two equates 

IntBox = record[value: int] 
ab = array(IntBox] 

P = proc (a: ab) 
a(l].value :• 4 
a[l] := IntBoxS{value: 5} 

tnd P 

(a) The procedure relocated by an REV request 

array A IntBox B 

(b) The arguments before P is called. 

array A IntBox B int 

(c) The arguments after ,p ,is caUcd:. 

int 

Figure 3·4: An example illustrating argument ,nocfification. 

run-time system attaches a unique tag to each argument object it aends to the service, but the service 

·~ the tags before executing the request. During 1he RE\r', request, b9tt1 the e,tient and the 

service remembel- wruch tag refent ta which obiect At the end otthe r~st'th&~vice 11ttaches 
. ~ ' ., ~ -
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the proper tag to every argument object it sends to the client. If the service sends an object that is not 

an argument object, such as B' in the preceding example, the service attaches a special tag that 

indicates the object does not exist at the client. When the client extracts such an object from the 

reply message, the client creates a new object and initializes It to the abstract value sent by the 

service. 

Because we have faithful data transmission between the client and the service, we preserve sharing 

between objects. This means that neither the client nor the service in the preceding example has 

more than one copy of an object. The following examples should clarify the point. Consider an REV 

request in which two argument objects (C and D) refer to another argument object (E) before the 

request is sent to the service. After receiving the request message, the service creates only one copy 

of E, and the service copies of C and D both refer to this copy. If the copies of C and D at the service 

refer to E at the end of the request, the client objects C and D will refer to the same object E after all 

delayed updates have been performed. If at the end of the request the service copies of C and D refer 

to object F which is not an argument object, only one copy of F is created at the client, and th~ client 

objects C and D will refer to this copy after all the delayed updates have been performed. The client 

creates only one copy of F, even If the relocated proCedure returns Fas a result. 

3.2.3 Argument·Result Sharing 

Our current algorithm for call by value-overwrite already solves our third problem, since it supports an · 

argument object returned as a result. Before arguing this point, we define the result objects for an 

REV request. 

An REV request has two kinds of results: the results computed by the procedure it relocates, and the 

supplementary information the client uses to perform delayed updates. Because accessibility is 

important when objects are transmitted between nodes, we define the results of an REV request in 

terms of accessibility. Let P be a procedure whose execution is relocated by an REV request. The 

result objects for the REV request, which are defined just before P returns, have two sources: 

1. Explicit results: the results P returns to the caller, including all objects accessible from 
these results. 

2. Extra resuJls: a11., ...... ,..94HRtmt objects, including all objects currently accessible 
from these objects. 

An REV requut can have either, neither, or both kinds of results. For instance, the REV requestin 

the previous section had extra results but not explicit results. The expltcit results and extra results 

can overlap, sinGe an explicit result object and an extra result object>can Mfer to the same object. 

Until now we hav•assumed that no af'~ent object Was als'o an expli(Ut result object. 

Our current call by value-overwrite algorithm consists of delayed updates, tags for transmitted 

objects, and. faithful d•ta tra~mission . ..,,1"he delayed updates ntflect modifications to the.. argttment 

ob.i@cts done at the .. service, and the tags are used by the client t&matcil extra·resutts \Wth argllment 
• • I'- '\• ! ., 
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objects. Faithful data transmission preserves sharing between argument objects. It also preserves 

sharing between all result objects. 

Suppose we introduce the third problem by letting an argument object be an explicit result object. 

This does not affect faithful data transmission, since it already preserves sharing between all result 

objects. The client's run-time system must expect tags on explicit result objects in addition to tags on 

extra result objects. Once this minor change is made, an argument object returned as an expticlt 

result object is identified with the original client object; i.e., we preserve sharing between arguments 

and results. 

3.2.4 Time of Updates 

With call by sharing, changes to an argument object happen in real time, but with call by value

overwrite, changes to an argument object (i.e., delayed updates) happen only when the procedure 

returns. An observer at the client able to view argument objects during the execution of a procedure 

could distinguish these two argument passing techniques. For instance, a node or communication 

failure could expose an Intermediate state in a computation that would show the difference between 

call by value-overwrite and call by sharing. Similarly, another client process examining argument 

objects during an REV request might notice the difference between caH by value-overwrite and call by 

sharing. 

Our transaction mechanism prevents these activities by masking concurrency and by masking node 

and communication failures. Each REV request must run as part of some (sub)transaction, and we 

assume there is no concurrency within a (sub)transaction. Since we assume every object is atomic, It 

does not matter whether changes to an argument object happen in real time or at the end of the REV 

request. The changes are visible to other processes only if the (sub)transaction commits, which can 

happen only after the REV request successfully completes. 

3.2.5 Disjoint Address Spaces 

Call by value-overwrite keeps separate address spaces disjoint, but call by sharing does not. 

Because we want separate address spaces to be disjoint for the reasons mentioned earlier, we·teave 

our call by value-overwrite algorithm alone and restrict service programmers. Th.is section provides 

linguistic support that lets the compiler ensure service programmers obey the restrictions we impose. 

The restrictions, which are invisible to the application programmer, solve our fifth and final probfem: 

· ·· h9w to keep separate address spaces disjoint while still providing call by sharing semantics. Because 

the restrictions will force service programmers to copy certain objects, we begin by discussing how 

much copying call by value•overwr:ite does. 

Caft'by wine-overwrite copies objects while-a straignttorwatd imptementatjc)n of call by stl,aring does 

"°*· For ~)(ample, call by value-overwrite. maintain:i two copies of. an arg~flt objett during an· REV 
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request: the original stays at the client, while a copy is sent to the service. Call by value-overwrite also 

creates two copies of a result object that is not an argument object. The original stays at the service, 

while a copy is sent to the client. A straightforward implementation of call by sharing, in contrast, 

does not copy argument objects or result objects. 

Since we want to implement call by sharing with call by value-overwrite, we must hide the fact that call 

by value-overwrite makes extra copies of objects. We do this by ensuring that the copies at the 

service are inaccessible to the service after the REV request completes. Our scheme is based on 

colored objects. We will use colors to motivate our restrictions on service programmers and to argue 

that our restrictions work. 

In our scheme, client objects are red, and service objects are blue. We explain below how the 

compiler ensures that the result objects of an REV request are red. This means the client has only red 

objects at the end of the request. The compiler also ensures that all accessible objects at the service 

are blue at the end of the REV request. Since objects have only one color, the compiler-enforced 

coloring prevents the service from referring to a mutable argument or result object once the REV 

request completes. Thus the client and service address spaces are disjoint at the end of the REV 

request, even if a straightforward implementation of call by sharing is used. This section supplies 

linguistic support that lets the service programmer use colors. Application programmers, in contrast, 

never deal with colors. 

A color is a static attribute of a mutable type. Each mutable object has only one color for its entire 

existence. Because procedures and iterators can refer to own variables, we consider them mutable 

and give them colors. Since a program can not tell the difference between an Immutable object and a 

copy of the object, the service can refer to immutable argument and result objects without showing 

the difference between call by sharing and caU by vafue•overwrite. For this reason, immutable types 

have no col or and are irrelevant to this diacuaaion. 

Our syntax for colors was designed to be unobtrusive. As mentioned above, client objects are red 

and service objects are blue. Client variables·are red; service variables are either red or blue. For any 

mutable type T, Tl represents the same type with the color blue. T represents the type with some 

color. This color may also be blue, but for strORg type cheeking we assume lt is red. For example, the 

following code fragment cr~ates a red integer array and abloe.tnteger ar.-.y: 

redArray: array[int] :• array[int]Snaw{} 
blueArray: array[int]I := array[int]IS:new() 

Strong type checking prevents the service pregi:amtDer fr<>*assig"-"g red:Array tQ blueArray and vice 

vema. 

Service routines must copy certain arguments and resuJts to keep the client and service address 

spaces disjoint between REV r:equests. W'fl •um& any· moftible type T with a copy proCIOure 

():~op~}:~tdhla\ically provide~. the foll())ViQo:,two f>f~: 
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TSred_to_blue • proc (T) returns (Tl) 
X returns a blue copy of a red object 

TSblue_to_red = proc (Tl) returns (T) 
X returns a red copy of a blue object 

The implementation for each of these procedures is T$copy. 

Figure 3·5 contains part of an implementation for a remote bulletin board. Note that the arguments 

and results of post and retrieve are either immutable or assumed to be red. The color annotation 

"!"distributes over parameterized types. For example, if foo and x are types, 

array[foo[x]]I 

is equivalent to 

array(foo(xl]l]I. 

Post copies a notice before installing it in the bulletin board. Similarly, retrieve copies all relevant 

notices before returning them to the client. Note that erasing the color annotations yields CLU code 

that does not violate the type system. 

notice a record(sender: string, X an equate 
t 1me: t 111•, 
expiration: time, 
categories: set[string], 
message: string] 

notices: set[notice]I :'" set[not1ce]IScreate() X a blue own var1al>1• 

post • proc (info: notice) 
serviceCopy: notice! := not1ceSred_to_blue(info) 
set(notice]IS1nsert(notices, serv1ceCopy) 

ead post 

retrieve • proc (keyword: string) returns (set[notice]) 
answer: set[not1ce] := .set[not1ce]$create() 
tor n: notice! in set(notice]!Selements(not1ces) do 

if set(str1ng]IS1sln(n.categories, keyword) 
tit en 

cl1entCopy: notice := not1ceSblue_to_red(n) 
set[not1ce]Sinsert(answer, clientCopy) 

end 
end 
return( answer) 

end retrieve 

Fig.u re 3· 5: Using colors in service routines to keep separate address spaces disjoint. 

We say the specification for a routine is uniform if it has no color annotations. For example~ the 

r,ou.tines pest and ·retrieve in Figure 3.5 have uniform specifications. W• say an implementation for 

a routine Is uniform if it~ no color ~notations. The implementations for post and retrie'9e are not 

uNferm 9ecausethey contain btue anno:tations. 

--~ --- ---------------
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A routine with a uniform specification may be applied to either blue arguments or red arguments: the 

presence or absence of "I" in an invocation lets the compiler perform strong type checking. Assume 

T$P is a service routine with a uniform specification. Tl$P, which may be applied only to blue 

arguments, has blue results. T$P, which may be applied only to red arguments, has red results. For 

instance, assume post is defined in the bboard interface. Then bboard$post can be applied to a 

client notice, while bboard!$post can be applied to a service notice. In both cases a copy of the 

notice is posted on the bulletin board. 

Using call by value-overwrite to implement call by sharing forces us to ensure the service does not 

refer to a mutable argument or result object once the REV request completes. We argue below that 

the following rules ensure the client and service address spaces are disjoint between REV requests:4 

1. Each type constructor (e.g., record and array) has a uniform specification. 

2. Each abstraction primitive (e.g., up and down in CLU) has a uniform specification. 

3. Each routine exported by a service has a uniform specification. 

4. All own variables at the service are blue. 

5. Service processes communicate with each other by using blue ob;ects. 

The compiler checks the preceding rules and performs strong type checking. Each mutable type is 

now an ordered pair consisting of a conventional type and a color. 

To simplify our argument that these rules ensure the client and service address spaces are disjoint at 

the end of an REV request, we use the following Invariant: 

•Alf objects are monochromatic. An object is monochromatic if every object it directly or 
indirectly refers to has its color. Hence a red object may refer to only red objects. A blue 
object may refer to only blue objects. This invariant implies that the colors of the 
concrete representation and abstract value of an obiect are the same. A red object oan 
not masquerade as a blue object and vice versa. 

This monochromatic invariant fonows from strong type checking, uniform type constructors (rule 

# 1 ), and uniform abstraction primitives (rule # 2). 

We claim strong type checking, the monochromatic invariant, and the last three compller·enforced 

rules together imply the client receives no blue objects from the service and the service has no client 

objects at the end of an REV request. Assume the client contain.s onJy red objects -and the service 

contains only blue objects before an .REV request occurs. An REV request has two categories of 

result objects, and we show that each category contains .only red objects: 

1. Explicit results: Each REV. request i$.uniform. It deals exclusively with red types, since 

4
When closures are first-class -0bjl!tts. ei"Yother rule is needed te1 guarahtee tbe disjointness of i=liet'lt and service address 

sp~s. Any sci~ice closure whose hletime can exterid41ast the completioiHJf an REW 4equest..must access ontybAue variables. 
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the compiler chooses the "red" version for each routine imported by the REV request. 
The red version exists because every routine exported by the service has a uniform 
specification (rule # 3). The monochromatic invariant and strong type checking imply 
the explicit results of an REV request consist of only red objects. 

2. Extra results: These results consist of mutable argument objects and all objects 
accessible from them. Mutable argument objects come from the client, which by 
assumption contains only red objects. The monochromatic invariant implies that all 
objects accessible from mutable argument objects are also red. Hence the extra results 
are red objects. 

The client begins an REV request with only red objects and receives only red objects from the service. 

Therefore, the client ends an REV request with only red objects. Our requirements that all own 

variables and interprocess communication paths at a service be blue (rules # 4 & # 5), coupled with 

the monochromatic invariant and strong type checking, prevent the service from keeping any red 

argument or result objects past the completion of the REV request. The remaining objects at the 

service are blue. Therefore, at the end of an REV request, the service and client address spaces are 

disjoint. 

Implementing call by sharing with call by value-overwrite requires the cooperation of service 

programmers, who must copy mutable objects logically sent between address spaces. This section 

outlined rules based on c~ors that indicate when service programmers must copy objects. The 

linguistic support we provided lets the compiler enforce these rules. The application programmer, In 

· contrast, does not worry about colors. 5 

This division of labor is similar to the way we split the responsibility for ensuring a valid REV request is 

location-independent. In both cases, service programmers follow certain rules, and their efforts are 

checked by the compiler. Unlike service programmers, application programmers do not use colors or 

LOCATION_INDEPENDENT attributes .. 

3.2.6 Discussion 

We can avoid the complexity of call by value-overwrite and still retain identical argument-passing 

semantics for local procedures and REV requests if we require that all arguments and results of an 

·REV request be immutable. Then we can implement call by sharing for·REV requests with call by 

value, the traditional semantics for RPC's. We rejected this alternative because we felt it would overly 

constrain a programmer or (automatic) optimizer using REV to relocate p~. 

The relationship between call by vatue-overwrite and calf by shafing is similar to the relationship 

+between call by value-result (16) and call by reference. In the absence of affastng in the proO\amming 

~ we. let an:applidation programmer send a neste<fREV request to tttiklient, client routines would have to obey the botoring 
ru.Jes. since the client is -act~ng as a-servic~. However. the cliht1t cannotreceiVe a nested request, because the application 
programrrier can noniame lhe client, let atone send an REV request to it. We.shat! ret!Mfl to this point in Chapter 5. 
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language and concurrency at the processor, call by value-result and call by reference have identical 

semantics for local procedure calls [8]. A stronger statement applies to call by value-overwrite, since 

it implements call by sharing for local procedure calls even in the presence of aliasing. 

We used colors and programming rules to make service copies of client objects inaccessible at the 

end of an REV request. This technique, which let us implement uniform argument-passing semantics 

for local procedures and REV requests, also keeps separate address spaces disjoint. NIL [37), a 

language for distributed programming designed and implemented at the IBM T. J. Watson Research 

Center, also provides uniformity and disjointness, but it does so in a different way. NIL completely 

avoids aliasing by disallowing the notions of pointers and shared data. An object assigned from one 

variable to another variable can not be accessed from the first variable, which becomes uninitialized. 

Similarly, an object transferred from one process to another process can not be accessed by the first 

process. The compiler enforces this viewpoint by doing typestate checking. This keeps the address 

spaces of different nodes disjoint and provides uniform interprocess communication. 

Since NIL processes can not share data, information may be communicated between processes by 

reference or by value-result. Thus the NIL implementation can choose one technique when the 

processes share the same address space and another technique when the processes exist on 

different nodes. A similar option is available to an REV mechanism. If the client and servJce are 

different nodes, the mechanism uses call by value-overwrite. If the client and service are the same 

node, the REV mechanism can short-circuit the request and use a conventional implementation for 

call by sharing. 

3.2. 7 Summary 

We implement call by sharing for REV requests with call by value-overwrite. At the end of a request, 

the service sends the client all mutable argument objects. The client then overwrites existing objects 

with their new values. We assume that programmers correctly implement encode and decode for 

each transmissible type; i.e., we assume faithful data transmission. Given this assumption, call by 

value·overwrtte implements call by sharing for REV requests if each REV request meets the foHowing 

requirements: 

1. every argument is atomic; 
2. every argument type and result type is transmissible; 
3. the client and service address spaces are disjoint between REV r~~; 
4. the REV request ruas as (part of) an atomic transaction that aborts if the· REV request 

does not complete. 

The first requirement is automatically met,: as every type is assumed to be atomic. Th&·'COn\fliler 

ctrecks the second and third requirements; and ·the run-time system checks the final requirement .... We 

pro'llided linguistic support that lets the compiler ensure service routines keep separate address 

spaces disjoif)t. This linguistic support affects sentce ~mmers but not applicMion 

fl'QS(alllm~rs. 
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3.3 Compile-time Tasks 

Having explained how we use call by value-overwrite to impJement caJI by sharing in a distributed 

system, we now explain how to implement REV. This section considers the compile-time tasks of an 

REV mechanism: static checking of REV requests and stub generation. The next section discusses 

the run-time tasks. In both sections, we highlight the differences between an REV mechanism and an 

RPC mechanism. 

3.3.1 Static Checking of REV Requests 

Compared to run-time checking, compile-time checking can detect errors earlier and Improve run· 

time performance. Besides having the compiler perform strong type checking, we want the compiler 

to verify the validity of REV requests. Recall that a valid REV request is one the service can execute 

and the compiler can encode. If a service is unable to execute an REV request, we want to notify the 

application programmer of this problem at compile-time. Encoding an REV request once at compile 

time, rather than encoding it each time it is executed, can improve performance. We also want the 

compiler to determine the location independence of REV requests. This Information lets an optimizer 

know whether an REV request changes program semantics. Service definitions give the compiler 

enough information to determine the validity and location independence of REV requests. We first 

consider service definitions and then consider the static checking of REV requests. 

A compiler supporting RPC's processes interface definitions, while a compiler supporting REV 

processes both interface and service definitions. Compiling a service definition, which Indirectly lists 

a set of interfaces, is not a difficult task. MESA [32], a systems programming language developed at 

Xerox PARC, enforces strong type checking and supports configurations. A configuration Is a 

collection of interfaces, only some of which are exported. Configurations and services . are 

analogous: a configuration is defined in terms of Interfaces and other configurations, whereas a 

service is defined in terms of interfaces and.other services. Techniques for compiling a configuration 

definition are applicable to compiling a service definttion. 

The compiler uses a service definition to determine the code portion, validity, and location 

independence of an REV request. The previous chapter outffned bow the compilel' generates part of 

the program call graph to determine the code portion of an REV request. The compiler checks the 

validity_ of. the req1.1~t by ensuring tbat everx. ~.ro.u~b;~b)t U.Sfml'ic~ .. Recall that a 

routine in the REV request that is executed at the service.but not exported by, the service. can be sent 

with the request. Checking the validity .. of a request iafl'straigtitfotward ~. the reffllest has ·no 
parameterized types. Since type pacameters must be types ~orted by the sertice. the compiled 

service definition may further constrain the type parameters appearing ilMl parameterized request. In 

.any event, the request is invalid if the code portion contains an own variable or if a procedure 

argu~ tc the reciuest is unknown at link time. The later restriCtion mimmizes the change& to the 

f\8:~r:tklr· the programming langwge;.since.w.e.~ oe.ed.to.check the.validity of anHEV 
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· request or encode its code portion at run time. Checking whether a valid request is location. 

independent is straightforward: every imported routine must be declared location-independent. 

If separate compilation is used, supporting client-supplied routines and code arguments means that 

the static checking of REV requests might have to be deferred until link time. The code portion of an 

REV request, and hence its validity and location independence, can depend on the implementation of 

the client-supplied routines and code arguments. Under separate compilation, the implementations 

may not be known until link time. While the type specifications for these routines are known at 

compile time, type specifications may not provide enough information to determine the code portion 

of the REV request. 

