
Technical Report 1074

0

0 0

w

Xx T 4- 1 + znk Ile f"l 11-t 4-1 *41 r_t n T-T I"% 41%e% n X% -tA I

vv aLLUI kolllallcN rallISLAICf. v�

MIT Artificial Intelligence Laboratory

I\4odel-Based Troubleshooting
of Digital Systenis

by

Walter Charles Hamscher

Revised version of a thesis submitted to
the Department of Electrical Engineering and Computer Science
on 12 August 1988 in partial fulfillment of the requirements for

the degree of Doctor of Philosophy in Computer Science

Abstract

This thesis describes a methodology, a representation, and an imple-
mented program for troubleshooting digital circuit boards at roughly the
level of expertise one mght expect in a human novice. Existing methods
for model-based troubleshooting have not scaled up to deal with complex
circuits, in part because traditional circuit models do not explicitly repre-
sent aspects of the device that troubleshooters would consider important.
For complex devices the model of the target device should be constructed
with the goal of troubleshooting explicitly in mind. Given that methodology,
the principal contributions of the thesis are ways of representing complex
circuits to help make troubleshooting feasible. Temporally coarse behavior
descriptions are a particularly powerful simplification. Instantiating this 'Idea
for the circuit domain produces a vocabulary for describing dgital signals.
The vocabulary has a level of temporal detail sufficient to make useful pre-
dictions about the response of the circuit while it remains coarse enough
to make those predictions computationally tractable. Other contributions
are principles for using these representations. Although not embodied in a
program, these principles are sufficiently concrete that models can be con-
structed manually from esting circuit descriptions such as schematics, part
specifications, and state diagrams. One such principle 'is that if there are
components wth particularly likely failure modes or failure modes in which
their behavior is drastically simplified, this knowledge should be incorporated
into the model. Further contributions 'Include the solution of technical prob-
lems resulting from the use of explicit temporal representations and design
descriptions with tangled hierarchies.

Acknowledgernents

Success is humbling: I am permanently indebted to the many fine people
who have done so much for me during my years at MIT.

Randall Davis, my advisor, spent countless hours providing 'Intellectual
guidance, unflagging moral and financial support, and of course the a-
important comedic perspective.

My readers Ramesh Patil, Howard Shrobe, and Peter Szolovits, spent
a great deal of time wth me and with this doctment, providing their own
indispensably unique viewpoints.

All the usual suspects at the weekly Hardware Troubleshooting group
meetings, including my friends Meyer Billmers, Choon Goh, Hal Haig, Paul
Resnick, Mark Shirley, Reid Simmons, Rau'l Valde's-Pe'rez, Jeff Van Baalen,
Dan Weld, and Peng Wu, provided close comradeship and a constant stream
of intellectual stimulation and feedback on my work and on my presentations
of 'It. Brian Williams deserves special mention for providing so many patient
explanations, penetrating observations, and encouraging words.

Comments from Eugene Charniak, Johan de Kleer, Tom Knight, Drew
McDermott, John McDermott, Chuck Rich, Gordon Robinson, ll Swartout,
Dick Waters, and Mike Wellman, sometimes only a single incisive sentence,
all helped to clarify my thinking at crucial moments. Everyone at the MIT
Artificial Intelligence Laboratory contributed to 'its atmosphere of challenge
and excitement.

The Joshua group and others at Symbolics, ncluding my friends Steve
Anthony, John Aspinall, Brian Bauer, Bob Cassels, Jackie Covo, Doug Evans,
John Hotchkiss, Jim Loftus, Neil Mayle, and Steve Rowley, taught me much
about AI in the world outside this ivory tower.

The love and encouragement of my parents and of my wife, Cristina Ciro,
enabled me to carry the work through to its completion. Their patient and
unwavering support is most humbling of all. This is their success, too!

This report describes research done at the Artificial Intelligence Laboratory of the Mas-

sachusetts Institute of Technology. Support for the author's artificial ntelligence research

on troubleshooting is provided by the Digital Equipment Corporation, Wang Laborato-

ries, Symbolics, and the Advanced Research Projects Agency of the Department of Defense

under Office of Naval Research contract N00014-85-K-0124.

,I I I mom , - -, � - - . - 11 �, - - -- --- --- POINIMMMIMIM MOM

To my Family

on en s

Introduction I
1.1 Model-Based Troubleshooting 1
1.2 A Troubleshooting Scenario 6
1.3 Contributions . 11
1.4 Organization . 14

2 Background 16
2.1 The Symptom-Based Approach 16

2.1.1 Dealing with Uncertainty 17
2.1.2 Organizing Knowledge 18
2.1.3 Diagnosing Multiple Diseases 18
2.1.4 Summary of Symptom-Based Approaches 19

2.2 The Model-Based Approach 19
2.2.1 Modeling 20
2.2.2 Behavior Prediction 23
2.2.3 Candidate Generation 24
2.2.4 Discrimination . . # 31
2.2.5 Hierarchic Diagnosis 33
2.2.6 Summary of the Model-Based Approach 35

3 Troubleshooting Scenarios 38
3.1 Clock Generator Examples . 40

3.1.1 Troubleshooting the Clock Generator 41
3.1.2 Morals of the Clock Generator Example 42

3.2 Audio Decoder Examples . 43
3.2.1 Functional Organization of the Audio Decoder 44
3.2.2 Physical Organization of the Audio Decoder 49

i

immillimmilmomm il I III III

3.2.3 Audio Decoder Example I 49
3.2.4 Audio Decoder Example II 52
3.2.5 Audio Decoder Example III 53
3.2.6 Audio Decoder Example IV . 54
3.2.7 Summary of the Audio Decoder Examples 57

3.3 Input Encoder Examples . 57
3.3.1 Functional Organization of the Input Encoder 57
3.3.2 Physical Organization of the Input Encoder 59
3.3.3 Expected Behavior of the Input Encoder 62
3.3.4 Finding a faulty Input Processor 63
3.3.5 Finding a faulty Console Controller 67

3.4 Summary of Troubleshooting Scenarios 69

4 Representing Circuit Structure 70
4.1 Physical Organization . . . # * . # . # e # * * . s e * # . 71

4.1.1 Primitive Components 0 0 * * . 0 0 0 71
4.1.2 BASIL . 74
4.1.3 The Physical Part-Of Hierarchy 76

4.2 Functional Organization . 78
4.2.1 The Functional Part-Of Hierarchy 80
4.2.2 Principles for Structural Composition 82

5 Representing Circuit Behavior 86
5.1 TINT * $. a 0 * 0 0 a 0 0 90

5.1.1 Signals . 90
5.1.2 Rules . 92
5.1.3 Signal Hstories . 0 . 0 I* 0 . 0 0 0 0 O 0 0 0 0 0 0 0 & a 0 93
5.1.4 Equality . 95
5.1.5 Summary . 96

5.2 Combinational Behaviors . 98
5.3 Sequential Behaviors . 103
5.4 Abstractions . 107

5.4.1 Temporal Abstractions 10
5.4.2 Composite Abstractions 119
5.4.3 Summary of Abstract-ions o * * o # & a * * * 0 0 122

5.5 Event Preservation o 124
5.6 Reduction a . . & * a * . * . * a * . . . * . t o # * 131

ii

- , I --

5.7 Synchronization .
5.8 Encapsulation .

5.8.1 The Reset Hold Counter
5.8.2 The Audio Counter
5.8.3 Microprocessors .
5.8.4 Abstract Buffers
5.8.5 Programmed Microprocessors

5.9 Related Work .
5.9.1 Temporally Quantified Statements
5.9.2 Intervals and Constraints on Intervals
5.9.3 Persistence .
5.9.4 Temporal Inde)dng

5.10 Summary of Behavior Representation

6 Representing Faults and Misbehaviors
6.1 Failure Likelihoods .
6.2 Representing Syndromes
6.3 Principles for Using Syndromes
6.4 Consequences of Using Syndromes
6.5 Summary of Faults and Mbehaviors

7 Troubleshooting
7.1 Conflicts and Candidates
7.2 Decomposition .
7.3 Ranking and Refinement
7.4 Making Observations .

7.4.1 Prediction Strength and Probe Selection
7.4.2 Temporal Quantification and Granularity

7.5 Evaluation . * . * . . 0
7.5.1 Coverage .
7.5.2 Resolution .
7.5.3 Speed .

7.6 Summary .

8 Conclusions and Future Work
8.1 Engineering Issues .
8.2 Deriving the Representation

134
140
140
145
147
148
149
163
163
163

0 0 164
164
165

166
168
171

0 . 175
0 9 180
* 0 183

184
a 0 185
9 # 187
0 . 193
. . 200
. * 202
. . 204
. . 206
0 0 206
o 6 207
. . 209
. . 210

211
. 214
. 216

in

� Pwmwm I I -1-1 - I � --1, , I -11-Im I

8.3 Generalizing the Methodology 0 . & a 217

A Scenario Transcripts 220
A-1 Clock Generator Example . 221
A.2 Audio Decoder Example I . 223
A.3 Audio Decoder Example I with Syndromes 225
A.4 Audio Decoder Example II . 228
A.5 Audio Decoder Example II with Syndromes 232
A.6 Audio Decoder Example III 235
A.7 Audio Decoder Example III with Syndromes 241
A.8 Audio Decoder Example IV 247
A.9 Audio Decoder Example IV with Syndromes 252
A.10 Input Encoder Example I . 258
A.11 Input Encoder Example II . 263

B Abstractions and Behaviors

C Reset Hold Counter Behavior

D Audio Counter Behavior

E The Switch Level Model
E.1 Pins and other Connections
E.2 Resistors
E.3 Switches

Bibliography

268

273

284

288
v 288
0 290
. 291

306

iv

IIIIIINIMPRII ---- ---- -- 1111111 Mill

0

is 0 ures

1.1 Model-Based Troubleshooting 2
1.2 Model-Based Troubleshooting Problems 3
1.3 A Portion of the Console Controller Board 7
1.4 Likely Suspects After Probing Interrupt 9
1.5 Likely Suspects After Probing Reset. 10
1.6 Likely Suspects After Probing Constant 10

2.1 Behavior Prediction Example 23
2.2 Reasoning from Effects to Causes 24
2.3 Behavior Prediction Example 27
2.4 Reasoning from Effects to Causes 27
2.5 Discrepancies Produce Conflicts 28
2.6 If x is not Only A Could be Broken 29
2.7 Inverter Could be Pulling x Down 30
2.8 A Short Could be Pulling x Down 30
2.9 Diagnosis of Adder-1 . 34
2.10 Diagnosis of Adder Substructures 36

3.1 Overall Troubleshooting Program Organization . . * . * . . * 39
3.2 Clock Generator Schematic . 41
3.3 Clock Generator Structure . 41
3.4 Audio Decoder Schematic . 44
3.5 Audio Decoder Functional Organization 46
3.6 Signal wth Too Many Zero Crossings in its First Derivative 47
3.7 Audio Decoder Physical Organization 50
3.8 Signal with Too Many Zero Crossings 55
3.9 Internal Structure of CSB01 56
3.10 Input Encoder Functional Organization . . # # * o * * a 8

v

3.11
3.12

Input Encoder Schemati . 0 0 -9 0 0 0 0 0 a a 0 . 0 0 0 0 0 . 0
Input Encoder Physical Organization

60
61

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
5.3
5.4
5.5

Chip Cross Section
Abbreviated AKO hierarchy
A Portion of the ppart-of Relation
Expanded AKO Hierarchy
JK Flipflop Unencapsulated
JK Flipflop Encapsulated as a Toggle . . .
Power Ports of Chip U30 and 'Its Chiplets .
Encapsulating Reconvergence
Encapsulating a Sequential Loop

0 0 * 0 0 0 * 0 a, a 0 72
* 0 0 0 0 -1 a 0 0 0 . 74
. a Is 0 & . 0 * * . 9 77
. 0 0 . * 0 a . 9 . 0 79
. . . . * . . . 11 0 . 80
. . . . 0 . 0 0 * 0 0 8 1
0 0 -P 0 0 lp 0 0 0 0 0 83
. 0 0 0 . 0 0 84
lp 0 6 0 a 0 10 0 0 0 Is 84

TINT Signal History Example 95
Combinational Behavior Example 101
Example with Register Behavior Rules 106
Abstractions and Behaviors 107
Example of Abstractions and Behaviors 08

5.6 Sufficiently Complex Abstractions Make Any Behavior Trivial 109
5.7 The Behavior of a Counter with Respect to a Counting" Ab-

straction . 109
5.8 Frequency Dvider Implemented wth JKFFs 129
5.9 Register Abstractions . 134
5.10 Shift Re 'ster as Cascade . 136
5.11 Reset Hold Counter . 141
5.12 Reset Hold Counter Three State Automaton 142
5.13 Audio Counter . 145
5.14 The Third Key is Pressed . 150
5.15 Functional Organization of Console Controller 156
5.16 Components of . 157
5.17 Components U and C Together form Component E 159
5.18 State Diagram of E . 159

6.1 Clock Generator 0 . . 0 0 9 0 . 170
6.2 Audio Counter . 177
6.3 Every Component is a Candidate 181

7.1 Predications, Assumptions, and Environments 85

vi

liallolilloollool�illiame-moloo�I I

07.2 Physical Organization of Four-Bit Adder 189
7.3 Functional Organization of Four-Bit Adder 189
7.4 Physical and Functional Organizations 190
7.5 Physical and Functional Decompositions of the Four-Bit Adder 191
7.6 XPART-OF Relations in the Four-Bit Adder 192
7.7 Clock Generator . 194
7.8 Distinguishing Between Dagnoses 208
7.9 Detail of Audio Decoder . 209

CA Reset Hold Counter . 274

E.1
E.2
E-3
E.4

Typical Switch-Resistor Combination
TTL Inverter as Modeled with TINT
nMOS Inverter as Modeled with TINT
Impasse Example

. -0* 0 0 0 0 * 0. 00 a 293
0 0 0 . 0 6 0 6 .0 00 a 294
. 0 . 0 . 0 . 0 295
. . 0 . * . . . 0* .. 0 296

vii

a er

n ro UC ion

A field engineer plugs in a broken crcuit board, makes a half
dozen simple probes wth an oscilloscope, and after ten minutes
ends up swapping a chip, which fizes the problem.

A model-based troubleshooting program spends a day simulat-
ing the expected behavior of the same mbehaving board, and re-
quests that a logic analyzer be used to capture a certain subset of
the snals. After some hours of computation it concludes that
any of the 40 chips or 400 Wires on the board could be responsible
for the misbehavior.

What does the field engineer know that the program does not? How can
a model-based troubleshooting program represent and use that knowledge?
Both the program and the field engineer have the circuit schematic and the
specifications of the individual chips. The -field engineer additionally has
expectations about the design of the circuit, expectations about which signals
in the circuit ought to be changing and how fast, and expectations about the
kinds of failures that are likely to occur in digital circuits. Incorporating this
knowledge into the circuit model makes it possible to be more discriminating
in the generation of diagnoses and more efficient in the use of observations.

1.1 Aodel-Based Troubleshooting

Model-based troubleshooting i's driven by the interaction of observation and
predictions (Figure 1.1). A device model produces predictions about what

1

CHAPTER 1. INTRODUCTION2

ought to be observed; comparison with observations of the actual device
produce discrepancies; these discrepancies are then traced to their possible

4underlying causes 'in the model and repairs of the actual device proposed.

Figure 1.1: Model-Based Troubleshooting

ACTUAL OBSERVED PREDICTED MODEL

DEVICE BEHAVIOR BEHAVIOR
observations P edictions

DISCREPANCIES

This report describes a model-based troubleshooting program. Its pri-
mary input is a model of a digital circuit that 'is a network of components
and connections. Each component has a description of its dynamic time-
dependent behavior and each connection transmits signals between compo-
nents. The secondary 'Input to the program is a description of the stimuli
presented to the circuit and observations of its actual responses. The model
uses those stimuli to predict what the outcomes of observations ought to be.
When discrepancies are discovered, the program produces lists of components
that could be responsible for the discrepancies, ranked by their relative likeli-
hood. The program interactively suggests what observations should be made
next to discriminate among these possibilities, then uses any new observa-
tions to incrementally focus on the correct diagnosis.

Model-based troubleshooting has been extensively demonstrated on sim-
ple devices. One of the prime motivations of this work is to scale up model-
based troubleshooting techniques to deal with sgnificantly more complex
devices. The fundamental problems in scaling model-based troubleshooting
technology to do this can be understood as problems within each element
of the paradigm (Figure 12). These -five problems and their solutions are
discussed individually below.

Models are incomplete. No model can possibly capture every detail of

1.1. MODEL-BASED TROUBLESHOOTING 3

Figure 12: Model-Based Troubleshooting Problems

Models are incomplete(

PREDICTED Id �� MODEL

BEHAVIOR Ipredictions

Predictions are costly

Predictions are incomplete

ACTUAL I k OBSERVED

DEVICE Or BEHAVIOR
observations

Observations are costly

Observations are incomplete

DISCREPANCIES

the actual device. Lack of detail 'in the device representation means that
some failures wll be indistinguishable and others will be misdiagnosed. For
example, if a wire connecting several terminals is represented as a single
component, then the program will diagnose a break anywhere along the wire
as a failure of the whole wire. If the model says that the only devices affecting
the state of the wire are the ones that it was meant to connect, then the
troubleshooting program will rmsdiagnose a short between that wire and
another as having been caused by one or more other failures. The selection of
the primitive elements of the device representation constitutes a commitment
to a set of failures worth identifying and worth distinguishing from each other.

Models are 'incomplete, but the consequences of that incompleteness can
be controlled 'in part by the choice of primitive elements and their connections
to each other. Principles are needed for making these choices in a way that
sacrifices completeness in favor of efficiency, since the aspiration is to trou-

bleshoot crcuits with many thousands of wres, transistors, and interactions

between them. One such principle is that physically separate components

'th 'ndistingu'shable failure effects can be treated as a sin le component.

Another principle i's that components whose failures result in the same repair

can be treated as a single component. A third principle is that unlikely fail-

ures are not worth representing explicitly, so that components whose failures

are individually very unlikely can all be treated as a single aggregate com-

CHAPTER 1. INTRODUCTION4

ponent whose failure is more likely. These principles 'introduce additional
approximations into a device model that wl make some component failures
indistinguishable from one another. A deeper problem arises from the fact
that any model explicitly represents only some of the ossible 'interactions
between components- the program will misdiagnose any ailures involving
interactions that the model does not represent. The standard example 'is
an unintentional short between two wres that are unrelated 'in the crcuit
structure diagram. The best that the troubleshooting program will do is to
diagnose this as two failures, one in each wire. The approach taken in this
work is not a general solution: at any given level of detail, decisions about
which interactions between components ought to be represented are made
solely on the basis of what 'is needed to explain the normal operation of the
device. In the case of wires, only the nteractions wth the devices they are
supposed to be connected to are represented, hence shorts are misdiagnosed.
When it comes time to repair the two wires one may assume that their true
(mutual) problem will be discovered by visual inspection.

Observations are costly. Taking measurements is nearly always appropri-
ately regarded as being more costly than computation spent on choosing that
measurement. The problem that scaling brings is that the more complex the
device, the more events there are to observe, and the shorter the intervening
intervals, the more difficult they are to observe. It is, for example, more
costly to set up a logic analyzer to capture digital signals at particular mo-
ments than 'it is to observe whether they are staying at a constant zero or
one.

Observations are costly, and although there is nothing that can be done
about this drectly, the device model can describe signals 'in ways that are
relatively cheap to observe. For example, it is easier to observe whether a
particular sgnal 'is rising or falling than to observe its changing value at every
moment. This is an example of a useful temporal abstraction; a long sequence
of changes of value can be summarized into a simple description that is stable
over a longer time nterval. A behavior model can u se this kind of temporally
abstract observation to make other temporally abstract predictions, without
requiring that any explicit deductions ever be made about the ndividual
changing values. As a general principle temporal abstractions are useful
because they provide a better match to the observations that can be made
cheaply.

Observations are ncomplete and imprecise. Discrepancies can only be

1.1. MODEL-BASED TROUBLESHOOTING 5

detected where observations can be made. But even when observations can
be made, they may be too coarse to detect discrepancies with the model. For
example, if the model predicts that a certain current should be flowing in a
wire, but the troubleshooter can only measure currents to within 20%, then
the current could actually be wrong and yet yield no apparent discrepancy,
hence yield no new information. One of the consequences of incomplete
observations 'is that there will inevitably be pairs 'of diagnoses that cannot
be dscriminated snce their only dfference might be 'in some unobservable
feature. Inability to make certain observations economically 'imposes limits
on the ability of the troubleshooting program to 'Isolate faults.

Because observations are incomplete, ambiguity among the logically pos-
sible diagnoses i's inevitable. If the troubleshooting goal is to find the most
likely diagnosis, however, other sources of information are available. One of
these sources is information about the relative failure rates of different phys-
ical components, from which the troubleshooter can produce a rank ordering
of the diagnoses by plausibility. A related source is 'information about how
components usually fail and what misbehaviors they produce; this can be
used to refine the likelihood estimates for some diagnoses. These sources
of knowledge alleviate the indiscriminacy caused by 'incomplete observations
because they can be used to discount unlikely diagnoses and leave the re-
maining relatively more likely) ones behind.

Prediction is costly. It is impractical within a troubleshooting session to
simulate an entire crcuit board at the gate level for more than a few clock
cycles. The culprit is not the structural complexity of the board in number of
gates or wires. The culprit is the complexity of the behavior - the number
of events that happen and need to be simulated. Waiting for more computing
power to apply to the problem is not a solution if the boards to be diagnosed
themselves get faster and more complex.

Prediction is costly, but this can be addressed by using temporally ab-
stract behavior descriptions. Temporal abstractions can summarize many
individual events into an aggregate description stable over a longer interval.
For example, a given signal may be described as a sequence of many thou-
sands of individual alternating zeroes and ones, or more abstractly in terms
of the number of falling edges that have appeared, or even more abstractly
as the number of one-to-zero cycles per unit time. Although the value of the
underlying signal ma be changing many tmes per second, the average num-
ber of cycles per unit time may be relatively stable. Descriptions that are

CHAPTER 1. INTRODUCTION6

stable 'in thi's way are less costly to make predictions from. For example, the
troubleshooting scenario to be presented shortly is simple because the behav-
loral complexity of microprocessors can be reduced to a smple relationship
between the rates of change at their 'Inputs and outputs.

Predictions are incomplete. A consequence of using abstract models of
behavior to achieve more economical prediction is that the resulting predic-
tions may be imprecise or ambiguous. Predictions that are too coarse make it
difficult to detect discrepancies with observations, and this in turn sacrifices
some of the ability of the program to isolate faults.

Economical predictions are 'incomplete, but the indiscriminacy that re-
sults can be alleviated by using multiple levels of behavioral abstraction. If
needed, more detailed predictions can be made for only a subset of the entire
device. This may allow more discrepancies to be detected and thereby rule
out some dagnoses.

1*2 A Troubleshooting Scenario

The troubleshooting program described in this report uses a rich and mul-
tilayered circuit model that is designed to address the problems identified
above. The model represents the physical organization in terms of chips,
wires, and so forth, and represents the functional organization 'in terms of
how its parts interact to achieve the overall intended behavior. Its levels of
detail range from a qualitative model of resistors and switches up to arbitrar-
ily large computational modules. It represents the behaviors of components
using both traditional digital abstractions and a novel set of temporal ab-
stractions that describe sgnals n terms such as cycles, frequency, and change.
Finally, 'it incorporates knowledge not just about how the crcuit components
should work but for a few how they break and how often. Only one cir-
cuit has been modeled this way, but it is large, complex, 'internally diverse,
and real: a portion of the Symbolics 3600 Console Controller Board that
contains two microprocessors (both running programs with several hundred
instructions), thirty supporting chips, and one hundred sixty wires.

Seven troubleshooting scenarios using this circuit wl be presented 'in this
document. One of these scenarios, presented here in abbreviated form, serves
to illustrate the distinctive features of the circuit model and the 'interaction
of the troubleshooting program with it.

1.2. A TROUBLESHOOTING SCENARIO 7

The Console Controller Board is responsible for transmitting keystrokes
and mouse motions to the host computer and for decoding the video sgnal
coming from the host for display on a CRT and the audio signal for output to
a speaker. Some keystroke sequences can change the volume of the speaker,
the brightness of the CRT, and so forth. Fgure 13 shows abstractly a few of
the components (boxes) and the signals through which they interact (arrows).

Figure 13 A Portion of the Console Controller Board

put
I

Each small superscript represents the number of chips in that component;
there are 16 in all. The oscillator produces a clock signal that is buffered
by and sent on to two places: the reset circuitry R and to a microproces-
sor Ml. The microprocessor Ml polls the mouse inputs. Each tenth of an
inch of mouse motion along its x or y axes causes Ml to interrupt a second
microprocessor M2 with a two-byte message. M2 responds to the nterrupt
through some bus control circuitry D. After receiving the two-byte message
M2 then sends the message on to the host, again through the bus control
circuitry D. The host displays the changed mouse position on the screen.

Suppose the Console Controller Board reset button is pressed and the
mouse rolled around for a couple of seconds. The model predicts that 'if an
16 chips are working, then mouse motion will be observed at Output. The
model is too coarse to predict how fast or how far the cursor will move on
the screen - it predicts only that motion will be observed. This temporally
abstract behavior is both more efficient to make predictions from and easier
to observe than the traditional clock-cycle-by-clock-cycle model of digital
circuit behavior.

CHAPTER INTRODUCTION8

But suppose the mouse cursor does not move at a. The program 'nd'-
cates that any one of the 16 chips might be broken; each chip is a suspect.
There are now many possible sgnals to probe, and the program ranks them.
The likeliest chip to fail by far is the onboard oscillator 0. The program
suggests probing its output; suppose it i's observed to have a frequency of
approximately 10 Mhz.

The oscillator can be discounted as an unlikely suspect using knowl-
edge in the model about how some components fail. The model says that
when oscillators fail, they usually fail catastrophically, producing an output
frequency of 0. Because the signal was observed to be changing, the program
concludes that the oscillator chip is probably not responsible. It 'is stil a
suspect, just a relatively unlikely one. This leaves 15 chips as likely suspects.

The program now needs to suggest another probe. To suggest a probe it
'ders the predictions that the model makes at each sgnal. For example,

the model predicted that the output of the oscillator should have frequency
10 Mhz, and the probe verified this. The model also predicts that the Clock
signal should have frequency Mhz. The representation of these clock sgnals
in terms of their frequencies is an example of a temporal abstraction; millions
of underlying events rising and falling edges) have been abstracted into a
simple description that is easy to reason about and easy to observe.

Although the model represents many signals in temporally abstract ways,
there are other signals for which the standard digital vocabulary suffices.
For example, the Constant output of C 'is a constant I throughout the entire
session, and the model predicts that. Also, the Reset signal should'be asserted
while the reset button is pressed and unasserted otherwise, and the model
predicts that as well.

These predictions - that the clock frequency i's Mhz, and so forth
can be used in subsequent predictions. The temporally abstract behavior
model for the first microprocessor Ml says that 'if the Clock input is Mhz,
the Constant input 'is 1, and the Reset signal is not asserted, then the mi-
croprocessor is running. While Ml is running, each movement of the mouse
results in the Interrupt lne being asserted. If all that is known is that the
mouse is moving around, the model does not predict exactly when 'it will be
asserted; rather it predicts that the signal wl be changing while the mouse
is moving and a constant i value otherwise.

The model makes many other predictions, but these are all that will be
needed in this example. The important one at the moment 'is the predic-

1.2. A TROUBLESHOOTING SCENARIO 9

tion that Interrupt sgnal will be changing while the mouse is moving. This
prediction depends on eght chips working properly, those 'in all components
except M2 and D.

The probe that the program now suggests is th e� Interrupt output of Ml.
Suppose the interrupt line is probed, revealing that it is a constant i even
while the mouse is rolled around. This is a discrepancy, since it was supposed
to be changing so long as those eight chips were working properly. One of
the chips was the oscillator, which has been shown to be an unlikely suspect;
this leaves seven as likely suspects (Figure 14).

Figure 14: Likely Suspects After Probing Interrupt

put

The model predicted that the Reset signal should be asserted just while
the reset button was pressed, so long as the five chips in 0, B and R were
working. Probing the Reset sgnal reveals that upon pressing the button it
is asserted, then unasserted. This means that the chips 'in R are no longer
suspects, snce their failure could not explain the observations made. Now
there are likely suspects (Figure 15).

The model predicted that the Constant sgnal should be throughout the
session, so long as the chips in C were working. Probing this signal reveals
that 'it is 'indeed so the chips in C are no longer suspects. Now there are
3 likely suspects Figure 16).

Finally a probe of the Clock sgnal reveals that it has frequency around
5 Mhz. The model says that if the clock input to Ml has a high enough

10 CHAPTER 1. INTRODUCTION

Figure 1.5: Likely Suspects After Probing Reset

put

Figure 16: Likely Suspects After Probing Constant

put

frequency and the reset input is not asserted, then the microprocessor should
be running. This means that the Interrupt signal should be changing, which
contradicts previous observations. Hence Ml is the only remaining suspect
and the program terminates.

The interesting thing about this scenario is that it is so simple compared
to the underlying complexity of the real circuit. The circuit 'is structurally
complex- there are thousands of transistors 'in the chips, hundreds of possible
flaws 'in the wires alone. It is behaviorally complex; consider a the micro-

1.3. CONTRIB UTIONS 11

0processor instruction cycles that occurred during the one second of mouse
motion. People can troubleshoot the circuit without thinking about all those
details, and the program can troubleshoot it without explicitly representing
them.

The 'Important thing about the model is not that it uses abstractions
to deal wth complexity; any representation does that. The mportant idea
is that there are structural and behavioral abstractions appropriate to trou-
bleshooting. Temporal abstractions, in particular, allow the program to avoid
simulating long sequences of events and instead reason 'in terms of "moving"
mice running" clocks, "changing" signals, and so forth. There are also
principles by which those abstractions can be manually applied to a com-
plex circuit to construct the rich representation that makes troubleshooting
of complex devices tractable. The model of the Console Controller Board
is appropriate for model-based troubleshooting because it was constructed
according to those principles.

1.3 Contributions

This thesis presents a methodology, a representation, and an implemented
program for troubleshooting digital circuit boards at roughly the level of
expertise of a human novice.

The methodological claim is that existing methods for model-based trou-
bleshooting have not scaled up to deal with complex dgital circuits because
traditional circuit models do not explicitly represent aspects of the device
that troubleshooters would consider 'Important. For complex devices the
model of the target device should be constructed wth the goal of trou-
bleshooting explicitly 'in mind.

Given that methodology, there are principles by which complex circuits
can be represented so as to make those important aspects explicit and thereby
help make the troubleshooting task tractable. Some of the salient principles
follow.

One set of principles concerns how the structure of a given crcuit should
be represented.

Components in the representation of the physical organization of the
circuit should correspond to the possible repairs of the actual device.

CHAPTER 1. INTRODUCTION12

The representation of physical organi Pzation plays a central role in the
troubleshooting program, and the program represents all of its diagnoses 'in
terms of the physical components that could be damaged. In the scenario
presented earlier, for example, the diagnoses were expressed in terms of chips,
which are repaired" by replacement. Making the elements of this represen-
tation correspond to possible repair actions ensures that the troubleshooting

'11 not waste effort trying to discriminate between d' s that
program w I lagnose
have identical repairs.

Components in the representation of the functional organization of the
circuit should facilitate behavioral abstraction.

The only role that an explicit representation of functional organization
plays in model-based troubleshooting 'is to make behavior prediction more
efficient. For example, the only reason that the component M ests in the
model is because the combined behavior of the four chips 'Inside it can be
described more smply 'in the aggregate than individually. In extracting the
functional organization from a raw schematic the modeler need onlv represent
what will make the behavior easiest to reason wth, rather than necessarily
what the designer had in mind.

A second set of principles concerns the representation of circuit behavior.

9 The behavior of components should be represented in terms of features
that are easy for the troubleshooter to observe.

0
Some features of time-varying signals are easier to observe than others.

The frequency of a clock, for example, 'is easier to observe than the timing
of each of its ndividual transitions. Expressing the behavior of components
in the terms that are more easily observed is a way of choosing where to
sacrifice precision in favor of efficiency.

e The behavior of a component for which changes on its inputs always
results in changes on its outputs should be represented in temporally
coarse terms.

A powerful representation technique uses relationships between compo-
nent inputs and outputs in terms that are stable over long periods of time or

1.3. CONTRIB UTIONS 13

that summarize much activity into a single parameter. In the troubleshoot-
ing scenario, the number of mouse step increments over a period of seconds (a
single parameter describing much activity) determined the number of times
the interrupt line would be asserted over that period. Such relationships can
be derived when each individual change results in one or more other changes.

9 A temporally coarse behavior description tha t only covers part of the
behavior of a component 'is better than not covering any at all.

Although the full behavior of a component may be too complex to reduce
to a simple relationship between (say) the number of changes on 'its inputs
and the number of changes on its outputs, there may be such a relationship
that involves only a subset of its inputs, assuming that the others are held
constant. In the case of the microprocessor, for example, the relationship
between the mouse motion inputs and interrupt output holds only so long
as the clock input 'is running and the reset nput is not asserted. Since the
troubleshooting program will eventually use the more detailed behaviors as
long as the diagnosi's remains ambiguous, no diagnostic resolution wll be lost
by only representing a subset of the possible behaviors abstractly.

A sequential circuit should be encapsulated 'Into a sngle component to
enable the description of its behavior in a temporally coarse way.

Although the individual behaviors of the components in a sequential cir-
cuit may not lend themselves to temporally coarse descriptions, the loop may
be performing a simple function when taken as a whole. For example, the
R component in the troubleshooting scenario is actually a sequential circuit
w'th 2 distinct states. When viewed in temporally coarse terms, however,
there is a simple correspondence between the states of the button and the
state of the output. Encapsulating the group of components makes it pos-
sible to reason about its behavior 'in a temporally coarse way, and as in the
troubleshooting scenario described, t may not be necessary to ever consider
the details of its behavior.

A final set of principles concerns what knowledge about failures should
be represented explicitly.

0 An explicit representation of a given component failure mode should
be used if the underlying failure has high likelihood.

CHAPTER 1. INTRODUCTION14

Components break in the field in certain ways much more often than
other ways. Chips, for example, fail more often with breaks in the tny wires
that connect their pins to the slicon chip inside than in other ways. The
benefit of knowledge about such failures comes when they are 'Inconsistent
with the symptoms, since this can reduce the ambiguity among the possible
diagnoses.

An explicit representation of a given component failure mode should be
used if the resulting misbehavior 'is drastically simpler than the normal
behavior of the component.

If a component with normally complex behavior has some internal fault or
faults that cause 'it to misbehave catastrophically, then any partially correct
behavior observed for the component makes it a less likely suspect. In the
troubleshooting example, the oscillator was known to failin a way that made
'it produce a zero output frequency, and that misbehavior was easy to rule
out even though the measurement of its output was imprecise. The benefit of
knowledge about these failure modes is especially great when the misbehavior
has high likelihood as well.

The implemented model of the Console Controller Board 'is a concrete
embodiment of the methodology and representation principles. The trou-

program that uses that model is an extension of standard model-
based troubleshooting technology, incorporating solutions to technical prob-
lems of (i herarchic diagnosis with multiple and tangled hierarchies ii) inte-
gration of explicit knowledge about failure modes into a framework for diag-
nosing multiple faults, and (iii) troubleshooting crcuits wth time-dependent
behavior.

1.4 Organization

This document is primarily organized by the different kinds of circuit knowl-
edge to be represented. Prelir'nary background material is contained in
Chapter 2 which presents an overview of knowledge-based automated di-
agnosis, especially model-based troubleshooting. Chapter 3 presents the
troubleshooting scenarios for the Console Controller Board so as to pro-
vide context for the many details to follow. The next four chapters contain
the essential 'Ideas. Chapter 4 presents a representation for circuit structure

1.4. ORGANIZATION 15

motivated by troubleshooting requirements. Chapter contains the bulk
of the document and describes a representation for circuit behavior using
multiple temporal abstractions and a temporal reasoning program for pre-
dicting behavior using those same abstractions. Chapter 6 describes how
faults and misbehaviors are modeled and how this knowledge 'is used by the
troubleshooting program to heuristically discount nlikely diagnoses. Chap-
ter 7 presents the details of the troubleshooting engine and how it interacts
with the choices made in representing circuit structure and behavior. Fi-
nally, Chapter summarizes and presents ideas for future work. Sections on
related research are dstributed throughout the ndividual chapters.

a er

ac roun

A number of knowledge-based programs for automated diagnosis have been
built for a variety of domains using a variety of implementation technologies.
These programs can be characterized by the knowledge that they represent
explicitly: (i) associations between underlying diseases or faults and their
consequences for the system as a whole, as opposed to (ii) knowledge about
the parts of the system and how they interact to produce 'its overall behavior.
In medical diagnosis, for example, the contrast is between knowledge about
diseases and their symptoms versus knowledge about the underlying mecha-
nism; 'it is the difference between knowledge that emphysema causes shortness
of breath versus knowledge that C02 exchange is proportional to the surface
area of the alveoli. Programs that rely on the former type of knowledge win
be termed symptom-based and the latter model-based. A number of programs
incorporate both kinds of knowledge, but for any given program it is typically
clear which one predominates. A brief review of each paradigm is presented
below. One particular program for model-based diagnosis win be presented
in some detail, snce 'it provides the basis for the troubleshooting technology
in this report.

2A The Svrnpton-l-Based Approach

One approach to automated diagnosis is to organize the program as a
database that associates underlying diseases (faults) with their outward
symptoms manifestations). To find the underlying problem from a set of

16

2.1. THE SYMPTOM-BASED APPROACH 17

symptoms requires straightforward lookup or pattern matching. The notion
of a "fault dictionary" is the canonical example of this approach. The princi-
pal difficulty 'in this approach revolves around the coverage of diseases in the
knowledge base. First, associations between single diseases and their symp-
toms does not easily support reasoni 0ng about interactions between diseases.
Second even if multiple smultaneous dseases can be handled the program
is limited to considering those ndividual diseases that were anticipated and
explicitly included by the knowledge base builder - there is no theory about
how to enumerate the possible diseases of a given system. Third, given a
knowledge base intended to be used for diagnosing a particular system there
is no principled way to modify the knowledge base when there has been a
change in the design (or in our understanding) of that system. Although the
paradigm has these inherent lmitations and is not used here, some important
techniques that generalize beyond it were first developed within this tradi-
tion: techniques for dealing with uncertainty, for organizing large knowledge
bases, and for dealing with multiple dseases. These techniques are each
treated briefly below.

2.1.1 Dealing wth Uncertainty

The notion of a disease-symptom database requires some elaboration in do-
mains for which the underlying diseases have widely varying likelihoods and
for which the associations between diseases and symptoms is less than cer-
tain. One approach is to assign prior probabilities to the dseases, assign
conditional probabilities to the symptoms given each disease, and use Bayes'
Theorem to find the likeliest disease given a set of symptoms [Szolovits78].
Many automated diagnosis systems use statistical information 'in this form in
spite of the large number of conditional probabilities needed when diseases
or symptoms are not independent. One reason for the enduring popularity of
the probabilistic framework is that t aows the use of decision theoretic tech-
niques to choose observations that are most likely to reduce the ambiguity
among competing diagnoses. Estimating ambiguity using Shannon entropy
and choosing the next observation based on a one-ply lookahead turns out to
provide good results on average orry73]. A non-Bayesian approach to deal-
ing with uncertain knowledge is taken by the MYCIN program [Shortliffe76],
which computes "certainty factors" for its conclusions, but 'it suffers from the
same difficulties with nteracting diseases as Bayesian approaches.

18 CHAPTER 2 BACKGROUND

2.1.2 Organizing Knowledge

Obtaining diagnostic coverage of any 'Interesting domain requires the mainte-
nance of a large knowledge base. This 'in turn implies the 'need for principles
for organizing this knowledge. Organizing knowledge about diseases, symp-

toms, and diagnostic procedures into frames [Minsky75] appears 'in the diag-
nosis program PIP [Pauker76]. The use of frames implies no commitment as
to whether knowledge about diseases, symptoms, or causal mechanisms will
be stored- rather it allows modularization of the knowledge base and thereby
simplifies its maintenance. The organization of diseases and their symptoms
into specialization hierarchies as in the nternal medicine diagnosis program
INTERNIST [Pople82], 'is an elaboration of thi's 'Idea. A hierarchic organiza-
tion makes only a minimal commitment to the character of the knowledge,
but it does allow the program to deal with groups of related diseases more
efficiently. A stronger organizing principle appears in the Jaucoma diagnosis
program CASNET [Kulikowski82], in which knowledge is organized around
disease states and their temporal progression. This network of states and
their successor relationships was intended to represent a causal explanation
of the disease. Although the use of this knowledge in CASNET i's probabilistic
and not substantially different from other symptom-based programs, it was
recognized that causality could be a powerful organizing principle because
the knowledge acquired from domain experts is often couched as categorical
explanation that can be translated into causal terms.

0 02.1.3 Diagnosing Multiple Diseases

Among the most difficult cases 'in medicine and other diagnostic tasks are
those in which more than one underl 'ng dsease or fault 'is present. One ap-
proach is to assume that a underlying diseases are statistically and causally
independent. The program can then simply evaluate the likelihood of ev-
ery disease individually. This approach is taken in MYCIN [Shortliffe76] but
it requires such strong independence assumptions that 'it is only feasible 'in
restricted domains. Another approach is taken by INTERNIST [Pople82],
in which diagnoses are incrementally constructed by repeatedly choosing a
disease that explains the most unexplained sym 'toms, until there are no
unexplained symptoms left. While ntuitively appealing, this does not guar-
antee coverage of the possible disease combinations. The approach used in

2.2. THE MODEL-BASED APPROACH 19

[Reggia83] addresses this coverage problem by considering every set of d*s-
cases whose combined symptoms cover all and only the observed symptoms.
By Occam's razor, the hypotheses that should be considered are the minimal
covering sets - those that do not include diseases not needed to explain the
symptoms. Using probabilistic knowledge the likeliest of the minimal combL
nations is then chosen as the preferred diagnosis. Each of these approaches,
however, perform poorly when the symptoms of the various diseases interact.

2.1.4 Summary of Symptom-Based Approaches

Work on symptom-based programs for automated dagnosis has yelded a
number of powerful and useful techniques. These include (i) observation and
test selection based on decision theory, wth entropy as the heuristic evalua-
tion function (ii) the use of causality as an organizing principle for diagnostic
knowledge, and iii) the formalization of diagnosis in terms of covering sets,
allowing for diagnosis of multiple simultaneous dseases. The principal diffi-
culty with symptom-based approaches is that the correctness and coverage of
the knowledge base is difficult to guarantee, especially 'in the face of changes
to the underlying system. When the available domain theory is weak, with
only empirical associations between underlying diseases and observable symp-
toms, the symptom-based approach 'is reasonable and can be successful. Its
limitations, however, motivate the model-based approach discussed below,
which can provide better coverage and extensibility in domains where those
properties are important.

2*2 The 1\4odel-Based Approaeh
0Model-based troubleshooting is a widely nvestigated and well established

methodology. The majority of the programs that share this paradigm are
for diagnosi's of designed artifacts such as crcuits, so the term "device" will
be used interchangeably wth "system," and the notion of a "disease" win

be replaced by that of a "fault." The key to the model-based approach is

the representation of the structure and behavior of the correctly functioning

device. Thi's representation is used to make predictions about the behavior

of the real device and about the outcomes of possible observations. Dis-

crepancies between the predicted behavior and the actual observations are

20 CHAPTER 2 BACKGROUND

traced to sets of possibly malfunctioning components. Each set of compo-
nents whose failure could explain the observations will be called a candidate;
these candidates can be ranked according to their relative lkelihood As
new discriminating observations are added some candidate w eventually
dominate the others and be chosen as the final diagnosis, a set of compo-
nents believed to be failing. With a herarchic representation of structure,
the solation process can be repeated recursively on the substructure of each
component believed to be faulty.

The key advantage of using knowledge about the correct behavior of com-
ponents is that it dispenses with the need for storing associations between
underlying faults and observed misbehaviors of the entire device. Instead,
any subset of components whose predicted combined behavior disagrees with
the behavior actually observed contains at least one broken component. By
gathering more observations the troubleshooter can narrow down this set.
Furthermore, this requires no commitment to the number of faults actually
in the device, since the model can support reasoning about the 'Interactions
between any number of failing components. Finally, as noted earlier, when
causal knowledge is available it can be easier to obtain than knowledge about
overall associations between symptoms of failures and possible underlying
faults.

It is useful to consider model-based troubleshooting in terms of four ba-
sic activities: modeling, behavior prediction, candidate generation, and dis-
crtmination. The following sections discuss each of these activities; a more
complete survey appears in [Hamscher87].

2.2.1 Modeling

In model-based troubleshooting the notion of a "device model" is almost
universally understood to mean a lumped element description, that 'is, the
structure of the device is represented as a network'pf typed components and
connections between them. Examples of models in various domains include:

Circuit schematics with resistors, diodes, and so forth. This rep-
oresentation of analog circuits 'is used in INTER [deKleer76], WAT-

SON [Brown76] SOPHIE [Brown82], IDS [Pan84], IN-ATE [Cantone83],
DEDALE [Dague87], and others [Milne85].

2.2. THE MODEL-BASED APPROACH 21

0 Crcuit schematics using logic gates and higher-level digital com-
ponents such as multiplexors and adders. This representation is
used in HT [Davis841, DART enesereth84], and others [Friedman83]
[AbuHanna88].

0 Piping and instrumentation diagram , which 'Include components such
as valves, potentiometers, lamps, and so forth, used 'in LES/LOX
[Scarl85].

0 Models of human physiology. Fluid models in terms of compartments,
their permeable membranes, and so forth were used by ABEL [Patil8l],
by the system proposed in [Kuipers84], and by the Heart Failure Pro-
gram [Long86]. A model of the human nervous system in terms of
unidirectional neural pathways was used in LOCALIZE [First82].

The behavior of the entire device 'is taken to arise from the 'Interaction of
the behaviors of the 'Individual components through the connections. Devel-
oping a particular description involves choosing a vocabulary of components
and their behaviors, then representing the device as a connected network of
these components. Therein lies a key advantage of model-based troubleshoot-
ing over traditional approaches: for designed artifacts, it can work directly
from device models already developed for design and analysis. Model-based
circuit troubleshooting, for example, can in principle work from ordinary
circuit schematics and board layout 'Information needed for design and man-
ufacture. Therein also lie some of the deepest problems in the methodology:
identifying the principles for building device models that are appropriate for
model-based troubleshooting when the inherited models are 'inappropriate.
Indeed one of the reasons that there are relatively few pro'ects using the
model-based approach in medical domains 'is the scarcity of good analytic
models for any substantial system.

The modeler confronts three goals simultaneously: achieving fidelity, pre-
cision, and efficiency. A model has fidelity whenit does not supportincorrect
predictions about the device. A model has precision to the extent that the
predictions it makes are strong enough to be falsifiable by observations of the
actual device A model is efficient when the work needed to make predictions
using it is proportional to the benefits to be gained.

Fidelity is the primary modeling goal in troubleshooting. This is because
if the model makes incorrect predictions, then discrepancies between the ac-

22 CHAPTER 2 BACKGROUND

tual device and the model will be wrongly blamed on failures 'in the device.
One way of ensuring fidelity 'is to 0) ensure that the primitive elements of
the model support correct predictions about the corresponding primitive ele-
ments of the device when they are n isolation, and (ii) ensure that the ways
in which the pimitives can be composed preserves fidelity just as the compo-
sition of the real elements of the device does not change'those elements. This
is the basic idea behind the principle of no function in structure [deKleer84].
No function in structure means that the description of a component behavior
may not rely on the correct functioning of the whole device.

Ensuring that the models of primitive components are correct in isolation
involves making sure that all the ways they could 'interact with other compo-
nents are represented explicitly. For example, to say that "when the switch
is closed current will flow" is incorrect because it- neglects the fact that a
voltage drop 'is required for current to flow. It also neglects to mention that
if there is a temperature differential between 'Its terminals there will be a
conductive heat flow. Nor does it mention that if the switch were shorted to
some wire elsewhere in the circuit then current could flow through that short.
Any such 'Interaction not represented in the model 'is a potential source of
misdiagnoses, and the more interactions left out, the worse the problem.

Precision is another modeling goal. A trivial device model would make
no predictions at all; it has fidelity snce it makes no false predictions, but
it is useless for troubleshooting because 'it cannot produce any discrepancies
either. A useful model produces predictions that can be confirmed or denied
with the available observations.

Finally, the more precise the model and the greater its fidelity, the less
efficient 'it 'is to use. Consider simulating any substantial digital circuit wth
component models that included not only voltages and currents in the wires
and transistors, but the temperature and specific heat of each contiguous
piece of metal and serm'conductor, the electromagnetic interactions with ev-
ery other component, and so forth. A model wth so much detail is obviously
impractical and highlights the key dilemma for the modeler: how to sacrifice
fidelity and precision in ways that gain efficiency. Of these, sacrificing fidelity
is more serious, since it results 'in incorrect diagnoses, while sacrificing pre-
cision only results in ambiguity among different diagnoses. Interactions can
be 'ignored for which only unlikely failures would make the interactions have
noticeable effects. In the switch example earlier, being shorted to another
wire in the circuit is possible and could have noticeable effects on the switch,

2.2. THE MODEL-BASED APPROACH 23

but if shorts are unlikely failures in general it is reasonable to 'ignore that
possible interaction 'in the switch model.

2.2.2 Behavior Prediction

The prediction task encompasses any categorical reasoning about the state of
the device based on observations of ts behavior. Gven a device model built
up as a network of components each with ts own local behavior description,
to a first approximation behavior prediction can be done by propagating
many individual predictions local to each component.

For example, suppose both inputs to an adder component Adder-1 are
believed to be 2 Figure 21). The output of the adder can then be computed
using only local knowledge about its intended behavior. Similarly, the output
of Adder-2 can be predicted using its two inputs.

Figure 21: Behavior Prediction Example

I

Behavior prediction in that case 'is simply a knd of simulation: conclu-
sions about the adder outputs were based on their 'inputs. However, the
behavior model need not only predict outputs from 'Inputs, but can enforce
any logical relationship between the values carried by connections in the de-
vice. For example, if one 'input to Adder-2 is 4 and the output is 6 then
the other input is predicted to be 2 (Figure 22). SiMIlarly, if one input to
Adder-1 is 2 then the other input is deduced to be .

The technique of predicting behavior by accumulating local predictions
can be extended to reasoning about time-dependen't behavior. For example,
when all the 'Inputs and initial state of a flip-flop are known over a cer-
tain 'Interval of time then the outputs can be predicted over that interval

24 CHAPTER 2 BACKGROUND

Figure 22: Reasoning from Effects to Causes

as well. The obstacle that behaviorally complex devices present 'is that in
general this means explicitly computing and representing every event. In
the flip-flop example, the events 'in question are changes of boolean value.
Reasoning about the behavior of a digital circuit over any appreciable length
of time is impractical; the culprit is the sheer number of clock transitions
and consequent changes of state that ight beinvolved. Devices wth com-
plex time-dependent behavior motivate the use of abstractions that aow
predictions to be made without having to explicitly construct such extensive
sequences.

For efficiency, the nominal behavior of the device gven some standard
stimuli may be stored as part of the model. In the model of human acid-base
and electrolyte equilibrium in ABEL [Patil8l], for example, each parameter
of the model has an expected value assuming normal patient activity (for
example, normal fluid intake). Similarly, the troubleshooting systems of
[Cantone83] and [Milne85] store nominal values at circuit nodes for each
of a fixed set of tests. This is at least a partial solution to the problem
of expensive predictions. This thesis takes a different approach, focusing
instead on having abstractions that wl support economical prediction.

2.2.3 Candidate Generation

When discrepancies are found between the observed behavior and the be-
havior predicted by the device model, candidategeneration produces one or
more explanations for those discrepancies. There are at least three ways of
approaching this task.

The first technique i's to associate with each prediction made in the model

2.2. THE MODEL-BASED APPROACH 25

the sets of components whose correct behavior would support that prediction.
For example, the prediction in Figure 21 that the output of the second
adder is would be supported by the set of components f Adder-1, Adder-
21. With this supporting information, each discrepancy can be explained by
the failure of one or more of the components 'in those sets. For example, if
the output was observed to be 6 'instead of 8, then at least one of those two
components is broken. If there are several dscrepancies, then the broken
components must form a covering set (as in [Reggia831, where the symptoms
of the diseases present must form a covering set of al observed symptoms). if
a single failure is assumed, then the candidates form the intersection. There
are dfferences in the machinery - especially in the way that dependencies
between predictions and components that support ihem. are recorded - but
this idea is at the core of the candidate generation procedures in [deKleer76],
[Brown82], [Davis84], [Genesereth84], [Scarl85], [deKleer87], and [Dague87].
The details of GDE [deKleer87] will be presented shortly, since it provides
the basis for the program in this report. [Ginsberg86] and [Reiter87] provide
formal interpretations for this technique based on the notion that broken

IDcomponents are abnormal and the preferred diagnoses are those requiring
the minimal abnormalities. An important advantage of thi's technique 'is
that it requires no information about how certain components might fail;
only the correct behavior needs to be known.

A second technique extends the first by taking advantage of fault models
- knowledge about how individual components fail. After finding com-
ponents whose failure could explain a discrepancies, the effects of known
failure types in those components are simulated. If the set of known failures
is treated as exhaustive then candidates can be exoneratedby fault simu-
lation. For example, suppose some wire is a candidate. Wires fail only by
breaking, so the program could simulate the effects of that wire becoming
an open circuit and check whether that i's consistent wth the observations.
If it is not consistent the wire would be exonerated. This technique is used
in SOPHIE [Brown82] and several other model-based troubleshooting pro-
grams. IDS [Pan84] goes further and explicitly models component failures
in a way that allows dependent failures - failures caused by prior failures
- to be explicitly represented and diagnosed. The additional power that
fault models provide, however, comes at a hgh price, since it is difficult to

provide an exhaustive lst of failures for anything other than the smplest of
components.

26 CHAPTER 2 BACKGROUND

The third technique generates alternative explanations for each discrep-
ancy incrementally, as in ABEL [Patil8l]. For example, if in Fgure 21 the
output had been observed to be 6 'instead of as expected, among the ini-
tial possibilities are that Adder-2 is broken, that one or both of its inputs
are lower than expected, and that one of the inputs is higher than expected
and the other lower. Some of these are 'inconsistent with the observations
(for example, one of its inputs 'is known to be 4 and are dscarded; the
others survive to be further elaborated. The knowledge about the system is
the same as that available to the previous technique; the dfference is that
generating candidates and using fault models to check their consistency is
interleaved. The advantage of doing so becomes eident when diagnosing a
system with feedback or with high connectivity between its components. If
only knowledge about correct behavior is used then almost any discrepancy
can be accounted for by the failure of any component [Hamscher84]. Sub-
sequent reasoning with fault models can constrain the possibilities, but it
is inefficient to go through the intermediate stage of generating all possible
candidates and the interleaving avoids it.

The program described 'in this report 'is based on the first of the above
techniques, as implemented in GDE [deKleer87]. This approach begins with
an augmentation of behavior prediction. Each local prediction 'is tagged
wi'th the set of components on whose correct behavior it depends, so that
when an observation is made that contradicts what the model predicted, the
components responsible can be easily found. Each of these predictions are
only valid if one or both adders are assumed to be working normally, and
each prediction is tagged with the mnimal sets of assumptions that support
it. For example, suppose both inputs to an adder component Adder-1 are 2
(Figure 23).

Neither input to Adder-1 requires any assumptions, so their tags are
The prediction that the output X I's 4 relies on the assumption that Adder-1
is working normally along wth all assumptions supporting the inputs, so it
is tagged with the set Adder-11. Each such set of assumptions is called
an environment. The prediction that the output Y 'is is tagged with the
environment containing the assumptions that Adder-1 and Adder-2 are both
working. Observations such as those at the inputs of Adder-1 are true in the
empty environment since they rely on no assumptions.

IsRecall that the behavior model need not only predict outputs from inputs,
but can enforce any logical relationship between the values carried by con-

2.2. THE MODEL-BASED APPROACH 27

Figure 23: Behavior Prediction Example

er-IAdder-2�

nections in the device. Such predictions are tagged with sets of assumptions
just as before. For example, 'if one input to Adder-2 is 4 and the output is
6, hen the other input is predicted to be 2 and tagged with the assumption
that Adder-2 is working (Figure 24). Similarly, if one 'Input to Adder-1 is 2,
then the other input is deduced to be and that prediction is tagged with
the assumptions that Adder-I and Adder-2 are working.

Figure 24: Reasoning from Effects to Causes

0 Adder-l

0

Candidate generation nvolves detecting discrepancies and determining
which components could have been responsible. Discrepancies are inconsis-
tent predictions made under different sets of assumptions (that 'is, in different
environments). For example, suppose the inputs to the two-adder device were
as in the first case, but the output was observed to be 6 (Figure 25). Su-
perimposing the two sets of predictions, it can be seen that (among other
discrepancies) node X 'is predicted to be 4 if Adder-I is working, but 2 if
Adder-2 is working. The union of the environments that underly inconsistent

28 CHAPTER 2 BACKGROUND

predictions are termed conflicts, and are denoted with angle brackets) In
this case, (Adder-1, Adder-2) is a conflict.

Figure 2.5, Discrepancies Produce Conflicts

A conflict is a set of assumptions that contains at least one that must be
false. In troubleshooting, the assumptions are about whether components
are working properly, so it can be thought of as a set of components that
cannot all be working properly. If one of the components in each conflict were
actually failing, 'it would resolve the inconsistency. The minimal set covers
of these conflicts are termed candidates, denoted wth square brackets [] By
Occam's razor only the minimal set covers (those with no subsets that are
covers) are needed; the minimal covers are the simplest explanations for the
inconsistency. Each candidate corresponds to a set of components that would
resolve all the 'Inconsistencies if all of them were failing. For example, if there
is just one conflict (Adder-1, Adder-2) there are two sngleton candidates,
denoted [Adder-1] and [Adder-2]. The covering set that 'Includes both adders
is not a candidate, since it is not minimal.

This scheme incorporates the handling of multiple faults 'in a natural
way. Suppose we subsequently observe that X is 5. There would then be
two conflicts (.Adder-1) and (Adder-2), and their minimal set cover would be
the candidate [Adder-1, Adder-2], meaning that both Adder-1 and Adder-2
are faulty. In general, the number of candidates can be exponential in the
number of conflicts. Consider for example 2n. assumptions and n conflicts,

2.2. THE MODEL-BASED APPROACH 29

one for each pair of assumptions 2i and 2i + 1; this results in 2 candidates.
Exponential blowup is rare 'in practice a more common phenomenon is that
along wth a small set of single-fault candidates there w be a larger set
of multiple-fault candidates. For example, the two conflicts (A, B, C, D)
and (D, E, F, G) yield one single-fault candidate [D] and nine two-fault
candidates.

Strictly speaking, this and other model-based schemes do not do diagno-
sis. They detect differences between the device and the model and produce
candidates that indicate which components of the model could be modified
to account for the observations. To interpret these differences as indications
that certain components of the real device are broken requires that the model
has fidelity, that is, that the models of components accurately represent their
correct behavior. Because of the practical impossibility of having models that
are correct n every respect, it is 'important to understand how GDE degrades
in the face of failures whose effects are not properly modeled. The central
issue is which interactions between components have been modeled; failures
that result in the coupling of components through unmodeled nteractions
will yield 'incorrect candidates.

For example, the standard model of digital crcuits says that each node
is driven to or by just one gate. Using this model, upon -finding a dis-
crepancy at a given node, only the gate driving the node and gates upstream
from it will appear 'in the resulting conflict (Figure 26).

Figure 26: If x 'is not 1, Only A Could be Broken

X -a0 0

In reality, the gates also interact through current flow. The gate being
driven could be failing 'in a way that pulls down the node x. The invert-
ers are coupled via an 'Interaction that was not modeled, so the standard
digital model yields the wrong answer. Suppose current flow were modeled,
so that the node x is I only when both A and are working (Figure 2).

30 CHAPTER 2 BACKGROUND

Now both inverters will show up as candidates. These candidates could be
disambiguated by observing the current flow 'into B.

Figure 2: Inverter B Could be PuHlng x Down

0 4

There are even more candidates, however. For example, there could be a
short between node x and some other node (Figure 28). Even if modeling an
the possible shorts were practical, there are still further possible nteractions
that this model leaves out.

