
MAC TR-134

CSG MEM0-106

SEMANTICS OF DATA STRUCTURES AND REFERENCES

David J. Ellis

August 1974

This research was supported by the National
Science Foundation under research grant GJ-34671.

CAMBRIDGE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

MASSACHUSETTS 02139

-2-

SEMANTICS OF DATA STRUCTURES AND REFERENCES

by

David J Ellis

Submitted to the Department of Electrical Engineering in
September, 1974 in partial fulfillment of the requirements
for the.degrees of Master of Science and Electrical Engineer

ABSTRACT

Each progranuning language that handles data structures
has its own set of rules for working with them. Notions
such as assignment and construction of structured values
appear in a huge number of different and complicated ver
sions. This thesis presents a methodology which provides a
common basis for describing ways in which progranuning lan
guages deal with data structures and references to them.
Specific concern is paid to issues of sharin9.

The methodology presented here consists of two parts.
The base language model, a formal semantic model introduced
by Dennis, is used to give the work here a precise founda
tion. A series of 11 mini-languages" are defined to, make it
simpler and mo;-e oonvenient;to •Xpzteu.and describe the
semantics for a variety of const,ructs found in contemporary
progranuning languages.

THESIS SUPERVISOR: Jack B. Dennis

TITLE: Professor of Electrical Engineering

-3-

Acknowledgments

I wish to express thanks to my thesis supervisor,
Professor Jack Dennis, for the many ways he hel:-~d m,e, a,_lonq
in this work. He welcomed me'into the Computation Struc
tures Group when I was. still looking for a group. to j~~-1; ..
brought the base language model to my attention: encouraged
my ideas at every turn, even when I felt I. was .in a-~,,,.·
erid: smoothed over numerous technical rough spats: and
exhibited patience and acceptance t~()U~µt, ,

Thanks are due to J.aok Aiello, Mark' ·~ta'V'entbal and
Nimal Amerasinghe, ,who read dr~• 0£ ~h~''thesill and ~de
many helpful comments and -suqqestiohlt. ·: '.Mu1e Rubin provided
technical assistance while I was typing the thesis.

~ ,_ • ·, -, •. :.:\!' : ' : '

Generous financial suppor,t w"s ~ov.fld~ o:y:er the past
.three years by the Wood:row Wib,OJl Fel~l\Lp fo~atiop;
the M.I.T. Electrical Engine«!r~ns;r.l>~J;~~,.. ¥d ~roj~t.
MAC.

Finally., special gratitude goes to iny·family, for·
always giving me support and advice., :atandin'<J 'bY me in
difficult times, and helping me overcome' ~a~· abOut where
I should be.

I '•

-4-

TABLE OF CONTBMTS

. •. •••••••••• ~ •(2

Ac~ec!~i:9\.,:. ;- ·+ •••••••••• • ••••• • ,3

conti~·~-:.·. ~ ·'"11 ;.~ ; ••••••••• ·· •• ·'. ·• •••••.••• ~ •••••. ~ •••• ~····i'l
."',- •. : !,;.

Chapter
1.1.
1 ... 2.
l ~ :{.

Chapter
~.·lL.
2. a~;

Chapter.
3.1.
.3.2 .. i: 3':
3.4.
3.5.
3.6.

chapter
4.1.
4.2.
4.3.

Chapter
5.1.
5.2.

3: . . ~~We.th .Poi~~·· ._. .,_.._.,., ·• ·"· 45
~~~~ .. -· ••..••• ,,.:•·• ••• , •• :.•····,-~."'C~'•''• ........ ·'.··· .••.• , •.• .:. :., •.• 4.5 
.JltiA!~~·· 0 -· s.a:.liMirJ~!n •'• •·• • •·•· ... ~-• •--~~_. •.• ;.:.·416 
'J(J.rii'.:_~aq4! I Struot.urff ••••••••••• ~,~. • •.•••• 55 
Miiii~Lnpaqe 2 POint.eee: .••••••••.•...•...•.•. 69 
Hind:•~age 3 - Shal:'inq .•• ., ••••••••••••••.•••••. 19 
:Di1RN9fion and BxamplH •• • ••••••••• ~ ••••••••••••• 91 

4: Data·~· and ~inq .................... 106 
Why We Want a Type Sys·t•· .•••..• :- ••............ 106 
Mini-Laifguaqe 4 -- Static Typeobeckin9 •••••••••• 1oa 
D·iseuaeion and Examples .......................... 124 

5: conclusions and Extensions •••••.••••••.•••••• 143 
'What W• Ha\re Do-l"e • .••••••••••••••••••••••••••••• • 143 
:Purther liork ...................................... 14·6 

·'· 
S·iblio-qraphy . ....... : • . c • ................................. • 149 

Appendix: A More Formal Treat.Jltent of BL •••••••••••••••• 154 
A .1. Int•tpl:'•ter, States •••••••• , ••••••••••••••••••••• 154 
A.2. BL-Graphs and BL Instrictiona ••••••••••••••••••• 158 



r· 
I 
I 

I· 
i 
' 

-5-

chapter 1 

INTRODUCTION 

1.1. General Goals 

Students of computer science are confronted at a very 

early stage with a great variety of general-purpose pro-
·~l ., •. • < •• 

gramming languages. Descriptions of these languages place 

heavy emphasis on common features such as assignment, pro-

cedures, conditionals, input/output and block structure. 

Aside from variations in notation, there are numerous rules, 

exceptions and special cases which make fof differences be-
.'. 

tween comparable constructs in different ian~ages. For ex-

ample, the body of a DO-loop in FORTRAN.must be executed at 

FORTRAN PL/l 
.. .. ,.,,. -- .·.·: . > ,:, 

N = 1 N = l; 
DO 50 I = 2,N DO I = 2 TO N; 

. . 
.-. • 

[body] [body] 
t~· ·: . . . . 

50 CONTINUE ENDr ... 

·-t-· -
h9~Y executed on.0e bOi!ynt>t·•xe~-ed· 

Fig. 1.1-1. Looping feature in two languages 



...;6-

least once, while in PL/l it is to be skipped if the index· 

is out of range ('figure 1.1-1). Such differences can be 

studied by examini~g the semantics of didf£ere~t ~~~ratllD\itruJ 

languages. The semantics of a pro9ramning language is the 1 

study of the meaning of its constructs, or in other words 
;.;,'"t~-r,.:·:. ,, ... 

the effect of executing programs.in the language. The par-

ticular concern of this thesis is the notion of data struc-
1·' •. :.::;:·~/·, 

turea and the aemanti~s pertaining to them as. they appear 
r-... • ' ~ .~~,, ', ' ' , ,.:, f 1·_. ~·, r I • .i· -; _;__ " ', • ,; • ··:' I ' 

'·. c. "~\ .... ,;· .. ,, . 

in pro9rammin9 l,angua9es. 

~~~,_.~:rf!:1~~r ~~~,. ,~f;,•.P~11~,.t~!' -~~hw~ieh ~he ~·e qf 

•:truc_t:ure~ ·~~~~er~~ ~~O, .· ~fJiful and -~R~~ni!~~c~~..',X.:Ob~~~-~ ,

aolvinq. Some ·!X~~e c ... ~,~· _ 1Jr~ ~l .~~i:P,ll_l-t~~, ~r~;~
• -~ • ~ ~~-· ' t' • ~·' • ' •, • . • • ' ~ , •,

ficial. intelliqenae, computer graphics, and simulation stu

dies;' /';;finira1·rY,.:-•j>f!U:ing, a data 8tru~~e -¥ ~' ~gqregate
data iol>ject" cont.iiriing; "other 'data objects ~.' c.nents.

, , I

Typiaal ina,~•~• ':0fr ~ta·· structuraao :i:ndude: arrays, sequen-

cea, vectors, tup).es and lie ts. We will not dwell on the
.

char~teristica paculiar to each of theae different vari-

I

ents ..

Typically t a prog.J"amming language provi.dea two basic

-7-

operations for handling data structures: component objects

of a data structure can be individually accessed and manip-

ulated, and data structures can be constructed from desig-

nated objects as components. These operations interact with

the assignment operation of a programming lanquage in per-

forming several other tasks, such as assigning structured

values to identifiers, or updating components of a struc-

ture. There is a great ~imilarity in appearance among con-

structs for performing such tasks ,ip various programming

languages. on the surface, from a c.-val,,e~alli:nation of

language descriptions, distinctions between analogous con-

structs in different languages appear to bET.mostly notation-

al. But we shall see important semantic distinctions, par-

ticularly in the area of data being shared between different

structures.

Since each programming language has its own set of
' ' ' ', :~

rules for dealing with data structures and sharing, it is
• . . 'J '- '

desirable to seek a ~igorous method for describing what

happens. Our goal, then, is to gain a ~ore precise under-

standing of the semantics of data structures. This will

provide a unified and coherent viewpoint: for describing the

different approaches to data structures as they are found in

-8-

programming languages. we will gay specific attention to

the difficult and· important issue of properties of sharing.

These is.sues depend u'ltimately on the concepts of cells
' ·.;e,:::- , . ., • ; .

(which model computer n\8mory locations_) and re£erences to
.. ;:""'

cells. References are also C0111BOnly known aa :eginters. We
, '· - .. ·:. ~.. ' -· : " ' ' ·.,' ',

will first discua11 gener.al questions of proq~i·ng language

semantics, and.then move towards a more specific _treatment

of data structures and re·ferences.

A proqr..-inq language provi~ a notation in which the

proqranner can JIPdel computational proceases.~d the infor-
__ :..,,. ~- ·~! '~ ~-

mation on which they ·operate. Progratming language seiaan-

tics deals with the relationship between programs and the

objects they represent. A formal •9111!.!f::ics for a programm

ing languaqe is a precise description of '8ucb·~·relation-

There'haar been much study o~ formal ~~tics of p~o-1 1 ship.
~

\ gr&mling 1an9u~caea: '. w~gner (W~ ":¥2aJ ··cliaili~:falies three
' ' '

classes of foml.. ·;semantic model•:

(1) Ab•tract seaantic mode·ls. In this . approach, the

objects beinq modeled are treated a'! matbema.tical entities
~;.;1·(f.'" ·.'.' ., >..;;.~ ~1 ~

independ•nt of any particular reprea~tation. Models of

-9-

this class aim towards ·.·providing a formal mathematical de-
-·-. r

scription of the computational notions being studied. One

well-known example of this approach to semantics has been
f_._ •

the use of the lambda.calculus as~ semantic model for pro-

gramming languages. The lambda ealeulus ;' '.Wb'ich:::is described

in [Der 74, Morr 68, weg 68i, is bas~cally ~>m~themati~al

formalism for the definition· ·and appliC::atioi(6'f · functions.

It is ideally suited for· 'aescri~ing so'-calied applicative.

features of proqra.mmin«J languages, such as ·e~aluation of .ex-

pressions, use of procedures, a!id blo~k str~~turin~. Landin

"' ' ~ .
demonstrated its usefulness in these areas '[r;an 64] and pre-

sented a scheme for extending the ;Lambda ~alcttlu~ f~rmalism

tolnbdel the langUage ALGOL 60 [Lan 65). · More recently,

different extensions of the lambda cal~ius have been de-' c·

vised for describing data types [tteyn 73 J.

A second major example of the abstract approach to se-

mantics is found in th• work of Scott [Scot 70, Scot 71].

Scott makes use of the matliematicai?~heoey of. :fattices
. \

[San 73J to construct sets Which are th~ domain~.·6£ f~nc..:.

tions that represent the behavfor of program... The Scott

formalism has been used rec~'ntly. to. de!i~iibj the !'semantics'

of ALGOL 60 [Mos 74J.

-10-

We can briefly summarize abstract semantic .,dels by saying
• ·~ ~. f ~

that th~ characterize the action of proqrama as functions 1

over various domains~·

I '

Ma4•l•· of tbi• ,c~•s use . ' "' ~r: . ,. - . ~ . ~ < • ' ~ ,. -"

state .of a c~t.~:r:: •Y:•t• ·~ v~i'?'J,. IJQ.i.n~• ,dtu:.,ing Jtbe ~

ec:ution of pro9raap1 on it •. ~. ,e,~tit;Za .Q~,.;a,,~am .is
, r • ,

of tbe ayat• before execution) ~ 0\11:'..R'Jt ::."84~1:'.ion11 (.~ ·
j ' '. '• . ' .: . ' . , __ , ·"' ' '' ..

- '

atate a:tter ~~ in;o9ram ia _rµn) • ~¥1 ~~ t~» aemantj.pa,

more_ fr~-et1y called. the ¥ib2M~~ .• roapl\;,, n• de~
, ~ ... ~. ~ ',•, - . . . '

by Floyd [Ploy 67] and .aoare [HOai- 69, Ko.,r]~] i ~be,rcLn&a
' '. •• • ' ·.' ,. •• •• ·'.. •• ; -;-; ' ' • ' ' - < ••

been mo~ ~~t' work on it. Axi~!:~c, aa~_t.J.~• 1•-~-;

uaefu.l. in pr.ovin'g' correctneas of,..Pr,~,;.-.~ -t~•·:,M~iebJ,.ng

that the effect of executing a proqram fulfills mathematical
• : . ' ' -"<., • • " -~

aC>nditione the program is_ supposed t~ satisfy.
l ,; '; , ~

(~) Q.-:1t6RDlt_1l!Rqe~·· l~~~:~cb ,tQ:,-.e-~tJ.ca

con~rn•·.itae:J.f. •pec:l.tically l'i~ ~14.ng ~h,~ c;hanq.t-ng

state• of ':'·eoatputef' •y•tempet'f~~9 ~tation, .. Sudh·a
J, ,. ' • • • ••

. {

task i• u*ul,ly: anC9MR1:i:•hed by. ~·, of .• .1,t;~t•i":t.ranai tl.on

ayatem, in which a atate·of the D>del r~ .. @t.a ~ i8f-or-.

mat.ion in tbe COllp,Uter ayata at a 9iva time. The effect

-11-

of a program on its input data is reflected in the sequence

of transitions of the model. It is important to observe

that given a state-transition system c~rresponding to some
~ '~-.

program, the sequence of s.tates that model!t' the execution of
.. ' .. . ~

this program defines the, action of an interpreter for the

program. For this reason, the approach to formal semantics

using operational models is called interpretive semantics.

We can describe the way in which an interpretive sernan-

tic model gives the semantics for a program written in some

source language. A translator transforms the program into

an equivalent program in· another language which we call an

abstract language. Prograins in an abst:r;-act langµage are.

acted upon by an interpreter: this action results in a

sequence of state transitions of the model. The semantics

of the original source-language program is given by such a

sequence of transitions.· One reason we make use of trans-

lators is that source programs are usually represented as

character strings rather than as data objects suitable for
''

processing by the interpreter.

Although the use of, interpreter' t.,Q ill\pl,ement pro

gramming languages was (and still is) commoq.place, McCarthy.

[Mee 62] was the first to use an ,inter,preter to. define a

~--------------~-~-- ·----~---- -------·

; :-i''

-12-

langqaqe· (LISP). The semantics of LISP is given formally by
. . . ~

an interpreter written in LISP. Landin [Lan 64, Lan 66b]

uses an interpreter called the SBCD machine to define the

lambd~ caleulua, even though the: lambda calculus is a mathe-

matical formalism with a rigorous definition of its own. A

more recent.dia-cusaion of definitional interpreters is found

in [itfyn 72 } •

Of the•e three approaches to fonnal semantic• of pro

grammfng languagew~ the interpretive approach is best suited

fOr our goal• 0£ under•tanding the semantic• of data •true-

tureli and re'!eJ:ett'cea. In order to properly explain the se-

mantics of aproqram that handles dat• structures, we will

need to know b(l)w the data stru<:!turea are formed, their com-

pc)aition• the relationships between the atructur-es and their

comp()nenta, sharing properties, and other items of infor-

mation. Th• best way to get a handle on this kind of infor-

_mation \s to c0n11tder the state of the system at various

moments durin<J the (fXe9ution of the procgl:lam. The interpret,-

ive approach is the only one Which lends itself· d~rectly to

workiriq W'ith:· .•t•tea of tlle system. · Both. of the· other

a9Praa:cht!a a:t-f! better suited for proving as•ettfons about

:

-13-

issues are outside our main concern here. A treatment of

data structures from the viewpoint of axiomatic semantics

may be found in [Lav 74 J • We will wor:Jc to~ards d~v~_loping

an interpretive model to be used as a semantic found,at:ion

for dealing with the important issues of data structures and

references.

The most prominent interpretive model for semantics is

the VOL model. VOL, the Vienna Def.inition Language, is a

metalanguage for writing interpreters of programming lan-

guages. VOL interpreters have been written for languages

such as ALGOL 60 [Lau 68], PL/l [Walk 69, Luc 69], BASIC, and

POP-8 machine language [Lee 72].· An elementary introduction

to VDL may be found in r\.leg 72b J • Just as. LISP works with

lists, VDL works with tree-like data objects (which we call

labeled trees) • The basic operation of the VOL model is as

follows: for each source language whose semantics we wish

to describe, we define a translator and an interpreter. The

translator transforms a source la~guage program into an ab-

stract ;erogram, which is· a forfuof labeled tree suitable for

manipulation by the interpreter (for each source language

the corresponding abstract language will be some Set of

labeled trees~ the structure of an abstract program varies

-14-
:•;

·from langua9e to langua9e) • The interpreter, which consists

of VDL code, aceepts a labeled tr•• ... ~s ~~pu~ and ,,i~terpre,ts ,.
the effect of the pro9ram on its input data. For different

, ,;•'

·1ang\la9es, different interpreters are defined.
:"·..., .. '

The fact that VDL uses treelike data objects r~~-

its desirability as a semantic model for our work on data

·atructures. We will be atudyin9 data structures .. in which

components may be shared between different ob~ects; VDL's
>~ •• ~. ,, - t• -. • ~-~ ' - ~ :! ~: '.:, ' ,

labeled trees do not directly admit •ltarinq of any kind.

Thus in order to model in VDL structure• such as we will
·~·.~·~,.. .. - ·'~; .

study, it would be necessary to qo through tbe inconvenienc.e
; F: ~- '" !, • • ' . ~ . I ,-,, -.. , : ..

of simuiat.inq the memory of a comput~r. Since the study of
~- ; .;:· _ _,''

' . 1·,.··... ' ; /; :
·• 1 .• ~ ,).

sharin<J. is furtdamental to our work, it is desirable to work
~ ~- . .-

r ,, ••

. . • ;,· C· ·' . •

·witb objectts in .. :whidh sharing is represented directly.
! ·- -

We

therefore pref$r for· our qoals· a semantic model that
. 1' l -· -

manipulates data objects of a more qeneral nature· than VDL's
' '

;

labeled trees.

Il'l JOenn 71] , J:> .. nn~s outlines, aJl' i~!YWr~v•: ¥,tnan,1::A.~.,
.. ~F - -~• '· "' ·' > "> •

ipulated by this mqd'+ are .~~~~ent• ., o~. ~.+F,ep~fiiafl, g~yh• 4114 ·
• • •• q '' '

can directly model sh•ri.ng. A$ wi~b ~,, fOlf e~c:h ~ilflCJli1Me .. ' i~~;. -"." , . , - - ' . r. '' 1 ; •

" whose semantics we wish to describe; we must apecify a

\

;

... 1s-

translator which transforms .pro~ams ·in the language into

data objects suitable fol". QOnaumption by the model~ These

objects are cal.led progtt.i9r.1 !tEWtuf!p::mthebaae lan«Jttage

model. Procedure atructu.res, like.VDI,"a a'-t.r~'':Pr04]ra1'ns,

are acted upon by the interpre'ter.· 4'8 J*oduce ·state; tr·an;...

that the composition of a pJ:1ocedure·;str:1lcture gerierai:ed by

the trans la tor from some source. proqra 4<:Mf8 not depend on

the language in which the p~Q91:'am waa<w:rii±ten.· Ae a: result,

there is no need to define a se~arate int•r_preter fo.r: .each
' < . . ; ~ ~" ' ·- ...,

programming language. There is _a si~g;le;,,_,~~~-:~·JJ;ppli_ea in~ ...

terpreter for the base languag- lllO~el. wp;c.~ ~~c,t,!pts .ax:pit-
. \.-. ~ .

rary procedure structures and int,e~rert•.· ,tlle~'. a.s ~r~,r.a..JJl!I ~ ·.
' ; ' '.. .; J~ \I"'... '• •.

Thus we see that the tran~l~t?rs f()r,, fhe p,,•~ .:lap.~a~~ ~~.~l

translate programs from th~ir ~~si>ec.t~ve .. ,,SQ\lX'~~.].an~ag~s ..
' ~ . . ' . ' ,.

into a single, co111non language. We ca,J.;l..t'Q.l,s_lanq~age_t}Je
~ '." ::- \ . .,; . t.. -~ ,t:"•

base language.

in the base language, which consists Qf ·• .•e~c,ft Qt i . .n:""'
~\· " .,· .,. ' .· ,.• ·"'

structions. The individual base language inll.tJ;Vet;J,ons .spec.,.
' ' ' '

ify the fundamental state transitions of the model.

In order to achieve the language-i~~~c• .of.· .the

interpreter in the base languag~ m()~el. ~. ,.~·~~~''-; .. .-~
•

-16-

do more WQr:k.bhan their VDL eounter~ts. A VDL translator

simply cc:>nverts a pJrogram from obat:M:ter •tring 1:0 labeled

tr"' w}\il,ce a ·'~aaalat.Or ~(Jr the. bMle lan<}UtUJe· model must

P'litfoxm .. fu"t;i~ similar , to th<?•~ of a· cc>mpi'ler. 'l'hus,

once .. we sp;M:ify ,thtt eamantios. Of· t:M base 'langUage, i.e.

th~ iD.t.tti.:P~•ter i.tl ~he base lan9\lage:MG,del, the semantics of

a ~art,i~l-:•r p::'~ng .lanCJU-a9• i1Fdet•rntined by its

Tb.e b•se lUguaqe IOOdef is extr$ne.ly Well suited f6r ·

our work. ' .,..,.. pX:Unit.tve inatruction• off tht!i base 'lan~-qe
ar.e particularly convenient for manipula~ing structured ob

j eets and 4ealing"wit:h •haring. we can vi-ew the,.base lan-

i '

gUagoe att<tlle-ma.eh.i.ne language for a ~ter with heap-

atructured memory' and symbolic address.apace. In· this re

spect, ·prot:i:ama in the base lanquaqe will be similar to con

vettti'C!Jn.al aslJE!mbly '.lanqua9e programs. This similarity is a

source Of fttrtb•r 9onvenience in U$ing tbe . base language as.

Amerasing:be [Amer 72] de$cribed the translation of a

bloc"k-Sttucitu:eed lattg'Uage BLKSTRUC into the base language.

:tn;~•LK·~~ pr<>oec!ures are II first•claes Objects"" [Stra; 67]

·~ ' _,,, ' .• ~ -· ; >;, ' ',,,'

-17-

which can be used in contexts as general as Objects o~ other

types. BLKSTRUC's treatment of procedures is mqre general

than ALGOL 60's. The action of a translator for a language

with non-local goto's is described in [Amer 73). Trans-

lators for the languages SNOBOL4 and Simula 67 are discussed

in [Ora 73] and [Cou 73). :,,These. works show the use of the

base language model in describing the semantics of various

powerful programming languages. We will be using a version

of the base language model as the semantic foundation for

our study of data structures.

1. 3 . Plan for the Thesis.

we outline here the topics.covered in the rest of this

thesis. chapter 2 describes the base language model as we

will be using it. The action of the interpreter is given by

describing the effect of the instructions of the base

language. The approach in Chapter 2 is informal; a more

rigorous treatment is found in the Appendix. once the be-

havior of the base language interpreter is known,· we have a

handle on the semantics of the progranuning~language con

structs that interest us. All that wi11 then need to be

done to supply a formal semantic definition is simply to

-18-

·describe the action of a translator which 'P.roduces.base lan-

In the remainder of this thesis we will be using the

base language model a• a semantic foundation for describing
' '

the different ways various proqraaain9 languages deal with
' : :

data structures. We want to make clear distinctions between

comparable constructs in different languages. Although the

semantics of data structuring constructs can _be precisely

expressed by using the base langua.9e model_, 1;.here is a cer-

tain respect in which the model is leas than ideal as a de-

scriptive veh:Lele. Data structu.-:M :they are .found in

programming languages are tied up with the notions of var-

iables and values. we would like to make use of these

notions in talking about the semantics of data s.tructures.

But the descriptive level ,of the baae language is only
' .

equipped for talking about primitive transform~tions on the

obj.eats which cot11prise the interpreter states. In this

sense the base language is too "low-level" for describing

data structures in a manner suitable for our purposes •..

To pl:'ovide a Qetter descriptive mecbarU,.sm, .we will

follow the approach taken by Ledgard [L~cl l;l.J ~J); de~.ining a

eerie• of "mini-lanquages." Mini•langu.ages provide de-

i
I~

-19-

scriptive levels appropriate to our needs, y~t .. at. the same
- ' . ~· ./ ' . ' :

time avoid the syntactic and semantic comp;t..exity of fl:lll-
.·'. . . . '! .,·.'

scale programming languages. The Pr!mary adv:~n$:i:tge .of, 1:hf'
. ,•"\ -. . ·.: ·'· ' · ..

mini-language approac}l is that we can iso).at~. the copc.1ept.s
., < ·; ;1 ·~ ' . . - ·-, ' . ,

we wish to describe by elimi~ating all tl,l' con~~p,tu~lly ~~-
;· " ' ·- -. . ·' ·. .. ~ ' ' : "·. . ; ~ ., : •' . . .' '\- ' -- .

traneous notions that are needed in a full-size langu~ge.
_. f ~- _- ' . ' :~. ' ,< • • - • • •• : ! ~I

Accordingly, in 'a mini-langu~'1e f~r , de~c;ribi~.g .· d.~ta .~~~\1S1~

tu res, there are no procedures, c:fondi tj.9n~l. e~r~~Jioris, +
" ,_, ,j ,. •"' ,. '

loops, goto' s or operators. Mini-langua9~s. ~p:'· !'19~ ~,n~,. to

be viable languages for actua_l. ~~ogt~iPc;rr .~~ey; .. aJ;e . '1~~ .
, ' • , ~. .. . , . -· , . . . ' I .

for descriptive purposes only. The.aYl_lt~ -~~ ~·~~ti9~ Qf
-. ; •• -;_". ' ' • ; .• ·~- ",; ~ '' . ~ . • -.l

a mini-language are simple enough to be readily understood

on art informal basis; the semantics can then be formalized

by specifying translation into the base language. In this

manner, the semantics of data-structuring constructs in full-

scale programming languages can be given by describing how

to express these notions in a suitable mini-language.

Chapter 3 presents mini-languages for describing the

notipns related to assignment, data structures, pointers and

sharing. These mini-languages are then used to describe the

data structuring semantics of several full-soale programming

languages.

I

-----~---

-20-

In Cb•pter 4, we treat the additional notion of static

typecheckinq, which has a direct':beu:Lnq on the semantics of

data' attucture• in many important proqramiaing 'ianguages.

This notion .ot static typecheck.ituJ df~~~i-j.' f~~ Ledgard' s in

tb-at it de1lla with structured tyP.s, where Ledgard [Led 71J

deals wi tll f\tnctlonal type• and t~ types of· arguments' 'and
re~urned valuff.. A• in Chapter 3, we treat the data struc

turing- fac;tliti•• of three tu11..:.ais• languages: in

tl'l•u 1~9•• the concept of static typecbeckin9' is di-
. .. >:-. j_

rectly tied in with the semantic• Qf data strUctures (ape-

cit1Cal1y u•ignMnt).

Chapter S presents a summary of what we cover in this

thesis and au99ea·ta exb!naiona for . further study.

-21-

Chapter 2

THE'BASE LANGUA(;E ~DBI,

2.1~ overview of the Model

We have chosen as the semantic toun~t.ion fc;>r our w,9~k

a version of the base language n:>d'l set fprward in. JD~, ?,l]

base language interpr•ter ~ wbi~ is. •••~n.tif.l~y -., AJ,t.ate

transi tion system that we'eha.J.l u•• to elq>ro•• the meanin9

of computat:i,,ons. The :i.nterpreter eper;~f~fS ,t'he beh,.v,io~ of
•, :- ": ,,. - t • . •' ., ~ .

an entire computer ,sy1;1tem •. We repr~,~~1:-;~ c~~~t;i.onJ>.y ~

sequence of interpreter states. A state of the inte~'fete~

will be a certain kind of mathelll~Fical object embodying the . . .

information contained in the computer system at a partic-

ular point in time. We shall define a base language called BL

each of whose programs consists of a sequence of instructions.

Each instruction specifie• a functional.transformation be-

tween interpreter states. The lanqua99 BL is adapted from

the rudimentary language described by Dennis in [Denn 71},.

We represent interpre~er states by ~~:hema,t~cal .. ?b

jects known as BL-graphs. Suppos• we are given a set ELEM

of elementary objects and a set SEL of ~electors. (For our

purposes, ELEM consists ·t:>f iritegeri ,- r~~i numbers and

strings 7 SEL consists of integers ~d strings.) Then a

BL-graph is a variant form of directed graph7 it consists of

nodes and ..!£.£!.. E'a'.cb arc conhects two ~odit~ in ·a specified

direct'ion-and·ia 11lb'eled~ith a ae'leotor. we may associate an

elemenl!ary-' t)bjeet With each· node froin wl\ic1f no arcs lead

out. Th•r• lt\tlilt a'ltto be a. dis'tl.nguili.1'~ -''IJubaet'. of the

nodes (called the :tc:>ot l'loelea) ftblll Which' ea6h node of - '
: . ' . . . : ,,·· i. ;. '· - .. · ' .. '

t'he grapn· can be reached·a1ong_som.e d.tre~ted pafh of arcs.

we give! a .foru.i'mathematic41 definition 'ot~ BL ... graphs in ''the

ApJ>endix. '

A BL-graph wieb ·a single root node is called a BL-abject •
• ' • < ' } ·-

We identify a SL-object by its root node. Specifically,

for any node a in a BL-graph G, w~ associate ~ith a the sub-

graph of G whose nodes and arcs are accessible from a. This
~ . .

subgraph is a BL-graph with a as its root node: we call it
!) ' ' '"1 '.

the object 2! a.

If there is a directed path from one node of a BL-graph

to another node, then the second node is called a descendant

of the first node. All nodes in a a~-graph are des.cendants

of some root node. A node from Which no arcs emerge. is

: ... ,._.

-23-

called a l!s!.~· An elementary object. attached to a le~f

node is called the value of that node. If there is an.a:rc

from a node a to another node f3, then f3 is called a com---...--'

Eonent of a, and the object of f3 is called a comp9nent. of

the object of a. components are named by the selectors on

the arcs leading into them. If an- object is a compon.ent of

two distinct objects, it is said to be sh•red bet1'een them.

Nodes· in a BL-object are denoted by Q!tbnws. A ~hname

for a node is a sequence of selectors J.ab .. llng a directed

path to that node from the root node.'
• . • ·t

If 'tbe object of a

node is snared, then the node will have: dis1:.i,~~t. pa'thn~s .;
• ;<;Ft '.•

The property of sharing is .of major $d.9nifican~~· we wifi

have much to say about it.