Although client-supplied routines and code arguments complicate static checking and encoding of 

REV requests, they have two advantages. First, they increase the number of ways in which a program 

may be partitioned into components for local and remote execution. The net effect on performance 

depends on the tradeoff between fewer but larger REV requests. Second, a powerful feature of many 

programming languages is the use of routines as arguments to other routines. It may be desirable for 

some service routines and REV requests to take client-supplied routines as arguments. 

3.3.2 Stub Generation 

Besides performing static checking, a compiler supporting REV generates stubs. A stub is a · 

procedure that interfaces an REV request with the communication primitives. our approach, which is 

based on Nelson's RPC mechanism [34], hides the communication details of REV requests from both 

the application programmer and the service programmer. For each REV request, the compiler 

generates two simple procedures called stubs, as shown in Figure 3-6. One stub, which is located at 

the client, lies between the application program and the client communication package. The compiler 

replaces the REV request with a call to this stub. The other stub, which is sent to the service with the 

REV request, lies between the service communication package and the procedure whose execution is 

relocated by the REV request. 

Consider an REV request that relocates the execution of a procedure (P) that is not exported by the 

service. Furthermore, assumetheie•»e no client-supplied routines in the request. Hence. the code 

portion consists of .t.he body of P. The calling sequen(;e for such an REV request is as follows. The 

application program calls the client stub, which is an ordinary procedure. Besides P's arguments, the 

client stub has an argument that denotes the node that will execute the REV r~uest. The client stub 

creates a me~ge containing the service stub, the procedure: p~· and the arguments to the request. 

The clientstub calls the client communication pac;ft~, which'1tetiabfrsends the request message to 

the service as a sequence of network packets. · The commut:ticatio!} package is respo~ible for 

routing, retransmissions, and acknowledgements. The service communication package reconstructs 

tlltei request message from the packets it receives and then extracts tfte· service stub' anti P ·from the 

r~st message~ The service communic(;ltiQ.~,P~,-~.callsthe serVto.stvb with··a sin~ artiutn~nt 
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application program 

~ ~ 
CLIENT client stub .- +-

communication package 

.4 ~ 

request reply 

~ ~ 
., , 

communication package 

~ ~ 
SERVICE service stub 

• + 
relocated procedure 

Figure 3·6: A stub-based implementation of REV. 
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the remainder of the request message. The service stub extracts the arguments from the request 

message and then calls P with the arguments. When P returns, the service stub creates a new 

message and inserts P's results in the message. The service stub returns the reply message to the 

service communication package, which reliably sends the message to the client communication 

package as a sequence of packets. The client communication package reconstructs the message 

from the packets it receives and returns the entire reply message to the client stub. The client stub 

extracts the results from the reply message and returns them to the application program. Although 

the client stub appears to be a local procedure to the application program, in reality it represents an 

REV request. 

There are three differences between RPC stubs and REV stubs. First, an RPC stub transmits a 

procedure name while an REV stub can transmit one or more procedures. Second, an RPC service 

stub exists at the service while an REV service stub is sent in the request message. Finally, an RPC 

stub typically implements call by value while an REV stub implements call by value-overwrite. 

Before showing an example of REV stubs, we present an abstract data type called REVcontext 

(Figure 3-7). An REV context, which may contain a request message or a reply message, hides the 

details of encoding and decoding data. The reader should use this figure as a reference during the 

rest of this section. Recall that for any transmissible type T, T$put converts the abstract value of an 

instance of T into a transmissible format and appends this information onto a message. T$get does 

the opposite. It removes information from a message and produces an instance of T. 

We use a simple example to show how REV works as welt as the relationship between the stubs and 

the original REV request. Although in this example we neglect exceptions raised by the relocated 

procedure, REV stubs can accommodate exc.eptions in the same way that RPC stubs accommodate 

exceptions. The procedure at the top of Figure 3-8 contains an REV request, and the relocated 

procedure is shown at the bottom of the figure. The client executes the code-in Agure 3·9, which 

contains SomeP roe and the client stub (G 1991 ). The name of the client stub is irrelevant as long as 

it is unique in the current environment. Note that the REV request in SomeProc has been 

transformed into an ordinary procedure call that invokes the client stub. As mentioned earlier, 

compared to procedure P the client stub has one additional argument, the node that executes the 

REV request. The client stub has three tasks: prepare the requeSt·message; perform the REV request; 

and finally extract the results from the reply message. Wft discuas each of these tasks in tµrn. 

The first part of the client stub prepares the request Jnefi1889&· After creating and initializing an REV 

context, the first part of the client stub inserts the service stub'(G1992) and the arguments (a, b,,and 

c) into the re.quest message. As shown below, 'the: aervice stub invokes the relocated 1)rooedure P. 

H"ence inserting the service stub into the request message also inserts P into the request message. 

Section 3.4.2 discusses how procedures are inserted into messages. While an REV client stub inserts 

me- service stu,b and the relgcated procedure, into the request message, an 'RPO client stub iftserts· 

tmfrthe name of the remote procedure int0the reQuest mes.sag~. 
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REVcontext • interface 11 

I CLIENT ROUTINES 

new[s:service] a proc (destination: s) return• (REVcontext) 
I create an REVcontext w1th an empty request message and two empty mapp1ngs 

send = proc (r: REVcontext) 
I send the request ,,,.ssage to the service, discard the o1d 
I mapping not needed for reply phase, and create new mapping 

getMutab 1 eArgs = -proc ( r: REVco.ntext) 
I extract the rema'in1ng mutable argumant objects from the 
I reply message and perform the delayed updates 

I SERVICE ROUTINES 

process • proc (m: message) r1turn1 (REVcontext) 
I return a new REV context with the supplied request message and two empty mappings 

apply • proc (r: REVcontext) 
I extract the service stub from the request message and invoke 1t on the REV context 

prepareForReply • proc (r: REVcontext) 
I discard the request message and the old mapping not needed for the 
I reply phase, create a new mapping, and create an empty reply message 

putMutableArgs • proc (r: REVcontext) 
I encode all mutable arguments not already 1n the reply mesaage 

reply • proc (r: REVcontext) 
I send the reply measage to tlle cfiot 

abort • proc (r: REVcontext) 
I terminate an REV request 

I ROUTINES FOR BOTH THE CLIENT AND SERVICE 

I Routines that support get and put 

end REVcOflt9Jtt 

Figure 3· 7: The abstract data-type REV context. 

The second part of the client stub performs the REV request by calling the client communication 

package, which ~nds the request message to the approP19te service, periodically retransmits the 

request message, and waits fora reply message. An·Rt:V '""est normally ¢impletes When the~:Client 

recefves a reply message, in which case the client communication package places the reply message 

in !ha REV context and the client executes the third part of the client stub. On the other hand, if the 

cf rent communi~ation package does not" receive a repty me'8111age and can not communicate with the 
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a1 • array[int] X an equate 

SomeProc • proc (a: ai, b: int, c: ai) returns (int) 
begin transaction 

aServ1ce: built-ins :• Service[bu1lt-1ns]$Any() 
d: int := at aServ1ce eval P(a, b, c) 
return(d•d) 

end 
end SomeProc 

P • proc (a: a1, b: int, c: a1) returns (int) 
a[b] :• c(b] 
a :• a1Snew() 
b : • b+l 
return(b) 

end P 

Figure 3-8: A simple REV request. 

service communication package, the client communication package may unilaterally terminate the 

REV request by aborting the current transaction and then raising the exception faHu re. 

If the REV request completes normally, the client executes the third and final part of the client stub. 

This part of the client stub extracts the explicit results from the reply message, extracts the extra 

results, and then returns the explicit results. The client stub calls the appropriate get routine for each 

explicit resuh. GetMutableArgs calls the appropriate get routine for each extra result, as explained 

in Section 3.4.1. When any get routine extracts an argument object from the reply message, the get 

routine performs the delayed update on the object. Section 3.4.1 again provides the detalls. In this 

example, the explicit resuh is an integer assigned to d. The extra results are the two arrays originally 

bound to a and c. An RPC client stub implementing call by value, in contrast, deals with only explicit 

results and does not perform delayed updates. 

If the relocated procedure is not exported by the service, we want to emphasize that we send at least 
two procedures with an REV request: the relocated proce(jure (Pin this example) and the.aerv.itle 

stub (G 19~2 in thls exampte). We found that sending two ~ was a natural way lD 

implement'REV. 

When a service commumcation package receives a request me~. it creates a new REV context 

with REVcontext$procMs and calls REVcontext$apply. REYeorttetct$apply, which isshown in 

Figure 3-1 o, extracts the service .stub and hence the relocawJ procedure from the request message. 

We discuss how proceciMres are fixtracted from messages in Section 3.4.2. AEVc6nte.t$apply then 

applies the service. stub to the REV context. As explained below, the service stub extracts the 

arguments from the request message, invokes the relocated procedure P, and inserts the results into 

a MW reply'message. Once the service stub has, comptetect, R&VconteMSappty returns. The 

set!'Ytce communication package then sends the reply ~to the client. If an encode/decode 
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ai • array[int] I an equate 

SomeProc • proc (a: ai, b: int, c: ai) returns (int) 
begin transaction 

aService: built-ins :• Service(built-1ns]SAny() 
d: 1nt :• G1991(aServ1ce, a, b, c) 
return(d*d) 

tnd 
end SomeProc 

61991 • proc (aService: bu1lt-1ns, a: a1, b: int, c: a1) returns (1nt) 

X the c11ent stub 

begin 

I part 1: prepare the request message 
REVcode • proctype (REVcontext) I an equate 
rev: REVcontext :• REVcontextSnew[bu1lt-1ns](aServ1ce) 
code[REVcode]Sput(rev, 61992) 
a1Sput{rev, a) 
1 ntSput( rev, b) 
a1Sput(rev, c) 

I part Z: perform the REV request 
REVcontextSsend(rev) abort re119a1l failure 

I part 3: extract the re1ult1 
d: int :• 1ntSget(rev) 
REVcontextSgetMutableArgs(rev) 

I delayed update• for a and c 
return(d) 

end except when others (s: string): 
abort signal fa11ure{s) end 

end 61991 

x exp11c1t reauJt 
I extra results 

Flgu re 3-9: The client code for Agure 3-8. 

exception occurs, REVcontextSabort resets the REV context and places a distinguished error value 

in a new reply message, which causes REVcontext$aend at the client to raise the exception 

failure("encode/decode problem .. ). The client stub aborts the current transaction and then 

resignals the exception. No result objects are sent to the client when an encode/decode exception 

occurs at the service. ,,Note,that-REVcontext$abort must not raise an exception, as there is no 

handler in REVcontext$apply that cou~ catoh the exception. 

Our implementation of REVcontext$apply requires that service stubs have the following type 

specification: 

proc (rev: RtVcontex t) returns (). 

Each serv.jce stub extracts arguments ·from an REV context and inserts results into the same REV 

~t. This lets REVcontext$apply have a simple implementation that does not viQlate the type 

avatem. 
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apply • proc (rev: REVcontaxt) returns () 
begtn 

REVcode • proctype (REVcontext) I an e4t1ate 
serviceStub: REVcode :• code[REVcode)Sget(rev) 
serv iceStub( rev) 

end except when otbers: REVcontextSabort(rev) ••d 
end apply 

Figure 3·10: The implementation of REVcontextSapply. 

Figure 3-11 contains the service stub, which has three functions, It extracts the arguments from the 

request message, invokes the relocated procedure, and then inlllrt8 the results into a reply message. 

An RPC service stub differs from an REV service stub in that an RPC stub returns explicit results but 

not extra results to the client. Section 3.4.1, which explains how to imptement call by value-overwrite, 

explains how to implement REVcontext$putMutableArp and REVcontextSgetMutableAr.ga. 

ai • array[tnt] 

61992 • proc (rev: REVcontext) returns () 

I part l: extract th•.~rou..nt• 
a: a1 :• •~·"*'l 
b: int : • intSget{rev) 
c: a1 :• a1Sget(rev) 

I part 2; 1nvote th• relocated procedure P, which 
I 11 encoded, tran1•1tted, and decoded wfth 81111 
b :• P(a, b, C) 

I part 3: 1nsert th• reauJta 
REVcontext$PrepareForR.,1y(rev) 
intSput(rev. I>) I exp11c1t rM.,rlt 
REVcontextSputMutab1eAqs(rev) I 1utra reaultt 

I encode• the current atate of th• 
I or1g1n•1 arg111Htnt1 a and c 

end 61992 

Fjiwre 3· 11 : The service stub for Figure 3-8. 

For pedagogical purpeses, no optimization . .- ........ on the;~ ift. this seQllon. For high 

performance,4be abstraOt data ty~,RI¥.-.~>-._., be ret.ll~i.ttt.;t;y it& i~tafion, and 
simple put and get prai~· W. ... ~ift~U.,.. 

,- . . 
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3.4 Run-time Tasks 

Having discussed the compile-time tasks of an REV mechanism, we turn our attention to the run-time 

tasks. A client REV mechanism must support call by value-overwrite, transmit procedures between 

nodes, bind to remote services, provide reliable communication, and recover from failures. A service 

REV mechanism, in additior:i, must evaluate the REV requests it receives. While discussing these 

tasks, we emphasize those aspects of our implementation that are novel. 

3.4.1 Call by Value-Overwrite 

Our implementation of call by value-overwrite is an extension of Herlihy's template scheme for call by 
value in a distributed system [18, 19], which we discussed in Section 3.2.1. We present an 

implementation of Herlihy's scheme, extend it to implement catl by value-overwrite, and then offer 

some possible optimizations. 

3.4.1. 1 Implementing Call by Value 

Under call by value, the client inserts each argument into a message using the appropriate put 

routine. Then the client sends the request message to the service. The service extracts each 

argument from the request message using the appropri,!lte get routine. When the remote invocation 

completes, the service inserts each result into a new message using the appropriate put routine and 

sends the reply message to the client. The client extracts each result from the reply message using 

the appropriate get routine. Since the types of the arguments and re8u1ts of the remote procedure 

are. known to both the client and the service, both know which put and get routines to use. As we 
saw earlier, put and get routines play an important role in client and service stubs. 

Get and put routines coordinate their activity to preserve sharing within an object, between 

arguments, and between results. Figure 3· 12 shows some of the data structures in Herllhy's scheme 

for call by value. Each data structure in the figure, which we call a mapping, relates objects to 

message positions or vfoe versa. The mappings and the figure are explained in the folk>wing 

discussion, which assumes that T is a transmissible abstract data type and XT is its external 

representation type. For instance, T could be a set of integers implemented by a binary tree, and XT 

could be an array of integers. 

An implementation for call by value often keeps a mapping from objects to positions in a message 

during an encode phase. Mappings A and Din Figure 3-12 are exarnplesof this kind of mapping," 

which is used to detect and preserve sharing and cycles. Although'the rest of this paragraph refers , · 

only to the client and its mapping (A), the discussion appties equalfy well to the service ~d its 

ma.s>PiAQ (0). Before the client encodes any objects, mapping A is empty. T$put uses A to decide 

wbettter an object has been inserted into the-message, as an objec\appears in A if and only if it has 

bee.n (or is being) inserted into the tnessage. When T$put enco.u.Uers an object that has not been. 
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CLIENT SERVICE 

encode phase decode phase 
request 

Mapping A me§a8e ~~ message MappingB 
object (sharing & cycles) position position (back references) object 

.... ... .... 

• 
• 
• 
• 

process request 

• 
• 
• 

. ~ 
decode phase 

reply 
encode phase 

m~ge 
MappingC ~~ MappingD messase 

position (back references) object object (sharing & cycles) position .. ~ .... 

CLIENT SERVICE 

Figure 3 -1 ·z: ·An impfelnentatien l<>t; call *1~ue. 
' ,"'' 
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inserted into a message, it inserts the object's name and the current message position into A. After 

converting the object to its external representation (XT) with T$encode, T$put calls XT$put. 

XT$put inserts the object's abstract value into the message in its canonical format. When T$put 

encounters an object that has already been inserted into the message, it does not change mapping A. 

T$put inserts a back reference into the message instead of calling T$encode and XT$put. The 

back reference contains the message position of the object, which is determined from A. The client 

constructs A during its encode phase and then discards A. 

The reverse mapping, which maps message positions to objects, is constructed during a decode 

phase and then discarded. Mappings Band C in Figure 3-12 are examptes of this kind of mapping, 

which is used to resolve back references. Although the rest of this paragraph refers only to the 

service and its mapping (B), the discussion applies equally weH to the client and its mapping (C). 

When T$get encounters a back reference, it consults mapping B and returns the appropriate object 

without doing any decoding. When T$get encounters an encoded object, It inserts the future name 
of the object and the current message position into B. T$get then calls XT$get, which returns the . 

abstract value in its canonical format. T$get uses T$decode to convert the canonical format Into 

the node's format for an object of type T. 

Note the symmetry between the mappings for a request message (A and B) and the mappings for the 

reply message (D and C) in Figure 3· 12. The encode phase, whether it Is at the client or at the 

service, requires a mapping from objects to message posltiOf)s. This mapping Is used to detect and 

preserve sharing and cycles. The decode phase, whether It is at the client or at the service, requires 

the reverse mapping, which is used to resolve back references. Under call by value, the client and 

service together use four mappings for each REV request. 

3.4.1.2 Implementing Call by Value-Overwrite 

Herlihy's template scheme can be extended to support call by value-overwrite for user-defined, 

abstract data types. Since we want call by value-overwrite to implement call by sharing, for each 

transmissible type T we assume that T$encode and T$decode have no side effects. Furthermore, 

we assume they· preserve ,sharing withil) an· argument and between arguments. A programmer 

implementing T$encO'de and ·Ttttecode doeS not need to know whether call by value or caJt by 

value-overwrite will be supported. T$put sad T$get, which are automatipalfy geperated, determine 

the argument passing semantics. We explain below how out versions of ·T$put and T$get differ from 

HerJihy's versions. 

We tag transmitted objects so that 'the client knows whicti:8*tract vatlif''sent from the service . . ~ 

· conesponds to which argument object at the ctient. The e><ternal name for an argument-Object is its 

pesitttm, in fhe request message. Result objects that are not argument objects have the same external 

tWDfter. -1, an invalid missage pcsitiOn. Extefnat nafl'ltjs appttar explicitly.in a reply nressage, a&each 

~if\..a.reply. message is preced~ by its extern:al nCij1le. External names do not8f.lP83' ellfpffcitly 
,. ·'lo.,,' . ,,,_ • ~.'.' ., ' ';', . "Irr' '~ 
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in a request message, since the service determines the message position and hence the external 

name for each argument object. 

Figure 3· 13 contains some of the data structures in our implementation for call by value-overwrite. 

Since mappings A through D play exactly the same role as they did in Herlihy's implementation for 

call by value, we concentrate on the two new mappings, E and F. Both the client (E) and the service 

(F) maintain a mapping involving external names and objects. These two mappings, which are 

created and written during the request phase and read during the reply phase, exist for the duration 

of an REV request. Once the request has completed, the mappings are discarded. Mapping E maps 

external names to pairs of the form <object, T$get>, where an object with type T is paired with 

T$get. We explain below how the get routines are placed in E and why they are needed. Mapping F 

maps objects to pairs of the form <external name, T$put>, The routine for an object with type T is 

T$put. As external names are message positions, mappings A and E are inverses if the get routines 

are ignored. Likewise, mappings B and F are inverses. Under call by value-overwrite, the client and 

service together use six mappings for each REV request, which is two more than the number of 

mappings needed for call by value. 

Under call by value-overwrite, the client creates two mappings (A and E) and Inserts the arguments 

into a request message. A is discarded once the message is sent, while E is kept for the reply phase. 

E prevents the client's garbage collector from rEJclaiming the storage occupied by an argument object 

before the end of the REV request. The client sends the request message to the service, which 

extracts the arguments from the message. The service creates two mappings (B and F), but saves 

only one of them (F) for the reply phase. F prevents the service's garbage cotlector from reclaiming 

the service copy of an argument object before the end of the REV request. 