Figure 28: A Short Could be Pulling x Down

x I a, b
*

1) Iof -11�

I

I

>-... I

y 0 (C)

An important property of the GDE scheme for producing fault candidates
is the way it degrades 'in the face of failures that violate the device model by
introducing unexpected interactions, as 'in this last example. With enough
observations, the results will be 'Interpreted as requiring multiple-fault ex-
planations. For example, suppose the symmetric test had been run with the
inputs to A and C swapped, and y observed to ble instead of 1. A new
conflict (C, D) would have been discovered, and GDE would produce four

0 *

I *

2.2. THE MODEL-BASED APPROACH 31

candidates: [A, C], [A, D], [B, C], and [B, D]. Among the candidates that
GDE produces will be multiple-fault candidates involving the components
influenced by the new connection. In fact, any failure can be 'Interpreted as a
multiple-fault failure no matter how drastic 'its effects, snce there is always
the degenerate candidate consisting of all the components in the device. For
example, suppose that some digital circuit model does not explicitly represent
power and ground. If power were lost then every component might appear
to be behaving incorrectly. That 'is exactly what the troubleshooting engine
would produce as a candidate: one 'in which every component is broken.

The GDE scheme for generating candidates from conflicts is simple, gen-
eral, and to the extent that the model accurately represents the structure and
behavior of the device it yields correct results. The dfficulty 'is that since the
model can never be totally correct, only the fidelity of the underlying model
gives license to 'Interpret a candidate such as [A, B] as meaning that both
A and are broken. One way of dealing with this problem is illustrated by
HT [Davis84], in which discrepancies that can only be explained by multiple
fault candidates are checked to see whether they could be explained as sin-
gle faults in alternative models of the circuit. One such alternative model
makes the physical proximity of wires explicit, to detect shorts like that in
Figure 28.

Another difficulty is one shared by any troubleshooting program, namely,
the available observations of the device mght be too crude to detect discrep-
ancies. For example, suppose a behavior model predicts a particular sequence
of zeroes and ones will appear on a wire, but an oscilloscope can only de-
termine whether the signal 'is active or not. Legitimate discrepancies and
conflicts may well go undiscovered, and hence some inconsistent candidates
may survive.

2.2.4 Discrimination

As dagnosis proceeds there are usually several candidates that could ex-
plain all the discrepancies. To discriminate between these candidates requires
gathering more 'information 'in the form of either (i) new observations of the
device in its current state, or (ii) observations of its response to some new
test stimuli. Since there are typically many observations and tests that could
be performed, the program needs to choose which of them to do next. This
choice can be formulated in terms of the cost of each action, the benefits

32 CHAPTER 2 BACKGROUND

of their various outcomes, and the likelihoods of those outcomes. Using the
entropy of the dstribution of candidates as a "benefit" metric, choosing the
observation yelding the minimum expected entropy as 'in [Gorry73] can be
used in the model-based approach just as 'in the symptom-based approach.
In GDE the device model is used to derive the expected outcomes of each

'ble observation along wth their likelihoods; the deta'ls wH be discussed
shortly. A sirmlar framework 'is used in IN-ATE [Cantone83] to estimate the
likelihoods of various circuit test outcomes.

Recall that in GDE each candidate is a set of assumptions that would
resolve all conflicts 'if they were all false. GDE assigns a weight to each can-
didate by treating each assumption as independent and assigning to each a
prior probability near 1.0 of being true. The probability of a candidate 'is
then the probability that all the assumptions it includes are false and an
other assumptions are true. The weight of each candidate is its probability
normalized with respect to all candidates. Continuing the two-adder exam-
ple, let the initial probability of each adder working be p(Adder = 99. The
weight of each 'is .50, computed as shown:

Candidate Probability Weight
[Adder-1] (- p(Adder-1)) x p(Adder-2 = 0099 .50
[Adder-2] p(Adder-1) x (1 - p(Adder-2) = 0099 .50

Suppose there had been three adders A, B, and C wth p(A = p(B)
P(C = 99, and that there were two conflicts (A, B) and (B, C) There would
be two candidates [B] and [A, C] whose rankings would be as shown below' -
This yields the ntuitively satisfying result that the single-fault' candidate [B]
is much more likely than the multiple-fault candidate [A, C]:

Candidate Probability Weight
[B] p(A) x (1 - p(B)) x p(C = 0098 .99
[AIC] (1 - p(A)) x p(B) x (- p(C) = .000099 .01

There will nearly always be several competing candidates. To discrimi-
nate among them, GDE considers all the possible observations that could be

'The normalization is a heuristic step that ignores non-mini'mal candidates. Both A
and could be broken, three culd'be broken, and so forth. The residual probability
is distributed among these other non-minimal candidates.

2.2. THE MODEL-BASED APPROACH 33

made next, and by a one-level lookahead pcks the observation that 'is ex-
pected to yield the most information. The probability of each outcome of a
possible observation is estimated as the combined weight of those candidates
with which the outcome would be consistent.

In the two-adder example, according to the predictions an observation at
X has two outcomes; ether it 'is 4 (if Adder-1 is working), or it is 2 (if Adder-2
is working). An outcome of 2 is consistent with the candidate [Adder-1],
and 4 is consistent with the candidate [Adder-2]. Each candidate weight
is .5 so the probability of each outcome 'is estimated as .5 as well. The
expected 'information gain from making a given observation can be estimated
as the negative of the entropy in that distribution of outcomes (the sum
Of Pi 1092(Pi) over the outcomes i). The observation that maximizes the
additional information is selected. In the two-adder example the computation
is trivial. The entropy s .5 1092(.5) + .5 1092('5 = 1.0 and the information
is -1.0 = 1.0 A probe anywhere already observed yields information of
0 and X i's the only signal not observed, so probing X is obviously the right
choice. In less trivial examples this technique tends to choose observations
that roughly speaking, divide the space of outstanding candidate weights in
half.

Relying on a fixed set of observations or tests 'is not always practical,
however. In domains such as dgital circuit diagnosis 'it can be more effective
to design a test specifically to help discriminate between candidates. This
approach is taken by DART [Genesereth841, which repeatedly generates tests
(using an implementation of path sensitization [Roth67]) until 'it finds one
that will yield dstinguishable outcomes given different candidates. Such tests
can be generated more effectively 'if 'Information about candidates 'is used
while creating the test [Shirley83]. The program discussed in this report
selects observations based on the scheme in GDE, but neither selects nor
generates tests.

2.2.5 Hierarchic Diagnosis

Hierarchic dagnosis is usually viewed in terms of recursive descent. The
troubleshooting program first isolates the fault to a component at a certain
level of detail, then proceeds to diagnose the failure within its substructure 7
until a primitive level of detail 'is reached. Each level of structural detail
usually has associated with it a level of behavioral detail as well. Nearly

34 CHAPTER 2 BACKGROUND

0all model-based troubleshooting programs incorporate hierarchic dagnosis
controlled 'in this way.

The GDE scheme can be extended to do hierarchic diagnosis. For exam-
ple, suppose in the two-adder example that X is observed to be 2 so that
(Adder-1) is the only conflict and hence [Adder-1] the only candidate. If the
adders are not primitive components but rather have the substructure of
four-bit ripple-carry adders Figure 29), then troubleshooting can continue
at the structural level of full adder slices and behavioral level of bits. Each of
the adder slices has a "sum" bt output and a "carry" bt output that feeds
into the next slice.

Figure 29 Dagnosis of Adder-1

0 *
0 *

0 *

0 *

I *

I *

2

2 *

2 *

0 *
0 *

U.

The model predicts that if SO 'is working its carry output will be 0 . The
sum output of SI is predicted to be 'if both SO and S1 are working. The

2.2. THE MODEL-BASED APPROACH 35

carry output of will be I no matter what the carry-in from SO was, since
two of 'its inputs are already. The sum output of S wl be both Si
and S2 are working. The observation that the adder output is 2 corresponds
to observations that the sum outputs of SO through S3 are 0, 1, 0, and
respectively. These observations are inconsistent wth the outputs at and
S2, producing two conflicts (SO, Sl) and (S1, S2). These two conflicts yield
the single-fault candidate [Sl] and the two-fault candidate [SOS2].

Note that herarchic diagnosis can also be worthwhile even when the
fault has not been fully 'isolated technically, 'isolation would mean that the
assumption that the component 'is working is a singleton conflict). In the
two-adder example, suppose that X has not yet been observed, so that both
[Adder-1] and [Adder-2] are candidates. Both adders are descended into,
revealing slices SO through S3 in Adder-1 and S4 through S7 'in Adder-2. Some
of the newly discovered conflicts are shownin Fgure 210: (S1, S27 S3, S6, S7),
(SO, S11 S21 S5)7 S17 S27 S41 S5), and (SO, S11 S41 S5).

From these conflicts a of the subcomponents of Adder-2 can be ruled out
as single-fault candidates, wthout requiring any more observations. In fact
there is only one sngleton candidate: [Sl]. The other minimal candidates are
[SO7 S2]7 [S21 S5]7 [S27 S4]7 [S37 S5]j [S51 S6]j [S57 S7]j [SO7 S41 S7]7 [SO, S47 S6]j
and [SO, S37 S4].

Most discussions of herarchic diagnosis 'in model-based troubleshooting
programs present a simplified picture in terms of solation to a single com-
ponent followed by recursive descent. As this example suggests, effective
diagnosis of more complex systems 'is likely to require considering multiple
levels of detail even when there are several candidates, as done in ABEL
[Patil8l] and in the program discussed in this report.

2.2.6 Summary of the Model-Based Approach

Although dering 'in implementation technology, a model-based trou-
bleshooting programs share the same underlying organization. A device
model produces predictions about behavior and about what ought to be
observed. A separate troubleshooting en 'ne then produces alternative diag-
noses that each resolve a discrepancies between the model and the actual
observations.

The notion of a "device modeP' is that of a lumped-element description
consisting of components and connections. In committing to any such repre-

36 CHAPTER 2 BACKGROUND

Figure 210: Diagnosis of Adder Substructures

0 *
0 *

0 ()

0 *

1 *

1 *

0 *

0 *

iIf

sentation the program sacrifices some degree of coverage, snce there will be
failures that it will misdiagnoses

Behavior prediction 'in such a model can (for the most part) be done by
local propagation, that is, each prediction 'is made on the basis of information
local to a single component. The choice of level of detail to represent behavior
and of the machinery that manipulates 'it both nevitably sacrifice precision
and completeness of predictions for the sake of efficiency. In troubleshooting,
the effect 'is to sacrifice some degree of resolution snce there w be some
failures that cannot be distinguished.

In the GDE framework, each prediction is tagged wth its set of supporting
environments - sets of assumptions about which components are working.
Discrepancies result in conflicts - sets of assumptions that contain at least

2.2. THE MODEL-BASED APPROACH 37

one false assumption. Each covering set of these conflicts is a possible diag-
nosis; by Occam's razor the minimal covers are selected as candidates. One of
the important properties of the scheme i's that when faced with a failure that
cannot be represented in the model, it proposes multiple-fault candidates
rather than (say) declaring an irreconcilable inconsistency.

There are nearly always several different candidates. Candidates are dis-
criminated by assigning each a weight based on 'Its normalized prior prob-
ability, and if there 'is no clearly dominant candidate, an observation with
the minimum entropy 'is selected. When further conflicts result from the
observation, some candidates are ruled out and others become more likely.

Finally, having isolated a fault to a single component, herarchic diagnosis
proceeds by descending into substructure of the component, if any. The
additional information available at lower levels of detail may also be useful
for discriminating candidates even if the fault has not been uniquely isolated,
as illustrated above.

a er

ou es 00 in cenarios

This work makes several claims about representing dgital circuits for model
based troubleshooting. The support for these claims comes largely from a
set of implemented examples of circuit structure and behavior, and from the
fact that the troubleshooting engine can successfully diagnose faults using
those models. The scenarios have been collected 'into this early chapter to
provide context and motivation for subsequent discussions of the structure
and behavior of these crcuits. Indeed, a central theme of this work is that
the intended use of a model impacts what gets mentioned in the model; this
chapter shows the reader that intended use.

The program that does these examples 'is organized into several subsys-
tems (Figure 31). There is a domain independent troubleshooting engine
XDE that extends the GDE approach so as to use hierarchic diagnosis and
fault models. The physical and functional organization of the circuits to be
diagnosed are represented 'in a language called BASIL. The behavior of the
components 'in those circuits are represented in a temporal constraint propa-
gation language TINT. All of these are built using JOSHUA [Rowley871, which
provides implementations of data storage and retrieval along with forward
and backward chaining rules. BAR-JOSEPH embodies the author's exten-
sions to JOSHUA, including a simple inheritance facility and an assumption-
based truth maintenance system based on boolean constraint propagation
[McAllesterMb] [deKleer86a]. Chapters 4 through 7 dcuss XDE, BASIL,
and TINT; the underlying JOSHUA and BAR-JOSEPH implementations are
not discussed 'in detail.

The troubleshooting examples are all taken from the Console Controller

38

39

Figure 31: Overall Troubleshooting Program Organization

XDE BASIL TINT
Troubleshooting Circuit Structure Circuit Behavior

BAR-JOSEPH

Truth Maintenance

JOSHUA
Rule Language

Board of the Symbolics 3600 series console. The board has approximately
50 chips and 300 visible circuit nodes; the largest example currently handled
involves 20 chips and 100 visible nodes. In the descriptions of structure and
behavior, the following conventions are adhered to:

* U25 is a typical chip name. RN7 'is a typical name for a ine-resistor
network that is treated just like a chip.

0 n178 is a typical name for a crcuit node, or, to be precise, for a wire
etch as represented by the programs.

0 FDO1 is a typical name for a component such as a Frequency Divider.
One-of-a-kind components are usually given one or two letter names
such as U (a microprocessor) or R (the Reset Hold Counter).

0 U30a and U30b are typical names for the flipflops that reside on chip
U30. In general the a, b, c suffixes denote functional units within a
chip.

The figures that show the physical and functional organization of rcuits
obey the following conventions:

40 CHAPTER 3. TROUBLESHOOTING SCENARIOS

* A box with thin lnes 'Indicates the boundaries of a physical component,
usually a chip.

0 A box with thick lines ndicates a functional component such as a flip-
flop, which may have a complex correspondence to a physical compo-
nent.

9 Where a box name such as U 'is not sufficiently informative, the type
of the boxis shown 'in a slanted font as Input Processor.

9 Thick lines wth arrowheads indicate connections between components;
technically they are "signals" as defined 'in Chapter .

The examples summarize the output transcripts found 'in Appendix A.1
through Appendix A.11:

One example involving three chips in the section of the board res on-
sible for generating clocks at various frequencies.

* Four examples involving ten chips 'in the Audio Decoder section, re-
sponsible for translating an asynchronous digital audio signal from the
host into a signal that drives a speaker.

0 Two examples involving twenty chips 'in the Input Encoder section,
responsible for transmitting keystrokes and mouse motions to the host.

3.1 Clock Generator Exarnples

The Clock Generator circuit shown in Figure 32 and Figure 33 is respon-
sible for generating 10 Mhz, 5 Mhz, and 25 Mhz clock signals that wl
be distributed throughout the board. It is a trivial circuit, of course, but
nevertheless raises 'Important 'issues.

The generator consists of a crystal oscillator OSC that produces a 10 Mhz
TTL clock. The inverter 'in this circuit is acting as a buffer (FB01); the
frequency of its output 'is the same as 'its input. Two separate frequency
dividers FDO1 and FDO2 are 'Implemented with t he dual flipflops on chip
U30; if all the components fU25,U32,U301 are working then the output at
n158 is a Mhz clock and the output at 67 is 25 Mhz.

.1 I
Iowa"

3.1. CLOCK GENERATOR EXAMPLES 41

Figure 32: Clock Generator Schematic

Figure 33, Clock Generator Structure

3.1,1 Troubleshooting the Clock Generator
0Assume n167 is observed to be 'flat that 'isIits frequency is zero. This 'elds7 Y1

(U25,U32,U30) as a conflict and hence [U25], [U25], and [U25] as candidates.
Crystal oscillators, because of their internal structure and the way they are
packaged, tend to fail more frequently than other components. Hence U2 is
more likely to be broken than U32 or U30 A probe at n291 can be made to
confirm this.

Assume the sgnal at n291 is observed to have frequency 10 Mhz, as would

': - . -- - -1 M "I I I I Jill I, , ----

CHAPTER 3. TROUBLESHOOTING SCENARIOS42

be expected if the oscillator were behaving normally. Oscillators also fail in
a characteristic fashion: they produce a flat output rather than the desired
periodic waveform. Hence the oscillator becomes a much less likely suspect,
though still logically possible since the exact shape of every pulse cannot be
examined.

This leaves U30 and U32 as the main suspects and node n2O5 as the next
good place to probe, because that would tell which chip needs replacing.
If that signal is probed and observed to be flat (zero frequency) it is rela-
tively certain that U32 is broken, since otherwise the signal would have had
frequency 10 Mhz.

3.1.2 Morals of the Clock Generator Example

Simple as it is, the Clock Generator example illustrates three key ideas:
Temporally coarse behavior models can be adequate for troubleshooting.

Although the Clock Generator 'is a digital circuit, the traditional model of
digital behavior that involves individual clock cycles, rising and falling edges,
and so forth, was inappropriate for this troubleshooting example. A much
simpler, temporally coarse description of its behavior 'involving the notion of
"frequency" provided just as much ability to localize the fault. The detailed
model would have uselessly predicted many events individually undetectable
using an observation technology as simple as an oscilloscope. That abstrac-
tions simplify reasoning is obvious, what 'is 'important is that 'in this case
the nature of the abstraction was explicitly temporal and made traditional
simulation unnecessary.

The representation of physical organization is essential for troubleshoot-
ing. Failures and repairs occur in physical devices not in the functional
organization that we attribute to them, hence the physical organization of
the device needs to be represented explicitly. The value of representing the
physical organization has previously been associated with the diagnosis of
unusual faults such as solder bridges [Davis84]; in fact the model should al-
ways include the physical 'Information, for the more mundane reason that
it can save the troubleshooter from spending effort on dstinguishing faults
that share the same repair. In this example, there was no need to distinguish
which of two flipflops might have been broken, snce the repair in both cases
was identical: replace chip U30.

3.2. AUDIO DECODER EXAMPLES 43

V_Tuult models are useful heuristics. There was added focusing power avail-
able from heuristic knowledge about relative failure rates of components and
likely misbehaviors. In this example, wthout knowing that oscillators com-
monly fail in a particular way, the observation that the oscillator output had
frequency 10 Mhz would have told us nothing at all about the oscillator. This
kind of knowledge can only be used to dscount possible diagnoses, never to
support them directly. The added knowledge dscounts the possibility that
the oscillator was broken and hence promotes the more likely diagnoses. Con-
versely, had n291 been flat instead of 10 Mhz, the conflict (U25) would have
resulted and the oscillator been identified as faulty after only one probe.

3.2 Audio Decoder Exarnples

The Audio Decoder 'is responsible for converting an asynchronous serially
encoded 12-bit dgital signal into a voltage in the range 15 to 15 volts. It
involves ten chips and fifty visible crcuit nodes (Figure 34). The simplifica-
tions made for presentation are that explicit nformation about wire etches,
and an alternate signal path into the analog-to-digital converter, have been
omitted.

The four troubleshooting examples illustrate t4e following 'ideas:
The behavior of components should be represented in terms of features that

are easy for the troubleshooter to observe. The vocabulary of observations
that the troubleshooter can make provides a vocabulary that can be used
in modeling the behavior of the device. For example, if one assumes that
only certain features of a signal can be observed using an oscilloscope, then
that set of features defines one level of abstraction at which to model the
behavior of the device and its components. This model may not provide
sufficient resolution, so a more detailed model may be needed as well; the
point is that the vocabulary of observations provides guidance as to what
abstractions may be useful.

Components in the representation of the functional organization of the
c rcuz 't should facilitate behavioral abstraction.. Representing the organiza-
tion of a device hierarchically has advantages noted earlier. Hierarchic or-
ganization by itself, however, provides no leverage on the fundamental goal
of troubleshooting - to dscriminate between candidates - unless there is
a behavioral characterization of each component that would be difficult or

44 CHAPTER 3. TROUBLESHOOTING SCENARIOS

Figure 34: Audio Decoder Schematic

expensive to derive from 'its subcomponents.

03,2,1 Functional Organization of the Audio Decoder

Figure 35 shows the three stages of the Audio Decoder: a clock is extracted
from the ncoming asynchronous anchester sgnal by MTSOI; the resulting
clocked serial sgnal is converted nto a 12-bit parallel signal wth a write
strobe by ST POI; and the parallel signal 'is then converted to a voltage by the
digital-to-analog converter PTAOI. STPOI, which converts from synchronous
serial to parallel data, has three components: CSA01 accumulates the data
bits in two shift registers, while a pair of counters in CSB01 count the number

3.2. AUDIO DECODER EXAMPLES 45

of bits since thefirst arrived. When all the bts have arrived CSBOI asserts
n290 to latch the parallel data into the igital-to-analog converter. BUF01
buffers the serial clock n34 extracted from the 'incoming sgnal and strobes
MTS01 using n232.

Most of these functional components can be viewed as simply converting
information from one encoding to another. In particular, the signals denoted
ser0l and parOl both carry streams of 12-bit dgital values; only their under-
lying encoding is different. Hence, MTS01, STP01 and PTA01 are modeled
abstractly as buffers. The burst detector CSB01 converts incoming 12-bit
bytes 'Into single pulses on its output. The "clocked serial accumulators"
(CSA01, CSA02, CSA03) are shift registers that accumulate the incoming se-
rial data bits in each burst. The 'Individual data values are not represented
explicitly. Rather there are abstract signals which, although 'in principle
could be computed at every point 'in time, in fact are only observed and
reasoned about in terms of features such as their amplitudes and rates of
change.

Each of the sgnals shown is described using features that an oscilloscope
can easily detect. An oscilloscope can be used to measure the frequencies
and periods of sgnals. For nonperiodic signals, this can only be done qual-
itatively: a sgnal which is neither constantly high nor constantly low has
some unspecified positive frequency, and is characterized as changing." For
periodic signals, certain shape properties can be observed: in particular, the
difference between the maximum and minimum value, the period of cross-
ings of its midpoint value, and the frequency of crossings of zero in the first
derivative (that is, changes of direction). In these troubleshooting examples
the Audio Decoder is presented with a Khz sinusoidal signal'. The sam-
pling rate is forty per period, that 'is, a new 12-bit quantity arrives every 25
Asec. The resulting digitally-encoded sinusoid is shown at the top of Fig-
ure 36. If this sinusoidal sgnal has higher order harmonic components, it is

simply characterized as having a higher frequency in the first derivative than
in the signal itself. The bottom of Figure 36 shows an example, a distorted
sinusoidal voltage signal 'in which the frequency of sign changes in the first
derivative is hgher than the frequency of sgn changes in the voltage.

lIt is assumed that the lKhz Signal is the only test input available. It turns out, in
fact, that other test inputs would not provide appreciably more diagnostic resolution gven
the observability constraints already assumed, so that 'in 'Itself is not a major handicap.

46 CHAPTER 3. TROUBLESHOOTING SCENARIOS

Figure 3: Audio Decoder Functional Organization

STPOI Serial to Parallel

CSA01 Clocked Serial
Accumulator

CSBOJ Burst Detector

Pullup

R a

3.2. AUDIO DECODER EXAMPLES 47

Figure 36: Signal with Too Many Zero Crossings in its First Derivative

2P.1 +15

iti I I I 0

-15

+15

n

0

izi

21klAW - L V

0 -15

The limited ability of the oscilloscope to characterize the voltage output
of the Audio Decoder means that the sgnal par01 need only be character-
ized in the vocabulary of the oscilloscope. Only the frequency of the sgnal,
crossings of 'its midpoint value, and zero crossings in the first derivative,
need be mentioned. Since the nformation carried by parOl is encoded as a
twelve-bit digital sgnal and cannot be drectly observed I it is necessary to
characterize the relationship between parOl and the underlying signals that
can be observed, namely the ndividual data bts and write strobes. To take
two representative examples of this relationship: 'if the sgnal parOl crosses
its midpoint value wth a frequency of n, then the most significant data bit
has frequency of at least n because 'it has to change its value at least as often
as parOl does; similarly, 'if the write strobe signal'is always hgh, then the
signal parOl never changes, so that its frequency i's zero and the difference
between its maximum and minimum is zero.

The accumulators CSAOI, CSA02, and CSA03 a act as delay elements:
each incoming data bit appears some time later at each of the output bits
of the shift registers. Hence given sufficiently many bytes transmitted the
frequency of each individual bt of the output signal should be the same as

CHAPTER 3. TROUBLESHOOTING SCENARIOS48

that of the 'incoming serial data measured with respect to the serial clock. To
see why this is so, consider an 8-bit shift register that has an incoming signal
clocked into ts most sgnificant bt. Suppose that 'input sgnal goes from
to and back 1000 times during a certain time 'Interval. The most significant
output bit will change ether 999 or 100 tmes, the next-to-most significant
output bit wll change between 998 and 1000, and so forth. For a sufficiently
large number of these cycles, the number of changes over that time interval
are essentially euivalent, hence their frequencies are equivalent. This is an
example of representing the behavior of components 'in terms of features that
are easy for the troubleshooter to observe, in thi's case, in terms of whether
or not the signals are changing.

The subcomponents CSA02 and CSA03 of CSA01 are almost identical to
CSAOI except that CSA02 corresponds to chip U21, which holds the 7 most
significant bits, and CSA03 to U44, which holds the least sgnificant.

The burst detector CSB01 is responsible for generating the strobe signal
that latches data 'Into the digital-to-analog converter. The clocked-serial
input can be characterized as a sequence of bursts of activity 'Interspersed
with periods of quiescence. Internally CSBOI 'is a counter that is reset at
the beginning of each burst and counts up the number of clock cycles that
are seen, finally asserting its output briefly when all twelve data bts have
been accumulated by CSA01. This output is their used as a strobe for the
parallel data. Thus, given a sequence of incoming data words, CSB01 asserts
'its output once per word. The behavior of CSB01 is described in terms of
frequencies; the output frequency i's positive only when the 'input frequency
is p ositive.

CSB01 is a good example of how explicit knowledge about functional
organization simplifies troubleshooting. Simulating the behaviors of the in-
dividual components - the two counters, the gates, and the pullup rsistors
- would be relatively tedious. Encapsulating them along wth the feedback
signal yields an aggregate behavior that is almost as easy to describe and
simulate as that of just one counter. Furthermore, it lends itself to descrip-
tion n terms of frequencies and rates of change, features that are easier to
observe than the individual counting steps.

3.2. AUDIO DECODER EXAMPLES 49

3.2.2 Physical Organization of the Audio Decoder

The Audio Decoder 'is implemented using nine chips and a nine-resistor net-
work that is treated by the program as an ordinary chip. The correspondence
between the functional components and the physical chips is shown in F19-
ure 37. The serial ser0l sgnal is carried by a clock and a data sgnal (n56
and n260, respectively). The parallel signal parOl corresponds to two control
signals n290 and n232 and twelve bits of data, named (from most to least
significant) n48, n289, n246, n88, n2O8, n139, n131, n112, n194, n59, n17
and n236.

The likelihood of failure for each chip is estimated from 'Its physical com-
plexity as measured by the count of pins. The probability that chip i's normal
is smply the probability that all its pins are normal. Wires are assumed not
to fail.

There are 130 pins in the audio crcuit; 'in principle the program can
suggest probing any of them. However, si Ince etches are assumed not to fail
there is no need to probe more than one pin attached to any given etch,
nor is there any need to probe pins that are attached directly to power or
ground. Hence in this example there are only 23 distinguishable probes that
XDE will ever suggest.

3.2,3 Audio Decoder Example I

Suppose that the output of PTAOI is observed to be flat, that is, zero fre-
quency and amplitude. Any of the ten chips could be responsible, so there
are ten singleton candidates, one corresponding to each chip. The candidate
[U43] (the digital-to-analog converter) is 'udged to be somewhat likelier than
the others.

The model makes predictions about which of the signals in the circuit
should have a constant value nI40, for example), which should have a
constant value (04, for example, which is except during certain local
keyboard operations), and which should be changing. The program suggests
a number of signals that could be examined, shown below.-

50 CHAPTER 3. TROUBLESHOOTING SCENARIOS

Figure 37: Audio Decoder Physical Organization

3.2. AUDIO DECODER EXAMPLES 51

Place
n290
n280
n112
n88

Expected
changing

changing

changing
changing

Entropy
.83
.76
.73
.60

Supporting Environments
fRMIU12tlo Ull U20-1

1 7 7 .1

f RN6,Ul2,UlOU201
{RN6,Ul2,U21,U441
JRN6,U12,U211

The highest ranked probe 'is of n290, one of the write strobes to PTA01.
This makes sense since if this signal were dead it would explain why the out-
put was flat and would tend to exonerate the shift registers that accumulate
the 'Incoming data bits. Suppose n290 'is observed to be a constant I instead
of changing as expected. Since 'it was supposed to be changing as long as
the components RN6, U12, U107 U11, U201 are a working properly, (RN6,
U121 U107 U111 U20) 'is a conflict. There are now -five candidates, one corre-
sponding to each chip. [12] is slightly likelier than the other candidates.

Now a different group of probes are ranked the hghest. All of the signals
on the data bus are equally good; if both of the candidates [RN6] and 12]
are working then these signals should be changing:

Place
n88
n112
n48
n159

Expected
changing

changing
changing

changing

Entropy
.72
.72
.72
.72

Supporting Environments
f RN6,U12,U211

f RN6,Ul2,U21,U441
jRN6,Ul2,U21j
jRN6,Ul2,U21,U44j

Suppose the data bit n88 is observed to have the constant value I instead
of changing. Now (RN6,UI2,U21) 'is a new conflict. There are two singleton
candidates, [RN6] and 12], and three two-component candidates: [U10,
U21]� [117 U21] and [U20, U21]. The singleton candidates are judged to
be the most likel and U12 more likely to fail than RN-6. The probes given
the hghest ranking are those of sgnals that are expected to be changing
independently of whether RN6 is working or not namely 6 and n232:

Place
n56
n232

Expected
changing
changing

Entropy
.92
.92

Supporting Environments
f U121
f U12�U22}

Z--- I--- --

CHAPTER 3. TROUBLESHOOTING SCENARIOS52

Signal 6 is observed to have the constant value so (U12) is a conflict
and hence U12 'is the only sngleton candidate.

The troubleshootin program performs well on this example- only three
9 I

probes 'in addition to the initial symptom were needed to yield a sngle
candidate with much higher probability than the others transcript in Ap-
pendix A.2). More important, it was able to do so using only temporally
coarse predictions about the sgnals in the circuit, -predictions in terms that
corresponded directly to probes that the troubleshooter could make easily.

3.2.4 Audio Decoder Example II

Troubleshooting a second example with the same initial symptoms but a dif-
ferent underlying fault yields poorer performance. By including information
about the way components are expected to fail, however, its performance
improves dramatically (transcripts in Appendices AA and A.5).

Initially the output is observed to be flat and 'Instead of changing as
expected, n290 is observed to be constant 1. As before, the five most likely
candidates are [RN6], [12], [lO]7 [U11], and [U20]. This tme, however,
n88 is observed to be changing, as would be expected if everything were
normal. Gven no change in the set of candidates, probes of other data bus
bits still appear to be the most informative probes; for example, the next set
of suggestions 'is shown below:

Place Expected Entropy Supporting Environments
n236 changing .72 JRN6,U12,U21,U44J
n2O8 changing .72 f RN6,U12,U211
n117 changing .72 JRN6,U12,U21,U44J
n289 changing .72 JRN6,U12,U21J
0 0 0 . * 0 0 .0. 0 0.

The next six probes smilarly 'eld no new conflicts and do not change
the set of candidates. Finally, the program suggests probing signal n213, the
signal that was 'immediately upstream of the discrepancy observed at n290.
If U20 is working properly, then it should be a constant 0. It is observed to
be changing, hence (U20) is a conflict and [U20] the single highest ranked
candidate.

The difficulty i's that the program just did eight probes, six of which were
useless. The fact that even one of the bits of the data bus was changing

3.2. AUDIO DECODER EXAMPLES 53

should have indicated that the problem was unlikely to be 'in U12 or RN6.
This i's because f ether of those components were broken the entire bus
would probably be 'Inactive. Hence, the more 'Informative probes would have
been in the vicinity of CSBO1.

Including fault models for the components in MTS01 and CSBOI changes
the efficiency of the troubleshooter dramatically. Now, instead of suggest-
ing probes of the data bus bits, the hgher ranked probes are those around
CSBO1, the component responsible for producing the dscrepant signal n290.
In particular, n213 is now among the highest ranked probes:

Place Expected Entropy Supporting Environments

n213 changing 1.0 jRN6,U1OU11,U12,U20j
0 f U201

n56 changing 1.0 f U121

n159 changing 0.79 f RN6 U 1 2 U2 1)U441

n289 changing 0.79 f RN67U12jU21j

0 0 0 0 * . 0 a,

When n213 is observed to be changing, the (U20) is a conflict and so
[U20] becomes the sngle likeliest candidate. Instead of making eight probes,

this time the program only makes two. Furthermore, using fault models as

heuristics does not decrease the performance of the other troubleshooting

examples. The other scenarios shown require the same number of probes

with or wthout fault models.

3,2.5 Audio Decoder Example III

Suppose that instead of the output being smply flat, its amplitude and fre-

quency are correct, but it is distorted as was shown earlier in Figure 36

(Page 47). Using only temporally coarse descriptions of sgnals, the trou-

bleshooting program is able to solate the responsible component using six-

teen probes.
The initial symptom is that the frequency of zero crossings in the first

derivative of the output sgnal is higher than expected. All components are

singleton candidates, and as 'in previous examples the first probe is at the
'te strobe signal n290. Th's sgnal cted to be changing, and it I'S.

wri I is expe

The next two probes are at internal signals of CSBO1, and appear to be
changing as expected.

54 CHAPTER 3 TROUBLESHOOTING SCENARIOS

All but one of the next eleven probes are of the data bus bts, which are
all expected to be changing. The temporally coarse behavior model does not
include enough detail to 'indicate which of the bits ought to be probed first;
any of the twelve bits having the wrong value at the moment they are latched
into PTA01 could result in a distortion similar to that described. Eventually
the signal n246 is discovered to be stuck at Yielding the conflict (RN6,U21)
and hence the likeliest candidates as [U21] and [RN6]. After two more probes
the conflict (U21) is dscovered and the candidate [U21] is left as the final
diagnosis (transcript in Appendix A.7).

What is interesting about the performance of the troubleshooting pro-
gram using the temporally coarse model 'is not the probes 'it did, but the
probes 'it did not do. The serial sgnals n56 and n260, for example, were not
probed, and this makes sense: 'if there were faults there or upstream of there,
the effects would probably have been more drastic than mere distortion of
the output. Sixteen probes may seem lke a lot, but "it would require a consid-
erably more temporally detailed (and expensive) model to o much better.
To determine wthout probing exactly which data bus bits were wrong, for
example, would have required being able to observe the shape of the output
to twelve bts of precision and at just those moments when the write strobe
signals were asserted. While this is not impossible, human troubleshooters
rarely go to that kind of trouble, preferring instead to do a few more simple
probes.

3.2,6 Audio Decoder Example IV

Like any abstraction, temporally coarse behavior models discard information.
The final Audio Decoder troubleshooting example is similar to the previous
example, ilustrating that temporally coarse models discard information that
could potentially have been used to 'improve the choice of probes.

The initial symptom is that the amplitude of the audio output signal i's
correct, but the frequency of 'Its zero crossings is much higher than expected.
Figure 38 shows the expected signal and that observed.

The initial probe of the write strobe n290 reveals that the signal is chang-
ing, just as expected. The subsequent probe of n280 a signal inside CS801,
however, reveals that 'it is a constant I instead of changing, as expected. This
produces the conflict (RN6, U12, U221 U10, U11), and those five components
are the top candidates.

n

- 0 fl 0 I--- - . 01- ---- � � --
0 u

1-11 I -- - --.1, - -l � 1 11- I p 101011.114 1 - -.1----ll--- � . ,,I:, - II -- --- ! 0 �

3.2. AUDIO DECODER EXAMPLES 55

Figure 38: Signal wth Too Many Zero Crossings

21Z1 +15

Al -1 -
I 02L -1" I I

0

izi

21tl

0

-15

+15

0

-15

The observation that n280 'is I triggers some new predictions (dashed
arrow in Fgure 39). n28 0 is the carry-out sgnal of the four-bit counter U I .
Since that output is whenever the Load control input to the counter 'is ,
the model concludes that 'if the counter is working normally, then the load
control input n101 must have been a constant .

After seven probes elsewhere 'in the ircuit, the program suggests probing
n101. It is observed to be changing, hence the counter U11 cannot be working
normally. Hence (U11) is a sngleton conflict and [U11] is the single highest
ranked candidate.

The program reached a diagnosis with eleven probes. As 'in the previ-
ous example, this may seem like a lot, but it would require a much more
temporally detailed model to do better. For example, one of these probes
is of the data bus signal n289, which was predicted to be changing. But
there is no distortion of the data signals that could account for the observed
distortion: the basic problem is that the rate at which the output signal 'is
changing 'is higher than expected - the data values are getting strobed too
fast. This can only be caused by a clock running too fast or some defect
in the burst detection counters. In fact that is just what is happening: the

56 CHAPTER 3. TROUBLESHOOTING SCENARIOS

Figure 39: Internal Structure of CSB01

carry-out of the low order counter bits is stuck, so CSB01 asserts its output
twice as fast as expected. Half of these tmes the data is correct (which
is why the output is still recognizably sinusoidal) but the other tmes it is
just transient garbage from the accumulator CSA01. Probes of the data bus
signals in this example are not as likely to be 'Informative as probes 'in the
circuitry responsible for generating the write strobes. Any such 'Inferences,
however, depend upon being able to observe and reason about the details of
the output waveform and the moment-to-moment activity of the clock and
data signals, which would be sufficiently expensive that a few extra probes
are an acceptable alternative.

I ---I---- --- � - ---l----.-.----- - I -" 0.4 - -------- 9

3.3. INPUT ENCODER EXAMPLES 57

3.2.7 Summary of the Audio Decoder Examples

The Audio Decoder circuit used in these troubleshooting examples iustrates
the effectiveness and limitations of temporally abstract models of circuit be-
havior. The functional organization used n the model explicitly represents
relationships between the rates of change on the 'Inputs and outputs of com-
ponents. These signal features are easy for the troubleshooter to observe,
and so define an appropriate vocabulary with which to describe their be-
havior. These temporally coarse behavior descriptions are associated with
the functional organization of the circuit. For example, the three chips U0,
U11, and U22 not only have their own behavior descriptions, but there is a
temporally coarse description of CSBO1, the composition of all three. The
temporally coarse descriptions are adequate for troubleshooting many of the
possible failures, although there are cases for which a more temporally de-
tailed model would provide the same diagnoses with fewer probes, and others
for which the temporally coarse observations and models cannot provide a
unique dagnosis no matter how many probes are done.

3*3 Input Encoder Exarnples

The purpose of the Console Controller Board 'is to transmit keystrokes -
both up- and down- transitions - and mouse activity to the 3600 host com-
puter. In addition, certain keystroke sequences starting with a down tran-
'tion on the "local" key cause changes 'n local display parameters, such as

the brightness of the screen. The section of the board responsible for these
activities 'is the Input Encoder. In the following sections the structure and
behavior of the Input Encoder will be presented in more detail than the
simplified view given in the Chapter 1. The troubleshooting examples that
involve it illustrate how temporal abstractions drastically simplify reasoning
about devices with sequential feedback and internal state, so much so that
model-based troubleshooting can apply to board-scale digital crcuits.

03.3.1 Functional Organization of the Input Encoder

The Input Encoder merges three streams of data from the console peripherals
and encodes them in packets to be sent the host (Figure 310). The three
information streams are:

t

I

58 CHAPTER 3. TROUBLESHOOTING-SCENARIOS

9 Each up- and down-transition on the keys of the main keyboard 'is
encoded as a sngle packet.

9 An aUXiliary numeric keypad with fewer keys than the main keyboard
can be attached that produces up- and down-transitions also encoded
as single packets.

* Each change of mouse position or position of 'its three buttons causes
a packet to be sent to the host.

Figure 310: Input Encoder Functional Organization

ial

St

- -- -1 -- � wommirms 1 I

3.3. INPUT ENCODER EXAMPLES 59

Transmission of packets is accomplished by the Input Processor (denoted
U 'in Fgure 310), which polls the keyboard, keypad, and mouse asse rting 'its
interrupt line (int) whenever a key transition or mouse motion has occurred.
When the int signal is asserted, the Console Controller C win respond by
asserting the read signal RD a fewinstructions later. If the interrupt response
time from the Console Controller is small enough (a few microseconds), a
packet 'is correctly transmitted from U to C.

The Console Controller C 'Interprets some keystroke packet sequences as
local commands; for example, the sequence "Local key down, key down,
B key up, Local key up" will increase the brightness of the console screen.
Other 'Incoming packets are sent on to the host.

In addition to the power and ground inputs (not shown), the Input Pro-
cessor and Console Controller both require a two-phase Mhz clock sgnal,
denoted c5mhz 'in Figure 310. These clocks are produced by the Clock Gen-
erator section described earlier. The components 'involved in generating and
buffering the clocks are sirm'lar to those encountered earlier:

* The two phase clock generator TP01 converts a single-phase clock sgnal
into two clock sgnals 180 degrees mutually out of phase.

0 The frequency dividers FDO2 and FDO3 convert an 'incoming signal wth
frequency n into one With frequency n2

o The frequency buffers FB01, FBO2, and FBO3 produce output sgnals
with the same frequency as their inputs.

Finally, both U and C also have an active-low "reset" input. When the
0reset button sgnal is asserted and the clock signal n257 is running, the Reset

Hold Counter (denoted R) asserts n7OO for at least 0ms, which initializes
both the Input Processor and Console Controller.

3.3.2 Physical Organization of the Input Encoder

The Input Encoder implementation centers around an Intel 8035 micropro-
cessor [Intel86]. Communication wth the mouse and keyboard are done
through a dedicated Intel 8741 microprocessor with onboard erasable pro-
gram memory. The functional subcomponents of the Input Encoder are each
implemented by one or more chips as shown in Figure 311 and Figure 312:

-- #00 -- -- - -- --- -
e�M-4 I II&M F:--- -
- Ir��

Al Al "S

w

s

*S A -73

AOV

---41-- P

t-

*'Alp
I

I I I ,St I A.14 w

I4-
Iff
3;iF "-ST

I - - I UL

1 i II-" - / \ /

I I IIftw!

-ffd --A A- AIM
'Irs .., L- LUL

A- -,U-

A111

-- 71;ilii
mg I

A

-- -

IF4N* .
1

;Fm�

.T. I IL - 9�� - " I

Cs DL'JEE & --4

1,

Oar I
Ti�-i

F -T
4!L

I

_ A

I il[

CHAPTER 3. TROUBLESHOOTING SCENARIOS

Figure 311: Input Encoder Schematic

60

.0 5v

12
I, v V/6z, -A it 3-- Z

k

V

vli
4 1

a IN

-3 Ar.5

IC. I 4'
Ao Pei , Y-
A* or 2 C9

A-,Itz- A +-
A

At - -me-

be .,, .-- C6

as AQ

ZK P,

It 7 St

r
NK

ti

�Nll
ill
41

14,
4

0
.1

I9 5-1AD4 NkZ-

---- Of v -r

1-fliffill rf-- - & 0ye

I

R
d'.10, - - - w

*M.-'I -

--- A4-x--N &
lZeX.- �111- �--

V,. i�

ED

I �ER

11 0 I

-111H frIII

f

. I I

111 k-L

Lk

IV,
41

Ii�

iv
I

AO AVIV
3110 n

4,- ZNrl

I - A- &._q vtl+

, --%Nl-
, 2----- AaA

I --%Ar-- #L

I - I

-i V 0-r

, i ""'NI

- A" .41".

ome -^of

.1w -am

&13

I-A&4--owiv-
jtl.w-.60.f

--ot-0404

&-v4* a.-rA Owl

r-
I IAW '4 ,

k d-

I is #5 1.
- It a
" it of --

ro "
1.4 7RE #IN 1.10

. m " p -L96W I

,vev I - ILA

, CT P

.70"

3.3. INPUT ENCODER EXAMPLES 61

Figure 312: Input Encoder Physical Organization

* The Input Processor i's implemented by the Intel 8741 icroprocessor
chip U 34.

* The Console Controller is implemented by the physical 8035 processor
U33 along withits external PROM (U18) and the buffers for its external
bus data and control signals, involving chips U7, U8, U9, U13, and U24.

* The Reset Hold Counter is implemented by the 14-bit counter chip U 14
and some NAND gates on chip U31.

62 CHAPTER 3 TROUBLESHOOTING SCENARIOS

The remaining functions are implemented by the inverters and JK
flipflops on chips U32 and U30.

3.3.3 Expected Behavior of the Input Encoder

A simple test of the Input Encoder consists of pressing and releasing the
Reset button, then rolling the mouse around. The expected behavior of the
Input Encoder is as follows:

* While the reset button 'is pressed the output of the Reset Hold Counter
is held low. With the clock 'Input n257 running at 153Khz, the signal
goes high 0ms after releasing the button.

* The low-to-high transition on n162 causes the Input Processor - with
its clock 'input running at Mhz - to go from the "stop" state, to the
44 runi) state in which it transmits keyboard and mouse transitions to
the Console Controller.

0 The low-to-high transition on n162 causes the Console Controller - with
its clock input running at Mhz - to go from the "reset" state to the
Winit" state and then to the "monitor" state in which 'it responds to

0interrupts and transmits incoming packets to the host.

* Each 'inch of mouse motion causes the Input Processor to interrupt100
the Console Controller, and because the Console Controller 'is in the
t4monitor" state it is responding to interrupts and a mouse position
update 'is sent to the Console Controller.

0 The Console Controller sends the mouse position update to the host.

Each of these high level behaviors has 'Implications for the activity of
certain observable signals. The 'Important ones for Ithis example are:

* The reset signal n7OO will be low, then go high. Vice versa the sgnal
n162, since Old is an 'Inverter.

0 The active-low interrupt output of U will stay hgh while the mouse
is still, and will be rapidly asserted and deasserted while the mouse
moves.

�z

3.3. INPUT ENCODER EXAMPLES 63

The select signal for the 8741 (n226) will remain high except for a short
time after U 'interrupts. While in any state other than the "reset" state

0the read signal RD (n8l) and other bus signals will have frequencies
dependent on the input clock rate of Console Controller.

3.3.4 Finding a faulty Input Processor

Suppose that upon rolling the mouse around, the mouse cursor at the host
does not move. This is recorded as a discrepancy at the output of E. The
model predicts that the transition should have been sent 'if an sxteen chips
were working, but snce it was not, the conflict (U7, U8, U9, U13, U14, U15,
U161 U221 U237 U241 U251 U301 U317 U321 U33, U34) results. There are
sixteen candidates above threshold, the top few of which are shown below
(transcript in Appendix A.10). The notation U25open means that one of the
known fault modes for U25, called "Open," is consistent with the observations
so far; [U25open] comes out on top because that failure of U25 is likelier than
other any other chip failure, as discussed in the Clock Generator scenario.-

Weight Candidate Note
0.135 IU250pen] Oscillator chip
0.102 [U33] 8035 Microprocessor
0.102 [U34] 8741 Microprocessor
0.072 [U16] PROM
4.0 0 . 0 &

Among many predictions made by the model, the ollowing ones are about
observable sgnals. In this example, the frequencies of sngle- and two-phase
clocks are taken to be observable.

CHAPTER 3. '.F.ZOUBLESHOOTING SCENARIOS64

Node Signal Expected Support
n178 Interrupt chan 'ng fU25,U32,Tj3OU26,

U31,U14,RN6,RN7j
n226 U Select changing U25,TJ32,U30,U26,U31,

U14,U31,U33,RN6,RN7j
n 162 Reset hi-lo-hi JU25,U32,U30,U26,U31,

U14,RN6,RN71
n7OO Reset lo-hi-lo JU25,U32,U30,U26,U31,

U14,RN6,RN71
n137 Write 27 Khz U25,U32,U30,U25,U31,

U14,RN6,RN7,U33j
n257 153Khz 153 Khz f U25,U32,U30,U26,RN6,RN7j
cSmhz Clock 5 Mhz f U25,U32,U30,RN6,RN7j
c5mhz1 U Clock 5 Mhz JU25,U32,U30,RN6,RN7j
c5mhzh C Clock 5 Mhz f U25,U32,U30,RN6,RN7j
0 a * 0 0 0 0 - * 0

XDE suggests n178, the interrupt line, as the most normative probe
more specifically, 'it suggests that the signal be probed to see whether it

changes while the mouse is being moved.
Thi's probe selection is the single most interesting inference in this ex-

ample, and it is 'important to understand why t was made. In a purely
mechanistic sense, XDE suggested the interrupt line because if a discrepancy
were observed there, the conflict (U25, U327 U301 U26� U317 U141 U31, RN67
RN7) would result, thereby (approximately) halving the candidate set. From
a modeling point of vew, the interesting point is that a crude, temporally
abstract model of the behavior of the Input Processor is adequate to 'Infer
that so long as U is working properly, has power and clock inputs, and 'is
not being reset, that motions of the mouse will activate the interrupt line.
Similarly, if keys were being pressed, again the interrupt line would be active.
Abstracting the 8741 microprocessor to a two-state device makes prediction
of its behavior in this example much smpler than doing instruction-level
simulation, and still provides predictions that are diagnostically useful.

Returning to the example, suppose 78 'is observed to be a constant .
This yields (U25, U32, U30, U26, U31, U147 U31, RN6, RN7) as a conflict,
and the top four candidates are as shown below. [U250pn] comes out on top
as before:

3.3. INPUT ENCODER EXAMPLES 65

Weight
0.280
0.212
0.085
0.085

Candidate
[U250pen]

[U34]
[U14]
[U26]

N ote

Oscillator chip
8741 Microprocessor
14-bi't counter n Reset Hold Counter
4-bi't counter in FDO3

This yields a new
the next probe.

set of predictions from among which XDE will select

Expected Support . � -Node Signal

n162 Reset hi-lo-hi
lo

n7OO Reset lo-hi-lo
hi

n257 153Khz 153 Khz
Hz

c5mhz Clock 5 Mhz
Hz

c5mhzl U Clock 5 Mhz
Hz

c5mhzh C Clock 5 Mhz
Hz

JU25,U32,U30X26,U31,Ul4 RN6 RN71
JU34,U25,U32,u3ORN6,RN71
JU25,U32,U30,U26,U31 U14,RN6,RN71
JU34,U25,U32,U30,RN6,RN7j
f U25,U32,U30,U26,RN6,RN7j
JU25openxMIU30�U327RMIRN71
f U25,U32,U30,RN6,RN7j
f U25open)U32jU30jRN67RN7j
f U25,U32,U30,RN6,RN7j
f U25open7U32jU30jRN67RN7j
{U25,U32,U30,RN6,RN7j
f U25openIU321U30IRMIRN71

Note that node n162 now has two conflicting predictions for its behavior
- the normal behavior, and the misbehavior that t 'is low at moments when
It was expected to be hgh. The argument for the latter behavior is as follows.
If U34 i's working properly, U has a clock and incoming mouse motions. But
since the int output was not asserted, then 'it must have been because U was
in the "reset" state. Hence the reset 'Input n162 must be asserted (low).
This is the second most interesting inference n this example, and again, it is
effective because the Input Processor has been reduced to a two-state device.
only when the component models are so simple is it reasonable for the system
to make inferences about component inputs from knowing their outputs.

The highest ranked probe is the input clock to Reset Hold Counter, n257,
which is expected to have a frequency of 153 Khz if {U25, U32, U30, U26,

66 CHAPTER 3. TROUBLESHOOTING SCENARIOS

RN6, RN71 are a working. Probing this signal, 'it is discovered to have the
correct frequency.

This observation has two major consequences. Frst t makes the like-
liest candidate [U25open] inconsistent. Second, although it makes no new
predictions, it does add new support to some predictions already present.
For example, it was already believed that n167 had frequency 25 Mhz if
f U251 U30, RN6, RN71 were working; it can now be deduced that it has
frequency 25 Mhz if U267 RN6, RN71 are working. Similarly c5mhz has
frequency Mhz if JU26, U30, RN6, RN71 are working, and so on. These
inferences result 'in a new conflict, (U261 U30 U32 U34, RN6, RN7), so that
the resulting highest ranked candidates are:

Weight
0.332
0.132
0.132
0.116
0.116
0.083
0.083

Candidate
[U34]
[U30]
[U14]
[U32]
[U31]
[RN6]
[RN7]

Note
8741 Microprocessor
Frequency dider' S
Gates in Reset Hold Counter
Frequency buffers
Counter in Reset Hold Counter
Pullups
Pullups

The reset signal 62 is now the hghest ranked probe. Probing it shows
that it is behaving normally - it starts out high, then goes low while the reset
button 'is pressed, then returns high a short time later. Our observation
technology 'is sufficiently crude that t 'is possible to say exactly when
the line went low - the essential observations are that (i) it was asserted
long enough to reset U and C, and (ii) it was unasserted while the mouse
was rolling around. Nevertheless, for smplicity, the observation that gets
recorded is that n7OO was high and low at just the times expected. There
are now just five candidates:

Weight
0.449
0.184
0.162
0.118
0.118

Candidate
[U34]
[U301
[U32]
[RN6]
[RN7]

Note
8741 Microprocessor
Frequency dviders
Frequency buffers
Pullups
Pullups

3.3. INPUT ENCODER EXAMPLES 67

Next, an observation is suggested at c5mhz. Doing so reveals that 'it has
the expected frequency of Mhz. After several more corroborating probes of
clock signals, new conflicts are discovered and candidates eliminated. Even-
tually the only remaining candidates are:

-Weight Candidate Note
0.800 [U34] 8741 Microprocessor
0.200 [RN7] Pullups

A -final corroborating probe at node n57 (not shown in Figure 310) results
in the sole candidate:

-Weight Candidate Note
1.000 [U34] 8741 Microprocessor

This example is the same as that presented in Chapter and has the same
moral: what i's nteresting about it is the contrast between the simplicity of
the reasoning and the relatively few probes (eleven, to be exact) required
to isolate the fault to a sngle chip, 'in spite of the underlying complexity of
the circuit. What made that smplicity possible was the choice of behavioral
abstractions, in particular the temporally coarse behavior models for the mi-
croprocessors, which made t possible to reason about the reset and interrupt
signals without getting swamped in details.

3.3.5 Finding a faulty Console Controller

The preceding example iustrates the important characteristics of the behav-
ior models for the Input Encoder examples. Another example illustrates how
the program isolates faults 'Inside the functional component C transcript 'in
Appendix A.11).

The nitial inputs and symptoms are the same as before, so the interrupt
signal n178 is suggested as the next probe point. This tme 7it is observed
to be changing while the mouse i's rolled around. This suggests that 'it 'is
not the Input Processor U that is working normally. Probing the clock signal
n257 shows that its frequency is normal, suggesting that the Clock Generator
section is working normally as well. This leaves twelve candidates, the top
five of which are nside the Console Controller C:

--- - --- III 11 I 11 111111,

CHAPTER 3. TROUBLESHOOTING SCENARIOS68

Weight Candidate Note
0.165 [U33] 8035 Microprocessor
0.115 [U16] PROM
0.082 [U7] Instruction Address Latch
0.082 [U9] Buffer
0.082 [U8] Buffer
0 .0 41 0 4.0

The behavior of the 8035 microprocessor inside E is described in a tem-
porally coarse fashion, just as the 8741 microprocessor was in the previous
example. The 8035 is either in the "run" or "stop" state, depending on the
frequency of its clock 'Input and whether its reset 'Input is asserted. While
running, it should be repeatedly asserting the signal PSEN, which reads in-
structions from the PROM. If the PROM and some other buffers are all
working properly, then the Read and Write bus control signal should be re-
peatedly asserted as well. The top ranked probes are shown here:

Node Sgnal Expected Support
n8l Read changing f U7,U8,U9,U30,U32,U33,RN6J
n137 Write changing f U7,U8,U9,U30,U32,U33,RN6J
n1l PSEN changing JU30,U32,U33,RN61

After observing that none of these three signals are changing, there are
just four candidates:

Weight Candidate Note
0.488 IU33] 8035 Mcroprocessor
0.195 [U30] Frequency dividers
0.171 [U321 Frequency buffers
0.122 [RN6] Pullups

Two subsequent probes of the clock 'Inputs to the 8035 microprocessor
U33 show that they are normal and leave U33 as the only candidate.

As before, the temporally coarse model of the behavior of the micropro-
cessor and its combined behavior with the PROM and other components
allowed a few smple probes (nine, in this example) to find the broken mi-
croprocessor.

� illo�iii:mmo - -o, -1 -01011"RIN -

3.4. SUMMARY OF TROUBLESHOOTING SCENARIOS 69

3.4 Surn ary of Troubleshooting Scenarios

The seven senarios presented above provide context and a set of examples
that the next few chapters will draw upon. They also 'Illustrate that the trou-
bleshooting engine XDE is able to deal wth complex devices not due to any
ma'or innovation in the underlying model-based troubleshooting technology,
but rather due to innovations in constructing the device model that 'it uses.
XDE works well on the Console Controller Board because the board can be
modeled wth the goal of troubleshooting explicitly 'in mind, and this implies
certain desirable features of that model. Temporally coarse descriptions of
behavior are obviously 'important, but there are others. The ollowing three
chapters will present in detail the representations of crcuit structure, circuit
behavior, and faults that all together can represent complex devices 'in a way
that makes it feasible for XDE or any other model-based troubleshooting
engine to troubleshoot them.

-� ---- - - lommvkw" I - - - ----

a er

U* ruIce resen in irc 1 c ure

Model-based troubleshooting requires an explicit representation of the in-
ternal structure of the device being diagnosed. All the diagnoses that the
troubleshooting engine produces will be expressed 'in terms of the components
that appear 'in that structure representation. The need for efficiency 'nd'-
cates several desirable properties of this structure representation: it should
be a strict hierarchy, its leaves should correspond to'the locations of possible
failures, and every field replaceable component should correspond to some
node in the hierarchy. These properties are embodied in a representation of
the physical structure of the device. Predicting the behavior of a complex
device from the details of its physical organization can be greatly simplified
by using a representation of the intended behaviors of groups of components
at multiple levels of abstraction. For example, it 'is easier to reason about
the behavior of a digital lgic gate than about the equivalent collection of
resistors and transistors: the structural composition of those components en-
ables abstraction of their combined behavior. For the same reason, it is easier
to reason about an adder performing arithmetic on integers than about the
equivalent collection digital logic gates, and so on. A nonstrict functional hi-
erarchy provides a way of organizing these structural compositions to which
intended behaviors are attached. The nodes in the functional herarchy are
essentially "slices" through the physical structure ussman77] [Sussman8O].
They are chosen explicitly to facilitate behavioral abstraction.

These two views of dgital circuit organization are concretely expressed 'in

70

the circuit structure language BASIL'. BASIL descends from DPL [Batali8l]
and TDL [Davi's83] and it inherits the 'Idea of representing circuit structures
as graphs of objects with connections between them at "ports," although
BASIL is implemented quite differently. BASIL provides predicates and a
vocabulary of primitive components, but more 'important than BASIL itself
are the principles for composing these primitives into physical and functional
organizations in ways that facilitate troubleshooting. Two key principles are:

0 Components 'in the representation of physical structure should corre-
0

spond to the possible repairs.

9 Structural composition should allow smplification of behaviors and
facilitate behavioral abstraction.

4.1 Physical Organization

A representation of the internal physical organization of devices 'is essential in
model-based troubleshooting. The physical world is where the observations
that the troubleshooting engine requests and the repairs that it recommends
are located; the physical world 'is also the source of information about the
plausible failures.

4.1.1 Primitive Components

To represent the physical structure of a device for troubleshooting, the first
and central issue is choosing the primitive level of detail. Snce the complex-
ity of the world is to be abstracted away 'into a graph of components and
their connections, the essence of the choicel's in where to draw those primitive
component boundaries. Drawing these boundaries makes three fundamental
commitments. First Iit makes some failures indistinguishable to the trou-
bleshooting engine - every failure 'Inside a primitive component will result
in the same diagnosis. Second, it makes some failures representable only
as failures in multiple components - for example, the troubleshooting en-
gine would diagnose a short circuit between two (supposedly) non-interacting
components as failures in both components. Third, the lower the level of

'Box And String Interconnect Language.