We will be making heavy use of pictorial representa-

tions of BL-objects. An elementary ob;ject is drawn as an

encircled value (fig\lre 2.1-l).

For a general BL-object, the

nodes are drawn as heavy dots.
·,',, .·

Pig. 2. :t-l. .. Samgle
,. a,.emen tary obj~ts '

The root node is at the top.

Arcs emerging from a node are ' .,

drawn downwards from a horize>ntal line at:taohed .to the node.

Selectors are written across the arcs that they label. If a

-24·

- - : . ~

selector is. a string, we do .!12.!:. enclose it in quotes. Elem-

entary objects· •ttached to root nodes-:hang downwards from

the~ •. Thus' our pictorial conventions for BL-Objects differ
. '

, . . ,: ! ' ... : ·, J . ~ ' :

slightly :from those used in [Denn 71] .

Sample BL-~~j~~~s ,~r~_,P~ctur~~ ,.i,nG~~:'if'l'S~~ .. 2.1-2 ~d.
- ·,, "'. --~~ ~;~]:'_. -·' ;..' ··~-, .; .. ~. '~ t' • ·-·· - - ~ ..

2. l-3. The object in figure 2 .1-2 q~a ~'O;:!,. (;:Otq~nen.~s,,
~· f,. ,.,_,.; .. y·,.>) ·':t~:),.1.L~'.i.:::. ,·: . ,. ,, . ':; I _. ~·-··.,

I
k' ' l .•. ct

L :•: ... ;~
-·~c- .. y· · .. , .. .;,·.·. l,· .. c.,..'"' \ ,

' '

' 1: '. f ' ~ - ¥ • ' • ~ ~, • :-: - •

Fig. 2.1-2. A sample
BL-object

' I I

s c. ! ..
I >" ... 'l ~-

" "t . .)(

ent i~ •,~&.~ :. r,rqe .. 1t-coinponen:t

has two ~~~~' bioth of " ·

which. ar~t .l•A.i1 po.4'.#1 .•... The l~f
'';. '~;' .. ~·· -•• ,) ; ,. '·. ,. o.• ' • ., •• ~ ~

k. c. The l•.(lf no,de with value
-i :,___,,-, i - ., \·_ .-... '~ . '

'hi' ia shared between nodes k

and a and bas path-
. t.) • - .· •. 1

na.mes ~.u and a.6. In

. figure 2 o. l-.3 ~ the ob-
, .'-.: i . , ~- : r ,. ,

i, shared .between the ob-
I

L _ ... @ ... ::~,_:_~.,~,.. . ; jects •·~ .and s and
.' . /·. ·~()"'£ :i' : : i ~~

has pathnames s.b.5

-~--- --------- .. ·----- ---

-25-

between the object of the root node and ~he opject c.y.

Since the nocie c is a descendant Of it41elf, it bas in fin-·· ·
~ . ,, . ' . .

itely many pathnames c, c.y.2, c.y.2.y.~, c;.y.2.y.i.y.?, and

so on. The path joining tpis no~e to it$elf. ;s a. ,(li,rec~!E!

cycle.

A bi!lsic difference between out.BL-graphs. and the graphs

of [Denn 71] is that Dennis does not alJ.&w directeq cycles

in his objects. Cy~les .. se4UD to impair the mana.qement of

storage and the handling.of paralleliam in computation.

However, cycles occur in many of. tbe.st:J;'\lctures we shall be

cycles). We ·shall there£ore not rule:. out cycles here.

we follow [Denn 71] in giving the structure of a BL-

object which represents a state of the interpreter. An

interpreter state is a BL-object havinq tlhr~e·oomponents as

follows:

(l) The univf;rae-component models system-resident in-

formation, both data and procedures. Gen&rarly speaking,

this information is independent ef,which computations are·

currently active or how far various compu~ations have pro-

gressed.

-26-

(2) The local-structui:e-component of an interpreter

state has as compt>nents a series Of ac
1

tivation records for

the various procedure's being interj>reted in· the system. ·

Thes•<oaponents are eall~d local atrnct!u;fa: there is one

local structure for each activation of each base language

i 'ts aotivauion, primarily identifi•r• ailf.1' 'thei·r assodiat.ed

1
preter .sta.te ~ords ~· proqresa of· 1G..,.tia~tdns-by model-

sites, 2!1 asMs-tx, whtlca jaadicat:e for -each 'cu~tent canpu

tation -~~ next inatruotion to be ~-d-, '~ «pprc>pritte

environment (local structure) for the ·:c~~.wn, and other

information.

we ~hall not go into the deuaile betre t>f representing

the universe- and control- comp()nerits of interpreter s·tates.

The interested.·;Neder can c&nsult ·the ~· fOr that kind

information. We.will be. dea-linq al~ ee1tte!"#ely 'with

loaal strueturn.in the rdlaind•r of· t.hia C?hapter. In the

next sec;;ti.on. we descri'be the acti!On, · of a·rit'lmber of

primitive BL instructions.

-27-

2.2. Base Langpag, Instruction~

we introduce' the-primitive fntrtruo'.ti;on11· of BL, Which·:

detine state transitiohs'. &£ tbEi ititer'p:ttete:!-' :bi ·du:r? modei/:. _,,

Each 'BL ;i.nstruction executed ·by ·ttie iJit~fi'ter ::belon9s).::to :.

some procedure written. iu BL: and i·s 1'nte:ll:pi~:~d\Jrin9 arr

activation of the p;roc~~ ~ c.,1.~1 ·t.lHik~q:•'1'"·'~:tJ:"uct.ure

corresponding to tb.,1.li: activ,-~1=49Jl the current local s.tructure

(c .1. s.). for the i:P8i·t.ru<;:tion ~ .
,.

..- '- -

A ,oonsists
·''" ,, .
:oper•

,_.c,,I

ation code and· · tap . \ to· three

operation· eode
; :. ~

th~ various ;l.nstructii.:man:are ·Sel.ector~i, Which are fr~quen~l:f
" ;: ·>.· ~ t:~· '!,_ . • .!- >"'\~ :r ~ :..... ~ \ · ' ·

c.l.s. we reserve·the tett.ers ·K, y, and z for selector

names used in thi• fashion.

! . ·- . -

We shall give informal descriptions of the effects of
. " ;_ ·~- '.· t ~ :· .-~ . f

BL inst~ctions, acQompanied by sam.ple "~fore" and "after"
; ·,.

diagrams of the c.i.s. A more fo%1Qal definition of these

Each instruction is de.si~;? ,~? ~:1:',~!'.f:' :_ ~l'ir·~~:cfi·~:, <" :•·:;:

function in changing the c ~ 1. s. -~his·.<~~i. fat~:;~~, :the R~f~~.~.

-------------------------·----·---- -

-28-

role (or, lllOre simply, the r~leLd t.he instruction, and dei-

pend• op ~tain; ~n~ti,qna lleing :f'll.U:i.lle4 (6,;·q •. ·the pres

ence or abfUNJ.C?,~· Qf CIJlGCific ~~ :Ln ·. ·tille c .1 .. a .J • Thef

'
ef.t:ec::t 9~ ·Wl. in•:t.~~Qn. wben. &\Hlh; .~ ~ .. ® not ho.ld is

'l'-he m:!!lf!i!: i-rnatt-ueti-on t• use&" to·<create a new com

ponent i:h tbl.' 6 .1 .. s. ·Provided

. ' t ' i _, ~..._., --1 -

. l J::._· '.' "'. .. ':'.;, t_. +)~.-rt,."' .1. .. ··

,@Jt. ··~.·········t
@ .. ®

Fig.;2.i.-1. role of
,UQa•:: X;

· ~- J>iiMQ!··:l'Ol•: of· the in•trilc: ...

tionr,-· x --~- to·. ··acidl oruec

(fi 12 .. ~l). •'J!le new:ix.,.

~·~;•4.ti.: 1* an ty.lea·f;;

s truotion ortt~ x has a subeid;\MW ·.·.dfeot ·.of tChan9in9 t:he

arc with •leetpr x from the root node to point to a newly ,
~ . ' .. , ~ ~.· ': . ' ,'· . . . ·, ' .

al1Q.cate4 node. Fo;r this subeffe~t th• former .x:-c()n1pqnent ...
;; • ~!.~~1':.:: .~., '., ;. •··,,,.,;_r·, 1,,.

no(je will remain· a• pe.rt of the c.1 .. s. only if it-·~ shared

with soae o~· nod•. ,Figure• 2 .• 2 .. 2 throu9h ~.2-4 illus-.
' .., ~F .

t.t:ate s.ube,;ffecU Of tQ instru~tion. S£t!te X and its in

terp'J;'y with the shari·n9 pro"rt.y.. Port:.ion.e of a diaqram
.,1-·

enctoffd·in 4o~ted line• are no l•9U' ,put of the ~.l.s.

- -~ ' --: ~- ''.'

-29-

and can be thought of as garbage-collected.
'• '-', ,',

Fig. 2.2-2. A subeffect
of create x

Fig. 2.2-4. A su.beffec~ J
of create x

-·~~·---------- ~--~-' .·.- , __ , ___ '

'
,

•• I f
\..)). . () l.u.

~v x
c. d

·~ ,,\
~©1
""/

Fig. 2. 2 .. 6. Role of
clear x

•.

~'~A
! ; ' ..

..!IL.
y.;

~~~ t-/ • -~· >t ~. 
. .. 

. ~···~ 
.. . . '.• . 

Fig. 2.2-3. A subeffect 
of cfeat::e ·x 

~ 

· P'l<J. ~~2 .... s. Ro;l.e of 
· qlea~ )c 

+-
'j 

+ 
® 

!' .. 
t .· .. · .. ·. h 

. ~.. . -::1 -~ 

i ·ch. 

t:tq. 2 ~'2~7. A subeffect · 
of ·clear x 

,,. ~- 4 §q 4 1 I , 



-30-

The clear instruction is used to make a node empty: 

clear x detachee . whatever hanga downward from· the node x1 

' leaving x witli an •mpt::y vlllue. The old vijlue of xis lost, 
•• I 

ev•n if it was sb&ied with some other 'nc>ae. Figures 2.~2-5 

a.d 2.2-6 illuat$te the role of qlear x. If there is no 

The delete instruction removes arcs from the e.1.s. 

The are frottt ebe root node to the node lf. is reiooved · ~·· the 

. inst:ruction · 9fle.te x ('figs • .2. lf-8 and 2. ~):.. The arc 

.< ,. :t I I 
. .. 

' 
~ ~· ~ ~ ~ 

·~ .~ 
-

· .. ~ ~\ ' . ' ,7 

i 

Pig"' 2.2-a. Role of fig... ·2. 2,-9. c Role of 
de let$ x . e ·x .i-

with selector m from the node xis removed.by the two-

·operand form delete x,m (figs. 2.2-10 and 2'.2-11). If 

: an 11rc to pe removed does not exist, then t:b4r: su'.Qa.ffect . of· 

·the. ,dele.!f! iDab:act:Lon i• that no ac~i<>n · be· taken. 



---··!""'-._....,....-~--·- ··---~-··------.... --. -·--

Fig. 2.2-10. Role of 
delete x,m, 

Fi9. 2.2-11. Role of 
delete·x,m 

The const instruction is used to attach elementary ob-

jects to nodes. If v is any elementary object, then 

.£2.!'.U!! v,x causes the value v to be attached to the node x • 

The old value of x, if any, is lost. Figure 2.2-12 illus-

trates the role of tne in~truction const 5, x (where x is 

a leaf node) I and figure 2. 2-13 shows li: subef feet Of the 

same instruotio.n (for the case when x ls not a leaf node) • 

, 
' ' ! . ' I \ • l I ' . .,, 

~ ~ .· ~ x !;j x .; .. ~ 

cMrb ct\t'1 rl. .~ ~. b 
~ ; -©' 0 ,. 

t i. i 
........ ,1 

Fig. 2.2-12. Role Of . Fl9. 2.2-13. 's'ubeffect of 
const s,x ogna t, .5, x 



-32-

Arithmetic instructions such aa ~ •!tj?tr·~ mu:t and 

.2!x a:re used to ~ipulate elementary valu~,~:.· Por example,1 

" '· :' ,, 
I I ... I 

k ... l ~ :: ~ ... ".~ '" 
>~tt·~· ··~~ ~ , ... 

. . - ·. 
: 3 

Fig. 2.2-14. Role ot-· 
add x,y;m 

the iristruat:l.bn fdd qx, ¥~ z 
adds ~ values at~ache.Q to . 

node• ~/~ y ana ~~lac~: the 1 sum 

in noJe z (figure· 2; 2...:.14) • It 

is an error ·to attttmpt to· ex-

ecute an aritbmetic il_latruction 

if one of the first two operand nodes fails to exist,or con-
". -~ " ; '- .• -- ·'· c 

tains an improper value (not a leaf nod• or empty or wron.CJ' · 
- • I ; .. ' ' ~ . ;;; :,•, f'~ . ._ "·-.. ' 

type of elementary object) • we leave ,tbe ef.fect ,of •u~h an 
~ J . ' ~ -l . 

attempt undefined. 

The •. !!nls. ~~;.;'\lc:;tipn .is .~ .to.' :,i,ni:Q.ia;u~. s'ha:ring ·be

tween nodes. The instrµction tiri1S K rl'hY· r ~-, the node 

y to become the n-component of x (so that y will be shared 

"" 
~-

! ! ~ l ~. 
' ~ • - '1 

" 
• l$ 1 • I 

' l • I " 
; 

' '1' ~ ~ !:I -.:· •' ~ • ~ trn ),.!.., 
6. . j, t "" ~. 4 • <b ··~· 

~ 

Fi9. 2.2-15. Role of· Fiq. 2.2-16. :Rr;>1e of 
Ji&Di x...n,y ti·llk. -x i'l'r ;·y . ·- '• .. 



~33-

between the node x and tbe root node). Tb~~' ~sr.f~~~! ~,, e1-dd-

ing an arc with selector n from node x to node y. , Figqr~,s 
.· . '~...... ~~:·' .. ':: "' "-

2. 2-15 and 2. 2-16 illustrate the role of the insif~.q~i,on, ·~ ..... , . . . . 

link x,n,y. 

node with some elementary value, then the subt!ffect of t)l~. 
:;f ''.. !:O.s-.J .. ·,., ... ·f:_,~. _; -~"\~~'':I.· .. ·'. )~;. 

same instruction causes the old value of x to be los.t_ ( f.i:gs . 
. ~,_ r·. :}\' ;_ ·' -:::.· ·: , \ 

- ·--
2.2-17 and 2.2-18). The nodes for x and y must be present 

·. \ , , .:.:. .-.. , ~-i ",~ <~ (i ~>} ·-:.i J ···:_.J:;· r· '. .," ~ ; · .. =~ !,f <"--'(!ff;f:3f~ .... ~ ·~· 

'· 
or else the inttruction is illegal. 

' : ~ . 

' - . ! 

. Fig. 2. 2-:i 7. Subeff9~.tJ 
,of n . lipk' .x.n:y ' 

node x has an n-component, then the in•.t~c,"ti.c:>n ,,.sF'11".'~" ~-~--P, Y 
,'!:·:t:)·((<J!·_' .;::_ ......... ~·~. :~1rt.J -··~.·~' ,,,~_.,.,.; ·-·~ ... ,,.---.,J,.J.,.,_ 

makes the n-component of x the y-coatp0nent of tJ:lle _rOQt noge 
.·:·: .. ~ .,.'· .":;:'j,_·~;;~~1~ .. ..-'.l.\] •.-i..~r~.1 .. ··· ~--e;,~: ~.~·-..c:~,:, .sf! 

(so that it can now be "addressed1
• by fU.:r:ther BL .ina~ruc- ,~~ 

. . . . I . f!(L '· ~-· ,_:";'. . .. ; ~:. (' ; 'L. , .. ;,:·; . 

tions). In this manner a BL procedure inay gain a~~ess .. to 
--": :t ,~': ··,i ~ ~·r9('1f!i'.i>f;_ ~.~- -... /"v"!~'""'-~ .'. ··.~· ~-- _ '·.: f' ~. :~~ .:. 

arbitrary nodes of a c.1.s. If x has no n-c~nent, then 
r-~..; ~~ir 1J1 ,.~ .. 'f_.~'.:-:~,---. :. ··:t'!!!'., 



-34-

the instruction select x,n,y generates one first, then, 

·makes it the y-component of the root node. This is the 

principal way to construct BL-objects, i.e. by using the 

select insti:uction to add on components. These two roles of 

the select instruction are depicted in figures 2.2-19 and 

2.2-20, respectively. The root node may or may not have a 

y-component prior to the execution of select x,n,y. If it 

does, then the value is lost unless it was shared • 

. . , 

Fig. 2.~·19. lst.rqle of 
select x,n,y 

Piq. 2.2-~0t 2nd role of 
•tl•Qt x.,..n, y 

i,~, 

The apply instruction provides for the activation of BL 

procedtlr•s. IAt the p-compQnent of the c.l.s. represent the 

BL code ·for some procedure (i.e. be a procedure structure). 

'I'ben the instruction aeely p,x activates this procedure 

in the following manner: First, a new, empty local struc-

ture is created. The x-com.ponent of the c.l.s. is then made 



-35-

the $par-component (parameter linkage). for the new loc;e\l 
~ . •I ! ,.. '< -: -, ,"'~ • :". ' ·• ; ' ~ ~ • " 

structure (we refer to the. BL-obje~~ x .~~ aJ1 ·. a,r~~~·7•-:.~.t~uc-

ture) • Finally, control is passed to a ne~. site of activ-. '. . . ~ ~~. :. :::;·' :-·~ -~ :1 .. · . . ' 

ity. This means that the newly-creat~d lo.Q.al &ft~"Y,9t~.r!!' ,b,e-

comes the c. l. s. and the old site of a.c~iv~ty i~. made ~or,-
•• '•' ,· •'. • :' ,. \ •• '• < < I·' 

the procedure p until it is told to return. 

The return instruction provide• fo~ te;m.i.nation of the 
,.• ~ .. ' ··,' : \ . : . . . ,., . ·. 

execution of a BL proced\lr~ ,11-d .t()r r•t\~~n, t.~L tll0: FAl~.i.ng 

procedure. Upon execution of a retu;n inatr~tig~, the 
,. ~' . '• 

c.l.s. is deleted. All its components vanisb. The pare.meter 

linkage, since it shares with the ar9'11ll8nt structure of 

the invoking procedure's local etructure, remains. control 
, .. 

is returned to the dormant site of activity for the invoking 

procedure, and its· local stru~·;becofi\es 'the:;hew' c.l.s. 

'l'be invoking procedure resumes·: from wher• it 14:tft off~ 

In order to invoke a procedure, it must be represented 
" ~ 'i ; .. . ,; . J ~--;. ' -. ' i ,-.' ,;,,;• .. : 

as a component of the c.l.s. The JR2Ve instruction makes 

data in the ttrliverae availabU''~ .. invc>~Atit>ii'alf ·a· BL pro

cedure. we will not have oC!ca~toti th'·iii•«t tnii Instruction 

here: further details ·are found in.€b.e A~ndlx~ 

·: , c.· .. , ,~.!.;··'.· ~ '· ,~ ~ , ,; 

The instructionil of a BL proeedure are labeled with 

1-- - --------



-36-

natural numbers: execution of a BL procedur' consists of the 

successive execution of its instrqctiona in sequence accord-

ing to the numbers labeling them. The remaining BL instruc-

tions provide fof Oha.Jlges in the control s~quence. Each of 

them has as one of its operands a label t which must be a 

natural number litbeling some instruction o·f the procedure 

currently beinq executed. 

The instruction goto t transfers contiol to the 

instruction irr the current ·procedure whose label is the nat-

ural number /,. 
• '> ~ " 

" 

it'be instruction elem? x,J, tests whether the x-com-

ponent in the c.l.s. is a leaf node (e~ementary object). If 

.!!2£, control passes to instruction number J,. 

The instruction ea~y? x, J, cbeOka whether the x-
' 

component of the c.l.s. is an empty ieaf ng4e (i.e. no com-· 

ponents and no elementary value}. If ~ empty, control 
'~ 

transfers to instruction number J,. 

The instruction 

test as the correspon<Ung emety? ,i.nsti;µcti<i>n., but control 

passes to t if the x-component is empty. 

The instruction loo~s at the x- and y-



t('. 

-37-

components of the c.l.s. Both must be leaf nodes, or else 

the effect of this instruction is undefined. These nodes 

are checked to see if they have the;eame elementary value. 

If the test fails (i.e. their values are not equal), then 
' . - . 

control passes to t. 

The instruction tbe.x-

component object of the c.1.s. has aQ m~ootnPQnent. If not, 

control passes to t. 

The instruction same? x,y,t checks whether · the x-
. I 

and y-components of the c.l.s. share the same node. If not, 

i.e. thEty a:re distinct nodes, control passes to J,. 

In all the above conditional instructions, if the 

c.l.s. fails to have a component indicated by some operand, 

then the effect is undefined. 

Other conditional instructions analogous to the above 
.. I 

ones can be defined (e.g. testing whether one elementary 

value is less than another). we. will bavtt· no need here fOr 

such additional instructions. 

Finally, we discuss one rore instru~t'ion ·tbftt will be 

needed. Given a BL object, we will want to be able to 
" .. ' . 

access each of its components, without knowing Pe:£orepand 



-38-

the names of the selectors. The getc instruction serves 

this purpose. Successive executions of the same instruction 

getc x,i,t extract successive components of the x-compon-

ent of the c.l.s. by causing the i-component of the c.l.s. 

to assume as its successive values the selectors on the arcs 

leading from the node x. No component will be extracted 

more than once, and control passes to t when no more com-

p0nents of x remain to be accessed. 

2.3. Programming Conventions for BL 

In this section we introduce a few programming conven-

tions which will make BL procedures easier to write and un-

derstand. We can view BL as the rRachine language for a 

hypothetical computer. Our conventions are then similar to 

the progranuning features provided by a macro-assembler. 

Although individual instructions in a BL procedure are 

eg? x,y,no 

const 'yes',ans 

skip 

no: canst 'no', ans 

skip: 

Fig. 2.3-1. Use of 
symbolic labels in BL 

labeled by natural numbers, 

we shall use symbolic labels. 

For example, suppose that x 

and y denote leaf nodes in 

the c.l.s. Then the BL code 

of figure 2.3-1 places the 



-39-

string value ":yes" in tlle .node .an~ :i::e,,,t~ VJ~lµ~. of x and y 

are equal, "no" if they aren't. 

The nodes add.ressed by operand•:· in t1le. BI. inst,pictions 

must be direct components of .th•.J;'QO:t.DP<le 0£.the c.l.s .. 

With tbe seJ.ect ipstruc.tion, we c~ aq~ ~es ftl:rtber. 

Jri9. 2.3-2. 

d~ AA the <:. i .,,.;, 
....... ., , '.,.K • 

For inst4nce, sup-
. - . .• i '.,_ ... ~· ~. • . 

pos~ we wish to q~~e .tile v~ue .. 3 ip. 

figure 2 .3~2. J.nto. tlle Value 4..,, Thi,s is 
. - ' ~ ' ' . . - • "' ,' ' , • ' • • ' ' '! ' ·::: 

or~~' 1;P, ac~as .~he proper node, we 

mu~t µae t~ p'*ect iJistmrtfbn,tbree 
,~ .. 

times.. In t;he, ~ cod.. bhat.<.perfprms 
,• - •. ,, ; .. .' """'' 

~ .("·_\ ,. .· 

our task (£~~· 2.3~3~,,,, tbe restrved 

~elec~~r $tez+p acts as a temp-

select x,b,$temp 

select $temp,d,$temp 

se lec.t $ teitlp, ~, $temp 

"dotted pathname" con·vention 

to 're'f'er to" appropriate· nodes, 

con st 4,$temp 
we ;can, a.bbr;•viji,_te this BL dode 

"~ .. ,. ·' ~ 

Fig. 2.3-3. BL code 
to··. accees · a node· as ;the si'TtfJ!e ~struction 

coqet 4rx.Jkd.e.'... Thi:• oan be 

viewed as a mact"o-instruc.tion whoae. expansion .q.ivu the re-



-40-

nodes in the c.l.a. 

We. ~11 make freq\ierit ·1.lfte o'f a ~ubittitution cap

abi!l:i'ty, w'iri.dtr· i•; '~ovided" by a 11
•• cawention.. If z is· a 

letrt' 1'!dde 'c0nt!.aitti1'9 some e1emerit1lry vd\te, . tlien * z denot&s 

OC?ft•t 6,y 
,., 

Whett· t:be'e'.•1~•"· 18 in.·-~1.; •·tae. ·'fi the :e.1 ••• · o.f:f~~Jte 

2 • 3;o.;4, the 1•t nOde 'tfi th v~lUe . :2 can 

loop: 

out: 

.,. 

val1,1e 2 i~•lf\.'d~ _he tdapi;g by .ltJly.of 

eh·· forms * (x.a) I * (x.*z) I * (*y~a) I 

or · * ('*y. * z) j A• ~ . ~~~.;'~, •~Ulf~e, the 
. . '' """ . "·' . 

Slftc· X, i,'OUt . 
all tile·· ~4-itt• o! :t'he $-.. . 

· ·ggnpt-- o·,x~'•i ' 

. . . . 
je~ a •: -... ·· -Not.e ·that _the 

le•f JiOde., 'J. •!COD~. iaa au~-

ceaaive val~ea the names of 
Fig~ 2.3-5 • 

.= ·i· ....... 

the~·••l•cto~I ·itoin x. · Thus 

tb•:-~tett patlm'._ x~"i ~eferi'··tcj>'~ •~e~J;Ve cosa-



-41-

ponent nodes of x. 

We now define several macros for BL to denote cororaonly 

performed functions. The .. setl macro (set qp l.t>.ccll 
~~~.,, ~ :.· - \ : ' 

structure) is used to set up new comi?onents ~n the-~---~·~·
' ' ,' ,. '· .t • / ;

Figure 2.3-6 shows the

figure 2.3-7 gives an

.setl (xl, .•• , xn)
> .

create xl
.. . . .

create xn

:F.iq. 2.3-6. Bxpa,n"...
sion of .setl macro

def ini ti~. p~ t:U.. ,.; ,.setl mad'.O' ., ..• ,)~.1 :and
;

example of

'

_, .:·
its effect~

''·

Fig. 2.3-7. Effect of
. . . ·~-ti. . .. s~7, :Y'.>. . 1·' • • • ,

The remaining macros. ;we will use deal with linkage be-
• I , '" ~.~

tween BL procedures. We first define a procsdure closure to

be a BL-object with two components. · '!'he $~~~.-.q_:>mponent :

contains BL text of a prf;>cedure, apd the $env~component don-

tains refeJ;"ences · to the qlobal variab~49e·· :n~ ~n the pro:-
~ .. - ... '? ~ !;> ' ' ·•• '

cedure. (Note· that "$". i~ a legal C:~acte:r;., in: ~·)

The .call macro expands into BL code to invoke a pro-

cedUre. In the ·definition in figure.?:~~~, the .node p,~fJt

be a procedure closure, ap.d al, .•• , an are selectors

-42-

leading to the argumenta, 0 Which -y be ubi~rary BL-objects.
I .

• clitt' .. p, faf~, ... , an)
· cr•iit! $ar9' · ·

. I ~C,c ~ .. $~,p~$emr

link $argc1 l,,~

.]kll*··
-; ·!llJly

d!ilt£•

.~~:i;9,_!l~~

p, $arg.

$;11t'q

,, -t--""'"--------'-' __,_~
Pi9 •. 2:.3-8~ ~ion of
the .rcall l8aCrO

. ,.-. -. -.... .I'.·
r ' - ~ . -•

Figure 2.3-9 gives an ex-

IUltpl• of the invocation of

a procedure p hivinq a

ain9le qlobal reference w1

the prooedure p is called

~·· ~. 'le~· 1U'ld- ·y;..
~ - - '

~ ['/, ,_ . ~ ~ -~ :..: · . ; - ~

~· ~~ol-cl-•.-1'••· u ·ira-"ttte
i . ..