When an REV request finishes executing, the service uses th~ appropriate put routine to insert each 

explicit result into a reply message as under call by value. The service also returns the extra results to 

the client, which lets the client's run-time system perform delayed updates. The client must perform 

delayed updates ?n all modified argument objects that wiU be accessible after the REV request 

completes and the client releases its mappings. We make the foffowing conservative assumptions: 
' 

1. every argument object will be accessible to the client at the end of the request; and 
2. every mutable argument object has been modified at the service. . 

Therefore, the service must send the client all mutable argument objects and all objects c;urrentty 

accessible from them. To.put these objects in the reply message, the service calls putMutabfeArgs, 

which processes each argument object in mapping F. The action taken by putt,lutableArgs 

depends on the argument object 0: 

• 0 is immutable. Since an immutable object can not be upciated, there is JlO need for a 
delayed update, and PutMutableArgs does nothing. The ob~s immediately 
accessible from 0 must be argument objects, because O was creat~ before the REV 
·request -and has not changed. Each of 'ihe&e objects wiH be (or atready has .. been) 
considered by putMutableArgs. 
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Fieu re 3· 13: An implementation for call by vat~:QVet:Write. 
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• 0 is mutable and has already been inserted in the message. Since the delayed update 
will be done when the client extracts O from the message, putMutableArgs does 
nothing. PutMutableA rgs uses mapping D to decide whether an object has already 
been inserted in the message. 

• 0 is mutable and has not been inserted in the message. PutMutableArgs consults 
mapping F to find the appropriate put routine and then uses it to insert 0 in the message. 
As a consequence, every object accessible from 0 la inserted in the message if it Is not 
already in the message. No object is inserted in the message more than once, since the 
service uses mapping D and back references to preserve sharing. 

Because putMutableA rg~ is somewhat complicated, we pause for a concrete example. 

Figure 3-14 contains a procedure P, which we assume is relocated by an REV request. Array A, 

shown in the middle of the figure, is the argument to P. The argument objects are the array A, the 

lntBox 8, and the integer 3. The first two argument objects are mutable, while the third is immutable. 

Procedure P puts a 4 In lntBox B, creates a new lntBox containing a 5, and appends this lntBox onto 

the high end of array A twice. The procedure abSaddh appends its second argument (an lntBox) 

onto the high end of its first argument (an arr~y of lntBoxes), thereby modifying Its first argument. The 

final state of the argument objects is shown at the bottom of the figure. 

Since there are no explicit results in this example, only putMutableA rgs inserts objects into the 

result message. We use two different orderings on the argument objects to show that the net result is 
order independent. 

• Assume putMutableA rgs considers A first, then B, and finally 3. Since A is mutabl8 
and has not been inserted in the reply message, putMutableArgs applies ab$put to A. 
This inserts A, B, 4, B', 5, and a back reference to B' into the reply message. Next, 
putMutableA rgs considers B and does nothing since B is already in the message. 
Finallyl putMutableArgs considers 3 and again does nothiftg because 3 is Immutable. 
Note that only one copy of 8' is inserted In the m111age. 

•Assume putMutableArgs considers the argument objects In the reverse order: 3 first, 
then B, and finally A. Since 3 is immutable, putMutableArga does nothing. Since B 19 
mutable and has not been inserted in the reply message, putMutableArga applies 
lntBox$put to B. This inserts 8 and 4 into the message. Finally, putMutableArgs 
considers A and appllctS. ~ut to it t>epat,1se,.A ' not in the reply message. This inserts 
A, a back refereACe (to B), 8', 5, and anotherb&Ck reference (1his one to B') In the reply 
message. Note that only one copy of B.is inserted in the reply message. The same holds 
for B'. 

If any of the argument objects was. also an explicit result, only Ol'Mit copy of the object would be 

inserted in the reply message~~'.' For Instance, if P extJicitly returned lntBox 8, .lntBoK$put 'NOUld 

insert B in the message before pdtf,futableA rg.~ was caUe<f; Whin putMutableArgs inserted A in 

the message, a back reference to 8 would be inserted. PutMutableArgs would do nothing with B 

dllrihg its processing of the argument objects, since B wouk:I already be in the message. 
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IntBox • record[value: int] 
ab • array[IntBox] 

P • proc (a: ab) 
a[l].value :• 4 
newBox: IntBox :• IntBoxS{value: 6} 
abSaddh(a, newBox) 
abSaddh(a, nettBox) 

end P 

(a) The procedure relocated by an REV request. 

array A IntBox B 

(b) The arguments before P is called. 

array A IntBox B int 

0 

(c) The arguments after Pis called. 

int 

Figure 3· 14: An e>(ample that illustrates P11lM1'fabteA19a. 

number of, objects of each type and their order in the reply message. The value of the arguments and 

1M mctien& of the rek>catect,procedure affect the contents of the- Eply lllilfeSage. Furthermote, the 

iteratk>n order of, pu4Motab'te A rt-s 'ftffeets ttte:tlrder of ttre ob;ects:!jp,#ie ntply meMg'e. Because et 
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this, we keep put routines in mapping F. The role of the get routines in mapping E is explained 

below. 

After calling putMutableA rgs, the service sends the repJy message to the client. As under call by 

value, the client extracts each explicit result using the appraprlate get routine. Then the client calls 

getMutableArgs, which extracts argument objects until the message is empty. As we mentioned 

earlier, every result object is preceded by its external name in the reply message. Before 

getMutableArgs extracts an object, it examines the external name that precedes the object in the 

message and uses mapping E to select the appropriate get routine. 

The delayed update for an argument object is done by the first get routine that extracts the object 

from the reply message. Suppose result object O with type T is the next object to be extracted from 

the reply message. What T$get does depends on the external name preceding the object in the 

message: 

• O Is preceded by a -1. This means O was not an argument object. T$get inserts the 
future name of the object in mapping C, calls XT$get, and then returns the object 
returned by T$d.ecode as under call by value. There is no delayed update for 0. 

• 0 is preceded by a valid message position. This means 0 was an argument object. 
T$get uses mapping E to locate the original ob;ect and then updates mapping C 
appropriately. To perform the delayed update, TStet overwrites the argument object 
with the concrete state of the new object obtained from T$decode. After performing the 
delayed update, T$get returns the argument object. The object returned by T$decode 
is discarded. 

If an object is extracted from a reply message several times, aH occurrences but the first are back 

references. When a get routine extracts a back reference:·from the reply message, It uses mapping C 

to locate the proper object. No delayed update is doi;le. If the object was a mutabte argument object, 

its delayed update was done the first time it waa extracted from the reply meaaage. 

We will illustrate getMutableArgs by describing how It handles the REV request in Figure 3·14. 

Assume putMutableArgs considers 3 first, then lntBa>< 8, and finalty array A. Thus the reply 

message contains 8, 4, A, a back refer~ to B, 8', 5, and a back reference to 8'. 

GetMutableArgs examines the external name preceding the first object in the reply message (B) 

and uses mapping E to find lntBox$get. tnt8ox$get extracts the external name and the lntBox. 

Extracting the lntBox B al~9, extr~~ thft 4. Si{lce 9's. ~- l'.lalllEl • noJ · 1, B was an argument 

object and lnt8n$ge.t performs.the.delayed.update. Mftt,,~rp examines-the external 

name preceding the next ot>fect (array A) 8nd us.es l1l8pping E to find array(lnt&ox]Sget; This 

routine extraets the extefnal name and the array. Since the··array has three '1ertteots, 
array[lntBoxj$get calls lnt8oa.$get three trmeL The first call on lnJJ;lox$9et uses rttapping C to 

handle the back reference. to 8. The second can extractsjl' and hence 5. Since B' was preceded by 

a -1, it was not an"1rgument Object. arfd no defayeci filpdate is dtme. The third calt•en lnt.Box$get 

~mapping t to haiidfe.t~ baek r~-er~~e to B". OncQarray A ia,extracted, array[lr\tBox)Sb'el 
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performs the delayed update on A and returns to getMutableArgs. GetMutableArgs notices the 

reply message is empty and also returns. The final state at the client is shown ~ the bottom of Figure 

3-14. The reader may find it useful to step through the get routines called by getMutableArga If 

putMutableArgs had used the other ordering on mutable arguments. Of course the net result will 

be the same. 

The following example shows how call by value-overwrite preserves sharing between arguments and 

results. Suppose procedure Pin Figure 3-14 returns the lntBox in A[1]. In our example this is the 

argument object B. The explicit results are B and 4, and these two obiects are placed in the reply 

message before the extra results: Subsequent references to B in the reply message are back 

references. For instance, when A is placed in the message as an extra result, it contains a back 

reference to B. At the client, the original lntBox B is the value of the REV request. After B's delayed 

update it refers to a 4, and after A's delayed update A[1] still refers to B. Note that the client has a 

single copy of B, just as if P were executed as a local procedure. 

Because the reply message contains a sequence of objects whose structure is unknown at compile 

time, we keep get and put routines In mappings E and F. ·Each put routine at the client installs the 

corresponding get routine when inserting an entry into mapping E during the client's encode phase. 

Similarly, each get routine at the service installs the corresponding put routine when inserting an 

entry into mapping F during the service's decode phase. 

Attempts to improve our technique for sending mutable argument objects to the client must avoid a 

subtle bug we encountered. Originally, the service encoded all ob;ects accessible from the final value 

of the arguments. In other words, the service encoded the values bound to the formal arguments 

after the relocated procedure was executed. We introduced new variables to save the original 

arguments when formal arguments were assigned in the procedure. We did not worry about the 

objects originally accessible from the arguments passed to the procedure. The correct method, 

however, ensures that each mutable argument object is encoded. An earlier example (see Figure 3-4) 

shows the difference between the two approaches. In this example, the REV request modifies lntBox 

B and then removes it from array A. llB is stiU accessible to the program at the client, the changes to 

B must be reflected at the client. The cori:ect scheme reflect.a the changes at the client. Our original 

design did not, since B is not accesslble 'from the final vatue'·df A. 

Althougll q1ll by value-overwrite provides more advanced semantics than call by value, the 

implementation costs are not excessive. In most cases the apace and time requirements for call by 

value-overwrite are at most twice-,those for call by vattlt. Under calf by value, the arguments and 
explicit results are tran~ om;e. Und« call by ..alue~pveQ¥rite, the ~ts. explicit resutts, 

·, ·' ' 1.::.-:· . " 

and extra results are transmitted once. We believe the· size of the extra ,results wifl. usually: be 

~to the size of the mutable arguments. C~tl by value-overwrite uses six mappings for each 

REV request, while catt by value lJlll&S four. The b~_inj for catl by vatue~erWrite is thus at 

~that tor call by vatue. 
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3.4. 1.3 Optimizations 

The preceding section described a straightforward implementation of call by value-overwrite. We 

now discuss three optimizations for call by value-overwrite. First, immutable result objects that were 

also argument objects need not be sent in their entirety to the client. Since the appropriate abstract 

value already exists at the client, the service may send only the obiect's external name. On the other 

hand, immutable result objects that were not argument objects must be encoded normally. At the 

service, the put routine for each Immutable type checks mapping F in Figure 3-13 to decide whether 

to send the abstract value or just the external name. Although it is unlikely that an immutable 

argument object O will be part of the explicit results, O might be part of the extra results. This 

happens whenever a mutable argument object refers to 0 at the end of the request. 

Second, a mutable argument object that is not modified at the service does not have to be sent In Its 

entirety to the client. Its external name is a suitable encoding. The value of this optimization depends 

on the overhead of detecting and remembering all service modifications to argument objects Jn 

comparison to the reduction ·in communications. This optimization could be limited to certain types 

exported by the service. A related optimization is to send only the incremental changes for modified 

argument objects. 

Third, with the appropriate linguistic support and changes to the type system, the compiler could 

enforce an application programmer's declaration that an argument to an REV request was read-only. 

The access-control mechanism presented in (20) can provide this capability. Read-only argument 

objects, liketmmutable argument objects, do not need delayed updates. 

The preceding optimizations attempt to reduce the amount of information the service sends to the 

client under caU by value-overwrite. The remaining two optimizations apply to both call by value and 

call by value-overwrite. The next optimization concerns masa89'9 positions and therefore external 

names. As every result object is preceded by its external name In a reply message for call by 

value-overwrite, we want to make external names small. Three of the six mappings in Figure 3-13 

(and two of the foL!r mappings in Figure 3-12) map message positions or external names to something 

else. We want to implement these mappings with small arrays rather than with hash tables; balanced 

trees, or large, sparse arrays. The approach described below accompllshea·theae'obJectiV.. 

A message contains a sequence of objects. Each object may be identified by its position in the 

sequence or by its starting byte position. We favor the former, 9i9Qt18fi~oriented·approach over the 

latter, byte-oriented approach. Assume n objects are encoded and thf resulting message is m bytes 
long. Typically mis much larger ;~han n. With a sequence-orhilited approach, validmessage paaitions 

ar.e the integers from 1 to n. Small arrays can implement ttte mAJ>Pin9s described abo'Ve. Wilh a 

byte-oriented approach, valid message positions ,are sparse in the large interval from 1 to m. 

D'epending on the sparsity, either a large array, a smmt ttash tabfe~ or a balanced tree would 

implement each of the4hree mappiqgs<fescribed above. The-·sectt1ence-orie.itec:tapproach can be 
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faster than a byte-oriented approach, since array accessing is typically faster than hashing or tree 

searching. The sequence-oriented approach uses less memory for a mapping than the alternative 

data structures. Finally, the sequence-oriented approach reduces message size by reducing the 

length of back references and external names. We do not have enough experience, however, to 

predict the significance of these advantages. 

Finally, we favor relative back references in a message instead of absolute back references. We 

illustrate the difference with an example. Suppose a back reference inserted at message position 55 

refers to the object at message position 17. With absolute back references, the back reference Is 17, 

but with relative back references, the back reference is 55· 17 • 38. If back references are absolute, a 

process encoding some objects must know the absolute message position of the first object it 

encodes. If back references are relative, a process encoding some objects does not need to know 

where its output will be positioned within the message. 

This optimization may be important for immutable objects, such as routines without own variables, 

that are encoded at compile time. Relative back references let disjoint groups of objects be encoded 

at different times without retaining information from earlier encodings. This lets an REV mechanism 

encode the code portion of an REV request at compile time and the arguments at run time without 

having to retain compile-time information. Furthermore, relative back references let encodings be 

combined by concatenation. Consider a procedure that is an argument to several REV requests and 

. assume it is not referred to by any other routine In the code portions of the requests. Being 

transmissible, the procedure can be encoded at compile time. At run time, its encoding can be blindly 

copied into the request message no matter if it is the first argumeot. the last. argument, or one of the 

other arguments. 

3.4.2 Code Transmission 

Besides implementing call by value-overwrite, an REV mechanism must transmit routines without own 

variables from the client to the service. Herlihy'-s scheme for transmitting abstract values between 

nodes solves only part of the problem of transmitting code between nodes, as it handles only those 

details that do not depend on the type being transmitted. For exam~ references from a relocated 

. procedure to client-supfllied routine&· as-,weff as refeNnOeS·from a routine to. itself (recursion) are 

handled automatically. In this section we focus on the remaining ~: deternyoing the 

representation for routines impoded by.an REV reqf.Aelt; anctdetenftining·the.extemal representation 

for code. 

Since every nontrivial REV request imports at least one service .routine, we need an external 

representation for imported routines. One possibitity is a pair of the form <tnterfaceName, 

Ro.tineName>. The service could bind imported routines-to their implementations when It extracts 

the eode- f,HJrtion from the requesttpessaQe (sta&ic linking) or JlS it executes the· request (dynamic 

I~· "RIMs• representation for import~ ·routines ~s simple bvt verbase. H lh~client and the serv!ce 

---·--------
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agree on the ordering of interfaces, a more compact representation for imported routines is possible. 

In this case, each imported routine may be represented by a pair of the form <lnterfaceOffset, 

RoutineOffset>.6 The ordering on interfaces could be the one in the publically available, compiled 

version of the service definition. Alternatively, the client could send the ordering when establishing 

the binding. 

Besides determining the external representation for imported routines, we must determine the 

external representation for code. As explained below, the choice of an external representation for 

code is a complicated trade-off involving execution efficiency, request message size, and security 

considerations. We first consider machine-dependent external representations for code and then 

consider machine-independent external representations. 

A machine-dependent external representation for code involves compiled code or something close to 

it. Transmitting compiled REV requests is a viable option In homogeneous computing environments. 

Compiled code realizes a fairly compact encoding and achieves high performance. Nevertheless, 

transmitting compiled code raises security considerations, as a compiled REV request may have 

immediate access to peripherals, registers, and all (virtual) memory locations. If security 

considerations are important and compiled code is transmitted, a trusted compilation service could 

examine, compile, and attach a digital signature to REV requests at compile time. This would prevent 

a client from sending hostile requests to a servic-e. Alternatively, each service could use conventional 

time-sharing protection mechanisms and provide a separate address space for each service 

capability it grants. 

Transmitting compiled REV requests may not be the best solution in a heterogeneous computing 

environment, as a compiled REV request can not be executed by all processors. Machine

independent external representations for code, in contrast, ~t each REV request be Independent of 

the processor that executes the request. Machine-independent external representations include 

character strings, parse trees, and bytecodes. Since dynamic compilation Is probably too expensive, 

these code representations require an interpreter. An important advantage of bytecodes is that they 

realize compact encodings compared to source code and compiled code. 

A hybrid approach may be useful in a heterogeneous computing environment,. especiaUy.when a few 

machine architectures account for most of the processors. Under this approach, each REV request Is 

compiled for the two or three leading processor types. The clientsends compiled code .whenever 

possible and uses the machine-independent representation fer the remaining processor types. 

We avoid problems caused by own variables by refusing to transmit fl:ode that refers to own va9~1es. 

8w an REV request is located in a module parameterized by .a service definition, the REV req41est may.be sent to instances of 
dllter.ent services. The compiler can encode the REV request orn::e for each service definition· that instantiates the module and 
use the appropriate encoding at-run time. Alternatively¥.the compiler can encode the request only once by using_the verbose 
representation described above. 
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Every variable in a procedure transmitted between nodes is either an argument or an ordinary local 

variable. Such variables are not shared between processes, since each process executing an entire 

procedure has a private activation record. 

3.4.3 Request Interpretation 

When machine-independent code is transmitted between nodes, each service needs an interpreter to 

evaluate REV requests. One problem with this approach is maintaining identical semantics between 

interpreted code and compiled code. Many LISP implementations, however, offer a compiler as well 

as an interpreter and can evaluate an expression regardless of which routines are compiled and 

which are interpreted. Mixing direct execution with interpretation Is not new. 

3.4.4 Service Binding 

Service binding involves locating an appropriate instance of a service and giving a service capability 

to the client. The only difference between RPC binding and REV binding is whether a client specifies 

a single interface (RPC) or a set of interfaees (REV). 

Birrell and Nelson [4] describe how Grapevine [3] supports remote binding for RPC's. A node wishing 

to export an interface communicates its intent to a Grapevine server. If the node is authorized to 

export the interface, Grapevine updates its database of nodes and the interfaces each node exports. 

A client wishing to import a remote interface queries a Grapevine server, which normally returns a 

capability for an appropriate instance of the Interface. The client then can use this capability to 

communicate with the remote node. This technique of using an intermediary to facilitate remote 

binding could be extended to do service binding for REV. 

REV binding can be slightly harder than RPC binding, in that a client's needs may not exactly match 

any public service definition. In this case, the binding facility must consider all public service 

definitions that exceed the client's needs. We call this extension to remote binding subset binding. 