4.1. PHYSICAL ORGANIZATION 71

72 CHAPTER 4 REPRESENTING CIRCUIT STRUCTURE

physical detail the more work will be involved in predicting behavior - for
example, representing individual transistors on a chip mplies the possibil-
ity that the behavior of each ndividual transistor will be reasoned about
explicitly. Thus there is a tradeoff to be made between the detail 'in the
representation and the efficiency of reasoning with it: more detail makes di-
agnosis more accurate but results in more work. BASIL or any other structure
representation 'is a compromise between these conflicting goals.

BASIL uses etches, pins, and chiplets (areas of silicon real estate inside
the chip package) as its primitive components. Figure 41 shows a cross
section of a chip soldered into a board. The etches, pins, and chiplet are
all components. The principles at work in choosing these as primitives are
discussed below.

Figure 41: Chip Cross Section

(in a U32a) Chip U32 (out y U32a)

(bi.1 N 165)

9 Collect fault locations with indistinguishable effects into a single com-
ponent.

Electrical signals travel between the etch and the silicon inside chips
through a solder joint at the hole, the pin on the chip, and a tiny bond-
ing wire that reaches from the pin to a metal pad on the slicon. Opens and

4.1. PHYSICAL ORGANIZATION 73

shorts can happen to the pin proper, the bonding wires, and the solder; the
bonding wire 'is especially susceptible to being shaken loose and becoming an
open circuit. Under the assumption that only the voltages and currents at
the solder *oint will be observable these physical failures are indistinguish-

J 7

able. Thus they are a treated as one component, called a pin. The pn has
a port at each end, referred to here as the solder and the bond ports.

Collect many individually unlikely fault locations into a single compo-
nent.

The metal strips that run between the holes in a board are called etches.
They are usually tree-structured when connecting more than two holes.
Sometimes branches of the etches crack (becomi"ng open crcuits) or get ac-
cidentally connected to other etches becoming short circuits or bridging"
faults). Such failures are somewhat less likely than the bonding-wire breaks
mentioned above. BASIL thus represents an entire metal etch - no matter
how many branches it has - as a single component wth one port at each
hole. There is no distinction between cracks in dfferent branches of the etch;
any real break will be diagnosed as a failure of the entire etch. There 'is
also no representation of the physical adjacency of dfferent etches and no
way to explicitly represent bridging faults; real shorts between etches will be
misdiagnosed as a pair of failures 'in the two etches.

BASIL could represent each branch and junction of the etch explicitly,
and could represent the points of possible bridging expucitly, but this would
entail an unreasonable number of primitive components. It would be 'Ineffi-
cient since these faults are not nearly as common in the -field as others. An
alternative would be to represent the possible points of failure 'implicitly by
representing the three-dimensional layout of the etches; this has not been
done either.

The internal structure of chip packages provides another example of this
principle. Every transistor on a slicon chip may produce a delectably dif-
ferent msbehavior 'if it fails, but any 'individual failure 'is relatively unlikely.
Hence each independent functional unit on the silicon within a chip is a prim-
itive component referred to as a chiplet. For example, a 74LS04 chip has sx
inverters on it; each of these inverters 'is a separate chiplet within the chip.

II

CHAPTER 4 REPRESENTING CIRCUIT STRUCTURE74

4.1.2 A S IL

BASIL represents the types of components and their relationships using four
predicates. The basic syntax is Cambridge prefix predicate calculus using
E. to 'Indicate predicate terms and (. . .) to indicate function terms.
The syntax is inherited from JOSHUA [Rowley87].

The predicate ako forms the lattice of types. [ako ?x ?yl means that
all individuals of type ?x are of type ?y also. For example, etches are a kind
of component: Eako etch component]. The predicate ako* is the Kleene
star of ako.

Among the primitive types of component are etch, chiplet, pin,
Inverter, resistor, and switch. Figure 42 shows a small portion of the
type hierarchy.

Figure 42: Abbreviated AKO hierarchy

Component

Inv�

Is\ EtchChiplet Pin I
isa

u32a (pin 4 u32) n1 19

The predicate isa denotes the most specific types of an ndividual. For ex-
ample, u32 a 'is a physical realization of an inverter 'in slicon; hence it is both
a chiplet and an inverter. These are denoted Eisa u32a chiplet] and
[isa u32a inverter]. The predicate isa+ denotes the relationship between
an individual and all of the types to which it belongs. Thus [isa+ ?x ?zl
[isa ?x ? A ako* ?y ?zl. For example, 2a is a component because
it is an inverter, and inverters are components: [isa+ u32a component].

The chip cross-section in Figure 41 showed the following set of isa rela-
tions:

4.1. PHYSICAL ORGANIZATION 75

[isa. n197 etch] ['sa pn 4 u32 pn] [isa u32a chiplet]

[isa n165 etch] [isa (pin 12 u2) pn] [isa u32a inverter]

Components 'Interact with other components through ports. By conven-

tion a port denoted (?direction ?id ?component) is a port of that com-

ponent. The direction function is one of in, out, or bi indicating that it

is 'Intended to be an input, output, or bidirectional port respectively. For

example, (in a u2a) is the "a" input of inverter u32a. (bi 2 n119 is

the port where etch n119 electrically interacts with pin 4 of U32. The predi-
cate has-port denotes this relationship; for example, u32a has an "a" 'input:

[has-port u2a (in a u2a) . The set of assertions about ports shown in
the chip cross-section of Fgure 41 'is:

[has-port n197 (bi 2 n197A [has-port n165 (bi I n165)]
[has-port u2a (in a u2a)] [has-port u32a (out y u32a))

Connections are a kind of component that have exactly two ports. Each of

these ports 'is shared wth one other component. The only knd of connection

shown so far are pins, which are named (pin ?number ?chi p)2 . For exam-

ple, 'in the chip cross-section of Figure 41, pin 4 of chip U32 connects port

2 of etch n119 to input port "a" of inverter u32a. This 'is denoted with the

predicate conn as [conn (pin 4 u2) (bi 2 n119) (in a u32a)]. Note

that in BASIL the only substantive difference between ordinary components

and connections is that the names of the ports of a connection refer to ad-

jacent components, not the connection 'Itself. The connections shown in the
chip cross-section of Figure 41 are the two pins:

[conn (pin 4 u32) (bi 2 n197) (in a u32)]
Econn (pin 12 u32) (bi I n165) (out y u32)]

BASIL has other predicates and a more densely populated ako hierarchy
than indicated here. These details wl be presented shortly.

2MOSt components are named by a single atom such as u32. Pins are the sole exception,
since names like (pin 4 u32) are function terms. They could ust as easily have been
named by atoms, for example 'u32.4.11

76 CHAPTER 4 REPRESENTING CIRCUIT STRUCTURE

4.1.3 The Physical Part-Of Hierarchy

The predicates and primitive component types in BASIL aow an entire cir-
it board to be described n terms of the subparts of ts chips and the

connectivity among them, but it would be 'inefficient to troubleshoot a large
circuit using only thi's primitive level of detail. Almost any symptom alone
would yield dozens of pins, etches, and chiplets as suspects. A hierarchic rep-
resentation allows groups of primitive components to be efficiently treated
as a single component. For example, it is more efficient to diagnose to the
level of chips before considering the internals of those chips, since there are
far fewer chips to consider than pins and chiplets. The predicate ppart-of
(44 physical part of") denotes the relationship that forms the physical hierar-
chy; [ppart-of u2a u321 means that u32a is a part of u2.

The right physical components to group together to form the ppart-of
hierarchy are the ones that correspond most drectly to repair actions. The
main objective of the troubleshooter 'is to find the repair or set of repairs

o
most likely to make the device work again. Since the troubleshooting engine
computes diagnoses that correspond to sets of components, it would be effi-
cient to have a one-to-one correspondence between the possible repair actions
and the components 'in the hierarchy. This would make each diagnosis map
directly to a set of repairs to be done, and the troubleshooting engine would
not waste effort distinguishing between different faults that had the same
repair. In the circuit domain this 'is straightforward, since for the failures un-
der consideration the possible repair actions consist only of replacing boards,
replacing chips, and re-soldering broken etches. By making the herarchy of
components a physical hierarchy in which chips and boards are the only com-
ponents other than the primitives, the diagnoses will be drectly translatable
into possible repairs. In the digital crcuit domain the resulting hierarchy is
bushy; one or more chiplets and their pins together form a chip, and chips
and etches together form the board. Figure 43 shows a small portion of the
physical part-of hierarchy of the Console Controller Board.

Manufactured artifacts can nearly always be decomposed into a part hi-
erarchy that is strict, a decomposition that reflects the way the artifact was
constructed. Chips are fabricated separately and soldered 'into the board,
for example, and thi's ndicates that the chips and printed board have no
shared parts. There are exceptions whenever the assembly process itself
causes boundaries to be dffuse. Parts may be built up by incremental and

4.1. PHYSICAL ORGANIZATION 77

Figure 43 A Portion of the ppart-of Relation

Board
Console Controller

... Chip Chip Chip Etch Etch
U25 U30 U32 N 165 N 167

0*00/ 000017

Pin Pin Inverter nverter
Chiplet Chiplet

... (pin U32) (pin 2 U32) U32a U32b

overlapping manufacturing steps, as with the layers of a silicon chip layout;
parts may merge smoothly into one another, as with pieces of metal welded
together. As long as the physical object can be divided along boundaries
there is at least a degenerate strict herarchy to be found: all of those parts
can be immediate descendants of the overall structure. These exceptional
and degenerate cases do not occur in digital circuit boards at the level of
description that BASIL uses. Each pin and chiplet 'is part of 'ust one ch'
each bt of solder is part of one etch, and so on. The same would be true
for larger scale organizations of boards, card cages, cabinets, and so o: the
way the artifact gets assembled from its parts forms the physical part-of hi-
erarchy. Even cables between derent cabinets are not an exception; they
customarily have their own part numbers and are typically listed in the parts
list of the entire computer. The physical hierarchy in BASIL is strict and that
accurately represents the real world.

The fact that the physical hierarchy is strict simplifies comparing alter-
native diagnoses, It need not be strict - the troubleshooting engine would
still compare diagnoses and rank them appropriately - but a strict;hierarchy
makes it more efficient.

For troubleshooting, each component has a status indicating whether it
is believed to be working normally, faulty n some known way, or faultyf

78 CHAPTER 4 REPRESENTINGCIRCUIT STRUCTURE

in an unknown way. The predicate status-of denotes thi's relation. For
example, [status-of u32 working] means the component U32 is working,

that 'is, it is not physically damaged. Because BASIL assumes that only

components can fail, the status of each other component can be deduced

from the status of the components that are part of t, or that 'it is part of.
In the example above, the board 'is working if a its chips and etches are

working; the chip U32 'is working if all its pins and the six 'inverters inside 'it

are working. Contrapositively, if U32 is not working then at least one of its

pins or inverters is not working, and so on.
While troubleshooting, ch status and each diagnos's is assigned a rela-

tive likelihood (as dscussed in a later chapter). Computing these likelihoods
is greatly simplified if the dfferent component statuses can be treated as sta-
tistically 'Independent. One way for that 'Independence to be violated would

be for components to share parts, since a single failure in some shared part

would appear as a failure in all the sharing components'(in fact, since the

probabilities of failure 'in the two parent components would be different from

their product, by definition their probabilities of failure are not 'Independent).

With a strict hierarchy 'it is trivial to determine whether parts are shared; a

pair of components can share parts only if one is an ancestor of the other.

The strict herarchy thus simplifies computing relative likelihoods since it

can easily be arranged that no diagnosis ever mentions failures in both a

component and one of its ancestors.

4.2 Functional Organization

Although the physical organization discussed above 'is central to the trou-

bleshooting task, the physical packaging of digital crcuits often has an almost

acc'dental nature. Implementing the desired functionality using off-the-shelf

chips typically means sharing several functions 'in one package (for example,

four gates on a chip) or using only a portion of th� functions on a chip (for
example, using a universal shift register with a its control inputs tied to

power or ground). For efficient reasoning about the behavior of a complex

device, it i's useful to be able to consider the combined behavior of portions

of several different physical components. Moreover, this reasoning requires

behavioral abstractions, and some behavioral abstractions do not apply to

primitive components. For example, it is simpler to reason about a digital

4.2. FUNCTIONAL ORGANIZATION 79

adder operating on integers than about several one-bit adders doing their
operations on bit vectors. Structural composition of those one-bit adders
along with their nterconnecting wires yeld a composite component whose
behavior can be described abstractly 'in terms of n-bi't integers. That the
one-bit adders reside on different physical components is an accident of im-
plementation; together with their nterconnecting wires they still form an
adder component.

BASIL represents this knowledge as functional components augmenting
the physical components described earlier. Functional components are simi-
lar in many ways to physical components; they have ports and statuses, and
they are organized into a herarchy by the fpart-of relation. The rimitive
components discussed earlier - etches, pins, and so on - are both physical
and functional components; the functional and physical hierarchies thus meet
at their leaves. This 'elds the expanded ako hierarchy shown 'in Figure 44.

Figure 44: Expanded AKO Hierarchy

Component
ako

00000

Functional- Physical-
Component Component

ako Primitive-

Connection Component Ch p

Inverter

\\ Etch 74LS04Chiplet Pin
isa

u32a (pin 4 u32) n119 u32

80 CHAPTER 4 REPRESENTING CIRCUIT STRUCTURE

4.2.1 The Functional Part-Of Hierarchy

The functional part-of hierarchy is not strict, and has a much rher vocabu-
lary of component types than the physical. The reason for this is that there
are often several alternative and incomparable ways of describing even the
same collection of components. For example, one 'way to describe the com-
bination JK flipflop and pullup in Fgure 45 i's as a "Toggle," which has
a one-bit output; another way would be as a "two-phase clock generator,"
which has a two-bit output. Both behavior descriptions are legitimate, but
neither subsumes the other.

Figure 4: JK Flipflop Unencapsulated

I
p

Q

K
c Q

WOMW V

1�

k
v

The Toggle is as an example of a functional component that is the com-
position of several primitive components: (i a JK fipflop chiplet ii) the
etch that connects four of its 'Inputs together, and (iii) the pins that connect
that etch to the chiplet. The etch, pins, and chiplet are all fpart-of the
Toggle. Fgure 46 shows these subcomponents (rectilinear boxes), the ports
at which they interface (the black spots), and theboundaries of the Toggle

- (the dotted line). Both the J flipflop and Toggle have an explicit Ccpower)l

4.2. FUNCTIONAL ORGANIZATION 81

port that wl be explained later; to avoid clutter these are not shown. Even
'th this simplification Fgure 46 may be a bit difficult to understand; the

difficulty of conveying encapsulations like this vsually stems in part from the
fact that etches and pns are not usually treated as explicit components, and
from the fact that the desire to keep the boundary convex requires requires
distortions of the normal two-dimensional layout.

Figure 46: JK Flipflop Encapsulated as a Toggle

The Toggle has ports just as the JK flipflop did. The relationship be-
tween the ports of an abstract component and the ports of its underlying
components is represented with the predicate corr ("correspondence"):

0 [corr correspondence abstract-port concrete-ports] means

that there is a group of one or more concrete-ports that correspond

--- ------ - ---- ---- -- ---- ---

CHAPTER 4. REPRESENTING CIRCUIT STRUCTURE82

to one abstract-port. The nature of that correspondence is denoted
by the correspondence argument. The most common correspondence
is identity, which means that the two ports are equivalent. Other cor-

respondences include concat (the concatenation of bits into integers),
ttl-power (a high voltage port and a ground port that correspond to

a single "power" port), and to-phase-clock (a pair of one-bit ports

at which the voltages are 180 degrees out of phase).

In the case of the Toggle, each of its three ports stand in an identity

correspondence with one underlying port apiece. These ports are indicated
in Figure 46 where the dotted line passes through ports.

The power port that appears on nearly all chips introduces some com-
plications, since the power supplied to all the chiplets on a typical chip i's

supplied through a pair of pns, "pwr" (high voltage) and "gnd." Figure 47

shows the ttl-power correspondence between the ports at these pins and a

single power port shared by the whole chip. The power port for the whole

chip then stands in an identity correspondence wth each of the power ports

of the chiplet components on the chip. U30, for example, is a dual JK flipflop
chip, and its two flipflop chiplets are named U30a and U30b; they each have

a power port along wth their other ports clk, for example). The advantage

of the power port is that it somewhat simplifies the behavior descriptions of
the individual components.

4.2,2 Principles for Structural Composition

Successive layers of possibly overlapping compositions can create a deep

fpart-of lattice representing many behavioral groupings in the device. Yet

it is one thing to be able to explicitly represent the herarchic functional orga-

nization of a complex digital crcuit, it is quite another to dscover the rght

components to compose together and the right behavioral abstractions to use.

Starting only from a digital circuit schematic and behaviorally detailed de-

scriptions of the physical component behaviors, someone or something must

construct that richer representation. Currently it is constructed by hand,

but mportantly, not 'in an ad hoe fashion. There is a fundamental principle
at work:

* Structural composition should enable behavioral smplification.

4.2. FUNCTIONAL ORGANIZATION 83

Figure 47: Power Ports of Chip U30 and ts Chiplets

... 0 0 1 1 0
(in CLK u3Ob) 0 * (in CLK u3Oa)

(in POWER u3Ob * 0 (in POWER u3Oa)

IDENTIT

correspondence 4p (in POWER u3O)

TL-POWER correspondence

(in PWR u3O) 0 (in GND u3O)

That 'is, the grouping of connected or related components together
0structural composition istinct from behavioral abstraction, but from a

troubleshooting perspective, the only motivation for structural composition
is to simplify behavior. For example, there i's no 1, point in composing four
one-bit ader slices together and calling 'it a "adder" unless the behavior
associated wth the adder takes advantage of the abstraction that maps from
vectors of bits to integers. The Toggle is a worthwhile functional component
because its behavior is much simpler than the whole JK flipflop. In digital
circuits, there are three ways the general principle manifests itself and hence
three reasons to introduce structural compositions:

1. To suppress constant signals. For example, if a node 'is pulled up and
always supplies a "high" value to some component, the pullup and
component can be grouped together to form a simpler component.

2. To encapsulate reconvergent sgnals. Reconvergent sgnals are sgnals
that originate from a common source, and then are recombined to pro-
duce some other signal. Such structures can cause difficulties for pro-
grams that reason about crcuit behavior through local propagations.
A smple example 'is shown 'in Figure 48. In the unencapsulated ver-
sion, purely local propagation cannot deduce from A=1 and C=1 that

84 CHAPTER 4 REPRESENTING CIRCUIT STRUCTURE

F must be 0. Encapsulating the fanout of and 'Its reconvergence
alleviates the problem.

Figure 48: Encapsulating Reconvergence

4

A A

F

B U B

c c k
I

If A=C
then 0
else

F
lk

F

i

3. To encapsulate loops. Digital crcuits often perform computations se-
quentially with a loop of combinational circuitry and registers that store
intermediate results. The encapsulation of combinational crcuitry and
registers may have a combined behavior that is smpler to reason about
than that for all the ndividual components. In a sense this is a special
case of encapsulating reconvergence. Figure 49 shows a smple exam-
ple; the combined D-flipflop and XOR-gate form a parity generator
for a serially encoded input. In concert wth the appropriate behav-
ioral abstraction it 'is not necessary to reason about the clock-by-clock
operation of the combined structure.

Figure 49: Encapsulating a Sequential Loop

4

4

1�

v

I

I

Parity

Every non-prir'tive functional component that appears in the Console
Controller Board description i's motivated by, and an example of, one of these

4.2. FUNCTIONAL ORGANIZATION 85

three principles. The interesting and difficult part of the story concerns the
detection and formulation of the appropriate abstract behaviors to go along
with the structural compositions- that 'is treated in the next chapter.

a er

Ice resen in 1ircul e avi*or

A central requirement of the model-based troubleshooting methodology is
that the program be able to make predictions about behavior based on ob-
servations of the 'inputs and outputs of a device and 'its subcomponents.
Making predictions requires both representation of behavior and computa-
tional machinery to determine that, for example, "'if A is an adder and its
inputs are 2 and 2 its output 'is 4 In practice, a second requirement is
that the program be able to make those predictions using a variety of differ-
ent domain-specific abstractions, making compromises between the precision
and efficiency of predictions made with different vocabularies. In the case of
adder A, there might be a good reason to represent the 'inputs either more
abstractly as simply "even" or "odd" or more concretely as bit vectors. Since
troubleshooting real digital circuits means reasoning about the behavior of
components from resistors to microprocessors, the representation must be
flexible enough to 'integrate many levels of abstraction.

This chapter is partly about TINT, a language of predicates and rules that
builds on BASIL by propagating temporal constraints through a network of
instantiated components. TINT is a framework that can be used to describe
the behavior of components at several levels of detail. What 'is 'important,
however 7is not just the framework 'itself, but the rich variety of abstractions
and component behaviors that will populate 'It. Hence this chapter is also
about the abstractions that make 'it possible to represent the behavior of
complex circuits for troubleshooting.

The primitive level of abstraction i's a switch level model that uses volt-
ages in the set 0,11 and currents in the set ,O,+I. The switch level

86

87

model is discussed 'in Appendix E; for the most part the reader may assume
that the primitive level of detail is the standard digital model using voltages
in the set 0, 11. Some traditional abstractions appropriate to representing
and troubleshooting complex dgital crcuits are those that concern the ma-
nipulation of groups of bits - spatial abstractions that make it possible to
describe (for example) the signal being carried by an 8-bit bus as a number
or an ASCII character 'instead of a bit vector.

Yet, there are much more powerful abstractions; motivating them re-
quires defining some terminology. The purpose of a behavior model 'in trou-
bleshooting is to make predictions based on observations of the device. The
predictions produced by a given model can be characterized as to the fidelity
w'th which they match the real world their ectston and the efficiency with
which they can be made.

Fidelity is best illustrated by a counterexample: suppose a dgital
mod 16 adder were to be represented as if it dd ordinary 'integer addition.
Presenting the real adder with inputs of -8 and -8 correctly produces a
0. The model, however, predicts that it should produce 16. This violates
fidelity, and the behavior of the adder 'in this case would be 'improperly re-
garded as a symptom of failure. In model based troubleshooting, fidelity is
an overriding goal, since it is better to make an imprecise prediction than to
make a wrong one.

Precision and loss of precision in the predictions made with a behavior
model are 'Intimately tied to the level of abstraction in the model. For ex-
ample, modeling the mod 16 adder in terms of the voltages on its input and
output wires would be more precise than modeling 'it using its mod 16 defi-
nition. Modeling 'it in terms of "negative" and "nonnegative" numbers would
sacrifice precision in two ways. One of these ways is the loss of precision in
the numbers themselves. A second loss of precision occurs because the be-
havior of the real adder is a total function, but the behavior wth respect
to "negative" and "nonnegative" 'is partial snce C4 negative nonnegative"

Yields an ambiguous result. This latter special type of precision loss will be
referred to as a loss of strength, that is, weakness 'in the behavior model.

The goals of precision and efficiency can be traded off against one another:
if efficiency were of no concern, the predictions could always be very precise;
conversely, the less precise the predictions are the cheaper it is 'in general they
are to make. The problem of modeling behavior for a given class of devices
requires choosing vocabularies and behavior descriptions that retain enough

CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR88

precision that real symptoms Will be detectable, yet make efficient prediction
0 0ible. The consequence of 'imprecisionposs s diagnostic ind'scriminacy. Thus

the issue is, what abstractions wll sacrifice the least precision for the most
efficiency?

Against this background of fidelity, precision, strength, and efficiency
issues, troubleshooting complex digital crcuits motivates abstractions that

ifice temporal precision. Among in
sacr the salient characteristics of the doma'
are (i) the gap of several orders of magnitude between the temporal granu-
larity at which events occur in the machine and the temporal granularity at
which observations can be made, and (ii) the fact that physical ailures in
digital circuits are frequently manifest at coarse timescales. These charac-
teristics mean that temporal precision can often be sacrificed wthout losing
the strength needed to detect symptoms. Efficiency is gained through tem-
poral abstractions that make it possible to reason about large numbers of
events occurring in the circuit wthout having to refer explicitly to each one.
The vocabulary of temporal abstractions includes familiar concepts such as
chan e sample, durat' t C,

zon, sequence, coun , Ule, and frequency.
The advantage of temporal abstractions is that when applied to compo-

nents and groups of components with complex behaviors - even micropro-
cessors - the resulting temporally abstract behaviors can be exceedingly
simple. The basic 'idea is that a given behavior can be usefully abstracted if
changes on its inputs always result in changes on its output. Every change of
value on the input of an inverter, for example, results in a change of value on
its output. Even if that property does not hold, there are still several generic
principles for forming useful partial descriptions. For example, a temporally
abstract behavior for adders might relate the number of changes on its 'in-
puts to the number of changes on its outputs, but there is no interesting
relationship for the addition behavior as such: both 'inputs could change s'_
multaneously 'in such a way that they cancel each other out. One of the
generic principles for forming useful partial descriptions is "holding an 'input
constant and in this case if one of the inputs of an adder is held constant
all changes on the other nput do propagate through. Temporally abstract
behavior descriptions will be given for a number of components 'Including
gates, counters, and microprocessors.

Although the main purpose of this chapter i's to present the details of
defining and reasoning wth behaviors and temporal abstractions, the under-
lying "modeling for troubleshooting" theme recurs several times:

89

0 Many of the temporal abstractions to be defined are motivated by the
desire to explicitly represent easily-observed features of sgnals.

* Individual behavior definitions are judged for usefulness on the basis of
simplicity and therefore the tractability of the prediction problem 'in a
real troubleshooting session.

0 Many of the rules that get included 'in the model are judged worthwhile
because they mention observable sgnals or can make predictions over
long stretches of time.

0 TINT itself is deliberately limited 'in its expressive power, and handles
the "frame problem" 'in a smplistic way - two engineering decisions

0 0taken because they keep the troubleshooting engine simple.

With troubleshooting as the ultimate goal, this chapter considers 'in turn
the language TINT, the representation of combinational and sequential be-
haviors, the explicit representation of temporal abstractions, and techniques
for constructing temporally abstract behavior descriptions for complex cir-
cuits.

5 .1 TINT

The behavior of circuit components 'is represented using TINT', a simple
temporal reasoning system in which rules are used to derive facts about the
values of functions of time. A function of time 'is called a sgnal; for example,
the voltage at a crcuit node is a signal because its value can change over
time. In contrast to more sophisticated models of tme (for example, the
interval model 'in [Allen84]), for simplicity time 'is taken to be a sparse set,
the integers divisible by a temporal granularity constant �. ranularity can
be thought of as the smallest unit of time that is measurable by available
instruments. For the most part the rules and other definitions that follow
would remain unchanged for the lmit as goes to f time were taken to be
dense. TINT provides two predicates thru and tsame for making assertions
about signal values:

1. [thru 1 u ?signal ?value] means that from the lower bound
time ?l to the upper bound time ?u inclusive, ?signal had value
?value.

2. [tsame ?1 ?u ?signali ?signal2l means that at every tme be-
tween the lower bound and the upper bound %inclusive, ?signall
has the same value as ?signa12.

Any token can appear as the .value of a sgnal.
Only integers, -oo, and oo can appear as time arguments to the thru

and tsame predicates. This use of timestamps 'in TINT rather than sym-
bolic quantities or expressions results 'in serious limitations as compared to
other temporal reasoning systems, but it is adequate for demonstrating trou-
bleshooting.

5. 1.1 Signals

The? signal arguments of the thru and t same predicates are function terms.
For example, the term (voltage (in a u32a)) denotes the voltage signal at
port (in a u32a). The voltage function maps a port to a real-valued signal.
Functions from sgnals to signals will be used to define abstractions and

'Timestamped INTervals.

CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR90

5. 1. TINT 91

behaviors. Abstractions describe relationships between signals at different
levels of detail. Behaviors describe the relationships that components enforce
between their 'input and output sgnals.

Signals, abstractions, and behaviors are denoted for concreteness as pro-
cedures in a side effect free LISP dialect similar to SCHEME [Abelson85] as
in [Weise86]. These procedures are not executed by an 'interpreter; their sole
purpose is "mental hygiene' before writing rules to make inferences about
the values of signals at various levels of abstraction it 'is important to know
what the signals mean. Almost any other language could have been used, but
the essential concepts all concern functions, and SCHEME (and the underly-
ing lambda calculus) 'is a powerful and familiar representation for functions.
Only a few such definitions are shown 'in this section- the remainder are in
Appendix B. AR obey the following conventions:

* The == symbol indicates definitional equivalence and indicates
elision; for example, x == (lambda (y) . . .) indicates that x 'is a
function of one argument whose body is not shown.

0 Capitalized symbols denote function arguments and lowercase symbols
denote all others.

For example, a function like voltage is primitive and can be defined as
shown below. It maps a port into a function from time to real numbers:

voltage ==
(lambda (port)

(lambda tme)

The abstraction voltage-to-logic-level expects a function of time
whose range is the real numbers and returns yet another whose range is

0, 1:

voltage-to-logic-level
(lambda M

(lambda (t ime)
(if < V tme) 1.5) 0 1)))

The function 11 takes a circuit node and yelds a function of time whose
range is f 0, 1 :

CHAPTER 5. REPRESENTING CIRCUIT! BEHAVIOR92

11 =

(lambda (port)
(voltage-to-logic-level

(voltage port)))

TINT does not use these lambda definitions drectly, but rather reasons

with predicate ground terms containing composite terms built up from prim-

itive signals and abstractions. Ethru -oo oo (11 (in a u32a)) 1, for
example, means that the logic-level at port (in a u2a) was always

[thru -oo oo (change S) nil] means that the value of some sgnal

never changed, or, literally, that the sgnal resulting from the application of

the change abstraction to sgnal was always nl.

5.1.2 Rules

TINT provides rules that are used in data-driven (forward chaining) fashion
10

to propagate the consequences of observations of sgnals. The followin is a

rule as the program would see it. It says that 'if x is a thing, and the value

of any sgnal s is known over an interval of positive duration, then the signal

obtained b appl 'ng abstraction to s is the fun of 'Its value:

(deftyrule nonsense-rule (-forward)

* P Eisa =x thing]
*s0 [thru al =u =s =v]
:f (< 1 =-u)
0 1(tell Ethru , =l , =u [abstraction =s] (f un =v)

The rules use an extension of JOSHUA syntax. The prefix marks uni-

versally quantified variables; -- p marks trigger patterns whose matching pred-
icate terms wl not appear in any resulting truth maintenance system (TMS)

clauses; -. s. marks the predicate terms that do appear 'in clauses; .f marks

LISP filters that must return non-nil for the rule to fire; : 1 marks the

LISP body of the rule; starts a quoted structure template and indicates

evaluation of a form within that template, as in Common LISP ([Steele84]

pp. 349-351). For implementation reasons, there is no distinction between

function and predicate terms; they are both denoted with I syntax.

For presentation purposes, however, the above rule would be formatted as

follows, using to ndicate variables, oitting details of truth maintenance

5. 1. TINT 93

and backquoting, and retaining for clarity the distinction between predicate
and function terms:

If Usa ?x thing]
and [thru ?l ?u ?s vl
and (< ?l ?u)

Then Ethru ?1 ?u (abstraction ?s) (fun ?v)]

5.1.3 Signal Hstories

The set of all thru predications (predicate ground terms) referring to the
same signal is called the history of the signal. TINT maintains the following
invariants for every pair of predications in a given signal history:

* Conciseness: overlapping 'Intervals of the same hstory are combined
into maximal intervals. If [thru ?11 ?ui ?s ?vl and Ethru ?12 ?u2
?s ?vl are both true, and the two intervals touch or overlap - that
is, (max ?11 12)) is less than or equal to (rrdn 7ul %2)
then [thru (ndn ?11 .712) (max ?ul ?u2) ?s ?vl 'is also true. The
latter predication denotes a maximal interval. As long as it remains
true, it shadows both predications Ethru 11 ?ui ?s ?vl and [thru
?12 ?u2 ?s ?,vl, and any other predications it subsumes. Rules never
-fire on shadowed terms.

0 Consistency: signals cannot have more than one value at any given
time. [thru 11 ?ul s v11 and [thru 12 ?u2 ?s *?v21 can-
not both be true unless either their values are the same (that 'is,
(equal ?vl ?v2) or the ntervals are di 'oint (that is, < ?ul 12)
or < u2 ?11)). Otherwise TINT records a conflict.

TINT takes advantage of the fact that the lower bound argument 'in
thru predications is restricted to a totally ordered set to organize each sgnal
history as a list ordered by lower bound. This makes the above invariants
relatively easy to check and enforce.

A truth maintenance system is used to maintain boolean constraints
among thru (and other) predications. Ordinary implication is encoded as
a clause; for example, if X and Y together mply Z then there is a clause

- -----

94 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

--,X V 1Y V Z. A "shadowed" assertion 'is one that 'is mplied by other (pre-
sumably more general) assertions and that should not trigger rule firings as
long as 'it is implied by those other assertions. Shadowing 'is 'implemented
as an extension to the TMS A clause may have any of its literals marked
to be shadowed when they are the only satisfiable literal in the clause. For
example, suppose A is more general than B. Let -nA V B be a clause with
B marked to be shadowed. If A is true, then B 'is the only satisfiable literal,
hence B is true and shadowed. If A were marked to be shadowed as well,
then if B 'is false, A 'is the only satisfiable literal, so A is false and shadowed.
Rules do not -fire on predications while they are shadowed.

Figure 5.1 shows a smple example of how the conciseness and consistency
invariants are maintained 'in the histor of a sgnal S. Each rectangle 'Indicates
a predication and is positioned along the timeline according to the interval
that it refers to (each discrete time point is drawn as an interval on the
real line). Clauses are indicated by numbered circles; indicates that the
attached literal occurs positively, - that it occurs negatively, and () indicates
shadowing. The network 'is constructed by the following series of operations:

1. Some outside client (the troubleshooting engine, for example) asserts
both [thru 9 S nil] and [thru 2 9 S t]. This violates consis-
tency and causes a conflict, represented by clause 1. The client retracts
[thru i S nil], which the TMS then makes false.

2. The client asserts [thru 10 19 S t], and since it overlaps wth [thru'
2 9 S t] (also true), TINT creates the new predication [thru 2 19
S t and installs clause 2 Now [thru 2 i S t] subsumes the two
predications 'it depends on, so TINT shadows them by installing clauses
3 and 4.

3. The client asserts [thru 6 17 S t], but it 'is immediately shadowed
because thru 2 19 S t] subsumes 'it (clause 5).

Subsequent retractions and changes of truth value may trigger the cre-
ation of new maximal 'interval predications and new clauses. For example,
'if the client were now to retract [thru 10 19 S t] the TMS would make
[thru 2 i9 S t] go out, unshadowing [thru 2 9 S t] and thru 12 17
S t]. Since the latter two overlap, TINT would then create a new predication
[thru 2 17 S t to be created (not shown).

5. 1. TINT 95

Figure 5.1: TINT Signal Hstory Example

Time 0 2 0 0 0 9 10 1 12 O.. 20
1 1 1 1 ----I I I I I - , II-I I I I I -- T-T-1�- I y

f alse

ti
shadow

rue
hadowed

I

rue

A
.dowed

5.1.4 Equality

The behavior of smple components such as wires, buffers, and switches 'is
often easily expressed as a temporally quantified equality- for example, if a
switch 'is closed during the interval from ?1 to IN then during that time the
logic-levels at its two terminals will be equal. Also, 'it is sometimes convenient
to give different names to the same sgnal, so equality between signals is a
useful notion as well. The four-place predicate tsame captures these concepts;
[tsame ?1 ?u ?si ?s2l means that the signals ?si and ?s2 had the same
value at every time from ?1 to ?u 'Inclusive. In the case of different names
for the same signal and ?u are -oo and oo respectively.

There are no rules with tsame as a trigger pattern, but TINT does have a
demon facility that is used to compute the transitive closure of the congruence
relation with respect to tsame assertions and unshadowed thru predications.

CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR96

For example, if a is equal to b over the interval to 0, then knowing the
value of b over any subinterval 'is propagated to an nterval of a:

[tsame 5 1 a b]
[thru 0 10 b t]

[thru 5 10 a t]

The consequences of equality of sgnals a and b are also propagated to
their abstractions; hence if a value had been known for (g (f a)) 'it would
get propagated to (g (f b)) as well:

[tsame 5 15 a b]
[thru 0 0 (g (f a)) nil]

[thru 5 10 (g (f b)) nil]

This is a brute force technique 'in at least two respects. When two names
refer to the same sgnal, it would be better to maintain a single canonical
name for each signal, or in fact for each function and predicate term, as 'is
done for example 'in [McAllesterMa]. In addition to this redundancy of facts
the scheme used in TINT also results in redundancy of derivations, since
the same fact may be derivable in different ways siMD1v by using equalities
and other rules 'in dfferent orders. It would be better to control the invoca-
tion of rules so that fewer redundant derivations are created, as is done in
BREAD [Feldman88]. The brute force technique used in TINT is only toler-
able because the language is restricted to equalities between signals, and the
consequences are propagated only for thru predications. If arbitrary terms
could be equated, the number of variant terms would quickly explode.

5.1.5 Summary

TINT provides predicates, rules, and a framework of signals and abstractions
that together are used to describe ircuit behavior. The preceding treatment
of TINT is brief because the language itself is not particularly important. The
main concern is the vocabulary of signal types and abstractions and the spe-
cific rules that the program will use to reason about them. The next three
sections will discuss in detail (i) the description and use of combinational

5.1. TINT 97

(time-independent) behaviors, ii) the description and use of sequential be-
haviors, and (iii) abstractions as embodied in TINT along wth a particular
vocabulary of temporal abstractions.

98 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

5.2 Cornbinational Behaviors

BASIL components have intended behaviors that are functions from signals
to sgnals, and these behaviors can be translated into rules. For example,
the intended behavior of a digital inverter is tinvert:

tinvert (lambda (lambda (time) (invert (S time))))

invert (lambda (if = I x) 0 1))

This definition can be translated into a rule that asserts facts about the
output signal of the inverter based on facts about its input sgnals.

The intended behavior of a component depends on some collection of

background conditions - for example, that the component in question is

"working" (not physically damaged), that 'it is connected to a power source,

and so forth. The conditions currently included are those about signals

that travel over wires and that are expected to be stable over long periods

of time. The condition that there be a volt drop from power to ground

is an example, the condition that a clock of a certain constant frequency be

provided is another. Conditions relating to other features, such as component

temperature, magnetic fields, alpha radiation, and so forth are not included

in the model. Failures arising from those sources wll be misdiagnosed.

These background conditions must somehow be incorporated into the
rules. By convention, the background conditions for a component are col-
lected and summarized as a mode signal whose value 'is normal during the

intervals that all the conditions are satisfied.

For example, the following rule says that 'if an adder ?a is believed to be

working, then its mode is normal as long as it is getting power (the isa and

status-of predicates were defined and discussed 'in Chapter 4:

If [isa ?a adder]
and (status-of ?a working]

and [thru ?.1 ?.u (power (in power ?a)) t]
Then [thru ?l IN (mode ?a) normal]

The principal behavior rule for adders thus deends on the mode signal

having the value normal. In the following rule the sgnals (num de-

note the signals appearing at the adder ports (in ?a), (in ?a), and
(out ?a):

5.2. COMBINATIONAL BEHAVIORS 99

If Eisa a adder]

and [thru ?11 ?ui (mode ?a) normal]

and [thru 12 ?.u2 (num (in ?) ?v11
and 2 (overlap ?11 ?ul) (?12 %2))

and [thru ?.13 ?.u3 (num (in ?a)) ?.v2l

and (overlap ?11 ?ul) 12 %2) (?13 u3))

Then [thru (max ?11 12 13) (min ?.ul ?u2 %3)

(num (out ?.a)) ?vl ?v2)]

overlap tests whether the mentioned intervals have any point in common.
The proliferation of time" variables (six, in this rule) and a the min/max

arithmetic on them may seem like an unfortunate feature of the syntax of
TINT. Certainly macros could be witten for combinational rules that capture

the cliche "the intersection of all the input ntervals must be nonempty," as in

the rule above. For presentation purposes, this has not been done since there

are many sequential behavior rules that defy such simple categorization It

was deemed better to have one general and explicit style of rule presentation
than to have multiple incompatible styles.

There are two other rules arising from the behavior definition of the

adder, not corresponding to the 'input/output directionality of the compo-
nent. These will be called antibehavior rules to 'Indicate that their direction
of firing is "against" that of causality 'in the intended behavior of the adder.
They look very much like the previous rule, the dfference being that the

first one below makes deductions about (in ?a) and the second about
(in ?.a)-.

If Usa ?a adder]
and [thru ?11 ?ul (mode ?.a) normal]

and [thru 12 ?u2 (num. (out ?a)) ?v11

and (overlap (11 ?.ul) (?12 ?u2))

and [thru 13 ?u3 (num, (n ?a)) ?v23

and (overlap ?11 ?ul) (?12 ?u2) (?13 %3))

Then Ethru (max 12 .913) (min ?ul ?.u2 ?u3)
(num n ?) ?vi ?v2)]

'This condition is semantically redundant, but makes-runtime rule matching more
efficient.

CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR100

If Eisa ?a adder]

and [thru ?11 ?ul (mode .a) normal]
and [thru 12 ?u2 (num (out ?a)) ?v13

and (overlap ?11 ?ul) ?012 ?u2))

and [thru ?13 %3 (num (in ?a)) ?v21

and (overlap ?li ?u1) (?12 ?u2) (?13 %3))

Then [thru (max 11 12 13) (min ?ul ?u2 ?u3)

(num (in .a)) (- ?vl ?v2)]

Figure 52 shows how these four rules concerning the adder cooperate to

infer signal values, and how they interact with the conciseness condition on

TINT signal histories. The network of thru predications shown was created
by the following operations:

1. The predications [status-of A working] 'and [thru 1 80 (power

(in power A)) t] are true, so the mode rule of the adder fires and

results in the predication [thru 1 80 (mode A) normal], supported

by clause .

2. The predications [thru 11 0 (num (in A)) 7 and [thru. 21 60

(num. (in I A)) 121 are true, so the behavior rule for the adderfires,
resulting in the predication [thru 2 50 (num (out A)) 191 sup-

ported by clause 2.

3. The first of the antibehavior rules for the adder fires and deduces Ethru

21 50 (num. (in A)) 7 by clause 3 but t is shadowed (clause 4)

by the enclosing interval.

4. Similarly, the second antibehavior rule fires and deduces [thru 2 50

(num (in A)) 2 which is immediately shadowed.

Were the newly deduced intervals not shadowed, the behavior rule for the

adder would fire one more time to deduce Ethru 21 50 (num (out A))

191 again. There 'is redundancy in this scheme, but without the conciseness

condition on signal hstories it would be worse.

The behavior rules for the adder serve as a canonical example of the

combinational case - the output at any moment is solely a function of

its present inputs. The behavior of many other components appearing in

5.2. COMBINATIONAL BEHAVIORS 101

Figure 52: Combinational Behavior Example

1-1 11-20 121-30 131-40 141-60 151-60 161-70 71-80 1 IL

-I I -I I

(power (in power A))

(status-of

(mode A)

(num (in A))

i

(num (in I A))

(num (out A)

102 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

the Console Controller Board can be expressed in their entirety this way;
for other components, portions of their temporally abstract behaviors are
combinational in the same sense.

5.3. SEQUENTIAL BEHAVIORS 103

05.3 Sequential Behaviors

The previous examples of behavior rules involved only combinational behav-
0 10iors. Sequential behaviors require introducing sgnals to explicitly represent

the internal states of components. As wth any program for reasoning about
change, TINT encounters the frame problem [McCarthy69], or, in more Mu-
minating terminology, the nitiation and persistence problems Shoham86].

The initiation problem arises from the need to specify all the preconditions
for a given change or event to occur. The solution n TINT is to explicitly
represent whether a component 'is physically damaged and conditions on
incoming electrical signals, summarize them into a mode sgnal, and leave all
remaining background assumptions 'Implicit.

The persistence problem ases from the need to specify a the conditions
under which nothing happens, that 'is, the conditions under which states do
not change over time. One formal solution is to have minimality criteria
(as in [LifschitzV] and [Shoham86]) that specify which of many possible
extensions of an nitial set of statements are preferred. An example of such
a minimality criterion is to prefer extensions that have the fewest number
of changes having no known cause. The validity of any particular prediction
is thus relative to many other predictions that have been or could be made.
The solution in TINT is to make explicit the persistence conditions for each
state. The result 'is a rule - a frame axiom - for every state signal that
mentions every knd of event that could change that state.

Neither of these solutions n TINT are general, since both rely on the
belief that each component 'Interacts with few enough other components and
in few enough ways that they can all be listed explicitly. Nevertheless, they
do have the desirable property that all justifications for signal value predic-
tions are grounded solely in beliefs about the status of components and the
observations of the troubleshooter. Having made no appeal to persistence
assumptions or any minimality criteria while computing the consequences
of observations, each prediction has only local justifications and local conse-
quences. There is thus no need for the detection and manipulation of conflicts
to be any different than for combinational behaviors.

A falling-edge triggered register provides the simplest example of sequen-
tial behavior, involving only three rules. The first rule says that (a) the
output of the register is 'Identical to 'Its state, and that (b) changes from I to
0 on the clock input are "interesting:"

CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR104

If Usa ?r register]
Then Etsame -oo oo (state ?r) (num (out 0 ?r))]

and [interesting-event (11 (in clk ?r)) (I 0)]

The value of the abstract signal (event ?from ?to ?s) is t whenever
there has been a change from the value ?f rom to ?to. The value of this
abstract signal is recorded explicitly only when that event type is marked as
"interesting." Further details will be presented shortly.

The second rule is a state-transition rule. Any change from to on the
clock 'Input causes the register. to enter the state selected by 'its data input
signal (num nput 0 ?r)). The previous state of the register is irrelevant.
The rule below concludes that during (at least) the sngle moment succeeding
the transition, state had the value ?input:

If Usa ?r register]
and [thru ?11 ?ul (mode ?.r) normal]
and [thru 12 %2 (event i 0 (11 n clk ?r))) t]
and (overlap ?11 ?ul) (?12 ?u2))
and Ethru 13 ?u3 (num n r)) nput]
and (overlap ?11 ?ul) (?12 %2) (?13 %3))

Then [thru (8 ?u2) (?2) (state ?r) ?input]

The third rule is a persistence rule. The register stays in whatever state
it is in so long as there has been no change of the clock from I to 0. Its state

0persists while the event 'is occurring as well, hence the appearance of 'in the
conclusion:

If Usa ?r register]
and [thru ?.11 ?ul (mode ?r) normal]
and [thru 12 ?u2 (event 0 (11 (in clk ?r))) nil]
and (overlap ?11 ?ul) (?12 %2))
and Ethru 13 ?u3 (state ?r) ?state]
and (<= (max ?.11 12) .913 (min ?ul ?u2))
and (not (and ?.13 (max ?11 12))

?.u3 ((min ?ul ?u2)))))
Then [thru (max ?11 ?.12 (8 (n ?ul %2))

(state ?r) ?state]

5.3. SEQUENTIAL BEHAVIORS 105

Figure 53 shows these behavior rules in use. The signal denoted
(11 (in clk R)) i's the clock input to a register R, and has a history of
values then then 1. The predications and clauses were constructed by
the following steps:

1. Because the change from I to has been deemed interesting, the
predication [thru 2 3 (11 (in clk R)) 11 results 'in clause I be-
Ing installed, and similarly for the clauses 2 4 and S. Clause 6
is installed to enforce the conciseness condition on the history of
(event i 0 (11 (in clk R))),andth'ssubsequentlyresultsinsome
predications being shadowed.

2. The transition rule for registers fires and results in clause 3 being in-
stalled: the mode of the register was normal, the value at (in R) was
known and a falling edge occurred on the clo .ck input. The conclusion
of the rule 'is [thru 5 5 (state R 9.

3. The persistence rule then fires to create clause 7 and the predica-
tion [thru 9 (state R 9 which 'in turn shadows [thru 5 5
(state R 9 to ensure conciseness.

In general, transition rules deduce that a component must have been in a
state for just one moment, and the persistence rules subsequently deduce how
long that state must have lasted. The rules for the register are particularly
simple because at a transition the previous state of the register does not
matter; later examples consider cases where 'it does.

106 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

Figure 53: Example with Register Behavior Rules

O 1 2 3 4___ 5 I 7 1 8 1 9 -I I - I I- 1- - I- I ---- L
I I I I I I I�-T�� F Ftime

(11 O

(even

(num

5.4. ABSTRA CTIONS 107

5.4 Abstractions

The notion of an "abstraction" takes on a specific meaning in TINT as a
function from signals to signals. Behaviors are functions from signals to sig-
nals too, for example, tinvert represents the behavior of a boolean inverter.
Abstractions and behaviors are not syntactically dentical 'in TINT by acci-
dent. Their similarity helps to iuminate the relationship between precision
and strength in behavior prediction. Given any abstraction A and behavior
B we can define a function AB that describes the abstracted behavior (F19-
ure 54). AB will usually be a partial function. As long as A is not a one-to-one
function the predictions made by AB must be less .precise than those by B.
Fidelity requires that any prediction made by AB must be the same as that
made by B; that is, let z == (B x y) and then (A z) == (A (B x y)):

For all times,
If ((AB (A x) (A y)) time) is defined
Then ((A (B x y)) time) == ((AB (A x) (A y)) time)

Figure 54: Abstractions and Behaviors

(A x) (A y) AB (AB (A x) (A y)

(A z) == (A (B x y)

A

B
X Y Z

The strength of AB can be characterized by the degree to which AB is
a total function. Ideally, any prediction made by (A (B.. .)) win also be
made by AB, as stated below; weakness just means that there are fewer values
of x and y for which it holds:

For all times,
If (A (B x y)) t ime) is defined
Then ((A (B x y)) time) == ((AB (A x) (A y)) time)

108 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

For example, let A be the sign function that maps real numbers to,
1 1 func-

f-,O,+I, and let be real addition. AB is the qualitative addition
tion qplus, which i's partial because (AB + -) and (AB -) are undefined
(Figure 5.5). AB in this case does not yield strong predictions.

Figure 5.5: Example of Abstractions and Behaviors

(sign x) (sign y) qplus (qplus (sign x) (sign y))

(sign z) (sign (plus x y))

sign sign
sign

X Y z

Any behavior can be abstracted using any abstraction. Moreover, there 'is
no reason that the same abstraction A need be applied to all the sgnals x, y,
and z. However, for an arbitrary combination of behavior and abstractions,
any function AB is unlikely to be strong - that is, its result will be usually
undefined - and in fact nearly always useless. An alternative is to make
assumptions about the relationship between x and y such that AB is stronger
over the resulting restricted domains. In the case of qualitative addition an
example would be to assume that (sign x) and (sign y) are never - so
that the resulting restriction of qualitative addition became a total function.

Every behavior can also be abstracted trivially to yield strong predic-
tions from the identity behavior I == (lambda X). The "trick" is to
have the abstraction of the inputs of be the procedure itself Figure 56).
All the complexity of the behavior of has smply been hidden in the ab-
straction of its 'Inputs. Although this particular abstraction is silly, it is just
the extreme example of a more generally useful principle: in trying to formu-
late a useful behavioral abstraction, some of the behavioral complexity of
can be shifted into the abstractions to make AB smple and strong.

An example 'is provided by the abstracted behavior of a 4-bit counter
that increments on falling edges of 'Its input Figure 57). By temporally ab-
stracting 'its input and carry-out output with respect to the number of falling

5.4. ABSTRA CTIONS 109

Figure 56: Sufficiently Complex Abstractions Make Any Behavior Trivial

(B x y) I (I (B x) = z

A

(I Z = z

I

B

z

edges on each sgnal, the counter can be viewed as dividing the abstracted
input by 16. The complicated definition of the abstraction "count of falling
edges" textually resembles the definition of the behavior of a counter, so in
this case it is in a quite literal sense that some of the behavior has been
shifted into the abstraction A.

Figure 57- The Behavior of a Counter with Respect to a "Counting" Ab-
straction

divide

(A x) by 16 U (A x) 16)

(A z)
61

A =
count of
f alling

edges

A =
count of
f alling

edges

x

4-bit
counte

z

Good abstractions are not just reformulations of behaviors. Ideally, one
has a small collection of abstractions that are appropriate to a wide range of
component behaviors - appropriate 'in the sense of (i) sacrificing precisionI
(ii) retaining strength, and (iii) increasing efficiency. Given a particular ab-

A==B

x y

110 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

straction function A, it is thus an interesting and relevant question to ask: for
what class of behaviors it i's ossible to formulate easily computable and

strong abstract behaviors AB, or, failing that, what reasonable assumptions

can be made to strengthen AB. Thus characterizing the class of behaviors for
which the abstraction 'is appropriate is a concrete way of characterizing the

utility of the abstraction.

5.4.1 Temporal Abstractions

Temporal abstractions are abstractions whose definition mentions previous

values of a signal. An example 'is stay. (stay S) is true at time only if

the signal has the same value at (- time 8) and time. The particular

temporal abstractions to be shown have the additional property useful 'in

troubleshooting that they produce signals easy to observe 'in working and

malfunctioning circuits. Here, too, stay is an example: it is often easier to

observe whether a given signal is changing than 'it is to observe the value or

values that the signal is taking on.

The breadth of circuits for which these abstractions are appropriate can

be briefly characterized as those with behaviors that are event-preserving
functions of sgnals having known relative timing relationships. An event is

a change in the value of a signal. Behaviors are event-preserving to the extent

that changes on their input signals are reflected as changes on their outputs
(they include all one-to-one functions); three ways that 'input sgnals may

have a "known timing relationship" are:

1. Behaviors with single inputs, since the tming relationship of a sgnal

with 'Itself is trivial.

2. Behaviors with multiple 'inputs, all but one of which are constant

throughout some interval. Example: the behavior of a two-input and-
gate, one of whose inputs i's known to be a constant durin some9
interval.

3. Behaviors with multiple inputs for which it can be assumed there are no

simultaneous events. Example: the behavior of a two-input xor-gate,
whose 'Inputs never rise or fall at the same moment, so that the output

always changes whenever the input does. This 'is a particularly strong
assumption to make, and is rarely used.

5.4. ABSTRA CTIONS ill

Having so severely bounded the class of behaviors for which temporal
abstractions are useful I it is tempting to conclude that the corresponding
class of digital (or other) components is so small as to be worthless. This
is not so, because it is possible to structurally compose groups of digital
components and define abstract signals in such a way that the behaviors of
the resulting aggregate components satisfy those tight requirements. Gven
that freedom, the relevant class of digital crcuit structures 'is so diverse as
to defy definition- 'it is only possible to present examples within that space.
After presenting some important temporal abstractions, the next section will
be devoted to just such examples. These important temporal abstractions
are change, duration, sequence, count, cycle, frequency, and sampling.

0 Change marks events. The change function is t only at moments when
the underlying signal has just changed 'Its value, otherwise it is nl.

Stay is the obvious negation (an example of the values of these signals
over time is shown below; it and others like it ollow the convention

that = and that the more abstract the signal the closer it appears

to the top line).

(change X) ? t nil nil t

(stay X) ni I t t nil

X 3 4 4 4 5

t ime 0 1 2 3 4

change
(lambda (S)

(lambda tme)
(not (equal (tme) (S (- tme

Two familiar numeric elaborations of the change abstraction are dt

(derivative with respect to time) and cross crossings of a value v),
defined in Appendix B.

It is also useful to have signals that are t whenever a particular
event has just occurred and nil otherwise. The abstract signal

(event ?f rom .to ?S) is t whenever the underlying signal S has

just changed from ?:from to .to. For example, (event 500 700 S is
t where has just changed from 500 to 700:,

t ime jj 2 3 4

112 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

(event any 00 S) ? ? R n' 1nil nil t
(event 500 700 S) ? ? nil t nil nil nil

S 500 500 700 300 700 500
t'Me 2 3 4 5 6

A ?rom argument of -,any denotes the special case of any transition
to ?to, which is useful for marking the known beginning of an interval.
(event :any 500 S) is t at tme 6 However, it 'is not known to be t
at time I snce the value of could have been 00 at .

In the domain of troubleshooting circuit boards, it is much easier
to observe whether a given single-bit signal changed or not during
an interval of several seconds than it is to observe each individual
change. The abstraction changzng wzth-respect-to is specifically tai-
lored to making statements about whether a given logic level sgnal
ever changed, statements that typically arise from observations of the
circuit. (changing-wrt ?1 ?u ?S) is t only at the upper bound time
?u and only when ?S changed at least once during the interval from i
to ?u inclusive:

(changing-wrt 6)

(changing-wrt 3)

(change S)

s

time

nil nil nil nil nil nil t nil

nil nil nil n' I nil nil nil nil

nil nil nil t nil nil nil

� 0 0 0 0 1 1 1 1

I 1 2 3 4 5 6 7

E or example, if [thru 6 6 (changing-wrt 6 t] i's true it means
that changed at least once between times and 6.

Duration indicates how long a signal has stayed at the same value. The
duration is defined to be when the sgnal has 'ust changed.

(duration X) 2 1

X 3 4 4

H

H

8

(cycles-ww 3 (O 1) S) ?

s 0

t ime 110

4b

i i

I

5.4. ABSTRA CTIONS 113

* Count counts the number of events that have occurred with respect to
a window of fixed width. The function count-vw takes an argument n
that i's the width of the wndow in units of 8, and a sgnal argument S.

? 1 1 2 2 1 1
nil nil t t nil nil t

1

nil
1 2 3 4 5 6 7 8

* The Sequence abstraction indicates when a particular string of (possi-
bly repeated) values has appeared contiguously on a sgnal. Given a

0sequence like (O 1) 'it can be thought of as a finite string recognizer
for occurrences of the regular expression .

(sequence nil nil t
1 1 0

nil nil t nil t
0 1 0 1 0

time 1 2 3 4 5 6 7 8

* The Cycle abstraction is used to count the number of endings of a
particular sequence of values. The function'cycles-ww 'is simply the
composition of the count and sequence abstractions:

?O O 2
1 0 1 0 1

2 2
0 1 0

1 2 3 4 6 7

Typically, the larger the window, the less relative fluctuation of
the cycle count over time. For example, suppose A and are sig-
nals that are just slightly out of phase. (cycles-ww n ... A) and
(cycles-ww n ... B wl have the same value most of the time, and
will never differ by more than .

(cycles-VW

(cycles-ww 8 ..

(sequence
(sequence

A)
B)

A)
B)

2
2
nil
nil

2
2
nil
nil

2
3
nil
t

3
2
t
nil

2
3
nil

t

3 2 2
2 2 3
t nil nil
n'I nil tI

3
2
t
n'I

t i me 0 1 2 3 4 5 6 7 8

(count-ww 3 S) ?

s t

t ime 1 0

) (o 1) S) nil

s 0

114 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

The larger the window, the less the relative difference, and conversely,
the easier to detect significant deviations (as for example the difference
between a sgnal occasionally asserted and one that 'is running at about
20 Khz). By convention, the window sze is usually taken to be 1000
times the expected period of the signal, so that the cycles-ww of a pair
of signals can be judged as equal if they differ by no more than ,10
that is, by no more than one cycle in a thousand.

Frequency is smply the number of cycles that occurred during a win-
dow, divided by the duration of that Window. The abstraction function
f ww yields the frequency of a signal wth respect to a window size and a
particular sequence of values. With a sufficiently large wndow relative
to the cycle time (e.g. 1000 times as large), the result 'is an adequate
approximation to the normal notion of "frequency."

(f ww 3 ? ? ?
(O 1) S) 0 0 1/3 2/3 1/3 2/3 1/3 2/3

S 0 1 0 1 0 1 0 1 0
time 0 1 2 3 4 5 6 7 8

Sometimes it is not necessary to know the actual frequency of a sig-
nal, but simply whether the sgnal is changing or not. This can be
represented as the sgn of the frequency.

The notion of Sampling is essential to understanding behavior of syn-
chronous systems; here, the sampling of a signal refers to the values
that the sgnal takes on at certain (usually regularly spaced) moments.
The abstraction function sample-and-hold abbreviated samp) takes
two argument signals V and S; V is t where the signal is to sampled.
The value of samp is the value of where V was last t:

(samp V S) ? 1 1 1 1 0 0 0
V nil t nil nil nil t nil nil
S_ I 1 0 1 0 0 0 1

time 1 2 3 4 5 6 7

Note that the value of (samp X X) - the sampling of a signal with 'Itself
- at time 'is the value of X the last time X was non-nil.