. ~ocal •truc~ure of· ·the·. in-
.. . ~ -. ,'

t ~

'olc.in9 ~r!!,.:~ ~he

.. "·"" -". _j" . .,, ~~ '

~~~£~\l~,! __ g:« .ilie.,..CUled.~~re •·· ·!ibe-••ft~r~··-piatttri 

shows both the old c.l.s. and the new c.1.s. When cQntrol is 
..... \ _,," ~, ~;-~>-; ,. ; i ~ . ....-~ :···. '"·?".. ~· r: r. . S:Yt(j ,.,.,. ,', ; -,' '. 

'···~-. ·-' ' 

passed to the procedure p. 
I ' 

,_...,,. ;.· ._ ;,'.i: ; . 

Bffttct of 



---------- ····----·-·--··-·· 
-_, ' .. ;' :·-:. ~ ,,: .. ~ ,, . 

-43-

The .getp macro (get .e.arameters) serves to bind the 

formal pa~ameters of a procedure •'ftbe actual arguments: 

with whi·ch tt was invdkt!id. 
.. 

makes th' global vari~es 

T~e . ge;g ,!fer~·~( ge:~ globa~s) 
nallM!Mi,, in{.iJ p•~@ ;ic¢essiblfe 

- ._.} t~- '{: ' " ~::-:- ·~ ; .,-. : _, ' 

in its body. These.two~s •e def~rfed•i}l figures 

2.3-10 and 2.3-11. 

.,.,.-. . . 
. get_J;> (xl, ••• ,xn) 

select ~pai·, 1, x1' 
" 

' ~ ~( : . . . 
select $par,n,xn 

Fig. 2.3-10. Expansion 
of the .getp macro 

~e ·, .. ~"- · ·: "'} ,. · .. ,_ 

select $par.$glob,xn,xn 

Fig. 2.3-11. Expansion 
of the .getg macro 

The first actions a procedure normally performs when 

given control are the retrieval of parameters c;ind global 

variables (using the .getp and .getg macros respective-

ly). Figure 2.3-12 is a "continuation" of figure 2.3-9, 

showing both c.l.s.•s after the invoked procedure p executes 

the two macros .getp (u,v) and .getg (w). 

With the BL programming conventions that have been de-

fined here, we are now ready to use BL as the language of 

our semantic model. 



',._ ,, 

-44-

Fig. 2. 3-12. State of the two c. l. s. •a .~r proe,e®r:• 
p ~eeute• tb •.. mat!~ _;qetp (u,v) ana' '~'c]etg (w)' . 

'.l .' 



-45-

Chapter 3 

STRUCTURES, POINTERS AND SHARING 

3.1. Mini-Languages 

In this chapter we present·a series of ~ini-languages 

which treat the issues of structures, pointers and sharin9. 

The progression of mini-languages is hierarchical in that it 

starts from a few basic concepts and proc~eds outward by 
. 

extension. Mini-Language 0 is the "kernel" language, iso.:.. 
,' "' ':. 

lating the notions of variables, values ~nd assignment. . . . 

These basic concepts form the core for our domain of dis-

course. Mini-Language 1 is a direct extension of Mini-

Language 0, adding to it structured values and the notions 

of construction of structured objects and selection of com-

ponents from structures. Mini-Language 2 extends Mini-

Language 1 by including pointers and the t.wo operations of 

building and following pointers. Finally, Mini-Language 3 

treats the idea of sharing of componente.· ~t.¥*J~ objects. 

By revising the concept of structured value found in Mini-

Language 1, the notions relating to pointers are subsumed in 

Mini-Language 3 by notions relating to sharing. 

Each mini-language is treated in a separate section of 



-46-

this chapter. In each section, we first di~cuss in general 

terms the concepts addressed by the mini-language under con-

sider·ation. New terminology is introd~~,. . iM)d .we .describe 

the relation to previous and/or succeeding mini-languages. 

we then supply a BNF-style syntax together ,nth a descrip

tion of tbe syntacitic classes and What they represent. The 

eemantics of the mini-language is •tated informally, a la 
. . 

ALGOL 60~ We then formalize the ....-ntics by giving samples 

of rule• for t~anslation from the lnini-language into the 

ba•e lan!jJUa9e BL. 
l ,. • ,,, \ ~ 

Each seqtion i• conclud-.d by ·a "movie" 

illustrating the interpretation of the 11.t program produced 

by the translator from a •alll>le program in the mini-language. 

The final section of this chapter applies these mini

ianguagee to the task of describing the data structuring 

semantics of 11 i-eal-world" programming languages. The lan-

qUages PAL, QUEST and SNOSOL4 are used as examples. 

Mini-Languil(Je 0 (ML-0) is the foundation upon which we 

build our mini-language setup. In introducing the concepts: 

of value, location and assignment, MI,i-0 serves as a k$rnel 

~or our ••t ot mini-languages. The notd~~s of structures, 



------~--- -,,. ~;,/-~-----~ ---.. 

-47-

pointers and sharing wili emerge as exte~sions to ML•O ~~ 

succeeding mini-languages. 

Al.l our rnini-l~gu~~s, st•rting witb·~,.o, ;_Qperat;e 

within the conceptual ,world. of. ya~u•&dl~oret<a in loca~:tons · 

which we call cells. The relationship betwe$n a cell ~nd 
. . .., ,. ... _ "'.' 

the value stored in it is called th• contents •appin9. A 

cell with no value stored in it is said to be empty and has 
, ... ; -·1 

no contents. We are concerned here with the fundamental op-
- "~ •, r • 

eration of assignment, which is used to change.the contents 

mapping. In fact, the·entl~e p;arpose.in;crecating ML-0 was 
~ • ! 

to isolate the conc9pt .of assignment by placing it in as 
; 

minimal and austere a set of $urround~gs as possible. This 
, ;· '. '. -" ~~- : ..... ';' .' ' ' • '._ - ;,.~ , 'f 

noti.on of assi~nt will r~~. ~geq in ·~. -x:~i:ng 

mini-languages of this chaptier-/ · .. Tb• assignment statetilents 

of these languages will be "consistent11 extensions of what 

we define in this section. 

Another important coneept we <teal with' here·· is the 

notion of b.indtn9. Each :ideni!!f:i'.'tjt' ·iri' mf Mifl.io.'ffeoqr8:ili is 

auociated with a uniqtle and di'stinbt cttfl.-, 11\fif~ asaoct'a~· 

tion is :called the bltiding 0£ ~: 'ideftt{ff~} \'h~cvalue of 

an identifier Will be the contents· Of ;the' ~fl to W'fiic'h' it 

is bound.· (An ·identifi-ek- bound; th an empty ·e:e:tl has· r16 



-48-

value.) Unlike the contents mapping-, the binding relation 
: ., 5 s ! .~ ' . . ~ 

remains invariant throughout the execution of an ML-0 pro-

grd.:· ·Thia' iri~ai'iance' ia a·. pro!JttrtYI ftt>t ortly of ML,;.O, but 

of'.0llll.1,t'he tift'ltoolm\tui~a· in· thla:·t'tieets~ 

syrita.X 0£ jp;.-o 

We give a BNP-style syntax for ML-0. Informal use is · 
~~ . . 

ma.de of the ellipeia ( 11 
••• ") to iiadioat~ r~l>eti tion •. Two 

". 

constants; and (identifier} denotes alphanumeric strin~s 
('; ; -·1 ~: '·"' ~· ·i "' • ·" :~· ' 

starting with a letter. 
,. 

: : = (program} 

(as.ti~meiit')"· · ="=.;; 
(assignment} r 

'J 
;, ~ ,c 

(destination} 

<·~--!~'} 

(desfi~ation) 

(~iriW~iO\i) 

::= ·. (id~if,iep} j. 

(generator) ::~ (integer) 

Description 

• •• : {assignment} 
. 4 -·· .. ' . 

I ~' C;!: .. :; '. ,· 

+- (expression) 

.. f· ·' (~ra~:t'} 

1o ~44!l:t•t:and aasignnaept, we .. ~ c~~ s~t;actbic 

elas$e& re~atinc~~t· to valu(tS, -~~tl~ ~l~: A .4~~or} is- a 

p;i:ece of ~pg-ram t~t ~~tin9 ~· .:V&4)Wll_ .. i Allr ~UM'· .:j.n-. :ML~O 

at'$ ~nt•9~•r ·~~ mini-J.~~ ;WKJ;L~ pb}ler t~• 

of V-_ll;l~8 U "8).J. •. A <de~tj.nat;.J.Qn~. j.a,, f. piN:e .. o1 p~am : · 

text .refe!-:t.tnt _to a cell; (deatil).a~_. ,;Mt,~o ~ •imply 



! 

' I 

1. 

-49-

(identifier)s, i.e. variable names. The reserved word nil 

will be used to signify empty cells. An (expression) is a 

piece of program text which "yields" a value. The semantic 

description below discusses ·evaluation.of (expression)s in 

ML-0. 

An ML-0 (program) is simply a.se~enge of {a$signment)s, 

each of which consists of a (destination)· and an (expression). 

The basic.meaning of an (assignment)' is to caus~ the value 

yielded by the (expression) to be stored i~to the .. ~ell re-

ferred to by the (destination). 

Semantics of ML-0 (informal} 

The notions we have just introduced will now be made 

more precise. We give the semantics aasociated with each 

significant syntactic class of ML-0 (now as a description in 

English, later more formally via translation into BL). 

( 1) ~Erogram~s: The execution of an ML-0 (program) 

consists of two steps. First bind each (i<Jentifier) oc-

curring in the (pro.gram) to a distinct, empty cell. Then 

execute· all of the (assignment)s·sequentially, left to 

right. This rule giving semanti~s of·. (proqrarn)s ·will remain 

intact for all the subsequent mini-languages in this.chapter. 



-50-

(2) (assigpment).s: The execution of an (assignment) .. 
consists of three steps 

(i) Identify the cell referred to by the 
(cWstinaticm) '.Clllft''~'tlle~:~lle*"lia"" :.use, of 't::he 
(aaaigmnent) (see rule (3) below). 

(ii) Obtain the value yielded by the (expression}' 
on the right-hand •ide (aee ~le (4) below). 

· (iii) Make tbe 'value f'rom c'atep ti.t) ·th~ new contents 
of tl\e cell fr°'1 step (i). 

,1 I 

Thus the e:ffect of exe®ting an (•••ignment) is a chan;9'e in . . ·. ' . ~ . ' . 

the contents •p~ing. This rule, like rul• (~),will govern 
, ~·· 

the semantics of the remaini~g mi.ni-la:n'fU&q•• .• 
, : - • ' -. - ~ • ,:· ·; + 

in ML-0 is always some {identifier), and refers to the cell 

bound to this (identifier). Thia binding is determined at 
., 

the beginning of program execution1 aa .- have already said, 

it remains conatant throuq'hout execution. 

(4) (expression}s: There are three varieties of 

" 
(expression} in ML-0. We describe their aemantics in rules 

(5), (6) and (7) below. 

( 5) qil: The ~P4!cial symbo~ j\il,_indic•tea .the a:bsence 

of a value. Any ti~ we are directed to store in, some celi 

the v.alue yielded by an (expresei<?n), llbich is n;~, this 

means to make the cell empty. All of our mini-languages 



-51-

treat nil in precisely this manner. 

(6) (dest;i.ngrtion>s as .{e?q>ression)'s-: When a 

(destination) occurs as an instanCrJe,~£.8.fl (expression) (in 

ML-0, this means on the r.ight~nd fl·ide of an (assignment}), 

it yields the value contained in t~ cell to which it refers 

(see rule (3) above). If this cell is empty:., tbe 

(expression) is treated like nif (see rule, (5) above).· 'fhis 

semantic rule (known elsewhere as "dere£erenci.ng'"'l will ~ 

verbatim for all our mini-languaqes. 

(7) (generator}&: A (generator) in Mt~O is an 

<integer} I Which is the decimal representation of' some 

J 
integer value. It is this value which is yielded by the 

{generator). 

The above seven rules constitute our informal descrip-

tion of the semantics of ML-0. 

BL Representation 

The semantic rules we just gave ar~ ~a bit long-wi11ded 

and imprecise. A r~gorous descriptign O;f the seµtantics of 
·-~ ;. i:·-' , c~ . · : · , · , ' 

ML-0 can be obtained by "translating" ~hese rules into BL 

instruction sequences. Before doing thi-. we dis9uss ()Uf 

basic conventions for representin9 mini-1,.nguag' programs.in 
: : .,_ f . ,, ~· 



-52-

the base language model. -To each program in ona·o£. our 

mini-languages, t~e ia· a single ·1oc::,•1. '~Ut"e. The 

cells used by the program. ararepn98ntJea.})ynodes in the 

local structure Wbll«h- .gi17•• i ta·; -binding. · In · other words, 

the cell bound to an idefttifi.•r g: "111 · bll:' th~' x-componen·t 

-111ode of tbe; looal ·structure. ·'1'11W<-·eoatentw':6f t:'his cell is 

the object of its node. '!bu• tlle BL-'traslat.!lol\ of any 

to bind. the ident:l.f~ers of the •x-~~rp. iro~ ,~le~- ti-.•. 

pro;_oque for >zµi ~ML..;.C (.p~<?,9,.X'~} whQ•~ 1<+~1!if~ .. f}~. a.re x, y 

and z will be the BL macro-instruction .aetl (x,y,z) ,, w,hich 

expands into the sequence cr!!:te x; create yr creat~ z, 
•' > • ' ' • ; ,. ' ! ;'. ·'~ ' 

creating nodes for the cells bound to theae <identifier)•· 
'·ti,,·> .··+ > 

Integer values are .represented in the base language model l>Y 

element~ objects of type integer. 

. . , . 

A-a for the translation· ruiea themaelvu~ we give sample 

ML-0 statements·.<< a:aaiqilment)a} ·and the BL code they are 

tranalatea into. ·Each example ia illuatr~ted by one or two 

11 befb:re and. after" pictures •bowing the' chang~ the statement 

makes· in the" looai" atruc·ture. Al tbougn our examples are 



'."'-t,, -,-..·· 

-53-

meant to be indicative rather than exha~stive, they should . . ' 

be more than sufficient to give the reader a complete pie-

ture of the rules for translatiO!). from M,L-0 into BL. 

There are essentially thre~ )d.!Ws of. ( assignme:nt )s 

in ML-0: 

'" ,=· .. ,. ··' ' \ .. 
e.g. .· .. ~$] . Cl) (identifier) +- ill 

~.1 
into the BL code 

clear x (fig. 3.2--1). 

(2) (identifier) +- (integer) 

Ficj~::. 1.2-1. Effect Of 
the, .~-P { as.siCJmne1Jt) 

x +.. n11 
.. ~ 

e.g.· y t- 2 is t:tanslated into i;pe .. ~~-·'.~d~ 

const 2,y (figs. 3.2-2 and 3.2-3). 

I 

, 
I 

~ .... 

I I 
~ ~ ~ ~ 'll.. ~ • © • ' ® 

. ' f • .. .. . 

' I I 
, 

• 
'fi.· j ~ ~ 

~.£ ~·~ 
:..::. 

Fig. 3.2-2. Effect of Piq. 3.2-3. Effect of 
y ... 2 in: ~'."'q 

" 
!!;/; ........ 2.;.h:· .Ji~ ML-0. 

(3) (identifier) ... {identifier) 

e.g. y +- x is translated into the BL code 

.call assignO, (x,y). This code invokes a BL procedure named 



-54-' 

.assignO, which performs the operation specified by the ML-0 
-~ ~ ~ t-

{assignment). The definition of the procedure assignO is 

shown in .figure j.,2-4, and two exalap1.u of the ML-0 

(aseigmll&nt) y .. ·x ·'.*9 pi~red··itt ;ffturi· 3'~ 12~-s. 

assignO: .g~tp (u,v) 

empJy~ 11, mov 

cle•r v 

·mov: conat· *u,v 

Figure 3.2-4. 
Definition of the BL 
procedure a•~<l .. 

' 
I t i.~•J . .:i' 

i r~ 
Pig•. 3. 2-s. Effect of 
JI: f!-: !JC .i.n JU,,-0 .· 

The three translation rules here give us a precise formul~ 
... .." ·. ,, 

atiori:for the aeNntics Of ML-0 ~n teX118 of tlle ae~tics;of 
i ~ 

the base ·langua<Je raode~. 

ML-0 Movie 

we conclude thia section by ·9~ving .. ~)!:~~! ~--o· 

(program) together with its BL translation. our exam.pie i$ 

accompanied by a sequence of picture• forming a 11 movie11 to 
.f• ; 

illustrate the changing state of the local structure as the 

pr~gram ia ~te~preted, statement by statement: 



ML-0 -
x .. 3: 

y ... x: 

.. ~ .. z:. 

•TJ, 

' .{ I I 

·~f ·~ 

• ~ • 
® 

. x ... z 

l , . 

-ss-

. aetl (x, y, ~-) 

const 3,x 

• call . a8•.:ign0';' cxa ~ y) 
.Q41~ , ... ,4~Qi;:(;c,~) 

const. 4,z 

glear y 

'. ~ ' ... 

I !, I 
·i 

• 

, ..... ·.....,.........,i_..._..., .. _...,:··---· ,• 
~· 

i .. 

·.,:. ' .. ...::_ 

- . ~ . 

Mini-Languaqe l (ML-1) adds tbe ru>tion of data struc~ 

ture• to the' foundat:!oif·pro;riif1MF-bf~Mx,...,6:'-·' ie ~ liav~ said 

before, a atruct:ure iw· a dai:ar10Sfic::~:·'11tildft conafits of .irtdiv-



-56-

idually accessible component objects. There are two funda~ 

mental operations relating direct1y to this concept of 

structures: (1) construction of a structured object whose 

components will be. obje.cts ,.,:4th ,given .. values, and .(~.) selec-
, ' : ' • ,I, , • - ~"~ 

tion of component objects ·,from a stNC'ture. ML-1 pri:>vides 

for these operations while retainingtntact the concepts and 

mechanisms of ML-0. In particular, the notions of cells, 

valµ~.s_, ccmtonts, binding and .. aaaigrunent ;-H'e·-~aetly··as 
; ~ :; 

·before. 

' '.~ ', " 
. ":I.n •ddit.ion· to the integf!.t:'va~ues fQund in ML-0, ML .. l 

,• ..... ,, ,,· ..... ~-"••'"'··" .. ' ~ ,, 
• , -· ~·.. ''. ~ . _, "' 't 

provi~•' a new class of structtutea .. ! · A a~ructur«f/:Vilue qon ... 
-~- -. .~ 

sists of a sequence of compc:tment values i ('Which may be int-

.. e9~rs or .•t.i;:\laturesJ. .To .. store .aw•y a ataNetcus . .U-valve; ·we 
. '::':""" 

reqtiire qne cell fdr th.t structu're ,~; and also ~p~rat~, cells 
·' . i . ·- ,_ 

~-o. hold the values iof iis components. This r;qui.;.ement is a 
·, '\~ 

departure 'frO)n ML-ti, Th 'wbiclf 1111 'dells i'1 use are b®nd t~ 

.... identi:fters. componel'lt ·cells must• now be handled by some 

kind of free-atoraqe nian~,.•~t. ~egbni~'·'.~; '!l!ll:. allo~ 
-·' ••·,. ·~ • ·:. • - .:-,_ ,.-.~ ~,_..,._,,., •. ~ .' ,¥c, • ....... ' ' ' •""··••,~ "'• • ' 

cator. 

o~ vice verea). There are no restrictions on what values 



-57-

may be stored in which cells. There is a need, however, to 

detect references to nonexis~ent cq~ponepts ot a structure. 

Such error-ch~cking will have to })e performed RY the defin-

ing interpreter. 

Syntax of ML-1 

There is a new primitive·sy11tactic class here, namely 

(selector), which denotes alphanumericstringe together with 

integers. 

(program) 

(assignment) 

(expression) 

(destination) 

(selection). 

(generator) 

(construction) 

(field) 

Description 

::=(assignment) ; ••• ; (asslgnfuent) 

::=(destination)~ (exp+~s~ion) 
'.,' ' , '• " . 

: := (destination) I (generator) @. 

::= {identifiEit) f {•election) 
.. -.. -
: : = 

::= 

::= 

(selector) 2! .. (exp~e!a,i<;>J1) 
,, : '· ' ',} ' -

(integer) I (construction) 

r (field) ~ ~ • 1 ·yfieid > ] 
< selectot') : · < expreesion) 

Structures in ML-1 are sequences of component values. 

Each component in a structure has associated with it a 

(selector). The selection operation gives individual access 

to the components of a structure by using the (selector)s to 

indicate the appropriate components. ·'~Thus; :::for ;exampl~, the 

(selection) a .2! x refers to the coaponent of the struc-

ture .x having the (aeleator) namttd, "a". 



-sa~ 

The notion of <dea·tination) '!a extended in ML-1 to in-

elude seleC!tions of component objec.tli from structures. In 

particular, (selection)s may appear on both sides of· 

(assignment)s. This allows ·for selective uRd•t~nq Ctf QOJn-

PPnents of a structur~. A {sel.-ct:,;i.on) oc;:c:urs as an instance 
, ,, ; , ' ' 

of a {~~stination) an(} refe.ra t9 ~.- cc;>np:>n•)lt ... cell for a 

structure. In this way, ML-1 preserve• the ML-0 a111s.c:>ciation 

between. ( d~stipation )s and cells •. 

. . . . • -- ' _·.._.i.:r< - . -
Also as in ML .... O, distinct {deatination)s refer to dis• 

tinct cells. There is no s}laring 1 ~f data. 

All valu·~ ih ML-1 a~e created by instances. of 

(generator)s. A (construction) ie a ape~;J.al ~ind of 

{generator) prcwidad by .ML .. l'for· bu;i1clin9structured values. 

In a (construction), we simply supply (expreasion}s yield-

ing values for the components with the associated (selectors). 

Each component name/value pair is called a (field). Thus 

the two kinds of {generator)s, namely {integer)s and 

(construction)s, produce the two kinda of values in ML-1. 

As witbML-0, in-order to lend preciai-on to the notions 

we have introduced, we gi"e·an irtfOna.l dMcription of the 



11 
I 
I 

-59-

semantics associated with each significant syntactic class 

of ML-1. 

(1) (program~s: The semantic rule for an ML-1 {program) 

is identical to rule (1) in the previous section for ML-0 

(program)s. 

(2) (assicanment)s: ML-1 (assignntent)s work by the same 

principles as in ML-0, but the.re is. a new factor here. S~p-

po~e the value yielded by the {~xp}:'ession) on the right-hand 

side of an (assignment) is some structure. Then new cells 

must be allocated to store the component values of this 

structure. The component cells are said to be spbordina.te 

to the cell for the structure'they belong to (i.e. to the 

cell referred to by the (destination) on the left-hand side 

of the (assignment)). Moreover, if a cell containing a 

structured value is assigned some new value, then the com-

ponent cells subordinate to this cell are detached and left 

for the cell allocator to garbage-collect. Structured val-

ues are copied on assignment, component lJYcomponent (and 

recursively for structure-valued components) • 

(3) (destination)s: There are two kinds of 

(destination)s in ML-1. (identifier)s are handled exactly 



I_··----· 

-60-

as in rule ( 3) for ML-0. We now discuss ( se_lection) s. 

(4) (selection)s: A (selection) consists of a 

(selector) and an (expression). The value yielded by the 

(expression) (see rule (5) below) is determined. This 

value must be a structure, or the effect of the 

(selection) is undefined. Furthermore, this structure must 

have some component with the given (selector). Finally, 

this component must be stored in some component cell (which 

was allocated when the structured value was constructed) . 

Then this component cell is the 

by the (selection). 

cell referred to 

(5) (expression)s: With respect to the three kinds of 

(expression)s in ML-1, the occurrence of the indicator nil 

or of a (destination) is treated exactly as in ML-0. As for 

(generator)s, the only aspect we need to explain here is the 

semantic rule for (construction)s. 

(6) (construction)s: A (construction) consists of a 

sequence of (field)s, each with a (selector) and an 

(expression). Each (field) represents a component with the 

indicated (selector) and with value yielded by the 

(expression). The rule for interpretation of a (field) 



-61-

. consists of three steps --

-~ 

-" :""ff5,,"·.~; .. '·'·"1•« .. , ,": ("·~ .. :·,~ >.'·:.'.''\: ~ ~r:'1- ~, ,J''f • '0 ! ,;_'; '~~··: .: 

(i) Evaluate its (expression) • 
.. ·:·:·· .. ,. · • ~., ~-.t .. u "· P·rt·r"J·"'-..., ·' ;~~n ·"!; ~Ji~ .. i fj.i:: ·l> ':t ~yrr:i.:~, J _i; ... ·"'.tJ· ., :'! -: ··· ' 

(ii) Alloc"ate, ·a 'new cell and store the· value from 
. ' step liL ~· j_~ li-hA ;new ~1 ~.in" r~•:v:~ if 

step riY y'ieia·&1~~~~iar~E!T:·'·:r) . .,..r,.,....,- 1 - .• •• •·••• 

(iii) Associabl. .the1riiwt¥ a~ t!o~~,,~1 
(and the value it now co~tains) with the 
( selec::~tP,_F .. t,.~f ~~ :r~~'ti , . rM :: .. ' ' 

The-· semantic rule for.·.~-- (cpq.•tr~.(-M\~, ~.,,~~~~,-~~ 

(f~~~d/_s ~eJquentiallY,!~}et,t ~ 1~, _#t s~;,,~,,~b<W,~~'.( 

Tl'i!,i'"';-_e.cS.~J.~s in a seri~~; ~-~ W~l'.iftF~1~!:~

ponep~ _ fell~ ;ap_~:: aE~•s•We py, :~~~~' ''!f"5 'et3l8t3 • ~~er 

k_?ow J t, , a !!lt;r;~~,~¥X:~, . t~rf\. ~'r)'Wt;~t~i ¥98~;,;f.~·~c~ 

on (construction)s: the (selector)s of its {fi~~}~,.nu.}~~--,be 

distinct, or else such a {construction) is ille9al and has 
'.:~:.1~. ·· ~<t.~ . .,, ... \~_-~:~ .. :.-~_,., "~·1;· '.' ... ,,.;~·:1 i· (~·"·"'·.·~·M_ rL:~, .... ·0Jr1 ""~.\ 

undefined effect. 
•: ; .. : ' '· "-" 

thEt ;w:QOt node corr:•spe1ui&,~to".:tlla.t<•O•ltt w•t:1•tett8 1 tBa'-;lJtt6ctUre 

in, and in which· the- aee•.;,are r l:aM-a.d vti'tf'""Ji.•l ( •filectd:f''1Ji 

of the structure and lead into ~Qgel\ J:'t)~f!'f~1f~9 t~e corr-
"'-- ........ '. 

e~ponding component cells~ ,.AO, -~~l•".r'M~"V8~~rfM4y ft.:MP 

is the, _eqv.~}·.on;~eqt , ( l~~.+. ~t;r;;qc1!"Y;rcY; '.~~~ rMtt~:7'lia~• .,. 

pro~i::lllll~ which ,is,,.a ~~;i;;u,cf;~,P v~,'.~~~"l~~~}•:~ 
'. ,• ·, ! ··~ ' • ~ • • • r .~.,...~.~""'•''• ,_,,, .___.c ... ..,...,. . .,, 



-62-

\ 

the variables used in the program. Another example is the 

structure generated by the (construction) 

r a: 1: b: [ c: 2 1 d tnti l ] I . Whose BL rep-

resenta,tion is pi:e;itured in fig. 3. 3""1'1. 

A valid ML-1 (destination) corres-

ponds to a node addressable by a oom-

pound pathn~. For instance, if the 

·structured value o'f figure 3. 3...:1 iB 

Pig. 3 .• 3-1. 
· BL-obf ect for 
a structure 

assiCJtled·to the· {identifier) Jc, thf!n the cell referred to by 

the (destination·} c E?£ b o·f x will b4 represented by the 

· node x.b.c. 

As with ML-0, a ML-1 (program) Whose (identifier)s are 

xl, .•• , xn has in its BL translation the prologue 

• setl (xl, ••• , xn) • We now treat translation of various ML-1 

(aasignment)s into BL, illustra~incj genera! trati&lation 

technique• that can be readily applied to any M1-1·state-

m,ent. The follow,ing oases are repreaentative: 

{ 1) (identifier) +- n.!! 

and (2) (identifier) +- (integer) 

ar(! both bandledexactly as in ML-0 by the respective BL 

}:1rlmitivea 'S:lgr · and 'cort!t. Note·. that the action of these 

1'L instructions disconnects any subordinate component cells 



I ! 
! 

-,'',>, 

-63-

that need to be detached. 

(3) (identifier) .... (identifier) 

e.g. y .... x. This kind of ML-1 (alJ!si~nt) poses a problem 

in translation when the source (expression) x hJt.s a struc-

tured value. In that case, the structured value for x.must 

be copied component by component ·rnto y, creating new cells 

as required to hold new componen~s of y. This kind of 

Fig. 3.3-2. Sample effect of 
the ML-1 (assignment} y .... x 
when x has structured'. value. 

action is· illustrated 

in figure 3.2-2. We 

shall translate the 

(aasiqnlnent) y .... x 

as a call on a BL pro-

cedure named assign!, 

so the BL code for the 

etatenaent y ... x wi 11 

be .call ~ssignl,(x,y). The code for the BL procedure 

assign! is shown in figure 3. 3-3. · If x .is. empt.¥ Qr h~s ·an 

integer value, then -.esignl works like tne·aasignO procedure 

which translates the corresponding iu,.o· (aa.sicpunent). If x 

has a structured value, then for M.eh:~ponent of. x, we 

generate a corresponding component for y· .(al-locating a new 

cell) and call assign! recursively to give thiscompe>nE!t\t 



I 

-64-

of y the proper value. Here, the parameter.u corresponds 

assignl: .getp (U I :V) 

clear v 
none!li?~Jl? u,out 

elem? u,atruc 
I 

con st *u,v 

return 

~true: .getg (assign!) 

loop: getc u,i,out 

.call assignl, (u .• *i,v.*.i.) 

goto 

out: retu.rn 

Figure 3.3-3~ 
BL procedure 

::: 

loop 

Definition of the 
assign!. 

to x, and the parameter v corres·~ to y. 

(4) (identi'fier} ... (selection} 

e.g. y ~ b of x. 

The pitfall here is that we 

must check to verify that·x 

indeed has a b•component. 

The foll.owing BL e<i>c1le t•kes 

care of thas test: 

h!!l. x,b,error 

.call assignl,(x.b,y) 

,iq. 3.,. 3-4 ... 
y ... b,2!.x 

' t ! 

Effe.ct Of 
in ML-1. 

'' 'I 



-65-

The label "error" refers to some unspecified place we branch 

to if x has no b-component. 

(5) (selection) ~ (identifier) 

e.g._ c of a of y ~ x 

has? y,a,error 

has? y.a,c,error 

. call assignl, (x,y.a.c) 

is translated into the BL code 

(figure 3.3-5) • 

(6) (identifier) ~ (construction) 

e.g. y ~ [ a:3; b:nil; c:x ] translates into 

clear y 

const 3,y.a 

clear y.b 

• call assignl, (x,y.c) (figure 3.3-6) • 

! ~ 
l I 

~) i )<. ';I .:: 

~~ ~ (~ b 
~ . 

~· .t-, c. a c. d 4© ©© 

! ! I . ' I I 
)< 'i = ~ )I ~ 

h© A ' I ' 
0 b 0.. b 

~ ~ • Q ®. 

Fig. 3.3-5. Effect of Fig. 3.3-6. Effect 

I 
c;. • r-1-j 

a !, 
~ ' 

® 
of 

c of a of y ~ x y ~ [ a: 3; b:nil; c:x ] 

There is a subtle pitfall in these translations. Spec-

ial care must be taken in translating (assignment)s in which 

the left-hand side and the right-hand side both refer to 



-66-

cells in the same structure. Suppose, for example, that y 

has the structured value depicted in figure 3.3-7. Trans-

lating the (assignment) b of y ... y intO.the.BL code 

haei? y, b~ error . 1 
.call assignl, (y,y.b) 

will not yield the correct re-

sults of figure 3.3-8. Instead, there would be a nontermin-

ating sequence of recursive calls of the procedure assignl 

(figure 3.3-9). we must therefore translate the 

' 
Fig: '3.3-7. Fig. 3.3-8 

······ = 

(assignment) b .2! y ... y into 

h!!1. y,b,error 

.call assign!, (y,$temp) 

.call assignl, ($temp,y~b) 

I ! 

Fig. 3.3-9 

With this trans:lation, tbe recursion terminates because we 

ar~ :not updaUncir.tlle atructure:.$t.ldl\p"?d'1t'inq ·the process of 

reour,sively going through its oomportents. 

For other cases of "overlapping" assignment, we adopt 



-67-

similar translatiO.QS. For example, we translate the 
' ' ~. 

(assignment) y .. [ a:l: b:y ] into the BL code 

.call assign!, (y,$temp) 

clear y 

const l,y.a 

.call assign!, ($temp,y.b): 

and we translate y ~ L c:a of y J ini:X> 

has? y ,a,error. 

clear $temp 

~ $temp,q.,y.a 

clear y 

.call assign!, ($temp ... q,·y.c). 

Note that in ML-1, the translator can detect any 

occurrences of thes~ 11 ()verlapping" assignments and make the 

according adjustments. 

ML-1 !'1oyie 

As in the previous section, we conc),.Qde with .a P'OYi.~ 
• ,,, • 'A ... ..- ~ 0' , .... , ~ .. ~ ' • • • 0 

. 
of a sample ML-1 (program) ana·rts ti-a.nsla~ion into BL. 

ML-1 -. 
x ~ 4: 

y ~ [ a:2; b:x1 c:nil ]: 

.!& : 

.aetl (x,y) 
.• 

Cfnet 4f x 

clear y 

conat i,y.a 

.call asaignl, (x,y.b) 

cJ,ear y.c 



/ 

-68-

x .. a .Qf y; 

a £! y .. 3; 

x .. y; 

y .. [ 1 =a of x; 
2 : [ r: ni 1; s : 4 ] J : 

s g,t 2 st! y .. a of x; 

, 
! •t 

! 
I f I 

)I. ':I ).. y 

• • c\, ~ 

x +- 4 

.l!!! 

!1!11. y, a, error 

.call assign!, (y.a,x) 

bas? y, a1error 

contt 3,y.a 

• call a.ssignl, (y, x) 

clear y 

has? x,a,error -
. call aariqnl, (x.a, y .1) 

clear y.2 

clear y ... 2~r 

const 4,y.2.s 

h¥.? y, 2, error 

h!!l. . y -~, s,_error . 

bas? x,a,error 

• calf ~ssignl, (x. a, y. 2. s) 

has.? .xrc,error 

• call assign!, (x, $temp) 

.call assign!, ($temp,x.c) 

l ! . I 
.)c ';I 

'~ f 1 I 

~ I,, c. 

~~ • 
y +- [ a:2;b:x; 

· c:l!.!! l 



, 
T 
).. 'j 

& ± I I ' Q. 6 (, 

~~ • 
x +- a of y 

y +- [l:a of x; 
2: [r:ni!,; 

s: 4] ] 

-69-

' I I 

)<. 'j 

~ + I I 
c ... b 

cb ct 
a of y ... 3 --

s of 2 of y 
+-a of x 

3.4. Mini-Language 2 -- Pointers 

I 

c • 
o.. b (.. 
t i. .. 

@(V 

x ... y 

c of x +- x 

Mini-Language 2 (ML-2) extends the concepts we have de-

veloped and treats the notion of pointers (references) . A 

pointer is a means by which one can' indirectly access a cell 

and its contents. As with structures, there are two basic 

operations inherent in the concept of pointers: (1) crea-

tion of a pointer value which refers to a given cell, and 

(2) accessing the cell a pointer "points" to. We wish to 



-10-

provtcta· tor theae ope:tatiorui. wnile JX-••~ing the concepts 

and mecbWi:i.sma that have already be~ d.,,.loped in this 

cllapter .. 

InML-2, there.is a new cl°" Of ~.v&luaa. As 

with ML-1. calla can accommodate ll'UcceHive values of diff-

erent claasea. we will not, howe;rer, allow indirect refer-, . 
encea t'hro\a<Jh ivaluell which are not ;pointeJta. -

&, ' • 

one reap.ct in :w'hicli ti.e not:i.o~ of pointer d.i;f tema ,from 

.fnatiOft mut Che ce\l i:t re~!'~a to •. Prev~-~ ~o,ncepta of 

value had' .notliing to do wit.ti cet:J,•. . we •hala; •ee· some of 

the dif.ticUlt:Les caused by this extenaion. 

In this ttection, we treat ML.:..2 as an extension of ML-1. 

J{owever, it. is not necessary to include structures in order 

tiO 'b..tlla>· dae• n-. noti6n · .-r ~tU-.~ Ot* CO\rl&:- a-ltei:na

tti.velg ou" •~nctllna ft'Om..,ML-c2 · ed ftew' lt ·a• ·a direet· 

§Yntg gf 5-2 

The .. bt>«ed• po'X'tion of the ML-2 syntax is that part of 

ML-2 tltat deal-• with structured val.u~ .·and the basic oper

at·ions on tbem. 



l 

(program) 

(assignment) 

(expression) 

(destination) 

(indirect) 

(selection) 

(generator) 

(pointer) 

(construction), 

(field) 

Description 

. ·.. -

.. -.. -
: : = 

: : = 
.. -.. -
.. -.. -
.. -.. -

-71-. 

(assignment) : ••. : (assignment) 

(destination) ... (expres!rion) 

( destinat~Qn) I ( gen(;!r~tqr) I nil 

(identifier). I . ( in9:ire~t) I (se].~ction) 

.Y.tl (expression) 
,, ~. 

(selector) 2! (expression) 
--

(integer) I (pointer) I (construction) 

: := ptr (destination) 

. . - r (field) .,; •. '(fie1d) J .. - . . . I 

: : = (selector) =. {~~~iq11}· 

There are two new syntactic classes in ML-2. A 

(pointer), consisting of the symbol ;etr and a (destination), 
'' 

specifies the creation of a pointer value which will refer 

to the same cell as the (destination). The only way to 

build pointer values in ML-2 is by means ot·(pointer)s: we 

therefore classify the. (pointer} syntact:ieally ·as 'art ln-

stance of a ( qener~ tor) • An (indirect} ;<0onsis€in9 of t'he 

symbol val and a (pointer-valued) (expreettion}, ·:is ML-2' s 

way of ac.cessing the ".cell r•ferr:ed tto by f.a. pointer value. 