Subset binding does not affect REV requests that are encoded with verbose pairs of the form 

<lnterfaceName, RouttneName>·for imported routines. SUbselbindlng. hOwever, daesaffect REV 

requests that are encoded with compact pairs of the form <lntuf aceOffset, RoutineOffset> for 

imported routines. In this case the client and &Etrvice. must 19~ .on the ~ac~ ordering, i.e., which 

interface corresponds to which lnterfaceOffset. We let thedient'dietatethe ordering and send it to 

the service when thetbinding is established. There are two reasm~ for this decision. fiirst,, SIJlleet 

binding lets the client execute the same REV request at nodes that 8'CPoft different services, m\. leag 

as each service exceetts the particuJar service requested by the ~t. It ~nlikeJy that these .nodes 

wilt agree on the ordering of interfaces imported· by th-e REV request. Second, the client already 

·kf'licliWs; tt:te, ordering, which is c'->sen by the compiler when it encodes the: code portion of>the REV 

r~t. 
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3.4.5 Reliable Communication 

A client and service communicate by using request-reply message pairs. An RPC communication 

mechanism converts an unreliable (packet-based) network into a reliable communication link that lets 

the client and service exchange messages of arbitrary length. Such a communication link may be 

implemented on top of a datagram service (41 ]. An REV communication mechanism must do the 

same. Furthermore, the RPC communication mechanism might use encryption to guarantee the 

security and integrity of data sent between nodes. Again, encryption-based techniques are directly 

applicable to REV communication. 

3.4.6 Failure Recovery 

RPC systems like Argus (25] use atomic transactions to tolerate node and communication failures 

while providing at-most-once semantics for RPC's. In these systems, a single transaction can span 

several nodes and last for an arbitrarily long time. An REV mechanism can use the same approach. 

Nested transactions can be included as an option. 

A node failure can create orphans. An orphan proeess is a remote invocation (indirectly) initiated by 

a node that has since crashed (21 ]. Orphans may exist anywhere when REV is used, since nested 

REV requests can establish arbitrary communication paths between services. The orphan problem 

must be solved by any transaction-based system that supports RPC's. Remote evaluation does not 

appear to complicate the detection or extermination (I.e., killing) of orphans. 

3.5 Discussion 

This chapter compared an Implementation for REV with a hypothetical RPC implementation. The 

main differences between an REV mechanism and an RPC mechanism are: 

1. supporting call by sharing instead of calf by value; 
2. supporting code transmission, which might require an interpreter; and 
3. verifying the validity of REVrequests and determining their location independence. 

As the bulk of an REV mechanism is an RPC mechanism, most of the techniques for tuning the 

performance of an RPC mechanism apply directly to an REV mechanism. 

Atthis point we evaluate REV according to the constraints discussed at the end of Chapter 1: 

• Powerful Semantics: 'We defined RE:Y semanllts so that r:etocatlng. proeessing with a 
location-independent REV request has :no effeit on program semahtics. In order to 
accomplish this g~. we .impose(i minima.I con~aints on an R!V 4'equest. Each request 
must be a procedure without own vari.a>les. l:he body of fue,proc .. ure must be known .at 
compile time. Procedure variables are permitted in the r«1ueSt as long as the. set of 
values for each procedure variable is known at compile time. A pr4Qrammer can 
otherwise use the full powerpf the language, such as cendftiQniijs, loops, exceptions, 
and REV requests, to el!:press,'an REV request A request t'ld'tnihg,a routine that--i.&,not 
exported by the service canlSUpf>(y,Jts own imptem8f)tati00. 
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•Implementation Efficiency: REV requests should be efficient. The code portion of an 
REV request can be checked for validity and encoded at compile time. In most cases, the 
space and time requirements for call by value-overwrite will be at most twice those for call 
by value. 

• Ease of Use: REV is easy to use. A programmer can change a local invocation into an 
REV request by enclosing the service in two reserved words (AT and EVAL) and placing 
the expression before the invocation. This textual change has no effect on program 
semantics for location-independent REV requests. 

• Language Independence: REV is language independent. Although we tailored the 
argument passing semantics to that for local invocations in CLU, similar mechanisms 
exist for other languages. 

One area we can improve is ease of use. We currently require the programmer to write each REV 

request as a procedure. Repeated insertion and removal of REV requests can alter the way a 

program is decomposed into procedures. An easier way to Introduce REV lets the programmer 

specify an REV request as a sequence of statements. The following chapter describes this extension. 
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Chapter Four 

REV with Implicit Procedures 

REV meets most of the requirements listed in Chapter 1. REV gives the programmer fine-grained 

control over the location of processing in a distributed application. Furthermore, location· 

independent REV requests relocate processing without affecting program semantics. An REV 

request, however, must relocate the execution of a single, complete procedure. Many REV requests 

will not represent a coherent idea but merely reflect the locations of particular objects. This could 

cause a proliferation of unnatural procedures, which In tum might make reading and maintaining 

programs more difficult. 

We remedy this shortcoming by allowing implicit REV requests. Such requests relocate the execution 

of a sequence of statements instead of a procedure. We call the REV requests shown In earlier 

chapters explicit requests because the relocated procedure Is explicit. While simplifying the insertion 

of REV requests Into a program, implicit REV requests do not increase the power of a programming 

language with explicit requests. This chapter provides linguistic support for implicit REV requests, 

defines their semantics, and shows how to implement them. 

4.1 Implicit REV Requests 

An implicit REV request lets an application programmer relocate the evaluation of a closure. A 

closure consists of code and an environment in which to evaluate the code. Closures, which are not 

first-class objects in CLU, appear only as the body of iterators. The code for each closure in CLU is 

apparent at compile time. A programmer writes an implicit REV request by specifying a closure and 

the service that executes the request. Implicit .~ are accommodated by changing the syntax 

for REV requests: 

rev_expr•ssion ::=at expression eval body (ekpression] .,_, 

The optional expression following!body le~ .ao implic!t ~ re<;l~t retum a value. The reserved 

words EVAL and ENO delimit the closure. For clarity, we will assume the programmer writes implicit 

REV requests but not explicit requests. Later 1n tAe chapter we 'show how to convert an imy:)licit 

request into an explicit requesl 

Our semantics for implicit REV requests will ensure that location-independent requests, which.are 

defined below, preserve program semantics. An impffcit request must execute as part of some ~omic 

transaction that is aborted if a node or commuhlct!tion failure prevents the request from complettng. 
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Implicit REV requests use call by sharing: as explained in Section 4.3, the arguments for an implicit 

REV request are part of the context. 

We extend the definitions of validity and location independence to encompass implicit REV requests. 

As before, a valid REV request is one the compiler can encode and the service can execute, and a 

location-independent REV request Is a valid request that relocates processing without altering 

program semantics. 

An implicit request is valid if its code portion meets three conditions similar to those that define a valid 

explicit request. First, all routines imported by the code portion are exported by the service that 

executes the request. Second, all free variables in the closure are defined in the surrounding 

environment, and the remainder of the code portion can not have own variables. These two 

conditions ensure that the request is self-contained. Finally, the code portion of a valid request is 

apparent at link time. This lets the compiler encode the code portion and check the validity of the 

request. 

An implicit REV request is location-independent if: the request is valid; every routine imported by the 

request is location-independent; and every variable accessed by the request is local to the 

transaction associated with the request. 7 The last restriction Is needed because our transaction 

mechanism does not apply to variables. These restrictions and the semantics of implicit REV 

requests ensure that location-independent requests do not change program semantics. 

4.2 An Example 

Figure 4-1 recasts an earlier mail example (Figure 2· 7) into a program using an implicit REV request. 

This program is equivalent to the earlier program that used an explicit REV request. There are two 

important points to note; First, introducing/removing an implicit REV request corresponds to 

inserting/deleting the two lines marked with asterisks. A programmer adding an explicit REV request, 

in contrast, would have to convert the closure into a procedure. Second, since the implicit request 

marked with asterisks is location-indepen~ent, it does not change program semantics. Aff the REV 

bookkeeping conceming·arguments, results, and flow of control is done automatically, as explained 

in the next section. The programmer concentrates on producing a bug-free implementation instead 

of worrying.about these details. With welt-structured code, an optimizer can easily relocate execution 

when tuning program performance. 

1u it is. ppssible to have concurrency withln a transaction, evec:y variable accessed by the request must be local to the 
process ex®uUilg the r('!quest. · 
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ss = set[str1ng] % an equate 

custom1ze • proc (user, passWd, msg, reg1stry: str1ng, friends: ss) 
returns (ss) signals (NotAva1lable) 

begin transaction 
post0ff1c~: ma11 :• Serv1ce(ma11]Slookup(registry) resignal NotAvailable 

at postOff ice e~al I ••• 
badNames: ss :• ssSnew() 
newMsg, firstName: string 
for friend: string in ssSelements(friends) do 

firstName := at postOffice nal registrySfirstName(fr1end) end 
except when noSuchUser: 

ssSinsert(badNames. friend) 
continue % start the next 1terat1on 

Hd 
newMsg :•"Dear "llfirstNamef fmsg % str1ng concatenat1on 
at postOffice eval maildropSsend(user, passWd, friend, newMsg) end 

end % loop statement · 
return (badNames) % return from REV requeat 

% and cust.olliH 
end % REV request ••• 

end except when failure (reason: string): signal NotAvailable end 
end customize 

Ftgu re 4· 1 : An example of an implicit REV request. 

4.3 Implementation 

We implement an implicit REV request by converting it into an explicit request at compile time without 

altering program semantics. This transformation, which converts a closure into a procedure, is the 

opposite of In-line expansion. We call it procedure folding. Procedure folding has two tasks: 

1. ensure the new procedure does not affect the flow of control; and 
2. determine the arguments and results of the new procedure. 

Each of these subtasks is described in turn. 

4.3.1 Control Flow Preservation 

Procedure folding must accommodate control constructs that termioate,an implicit REV request. An 

impJicit REV request may terminate in four ways: 

1 . an invocation in the request raises an exception that is riot handled by the request; 
2. the last statement executed causes a nontoeat transfer:of control (i.e., a return.Dr sfgnal 

statement is e~ecuted); 
3. the last statement executed causes a local transfer of control (i.e., a continue, bre~. or 

exit statement .is executed); or 
4. the last statement exee\Jteddoes not affect the flaw off19ntrot 
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A nonlocal transfer of control terminates the current activation, while a local transfer of control does 

not. We define the above CLU constructs in the following discussion, which considers each 

possibility in turn. 

Procedure folding must not change which exceptions are handled. If an exception raised by an 

invocation in a closure is handled, it is handled in the ro!Jtine containing the closure. Otherwise, the 

exception becomes a failure exception at the boundary of the routine containing the closure. The 

compiler can determine which exceptions the routine catches by examining the handlers in the 

routine. Those handlers whose scope contains the closure determine the exceptions that the 

anonymous procedure created by folding must resignal. We call these exceptions client-handled 

because the client handles them after the REV request. Other exceptions are not caught and become 

unhandled exceptions. 

The example in Figure 4·2 shows the distinction between client-handled exceptions and unhandled 

exceptions. Evaluating a[b] or a[b+ 1) might raise _a bounds exception. This exception, which is 

caught by the handler in SomeProc, is a client-handled exception. The division routine might raise a 

zero_divide exception. Since there is no handler for this exception in SomeProc, it is an unhandled 

exception. 

Folding the implicit REV request in Figure 4-2 yields the explicit request in Figure 4-3. The following 

. section describes how we determine the arguments and results of the anonymous procedure 

(G4250). This procedure resignals the client-handled exceptions and ignores the unhandled 

exceptions. If the array access causes a bounds exception, the handler in SomeProc will catch it 

In the corresponding program without the REV request, the same handler catches the bounds 

exception. If the division causes a zero_divlde exception, the exception wilt not be handled. The 

unhandled exception becomes a faUure exception at the boundary of procedure G4250. In. the 

corresponding program without the REV request, the unhandted exception becomes a failure 

exception at the boundary of SomeProc. Both unhandled exceptions and faHure exceptions abort 

all transactions they exit. Hence the REV request does not affect the meaning of an unhandled 

exception like zero_divide.8 

. Having discussed exceptions raised by invoeaUons in an implicit REV·reqaegi; we now fooua on CLU 

constructs that transfer control out of an implicit request and terminate the current activation: return 

and .. stgnal. When such CLU constructs are Present, the.MOnymous pr,9(:~ure <::reated by folding 

[et&Jrns.a aneof, which is a tagged, discriminated onion. Each. possjbi.litv for the oneof corresponds to 

one way the implicit request may terminate. New <*te inserted alter the REV req• handles each 

possibility in theapprQJilriatemanner. 

We.again use an example to illustrate procedure folding. Figure 4·4 contains an implicit REV request 

Bwnen failure 46 a client-handled exception, unhandled exceptions must le accommodated'in a diHet"enl way. 
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SomeProc = proc (a: array(int], b: int) return• (int) 
begin tran1action 

ans: int 
aService: built-ins :• Service[built-ins]SAny() 
at aService eval 

ans :• 3/a(b] 
ans :• ans/a(b+l] 

end 
return( ans) 

end except when bounds: return(O) end 
end SomeProc 

Flgu re 4· 2: An implicit REV request whose closure raises several exceptions. 

SomeProc • proc (a: array(int], b: int) return• (int) 
begin traa1actton 

ans: int 
aService: built-ins :• Service[built-ins]SAny() 
ans :• at aService eval 64260(a, b) 
return( ans) 

end except when bounds: ret.urn(O) end 
end SomeProc 

64250 • proc (a: array(1nt], b: int) return• (int) 1tgna11 (bounds) 
begtn 

ans: int :• 3/a{b] 
ans := ans/a[b+!] 
ret.urn(ans) 

end re11gna1 bound• 
end 64260 

Figure 4·3: The implicit request in Figure 4·2 after folding. 

that can execute ~ return or a signal statement. Folding the implicit request yields the explicit 

request in Figure 4-5. Names unique in the current environment are automatically generated for the 

oneof type (G1010), the anonymous procedure (G1011), and the oneof variable (G1012). At most 

one arm of a tagcase statement is executed. The result returned by the REV request determines 

which arm of th& tagc~~ statement in Figure 4-5 is executed. 

The remaining CLU constructs that affect the flow of control are break, continue, and exit. These 
·"'" 

constructs cause a local transfer of control; i.e., they do not terminate the current activation. The 

bfeak statement terminates 'ixecutlon of the sntallest loop statement in which it appears. The 

continue statement terminateit execution of the •y of the smatleet loop statement kLwhich it 

appears. An exit statement is simita1,Jo a SiSRAUsfatement in that beth raise an e~ion. Signal 
.· .:'· ·..:\ 

terminates the current activat!on, but exit does not. Exit statements are legal onfy when there-'is-an 

ertcfosing handler of the appropriate type. 

ror these CLU constructs, deter{T}icfing the· deStination of the ,,coqtr-bt ftbw is a straighlf.orwatd' 
'··~ -~ . 
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SomeProc • proc (a: array[1nt], b: 1nt) returns (bool) stgnals (negat1veArg(1nt)) 

begin transaction 
ans: int 
aServ1ce: bu11t-1ns := Serv1ce[bu11t-1ns]SAny() 
at aServ1ce eval 

if b<O then signal negat1veArg(b) 
elseif b•O then return(a[l]•O) end 
ans :" a[b] 

end I REV request 
return(ans•33) 

end I transactfon 

end SomeProc 

Figure 4·4: An implicit REV request with signal and return statements. 

61010 = oneof[normal: 1nt, 
return: bool, 
negat1veArg: 1nt] 

SomeProc • proc (a: array[1nt], b: 1nt) returns (bool) 11gna11 (negat1veArg(1nt)) 

begin transaction 
ans: 1nt 
aServ1ce: bu11t-1ns :• Serv1ce[bu11t-1ns]SAny() 
61012: 61010 :• at aServ1ce eval G1011(a, b) 
tagca11 61012 

tag normal (1: 1nt): ans :• 1 
tag return (b: bool): rtturn(b) 
tag negat1veArs (1: 1nt): a1gna1 negat1veArg(1) 

end 
return(ans•33) 

end I transact1on 

end SomeProc 

61011 = proc (a: array[1nt], b: 1nt) returns (61010) 
if b<O then return (61010Smake_negat1veArg(b)) 
elaeif b=O then return (61010Smake_return(a[1]•0)) end 
ans: int :• a{b] 
return (610l0$make_nornial(ans)) 

end 61011 

Figure 4·5: The implicit request in Figure 4-4 after fOldJng. 

Ctlftlf)ffe-time task. Assume one of these constructs appears in an REV request. ·if its desti,,.ion.is in 

the request, no problem occurs. If its destination is outside the request, the,construct is handled in 

the-sam&manner as a return or signal statement. An arm of the tagcase statement, whicll directly 

foUows the original implicit request, transfers control appropriately. Since these constructs do not 

terminate the activation, procedure folding must preserve th&·environment. The values returned for 

these constructs, like th$ value returned for the "normal" tag in Figure,·4·5, are usoo to update the 
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environment. The next section describes which values are returned and explains why they are 

returned. 

4.3.2 Argument/Result Determination 

Besides preserving the flow of control, procedure folding must determine the arguments and results 

of the procedure it creates. We begin with an example of procedure folding by converting the implicit 

REV request in Figure 4-6 into the explicit request in Figure 4-7. The arguments to the anonymous 

procedure (G7345) are a and c, since the closure reads these variables before updating them. 

Although the closure also uses the values bound to b and d, these values are computed by the 

closure. The results of the anonymous procedure are c, d, and e, since the closure defines these 

variables and SomeProc subsequently reads them. Although the closure also defines b, SomeProc 

redefines b before using it. 

The anonymous procedure created by folding has no free variables, as the free variables in the 

closure are converted into arguments (a and c) or local variables (b, d, and e). The multiple 

assignment in SomeProc restores the minimal portion of the environment needed to preserve 

program semantics. 

Although we use call by value-overwrite for objects, call by value-overwrite is not needed for 

variables. We use call by value-result for variables and can still claim that location-independent 

requests do not change program semantics. We need not worry about concurrency, because we 

have prohibited concurrency within a transaction and required that all request variables be local to 

the transaction. There is no aliasing that involves variables, because CLU objects and variables can 

not refer to variables. 9 

Use-definition analysis [1 ], a technique often used in optimizing compilers, lets us determine the 

arguments, results, and locals of the procedure created by folding. We begin with some terminology. 

A variable is defined by a program fragment if its value may be set by the program fragment. A 

variable is used by a program fragment if its initial value,may be read by the program fragment. To 

simplify the discussion, we assume each variable is initialized when it is dectared. 

We determine the results of the anonymous procedure before the arguments, because the atgumentS 

may depend on the results. The results are th~ variables that are defined by the request and used 

by the code that dynamically follows the reQUest As shown in Figure 4-7, a return statement 

containing the result variables Js appended to th'e closure. If the .closure 'has several termination 

points, there may be several return statements. Tt:le andnymous procedurt witl in general return a 

oneof, as shown in Figure 4-5. Tht.arguments to the anonymous proc.edure are those variables: that 

9
For lang,uages in which variables and objects can refer to variables. the cqrrent environment must be treated as an atomic 

object. Procedure folding can be extended to handle. this casl!. 
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SomeProc • proc (a: int) ret.ur11 ( 1nt) 
begin t.ranaact.ion 

aService: built-ins :• Service[built-ins]SAny() 
b, c, d, e: int 
c : • 3 
at. aService eval 

b : • a•a 
d :• c•c 
c :• d 
e : • b+d 

end X REV request 
b :• e•e 
ret.urn(b•d•c) 

end X transact1on 
end SomeProc 

Figure 4-6: An implicit REV request. 

SomeProc = proc (a: int) ret.urna (1nt.) 
begin t.ranaact.ion 

aService: built-ins :• Serv1ce[bu11t-1ns]SAny() 
b, c, d, e: 1nt 
c :• 3 
c, d, e :• at. aService eval 67345(a, c) 
b :• ••• 
rtt.urn(b•d•c) 

end X tranaactfon 
end SomeProc 

67345 • proc (a, c: int) ret.urna (i~t. int, 1nt) 
b: int :• a•a 
d: int :• c•c 
c :• d 
e: int :• b+d 
return(c, d, e) 

end 67345 

Flgu re 4· 7: The implicit request in Figure 4·6 after folding. 

are used by the program fragment consisting of the request and any retum statements introduced by 

procedure folding. Fina•ly~ ·the locals are those variables that appear in the request but aref' not 

arguments. 