5.4. ABSTRA CTIONS 115

The interesting and important property of these temporal abstractions is
that they sacrifice precision without sacrificing the ability to detect faulty
behavior. In troubleshooting the dea is to detect discrepancies between the
observed behavior of the real device and our idealized model of it; thus the
predictions of interest are those that can be made efficiently from what we
have observed and that could be sgnificantly violated if the device were bro-
ken. The change abstraction 'is useful because it is easy to observe whether
signals in a device are changing or not, and easy to predict what the con-
sequences of change (or lack of 'it) would be. Sirr'larly, the fi-equency ab-
straction is useful even if frequencies are hard to observe accurately: the
distinction between zero and nonzero frequencies 'is easy to observe and is
likely to result in significantly different behavioral consequences. By summa-
rizing possibly very long) sequences of events, temporal abstractions make
complex behaviors look simple enough for troubleshooting to be tractable.

Abstractions define how a sgnal such as (11 n8) (the logic level at
node 48) relates to signals "below" 'it such as (voltage n48),� and sgnals
"above" it such as fww 106 (O 1) (11 n48)) (the frequency at node 48,
measured at cycles starting with and wth a window of 10' time units).
Abstractions thus result 'in rules that can fire "upward," "downward," or
even "sideways" between different abstractions of the same base signal. The
definitions of change and stay, for example, can yield the following rules:

If Ethru ?l IN (stay ?s) '?vl
Then [thru ?l ?u (change ?s) (not ?v)]

If [thru ?l ?u (change ?s) '.Pvl
Then [thru ?l ?u (stay ?s) (not ?v)]

In practice, however, only a subset of the possible rules should actually
be made explicit and included in the program. For example, only one of the
signals (change S) and (stay S) really needs to be represented explicitly,
so these two rules are not necessary.

Furthermore, each rule should not be fired on every sgnal - for example,
the change abstraction applies in principle to every signal, but if every change
of value on the signal required an explicit deduction about (change S),
an infinite regress would result - (change (change S)), and so forth. The
changing-wrt abstraction i's an example of the general phenomenon that for

116 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

any given sgnal there are infinitely many abstractions that can applied to 'it.
For example, (changing-wrt I S), (changing-wrt 2 7 S), and so on,

are all legitimate signals. Some criterion is needed for determining which of

the many possible signals TINT will make deductions about. Consequences

concerning changing-wrt and smilar abstractions are only propagated dur-

ing the nterval during which observations are currently being made. TINT
denotes the interval over which observations are currently being made in

terms of the lower and upper bounds of a global reference 'Interval. By con-
vention the pseudo-signal GR denotes this global reference timeline; it is t
during the interval that the circuit is actually observed. Thus, [thru ?a ?z

GR t] means that observations are made with respect to the time interval
?a to ?z inclusive. The interval ?a to ?z is referred to as the "observation

interval." The pattern thru ?a ?z GR t] appears in a rule to ensure that

it makes 'Its deductions only during the current observation 'Interval.

Furthermore, only certain signals in a crcuit are actually observable.

Again by convention, the only observable signals are taken to be those at

the solder joints of a circuit board, which are modeled in BASIL as the ports

of wire etches. Ports of etches are called holes (chip pins are placed 'Into

them), and (hole ?i e) denotes the ?ith in etch ?.e. For efficiency, the

rules dealing wth observations of signals are restricted to making inferences
at these ports.

The result of these conventions and efficiency considerations is that the
following four rules suffice to make 'Inferences among a logic-level signal and

its change and fww abstractions:

If the logic-level at a hole has a constant value over the interval from ?a
to ?z, then the signal was never changing with respect to a subinterval of

observation:

If [thru ?a z GR t]

and [thru ?l ?.u (11 (hole ?n ?e)) ?.vl

and <= ?l ?a ?z ?.u)
Then thru ?z ?z (changing-wrt ?a ?z (11 (hole ?n ?e))) n'll

If the logic-level at a hole had two different values at different moments

during an observation interval ?a to ?z, then the signal is changing with

respect to that interval:

5.4. ABSTRA CTIONS 117

If [thru ?a ?z GR t]

and Ethru .710 ?uO (11 (hole ?n ?e)) 01
and (overlap (.a ?z) (?10 ?uO))

and [thru ?11 ?ul (11 (hole ?n ?.e)) 11
and (overlap (?a ?z) ?11 ?ul))

Then [thru IN ?z (changing-wrt ?a ?z (11 (hole ?n ?e))) t]

The frequency of a sgnal with respect to a wndow ? 'implies whether

or not it should be changing with respect to the observation 'Interval ?a to

?z provided that the window ?w fits wthin the observation 'Interval); 'if the
frequency is nonzero then the sgnal should be changing, otherwise not:

If [thru ?l ?u fww ?w ?seq ?9 ?f
and Ethru ?a IN GR t]
and ?1 ?a ?z ?u)
and ?w (- ?z ?a))

Then [thru ?z ?z (changing-wrt ?a ?z ?.s < ?f)]

A signal that 'is not changing has a frequency of wth respect to any
window and sequence. The following rule says that if the logic-level sgnal
at a hole 'is not changing during an observation interval, its frequency is

during that 'interval. An additional condition 'is that there must have been

some previous mention of the frequency of that logic-level signal, otherwise

irrelevant frequencies would be deduced for many other signals:

If [thru ?z ?z (changing-wrt ?a ?z (11 (hole ?n ?e)))]
and Ethru ?a ?z GR t]

and' Signal (fww ?w '7seq (11 (hole ?n ?e))) eists

Then [thru ?a ?z (fww ?w ?seq (11 (hole ?n ?e))) 01

Finally, a noteworthy relationship that will appear implicitly 'in other

rules is that a signal ?s sampled wth respect to some signal ?v cannot be

changing unless the underlying signals are:

If Ethru ?z ?z (changing-wrt ?a ?z (samp (fall ?.v) ?s)) t]

Then [thru IN ?z (changing-wrt ?a ?z ?s) t]

and Ethru ?z ?z (changing-wrt ?a ?z ?v) t]

3This trigger pattern 'is 'implemented with a predicate not mentioned elsewhere:
Ecohistorical (fww 9v ?soq (11 (hole ?n ?)]

Every signal has many possible (event ... abstractions, but those
that wll help other behavior rules to fire are worth making explicit deduc-
tions about. The predicate interesting-event indicates which sgnals these
are. The predication Unteresting-event ?s (.from ?to) I means that 'if
a change from?f rom to ?to occurs on signal s, then (event ?f rom ?to ?s)
should be t:

If [interesting-event ?.signal (?from ?to)]
and [thru ?.11 ?ul .?signal ?rom]
and [thru 12 ?.u2 ?signal ?to]
and (<= ul ?.12 8 %)

Then Ethru 12 12 (event ?.from ?to ?signal) t]

When f rom is the token any, (event : any to s) is t no matter what
the previous value of s was:

If [interesting-event ?.signal (:any ?to)]
and [thru ?11 ?.ul ?f rom ?.signal]
and [thru. 12 7,u2 ?to ?signall
and (not (equal .rom ?to))
and (<= ?ul 12 %0)

Then [thru 12 ?12 t (event ?.from ?.to ?signal)]

Otherwise, (event ?f rom ?to ?s) should be nil. For any interval dur-
ing which IN was constant, ether 0 s had the value ?:from, i In which case
there could not have been any such event:

If [interesting-event signal (?from ?to)]
and (not (eql ?rom -any))
and Ethru ?1 ?u ?s ?vl
and (equal ?v ?rom)

Then [thru ?1 u (event .rom .to ?.s) nil]

Or 4, (ii) ?s had some value other than ?f rom, in which case no such event
could have happened during the nterval starting after the beginning and
ending after the end:

'The current implementation treats these two cases with a single rule.

118 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

5.4. ABSTRACTIONS 119

If Einteresting-event ?s'gnal (?from ?to)]
and (not (eql ?f rom -any))
and [thru ?l 9u 7s ?vl

and (not (equal ?v ?rom))

Then Ethru (77.1) (8 ?u) (event ?f rom ?to ?s) nill

(Figure 53 on Page 106 showed the above rules about events in use.)

5.4.2 Composite Abstractions

Composite abstractions 'Involve spatial as well as temporal abstraction. For

example, an eight-bit parallel signal 'is a composite 'of eght one-bit logic-level

signals. BASIL provides the predicate Ecorr . . I that indicates where a

port corresponds to an abstraction of one or more subports. Rules that con-
cern compos'te signals all trigger on occurrences of such correspondences. For

example, [corr ttl-power Z X Y means that there is a correspondence of

type ttl-power between the composite port Z and the two ports X and Y. The

type of the correspondence between the ports implies one or more abstraction
relationships between signals at those ports. The tti-power correspondence,

for example, implies that the abstract signal (power Z) is equivalent to the

signal (one-and-zero (11 X) (11 Y)), where:

one-and-zero --

(lambda (A)

(lambda (time)

(and (eql (A time) 1) (eql (B time) 0))))

A power input of t is just shorthand for having the appropriate voltage

drop between the power and ground 'Inputs to the device. The following rule

says that if a component has power then 'its power and ground are logic-levels

1 and respectively:

If Ecorr tti-power (in power 7a) ?p ?gl

and [thru ?l ?u (power (in power ?a)) tJ

Then [thru ?l ?u (11 ? 11

and [thru ?l ?u (11 ?g) 01

120 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

In principle, rules could be written to enforce many relationships between
the composite signal and its subsignals; only a few concerning the temporal
abstraction fi-equency have yet been 'implemented.

The abstraction to-phase-clock, for example, yields rules relating the
frequency occurring on the two-phase clock to the frequencies of its subsig-
nals. If the frequency of a two-phase clock sgnal is nonzero then each of the
underlying signals have that same frequency. Since the underlying signals
are out of phase, one of them has its frequency measured With respect to
the cycle I O 1) and the other with respect to I 1 0); which is which de-
pends on whether the two-phase clock frequency was measured with respect
to I (nil t) or I t nil):

If [corr two-phase-clock-encoding ?lk ?ci ?c2l
and [thru ?l ?u (ww ? 1(?b ?a) (cc ?clk)) ?]
and (< 0 ?)

Then Ethru l u (fww ?w (?b (1 0) (1)) (11 ?cl)) ?l
and [thru ?l ?u (fww ?w (if ?b (1) (I 0)) (11 ?c2)) ?f]

Conversely, if the frequency of either subsignal 'is zero then the frequency
of the composite sgnal 'is zero as well..

If Ecorr two-phase-clock-encoding ?clk ?cl ?c2l
and [thru ?l ?u (f ww ?w I (?a ?b) (11 ?c2)) 01

Then [thru l ?u (f ww ?w (if (eql ?a) (nil t) (t il))
(cc ?'clk)) 01

If Ecorr two-phase-clock-encoding ?clk ?ci ?c2l
and [thru ?l ?u (fww ?w I (.a ?b) (11 ?c1) 01

Then Ethru ?l ?u (f ww 7w (if (eql I ?a) (nil (t n))
(cc ?clk)) 01

A similar relationship holds between a synchronous serial signal and the
pair of one-bit logic-level signals that comprise 'it, denoted by the correspon-
dence clocked-serial. In this case, the frequency of the serial signal - as
measured by the rate of zero-crossings - can be used to determine whether
the underlying logic-level signals are changing. The essential relationship 'i's
that the frequency of zero crossings on the composite signal must be less
than the frequency of the underlying serial data signal sampled with respect
to the clock:

5.4. ABSTRA CTIONS 121

0 If[corr clocked-serial ?s ?d ?c],then:

(fw w (nil t)

(fww w (nil t) (change
(cross (cs ?s))) < (samp

(fall (11 ?c))

(11 ?d))))

From the fact that both (11 ?c) and (11 d) must be changing for (samp
(fall (11 ?c)) (11 ?d)) to be changing, this relationship can be used to

form the following rule, which says that if the frequency of the composite

signal is positive during the observation 'Interval, then both the clock and

data signals are changing-.

If [corr clocked-serial ?s ?d 17c].
and [thru ?l ?.u (fww ?w (nil t) (cross (cs ?.s))) ?]

and (< ?f)
and [thru ?a ?z GR t]
and (<= ?l ?a ?z ?.u)

Then [thru IN ?z (changing-wrt ?a ?z (11 ?0) t]
and Ethru ?z ?z (changing-wrt ?a ?z (11 ?d)) t]

Conversely, if ether of the underlying sgnals are not changing then the
frequency of the abstract signal must be zero:

If [corr clocked-serial ?s ?d ?c]
and [thru ?l ?u (11 ?d) ?.vl

Then [thru ?l ?u (fww ? '(nil t) (cross (cs ?s))) 01

If Ecorr clocked-serial ?s ?d ?c]
and [thru ?l ?u (11 ?.c) ?v]

Then [thru ?l ?u (fww IN I (nil t) (cross (cs ?s))) 01

A more complex version of the relationship between (cs ?s) and its

subsignals applies to multi'-bit parallel buses. If the sgnal on an n-bit bus

is known to be changing 'in such a way that the different values it takes on

include both values below and above 2n-1 , then the most significant bit must

be changing:

CHAPTER 5. REPRESENTING CIRCUIT EHAVIOR122

If Ecorr bus-vith-csl-and-wrl ?bus
?.cs ?wr ?msb ?others]

and [thru ?l ?u fww ?w (nil t) (cross ?n (cp ?bus))) 9f]
and < ?f)
and (eql ?n (expt 2 (length others)))

Then [thru ?z ?z (changing-wrt ?a ?z (11 ?.msb)) t]

The 12-bit bus in the Audio Decoder, for example, carries 12-bit values,

and 'if the frequency of crossings of 2 on that bus is nonzero, then the most

significant bt of the bus must be changing.

5.4.3 Summary of Abstractions

In TINT, abstractions are functions from signals to sgnals, and 'in pnciple

any abstraction can be applied to any signal or signals to produce yet another

signal. TINT can represent the time varying values of any of these sgnals,

and uses rules to make inferences about signals at other levels of abstraction.

Temporal abstractions are among the most useful because temporally ab-

stract signals are among the easiest for the troubleshooter to observe. Using

this as a guiding principle, the rules that map between levels of abstraction
are written for the most part so as to limit the inferences about signals to

those that are observable.
The real utility of the temporally abstract signals, however, is that 'it 'is

possible to reason about the behavior of crcuit components using them. But

faced with a dgital circuit and the above collection of temporal abstractions,

it is not always obvious how the behavior of the circuit should be described

with those abstractions, nor even which portions lend themselves to such

a description. This model-building process I's not automated, but can be

metaphorically understood as "parsing" the circuit schematic,-. groupi Ing com-

ponents into composite structures and abstracting signals, sometimes hiding

them completely. An essential ingredient of the parsing is "knowing what

the circuit i's for," that 'is, its purpose. Heavy use of teleological knowledge

is made throughout the entire parsing description. The other essential ingre-
dient is "knowing what the model is for." The model is for troubleshooting,

and heavy use of that fact is made too. The four basic principles by which

behaviors are temporally abstracted are:

5.4. ABSTRA CTIONS 123

1. Event Preservation - some component behaviors lend themselves to
temporal abstractions wthout modifications or new assumptions.

2. Reduction - a temporally abstract behavior that only covers part of
a component behavior is better than not covering any at all.

3. Synchronization - some digital crcuits have signals that provide tim-
4.ing information, and the sampling abstraction can simplify the behavior

of components to which they are connected.

4. Encapsulation - after grouping components together, their combined
behavior may lend itself to temporal abstraction using the previous two
techniques even if the individual component behaviors dd not.

These principles are treated ndividually n the following four sections.

'��q M

CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR124

5.5 Event Preservation

A behavior is event Preserving to the extent that certain types of changes on
'Its input signals result in changes on 'Its output sgnal. All one-to-one func-
tions are perfectly event preserving and result in abstracted behaviors that
are strong. The tinvert function that describes the behavior of a boolean
inverter is a simple example (Page 98). The tinvert behavior is event pre-
serving because 'it is a one-to-one function. Abstracting the behavior of a
one-to-one function with the abstraction stay always results in the identity
function. In particular, (stay (tinvert X)) -- identity (stay X)).

The abstracted behavior identity wth respect to stay 'is not by itself
a useful result, but similar derivations apply to the cycles-ww and fww ab-
stractions:

(cycles-ww n I O 1) S) (cycles-ww n (I 0) (tinvert S))

(cycles-ww n (0) S) (cycles-w n (1) (tinvert S))

(fww n (1) S) (f ww n I (I 0) tinvert S))

(fww n (1 0) S) (f ww n I O 1) (tinvert S))

The 'Identity behavior that results from the f ww abstraction i's useful be-

cause predictions about the frequencies of signals can be made over long
intervals of time summarizing many underlying events without having to
refer to each one individually.

These relationships between the logic-levels at the 'inputs and outputs

of inverters are simple to encode in rules. The 'Inverter has a rule (like all

boolean gates) that says if it 'is working and it has power, then 'its mode i's
normal:

If [isa ?.x inverter]

and [status-of ?x working]

and Ethru ?l ?u (power (in power ?4) t]

Then Ethru ?l ?u (mode ?x) normal]

The behavior and antibehavior of the inverter can be captured in two
rules:

5.5. EVENT PRESERVATION 125

If Eisa ?x inverter]
and Ethru ?11 ?ul (mode ?.x) normal]
and [thru 12 ?u2 (11 (in a x)) ?.vl
and (overlap (11 ?ul) (?12 ?u2))

Then [thru (max 11 12) (n ?ul ?.u2)
(11 (out y ?x)) -(- 1 ?V)1

If [isa ?x inverter]
and [thru ?11 ?.ul (mode ?x) normal]
and [thru 12 ?u2 (11 (out x)) ?vl
and (overlap ?11 ?ul) (?12 ?u2))

Then [thru (max ?11 12) (min ?ul ?u2)
(11 (in a x)) (- I ?v)]

The behavior of the inverter, being a one-to-one function, is event pre-
serving, and there are potentially several temporal abstractions appropriate
for describing 'Its behavior. Rules could be written for the 'inverter using the
abstractions change, stay, cycles, f ww and so forth, but changing-wrt is
chosen because it refers to easily observable abstract signals. The rule about
whether the signal is chan 'ng simply says that during the observation inter-
val, the output is changing if and only 'if the input is changing:

If Usa ?x inverter]
and [thru ?1 ?u (mode ?.x) normal]
and [thru ?a ?z GR t]
and (<= ?.1 ?a ?z ?.u)

Then [tsame ?l IN (changing-wrt ?a ?z (11 (in a x)))
(changing-wrt ?a ?z (11 (out y x)))]

An 'Inverter can be used to 'Implement a "frequency buffer." The 'input
and output frequencies of a frequency buffer are the same. However, when
the underlying signal has been inverted, incoming I O 1) cycles come out as
I (1 0) cycles, and the rule must take this into account. The following rule
says that the frequency of the output with respect to a particular cycle is
the same as the frequency wth respect to the inverse of that cycle; the rule
does not fire unless there has been some mention of the relevant 'Input signal
frequency and cycle:

CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR126

If [isa ?d frequency-buffer]
and [thru ?11 ?ui (mode ?d) normal]
and Signal (fww ?w I ?a ?b) (11 n a ?d))) exists

Then Etsame ?11 ?ui (ww ? '(?.a ?b) (11 (in a ?d)))
(f ww I b ?a) (11 (out y ?d)))

A pair of 'inverters may also form a frequency buffer for a two-phase

clock sgnal. However, the effect of the 'Inversion of the underlying signals is
to make the output cycle start a quarter phase later than the input cycle.

Over a large number of cycles the phase shift makes little dfference in the

frequency. Thus the rule says that the frequencies 0'f the cc signals at the

input and outputs are the same, provided that there has been some mention
of the input frequency:

If [isa ?d frequency-buffer]

and [thru ?11 ?ui (mode ?d) normal]

and Signal (fww ?w I (?a ?b) (cc (in a ?d))) exists

Then Etsame ?11 ?ul (ww ?w I (.a ?b) (cc (in a d)))
(fww ?w '(?a ?b) (cc (out y ?d)))]

A larger and more interesting class of behaviors than one-to-one functions

are those for which a subset of 'Input events always result in some output
event. For example, a toggle is a flip-flop that changes 'Its state on every

falling edge of its clock 'Input. This behavior can be described with the

function toggle, which is event preserving wth respect to falling edges. Its

input, ranging over f 0 1 has two possible events - rising and falling

edges. In any sequence of input events, a fixed subset (about half) will be

falling edges. Whenever a failing edge occurs on the input, the output has

either a rising or falling edge.

(toggle L) 0 1 1 1 1 0 0

L 1 0 0 1 1 0 0
time-- 0 2 3 4 5 6

It would be useful to have a strong temporally abstract version of the

toggle behavior; the problem is finding a temporal abstraction that will

work. stay does not work, but cycles-ww does. As noted earlier, any

5.5. EVENT PRESERVATION 127

behavior can be combined with any abstraction to yeld an abstracted be-
havior. Unlike one-to-one functions, partially event preserving behaviors ab-

stracted with stay do not yield strong functions. For example, by a deriva-
tion smilar to that for tinvert, all that can be shown is that for a times,

Ustay S) time) --+ stay (toggle S)) time), that is, the output never

changes if the 'input does not. This 'is not strong, because it makes no pre-

diction if the input Z's changing. Partially event preserving behaviors may,

however, yield strong functions when abstracted with temporal abstractions

other than stay. In the case of toggle in particular, the behavior derived

for the cycles-ww abstraction is a total function, by using the additional
fact that the value of is i or at a tmes: the count of occurrences of the

sequence 1= I (O 1) or 1= I (1 0) on the output 'is approximately half that on

the input5:

2 ((cycles-ww n 1 (toggle S) time)) <
((cycles-ww n 1 S tme <

(I 2 ((cycles-ww n 1 (toggle S)) time)))

By substitution using the definition of VW, for a sufficiently large value
0

of n the following approximate relation holds at all times:

(2 ((fww n 1 (toggle S)) time)) == ((fww n 1 S) time)

Event preservation 'is not a property solely of a behavior; 'if the behavior

is not a one-to-one function it mght be necessary to make use of additional

information about the input signal to the function. This may be ether

through an assumption about the signal, or (as in the frequency divider

case) through an intrinsic property the signal possesses by virtue of its type.

toggle behaves as a divider with respect to the signal abstraction VW;

components wth the toggle behavior can thus be vewed as frequency di-

viders. Similarly, cascades of components having the toggle behavior

counters, that i's - can be viewed as frequency dividers as well, for divisions

by powers of 2.

'Briefly, the derivation considers four cases on S I followed by at time, I followed
by at -time, and so forth. By using the definition of toggle in'each case it can be shown
that ycles-vw n 1 (toggle S)) must increment by at least for every 2 increments
of the signal (cycles-ww n 1).

'WOFAMP qw�w �11

128 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

This is a useful way of vewing the behavior of toggles and counters be-

cause sometimes their 'Inputs have known frequencies that are stable over
long intervals of tme. One way that the frequency of the 'Input signal could

be known over a long interval is if it the output' of an oscillator. For exam-

ple, the crystal oscillator in the Console Controller Board generates a 9.8Mhz
signal. This 'is apprommated as a frequency of 10' cycles per second, with a

window size of a thousand periods, that is, 1000 x 1 seconds:,Or

If Usa ?o oscillatory

and [thru ?l ?u (mode ?o) normal]
Then [thru ?1 ?u (f VW 10-4Se , 0 1) 11 (oUt ?0))) 106]

The behavior of the frequency dvider aows the program to predict what

the output frequency wl be over those same long intervals of tme. Express-

ing 'Its behavior in rules introduces some subtleties.

The first subtlety is that until now "power" has been the only input

that components required to be in normal mode. The frequency divider

requires a separate constant input. For example, the Console Controller

Board contains several frequency dividers, 'Implemented with one or more JK

flipflops or with counters, and one thing they all have 'in common is that they

have some of their inputs pulled up to a constant logic-level of 1. Figure .8

shows an example; the input (in hi FD) is ted to several JK flipflop inputs.

With both J and K tied to the flipflop toggles its state on each falling clock

edge, and with the Preset and Clear inputs ted to I this is the only way it

can change its state. The rule for the mode of the frequency divider thus

includes the condition that the input (11 (in hi ?d)) must be :

If Usa ?d f requency-dividerl
and [status-of ?d working]

and Ethru ?11 ?ul (power (in power MI tj

and [thru ?12 ?u2 (11 (in hi ?d)) 11

and (overlap ?11 %1) (?12 ?u2))

Then [thru (max ?11 12) (min ?ul %2) (mode M) normal]

The second subtlety 'is that frequency dviders can be composed of a cas-

cade of toggle behaviors (a ripple counter can be viewed this way) and hence

have multiple outputs, which by convention are numbered from upwards.

The frequency at the nth output is thus that of the input.

5.5. EVENT PRESERVATION 129

Figure 5.8: Frequency Divider Implemented with JFFs

(in hi FD)

- I

i
I

(irk a VI), I
,.Li a r v;

I

I

IL
p

i Q

K c Q
I

LI

F,

(out I FD)

I

I ff- -%

I y

I

iii
i

PF,

i

I

00.

i

i
I

p

i Q

K
c Q
F-,%

i
i

hlr
(out 0 FD)

i

The third and final subtlety is that signals at lower frequencies have longer
periods and hence require a longer duration to go through 1000 cycles; the
effect 'is that the wndow size at the nth output of a frequency divider scales
by 2 . As a result, a sngle behavior rule for frequency dividers works for
any number of output ports, and makes deductions at different 'window sizes
on those different ports:

CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR130

if
and
and
and
and

Then

Usa ?d frequency-divider]
[has-port ?d (out ?n ?d)]

[thru ?10 ?uO normal (mode ?d)]
Ethru ?11 ?uI ?f (fww ?w ?cyc (11 n a ?d)))]

(overlap (?10 ?uO) ?11 ?ul))
[thru (max ?11 12) (min ?uI ?u2)

(fww (truncate (* ?w (expt 2 I n))))

?cYc, (11 (out ?n ?d)))

(/ ?f (expt 2 I n)))]

The antibehavior rule of the frequency dvider 'is smilar; the frequency
at input a is a multiple of that at any output and the window size of mea-
surement 'is a corresponding fraction.

Behaviorally, two-phase clock generators can be vewed as frequency d-
viders restricted to a single output that is a two-phase clock; indeed the same
physical component may be part of both a frequency divider and of a two-
phase clock generator. Their behavior rule says that the output frequency
is half that of the input, measured with a window size twice the size of the
input:

if
and
and
and

Then

Usa ?c two-phase-clock-generatorl

Ethru ?11 ?uI (mode ?c) normal]
Ethru 12 ?u2 (f ww I 1) (11 (in a c))) ?fl

(overlap ?li ?ul) (?12 ?u2))

Ethru (max ?11 12) (min ?ul ?u2)

(f ww (2 w I ni 1 t) (c c (out y ? c)))

U ? 2]

The ordinary behaviors of 'Inverters and toggles in terms of moment-by-
moment changes of the logic levels at their inputs and outputs can be de-
scribed using TINT rules. Rules can also describe their behavior in terms
of whether those signals are changing or not and what their frequencies are.
Because these behaviors are event preserving, the rules and resulting predic-
tions are strong. Not all behaviors are event-preserving, however; the next
three sections present ways of using temporal abstractions in more general
situations.

5.6. RED UCTION 131

5.6 Reduction

Any function of n inputs with one of its inputs held constant yelds a new
function of n - I 'Inputs, and this fact can be used to form a temporally
abstracted behavior for a multiple input behavior under the special case of
'Its having one or more constant 'Inputs. The resulting behavior is incomplete,
of course, in the sense that 'it does not cover cases in which the inputs are
not constant. It 'is nevertheless worthwhile because 'it provides an alternative
to the undesirable option of predicting all behavior at a temporally detailed
level: weak temporally abstract predictions are better than none.

A simple example is the behavior of a two-input AND gate (denoted
tand2) under the special case where one of 'its inputs 'is the constant sgnal
(lambda (time) 1).

tand ==
(lambda (A B) (lambda (time) (logand (A time) (tme))))

A straightforward derivation uses the fact that (logand I z) == z to

show that if X == (lambda (time) 1) then (tand2 X Y == Y.
The rules for the two-input AND gate (component type and2) are shown

here; the pattern for OR, NAND, NOR, XOR, and so forth should be rela-
tively clear from these examples. It is tedious but straightforward to write
separate rules for gates of the same type but with different arities.

If any input of an AND gate is then the output 'is :

If [isa *7x and2l
and Ethru ?11 ?ul (mode ?x) normal]

and Ethru 12 ?u2 (11 (in ?n ?x)) 01

and (overlap ?11 ?ul) 12 %2))

Then [thru (max ?11 12) (min ?ul ?u2) (11 (out y x)) 01

Note that one of the considerations in translating the definitions into

rules is that the rules should be written in such a way as to reference the

minimal sets of facts needed to make their conclusions. Hence sometimes
several rules will be used to represent a behavior that was captured with a

single function. This is because the troubleshooting engine will examine the
dependencies left by the rules to determine which components could have

been responsible for observed symptoms. Spurious dependencies make the

132 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

troubleshooting engine waste effort working on components that could not
in fact have caused the symptoms.

The antibehavior rule for the AND-gate says that if the output is then
all of the inputs must be :

If [isa ?x and2l

and [thru ?li ?ul (mode ?x) normal]

and [thru 12 ?u2 (11 (out y ?x) I
and (overlap ?11 ?ul) (?12 ?u2))
and (has-port ?x (in ?n ?x I

Then [thru (max ?11 12) (min ?ul ?u2)

(11 (in ?n ?x) 13

Another rule for the AND gate says that with all but one of its nputs
4

held to it acts as a buffer. In the two-input case, this means that as long
as input ?n is I the output is the same as input (- i n):

If Usa ?x and2l

and [thru ?10 ?uO (mode ?x) normal]

and [thru ?11 ?ui (11 (in ?n ?x)) 11

and (overlap (?10 ?uO) ?11 ?ul))

Then [tsame (max ?10 11) (min ?uO '.?ul)
(11 n (- I ?n) ?x)) (11 (out ?x))]

The latter rule 'is interesting because the dentity between the output

and free input will have consequences for any abstraction of either signal,

including temporal abstractions. The behavior of the AND gate wth all

but one of its inputs I is one-to-one function that is event preserving just

like the inverter. Similarly the behavior of a NAND gate when all but one

of its inputs is 'is just that of an nverter. Hence the temporally abstract

version of the NAND gate refers to the changing-wrt abstraction as does

the inverter rule.-

5.6. RED UCTION 133

If [isa ?x nand2l

and Ethru ?11 ?ul (mode ?x) normal]

and [thru 12 ?u2 (11 (in ?n ?x)) 1'
and [thru ?a ?z GR t]

and (<= (max ?11 12) ?a ?z (min ?ul ?u2))

Then [tsame (max ?11 ?.12) (min ?ul ?u2)
(changing-wrt ?a ?z (11 n (- i ?n) ?.x)))

(changing-wrt a z (11 (out y ?x)))]

As wth the inverter, any of the abstractions change, stay, cycles, or
:fww could have been chosen, but changing-wrt refers to easily observable
abstract signals.

The behavior rules of other components in the Console Controller Board

are similarly written in a style that makes explicit the event-preserving sub-

sets of their behavior. For example, the behavior of a JK flip-flop with an but

its clock input held to becomes toggle, which as dcussed earlier is par-

tially event preserving. Also, multiplexors are much like buffers, once their

select input is known. Their principal behavior, rule equates the output

with whichever input signal 'is selected:

If Usa ?m multiplexor]
and Ethru ?11 ?.ul (mode ?m) normal]

and Ethru ?.12 ?u2 (11 (in select ?.m)) ?sl

and (overlap ?11 ?.ul) (?12 ?u2))
Then6 Etsame (max ?11 12) (n ?.ui ?u2)

(in ?s ?m) (out y ?m)]

In general by considering the special case of one or more 'input signals

constant, most behaviors can be reduced to an event-preserving behavior.

These restricted temporally abstract behaviors are ubiquitous in the model

of the Console Controller Board.

'The predicate tsame can be used with ports as its third and fourth arguments, not
just signals.

CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR134

5,7 Synchronization

As discussed earlier, temporal abstractions are useful for behaviors whose
inputs have known relative timing relationships. An important special case
of "known relative tming relationship" occurs when the input signal of some
behavior is a clock whose transitions indicate when the other input signals
are to be sampled. In that case, the sarnp abstraction can be used to form an
abstracted behavior that is more strongly event-preserving than the original.
In this section the idea wll be used to derive a temporally abstract behavior
for a shift register, starting from the behavior of an ordinary register.

The behavior register describes the behavior of a falling-edge trig-
gered register; the falling edges of the clock 'Input C capture the data D.
syn-register, the abstracted version of the register behavior, captures
the intuition that a register 'Introduces a one-clock delay. Fgure 59 shows
the relationships between the various signals.

Figure 59: Register Abstractions

syn-register behavior

(samp (fall Clock) Data) (Samp (fall Clock) Q)�._ Pr

i
i

L 1%...Ol PI & .-

(f all Clock)

101-1*,L h,

r -% h, -Data Clock �� "'I"\ OF

register behavior

Forming the abstracted version syn-register nvolves several steps.

First, the clock signal is abstracted wth fall. Second, samp is used to

abstract both the output and D input wth respect to the failings of the

clock. Third, the function synchronous-delay generalizes samp by allowing

for arbitrary delays. Fnally, the resulting abstracted behavior for the register

5.7. SYNCHRONIZATION 135

(syn-register) will be easily expressible using synchronous-delay.
0

An example to give some intuition behind these signals is given below.

The values at times 2 and 6 when data are latched 'into the register, are

most important. "10" is latched 'Into the register and then "V:

I(syn-del I I
(samp (fall c) d)) i

i

i(samp (fall c) d) i
Ii

q = (register c d)

d

(fall c)

c

time

0 0 0 10 10 10 10 5

10 10 10 10 5 5 5 5 5

0 10 10 10 10 5 5 5 5 5
9 10 5 6 5 5 5 4 4 5

1nilt nil nil nilt nil nil ni' It
1 0 0 1 1 0 0 1 1 0
0 1 2 3 4 5 6 7 8 9

The definition for synchronous-delay (abbreviated syn-del) resembles
that for samp, and in fact a delay of 'is the same as sampling, that is,
(synchronous-delay V S) == (samp V S). The abstracted register be-
havior is then smply "a delay of one clock."

The point of expressing the behavior of the register using the sampling
abstraction is that the resulting behavior is more strongly event preserv-
ing than the lower level register behavior. In particular, register does
not preserve every change in the value of the input sgnal D; in the exam-
ple above, d changed from to 6 and back to in between falling edges
of the clock, hence those changes were not reflected on the output. The
synchronous-delay function - and hence the syn-register behavior of
which it is a special case - is mostly event preserving, even though 'it is not
one-to-one. The result is that the following inequality holds at an times for
any signals V and S: the number of changes at the output (sampled at V is
within of the number of changes at the input:

Ucount-ww n (change (samp V S))) time) <
((count-ww n (change (syn-register V S))) time) <

(1 ((count-ww n (change (samp V S))) time))

CHAPTER5. REPRESENTING CIRCUIT BEHAVIOR136

This relationship can now be used to derive the temporally abstract shift
register behavior. A shift register configured to convert serial data to parallel
can be viewed as a cascade of one-bit registers all sharing a common clock
input. Figure 5.10 shows the signals s , d , di I and d2 1; the components
labeled syn-reg compute d I as a function of s , di I as a function of d ,
and so forth:

Figure 5.10: Shift Register as Cascade

s 9 ==

d I ==

di I ==

d2l ==

(samp

(samp

(samp

(Samp

(f all s)

(fall O d)

(f all di)

(f all d2)

The behavior of a k-bit shift register can be expressed wth respect to a
sampling signal as follows:

syn-shift-register ==
(lambda (k V S) (synchronous-delay k V S))

Hence the temporally abstract behavior of a k-bit shift register is simply

a variation of the 'inequality shown above for syn-register; the number of

changes that appear on the synchronous output is wthin k of the number of

changes on the synchronous input.

5.7. SYNCHRONIZATION 137

((count-ww n <

(change (syn-shift-register k V S))) time)

((count-ww n (change (samp V S)) tme) <
(k ((count-ww

(change (syn-shift-register k V S))) time))

One of the consequences of this relationship is that if the incoming signal
to the register has a large enough frequency over a large enough interval,
then the output signals wll have positive frequencies as well. Suppose it is

known that over some time 'interval, the frequency of changes on a signal was
(strictly) bounded below by a positive frequency :

< ((fww w (nil t) (change (samp V S))) time)W

Then the number of changes during any window must be at least :

< ((count-ww w (nil t) (change (samp V S))) time)

Hence for any k > the number of changes during a wndow of size
k x w is at least k (provided that k x w does not get bgger than the

interval during which the frequency was known):

< ((count-ww (* k) nil t)
(change (samp V S))) time)

Using the previously derived bounds on the number of changes on the

outputs of the shift register, the kth output must have at least one change:

< ((count-ww (* k w)
(change (syn-shift-register k V S)) tme)

This derivation and its conditions can be summarized nto a single rela-

tionship. If the incoming signal of the register has a large enough frequency
over a large enough interval, the output sgnals will have positive frequencies

as well; the relationship below makes "large enough" precise.-

If (f ww w I (nil t) (change V S)) is always > from time I toW
U, and k < W then from time I kw to u (count-ww (* k w)
(change (syn-shif t-register k V S))) i's always > .

CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR138

The Audio Decoder contains two shift re 'sters that accumulate incoming
serial data bits. Shift registers used in this fashion are referred to here as
clocked serial accumulators and the rules of their behavior are based on these
relationships. The temporally abstract behavior of a clocked serial accumu-
lator yields the ollowing rules. The first rule infers from the fact that the
incoming byte stream is chan 'ng that all of the output data bits must be
changing:

If Usa ?csa clocked-serial-accumulatorl
and [thru ?11 ?ul (mode ?csa) normal]
and [thru. ?.12 ?u2

(fw ? (nil t) (cross (cs (in a csa)))) ?fl
and (< U I w) ?)
and (overlap (?li ?.ui) (?12 ?u2))
and [has-port ?csa (out ?k ?csa)]
and (< ?k (/ (- (min ?ul ?.u2) (max ?11 12)) ?.w))
and Ethru ?a ?z GR t]
and (<= (max ?11 12) (* ?k ?) ?a ?z (min ?ui ?u2))

Then [thru ?z ?z (changing-wrt ?a ?z (11 (out ?k ?csa))) t]

The second rule is 'Inherited from an ordinary shift register. An but the
last output of a k-bit shift register 'is an nput to the next stage; hence the
same relationship holds between output and output k + as held between
the input and output j; in particular a changing input implies a changing
output, and vice versa. The following rule captures the fact that if output
is observed to be changing then output k + wl, too.-

If Usa ?csa clocked-serial-accumulatorl
and [thru ?l ?u (mode ?csa) normal]
and [thru ?a-?z gr t]
and (<= ?.1 ?a ?z ?u)
and [thru ft ?z (changing-wrt ?a ?z (out ?k ?.csa)) t]
and [has-port ?csa (out ?k 1) ?csa)]

Then [thru ?z ?z
(changing-wrt ?a ?z (out ?k i) ?csa)) tj

The point of using temporal abstractions is to be able to make predictions
about component behaviors using simple observations. In this case, there 'is a

V" W i Opi I i 11,1111 --- -- ---

5-7. SYNCHRONIZATION 139

strong relationship between the number of changes of value on the input and
outputs of the shift register. If more than k changes are observed at the input
to the shift register, the temporally abstract behavior can derive bounds
on the number of changes that should be observed at its output without
requiring clock-by-clock reasoning. What made it possible 'in this example
was the sampling abstraction, which aowed us to represent synchronous
signals and thereby describe the behavior of a register as a component that
introduces a delay between sgnals.

CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR140

5.8 Encapsulation

Sequential circuits are more difficult to reason about than combinational cir-
cuits. In general, predicting the response to a particular sequence of stimuli
may require explicitly representing every intervening state change. The more
complex the ircuit behavior - that 'is, the more distinguishable states that
the circuit can be 'in - the greater the need for temporal abstractions to
simplify that reasoning. Up to this point in the discussion, examples of tem-
porally abstract behaviors have all been ether combinational circuits or very
simple sequential circuits such as shift registers. This section uses the previ-
ously discussed abstractions and abstraction techniques to develop examples
of temporally abstract behaviors for more complex sequential circuits. The
'ideas being 'Illustrated are simple:

1. The behavior of a group of components appearing in a loop can be
expressed as the composition of the component behaviors by 'Introduc-
ing a new signal that represents the state of the aggregate component.
This encapsulation alone does not usually simplify reasoning about the
behavior of the loop.

2. The goal of abstracting the behavior of a sequential crcuit is to collapse
together equivalent states 'in its state diagram - ideally down to a
single state so that the output of the circuit can be expressed directly
in terms of its 'Inputs without the ntervening 44 state" signal.

3. If the behavior of a sequential device involves performing computations
that are smilar to counting, sampling, recognizing sequences, and so
forth, then a powerful way to simplify its behavior (that is, reduce
the number of distinguishable states) is to describe its 'inputs in terms
of corresponding temporal abstractions such as count, sample, and
sequence.

5.8.1 The Reset Hold Counter

The Reset Hold Counter circuit (Figure 5.11) from the Console Controller
Board is a simple example that llustrates the role of loop encapsulation in
deriving temporally abstract behaviors. When the Reset sgnal is asserted

5.8. ENCAPSULATION 141

and the clock signal Clock 'is running at k Hz, the Run sgnal is asserted for
at least 213 seconds.

k

Figure 5.11: Reset Hold Counter

Reset

Clock

Msb
Run

Thi's crcuit, containing a 14-bit counter, has at least 2 distinguishable

states, but by using the temporal abstractions it is possible to describe 'Its

behavior using only three states. The intuition behind this 'is that if the

Clock 'input is known to be periodic, and it is known how long 'it has been

since the counter has been reset, then the state of the counter (and hence of

the crcuit as a whole) is computable from the product of the clock frequency

and the length of time the Reset signal has been 1. The temporally abstract

behavior rh is derived at length in Appendix C.

This behavior can be described as a three-state automaton (Figure 512).

The automaton has one of each of three general kinds of transition conditions:

(i) transitions out of certain states caused by input events; (ii) transitions

CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR142

that occur no matter what the previous state was; iii) transitions arising
from being in a gen state for a certain amount of tme. The interaction
between these three knds of transitions shows up as somewhat complex per-
sistence rules. Complex as it is, the encapsulation of the entire crcuit along
with the Pequency temporal abstraction aows the resulting behavior to be
quite simple relative to the counter that underlies it.

Figure 512: Reset Hold Counter Three State Automaton

Reset

The first transition rule says that when the reset input 'is 1, the com-
0ponent goes into the Reset state. It is not necessary to know the previous

state nor the previous value of the input, so this rule is simpler than most
transition rules:

if
and
and
and

Then

[isa. ?r reset-hold]

[thru ?11 ?.ul (mode ?r) normal]

Ethru 12 ?u2 (11 (in reset ?r)) 11

(<= (max ?11 12)) (min ?.ul ?u2))

Ethru ((max ?11 12)) ((max ?11 ?.12))

(state ?r) Reset]

5.8. ENCAPSULATION 143

The persistence rule associated with the Reset state says that ?R stays
there as long as there are no changes from to on the reset nput:

if
and
and
and
and
and

Then

Eisa ?r reset-hold]

[thru ?li ?ul (mode ?r) normal]

[thru 12 ?u2 (event I (11 (in reset ?r))) nil]

(overlap ?11 ?uI) (?12 ?.u2))

[thru ?.13 ?u3 (state ?r) Reset]

(<= (max ?11 12) ?u2 (min ?.ul ?u2))

[thru (max ?11 12 13) ((min ?uI ?u2))

(state ?r) Reset]

From the Reset state, a change from to on the reset input causes a
transition to the Run state. Typical of most transition rules, the conclusion
is only warranted at the single moment after the 'input changed:

If ['sa ,r reset-hold]
and Ethru ?11 ?ul (mode ?r) normal]
and [thru 12 ?u2 (event I (11 (in reset ?r))) t]
and (overlap ?11 ?ul) (?12 ?u2))
and [thru ?13 ?u3 (state ?r) Reset]
and (overla (?11 ?ul) (?12 ?u2) (?13 ?u3))

Then [thru (?ul (8 ?ul) (state ?r) Run]

A separate persistence rule extends the Run state until the reset input
is asserted or until 2 3 clock cycles have elapsed. Given a frequency of ?f,

3 clock c cles elapse 'in 213 X seconds:

CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR144

If [isa ?r reset-hold]
and [thru ?11 ?ul (mode ?r) normal]
and [thru ?12 ?u2 (event 0 1 (11 (in reset ?r))) nil]
and (overlap ?11 ?ul) (?12 %2))
and [thru 13 ?u3 (fww ?w ?cyc (11 (in clk ?r))) ?l
and (> ?f 0)
and (overlap ?11 ?ul) (?12 ?u2) (?13 %3))
and Ethru 14 ?u4 (event .*any run (state ?r))]
and (overlap ?11 ?ul) (?12 ?u2) (?13 ?u3) (?14 %Q)

Then [thru (max ?11 ?12 13 14)
(8 (min (max ?11 12 13 4) 2 3 X I

?f
(min ?ui ?u2 %3)))

(state ?r) Run]

A transition rule for the Run state makes the transition to the Stop state
happen when enough clock cycles have passed (that is, 2 3 cycles):

If Eisa ?r reset-hold]
and [thru ?11 ?ul (mode ?r) normal]
and [thru 12 ?u2 (state ?r) Run]
and (overlap ?11 ?ul) 12 %2))
and [thru ?13 ?u3 (fww ?w ?cyc (11 (in clk ?.r))) ?f]
and (<= (* U 1 ?f) 2 13) (- ?u2 12))

Then [thru (8 ?u2) (8 ?u2) (state ?r) Stop]

Finally, the Stop state persists so long as no to I changes occur on the
reset input:

If [isa ?r reset-hold]
and [thru ?11 ?.ui (mode ?r) normal]
and [thru 12 ?u2 (event 0 1 (11 (in reset ?r))) nil]
and (overlap ?11 ?ul) (?12 %2))
and [thru 13 ?.u3 (state ?.r) Stop]
and (overlap ?li *Pul) (?12 ?u2) 1'3 %3))

Then Ethru (max ?11 12 13) (8 (n ?ul %2))
(state ?r) Stop]

The behavior of the Reset Hold Counter can thus be expressed compactly
by representing the state of the counter implicitly with the fi-equency and
duration temporal abstractions.

5.8.2 The Audio Counter

The Audio Counter Figure 513) bears obvious similarities to the Reset Hold
Counter discussed above, but 'it has subtle differences that lead to a dffer-
ent temporally abstract behavior. The relevant temporal abstraction is the
samp abstraction encountered earlier. Using this abstraction the temporally
abstract behavior of the encapsulated Audio Counter wll resemble that of a
frequency divider.

Figure 513: Audio Counter

Clock

Start
I

5.8. ENCAPSULATION 145

Msb

Load

Counter st

Flni

Sta

Clock

While the Reset input of the Reset Hold Counte�'r starts the counter backt
at 0 whenever asserted Iin the Audio Counter only1he first 1-to-O transition

CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR146

of the Start signal matters. Eighteen clock cycles must pass before the zero
state can be reached again: while counting, it 'is 'insensitive to the Start
signal.

Some temporal abstractions that applied to earlier examples can be ap-
plied to the behavior of this circuit; however, the assumptions on which they
depend are volated by the normal usage of the circuit and so the result-
ing temporally abstract behaviors have little predictive force. For example,
while the signal Msb 'is a constant i, the Audio Counter forms a frequency
divider with respect to the Clock 'Input; however, the clocks come in bursts
of eighteen and normally the Start line goes low at least once per burst
the requencies" are thus defined over so few cycles as to be useless. For
another example, the "counting" behavior of the Audio Counter can be cap-
tured by the product of a frequency and a duration, but only during the
bursts of eighteen clock cycles and hence this is similarly useless.

Appendix D shows the derivation of a behavior that 'is event-preserving:
n falling edges on the Start signal sampled wth respect to falling edges of
the Clock will result in somewhere between n and n falling edges on Msb.is
Thus the number of falls on Msb (measured with respect to rising edges of
Clock) is bounded as follows:

Ucount-ww
n (fall (samp (rise Clock) Start))) time) >

Ucount-vv
n (fall (samp (rise Clock) Msb))) time) >

(floor
Ucount-ww

n (fall (samp rse Clock) Start))) time)
i8)

A smilar 'inequality was derived earlier for the shift register, with the
consequence that a relationship could be defined between the frequency at
the 'Input and at the output. A smilar derivation for he eighteen-counter
results in a similar relationship. If the incoming signal of the counter has
a large enough frequency over a large enough interval, the output signals
will have positive frequencies as well- the relationship below makes "large
enough" precise:

5.8. ENCAPS ULATION 147

If (f ww w I (nil t) (change V S)) is always > from time I to u,W
and 1 < W then from tme I 18w to u , (count-ww (* 18 w)

(change (eighteen-counter V S))) 'is always > .

The relevant behavior rule thus looks very smilar to the rule for the
accumulator; the difference is that the conditions under which it can be

deduced that a changing input will result 'in a changing output are more

restricted than for the accumulator:

If [isa ?csb clocked-ser'al-burst-detectorl
and [thru ?11 ?ul (mode ?csb) normal]

and [thru 12 ?u2

(fww ?w (nil t) (cross (cs (in a csb)))) ?l
and (< U I w) ?f)
and (overlap ?11 ?ui) (?12 ?u2))

and (< 18 (/ (- (min ?ul ?u2) (max ?11 12)) ?)

and [thru a z GR t]

and (<= (max ?11 12) (* 18 ?w)) ?a ?z (min ?ui ?u2))

Then [thru ?z ?z (changing-wrt ?a ?z (11 (out y ?csb))) t]

This temporally abstract behavior rule is useful because it uses simple

observations about sgnals to yield other easily observed predictions.

5.8.3 Microprocessors

The behavior of a microprocessor can in principle be represented as an enor-

mous finite state automaton. However Iits behavior can be represented 'in
a temporally abstract way by characterizing 'Its behavior in 'ust two states:

Stop and Run. The Console Controller Board contains two eight-bit rm-

croprocessors, an Intel 8035 and an Intel 8741. These microprocessors run

instructions only when their incoming clocks are valid two-phase clocks of no

more than Mhz. The abstraction two-phase-clock maps a pair of f 1, 01

signals to f t, nill, where t marks the end of a two-phase clock cycle. To be

in the Run state the processors must have their reset 'Input unasserted and

the incoming clock signal be a valid two-phase clock wth frequency less than
5 Mhz:

0 < ((fww n (nil t) < 5 * 106
(two-phase-clock CMhzH CMhzL) tme)

CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR148

When not running they are in the Stop state and their outputs are idle.
In the Run state some of their outputs are periodic. For example, In the Run
state of the 18035 with a Mhz clock, the PSEN output runs at 50 Khz and
the ALE output at 300 Khz; these frequencies are asserted by a rule using
window sizes corresponding to a thousand cycles of each signal:

If Usa ?i 180351

and [thru ?l ?u (state ?i) Run]

Then thru ?1 ?u fww 1000 x (1 :,- 30OKhz)

1(0 1) (11 (out sen ?i))) 30OKhzl

and [thru ?l IN (f ww 1000 x (1 --*! 5Khz)

I (O i) (11 (out ale ?i))) 5Khzl

Similarly, in its Run state the 18741 provides clocks and itialization
0 0

signals to the keyboard and keypad at frequencies in the neighborhood of

20 Khz.

5.8.4 Abstract Buffers

The behavior of a single-input single-output buffer is the 'Identity function: ts

output at each moment is the same as 'its input. Since the identity function

is one-to-one, buffers are event preserving and lend themselves to temporally
abstract behavior descriptions. There are only a few buffers per se n a typical

digital circuit. On the other hand, digital circuits often have substantial

amounts of circuitry devoted to doing information-preserving transformations
of data from one encoding to another - from serial to parallel, for example.

At the right level of temporal abstraction, modulo the nuances of the different
data formats, many seemingly complex circuits are really "buffers" in this

broader sense. Buffers thus appear in the Console Controller Board at various

levels of temporal abstraction. In the Audio Counter the Manchester-to-serial
converter for example, is 'ust a buffer when vewed with respect to 'Incoming

(Manchester encoded) and outgoing (encoded serially with a clock) signals:

If [isa ?m manchester-to-seriall

and thru ?1 ?u (mode ?m) normal]

Then Etsame ?l ?u (anchester (in a W) (cs (out y ?m))]

5.8. ENCAPS ULATION 149

Similarly, the serial-to-parallel converter can be viewed as a buffer be-
tween byte streams encoded synchronously and serially (cs) and in parallel
(Cp):

If Eisa ?s serial-to-parallell
and [thru ?l ?u (mode ?s) normal]

Then [tsame ? ?u (cs (in data ?s)) (cp (out y ?s))]

The behavior rules for buffer-like behaviors all deduce a tsame relation
between their inputs and outputs.

5.8.5 Programmed Microprocessors

Encapsulation and temporal abstraction can be applied to crcuits containing
microprocessors. In doing so, the resulting behaviors collapse large state
transition diagrams 'into tiny ones and sacrifice a great deal of precision.
They are useful for troubleshooting because they allow predictions to be
made efficiently about temporally coarse features of signals. The behavior
model for the 8741 processor on the Console Controller Board, for example,
predicts little more than that if the processor is running, rolling the mouse
around will cause it to assert one of 'its outputs several hundred times a
second. Although very coarse, it is useful because (i) it 'is easy to distinguish
between that output being idle and being very active (ii) a significant raction
of faults 'in the processor would cause that output to be 'Idle, and (iii) it is
more efficient than reasoning about hundreds of dentical events individually.
The examples will be presented by encapsulating the component behaviors in
bottom-up fashion, eventually constructing a behavior for a group of several
chips including two microprocessors.

(The material in the remainder of this section nvolves many details spe-
cific to the Console Controller Board; readers pressed for time may wsh to
skip forward to Page 163.)

The temporally abstract behavior of U, the Input Processor, was used in
the Input Encoder troubleshooting examples (Figure 310 on Page 58 shows
the functional organization of the Input Encoder). U consists of the Intel 8741
microprocessor mentioned above, along with the onboard PROM that stores
its control program. Most of the behavior of U is smple enough to represent
usefuRy wth temporal abstractions. With the right temporal abstractions

CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR150

and assumptions about its incoming signals, 'its behavior can be expressed
as a combinational function of its inputs. The essential abstractions making
this possible are as follows:

* For troubleshooting purposes, the most important properties of the
incoming keyboard and mouse data signals can be concisely expressed
in terms of changes and rates of change.

* Although U sends all 'Its output packets over a common eight-bit bus,
the rate at which different types of packets are sent is substantially if-
ferent, and this can be taken advantage of in representing its temporally
abstract behavior.

The Keyboard and Keypad inputs are encoded serially and synchronously,
while the behavior of the Console Controller Board refers to changes 'in the
state of individual keys. Temporal abstractions are needed to map from
the low level encoding up to the level of changes in key positions. The
Keyboard signal is taken as the specific example; the Keypad signal 'is treated
analogously.

The full state of the keyboard - the position of every key - is trans-
mitted repeatedly to the Input Processor approximately a thousand times a
second. There are three digital signals that accomplish this, kbd-reset, kbd-
clock, and kbd-data. Figure 514 shows an example: the kbd-reset signal 'is
asserted to indicate that a new scan of the keyboard 'is be 'nning, kbd-clock
has one rising edge for each of 88 keys, and kbd-data is wherever the cor-
responding key is pressed, in this case the key n the third position on the
keyboard. While all the keys are up the signal kbd-data is a constant .

Figure 514: The Third Key is Pressed

kbd-data _Lj - - - - - - -

2 3 4 86 87 8
kbd-clock J U I LJ-1-F.i j .- i
kb d- reset

The temporally abstracted sgnal kbd-state rep resents the accumulated
bits in each previous sequence of 88 clock cycles. The remaining abstraction

5.8. ENCAPSULATION 151

needed 'is to represent the sgnal in terms of changes of the state of the
0keyboard, that is, of changes in the position of the keys. The signal kbd-

events represents that abstraction.

kbd-events nil (Abort Down) nil
kbd-state- 0 512 0

time I 1000 1001 ...

These abstractions map from underlying serial sgnals up to a vocabulary
of events on individual keys. No further temporal abstractions are needed
for representing keys, snce the rate at which keys can change is low enough
to be easily observable.

Like the keyboard 'inputs, the 'Inputs from the mouse are encoded 'in a way
that is too low-level to be useful for troubleshooting; all that really needs to
be represented is whether the mouse is traveling 'in the x and y dimensions.
Again, temporal abstractions can map from the level of implementation up
to rates of travel. The movement of the mouse along the x axis is represented
using a 2-bit gray code on the (misleadingly named) signals mouse-left and
mouse-right. Each move by inch 'in the positive direction results in one100
of the events (O 0) --+ (O 1) -- + (I 1) - (I 0) -+ (O 0); the reverse for
the negative direction. Hence the net travel (not the net change in position)
during an interval n yields the number of events. The temporally abstract
signals mouse-dx and mouse-dy are defined with anobservation window size
of one second (since the mouse travels at up to 10 inches per second, hence
there are 1000 events per second, hence a one-second window is 1000 times
the typical period).

The behavior of U can now be expressed in terms of the sgnals just
described namely, the temporally abstract clock, keyboard, and mouse in-
puts, along with the Reset 'Input. While the Reset line is asserted the out-
puts of U are inactive. While the clock is running (that 'is, while the signal
(two-phase-clock CSMhzH C5MhzL) has frequency Mhz) the 18741 waits
for events indicating mouse motions and keystrokes, and when such a event
occurs It asserts the interrupt line int, causing an 'Interrupt cycle and ult'-
mately resulting in the transfer of a packet to C. The behavior of U thus
merges the various incoming events into a single outgoing stream of packets.
The output signal packets is de-fined so that it 'is nil everywhere except when
a packet 'is being transmitted, for example, I Local Down) to represent the

152 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

"local" key being pressed, I (Mouse Right) to indicate that the mouse has
moved inch to the right, and so forth.100

The temporal scale at which mouse events and keyboard events occur and
their effects on the behavior of the Input Encoder are substantially different.
Mouse motion, for example, never changes the state of the Input Encoder,
while events of the "local" key change the behavior of Input Encoder dra-
matically. Furthermore, it is rarely the case that the mouse is rolled around
at the same time as the keyboard 'is being typed at - or at least this can
be guaranteed while troubleshooting. As a consequence, it is useful to define
the behavior of U under these different conditions at two dfferent temporal
resolutions:

1. While the mouse is inactive, packets essentially merges the keyboard
and keypad events, with int being asserted once per packet.

2. While the keyboard and keypad are inactive, (tsign (count-ww n
packets)) 'is just the qualitative) sum of the mouse-dx and mouse-
dy 'Inputs, with (tsign (count-ww n (all int))) having the same
value.

Under conditions and 2 U preserves events on the keyboard and mouse
inputs respectively; the different rates at which such events occur means that
different temporal abstractions are appropriate for representing the resulting
behavior.

The Input Processor U, like the 18741 that comprises it, has a Stop
and a Run state. The derence between the Input Processor and the
18741 is the level of abstraction of their inputs and outputs. The 'Inputs
of U are the temporally abstract keyboard, keypad, and mouse inputs.
The incoming kbd-state sgnal that transmits the state of the keyboard ap-
pears at (ks (in kd U)), and for the keypad at (ks n kpd U)). The
keyboard-events abstraction applied to these signals yield, respectively,
the 'Inputs (kt (in kd U)) and (kt (in kpd U)). The signals mouse-
dx and mouse-dy transmitting the direction of mouse motion appears at
(n= (in mouse U)) (along the x axis) and (mmy (in mouse U)) (along
the y axis). The output of U is the interrupt sgnal INT. The salient rules
governing the behavior of the Input Processor are given below.