As such, an (indirect) is a. k±nd: of ·(~eat:fnat.ibh). 

-l } 

We have already seen all the other ML-2 syntax classes. 



S.emantias of ML-2 (in.formal) , 
, 4. "* 

A'il we need to give here are infbrtQ.l semantic rules 

·' 
correaponding to tbe two• new· synt·actic classes. All the 

other semantic rulea for 

ponding rules for MI.;•0 or ML-1. 

(1) (pointeJ)S: Tbis ki:mi«l>.f (·e~ression) contain's a 

(destination) and y.ie.1ds a ~.tder:t.'Vl&lue-whi4h·re£ers to· the 

( 2) < indi[ect >a: An ( in·direct) contains an. { e~ess,,i.on) • 

The value yielded by the (expre••ion) is determined. If it 

isn't a pointer, the {in4'J:ect) hU un4efinad value. Other-

wise the (indirect) specifies the cell referred to by this 

pointer value. 

is to vi.ew a cell's pathname (i.e. sequence.9.f selectors 

from the root node of the current local structure) as its 

------ -----------------



-73-

address. A pointer value would then be represented in the 

base language model by an elementary string value encoding 

the pathname of the cell pointed to. Under such a scheme, 

after executing the ML-2 instructions 

x ~ 3; y ~ Etr x; z ~ y; w ~ val y 

the environment would appear as in figure 

3.4-1. After the further instructions 
Fig. 3.4-1 

are executed, the environment would then 

appear as in figure 3.4-2. Under such a 

scheme, translation into BL would not be 

difficult. However, this approach breaks 
Fig. 3.4-2 

down in the presence of structures. For 

example, execution of the sequence of ML-2 instructions 

x ~ r a:2 ]; y ~ ptr a of x 

would result in y having as value the I 

, 
pathname "x.a" (figure 3.4-3). If we l 

Q. 

then execute the (assignment) x ~ 3, ~ 
x would no longer have an a-component; Fig. 3 .4-3 

the cell containing the value 2 would 

therefore no longer have the pathname x.a and would hence 

be inaccessible through y. In other words, under this 



I~ 
-- .. 

-74-

' 
scheme there is no way to provide for retention of cells 

referred to by painters. The main conceptual weakness of 

this scheme is that the address of a cell depends on a par-

.~·· 
.. tic;:.ulaJ; path of access to it. Such a dependence is to be · \ 

avoided. 

A second way to refer to a cell is by directly linking 

to it, that is, sharing it. It is imperative that the 

pointer have a separate cell for itself as well as the eel~, 

it pOints to. Otherwise1 after executing the ML-2 instruc ... 

tions x ~ 3: y ... ptr x we would h~ve a 

s±tuat.ton· as pictured in figure 3. 4-4 in 

which tb4!f (assignment) y ... 2 would err-

I ~ 
).. u 
I~ 

a> 
oneously affect x (we want to access x 

through y only by use of the (indirect) 

!!!.!, y) • TO. insure separate cells, we will make a pointer . 

value an: inf3tance of a structure, where the cell pointed to 

wi11 be .the sole component cell. Thus 

the result of executin9 the instructions 

x ... [ a: 2 ] ; y ... ptr a of x 

will be as in fiqure 3.4-5, and after the 

further ins.truction x t- 3, we see that Fig. 3.4-5 

the cell containing the value 2 is proper-



, ' .. -i!.· ~-'·, 
... , .. ,.· 

-75-

ly retained (figure 3.4-6). Note that we 

, ~ J x ~ have adopted the reserved name "$val" as 

~ • T+-> 

CD $11o.l 

@ 
the selector for the single component of 

' 

an ML-2 pointer value under our repre-

sentation scheme (to avoid clashes with i 
Fig. 3.4-6 

the (selector)s of ML-2 structu~es). 

Now that we have settled on a BL representation for 

pointer values, translation of ML--:2 'into BL is straight for-

ward. We only need consider four new cases of (assignment)s: 

(1) (identifier) +- (pointer) 

e.g. y +- ,Etr x is translated into tbe BL code 

clear y 

link y, $val, x 

(2) (identifier) +- (identifier) 

e.g. y +- x is translat~d into the invocation 

.call assign2,(x,y), where the dJilfind.tion,of the BL pro-

cedure assign2 is shown in figure 3~4-7. The difference 

between assign! and assign2 is t'hat assi<Jtl2 has additional 
' 

code to handle assignment of pointer v_alues, preventing us 

from attempting to copy the contents of a cell referred to 

by some pointer. An e:x:ample of the a§JSi,(jn;ing of a pointer 

value is depicted in figure 3.4-8. 



--- --.. :--1 -~,., 

assign2: .getp 

cl!!Ji.-

comp: 

struc: 

loop: 

elem? 

etinst 

ref HR 
h!!.!. 
.l!ink -

-.i:et\y;;p.: 

.getg 

-76-

(u,v) 

V.·. 

u,comp 

*U~V 

u,$val,atruc 

v,.$val;'u .$val 

(aasi~~) 

u,.i,out 

------------ ----

s.!S.£ 
.call ~gn2, f~.--i,·v.'•i) 

if?tO 

out: i•turn 
Fiqure 3.4•7. 

BL procedure 

~elf>~·;_: 

Definitien of the 
aesign2. 

.. _ ..... : 

, :F;.i..l!J:... 3-i"'~ •·c ,E~ 'd -
· the ML-2 (aa.aiqnment) 

._ ; .Yr--~ & -. wbl!rtn. lt' haaf'a· ---
pointer value. 

(3} {idall-.bifi'tr~ .. (indirect) 

is tran~lat8d' into the BL code 



has? y,$val,error 

.call assign2, (y.$val,z) 

-77-

(4) (indirect} +- (expression} 

e.g. ~ x +- 3 is translated into the aL code 

h!!1. x,$val,errQr 

const 3,x.$val 

. "'• . ~ . " ~ .. ' 

Using these translation schemes, it is easy to produce 

BL code cor:resJ;>C?nding to.,ny ML-2 (program}. However, the 

presence of 0~thT$tiappin9!t··.'.Usignments can no longer abraya · 

be detected by the.trarislatpr. For example, in the state 
x v-;- '"' '"" ',' ,: ~••' ' ;: .-."• ~ii-

b of y .... val x to resul.t. £n the state shown in figure 
,, '. 

3.4-10. The BL code 
I • ._·.., . 

has? y, b, erro:r; "{;' 

has? x,$val,erx:or 

• call assign2, (x~$v.ct.l,, 
$temp) 

.call assign2, ($temp, 
y.b) 

works properly. In 

other wards, tlle trans- <, 

.. ·.' .. 

,._-iii-____ _. 

J, 

lator tll\U&t p~o~uce BL code to 1'arfo~ extr' copying whenevEtr 
l 

there is a pt:)s•ibiliity of·mrert·ap~··:"1bi• 1•··r•jor source·:of 
= ., :f.~ .l "' :: . ; -~· ,' . ' . 
. . . . ..... ~ ................. .. . . .. - . 

inefficiency I since ov:~r.t~]~~_m:~y ·an infr~.nt event• 



ML"".2 Movie 

x +- [ a:41 b:nil ]; · 

y ... ptr b 2.£. x; 

-78-

.setl (x,y,z) 

diear x 

const 4,x·.a. 

clear x.b 

has? x,b,error 
~f (.°: <~~· ~· ,·,: ! 

ciaar y 

l!nK y;$¥1l1,,x.b 

v14!t.Y r S: }••& .. ;.v,..•••l~.urer 
const 5, y. $val 

t . ..,,,,: < ;., ' ... ' 

z +- [ c:y; d:va1 y: e:J?tr z J; 'bu? .. y,$vai,e:rrer 

b ·'.2!.x.· . .- 6; • 

x ... z 

prologue 

· • call ·:'aasf9ftl' {{y .;$val!, $t~) 

91915~.~ 

.call aesign2, (y,z.c) 
'• .· .• 

.call aaaiqn2,($temp,z.d) 

l,iQlf z.,e, $va1~·z 

h!!l x,b#ftrel!' 

c<m•t·6,x;.'h 
• cal.l a••ign2 I ( Z1 X) 

x ... [ a:4: 
b: 

..... ·1 ... 



-79-

j ·~ ' 

• .. ·; ( 

b .2!· x: ... 6 

3.5. Mini~Language. 3 -- Shar1qg 

a t- [ · eiy~<:4:t1ll 'Y~; 
e: -etr zJ · 

~· ' '.:i_ :. ":' 
. )i '· ·; '· c.; 

t l I . 
c. e 

So far in this chapter, we have pro<.:Jressed ,.~hrough 

three mini-languages in developing our semantic model for 

data structures and pointers. Althqugh ML-2 h~ndles all of 
·. i • 

these concepts, there are some respects in which the design 

we so carefully built up becomes cumbersome and inelegant. 

In this section we shall.look at some o:f the 'Weaknesses of 
'· d 

ML-2 and s~e how they reflect'a conceptual shortcoming in 



-80-

our design. The mini-language ML-3 is devised to remedy 

these deficiencies. By revising the notion of structures, 

ML-3 becomes not only more powerful and efficient than ML-2, 

but conceptually simpler as well. In fact, the entire ap

paratus of pointers that was developed in the previous sec

tion is subsumed within the re-definition of structured 

value. 

The main difficulty with ML-2 emerges when we consider 

the way pointer values are represented in the base language 

model. This is admittedly a rather strange way to examine 

the merits of a language, namely in terms of a representa

tion decision with respect to a particular semantic model. 

But the base language model is special in that it was spe

cifically designed for the purpose of describing the con

cepts of sharing which we are studying. So it is perfectly 

valid to use insights provided by this model to aid in de

signing mini-languages which deal with data structures and 

sharing. 

In the last section, we chose to represent a pointer 

value in the base language model as a one-component struc

ture whose component cell is precisely the cell pointed to. 

In other words, pointer values are instances of structures 



r---

-81-

whose components share with other data objects. It is this 

much more general concept of shared data objects that con-

cerns us in this section. The only kind of sharing provided 

in ML-2 is the pointer, which is a structure having exactly 
• r 

one component cell, shared with some object. In the course of 

trying to model aspects of real-world programming languages 

in ML-2, this limitation becomes a stumbling block. For 

example, the notion of -tuple in languages like BASEL is that 

of a vector of addresses, i.e: a st~ucture with an arbitrary; 

number of components sharing with-Other objects. In ML-2, 
. % ,. 

this can be modeled only as a structure whose components 

are pointers. These components, when represented in the 

base language model, take up an extra level of indireetion, 

which becomes a bit _clumsy. 

To give a better treatment to this generalized notion 

of sharing, we revise our concept of structure. In ML-2, as 
.-.,' 

in ML-1, the notion of structured values as being composed 

of components with (~elector}s ~_,v;aluea does npt <li'1".ctly 

utilize the concet,>t of cells. Cells are part of only 

pointer values. W'hat we've done in ML-2 is represent, 
'. . ~ 

pointers like structures but UJI'* a di~fer.ent set:of rules to 

manipulate them. This conceptual distinction puts the two 

----- ---------n-~-



-82-

notions -- structured values and pointer values almost at 

odds with each other in ML-2. we include cells in our re-

vised concept of structured values in ML-3; aa a result of 

this, the need for a separate class of pointer values van-

ishes. 

A structured value in ML-1 and in ML-2 was a collection 

of components, each consisting of a yalue and an associated 

(selector). In ML-3, we define a component of a structure 

to now be a (selector)-cell pair, rather than a (selector)--.---

value pair. The value of a structured qbject is still the 

set of its components. 

(program) 

(assignment) 

{expr) 

(destination) 

(selection) 

{ gener a.ter) 

(constructiQn) 

(fj.eld) 

{cell expr} 

(mociifiG:ation) 

: := (assignment) ; ••• ; · (assignment) 

::=(destination) ... (expr) 

::=(destination) I (generator) 
I ( modt£ica t.M:m) ·i nil 

: : = (identifier) f ( s~lection) 
::=(selector) .2! (expr) 

: :• (inteqer) ( const:ruetion} 

::= l (field} ; . . . . ( fi•J.d) ] , 

: : = (selector) . (cell expr) . 
: : = share (destination} I (expr) 

::= (eenstructiort) (expr) 



-83-

Description 

The syntactic classes of ML-3 are identical to those of 

ML-1, with two additions. Firs~, there are now two kinds of 
/,.-- . ·. ' ~ 

expressions in ML...;3: an (expr) yields a value, ·and a 

(cell expr) yields a cell. The only occurrence of 

(cell expr)s is within the (field)s of a (construction) 

(where there used to be (expr)s in ML-1 and ML-2). The 

rul,~s for evaluating both kinds of expressions are given 
. ' ~ 

·{I 

belo\~. The second addition is a new kind of (expr), namely 

the (modification) which yields structured o~jects built 

from ct.her structures. All other s~tactic classes are 

exactly as ~hey were in ML-1. 

The semantic rules for (program}s, (as11&ignment)s, 

(de~tination)s, (identi,f~er)s and {selttc;:t~®)~ ~~·et identical 

to the rules given for bq..~l. 'Dhe .~ining: e1e!J\$nt:;s ·~~.rent 

some discussion. 

( 1) { expr) s : The ocqurrenoe o.f ..,nil or of. a 

(destination) as an (expr) is..,han4J.,ed jus~~as in~O and 

ML-1. (generator}s are.~ither (intA'ler)A~ wh.,i.ch are handled 

as before, or (constt"uction)s, wh~ ~ .4.es.cr.i.bed ~n 

-' ;_ ~ ; . , 



-84-

rule (2) below. (modification)s are discussed in rule (6) 

below. 

(2) (construction)s: The semantics of (constructions) 

and (field)s follows directly from the new ML-3 notion of 

structures. A (construction) denotes the value of a struc

ture which is generated on the spot. A (construction) con

sists of a series of (field)s, each with a (selector) and a 

(cell expr). Each (field) represents a component consisting 

of this (selector) and the cell yielded by the (cell expr) 

(see rule (3) below). Finally, the structured value yielded 

by the (construction) is the set of components given by its 

(field)s. We make one restriction on (construction)s: the 

(selector)s of its (field)s must be distinct, or else the 

(construction) is invalid and has undefined effect. 

(3) {cell expr)s: The two kinds of (cell expr) are 

discussed in rules (4) and (5) below. 

(4) shared {destination)s: A (cell expr) of the form 

share (destination) yields the cell referred to by the 

(destination). This is the basic source of sharing in ML-3; 

shared (destination)s are used to build structures having 

components whose cells are already in use. It is this 

facility which subsumes the ML-2 notion of pointers. 



-85-

(5) {expr)s as (cell expr)s: The cell yielded by an 

(expr) occurring as a (cell expr) is a newly-allocated cell 

distinct from all cells in use and containing the value 

yielded by the (expr). Evaluation of a (cell expr) of form 

(expr) is the only way to allocate new cells in ML-3. 

(6) (modification)s: A (modification) consists of a 

(construction) and an (expr). The value of the (expr) 

(which we call the modificand) must be a structure or the 

indicator nil, or else the effect of the (modification) is 

undefined. The value yielded by the (modification) will be 

a newly-generated structure whose components are obtained as 

follows: 

(i) Each component of the modificand whose 
(selector) belongs to no (field) of the 
(construction) will be a component of the 
new structure. 

(ii) For each (field) of the (construction) there 
will be in the new structure a component with 
the same (selector) and as its cell the cell 
yielded by the (cell expr) of the (field). 

Alternatively, we can view each (field) of the (construction) 

as either replacing or appending a component to the modifi-

cand depending on whether or not its (selector) belongs to 

some component of the modificand. Note that evaluation of a 

(modification) may cause allocation of new cells, but it 



-86-

.c;-:~ ~.,ref f)r.?:,fJi.Sl\)· [.f~:-t'') 0::JffT ; ... ~!...:-!Sl.~~~~~-Jl-_~~:2.)_~.:?--~iL1Si::~~-.:?-'>_ '('~:' 
does not in any way affect the contanta of existing cells. . ~ . \ 

1 ··, .. ,. ::., .. -j,._ .. ,,--.I'ti:"'-vl'w9n .s, 2.:~ ':;o,.~, lls::>) ;;, Z.5 p1LL'.J':!rJ::)':)O ·~:;q~~''· 
~L !· I .•.J '·•' ~~ ~- ·•· ......- .. - ) " 1..-, • - _I;. 

Strictly spe~in9, (modification)• are redundant in ~-3 •. 
T l r f'f - f··· ,_., .. ,,_~ j'~~;··s.j:--:::~:-E.; 

<jtJj~S\7 ·:..::Hij prL.Cf!.i6:'.1nC>!"J 1.){'Lf~ :;~5?~! :·'1_[ ,~:~ .... i •·· .. :_: j~ ___ ,r:, .! •• ~.·- .. - -

If, ft>r example, the {identifier) x baa a structured value 
,._ "..l. '· f ( c· ,. ~:.•,- ·.·.·_, 1.·: .·~~·"" •.• \ .. f·' ·1 b•,'J.r r.::.\,.u:~.·-~· • i,r :re~ .. ;.~-~~-. :;_;~1-~ -~~-,.:1 ~<·;:~[\! 

H~ J: '_) ': -.l {} <, ·;,t ' ... ~ }'~ ~) .1... l.. .:-1 ... J , ~ - " -" -'- - ..... -- -- - ._. - -· -

with two components Whose {selector}• are a and b, then the 
.. f.- ..... ~~:;·J .;1.< 2l.lsr:./ ~!/:3n si5~)olit. (J:~ ~-{£1.1J >...1 Lr10 !:7rl:J -~·,.~· ,·1···:i--~'~ 

{modification) (b:31 c:sbare y} x will yield the same value 

atf" tlJe '{t.fbiiit-m~Y' ~ ifallitK~rJ~ a :a.st ci,}11§?.J( iJ':°~1 ) y] • 

. :1~~ Y.9 ', c;;;rfj 3 O '3td. f.,V 91{T 

BL Repri!tgtation 

;: J: ,·~~L;~~f~~~(~;\ a0~f~(~t-~;,~~:tX8;tff ,f:r~;cj ~ri.£~ ~~re:9P~F 

:~~~i~<?~o;~~J:~~t~rn~h:ii~o~~•;:.~Pf11~s~~t ~ttl~~r 

~:~r~o~~-~~~9~!~J~~~o~~~;e:~~f(J~~~tgf~f1scr~~IJ,~f! 6 

strai.qhtforward. simple and clean. 

·= C· Z f) 1 :J j :! . 
into ~-!, ;- -, '.tnsrro~rr!/Y> 

" ' _·1· 

: ,· 

_ _.;,:·-- -~, ·-'.. -w-·" ... 

· --, \ • , .. · . ,. (" • """'"~,. ~ • , , __ , .·, • .,· ,_·1. :.,.~·.~.,~.':; X :J ~L \/ .. ~ () -~~ :) J ,..;: ! ~) f;, .J ~-t.- .... 1 ~ t1.. .... "o. .... J.< ...l~ ::...; ...... · - - .... - - ...... l. 

are both handled as in ML-0 and ML-1. 

. .} \ 

'. ( 3_) },+~9,1'.'~i:f f :r~C~f/~; .J i,~~~~t~!~~f..)f: .: ·;' .' Li .L, :·J, 

e.g. y ;~ ~f i_~0 J=:;.~P!':~at,~?;- i:r:~ .... ~c~trf·t(~--,i~~~1+~¥~c',~ 

;h~ B~r,f~~~f~~!'e:r!:~~i.?;1;:,, is P.~;t*f':r~"'-~;~ ,trfN4' :~1'.?rTdr1·:,c:~!c· :'. 

code • ia, ~~. ~~-~ ~~s•r:of 0 t~~.i ~~~~~~U.",~,: rr~~i,?fr~ tf!eJ ~-~LAA?.'. 
integer va·l:u•• O·f the ·source (identifier) x, except for the 



-87-

the presence of the same? x,y,out test which makes sure 
... : .·': " ,: . ·' . 

the (assignment) is nontrivial (otherwise the clear in-

struction would destroy the value we want to kee~) . If x 

has a structured value, then y will get the same structured 
I , • ? 1 • ·~ ;. 

value. This means, by the neW·d~finition of 'structured 

value, that the components of·y will now share with the com-

ponents of x (figure 3.5-2). 

assign3: .getp (u,v) 

same?'.· u, v ,out 

clear v 

struc: 

out: 

nonempty? u,out 

elem? u,struc 

const *u,v 

return .. 

getc u,i,out 

~- v!*i,u.*i 

got·o 

re tum 

struc 

Fig. 3.5-1. '·Definition 
of the BL procedure 
assign3 

In executing any (assignment), 

Fiq,.·· '31. 5;..2-~ ' Effect of 
the ML-3 (assignment} 
y ..... x . ~n X" bas a: 
structured value 

the coAt.ents of exactly 

.2!!!, cell will be. copied. 

compon~n~t ceJ.ls cire now . . ' '• ' 

shared~ not copied. Note 

that this is a vast gain in effic~ency for ML-3 over ML-1 

and ML-2. The "meaning" of the (assignment) y .- x, then, 

differs between ML-1 and ML-3. For example, after executing 



-88-

( " • ~ l , ' ' ' 

the inatructions x +- [ a: J.; b:4 ] ; y ... x: a .2.£ y ... 5, 
:, ..... , . 

then the el<preasion a .2! x will yield the value 3.in ML-1 
: '··: .'~::...:;:.,.:~ ~) J -~ ; r.:: < :i" ·,·.J ... ;. L ; : 

(and ML-2f, but will evaluate to S in ML-l. 
: .. ' f f -~ ·~; _._ !. •· 

e.g. 

has? x,b,error 
'· "l' ~~· ~ - " . ·, 

•, ,. \,' .. -.• . - ' 

.call assign3, (x.b,y) 

~·i ~.:~i-r~r ., ,,, 
"". " ., •• i.--· 'f • • ' : 

.•• q'l_ ~-~~(~(~f) 

- -~ ":·. , ·-~ " .... : T~-'i -~ 

e.g. .Y +- :t~.o~~: d:.l:> ·2,f x; e:ttia1c z ] is~~~~1slated into. 
~- .. 

bas? x·;b,error 

.call assign3, (x.b, 
.i~:NIP') 

clear y 

.call 

• ca'.3:1 

lin)S. 

assign3, (x,y.c) 

zlattitJh3';'i$t•~~~ · :·· .. 
·'.¥;d) 

y,e,z 

'· :~' .{ ' u 

i; Fi9 .. 3~·s•3';·· lH!fect of· · 
y ... [c:x; d:b .2.{ x; e:share z] 

. : ,.1 .. · .in ML•J .:i1· 

Note ~~at ~"V,~~l~~~~~~,i~ a'3-s,~gn~~~?,;s ... P?•e .. ~~ ~;~~~~~ ~t .•l+ 
for stat81MM'lta of types (4) and (5). This is due to the 



.~;;:- -- -

-89-

fact that component cells of a structure are no longer. 

copied on ass..:i,.gnment. However, we do need the use of temp-

oraries in (assigrunent}s involving (construction)s, for 

instance, to take care of the case when y shares with 

b 21 x before executin9 the (assignment) in example (6) 

above. 

Finally, we note that pointers in ML•~·bave been sub-

sumed in ML-3. In place of the ML-2 ptr (destination) 

we can write the ML-3 (construction) [val:share /destination)], 

and wherever ML-2 usee .. ~ (expr), ML-3 substitutes 

val of (expr'). 

ML-3 Movie 

ML-3 ~ 

x ... r c: 3: d =. ni 1 1 : 

z ... [ a:4: b: [ q:c of:x: 
r: nil ) ] : 

• setl (pc, y ~ z) 

clear x 

J:,x.c 
' 

x.d 

1!!t!1 ll,-c,error 

.call nai~3, (x.c, $temp) 

clear · z 

const 4,z.a 

clear z.b 

.call assign3, ($temp,z.b.q) 

_clealj' z.b.r 



-90-

y +- [ p:share x ]: clear y 

~ y,p,x 

p of y +- y: M.!l y,p,error 

.call assign3, (y,y.p) 

y +- b £1 z; ~ z,b,error 

.call assign3, ( z. b, y) 

x +- [ b:S ] z; .call assign3, (z,x) 

const 5,x.b 

z +- [ c:share q of y ] z: ~ y,q,error 

~ z,c,y.q 

y +- [ a:b of z: c:share z ] x: has? z,b.error 

.call assign3, (z.b,$temp) 

.call assign3, (x,y) 

.call assign3, ($temp,y.a) 

link y,c,z 

tt ·• ! , .. 1 ~ 
, 1 I I i 

x )I. ~ t )., ~ 't 

~ • • fici • ~ r11 • n 
' " +r1--, ~ • ~ G> <i. ... 

<h ' 
prologue x +- f c: 3: z +- [a:4; 

d:nil] b: [q: c 2.{ x; 
r:nil]] 



y ... [p: share x] 

-91-

• 

.-f I I 
(.-' " \I: 

z +- [c:_!)pr_e 
q -2.t y]z 

3.6. Discussion and Examples 

. ' .;, 

y ... b of z 
--------------.----·- ··--' 

~· .. ; fad:> ~. z: 
c:share z]x 

' > 

In this c:hapter wehave built up.a, hierarchy of mini• 

languq,ges. culminating in ML-3~. we-now relat.e't'bis develop-

ment to the main issues tbat,were~r2:'liaed in Obapter 1. A' 

major concern with respect to a given "real•wotld" program-

ming language is the effect of its asaignment operation on 

an environment containing structured data 'objects. We know 



-92-

' ' ' 

wil). ruulit in the i.dentUi•r· X?h~ing th• va1u~ aasb¢'iated 
~' ~ 

' ,,.. 
with·' the expression e. ·Wat is unc•rtain ia ~· effect:·.:t)f 

,;.- I ( 

sueh an assignment upon the sharinq:relation~ips among the 
. ~· ·~ - ·.~... ' ~·~-·- ,._ ' -

properties ~an in general induce differences in the effect· 

We -~ili:ve an e~~,. •dapted frQJia [Bur 68:J • The on,.ly 
l 

· "'.a~tti ai:ruotate• in ti'be ··h:~~ .i'tri.11' ~ Li.~':ti~ lists 
' . ' --~· ... - l --;, ~'-;' . . ·- ~ ~' ; 

wit!n'· two compQnents ae1ected by th• reapeictiv•. selectors 
j. "'. 

: " -

1-anguaqes: · L1at-Alqol:, '\ilffi<:li ao.mtilne• JU.GOL 60 assignment 

with atructures essentially equivalent to LISP liats, and . 

I SWIM ( ".!f you §.ee What 1. Mean") , which ia based on the &•IJle 
~ ,, .. 

functional lambda-calculus notions aa LISP. In both lan-
' 

-heao i.a t.b•.:·fl.Jta~ "•r'JUIHB.t ana 11111o .. u.t1.~t•1 :t.Jae seeend· a!l"qu

rnea.t: the ·.•1f\1neftions · l!.t!! ... and 't:ail . .;•e&ect ~·tba .. Oompc>J\enets ftam 

a. liat"' :euetall"'•·,twcr·~prc;MJraM aHqa'bOwri ~:t.w f1CJ1iftt• 3 .6 .. 1~ 

assignment to x." Thi• explanation 9ivea little insight 



·-93-

into why there should be such a difference in the first 

place. The obvious diat.ination. betwe'*1 th~ . two .:programs-

_ .. -------, 
Program.A: Liet:.-Algol Program B: !SWIM . .....:.:.... . . . -. ,..r ......... .. ,. ·r., ., ' . . . 

l begin li!t x,y7 print lt,t x=undef and y=undef; - ' 
2 x ·- CONS ( 1, .!U:.!) ; let"X = COJl! { l·; ni·l) ; .- - " 
3 y := CONS (2,x) 1 tet y = cons ( 2 r?C) . ' -: . ·~"',,1:•4!! . 
4 HEAD (x) -~= 3; I ~x = coij• {3,'ta:tl·.(x)); .. , '. . . ,r.f " •" 
5 priqt(HBAz:>(TAIL(Y))) i . r~,IN~ h••d <li!! < r) > ·: 

; . 
,i ' 

~ 
. ·F~i9. 3.6-1. TWo sample pro9_;a~ with 

. "~. ~ 
dif~J:~nt effects. 

.--.·~ 

', ,.i 

lies in line 4. ISWIM, bein~!'i .f\lnc.t.~onal appllca.tive .. lanj,., 

guage, has no direct counterpart to the X.ta·t,..Alqol component 

update statement HEAD(x) := 3. But this is.not the root of 

the semantic difference between the two programs. Burstall 

neglects to say that even if we change fine 4 in Program A 

to x := CONS(3,TAIL(x)), Program A will still print 3. 

The source of the trouble lies in a subtle difference 

between the cons function•. in the tWo l~ngu"g·~·. we can 
I 

pinpo~nt the distinction by translating_)gth·P~9'J:"1Wl~ into 

ML-3. Line 2 it:i 'Qpth programs C8Jl be/tran,1aied into 
:·~1 . { ·'' ' . 

x +- [ head:l1 tail:!l!! ] , with the reaul.~~,.9 environment· as 

in figure 3. 6-2. Line 3 in Program A, i•,,~tvalent to tbe 



-94-

in P:t:oqram Bis equivalent to y· ... [ head:21 tail:x ]. The 

.respectiv:e :r:eaUc1ta .u •. ahown in ti9H'e$ 3,,6.:_3 and:·3.6-4. 

' 
h 

k. 

Pig.' :L6-2. Fig. ·:r.6;..3-. .. 1'19~ .. 3 ·~ t»-4 .. 
State after A:fter line 3, 

' ' li!l• '• 2 ~ .• ~..,...P,..x:.._:'.O._, 9;:,..1..,.·. 1111""",""' . ...,. Ailoil. ~ .... ! . ...,. -..1' :. i 

After line 3, 
i Pro«grara. B • 

Finally, tbe ;evise,g line 4 for Progr~ A, which reads 
~ '"::)' 

x :.,• CONS(J,TAIL(x)), is equi'l>'alent to the ML-3 statement 

x +- ( head:3; tail:§l\a,re tail of x }, while line 4 of Pro-

gram B ia equivalent to X +- f bead: 3: tai~:~ail of x ] • 
• ./ , c ~ 

The respective .r;esults are shown in fiqures 3.6-5 and 3.6-6. 

F'i.q-. ... 3 ... 6'"°'5" ·· &fl=le:!r .·new···. 
line 4~ PlS'ogra A. 

Pi'cJ. 3 .·&-6. : A~·. 
lin• 4, Pro9'ram B. 

.. ; .::::-- ·- --- - - --



-95-

we can see that the ML-3 expression head of tail .Q! y 

yields 3 in figure 3.6-5 and 1 in figure 3.6-6. 

The difference between the two oqns functions in Bur-

stall's two languages should now be clear. If an argument 

to .£Qn.! is a constant or n.ll, both langua9ea specify allo-
,; ."! 

cation of a new cell to contain the argument value. But if 

an argument is some identifier, the Lisp-Al9ol CONS yields 

for the corresponding component the argument's location, 

while the I$Wnt .$.9ll!. yields the a~g\1lll9'1t'&.ya}ye~ This 

property of the I$Wl~ cons (unct;iQn ia .~~~ .. lic::itly· .e:tated 

in Landin•s descriptions of,-,I~J:M,-i~n'.:t~,. ;.q,,O.$, Lan 66a]. 

In fact, the only, place f;:om .which ~hill _pr~e~ could Pe 

readily .ascertai.ned was :i._n Bur.atA+~' a .•t:,A~Qit. ~t .. PrQgJram 

B prints the value l. The ML""4·.~ into whil:P we ... t..t"ans .... 

lated the statement~ of the two pr.Q9r~-w-.. ~~mined only 
... ' > ·' ., 

from the stated reftults of -tllose: ~g.i-~. What: is to be 

concluded.from this is not that Landin was a~ppy or vague 

in his language desi.gn and defi.11it;J.on, · l>ut %'&tl\er that thit 

language definition methods whic}l u..e .,ao, \Q,dely, u-~ep. ~· it 

extrem~ly difficult to ~tract·,8®Mt of t1"a;~,QpeJ::ti.es of 

signifi9ant prac.tical ilnportance. · In o~i-· words, a lan-: 



-96-

stood and better specified if it defines these facilities in 

some manner which makes clear the specific sharing relation

ships among locations. 

In the remainder of this section we shall use our mini

languages to talk about the data structuring facilities ana 

mechanisms of several additional programming languages. 

The language PAL [Ev 70] supports only one kind of data 

structure: the tu·ple. A tuple is a structure whose selec

tors are consecutive integers starting with 1. As with 

ML-3, the cell in which a component of a tuple is stored is 

considered an integral part of the value of the tuple. The 

PAL expression 4,5,6 specifies the construction of a tuple 

whose component~ have the reispective values 4,5, and 6; as 

such, it is eqUivalent to the M.L-3 (construction) 

[ 1:4; 2:5: 3:6 ]. Selection in PAL is expressed by juxta~ 

position; if the tuple value 4,5,6 is assigned to the var

iable x, then the PAL expression x 2 evaluates to 5 (it 

selects the second component) . This expression corresponds 

to the ML-3 (selection) 2 of x. The correspondences we 

have established are summarized in figure 3.6-7. 



-97-

The concepts of value of a tuple in PAL and value of a 

structure in ML-3 are very close, and we might expect simi-
; :•. 1 

lar assignments to behave similarly. This is indeed the 

case, as figure 3.6-8 confirms. 

I! I X := 4,5,6: PAL 
)'. ~ y := x 2 

-3 r i 1 ~ 
~~t x ... [1:4:2:5:3:6): 

" .+- '2-·o.f ·x ....... . "'. ' ~ \; .. · 
Fig. 3.6-7.. Constr~on, -

and selec~ion,.lri 11.At.". 

- , ~ 

; c, - :' • .:3 -' •. " . 

·' 

x+.[1:7:2:8): 
y .. x 

Value of . 
le in PAL 

' 0-···~_,,~t,,...._, 
PAL has a semant:,ic,'1Jle t.b~t.c~m~~nts of a tuple 

share with the items in-·t.'ha· 1L41.~--.~ion that constructs 

it: an example of this rule is shown ~n-.. ~!~~~- 3.E)-9. This 

sharing -can be blocked u~in~·the: PAL un#bare operator ("$"). 

-·-~·· ! ~ . ' 
Figure 3.6-10 gives ane.xaiup+e of th.is. 

i ! I X := $,6: 
~ 't y := x', 7 r1V. n .,_ __ _.....3 

t t li ' x .. r1:S: 2:6): 
©. ,©.' (!) y ... [l: share x1 

' 2 :7] ' ' ' 

Fig~ 3.6-9. Sbat'irit; in 
PAL tuple construction. 

p 

-3 
[1:5:2:6]: 
[l:x12:7] 
.;:-;,,· 

''t'f~.' ·1:16-~l'.1Y. ro/s11del<:ih9 ·of 
sharing in PAL. 

,,. _.,.__ •• ~ - _. • ' >t r' - . 



-98-

we discuss one more feature of PAL: the aug function. 

If tis an n-tuple (i.e. tuple with selectors 1,2, •.. ,n) and 

e is any expression, then the PAL expression t aug e 

denotes an (n+l)-tuple whose first n components share with 

the components of t, and whose (n+l)-st component shares 

with e. Examples are shown in figures 3.6.11 and 3.6.12. 

' ' I x := nil aug 3r PAL 
x 'J y := nil aug x 

~cr ML-3 
1 i x ... [1:3] nil· _, 

y +- r1:share x] nil 
Pig. 3.6-11. Example of the 
use of the PAL function aug 

' 1 
x := (7,8) ,9; l :eAL. I I 

)l , 
~ z := 5,6; 

~ ~ ill~ y : == x aug z .----. I 

00) 3 J> 4 1Mi-3 
x +- [l: [1:7;2:8] ;2:9] i I 

J,© z ... fl:5;2:6]; 
y ... [3:share y] x 

..... -.. --.,., ... _, _.,..._.,..._..,._.....,,._ 

Fig. 3.6-12. Another example of aug in PAL 

The above features illustrate nearly all of PAL's data 

structuring capabilities, and they are easily expressed in ML-3. 

Even though the data-structure facilities of PAL bear a 

strong resemblance to ML-3, we have given a demonstration of 

--- ------~-~---



1····' "'-'•"'"'.· ....... ~ ,, 

I 

-99• 

( 

a full-scale, real-world programming lan~uci9e w~?#ile _d,ta • 
. . ~ - , . ' . ' ' 

structuring mechanisms have been successfully treated within 
~1. • \ ' ·:. 'j:' . . ,·, ' ' . • 

our model. we 4isauas two more lanc;1U~ges,. . .. _ 

The language QtlES'l' {Penn 73l provides'd~t~'struct\lres 

called lists that appear very much like PAL's tuples (see 

figure 3.6-13),. aowev,.r, the defrinitiQ of aee;.tqnment in 

·~T tJ."Mta liate as 

• x ... 3,41 QUEST I • 
). ~ y ... x(2t' 

,i..,<SJ·· ~ '--' 
3,41 x := PA1' 

I '%. 

4 ~ y :~· x 2: 

x ... [1:312:4]t ML-3 
y ... 2 of x - ~.ii.ally-, , to , a ti-eataent 

Fig. 3. 6-13. ··Lists in QUEST. 
,;_..,_ ·::::-.. ------· 

" 

ML-1 treats structures. Componttnt.;. valu•H•· Alte copied· on . 

assignment rather than shared. Figure 3.9~14 pre•ents an 

example. Note that componentwise copying is coded in ML-3 

Fi . 3.6-14. Co ing of components in Q:<JEST assignment 

------ ~----------- ~---



I 
I 

-100-

by repeated. cOritponent updates, reflectin9 a lack of effi-
~ ·• . ' ~ 

ciency. · QUEST assignments, unlike their counterparts in PAL, 

cannot be directly tran.~lated into J.iL'..:j without knowing run-

time values (i.e. exactly what component• a structured'·~•l.'lile 

possesses at any .';liven tiJne, so ,t.hev:,~ be l.nd.ividually up-

dated). 

Like ML-2 ,. QUBS'l' hatiales :abaril\~" fttirely' by means of 

appreeialrbF di'E!erenoe be-' 

pointers and those in ML-2. 

Translation': itatto ML-3 woulll 

be trivially easy. 

For the inte~ested reader, the paper on QUEST [Fenn 7~] 

specifies a wa.y to express general ML-3~ike- structures in · 
! 

QUES~ usin9 lists atid references.. OUISl' fun~tions . .£2!1!, £!£ 

and a.di: a:r:e,definedl:, and it is clailli!(J.tha~ tl'V!y,si'1u1ate 

their LIS:P .caun1terparts. The simql.•t;ion tequit-es an extra 

level of ittd;itec~ion tbroughouti '1· maj&r ~f.fieienc:y (fig.; 

3.6-16). Thus we see that using our mini-langua9es, we have 

-~-----------------



I I 1 ,·; 

-101-

not only able to illustrate the data structuring semantics 

of QUEST, but we have also perceived a shortcoming in the 