4.4 Discussion 

Afthough we restricted our attemion to CLU' con9'Alcts.i.:when dtsc:ussing procedure folding, we 

believe that similar techniques exist for constructs found in other programming languages. For 

pedagogical purposes, we discussed procedure folding without discussing' stub generation. To 

·achieve high perft,7rmance stubs, a production .• quality REV mechanism could' combine <the two 

actMties ami use st~r)Q,~ ,C,9,ll).J;V)c.r J~~f}!lfques'to op~imi~e the fto~,of Cbntrol. 
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Implicit REV requests directly support remote iterators. For example, assume the interface mailbox 

contains the following iterator, which lets a programmer process each message in a mailbox: 

messages = 1ter (user: userlD) yields (string) 11gna11 (noSuchUser, unreadable) 

The application programmer can use an implicit REV request to execute the Iterator entirely at the 

service containing the mailbox: 

at postOffice eval 
for message: string 1n mailboxSmessages(myUID) do 

. I process the measage 

end I tterator 
end I REV requut 

The compiler automatically converts the implicit REV request into an explicit REV request without 

altering program semantics. 

One drawback of an implicit REV request is that its arguments and results are not readily apparent to 

a programmer reading, revising, or debugging a program containing the request. This information, 

while irrelevant to someone understanding the program, is crucial to someone tuning program 

performance. A useful compiler option would be the ability to list the arguments, results, and client· 

supplied routines for each Implicit REV request. 

4.5 Summary 

Requiring that an REV request relocate the execution of a complete procedure burdens the 

programmer and may result in a proliferation of tiny procedures. This chapter extended the REV 

model by considering implicit REV requests in which the programmer designates a closure instead of 

a procedure for remote execution. This extension is for programmer convenience and program 

readability. 

An implicit request uses call by sharing and executes as part of an atomic transaction that aborts if 

the request does not complete. A location-independent request has no effect on program semantics, 

and implicit requests can be amitrarily nested. The constraints on imi>lielt REV requests are similar to 

those defined for explicit REV requests, except that free variables defined in the surrounding 

environment are allowed. Implicit REV requests represent a slight compile-time enhancement of REV. 

They do not affect service definitions, type checking, remote bindfng, or run-time support. 
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Chapter Five 

Remote Data Types 

In our extended version of CLU, there is no built-in naming mechanism that lets a program running on 

one node refer to an object at another node. This naming mechanism is useful when we view a 

remote node as a repository of shared objects. For example, a file service consists of directories and 

files, and a programmer may want to manipulate the same file in several REV requests. We can 

simplify the programmer's task by letting the program refer to the remote file in between REV requests 

to the file service. 

Because we feel such a naming mechanism will be useful in many distributed applications, we will 

incorporate it directly into the programming language. Although it is possible to construct such a 

naming mechanism outside the pro.gramming language, we provide direct support for reasons of 

convenience and expressive power. Our naming mechanism differs from conventional approaches 

based on global capabilities (e.g., Stroustrup's approach discussed In Section 1.3.4), because we 
meet the following requirements: 

1. Transience: Once a client-service binding is broken, the client must not refer to service 
objects and vice versa. This relaxes our assumption concerning the disjointness of 
separate address spaces, but retains most of the advantages of the original assumption. 

2. Good Documentation: The possibility that an object might exist at a remote node must be 
obvious to a person reading a program that involves the object. This is important 
because of both performance and semantic considerations. The communication costs 
incurred when manipulating an object at another nod& affect performance, while the 
above transience requirement affects program semantics. 

3. Convenience: The naming mechanism must be easy to use and understand, which means 
the run-time system should manage most oUhe detaits. 

4. Safety: We implement call by sharing for REV requests with CfiMby value-overwrite. The 
naming mechanism must not invalidate the correctness of our implementatten. 

Our: naming mechanism has two components: globa/nam~ andJ&(JlotJ!utata types. In this chapter 

we describe these components, show how they meet the above NQUirsments, and sketch an 

implementation. 
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5.1 Global Names 

A node uses a local name to refer to an object it contains. A local name is meaningful only to the 

node containing the object and therefore can not be passed between nodes. A global name also 

refers to an object, but it can be transmitted between nodes. If an object has a global name, any node 

may use the global name to refer to the object. 

A global name consists of a service capability for the node containing the object as well as a unique 

identifier interpreted by that node. Only the node containing the object can convert between the 

global name and the object's local name. Since each global name contains a service capability, one 

node can not accidentally interpret a global name issued by another node. This requires run-time 

checking, but all errors of this kind can be detected. We assume that a node which generates global 

names for its objects has a mapping that converts between global and local names. In addition, we 

assume the garbage collector never reclaims such a mapping.10 This mapping prevents the garbage 

collector from reclaiming any object whose global name is in the mapping, since such an object might 

be referenced by another node. Below we describe the conditions under which a node removes 

global names from its mapping. 

Because we want to reclaim inaccessible objects without requiring a distributed garbage collector, 

we treat global and local names differently. A local name is always valid; I.e., if a program comes 

across a local name, the corresponding object is guaranteed to exist A global name, in contrast, is . 

not always valid. It becomes Invalid when its service eapabiflty becomes invalid. This happens when 

either the client or service breaks the binding between them (see Section 2.1.3). 

When a service capability becomes invalid, the service removes the invalid entries in its mapping 

between global and local names. This can make some of the service objects inaccessible and thus 

subject to garbage collection. Service objects that remain accesaible, either by local names or by 

valid global names, will not be reclaimed. For example, files In a persistent directory will not be 

reclaimed, because they are accessible from the directory. A file removed from the directory and 

accessible only from an invalid global name can be reclaimed. Invalid global names do not cause 

dangling reference problems, since the service can not convert an invalid global name into a local 

name. Thus·;a program. can not use an invalid global name to access an object reclaimed by the 

garbage collector. 

Our lifetime definition for global names has three consequences. First, it meets our transience 

requirement. Second, pasaing global names implements caff bttharing for REV requests, but it does 

so only while the service ~ilities in the global names are vatid. This is in contrast to calt by 

vakJe-overwrite, which implements cat! by shadng indefinitely. Third; each node can have an 

10
11 client-servjce bindings (and hence seryjce capabifities) Stlrvive·node crashes, this mapping must also SUf\live node 

craslles. Otherwise . .lhe 11141pping can be kept in vola.00 stoage. 
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independent garbage collector that is not concerned with other nodes. As long as client-service 

bindings are short, say on the order of minutes or hours, or if they deal with a small to moderate 

number of global names, a distributed garbage collector is not needed. For long-lived bindings that 

create and discard many large objects with global names, we recommend routines that release most 

of the resources held by such objects. For example, assume a file object is a fife descriptor that refers 

to the disk pages associated with the file. Furthermore, assume flle$delete deallocates the disk 

pages associated with the file without deallocating the file descriptor, which acts as a tombstone. The 

local name for a deleted file object refers to its descriptor and hence is not a dangling reference. The 

garbage collector reclaims the file descriptor when it becomes inaccet$Slble. 

Global names give a programmer fine-grained control over the location of data, and this control may 

be used to improve the performance of a distributed system. When .obJects are very large, encoding, 

decoding, allocating memory, reclaiming memory, and transmitting data can be expensive in both 

time and space. Transmitting the small global name of an object instead of Its abstract value can be 

more efficient. The net effect on performance, however, depends on the number of times the object is 

accessed, as accessing the object must be done at the node containing the object. 

An application programmer can use global names to protect client information manipulated by an 

REV request. While a communication channel using encryption can, with high probability, prevent a 
third party from viewing or modifying information sent l:)etween the client and the service, encryption 

does not help a client that sends sensitive information to an untrusted service that may vioiate the 

data abstraction that protects the information. For example, transmitting a client object by value

overwrite exposes its entire abstract state to the service, which could copy the abstract state or 

manipulate it in arbitrary ways. Sensitive information should therefore be kept at the client and 

transmitted by global name. A client that processes only simple REV requests (i.e., RPC's) and does 

the appropriate checking can prevent an untrusted service from . indiscriminately accessing this 

information. 

5.2 Remote Types 

Our second requirement on the naming mechanism is good documentation. A person reading a 
program should be able to tell which objects are local and which objects may not be local. We meet 

this requirement by dividing abstract data types into two disjoint sets: 

• A local (data) type is an abstract data type whese objects have local names but not global 
names. Each instance of aJocat· type exists at some node,· and no other node can refer to 
the instance. A local data type may be transmissible by value~overwiite; othertiise, ;t is 
nontiansmissible. The programmer defining a local type decides whether it is 
transmissible. 

• A remote (data) type is an abstract data type whose obiects can have glob.a~ names that 
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are meaningful at all nodes. We call an instance of a remote type a remote object. The 
operations a program can perform on a remote object are defined by the object's type. A 
remote type is automatically transmissible. A node transmits a remote object to another 
node by sending the object's global name to the other node. Unlike local objects, a 
remote object is never transmitted by value-overwrite. 

An abstract data type is either local or remote; It can not be both. Later in the chapter we explain why 

we associate the idea of being remote with types instead of with individual objects or formal 

arguments to REV requests. Except for service capabilities, the abstract data types discussed so far 

in the thesis have all been local types. Scalar types, such as booleans, characters, integers, and 

reals, are local types. Records, arrays, strings, oneofs, procedures, and iterators are also local types. 

Although there are no rules for a programmer deciding whether a transmissible type should be a local 

type or a remote type, we offer the following guideline. Types whose Instances tend to be large or 

contain sensitive information should be remote types. Types whose instances are often shared by 

many users should also be remote types. Examptes include include database relations, disk files, and 

mailboxes. 

To specify a remote type T, the programmer creates an interface called T that is annotated by the new 

reserved word REMOTE. For instance, Figure 5·1 contains an Interface for the remote type mailbox. 

A programmer implementing mailbox implement&' all the routines In Figure 5·1. As explained In 

Section 5.4, the compiler automatically generates get and put, which make mailbox be a 

transmissible type. The mailbox routines are location-dependent, since the semantics of each 

routine depends on the node executing the routine. Hence the application programmer must specify 

the node that executes each invocation of a mailbox routlne.11 

We shall assume it is the programmer's responsibility to manipulate a remote object only in an REV 

request executed by the node containing the object. Thia will make all the REV requests in our 

examples apparent to the reader. The program fragment In Agure 5-2 shows that the syntax for using 

a remote data type, such as mailbox, is the same as the syntax.for using a local data type. The only 

way to tell whether a type is local or remote is to check the interface that specifies the type. Since 

Figure 5·1 declares mailbox to be a remote· type, the client variable mbx contains a global name and 

not a local name between the two REV requests in rigunJ ~2. In an REV rectuest sent to the node 

containing the mailbox (i.e., postOffice}, mbx contains a local name that directly refers to the mailbox. 

The translation between global names and local names is done automatically, as explained in Section 

5;4. 

This example shows why we have a complete separation between locaUypes and remote types. If we 

11 
A useful default is to execute each routine at tile home node of ~ flfSf argument if this argument has a remote type. For 

imstance, the last six routines in Figure 5· 1 could be relocated automttk:ally to the-~ Of their fir&f'argument, a meilboX. 
Since create and open have no arguttlents with rembte types, the apptic&.tion prQgrammer would use REV tQ-reklcate Uieir 
execution. 



. 100. 

mailbox • remote interface 11 

create s proc (user, maintainer: userID} returns (mailbox) 11gna11 (userExists) 
I create a ma1lbox for the user at the node execut1ng this procedure 
I userIO • name & password 

open = proc (requester: userID, user: string) returns (mailbox) signals (noSuchUser) 
I open user's mailbox on the node executing this procedure 
I requester must be the mailbox owner, the system maintainer, or the mail syst•• 

read = proc (mbx: mailbox) returns (array[string]) signals (unreadable) 
I read the contents of the mailbox -- fails if mailbox is re11ate 

messages • 1ter (mbx: mailbox>" yields (string) signals (unreadable) 
I iterate through the messages -- fails if mailbox is re11ate 

addMessage • proc (mbx: mailbox, msg: string) returns () 
I append message msg to the ones in the mailbox -- faiJs 1f maiJbox 1s remote 
I used only by the mail system, since senders invoke a higher-Jevel rout1ne 

delete • proc (mbx: mailbox, msgNos: array[int]) 
I remove the spec1f1ed messages -- fails if ma11box 1s r8110te 

close • proc {mbx: mailbox) 
I prevent further man1pu1at1on of the real mailbox v1a th11 abstract object 
I fails if maiJbox 11 remote 

destroy m proc (mbx: mailbox) returns () 
I remove mailbox from node -- fails 1f mailbox 1s remote 

end mailbox 

Flgu re 5· 1: The mailbox Interface. 

mbx: mailbox 
msgs: array[str1ng] 
deleted: array[int] :• ar'ray[int]Snew() 
postOffice: mail :• Service[mail]Slookup(reg1stry) 
at postOffice eval 

mbx := ma1lboxSopen(userlD) I userIO • name & password 
msgs :m mailboxSread(lllbx) 

tnd 

. I between REV requests the user read.I ma11 

. I and decides wh1ch messages to delete 

at postOft'.ice eval 
mailboxSdelete(\ftlbx, cteleted) I deleted contains message numbers 

N41, 

Figure 5·2: A portion of a simple mail reader. 

did' not nave this separation, a transmissible type such as mailbox could have some instances 
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transmitted by value-overwrite and other instances by global name. What mbx refers to in between 

the REV requests would depend on how the mailbox is transmitted to the client. 

•If the mailbox is transmitted by value, tnbx refers to the client copy of the mailbox. The 
service sends the copy to the client at the end of the first REV request, the client sends 
the copy back to the service as an argument to the second request, and finally the service 
returns the copy to the client for its delayed update at the end of the second request. The 
program in Figure 5-2 is not correct because it does not modify the actual mailbox at the 
service. 

• If the mailbox is transmitted by global name, mbx ref~ to the actual mailbox at the 
service. Any messages the user deletes are deleted from the actual mailbox. Once the 
client-service binding is broken, mbx can not be used to access the mailbox. 

Note that how the mailbox is transmitted affects both program semantics and the amount of 

communication. We eliminate this form of ambiguity by having a single transmission strategy for each 

type. Because all mailboxes are transmitted by global name, the program in Figure 5-2 is not 

ambiguous. 

A consequence of the strict separation between local types and remotes types is that the. reserved 

word REMOTE can not be associated with formal arguments to an REV request. Each formal argument 

has a type, and the specification for the type Indicates whether it is a tocal type or a remote type. The 

application programmer can not change this attribute of a type without redefining the type. ltwe let 

the programmer associate REMOTE with formal arguments, we would have to handle situations In 

which an object is simultaneously transmitted by value-overwr~e and by global name. Completely 

separating tocat types and remote types rutes out these anomalous situations, prevents ambiguity in 

programs,. and meets our aecond requirement on the naming mechanism, good documentation. 

Our third requirement on the naming mechanism is convenience. As we saw in the preceding 

example, compile-time type checking handles global namea without any assistance from the 

programmer. The preceding example has also shown that remote types are easy to use and 

understand. Under our scheme, objects with a local type are always k>Cal, even in REV requests. 

Objects with a remote type, in contrast, are assumed to be remote. The programmer uses this 

information when deciding where to insert REV requeats. If a femote dJject· happens to reside at the 

node executing the program, the compiler or run-time system can impr0\18 performance withoUt 
changing program semantics by short-circuiting REV requeei. directed to that [\Ode. 

Besides being easy to use and understand, remote types are easy to define and implement. A 

programmef.iJnakes a type remote by includk1g the reserved word ...-oTE in the interfa~~deUning the 

type. As explained m SeQjon 5.4, the system generates and transmits global names and hides their 

extstence from the programmer. The only'restrictiOn on a 511'ogrammer ~plementing a remote type is 

discussed ·~low. 

Our fourth. and final requirement on the naming mechanism is Safety. CaH by vatue-overwrite 
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implements call by sharing for REV requests, and we do not want remote types to invalidate this fact. 

The following example shows the problems we encounter if we do not restrict remote objects. 

Although the example involves REV requests sent to the client, the same problems can arise in a 

request sent to the service. We shall return to this point in the next section. 

Suppose we let the client implement remote types. Then we must let the application programmer 

send REV requests to the client, so the programmer can manipuJate remote objects at the client 

during a request sent to a service. We call the requests sent to the client call-backs. A call-back is a 

nested REV request sent from the recipient of the outer REV request to the sender of the outer 

request. These call-backs are exi>ected, since they are written by the programmer. If we do not 

restrict remote types, the run time system must support unexpected call-backs, as explained below. 

Let R be a remote object kept at the client, and let L be a mutable client object transmissible by 

value-overwrite. Suppose R refers to L, and both R and L are arguments to an REV request, as 

shown in Figure 5·3. If the REV request performs an operation on R that accesses L, the request 

requires two nested call-backs: 

•one from the service to the client to access R; 
• and another from the client to the service to access L. 

The first call-back, which is an REV request written. by the programmer, is expected by the 

programmer. The programmer, however, does not expect the second call-back, which is caused by 

the run-time system. The second call-back occurs because the client's copy of L may not be up to 

date, and we want both remote types and call by value-overwrite to implement call by sharing. If L 

refers to R, the two objects from a cycle, and unexpected call-backs may nest to an arbitrary depth. 

Performance would probably be abysmal during such a ping-pong match in which the process 

bounced back and forth between the two nodes. 

CLIENT SERVICE 

Global Name 

L L@) 

Figure 5-3: A scenario that couJd occur with unrestricted co~ete repr81sentattons for remote types. 

-w,e shaft restrict the set of objects accessibte from remote objects and own variables to avoid the 

inefiicieJJC,J0and complexjty of unexpectestcaO-back~ .. ' An une~p-~t~ call-back can occur dnty wfieR 
'. •• • ·' ' ' ,,·-.~ .:-- ' • < ''. ' 
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a mutable object transmitted by value-overwrite is accessible from a remote object or an own variable 

manipulated by a nested REV request. 12 Therefore, we prohibit remote objects and own variables 

from referring to a mutable object transmitted by value-overwrite. In other words, every object 

accessible from a remote object or an own variable must be immutable, nontransmisslble, or a remote 

object. The next section provides two remote types, RemoteRecord and RemoteArray, which are 

useful to a programmer defining the concrete representation of a remote type. We also let 

programmers annotate interfaces and clusters with the new reserved word IMMUTABLE. This lets the 

compiler check the restriction on remote types and own variables at link time. If the client does not 

implement remote types and does not execute nested REV req\,lests, this restriction does not apply. 

5.3 System-Defined Remote Types 

Records are extremely useful to a programmer choosing the concrete representation of a local type, 

since the representation often contains several components of different types. Arrays are also useful, 

especially when the number of components with some type can not be determined at compile time. A 

programmer choosing the concrete representation of a remote type will need similar type 

constructors, so we provide the following system-defined remote types: RemoteRecord and 

RemoteArray. RemoteRecord is identical to the record type except for transmissibillty. Records 

are transmitted by value-overwrite; RemoteRecords are transmitted by global name. RemoteArrays 

differ from arrays in the same way. 

RemoteRecords and RemoteArrays give the application programmer fine-grained control over the 

location of client data, which is an important consequence of global names. These types let the 

programmer keep client objects at a service between REV requests and refer to the entire collection 
l 

of objects with a single global name. We illustrate this abiHty by using RemoteRecords, with the 

understanding that RemoteArrays can be used in a similar fashiOn. 

RemoteRecords, ~ike records, are declared as a list of components and their types. Assume a 

programmer wants to keep two real numbers and a string at a.service. The following RemoteRecord 

declaration pr-0vides this capali)ility: 

inf'o '" Remoteiecor4(x: rHl, y: real, neme: string] 
remOa ta: info 

RemData is a variable whose type is a three-component ·RemoteRecord. A RemoteRecord (or a 

record) is created by enclosing the initial values for all components in curly brackets. Tt}e following 

REV request creates a RemoteRecard at a graphics service: 

xCoordinate: real := . . . % initiaHze xCoord1nate 
aNode: graphics := Service[graphics]Slookup("room 212") 
at aNode eval remData := inroS{x: xCoordinate•6.5, y: 2.2, name: "Jones") ent 

12 
Although a nested REV request can not access an own variable directly, It can call a client reutine that accesses an own 

variable. 