While in the Stop state (that is, while the reset line is asserted), the
INT output signal is a constant :

5.8. ENCAPSULATION 153

If [isa ?i input-processor]

and [thru ?1 ?u (state ?i) Stop]

Then [thru ?l ?u (11 (out int ?i)) 11

While the mouse 'Inputs are idle, each inconung keyboard or keypad event

results in the 'Interrupt fine being held low:

If Cisa ?'. input-processor]

and [thru. ?11 ?ul (state ?i) Run]

and [thru 12 ?.u2 (x (in mouse ?i)) 01

and (overlap ?11 ?ul) (?12 ?u2))

and [thru. 13 ?u3 (mmy (in mouse ?i)) 01
and (overlap ?11 ?u1) (?12 %2) (?13 ?u3))

and [thru. 14 ?u4 (kt (in kbd ?i)) ?kbdl

and (overlap ?11 ?ul) (?12 ?u2) (?13 ?u3) (?14 ?u4))

and [thru ?15 ?u5 (kt (in kpd ?i)) ?kpd]
and (overlap ?11 ?u1) (?12 ?u2)

(?13 ?u3) (?14 ?u4) (?15 ?u5))
Then [thru (max ?li 12 ?13 14 ?15)

(min ?ui ?u2 ?u3 ?u4 ?u5)

(11 (out int ?i))

(if (or ?kbd ?kpd I A

As long as no keyboard or keypad events occur, changes on the interrupt

line occur only when there is motion on the mouse inputs:

154 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

If Usa ?i input-processor]
and [thru ?11 ?ul (state ?i) Run]
and [thru ?.12 ?u2 (kt n kd ?i)) nil]
and (overlap ?11 ?ul) (?12 %2))
and [thru ?.13 ?.u3 (kt (in kpd ?i)) nil]
and (overlap ?11 ?ul) (?12 ?u2) 13 %3))
and Ethru 14 %4 (mmx (in mouse ?i)) ?mmxl
and (overlap ?11 ?ul) (?12 ?u2) C713 ?u3) (?14 %Q)
and [thru ?.15 ?u5 (mmy (in mouse ?i)) ?mmyl
and (overlap (11 ?ul) (?12 %2) (?13 %3)

(?14 %4) (?15 %5))
and [thru ?a ?z GR t]
and (max ?11 12 13 14 ?15 ?a

?z (min ?ui %2 %3 %4 %5))
Then [thru (max ?1i '712 13 14 ?15)

(min ?ul %2 %3 ?u4 ?u5)
(changing-wrt ?a ?z (11 (out int ?i)))
(eql 1+ (qplus ?mmx ?my))]

Finally, the Input Processor has an antibehavior rule that infers that the
Reset line must be if there was a keyboard event but the 'interrupt line was

4never asserted. This 'is a compression of a more complex lne of reasoning
that would infer that 'it must have been in the Stop state.-

If Eisa ?i input-processor]
and [thru ?11 ?ul (mode ?0 normal]
and [thru 12 %2 (11 (out int ?i)) 11
and (overlap ?11 ?ul) (?12 ?u2).)
and Ethru 13 %3 (kt (in kd %)) ?event]
and (overlap (?li ?.ul) (?12 ?u2) (?13 %))
and (not (null ?event))

Then [thru (max ?11 12 13) (n ?ul ?u2 %3)
(11 (in reset ?i)) 01

As noted at the beginning of this subsection, the temporally abstract be-
havior of U is a combinational function of its inputs. This was made possible
by temporal abstractions that (i) represented the ncoming clocks 'in terms of
their frequency and relative phase (H) represented the other inputs in terms

5.8. ENCAPSULATION 155

of their events and rate of events, and iii) matched the rate at which certain
events occur. The resulting behavior exposes the simple, important, event-
preserving relationship between keystrokes, mouse motions, and activity on
the interrupt sgnal int.

The component C treated as a "black, box" 'in the Input Encoder trou-
bleshooting examples has a similarly abstract behavior description. C 'is
actually the culmination of three intermediate levels of structural composi-
tion and behavioral abstraction. This behavior will be developed starting at
the lowest level. The first level of composition contains a loop that involves
an Intel 8035 microprocessor, a PROM, and two ancillary chips; the result
of that composition will be called P. There are three essential abstraction
steps:

1. The microprocessor communicates via a bdirectional bus, but this com-
plicates behavior descriptions- hence a distinction is made between the
incoming and outgoing signals of the microprocessor, sent along the
same bus at dfferent times.

2. At the temporal scale of individual instructions, each address that the
microprocessor presents to the PROM depends on what the previously
returned instruction was. However, some of the outputs of the micro-
processor do not depend on the 'instructions being executed, and this
fact can be used to form useful temporal abstractions of the micropro-
cessor behavior.

3. Temporal abstract' lif
ions can, simp -v the composed behavior of the mi-

croprocessor and PROM down to only four states. This drastic simpli-
fication is possible because most of the tme the Console Controller is
merely buffering 'Incoming data from the keyboard and mouse.

Figure 5.15 shows the microprocessor 18035 and the components used to
present instruction addresses to the PROM (the original circuit schematic is
part of Page 60). The eight-bit bdirectional bus connected to the micropro-
cessor ports AD7-0 has been divided 'Into an outgoing "address" sgnal A7-0
and an incoming instruction" signal 17-0. The sgnals are valid at different
times in the basic 'instruction cycle of the 18035, and the abstract signals
shown are the results of a sampling abstraction wth respect to the clocks
CU and CU.

156 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

Figure 5.15: Functional Organization of Console Controller

n --- j6 MM, IAIM -- -

I

The structural composition of the 18035, PROM, and ancillary compo-
nents forms the component P, whose behavior is 'ust that resulting from the
18035 executing the program stored in the PROM. The stored console control
program implements an idle loop that responds to 'interrupts from the Input
Processor by reading a packet and (usually) sending 'it on to the host. Some
sequences of keystroke packets are not sent on, but are 'Intercepted and cause
the program to perform operations local to the console, such as changing
the brightness of the screen. Portions of the behavior of P can be described
in a temporally abstract way. For example, the eight bits of the main bus
over which the addresses and 'Instructions are transmitted should never be
flat for more than a few clock cycles- similarly, during the 'Idling loop of the
program the RD and WR signals are asserted periodically. For these signals,
(tsign (fww n (1) ... is while C is running. Although P has less
complex behavior than the microprocessor - 'it has fewer dstinct states -
aside from these few signals 'it still does not lend itself to temporal abstrac-
tion; its interactions wth U, for example, must be reasoned about at the
level of individual instructions.

P communicates with several slave components va a bdirectional bus

but since most of these communications are one-way, it 'is useful to represent
the paths between the processor and each slave as a separate signal. This

5.8. ENCAPS ULATION 157

abstraction is represented as a second level of composition that forms the
component B. B is a composition of P along with the addressing and tim-
ing circuitry that mediates these communications (Figure 516). The Audio
Decoder, Brightness and Loudness registers, and the Serial Encoder are all
write-only; the mode switches and input Processor are read-only.

Figure 516: Components of B

frc
MO

switd

from
Input
Proce

to
. Audio

to
IBrightness

to
0Loudness

to
11 Serial

to
-Switches

to
-input
Processor

Each of the 'input and output signals of P is a temporal slice of the
bidirectional bus that P communicates over. That is 7 it is the result of
sampling the bus at particular moments. To be specific, the value that the
abstract sgnal carries is the value being sent at the moment to the given
destination, and is otherwise nil. An example in which the value `20 is
being written to the brightness register is represented as:

to-brightness nil nil nl 20 nil nil
zwrt 1 0 0 1 0 0

select-brightness 0 0 1 1 1 0
bus ? 20 20 20 20 ?

time 0 1 2 3 4 5

The signals to-audio, to-loudness, and from-switches are eight-bit 'integers
like to-brightness; the signals from-input-processor and to-serial carry "pack-
ets," to be defined below.

The third and final level of composition that forms C is a loop encapsu-
lation that combines wth the mode sitches that control certain minor
aspects of its behavior. The switches are read from repeatedly during the
idle loop of P, hence this encapsulation results in some simplification of the
overall behavior.

The 'interrupt-response cycle that accomplishes the transmission of pack-
ets from component U to component C forms a loop (Figure 517). U inter-
rupts C by asserting its int sgnal C responds by asserting RD; two eight-bit
words forming a packet are then transmitted from U to C as the signal pack-
ets. The combined behavior of these two components is complex, and there
may be hundreds of 'Interrupt cycles for a single mouse motion. Encapsulat-
ing the loop as component E and using temporal abstractions can reduce the
behavioral complexity to manageable proportions. The temporal abstrac-
tions that apply to U and C ndividually have been discussed earlier; here
only the combined behavior of the two is considered. That behavior lends
itself to temporal abstractions that reduce 'it to only four distinct states (Fig-
ure 5.18). The four-state diagram arises as a consequence of the following
observations about U and about the instruction-level behavior of C:

1. The interrupt-cycle interaction between U and C 'is fully encapsulated
within E. Furthermore, it was shown that the behavior of U is event-
preserving and state-free under the right temporal abstractions. Hence
the behavior of E 'is mostly dependent on the state-transition behavior
of C.

2. Like many state machines, C has a "reset" input that puts 'it 'Into Reset
state in which 'it does nothing. However, it also requires an nitialization
procedure of about a hundred instructions before actually responding

CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR158

5.8. ENCAPS ULATION 159

Figure 517:

Keyboard

Keypad

Mouse

Components U and C Together form Component E

r A- SM7 IMh7

Serial

Audio

Brightness

Loudness

Figure 5.18: State Diagram of E

xalI
.ey
own

--- ---- --

CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR160

to any inputs. This instruction sequence can be treated as a separate
Init state.

3. C 'is fundamentally interrupt-driven; after being initialized, most of

the time it is waiting 'Idly for interrupts. More important, after most

interrupts 'it returns to the same state as it had before. This suggests

that most of its behavior can be captured as a function of the most

recent input event, without any reference to earlier events. This is its

behavior in the Monitor state.

4. What behavior of C cannot be captured as a function of the most recent
event i's capturable, in terms of the counting and duration abstractions.

Such behaviors all occur 'in the Local state.

The behavior of E in each of ts four states can now be discussed in more

detail.

While in the Reset state all of the outputs of E are held constant- to-
brightness, for example, is nil. E remains in this state as long as the reset

input is asserted (0).

The Init state is entered when the reset input becomes and the fre-

quency of the two-phase clock input is greater than and less than Mhz.

E remains in the Init state for 600 cycles of the two-phase clock input, since

there are about a hundred instructions and each requires six clock cycles.

There are a few output operations performed during the Init state: the

eight-bit brightness and loudness registers are set to an average value, and

an initialization sequence of some 40 bytes 'is sent to the Serial Encoder.
Thus, for example, the output sgnal to-brightness transmits the value 128

during the Init state, while the to-serial sgnal transmits the special token

init representing the initialization sequence of the Serial Encoder.
In the Monitor state, E behaves very much as U does: events on the

incoming keyboard and mouse inputs are converted to packets and sent to

the output, in this case the to-serial output. The sole exception is the

event I (Local down), which 'is not transmitted but rather causes a state

transition to the Local state.

The complex behavior of E occurs during the Local state. Events on

the mouse are sent unchanged to to-Serial as 'in the Monitor state, but some

keystrokes cause activity on the to-Audio, to-Brightness, and to-Loudness out-
put signals. I

The G key is used to produce a tone on the speaker. While the G key
is held down' the to-audio signal carries a repeating sequence of integers
forming a sinusoidal sgnal of frequency Khz and of amplitude 128. For
troubleshooting, the important properties of this signal are crossings of its
midpoint value, both in its first and second derivatives (as 'introduced in
the Audio Decoder troubleshooting examples). The two temporally abstract
signals shown below both have the value "l Khz" while G is pressed, and are
0 otherwise:

(fww Isec '(nil t)
(cross 127 (samp to-Audio to-Audio)))

(fww isec '(nil
(cross 0 (dt (samp to-Audio to-Audio))))

The key is used to brighten the screen continuously, from up to a
maximum brightness of 255. While the key is held down, the to-Brightness
signal increases at a rate of 3msec per step until it reaches 255. Conversely,
the D key dims it. Just as the "counting" behavior of the Reset Hold Counter
could be expressed in terms of the duration abstraction, smilarly the to-
brightness output can be expressed in terms of the lengths of time the and
D keys have been pressed.

The L and keys work analogously to the and D keys, sending to the to-
loudness signal and making subsequent audio signals louder (L) and quieter

M.
The six rules for the Reset Hold Counter together 'Implemented the three-

state automaton shown in Figure 512 (Page 142) - not an unusual ratio of
rules-to-states, since a typical state diagram Will fequire roughly one tran-
sition rule per arc and one persistence rule per state. Writing the rules 'is
sufficiently tedious that a prerequisite to managing a large finite-state dia-
gram would be to develop machinery for automatically translating the graph
into rules. Because that has yet not been done, the temporally abstract be-
havior of the component E, with its four states and eight arcs, is the largest
behavior implemented to date. The transition and persistence rules for E
and its subcomponents are sufficiently similar to those for the Reset Hold
Counter that they will not be duplicated here.

'That is, while (aref Md-state time) (key->pos I G)) is .

5.8. ENCAPS ULATION 161

162 CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR

This completes the temporally abstract behavior of E. The important
point is its simplicity - perhaps not smple in comparison with the simphc-
ity of the behavior of a boolean gate, but vastly smpler than the behaviors of
the underlying microprocessors. The simplicity arises from the fact that by
encapsulating the complex interacting state machines within a single compo-
nent and expressing the inputs and outputs with temporally abstract signals,
the result can be expressed wth far fewer states. Yet it retains a useful degree
of predictive power: for example, it predicts that pressing the keys Local and
B will cause the brightness output to increase - a sufficient prediction that if
the brightness does not increase, the night suspects will be identified.

5.9. RELATED WORK 163

5.9 Related ork

There are numerous formalisms, languages and programs for reasoning about
time and change. For the present purpose it 'is sufficient to briefly identify
four salient expressiveness and tractability issues and to point out that TINT
takes an extreme position, always favoring tractability over expressiveness.

5.9.1 Temporally Quantified Statements

Systems that reason about time can in part be characterized in terms of
the kinds of facts that they allow to be temporally quantified. Some sys-
tems admit only statements about parameter values, where the parame-
ters may be either continuous or discrete quantities [Simmons83] [Bobrow85]
[Williams86] [Kohane87]. Treating propositions as boolean valued functions
(often called time tokens) allows any atomic proposition to be quantified
[Dean87] [Shoham87]. There have been proposals to aow arbitrary first
order sentences to be temporally quantified [McDermott82] [Moszkowski82]
[Allen84], but there is no successful implementation of such a language. TINT
signals" fall 'Into the first of these categories.

5.9.2 Intervals and Constraints on Intervals

Timestamping facts so that they hold at single time points is the most prim-
itive form of temporal quantification, but this is hardly ever used except in a
theoretical setting [Hanks86] [Shoham86]. A slightlyi'mproved scheme is that
used in TINT and TCS [Russ86], in which statements hold over intervals with
fixed numeric upper and lower bounds. Discovering intersections between in-
tervals is trivial, but the expressiveness of such schemes 'is quite limited. One
fundamental difficulty is that systems With feedback can result in runaway
inference loops for which each new deduction only marginally extends the
previous hstory. The alternative 'is to allow algebraic constraints of varying
sophistication among the intervals on sparse and dense sets of points. The
straightforward approach is to do so with inequalities on the endpoints of the
intervals [Valdes86] [Williams86] [Kohane871 [Ladkin87] a different approach
is to use an algebra of intervals [Allen83] [VilainM] [Valdes87]. Wth either
approach, there is a tradeoff between expressiveness and the tractability of
detecting interval overlaps; the more complex the constraints and the more

CHAPTER 5. REPRESENTING CIRCUIT BEHAVIOR164

complete the constraint propagator, the weaker the performance guarantees
that can be made Aen's constraint propagation scheme is a typical com-
promise: the propagator is 0(n') in the number �Iof intervals but Will not
detect all inconsistent orderings, since the latter ii NP-complete [Vilain86].
As noted earlier, TINT takes an extreme position 'in favor of tractability,
thereby avoiding most of these issues. With fixed numeric bounds, detecting
overlap is tvial, and while runaway inferences cannot be prevented they are
at least easy to detect using bounds on the number of predications in each
history.

5.9.3 Persistence

The world has 'Inertia. Many programs for maintaining temporal assertions
reflect this by building in implicit persistence of facts over time. For example,
TMM [Dean8 7] will autonomously assume the persistence of any fact 'in order
to answer queries. TINT and TCP [WilliamsH], on the other hand, do not;
only the application program can add underfed facts about the duration of
intervals. The smple machinery 'in TINT never introduces new assumptions
on its own and so as a consequence there is an explicit justification for every
prediction. This is just what is needed for troubleshooting.

5.9.4 Temporal Indexing

Database organization obviously has an impact on the kinds of queries that
will be answered efficiently. A recurrent concern 'in temporal reasoning pro-
grams is how a database of temporally quantified statements should be in-
dexed. A common approach is to organize all the intervals referring to a
single parameter, token, proposition, or sgnal into a totally ordered list
[Williams86] [Dean87]. An alternative is to organize the intervals into a
hierarchy such that all the intervals at the leaves occur close together in
time, irrespective of the propositions they refer to [Kahn77] [Dean87]. These
schemes are not incompatible; in fact most systems use a multiple indices
or a hybrid approach. TINT does not - it smply orders a the 'intervals
referring to a gven sgnal by increasing lower bounds.

5.10. SUMMARY OF BEHAVIOR REPRESENTATION 165

5.10 Surnrnary of Behavior Representation

TINT 'is a temporal reasoning svstem that propagates assertions about time-
varying values at multiple levels of abstraction. The framework of signals,
abstractions, and behaviors means that 'it can be very simple 'in its syntax,

semantics, and computational machinery. There are three key reasons that
TINT can be so smple and still allow the representation and troubleshooting
of complex circuits.

First, there 'is a rch vocabulary of temporal abstractions with which to
describe behavior. These temporal abstractions include such familiar con-
cepts as change, cycle, and fquency. Good abstractions for troubleshooting
preserve -fidelity, strength, and efficiency by sacrificing precision. Temporal
abstractions are good for representing digital circuits for troubleshooting be-
cause they can make the prediction task much more ecient, while preserving

fidelity and precision for those signal properties that the troubleshooter can

easily observe and that will be disrupted by typical failures.

Second, there are principles by which temporally abstract behavior defi-
'tions can be built for many crcuits. Temporal abstractions result in strong

abstract behaviors when the underlying behaviors ae event preserving. Since
not all components have behaviors that are not event preserving, the tech-
niques of reduction and synchronization are ways of taking subsets of behavior
that are event preserving. Encapsulating loops allows these former abstrac-

tion techniques to be applied to groups of connected components.
Third, there is an important distinction between the definitions of the be-

havior of individual components and the deductions that win be made about
them during troubleshooting. There are many logical consequences of each
abstraction and behavior definition that would lead to useless deductions
during the prediction subtask of troubleshooting. TINT rules for each ab-
straction and behavior are included only when they make deductions about
observable signals or when the deductions about sgnal values that they make
hold over sgnificant stretches of tme.

a er

ce resen in U s an

is e aviors

The goal of a troubleshooting program is not mere generation of candidates,
but efficient discrimination amoniz them. However there are three fundamen-
tal obstacles to efficient discrimination. First, the observations that the trou-
bleshooter makes of the device may be 'imprecise. As a consequence it may
be impossible to distinguish between some candidates. Second, some compo-
nent behaviors may be so complex as to be 'Intractable to reason about in any
way other than from causes to effects. As a consequence the troubleshoot-
ing engine might not find all the conflicts derivable from the observations
it has made and hence 'Inconsistent candidates may survive. Third, even if
reasoning from effects to causes is possible, there may be reasoning impasses
that leave ambiguities resolvable only through intractable techniques. Again,
the troubleshooting engine may not find a the derivable conflicts, so that
inconsistent candidates may survive.

In the face of these fundamental difficulties a partial solution is to draw a
distinction between the possibility of a candidate and its plausibility relative
to other candidates. Instead of asking for the logically possible candidates, a
more realistic goal is to ask for the most likely candidates among those pos-
sible. The program can then terminate when any dsired degree of certainty
is achieved, that is, after some diagnosis is significantly more likely than the
others. As an additional benefit, the choices about which observations to
perform will be more efficient because they will be biased toward discrimi-
nating between the most likely candidates, no matter what certainty is set as

166

167

the termination goal. There 'is always the danger that estimates of relative
likelihood will be inaccurate. It is possible that with bad estimates and a
low threshold of certainty for termination, the program could terminate with
an incorrect diagnosis. Commitment to using estimates of the likelihood of
candidates 'Implies a commitment to being circumspect about any decisions
the program makes that are overly sensitive to those estimates. Nevertheless,
even giving candidates crude likelihood estimates can provide a useful degree
of bias.

Ranking candidates by their likelihood opens up new sources of knowledge
to take advantage of. An obvious source of knowledge concerns the relative
failure rates of the individual components in the candidates. These are ul-
timately grounded 'in accumulated statistical data but can also be partially
derived from knowledge about the physical construction of the components.
Another source of knowledge is fault models - knowledge not just about
how often components fail, but also about how they usually fail and their
misbehavior when they do. This kind of knowledge is used in a number of
model-based troubleshooting programs ncluding SOPHIE [Brown82] and
IDS [Pan84]. I

In typical uses of fault models, each component 'has a set of misbehaviors
that is assumed to be exhaustive; candidates can be ruled out by showing
that none of their known misbehaviors are consistent with observations. But
the crucial point 'is that the program does not need to have an exhaustive set
of all the ways any given component can fail -i't need not know any at all, in
fact. However, if knowledge is available about a component misbehavior that
can result from some physical failures and the proportion of failures in that
component that would result in that msbehavior, then the troubleshooting
engine can take advantage of it. By knowing one or two of the most likely
failure modes of a component the program can make a better estimate of
the likelihood that it is actually faulty. For example, suppose that telephone
jacks fail in dozens of different ways, but that when they fail, half of the time
the effect (the misbehavior) is as if all of the contacts were open crcuits, and
the other half of the time the effects are different. This knowledge can be used
to adjust the likelihoods of candidates that hypothesize the jack is broken.
If the observations of the circuit ndicate that t would be nconsistent for
all the contacts to be open then the jack is a relatively less lkely, though
stil a possible candidate. No coverage has been sacrificed. The program
has simply done what a human troubleshooter would do - it has brought

168 CHAPTER 6 REPRESENTING FAULTS AND MISBEHAVIORS

to bear knowledge about the way things usually break to focus on the most
likely possibilities.

Fault models, then, can be used as heuristics wthin a larger framework
of failure likelihoods. Although this chapter 'is mainly about fault models,
the first portion is spent presenting failure likelihoods as a partial solution
to difficulties in discriminating candidates. Next, syndromes are presented
as a refinement of that solution. Syndromes are the concrete representation
in BASIL and TINT for the abstract notion of a fault model. They are
added manually to the knowledge about a particular crcuit; they are not
learned or otherwise automatically generated. Next, several principles for
the appropriate use of syndromes in representing crcuits will be presented,
along with examples appearing in the Console Controller Board. Fnally, the
consequences of using knowledge about syndromes in troubleshooting will be
discussed. The mechanics of ranking candidates by likelihood and for using
syndromes to adjust those rankings wl be treated in the next chapter along
with other details of the troubleshooting engine.

6.1 Failure Likelihoods

Estimating failure probabilities 'in general is subtle and complex; a very sim-
ple framework is used here. For example, independence between failures is

0assumed a strong sim ing assumption (although not as strong as assum-
7 Plify,

ing that failure effects are independent). This simple framework is adequate
because (as discussed later) the probabilities are us'ed in such a way that the
overall performance of the troubleshooting engine 'is relatively insensitive to
small variations in these estimates.

The status of each BASIL component indicates whether 'it i's believed
to be physically damaged. The status-of predicate denotes this: when
[status-of U25 working] is true means that chip U25 is believed to be
undamaged. The status other means that the component is believed to
be damaged in some way. A prior probability is assigned to the working
status for each component, and the probability of having status other is
then the difference between and the probability of it working. As discussed
in Chapter 2 these prior probabilities influence the ranking of candidates
and probe suggestions produced by the troubleshooting engine: candidates
involving the components with higher probabilities of having status other

6.1. FAILURE LIKELIHOODS 169

will appear to be likelier candidates, and the probes that the troubleshooter
suggests will tend to be those that discriminate among the likelier candidates.

The probability of a given component working is estimated from its "com-
plexity" - a nonnegative integer representing the number of breakable phys-
ical parts and how likely they are to break. Assuming independence, the
probability of a component having status working is the probability that all
its components are working. The probability of failure in a component with
complexity has been assigned .0001 - any number very close to could
have been used. Some typical probabilities for various components are shown
below:

Component Complexity Probability of working
Etch 1 .99991 = 9999
Chiplet 1 .99991 = 9999
Pin 2 .99992 = 9998
16-pin Chip 33 .999933 .997

Oscillator 100 .9999100
Chiplet

Console .99992000 on
Controllerl 2000 .0Z

There are better ways of estimating failure rates- the power dissipation
of the chip, for example, would probably be a better predictor. This scheme
has the advantage that it can be derived from the representation of physical
structure once a basic unit of complexity has beenichosen.

The prior probabilities assigned to each component status nfluence the
candidate rankings and probe suggestions. The likelihood of a candidate is
the normalized probability that a the components in the device have the
status assigned by that candidate. The Clock Generator provides a smple
example. Assume that etches and chiplets other than the oscillator have
complexity so that their probability of working is 1.0; the three components
and their likelihoods are then:

Component Kind Complexity Probability of working
U25 Oscillator 100 ;(U25 = 9900
U32 14 pin chip 28 p(U32 = 9972
U30 16 pin chip 32 p(U30 = 9968

1.0001 is actually too large, as can be seen fiom this anomaly. It is used only to simplify
presentation.

I
(I - pU25)) X pU30) X pU32 =

p(U25) X (- pU30)) X pU32 =

p(U25) X pU30) X (- pU32) =

170 CHAPTER 6 REPRESENTING FAULT� AND MISBEHAVIORS

Figure 61: Clock Generator

Suppose that a discrepancy is observed at (out q u3Ob), resulting in
the conflict (U25, U301 U32). The candidates are the minimal covering sets
[U25], [U30], and [U32]. The probability of each of these candidates is the
probability that the named component is not working and that the others are.
A weight for each candidate i's then computed as the probability normalized
with respect to all candidates:

Diagnosis
[U25]
[U30]
[U32]

Likelihood
.00989
.00315
.00278

Weight
.63
.20
.17

As this example shows, candidates involving components with relatively
higher failure likelihoods tend to end up wth the largest weights. In this
case the rankings are stable under perturbations in the component failure
likelihoods so long as their ordering is maintained, that is, so long as the
physical complexity of U25 'is greater than that of U30, and of U30 greater
than U32.

The troubleshooting engine can stop when there is one candidate above
some threshold, which 'is usually almost 1. The relative proportions of the
failure likelihoods among components can 'Influence the decision to termi-
nate. In the example above, if the threshold were set to 90, the program
would terminate when one of the candidates had weight above 90. Had the

6.2. REPRESENTING SYNDROMES 171

physical complexity of U25 been 600 it would have had 90% of the weight
and the program would have stopped, concluding that U25 was most likely
to be broken. Note that 'it took more than an order of magnitude difference
between complexity estimates - 600 being nineteen times as large as the
complexity of U32 - to get this effect, however. Hgher thresholds require
bigger relative differences - for example, a threshold of 95 would have re-
quired the complexity of U25 to be 1100 for termination without further
observations.

If no candidate is above threshold these candidate weights are used to help
decide where the next probe should be made. To a crude first approximation,
the choice of probe location wll be biased toward places close to the higher
ranked candidates. For example, in the example above (out u25a) would
be chosen over (out y u32a) as long as the complexity of U25 was greater
than that of U30. The details of probe selection will be presented later; the
important point for the moment is that the better the estimate of component
failure lkelihoods the fewer probes will be needed on average in the long run.

Using failure likelihoods provides anincrementalimprovement in the abil-
ity of a troubleshooting en and"dates. By presenting the

gine to dstinguish c,
plausible candidates in addition to the possible ones and biasing the observa-
tions made in favor of the lkely failures, the troubleshooting engine should

0be able to provide the right diagnoses most of the time using fewer probes.

6.2 Representing Syndrornes

Fault models provide an additional 'increment of power to the troubleshoot-
ing engqne because they can be used to make better estimates of candidate
likelihoods. Roughly, this is done by (i) splitting the weight assigned to a
given candidate 'Into portions, one for each way that some component in that
candidate might be misbehaving, and (ii) showing that one or more of those
portions corresponds to an inconsistent dagnosis. If (ii) succeeds this means
that that component was not as likely to be broken as was thought. That
candidate will be made relatively less likely, thereby indirectly boosting the
other candidates. The details of how the troubleshooting engine performs
these steps will be presented in the next chapter. The present concern is the
representation of how components misbehave and how likely they are to do
SO.

172 CHAPTER 6. REPRESENTING FAULTS AND MISBEHAVIORS

A syndrome 'is a set of sets of physical failures that result 'in equivalent
misbehaviors of a component. Snce the misbehavior of a component is rel-
ative to its intended behavior, each syndrome is thus tied implicitly to a
level of behavioral abstraction. For example, consider an imaginary chip
Inverter-chip with four pins (power, ground, input, output) and just one
inverter on 'It. Some of the ollowing are physical failures inside the chip: (a)
the pulldown is open (b) the output pn is open (c) the pullup is shorted)
the pulldown 'is shorted (e) the input pin 'is open, Three example syndromes
are:

1. Several different combinations of physical failures would cause the in-
verter to produce a constant output logic-level of i. Its pulldown might
be open, 'Its output pn might be open (since TTL floats hgh), its pull-
down might be open and its pullup shorted, and so on. This is the set
of sets f f al, f bl, f act

2. Another set of combinations of failures cause the 'Inverter to produce
a constant logic-level of 0. Its input pin mght be open, its pulldown
might be shorted, and so on. This is the set of sets {f el, JdJ,

3. Both sets of failures described above cause the inverter to produce
a constant frequency of 0. The union of those sets is thus another
syndrome. This is the set of sets f fal, f bl, act, el, f dl
Although 'in principle syndromes can thus intersect, in practice the
syndromes for a given component are isjoint sets.

Syndromes are sets of sets of failures, but for mnemonic value they are
usually named according to the misbehavior that results. For example, syn-
drome 3 above, which caused the inverter-chip output frequency to be zero,
will be enoted zerof.

The status-of predicate is used to indicate the belief that a given com-
ponent has a particular syndrome. Thus [status-of i zerof I says that
component i has some physical failure among the set causing it to output a
constant frequency of zero. The status working corresponds to an empty set
of failures; the predication [status-of i working] says that the physical
component i has no failures and is working perfectly.

An estimated likelihood is assigned to each of the possible statuses
of a physical component, using the complexity estimates introduced ear-
Her. For example, assume that pns have complexity 2 and everything else

6.2. REPRESENTING SYNDROMES 173

has complexity 0. Then the likelihood that the 'nverter-ch'p is working
is estimated as 9999' - the likelihood that all four pins are working.
The likelihood that the inverter-chip has syndrome zerof 'is estimated as
4 x (- 99991) x 99991) - the likelihood that exactly one of the four
pins 'is 'Independently broken. This is only an estimate, since on the one
hand there might be failures 'in the pins other than opens, but on the other
hand multiple pin failures that would cause the same syndrome are not being
counted. Fnally, the likelihood that it has status other 'is then minus the
likelihoods of these other two statuses:

Inverter-Chip
Syndrome Likelihood

working .9999 = .9992
zerof 4 x (_ 99992) X 99996 = .0007
other - 9992 - 0007 = .0001

The troubleshooting engine can use this 'Information to try to reduce
the likelihood of candidates involving inverter-chip components. Suppose
there were a candidate corresponding to a particular 'Inverter-chip i being
broken. This candidate and its weight would be split into two portions
one corresponding to the hvDothesis that i had status zerof the other to

& 7

the hypotheses that '. had status other. Suppose 'Its weight had been 40 To
a first approximation the weight would be split proportionately among these

two according to their relative likelihoods 0007 and .0001, in this case 35

and .05. Now, if observations indicate that can:dot have status zerof the

weight of that portion (.35) would get redistributed among aR candidates.

For example, suppose there had been two other candidates each with weight
.30; after redistributing the weight 35 evenly across the three candidates,

two would have weights of 42 each and the candidate involving i would

have weight only 17. Thus the likelihood of being broken relative to the

other candidates wll have been decreased from 40 to 7 The details of how
this is done are presented in the next chapter.

To gain anything from a syndrome the behavior model must be able to

detect that it is inconsistent wth observations that the troubleshooter has

made. Thus each component status has consequences in the behavior model.

RecaR that if a physical component has the status working, has power, and so
on, then its mode is normal. In the case of the inverter-chip, for example:

174 CHAPTER 6 REPRESENTING FAULTS AND MISBEHAVIORS

If Usa ?.x inverter-chip]
and [status-of ?.x working]
and [thru ?1 ?u (power (in power x)) t]

Then [thru ?l 'Pu (mode '.Px)' normal]

Having a status of zerof, however, implies a mode of inactive no matter
whether the component has power or not:

If Usa ?.x inverter-chip]
and [status-of ?x zerof]

Then [thru -oo oo (mode ?x) inactive]

In the inactive mode the output frequency is zero:

If Usa x inverter-chip]
and [thru ?l ?u (mode ?x) inactive]
and Signal ww 9w ?c (11 (out y ?x)) ests

Then [thru ?l ?u (f ww IN ?c (11 (out y ?x))) 01I

The indirection from the status of "zerof' to the mode of inactive"
makes writing behavior rules more convenient. For one thing, the status
of a component has no temporal bounds, but the mode signal does. For
another thing, ly physical components are given failure syndromes, while
only functional components have behaviors. Finally, there are other ways of
being in inactive mode, such as losing power:

If Usa ?.x inverter-chip]
and [status-of ?x ?anything]
and [thru ?l ?u (power ?x) nil]

Then [thru ?l ?u (mode ?x) inactive]

The following section will clarify this by giving examples of several syn-
dromes and their associated misbehaviors.

6.3. PRINCIPLES FOR USING SYNDROMES 175

6-.3 Principles for sing Syndrornes

There are two stuations n which it is advantageous to represent syndromes
and isbehaviors explicitly: (i) when there are functional components that
have faults wth unusually high likelihoods, or (ii) when the resulting misbe-
havior 'is drastically smpler than the correct behavior.

Faults wth high likelihood are worth ncluding explicitly. It i's useful to
know about very likely failures because if a particular component is one of
many suspected of failure, but (say) 99% of the failures in components of
that type produce a behavior other than the one being observed, then that
component is almost certainly not the culprit.

One of the most common failures in the field occurring in digital crcuits is
the disconnection of a bonding wire. In BASIL, bonding wres are considered
part of pins. The effect of breaks in them is to make the pin act as an
open circuit. Thus one of the syndromes for pns is termed open, and 'Its
behavioral impact is to make the currents into both ends of the pin be
(the signal (qci ?port) denotes the sign of the current into ?port and is
discussed in Appendix E):

If [conn pin (hole ?i ?e) ?port]
and [status-of ?pin open]

Then [thru -oo oo (qci (hole ?i ?e)) 01
and [thru -oo oo (qci port)

For example, if the externally visible node of this pin is connected to a

pullup and should be pulled down va this pn, and the node 'is at logic level

0, then the pin i's probably not faulty. This is because if the pin were open,
the node would be pulled up to .

The likelihood of a pin working was earlier set to 9999 = 9998; the

likelihood of it having status open is set to 0002. This makes the other
status have likelihood :

Pin Status Likelihood

working 0.9998

open 0.0002

other 0.0

176 CHAPTER 6 REPRESENTING FAULTS AND MISBEHAVIORS

Thus the pin is an extreme example of a component with a "likely" syn-
drome - it accounts for 100% of the failures 'in pins. It is exceptional in
that respect, however; no other component has such a syndrome. The point
stands, however, that it 'is useful to know about just because 'it 'is so likely.

Faults that drastically simplify behavior are worth including explicitly.
One kind of "drastic simplification" of behavior is when the faulty component
produces a constant output for all time, instead of responding to changes on
its inputs.

For example, a common failure is that crystal oscillators crack or become
loose in their casings; the result is that the output does not oscillate, but
instead stays constant:

If [isa ?o oscillator]
and [thru ?l ?.u (mode 7o) inactive]
and Signal (fww ?w ?c (11 (out ?o)) ests

Then Ethru ?1 ?u (ww ?w ?c (11 (out o))) 01

Thus for example, if the output of the oscillator is active it 'is probably not
faulty. The syndromes and their likelihoods are based on the presumptions
that oscillators fail about 50 times as often as pins, and that there is a nonzero
likelihood that the oscillator may fail in other ways.-

Oscillator Status Likelihood Description
working 0.99 = 9999100

open 0.0099 = 100 X (1 - 9999) 999999)
other 00001

The syndrome 'is useful because the misbehavior that results is simple and
sufficiently different from what 'is expected that it does not require much ad-
ditional reasoning to detect whether it is consistent wth observations or not.
Had the syndrome been that the oscillator (say) skipped every hundredth
cycle, a detailed model of behavior would have been required to represent
it, and the available observations would not have been able to dstinguish 'it
anyway. Such misbehaviors are usually better dealt wth at the lower levels
of physical and behavioral detail from which they originated.

Useful syndromes have both of these properties - common and simplify-
ing. In the case of the pin and oscillator these properties are achieved because
of the physical simplicity of the components. These properties can also be

6.3. PRINCIPLES FOR USING SYNDROMES 177

achieved in functional components with more internal structure and complex
behavior. Syndromes can have hgh likelihood 'if manyinternal faults produce
the same overall misbehavior. Faults can cause the behavior to be drastically
simplified if they dominate all the outputs of the component, or if they lie on
internal sequential feedback paths so that the effects of local misbehaviors
aggregate and cascade. Thus, 'if there are several faults that cause the same
misbehavior, and the misbehavior 'is smpler than the normal behavior - by
having fewer reachable states, for example - then those faults constitute a
useful syndrome.

Consider for example the burst detector in the Audio Decoder (Fig-
ure 62). Eighteen clock cycles after the start signal falls, the output Msb is
asserted for one cycle.

Figure 62: Audio Counter

Load

Start -

U20

Clock

14-4

PI

4-bit
Counter

L

p

- A T
I I

u

Msb
L.

I
I

14
4-bit
Counter

L
p.

T- A.

a

I
I I

Ull

wmwmmmiI

I

The internal structure of the burst detector involves three chips two
four-bit counters U10 and U11, and a quad NOR gate chip U20. Any of the
three chips U 1 0, U II, or U 2 could fail in ways that prevent the burst detector

178 CHAPTER 6. REPRESENTING FAULTS AND MISBEHAVIORS

from ever starting to count, so that Msb would always be 0. For example,

there are three pns 'in U20 that if open would cause the Load signal to be

stuck at the result being that counting would never start'. Thus each of

the three chips has a syndrome denoted sb-inactive, and if any of them

have that status then the burst detector is inactive:

If [status-of ?u csb-inactivel

and (member ?u (u1O uil u2O))
Then [status-of csbOi inactive]

If the burst detector 'is n inactive mode then both 'Its outputs are :

If [isa ?csb clocked-serial-burst-detectorl
and Ethru ?1 ?u (mode ?c9b) inactivel

Then [thru ?1 ?u (11 (out wr ?csb)) 01

and Ethru ?1 ?u (11 (out clk ?csb)) 01

For each of the three chips, the likelihood of each syndrome occurring is
estimated from the likelihood of failures in the pins. For example, the likeli-
hood of U10 working 'is 9999", the lkelihood that a 16 pins are working.

The likelihood of U 10 having syndrome csb-inactive is 3 x (.0002 x.999910),

the likelihood that the chip has exactly one of the three single-pin faults that
cause csb-inactive. The likelihood of other is 'ust the residual:

U10 Status Likelihood Description

working 0.997 AR 16 pins working

csb-inactive 0.0006 Any of 3 pins open

other 00024

For U11, there are 4 open pn faults that can cause the syndrome:

U11 Status Likelihood Description

working 0.997 All 16 pns working

csb-inactive 0.0008 Any of 4 pins open

other 00022

For U20 5 open pn faults can cause it:

2This was checked by SSIM a simple event-dri'ven digital simulator that -uses BASM
as its structure description language.

6.3. PRINCIPLES FOR USING SYNDROMES 179

U20 Status Likelihood Description
working 0997 All 14 pins working

csb-inactive 0.001 Any of open pins
other 0002

The impact of this syndrome is that if it can be shown that it is inconsis-
tent for the clocked serial burst detector to be inactive, then the likelihoods
of candidates involving U10, U11, and U20 will be reduced somewhat - each
by about one-fourth. The likelihoods of syndrome'csb-inactive appearing
in each of the three chips do not differ by enough to have any significant im-
pact on the likelihoods of candidates containing U10, U11, and U20 relative
to one another.

Another example in the Audio Decoder 'is the Manchester-to-serial de-
coder; it is a sequential crcuit entirely encapsulated wthin the chip U 2.
When the chip U12 has status mts-inactive then MTS01 has status
inactive as a consequence:

If [status-of u2 mts-inactivel
Then [status-of mts0i inactive]

In the inactive mode, the serially encoded output of MTS01 has zero
amplitude:

If Usa mts manchester-to-seriall
and Ethru ?1 ?u (mode ?mts) inactive]
and Signal (max-min-ww w (cs (out y mts))) exists

Then [thru ?1 u (max-min-ww ?w (cs (out y ?mts))) 01

The likelihood of each syndrome for U12 'is based on the fact that U12
has 20 pins, faults in 9 of which can cause the syndrome mts-inactive:

U12 Status Likelihood Description
working .996 All 20 pins working

mts-inactive .0018 Any of 9 pins open
other 0022

t

180 CHAPTER 6 REPRESENTING FAULTS AND MISBEHAVIORS

6.4 Consequences of Using Syndrornes

By helping to discount unlikely misbehaviors, syndromes help a troubleshoot-
ing engine to ask for fewer observations, and this in turn makes troubleshoot-
ing complex digital circuits more feasible. For example, 'in the Audio Decoder
one of the cases requires 9 observations without syndromes to arrive at a
single-fault diagnosis, but 2 observations to arrive at the same diagnosi's 'if
the syndromes are included. Since the cost of making observations is gener-
ally assumed to be greater than that of extra computation, even more modest
gains are worthwhile. The reduced number of observations is possible because
the syndromes reduce the relative likelihoods of faults 'in the Manchester-to-
serial converter and 'in the burst detector, and the troubleshooting engine is
generally based away from suggesting observations in the vcinity of compo-
nents that are judged unlikely to be causing the observed symptoms.

Knowledge about how components misbehave is essential in troubleshoot-
ing complex circuits because the number of logically possible (but unlikely)
misbehaviors and the amount of detail in the observations needed to track
them down are so large. The effectiveness of fault models in providing focus
stems from two sources, one general and one specific to digital systems. Frst,
sometimes it is much easier to reason forward from causes to their effects than
the reverse. The consequence is that it is easier to consider the ways a com-
ponent might plausibly msbehave and rule them out individually, than to
try and logically rule out a of them at once. Second, some behaviorally
complex digital components have many internal faults that all result in the
same few temporally abstract msbehaviors. The beneficial consequence is
that if these few misbehaviors can be ruled out, the complex component wl
be 'udged an ulikely candidate.

As an example of the problems that result from the nability to reason
from effects to causes, consider Fgure 63. It shows a microprocessor ded-
icated to running a program that multiplies the 'contents of two external
registers RI and R2 and writes the result to R3. If the troubleshooter ob-
serves that the output register R3 has bit 3 consistently wrong, 'it will suggest
not only that thi's register might be broken, but that the microprocessor, the
read-only memory where its instructions are stored, the clock generator that
runs the processor, and so on, could all be broken. Intuitively, these other
candidates are implausible; 'it ight be logically possible for the micropro-
cessor to be doing arithmetic incorrectly, or for the clock to be skipping

6.4. CONSEQUENCES OF USING SYNDROMES 181

Figure 63: Every Component is a Candidate

I

cycles, or for some instruction to be slightly wrong, but if these things were
happening the observed misbehavior would probabl' be much more drastic
than just the one wrong bit. For example, if the" croprocessor is adding
numbers wrong it is likely to make a wild branch to a location containing an
illegal instruction. If 'it could be inferred from observations of the outputs of
the microprocessor that its instructions from the ROM were correct, or that
the clock output was correct, those candidates would not get proposed. But
logically speaking such inferences are unfounded because it could in principle
happen that way - it is 'ust very unlikely.

The microprocessor example also illustrates why knowledge about syn-
dromes is useful in complex digital circuits. A discrepancy at the output
of R3 in principle implicates the microprocessor, ROM, and clock generator,
and requires observations to determine whether the clock is running or not,
whether all the ROM locations have the rght value, and so on. But experi-
enced human troubleshooters would examine the 'inputs and outputs of the
registers first - and probably find the problem there very quickly. Experi-
enced troubleshooters upon seeing a digital circuit perform some function
correctly, tend to exonerate (at least temporarily) the complex portions of
the circuit. The usual expectation is that any failure there will result in
a catastrophic rather than a subtle msbehavior. Sequential crcuits tend

182 CHAPTER 6. REPRESENTING FAULTS AND MISBEHAVIORS

to have 9'nactiv6" syndromes associated with. them and because the crcuit
did something, that syndrome was ruled out. In the present example, the
microprocessor gets exonerated because the output of register R3 is at least
changing. In other domains this heuristic might not work, for examplein ana-
log domains 'in which failures usually have more subtle effects. The context,
however I is troubleshooting digital circuit boards, and many of the failures
there are not at all subtle.

The reason that digital circuits msbehave this way stems from aspects of
their design. Complex functions tend to get implemented 'in state machines
or as firmware for general processors. The crcuits then use the same hard-
ware components over and over to implement different steps of the overall
computation, many of which depend on the previous step. Hence a per-
turbation caused by failure in any one unit of hardware rapidly cascades
and propagates ts eects. The very economy of the design - the reuse of
hardware for different substeps of a complex behavior - means that after
many cycles the behavior wl little resemble that ntended. Since complex
components communicate with one another through protocols and languages
in which the meaningful message sequences occupy only a fraction of the
theoretically available bandwidth, when a component is 'intended to produce
a message sequence understandable by some other component, the message
will probably never get through. To extend the example, suppose the micro-
processor must nitialize some slave hardware by setting up sxteen eight-bit
registers one at a time. If the master processor makes even one wild branch,
or one bit is stuck on the data bus the likelihood that the slave got a correct
initialization message is rather slim.

Fault models are thus a powerful form of heuristic in troubleshooting
complex digital circuits, both because of the general property that they tend
to focus the model-based troubleshooting program on likely failures, and
because of the specific property that the design of the digital crcuits means
that they can be treated as unlikely suspects if they perform even a portion
of their intended behavior. As the behavioral complemty of field replaceable
components increases, the more valuable this latter phenomenon becomes,
since the model-based troubleshooting program can thereby avoid having to
reason in detail about their internal structure and behavior.

3

6.5. SUMMARY OF FAULTS AND MISBEHAVIORS 183

6.5 Surnrnary of Faults and 1\41'sbehaviors

Experience with model-based troubleshooting has shown that withincreasing
behavioral complexity, approaches that avoid the use of fault models have
little utility in the real world because the problem of solating a component
in the face of limited observability and behavioral complexity 'is often inher-
ently underconstrained [Hamscher84]. Ideally there is unlir'ted observabil-
ity, every component has behavior that is easy to manipulate algebraically,
and computation is so cheap that competing diagnoses can be dscriminated
through computationally intensive techniques such as exhaustive case split-
ting over finite fields of values. For devices of any interesting complexity
these are not realistic approaches. A partial solution 'is to limit consider-
ation of diagnoses to those that are plausible, rather than considering all
that are logically possible. With this more limited goal, fault models can be
seen as heuristics for refining estimates of component failure likelihoods. In
BASIL and TINT, fault models are called syndromes, and have both physical
and functional aspects. The syndromes to be ncluded for each component
type are chosen on the grounds of likelihood and simplicity they should
account for a sgnificant fraction of failures in components of that type, and
they should result in drastically smplified behaviors. While total reliance
on fault models for automated diagnosis has serious drawbacks, it does not
follow that they have no role in model-based troubleshooting. In the case of
digital rcuits in particular, fault models turn out to be powerful heuristics
because the very design of complex digital systems means that fault effects
result in misbehaviors that are catastrophic, easy to detect, and easy to rule
out.

a er

OU es 0 in

The representations of structure and behavior discussed in earlier chapters
are heavily influenced by their 'intended use in model-based troubleshooting,
in particular, by their intended use with the troubleshooting engine XDE1.
Like GDE [deKleer87], XDE works by (i) tagging each prediction made by
the behavior model wth its set of supporting assumptions, ii) ecording
conflicts among the consequences of these assumptions, (iii) constructing the
set of candidates (some possibly ndicating multiple faults) as the minimal
covering sets of those conflicts, and (iv) suggesting as the next observation
the one expected to most reduce the uncertainty among the set of candidates.

XDE extends this procedure by adding two new operations that can be
performed before suggesting new observations: decomposition, which enables
hierarchic diagnosis, and refinement, which enables the use of fault mod-
els. Decomposition and refinement are ntegrated 'into the procedure wth
decomposition having priority over refinement, which 'in turn has priority
over probe selection. XDE constructs candidates that are assigned weights
according to their relative likelihood. Those with weight above 10% are el-
igible for refinement and decomposition. After each new observation, XDE
finds the most likely candidate and refines it. Refinement involves selecting
the most likely syndrome for a component believed faulty 'in that candidate,
and predicting the effects of that syndrome. If there 'is no such refinement
operation available, 'it decomposes a component instead. If no diagnosis is
eligible for this either, it suggests a probe.

eXtended Diagnostic Engine.

184

7.1. CONFLICTS AND CANDIDATES 185

This chapter presents XDE and its 'Interaction wth the representation
choices made in the structure language BASIL and behavior language TINT.

T.1 Conflicts and Candidates

XDE inherits the terminology of assumptions, environments, conflicts, and
candidates from GDE, interacting with BASIL and TINT mainly through
status-of predications.

In TINT an assumption 'is a unit clause supporting one predication.
For example, let U32W denote the assumption that chip U32 has the sta-
tus "Working." U32W is a unit clause attached to the single predication
[status-of U32 working] (top of Figure 71).

Figure 71: Predications, Assumptions, and Environments

r

s normal

X�Ylzl

Label:

CHAPTER 7 TROUBLESHOOTING186

Environments are sets of assumptions; for example, f U32wj is the en-
vironment 'in which chip U32 is assumed to be working. The predication
[status-of U32 working] could be true in more than one environment,
and the set of environments in which 'it is true is called its label. For ex-
ample, there could be another assumption that the entire board 'is working;
[status-of U32 working] would be true also 'in the singleton environment
consisting of that assumption.

A clause i's a dsjunction of redications. When a clause is installed con-
necting two or more predications, some predications may become true in new
environments. For example, inverter chiplet U32a is part of chip U32. The
clause -n[status-of U32 working] V [status-of U32a working] would
be 'installed iddle of Figure 71), since if U32 is working then all its sub-
parts including U32a must be working. Because of this clause, [status-of
U32a working] would become true in the environment f U32wj.

TINT rules fire on predications and make deductions 'in the form of (usu-
ally new) predications. Each firing results in the 'installation of a clause
connecting the old predications to the new predication. For example, sup-
pose a rule fired to deduce that the mode of U25a was normal, and 'Installed a
clause to that effect. The new predication would then be true in the environ-
ment that was a union of the environments of the old predications (bottom
of Figure 71). Ultimately, any consequence of assuming that U25 'is working
will have some superset of the environment {U32wl in its label.

If TINT makes two different deductions about the value of a signal at
a certain time, a conflict i's recorded. At least one of the assumptions un-
derlying those deductions must be false. The conflict is the union of the
environments of the contradictory deductions and is denoted For ex-
ample, if a certain signal was supposed to be 106 in the environment {U25w7
U32WI but it was supposed to be in the environment 30wl, then the
union (U25w, U32w, U30w) is a conflict.

AR of the assumptions that XDE makes are about the statuses of physical
components, hence all the candidates that it produces are sets of physical
components corresponding to repairs. For example, if the above conflict were
the only conflict known, then the candidates are its minimal covering sets
[U25w], [U32w]7 and [U30w]. At least one of the chips U25, U32, or U30
needs to be replaced.

7.2. DECOMPOSITION 187

7.2 Decornposition

In hierarchic diagnosis a component suspected of being faulty can be de-
composed to reveal 'Its subcomponents. The decomposition of a component
involves two conceptually separate operations: (i) firing the behavior rules
for the subcomponents, which usually refer to signals at a different level of
abstraction than that of their parent, and (ii) making the troubleshooting en-
gine entertain fault hypotheses about each individual subcomponent, rather
than about the parent. In traditional hierarchic diagnosis these two opera-
tions are usually considered 'identical. That works fine wthin a single strict
hierarchy, as in HT [Davis84] and DART [Genesereth84]. To deal wth the
physical and functional hierarchies in BASIL, however, 'it is advantageous to
draw a distinction between the two operations.

To make the TINT behavior rules for a certain component fire requires
creating an explicit status-of predication for it. This operation 'is called in-
stantiation. Instantiating inverter U32a, for example, creates the predication
[status-of U32a working]. Rules about the mode and behavior of U32a
will only fire after [status-of U32a working] becomes true. Since U32a
is a part of chip U32, if U32 is believed to be working then U32a should be
believed to be working too. Thus a clause linking the two is installed, as illus-
trated earlier in Figure 71. Also, the parent component should be believed
to be working if all its subcomponents are. When all of the subcomponents
of a parent component have been 'instantiated, another clause 'is installed
that makes the parent status-of predication true if a the subcomponent
status-of predications are.

After instantiating all of the subcomponents of a parent component, XDE
will not construct candidates involving those subcomponents until an as-
sumption (unit clause) has been created for each O�f them. After being cre-
ated these new assumptions will then appear in the labels of some predictions
about the behavior of the device, will appear 'in conflicts, and thus will ap-
pear in candidates. The parent component will have the status working in
the environment consisting of a the assumptions about its subcomponents
(unless that environment i's itself a conflict). Any assumptions about the
original parent component are no longer needed and can be deleted 2. T his

2The binary clauses of the form -parent V child are deleted too, a detail that improves
the efficiency of the TMS.

188 CHAPTER 7 TROUBLESHOOTING

operation is called assumption splitting - any assumptions about the status
of a component are deleted and one assumption i's created for each of its
instantiated subcomponents.

Suppose devices were represented using only one component herarchy.
If a top-level component were a candidate, then its subcomponents would
be 'instantiated and some rules would run. Then the assumption that the
component 'is working would be split and new conflicts would be iscovered
involving its subcomponents. Some of the subcomponents would then ap-
pear in candidates. Each of these could then be treated recursively - their
subcomponents instantiated and their assumptions split.

It 'is helpful for all the assumptions present at any moment to be 'in-
dependent, since this simplifies candidate ranking. If the hierarchy is not
guaranteed to be strict, it takes extra work to ensure that each pair of as-
sumptions is independent, since any pair of assumptions might refer to two
components that share subparts. If the hierarchy 'is strict, at each descend-
ing step it is easy to guarantee that this never happens. Thus it is useful to
locate assumptions only within strict part-of herarchies.

Now suppose that there are two hierarchies and that there 'is no obvious
correspondence between nodes n the two. BASIL, for example, has physical
components and functional components in separate hierarchies that meet at
their leaves. Figures 72 through 74 show an example. There are two boards
A and each having several chips. Three of the chips on A and two of the
chips on form a single four-bit adder. The four-bit adder 'is composed of
two two-bit adders tb1 and tb2. Each two-bit adder is composed two full-
adders, each full-adder is composed of two half-adders and an OR gate, and
each half-adder is composed of an AND gate and an XOR gate. Each of the
full-adders fal through fa4 is distributed across three chips - a quad AND
gate chip, a quad XOR gate chip, and a quad OR gate chip.

In BASIL, assumptions about the status of components are attache to
physical components. This suggests that the diagnosis proceed top-down
through the physical hierarchy, always staying as high as possible. However,
TINT behavior rules are attached only to the components in the functional
hierarchy. While descending through the physical hierarchy, it makes sense
to fire the behavior rules for ever more detailed functional components. Since
there is no obvious correspondence between the components 'in the two hi-
erarchies (Figure 75), there is a coordination problem - how deep nto the
functional hierarchy should components be instantiated for each newly split

i
i
i
I

fa3 fa4

I tb2

7.2. DECOMPOSITION

0Figure 72: Physical Organization of Four-Bit Adder

189

QA2 QX2QA1 QX Q01
Board A II 'D

A - noara u

Figure 73: Functional Organization of our-Bit Adder

1h.L I I

2..] LA I I

.%�u -I- I

-Lit

190 CHAPTER 7 TROUBLESHOOTING

Figure 74: Physical and Functional Organizations

assumption in the physical hierarchy?
For each physical component, there 'is some functional component that

fully contains it. For example, chips QA1 and QX1 are fully contained within
the two-bit adder tbl. Chip Q01 is fully contained only within the whole
four-bit adder. When chip QA1 has an assumption attached to it so that it
can appear in diagnoses, rules should at least be getting run for every com-
ponent that fully contains it. But this is not deep enough, since there would
never be enough behavioral detail to distinguish between dagnoses involv-
ing that physical component and others contained by the same functional
component. For example, if only the rules at the level of two-bit adders were
being run, there would be no way to detect a conflict 'in which QA1 appeared
but QXI dd not. This is because QA1 and QX1 must both be working for
either of the two-bit adders to be working. Going one level deeper in the
functional herarchy would not help - at the level of full-adders there is still
no way to find a conflict nvolving QA1 but not QX1 snce both must be
working for full-adders fal and fa2 to work. Going one level deeper in the
physical hierarchy, however, would help.- wth QA1 is assumed to be work-
ing, rules would be run for any components that fully contain any of ts

7.2. DECOMPOSITION 191

Figure 75: Physical and Functional Decompositions of the Four-Bit Adder

fpart-of
adder

tbl tb2

1 fa2 faS fa4

W W
...

.0 0,
hl h2

&I a2 &3 4 x x2 xS x4 ol o2 oS o4

ppart-of

Board A

QA1 QXI Q01

al a2 3 xl x2 x x4 ol o2 oS o4

Board

QA2 QX2

&S 6 7 a8 x5 x6 x xg

subcomponent AND gates al, a2, a3, or a4. In this case, the corresponding
functional components happen to be the gates themselves, and the behavior
rules at the level of gates have enough behavioral detail to detect conflicts
involving QA1 without involving QX1.

This yields the criterion that XDE uses to decide how deep 'in the func-
tional hierarchy to run rules, given a certain level of assumption in the physi-
cal hierarchy: 'Instantiate a functional components that fully contain anyi'm-
mediate physical subcomponent. A physical component is "fully contained"
if it is a physically maximal part-of the functional component, abbreviated
xpart-of. The xpart-of relation holds between each physical component
and zero or more functional components (Figure 76). A physical component
is a physically maximal part of a functional component when it a its sub-
components help to implement that functional component. Strictly speaking,
it is when a the leaf ppart-of descendants of the physical component are
leaf fpart-of descendants of the functional, but the parent of the physical
component is not maximal. For example, QA1 i's xpart-of tb1 because al
of its leaf subcomponents are leaf subcomponents of tbl, but the same is
not true of the parent of QA1, Board A. Hence if Board A were assumed to
be working, QA1 is an immediate physical subcomponent of Board A and is
xpart-of tbl, so tb1 would be instantiated. The children of tb1 would not.

There is one further complication, which is that for each layer of physical

192 CHAPTER 7 TROUBLESHOOTING

Figure 76: XPART-OF Relations 'in the Four-Bit Adder

fpart-of

ppart-of

Board A

... .". ".

-I ;,
-O .,

QA1 Qxl Q01 QAI

k

al 2 aS 4 xI x2 x3 x ol o2 o.3 o4 aS 6 7 ag x x6 x7 xg al a2 aS 4 xI x2 x3 x4 01 o2 o3 o4

detail, there may be several layers of functional detail, and XDE proceeds
through the functional detail one level at a time. The decomposition" oper-
ation may thus be applied to the same physical component more than once,
although sometimes it will result in functional components being instanti-
ated, and other tmes in splitting of assumptions. The table below shows an
example of the order in which XDE would 'Intersperse assumption splittings
and component instantiations.

All Existing New Instantiations
Step Assumptions of Functional Components

1. Al
2. adder
3. tb17 tb2
4. QA1) QXlj Q011 B
5. fal, fa2
6. hl) h2l h37 h4, ol o4
7. al, a2, a3, a4, x1, x2, x, A
8. Al) A21 A37 A4) QX17 Q011 B
9. Al) A27 A37 A47

Xi) X2) X37 X47 Q01 B

Step 1: both boards are assumed working and no components are instan-
tiated. Step 2 the adder is nstantiated. Suppose the conflict A, B) results.