design of QUEST: lik~ }·~!~"":~' QUEST. 'fails ,,tO' r~ognize the 
'~.. _.,' .. 

fundamental significance qf the conce~t of .sha;ing. 

' UEST 

SNOBOL4 

In the· lan_guage SNQBOL4 jq~is 71], one,J;~nds data 

structures called "programmer-;:defin~4 d~1;-~ type• .... 1 .An in-
• ·, : -, . : ~·. t.-- . • " ' ·, < . :- • .' ' 

vocation of the function DATA caµses ~e,lec..,t;q7,:~nd c~nstruc-

tor functions to be. defined. Por ~~~-'' :tbe i,nvpca.t~on 

DATA('COMPLEX(R,I) ') defines the const~ctor function 

COMPLEX and the associated selector functions R and I, 
. ' . . -.. ~ ': 

setting up the correspondence depicted in figure 3.6-17. 
''): 

Beyond this aspect, in which theee·s.:>BOL •tructures behave 

exactly as do all the structures we h•ve seen in other 



-102-
.----: '\ '. 

languages, the sharing relationship• need to be considered • 

..... ~-··-·- 'f 
'1.\1 

\ 

I ....... 7-·- ....... 
;.. : 

.. 
; . _·_ v ... , t· • f~ .? " .I ~ ~ ~ . ,' 

But seman~i-~.-~~~~~---~~-i~~,,~-~.::~~-t~~n ·!¥~ _.roperties 

are *°:t ~ ·i*Ji~Jd"?l :iJ~i4'~A; '.\-i'j, ·i~t\...can. ·w aee~ are a few ~ ~ ; ~ : ,: -.~1' ! ~-·' \:~ ~ ___ _,... ! 
. . . ... . ' ,. . .. I 

exampleet.': '~Aaf.:~i.:bi~ ~: .i. 6a.t..itu.J. · exhi na~.Man·-~·__.be exam-
;_,;':~ .. J ~-: T j ~~l -:} ~ r{:Li: j 5.I -.-': .. 1r: '• c 1 ·"'·C 4< [' •• •• -.~q 

ples is ·required·· to .. proauce. a 'Cijrial:8'tent--ana unambiguous 

ML-3 representation for the data atructurinq facilities of 

SNOBOL4. Soaae detective work is needed here as well: each 

of thti 't\lid';l*io~8:'.'[Gxii'.·s iil~tirit;1ff ·pi?dJta4'io; 1iri~li·£iicient 

·1n·formatitftrCf6' nfa1t~) itt-~1+ 1l'aeit'•iliil1ri~ifb~ ;: 1'J€' :u.:1ii~' :both 
toq•tner ,;-,,~~6u~fii~~.¢'rt1~s·'b~ifb9~·1~~ih~r•d-''~Q ~~~or./e 'P6~'8ib1~~. 

The translation into ML-3 may be atraiqhtforward, but a 
· :·, 5·.l ~.:·~1t:.) r j·~.)r-11:.r:t '1()J·.:~sJ>s:·3 b~J£~ £.:>t.Jt~~·~~.f~ ·~~rfj ~)f'<is )":-·£ ~ .. ·~i/:~_;.~; 

number of other possible translations which would result in 
~:<i 1rt:~' .t} \Il ~)0 ,j ':.) l. (f ~~t f; £:1- ~)(!!)!'.:.Li":! CJq ;:~ .~f ".J ·"- ();:... :Jtif :1 q .lJ t:~· rY j ~:Y ~~:.~ ~ 

different sharing properties were ruled out only after 
~ ::<i r)·.~t::-:Jrt"1,1 a ,J :,Jfl £)£.1 c: s,u9rf j rf:"" .... 1 f.f~•.,t' d ~t 11 :i·:~·:)q: 8£ a ~t rf j F-~r~ c1 

/ • ~ _ 

painstaking examination of the examplea in bot:h book,•.· 
,·;c;J,_,, :u fff;''.;l~. f!VErf ew ?.9".f[Jj!'.)u"'.l:jB !:Hfj .LJ£, OD ZS v.1.·.: )h/'.~) 

surely a diaeuaaion of sharing in these bodks could have 



-103-

shed much-needed light on the semantics of data structures 

in SNOBOL4. 

qo,mplet;@PetJ!. 

I 
.. 

'Ii 

': .:: . 

! ., •,, j '. 

·<: .. :. ··~· .. r .: :;.•J: •'. --

' ~. ~ ; ~ ··~ ···, 

In this ;ebal?t~r, we de{1b'.~ a ·•et:ii;isi, ~f mflffi_:\'~n9f&.,qe!s 

ana :used ·t:bem~ to ~1 a.ta: 'at:rii<:~uri~~u~ilcrlfti~i'~tk ~lir~e 

repr~ae!itat!ve . pxioqrammlnc} Iahqu-aqew/· An i~pbt~ahtt question 

to' ask is hOW CciiP~ifte·/oU~r.:·' ~•lfAg'.;>'1* .'X{'ln oth'~r Wordi: bOW 

thorou~hly have we -dbvered tli~i:r·f,prijilbblla' to d'at.'a •trii~lJtes 

found in these th'.ree'' iarig.uaq=~r-7::.•::il.0 ·~i¥it' ~l~~e-~'. our t:t-eat-

-y " 'f. : f 



-104-

data structures. The fact· that our mini-languages lack 

character strings and conditional expressions, for instance, 

does not reflect on tbeir CC»tl.Ple~ass for describinCJ data 

structures. 

In'PAL, there are on1y·two notiona..we bave noit. covered 

which have: a' direct bearil)g on d&ta ;s.t.ructures. First, arb .... 

ponents from a·tuple. For example, the selection x n re• 

fers to the component of the tuple x whose sel'eOtQr: is the: 

vaJ.ue,, 0£ tne. variable n. Thi-.; cannot be·. t~_,.a.lated into our 

mini-languag_,, whic)'l allow onlY>$¥?!M!~t (Sill&c~or)s (the 

ML-3 (selection) n .s?.t. x would. look for a conq>Pnent . .with 

sel~ctor "n"). The aec:ond, uncoveJ;:".a ~tta:tM+e :i.n PAL i.s the 
' . • . ' ; • ' : ' ~. l' - '. • ' , - . 

built-in function Order., which when <,l91>lied t.o a tuple 
: . - ' . . ' . . ' '' 

yieids the n.umber of cotnponents in the. '\:Uple" 

syntac~ic and semantic simplicity of the mini-language 



'~-.- ----'.., .,,_ 1f -··' 

-105-

approach. 

In QUEST, the only data-structuring features we did not 

treat are the use of expressions to select components from a 

list, and several built-in ~c,tione.: ·tbet _e>perate ()n lists. 

As with PAL, we feel that the is.sue' raiaJ:td p~r~ are outside 
...: ..,,.: . 'r\· . ·~·-.. _. ~ ,. __ ' .>: ' 

the area of our main conpern. 

With SNOBOL4, we com.plete.ly. nei;J.J.ected the area of 

arrays. ··Although arrays. are ,bighl:yc r~t to the iS&Ues 

we· are interested· in, they ::preaent some difficult problems 

for whose soluti'Ons additional. medbani.sJIS are• 'needEid•· 'we· 

discuss some 0£ these problems• in Cbapt.fer· ,5. 

The three languages covered in this section are all 

"typeless" languages in the sense that there are no dee-
. - - ' - ,. - ' 

larations associating identifiers w1.t'hparticular data 

types. 
. . . ' . .. . : . -: . 

In the next chapter, we deal with "typed" languages 

and some new ·semantic· issues they introd.nce. 

:--\ 

,I 

I:.. 



-106-

Chapter 4 

rn this cb·apt~r W'd .. will ·ad'd a new ·iac~itC to· tM ·design 

of our previous mini-lanqua9e•. · ~cstlit:!dti:t t!lle ML:...3 

( ass~nt;} y +- >b Which direca· tl1at Uh•).·:amil:.ents of the 

cel-1 £or x be p:lac.ed iniuo ilh•··aeli,·'~ y,.; , ,wv ibrans1-ted 

this (urigr~) i.Aizo an ~aG;f;cn Of tftm: ;SLf :p:ocaduree 
·.- '-

formed to ch.eek Whether the cell ~qr ,t;~ 1 ;~~r.~~ P.a:i:;~t;tter 

(whic)'l corresponds to x) contains an integ:er 9~ a,_st~u.c:tµre. 
, I '. -·""., ' ; ·.Jr j;;. , . ~ ' . . "'.' :.:,. • ; « .· :. ,' .,· 

The set ot.!JL instruc~,ions _7hoaen to ,?!l1"~0~ _the assign~nt 

operat+on ~pe~ds .?n the. result of ~~~' .~~~· 19 . ln pr~c-

tice, however, a pro9;ammer will u•u•l~y ~9,'!'1,i~ ac;ivance 
' - • .• - f ;:;_ ~ - ;.' • , ' : .:-; ;, ·; ' , 1 : ~: ., . • • ,,., 

whether the identifier x will take on inteqer or structured 

values. 'l'his knowledge make• these runt.inle type tests in 

assignl superfluous. We would li)c.e some way of telling the 

translator not to make such testa where they are not needed. 

The technique of static tmcucking achieves the$e 

goals. It:.• basic idea is to partition the set of values 



-107-

into convenient subsets called types. The translator can be 

informed of the programmer's intentions of keeping values 
. ' 

only of a certain type in some given cell. With this know-
'.,: 

ledge, redundant runtime type tests can be eliminated. But 

it is still necessary to prevent type errors. For example, 

suppose we tell the translator that the variable x will take 

on only structured values. Each time we access the value of 

x, the BL code produced by the translator will fetch the 

components of x. If we somehow place. an integer value in 

the cell bound to x, then during execution the interpreter 

would attempt to extract components where th.ere are none, 

yielding undefined, probably erroneous results. To prevent 

such type errors from occurring, we would like to have the 

translator test each (assignment) to make sure it couldn't 
i 

specify the placing of a value of one type into a cell in-

tended to hold v.alues of amother type. Any (program) con-

taining (assignment,)s which fail thie., ·t•t i• inval:id: the 

translator will notify the user. of s-qoh,; ~,,,-.J:11or i.n the s:ame 

way that it flags syntactically erroneo~s (pi:99r1Mt}s·. 

In testing (assignment)s ror vafidity, it will be use

ful for the translator to know for each (deatination).the 

type of values intended to be stored in the'a•sociated cell. 



-108-

This criterion can help us decide how to partition the.ML-3 

values into types. If we divide values into just two types, 

integers and s·tructures, then the above criterion is not al-

ways satisfied. S\lppc>se the (identifier) x is specified as 

assuming orily structured values. Then· the values yielded by 

both of the (expression)s [ a:3t b:4 ] and 

[ a:3t b:[ c:S: d:6] ] can be stored in the cell bound to 

x, but we cannot say anything about the. type of the 

(destination) b gt·. x. In one case it has an. integer value: 

·in the other case, a structure. Thus finer type 

classifications are called for. we will want to ascertain 

from the type of a structured value what components it has 
' . ' ~ . .,, 

and the type of each component. Suc:h a type system is the 

basis for our next mini-language. 

Mini""Lan<JUaqe4 (ML-4) adds thenotioris ol data types 

and s:trat:iic· t~edk.in<J ·to the· coneel>€S' *· aevtt·toped irt th'e 

previous: <?JA:~~H:'. Specifi~lly, · ±t; · i!s· an e}(tenaion to ML-3, 

associating to every (expresa.ion} ~·:to . .,re~~ ce·ll a· par-

ticular data type. For our purposes, ~·C~4er data types 

as sets of values. The set, of inte;ger,• a•.afl ~ ... 4 data 

type. Further, the set of all structured V·alues witb a 



-109-

given set of component (selector)s such that the type of the 

component associated to each apecific (Jt«~cuo~~- ia, ·qiven 

~lso is an ML-4 tY;Pe• With this collect~~.f ~ta types, 

if we associate a type to each (identifier) ·mentioned in .. a 

(program), then we sha11 be ab~ to 4e:te~~ntt _·~be type asso-

ciated with each cell referred to in the (pro<1ram). More-

over, for any particular data type, one·.oan ·determine whether 

the value· yielded by, a given ··{ ezj>ression) belongs- to this type. 

Syntax of ML-4 

The rules here govern the syntax of that part of ML-4 
... 

which· is not found in·Mt..;3 (namely the t~ ayseem)'. we in-

troduce the new primitive syntac'ticf ciaaiai (t:ypename)' to de

note the set d·f underlined alpbilnufaeric ~ttirig$ beginning 

with a letter. The distinguished (typehantftY !!!! has partic

ular significance, which will be aiacussea''tieiow. 

(pro9ram) 

(prelude) 

(defn) 

(structype) 

(comp decl) 

(decl) 

. ·.. -
;:= 

.. -.. -
: : = 
. ··.. -
:c= 

(prelude) ; (assignment!) ; • ~.; (assignment) 

(defn) : •• .; (def'1)·: (deel} ;: ••• ; (decl) , 

(typename) = (struct~) 
• ;. • ::·:· < 

[ (comp decl) ; ••• ; (comp decl) ] 

(typename) (selector) 

(t~me) (identifier) <f.,•••'. lidentifier) 
' .. . 

The remaindex- of the ML-4 syntax ie.identical tQ--the syntax 

presented for·ML-3, with two exceptions. First, ML-4 has no 



-110,"'." '. 

'·(modi f tcattion~11 {'Wbi>eh; w• •imply v wen fit liW• ··~••ion tb' -:malte 

use of)·, -anct li.-c:CJMS; (0~rucit!iMt}tF a~ sJ:iiJftit'ly -differ-

ent: 

{eonst.wc1,;;.ton)": rr=· \'typetiame} [ ('fU.ltt} .. - .. : 
I • • • I (field) ] 

( fiel_d) :,:= (ce:\,l exp~} _____ , i -. 

the ( typename) of the (construction) • ) 

Description 

we need to. ~~~~rp~e:t ~~( J\• :~lffi.~~t+<7-:rf1~8~~s-. A 

(program) in ~"."'-~ i..s .esst?.~~;i.!111¥:,.a -\~~) ~, ML""3. Pr~-
_, ' ; .. · .. . ' . ;;. .: ' . "' '· -~ ".-.. ,, ., . --:- . . .. . . 

cedeci by a (pre:t~sf~) • _ . '1'1'~. {~re.~\l~),, ¥i ·::~>~--~~ 0£ type 

definitions· {(de,~~j!SJ. ;c;>l;LQWe<i l:ry a; ~M\il~ of, ~ec:),ar_atic11s 
. ·: ····' -:;- .~;,'···· '-! '::_·" . ' . "·"'-~ ~. ·-·. -·· ·';-. ~ - -- .. •' ·. 

assuine· values on!L!') o~: tb•1 ·type'. gdven' tJY'"''the {typehante') • 

. Types in ML-4 are denoted by' ~r~: ofc' two syntactic 
., . ~ '. 

classes as follows: 

(1) A·•{typename~ is.- ~lter tlte·'~l iilt (which de- · 
notes the type consisting of integer values) or the 
~ as8"!&1:.M: wlth!. . .._' t.yp6Mbt"'La ~e':trfti) ~ • 

( 2) ... A ( structype.) ,, d,f!P:9te.s> a ~'t:~:Ct;9re4 ... ~~- ( i; .. _e •. a 
. trt)e consisting of structu-re~ v•luesl·.· The 

(select:or)s and types of the aa•oeiated components 
of a value of suoh a type are •peeif ied by the 



-111-

(comp decl)s (component declarations) in a 
(structype). 

Observe that if we 'know the type of a structured value, then 
. :J ' .. ; ~., I· 

we know the type of each of its components. There are two 
, r., ··; >. 

basic purposes for using (typename)s: first, to provide for 

multilevel structures (i.e. structures with components which 

- ' '• -'..• ', ,:: • . ' : .• ; L , <; ,,;.-

are structures), and second, to· allow for recursion1:n t'ype 

definitions. We discuss recur~ typee latter~ 

Semantic@ : of ML-4 ~informal) 

ML-4. Elements of, ;t~'; c12' .. ~s~s; (~~~> JUld. ~~J~p~:y~e). 

define data types according to thr~..,. ,~1.-.: _ 
' ' ,, . ' ' 

( i) . Tile ( t.~•49> ~ den~~· t~" ple;IJ• of all 
integer values . · 

(ii) Suppose s 1 , ••• , sk are ( .. lel1t:Or >• : · ~ '. 
t 1 , ••.. , t,.. are •syntactic iteu aen~t1n9 data 
types.· ~hep ~he (atructype~ [tisi.;. ~.;. ''1csk) 
c¥nQte• tbe clus of all structurei with 
eµctly k. components widr..:'(•el•ctlM''s · 
s 1 , .... , ~k.•.such that for each i = 1, •.. , k the 
value .. ~ ir• any) containe«:tnin'-:-tlte•>Coaitpottent: c6ll: 
&~leeted by s·.·ubelongs to the type t .. 

• ·· • ... '.~ • 1.:~ ··:· .. '"!.- ,..r.~'"• ,i.'·-"ir 1 

(iii) :tf t· is t.be. <typename) of a··'Zdefn). then t 
·denotcta~1,the,~~ spec~f~e~J~Y !;h,,,{"t~9typ~) 
of that (de'fn) .; 1l:n tii-fi caae 'w."'say that" the 
(defn) defines the (type11~},.,t~. ·.· 

,._...., .r.,.• l ... - ' ., 

These rules give the semantics for type 4•fi..~it:~oJ:)~ ,in ~-4. 
<;:- '. ~ '... ... •••• : ' , ". • 



-112-

Note that according to rule (ii), if x is a value belonging 

to a structured type t, then the types of all the compon-

ent cells of x are determined. 

As examples, the objects of figure 4.2-1 belong to the 

type int. In the presence of the (defn)s 

.E.t = [ ~ p ] and .!. = [ int a; .E! b ] , 

the objects depicted in figure 4.2-2 

belong to the type t (which is the class 

of all two-component structures with 

©@@ 
Fig. 4.2-1. 
Objects of 
type in~ 

a-component of type int and with b-component a one-component 

structure whose p-component is of type int) . Note partic-

ularly that a cell constrained by our type mechanism to hold 

values of a given type can be empty. A value may belong to 

more than one type (par-

ticularly if it is a 

structure some of whose 

component cells are emp-

ty) . But given any value 

v and any type t, one can 

always tell whether or 

not v belongs to t. 

• 

Fig. 4.2-2. Six objects of] 
type t = [int a; .E.:!:. b] 
(where EE. = Ci!!:!:. P] ) · 

A <typename) does not have to be defined textually be-



-113-

fore it is used in a (prelude). For instance, the (defn) 
; ,.·."'' 

sequence tl = [t2 c]: t2 = [in~ d: int e] is perfectly 

legal. A nontrivial application is the definition of recur-

sive data types, which arise in ML-4 when a (typename) is 

used as part of the (struetype~ in its definition. con-

sider, for example, the (defn) r = fint a: r b]. - - - Thi~ 

defines a type named .!. consisting of two-component struc-

tures for which the· a-component cell can hold only integer 

values and the b"'component cell CM'. ·hold .values only· of 

type£.· Although it sounds circular,. it is perfectly 1 well 

defined. Values of a recursively def.ined.type can have ·sub-

structures.ne•ted to an. ar)>it:~ary deptlt1 aiia·-.,~bjects 

representing such values frequently .. ae>n,ain directed cycles. 

We make three restrictions on (defn}s in ML-4. First, 

the (selector)s occurring in a (structype) must be distinct. 

Second, a (typename) can be defined only once in a (program). 

Third, the (typename) ~ must not be redefined. Any 

(program) not obeying these r-.trictions ··:is syntactically 

invalid (i.e. is to be rejected by the translator). The 

meaning of an iJ'!,valid (program) is undefihed. 

(2) Declarations: As with (defn)s, the semantics for a 

(decl} does not specify any particular· actions to be per.:.. 



I · ... 

-114-

'. 
'?'he· ef:eect of a (d~l), is to cauae the, 

,.,_ :_., l ,. .. 

formed. at runtime. 

the (decl ~. · 

! 

( i<ten~ifi•r) occ;t:arlt~9 in 80lrti9 •. t#~:,-...t., .N>peat: •act-

: ~y cmcej,;n~ ~l'ffl :{~<?FD) •ff.l~,:L)a •• ~-&t (~). ~rr-

. ing in ·~ ?-~~). ,-.i~ .~ cSefiaMtd •ct~ .~. in ~M. { 4efn} s . 
• -. i ' -~ ( .J.. ... ~, v J - ' -· • '" •• • ' - ~ • - ' 

-' pp:ta· t.R. atxn•- •Mnt.i(?: Al# .. -,,~}•' ~ ( 46ci'}. I it 

'i•··.P~•·• 11Dil;lbuy~1.-~".1W'f'1-., (Up'Rnion} 

.~t.iie •-~~-~~ ·<~r,·:· -~· 'l•·r~ ai~'&l1bwa: 

... 4-i·) ......... t:tJ* ,(.-pc••totl,):;o W-'il")l~!&\l• •·• If1
: it 

ia an· ( J.c!entitier), tbea' tlid.• ( i._tifier} . oecura in 
•... ..-tlyc0.-1•...i.ln_.·ll•~ ... ,~.,;,tjl...,J~&y;;;ietii!;· ·.;·. 
(t:~) of the {dee!). 'Jf it i• a (selection), 

~ t;:.~!:!·?:!-:.!~i!r-~=/~-:::;::~. 
%''9W_'' ~,~\'. •!~l~:J~~~!;,~; ... :_"~. .· _·· .. ·.·_--(~t4-_•~. DY , .... (. atri~5. TM t:JP* Of t:M ( Mlection), then, 
~-~ _9.tv,_;,11l.t~~:,~~~).~ ._5 { ... ;dw:ll;'°'·~e 
{•ttfttdi.YP'f)' that acmtain• t'he giv.. (ael.ctor). 

(ii.)\ If -,tt.r · (:1811ipx.-t0tt') :t4f ·ll;;:!~)!-,1 ;t'ftere ·~e· two 
ca•••• (int999r)• are __ o.f t)'P6 as_ .. ·.\~ ._<ca_· -~•truc,tio~)s 

-i; ....,. ..... U19;:.~·:9;WM 'bitt'llifijHlftfftJ!tbi\lii)~ ,!::.1 , .. · ··1 

'l'hu• ·we ~. ~· cfrt\111 t.1111 :..i(.-i•'f'Jofl.ia iJy:rrtadttcally 

valid .(Pt"••>- ttM·.£ype -of._,. ~~..,IOH~ ·tbfa t~ is 1 

,. given,~- ~~.~11!.~~¥ ()ne __ (t~~}.... ~·i;~111:~{,in,. .~e 

pres~~C-. of the (prel~de), .-~ • 1~ .. a; -KJiYM,.i.}: · 
~;/:.. .. J·~. ~' ·; '•' ... '· ,<. ~ 

vtype • (Ja,i e.t i!l,i d J ; xt:nit JO YADI· "I the type corres-



. ~,. .. ,, 

-115-

pondences shown in figure 4.2-3 are valid. 

(3) Assignments: the seman-

tics of an ML-4 (assignment) spe-

cif ies the same runtime actions as 

its ML-3 counterpart; in addition, 

the translator is directed to per-
' ' -- ·-

a of x -
b of x 

,. c' ofy' ' 

-;Qf lJ QE X .. 

3 

ytype 

1nt 

. int -
int -

form certain additional tests. An ~tYQf [3;4] ytype 

(assignment), as before, consists 

of a (destination) and an 

(expression). The ML-4 type sys-, 
. ,,.; 

'~iPers: 
. X~Y.R'7 (,6: ~l .1 ....... --.. .............. 
Fig. 4. 2-3. Types of 

; ~e ,(~e~~~). 

tern forces the cell referred to by. the ·(destination) to hold 
'' 

' , .. _: ··J«; ,, 

values only of a certain type. Thus the translator must ver-

ify that the value of this (expressiorl:) matches this type. 

A (construction) in which the components fail to match 
--~ ' ' u" .: ' ' • 

the types of the corresponding fields in the (defn) o~ its 

( typename) is an invalid (expression) and 
1
has .. qndefined tirpe. 

For example, if we define .. .! ::;: J~'nt; a~ i,nt l;>J, . then the. 

(construction) 

component; 

because its b-component is of ty~e . ..! I'.~ther tpan.~ as re-
:.. r , '·, • - ·= : . ~ . i • ~ ~ , . , 

quired. we also call a (construction) invalid if its 
. • -· ·: ;: ·' ·<, ; ' ..... '. 

(typenarne) is not defined in the (prelude). 



-116-

ia invlllid 

{ ·atl:8i9%lJ18ftt >• thi ~ of the (expression) is un-
. ·f ;·~.-:=Hr;_j·~t i~ r:: c-. s ··, - ··~ · ·· · > 

defined or f~iua ta mateh the type of the (destination}. 
-.,.. 

Each Of tlMth-,t;WQ tJ!Pea ia qiven by p~i•ely one 
- '' ' ~ ·. ' : --· _,, .. eJ er;;: .... 

< typen__.~ J:~ · t.h8ll -~a are ~fined to match if and 
'"t !. ~,;·:,..:~ ~-> - ·: ;- .-, , . .;_ . .i.: :: (...' _;- .. 1 :· 

on1.y if their (t~)• are ie!enti~al •. 'l"he Illechan-
i : ,:~ ... '_ ·_: ·:1 _ .... _j· ._; s=. f'f<.r"J ~r ,- :~=t:_·_r. ~ -. :::~~~; 

,.:_ ;;:.~ ' 

is• we •ball ;~• for the tranalat.or ineure that i·t can 
::~ -~--;:-:: _;· P,;;~(-~'.:~; ~ ':~-~~'(J:.t :':~Cf z:~· . __ ; :·::.-;~· 

. ··--·::.a1.Jrilya dlie-~U ~~ther or· not a q~ven ML""'4 {pr09ram} is 
L r: . :~{ , -~.f~ ::~t: ,-~ : ·; L.i .i. ¥th:}.~: .3

• <'· ·· 

valid. 1!8itre ··~aF"~ need for runtime type teats, nor are 
: '-~. ' .:; ,,,_ . ·. .3 .i":r . . .. • 

there any ruatime type errors. ~r, a runtime error 
... -~~ 1 

.-· ·.--,.,~·., • ··i :::~:) .-:~:.; .:· ..... J ;_..~::f·c~·::.:3.:)·::. '!:.f}:.:r .:-~1-J~·· :--~,~P/~l ·,. · 

will ocd\lr if thare ia an atteinpt to extract.components from 
· ·-' , '.- .. ~.-:J~·.i . .:. ·=":-~.:; ::~s./_:;'j_' , .-; · .... t :~J-~:::··-_.,.(.·;.:.~ C: ·i~> ~-~L.--1 ..... ~-: · .. ·-·~.' 

an empty c:ell of a structured ~· Por instance, the ML-4 
·::··-... -; -,_ :·.r._~:~~:.: , .. ::, ___ .·< .• -<~ ,"'.·. ;:·:· r:~;-..; : ,.,. :_:_, .. ;_'.i j'.'i"q _., ··,_..... . .. 

(proqrani) •l • £.!n.t. a1 a2 b] 1 s2 • (int cl: al x1 

~ ~' s;t:'i11nill / ·~,~,)~i'fb'' ~f· x ... '4 . 'i\"£i1 · f~ll 'o~ 'i~t~rpretation 

' - ,,.. ' -. 
· ,_ _,_ :: ,_.; l .:~ ." ~ ·)~·· ::··.!. _.·,, ·:-.f_,_~~)•.1··:. £1!-: C:J ~:,.,_,_.. ::··r,_ :-''' 
ror a nonexiatent c-co~ponent in the eapty cell for b ·.2! x) 

·' 

ev~n thauqb 'tlie·:iype iot'~, (deatiiia~Ljnf .. c :1ci£ '.g 1 ~Ni'~~) <i~'t> 

matches· t1'1. "€1.>e: 6l-'ili~' ·(e;cpreali1ori~- :.,.: ··" i-i1iu~ '~~ ·~ ;eqn.f~e' 
runtime t~~. ~~o c~k ·t11e <•e1.~€ioz\}1~ ·'1n'·~-4. , 

1Cie'n~ral1y 
' .. _. -~ ... " «-: '/ :- . : • ~ . . . :~ _, . • ,.. ,, > ,--. '·- ' ~·:1 ., • .. ' 

speaking~ tAist:Lnc{ ·f<):r emptY- eel.ii( ia . u.Un1iy -naicb 'easier 
than tejci'nt. the' t:YPe of t.~ ::oOft~~'. ·,:;j -. (;~~i1 '.;}~'t rtinti~e. 

If w strip off the (prelude} from a valid ML-4 

r-------------,.,-.-~-------~--------------------



-117-

(program}, then we will have in essence an ML-3 (program} in 

which each cell takes on values of only one type·. Moreover I 

the effect of executing this ML-4 (proqram} is identic~l to 

the effect of executing its ·ML-3 equivalent • 

.!E..anslation into BL 

To give a precise foJ:mulation for; the semantics of 
' ' ·. ,. 

Mt-4, w~ describe the tr~nsl~t~on. of Mt.,~4 (program).~ ;nt;:o BL. 

With the previous mini~langu~ges, .it s~ffi~ed .tQ, .show the BL 

code corresponding 1;.o various progi;am co!'IJtructs,.name.lY the 

different kinde of assignment statements. Tbis is no longer 
. t . ~ • , . ~· ' ' . ,. .:~ 

sut,ficitmt in the case of ML-4,, since .1:1:\•,,,•eaa.nt~~-~ no"' con-
. ·, ' "··- .,. ' '. •' ' . 

tains ~ules for typechec~ing by t;he traQs).~tQr. We must 

therefore also .4~scril:;>e the typechecki~q_;.ro~~ures p(llr

formed by. the ML-4 transla,tor. 

In discussing how the tranala.tor pei'iforms typecmecking 

of ML-4 (program)S to determine t'heiT vali4'ity, we beqin by 

describing tbe information ·supplied to the tranelatorby the 

(pre.J.ude) of a (·proqram)·~ We' shall treat· tbe ·t!!'ans·lator as 

a BL procedure. As it proces .... the-{prelu&.), the trans-

lator builds two component objects in its' ,local: structure'= 

one component named $defns which ~epresepts the type defin-

i tions, and one named $decl~ __ which ~~;t'r4lB~ll~-~ to the 



I ':ti~";.#;,:.:.,4-o;:,~~~>~:~~~t~,":''~·· ~-·~. 
! 

i. 

-118-

the declarat~ons. $defns .is a struct:wte wl)ich n.s o~e com-
i:: . : ,, ~-· £~;_ ;·...;_ {~ .... ' ,~- ,.';);. '; . ' . ' 

;pc;>nent for eael) (type.name?.~ .i~ th8: .5.~~elude~. ,Each: 
• ·~ • ' .- • . .,.... • .• • • , . • ' '· • ' ;> ... ., 

type associated with t'be {typenaae}. For each (typename) 
c '"" ~- • " ' 

defi.ned in a (defn}, the aorreapon:dinq component of $defns 

has 'an _..n•" ift.ld'.~if.li efie··fi~it-'~of'2~'5nf:i(J:n :a value 

'.: t>f''that eype. nu~tea"f!el:~~xgt~h\9:~ ;(a$I~tor~'a ·of.·the 
f 

comp0nerits' -iii t:li~ firoper erdef~:nimd ~. "'•~14 flelld givinq the 

'typ~~ 6£ t'ie c~ti (frf ..... S/c)£'-itib . t.o 'tlle prQper :· 

- e~rfer1•s ·tn ·· ffi·tnsf ;· ·· ··'tfte· irit~~iit: of fdefns 'hila only a 

·~af...;c~&e 'Coi\tda1ntnt} '·t~e el.J.~liiadjf 1talue · · ~ii1fr :· · ·$dee ls 

is cf sttuceuiti':-;if'tli one ':6o~en't'~8t ,. <'i~titi'.tier~··de

clarat lrr t'ft'Er'·(~elud6)'. ·::rl. if"-f· · ~M:.)~~f:ftii!r)'"x::fs: 

declared to 'have type t, then itf4'··~e<of\$'d4!cils 

.·• ·~~ •. :Wli-t:ih ::~:~:•I .-..1 .;l«l,.•Mll.~.f figures 

4.:2~" ~.i~S.•-4: r4 .• 2~:MW <J.i,V'er•J'-_..~,-''-.0i-..iiUiJ.tt tthe 

ob;~~ R~ _. He•1- f ........ ~ 115r ,~-d'br.-,~fl•~~. from 

the_{~~;.,. ... ~ ,~-. :(t••••)i--.;,C .i;.n~fii~ 4.,4:•5 

d~ ~e ob)~ft have 'laett· ~atri6te4····fli -~ tra.ifs

lator'~ ail tlie trr'to~tion- :te<i\it'it~ t6i i;~~eatt±riq i• 



-119-

available. Each type to be associated with some cell re-
-~: \ . ' ' t 

ferred to in the (program) is re~resented by a component 

node of $defns. Two types match if£ they have the same 

..---------------.,., .... ______ _ 

Fig. 4.2..-4. 
(prelude) 

.Fig.,.. 4~'2-S. $~£NJ and· $cl.eels 
structures for the (prelude) 
= [I. Jn ~ 9'J; .£ .lC,y~}··:iat m int x,.:z_, z .-

{type name) • 

. I 
!!! 

··. s4& 
~ . 

)e ~t 

Fig. 4.2-6. ·$defna ··anq $d.~].s for 
the (prelu4e) . tl =·. tM!t iH.·:l! bl; 
t2 ==.[int c}; t! ~l1 .. ~~x2· · · 

To d~scribe how tb.a .. tranal~tor performs the 

' actual typechecking, all that needs to be shown is how to 

access the node for the type of any ML-4 (expression); once 



I--------

-120-

we can do this, the typechecking is atraiqhtforward: an 

(assignment) has a' tyPe error iff the nOdes for the type~ 

of its (de•tination) and its (expression) are distinct. 

The type of an (ideritilier):>t ia qiV4tn by -$deC1a.x. 

The translator.will mark a (p:t'OCJJfalll) inv&iJ..td if any Of its 

( identifier).s a• ,un~ecla.red.. I. f3 is the nQd$! ,,fQr tihe type 

of a (dttti.natioll) ri, then the' type of the (select'ion) 

s of D is given 'by tbe node •• val.a. 'The transla:t_or veri-7 

ties -*· pal:llt 6t·. iLte typecbeck3:n'9 that valu•s o'f the cype of 

node for the type of any (destination) in an ML-4 (program). 

Figure 4.2-7 illu•tratett 1Jf>me •-..le ML-4 (as.-ignment)s in-
., 

volvinq O\l'lly (destination)• and qi.vmr Bt. type~hecking code 

ML-4 code J31". t,J;Pftf:)leckiag · c~e __ 
-~-' ' -----··.·· -------·..-"""""' _______ ...._.. __ ,..._ ___ _.,....,.--.----· 

z ... a Of X - ·· $decla.x.va1;a,no , 'd.~~· tr:J• $~~C~f .... , • vai ·•,,no 
... -... ~N*cl•~¥-·v•t~1';no ·' ,.·· ·• 

t-----------""4• ~~'-• •.f:Yi.i~;~-~d.AO 

Fig. 4.2 .. 7. 

$d•cls.y.val,b,no 
$decls.x.val,a,no 
'fdeel•~·:.te. vd ~ a:vii., cino 

? $decla.y.v~l.b,,$ciecl4.x.val.a.va,l.c,nq 

· BxQapiea of~BL typedbecking~ 



-121-

to determine their validity. A branch to the label "no" 

indicates that the (assignment) bas a type error. 

If an (expr ... ion)· ts ~ 1fii:Rteqet}, then ttfl··tyPe':i.+ 
•' - "r •••• r •• ••" "• 

whose (typemuw) .is t is qiven by ·'t.ba. node $defns. t, pro"!" 

vided the (~atruction) is valid. To check this, the types 

(typena•)s in the (structype) that defines t; moreover, 

.there ·JRU8t he·' the ... numbtt :o.~ i~ents in both places. 

Thus the trarislator'' can a~a~- bY··:"'iiif.t: ·~cb~me :~~~{rioa~' for 
. . ~ ..:;. . , ~ - ' , . .. ' 

the type of any (g.enerat.Qr). ·~~ ~ .j.t.ult, we now see bow 

ML-4· . (expression )s .: Fiwre 4.2:e'.:.i.tre• sQ&ne examples of 
:. ;'=: •/~-·&' ... ,,_, -:~ ~~ 

ML-4 (assignment)s contatntng, <ar-~.uiy kinds of 

(expression)s; along- with ··each ('aa~t) we show BL code 
; ' 

which tests its validity. Tbie coWUtes our picture of 

how the translator pel:.iarms st•tic. ;grpeahecking; the rnech-
: ;. :~ ~ 

,. 

anisrns shoul.d be clitar ·.f110m·the ~· in figures 4.2-7 

and 4.2-8. 

The actual BL code generated by the .translator (i.e. 
,.· ·, __ ~-;( . .? ,· :r":::~;.,,,..· 

the BL code to be interpreted at runtime during the execu-
" ·• • .• : " _I. :'i :: ~-;~):~~.· . .J~~"J J... •, ~· ·.~·.,~i., 

tion of an ML-4 (program)) i's similar.~. What we presented 
( 



.; .~ ,. 

-122-

in the section on ML-3. There are two dif~renc:es reflect-

. x .. 2. 

z ... .SJ2l -• ._? $deci•••L$4efns.t,no 
. as\,~ :t. • .$._.1/.., 'Wtllteer.1'1d,·~we t: 

11111St have exactly 
·" '.<1••t·:te~- 'fi/ 

eq? $defns.!_ •. n,~t..,,no 
·~ .~4fttl.,j-t.-..·b<~ ··~ littt. 

· component 
'<if.' .·· '. ·«~~~}, 

type..!:. */ I 
.? ·~ .$~~!~~·~'~Itta. M;t.:. no ~ 

;,--.. -,ij~;-;;; x} lfi1 · $d~W::,~~·4·-no -~-~----·---i 
' . ' .,;- %','$' ""''. ,• '"' ' 

~ $4-ha-•£.··n"' $t.-p. no 
· :!!fl.ect "$&rflitt'.,t~'l;~ . 

_ -·· ~. ?. ·,. !.~=-~.·~~.~~~~-t~,,~t~~ls .. w .• no j 
.• ~ if-'<WI .~/'f', . - •' "'. . . .. ' .. - i 

------._ ....... _._ ........ ~~·~::-:z?:i.::.-...,. · :.*•:r-::·;~:;i'"•~., ,"":i:~Et· ,,..~,':'Z';:.:•:1:_,;· ~a..~;··~~5:i:~:•~-.--C..' ;:~~~· ·~~P:;: •. l::· s:.:·::,X:.:'~n::o:_-4 
y ... .!(.£[b o·f wl] same? ·$decls.y;$defn•·!.•no 

l 

J 
' 

r 
I 

1-----· ..... --- .. . .. 

··~ . ..=: ..... 1_,ce11M. '·.,,.~ .. , -- , ·• ,' 
• ~"· ,f•. •'1'Jili ......... ''• ,.,...,. ·' ' " 

: eg,? $de£ns • .1..a, $temp.no 
·~$~~"~',, 
s ? $defns •!..val • '*$temp, $defns • _i, no 

. gs~ 1',1:$blllp1. -, 
.!5£!: $defns. ,t. n, $temp, no 
~ i;de.eilf~..;~,:lal;i.;so ';t. 

select. $defns. t, l.,$temp .. •wi· , .... ~~...ic..,'1'$.titap.• . ... :.: ·· 
$decl.s •. w. val. b, no 

Fig. 4.2-8. More examples of BL typedbecking -_ J 

ing tbe sw:,i.teh of typec~ecking f;on' runtii,n• to translate

time. Fir&t, occurrences of (sel~tion)s i;n ML-l yield run-
. . ' '. ' . .: ~- ' ' -....... ' - . .:-, . ..: . . . ' . : 

time type ite&t.a., •uc::b as the BL code lA!!l. x,b,.erto'r for 



-123-

the ML-3 (selection) b £f x. In ML-4 this runtime t}'Pe. 

' test is replaced by the simpler and faster test 

nonempty? x,error, which makes sure t}\ere i~ no erroneous 

attempt to access component cells of· ari empt.¥-~'C!lJ&ll. 
'. 

The.second change is that the complicated procedure· 

assign3 w.;i..th all its type tests is not needed' at. all. The 

BL, code genex-at~ fir91ll the (a~signmen.t) y ... x depends on 

the type of the .(c;¥!stination) y. If its·tYPe is_~, then 

by virtue of the translator's static typechecki~g we know 

that. x cc:m hold on].y iJ'l'teger. ,vaJ.u9e. In tbiac· c~e the.C BL 

clear y 

noneme'EY? x,skip 

con st *x,y 

skip: 

Fig. 4.2-9. BL code for 
theML-4 {aasi~n~) 
y ... x when y is int 

tured type, then the trans-

lator ·knows that its 

· .. ·. (s'!lf.!ctot)•,, s 1 , . • • • sk 

are giv~m ):>y 

s 1 = *($decls.y.l) , ••• , sk • *{$decls~~.*l$decls.y.ri)). 

In this case the·BL code in figure 4.2~10·is generated. The 

translator can always ·tell which case applies by testing 

whether the pathnames ·$dee ls. y 'arid $'detns ./inl:. lead tGk·the 

same cell. The BL instruction same? $decls.y,$defn~ • .:i.nt.,go· 
h:~' 

performs this test. A branch to the laJ::,el "go" .i.ndi~tes 
. . '. ~' ' ' .. f ~-



I c;:;n·-=---~~~ ... -~::;'"~~: -~~ ..... .r~-t:.'1;;-~-;:.,,.,,.:~t'"·-....... ; __ ,_ 

I 

I",·.~,··#"'< · __ :; d:; .. {rf · - ;:,:_,~\..l_:._.; ,, 

· apPlies. Thus, by sub-

1 '. tt1ftztL 'y , ' •. , , ;{"' '~tit~~inc;J the. ·rl~-~y? 1
· ·· ··. ·· · · ··· ·--· u .. --, 

~--- i!.··,_ *• y .. ••1•x·*•1 

.~1::;,rr(.~-11n:("J~"·. ;~ -:: 'i<! :~<.~-;:-.; 

teet !Or el\e hy? 

, :-· ' - · .L .·•. , :, '1uict'Eb8-'•Bf.i '~d:tf'of fig-.. 

.. :. 

ya~t11p-,1-li£""4't•..,.._•~-' . .:-.,._1,_iettJs11·a~• ~a.-:· 

---:l.!*~ .. ~-··••fJ:Claa .. ~,.· --~· ~· ~-,1~.-~'.be 
. . " "-~ .

"'' . . -· ··--

. . . 0bo~ l . . 
Mo•t _,.~-lttf'.· t•t*a,.. ... 4MlanftMs_~.,. 

. . ~ ,;, ;., ~ ~1 -; ··-:; :·"·., •,- -~. '• 
have a~- •Y••u•.tall•*''tO thtt.~·8-4T:__.:1Mlll at' 

tbct~. ~q~'"'•• •t ...... _..,_,~t, .... ;·..-. than 

.. J;\Ul'.tt~'~····•···•r-....-·~,_..._. .. :W (!&,..::~t11111··-.,~.

fa,c;~~ ~.,:.~~~"-.04,,""ft":•-•••){f.~9:f.&"'!4 ,._,ca: -· .. 