----------------------- -- ----
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After the above REV request completes, the client variable remData contains the global name for the 

RemoteRecord at the graphics service. A programmer uses "dot" notation to access and update 

RemoteRecord components: 

at aNode eval remData.x :• remData.y + 2.0 end 

Unless defaults are provided, a programmer can manipulate a RemoteRecord only in an REV request 

executed by the node containing the RemoteRecord. Note that the RemoteRecord lets the 

programmer group together all client objects at the service. If a single procedure deals with several 

services, this structuring of client data can help the programmer remember which object is at which 

service. This in turn can help eliminate errors that are difficult to detect before run time. 

RemoteRecords let an REV programmer send information from the client to the service once, but 

access it many times. Consider a remote bitmap display that can show points, lines, and characters. 

Let window be a remote type. Assume the programmer wants to display characters In an unusual 

font that the display does not directly support. Furthermore, assume fonts are immutable and 

transmissible by value·overwrite. Instead of sending the unusual font with each REV request that 

displays characters, the programmer can send It once: 

remotelnfo • RemoteRecord[value: font] 

display: window 
testfont: remotelnfo 
ntwfont: font :• . . . I 1n1t1a11z• newFont 
displayServ1ce: superGraphics :• Service[superGraphics]SLookup(•roOlll 212•) 

at d1splay5erv1ce eval 
display :• windowScreate() 
testfont :• r81110teinfoS{value: newFontJ 

Hd 

The preceding REV request creates a window and a RemoteRecord at the service and returns only 

their global names to the client. If the programmer does not modify the Remot.eRecord, the unusual 

font remains at the service until the client-service binding ts broken. The next REV request uses this 

font to display a character In the remote window: 

at displayServ1ce eval 

windowSshowChar(di~play, charCode, x, y, testfont.value} 

end 

The client tr~nsmits only a global name (and.not the,entire fQnt) ~the variable testFont appears in 

an REV· request • 

. Elesides reducing communication ilrom the client to the service; RerneleReco.ds can reduce 

communication in the other direction. RemoteRecords let a ~grammer keep the r,esult~_computed 

by an REV request at the service and use these resultS during later REV requests. Without 

RemoteR'ecords and11lobal names, the results are returned to •e cffenf; aoo~sent to thttservice with 

e~b REV.. request that accesses the data. 
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If RemoteRecords and RemoteArrays are not built into the programming language, programmers can 

get fine-grained control over the location of client data by constructing similar mechanisms. Such 

mechanisms are useful in constructing distributed systems, and we supported them directly to 

enhance their convenience and expressive power. 

We end this section with a reminder. To meet the safety requirement on our naming mechanism, we 

restricted the objects accessible from a remote object. A remote object can not refer to a mutable 

object that can be transmitted by value-overwrite. An application programmer using RemoteRecords 

and RemoteArrays must be aware of this compiler-enforced restriction. 

5.4 Implementation 

In addition to the support provided for every abstract data type, the system has two extra tasks for 

each remote type T: 

1. hide global names from the programmer implementing T; and 
2. generate and manage global names for objects of type T. 

This section describes each task in turn. 

To simplify programming, we completely hide global names from someone implementing a remote 

type. A programmer implementing a remote type T de(ines LocalRep, which is the representation for · 

local instances of T. LocalRep does not involve global names, but the compiler uses LocalRep to 

generate the actual concrete representation that does involve global names: 

rep• oneof[local: LocalRep, 
remote: GlobalName[T]] 

The actual concrete representation for a remote type is a oneof type, since the representation for a 

remote object depends on whether the current node is its home. The system-defined type 

GlobalName is parameterized by the type of object that corresponds to the global name. 

Before discussing the conversions between concrete objects and abstract objects for remote types, 

we review the conversions for local types. Let S be a local data type. Two routines, which are 

automatically generated by the compiler, convert between the concrete viewpoint (reg) and. the 

abstract viewpoint (S): 

SSup = proc (rep} returns (S} 

SSdown = proc (S) returns (rep} 

These routines, which do not cause any run-time computation, are avaifeble-- only In a cluster 

implementing type S. They inforfl1';the compiler that an object. pf type S is going to be viewed 

abstractly or concretely. For example, a programmer that needs to manipulate an argument of type S 

can use S$down to view the concrete object. The programmer can later U$e S$up to convert the 

concrete object into an abstract object b~ore1etumi(\g .it ~.a r~u1ti 
.. '. • . .·. . . , .... , .,,,. ', ··w •. '. 
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/' 

Up and down for remote types require run-time computation and have different type specifications 

than the corresponding routines for local types. In a cluster implementing remote type T, a 

programmer may use the following conversions: 

TSup = proc (arg: LocalRep) returns (T) 

TSdown • proc (arg: T) returns (LocalRep) 11gna11 (Notlocal) 

Figure 5·4 shows how to implement these routines. Although the implementations violate the type 

system, the violations are acceptable because these routines are compiler-generated. T$up creates 

and returns a oneof with a "local" tag that refers to its argument. T$down checks a oneof and 

returns the component if the object is local. Otherwise, the oneof refers to a global name, and 

T$down raises an exception. Neither T$up nor T$down involves REV. 

up • proc (arg: LocalRep) returna (T) 
concrete: rep :• repSmake_local(arg) 
% the next statement does not type-check, s1nce we should "up" concrete f1rst 
% th1s rout1ne 1s comp111r-generat1d and therefor• OK 
return (concrete) 

end up 

down • proc (arg: T) returns (LocalRep) 11gna11 (Notlocal) 
% the next statement does not type-check, s1nc1 we shou1d "down" arg f1rst 
% th1s rout1ne 1s comp11er-g1n1rated and th1r1for1 OK 
tagcaH arg 

end 

tag local (obj: LocalRep): return(obj) 
tag remote a1gna1 Notlocal 

end down 

Figure 5·4: Up and down for a remote type T. 

Besides defining the local representation (LocalRep), a programmer implementing remote type T 

implements the routines defined by interface T. The programmer, who can use T$up and T$down in 

these routines to convert between the abstract viewpoint (T) and the concrete viewpoint (LocalRep), 

does not need to know that the actual concrete representation is a .oneof. 

Because down for a remote type can raise an exception whereas.down for a local type never rafaea

an exception, implementing a remote type is slightly different than implementing a local type-irtett:I; 

Assume a remote type contains a binary operation (T$op) that may involve two Objects at different 
nodes;. Furthermore, assume T$op must be executed at the hqme of the,first argument;., Thttft the 

prQgrammer implementing T$op can not always apply T$down successfully to the second argument. 

If the. second argument is remote, the programmer must view it as an abstract objectand ustt'REV 

requests to manipulate its aestracf:.etete. The programmer would use the following system-defined 

operation to determine the node containing1he argumeAt: 

l$1lome = proc ( arg: l) retur.1 ('G2~76). 

whela.G2.Z7 6 is a name that is unique in the current environment.and bound to the following. service 

defioitioa: 
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62776 • service f 1 T end 

Such a service exports T and, by default, the built-in types. 

Having discussed how the system hides global names from programmers, we now consider how 

service capabilities and global names are transmitted between nodes. A service capability consists of 

a node name and an identifier interpreted by the node: 

• NodelD: a system-wide unique name 
• CapabilitylD: an identifier unique to the above node for all time 

NodelD must contain enough information for the client to be able to send a message to the service. 

For instance, a host name or an internet address is acceptable. CapabllltylD lets the client Invoke 

REV requests at the service. If different service capabilities correspond to different address spaces, 

Capability! D also selects the appropriate address space. 

A global name, which is the external representation for each remote type, consists of a service 

capability and an identifier interpreted by the ~rvice: 

• ServlceCapability: defined above 
• UniquelD: an identifier unique to the above service 

Recall that a global name lets one node refer to an object kept on another node. 

A service implementing remote types maintains two mappings: 

• one mapping converts remote objects to global names (mapping G); and 
•the other mapping converts global names to remote objects (mapping H). 

Mappings G and H are inverses. When a service capability becomes invalid, all entries in G and H that 

refer to the service capability are removed from the mappings. We explain below how the mappings 

are used to encode and decode remote objects. 

The encode routine for a remote type, which is automatically generated, converts the concrete 

representation for a remote object (a oneof) into the externat representation for the object (a global 

name). If the oneof has a "remote" tag, the oneof refers to a global name. In this case, encode 
simply returns the global name. Otherwise, the oneof has a "local" tag and refers to an object. In this 

case, encode uses G to determine if the remote object already has. a global name under the current 

service capabitity. If so, 'encode retums.the.globatname. Othaiwiae·'9ftcode'9enerates a"1ew global 

name, inserts the appropriate entries into G and H, and then returns the new global name. 

The. decode routine for a remote type, whiell is· also automatieaffy. generated, converts the external 

representation for a rempte object (a global name) into th•concrete representation for.the objeet (a 

oneof). If the service capa\:lility for the globaf name is not the current serviee capability, d~code 

returns a oneof with a "remote" tag that refers. to the global name. The validity of the global name is 

not determined. If the service capability for the global name is the current service capability, the 

gtobal name is va1id by definition. Decode uses H to ma~e globaJ,oame intoien object that exists at 

the' service and"then returns a oneof with a "Jocat" tag thatreters *'> tbe object. 
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The system, rather than the programmer, makes a remote type transmissible. The encode routines 

for remote types differ only in the types of the remote objects and oneofs they deal with. Because the 

encoding algorithm is always the same, the compiler can generate encode for each remote type. The 

same applies to decode routines for remote types. Since the compiler also generates get and put 

for all transmissible types, the compiler makes each remote type transmissible without any help from 

the programmer implementing the remote type. 

5.5 Summary 

We developed a naming mechanism based on global names that lets one node refer to an object 

residing at another node. We associated the ability to have a global name with types, rather than with 

individual objects or formal arguments to REV requests, and achieved the following objectives: 

1. Transience: Once a client-service binding is broken, neither node refers to objects at the 
other node. This means, however, that remote data types Implement call by sharing for 
an REV request only while the relevant service capabilities are valid. 

2. Good Documentation: Every object that may be remote Is apparent to someone reading a 
program. 

3. Convenience: Remote types are easy to use and Implement. 

4. Safety: Call by value-overwrite still implements call by sharing for REV requests. A 
compiler-enforced restriction on the types of objects accessible from a remote object 
guarantees this objective. 

A programmer makes a type remote by including the reserved word REMOTE in the interface that 

defines the type and clusters that implement the type. 

An important consequence of global names is that they give the application programmer fine-grained 

control over the location of client data. RemoteRecord and RemoteArray are system-defined 

remote types that can transform an immutable local type, such as Integer, Into a remote type at the 

cost of an explicit indirection. These two remote types also let a programmer keep. a collection of 

objects ar a service and refer to them with a sing!" global name. A programmer using these types Cdn 
,c ,' 

send informatton from the client to the service once. but aocess it during many different JMPt. 

requests. A programmer using these types can atS(f~eep the results of an REV request at a service 

beyond: tne:completion of the request. 
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Chapter Six 

An Extended Example 

To familiarize the reader with REV requests and remote objects, we present an extended example of 

their use. In this chapter we define a service called news ~Y specifying the interfaces it exports. 

Each news service contains a database of newspaper articles. An authorized user at another node 

can query this database and examine the articles selected by the query. The program fragments in 

the chapter show the usefulness of REV compared to RPC's for applications that support queries to 

such a remote database. The program fragments also show how RemoteRecords give the application 

programmer fine-grained control over the location of client data, which is important because remote 

types can reduce the amount of communication between nodes. We begin by describing the 

interfaces exported by each news service. 

6.1 Declarations 

Recall that a two-level description applies to services. A service definition is a set of interfaces, and 

an interface speciftes a coltectton of routines. The following statement declares the Interfaces each 

news service exports: 

news • service 11 article, art1cleDB, t1me&date, set, Remot9Record, built-ins end 

We discuss the more interesting interfaces in this service definition below. 

Figure 6·1 contains the article interface. An article instance is an object with five components: 

subject, author, priority, timestamp, and body. The priority of an article describes its overall 

importance. We assume that a priority is a small positive integer. Because an. article body might be 
very long, we provide an additional routine (shortBody) that returns onty the beginning of the article. 

Figure8-2oonta~ns the articleDB interface1 which defines,e,.remot&•type, Ttlus a program running at· 
a client can refer to an instance of this type that resides at a service. An instance of type articleDB is 

a repository of articles that efficiently performs certain se~ches. Some of the routines in the interface 

generate a new articleOB from an. existing articleDB and an attribute value (artliyPriority through 

adSince). Other routines. return information about a particular articleOB (subjects through 

articles). The reserved word IMMUTABLE at the top of the interface tells us-that an articleDB can not 

change its state. There are no routines that modify an articteDB, and the only way to create one is to 

use accessDB. 
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article = 1 .. utable locat1on_1ndepend.ent interface 11 

create • proc (string, string, int, time&date, string) return1 (article) 
X args are subject, author, pr1or1ty, t1mestamp, I body 

X rout1nes to access components of an art1c1e 

subject " proc (article) returns (string) 
author • proc (article) returns (string) 
priority = proc (article) returns (int) 
timestamp • proc (article) returns (t1me&date) 
fullBody " proc (article) returns (string) X return the entfrt body of the artfc1e 
shortBody • proc (article) returns (string) x return only the f1rst thr•• Jfnes 

X value-overwrfte transmfssfon 

encode • proc (article) returns (string) 
decode • proc (string) returns (article) 

end article 

Flgu re 6· 1 : The article interface. 

The remaining interfaces experted by a news service consist of common data types and system· 

defined data types. The tlme&date and set interfaces, shown in Figures 6-3 and 6-4, are the usual 

ones. The RemoteRecord type is a remote type that Is Identical to the record type except for 

. transmissibility. Built-Ins is the set of types provided in every implementation of the programming 
-

language. It Includes integers, reals, booleans, characters, records, arrays, strings, and procedures. 

6.2 Sample Programs 

We present five examples that use a news service. These examples are largely independent, but 

together they show how REV and remote types are useful to an application programmer dealing with 

one or more news services. 

Our first example, which concerns a user.who isfWtborized to ~a,database,of aFticles from the 

. New York Times, shows the. general teml)late for intensettng, with 8UCh a datilbS-.· Consider a 

program that accepts a query from the user, transforms tbe query into an REV request, sends the 

reqy"'Jq-Jne news service, 811(1Jinallypreeents,the ~.artide$.to the.US.er· A straightforward 

implementation of this task has 98verat problems, espedilfty when a query selects a 1arge number of 

long articles. The user must wait. tor alHh9 selected artiGkts to • sent to the ctient, and the. client 

must have enough (secondary) memory to store the ~c;, ari:tes. Wf,can impr6ve response time 

~d reduce the storage burden on the client by returning only part of the results to the client. The 

dientiJlitiatlv receives-a coUedlon of abbreviated articles. and the U$er·can subsequently request the 

fu1f version .of any articleJwthe cottectifn. 
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art1cleDB • rt110te 11111Utable interface 11 

availableDBs = proc () return1 (set[string]) 
accessDB = proc (string, string, string) return1(articleDB) 11gna11 (accessDenied) 

% arguments are DB name, user name, password 

X each of the fo11ow1ng s1x rout1nes returns a subset of 1ts f1rst argument 
% art1cles that "match" the second argument form the result 
% ne1ther argument 1s mod1f1ed 

artByPriority • proc (articleDB, int) return• (articleDB) 
artBySubject • proc (articleDB, string) return1 (articleDB) 
artByAuthor • proc (articleDB, string) return• (articleDB) 
artByKeyword • proc (articleDB, string) return1 (articleDB) 
artBefore • proc (art1cl.eDB, time&date) return1 (articleDB) 
artSince = proc (articleDB, time&date) return• (articleDB) 

% the fo11ow1ng rout1nes determ1ne what a DB contains; each returns 
% the number of art1cles w1th each value of the attr1bute 

subjects • proc (articleDB) return• (set[record[subject: string, number: int]]) 
authors = proc (articleDB) returns (set[record(author: string, number: int]]) 
priorities • proc (articleDB) returns (set[record[priority: int, number: 1nt]]) 
keywords • proc (articleDB) return• (set[record(keyword: string, number: int]]) 

% add1t1ona1 1nformat1on about a DB 

timeRange • proc (articleDB) return• (time&date, tilll&&date) 
noisewords • proc (articleDB) return• (set[string]) 
size • proc (articleDB) return1 (int) 
fetch = proc (articleDB, int) return• (article) 11gna11 (bounds) 
articles • 1ter (articleDB) y1elda (article) 

end art1cleDB 

Figure 6·2: The articleDB interface. 

time&date = 1 .. utable interface 11 

now = proc () returns (t11118&date) 
within • proc (iime&date, t1me&date, time&date) returna (bool) 

X determ1ne whether the f1rst pa1r of t1mes differs by at most the th1rd t1me 
before • proc (time&date, t1me&date) returna (bool) 
toString • proc (time&date) return• (strino) 
fromString • proc (string) returns (ti~&date) 11gna11 (Badfo1'114t) 

X value-cwerwrHe transm1ss 1on 

encode = proc (time&date) re\urn1 (int) 
decode = proc (int) return• (time&dat•) 

etHt. t ime&da te 

Figure 6·3: The time&dateinterface. 

We iHustrate this enhanceme-.fwith the folklwing,i>'ogram fragment, buHor simpficityi we do not 

tiiS0t:1ss tl:le conversion frpm user Qu~c;J~~ te ~~~t~ ~~ram fragments. Figure 6-~ shows. the 
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set • location_independent interface [t: type] 
where t has equal: proctype (t, t) returns (bool) 
ii 

create = proc () returns (sat[t]) 
insert = proc {set[t], t) 
delete • proc (set[t], t) 
member = proc (set[t], t) returns (bool) 
elements • iter {set[t]) yields (t) 
size a proc {set[t]) return• (int) 
any • proc {set[t]) returns {t) signals (empty) 
union = proc (set[t], set[t]) returns {set[t]) 
intersection • proc {set[t], set[t]) returns (set[t]) 
difference = proc (set[t], set[t]) return• (set[t]) 

X va1ue-ovarwr1te transm1111on 

encode = proc (set[t]) returna (array[t]) where t baa 
put = proCtJPe (REVcontext, ·t) 

decode • proc (array[t]) returns {set[t]} where t haa 
get • proctype (REVcontext} returns (t) 

end set 

Figure 6·4: The set interface. 

code corresponding to the query "What articles containing the word 'movie' were written by Vincent 

Canby?" After locating a New York Times database, queryProc opens the database and can access 

(via articles) all the articles in the database. Because the user does not want all the articles, 

queryProc successively refines the set of articles that It returns to ·the user_. First, queryProc 

determines the articles written by Canby. From this set, It determines the articles that contain the 

word "movie." Finally, queryProc creates a set of abbreviated articles by applying shortBody :to 

each selected article. The procedure as$addh appends Its second argument (a string) onto the high 

end of its first argument (an array of strings), thereby modifying Its first argument. The client variable 

shortTeKt has a local type, an array of strings. After the REV request comptetes, this variable refers to 

objects residing at the client. The client variable articles, in contrast, has a remote type. After the 

REV request completes, articles contains a global name that refers to the reeults. at the news service. 

Thus the service sends the client an array of strings (I.e., an array of abbreviated articles) and only the 

global name for the articleDB containing the full articles. 

We assume an articleDB keeps the articles it contains in some fixed order, such as· reverse 

chcQOQk)g_inal order. Fetching the full version of the ith article re.QWf'9 onty the ~o.rt REV:~ in 

Figure 6-6. The client sends a global name (articles) and an integer (1) to the news service, Whioll 

returns. the body ofitae specified article in the variable full. 