7.3. RANKING AND REFINEMENT 193

Now [A] and [B] are candidates. Step 3 the subcomponents of the adder, tb1
and 62, are 'Instantiated No further progress can be made in the functional
hierarchy. Step 4 split the assumption that A 'is working. The conflict (A,
B) is replaced by (QA1, QX1, Q01, B. Now [QA1], [QX1], [QO1], and [B]
will be candidates. Steps through 7 instantiate functional components all
the way to the level of gates, within the full-adders fal and fa2. Suppose the
conflict QA1, QX1) is discovered. Now [QA1] and [QX1] are candidates.
Step 8: split the assumption QA1; Step 9 split the assumption QX1. There
are no instantiations to do, since the gates were primitives.

7*3 Ranking and Refinernent

The ranking of candidates 'in XDE takes syndromes 'Into account. The method
is an extension of the candidate ranking method discussed in the previous
chapter.

Without syndromes, candidate ranking works as follows. Each compo-
nent is assigned a prior probability that it is working based on an estimate
of its physical complexity. Assuming independence among failures in al
components, the probability of a candidate 'is thus the probability that all
components have just the status assigned in that candidate. For exam-
ple, the candidate [U25] assigns the status "other" to U25 and "working"
to the other components. The probability assigned this candidate is then
(- p(U25)) x p(U30) x p(U32). AR candidates are then assigned a weight
that is their probability normalized wth respect to all the minimal candi-
dates. This scheme yelds 'intuitively satisfying results, since candidates in-
volving sngle faults are generally more likely than those with multiple faults,
and the candidates with the hghest weights are those involving components
with higher failure rates.

In XDE, components can have statuses other than smply working or not
working, so there wl be more candidates and a more elaborate ranking
function. The benefit of the additional complexity and expense is that the
troubleshooting engine exhibits better focusing. When candidates nvolving
syndromes are shown to be inconsistent wth observations, other candidates
will appear more likely, and the troubleshooting engine win focus its efforts
on those likelier candidates.

To use syndromes, XDE refines candidates by installing assumptions of

194 CHAPTER 7 TROUBLESHOOTING

the form physical component X is exhibiting syndrome S," denoted Xs. For
example, oscillator chips have the syndrome ac#ve* an assumption that
oscillator U25 is inactive i's denoted U25j,,.ctive. Because each of the statuses
of a component are mutually exclusive, creating this assumption would result
in the conflict (U25w, U25j,,.ctjv.). The assumption that U25 is inactive re-
sults in the prediction that its output will have frequency zero, which in turn
has other consequences. Usually, new conflicts involving UMInatie w be
discovered. Candidates are still constructed as the minimal covering sets of
conflicts, but to deal with syndromes t is necessary to consider the comple-
ments of the candidates, the maximal consistent environments. A maximal
consistent environment 'is one to which no assumption can be added without
making it inconsistent. There is one maximal consistent environment per
candidate. XDE constructs diagnoses from maximal consistent environments
as illustrated by example below.

Consider a version of the clock generator troubleshooting example, shown
in Figure 77. The three field replaceable components are the chips U25, U30,

Figure 7: Clock Generator

I
i
1

I

and U32. To better 'Illustrate the refinement operation, assume that i) chips
are primitives and etches do not fail, and (ii) all antibehavior rules are dis-
abled. The initial symptom that (out q u3Ob i a constant nstead of
having frequency 25 Mhz 'elds the conflict (U25w, U30w, U32w), mean-
ing that one of these components is faulty. Refining the candidate [U25w]
with the syndrome U25inactive yields the conflict (U25w, U25inctiv,) as well.

--- -- I --------- ---- I ---- -�

7.3. RANKING AND REFINEMENT 195

U25jn.,,,ti,, is consistent wth the observations and with U30 and U32 work-
ing properly. The minimal covering sets of these two conflicts are [U25W],
[U30w)UMInactiveb and [U32w7U25hmctjve]. The maximally consistent envi-
ronments are their complements U30wU32wU25jnctjvej7 U25w7U30wj
and f U25wU32wl respectively. Each maximally consistent environment de-
notes a consistent assignments of statuses to every component.

These environments denote three possibilities ether (i) U30 and U32 are
working and U25 'is exhibiting syndrome inactive', or ii) U25 and U30 are
working and U32 has status other, or (iii) U25 and U32 are working and U30
has status other. There 'is a fourth possibility, that U30 and U32 are working
and U25 has status other - it mght be neither working nor inactive. Each
maximal consistent environment that contains assumptions about syndromes
yields several diagnoses, one for each subset of those assumptions. In this
case there 'is only one such assumption and hence only one extra diagnosis.
This yelds four dagnoses in all, three corresponding to maximally consistent
environments and one created by deleting assumptions about syndromes from
those environments.

Each diagnosis that XDE generates 'in this manner specifies a single status
for each component mentioned by any assumption. For brevity of notation,
a diagnosis is denoted ... I and shows only the component statuses that are
not working. For example, �UMInactivel denotes a diagnosis in which only the
assumptions U30W, U32W, and U25,,,,.,c t. �U25othj denotes a

1 tiv,, are presen
diagnosis 'in which only U30W and U32W are present.

Each diagnosis has an initial likelihood corresponding to the prior proba-
bility that every component has the status assigned, assuming 'independence
between components'. The distribution assigned to each set of component
statuses is derived from the physical complexity of the component, as de-
scribed in Chapter 6 The weight assigned to each diagnosis 'is ts likelihood

3Although BASIL guarantees that physical components do not share parts so that their
failures can be assumed to be independent, XDE does handle the more general case of
shared parts. Each maximal consistent environment may have several independent subsets
of assumptions, each of which would derive the same consequences as the full environment.
XDE computes the likelihood of diagnoses by taking the maximum likelihood of any 'in-
dependent subset, which is combinatorially expensive if independence is not maintained.
Although not explored extensively, XDE should thereby be able to correctly assign likeli-
hoods to diagnoses that involve dependent failures, since it would compute that likelihood
based only on the likelihood of the original (independent) failure.

p(U25j) X pU30W) X pU32W =

p(U25W) X (- pU30W)) X pU32W =

p(U25W) X pU30W) X (I - pU32W) =

(I - pU25W - pU25j)) X pU30W) X pU32W =

p(U25W) X (- pU30W)) X pU32W)=

p(U25W) X pU30W) X (- pU32W))=

(I - pU25W - pU25j)) Xp(U30W) X pU32W)=

p(U25j) X pU30W) X (I - pU32W))=
(I - pU25W - pU25j))

Xp(U30W) X (I - pU32W))-

CHAPTER 7 TROUBLESHOOTING196

normalized over all dagnoses (UnnOth, and UnnIncfieare hereafter abbre-
viated to Unn and Unn I):

Diagnosis
EU25,�
�U30o�
�U32o�
�U25oj

Likelihood- 6 I -- - ,,,
.0 84
.00315
.00276
.000051

'-,Weight
.623
.200
.175
.00323

From the possible diagnoses, XDE now assigns a weight to each compo-
nent based on the likelihood that it needs to be repaired. This is done by
adding the weights of all diagnoses in which that component 'is faulty. For
example, U25 is broken in both diagnoses �U25 rCtivJ and JU25othj SO

both their weights contribute to the repair weight" of U25. The table below
shows the weights for U25, U30, and U321:

Component
U25
U30
U32

Candidate Weights
.623 +.0032

.200 =

.175 =

Repair Weight
.626
.200
.175

0Continuing the diagnosis, suppose (11 (out y u2a)) is observed to be
changing. This yields the additional conflict (U25a.,,ti, U32W), since it
is inconsistent for the oscillator to be nactive, the 'Inverter working, and
the output changing. In this case intuition says that the oscillator U25 is
no longer as likely to be faulty; the new diagnoses shown below and their
rankings support that intuition. The diagnoses 'Involving U25 are much less
likely than ones involving U32 or U30.

k
Diagnos's

�U30o�
�U32oj
JU25o]
�U25,qU32oj
TU25oqU32oj

Likelihood
.0032
.0028
.000051
.000028
.00000014

I Weight
.53
.46
.0085
.0046

.000024

The repair weight associated with each component adjusts to the new
ranking, indicating that U30 and U32 are much likelier to need repair than
the oscillator U25:

pop"" ------ ---- --

7.3. RANKING AND REFINEMENT 197

Component Candidate Weights Repair Weight
U30 .53 = .53
U32 .46 + 0046 + 000024 = .46
U25 .0085 + 0046 + 000024 = .013

The component status likelihood estimates can be perturbed greatly and
still yield the same candidate rankings. It 'is the relative magnitudes of the
likelihoods associated with statuses other than working in different com-
ponents that matter, not their particular values. In the case of the clock
generator, for example, the same rankings would have been obtained had the
complexity of the oscillator been estimated as low as 40 (instead of 100), and
as long as not all oscillator failures resulted in status inactive. The table
below shows some examples of how much variation there can be. Each of the
last four columns of the table below shows an alternative set of component
status likelihoods that result 'in the same candidate rankings as above:

Component Status Likelihood
U25 working .60 .80 .999 A

inactive .20 .15 .0005 .20
other .20 .05 .0005 .20

U30 working .70 .85 .9998 .85
other .30 .15 .0002 .15

U32 working .80 .90 .9999 .9999
other .20 .10 .0001 .0001

Note that the results remain stable even though likelihoods of the other
and inactive statuses vary by orders of magnitude, so long as their order is
preserved.

The scheme that XDE uses for generating and ranking diagnoses is expen-
sive. Both GDE and XDE suffer from combinator'al explosion of candidates,
but the refinement operation that XDE provides exacerbates the problem.
In pathological cases the number of candidates (or maximal consistent envi-
ronments) can be exponential 'in the number of conflicts, hence exponential
in the number of components. In XDE, the number of candidates is at least
exponential 'in the number of syndromes nstalled. Suppose there are n com-
ponents C and each has one syndrome S. Then there are 2n assumptions, n
of the form C and n of the form Cs. There are at least n conflicts Cw, Cs).

I 11111111

CHAPTER 7 TROUBLESHOOTING198

These n conflicts share no assumptions and if there are no other conflicts,
there will be at least 2n candidates. In experiments with the current imple-
mentation of XDE, the amount of time each new refinement operation took
approximately doubled and was stopped after the eighth refinement. Further-

more, there may be many maximal consistent environments containing more

than one syndrome assumption. This has two undesirable consequences.

The first undesirable consequence is that a maximal consistent environ-

ment wth n syndrome assumptions generates 2 n diagnoses, one for each

combination of those n syndromes. For example, if it is consistent for X to

have failure status S1 and Y to have failure status S2 simultaneously, then

it is also consistent for X to have status S1 and Y to have status other,
and vice versa. Thus one maximal consistent environment generates three

diagnoses. Although several dfferent maximal consistent environments may

generate the same diagnoses, the potential for further combinatorial explosion

is present. XDE does not do anything about this problem. It maintains the
complete set of maximal consistent environments and diagnoses computable
from the current conflicts.

The second undesirable consequence is that syndromes add new informa-

tion to the behavior model from which many useless deductions win be made

unless some additional control 'is exercised. Since syndromes usually have low

likelihoods environments containing multiple syndromes will have exception-

ally low relative likelihoods. Each syndrome results' in new predictions being

made in the behavior model; for example, the inactive syndrome for oscil-

lators results 'in the prediction that the frequency of the oscillator output is

0. Since the predictions from different syndromes will interact, there w be

many predictions that are present only in environments of very low likelihood.

To deal with this problem, XDE controls the running of rules in such a way
as to avoid doing work in environments of low likelihood. XDE pays the price
of explicitly switching from one maximal consistent environment to the next,

making predictions only 'in that one environment, and thereby only working

on a few diagnoses at a time. This allows XDE to look for contradictions

only in the diagnoses with the highest weights, never making deductions in

environments whose likelihoods lie below a fixed threshold percentile. Ex-

plicit context switching is a high price to pay for this control, because the

worst-case overhead is proportional to the total number of clauses tmes the
number of diagnoses that get explored. However, it s possible to get the best

of both worlds, and [deKleer86b] and [Geffner86] both demonstrate schemes

�A.

7.3. RANKING AND REFINEMENT 199

upon which a more efficient implementation mght be built someday.
To summarize, the procedure that XDE performs whenever a new conflict

is discovered i's as follows:

1. Update the set of maXimal consistent environments. Maximal consis-
tent environments are the complements of candidates as constructed by
GDE.

2. Generate the set of diagnoses from the maximal consistent environ-
ments. Diagnoses are the subsets of the maximal consistent environ-
ments obtained by deleting syndrome assumptions.

3. Assign a probability to each diagnosis. Snce each dagnosis assigns a
status to every component mentioned by the universe of assumptions,
the probability of the diagnosis is computed'as the probability of the
conjunction of a those statuses.

4. Normalize the probability of each diagnosis with respect to a the other
diagnoses. This is the weight of each diagnosis.

5. Compute the repair weight of each component. The repair weight 'i's
the sum of the weights of diagnoses n which that component 'is broken.

If no syndromes are ever ntroduced, the set of diagnoses is the same as
the set of maximally consistent environments, and the ranking is then ex-
actly as in GDE. The addition of syndromes into that basic troubleshooting
engine obviously introduces complexities into the generation and ranking of
diagnoses. The advantage of doing so is that introducing a new syndrome
assumption 'Into an existing set of diagnoses can drastically shift the distri-
bution of weights among the diagnoses, provided that the syndrome turns
out to produce new conflicts with existing or subsequent observations. For
example, 'in the clock generator used as an example throughout this section,

without the syndrome U251nactivei the observation that (11 (out y u32a))
was changing would have added no new information and the oscillator would
have remained a likely diagnosis. With it, the weights of candidates 'involving

U25 are all reduced below 2 each.

CHAPTER 7 TROUBLESHOOTING200

7.4 Aaking Observations

XDE selects informative observations using the same heuristic one-level looka-
head strategy as GDE, but there are complications that arise 'in the digital
circuit domain as represented in TINT. Among these complications are that

imprecise predictions hamper the ability of the lookahead strategy to make
good choices, ii) observations must be temporally quantified, and (iii) the
possible observations have differing granularities and costs. XDE has partial
solutions to the latter two problems, but the problems resulting from 'impre-
cise predictions are fundamental to any representation that trades precision
for efficiency. After a bef review of the probe selection strategy, each of
these issues will be considered in turn.

The expected information from a given observation can be quantified
using the entropy of the possible outcomes of the observation. The entropy
is the sum of pi log pi where i ranges over all outcomes and each pi is the
combined weight of the diagnoses that predict outcome i. Continuing the
clock-generator example from above, the following set of diagnoses and their
weights result after the nitial symptom 'is dscovered:

Diagnosis Likelihood Weight
�U25j� .00984 .623
�U30o� .00315 .200
�U32o� .00276 .175
EU25ol .000051 .00323

The behavior model makes many predictions- a small sample 'is shown
below along wth the environments in which they hold and the weights of
the diagnoses that are definitely consistent with those environments. The
prediction that the output of U30a is not changing 'is true n the empty
environment and so 'is known to be consistent with all the diagnoses:

= 956

= 890

= 0.0

Port

(out 0 u25a)

(out u32a)

(out 0 u3Oa)

7.4. MAKING OBSERVATIONS 201

Weights of
Consistent
Diagnoses

.200, 175

.623

.200

.623

.6237.2007
.1757.0051

Value at
time 1 O'Signal

(changing-wrt

0 106 (11 (out

(changing-wrt
0 10' (11 (out

(changing-wrt
0 106 11 (Out

(changing-wrt
0 106 11 (Out

(changing-wrt
0 106 11 (Out

Environments

t JU25wj

ni JU25II

t fU25wjU32wj

nil {U25I7U32WI

nil 11

0 u25a)))

0 u25a)))

y u32a)))

y u32a)))

0 u3oa)))

Each of the ports (out 0 u25a), (out y u32a), and (out u30a) can
be observed to see whether its logic-level signal 'is changing. The expected
benefit of making an observation at each port is the negative of the entropy
of the dstribution of weights among the various outcomes. An approximate
version of the computation 'is shown 'in the table below.

Sum over - log pi
-(.200 + 175) log(.200 + 175) .

-(.623) log(.623)
-(.200) log(.200)
-(.623) log(.623)

-1 log

The last lne shows that probing a signal that has already been observed
has zero value. The other values 'indicate that probing the output of the
oscillator u25a maximizes the expected information and so 'is preferable to
other probes (when different probes yield the same estimated information
XDE picks one of them essentially at random).

The relative likelihoods of component statuses working, other, and so
forth impact the probe selections by influencing the weights of diagnoses.
Diagnoses with high weights tend to bias XDE toward choosing probes in the
vicinity of the components they mention. For example, had the likelihood of
failure in U30 been greater than the likelihood of failure 'in the oscillator, the
probe at (out y u2a) would have been chosen instead. Roughly, the higher

CHAPTER 7 TROUBLESHOOTING202

the repair weight of a component (that is, the more diagnoses it appears in
and the hgher the relative likelihoods of those diagnoses) the more highly
ranked the probes in ts vicinity.

7.4.1 Prediction Strength and Probe Selection

Weak predictions of behavior cause the troubleshooting engine to make poor
estimates of the information to be obtained at possible probe points. This
in turn may cause 'it to wastefully ask for observations that do not produce
any informative conflicts. As dscussed earlier, there are several reasons why
the behavior representation may be unable to make predictions: (i) abstrac-
tions may result in component behaviors not being'total functions, ii) local
propagation of signal values may reach impasses, or (iii) the behavior of com-
ponents may be too complex for there to be any good antibehavior rules. In
the clock generator example being used at the moment, the reason 'is that
the antibehavior rules have been disabled for presentation purposes.

Weak predictions raise the technical problem of estimating the expected
information from a probe when some diagnoses make no prediction about the
outcome of the probe. For example, �U250� makes no prediction about the
signal at port (out 0 u25a). The problem is that computing the entropy
requires a distribution of probabilities that sum to 1. There are at least four
ways of handling the weight that should be distributed among the diagnoses
that make no prediction:

Assume that the other diagnoses predict some value that i different fi-om
all the explicitly predicted values. This i's an optimistic assumption and tends
to overestimate the information from a probe. For example, suppose that
diagnoses carrying .5 of the weight predict that a, particular signal will be
changing, but the others make no prediction. The 'Information 6 9 'in this case
would be computed the same as if all those other diagnoses had predicted the
signal would not be changing. But suppose that diagnoses carrying weight
.33 predict 'it will be changing, and others carrying 33 predict it will not.
This method would estimate the information as 109, although there are
really only two possible outcomes and the nformation cannot possibly be
more than .

Assume that the other diagnoses predict the value that is likeliest among
the possible values. This is a pessimistic assumption, tending to underesti-
mate the information. For example, if diagnoses carrying 4 predict the signal

I- Ill,

7.4. MAKING OBSERVATIONS 203

is changing and others carrying 3 predict it i's not, the result is computed
as if the dstribution had been 7 and 3 so the information is 61. If diag-
noses carrying weight .5 predict a sgnal is changing and the rest make no
prediction, the result is computed as if a diagnoses had predicted it would
be changing too. Thus the information i's .

Assume that the distribution of outcomes among the remaining dagnoses
matches the distribution among the explicitly predicted outcomes. In general
this provides more optimistic estimates than a method 'in which a possible
outcomes are known, but an overly pessimistic estimate of in the case where
only one outcome has been explicitly predicted.

Assume that all possible outcomes are equally likely, and distribute the
weight among them. This 'is the method used by GDE. Suppose for example
that there are four possible outcomes a through d, with p(a = 3 p(b = 27
p(c = 1, and p(d) 0. This leaves a weight of 4, and this method yelds a

distribution of p(a) .4, p(b = 3, p(c = 2 and p(d = 1, and 'information

of 128. The number of outcomes can be treated a oo 'if not known.

This last method usuall makes estimates that�fall between those of the

first and second methods above, and does not exhibit the anomalous behavior

of the third when only one outcome has been explicitly predicted. It has other

anomalies, however. Consider a signal X that 'is completely disconnected from
the current set of candidates. No diagnosis predicts whether it 'is changing or

not. According to this method, probing X is more 'Informative than probing

a signal Y that two-thirds of the diagnoses predict will be changing and that

the other one-third predict Will not.
XDE uses method 4 because it makes reasonable estimates and its princi-

pal anomaly i's easy to avoid sgnals for which no dagnosis predicts a value

are never probed. The values XDE computes for each of the three probes

are shown below. These are more accurate versions of the approximate val-

ues shown earlier, although the differences are very small and the relative

rankings in this case have not changed.

CHAPTER 7 TROUBLESHOOTING204

Port Sum over -pi log pi
(out u25a) -(.200 .175 .0025) log(.200 .175 + 0025) = 0954

-(.623 .0025) log(.623 .0025)

(out y u32a) -(.200 + .088) log(.200 + .088) = 0890
-(.623 + .088) lo! (.623 + .088)

(out u3Oa) -1 log = 0.0

7.4.2 Temporal Quantification and Granularity

The behavior of a circuit can be observed at various tmes and at temporal
granularities, with varying cost 'in setup time and difficulty- XDE currently
has a simple and limited treatment of these issues.

Signals must be observed over tme intervals. Each observation in XDE
is a TINT thru predication and is part of some signal history- The expected
information gain from the probing of any sgnal is the maximum for any
interval during 'Its history. Thus, when XDE suggests that (say) signal (11 X)
be probed, it means that there is some interval of its hstory during which
an observation would be useful. XDE presents to the user the entire signal
history of (11 X) and abstractions of 'it along wth some typical misbehaviors
(a constant for example). The actual observations made of the device wl
probably correspond to one of the intervals already presented; if not, then
an interval describing the observation can simply be typed in. For example,
XDE may expect the value to be observed at a certain signal to be either 0
or 12, and so presents those as options; if the actual observation was 13 that
can be typed 'in too. All observations are assumed to be completely accurate
in terms of the signal values observed and the ntervals over which they were
seen.

The default interval over which sgnals are to be observed 'is denoted by
a44 global reference" timeline denoted by the pseudo-signal GR. The assertion
Ethru ?a ?z GR t] means that observations are made by default with re-
spect to the time interval ?a to ?z inclusive. The interval ?a to ?z is referred
to as the current "observation interval which 'is automatically changed as
the user adds new observations. The usual default is the ten second interval
from to 10'0 nsec inclusive.

In a real troubleshooting session, the rcuit board continues its behav-

--- - - -1-1- ---, -,

7.4. MAKING OBSERVATIONS 205

ior while the troubleshooter thinks about what to do next, and each new
observation is made at a later tme than the last. Since it would be un-
wise to assume that the circuit i's not changing its state the troubleshooter
ordinarily forces it into a known state before making each new observation
(by pressing a "reset" button, for example). The troubleshooter ordinarily
further assumes that 'if the observations of the circuit are made more than
once, the same results will be obtained each time. XDE has these assump-
tions built into it. For example, 'in troubleshooting the Audio Decoder each
new observation 'is added over the 'Interval from 'to 10", rather than mak-
ing each observation come after the previous one. Similarly, in the Input
Encoder troubleshooting example, observations are added over the intervals
(_007 +oo)7 [1 x 10'9 2 x 109], 2 x 109, oo), and [0, 10'0], in that order. It is

assumed that each new observation is made after pressing the reset button

and providing identical test inputs to those before, so that the same behavior

predictions are obtained.

Observations of different kinds of signals at different locations have dffer-
ent costs 'in setup time. Currently XDE only aows signals to be observed at

the external ports of pns, where the pin meets theetch (although for clarity

most of the examples elsewhere show observations being added at the clos-

est port of some functional component). Observations also cannot be made

over intervals shorter than one second. XDE associates a numerical cost with

each possible probe, and 'Its probe suggestions are biased to favor cheaper

observations by multiplying the expected 'Information of each probe times its

cost. The costs currently used are as follows; they are estimates based on

the relative ease of making the observation:

0 Observing whether a logic-level signal is I or a through the current

observationinterval costs 1.0. This is the most basic kind of observation

and 'Involves placing a single probe.

0 Observing whether a logic-level sgnal is changing with respect to the

current observation interval costs 09. This 'is slightly easier than view-
ing the actual value of the sgnal.

0 Observing the swing of a voltage with respect to the current observation

interval costs 09. Observing the amplitude of a signal is judged to have

about the same difficulty as judging whether.it is changing or not.

CHAPTER 7 TROUBLESHOOTING206

Observing the frequency of a lo 'c-level or voltage sgnal during the
current observation interval costs 1.1, since 'it may require adjusting
the temporal resolution of the oscilloscope.

0 Observing the value of a sgnal sampled wth respect to a clock costs
2.0, since 'it involves setting up two probes, oe a strobe for the other.

e Observing the frequency of a two-phase clock sgnal costs 20, since t
too involves setting up two probes.

Observing the outputs of the Input Encoder cost 1.0 no matter where
they are physically located; these are assumed to be observable through other
hardware not explicitly represented. The brightness of the console screen, for
example, 'is an ndirect way to observe the brightness signal.

Ta 5 Evaluation

Testing and dagnostic programs are usually evaluated by their coverage (the
range of faults they can detect), resolution (the accuracy with which they
can 1dentify any fault actually present) and speed (as measured by the time t
takes the running program to 'isolate the fault). The combined troubleshoot-
ing system of XDE, TINT, and BASIL can be evaluated this way too, although
it is important to distinguish which subsystem 'is responsible for the quality
achieved along each dmension. In model-based troubleshooting, coverage,
resolution and speed all depend critically on the ability to detect conflicts
between the actual behavior of the device and 'Its predicted behavior. XDE
cannot do anything without those conflicts; if the model 'is too weak to pro-
duce predictions that are falsifiable by observations, then XDE will ask for
many observations but make no progress toward isolating the fault. Thus
the importance of the device representation far outweighs that of the trou-
bleshooting engine.

7.5.1 Coverage

XDE needs to discover at least one discrepancy before it starts generating
diagnoses. TINT, therefore, must represent enough detail about the behavior
of the crcuit as a whole to detect any misbehavior worth repairing. This does

7.5. EVAL UATION 207

not imply that every misbehavior of every ndividual component needs to be
detectable, although that is one way to guarantee coverage. For example, 'if
the specifications of the Console Controller Board say that the screen bright-
ness should increase in response to the "b" command, but do not specify how
fast, then 'it is probably okay to represent that rate of change qualitatively
instead of quantitatively. Any faults whose only 'effect would be to slow down
the rate of advance would not be detected. The coverage provided by a be-
havior model is thus relative to the desired function of the whole device and
of the detail of the observations.

The representation of the Console Controller Board in TINT is an in-
complete prototype in this respect, snce there are some functions of the
board that 'Its behavior definitions are too temporally coarse to represent.
For example, if the board were faulty 'in such a way that large motions of
the mouse across the table were to result in only small and sporadic motions
on the screen, this would surely be considered a misbehavior. But since the
TINT signals only represent the motion qualitatively it cannot describe the
misbehavior. A rough measure of the coverage that the representation pro-
vides is to count the most common classes of faults, and determine which of
them result in misbehaviors that can be distinguished. Among the most com-
mon faults are those that cause individual pns to act as open crcuits. The
Audio Decoder, for example, has nne chips having some 160 pins between
them. Of these 160, failures in all but 30 would be detectable as discrepancies
in the swing, frequency, and frequency n the first derivative of the voltage
output of the digital-to-analog converter. Coverage of 80% of the common
faults from only these three features of the output voltage is not bad, and
would probably be improved with more detailed behavior rules for the shift
registers and counters.

7.5.2 Resolution

A model-based troubleshooting program provides diagnostic resolution in
proportion to the structural and behavioral detail that the device model

'des. The program cannot of course d'st'ngu'sh between components
that are not represented separately. BASIL, for example, represents an entire
etch as a sngle component, so a break anyplace in the etch results 'in the same
diagnosis. A subtler problem is that even failures in components represented
separately cannot be distinguished if their behavior models and observations

208 CHAPTER 7 TROUBLESHOOTING

0are insufficiently detailed. For example, Figure .8 shows a two-component
device whose A and components have the behaviors A and B. Suppose that
x and z have been observed and a discrepancy detected at z. (Aw, Bw) is a
conflict and the diagnoses are Aw� and Bw�.

Figure 7.8: Dstinguishing Between Diagnoses

To distinguish between these diagnoses requires an observation at y - but
'it also requires that either the observation contradict (A x), or that (B)
contradict the observation at z. It might do neither. The observation might
be too coarse, the behaviors might be partial, or both. There 'is nothing
wrong with the troubleshooting engine; short of having an exhaustive set of
syndromes for A or B, there 'is nothing it can do. The model is too weak.

The temporally abstract models of the Console Controller Board cause
problems for XDE that are very much like this example. In principle TINT can
represent the temporally detailed behavior 'in terms of logic-levels and for
every gate 'in a circuit, and hence in principle XDE can detect misbehavior 'in
any individual component. In practice, TINT rules only cover the temporally
coarse behaviors that are easy to observe. For example, an open crcuit on
a control input of the shift register U21 might result 'in all its parallel data
output signals changing, although in seemingly random fashion that would
show up on the digital-to-analog converter (U43) output as such (Figure 79).

Even assuming that every visible node in the Audio Decoder were probed
to see whether it was changing or not, there would nevertheless be no way
to dstinguish between the diagnoses EU210thj and JU430thj. The outputs
of U21 are not represented 'in enough temporal detail for a dscrepancy to be
detected there. More generally, among the 130 detectable common faults 'in
the Audio Decoder, about half of them are distinguishable down to a single
chip and the remainder result in this kind of ambiguity. Beyond the common
faults, it is probably the case that most faults internal to the chips would
result in similar lack of resolution. The temporal detail of the predictions is

7.5. EVAL UATION 209

Figure 79- Detail of Audio Decoder

Data J.--------3 UI

rl ̂ -L

L- L.-, CA I

.:)nltt 11Reg PI
Parallel Data

4 Outputs ki

.1

%. I u f.; 1%

Control . Shift ---- i
%. I I I --- -- 11

Inputs Reg

U43

I

Digital to
Analog

Converter

k
v

Voltage
Output

--- ir - __ I 9 Is %15 1

sufficient to allow many correct diagnoses but is nsufficient to achieve perfect
0resolution, even wth exhaustive probing. Ultimately, given any particular

level of structural detail7if perfect resolution is desired there wl always be
cases that require detailed timing nformation.

7.5.3 Speed

An appropriate measure of the speed of a model-based troubleshooting pro-
gram is the number and cost of the observations it requires to reach 'its final
diagnosis. This 'is a meaningful measure so long as the device model provides
enough resolution that there is in fact such a thing as a "final diagnosis." If
the behavior model is too weak or the observations too coarse to distinguish
different components, XDE eventually quits after asking for aH possible ob-
servations. The speed metric in that case 'is hardly meaningful. Even if the
model and observations do provide sufficient detail to dscriminate compo-
nents down to the primitive level of detail, the model may stiR be too weak to
discover genuine conflicts between what has been observed and what should
have been. In that case more observations will be required than strictly nec-
essary. The probe selection strategy used by XDE has a number of heuristic
aspects: (i) it 'is influenced by component failure rates that are estimates,
(ii) 'it estimates the benefits of probes wth a one-level lookahead rather than

---- - -- -- - - -$all imilailli Ilmll -- i - I -.0.

I,,- --- - - - ----- ---

CHAPTER 7 TROUBLESHOOTING210

searching through all possible sequences of observations, and (iii) it estimates
information from probing signals whose predicted value 'is not known n an
diagnoses by assuming that all observation outcomes are equally likely. How-
ever no matter how good these heuristics are, in the long run their positive
impact on the probes actually chosen are unlikely to be nearly as strong as
the negative impact of a device model that cannot make full use of the ob-
servations actually chosen. The cleverest strategy for choosing observations
cannot make up for observations and models that are too coarse to detect
discrepancies.

7-.6 Surnrnary

The model-based troubleshooting engine XDE extends GDE by incorporating
hierarchic diagnosis and fault models. Herarchic diagnosis is achieved wth
the decomposition operation, which descends one level at a time through
both the physical and functional hierarchies in BASIL. Knowledge about
how components fail, represented as yndromes, is used 'in the refinement
operation. Syndromes help focus the troubleshooting process by biasing the
suggestion of new observations away from components unlikely to be failing.
XDE can suggest observations of signals at various temporal resolutions, and
it biases 'Its suggestions toward those that are cheaper.

Like all model-based troubleshooting engines, XDE is almost totally de-
pendent on the device model and on the technology for observing the real
device. Obviously, if the model lacks fidelity its dagnoses may be incorrect.
A subtler problem is that if the model is imprecise -if it fails to produce fal-
'flable predictions - the troubleshooting engine will be indiscriminate, never

reaching a conclusive diagnosis no matter how many observations are made.
In light of this dependence, any evaluation of the quality of the diagnoses
that XDE produces is really an evaluation of the quality of the underlying
device model.

" a er

/one usl'ons an ure l 7or

Model-based troubleshooting has not previously scaled up to deal with com-
plex devices such as digital circuit boards. This is because traditional analytic
models of complex devices do not explicitly represent aspects of the device
that are important for troubleshooting. This report has described a dgital
circuit representation that was constructed with troubleshooting explicitly 'in
mind, a representation that enables the general model-based troubleshooting
engine XDE to successfully diagnose failures 'in crcuits that are much more
complex than any previously attempted. This representation 'is embodied in
the language BASIL for representing the physical and functional organiza-
tion of circuits and in the temporal reasoning system TINT for representing
circuit behavior. The modeling principles that underly these languages and
govern their use concern ways 'in which features of the crcuit relevant to
troubleshooting can be made explicit:

Components in the representation of the physical organization of the
circuit should correspond to the possible repairs of the actual device.

Making the elements of the structure representation correspond to pos-
sible repair actions ensures that the troubleshooting program win not waste
effort trying to discriminate between diagnoses that have identical repairs.
BASIL represents circuits using a strict hierarchy of physical components that
reflects the way the board was manufactured and hence those parts that can
be replaced.

9 Components 'in the representation of the functional organization of the
circuit should facilitate behavioral abstraction.

211

CHAPTER 8. CONCLUSIONS AND FUTURE WORK212

The only role that an explicit representation Of functional organization
plays in model-based troubleshooting 'is to make behavior prediction more
efficient. In extracting the functional organization from a raw schematic the
modeler need only represent what will make the behavior easier to reason
w'th rather than necessarily representing what the designer had in mind.
BASIL represents this functional organization using a nonstrict component
hierarchy whose leaves are shared with the physical hierarchy. XDE does hi-
erarchic diagnosis using the physical and functional herarchies by descending
primarily through the physical hierarchy, while reasoning about the behav-
lor of functional components roughly corresponding to each level of physical
detail.

9 The behavior of components should be represented 'in terms of features
that are easy for the troubleshooter to observe.

Some features of time-varying signals are easier to observe than others.
In digital crcuits, temporally coarse features of sgnals are easier to ob-
serve than clock-cycle-by-clock-cycle behavior. TINT provides a framework
in which both abstractions and behaviors are functions from sgnals to sig-
nals, along with a vocabulary of temporal abstractions 'including concepts
such as change, count, and frequency. Expressing the behavior of compo-
nents in these terms makes prediction more efficient while largely retaining
the ability to detect the effects of common faults.

The behavior of a component for which changes on 'Its inputs always
results 'in changes on its outputs should be represented in temporally
coarse terms.

Given a set of temporal (or any other) abstractions, it is an interesting
and relevant question to ask: for what class of behaviors 'it is possible to
formulate easily computable and strong abstract behaviors.? More specifi-
cally, given the language TINT and its vocabulary of temporal abstractions,
for which components is it worth writing temporally abstract behavior rules
for? In the case of temporal abstractions, the natural class of relevant be-
haviors are those for which changes on inputs always result in changes on
outputs. Combinational behaviors expressible as one-to-one functions, as
well as toggles, counters, and shift registers, fall n this category.

213

0
0 A temporally coarse behavior description that only covers part of the

behavior of a component is better than not covering any at all.

Although the full behavior of a component may be too complex to reduce
to a smple relationship between (say) the number of changes on ts nputs
and the number of changes on 'its out-puts, there may be a useful relationship
that involves only a subset of its 'inputs, assuming that the others are held
constant. Smilarly, there may be a useful relationship between different
signals sampled With respect to a common clock. TINT rules for describing
the temporally abstract behaviors of components ranging from boolean gates
to microprocessors capture the normal behavior of those components using
these techniques.

A sequential ircuit should be encapsulated 'Into a sngle component to
enable the description of its behavior 'in a temporally coarse way.

Although the ndividual behaviors of the cmponents in a sequential cir-
cuit may not lend themselves to temporally coarse descriptions, the group
may be performing a simple function when taken as a whole. Encapsulating
the group of components makes it possible to apply other temporal abstrac-
tion techniques such as holding inputs constant. In many troubleshooting
situations, it will be unnecessary to ever consider the 'Individual state tran-
sitions of its sequential behavior.

An explicit representation of a given component failure mode should
be used if the underlying failure has high likelihood.

Components break in the field 'in certain ways much more often than
in other ways. XDE takes advantage of this knowledge by extending the
multiple-faults approach of GDE [deKleer87] to use fault models. The notion
of a syndrome in BASIL and TINT captures knowledge about the likelihood,
physical causes, and local behavioral effects of failures. Syndromes are ben-
eficial when they are 'Inconsistent with the symptoms, snce this can reduce
the ambiguity among the possible diagnoses. A syndrome with relatively
high lkelihood 'is valuable because it can be used to virtually eliminate an
otherwise logically possible diagnosis.

214 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

An explicit representation of a given component failure mode should be
used if the resulting misbehavior 'is drastically simpler than the normal
behavior of the component.

If a component with normally complex behavior has some potential in-
ternal fault or faults that cause 'it to misbehave catastrophically, then any
partially correct behavior observed for the component makes it a less likely
suspect. ndromes that simplify the behavior of a component are useful be-
cause their effects on the rest of the device are relatively efficient to predict.

The power of these eight principles has been demonstrated in an imple-
mented program that can troubleshoot problems in a board-scale crcuit, the
Symbolics 3600 Console Controller Board. Testing the system on a wider
set of cases using the same board and modeling yet other boards are among
the important follow-up work that needs to be done. The following sec-
tions discuss three avenues of further research that should be performed: (i)
improving the engineering of the program, (ii) deriving the specialized trou-
bleshooting representation from more primitive circuit descriptions, and (iii)
generalizing the methodology beyond the domain O dgital circuits.

8.1 Engineering Issues

The current implementations of XDE, BASIL, and TINT are demonstration
vehicles and are too slow to contemplate putting to serious use in trou-
bleshooting. Since their implementation details have not been presented in
this report it would be 'inappropriate to discuss 'in detail how those imple-
mentations could be improved, nevertheless it 'is worth mentioning certain
broad areas needing 'improvement.

Circuit structures are described 'in BASIL using the predicates Isa, ako,
has-port, conn, status-of and corr, and assertions using these predicates

are stored in the most naive and general fashion as patterns in a discrimina-

tion net. A better implementation would store the components and connec-
tions as frameinstances [Minsky75] [Batali8l] [Davis83]. JOSHUA provides a

substrate for doing so [Rowley87], but the conversion has not yet been done.
Moreover, while building the BASIL description of the Console Controller

Board the lack of graphical display and editing facilities was keenly felt;
reimplementing BASIL using an existing design and layout language might

8.1. ENGINEERING ISSUES 215

be no more difficult than using any arbitrary frame language while yielding
considerably more utility. i

TINT 'is slow in spite of its simplicity. As with BASM, assertions involv-
ing the predicates thru and tsame are implemented (primarily) as patterns
in a discrimination net and this generality 'is costly. A deeper problem is
that during the prediction process the forward chaining from these assertions
makes many deductions about time intervals that later turn out to be shad-
owed. This problem mght be alleviated 'if assertions were made about time
intervals with relative endpoints 'Instead of fixed 'Integers. The predecessor
to TINT was a temporal constraint propagator �MNT that used inequalities
over time points in that fashion. Goal-directed reasoning about these in-
equality constraints was 'Integrated with the forward chaining from 'Intervals
of signal histories. However, the effort to ge this more complex program
adequate performance turned into a major research agenda all its own and
was suspended in favor of the simpler TINT ontology. The next incarna-
tion of the temporal reasoning subsystem will probably not be a data-driven
constraint propagator at all, but a goal driven system that produces more
limited predictions.

The hybrid TMS used in the program i Is basically a single-context TMS to
which the propagation of environments and labels has been added. Labeling
each assertion with its minimal environments is very useful for probe selec-
tion, implying the need for an Assumption-based TMS architecture (ATMS).
On the other hand there are at least two reasons for doing explicit context
switching: (i) TINT requires that some assertions be "shadowed" to prevent
rules from firing on them, an effect that seems difficult to produce in an
ATMS, and (ii) unrestricted rule firing in environments containing several
syndromes would be wasteful since the relative likelihood of those environ-
ments is usually very small. An ATMS that provided shadowing and efficient
incremental updating of environment likelihoods (so as to support best-first
search among diagnoses) would be a good replacement for the current hybrid
TMS.

XDE currently tries to use fault models, then tries to do hierarchic diag-
nosis and when those fail t selects probes. A better strategy would make
use of the number of outstanding diagnoses and ambiguity among the di-
agnoses to choose the next operation. For example, when there are many
diagnoses, getting new observations is probably preferable to doing decom-

Rions. Expe 'ments wth a strategy based on the entropy of the currentposi ri

set of diagnoses did not yield sgnificant improvement, but better control is
clearly necessary. The decomposition operation 'in particular is invoked far
too casually, resulting in many useless predictions being made.

Finally, XDE spends a surprising amount of time fnding optimal probes

The basic reason is that the amount of work involved each time a probe is

chosen 'is proportional to the number of possible probes tmes the number
of candidates. However, snce the only interesting probe is the one having
minimum entropy, there ought to be a way of sorting the possibilities so that

not every candidate or probe needs to be examined every tme. Also, not

every candidate likelihood changes between observations, so there should be
some way to cache parts of the computation from one probe selection to the

next.

8.2 Deriving the Representation

The fact that the behavior rules for the components are currently all hand-

crafted is a cause for concern. In the short term a library of signal definitions

behavior constraints, and syndromes has been accumulated to speed up the
description of future circuits. However, the whole process needs to be au-

tomated: the troubleshooting program should be able to diagnose a circuit

starting only from a primitive representation of structure and part specifica-
tions along with whatever design specifications and annotations happen to be

available for its various modules. Presumably this Would be done by building

and using an intermediate representation of 'Its structure and behavior along

the lines described in this report.

Extracting an appropriately abstracted behavior representation from an

underlying physical structure is an exceptionally dfficult problem. Snce

the appropriate abstractions to be used for describing circuit behavior are

bound to capture some of the intended function of the circuit, there are close

connections between this and the function-from-form. problem. [deKleer78]

presents as a key insight a teleological constraint: the correct interpretation

of the function of a designed artifact must assign some role to every structural

element. A latent flaw 'in that particular approach was that the target rep-
resentation of circuit function seemed to eist 'in a vacuum, having no role in

any problem solver. In FUNSTRUX [HaH87], by contrast, simulation models

'So does GDE (B. Williams, personal communication).

CHAPTER 8. CONCLUSIONS AND FUTURE WORK216

8.3. GENERALIZING THE METHODOLOGY 217

of digital crcuit elements are symbolically composed into simulation mod-
els for aggregate structures; the compositions and subsequent simplifications
are strongly guided by the goal of producing efficient simulation models for a
specific event driven smulator. In the present case,,the target problem solver
is XDE and so the desirable characteristics of the target representation are
clear. This should provide a strong constraint on the relevant abstractions.
The FUNSTRUX approach might also work under the somewhat different
goal of producing temporally abstract behaviors. Fnally snce the 'image
of an ordinary digital model under temporal abstractions can be viewed as
a reformulation into a specialized representation, the frameworks outlined
in [Kramer87] or [VanBaalen88] mght be useful ways of approaching the
problem.

An alternative approach would be to start doing prediction at low levels
of detail, but recognize recurring patterns of events and extrapolate their
cumulative effects over large stretches of tme. 'This is the essence of the
aggregation technique [Weld861. There are at least two difficulties with this
approach: (i) recognizing what constitutes a "recurring" pattern of events,
that 'is, deciding which events are relevant to a given'pattern, and (ii) ensuring
that the extrapolated predictions are robust against fencepost errors. In
spite of these difficulties it bears further investigaiion because it has strong
intuitive appeal - people seem to be good at detecting repetitive sequences
and extrapolating them to find their limits. At the very least, aggregation
should be a useful technique for generating fault syndromes from ordinary
fault smulations.

8*3 Generalizing the 1\4ethodology

Digital crcuit troubleshooting is a relatively narrow domain. To learn more
about model-based troubleshooting of complex systems in general it is impor-
tant to apply the technology to systems in a variety of domains. The eight
principles of modeling for troubleshooting that form the core of this work
are briefly discussed below in the context of local area computer networks,
automobile engines, and 'Internal medicine.

The eight principles can be used to suggest characteristics of a represen-
tation for troubleshooting computer networks. Frst, there is a superficially
appealing analogy to be drawn between the structure of computer boards

CHAPTER 8. CONCLUSIONS AND FUTURE WORK218

and the structure of networks. Instead of chips connected by wires, there
are hosts connected by cables, and so forth. However, one of the principles
dictates that the elements of the structure should correspond to failures and
repairs. On closer investigation of the domain it turns out that failures and
repairs in networks only rarely have a physical cau§e such as a broken cable;
the most typical failures are crashed server processes or operating systems,
for which the repair involves a restart operation. This indicates that, for
example, components such as hosts are not appropriate physical primitives,
but that in some sense server processes are. Second, tests are usually de-
signed into the system and can be ite cheap. Some networks, for example,
prov'de an operation that allows one host to request a status response from
every host on its subnetwork. To model the features of component behaviors
that are easiest to observe means that for the most part only the behavior of
the hosts with respect to these test operations needs to be modeled. Finally,
there are other network misbehaviors for which the principal symptoms are
temporally coarse - mail servers, for example, are notorious for building
up enormous queues that ultimately result n slowed response times. This
suggests that appropriate behavior models will deal not with the movements
of individual packets, but rather with temporally abstract features such as
the number of packets and their rates of transmission. All of the principles
for constructing temporally abstract behaviors appear to apply equally well
to network events as to digital events.

There are few obvious analogies between automobile engines and dgital
circuits, but from the special perspective of troubleshooting and the prin-
ciples of modeling for troubleshooting engines have important similarities
to circuits. First, they are manufactured artifacts that are repaired by re-
placement of their physical parts. Second, the easily observed features of
the engine behavior are temporally coarse compared to events such as piston
firings and crankshaft rotations. Some of these temporally coarse features de-
scribe the behavior of subsystems with sequential feedback: for example, the
distributor, pistons, crankshaft, and generator form a feedback loop whose
interesting properties are 'its revolutions per minute, sputters, vbrations,
and so forth. Third, there are many failure modes worth modeling explic-
itly ether because they are common or because they drastically simplify the
behavior of the engine: empty gas tanks, dead batteries, disconnected wires,
and so forth. While it would surely be a major task to construct a ull-blown
model of an internal combustion engi ane the eight principles do suggest which

18.3. GENERALIZING THE METHODOLOGY 219

properties of engines will be most important to include in a model to be used
for troubleshooting.

The methodology and principles in this work are most appropriate for
troubleshooting designed artifacts. An implicit assumption has been that
the modeler could 'in principle provide an arbitrarily detailed account of the
behavior of the system, while the modeling challenge 'is to make do with the
least detailed description that still works. This assumption does not apply
to human physiology and medicine; the challenge'in these domains is to pro-
duce any model. From the perspective of this work there are other important
differences as well. Frst, it is inappropriate to emphasize the representation
of physical structure. In medicine 'it is relatively rare that therapy consists
of physically isolated structural repairs(organ transplants notwithstanding).
Second, in medicine easily-observed symptoms are uncorrelated with their
temporal extent. While 'it may be important to explicitly model what can be
observed it generally has nothing to do with temporal abstractions. Third,
the criteria used to decide which circuit fault models to include are at best
incomplete for human diseases. For example, the short and long term se-
riousness of the diseases should somehow be taken 'into account. A few of
the principles of modeling for troubleshooting might apply to subdomains of
medicine for which good analytic models est, but only tangentially. For
example, in the multilevel physiolo 'cal model in ABEL [Pati'181], one of the
simplifications that distinguishes the abstract levels from the detailed ones
is that feedback loops are composed and summarized. In general, however,
there is as yet no compelling evidence that the principles of modeling for
troubleshooting will apply to modeling physiology for diagnosis.

I
V

0

z6l. e nix

0 0
cenario anscri S

The transcripts in Appendices A.1 through A.11 have three kinds of entries:

0 "There are n diagnoses..." indicates the status of the troubleshoot-
ing engine after each change to its set of diagnoses. The current top
diagnosis is shown with it.

0 "Adding observation..." means that a new TINT assertion about the
value of some observable signal is being added.

9 "Entropy Signal; Aliases... 17 shows the top ranked probe
its entropy, the internal name of the signal, two other nearby named
ports to help provide context, and finally the list of values predicted
there along with their labels.

To produce the transcripts, the troubleshooting engine consulted an or-
acle to get the result of its hghest ranked probe, just as 'if a human user
had typed in the same result. Some of the transcripts have a histogram
at the end that summarizes the sequence of probes made. The length of
each horizontal bar corresponds to the number of competing diagnoses. The
bracketed timestamps Ehh: mm: s s give a rough idea of the performance of
the troubleshooting program running on a Symbolics 3650 with 2 Mw 16
minutes for one of the Audio Decoder examples 'is typical.

220

A.1. CLOCK GENERATOR EXAMPLE

A,.1 Clock Generator Exarnple

221

.. 0

There are I diagnoses (entropy 0.000) accounting for .5:
1.000

ig:03:191 Adding observation of I at
ELL [HOLE i N733

Conflict' There are 3 diagnoses ntropy 1303) accounting for .05:
0.639 11026 OtherM

There are 3 diagnoses (entropy
0.639 C(U26 Other)]]

ie" f ining U26 with OPEN
.. 0
Thor* are 3 diagnoses (entropy
0.636 CUU26 Open)]]

Decomposing ASSUMPTION IXF

There are 3 diagnoses (entropy
0.636 MU26 Open)]]

D;;omposing ASSUMPTION INF

There are 3 diagnoses (entropy
0.636 EE(U26 Open)13

&;omposing ASSUMPTION INF

There are 3 diagnoses (entropy
0.636 [[(U26 Open)33

1.303) accounting for :

1.306) accounting for :

[STATUS-OF U25 WORKING] >)

1.306) accounting for 6:

[STATUS-OF U30 WORKING]>)

1.306) accounting for 6:

[STATUS-OF U32 WORKING] >)

1.306) accounting for :

Entropy Signal; Aliases; Value-Envirorment Pairs
0.9431 [CHANGING-WRT iOOOOOOOOO 10000000000 ELL [HOLE i N291113

aka [PIN 8 U2s3 aka [OUT 26A3
((NIL #<ENV 2 0 #<ENV I 00) (T #<ENV I 0>))

iog:05:251 Adding observation of T at
[CHANGING-WRT iOOOOOOOO 10000000000 ELL [HOLE I N29i3l]

'';re are 2 diagnoses (entropy 0997) accounting for 5:
0.633 EUU30 Other)]]

Entropy Signal; Aliases; Value-Environment Pairs
0.9968 [CHANGING-WRT 1000000000 iOOOOOOOOOO ELL [HOLE i N206111

aka, [PIN 2 U321 aka. [OUT Y U32A]
((T #<ENV i 02>) (NIL #<ENV i 04>))

222 APPENDIX A. SCENARIO TRANSCRIPTS

*19:06:061 Idding observation of NIL at
[CHANGING-WRT iOOOOOOOO 10000000000 L [HOLE i N205113

'*;re are I diagnoses (entropy 0.000) accounting for :
1.000 EVU32 OtherM
...

A.2. AUDIO DECODER EXAMPLE 223

A.2 Audio Decoder Exarnple I

There are I diagnoses (entropy 0.000) accounting for .5:
i.ooo [03

14:06:i3l Adding observation of at
[MAX-MIN-WW 100000000 [VOLTAGE [HOLE i N272333

'*;re are 10 diagnoses (entropy 3269) accounting for 5:
0.163 U43 Other)]]

Decomposing ASSUMPTION INF [STATUS-OF U43 WORKING>)

There are i diagnoses (entropy 3269) accounting for 5:
O.i63 [[(U43 Other)33

&;omposing ASSUMPTION INF [STATUS-OF U12 WORKING3>)

'';re are 10 diagnoses (entropy 3269) accounting for .95.-
0.163 MU43 Other)]]

*;;omposing ASSUMPTION INF [STATUS-OF U44 WORKING>)

There are diagnoses (entropy 3269) accounting for 5:
0.iG3 [U43 Other)33

.. ;omposing (#<ASSUMPTION INF [STATUS-OF U44 WORKING>)

There are 10 diagnoses (entropy 3269) accounting for 6:
0.163 EC(U43 Other)33

D';;omposing ASSUMPTION INF [STATUS-OF U44 WORKING>)

There are iO diagnoses (entropy 3269) accounting for 6:
0.163 [[(U43 Other)]]

ie;omposing (#<ASSUMPTION INF [STATUS-OF U2i WORKING>)

'';re are i diagnoses (entropy 3269) accounting for 6:
0.163 E(U43 Other)]]

Entropy Signal- Aliases; Value-Environment Pairs
0.8291 [CHANGING-WRT iOOOOOOOOOO LL [HOLE 2 N290111

aka [PIN i U431 aka [IN CS U3A]
((T #<ENV 01307>))

[14:10:001 Adding observation of i at
ELL [HOLE 2 N29011

Conflict! There are 6 diagnoses (entropy 2666) accounting for 9:
0.222 2 OtherM
0.0

224 APPENDIX A. SCENARIO TRANSCRIPTS

There are diagnoses (entropy
0.263 UU12 OtherM
.0.
Decomposing ASSUMPTION INF

'h';re are diagnoses (entropy
0.263 CEM2 Other)33

&;omposing ASSUMPTION +lNF
.0.
There are diagnoses (entropy
0.263 [[(Ui2 Other)33

*;;omyosing ASSUMPTION +INF

There are diagnoses (entropy
0.263 Ui2 Other)33

2.288) accounting for 6:

[STATUS-OF UiO WORKING]>)

2.288) accounting for 6:

[STATUS-OF Mi WORKING]>)

2.288) accounting for 6:

[STATUS-OF U20 WORKING>)

2.288) accounting for 6:

0 .0

Entropy Signal; Aliases- Value-Environment Pairs
0.7167 [CHANGING-WRT 0 iOOOOOOOO LL [HOLE I N88313

aka [PIN 14 MI aka EB 3 MAI
((T #<ENV 3 0320>))

i4:12:033 Addin observation of I at
ELL [HOLE I N8813

'';re are 2 diagnoses (entropy 0921) accounting for 9:
0.663 [[(UI2 Other)13

Entropy Signal; Aliases; Value-Envirorunent Pairs
0.9i64 [CHANGING-WRT 0 iOOOOOOOOOO LL [HOLE 4 N133

aka [PIN 2 UW aka [IN CLX MW
((T #<ENV i 0200>))

ii4:i2:431 Addina observation of I at
ELL [HOLE 4 NiTl

There are i diagnoses (entropy 0.000) accounting for 6:
1.000 MM Other)]]

Probes Diagnoses
(Four) afterwards

N272 iO
N290 6

N88 2
N56 i

T

A-3. AUDIO DECODER EXAMPLE I WITH SYNDROMES

A.3 Audio Decoder Exarnple I wth
dronaes

225

Syn-

There are diagnoses (entropy 0.000) accounting for 5:
i.ooo [03

�ii:26:103 Adding observation of at
[MAX-MIN-WW iOOOOOOOO [VOLTAGE [HOLE N272333

There are 10 diagnoses (entropy 3269) accounting'for .6:
0.163 E043 ther)33

i;iinlng U12 with INACTIVE

6;�flict! There are 10 diagnoses (entropy 3203) accountii
0.163 MU43 Other)13

There are 10 diagnoses (entropy 3203) accounting for .96:
0.163 E(U43 Other)33

R';iining Uil with CSB-INACTIVE

Conflict! There are II diagnoses (entropy 3320) accountii
0.163 MU43 Other)]]

'h';re are II diagnoses (entropy 3320) accounting for 6s
0.163 U043 Other)]]

R'e'iining U10 with CSB-INACTIVE

Conflict' There are diagnoses (entropy 3282) accountii
0.163 UU43 Other)]]

There are I diagnoses (entropy 3282) accounting for 5:
O.i63 E(U43 Other)]]

Decomposing ASSUMPTION INF [STATUS-OF U43 WORKING]>)
.0.
There are II diagnoses (entropy 3282) accounting for .9S:
O.i63 H043 Other)]]

Decomposing ASSUMPTION INF [STATUS-OF U2i WORKING]>)

There are II diagnoses (entropy 3282) accounting for 9:
0.163 E(U43 Oth6r)13
O..
Decomposing ASSUMPTION INF [STATUS-OF U2i WORKING]>)

There are I diagnoses (entropy 3282) accounting for 6:
0.163 EUU43 Other)]]

Decomposing ASSUMPTION INF [STATUS-OF U2i WORKING]>)

na or 9:10

ng f or :

nr for :

226 APPENDIX A. SCENARIO TRANSCRIPTS

* 0

There are II diagnoses (entropy 3282) accounting for 6:
0.163 [[(U43 Other)]]
.0.
Decomposing ASSUMPTION INF [STATUS-OF U44 WORKING>)

**;re are I diagnoses (entropy 3282) accounting for 5:
0.163 EC(U43 Other)]]

Entropy Signal; Aliases; Value-Enviror-ment Pairs
0.8293 [CHANGING-WRT 0 10000000000 LL [HOLE 2 N290111

aka [PIN 10 U431 aka [IN Cs U43A]
((T #<ENV 6 01307>))

iii:30:373 Adding observation of I at
ELL [HOLE 2 MOD

�0n'flict! There are diagnoses (entropy 2864) accounting for .95:
0.i66 CUM Other)33

�0*nflict! There are diagnoses (entropy 2.S34) accounting for .96:
0.203 UI2 Other)13

T.h.;re are diagnoses (entropy 234) accounting for S:
0.203 UI2 Other)]]
6#0
Refining U20 with CSB-INACTIVE

Conflict! There are 6 diagnoses (entropy 2.S32) accounting for :
0.218 [E(U12 Other)33

There are diagnoses (entropy
0.2i8 [Ul2 Other)33
. 0 41

Decomposing ASSUMPTION INF

There are 6 diagnoses (entropy
0.2iS CE(Ui2 Other)31

*;composing ASSUMPTION INF

There are diagnoses (entropy
0.2i8 CVU12 Other)]]

&�omposing ASSUMPTION +I .XF

Th;re are 6 diagnoses (entropy
0.218 2 Other)]]

Decomposing ASSUMPTION INF

There are diagnoses (entropy
0.2i8 CE(U12 Other)33

2.632) accounting for .96:

[STATUS-OF M2 WORKING]>)

2.632) accounting for .96:

[STATUS-OF UiO WORKING >)

2.632) accounting for .96:

[STATUS-OF Uii WORKING>)

2.632) accounting for 96:

[STATUS-OF U20 WORKING>)

2.632) accounting for 96:

A-3. AUDIO DECODER EXAMPLE I WITH SYNDROMES 227

Entropy Signal; Aliases; alue-Envirorunent Pairs
1.0000 ELL [HOLE I N2i333

aka [PIN IS U101 aka [OUT TC Ui0A3
((O #<ENV 04> #<ENV 3 04iO2> #<ENV 3 2OiO2>))

0.0
[14:34:131 Adding observation of at

ELL [HOLE I N21311

'';re are 6 diagnoses (entropy 2632) accounting for 6.-
0.2i8 [I2 Other)33

o

*
Entropy Signal; Aliases- Value-Enviroranent Pairs
1.0000 ELL [HOLE I N633

aka [PIN ig U123 aka [OUT Z U12A]
((O #<ENV 2 MOO> #<ENV 2 OiOiOO> #<ENV 2 2OiOO>))

i 14:35:121 Iddin observation of at
ELL [HOLE I N11

There are 2 diagnoses (entropy 0.880 accounting for 6:
0.701 Ui2 Other)]]
.o.