~~~·:'" ..... -,~~ ~r.~.JIWJT.ll!IW.e.r.·-.-: . . ,_,,,..:. ... 


-125-

treatment of data structures. The structures are called

records, and the ALGOL W analog to an ML-4 structured type

is called a record class. An ALGOL W record class declar-

ation can be represented by an ML-4 (defn). Figure 4.3~1
.-~ ~ ,, ~ : ;-.... ., ... ' .

shows how the two languages define classes of structured

objects: the ML-4 type with (typename) l?!!!:. corresponds to

the ALGOL W record class named pair. St~qt:u~ed objects are

built in ALGOL w tprou.gh the use of record designators.,.
'

which are analogou~ to ML-4 (construction)s~ ExpX'.es&ions in

both.languages whi~h build structures from ~he "1>8i1'" class

are also sho'Wn in figure 4.3~1.

.. "~"",- ~ - '"''. " "'·-··

language type definition object construction

ALGOL w Eecord pair (integer a,b) pair (3, 4)

ML-4 2a~r-~ [int a7 ~,~,J,.,, .. ;.,-"Pa.ii' [~:J4J ',~

Fig. 4.3-1. A parallel between ALGOL w and ML-4. .. •,

There is a major difference between ALGOL W and ML-4

with respect to these elements. Although a record 'desig-

nator builds a structured ob]eet···itr AOOol. 'Wi it does not

yield as its vl\l\le the object it can•t-~. ·:zn fa:ct, rec

ords are not even values in ALGOL w. ~._;reoorc!'class is· not

a legitimate type in ALGOL W: reCc>M9 are:;ic:celJW.ed through

values of reference types. For instance,.. tbe.ALGoLW record

-126-

designator pair(3,4) in figure 4.3-1 yields a value of type

reference(pair). ML-4 will treat reference expressions in

ALGOL w similarly to the way ML-3 treats pointers in ML-2.

The correspondence is depicted in figure 4.3~2. Note that

in dealing with

ALGOL wJ ' record pair (integer a, b) ;) i
reference(pair) I y,z; ~ ~ y := pair(3,4); z := y pl:r fb-
ML-4} k ;eair = [i!!.t a; .!a! b] ;

0.. b refpair = [pair ptr] ; @© ref,12air y, z;
y ... ref;12air [;eair[3;4] J ;

ALGOL W records,

we need an extra

level of indir-

ection (the "ptr"

component) . This
z ... y

Fig. 4.3-2. Reference expressions (at least with

in ALGOL w. respect to our

scheme of rep-

resentation) is the same kind of inefficiency we encountered

with ML-2. It is worse here, though, since ML-2 made use of

the indirection only when sharing.was needed.

Components of a record can be accessed by selector fun-

ctions in ALGOL W. Figure 4.3-3

shows the correspondence between language selection

ALGOL w a(z)
selections in ALGOL w and ML-4 -

ML-4 a of ptr of z

(z is of type reference(pair) Fig. 4. 3-3. Selection.

in ALGOL W, refpair in ML-4).

-127-

Once these differences concerning the construction and

selection operations have been taken into account, we find
.. , .

that assignment, sharing and typechecking in ALGOL w are

almost identical to the "obvious" ML-4 counterparts (e.g.

replace ":="with"+-"). In this respect, ALGOL w is similar

to the language SNOBOL4 described in section 3.6.

PL/l was one of the earliest laaquaqes ·~have compile-

time typecheck~9 and to treat both date· stJN.ctures· and ·

pointers. Most PL/l construci;s band.ling ~eae notions look
' . ~ . ' '

PL/11
DECLARE 1 X_,

2 I FIXED BIN,
2 S,

3 J FIXED BIN,
3 K FIXED BIN;

DECLARE Y LIKE Xr
DECLARE Z LIKE X.S;
X.I = 5; X.S.J = 6;
y = X;
Y.S.K = X.I;
Z = Y.S;

marke(lly dl..f ferent fr.oI11 the ·.·~·

cons~_r,q~:tl:J we have seen in

.------.....--·----- -·-. -- ..
~-4J

triJ?:: [~ i; pair sJ;
eair = (~n.t j; ... int k] ;

· trip x,y1 · ;eair z;
~ ... tri_i>Cnilr. Wi~niJ.;nilJ l;
y +-~[nil; 2air[.!!!!;nilJ J;
z .. RliE [Jlil.1"ail,) : . . ·
i .2! " .. lr--j Qf s 2! x ... 6;
i pf .Y ... i . .24,.~; . .·
r·og: s o'f y .. j of s of x;
k .2£: s .2!,·Y .,. ~ $2!. s Of x;

k g,E s i!--y .. i ·.Q!· x;

j of z ... j 2.£ s of y;
f k Of';z f.. 1lt ~f S Of y
l - ~ -

IFiq_. 4.3~~-· St~ctu.r~s .in PL/1.
~---~~~~ --.-------.~--.~1----... ~--~·----...;.:....~~~~~~~

-128-
. . .-:· :,_

Figure 4.3-4 Oow8 bow .PL/l handles a
.. , ' <, • '

-, '/ ~

sample .etru<:ture and 9.iveas an ML~ 41rpl.i.'vai.t. ·We make two
.·.. . -· ~J1.-:".'. :., '/ ... , ' .:~t: l [~ "'r · ,,;::}• :·'. ·· :·:...

Pi.rat, all.~t eel.la.of t:.he PL/l atruc-ob•ervatiofta.

~urea in tbi• ~le are allocated 1lllen the declarations
'\

are interpreted. With ML-4, oo.ponent cells are ~llocated
,., · . ·~' · ,.: •· .·V :.:. ,, :, . F ..