This exampie has shown the genera1 template for interacting with a news service. The program opens 

-•dalaba:se. selects articles according to a query, performs some computation, and finaffyT'itturns 

the· results. In this exmnpte, the~·comp1Jtation involved· fetching the abbeviated .version of eaoh 
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DB • articleDB X some equ1tu 
ss • set[string] 
as c array[string] 

queryProc • proc (user, password: string) returns (DB, as) 11gn111 (NotAvailable) 

begin tr1n11ction 
nyt: news :• Service(news]Slookup("new york times") abort reaignal NotAva1lable 
articles: D8 
shortText: as 

at nyt eval 
articles :• DBSaccessOB("new york times", user, password) 

except when accessDenied: abort signal NotAva11able .. d 
articles :• DBSartByAuthor(art1cles, "Vincent Canb1•) 
articles :• DBSartByKeyword(articles, "movie•) 
shortText :• asScreate() 
for art: article in DB$articles(articles) do 

asSaddh(shortText, articleSshortBody(art)) 
end 

end 

return (articles, shortText) 

end except when failure (s: string): signal NotAvailable .. d 

end queryProc 

Figure 6-5: A program to determine movie reviews by Vincent Canby. 

full: string 

at nyt eval 
desired: article :• DBSfetch(articlas, i) 
full :• articleSfullBody(desirell) 

end 

X use var1ab1e fu11 

Figure 6-6: An REV request that fetches a full articlebody. 

selected article and collecting the.~~vJa~:~·i!l anarr,ay.· We"'5ed REV to compose several 

articteDB operations into a single request, and weusect,a remote typ'6 (artlcteDB) toavoi6.retuming 

aU the information to the client immediately. 

Our second example shows how REV supports general queries much more efficiently that an RPC 

approach. The procedure in Figure 6-1 answers the question "Who wrote the New York Times 

articles with the tJig~st priority?" Once thEJ'crient•service binding iS ~abfished, the ,RE\( approach 
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requires one remote invocation. An RPC implementation requires three remote invocations: the first 

to open the database, the second to get the priorities, and the third to fetch all articles with the 

highest priority.13 The RPC implementation returns all articles with the highest priority, while the REV 

implementation returns only the authors of these articles. Unless the articleOB interface or the 

news service is extended, RPC programs can not have the service project the results of a query onto 

one or more article components. An REV programmer, in contrast, can combine primitive operations 

in an arbitrary way to have the service do the projection. This reduces communication and increases 

performance. 

queryProc = proc (user, password: string) returns (set[string]) 11gn1l1 (NotAvailable) 

DB • articleDB I some equates 
ii • record[priority: int, number: int] 
sii • set[11] 
ss • set[string] 

begin tr1n11ct1on 
authors: ss 
nyt: news :• Service[news]Slookup("new york times") abort resignal NotAvailable 

at nyt eval 
articles: DB :• DBSaccessDB("new york times", user, password) 

except when accessDenied: abort signal NotAvailable .. d 
priorities: sii :• DBSpriorities(articles) 
1f siiSsize(priorities)•O then abort 11ga11 NotAvailable end 
info: ii :• siiSany(priorities) 
max: int :• info.priority 
for info: 11 1n s11Selements(prior1ties) do 

1f info.priority>max then max :• info.priority end 
end 
articles :• DBSartByPriority(articles, max) I••• 
authors :• ssScreate() 
for art: article in DBSarticles(articles) do 

ssS insert( authors, art 1c1 eSauthor( art)) 
end 

end I REV request 

return (authors) 

end except when failure (s: string}: signal NotAvailable end 

end queryProc 

Figure 6· 7: A program to determine authors of high priority articles. 

The following approach, which an RPC programmeNnay uf8, sendsi less datatthan the pr~ing 

RPC ~each but:requires an additioqatremite invocation. ;,,The extra Invocation octurs just"after 

the assignment statement markeq ,wlthsthree asterisks jn f':ioure 6-7. This invocation uses 

13
1n addition to'the procedure11 in the arti4;1eD\~erfate. we let an RPt programmer have a stngle remote procedure that 

returns all· articles matching a given priority, Subject, author, keyword, wid tiJnestamp combination. ,, 
":,·· 
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articleDB$authors to return to the client the authors and the number of high priority articles each 

wrote. The REV approach, however, will outperform this RPC approach because it does the same 

processing but requires fewer remote invocations and transmits less data to the client. 

This example has shown how REV can outperform an RPC approach when the "right" remote 

procedure is not exported by the service. An REV programmer can construct such a procedure and 

have it execute at the service. An RPC programmer, in contrast, must use the routines exported by 

the service and do the remaining processing at the client. The RPC approach often requires several 

remote invocations, while the REV approach often requires only one. Because an REV request can 

often eliminate unneeded information at the service, an REV approach usually needs less 

communication than an RPC approach. 

Our next example is the first one to use a RemoteRecord, and it does so to keep client data at the 

news service between REV requests. Suppose the user always wants to disregard certain articles. 

For instance, the user may want to avoid all news summaries, front page layouts, photo captions, and 

articles containing certain keywords. One method of implementing this capability is to have the client 

augment each query with these standard restrictions before using .REV to execute the query. The 

disadvantage of this approach is that the client sends the same restrictions to the service with each 

request. A more efficient method is to install the standard restrictions at the service once and access 

them when necessary. 

Assume the standard restrictions consist of a procedure with the. following type specification: 

standardQuery • proc (articleDB) returns (art1cleDB). 

The following REV request installs standardQuery at the service: 

filter • proctype (articleDB) returns (articleDB) 
rFilter .. Remoteftecord[proc: filter] I remote f11t.•.r 
sq: rfilter 
articles: DB 

at .nyt eval sq.:= rFilterS{proc: standardQuery} end 

The next REV request restricts a query by invoking the procedure in the RemoteRecord on the 

articles that match the query: 

at nyt eval 
articles :• I 1n'it1a11ze art1cles from user,query 
articles :• sq.proc(articles) I apply ·atandatdQuet!J 

end 

Once installed at the service, the copy of the procedure st.andardQuery'temains there until the 

client or service breaks the binding eetween them. The clienUransmits only a global name {and. not 

the entire procedure) when the variable sq appears in an RE'.Arequest. 

This example has shown how RemoteRecords let the application programmer k~p client d~ at a 
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service between REV requests. We used a RemoteRecord to avoid sending the same object to the 

service with every REV request. RemoteRecords may also be used to keep (part of) the results 

computed by an REV request at the service. 

The remaining two examples show how REV can integrate different information sources. Suppose a 

user can access three news services: the New York Times, Associated Press, and United Press 

International databases. REV can hide the location of articles by sending each query to all three 

services and then merging the responses. Figure 6-8 shows part of a program that combines articles 

from all three news services. The program respects the autonomy of individual news services, which 

may be supported by completely different organizations. As long as the nodes export the same 

service (i.e., news), integrating disjoint databases for queries is straightforward. REV lets the query 

language be independent of the news services, which simplifies application programming. 

DB • art1cleDB I an •quat• 

nytUp, apUp, up1Up: bool := false 
nytData, apData, upiData: DB 

nyt: news :• Serv1ce(news]SLookup("new york times") 
except when NotAva11able: nytUp :• false end 

ap: news := Service(news]SLookup("AP"} 
except when NotAva11able: apUp :• false end 

up1: news :• Serv1ce(news]Slookup("UPI") 
except when NotAvaflable: up1Up :• false end 

I If no access1b1e databases, stop here 
if boolSnot(nytUp I apUp I up1Up) then 11gna1 NotAvailable end 

I Subm1t quer1•s to 111 news s•rv1ces that ar• up. 
I As befor•, fetch fu11 art1cles Off d•mand. 

Figure 6·8: Integrating three different news aervices. 

If the three nodes exp<>rted different different kinds of news services, REV could be used to hide their 

differences from the end user, assuming each node exp(>r:ted enough general oi)erations. An AEV 
programmer can construct new "remote procedures" that execute at, a service, while an RPC 

progr,~r can not. 

Our final example uses a nested REV request and compares, information kept' in dilerent databases. 

A user who wants to know what subjects are currently covered by tfNt AP database but not by tbe UPI 

database would execute the code in Figure 6-9. The outer REV request is sent to the AP service, 

wtlile'.the nested REV request is sent from the AP service to the UPI serviGe. Relocating the execution 

of procedure subjects strips the article count at each news service. ·An implementation without REV 

has higher communication costs because it also sends the article count .information to the client. 
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ss • set[string] % an equate 

subjects • proc (db: art1cleDB) returns (set[string]) 
subjCount • record[subject: string, number: int] 
sets: set[subjCount] :• articleDBSsubjects(db) 
DBsubjects: ss :• ssScreate() 

~ -..::;:~ - '"' '. 

for set: subjCount in set[subjCount]Selements(scts) do 
ssSinsert(DBsubjects, set.subject) end 

return (DBsubjects) 
end subjects 

begin transaction 
answer: ss 
at ap eval 

apArt1cles: articleDB := DBSaccessDB("AP", user, password) 
except when accessDenied: abort 11gna1 NotAvailable end 

APsubjects: ss := subjects(apArticle1) 
UPisubjects: ss 

at upi eval 
up1Articles: articleDB :• DBSaccessDB("UPI", user, password) 

except when accessDen1ed: abort 11gna1 NotAvailable tnd 
UPisubjects :• subjects(upiArt1cles) 

end % nested REV request 

answer :• ssSdifference(APsubjects, UPisubjects) 
end % outer REV request 

end except when failure (s: string): signal NotAvailable end 

Flgu re 6·9: Comparing AP and UPI subjects. 

This example shows how nesting two REV requests might reduce communication in comparison to 

two separate REV requests. If two separate requests are used, the AP subjects and the UPI subjects 

are sent to the client, which calculates the difference between these sets. If the requests are nested, 

the UPI subjects are sent to the AP service, which calculates the difference between the UPI subjects 

and the AP subjects and returns this difference to the client. If the difference Is significantly smaller 

than the set of the AP subjects, nesting the requests can significantly reduce the size of the second 

result message. The first request !'lessage, however, is larger when the requests are nested, as this 

request message must contain the code portion of the nested request. 

6.3 Discussion 

The examples in this chapter attemp&ed to convey .A\YO points: First, REV :.gives the programmer 
- '., -

fine.-grained oontrol·over.Uae location of processing.· Once RE\'.~·~" used togjve a program the 

desired semantics, the programmer can partition the program into fragments for focal and remote 

processing to improve performance and reduce communication.· The ability to nest REV requests can 

improve performance and·reduce communication w~rtfunh'lf. 
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Second, remote objects give the programmer fine-grained control over the location of data, which is 

very useful when the programmer must reduce the amount of communication between nodes. Either 

the service or the client may introduce remote objects. A service introduces remote objects by 

exporting a remote data type such as articleDB. Such remote data types support the partial 

transmission of results. This technique, which can Improve response time, reduces communication 

when a user does not examine all the results in detail. A client can introduce remote objects by using 

RemoteRecords and RemoteArrays, which let an REV programmer keep an object at the service 

between REV requests. An REV programmer can use these types to keep the results of an REV 

request at a service or to avoid sending the same data with each req~t to the same service. 

REV and remote types are simple mechanisms that give an application programmer control over how 

and where a program executes in a distributed environment. ~ of this control is used to give a 

program the desired semantics, but the rest is available for tuning performance. 
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Chapter Seven 

Experience and Evaluation 

This chapter summarizes our experience with REV. It describes our prototype REV implementation, 

presents representative performance measurements, and offers advice to future REV implementors. 

We also give advice to service programmers supporting REV and application programmers using 

REV. Finally, we evaluate the novel ideas in the thesis and present areas tor further work. 

7 .1 A Prototype Implementation 

We constructed a prototype implementation of an REV mechanism to facilitate experimentation, 

debug algorithms, and evaluate the amount of work required to implement a production system. 

Absolute performance was not a concern. Our computing environment consisted of two Symbolics 

3600 Lisp Machines connected by a local area netwo_rk. Both machines supported the LISP dialect 

Zetalisp [45]. We used LISP because of its flexibility and its uniform treatment of code and data. For 

simplicity, we assumed the existence of strong type checking and prohibited exceptions. Conditional 

statments were allowed but loops were not. Our experimentation language contained the following 

built-in types: integers, characters, booleans, strings, records, arrays, and procedures. All these 

types were local, transmissible types. We added new types as necessary. Some of the new types, 

such as services and windows, were remote types. 

Most of the compile-time requirements for REV were imptemented. We built a use-definition package 

and converted implicit REV requests into explicit REV requests. The code portion of each REV 

request was type-checked against the definition of the service class that would execute the request. 

Stubs were generated tor both the client and the service. We did not support client-supplied routines 

or the compilation of interface and service descriptions. A small database of procedure; interface, 

and service specifications was built manually. bur procedure folding algorithm did not handle 

exceptions or local transfers of control. 

Except for a name-lookup service and a transaction mechanism, .the run,time requirements for REV 

were supported. We ;mplemented call by value-overwrite,md,supported remote types by generating 

and transmitting gtobal names. Source-level prooedure.,werelransfhi$sible. For simplicity, we did 

not transmit compiled code. lhe external representatiol_}for source code was a compressed form of 

list.structure. The remaining port4eft. of the run-time environment consisted primarily of existing Lisp 

Machine software. The chaos datagram package ~sterred pQck$ fr~m ·1one oode to anpther. 
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Ensuring that the code portion of every decoded request was compatible with Zetalisp obviated the 

need for a new interpreter. Requests were executed by calling appfy, which invoked the resident 

Zetalisp interpreter. 

Although absolute performance was not a concern, we measured the time to perform simple remote 

operations: 

packet exchange 20-25 msec. 

null REV request 100 msec. 

x := x•x 121 msec. 

Our REV implementation was based on the ability to send a string from one Lisp Machine to another 

and receive a string reply. When both strings were empty, the round-trip time for a packet exchange 

was 20-25 msec. A null REV request, which has no arguments, no results, and an empty procedure 

body, took a tenth of a second. Executing a remote integer multiplication took slightly longer. We 

used six hash tables to implement call by value-overwrite: three at the client and three at the service. 

Creating a small hash table took about 1 O milliseconds, which shows that hash table creation 

accounted for much of the overhead on each REV request. 

To test our thesis that REV may be viewed as an optimization, we compared the time to execute an 

REV request with the time to execute the corresponding collection of RPC's. Since we had no RPC 

package, we simulated an RPC with a simple REV request and used the following formula to estimate 

its performance; 

RPCtime • 0.6 • (REVtime - NETWORKtime} + NETWORKt'hne 

NETWORKtime is 20 milliseconds, which is the time for a packet exchange. Except for the packet 

exchange, we assumed that the REV request was twice as expensive. as an RPC. For the objects we 
transmitted between nodes, this is an upper bound on the performance difference between call by 

value and call by value-overwrite. 

Figure 7·1 contains a procedure with three REV requests. An array of size three (small Array) was sent 

to the service twice and returned to the client twice. The average time to execute P, which incurs 

three REV overheade, waa466 milliaaeends. Using the above formula, we estima:tecHhat the averaoe 
time to execute P with three RPC overheads was 263 milliseconds. If we assume the RPC's use can 
by value, the array is sent to the service twice and never returned to the client~ Executing P as a 

single REV request, as shown in Figure 7-2, incurs only one REV overhead. The array is sent to the 

service and returned to the client only once. The avetage time to execute Pin this case,was 183 

milliseconds. Figure 7-3 summarize&:- the differences between the two REV exeeutions and the 

estimated RPC execution. 

lR d"1SCUSSing the compile-time and.Jun-time requirements.of an REV mechatrism, the previeus 

chapter.& tuwe conveyed much of the detaUed structure of. our prototype implementation. At. tbis. 
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P = proc (aNode: built-ins, a: array[int], x, y: int) return• (int) 
x := at aNode eval a[x] end 
y :• at aNode eva1 a[y] end 
x :• at aNode eval x•y ••d 
return(x) 

end P 

sma 11Array: array[ int] : • . . . X 1n 1t 1a 11ze sma 11.Array 
aNode: built-ins :• Service[built-ins]$Any() 

P(aNode, smallArray, 1, 2) 

Figure 7·1: A procedure with three RPC's. 

P • proc (a: array[1nt], x, y: int) returna (1nt) 
x :• a[x] 
y : • •[y] 
x : • x•y 
return(x) 

end P 

sma11Array: array[int] :• . . . X 1n1t1a11ze sma11.Array 
aNode: built-ins :• Service[built-1ns]$Any() 

at aNoda eva1 P(sma11Array, 1, 2) end 

Figure 7 • 2: A single REV request instead of the three RPC's. 

program arrays integers average 
transmitted transmitted time 

·•, 

3 RE\rs 4 7 466.msec. 

3RPC's 2 7 263 msec. (estimated) 
I• 

1 REV 2 3 '.18) .. nlsec. 
·' l''I''• 

... 

Figure 7-3-: An estimated comparison'between REV and RPC's. 

I-

I 

point, we present our reflections on implementing an REV me\rihanism. Whenevet possibfe, REV 



. 122. 

implementors should augment an existing RPC implementation instead of beginning from scratch. 

Much of the compile-time and run-time support for RPC, including any modifications done for high 

performance, can be used for REV. Communication primitives and protocols for RPC are applicable 

to REV. Stub generation is similar in both schemes. For immutable types, call by value is equivalent 

to call by value-overwrite. Unless optimizations are desired, no changes are necessary to their put 

and get procedures. Slight changes have to be made to the put and get procedures of mutable 

types using call by value-overwrite. The encoding and decoding contexts (REVcontext) must be 

extended to manage external names, as explained in Section 3.4.1. Excluding the need for an 

interpreter, the remainder of the conversion process consists of implementing procedure 

transmission and accommodating syntax extensions, service definitions, and implicit REV requests 

(use-definition analysis) In the compiler. 

The introduction of REV need not degrade RPC performance. REV requests that are really RPC's 

could be recognized and treated as such. The stub generator can avoid much of the encode and 

decode overhead by capitalizing on REV requests that have simple argument or result types. In short, . 

application programmers should not have to pay for the generality of REV unless REV is required. 

7 .2 Hints for the Service Programmer 

The following discussion contains our advice to service programmers supporting clients that use 

REV. We first discuss the kinds of routines a service should export and then discuss how the service 

programmer can constrain the application programmer. Finally, we consider the relationship 

between service programmers and application programmers. 

When RPC's are used, a service exports routines tailored to a particular application. Because not all 

applications will use the full power of REV, services should continue to export these specialized 

routines. 

In addition to specialized routines, REV services should export general routines and let the 

application programmer compose them arpitrarily. Even inexpensive routines can be exported, since 

good application programmers wiU,:atnJOture their code to minimize REV overhead. Services should 

also export routines that take routines (or closures) as arguments, since they let the application 

programmer customize existing service routines. Iterators, for exampte, can and should be exported. 

An application programmer, who often wants maximum flexibility Whetl partitioning a program, wants 

the service to expoFt as many interfa~JIS p<),$Sible. On the::$:orittarf'"fi'·service designer does not 

want to-burden each service node. with extraneous requirements. A l.flefVI C<?mpromise is to export 

(some of) the interfaces whose implementations are guaranteed to exist at the service.14 Although 

14 As explained befow, a servic~ designer may withhold service interlaces to constrain the application progranmier. 
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this approach seems to put implementation before design, the relevant interfaces are known at design 

time. A simple analysis of the interfaces exported by a service yields a fair amount of information, 

under the assumption that a service able to contain an object of type T implements interface T. By 

this assumption, the service implements au types mentioned in the exported interfaces, not only the 

types defined by the interfaces. The additional types mentioned in the interfaces for the unexported 

types must also exist at the service, and so on. In technical terms, the net result is the reflexive, 

transitive closure of type dependence beginning with the exported interfaces. A set of interfaces is 

closed if and only if it equals its type closure. Exporting this closed interface set places no new 

requirements on a service yet provides application programmfrs with a moderate to large collection 

of relevant routines. The routines are relevant because a program that encounters an object of type T 

is likely to invoke routines from interface T. We suggest that services export closed interface sets. 

Taking the closure of a service definition never burdens a service yet may improve the utility of the 

service to an application programmer. 

Having discussed some of the reasons for enlarging a service definition by taking its type closure, we 

now consider some restrictions on service definitions and the particular benefit each provides. 