.. . 0
Entropy Signal; Aliases- Valuo-Environmout Pairs

Probes Diagnoses
(Four) afterwards

N272 II
N290 6
N2i3 6

N66 2
T

228 APPENDIX A. SCENARIO TRANSCRIPTS

A.4 Audio Decoder Exarnple II

*';re are I diagnoses (entropy 0.000) accounting or .:
i.000 [ED

i6:08:473 dding observation of at
[MAX-MIN-WW 000000 [VOLTAGE [HOLE I N272333

o . o
There are iO diagnoses (entropy 3269) accounting for .9S-
0.163 E(U43 Other)33

Decomposing ASSUMPTION INF ESTITUS-OF U43 WORKING]>)
.01,
There are 10 diagnoses (entropy 3269) accounting for 6:
0.i63 CE(U43 Other)]]

&coomposing ASSUMPTION INF [STATUS-OF U12 WORKING3>)

'';re are diagnoses (entropy 3269) accounting for 6:
0.163 [E(U43 OtherM

D';;omposing ASSUMPTION INF [STATUS-OF U44 WORKING]>)

There are 10 diagnoses (entropy 3269) accounting for 9:
O.i63 E[(U43 Other)33
O..
Decomposing ASSUMPTION INF [STATUS-OF U44 WKING>)

*';ro are 10 diagnoses (entropy 3269) accounting for 6:
O.i83 [E(U43 Other)13

O;;omposing ASSUMPTION INF [STATUS-OF U44 WORKING>)

There are i diagnoses (entropy 3269) accounting for 6:
O.i63 MU43 Other)13
.0.
Decomposing WASSUMPTION INF [STATUS-OF U21 WORKING>)

There are 10 diagnoses (entropy 3269) accounting for 6:
0.i63 EE(U43 Other)33

Entropy Signal- Aliases; Value-Environment Pairs
0.829i CHANGING-WRT 0 iOOOOOOOOOO ELL [HOLE 2 N290111

aka [PIN 10 U433 aka [IN CS U43A]
((T #<ENV Oi3O7>))

6,16:i2:343 Adding observation of i at
ELL [HOLE 2 N29031

';�flict! There are diagnoses (entropy 2666) acounting for 6:
0.222 U012 Other)31
.. O

A.4. AUDIO DECODER EXAMPLE 1 229

There are 6 diagnoses (entropy
0.263 [[(Ul2 Other)]]

';;omposing ASSUMPTION +INF
.. 0

There are diagnoses (entropy
0.263 [[(Ui2 Other)]]
.00
Decomposing (#<ISSUMPTION INF

There are diagnoses (entropy
0.263 [[(UI2 Other)33

D';;omposing (#<ASSUMPTION IXF

There are diagnoses (entropy
0.263 [[(Ui2 Other)33

2.288) accounting for :

[STATUS-OF MO WORKING] >)

2.288) accounting for 6:

[STATUS-OF Uii ORXING3>)

2.288) accounting for 5:

[STATUS-OF U20 WORKING3>)

2.288) accounting for :

Entropy Signal; Aliases; Value-Environment Pairs
0.7167 [CHANGING-WRT 0 10000000000 LL [HOLE 2 N236111

aka [PIN 14 U441 aka [B 3 U44A]
((T #<ENV 4 0360>))

jii:i4:423 Adding observation of T at
[CHANGING-WRT 0 iOOOOOOOOO ELL [HOLE 2 N236311

There are diagnoses (entropy 2288) accounting for :
0.263 2 Other)]]

Entropy Signal; Aliasest Value-Environment Pairs
0.7167 [CHANGING-WRT 0 iOOOOOOOOOO LL [HOLE 2 Ni17333

aka [PIN 441 aka CBI 4 U44A]
((T #<ENV 4 0360>))

i15:i5:671 Adding observation of T at
[CHANGING-WRT 010000000000 ELL [HOLE 2 Ni17333

0#0
There are diagnoses (entropy 2288) accounting for 6:
0.263 2 Other)]]

*'iropy Signal; Aliases; Value-Environment Pairs
0.7167 CHANGING-WRT 0 10000000000 ELL [HOLE 2 N208133

aka [PIN 24 U431 aka [IN '43A]
((T #<ENV 3 0320>))

il'S.17:063 Adding observation of T at
[CHANGING-WRT 0 10000000000 ELL [HOLE 2 N208331

230 APPENDIX A. SCENARIO TRANSCRIPTS

There are 6 diagnose (ntropy 2288) accounting for 6:
0.263 EE(U12 Other)33

Entropy Signal; liases; Value-Envirorment Pairs
0.7i67 [CHANGING-WRT 0 iOOOOOOOO ELL [HOLE i N289333

aka [PIN iG U20 aka EBI U214
((T #<ENV 3 0320>))

iii:iS:003 Adding observation of T at
[CHANGING-WRT 0 iOOOOOOOOO ELL [HOLE I N289333

'*;ro are 6 diagnoses ntropy 2288) accounting for .6,
0.263 CUM Other)33
O..

.60
Entropy Signal; liases; Value-Environment Pairs

0.7167 CANGING-WRT 0 iOOOOOOOO ELL [HOLE 2 N48113
aka [PIN 28 U431 aka [IN 1i U434
((T #<ENV 3 0320>))

ilS:18:613 Adding observation of T at
[CHANGING-WRT 0 iOOOOOOOOOO ELL [HOLE 2 N48333

'*;re are diagnoses (entropy 2288) accounting for :
0.263 EE(U12 Other)33

Entropy Signal; Aliases; Value-Environment Pairs
0.6619 CHANGING-WRT 0 10000000000 LL [HOLE 3 260333

aka [PIN U203 aka [IN A 20C3
((T #<ENV 0200>))

[16:ig:423 Adding observation of T at
[CHANGING-WRT 0 iOOOOOOOOOO ELL [HOLE 3 N260111

There are diagnoses (entropy 2288) accounting for 9:
0.263 [E(U12 Other)33

Entropy Signal; Aliases; Value-Environment Pairs
0.6619 CHANGING-WRT 0 iOOOOOOOOOO ELL [HOLE 2 N232311

aka [PIN 1i U431 aka. [IN WR U43k]
((T #<ENV 3 Oi2iO>))

il'S':20:341 Adding observation of T at
EcHkNGING-WRT 0 iOOOOOOOOO ELL [HOLE 2 N232111

*o;re are diagnoses (entropy 2288) accounting for .96-.
0.263 EUM2 Other)]]

A.4. AUDIO DECODER EXAMPLE II 231

Entropy Signal; liases; Value-Envirorment Pairs
0.4414 CHANGING-WRT 0 10000000000 ELL [HOLE 2 N213311

aka [PIN 3 U203 aka [IN 2OA3
((NIL #<ENV 04>))

iii:21:283 Adding observation of T at
ECHANGING-WRT 0 10000000000 ELL [HOLE 2 M3333

*;�flict! There are I diagnoses (entropy 0.000) accounting for :
i.000 [[(U20 Other)]]

There are I diagnoses (entropy 0.000) accounting for 6:
1.000 U020 Other)]]

*�;bes Diagnoses
(Ton) afterwards

N272 iO
N290 6
N236 6
Nii7 6
N208 6
N289 6

N48 6
N260 6
N232 6
N2i3 i

T

232 APPENDIX A. SCENARIO TRANSCRIPTS

A.5 Audio Decoder Exarnple II with Syn-
drornes

There are I diagnoses (entropy 0.000) accounting for :
i.000 [ED

14:48:4S] Adding observation of at
[MAX-MIN-WW iOOOOOOO [VOLTAGE [HOLE i N272133

T**;re are diagnoses (entropy 3269) accounting for .9S:
0.163 VU43 Other)]]

Refining U2 with INACTIVE
0.0 0
Conflict' There are 10 diagnoses (entropy 3203) accountii
0.163 CUM Other)33

There are diagnoses (entropy 3203) accounting for .9S:
O.i63 [E(U43 OtherM

Refining U11 with CSB-INACTIVE

Conflict! There are 1i diagnoses (entropy 3320) accountii
0.163 E(U43 Other)33

'';re are 1i diagnoses (entropy 3320) accounting for 6:
0.163 CUU43 Other)]]

refining UiO with CSB-INACTIVE

';�flictl. There are 1 diagnoses (entropy 3282) accountii
0.163 E(U43 Other)33

There are 1i diagnoses (entropy 3282) accounting for 6:
0.163 EC(U43 Other)33

Decomposing (#<ASSUMPTION +INF [STATUS-OF U43 WORKING3>)

There are 11 diagnoses (entropy 3282) accounting for 6:
OA63 CE(U43 Other)]]

D';;omposing ASSUMPTION INF [STATUS-OF U2i WORKING>)

There are 11 diagnoses (entropy 3282) accounting for 6:
0.183 [U43 OtherM

*;;omposing ASSUMPTION INF [STATUS-OF U21 WORKING>)

There are il diagnoses (entropy 3282) accounting for 5:
0.163 [[(U43 Other)]]

Decomposing (#<ASSUMPTION INF [STATUS-OF U21 WORKING,>)

nr for :Ili-.p

ng for :

na for :IQ

A.5. AUDIO DECODER EXAMPLE II WITH SYNDROMES

**;ro are li diagnoses ntropy 3282) accounting for 6:
O.i63 H43 Other)]]
...
Decomposing (#<ASSUMPTION INF [STATUS-OF U44 WORKING>)

'*;re are I diagnoses (entropy 3282) accounting for 6:
0.i63 ERU43 Other)]]
...

233

*

Entropy Signal; Aliases- Value-Environment Pairs
0.8293 [CHANGING-WRT 0 iOOOOOOOOOO ELL [HOLE 2 N290111'

aka [PIN 10 431 aka [IN CS 43A3
((T #<ENV 6 01307>))

j'i:63:233 Adding observation of I at
ELL [HOLE 2 29013

00*
Conflict! There, are diagnoses (entropy 2864) accounti:

CUM Other)13

Conflict! There are diagnoses (entropy 234) accounti:
0.203 E2 Other)]]

There, are diagnoses (entropy 2634) accounting for 9:
0.203 [E(U12 Other)33

Reiining 20 with CSB-INACTIVE

�0'nflict! Thor* are diagnoses (entropy 2632) accountii
0.2iS CUM Other)33

.ng for -

.nq for . 9:

ng f or :

2.632) accounting for 6:

[STATUS-OF U2 VORKINGI>)

2.632) accounting for 5:

[STATUS-OF M WORKING] >)

2.632) accounting for 6:

[STATUS-OF Ul I WORKING] >)

2.632) accounting for .96:

[STATUS-OF U20 WORKING>)

2.632) accounting for .5:

There are diagnoses (entropy
0.218 UI2 Other)]]

Decomposing ASSUMPTION IXF

h;re are 6 diagnoses (entropy
0.218 [[(UI2 Other)13

Decomposing ASSUMPTION IffF
.00
There are 6 diagnoses (entropy
0.2i8 [Ui2 Other)]]

De;omposing (#<ISSUMPTION INF

There are 6 diagnoses (entropy
0.2i8 [Ul2 OtherM

Decomposing ASSUMPTION INF

There are 6 diagnoses (entropy
0.218 U2 Other)]]

234 APPENDIX A. SCENARIO TRANSCRIPTS

Entropy Signal- Aliases; Value-Environment Pairs
1.0000 ELL [HOLE I N21311

aka [PIN 1 U03 aka [OUT TC 10A3
((O #<ENV 04> #<ENV 3 2> #<ENV 3 020102>))

Eii:66:473 ding observation of T at
[CHANGING-WRT 0 10000000000 ELL [HOLE =3333

�0oflict! There are I diagnoses (entropy 0.010) accounting for :
0.993 [[(U20 Other)33
41 .-0

There are I diagnoses (entropy 0.010) accounting for 5:
0.993 E(U20 Other)]]

Probes Diagnoses
(Three) afterwards

N272 1i
N290 6
N2i3 I

T

A-6. AUDIO DECODER EXAMPLE III 235

AX Audio Decoder Exarnple III

'';re are I diagnoses (entropy 0.000) accounting for 6:
i.000 [l]

11:00-231 Adding observation of 30 at
[MAX-iIN-WW 100000000 [VOLTAGE [HOLE I N272333

41 . 0

There are I diagnoses (entropy 0.000) accounting for :
1.000 [131

il'i:00:323 Addint observation of 2000.0 at
[FWW 0000000 I NIL T) [CROSS (EXPT 2 1) [VOLTAGE [HOLE N2723313

.019
There are diagnoses (entropy 0.000) accounting for 6:
1.000 1133

jii: 00 33 Addin7 observation of 20000.0 at
[FWW 0000000 NIL T) [CROSS EDT [VOLTAGE [HOLE N27211333

There are i diagnoses (entropy 3269) accounting for 6:
0.163 E(U43 Other)]]
000
Decomposing ASSUMPTION INF [STATUS-OF U43 WORKING]>)

There are 10 diagnoses (entropy 3269) accounting for 6:
O.i63 M43 Other)13

*;;omposing ASSUMPTION INF [STATUS-OF Ui2 WORKING>)

There are 10 diagnoses (entropy 3269) accounting for 6:
O.i63 [U43 OtherM

&;omposing (#<ASSUMPTION INF [STATUS-OF U44 WORKING>)

There are 10 diagnoses (entropy 3269) accounting for 6:
0.163 EE(U43 Other)]]
.00
Decomposing ASSUMPTION INF [STATUS-OF U44 WORKING>)

**;re are diagnoses (entropy 3269) accounting for 6:
0.163 E(U43 Other)]]
S..
Decomposing ASSUMPTION INF [STATUS-OF U44 WORKING>)

There are 10 diagnoses (entropy 3269) accounting for 6:
0.163 UU43 Other)]]

Decomposing ASSUMPTION INF [STATUS-OF U21 WORKING>)

**;re are iO diagnoses (entropy 3269) accounting for 6:
0.163 [[(U43 Other)31

236 APPENDIX A. SCENARIO TRANSCRIPTS

*
Entropy Signal; Aliases- Value-Environment Pairs
0.829i [CHANGING-WRT 0 iOOOOOOOO ELL EHOL 2 N290333

aka [PIN 433 aka [IN CS 43A3
((T #<ENV 6 M7>))

11:04:423 Adding observation of T at
[CHANGING-WRT 0 10000000000 ELL [ROLE 2 N290333

There are 10 diagnoses (entropy 3269) accounting for 6:
0.163 M43 Other)]]

Entropy Signal; Aliases- Value-Environment Pairs
0.7617 [CHANGING-WRT 0 10000006000 LL [HOLE 2 N280333

aka [PIN 10 103 aka [IN ENBT 10A3'
((T #<ENV 0307>))

j'i:06:431 Adding observation of T at
[CHANGING-WRT 0 10000000000 ELL [HOLE 2 N280131

There are 10 diagnoses (entropy 3269) accounting for 6:
0.163 C(U43 Other)33

Entropy Signal; Aliases- Value-Environment Pairs
0.7617 CHANGING-WRT 0 iOOOOOOOO ELL [HOLE I N129133

aka [PIN il M3 aka [OUT 3 U10A3
((T #<ENV 0307>))

11:06:421 Adding observation of T at
[CHANGING-WRT 0 10000000000 ELL [HOLE I Mi29333

.00
There are diagnoses (entropy 3269) accounting for 5:
0.163 [[(U43 Other)]]

0
Entropy Signal- Aliases; Value-Environment Pairs
0.7288 [CHANGING-WRT 0 10000000000 LL [HOLE 2 M2333

aka [PIN 2i U433 aka [IN 4 U43A]
((T #<ENV 4 0360>))

li:07:431 Adding observation of T at
[CHANGING-WRT 0 iOOOOOOOOO ELL [HOLE 2 N12333

There are iO diagnoses (entropy 3269) accounting for 5:
O.i63 [U43 OtherM
.. 0

0 0 0
Entropy Signal; Iliases; Value-Environment Pairs

A-6. AUDIO DECODER EXAMPLE III 237

0.5980 [CHANGING-WRT 0 iOOOOOOOO ELL [HOLE 88333
aka [PIN 14 213 aka EB 3 21A]
UT #<ENV 3 0320))

'E'i.-08-.433 Adding observation of T at
[CHANGING-WRT 0 iOOOOOOOOOO ELL [HOLE M333

41 *

There are 10 diagnoses (entropy 3269) accounting for 9:
0.163 [[(U43 Other)]]

Entropy Signal; Aliases; Value-Environment Pairs
0.6980 [CHANGING-WRT 0 10000000000 ELL [HOLE 2 N48333

aka [PIN 2 433 aka. EtN II 43A3
((T #<ENV 3 0320>))

61*:09-433 Adding observation of T at
[CHANGING-WRT 0 iOOOOOOOOO ELL [HOLE 2 N48333

There are 10 diagnoses (entropy 3269) accounting for 6:
0.163 [E(U43 Other)]]

Entropy Signal; Aliases; Value-Environment Pairs
0.6830 [CHANGING-WRT 0 iOOOOOOO L [HOLE N232333

aka [PIN 223 aka [OUT Y 22c3
((T #<ENV 3 01210>))

i'i:10:431 Adding observation of T at
[CHANGING-WRT 0 10000000000 ELL [HOLE I N232333

. -0 0 -
There are 10 diagnoses (entropy 3269) accounting for 6:
O.i63 EUU43 Other)]]

Entropy Signal; Aliases; Value-Envirownent Pairs
0.4270 [CHANGING-WRT 0 10000000000 ELL [HOLE 3 NiG9333

aka [PIN ig 431 aka [IN 2 U434
((T #<ENV 2 0140>))

6i*:Ii:461 Adding observation of T at
[CHANGING-WRT 0 10000000000 LL [HOLE 3 N159111

**;re are 10 diagnoses (entropy 3269) accounting for 6:
0.163 E(U43 Other)]]

Entropy Signal; Aliases; Value-Environment Pairs
0.4270 [CHANGING-WRT 0 iOOOOOOOO ELL [HOLE N208333

aka [PIN 6 U2i3 aka EB 2 21A3

238 APPENDIX A. SCENARIO TRANSCRIPTS

UT #<ENV 2 0120>))

i11':12:463 Adding observation of T at
[CHANGING-WRT 0 10000000000 ELL [HOLE I N208331

.00
There are 10 diagnoses (entropy 3269) accounting for 6:
0.163 M43 Other)]]

Entropy Signal; Aliases- Value-Environment Pairs
0.4270 CHANGING-WRT 0 10000000000 ELL [HOLE 3 Ni94333

aka [PIN 20 U433 aka [IN 3 U43A3
((T #<ENV 2 Oi4O>))

i1*1:13:473 Adding observation of T at
CCRANGING-WRT 0 10000000000 ELL [HOLE 3 N194333

Thor* are 10 diagnoses (entropy 3269) accounting for 6:
0.163 [E(U43 Other)33
0.0

0 *
Entropy Signal; Aliases; Value-Environment Pairs

0.4270 [CHANGING-WRT 0 10000000000 ELL [HOLE 3 N131333
aka [PIN 22 U433 aka [IN U43A]
((T #<ENV 2 i2O>))

jii:i4:493 Adding observation of T at
[CHANGING-WRT 0 10000000000 ELL [HOLE 3 N131313

There are 10 diagnoses (entropy 3269) accounting for 5:
0.163 [[(U43 OtherM

. 0 .

Entropy Signal- Aliases; Value-Environment Pairs
0.4270 [CHANGING-WRT 0 iOOOOOOOO ELL [HOLE 2 Ni39133

aka [PIN 23 U433 aka [IN 6 U4313
((T #<ENV 2 MO>))

i1'i":iS:S21 Adding observation of T at
[CHANGING-WRT 0 10000000000 ELL [HOLE 2 Ni39111

*44,
There are 10 diagnoses (entropy 3269) accounting for 5:
O.i63 RU43 Other)]]

4 ..

Entropy Signal; Aliases; Value-Environment Pairs
0.4270 [CHANGING-WRT 0 10000000000 [LL [HOLE N246133

aka [PIN U211 aka' CBI 4 U21A]
((T #<ENV 2 Oi2O>))

A.6. AUDIO DECODER EXAMPLE III 239

[11:16:633 dding observation of at
CLL [HOLE I N24633

Conflict! There are 2 diagnoses (entropy 0918) accounting for 6:
0.667 U021 Other) 3
. 0.
There are 2 diagnoses (entropy .Qi8) accounting for 6:
0.667 MM Other)33

Entropy Signal; Aliases; Vallue-Environment Pairs
0.6498 CHANGING-WRT 0 iOOOOOOOO LL [HOLE 2 N236333

aka [PIN 14 U443 aka, [B 3 U44A3
((T #<ENV 2 Oi4O>))

i'i:17:441 Adding observation of T at
[CHANGING-WRT 0 10000000000 ELL [HOLE 2 N236313

There are 2 diagnoses (entropy 0918) accounting for 6:
0.667 E(U21 Other)]]
0*0

*00
Entropy Signal; Aases; Value-Envirormont Pairs

0.6498 [CHANGING-WRT 0 iOOOOOOOOOO ELL [HOLE 2 M7333
aka [PIN U443 aka [BI 4 U44A3
((T #<ENV 2 i4O>))

iii:i8:483 Adding observation of T at
[CHANGING-WRT 0 10000000000 ELL [HOLE 2 N117313

lot*
There are 2 diagnoses (entropy 0.9i8) accounting for 6:
0.667 U021 Other)]]

Entropy Signal; Aliases; Value-Envirorment Pairs
0.6498 CHANGING-WRT 0 10000000000 LL [HOLE N140311

aka [PIN 10 Uill aka [IN ENBT U11A1
((NIL #<ENV I 000>))

iii-19:301 Adding observation of i at
ELL [HOLE Ni4033

There are 2 diagnoses (entropy 0918) accounting for :
0.667 E(U21 Other)]]

Entropy Signal; Aliases; Value-Environment Pairs
0.6498 [CHANGING-WRT 0 iOOOOOOOO [LL [HOLE 3 N264133

aka [PIN M3 aka [IN CLEAR U.21A]
((NIL #<ENV I 0100>))

240 APPENDIX A. SCENARIO TRANSCRIPTS

0 0 0
[Ii:20:i4l Adding oservation of I at

ML [HOLE 3 N26411
...
Conflict! There are I diagnoses (entropy 0.000) accounting for .5:
1.000 [E(U21 OtherM

T*h*;re are I diagnoses
1.000 [[(U2i Other)]]

Probes Diagnoses
(Twenty) afterwards

N272 i
N272
N290
N280
Ni29
NiI2

N88
N48

X232
NISO
N208
N194
Ni3i
Mg
N246 2
N236 2
N117 2
Ni4O 2
N264 I

T

(entropy 0.000) accounting for 5:

10

10

io
10
10
10
io
10
io
10
10
10
10

A. 7. AUDIO DECODER EXAMPLE III WITH SYNDROMES

A.7 Audio Decoder Exarnple III with ,
drornes

'';re are i diagnoses (entropy 0.000) accounting for 6:
1.000 1133

66:30:043 Adding observation of 30 at
[HAX-HIN-W iOOOOOO [VOLTAGE [HOLE N272111

.. O
There are I diagnoses (entropy 0.000) accounting for 6:
1.000 1113

66:30-123 Addin observation of 2000.0 at
EFWW 0000000 INIL T) [CROSS (EXPT 2 ii) [VOLTAGE [HOLE I N2721313

**;re are diagnoses (entropy 0.000) accounting for 6:
i.000 M]

il'O':30:171 Addin; observation of 20000.0 at
[FWW 0000000 �1 NIL T) [CROSS EDT [VOLTAGE [HOLE I N2t231333

'';re are 10 diagnoses (entropy 3269) accounting for 6:
O.i63 H(U43 Other)]]

Refining Ui2 with INACTIVE

6;�flict! There are 10 diagnoses (entropy 3203) accounting for :
0.163 U043 Other)33
. 0 41

There are 10 diagnoses (entropy 3203) accounting for 6:
O.i63 C(U43 Other)]]

Refining U11 with CSB-INACTIVE

Conflict! There are 11 diagnoses (entropy 3320) accounting for 6:
0.163 U043 Other)33

Conflict! There are 10 diagnoses (entropy 3209) accounting for :
0.168 EC(U43 Othor)33
0.0
There are i diagnoses (entropy 3209) accounting for 6:
0.16 H43 Other)33
O..
Re fining UiO with CSB-INICTIVE

';;dlict! There are 10 diagnoses (entropy 3172) accounting for :
0.i68 CUU43 Other)13

*';ro are 10 diagnoses (entropy 3.i72) accounting for 5:
0.i68 E(U43 Other)]]

DO;;omposing ASSUMPTION INF [STATUS-OF U43 WORKING3>)

241

yn-

242 APPENDIX A. SCENARIO TRANSCRIPTS

0. $
There are 10 diagnoses (entropy 3172) accounting for 5:
0.168 H(U43 Other)33

&;omposing (tt<ASSUMPTION INF [STATUS-OF U2i WORKING]>)

Thor* are i diagnoses (entropy 3172) accountingfor .6:
0.168 [[(U43 Other)]]

&;omposing ASSUMPTION INF [STATUS-OF U21 WORKING>)
.. 0

There are iO diagnoses (entropy 3172) accounting for 5:
0.168 EUU43 Other)]]

&;omposing (#<ASSUMPTION INF [STATUS-OF 2i WORKING>)
O..
There are 10 diagnoses (entropy 3172) accounting for 6:
0.168 CE(U43 Other)33

Decomposing ASSUMPTION INF [STATUS-OF U44 WORXING>)

There are 10 diagnoses (entropy 3172) accounting for 6:
0.168 MU43 Other)]]

Entropy Signal; Aliases; Value-Environment Pairs
0.8173 [CHANGING-WRT 0 iOOOOOOOOOO ELL [HOLE 2 N290111

aka [PIN 10 U431 aka [IN CS U43A]
((T #<ENV 01307>))

ilO*:36:093 Adding observation of T at
[CHANGING-WRT 0 10000000000 ELL [HOLE 2 290333

There are 10 diagnoses (entropy 3172) accounting for 6:
O.i68 U043 Other)]]

.0
Entropy Signal; Aliases; Value-Environment Pairs
0.7460 CHANGING-WRT 0 10000000000 ELL [HOLE I Ni29331

aka [PIN 1i Ui03 aka [OUT 3 1A3
((T #<ENV 0307>))

E1,0:37-131 Adding observation of Tat
[CHANGING-WRT 0 10000000000 LL [HOLE I N29333

.00
There are iO diagnoses (entropy 3.i72) accounting for 5:
0.168 EE(U43 Other)]]

Entropy Signal- Aliases; Value-Environment Pairs
0.7460 CHANGING-WRT 0 iOOOOOOOOOO ELL [HOLE 2 o]31

A. 7. AUDIO DECODER EXAMPLE III WITH SYNDROMES 243

aka [PIN M03 aka [IN ENBT MA3
((T #<ENV 0307>))

10:38:161 Adding observation of T at
[CHANGING-WRT 0 10000000000 ELL [HOLE 2 N280133

There are i diagnoses (entropy 3172) accounting for .95:
0.168 E(U43 Other)33

Entropy Signal; Aliases; Value-Environment Pairs
0.7093 [CHANGING-WRT 0 10000000000 ELL [HOLE I N236333

aka [PIN 10 RN63 aka [BI 10 RN6A3
((T #<ENV 4 0360>))

66:39-193 Adding observation of T at
ECHANiING-WRT 0 10000000000 ELL [HOLE I N236333

O*;re are 10 diagnoses (entropy 3172) accounting for 6:
0.168 [C(U43 Other)]]

Entropy Signal- Aliases- Value-Environment Pairs
0.7093 [CHANGING-WRT 0 10000000000 ELL [HOLE 3 N17331

aka [PIN 18 U433 aka [IN I U43A3
((T #<ENV 4 0360>))

10:40:221 Adding observation of T at
[CHANGING-WRT 0 iOOOOOOOOO ELL [HOLE 3 M7333

There are i diagnoses (entropy 3172) accounting for 6:
0.168 [U43 Other)]]

Entropy Signal; Aliases- Value-Environment Pairs
0.7093 [CHANGING-WRT 0 iOOOOOOOO ELL [HOLE 2 194333

aka, [PIN 4 443 aka EBI U44A3
((T #<ENV 4 0360>))

60:41:273 Adding observation of T at
[CHANGING-WRT 0 iOOOOOOOOO ELL [HOLE 2 Ni94333

*';re are 10 diagnoses (entropy 3172) accounting for 6:
0.168 M43 Other)]]

Entropy Signal; Aliases; Value-Environment Pairs
0.7093 [CHANGING-WRT 0 10000000000 ELL [HOLE 2 N112313

aka [PIN 21 U431 aka [IN 4 U43A]
((T #<ENV 4 0360>))

APPENDIX A. SCENARIO TRANSCRIPTS244

. 0 0

[IO-42:331 Adding observation of T at
[CHANGING-WRT 0 10000000000 ELL [HOLE 2 N112333

'';re are iO diagnoses (entropy 3172) accounting for 5:
0.168 CUU43 Other)13

Entropy Signal; Aliases- Value-Environment Pairs
0.6876 CHANGING-WRT 0 iOOOOOOOO ELL [HOLE 2 N208313

aka [PIN 24 U433 aka [IN 7 U4iil
((T #<ENV 3 0320>))

ii'6:43:383 Adding observation of T at
[CHANGING-WRT 0 10000000000 ELL [HOLE 2 N208333

There are 10 diagnoses (entropy 3.i72) accounting for 6:
0.168 M43 Other)33

. . 0

Entropy Signal; Aliases- Value-Environment Pairs
0.6676 [CHANGING-WRT 0 10000000000 ELL HE i N289131

aka [PIN iS MI aka [BI MiAl
((T #<ENV 3 0320>))

il0:44:411 Adding observation of T at
[CHANGING-WRT 0 iOOOOOOOOO ELL [HOLE i N289331

There are 10 diagnoses (entropy 3172) accounting for .96.
0.168 [[(U43 Other)]]
O..

0 . .

Entropy Signal; liases; Value-Envirorment Pairs
0.5676 CHANGING-WRT 0 10000000000 ELL [HOLE 2 N48331

aka [PIN 28 U431 aka, [IN 1 U43A3
((T #<ENV 3 0320>))

ilO*:46:471 Adding observation of T at
[CHANGING-WRT 0 10000000000 ELL [HOLE 2 N48313

O..
There are 10 diagnoses (entropy 3172) accounting for 6:
0.168 M43 Other)]]
.0.

0 . 9

Entropy Signal- Aliases; Value-Envirorment Pairs
0.6612 [CHANGING-WRT 0 10000000000 [LL [HOLE 2 N232131

aka [PIN li 431 aka [IN WR U43A]
((T #<ENV 3 i210>))

66:46:603 Adding observation of T at

A. 7. AUDIO DECODER EXAMPLE III WITH SYNDROMES 245

[CRANGING-WRT 0 10000000000 ELL [ROLE 2 N232311
*0

There are i diagnoses (entropy 3.i72) accounting for 6:
0.168 [E(U43 Other)]]

Entropy Signal- Aliases; Value-Environment Pairs
0.4377 [CHANGING-WRT 0 10000000000 LL [HOLE I Ni39313

aka [PIN 13 U211 aka [B I U2111
((T #<ENV 2 0120>))

10:47-SSI Adding observation of T at
ECHANiING-WRT 0 10000000000 ELL [HOLE I N139333

'*;ro are 10 diagnoses (entropy 3172) accounting for 6.-
0.168 EE(U43 Other)]]
.. 0

-0 0-0
Entropy Signal; Aases; Value-Environment Pairs

0.4377 [CHANGING-WRT 0 10000000000 ELL [HOLE I Ni31333
aka [PIN 7 U211 aka EBI 0 MU]
((T #<ENV 2 0120>))

ii'O':49:081 Adding observation of T at
[CHANGING-WRT 0 10000000000 ELL [HOLE Ni31333

*';ro are 10 diagnoses (entropy 3172) accounting for 5:
0.169 C(U43 Other)]]

Entropy Signal; Aliases- Value-Environment Pairs
0.4377 [CHANGING-WRT 0 00000000 ELL [HOLE 2 N246131

aka [PIN 26 U431 aka [IN U434
((T #<ENV 2 MO>))

ii'0-60:i63 Adding observation of I at
ELL [HOLE 2 N24633

..
Conflict! There are 2 diagnoses (entropy 0923) accounting for :
0.660 [E(U21 Other)]]

There are 2 diagnoses (entropy 0923) accounting for .5:
0.660 ERU21 Other)]]

Entropy Signal- Aliases; Value-Environment Pairs
0.6498 [CHANGING-WRT 0 10000000000 ELL [HOLE 3 NiS9331

aka [PIN 1 U433 aka [IN 2 U43A]
((T #<ENV 2 Oi4O>))

246 APPENDIX A. SCENARIO TRANSCRIPTS

[10:5i:131 dding observation of T at
[CHANGING-WRT 0 iOOOOOOOOOO ELL [HOLE 3 NiS9333

O..
There are 2 diagnoses (entropy 023) accounting for .96:
0.660 M21. OtherM

Entropy Signal- Aliases; Value-Environment Pairs
0.6498 [CHANGING-WRT 0 iOOOOOOOO ELL [HOLE 4 N264111

aka [PIN 1 441 aka [IN Si U444
((NIL #<ENV i MO>))

10-62-023 Adding observation of I at
60 - -ELL [HOLE 4 26411

*;�flict! There are i diagnoses (entropy .0i6) accounting for 9:
0.990 MU21 Other)33

T*';re are I diagnoses (entropy .Oig) accounting for 9:
0.990 MM Other)]]

Probes Diagnoses
(Nineteen) afterwards

N272 I
N272 iO
N290 iO
Mg 10
N280 10
N236 10
N117 10
N194 10
N112 10
N208 iO
N289 10

N48 iO
N232 iO
N139 10
Ni3l. iO
N246 2
N169 2
N254 I

T

A-8. AUDIO DECODER EXAMPLE IV

A.8 Audio Decoder Exarnple IV

247

. .0

There are I diagnoses (entropy 0.000) accounting Cor 96:
i.ooo [03

j'6:i6:i2l Adding observation of 30 at
[MAX-MIN-WW iOOOOOO [VOLTAGE [HOLE N272113

**;ro are I diagnoses (entropy 0.000) accounting for .96:
1.00 []

6 1:191 Iddinf observation of 20000.0 at
[Few 60000000 NIL T) [CROSS (EXPT 2 1) [VOLTAGE [HOLE I N2721113

.00
There are i diagnoses (entropy 0.000) accounting for 96:
1.000 1133

20:16:243 Addin observation of 20000.0 at
EFWW 0000000 NIL T) [CROSS EDT [VOLTAGE [HOLE i N27211111

**;re are 10 diagnoses (entropy 3269) accounting for 6:
O.i63 C(U43 Other)33

D';;omposing ASSUMPTION INF [STATUS-OF U43 WORXING>)

There are diagnoses (entropy 3269) accounting for 9:
0.163 43 Other)]]

*;;omposing WISSUMPTION INF [STATUS-OF Ui2 WORKING>)

There are diagnoses (entropy 3269) accounting for 9:
0.183 U043 Other)33

Decomposing ASSUMPTION INF [STATUS-OF U44 WORKING>)

'*;ro are 10 diagnoses (entropy 3269) accounting for 96:
0.163 U043 Other)]]

Decomposing ASSUMPTION INF [STATUS-OF 44 WORKING>)

**;re are diagnoses (entropy 3269) accounting for 96:
O.i63 U043 Other)]]

&composing ASSUMPTION IXF [STATUS-OF U44 WORKING>)

There are i diagnoses (entropy 3269) accounting for 5:
O.i63 U043 Other)]]

&composing ASSUMPTION INF [STATUS-OF U2i WOPilNG3>)

There are iO diagnoses (entropy 3269) accounting for 96:
0.163 U043 Other)]]

APPENDIX A. SCENARIO TRANSCRIPTS248

0 . .

Entropy Signal; Aliases; Value-Environmeint Pairs
0.8291 [CHANGING-WRT 0 iOOOOOOOO ELL [HOLE 2 N2190311

aka, [PIN 10 U431 Aka [IN CS U43A]
((T #<ENV 6 i3O7>))

i,0:19:111 Adding observation of T at
ECHANGING-WRT 0 iOOOOOOOOOO ELL [HOLE 2 N290311

There are 10 diagnoses (entropy 3269) accounting for 6:
O.i63 [U43 Other)]]
.0.

0 0 0
Entropy Signal; Aliases; Value-Envirorment Pairs
0.76i7 [CHANGING-WRT 0 iOOOOOOOO ELL [HOLE X28o3l]

aka [PIN U113 aka [OUT TC MAl
((T #<ENV 0307>))

j�6:20:141 Adding observation of I at
ELL [HOLE I N28011

Conflict! There are diagnoses (entropy 2288) accounting for :
0.263 UI2 Other)33

There are diagnoses (entropy
0.263 [[(UI2 Other)]]

Decomposing ASSUMPTION INF

There are diagnoses (entropy
0.263 Ul2 Other)33

*;;omposing ASSUMPTION +INF
.. O

There are diagnoses (entropy
0.263 [[(UI2 Other)]]

Decomposing ASSUMPTION INF

There are diagnoses (entropy
0.263 UU12 Other)]]
O..

2.288) accounting for 6:

[STATUS-OF MO WORKING] >)

2.288) accounting for .96.

[STATUS-OF Uii womm>)

2.288) accounting for 6:

[STATUS-OF U20 WORKING>)

2.288) accounting for :

0 . 0

Entropy Signal; Aliases; Value-EnvirOnMent Pairs
0.7167 CHANGING-WRT 0 iOOOOOOOO L [HOLE I NiS93]]

aka [PIN RN63 aka CB! RN6A3
((T #<ENV 4 0360>))

64:22:361 Adding observation of T at�
[CHANGING-WRT 0 iOOOOOOOOOO L [HOLE I NiG9313

There are diagnoses (entropy 2288) accounting for 96-.
0.263 2 Other)31
00.

A-8. AUDIO DECODER EXAMPLE IV 249

. 0.
Entropy Signal; Aliases; Value-Environment Pairs
0.7i67 [CHANGING-WRT 0 iOOOOOOOO LL [HOLE i NiO4333

aka [PIN 7 RN63 aka [B 7 RNSAI
((T #<ENV 4 0360>))

i*0:23:313 Adding observation of T at
[CHANGING-WRT 0 iOOOOOOOOO ELL [HOLE N194333

There are diagnoses (entropy 2288) accounting for :
0.263 [E(U12 Other)]]

Entropy Signal; Aliases; Value-Environment, Pairs
0.7i67 [CHANGING-WRT 0 iOOOOOOOO ELL [HOLE 2 Ni39133

aka [PIN 23 U431 aka [IN U43"Al
((T #<ENV 3 0320>))

20:24:373 Adding observation of T at
[CHANGING-WRT 0 10000000000 LL [HOLE 2 Ni39333

.. 0
There are diagnoses (entropy 2288) accounting for :
0.263 [[(U12 Other)]]

Entropy Signal; Aliases- Value-Environment Pairs
0.7167 [CHANGING-WRT 0 iOOOOOOOO ELL [HOLE 2 N88131

aka [PIN 25 U433 aka [IN U434
((T #<ENV 3 0320>))

66:26.-233 Adding observation of T at
[CHANGING-WRT 0 iOOOOOOOOOO CLL [HOLE 2 N88111

'*;re are diagnoses (entropy 2288) accounting for .96:
0.263 [[(M2 Other)]]

Entropy Signal; Aliases; Value-Environment Pairs
0.7i67 [CHANGING-WRT 0 iOOOOOOOOOO LL [HOLE I N246111

aka [PIN U211 aka EB 4 =Al
((T #<ENV 3 0320>))

66:27:211 Adding observation of T at
[CHANGING-WRT 0 10000000000 ELL [HOLE I N246131

TO*;re are diagnoses (entropy 2288) accounting for 6:
0.263 [[(Ui2 Other)]]

0 0 4
Entropy Signal; Iliases; Value-Environment Pairs

250 APPENDIX A. SCENARIO TRANSCRIPTS

0.7167 [CHANGING-WRT 0 10000000000 LL [HOLE N299133
aka [PIN 16 M3 aka BI 21A3
((T #<ENV 3 0320>))

20:28:243 Adding observation of T at
[CHANGING-WRT 0 10000000000 ELL [HOLE I N289331

There are diagnoses (entropy 2288) accountingfor .:
Oo263 [[(Ui2 Other)33
**O

00.
Entropy Signal; Aliases; Value-Environment Pairs
0.7187 [CHANGING-WRT 0 10000000000 ELL [HOLE 2 46333

aka. [PIN 28 U433 aka [IN II U43A3
((T #<ENV 3 0320>))

ID
029:223 Adding observation of T at

[CHANGING-WRT 0 10000000000 ELL [HOLE 2 N48333
0.0
There are diagnoses (entropy 2288) accounting for 6:
0.263 MM Other)]]

Entropy Signal- Aliases; Value-EnvironMent Pairs
0.7166 [CHANGING-WRT 0 iOOOO -0000 ELL [HOLE 2 N223313

aka [PIN 11 U203 aka [IN A U200
((NIL #<ENV 2 0>))

b;:30:203 Adding observation of T at
[CHANGING-WRT 0 iOOOOOOOOOO ELL [HOLE 2 N223333

�;�flict! There are 2 diagnoses (entropy 0997) accounting for 6:
0.633 EE(Uli Other)]]

*';re are 2 diagnoses (entropy 0997) accounting for .96-.
0.633 E(UII Other)]]
* -0 -0

0 0 0
Entropy Signal; Aliases; Value-Environment Pairs
0.8367 [CHANGING-WRT 0 iOOOOOOOO ELL [HOLE 3 N101333

aka [PIN 9 3 aka [IN LOAD Ui0A3
((NIL #<ENV i 01>))

66:31:121 Adding observation of T at
[CHANGING-WRT 0 iOOOOOOOOO LL [HOLE 3 Mill]

'*;re are i diagnoses (entropy 0.000) accounting for 6:
1.000 H(Ull OtherM

Probes Diagnoses
(Fourteen) afterwards

f

A-8. AUDIO DECODER EXAMPLE.TV 251

N272 i
N272 iO
N290 10
N280
Nisg
Ni94 6
N139 6

N88 6
N246 6
N289 6

N48 6
N223 2
N101 I

T

252 APPENDIX A. SCENARIO TRANSCRIPTS

A,.q Audio Decoder Exarnple IV with Syn-
dronies

There are I diagnoses (entropy 0.000) accounting for 6:
1.000 1133

i6i:37.-481 Adding observation of 30 at
[MAX-MIN-WW iOOOOOOOO [VOLTAGE [HOLE I N272331

There are I diagnoses (entropy 0.000) accounting for :
loooo 1131

69-37:671 Adding observation of 20000.0 at
EFWW 0000000 P-ZNIL T) [CROSS (EXPT 2 1) [VOLTAGE [HOLE I N2721333

There are I diagnoses (entropy 0.000) accounting for 5:
i.000 1113

69,:38:021 Addin r observation of 20000.0 at
EFWW 0000000 INIL T) [CROSS EDT [VOLTAGE [HOLE 27231311

'*;re are diagnoses (entropy 3269) accounting for 6:
0.163 CUU43 Other)13
.0.
Refining Ui2 with INACTIVE

C nflict' There are 10 diagnoses (entropy 3203) accounting for :
0.163 11043 Other)33
0.0
There are diagnoses (entropy 3203) accounting for 96:
0.163 [[(U43 Other)33

i;foining U11 with CSB-INACTIVE

';�flict! There are 1i diagnoses (entropy 3320) accounting for :
0.163 [[(U43 Other)]]

Conflict! There are i diagnoses (entropy 3209) accounting for :
0.168 EUU43 Other)]]

*';re are 10 diagnoses (entropy 3209) accounting for 6:
0.168 [E(U43 Other)]]

Refining U10 with CSB-INACTIVE

Conflict' There are 10 diagnoses (entropy 3172) accounting for .5:
O.i68 11(U43 Other)]]

There are 10 diagnoses (entropy 3172) accounting for 9:
0.168 [[(U43 Other)]]

D';;omposing ASSUMPTION INF [STATUS-OF 43 WORKING]>)

A.9. AUDIO DECODER EXAMPLE IV WITH SYNDROMES 253

There are iO diagnoses (entropy 3.i?2) accounting for 6:
0.168 CE(U43 OtherM

Decomposing (#<ASSUMPTION INF [STATUS-OF U21 WORKING>)

There are diagnoses (entropy 3172) accounting for 6:
0.168 EVU43 Other)]]
O 0 -0
Decomposing (#<ASSUMPTION INF [STATUS-OF U21 WORKING]>)

'';ro are 10 diagnoses (entropy 3172) accounting for 6:
0.168 E(U43 Other)]]

&;omposing (#<ASSUMPTION INF [STATUS-OF U2i WRXING>)

There are diagnoses (entropy 3.i72) accounting for 6:
0.168 EC(U43 Other)33

ie*;omposing ASSUMPTION INF [STATUS-OF U44 WORKING3>)

There are 10 diagnoses (entropy 3.i72) accounting for 6:
0.168 E[(U43 Other)]]

Entropy Signal- Aliases- Value-Environment Pairs
0.8173 [CHANGING-WRT 10000000'000 ELL [HOLE 2 N290113

aka [PIN 10 433 aka [IN CS U43A3
((T #<ENV 6 01307>))

[09:43:121 Adding observation of T at
[CHANGING-WRT 0 10000000000 ELL [HOLE 2 N29o333

'';ro are 10 diagnoses (entropy 3.i72) accounting for 6:
0.168 [E(U43 Other)]]

Entropy Signal; Aliases- Value-Environment Pairs
0.7460 CHANGING-WRT 0 10000000000 ELL [HOLE I N280311

aka [PIN 16 Uii3 aka [OUT TC MW
((T #<ENV 0307>))

j'i-44:163 Adding observation of I at
ELL [HOLE I N28011

';�flict! There are 7 diagnoses (entropy 2637) accounting for 5:
O.igg EUU12 Other)]]

Conflict! There are 6 diagnoses (entropy 2462) accounting for .96:
0.210 EE(Ui2 Other)33

Conflict! There are diagnoses (entropy 2302) accounting for :
0.220 M12 Other)]]

.....-

254 APPENDIX A. SCENARIO TRANSCRIPTS

There are diagnoses (entropy 2302) accounting for 6:
0.220 [[(UI2 Other)31
.0.
Refining U20 with CSB-INACTIVE

Conflict! There are diagnoses (entropy 2292) accounting for :
0.238 [[(Ui2 Other)]]

There are diagnoses (entropy
0.238 [[(Ul2 OtherM

Decomposing ASSUMPTION INF
000
There are diagnoses (entropy
0.238 [[(UI2 Other)13

Decomposing ASSUMPTION INF
'D.
There are diagnoses (entropy
0.238 [[(Ui2 OtherM

D';;omposing ASSUMPTION INF

There are diagnoses (entropy
0.238 [[(Ui2 Other)]]

L;;omposing ASSUMPTION INF

There are diagnoses (entropy
0.238 [[(Ui2 Other)]]
.. 0

2.292) accounting for 6:

[STATUS-OF M2 WORKING>)

2.292) accounting for 6:

[STATUS-OF MO WORKING>)

2.292) accounting for :

[STATUS-OF Ui WORKING>)

2.292) accounting for 6:

[STATUS-OF U20 WORKING>)

2.292) accounting for :

Entropy Signal; Aliases; Value-Environment Pairs
i.0000 ELL [HOLE I N21'311

aka [PIN i U103 aka [OUT TC 10A3
((O #<ENV 3 04iO2> #<ENV 3 020102>))

09:48:661 Adding observation of T at
[CHANGING-WRT 0 10000000000 ELL [HOLE i N213113

*ho;re are diagnoses (entropy 2293) accounting for 5:
0.239 [[(Ui2 Other)]]

Entropy Signal; Aliases- Value-Environment Pairs
i.0000 ELL [HOLE 2 N11

aka [PIN 12 U213 aka [IN CLOCK U2iA3
((O #<ENV 2 04100> #<ENV 2 010i00> #<ENV 2 2OiOO>))

i0,9,-.S0-.i63 Adding observation of T at
[CHANGING-WRT 0 iOOOOOOOOOO ELL [HOLE 2 N313

A.9. AUDIO DECODER EXAMPLE V WITH SYNDROMES 255

There are diagnoses (entropy 2293) accounting for 6:
0.239 E[(U12 Other)33

Entropy Signal; Aliases; Value-Environment Pairs
0.7423 [CHANGING-WRT 0 iOOOOOOO'O ELL [HOLE 2 N236333

aka [PIN i4 U443 aka EB 3 U44A3
((T #<ENV 4 0360>))

j'i:Si:243 Adding observation of T at
[CHANGING-WRT 0 iOOOOOOOOO ELL [HOLE 2 N236333

*. -1
Thor* are diagnoses (entropy 2293) accounting for 9:
0.239 E12 ther)33

Entropy Signal; Aliases* Value-Environment Pairs
0.7423 [CHANGING-WRT 0 00000000100 ELL [HOLE 2 NiI7333

aka. [PIN U443 aka B 4 U444
UT #<ENV 4 0360>))

iO,9,:62:263 Adding observation of T at
[CHANGING-WRT 0 iOOOOOOOOOO ELL [HOLE 2 Ni7333

There are iagnoses (entropy 2293) accounting for 96:
0.239 E[(U12 Other)]]

Entropy Signal; Aliases; Value-Environment Pairs
0.7423 [CHANGING-WRT 0 10000000000 ELL [HOLE 2 N208333

aka [PIN 24 U433 aka [IN 7' U43A3''-
((T #<ENV 3 0320>))

[09:63:351 Adding observation of T at
[CHANGING-WRT 0 10000000000 ELL [HOLE 2 N208333

There are diagnoses (entropy 2293) accounting for 5:
0.239 [E(U12 Other)13

Entropy Signal- Aliases; Value-Environment Pairs
0.7423 [CHANGING-WRT 0 i000000'00 ELL [HOLE I N289111

aka [PIN iS U213 aka EBI U2iA3
((T #<ENV 3 0320>))

09:54:403 Adding observation of T at
[CHANGING-WRT 0 10000000000 ELL [HOLE I N289333

There are 6 diagnoses (entropy 2293) accounting for 5:
0.239 EC(Ui2 Other)33

256 APPENDIX A. SCENARIO TRANSCRIPTS

Entropy Signal; Aliases- Value-Environment Pairs
0.7423 [CHANGING-WRT 0 10000000000 ELL [ROLE 2 48313

aka [PIN 28 433 aka [IN i U43A3
((T #<ENV 3 0320>))

b09:66:421 Adding observation of T at
[CHANGING-WRT 0 iOOOOOOOOO ELL [HOLE 2 N48313

There are diagnoses (entropy 2293) accounting for :
0.239 [[(TJ12 Other)33

Entropy Signal; Aliases; Value-Environment Pairs
0.6803 [CHANGING-WRT 0 i0000000000 ELL [HOLE 2 N223333

aka [PIN ii 201 aka 1 A 2OD3
((NIL #<ENV 2 0>))

69:66:461 Adding observation of T at
[CHANGING-WRT 0 10000000000 ELL [HOLE 2 N223111

so*
Conflict' There are 2 diagnoses ntropy 0988) accounting for :
0.667 11011 OtherM
00.
There are 2 diagnoses (entropy 0988) accounting for 9:
0.667 [Uil Other)]]

Entropy Signal; Aliases; Value-Environment Pairs
0.8630 [CHANGING-WRT 0 iOOOOOOOO ELL [HOLE 3 N10ill]

aka [PIN 9 U103 aka [IN LOAD U10A3
((NIL #<ENV I 0>))

09:67:401 Adding observation of T at
[CHANGING-WRT 0 iOOOOOOOOOO ELL [HOLE 3 NiO1333
.0

There are diagnoses (entropy 0.010 aounting for 6:
0.993 EE(MI OtherM

Pr.;bes Diagnoses
(Fourteen) afterwards

N272 i
N272 iO
N290 iO
N280 5
N213 6

N56 6
N236 5
Ni17 6
N208 6
N289 5

N48 6
N223 2

A.9. AUDIO DECODER EXAMPLE IV WITH SYNDROMES 257

NiO I
T

4

258 APPENDIX A. SCENARIO TRANSCRIPTS

A.10 Input Encoder Exarnple I

*';ro are i diagnoses (entropy 0.000) accounting for 5:
i.000 [03

iii:i9-201 Adding observation of T at
[POWER [IN POWER S37011

'*;re are i diagnoses (entropy 0.000) accounting for :
1.000 [El]

il'60-22:173 Addin observation of at
ELL [ROLE 2 N8313

.00
There are i diagnoses (entropy 0.000) accounting for 6.-
1.000 1133

i'i:22:273 Adding observation of I at
ELL [HOLE 2 Sifl

'*;re are I diagnoses (entropy 0.000) accounting for 6:
i.000 [l]

i'i:23-233 Adding observation of at
ELL [HOLE 2 N8311

-0 . .
There are I diagnoses (entropy 0.000) accounting for 9:
i.000 [El]

16:26-043 Addin observation of NIL at
[KS [IN PAD 33

* . -0
There are i diagnoses (entropy 0.000) accounting for QS:
i. ooo [3

il'0:25:061 Adding observation of NIL at
[KS [IN BD U33

.00
There are i diagnoses (entropy 0.000) accounting for 6:
1.000 II

ii*:26:lil Addin observation of NIL at
NT [OUT KEYS I

*';re are diagnoses (entropy 0.000) accounting for .9S:
1.000 [03

il4:25:i2l Adding observation of T at
[CHANGING-WRT 1000000000 iOOOOOOOOO [MP [IN MDX U1

There are i diagnoses (entropy 0.000) accounting for .95.-
1.000

A.10. INPUT ENCODER EXAMPLE I 259

[16:26,161 Adding observation of T at
[CHANGING-WRT 1000000000 iOOOOOOOOO [MP [IN MDY U333

0 0 -0
There are I diagnoses (entropy 0.000) accounting for :
i.000 03
O..
[16:26:193 Adding observation of NIL at

[CHANGING-WRT iOOOOOOOO iOOOOOOOOO [MP [IN MB U3

There are i diagnoses (entropy 0.000) accounting for .06:
i.ooo [01

16:26:221 dding observation of NIL at
[CHANGING-WRT 1000000000 iOOOOOOOOO [MP [OUT MDX C333

There are i8 diagnoses (entropy 3932) accounting for 6:
0.136 CRU26 Other)]]

Reiining U26 with OPEN

There are i8 diagnoses (entropy 3931) accounting for 6:
0.136 E(U26 Open)33

D';;omposing (#<ASSUMPTION INF [STATUS-OF 2 WKING>)

There are diagnoses (entropy 3931) accounting for 6:
O.i3S [VU26 Open)33

&;omposing ASSUMPTION INF [STATUS-OF U33 WORKING>)
-600
There are 18 diagnoses (entropy 3931) accounting for 6:
0.136 HU25 Open)13

ie;omposing (#<ASSUMPTION +INF [STATUS-OF U34 WORKING>)

There are 18 diagnoses (entropy 3.93i) accounting for 6:
0.i36 [[(U26 Open)]]

j'i:31:283 Adding observation of NIL at
[CHANGING-WRT 1000000000 10000000000 [MP [OUT MDY C333

*';re are 18 diagnoses (entropy 3931) accounting for 6:
0.136 UU26 Open)]]
O..
Ei6:32:391 Adding observation of NIL at

[CHANGING-WRT iOOOOOOOO 10000000000 [MP [OUT MB C333

**;re are 18 diagnoses (entropy 3931) accounting for 6:
0.136 CRU25 Open)]]

Entropy Signal- Aliases- Value-Environment Pairs
0.9898 [CHANGING-WRT 10000000-00 0000000000 [L [HOLE' I 8111

aka [PIN 3 U341 aka EBI 20 U34A]

260 APPENDIX A. SCENARIO TRANSCRlPTS

((T #<ENV 0777>) (NIL #<ENV i4 01777036>))

il'6:36:433 Adding observation of i at
ELL [HOLE i Ni7811

There are 9 diagnoses (entropy 2896) accounting for 5:
0.280 [[(U26 Open)]]

Entropy Signal; Aliases; Value-Environment Pairs
i.0448 [RINGING-WRT iOOOOOOOO 10000000000 ELL [HOLE 257311

aka [PIN 10 RN73 aka CBI i MAI
((T *<ENV 6 071>) (NIL #<ENV 02000073>))

16:39:263 Adding observation of iSS260.0 at
CFWW 40000 '(I 0) ELL [HOLE i N2s7333

[16:40:203 Adding observation of S62SO.0 at
CFWW 40000 f(0 1) ELL [HOLE I N2S7333

There are 7 diagnoses (entropy
0.332 [[(U34 Other)]]

Decomposing (#<ASSUMPTION INF

There are diagnoses (entropy
0.332 EC(U34 Other)33

D';;omposing ASSUMPTION +INF

There are 7 diagnoses (entropy
0.332 [U34 Other)]]

D';;omposing ASSUMPTION INF

There are 7 diagnoses (entropy
0.332 [[(U34 Other)]]
.0.

2.616) accounting for .95:

[STATUS-OF U30 WORKING]>)

2.616) accounting for :

[STATUS-OF M4 WORKING>)

2.616) accounting for 6:

[STATUS-OF U32 womm>)

2.6i6) accounting for .9S:

Entropy Signal; Aliases; Value-EnVironment Pairs
0.8879 CHANGING-WRT iOOOOOOO iOOOOOOOO ELL [HOLE 3 NMI]]

aka [PIN 4 U333 aka [IN RESET U334
((T #<ENV 3 0302>) (NIL #<ENV 0437> #<ENV 0473>))

60-46:291 Adding observation of at
ELL [HOLE 3 NiS213

EM45:4i] Adding observation of I at
ELL [HOLE 3 N16211

'';re are diagnoses (entropy 2079) accounting for 6:
0.442 [RU34 Other)]]

A.10. INPUT ENCODER EXAMPLE I 261

Entropy Signal; lases; Value-Environment Pairs
0.4987 [CHANGING-WRT i000000000 t000000,00 ELL [HOLE i Ni30333

aka [PIN U323 aka [OUT U32 C3
UT #<ENV 4 035> #<ENV 03>) (NIL #<ENV 4 0200003i>))

ii'6':47:461 Adding observation of 000000. at
EFWW 20000 1) ELL [HOLE I Ni30333

There are diagnoses (entropy 2081) accounting for 6:
0.443 E(U34 Other)]]
O..