, .. • t ,J .f

when the structur.tld value .ia actually con•tructed. Second1

cl.-.ring a structured variable !witb tbe att~e MSBD(P)
. fl ~,~ P. . ~ r-' L

!?ltrQduees a v•t. con~ai.di:U11Mtdii'11· iifhia variable no-
.--~:: ,,. ···r·~.:~-·. '.-~7-~,. . -:·-+~' :·.~~-·;·{1..1 .;_{~·./,;_·· .

lonqer'. -19'f!~i~. ·.-:~l;ooats•·;'wheM •~1 -0~~ 10ay be

· •tonclf ··i~}~:.~., :~~the ~ol• of~·: ~t~~~~, :·s.m ..
;. ; - :''. ·. ·, -~ .. ~ .. . ' .. ~-";.:. -'. ' . ' ,

Figure 4. J.i..S.:~~·:fi."-'ltt of, PL/l 6lc1arations~ ·:i.n.,dlvin9
'~ ~' : -~ • : -:"'; ~ ~-. •' : (: • - •• ~--. _,. • -· ' • .~-- -·. - - .:. • > '

• . :). •J'' ." - ... ~ • - ·~ _._, ' - •• < ... ;· .,,. • ~ --~·~- ... ,

BASJ89 •~¥-~Nii:~=--~ f~, a ~iaq ~ . .-4 <•r•lude)
~ ~-· ·,·.· ·~- . ·: .. ., :. ''\'· ··.: .. :.~". o' i..... t "' ~ ~-~!'i

- . ~ ; . , .. · ... , .· _.;.,., ~- ··""'.:·

aJid •t ·· of'J~L \'f ~~-•4on•. ·
;· .. ' ·. ~ ·. ~ '' ~~~~:' . ~ ·~, ~· -
, ' ' . .'. - ' - - {~h (i' : : ; ,

Alt.i.ogp ,.-,t~ Jl,.,l.l>;dttl&rationa"ot ·f~~e- 4J.3..;4 •pacify
- ' '. ' .. ·. ' ' . '.' .·. '' ·-~ - ' - . (;) /:;-; ,', i

i111~4~1*- ~•r ·.:i~a,. ·tc; ·--hOU ~-...:-.ei.1letl ~ .. 110-

-129-

in figure 4.3-5 does no such thing. BASED structure values

in PL/l are constructed through the use of an ALLOCATE

PL/l
DECLARE
DECLARE

(P,H,T) POINTER;
1 LIST BASED(P),

2 BACK POINTER,
2 FWD POINTER,
2 NUM FIXED BIN;

£:!:rlist = [list ptr];
list = [ptrlist back;

ptrlist fwd;
int num];

ptrlist p,h,t

ALGOL W
record list =

(reference(list) back;
reference(list) fwd;
integer num) ;

reference(list) p,h,t;

Fig. 4.3-5. PL/l BASED
structures as types.

statement. Under the dee-

larations in figure 4.3-5,

the PL/l statement

ALLOCATE LIST may be rep-

resented in ML-4 by the

(assignment) p ~ ptrlist[

list[nil;riil;nil]].

Since LIST is declared to

be BASED on the pointer P,

the allocation causes the

value of P to be set to

point to the newly-built

structure. The result of

this allocation is shown in fig. 4.3-6.

BASED structures in PL/l are ac-

cessed through pointers. In our LIST

example, a use of the name LIST refers to
Fig. 4.3-6.
Value of p. whatever the pointer P is currently

pointing to (which will be the most re-

cently constructed structure BASED on P, unless P has been

-130-

c:>ne M\Hlt tUJe a atWad reference. such'_ as T -> LIST (which

ind-i,catd whatevar tbe· pointer '1' is curresi.tl.¥ pointing to) .

Figure 4.3,•V 4t1lwa tbe connection' bet.Ween. l>~fl-, ALGOL w and

ML-4 in accetta:i.n9' \fieUla of structure. tit ie,J .assumed that

the deola,rations in fiq. 4.3-5 are still in force).

-----........ -

PL/l ALGOL w m.:...4

LlST p ptr Of:p

T ... > LIST t ptr Of t -
LI S'.r .. N'0'1 p.num nu111. 2L ptr of p

c .' • '·. -,.

T -> LIST.BUM t.npm . ' no.· .el.: pt;r · .!f ~
'

Fig. 4.3-7. Aace&Sin._i. fi.i¥.
-~

,

except for ,its handlin9 of structur$d values (which ALGOL w

does not cbo&•e-to haftdle). ·ln t.tli•eaae, a$• baVe &aid,

PL/l copie• r•tl)er than .inou9e W.,rin9. All •bari:ng of data

in PL/l is done through poitltei-s.

i.naurea 'tMt • retw•ee value Gail•~ to reQOrd.s only

f:l'om en• :reccwd cl••1 if -el. art4 .; . ._ dii.~ ,r,•cord

claasea, then any attempt to make a vaiue of·_t.-y'P9

-131-

reference(cl) point to a record from class c2 will be caught

by the translator and marked as illegal. The type system

for ML-4 imposes essentially the same restrictions. How-

ever, a variable of type POINTER in PL/l can be set to point

to values of any type at any time (including nonstructured

values) . This causes difficulties of the same kind that

static typechecking is supposed to eliminate. For example,

in the PL/l program segment of figure 4.3-8, the assignment

P = Q is legal, even though P points to a struqture of type

DECLARE
DECLARE

(P,Q) POINTER;
1 Ml BASED (P) I

2 J FIXED BIN,
2 K FIXED BIN;

f;L_L_l_,_M_L __ --.4 ,------------·-· -· _,

DECLARE M2 FIXED BIN BASED(Q);

ml = [int . j ; int k] ;
ptrml = [ml ptr];
ptrm2 = [int ptr];
ptrml p; ptrm2 q;

ALLOCATE Ml;
ALLOCATE M2 ;
p = Q;
Ml.K = 5;

p ... ptrml[ml[nil;nil]];
q +- ;etrm2 [nil];
p +- q;
k of ptr of p ... 5

Fig. 4.3-8. Lack of type restrictions on PL/l pointers.

Ml and Q points to the integer M2. The reference to Ml in

the following line (Ml.K = 5) designates whatever P will be

pointing to (which is the integer M2 since P has just been

assigned the value of Q) • Thus there will be (depending on

the implementation) a runtime error or at least an erroneous

result as an outcome of the attempt to update a component of

----------~----

-132-

the integer value M2. The ML-4 translation, of this program,
.,

also shown in figure 4.3-8, is invalid since in the

(assignment) p +- q the types fail to match (ptrml vs.

ptrm2') . If in the PL/l p:r;ogram we had declared M2 to be

BASED ori P, then the correspondi~g Mi-4 <program) would have

two conflicting declarations' for p, whtch,would also render

it invalid. Thus we see that the typechecki.ng system in

PL/l fails to catch a whole class of programs which might

have runtime type er.rorEJ.

ALGOL 68

The treatment of data struct~;•• ft.))4 pointers in

ALGOL 68 ia linked to ·•n int~icate syMit:ea';o!_' 1:1'Pelil iUid type

checking. ALGOL 68 ia a difficult lanquaqe to ·1earn and

understand~ tbe defining doc~nt•tic:m (VWi;j. 69; VWij · 73.]

presents an intimidating formalism to the uninitiate·d.

~weve+, there are works (e.g. {Li.Gd 71] >~ wa.ioh are immense-

ly helpful.

Types in ALGOL 08 are called g>des. · 1I'bct 11¥)dea of rele

vance to u• a%:e the ·!llOdft int ·(inteqrer val\'leeJ and the modes

built front the mo(le-.aohstructors S't!J!Ct and .£•.l 'Ciltructuted

and refer-enae values, respectively) • We -&rsC'rine a corres-

pondenae Which assi911s ML-4 types to ALGOL i8 modes:

-133-

(1) To the ALGOL 68 mode int we assign the ML-4
type int.·

(2) If M1 , ••• •':\ are modes .. c:md. s 1 , ••• ,&k -a~ ~ags
(the equivalent of (selector)s), then to the mode

~~:u~: ;~~. ~~~· ~~j!cw~;~ -~~e~;!~~t~~e ~~4~~~=~s
correspon,.p1q9 to the M::f'"'·, .· · · · . · ·

(3) If M is a mode then to th~ mode ref M we assign
the type ['!" ptrJ , where ·rit·· is the ~4" ·type ·~rres
ponding to M.

Mode-declarations in ALGOL 68 are just like type definitions

in ML-4: for example the lllOde-declaration

mode pair = struct(int a, int b) is eqttivalent to the ML-4

(defn) pair = [im:, a; 1E.t b].

A declaration in ALGOL 68, besides associating an iden-
. . (.

tifier with a mode and imposing type restrictions on the

rest of the program, has a two-fold runtime effect. Con-

sider a declaration of form M X = E, for instance int x = 3, -·
where M is a mode, X an identifier, and E an exp~ession

: ... ~. •' ,•

yielding a value of mode M. This declaration first binds X
_•,,,

to a newly-allocated cell. Second, it places the mode M

value yielded by E into this cell. , What:. is" p~-~\lliar ~bout

ALGOL 68 declarations is that this value can never be

changed. It may, however, be a reference value·· (i.e .. the

mode M is ref N for some other ~de N}; in this case it

refers to (points to) a cell holding vaiu~s of mode N. This

-134-

latter cell (and not the former cell) can.~ \IP(iated by the

assi<jnment operation in 'ALGOL 68. : ;'Tl\UB .. bhe meaning of

assiqnment: in ·l\LOOL ~'fie ,dif~ ~ ~i~ :'i;n the other
' ' ,·I

languages we ha:ve discussed• ~ ~ -en ·l.dentffier whose

a constant. An identifier of mode ,W N in ALGOL 68 plays

the same role as a variable of type N in anOther programming

language.

The &pacific definition of ~L 68 psigNllent is as
. . '' \

follows: let E be an expreaaion yielding a value of mode M

(M can be arbitrary) and D an exp21eaai0il- of •de .£!! M.
r ·,:

'•" ,-;

The value of D is a reference to a oell which can hold val-
J., ' :-···;_I

ues of mode M. Then D : = E is a valid aesignment and

specifies that the mode-M value of E is to be stored in the

mode~M cell referx-ed to by (the value of) - D.

A particular. kind of ALGOL 68 _ expre••.~on, known as a
:£:.

le:>cal c;wn~retq;, specifies allocation of a aev·o•ll when it
' . . ' . '' ' ' '·. -

is evaluated. If M i• a mode, th4Jn eval"ti~ of the local

generato:-_loc M causes a new (;:811 {whi.qh can only hold val-
, ' ' ~ ' :,_'

ues of mode M) to be allocated. loc M
"~

is a reference to thi• new celV and,, t~ef()re b~longs to the

mode ref M.

•

-135-

To obtain a variable in ALGOL 68. which will take on

values of a mode M, we must declare an identifier X of mode
- ; ,,

ref M so that assignment can change the mode-M values.

This may be accomplished by means of an ALGOL 68 declaration

of form M X, which is really an abbreviation for the dee-

laration ref M x = 12£ M. consider, for example, the

ALGOL 68 declaration int x (equivalent to the declaration

ref int x = l~q int), whose effect is depicted in figure

4.3-9. The identifier x, which.is declared hereto be of

x = loc irib1 -----'--~, --~-·--~ ··- --··
I ML-41

I
I refint s £i!!i ptr1'

Eefipt x; . . .
: x .. refint [nil]

·Fig. 4. 3-9. ·. · semantics of the·
ALGOL 68 declaration int x.

·-·-·----..,--..... -_.,;;;;;;=:;;.,..,._.,..........,,~

..

. ''

mode ref int, is ---
bound to the upper .

cell; the lower cell

is allocated (by
- ..

evaluating loc int

in ALGOL 68, and by

evaluating the

(cell expr) nil in the (construction) reflnt[n.ilJ in
-... . ~ ~ , ~ ·. ··. '. ''

ML-4); and the upper cell receives as (permanent) v~lue a

pointer to the lower cell. Subsequent.execution of the

ALGOL 68 assignment x := 3 would place the value 3 in the
' ~·; -

lower cell; therefore its ML-4 equivalent is the (assignment)

ptr of x +- 3. The static typechecking rules for ALGOL 68

-136-

insure that any assignment attemritinq-, to pl~c~ a no~-integer

value in the lower cell is detected and':indi~at~d-to'be'

invalid.

There is one aspect of the ALGOL 68 type system which

is more lenient than the ML-4 system. Unlike PL/l, no type

errors can arise from tbis loosening. consider the assign-

ment y := x, where botb icSentifiers x and y have been de-
' . --

clared to be of mode ref int. -......- '!'bi• aaaignaent specifies the

updating of the mode !ru:, cell pointed to by y. But the

right-hand side, which l\USt ,-thesl a\ippiy ·an 1nte<Je~ ~~~,~ is
- '.. ~····~,,.,,, .. ~·:.-:J·~·--··· ~ , .

-~f mode ~ inr: according \:O Ml.-4· n~~"'-ct~e :••aai~nt is

to be rejected by the tranalatot as· invalid. However; -
. .., ,.

ALGOL 68 re~izes that the ref i.nt va~~· C?f :~-points to an
· · ', ~ - t· ~ -·, " :. ·i.~·· .<'.. ~·r

. . - ! . "' ' .L. ··1 ~ ? . . ~· ~~ \

quired integer value is follow- -tbe-pri;nter x. This process

is called d1r,ifer9n9in<a-· In general, the procedure for ob ...
'·.· . ,. ·. ' ' - +; ' • ' • •' ' ~ • ~ • .

taining a value of a desired mode·'from a value of some other

mode is. known .as coercion or convei;aion.

ALGOL 68 type system, if the left-hand aide of an assignment

is of mode ref M, then the assignment is valid provided the
~ ~· , > 'Y }·

right-hand aide ia of mode M or can be coerced to yield a

mode M va_lue. In our case, the procedure which translates

-137-

from ALGOL 68 into ML-4 must recognize that dereferencing is

called for, mark the assignment y := x as legal and gen-

erate ML-4 code which takes the coercion into account. Of

the three assignments in the example shown in fig. 4.3-10,

coercion takes place only in the second ,o.n:a· ·rwJler~ y is

dereferenced). -They on the rfq'fit..;ha~d2jf~ bare is trans-
;~ . '

...

lated into the ML-4 (expression) ptr .21 Ye yielding a valid

ML-4 (assignment)•

Note tha~ the mode of ~-.• 1~'.
int:- x: :•· 3 , ·
_......... ··-·'

x is _!n!, and the mode int y I Z f:' •. '

~. :=- -~1. ..
of y and z is ref int.

The concept of ~:!L.:!i
refin~.= 4.11\t ptr];

structured values in lnt::·-x»~--- ·· ~. ·· · - ,
refint y,z:

ALGOL 68 is essen- JC;, .. ~ 3J
y +. re fint[n1'1 J J

tially the same con- z. .~ 1refin' (Ri 1 J ;
ptr ·o£yt-ti!, x·; ·

J;>i;;;i;'.,. of _z r. ptr 2£ y;
ptr :(;f' yr ... 4 .. - ---------~---- - .

'Jog~· 4' .. ;J~iD:.. An. example of

cept when taken by

itself as in ML-1 and

ML-2 (as well as PL/l coercion in ALGOL 68~

and QUEST) . Sharing

arises only through the use. of _ref~r~,nce modes; assig~1Ilf:mt of

structured values is done by compone~tw,i~~ copyi~g~ :p;i.gure
- . '_:-, - . . ·:

4. 3-11 gives an example. The mode of z i13 ~.;~ the .mode :of
, ~ ~ ,: ,,

I

.
·«<··.~;.o'._!: ··~· ~

I

-138-

x is ill pair. The expression (5,6) in tl)e declaration

for z is called a structure displ•~ and simpiy gives values

for the components of z.

.68\ \ . .. ·.···.
' AMOL .. if.ii = !!~(int: .a,,p) • I .. l!i

f ~-- j i iij ,~) . ' .

)?air z :!Ii rs·, 6) : - -..
i.).

'r x1 A :·~· 211 .. ., 4.

x :=· z~··.

IA. ~ ptr
ML-4 I ~©· ·~ .21.U: = I.W. a: i.n.,t bl 1 C\. b
r'!fi?!ir = [~ ptrl~ "';,·_:

··~ © a!!: z: rt:t~r XI~ s
2: ... pair[5:6h -~

x ... refei;[~[ni,:l~niJ:J J:
a -2.f. ptr of ~' a gt z: ...
b g!· ptr 2! lC! b <>£·z
Fig. 4.3-11. struabtte aasiqmtlent ·. " ..

. in· AtiGQL 69._
. ... :..:.

·:..,. , ~ -.. -'

The selection of components :from a st.fucture in ALGOL 68

is syntaetical'ly ±d~tieal _to ML-4. In £ig~,-~t·3~'il, the sel

ection b Qi z, which re:fer's to the b-contporieri·t'cel1of z,·

is of mode l;.nt. There ·i.fl•· a major complication concerning

selection in ALGOL 68. we can legally :form the ~election

b of x, where x is of referenee.;..to-strlieture inode. The mode

of the selection b of x is £!! ~, not ~n~· everi though

the b-eompanent cell for the structure }:>ointed' 'to by x in

figu:te 4. 3-ll is Of mode lst. We say" in tbia case that the

-139-

pointer is di8~£~auteg over the components (in ALGOL 68
~\ , ·.· ,$!'' .. ' ·:·' .}; >-··.·~~::::, ·· .. -·~ '~-~~:· ,

terminology, xis "endowed wit;b subnamaa"). Thus, for ex-
• ' " ' ·,:: ··~· ., • . '. ~ ' ' '! '

ample, the assignment b of x := a of z is lE!<J&l; in the
' ' - "'J.'',- -_ -; -, ------~--- '

ALGOL 68 program of fig. 4.3-1,l it w.;>uld place th~ va_lue 5
. '. '''-.-> ·-:· ~~.;_;._:::~·,~-'·" ...

into the b-component cell o~ the strµcture PQinted t~ by x.
. - :·' ;· r ~..l , . - ,-_

fails. ~ ML-4 tt,ype r~nt;;, ~;f~P-.4.:~ll -tint.. ptr}. corres

pond$. to tlle mode· S!{ ~- but µt; :-;;fi&:!" ,4..,3:,.._l). -th~pe 1.• no,

cell of this t~ -~ .aaapeiat.e, ~;<~t;l\•>(~j;~~n) t:b.at.

c_<:>rre~,p,ppds tq. t~¥L~ ~-$;- ,~~t4,ll;l - ~~g:~· - Tnus, - in

tra.nsla~;i.iig frQlll ~4. ~8 ~to.,~~~-:cf~: q~l:a- '1'Q•t be_
~. - ',, ' .

added to the picture (these cells will ho~d pointers to the

individual components of the structure referred to by JC:).
·:.~:,:·:.<.>~5 ;_:~' . .: ~ _'):J:~_,_

The corrected tranalation mechanism is shown. in fig. 4.3-12:

!! ' '. '

-140-

for each reference-to-structure identifier x we add to the

local structure a res~rved identifier x$sub to hold the

subnaines (distributed component pointers). By looking at

the local structure pictured in £.ig. 4.3-12, we s•e that

there are two waya to access component cells of the struc-

ture pointed to by x: throuqb x (W!~b (~iriat1on)

b 2f ptr .2! x) as V'hen updating; .tbtJ. •trbatu~ itself :by' 'eom

ponentwiae copyinq: or throuiJ'h x$atib --~eh (·t:tetttinati·dn ~

ptr .2f b ~ x$·sub) ae when expl'iei~ly aeleet:;irlq trom x usi~g

subnamea. NOte t~t our translaticm· ~e()~km- ttr tbe stip

ulation.a set:· by the ML--'4 'Mt.atie ~q ··~tem.

We give a final ALGOL 68 example, illustrating a re-

cursive structured mode. The example ia shown in figure

4.3-13. ~is a structured mode, reeuraively defined, and

a and·· b are of mode rpf bO?S· N<>t-e that the mode;r.of the. sel-

action n g! a is ref ref box.
~ ..._....... ~

program. oc:<:Ur• in the last assignment, w};lare • .is deref.-

erenced. A :recura:ive atoie defj.nitiop.'(•Mh" u

mo<ii! 1:?!dl?9l$ == strgctJi;nt v,,_ ,l?adbox nJ ~Uld be :t:?'legal,; the
. .

"ref" inaic:le th• deti.niti,on o.f t.ba. ~~.--r4• ·t..cesaery
" ,_ . • ,~. . ,. i1

since there ia no implicit nil in·~f, 68•8 modes as tber~

is with ML-4.

-141-

Thus we see that even with a language as complex as

ALGOL 68, we can use ML-4 to make clear its approaches to

the semantics of data structures.

ALGOL 68

mode box = struct(int v,
ref box n);

box a,b;

v of a := 8;

n of a := b;

b := a;

ML-4 I

I

0.
j
' I I

f'fr

'

box = [i~!:. v; refbox n]; refbox = [box ptr];
subbox = [refint v; refrefbox n];
refint = [int ptr]; refrefbox = [refbox ptr];

refbox a,b; subbox asub,bsub;

a+- refbox[box[nil;nil]]; b +- refbox[box[nil;nil]];
a$sub +- subbc;;[~i~share_v of ptr of a]_;_ --

refrefbox(share n of ptr of a]];
1 b$sub ~ subbox[refint[share v £±. ptr of b];

refrefboxrshare n of ptr of b]];

ptr of v of a$sub ... 8;
ptr of n of a$sub ... b; 4.3-13 . Final l Fig. i v of ptr of b ... v of ptr of a;

----~~~OL
68 example.

l n of ptr !_-::-:-:= __ of b ~ n of ptr of a

Completeness

In this chapter, we defined the mini-language ML-4 and

used it to model data structuring facilities of the lan-

guages ALGOL W, PL/l, and ALGOL 68. As in the last chapter,

-142--

we close with a few remarks on the complet~ss of our cov~

era9e of the approaches to data structures found in these

three lang\lages.

With ALGO.L w,. as with SNOBOL4 in the previo\U$ chapter,

\lie coveffd nearly all t~e data, ~~i~i.iilt: ~ilitiea'··t?lor

,.ouqhly, . ~ t'k th• exceiptif.m. of arrays. . We comment on, arrays

and acme •£ th.,tt' special issues in Chapter 5 ..

For PL/l..and ALGOL 68, our treatment is far from com-

plete.

t ·~ ,< .· ''.'.r '\ ~ ' ... ' .~? ,-:- .:: .·~. ;_~;:. ' ~J ' '

complexity of these .. two l':an~~·~··~~.· 'ft~~-.-~·num.e~•
. . ' .. ~ . . ' , ..

features dealing with dat.&1 · Jll't!r.\l~ .~ we hwe not de

scribed'.;.. ·YtM! we- o?an ·i:hat t~fi;'~-. '.Cb."~· di.d de

scribe in PL/l and ALOO'L 68 can•~~· tJr• "ht1ax:t" of t:he·ir

data structuring facilitiesJ thus ott:tdtt1reription of these

to data structures in these 1~'PfU&9tHJ>;JMJ'. wel..1 •. · ·

-143-

Ch~pter 5

·•
5.1. What We Have Done

There are a :targe number ~f l>z;<>grmwni.~~ }ang,u~9es Yfhich

work with data structures. Becau,se. of the_ villy;iety ~f ap

proaches foun4 in these langua<JeS, many subtle bllt. ill\por~ant
l 'I. "···· . -,. .'. . ' . .' ~.:,,' J • 'l • ~:

semantic dis;tinc-trions .c..rop, ;u~- With ~'!:t leu\g;_uages.' .th~ .

semantics (~ncluding in ~a~,tic:ql·~;r; th.e ,S,~~pt~c~ Jar t?e
,' "" ·' ,'•..?. ~ ... ' - ._J . ' ' . ~ -· 8 - •

data structur.i:n.liil faci,li:tie~) a,;-e 4e,sc~i~bed _;ip£oQRal_ly ,in
' L' ' ' ' - ' ; . . • . - ··. ·-:.· . . ' '

English. We consider such. ~es9};'JJ:ltive .metAo~ in~9e~.~t~
. , - . . . " - ·~ . :·.· r . _,; , . . .· ..

for our goals, since in ~any. cases ~~~:-:~f~}:. _t~ l[\ake, ~:i~a:r:

some of the important semantic principles such as sharing.

As we have seen, a misunderstanding of the interaction be-

tween, notions such as assignment and sharing can lead the

programmer into erroneous conclusions about the effects of

programs.

we have ther~fore dev~t?~q j-JJ. i:.h:i'3. ;A,es~~' fil m~t}l9d

ology for describing tp.e semapt,i_c,, 9i <fa;.~ •~ructu~~s i.n
. ' - ·. ' ' . - ' . . - .: : "~' ;'. .. ·~ , . . - .

programming languages. In order to precisely_ (i~s<;:~f.:i..!:>e J,ne.ch-
p • •. •. ; ~} ,, _'.)H • > • "'.;. ,•

anisms found in programming languages which handle data

structures, we made use of the base langu~9e model, which is

~.---. ·---

.... '1.

-144·

an interpretive model for ''fttttnal semantics. The base lan-

guage model is essen tiarly :a mll.'tbeat'1'cal formalism for

modeling the chanqing states ·of a ?~tin9 system on Which

various computations are performed. A mathematical treat

ment of the base lang\iage model ls found in 'the Ap];>endix:

otir approach emphasized the uae of the'):)ase language as a

proqramming too! •ilntlar t6'm4ny conJent:Lon~l assembler lan

qu'ages. .A tijor advantage ot . tlte l)a9°j· ·iugua'cJe madel over

other forma'l aeman"tic modei:t• ia ''-'aiat ±t. manipu'.lates data

objec:ta of a •ul(iciently qane:ra'.1 ~-~ure ~~t; ~e can m~e

direct u•e of its" data repreaenb.7t'io~j";irt our ;work witbout

need for •pec£&:1 enrloding meehanlams. ~·. '•

The main portion of this theais was concerned with the

presentation and use of a series of mini-languages. With

these mini-languaqes, we isolated the relevant conceptual

abstractions such as assignment, value, construction, selec ...

tion, sharing and typecbecking. '1'he mini-lan9Uages provided

a •11liqh•l:e~ -tt· ·ttea~i}»ti:ve · veifi~1li ..ftatcnr ·*• ·1 t:' siltipler ·and

mo:te oob'Crenifrht t.O ·talk aboUt aem.iltic ii-&uea ·relatlnq · to·

dfita a·th.;ffires :

The basic structure of our metbodoloqy was to first ·

make clear the aemantica of our mini-lanquages by specifying

-145-

their translation into the base language. Once this was

done, we no longer needed to think in terms of the primi

tive operations of the base language. we were then able to

describe the semantics of data structuring features in some

programming language by simply using the appropriate mini

language to describe how the relevant mechanisms worked.

In treating the data structuring semantics of several

programming languages, we gave mini-language code into which

constructs of these languages are translated. Determination

of this mini-language code presents difficulties when the

semantics of the source language is incompletely or ambigu

ously specified, reflecting the inadequacy of the descrip

tive methods in use. Of course, once we have obtained a

consistent translation into the right mini-language, we have

an unambiguous semantic specification of the relevant con

structs.

using the techniques we developed, we described the

data structuring semantics of a number of representative

programming languages. With the simpler languages, we were

able to give a nearly complete treatment of the data struc

turing facilities. As to the more complex languages, we

were able to cover most of the fundamental approaches to

.--,

-146-

data structures without getting caught up in the intricacies

of features of I:'elatively little semantic relevance to the

issues. we are concerned with. In the next section, we talk
. . ·' '

about some of the areas that were left Un:covered.

There are a number of eemantie· are••~ that we have not·

treated. In erder to cover these at-eu ~ we Wotild need to ·

I

In'·

this section, we. qive brief l'llifmtion·t.o tw.l!Rteh areas and

what kinda of l\ew meehaniama are reqia:ired' ta: :t.reat them.

The first uncovered area is unions. · with the type sys-
..

tern of ML-4, every cell is constrained to hold values of

only one type. In many programming languages, this restric-

tion is weakened somewhat by defining union types. If type

t is the union of types tl and t2, then a cell of type t can

hold values oC type tl as well a• valtM9 ·Of type t2. For

example, auppoee we declare z to be Of type t in some lan-

CJU&i!Je that admit• urtion type9, and supPo8e•Sf:liat the express-

ions el and e2 yield values of ~·· tl aftc! 't2,. respective-

ly. Then botl'l t.he assignmen'bs z :• el and z :• e2 would

be legal. T'hi• capability is not witbin tbe. :reach ef the

-147-

type mechanisms we developed for ML-4. Suppose we declare x
' •'l r ,, ... ,.

to be of type tl. Then the assignment x := z can be exe

cuted wi tht>Ut .tyi:>e' error pfeCi1fetfy;~;~~ 1 tbe-1 v•ttu~ Of i is Of

type tl rather tb~ri Of t~· l20. . 3SdLin~ 1dra~ to ·add ~b Oiir· .

mini-languages a capability to ~d2e··~:td'9~ ,:sbme 'kitid' of:·~.

addi t'ibnal runtiltle type: tss't!nq" 1nedfu.lri·i'sitf~st;·He:· fntrri;.,.:; · · ;) ·

duced into the ·design of tlie lanqtlaq•L·1 .. : . ~.

' .• "<', :'. • '',; ~)

The second uncovered area is arrays. The type system

of ML-4 is simply not equipped to deal with arrays whose

subscript bounds are flexible. The type of such an array
• :.; ; ; '· , l 1.' - ~~,) ;~,i (.. -, .:_~ ;,.: ry'.: J.. "' , '. ' .; ; ' 'i, _(

would contain structures having differing numbers of com-
,. L: ~j ·""r' '..

ponents. A structured type in ML-4 require• a set of selec-
i..'. . "''

tors which is known to the translator and cannot change •
• ·. • ·' " . i 1 .i:. \' ; ... ~ -

Even with unions, we are no better off. For. instance, the

type consisting of all PAL tuples could not even be expre$sed
' . · 'f ,l i. -~ '. . ,; 1r·

"'
as a finite union of ML-4 types, since a tuple can have any

I~. :: '

one of an infinite number of selector sets ((1}, [1,2},

(1,2,3}, ••• I [l,21••01n}1 •••>•
There are many other complicated issues concerning

arrays, such as different ·a~_ray type concepts, · change-

ability of bounds, and assignments between fixed and flex-

ible arrays. All of these issues introduce new complexity

-------~----

...

...148-

into the language, requiring the development of more techniques.

To sum up,, our methodo,logy J;9J:'· dcll:a.c:r.ij:)in.9 dat~. struc

tures. has special advanta~es fr.om each of its two portions.

The use of the bas.e language model providas fo.r a pr.ecise,

formal characterization .of the semantic rules of the lan

guages under study, while our mini-lao.guages, prQV.ide the

convenience of high-level descriptions of the actions being

modeled. In order t.o describe any programming language

feature, al.l that needs to be done is construct an appro

priate mini-language which handles only the concepts direct

ly relating to that feature. The syntax and semantics of

such a mini-language are naturally easy to work with and

understand. By specifying translat~ons from source lan

guages into the mini-language and from the mini-language

into the base language, we gain a precise but conceptually

clear characterization of the semantics of the features

we wish to study.

-149-

Bibliography

(Amer 72] Amerasinghe, S.N. The Handling of Procedure Var
iables in a Base Language. S.M. thesis, M.I.T.
Department of Electrical Engineering, Sept. 1972.

(Amer 73] Translation of a Block Structured Lan-
gllage With Non-Local Go To Statements and Label
Variables to the Base Language. M.I.T. Project
MAC Computation Structures Group Memo 84, June
1973.

[Bur 68] Burstall, R.M. Semantics of Assignment. Machine
Intelligence 2, ed. E. Dale and D. Michie.
Oliver and Boyd, Edinburgh, 1968, 3-20.

[Cou 73] coueignoux, P. and Janson, P. Translation of
Simula 67 into the Common Base Langua~. M.I.T.
Project MAC Computation Structures Group Memo 87,
June l.973.

[Denn 71] Dennis, J.B. On the Design and Specification of
a common Base Language. M.I.T. Project MAC com
putation Structures Group Memo 60, July 1971.

[Denn 74] Private communication.

[Der 74] Dertouzos, M.L. computer Languages: Structure
and Interpretation. Class notes for subject
6.031, M.I.T. Department of Electrical Engin
eering, Feb. 1974.