Service designers may not want to burden their nodes with nested REV requests that can not be 

short-circuited. The syntax for service definitions could be extended to Include such a restriction. 

Another restriction is to remove the RemoteRecord and RemoteArray interfaces from a service 

definition. This prevents programmers from storing client data at the service between REV requests. 

The responsibility for providing a useful computational environment to end users rests with both 

service programmers and application programmers. REV ~its a flexible division of labor, 

depending on their relative numbers. For example, service programmers should view application 

programmers as independent service programmers who migpt unexpectedly provide new ideas or 

implementations. Heavily used REV requests are candidates. for new service routines. Because the 

design, implementation, and debugging of these routines are already done, a service programmer 

merely examines existing candidates instead of developing code from scratch. 

7 .3 Hints for the Application Programmer 

We now present our recommendations to application programmers using REV. The main rule is to 

aswme that everything is remote and scattered. Different·aervice c:apabitities-should be thought of as 
denoting different services, and each remote object should be thought of as existing at a distinct 

service. Capitalizing on REV under these worst case aonditions reQUires a programmer to group 

together operations on a singkt remote object. The next step Is to group togetff&r aperations on 

objects known (or thought) to be at the same service. The desirability of an il\fervening operation that 

mampufates client data ctepends on the pr~ility that it is exported by an arbitrary servtce·as welt as 

its effect on d-1a communicatiOn. 
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The degree to which these guidelines are followed depends on the trade-off between readability and 

performance. The structure of an REV-based program may look unusual to a traditional programmer, 

who might object to the rigid discipline we are apparently advocating. Two points need to be 

remembered. First, the guidelines apply only to instances of remote types. In most parts of most 

programs, we expect such objects will be in the minority. Second, what appears unusual at first 

glance may become acceptable once we gain experience with REV. In fact, the additional discipline 

mandated by performance considerations may actually improve programming style. Operations 

involving a particular remote object will be limited to certain sections of the program. Although 

programs may be harder to write (initially), readability and maintainability should improve. 

Adding REV requests to an existing program will often require local code rearrangement. Reordering 

statements wherever possible to meet the above guidelines will help. Other source-to-source 

transformations may also be applicable. For instance, consider a single loop containing two REV 

requests to two different services. Furthermore, assume the two services are the same for each 

iteration of the loop. Loop splitting should be used in an attempt to create two REV requests and two 

loops, such that each REV request contains one loop. 

7 .4 REV Drawbacks 

· An REV mechanism poses three problems that must be addressed: 

1. implementation overhead; 
2. computer security; and 
3. lack of improvement in performance and functionality. 

Production-quality solutions exist for the first two problems, but the third problem depends on the 

computational environment and the distributed applicatione. · 

First, REV has compite-time and run-time costs. REV complicates binding and type checking. Implicit 

REV requests require use-definition anatysis and procedure folding. Every service node· must have an 

interpreter for the language in which the REV requests .are written. The alternative, dynamlcaUy 

compiting and then executing a request, wtll often take·longer than using RPC's. Requests could be 

. precompiled, but theieasibilttyof pteCOmpitation depends on the homogeneity of the environment. 

A secqnd problem is compµter secu.rity. REV arid remote.~ exacerbate, the. se,c~rity issue&. that 

must be considered in an RPC framework, such as service avai.fability and protection. An RPC service 

programmer protects a, node by controlling. the .routines. thai a client may invoke. An HPC $erVice 

need not isolate concurrent requests from different clients; a Single, shared address space will 

Sllffice. Because a trusted team of programmers imptenfenbJ the service routines, nonterminating 

RPC requests are not a problem. 

On the cbntrary, AEV service prog,rammers must be $USPfclous of REV r~~~· An REV request 
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may run for a long time; in fact, there is no guarantee that it will terminate. To prevent program bugs 

or malicious clients from interfering with the requests of other clients, protection mechanisms 

developed for time-sharing systems will be necessary. Separate address spaces, authorization 

checks, resource accounting, and preemptive scheduling may be needed. 

Finally, REV may not improve performance or provide any new functionality. Consider RPC's whose 

execution takes substantially longer than the REV overhead. Coalescing several such RPC's into a 

single REV request will not improve performance and may actually degrade performance because of 

the space and time overhead needed to support the advanced semantics of REV. If the RPC's form a 

functionally complete set of routines, REV yields no new functionality. The utility of REV depends on 

the communication channel, the exported routines, and the intended appUcations. 

7 .5 REV Advantages 

REV is a simple mechanism that we expect will provide three benefits. Remote evaluation may: 

1. increase performance by reducing processing time or network communication; 
2. induce service designers to export additional routines that give application programmers 

new power; and 
3. simplify the construction of distributed applications. 

We discuss each of these benefits In turn. 

7.5.1 Increased Performance 

REV, which lets the application programmer partition a program for distributed execution in many 

ways, can realize a substantial reduction in communication requirements or time scales. An RPC 

programmer, in contrast, must accept the unique partitioning of a program implicitly imposed by 

service programmers. 

REV may reduce the amount of communication between a client and a service, which can extend .the 

apparent capability of clients with limited processing power or storage capacity. The reduction. in 

communication rnay t;ie ~\l~tiat f~r database Ul)lications. A user extracts information from a 

remote database by submitting a request ancf then waiting for a respoiise. A request that typically 

examines a sizable component of the database yet returns a comparatively small amount of 

information is called a tilter. Consider an application that needs a filter that is not directly supported 

by the datab~. A progranunf.lr can use REV to construct a customized filter that executes at the 

database. tf the size of the R~ rect.Jest is negl~le, an REV imPlefnenttitlon of a filter requires much 

less communication than the correspol'lding implefJ}IJltation withOuf REV. If the communications 

network is slow or expensive, or if the client node has limited storage capacity, REV is the preferred 

mechanism for implementinO · filters. In these oases, an application programmer ·using REV, can 

relocate processing to reduce communicati()n. Unlike data .compression schemes, REV does not 
·\·- .-'·t.l. ~ . . < 

require more processing to encode and decode the data that is transmitted. 
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Some filters select those components of a database that satisfy a predicate. If the routines exported 

by the database easily express the predicate, REV should be used. For Instance, a user of a news 

service might be interested in all movie reviews by a famous reviewer. Other filters reduce the amount 

of information returned to the client by summarizing the information contained in each (selected) 

component. For instance, given the set of high priority articles at a news service, a user might be 

interested in the authors of those articles. 

Another example of filtering concerns dictionary maintenance. Dictionary editors add new words to 

the dictionary and drop unused words as the language changes. Although reading newspapers and 

periodicals is a useful method for spotting new words, the designers of a news service probably never 

thought (seriously) about supporting dictionary maintenance. If the service designers had the 

foresight to support REV, the database of articles is immediat~ly useful to dictionary editors. 

Although discovering novel uses for existing words is a difficult task to automate, discovering brand 

new words is not. Consider the brute force approach. Every month an REV request, which examines 

every article that appeared in the previous month, Is sent to the news service. The request adds each 

word in each article to a set of words and returns the word set to the client. The client sorts the word 

set and then compares it with an on-line dictionary. The set of new words, along with close matches 

for the unavoidable spelling errors, is finally presented to the dictionary editors. An editor could see 

the articles in which each new word appeared by submitting the appropriate query to the news 

service. A client using only RPC's must fetch the entire collection of last month's articles and then 

compress the information into the word set. The REV approach filters the information at the news 

service instead of at the client. 

It may be possible to avoid the brute force implementation in this example. A news service supporting 

keyword access to articles probably maintains a mapping from keywords to articles. Such a mapping 

would be extremely useful to the dictionary editors, even if commonly occurring "noise" words are 

not present. If the mapping is accessible to clients, an REV request that Iterates over all pairs in the 

mapping and saves the word component of each pair generates the word set. 

This example, which combined a newspaper database with a dictionary to assist dictionary editois, 

shows how REV facilitates the smooth integration of independent databases. Combining a dictionary 

with a thesaurus yields a service that is better than either alone. Associating a "yellow pages" 

database with an electronic street map is yet another example of how simple information sources ma.y 

be combined to provide a new service. Joining independent databases for a new application typicatty, 

requires that data be extracted or updated in a manner not expected' by the service designeis. While 

an application thatuses several independent databases could be implemented with RPC's, their lack 

of generaUty will .often hamper the application programmer and impose intolerable performance 

penalties on the resulting implementations. 

Besides reducing the amount of communication between a ctient and a service, REV maY"h!lprove 

performance by reducing the number of times control is passed between the two nodes. An 
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application without REV may repeatedly access a particular service because of its specialized 

hardware or data. If communications overhead dominates the execution time for most of the routines, 

combining the routines into a single REV request may substantially improve performance. REV 

amortizes the communications overhead over several former remote invocations. 

One example is a service with an array processor. If an application performs four array operations in 

a row and needs only the final result, REV should be considered. Similarly, if an application performs 

four operations on the same array and needs aJI four results, REV could again be used. The same 

argument applies to four operations on four different arrays. In these examples, REV reduces the 

number of times control passes between the client and the service. In the first two examples, REV 

aJso reduces the total amount of data communicated across the network. 

Another example in which an application repeatedly accesses a service involves a on-line dictionary. 

Assume the dictionary service exports dictionary$1ookup as well as the built-in types. 

Dlctlonary$1ookup takes a string and eith_er returns the word's definition or raJses an exception 

when no such word exists. One problem with conventional dictionaries is that a person looking up an 

unknown word is often forced to look up one or more words that appear in the definition of this word. 

REV efficiently supports a smart dictionary that performs expected lookups in advance. When a user 

asks for the definition of word X, an REV request could look up X as well as the (unusual) words In 

the definition of X. Another extension using REV transforms the dictionary service Into a spelling 

corrector. In an RPC implementation, each attempt at correcting a misspelled word requires a 

separate remote invocation. Correcting a word with REV requires only a single remote Invocation. If 

the dictionary service exports the RemoteRecord Interface, the client can store the correction 

algorithm at the service for the duration of the binding between the client and the service. 

Transrrntting a sizable correction algorithm only once may be useful during a session In which the 

user interactively corrects many words. 

Our final example of an application that repeatedly accesses a remote node involves an airline flight 

reservation system. Each traveler has preferences regarding the itinerary, dates, departure and 

arrival times, stopovers, airlines, ticket class, and cost. Efficiently expressing aU possible preferences 

and combinations of preferences with only RPC's, is nearly impoSStbte. on the other hand, REV 

permits a wide ·variety of preferences to be sent to the ah11ne sei'Vice. In more technical terms, 

arbitrary algorithms approximate preferences better than a fi~ed ••universal" preference algorithm. A 

client using RPC's has two options: use. the servial~• preference atgorithm or extract the neceaaary 

information and evaluate all possibilities locally. Using REV to sencFthe user's preference algorithm 

t& the service generates trip plans more efficieotl~tly eliminating \JflACceptabte,plilflS early. A mere 

focused search may let the REV implementation find better plans in tss time. 

The dictionary and airline examples reflect search problems in which the next action depends on the 

presence or absence of clata as welt as the curreAt state-of1he search. UnlesS '1e 'Search str~y is 

built into the service, applications without REV are limited. $.!Qce Rg,V,,m~~;Code tr:ansmissible, the 

particular seareh strategy can always be sent to the service and applied to the database. 
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7 .5.2 ·New Capabllltlea 

Besides improving performance, REV may give the application programmer new capabilities. 

Although theoretically REV is no more powerful than RPC's, REV may induce service designers to 

support a wider variety of routines including those with procedures or clQSUres as arguments. 

Iterators are one example. 

REV reduces the effect of performance on the choice of service routines. A simple routine whose 

execution time is dwarfed by the RPC overhead is an unlikely candidate for a traditional remote 

procedure. An application programmer using REV, however, can often use such a routine efficiently. 

For example, a traditional mail service may not export routines that parse the header of a message in 

a mailbox. A client using RPC's that wants to retrieve certain messages based on their headers must 

retrieve all the messages. A client using REV, In contrast, can examine each message header at the 

service and retrieve only the desired messages. 

7 .5.3 Effect on Distributed Programming 

REV simplifies the design and implementation of services. because service programmers do not have 

to provide all the software that executes at a servictt. Application programmers can construct 

customized facilities for the applications they write. Thus service software can be smaller, more 

stable, and easier to debug. 

REV is also useful to application programmers. REV is more powerful than RPC's but introduces only 

minor syntactic extensions to a programming language. Like RPC implementations, an REV 

mechanism hides the bookkeeping and communication details from the application programmer. 

Location-independent .REV requests assist a programmer tuning the performance of a distributed 

system. These requests are recognized by the compiler and do not change program semantics. This 

contributes to network transparency and facilitates reconfiguration. In short, REV is a simple but 

powerful technique for implementing and tuning a distributed system. 

7 .6 Key Ideas 

This thesis has proposed and investigated a new primitive for constructing loosely·coupled 

distributed systems. Remote evaluation is the ability to seoc:t an expression to a remote node and 
evaluate it there. We assumed that the overhead for invoking a remote pr~ure was much greater 

tmnt the averbead for invokUl.Q a local ~ure and that a transaction 1'4eehanism spanned the 

dJstribtJted: system. Our go~ throughout #le thesis has been to give the programmer fine.gr*'9d 

control over the location of processing and. client data in a distributed application. A key constraint 

wn-•• tMS retocation of processing and data should not affect progranf semantics for location· 

indep$Adent request$. The-solut'-P, REV--With impiiGit J:1toctJiluf~ Wld remote types, is moderately 
,. . . ., .. -",' 
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complex. Since simpler systems achieve many of the benefits REV provides, we describe the set of 

ideas behind our solution: 

•Transmissible Procedures: Procedures with no free variables may be sent to a service 
and executed by the service as long as all routines accessible from the procedure are 
known at link time. Furthermore, every routine invoked by the procedure at the service 
must accompany the procedure or exist at the service executing the procedure. The 
programmer can use such a procedure as an argument to a remote procedure or as a 
new remote procedure. (Chapter 2) 

• Services: We characterize a remote node by the set of interfaces it exports. This 
information lets the compiler verify the validity of a transmissible procedure and encode 
it. Because the application programmer can compose several service routines Into a 
single REV request,. services can export general routines in addition to routines tailored 
to a specific application. (Chapter 2) 

•REV Semantics: Explicit REV requests let a programmer relocate the execution of a 
transmissible procedure from the client to a service. We decouple the transaction 
structure from the way a program is partitioned into components for local and remote 
execution. Each REV request must run as part of some transaction that is aborted if the 
request does not complete. REV requests, like ordinary procedure calls, use call by 
sharing. (Chapter 2) 

• Location Independence: Service programmers declare the location independence of 
exported service routines. A routine is location-independent if its semantics does not 
depend on the node that executes it. A location-independent REV request imports only 
location-independent routines and preserves program semantics. (Chapter 2) 

• Call by Sharing in a Distributed System: We implement call by sharing with call by value
overwrite, transactions, and compiler-enforced restrictions on service programmers. 
(Chapter3) 

• Implicit REV Requests: We let the programmer relocate-the evaluation of a closure whose 
code is apparent at compile time. Procedure folding converts each implicit REV request 
to an explicit REV request at compile time. Implicit REV requests simplify the use of REV 
without impairing program readability. They directly support remote iterators and other 
routines with closures as arguments. Finally, implicit requests.bring u-. one step closer to 
an automatic program partitioner. (Chapter 4) 

• Remote Data Types: We developed a naming m~hanism that lets one node refer to an 
object kept on another node. The naming mechanism :is integrated into the type system 
via remote data type.s. Only the glo_bal name of a rem<:>te· ~t. r~er tttan its ~ 
vaiue, is transmitted between nodes. Compifer-enk>rced rules for ffrlptementing rem9le 
types guarantee that call by value-overwrite ifnptemenrscall by sharing ane that IOcation· 
independent REV requestepreserve progratnsemantics: (Chapters) 

• RemoteRecords and RemoteArrays: These system-defined remote types are identical to 
the record and anay types except for transmissibitity. Tbey give the application 
programmer fine-grained control over the location of client data. (Oliapter 5) 

A•though these ideas mesh nicely, designers of programming languages and distributed systems do 
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not have to incorporate alt of them to realize substantial benefits. The appropriate ideas depend on 

the computational environment, the sophistication of the programmers, and the intended 

applications. 

7.7 Areas for Further Research 

Many questions concerning REV remain unanswered. Once a production system has been built and 

practical experience with REV is gained, alternatives we rejected may need to be reexamined. Some 

of the areas we feel deserve more attention are primarily theoretical: 

• Enhanced Compile-Time Analysis: Use flow analysis techniques to determine which 
mutable arguments to REV requests are read-only and which global names 
accompanying a request denote objects at the service executing the request. 

• Transmission of Clusters: Let clusters, which are modules that imptement abstract data 
types, be transmitted between nodes. Investigate the Implications of sending an instance 
of a type to a service that does not export the type. 

• Multiple Languages: Let applications written in different languages use REV to interact 
with the same service. Specify the semantics of inter-language communication and 
investigate procedure transmission. Design a method · for specifying the control 
constructs that a service "exports." 

•Automatic Program Partitioning: Formulate a cost model of distributed computation and 
let the compiler relocate processing with location-independent REV requests. 

The remaining extensions to REV are practtcal: 

• Practical Experience: Design, build, and tune a production REV system. lmpJement real 
applications and evaluate the usefulness of various REV features, such as implicit 
requests and remote data types. 

• Optimizations: Let the service cache the code portion of repeated REV requests. 
Investigate the utility of suggesting that a service do background compilation or dynamic 
compilation of particular r.eqUests. Let the programmer or compiter make these 
suggestions 0and lllfiMlSUle tbe performance changes. 

• Precompilation: Evaluate the level of service protection when requests are precompifed 
by the client. Measure the changes in code size, communicaJjon time. and 118riennance. 
Evaluate the utility of a trusted compilation service that'altaeta t'digltal tJigftatore to the 
code it compiles. 
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7 .8 An Evaluation 

In this chapter we used many realistic examples to illustrate the advantages of REV. We usually 

outlined an RPC implementation of a system and then described an application for which the 

procedures exported by the service were not useful. The REV-based solution we proposed naturafly 

solved the problem. A staunch believer in remote procedures might declare that a similar solution 

using only RPC's is possible. While conceding this point, we would continue the debate by describing 

another application for which the extended RPC Interface was not useful. If the RPC defender 

augmented the extended interface, we would again propose another problematic application. This 

endless debate reflects a key motivation for REV. Because of unexpected applications, an "optimal" 

RPC interface probably does not exist for many kinds of services. Moreover, the user community la 

likely to be much larger than the service implementation team. Therefore, for most new applications, 

users should take the initial responsibility for providing useful service routines. 

Conventional programming languages offer a useful analogy. Early languages had a fixed set of 

built-in types but gave the programmer little or no opportunity to construct new types. The inability to 

define new types was eventually recognized as a serious shortcoming. Language designers solved 

this problem by including simple but powerful mechanisms that let a programmer define new types 

that have equal standing with the built-in types.15 In a distributed computing environment, an RPC 

service exports a fixed interface of routines. On the other hand, REV lets the application programmer 

compose service routines to create new routines that have equal standing with the exported routines. · 

One goal of this thesis has been to convince others that remote evaluation, which is by now fairly weU 

understood, is both feasible and desirable in a number of situations. REV can improve performance 

and provide generality for distributed applications. Besides being easy to use, REV has powerful 

semantics and an efficient implementation. REV supports reconfiguration because location· 

independent requests have no effect on program semantics. REV tncreases network transparency, 

because both focal invocations and relocated invocations use caH by sharing. Finally, REV Is more 

powerful than RPC's: an RPC is a simple REV request that Invokes only a single service routine. 

Adding REV to a system that supports RPC's is not a difficult task, because the buJk of an REV 

mechanism is an. BPC,.°*b.anism. Earlier in the chapter we listed the set of ideas behind implicit 

REV requests and remote types. We hope that these id~, either atone or in combination, will make it 

easier to design and implement distributed computer systems that need both generality and good 

performance. 

1°Most languages, h~wever, do not permit a programmer to redefine special f~ con!!ltructofi such as rec;t>rd. 
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