. 0.0
Entropy Signal- Aliases- Value-EnvironMent Pairs
0.4724 [CHANGING-WRT 1000000000 i0000000000 ELL HOL 2 N243333

aka [PIN U333 aka [IN XTAL2 U134
((T #<ENV 4 036> #<ENV 073>))

iii:49:273 Adding observation of 000000.0 at
[FWW 20000 '(I 0) ELL [HOLE 2 N243311

..
There are iagnoses (entropy 2081) accounting for 6:
0.443 [[(U34 Other)13

Entropy Signal; Aliases- Value-Environment Pairs
0.4724 [CHANGING-WRT 1000000000 0000000000 ELL [HOLE I N84113

aka [PIN 0 U323 aka [OUT Y U32E3
((T #<ENV 4 036> #<ENV 073>))

i1*6":6i:013 Adding observation of 000000.0 at
EFWW 20000 '(O 1) ELL [HOLE I N84113

-0 0.
There are diagnoses (entropy 2081) accounting for :
0.443 MU34 Other)]]

Entropy Signal; Aliases; Value-Environment Pairs
0.4724 CHANGING-WRT 1000000000 10000000000 ELL [HOLE 4 N73113

aka [PIN 2 U343 aka [IN XTALi 34A3
((T #<ENV 4 036> #<ENV 073>))

ii6:52:333 Adding observation of OOOOO. at
EFWW 20000 (I 0) ELL [HOLE 4 N73131

'*;re are diagnoses (entropy 2081) accounting for :
0.443 CE(U34 Other)]]

in.;ropy Signal; Aliases- Value-Environment Pairs
0.4724 [CHANGING-WRT 1000000000 10000000000 [CC CSMHZLI]

262 APPENDIX A. SCENARIO TRANSCRIPTS

aka [PIN 3 U333 aka [IN XTAL2 U33A]
((T #<ENV 4 036> #<ENV 073>))

16:64:083 Adding observation of O0000.0 at
[FWW 20000 '(NIL T) [CC CSMHZLI]

There are 3 diagnoses (entropy 1.320 accounting for 5:
0.624 [[(U34 OtherM

Entropy Signal; Aliases; Value-Environment Pai
0.2806 CHANGING-WRT 1000000000 10000000000 ELL [HOLE I N46133

aka [PIN 4 U321 aka [OUT U32B3
((T #<ENV 2 014> #<ENV 3 031>) (NIL #<ENV 2 0200OOiO>))

M66:4i] Adding observation of 1.0e7 at
[FWW 10000)(0 1) LL [HOLE I M333

[16:66:623 Adding observation of 1.0e at
EFWW iOOOO '(I 0) ELL [HOLE i N46133

There are 3 diagnoses (entropy 1321) accounting for 6:
0.624 MU34 Other)]]

Entropy Signal; Aliases; Value-Environment, Pairs
0.2799 [CHANGING-WRT 1000000000 10000000000 [CC CSMHZHII

aka [PIN 2 U341 aka [IN XTAU U34 I
((T #<ENV I iO>))

ji;:67:083 Adding observation of 000000.0 at
EFWW 20000) (T NIL) [cc csmHzH 3

.0.
Mere are 2 diagnoses (entropy 0721) accounting for .96.-
0.800 [[(U34 Other)]]

Entropy Signal; Aliases- Value-Environment Pairs
0.2570 [CHANGING-WRT iOOOOOOOO i0000000000 ELL [HOLE 6 N7111

aka [PIN 9 U263 aka [IN LOAD 26A]
((NIL #<ENV 02>))

iii:68:211 Addin observation of I at
ELL [HOLE 6 N711

'*;ro are i diagnoses (entropy 0.000) accounting for :
ioOOO M34 Other)]]

A.11. INPUT ENCODER EXAMPLE II 263

A.11 Input Encoder Exarnple II

'';re are I diagnoses (entropy 0.000) accounting for :
1.000 [0]

6,O-.27:371 Adding observation of T at
[POWER [IN POWER S37011

'';re are I diagnoses (entropy 0.000) accounting for 6:
1.00 []

,10:30:203 Addin observation of at
ELL [HOLE 2 N8313

'*;re are I diagnoses (entropy.0.000) accounting for :
i.000 E33
6*

0:30:273 Addin observation of I at
ELL [HOLE 2 8313

'';ro are I diagnoses (entropy 0.000) accounting for 6:
i.ooo [03

6,iO:31:023 Addin observation of at
ELL [HOLE 2 N8313

.1.0
There are I diagnoses (entropy 0.000) accounting for :
i.000 []

66-33-203 Adding observation of NIL at
[KS [IN PAD 33

.P..
There are I diagnoses (entropy 0.000) accounting for 6:
1.000 [03

,10:33:261 Adding observation of NIL at
[KS [IN KBD Ul

There are I diagnose (tropy 0.000) accounting for 6:
1.000 []

[iO-33:301 Addin observation of NIL at
EKT [OUT KEYS C11

**;re are I diagnoses (entropy 0.000) accounting for 6:
1.000 [01

6,i0:33:3il Adding observation of T at
[CHANGING-WRT 1000000000 iOOOOOOOOO [MP [IN MDX U333

There are i diagnoses (entropy 0.000) accounting for 5:
i.000

i -- ---- ---- -- ---

264 APPENDIX A. SCENARIO TRANSCRIPTS

[10:33:343 Adding observation of T at
[CHANGING-WRT iOOOOOOOO 10000000000 [MP [IN MDY U333

110.
There are i diagnoses (entropy'0.000) accounting for 6:
1.000 [D

ji6-33:383 Adding observation of NIL at
[Ci�NGING-WRT 1000000000 iOOOOOOOOO [MP [IN MB 133

There are I diagnoses (entropy 0.000) accounting for 6:
i.000 []

i1*0:33:421 Adding observation of NIL at
[CHANGING-WRT 1000000000 10000000000 [MP [OUT MDX C333

'ho;re are 18 diagnoses (entropy 3932) accounting for 6:
0.136 EC(U26 Other)]]

'e*iining 26 with OPEN

**;ro ar 1 diagnoses ntropy 3931) accounting for 96:
O.i36 CE026 On)33

Decomposing ASSUMPTION INF [STATUS-OF U25 WORKING]>)

'*;re are 18 diagnoses (entropy 3931) accounting for .96.-
0.136 ERU26 Oen)33

*;;ompos'.ng ASSUMPTION INF [STATUS-OF U33 WORKING>)
4. . 0

There are 8 diagnoses (entropy 3931) accounting for 9:
0.136 ERU25 Open)]]
.. a,
Decomposing ASSUMPTION INF [STATUS-OF U34 WORKING>)

'';ro are 18 diagnoses (entropy 3.930 accounting for 95:
0.136 U026 Open)]]

iO:40:291 Adding observation of NIL at
[CHANGING-WRT 1000000000 iOOOOOOOOO [MP [OUT MDY C3

There are diagnoses tropy 3931) accounting for 96:
O.i36 EUU25 Open)]]

10:41:291 Adding observation of NIL at
[CHANGING-WRT 1000000000 10000000000 [MP [OUT MB C333

'*;re are iS diagnoses (entropy 3931) accounting4or 96:
0.136 E(U26 Open)]]

Entropy Signal; Aliases; Value-Environment Pairs
0.9898 [CHANGING-WRT 1000000000 iOOOOOOOOOO [L [HOLE 2 N78311

aka [PIN i U331 aka [IN TO U33A]

A.11. INPUT ENCODER EXAMPLE II 265

((T #<ENV 077>) (NIL #<ENV i4 01777036>))

[10:44:281 Adding observation of T at
[CHANGING-WRT iOOOOOOOOO iOOOOOOOOOO ELL [HOLE 2 Ni78333

*';ro are 13 diagnoses (entropy 3466) accounting for 9:
0.179 E025 On)33

Entropy Signal; Aliases- Value-Environment Pairs
0.8188 [CHANGING-WRT iOOOOOOOO 10000000000 ELL [HOLE I N267333

aka [PIN i RN71 aka EBI i RN7A3
((T #<ENV 077>) (NIL #<ENV 02000073>))

0.0
U0:46:413 Adding observation of 1662SO.0 at

EFWW 640000 '(I 0) ELL [HOLE I N2S7333
[10:47:113 Adding observation of S62SO.0 at

EFWW 640000) LL [HOLE I N2S1313

There are i2 diagnoses (entropy 3404) accounting for S:
0.16S [E(U33 Other)33

D';;omposing (#<ASSUMPTION INF [STATUS-OF U6 WORKING3>)

There are 12 diagnoses (entropy 3404) accounting for S:
0.16S E(U33 Other)]]
O..

O..
Entropy Signal; Aliases- Value-Environment Pairs
0.3894 EWRT 1000000002 2S2428803 ELL [HOLE N81133

aka [PIN 223 aka [IN U22B]
((I #<ENV 0100373> #<ENV iOO337>))

iiO,:49:473 Addin observation of I at
ELL [HOLE I N8113

0 0 .
There are 12 diagnoses (entropy 3404) accounting for S:
O.i6S U033 Other)]]

Entropy Signal; Aliases- Value-Environment Pairs
0.3894 EWRT 1000000002 2S2428803 LL [HOLE 4 N37111

aka [PIN 10 U341 aka [IN WR U34A]
((I #<ENV iOO373> #<ENV 0100337>))

Ei0:61:393 Adding observation of i at
ELL [HOLE 4 N13713

'*;re are 12 diagnoses (entropy 3404) accounting for S:
0.16S EE(U33 Other)]]

APPENDIX A. SCENARIO TRANSCRIPTS266

*
Entropy Signal; Aliases- Value-Environment Pairs
0.3894 CWRT 1000000002 2062428803 CLL [HOLE 2 N11333

aka [PIN 22 Ui63 aka [IN OE Ui6AJ
((I #<ENV 0100373> #<ENV OiOO337>))

iiO':63:281 Addin[LL [HOLE 2 Ni 11Iobservation of i at

0.0
There are 4 diagnoses (entropy 1770) accounting for 96:
Oo488 C(U33 Other)]]

Do;�omposing ASSUMPTION INF [STATUS-OF U30 WORKING]>)

There are 4 diagnoses (entropy 1770) accounting for .5:
0.488 [C(U33 Other)]]

&;omposing ASSUMPTION INF [STATUS-OF U32 WORKING3>)

There are 4 diagnoses (entropy i.770) accounting for 5:
0.488 [(U33 Other)]]

. 0 .

Entropy Signal; Aliases; Value-Environment Pairs
0.6267 ANGING-WRT 1000000000 10000000000 ELL [HOLE M11

aka [PIN 6 323 aka. [OUT Y 32C]
((T #<ENV 4 035> #<ENV'S 073>) (NIL #<EN 4 0200003i>))

10:66:361 Adding observation of 000000.0 at
EFWW 20000 ;(O 1) ELL [HOLE I NMI]]

There are 4 diagnoses (entropy 1771) accounting for 6:
0.490 EE(U33 Other)]]

0 *
Entropy Signal; Aliases; Value-Environment Pairs
0.4973 [CHANGING-WRT 1000000000 10000000000 ELL [HOLE 4 N73311

aka [PIN 2 U341 aka [IN XTAU U34A]
((T #<ENV 4 036> #<ENV 03>))

ii'O':69:061 Adding observation of 5000000. at
[FWW 20000 ;(I 0) LL [HOLE 4 N73113

0*0
There are 4 diagnoses (entropy 1771) accounting for 9:
0.490 [[(U33 Other)33

Entropy Signal; Aliases; Value-Environment Pairs
0.4973 [CHANGING-WRT 1000000000 10000000000 [CC C6MHZL13

aka [PIN 3 U331 aka [IN XTAL2 U33A]
((T #<ENV 4 036> #<ENV 073>))

A.11. INPUT ENCODER EXAMPLE II 267

[11:00:391 Idding observation of 5000000. at
[FWW 20000 '(NIL T) [CC CSMHZL]3

..
There are I diagnoses (entropy 0048) accounting for 9:
0.966 HU33 Other)]]

IL en

0 0
s rac ions an e aviors

The following definitions are discussed in Chapter and collected here al-
phabetically. Keep in mnd that their purpose is mental hygiene, not exe-
cution. The procedural style of definition has advantages of expressiveness
that outweigh its disadvantages. The expressiveness advantage 'is that the
language is smple enough that 'it is possible to introduce compound defin'_
tions through composition of existing definitions and surface transformations
of the results; the rh behavior (Appendix C) 'is an example of this technique.
The disadvantages that such transformations would be difficult to automate
and intractable in general is a long-term concern, but not an overriding one.
Likewise, the 'inefficiency of the procedures defined in some cases is not a
concern, since the troubleshooting program does not use these procedures
directly. Fnally, there is no compelling reason that a more declarative rep-
resentation could not have been used - but the same tractability problems
would still arise: using a temporal logic as in [Moszkowski'82], for example,
would not solve the problem of transformations being intractable.

accumulated-bits
(lambda (S V D)

(lambda (time)
(if (S time)

(let previous
((accumulated-bits V D) time 8))))

(if (V time)
(+ (if (eql (D time) 1 I

previous)
previous)))))

268

269

brightness ==
(lambda (R C C2 Kbd Kpd M)

(lambda tme)
(let ((the-state ((c-state R C C2 Kbd Kpd M) time)))

(if (eql Iinit the-state) 128
(max

(min 255
(+ (if (eql 'local the-state)

((duration
(key-is-pressed B Kd) tme)

((duration
(key-is-pressed ID Kd)) time))

3msec) 0)
((brightness R C1 C2 Kbd Kpd M)

time
((duration

(c-state R Ci C2 Kbd Kpd M))

changing-wrt
(lambda (lb ub S)

(lambda (t ime)
(and = time ub)

(> ((count-ww (- ub lb) (change S) tme) 0))))

count-ww ==
(lambda (n S)

(lambda tme)
(if <= n 0) 0

(+ (if (S time) I)
Ucount-ww (- n) S) time 8))))))

cross
(lambda (v S)

(lambda (t ime)
(let (sO (S (- time

(s2 (S time)))
(or < s v s2 < v s))))

cycles-ww ==
(lambda (n 1 S)

(count-ww n (sequence S)))

270 APPENDIX B. ABSTRACTIONS AND BEHAVIORS

dt =_
(lambda

(lambda (time)
(let (sO (S (- time

(sl (S time)))
U (_ Si SO)

duration ==
(lambda (S)

(lambda (t ime)
(it change S) time)

(8 ((duration S) time

fall ==
(lambda (C)

(lambda (t ime)
(and 0 (C time))

1 (C (- time 8))))))

fww
(lambda (n 1 S)

(lambda (t ime)
(cycles-ww n 1 S) n)))

event
(lambda (f rom to

(lambda (time)
(and (equal (S time) to)

(not (equal (S (- tme to))
(or (eql from any)

(equal from (S (- time 8)))))))

gray-event ==
(lambda (SO SI)

(lambda (t ime)
(or ((change SO) tme) ((change Sl) time))))

kbd-events
(keyboard-events kbd-state)

271

kbd-state ==
(samp (fall kd-reset)

(accumulated-bits
(fall kbd-reset)
(rise kbd-clk) kd-data))

keyboard-events
(lambda (S)

(lambda (t ime)
(if stay S) time) nil

(let ((Previous (S (- time 8)))
(current (S time)))

(list
(pos->key (log (logxor previous current) 2)
(if < previous current) 'up 'down))))))

key-is-pressed
(lambda (key Kbd)

(lambda (time)
(if (eql (list 'up key) (Kbd time)) t

(if (eql (list 'down key) (Kbd time)) nil
((key-is-pressed key Kbd) time

mouse-dx
(tsign

(count-ww isec
(gray-event mouse-left mouse-right)))

re ister
lambda (C D)

(lambda (time)
(if fall C) tme) (D time)

Uregister C D) time 6)))))

samp == sample-and-hold
(lambda (V S)

(lambda (t ime)
(if (V time) (S time)

((s amp V S) (tme)

. III 1111101mom -

272 APPENDIX B. ABSTRACTIONS AND BEHAVIORS

sequence ==
(lambda (1 S)

(lambda (t ime)
(or (null)

(if stay S) time)
Usequence S) (- time 8))
(and (eql (car (last 1)) (S

((sequence (butlast 1)
(- time 8)))))))

(- time 8)))
S)

si n ==
lambda (x) (if < x 0) (if > x 0)) 0)))

synchronous-delay == syn-del ==
(lambda (n V S)

(lambda (time)
(if (V time)

(i f = n 0)
(S i Me

((synchronous-delay
((synchronous-delay n V S)

n 1) V S) (- time 8)))
(- time 8)))))

syn-register -_
(lambda (V S) (synchronous-delay I V S))

toggle ==
(lambda (S)

(lambda tme)
(if ((f all S) time)

(invert to gle S) time 8)))
Utoggle S) time)))

tsign ==
(lambda (S)

(lambda (time)
(sign (S time))))

two-phase-clock ==
(lambda (phil phi2)

(sequence '((O 0) (I 0) (O 0) (O 1))
(lambda (time) (list (phil time) (ph1'2 time)))))

counter ==
(lambda (k R C)

(lambda (time)
(if (eql 0 (R time))

(mod
(+ (if fall C)

((counter k R
(expt 2 k)))))

time) 1 0)
C) (- time 8)))

nthbit ==
(lambda (i n) (load-byte n i i))

273

0

en

ese 0 oun er e avior

Section 58.1 alluded to the fact that the temporally abstract behavior for
the Reset Hold Counter component could be derived from the behaviors of
its subcomponents. The actual transformations are given here.

Consider the behaviors of the three components of the Reset Hold Counter
(Figure C.1). The behavior of the inverter is tinvert, the behavior of the

AND gate is tand, and the k-bit counter's behavior is represented by counter
(nthbit is an awdliary function, not a behavior).

t and ==
(lambda (X Y)

(lambda (t ime)
(if (and (eql (X tme) 1) (eql (Y time) 1)) 1 0)))

APPENDIX C RESET HOLD COUNTER BEHAVIOR274

Figure CA: Reset Hold Counter

I-

The behavior of the connected group of components is represented by
rh-state, which returns a signal representing the state of the Reset Hold

Counter. For the most part it is smply a composition of the counter, tand,
and tinvert behaviors that reflects the crcuit structure. The sgnal argu-
ment to tinvert is a delayed version of the most sgnificant bit of state and

prevents rh-state from being rcularly defined; the delay could have been

introduced anywhere 'in the loop. The behavior rh is then the behavior of the

entire aggregate structure; 'it is smply the most significant bit of the state.

rh ==
(lambda (R O

(lambda (time)
(nthbl't 13 ((rhstate R C) time))))

rh-state ==
(lambda (R C)

(counter 14 R
(tand C

(tinvert
(lambda (t ime)

(nthbit 13
Urh-state R C) (- time delta))))))))

275

Defining the behavior rh and its underlying behavior rh-state does not
simplify anything, it merely composes the several behaviors into one.

rh-state ==
(lambda (R C)

(counter 14 R
(tand C

(tinvert
(lambda (t ime)

(nthbit 13
Urh-state R C) time delta))))))))

rh ==
(lambda (R C)

(lambda (time)
(nthbit i3 ((rhstate R C) time))))

The following transformations simplify rh-state's definition so that 'it
takes on values from to 213 instead of to 2:

The use of counter is removed by substitution:

(lambda (R C)
Ulambda (k R C)

(lambda (time)
(if (eql 0 (R time))

(mod
(+ (if ((f all C) time) 1 0)

((counter k R C) (- time delta)))
(expt 2 k)))))

14 R
(tand C

(tinvert
(lambda (t ime)

(nthbit 13
Urh-state R C) (- time delta))))))))

Substitution for k, R, and C promotes the (eql 0 (R time)) condition:

1-1-1-1.1-1--_0 ampow WE 1101

APPENDIX C RESET HOLD COUNTER BEHAVIOR276

(lambda (R C)
(lambda (t ime)

(if (eql 0 (R time))
((lambda (CC)

(mod
(+ f ((f all CC) time) i 0)

((counter 14 R CC) time delta)))
(expt 2 14)))

(tand
C (tinvert

(lambda (t ime)
(nthbit

13 Urh-state R C)
(- time delta))))))))))

The term (counter 14 R CC) is equivalent to (rh-state R and can
be substituted:

(lambda (R C)
(lambda (time)

(if (eql 0 (R time))
Ulambda (CC)

(mod
(+ (if ((f all CC) time) I)

((rh-state, R C) (- time delta)))
(expt 2 i4)))

(tand
C (tinvert

(lambda (t ime)
(nthbit

13 Urh-state R O
(- time delta))))))))))

With only one reference to CC remaining, it can be substituted for:

--111--l-mpop"Fa"W"Immo"m

277

(lambda (R C)
(lambda (time)

(if (eql 0 (R time))
(mod

(+ (if ((fall
(tand

C (tinvert
(lambda (time)

(nthbit
13 ((rh-state R C)

(- time delta)))))))
time) I

Urh-state R C) (- time delta)))
(expt 2 14)))))

We can now case split on whether the term (nthbit 13 'is I or :

R C) (- time delta))))

time delta)))

(time) 0))

time delta)))

(lambda (R C)
(lambda (time)

(if (eql 0 (R time)) 0
(if (eql 0 (nthbit

- 13 Urh-state
(mod

(+ (if ((f all
t I, me)

((rh-state
(expt 2 14))

(mod
(+ (if ((f all

time)
((rh-state

(expt 2 14))))

C)
I 0)
R C (-

(lambda
1 0)
R C) (-

Simplifying the else-part of the resulting condition yelds:

Ill IMim

APPENDIX C. RESET HOLD COUNTER BEHAVIOR278

(lambda (R C)
(lambda (time)

(if (eql 0 (R time))
(if (eql 0 (nthbit

13 ((rh-state R C) (- time delta))))
(mod

(i ((f all
time)

((rh-state
(expt 2 14))

((rh-state R C)

C)
I 0)
R C) (- time delta)))

(- time delta))))))

13 x)) can be expressed 'in an alterna-

C) (tme delta)))

The condition (eql 0
tive way as < x (expt 2

(nthbl't

13))-.

(lambda (R C)
(lambda (time)

(if (eql 0 (R time))
(if < expt 2 13)

Urh-state R
(mod

(+ (if ((fall
time)

Urh-state
(expt 2 14))

((rh-state R C)

C)
I 0)
R C) (- time delta)))

(- time delta))))))

This allows us to drop the mod term from the if-part:

(lambda (R C)
(lambda (time)

(if (eql 0 (R time))
(i < expt 2 13)

((rh-state R C)
(+ (if Ufall C)

time) I)
((rh-state R C)

((rh-state R C) (-

(- time delta)))

(tme delta)))
time delta))))))

Finally, the conditional can be formulated as -a min expression*.

-- - 11 - I -, --- , , � Is - , -'. ... -, I --, ----

279

(lambda (R C)
(lambda (time)

(if (eql 0 (R time))
(min (ex t 2 13)

(+ if ((fall) tme) i 0)
Urh-state R C) (- tme delta)))))))

The following schema says that moment-by-moment conditional counting
of Y can be replaced with "jumps" of duration n, when X 'is periodic and

?F is monotonic:

?SELF =
(lambda (?X ?OY)

(lambda (t ime)
(if (time)

(?F ((if (?Y time) 1 0)
((?SELF ?X ?Y) time delta)))))))

?SELF
(lambda (?X ?Y)

(lambda (t ime)
(it (time)

(let ((N (count-wv ?n ?Y)))
(?F (if < n ((duration ?X) time))

(+ (N time) ((?SELF ?X IY) time ?n)))
(N time)

((duration ?X) time) ?n))))))))

When this transformation is applied to a rewritten definition of rh-state

called new-rh-state, the following results:

rh-state ==
(lambda (R C)

Ulambda (LR FC)
(lambda (time)

(if (LR time)
((lambda (min (expt 2 13) x))

(+ (if (FC tme) 1 0)
Unew-rh-state LR FC) time delta)))))))

(lambda tme) (eql 0 (R time)))
(fall C)))

280 APPENDIX C. RESET HOLD COUNTER BEHAVIOR

Which becomes, with n still unbound:

new-rh-state ==
(lambda (R C)

((lambda (LR FC)
(lambda (time)

(if (LR time)
(let ((NFC (count-ww ?n FC)))

Ulambda W (min (expt 2 3) x))
(If < n ((duration LR) time))

(+ (NFC tme)
((rh-state LR NFC) time n)))
(NFC time)
U duration LR) ime) n))))))))

(lambda tme) (eql 0 (R time)))
(fall C)))

We can make further use of the assumption that C is periodic by using
the fi-equency temporal abstraction to describe C, and expressing rh-state
in terms of that abstraction. The transformations required to do the latter
are as follows; first the FC argument 'is substituted for the original term
(fall :

rh-state
(lambda (R C)

((lambda (LR)
(lambda (t ime)

(if (LR time)
(let ((NFC (count-ww ?n (fall C))))

Ulambda W (min (expt 2 13) x))
(if < n duration LR) time))

(+ (NFC time)
((rh-state LR NFC) time n)))
(NFC time)
(/ ((duration LR) time) n))))))))

(lambda (time) (eql 0 (R time)))))

The term (cycles-ww n I O 1) C) is then substituted for the equivalent
term (count-ww n (all C)):

I

281

rh-state ==
(lambda (R C)

((lambda (LR)
(lambda (time)

(if (LR tme) 0
(let ((NFC (c cles-ww ?n (1) C)))

((lambda (x (min (expt 2 13) x))
(if < n ((duration LR) time))

(+ (NFC time)
((rh-state LR NFC) (tme n)))
(NFC tme)
(/ ((duration LR) time) n))))))))

(lambda (time) (eql 0 (R tme)))))

The cycles abstraction can be reformulated in terms of f vw as follows:

rh-state ==
(lambda (R C)

Ulambda (LR)
(lambda (t ime)

(if (LR time)
(let ((NFC (lambda (time)

(* n ((f ww ?n I O i) C) time'
Ulambda (x) (min (expt 2 3) x))

(if < n duration LR) time))
(+ (NFC time)

((rh-state LR NFC) time n)))
(NFC time)
U duration LR) time) n))))))'

(lambda tme) (eql 0 (R time)))))

1)))))

Now NFC can be substituted into the body:

rh-state ==
(lambda (R C)

Ulambda (LR)
(lambda (time)

(if (LR tme) 0
Ulambda (min (expt 2 i3) x))

(if < n ((duration LR) time))
(+ (* n ((f ww ?n) (O 1) C) time))

Urh-state LR NFC) time n)))
n ((f ww ?n I O 1) C) time))
((duration LR) time) n)))))))

(lambda (time) (eql 0 (R time)))))

Impoll"IM"N" i

APPENDIX C. RESET HOLD;COUNTER BEHAVIOR282

and the common subexpression promoted, wth a simplification in the
else-part of the if:

rh-state ==
(lambda (R C)

Ulambda (LR)
(lambda (t ime)

(if (LR time)
((lambda (x) in (expt 2 i3) x))
(let ((f ((f ww ?n I O 1) C) time)))

(if < n duration LR tme))
(+ (* n f)

((rh-state LR NFC) time n)))
f ((duration LR) time))))))))

(lambda (time) (eql 0 (R time)))))

Since R only takes on the values and 1, LR can be removed:

rh-state ==
(lambda (R C)

(lambda tme)
(if (eql 0 (R time))

((lambda (m1n (expt 2 13) x))
(let ((f ((fww ?n (1) C tme)))

(if < n ((duration R) time))
(+ (* n) Urh-state R NFC) time n)))
(* f duration R) tme))))))))

Finally, the assumption that C is periodic can be used. If C is periodic,

then must be a constant and ?n i's infinite. These substitutions yield:

rh-state ==
(lambda (R C)

(lambda tme)
(if (eql 0 (R time))

Ulambda in (expt 2 13) x))
(if < infinity ((duration R) time))

(+ (* infinity)
((rh-state R NFC) (- time infinity)))
i duration R) time)))))))

A final transformation removes the if statement since its condition is

always nil, and substitutes for x (the latter could have been done earlier):

---- - ---- I- -I � � I -� -- � � ----. z1--l Wmomm m ---- -

283

rh-state ==
(lambda (R C)

(lambda (time)
(if (eql 0 (R time))

(min (expt 2 13) (* f ((duration R) time))))))

simmonal

k-bit-counter-with-synchronous-clear-state ==
(lambda (k D L P T C)

(lambda (t'me)
(let ((Previous self L P T C) (- tme

(if rise C) time)
(if (eql 0 (L time)) (D time)

(mod (expt 2 k)
(((and (eql I (P tir

6))))

(el
I)

previous)))

iql 1 (T time)))
me))

previous))))

284

9

ZAA. en ix

U 10 on er e avior

Section 58.2 alluded to the derivation of the temporally abstract behavior
of the Audio Counter; this derivation is presented here.

While the Reset Hold Counter's Reset 'input starts the counter back at
0 whenever asserted, in the Audio Counter only the first 1-to-O transition of
the Start signal matters. Eghteen clock cycles must pass before the "start"
state can be reached again: while counting, it is insensitive to the Start
signal. One consequence is that while the transformation from the directly
composed behavior of the Reset Hold Counter to a smplified behavior was
tedious but straightforward, the smplified behavior of the Audio Counter is
not much of an improvement over the composed behavior, and seems to be
derivable only by expanding the behavior to an eighteen-way case split and
then collapsing it.

The four-bit counters are both wired to load 14" when the Load signal
goes low:

285

four-bit-counter-with-synchronous-clear-state
(lambda (L P T C)

(k-bit-counter-with-synchronous-clear-state
4 (lambda (time) 14) L P T 0)

The composition and smplification of the behaviors of those two counters
results 'in the following similar behavior:

el ht-bit-counter-with-synchronous-clear-state
lambda (L P T C)
(k-bit-counter-with-synchronous-clear-state

8 (lambda (time) (- 64 18)) L P T C))

Including the feedback signal Msb results in the following composed defi-

n i ti' o n:

ei hteen-counter
lambda (S C)
(nthb'.t 8 (rising-edge-eighteen-counter-state S C)))

rising-edge-e'.ghteen-counter-state
(lambda (S C)

(lambda tme)
(let ((L (lambda (time)

(nthbit
8 ((rising-edge-eighteen-counter-state S C)

(_ ime '6))))))

(eight-bit-counter-w'.th-synchronous-clear-state
(tinvert (tnor S L))
L (lambda (time) 1) C))))

Finally, after many transformations the following simplified definition re-
sults:

rising-edge-eighteen-counter-state
(lambda (S C)

(lambda tme)
(let previous

((rising-edge-e3.ghteen-counter-state S C)
(_ time 8))))

(if rise C) time)
(if (eql 0 (S time)) 64 18)

(if (eql previous 0) 0
(mod previous) 64)))

previous))))

286 APPENDIX D. AUDIO COUNTER BEHAVIOR

Some temporal abstractions that applied to the Reset Hold Counter can
be applied to this simplified behavior; however, the assumptions on which
they depend are violated by the normal usage of the circuit and so the result-
ing temporally abstract behaviors have little predictive force. For example,
while the sgnal Msb is a constant 1, the Audio Counter forms a frequency
divider with respect to the Clock input; however, the clocks come in bursts
of 18 and normally the Start line goes low at least once per burst - the
"frequencies" are thus not constant, but rather are defined over so few cy-
cles as to be useless. For another example, the counting" behavior of the
Audio Counter can be captured by (* (duration S) (f ww n I (I 0) C)
only during the bursts of 18 clock cycles and hence is similarly useless.

The behavior as shown above 'is not event-preserving with respect to :
any number of events could happen while C had no rising edges, and in that
case Msb would not change. However, the Sampling abstraction, when applied
to the Start, Load, and Msb signals with respect to the temporally abstract
signal (rise Clock), yields the following slightly modified behavior that is
event preserving:

rising-edge-eighteen-counter-state
(lambda (S C)

(Uambda (SS)
(lambda (t ime)

(let ((previous
((rising-edge-e'.ghteen-counter-state S C)

(- time 0)))
(if rise C) tme)

(if (eql 0 (SS time)) 64 18)
(if (eql previous 0) 0

(mod previous) 64))
previous)))))

(samp (rise S)))

(lambda (SS) isevent-preserving,totheextentthatnfaRingedges
on (s amp rse C) S) will result in somewhere between nj and n falling18
edges on Msb. This 'is because (samp rse C) S) can only change at the
same moments that C rises. Thus the number of falls on Msb (measured with
respect to sing edges of Clock) is bounded as follows:

- I - - - -, "';- , -.. ----- ,.",-- - - 11 I OMNI! la III N I III III W

287

((count-ww
n (fall (samp (rise Clock) Start))) tme >

((count-ww
n (fall (samp (rise Clock) Msb))) time) >

(floor
((count-ww

n (fall (samp rse Clock) Start))) tme)
i8)

0

en

0

e VVI eve 0 e

The lowest level of circuit description in BASIL is a switch level model. The
primitive elements of the model are pins, etches, resistors, switches, and
voltage-controlled switches (that 'is, transistors). The model uses voltages
in the set ,11 and currents in the set ,O,+l with meaning "negli-
gible." This models the steady-state digital behavior of simple analog ele-
ments. The digital current model is needed because circuit boards contain
physical switches, jumpers, and resistors, whose behavior cannot be modeled
adequately by a gate-level digital model.

Ea Pins and other Connections

Behaviorally, the simplest elements are connections, hich have ports at
two ends. Working connections transmit certain signals unchanged from
one port to the other. The sgnals thus transmitted are called ordinary
signals; voltage is the most primitive such signal, and most abstractions
of it including logl'c-level are ordinary sgnals -as well. Using a demon
facility instead of rules, each signal that appears at one end of a connection
can result in that signal getting equated a tsame) to the corresponding
signal at the other end. For example, as long as the connection c is working,
the logic-level signals at either end carry the same value:

288

11--�--Wmowmmol!momlllgillliI I I l

E.l. PINS AND OTHER CONNECTIONS 289

[conn c (out a) (in 0 b)
[status-of c working]
Signal (11 (out a)) ests

(11 (out a)) 'is an ordinary signal

[tsame -oo oo (11 (out a)) (11 (in b!

Pins are a knd of connection, and they transmit ordinary sgnals n this

fashion.

Just as there are logic-level sgnals denoted (11 X) and representing a
function from time to O 1, there are qualitative-current-into signals de-
noted (qci X). Qualitative currents range over {, 0, j, and have the arith-
metic operations qplus and qminus wth their usual meanings. Pns obey a

qualitative version of Kirchhoff's current law (KCL); that is, the sum of the
currents into the pin must be :

If [conn (pin ?n ?chip) ?source .sink]
and [status-of pn ?n ?chip) working]

and [thru ?l ?u (qci ?source) 9il

Then [thru ?1 ?u (qci ?sink) (M3.nus i)]

If Econn (pin ?n ?chip) ?source ?sink]

and [status-of (pin ?n chip) working]

and [thru ?l ?u (qci ?sink) ?il

Then Ethru ?l ?u (qci ?source) (minus ?:03

Etches obey similar rules as pins, although they can have any number of

ports denoted (hole i ... , (hole 2 ...), and so forth. The number of

ports on an etch is referred to as its "arity." To transmit ordinary signals,

n rules could be written for each arity, one that says that the value at hole

1 is the same as at hole 2 the value at hole 2 'is the same as at hole 3,

and so forth. Since some etches have several dozen ports, this 'is impractical
and inefficient. Instead, BASIL defines for each etch a distinguished port not

corresponding to any physical boundary, which TINT connects to each hole

by a binary connection. For example, suppose etch n119 has arity 3 In

addition to its three ports (hole I n19), (hole 2 n119), and (hole 3 n19)I it
has a port LL119 to which a three are connected.

.Qff��

290 APPENDIX E. THESWITCH LEVEL MODEL

Etches also have qualitative KCL rules, and the rules for an etch wth 3
holes are shown below; n-ary etches require n rules of this form:

if
and
and
and
and

Then

if
and
and
and
and

Then

if
and
and
and
and

Then

Eisa 7e etch]
[status-of ?e working]

Ethru 12 ?u2 (qcl' (hole 2 ?e)) ?i2l
Ethru 13 ?u3 (qci (hole 3 '.Pe)) 1i3l
(overlap (?12 %2) (?13 %3))
[thru (max .712 ?.13 (n ?u2 ?u3)

(qci (hole I e)) (minus (plus

Eisa ?e etch]

[status-of ?e working]

Ethru ?11 ?uI (qci (hole I ?e)) ?.ill

[thru 13 ?u3 (qci (hole 3 ?e)) ?i3l

(overlap ?ll ?u2) (?li %))

Ethru, (max ?11 13) (min ?ul ?u3)
(qci (hole 2 e)) (qminus (plus

Usa ?e etch]

[status-of ?e working]

[thru ?.11 ?uI (qci (hole i ?e)) '?ill
[thru 12 ?u2 (qc' (hole 2 ?e)) ?.i2l

(overlap ?11 ?.u2) ?ll %2))

Ethru (max ?11 12) (min ?uI ?.u2)

(qci (hole 3 e)) (qminus (qplus

?1'2 13))]

?il ?i3))]

?il ?i2))]

E.2 Resistors

Resistors have (i) positive resistance, (ii) two ports (bi I . .) and

(bi 2 ...) and (iii) rules enforcing KCL. The mode of a resistor is no:rmai

if the resistor 'is working. While in normal mode t obeys a qualitative version

of Ohm's law embodied as two rules. First, the current 'Into a resistor has

the same sign as the voltage drop across it:

- - -- -- -I,-- o"Imm""Will low.OR" --, pw-wmwwl� -

EA SWITCHES 291

If Eisa ?r resistorl
and [thru ?11 ?ul (mode 7r) normal]
and [thru 12 ?u2 (11 (bi I ?r)) ?.vll
and (overlap (11 ?ul) 12 ?u2))
and [thru. 13 ?u3 (11 (bi 2 ?r)) ?v21
and (overlap ?11 ?ul) (?12 ?u2) (?13 ?u3))

Then [thru (max ?11 12 ?.13) (min ?ul ?.u2 ?.u3)
(qci (bi I ?r)) (sign (- ?.vi ?v2))]

Second, if there is no current flowing into a resistor then there is no
voltage drop across it- that 'is, the logic-levels at both ends are the same:

If [isa r resistors
and [thru ?11 ?ul (mode ?r) normal]
and [thru 12 ?u2 (qc:L' (bi ?n ?.r) 03
and (overlap (li ?ul) 12 ?u2))

Then [tsame max ?11 12) (min ?ul ?u2)
(11 (bi I ?r)) (11 (bi 2 r))]

The second rule could be generalized; nonzero current flowing into a re-
sistor implies that there must be a voltage drop across it. In the implemen-
tation, however, every resistor in the Console Controller Board has one end
connected to Vdd, so that the two rules above were sufficient and the more
general version was never needed.

E*3 Switches

Switches appear on circuit boards in various guises; as jumpers, buttons, or
as literal switches whose position the user sets. An ordinary switch has two
ports (bi I ... and (bi 2 ...), and two modes, open and shut. In
these two modes it ether has 'Infinite or negligible resistance, respectively.
There are three rules describing the behavior of switches. First, if a switch
is open then all the currents 'Into it are :

If Eisa s sitchl
and [thru ?l ?u (mode ?s) open]

Then [thru ?l IN (qcl' (bi I ?s)) 01
and [thru ?l ?u (qcl' (bi 2 s)) 01

292 APPENDIX E. THE SWITCH LEVEL MODEL

Second, if a sitch is shut then there 'is no voltage drop across it; the
logic-levels at its ports are the same:

If Eisa ?s switch]

and [thru 1 u (mode ?.s) shut]

Then [tsame ?.1 ?u (11 (bi 1 ?s)) (11 (bi 2 ?s))]

Third, if a switch 'is shut 'it obeys KCL- that s 'if the current into one

port is known then the current into the other 'is its negative:

If Usa ?s switch].

and Ethru ?11 ?ul (mode ?s) normal]

and Ethru 12 ?.u2 (qci (bi ?n ?s)) ?il

and (overlap ?11 ?ul) 12 %2))

Then Ethru (max ?li 12) in ?ul %2)

(qci (bi (- 3 n) ?.s)') (qminus ?i)]

A typical circuit structure encountered on digital boards is a combination
of a switch to ground and a resistor to a constant high voltage Figure E.1).

When the switch is open, the logic-level of node N goes to 1; when shut 'it is

0 and current flows out of the resistor through the switch to ground.
Since the resistor and switch typically belong to different field-replaceable

Rs it is mportant n a troubleshooting context for TINT to be able to

model at this level of detail.

This level of detail would also be useful for proper handling of failures

such as solder bridges and other kinds of "shorts." Although handling of

shorts is not implemented, some of the necessary behavior models are 'in fact
included 'in TINT and so are presented here for completeness.

Transistors are modeled as voltage-controlled switches. Their rules are

similar to those for switches, except that the logic-level at their g port de-

termines whether they are open or shut:

If Usa ?x transistor]
and [status-of ?x working]

and thru ?1 ?u (11 (in g ?x)) ?vl

Then [thru ?l ?u (mode ?x)

(if (eql ?v 0) 'open 'shut)]

E-3. SWITCHES 293

Figure E.l: Typical Switch-Resistor Combination

(bi

(bi q

LL =

The resistor and transistor models can be composed to form behavior
models of ordinary digital components such as logic gates. The advantage of
this level of detail is that the effects of faults that cause shorts between signals
(other than power sgnals) can be correctly modeled. Using the standard
digital model, for example, the logic-level output of a working TTL inverter
must be if the input 'is 0, and 'if 'it 'is not, then the inverter must be broken.
By taking currents into account, the more accurate prediction can be made
that if the input logic-level 'is 0, the output current is 0. Hence, if the output
logic-level is instead of 1, it 'is not a necessary logical consequence that the
inverter is broken; something else could be pulling the output node down.

Using the switch model the behavior of a TTL 'Inverter can be summarized
as ollows: if the input current is the output voltage will be 0; if the input
voltage is the output current will be 0. Fgure E.2 shows how the qualitative
models of resistors and switches described above can be organized so as to

I

294 APPENDIX E. THE SWITCH LEVEL MODEL

reproduce this behavior.
i

Figure E.2: TTL Inverter as Modeled wth TINT

O

(I

Input

b
I

s T)

LL =

0 If (11 Input) is then the difference between (11 (bi
(11 (bi 2 R)) is so qci 2 R) is -. Hence, current is

of the resistor and back towards the gate driving this one.
is shut and so (11 (bi I T)) has the same value as (11
hence (11 Output) is .

1 R)) and
flowing out
The switch
(bi 2 T))

0 If (qci (bi 2 R)) 'is 0, then (11 (bi 2 R)) must be pulled up

to the same as (11 (bi 1 R)). This makes the switch open, so

(qci (bi 2 T)) is 0, and the gate being driven will make (11 Output)
be .

Similarly, Figure E.3 shows the model of an nMOS inverter in TINT. In

nMOS, the current normally flowing 'Into the device from the input is and

so likewise for the current into the output.

0 If (11 Input) is I then the switch is shut, so (11 (bi 2 T)) has the
same value as (11 (bi 1 T)) hence (11 Output) is .

EA SWITCHES 295

Figure-E.3.- nMOS Inverter as Modeled with TINT

Input

LL =

If (11 Input) is then the switch is open,:so (qci (bi 2 T)) is .
Hence (qci (bi 2 R)) is and hence (11 (bi 2 R)) must be .

Similar models apply to NAND and NOR gates in both technologies. A
tristate driver in ether technology can be described as a nMOS 'inverter with
a transistor interposed between the pullup resistor and the output node.

The disadvantage of this level of detail is that while the the dgital model
allows the behavior of a given group of boolean gates to be easily predicted
using straightforward local propagation, this cannot be done 'in general in the
switch model. At every signal fanout in TTL or wired-OR 'in nMOS, local
propagation stalls, and the solutions to that problem a have unfortunate
side effects. This is a standard problem with local propagation schemes; what
is different about this case is that it is guaranteed to be ubiquitous at the
switch level of detail.

- molo I

APPENDIX E. THE SWITCH LEVEL MODEL 296

For example, the rules shown so far cannot deduce that the node X in
Figure EA must have logic-level 1, nor that the currents nto the resistors
must be 0. This 'is because either one of those facts must be known before
the other can be deduced; this i's termed an 'impasse.

Figure EA: Impasse Example

LL = i

(bi

(bi

(qc i Y = X (qc i Z =

One solution 'is to enumerate the possible values of logic-level at X (there
are only two) 'in hopes that all but one can be ruled out. In this case,

is nonsistent because it would require the sum of currents into X to be

positive. Thus, the logic-level must be 1. This is a terrible solution in

general, because it can lead to combinational explosion among choices made

for different quantities over dfferent time intervals. TINT does not use this

solution.
A second solution is to recognize that R1 and R2 are 'in parallel, and since

their resistances are positive then the resistance between the high voltage
and X 'is positive too. In effect, there 'is just a single resistor between the two

nodes - a slice [Sussman77] [Sussman8O]. In BASIL terminology, there is

a functional component ncluding R1, R2, and etch X and its behavior rule
recognizes the above situation and just assigns the logic-level 1 to X. TINT

uses this solution in the Console Controller Board examples where there
happen to be two or more resistor components pulling up a single circuit

node.

i i "Mom"IMMM .- ---

EA SWITCHES 297

A third solution is to rely on the intended direction of signal flow between
the components and assume that no fault will cause'that to be volated. This
is a way of using the switch model for just those components that really need
'it (resistors and switches) while retaining the simpler unidirectional digital
model for everything else. It 'is the solution that TINT uses everywhere that
the intended sgnal flow 'is unidirectional. Shorting faults wll be misdiag-
nosed as multiple faults among the shorted components, since the effect of
shorts is to cause current to go places where 'it was not intended to go. In
TTL it is usually the case that each node is driven by only one component,
and if that component does not hold the node to lo 'clever 0, some other
component pulls it up to logic-level 1. The component driving the node can
simply be modeled as if it pulls the node to itself. Thus the sgnal flow
appears to be unidirectional. The behavior of TTL components with respect
to qualitative currents is thus approximated using the following rules. First,
if there is no current into the input of a TTL component then the node 'is
pulled up to :

IP ?x is a TTL component
and [thru ?11 ?.ui (mode ?.x) normal]
and Ethru 12 %2 (qci (in input ?x)) 01
and ?input is not either PWR or GND
and (overlap (11 ?ui) (?12 ?u2))

Then [thru (max ?11 12) Min ?ul ?u2)
(11 (in ?.input ?x)) 11

Second, it has been assumed that if a component 'is not pulling its output
node down, then it will be pulled up to 1; hence if there is no current flowing
through a pin ntended to be a TTL output, then the logic-level at the node
is :

If ?x is a TTL component
and Econn (pin ?i ?c) (hole ?m ?e) (out ?o ?x)]
and [thru ?l ?u (qcl' (hole ?m. ?e)) 01

Then [thru ?l ?u (11 (hole ?m ?e)) 11

'This trigger pattern is implemented using a separate rule for each type of TTL
component.

298 APPENDIX E. E SWITCH LEVEL MODEL

These latter two rules are used for all the TTL components in the imple-
mented model of the Console Controller Board; the board has a two CMOS
chips and for the time being they are modeled as 'if they were TTL as well.
Where resistors appear in wired-or structures and as pullups for buttons and
switches, the digital current model is used, and since it results in deductions
being made about logic-levels it meshes smoothly wth the standard digital
model.

0 0

1 10 ra

[Abelson85] H. Abelson, G. J. Sussman, and J. Sussman. Structure and In-
terpretation of Computer Programs. MIT Press, Cambridge, MA, 1985.

[AbuHanna88] A. Abu-Hanna and Y. Gold. AhIntegrated, Deep-Shallow
Expert System for Multi-Level Diagnosis of Dynamic Svstems. Techni-
cal Report 504, Technion - Israel Institute of Technology, Haifa 32000,
Israel, March 1988.

[Allen83] J. Allen. Maintaining Knowledge about Temporal Intervals.
Comm. of the A CM, 26(11):832-843, 1983.

[Allen841 J. Allen. Towards a General Theory of Action and Time. Artificial
Intelligence, 23(2):123-154, July 1984.

[Batah8l] J. Batali. An Introduction to DPL. Memo 598, MIT Artificial
Intelligence Lab, 1981.

[Bobrow85] D. Bobrow, editor. Qualitative Reasoning about Physical Sys-
tems. MIT Press, Cambridge, MA, 1985.

[Brown76] A. Brown. Qualitative Knowledge, Causal Reasoning, and the Lo-
calization of Failures. Technical Report 362, MIT Artificial Intelligence
Lab, 1976.

[Brown82] J. S. Brown, R. Burton, and J. de Kleer. Pedagogical, Natural
Language, and Knowledge Engineering Issues 'in SOPHIE 1, II, and HI.
In D. Sleeman and J. S. Brown, editors, Intelligent Tutoring Systems,
pages 227-282. Academic Press, New York, 1982.

299

"AWOMMAMAMM I I -- --

300 BIBLIOGRAPHY

[Cantone83] R. Cantone, F. Pipitone, W. Lander, and M. Marrone. Model-
based Probabilistic Reasoning for Electronics Troubleshooting. In Proc.
8th Int. Joint Conf. on Artificial Intelligence, pages 207-21 1, Karlsruhe,
West Germany, August 1983.

[Dague87] P. Dague, 0. Raiman, and P. Deves. Troubleshooting: When
Modeling 'is the Difficulty. In Proc. 6th National Conf. on Artificial
Intelligence, pages 600-605, Seattle, WA, August 1987.

[Davis83] R. Davis and H. Shrobe. Representing the Structure and Behavior
of Digital Hardware. IEEE Computer, pages 75-82, October 1983.

[Davis84] R. Davis. Diagnostic Reasoning Based on Structure and Behavior.
Artificial Intelligence, 24(l):347-410, 1984. Also 'in Qualitative Reason-
Mg about Physical Systems, Bobrow (ed.), MIT Press, Cambridge, MA
1985.

[deKleer761 J. de Kleer. Local Methods for Localizing Faults in Electronic
Circuits. Memo 394, MIT Artificial Intelligence''Lab, 1976. Out of print.

[deKleer781 J. de Kleer. Causal and Teleological Reasoning in Circuit Recog-
nition. Technical Report 529, MIT Artificial Intelligence Lab, September
1979.

[deKleer84] J. de Kleer and J. S. Brown. A Qualitative Physics Based on
Confluences. Artificial Intelligence, 24(l):7-84, 1984. Also in Qualitative
Reasonzng about Physical Systems, Bobrow (ed.), MIT Press, Cambridge
MA 1985.

[deKleer86a] J. de Kleer. An Assumption-Based TMS. A rtificial Intelligence,
28(2):127-162, 1986.

[deKleer86b] J. de Kleer and B. Williams. Back to Backtracking: Controlling
the ATMS. In Proc. 5th National Conf. on Artificial Intelligence, pages
910-917, Philadelphia, PA, August 1986.

[deKleerV] J. de Kleer and B. C. Williams. Diagnosing Multiple Faults.
Artificial Intelligence, 32(l):97-130, April 1987.

BIBLIOGRAPHY 301

[Dean87] T. Dean and D. McDermott. Temporal Data Base Management.
Artificial Intelligence, 32(l):1-56, April 1987.

[Feldman88] Y. A. Feldman and C. Rich. Pattern-Directed invocation wth
Changing Equalities. Memo 1017, MIT Artificial Intelligence Lab, May
1988.

[First82] M. B. First, B. J. Weimer, S. McLinden, and R. A. Miller. LO-
CALIZE: Computer-Assisted Localization of Peripheral Nervous System
Lesions. Computers and Biomedical Research, 1(6):525-543, December
1982.

[Friedman83] L. Friedman. Dagnosis Combining Empirical and Design
Knowledge. Technical Report JPL D1328, Jet Propulsion Laboratory,
California Institute of Technology, December 1983.

[Geffner86] H. Geffner and J Pearl. Distributed Diagnosis of Systems with
Multiple Faults. Technical Report CSD-860023, ognitive Systems Lab-
oratory, UCLA Computer Science Department, Los Angeles, CA 900247
December 1986.

[Genesereth84 M Genesereth. The Use of Design Descriptions n Auto-
mated Diagnosis. Artificial Intelligence, 24(l):411-436, 1984. Also 'in
Qualitative Reasoning about Physical Systems, Bobrow (ed.), MIT Press,
Cambridge MA 1985.

[Ginsberg86] M. Ginsberg. Counterfactuals. Artificial Intelligence, 30(l):35-
80, December 1986.

[Gorry73] G. A. Gorry, J. P. Kassirer A. Essig, and IW. B. Schwartz. Decision
Analysis as the Basis for Computer-Aided Management of Acute Renal
Failure. American Journal of Medicine, 55:473-484, October 1973.

[HaII87] R. Hall, R. Lathrop, and R. Kirk A Multiple Representation Ap-
proach to Understanding the Tme Behavior of Digital Circuits. In Proc.
6th National Conf. on Artificial Intelligence, pages 799-803, Seattle,
WA, August 1987.

p"Nomp

BIBLIOGRAPHY302

[Hamscher84] W. C. Hamscher and R. Davis. Diagnosing Circuits with State:
An Inherently Underconstrained Problem. In Proc Z

- 4th Nat'onal Conf.
on Artificial Intelligence, pages 142-147, Austin, TX, August 1984.

[Hamscher87] W. C. Hamscher and R. Davis. Issues in Model-Based Trou-
bleshooting. Memo 893, MIT Artificial Intelligence Lab, March 1987.

[Hanks86] S. Hanks and D. V. McDermott. Default Reasoning, Nonmono-
tonic Logics, and the Frame Problem. In Proc. 5th National Conf on
Artificial Intelligence, pages 328-333, Philadelphia, PA, August 1986.

[Intel86] Intel. Intel Microcontroller Handbook. Intel Corporation, Santa
Clara, CA, 1986.

[Kahn77] K. Kahn and G. A. Gorry. Mechanizing Temporal Knowledge.
Artificial Intelligence, 9(l):87-108, August 1977.

0[Kohane87] I. S. Kohane. Temporal Reasoning in Medical Expert Systems.
Technical Report 389, MIT Lab. for Computer Science, May 1987.

[Kramer87] G. A. Kramer. Incorporating Mathematical Knowledge into De-
sign Models. In J S. Gero, editor, Expert ystems in Computer-Aided
Design, pages 229-265. Elsevier Science Publishers B. V., Amsterdam,
1987.

[Kuipers84] B. J. Kuipers and J. P. Kassirer. Causal Reasoning in Medicine:
Analysis of Protocol. Cognitive Science, 8363-385, 1984.

[Kulikowski82] C. A. Kulikowski and S. M. Weiss. Representation of Expert
Knowledge for Consultation.- The CASNET and EXPERT Pro ects.
In P. Szolovits, editor, Artificial Intelligence in Medicine, pages 21-56.
Westview Press, Boulder, CO, 1982.

[Ladkin87] P. Ladkin. The Completeness of a Natural System for Reason-
ing wth Time Intervals. In Proc. 10th Int. Joint Conf. on Artificial
Intelligence, pages 462-467, Milan, Italy, 1987.

[LifschitzV] V. Lifschitz. Formal Theories of Action (Prelirylinary Report).
In Proc. 10th Int. Joint Conf. on Artificial Intelligence, pages 966-972,
Milan, Italy, August 1987.

--- --- -- - o

BIBLIOGRAPHY 303

[Long86] W. J. Long, S. Naimi, M. G Criscitiello, and R. Jayes. Using a
Physiological Model for Prediction of Therapy Eects in Heart Disease.
In Computers in Cardiolo y, Cambridge, MA, 1986.

[McAllester80a] D. A McAllester. The Use of Equality in Deduction and
Knowledge Representation. Technical Report 550, MIT Artificial Intel-
ligence Lab, January 1980.

[McAllester8Ob] D. A. McAllester. An Outlook on Truth Maintenance.
Memo 551, MIT Artificial Intelligence Lab, August 1980.

[McCarthy69] J. M. McCarthy and P. J Hayes. Some Philosophical Prob-
lems from the Standpoint of Artificial Intelligence. In D. Michie and
B. Meltzer, editors, Machine Intelligence 4 pages 463-502. Edinburgh
University Press, Scotland, 1969. Also in Readings n Artificial Intelli-
gence, B. L. Webber and N. J. Nilsson (eds.), Tioga Press, 1981.

[McDermott82] D. V. McDermott. A Temporal Logic for Reasoning about
Processes and Plans. Cognitive Science 62):101-155, April 1982.

[Ml'lne85] R. Mlne. Fault Diagnosis through Responsibility. In Proc. 9th
Int. Joint Conf. on Artificial Intelligence, pages 423-425, Los Angeles,
CA, August 1985.

[Minsky75] M. Mnsky A Framework for Representing Knowledge. In P. H.
Winston, editor, The Psychology of Computer Vsion, pages 211-277.
McGraw-Hill, New York, NY, 1975.

[Moszkowski82] B. Moszkowski A Temporal Logic for Multi-Level Reasoning
about Hardware. Technical Report STAN-CS-82-952, Stanford Univer-
sity Artificial Intelligence Lab., 1982.

[Pan84] J. Pan. Qualitative reasoning with Deep-level Mechanism Models
for Dagnoses of Mechanism Failures. In Proc. 1st Conf. on A.L Appli-
cations, pages 295-301, Denver, CO, 1984.

[Patil8l] R. S. Patfl. Causal Representation of Patient Illness for Electrolyte
and Acid-Base Dagnosis. Technical Report 267, MIT Lab. for Computer
Science, October 1981.

304 BIBLIOGRAPHY

[Pauker76] S. G. Pauker, G. A. Gorry, J. P. Kassirer, and W. B. Schwartz.
Towards the Simulation of Clinical Cognition: Taking a Present Illness
by Computer. American Journal of Medicine, 6:981-996, June 1976.

0[Pople82] H. E. Pople. Heuristic Methods for Imposing Structure on Ill-
structured Problems: The Structuring of Medical Dagnostics In
P. Szolovits, editor, Artificial Intelligence n Medicine, pages 119-190.
Westview Press, Boulder, CO, 1982.

[Reggia83] J. A. Reggia, D. S. Nau, and P. Wang. Diagnostic Exp Iert Systems
Based on a Set Covering Model. Int. Journal of Man-Machine Studies,
19(5):437-460, November 1983.

[Reiter87] R. Reiter. A Theory of Dagnosis from First Principles. Artificial
Intelligence, 32(l)-.57-96, April 1987.

[Roth67 J P. Roth, W. G. Bouricius, and P. R. Schneider. Programmed
Algorithms to Compute Tests to Detect and Distinguish between Fail-
ures in Logic Circuits. IEEE Transactions on Electronic Computers,
EC-16(l):567-580, 1967.

[Rowley87] S. Rowley, H. Shrobe, R. Cassels, and W. C. Hamscher. Joshua-
Uniform Access to Heterogeneous Knowledge Structures, or, Why Josh-
ing is Better than Conniving or Planning. In Proc. 6th National Conf.
on Artificial Intelligence, pages 45-52, Seattle, WA, 1987.

[Russ86] T. A. Russ. A System for sing Time Dependent Data in Patient
Management. In MEDINFO 86- Proceedings of the 5th Conference on
Medical Informatics, pages 165-169, Washington, DC, October 1986.

[ScarI85] E. Scarl, J. R. Jamieson, and C. I. Delaune. A Fault Detection
and Isolation Method Applied to Liquid Oxyg'en Loading for the Space
Shuttle. In Proc. 9th Int. Joint Conf. on Artificial Intelligence, pages
414-416, Los Angeles, CA, 1985.

[Shirley83] M. H. Shirley and R. Davis. Generating Dstinguishing Tests
based on Herarchical Models and Symptom Information. In Proc. Int'l
Conference on Computer Design, 1983.

'111611400M oppop - -- - -- --- 111,11, I MINNIMINNI'llm I

BIBLIOGRAPHY 305

[Shoham86] Y. Shoham. Chronological Ignorance: Tme, Nonmonotonicity,
Necessity, and Causal Theories. In Proc. 5th National Conf. on Artificial
Intelligence, pages 389-393, Philadelphia, PA, August 1986.

[Shoham87] Y. Shoham. Temporal Logics in AI: Semantical and Ontolo *cal
Considerations. Artificial Intelligence, 33(l):89-104, September 187.

[Shortliffe76] E. H. Shortliffe. MYCIN: Compute'-Based Consultations in
Medical Therapeutics. American Elsevier, New York, 1976.

[Simmons83] R. G. Simmons. Representing and Reasoning about Change in
Geologic Interpretation. Technical Report 749, MIT Artificial Intelli-
gence Lab, December 1983.

[Steele84] G. L. Steele. Common LISP: The Language. Dgital Eq'pment
Corporation, 1984.

[Sussman77] G. J. Sussman. SLICES: At the Bundary between Analysis
and Synthesis. Memo 433, MIT Artificial Intelligence Lab, 1977. This
memo is out of print.

[Sussman8O] G. J. Sussman and G. L. Steele. Constraints: A Language
4 11for Expressing Almost-hierarchical Descriptions. Artificial Intelligence,

14(l):1-40, January 1980.

[Szolovits78] P. Szolovits and S. G. Pauker. Categorical and Probabilis-
0

tic Reasoning in Medical Diagnosis. Artificial Intelligence, 11:115-144,
1978.

[Valdes86] R. Valdes-Perez. Spatio-Temporal Reasoning and Linear Inequal-
ities. Memo 85, MIT Artificial Intelligence Lab, May 1986.

[Valdes87] R. Valdes-Perez. The Satisfiability of Temporal Constraint Net-
works. In Proc. 6th National Conf. on Artificial Intelligence, pages 256-
260, Seattle, WA, August 1987.

[VanBaalen88] J. Van Baalen and R. Davis. Overview of an Approach to
Representation Design. In Proc. 7th National Conf. on Artificial Intel-
ligence, pages 392-397, Minneapolis, MN, August 1988.

- I OWN

306 BIBLIOGRAPHY

[Vilain86] M. Vilain and H. Kautz. Constraint Propagation Algorithms for
Temporal Reasoning. In Proc. 5th National Conf. on Artificial Intelli-
gence, pages 377-382, Philadelphia, PA, August 1986.

[Weise86] D. Weise. Formal Multilevel Hierarchical Verification of Syn-
chronous MOS VSI Circuits. Technical Report 978, MIT Artificial
Intelligence Lab, August 1986.

[Weld86] D. S. Weld. The Use of Aggregation 'in Qualitative Simulation.
Artificial Intelligence, 30(l):1-34, October 1986.

[WilliamsM] B. C. Williams. Doing Tme: Putting Qualitative Reasoning on
Firmer Ground. In Proc. 5th National Conf. on Artificial Intelligence,
pages 105-112, Philadelphia, PA, August 1986.