[Dra 73] Drake, c. The Semantic Specification of SNOBOL
in the common Base Langµaq~. M.I.T. Computation
Structures Group Memo 85, June 1973.

[Earl 71] Earley, J. Towards an Understanding of Data
Structures. CACM 14, 10, Oct. 1971, 617-627.

[Ev 70] Evans, A. PAL Reference Manual and Primer.
M.I.T. Department of Electrical Engineering,
Feb. 1970.

-150-

[Fenn 73] Fenner, T.I. et~ al. QUEST: The Design of a
very High Level Pedagoqic Programming Language~
Agl SIG-{>Ql ,~ti~s, ,~. ,;~73f,, ~~27.

• ' . •': • .- ·- - . .- ~ - ~ ~ c • ' ' > ~ -·- •. ' ·' • -

[Gris 73]

[Hoar 68,l _ J!Qa~e, C.A .. R •. , Rec:ox:~ ~l~<J·" o.fj{f~g 1'!!11-
:.: :,·-~ .. :,,,~. P:· _aenu~ •. , 1~::'!f!:~-~lss, 1.'968.

(Hoa-r 69] · • An AxTo~tic;~ui'a:;:~~?~~ter Programm-
ing. CACM ll, IO, oct. 19'69,··1576;.;~o,saJ;.

[Hoar 71] - · ..• · ~? of a ~r~ : F~~: ''"t;ACM' 14, 1, ·
J··an· · 1911· · 3 9 ·A.5·· · · 6 · ~- ' H "' -' < ·:::'. .:.,~.:L · -

[Hoa.r. 72]

[Lan 64l

[Lal\ 651

[Lan 66a]

[Lan 66b]

• , . , I .. , ""'"'It • . . ·~- • ", . , ' .. .
'\.'.> ;_

_ _._. __ ~t~~ Oil ,.o.atit_p .. ~~ur~n9. st;ast:ur~i, ,
Programming, ed. !.W. k5i:jkatra;· ·--Jrcademic Press,
197.2. '

cea in Pro
• t • "?ercja~

-151-

[Lau 68] Lauer, P. Formal Definition of ALGOL 60. Tech
nical report TR2·5. oss., IBM Laboratory, Vienna,
1968.

[Lav 74] Laventhal, M. Y!,rification of Programs Operatilli!
.Q.n St;;gctured D,,at.f, .. ·M'.l.T •. i;>rpje,c::t MAC Tech
nical Report TR"'"l2:4, Ma1:'cth'l974.

[Led 71) Ledgal'.'d, H.F. T~ Mini-LanquageS·: A Study of
Topiq&l: Issues· in> 'P:t'Q9r~ng-·L~guages. ~

. Com.PY~ing Surveys d• 3, Sept~ 1971.

[Lee 72) Lee, J.A.N. ComPUter Semantics. Van Nostrand
Reinhold, New York/ 1972.

[Lind 71) Lindsey, c.w. and Vall der Meulen, s.G. Informal
, Introduction to ALGOL 68. Ma~hematisch Centrum,

Amsterdam, 1971.

[Luc 68) Lucas" P., Lauer, P. and Stiqleitner, H. Method
!ffi· No.:tation for the.;lgnaal.@U!Pition o{_~
gr~g ·La.nmJ'!CJ!S···· ~e~od:cReport TR25.087,
IBM Laboratory, Vienna, June 1968.

[Luc 69] ·Lucas, P. and Walk, K •. On. tl>.e Fo~mal Description
of PL/I. Annual Review of Automatic Programming
.§_, 3, 1969.

[Mee 62] McCarthy, J. et. al. LISP· ,11 5 ·Programmer' s
Manual. The Computation center and Research
Laboratory of Eleotu::o~, .J4.t·I .. 'll'-. · M.I.T. Press,
Cambridge, Mass;.,,.' 1962:.

[Morr 68] Morris, J.H., Jr. Lambda Calculus Models of Pro=
g:r~ • L!.Il9U!SH•' :: M •. :t. T. PJ;'.9if!ct MAC Tecll
nical Re:gort 'l'R:-51, ·:'268,_

[Mos 74 J Moss~s, P. . The M(l1;tbemt.tioaJ. Semantics of Algol
60. Technio•l: Mob.~)§t,G~J,a. Oxford Univer
sity Computation La.l:Ji. 'Pro9ra~g Research Group,
Jan. 1974.

------------,,-.~~--------------·-----~-~------------

(Reyn 72,]·

[San ·73]

[Scot 70]

(Scot 71)

-152-

ilep.ol;c!a.,. J .ci:.. ne·fin:i~ ~reters for
Hiqher-Order Pt'ograminq* ~· Proc. 25th
ACM Nati9gal Conft£MC8, 1972, 717-740.

!'.~{ :-·~ .. }J ... t < 1-J .. - ~;:'.'·\._ 1 J'~

----·-·· ':rsars!L:S~iDPllKtalam& structyre, pre
u.. id) ~ ~ 1973.

S:aaiiarJSOO,. J .. G •. • h ~ rftrlmt\»•,.Ji!twa
'1111omt1eml:ld:-Mi»rhil I Mii.r.~·ft notes, Ox
·.1Qrd ~i.~ ·~w:1,'4f~~~~'9$0ry, Programming
Research Group, 1973.

Scott, D. , .Outline. of ·A1 ~al Theory of
Computation. Pro9, 4Sb AMQl Prj.nceton Conf.
·QA~QD.·ACiMW.3'Jlt W1!1 rnl<>. :1169-
. J. 76;-.·) . ' . " . .1 i, r; '. ·t '

[Stra 66) Strachey, c. Towards a Formal Semantics. Formal
~e:1:De&Or!Rtil!l tJ-"'"u.Jkn.itht-ffoil1'nd,
.~:. ' ,, ... ':'

[Stra 67] Fund!!!!!ntal Conqeets in progrlUIDing
I...!.JJ9PEtl:-. .:. NAm. ~ •. ;1. epp....,_, J367. ·

' ~ ::>,:.~.'"·>~ . --~-~
{VWij · 69J v.an Wi·:ingaarden~, A. (ed .. l· >~;on the Algo-

{VWij 73]'

(Walk .69}

[Weg 68]

rithmic La.n.JJU-Sl\ M.tGQI. Ji8~;...:·Dzrrtsche Mathema·
!!k· !!· 2, 1969, 79-218.

• ,; .. -.. \ ·:.. • J,',

Wegner, P. Pro9r~g La.nguage9, ln~ti2n
Structures and Mac}lip• orqy..katiQn. McGraw
Hill, 1968.

I
I.

[Weg 70]

[Weg 71)

-153-

Three Computer Cultures: Computer Tech
nology, compu.ttm.,c·•-..thematics and ·computer Sci
ence. AdV!pces in Conezters 10, 1970.

Data Structure Models for Programming
Languages. Proc. AQI S;yJll80siwn op Data Struc
tures in Progr!!g!J.ns I-S1!1·'M1:.~~~#M
Notices, Feb. 1971~ ·

[Weg · 72a] " . .. Pro~, ~-· S~tics I! Formal
Semantics of Programming Langua<]es, ed. R.

· R.ua:tin.. :. Prepti~ll• ~1~ .Cli\,f;fs,, ·N •J•,
1972.

' [Weg 72b] The Vienna Definition Language. ACM
. co!£utinq Sulrrveys·:A:;,; 1 .. ,..,.MaJ1:ah:.:!l9cl:2,.,. S_r-63.;

[Wir 66] Wirth, .'·N:;;i. and lbate;: e ... ·A.a..-,,. :·A;,::ccrrtx·.i:'buti:on to
the Development of ALGOL. CA£M ,2., .9, Sept.
1966. •; .' .:: 'J~ • ~

[Woz 69'] Wozencraft, · J.M. , •.·.$Id 4ilvAhs;l ill ... • lfOte& on :P~
granuninq LinqUistics. M.I.T. Department of
Elfec'7rical EngiQ.-,.~1,,ng'". J.,9~1~~;.,

; .''

-154-

Appendix.
'_1,.

A MORE FOJUUU, '?RaTMJ)ft' OF BL

An i.nberpr.eteir •tr.ate allbodiea 'the iil.12..~~.ti<>? present
t

.:, '

this section we describe in detail the structure of BL-

and [Amer 72], bUt is essentially equival.M't:". In the next

we assume that tbe reader is familiar with the concept

of process .as a locus of control. A process is ·represented
,

in an interpreter state by a BL-object which we call a ~

of activity, or .§QA. The BL-graph for an interpreter state

is esstmtially a collection of SOA'a. The root nodes of

such a BL-graph are the root nodes of i ta SOA 1 s • Thu.a an

interpreter state is represented

by a BL-graph Whose skeletal

form is shown in .fig. A.1-1.

We now describe the st.rue-

ture of the individual SOA's of

I !
~-:;, , ... '• 'so~ •~'

Piq. A.l-1.. Skeletal
•triict.ue of BL,,..qr.aph
for·intupr9t.er state

; -155-

an interpreter state. A SOA is a BL-object with four com

ponents:

(1) The ~-component is a local structure, a BL-object

representing the environment in which the SOA's computation

takes place. (The name "ep" is an abbreviation for environ

ment pointer.) components of a local structure represent

variables and temporaries used by the computation. Nearly

all the BL instructions executed as part of the computation

affect its local structure. We allow for the possibility of

different SOA's sharing the same local structure, but usu

ally the local structures of the different SOA's are dis

tinct.

One distinguished SOA has as its ep-component a BL

object known as the univers~. The universe represents the

system-resident information present in the computer when no

computations are in progress. Generally speaking, this in

formation is independent of which computations are currently

active or how far individual computations have progressed.

This special SOA stands, so to speak, at the head of the

system call chain, so that every process can trace its an

cestry back to it. Access to the data in the universe is

passed from caller to callee, so whatever access a partic-

-156-

ular SOA bas to the universe is determined by the call chain

leading back to the one distinguished SOA.

Two kinds of objects are found as components in the

universe: ~ str;uctures and BIOCf4p;rt e;;tx.:yctures. Each

kind of object can have objects of either kind as compo-

nents. A data structure in the model can be any arbitrary

BL-objectr a procedure structure is a special kind of BL-

object representing a procedure expressed in the base lan-
.;,' .·

guage. A BL instruction is easily represented as a BL-

object: for example, the instruction con•t 3,x is depict-

ed in figure A.1-2. The components

with selectors 1,2, ••• of a procedure

structure are· simply representations of

its instructions in order. A prooe4Ure

structure may also have components

which are procedure structures for nest-

ed procedures. Figure A.1-3 illus-

r T
0 l

~ct>
<Pig~ A.1""'2. A

sample BL in
' !ttrucH0n as

a BL-object.

trates a 1skeleton procedure structure for a procedure p

with one procedure f nested inside.

(2) The .!E,-component of a SOA gives the instruction

currently being executed by the SOA's aomputation, as well

as the procedure containing this instruction ("ip11 stands

-157-

for instruction pointer) • The ip-component is a two-

component structure, whose proc-component gives the current

procedure structure from which

instructions are being executed,

and whose instr-component gives

the number of the instruction

currently being executed in

this procedure (fig. A.1-4).

Thus the instruction currently

being executed within a. SOA ~

------~--------

Fig. A.1-3. A sample
l procedure structure.

is given by the dotted pathname ip.proc.*(ip.inst), taken

relative to the root node of s.

(3) The ~-component of a

SOA, which gives its status, is an

elementary object with the value 1

when the SOA is active (i.e. curr-

ently processing instructions), 0

if the SOA is dormant.

(4) The ret-component of a

Fig. A.1-4.
component of

SOA s shares with the SOA that invoked (created) s. When

s executes a return instruction, the SOA given by the ret-

component C".lf· ~ is activated: the current SOA is put to sleep.

-158-

_r'l

With the structure of an interpreter s~ate given above,
·.: .. , ; ..- .: .. '. ~/ l} .; .:

we can pr()(:eed to.the next section, Which describes how the
' ' . -:~ ".: ~~; .

BL instru~tiona·tran•form interpreter atatee. ··:,· ' '

. 'f

We give a formal mathematical definition of BL-graphs.
C.::-. ··~ • •:-· ... :'::- •r,/' .'."'~

• ~ •• • '' ; ' <" ~"' '~ 'e '.,

S.upposEt Jthe seta BLEll (elementary objecu) , SBL (selectors)

and lQJES .. (n,ad••) a~ given. For our purposes, ELEM •ball

cona.£•tf ~t. ill~•, . truth va.111':;~ . real -;. and •trine# 1

six. •ba:1l .con•i•t of integers and •trin9ai al14.'10DBS·•ball.
·1 \">\' •·'\5 .}·~ .. :'·:·.·~ ~-:~.·' ''•f

'be e,-:~i:tJ:ary oountal:>ly infiaita· Ht· s~J..n9~ are ta1ten

- . ' •t . ''.• •"1' : - -- "'i'f-·"•- ···~ ·?· ~ "~ . :-·. . ,. :

Cb~Ctera t099t'ber w~th Some 8pact'~-·~~erti. A
. . .

· .iu~-iltmh~··~••• tlu'ee ••t• 1• a 4~~1• ··. :4 .; · cv;a,_·A, v)

';tf~·-7·~· in u••> ''ia. a ftniee''' t 1ot*b:1Sf
~ - ., '"-•/' ' ,'' J,; - . ~ ' '. \'

8: ."'(~t. ao6ia) G .lb .· ' '· · L ~· ~ -" .·
.i ~. ~; '

"'""' .. ., ~ ,. ,,_. ·.•, '.' .

.j·'·i'*•>
,_ ·:v :>:i~~'-•>

we int.arpret ·(a.~lr~~);'E,A t6 ~ .. ~'.a~li~ arc

with ae~ib:J' a ·1u4~'f:fci11'~· :ii tiDJ .. ~~1 ~-

<ct~ a>: E; V· tc>' -- '~ .·. ia • lMf ~ . .-..~.-t•t:r ft.lU~

& ·• A Bil~ 'iJf mullc ll&daty ·Qli\$Jl~ ~·: :~U-.:

-159-

(1) If a E U, cr E SEL, then there is at most~~ ~ E U

for which (a,cr,~) EA.

(2) If a E U, then there is at most ~ 6 E ELEM for

which (a,o) Ev.

(3) pr
1

(A) n pr
1

(V) = ¢ 1 where pr
1

is the first

component projection mapping. Equivalently,

V a E u: - [!'[6 E ELEM: ((a, 6) E V)

& :tr (cr , ~) E SEL x U: (a, cr , ~) E A] .

* * (4) D (R) = U, where D is the reflexive transitive

closure of the immediate-descendant mapping

D: 2u -+ ·u
2 defined by

D (S) = (~ E U: 3: a E S, cr E SEL s. t. (a, cr, ~) E A} •

Property (1) insures unique selection. i.e. that the selec-

tors on the arcs emerging from a node are distinct. Prop-

erty (2) asserts that no node may have more than one elem-

entary value. Property (3) says that no node may have both

components and an elementary value, i.e. that elementary

values can be attached only to leaf nodes. Property (4)

states that every node of a BL-graph is accessible along

some directed path of arcs starting with a root node.

We now give a formalism for defining transformations on

BL-graphs. The formalism is based on [Denn 74); it makes

use of a set ID of identifiers and a mapping

v: ID U ELEM U NODES -+ ELEM U ~ODES which assigns values

-160-

BL-graph g = (U,R,A, V) into a new-~ "41•; = «(U~'i~' ,A•, V •)

and upc!st:es 'the ·valmd::.ion ·iltapp!i.ng v ··itriso ·a ftew ·mapPing v'.
'),~~'~'.;~I.

The notation ..;[a/x] means xy. (ysx .. a, &me ... v(y)), i.e. a
I ,

mapp~NJ e<Ni ~lf!Ult t.o " ,~pt that ;it . maps x into a •

functions are def.ined for arbitra.-y QL-~~phs:
. •. ' :

[defibe~ provided :Q. e·11, & tE :m:JiM;
"'1ere a = "'(a), 6 • v (d) 1

v:t: :ii:' v u {ta. ,·8') ·r I 11-'· ·= "t'r; ·R' ~it; ~ f -;J it; "i = v.

na-leteB~i'a;iff: · 'ftifti'.ried provict.a ii ·~"'11;~:.:,6:,:e "!tiEM. and
(a,6) E .v, -where a = v(a), 6 = v(d)]

.. . ~ :::;; ·: -J ·~" .. < •

v· = v - ((a,6)}, U' = U, R' = R, A1 =A, v' = V·

AddAre(a,s,b): [defined provided a.,f!,\ E U, er E SEL,
"'1~e .\l ., ··N (11}, a, ,;:; .. i~(.~),, ~,.= "'.(h) 1

A 1 =AU ((a,c,~)), U1 = U, R' = R, V' = V, v' = v•
.. ;·· • ...

. De1eteArc(a,s,b): [defined provided a,f3 E U, o E $EL and·
(a;c,lJ}-'·4' A, ·:~9:r~ '~'-0'(ia.)5/ a· =· vfs·),

t3 = "(b)]

A 1 = A ... f (a , c , t3) } , U' ~ U, R ' -~ R, V • ~ V .~. v 1 = " •

~!.le:t~'(a}: .fcte•i:nea pro,,idect·a·E u, 'W!Mre-'ci = "(a) J

.Ai ·= A n i~tu - .. ~)) -~ •SBL.. ~x U) , .. JJ'' ·~;·~ l},•.\C: R, .

v I = v, VI = \I•

-161-

Prune:

* u • = o (R > , R • = R n u • , A· = A n < u • x SBL ·)(tr ' ,

V 1 '= V n: (U 1 X ~) 1 \II
1 = '. \i '.'. ..

Hascomp (a, sf: c de fined prOV-ided · -~ E u, a e s2L,
where a= v(a), c = v(s)]

z j • ; •

ll '.Ki3 E U: (a , q, f3) E. A. .. tben true eJ.ae ,. :C'~~~e.
• <. • ~ • , 'It ,..,,, . ':,'' . >

come Ca, s) ... Ji: · ·r'defi.ne.4, provide4 ~ f l.~i' ti 1E S:Eli;:·.nd
~u·coii!i{a,s). = ~rqe .i.,,ep ij3 EU: (a,cr,13) EA,
Wb;'r~·A' .'.;= " ca)·,· "a ··= "fs>l . '

let j3 E U 1!:9.£.h that (a,cr,j3) E A:

\!
1 = v[f3/b], U' .=. U, R' = R, A'= A, V~, • V.

ItasEl~Ctl: [deft.gec1 provided a E U, wher• ,a; ~-·"';(a)]

if :!16 E~.ELEM: (a·,&) EV then t~~l•::fll:lse·
: ~ i \ . p. ,, •· 0 '::·· ';.: :. •• ~ • ' ;

Elem(a) -t d: [defined provided a E U and BaaEfmn(a) = true·
i.e. :il6 E ELEMi:1 (a/~) r;e i'V::,; ~ a = " (a)]

-
let 6 e ELEM such that . (;cx.,.g,J, ·e ·vr" ·or -- .

"· = "ca/dJ, u• = u, R' == a1 •' •.:a;,; v:.' = v •..

NewNode -t a:
~ \ f". ·,; "'.\- :·

let a E NODES - U:

"'=~(a/al, U' =U U La.}.)l'_=.J.l,A,' =/\·~.v· =,V..

MalteR09t (a) : [defined .iarqvided p E .u .- R •. ~here.,~.= v (aJ l
'· •. : .. !~ ;·· L'.• .. '~~) .. _: .. '"_}_:__~-,. ,;.; __ ; .. -

R' = R u (a}, U' = U, A' =A, v• = v, v' = V•

I
RemoveRoot(a}; [defined provided a ER~ U, where a= "(a)]

u· = U - fa}, R' = R';.. (a}, A' :;,}'·K;'f/~;,'=-cV, "v·r = ""

transformations:

" '•

-162-

NewNode -:+ b:

AddArc(a,s,b}.

[n.b. the .•.·~~Q~~n ·. il}~ic-.tes cqm
poaiCiC>n of 'ti:'U•fOrm&tions, with
a~~i.:c~t~C)n 1,,~~ l~ 1 or~4'~ 1!'1?Dwnl

. . (._ , ' ·- \ ·"'-·· ~ . " ' ' . .' .: :. :.: -

DeleteCoD!P(a,al:

if HattCo~(a,·s)

tJleg {Comp.(ih•} -. b1

DeleteKrc(a,s,b):
; '

Prune}.

fnlakea'b denote an empty MakeEmpty(a,s) -:+ b:

il Ha.OQmp(a, •>" . , l4!t~.~ "~e wlµ.,c~. is _tQ,e
''· · ·· l~eni: Of''t'b.e nOde

~ tcampfa•,•1 · ... ·bt ·

il ~,.El.~ ('b)
I ' r•' .~ • ·' •' ::_.;.-. · • ,1 < t. !

A;iM (.Blem ~:Q). .,. d t .. i ~· ,

DeletemcOa,,cQ·J ~.,

tl!• . fDeleteCOlllpa (b):

Prune} }

else Newcomp{a,s) -+ b.

'cleOt.ed ·'-llyl ·.a Jr

We nowbave the machinery to describe the action df the BL
' - . - -· . "·- ~ : ,·· ' •. ~ ' •: : • \ ; ',':.:, ·.... ~ : ' •. - ~. i· · ..

interpreter. ·'.t'he basic ·action i's ... to pl.Cit ·a root nod.e, which

will be.some SOA, then to execute the next instruction
. ';

"

(given by the ip-c~ent ,of the so~ wit;Ji r~·c~ t;o the
' - '· ~ " ~ ' < • •

current local structure (qiven by the ep-c::omt;>onent of this

SOA)'. Figure 'A~2-l il.lhstrates tbe''ljltelftal atfUcture of a

sample SOA. In the procedure we will give to.~fine the

action of the interpreter, special namea are ualh te des-

-163-

ignate nodes in the current SOA. Theee names appear as

labels for the nodes in fig. A.2-1.

I ;~~~
0 1 •••

~~ .~~
' .,.. ' '

...
•'·

Fi9. _A.2-1. Structure _of a SOA
d',irtlfq ·1'ft·tftl'rel:atBi1 :; · ..

Before giving a procedure which apecifi~S,-tb.e ~c~ion:of

the BL interpreter, we define several auxiliary transforma-

. . '

P icMcti veRoot -+ Root: ·
•. '" .fj'•.e ;*' .' ?+..Ai=~,

') J.. .

let a E R ~!f~h t~t it3 E U: (a, 'stat•:·~) E A & ci;,i) E V:
·· .. ' . *·

v' = v[a/root], U' = 0, R' = R, A' =A, V' = v.
:.·.:

succ.-+.ntltt:

" ' = v ht+ l/ nests.h v.' = · th a' = R, A• = A, v • = v,
where x = v (k) • ·

GetNextinstr:

Oelet.eElem(inum,k);

AddElem(inum.next) •

' .. ·'·,·-.

-164-

Jump{i) -+·next; [de.fin.ed. for :, E £0,l,2, ••• } i:: ELEM,
w'.bere z. = v (i) l

v' = v [r../next] , u' = u, R' • R, A' == ~, v' = v.

Empty(a): [defined far a.EU, where a= v(a)]

il Ha•Elem(a)

then false ____.,, .

el&! !f. ia E SEL, t3 E U: (a.,c, f') E A

th!n. fal.se

else. true.

The action o.f the BL int~ret(!S.:r if. ... Q~~.i;•l!l by the repe-

titive application of the transformation given by the follow-

ing procedure:

PickActiveRoot -+ root:

comp(root, "ep') ·-+ clsr

comp(root,'ip') -+ ip;

comp(ip, 1 proc') -+ proced:

comp (ip ,. • inst') -+ inum:

Elem(inum) -+ k:

comp(proc:ed,.k) -+ inst:

Succ -+ next;

ExecuteBLinstruction(inst);

GetNextinstr.

/* pick an active root node

/* aceea• tbe ·e .. 1. •. via ep

*/

*/

/* acceaa procedure structure */

/* number of c:ur'i-ent instr. */

/* fetch current inatructic:>n */

/* aet for n:M.~··j.nstruction */

/* execute t'he ins·tructiOA */

/* reset ip for new instr. */

1-=~·-··""°"".
I

-165-

Finally, we define the operation of all the BL instruc-

tions by giving the transformation_ ExecuteaLin$truction.

ExecuteBLinstruction{inst):

Comp(inst,O) ~ operation;

case operation of -- - /* choose the action.that matehes the
operation code of the instruction */

'create':

Comp(inst,l) ~ x;

oeletecornp(cls,x);

NeWComp(cls,x) ~ a.

'clear':

comp(inst,l) ~ x;

MakeErnpty(cls,x) ~ a.

'delete':

Comp(inst,l) ~ x;

if ~Hascomp(inst,2)

~ oeletecomp(cls,x)

else [Comp(inst,2) ~ m;

if Hascomp(cls,x)

'const':
,

~ fCornp(cls,x) ~ a;

Deletecornp(a,rn)}).

Comp(inst,l) ~ v;

cornp(inst,2) ~ x;

MakeErnpty(cls,x) ~ a;

AddElem(a,v).

I add':

cornp(inst,1) ~ x;

cornp(inst,2) ~ y;

/* create x

/,*.. Q!l;~t;t x

/* delet-e x, an

/*· const v,x

*/

*/

*/

*/

*/

..
•

-166-

com.p(inst,3) .. z1

COnap(cl•,x) .. ~: Comp(cla,y) ... b;

Elem(a) df Blem(b) · .. ef

MakeEmpty(cla,z) .. c:

kle1~(a., .v(cl)+"'<•».

/~ add x,y., z *I

!• other arithmetic in.atruct.iona are similar */

1 link 1
:

comp(inst,l) .. x:
comp(inst,2) .. n1

Comp(i.:1uJt . .,3) .. y:

comp(cla,x) .. a1 com.p(cls,y) 'b1

if HuBla(a)

tbeJ! fBlem(a) .. d: oeleteBlem(•,4))

elae DeleteComp(a,n}1

AdArc t~a., n·, b) •

comp(inat,l) .. x:
comp(inst,2) .. n:

comp(inat,3) ~ y:

Coatp(cl•,x) .. ,a1

g -BaaCOmp(a,n)

tb!!l {it Ha•Elem (a)

then (Elem(a) .. d:

OeleteElem(a,d))1

Newcomp(a,n) .. b}

else COIDp(a,n) .. b.

I apply':

COlllp(imtt,l) .. p1

/* select x,n,y */

I~,,,,.~-~---.- --- -------- - -------------------------

-167-

comp(inst,2) -+ x; /* apply p,x */

Comp{cls,p) -+ proc; comp(cls,x) -+ arg;

comp(proc,'$text') -+ t;

NeWNode -+ newsoa;

NeWComp(newsoa,'ep')-+ newels;

AddArc (newels, '$par', arg);

NeWComp(newsoa, 'ip') -+ newip;

AddArc(newip,'proc',t);

NeWComp(newip, 'inst') -+ newinum;

AddElem(newinum,l);

NeWComp(newsoa,'stat') -+ newstat;

AddElem(newstat,l);

AddArc(newsoa,'ret',root);

MakeRoot(newsoa);

comp(root, 'stat'} -+stat;

oeleteElem{stat, 1); AddElem(stat,0).

'return':

Comp(root,'ret') -+ oldsoa;

Comp(oldsoa, •stat') -+ oldstat;

DeleteElem(oldstat,O); AddElem(oldstat,l);

RemoveRoot(root); Prune.

'move•;

Comp(inst,l) -+ f;

comp(inst,2) -+ x;

comp(proced,f) -+a;

Deletecomp(cls,x); AddArc(cls,x,a).

'goto':

Comp(inst,1) -+ t:
Jump(t) -+ next.

/* moye -f,x

1··~ J,

*/

*/

'elem?•:

Comp(inst,l) -t.x:

comp(insui2) .. t:

comp(cla,x) .. a:
il -,HaaElem (a)

lhtn Jump(.t) .. next.

•empty?':

comp(inat,l) .. x:
Comp(inat,2) .. .t:

COmp{cls,x) -+ a:

..U. ...,Empty (a)

t:l>E Juap (.t) -+ next.

'nonempty?':

Comp(in•t, 1) .. X7

Comp(inat,2) ... L:

comp(cla,x) .. a:
ll Empty(a)

tbtn JuJDp (.t) .. next.

•eq?':

comp(inst,1) ... x:
comp(inat,2) .. y:

comp(inat,3) .. t:

-168-

'•

$lem(x) .. 41 Elem(y) .. •1

.il v (d) fl v (e)

thep Jwap (t) ... JlUt.

'hU?':

Cofll)(.--.t.,-1) .. Xf

COmp(tnat,2) .. m:

; . '/t '

/* ,St x,y, .t

*/

*/

\

t
*/

Comp(inst,3) ~ t:

if -,aascomp (x, ml

then Jump(t) ·~ nex~~

'same?':

Comp(inst,l) ~ x:

comp(inst,2) ~ y1

COUJp (.i.ns.t, ~) .-. .th,

il v (x) '# v (y)

then JUanpft-J -+ next.

-169-

/* has? x,m,t -- */
• ·, ~'' l

' '

. r

/* other comparison instructions are similar */
··~e:ri:\/.~: ·~;_ .. '.'!_·~,_'.;"1n-L·:

• getc':

Comp(inst,l) ~ x:

Comp (:Lt\a~, 2) ~ .. i i

comp(inst,3) ~ t:

Comp(cls,x) ~ a: MakeEmpty(cls,i) ~ b:
.. " 'l.'. ~-t :~ s~t.:(;.f:· ~~ :.~·~.tij S' v:, :'"' ..

if HasUnmarkedCompa (a)

endcase

~.::f<Jeeum.arW«l~f~r·4'w'f·

Mark(a,s):
· ,.A~dE1en\('b, •.> 1

else ft1mnadtCoillpSM'~(a} f ·.·

. J~J""°') ~. n~t} •
··.·!

: : '} .

This completes the definition of the tran•formation

ExecuteBLinstruction. The ~ instruction, however,

··1

.,

requires some special additional mechanisms, which we now

show.

! ~··.

-170-

HasU!U!!rkedColl,\l?s (a): [defined provided a E ·u, .. where a = "(a)]

if :ire E SEL: (a ,a, t3) E A for 891!1 :t3. E ,U

~ CJ i MARKSET(a)

then true else false.

Getunm,arkedCW!P(a) ~ s: [defined provided a E u and
HasUnmarkedCOmpa(a) >ili·t:r'Ue, where
a= v(a)]

.!!.ta E SEL be as in the HaSUJ'UD&~ke4Coaps,predioate:

v 1 = v[a/a].

Mark(a,s): [defined provided a EU and a E SEL, where
a• v(a), a= v(s)]

MARKSET(a) ~ MARKSET(a) U fa}.

UnmarkCors>llOf{a): [defined provided a e·u, where a• v(a)]

~'(ti}· ... -·

We observe that each node a E u has a set MARKSET(a) asso-
I"

ciated with it. All such .maa:k~ ·&pa. ini~1-~ly empty.

There is one final remark to be made. . Al though our

definitions of the BL instructiOJ'\8 QQntain .any ·composite

transformations, the interpreter ±• to rec)a.rd the effect of

a BL instruction as an indivisible unit.

