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1. Introduction

One of the carlicst applications of computers was the processing of visual data. With the benefit of
hindsight, we can see that this reflects th¢ importance of sight for humans, the difficultics faced by those lackh]g
~sight, and the continuing drive in computer science to automate human abilities.

There is currently a surge of interest in image .undcrstanding on the part of industry and‘ the miliLary.
Interest scems certain to expand bver the next several decades, as the following list of current applications
indicates: |

o AUTOMATION OF INDUSTRIAL PROCESSES.

Object acquisition by robot arms, for example by "bin picking”.

Automatic guidance of seam welders and cutting tools.

Vl,Sl;J'cIatcd processes, stich as lead bonding, chip alignment and packziging. ,

Monitoring, filtering, and thercby containing the flood of data from oil drill sites or from seismograpllvs.

Providing visual feedback for automatic assembly and repair.

¢ INSPECTION TASKS

‘The inspection of printed éircuit boards for spurs, shorts, and bad connections.

- Checking the results of casting processes for impuritics aﬁd fractures.

Screcning medical images such as chromosome slides, cancer smears, x-ray and Sltrasound images,

tomography. |

R ouutinc scrcc:ﬁng of plant samplcs.

o REMOTE SENSING |

Cartography, the automatic generation of hill shaded maps, and the rcgistruti{)n ()f-‘szucllitc invmgcs with

| terrain maps. |

Monitoring traffic uylnnvg roads, docks, and at airficlds.

Management of land resources such as water, forestry, soil erosion, and crop growth,

Exploration of remaote or hostile regions for fossil fuels and mineral ore deposits:

e
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o MAKING COMPUTER POWER MORE ACCESSIBLF;.
Management vinformation systems that have a communication channcl considerably wider than current
systems that are addressed by typing or pointing.

Document readers (for those that still use paper). .

Design aids for architects and mechanical engineers.

¢ MILITARY APPL[CAT [ONS.

Tracking moving objects.

Automatic navigation based on passive sensing.

Target acquisition and range finding.

o AIDS FOR THE PARTIALLY SIGHTED.
- Systems that read a document and say what was read.

Automatic "guide dog" navigation systems.
Over the past decade there has been considerable growth in the theoretical base of image understanding
(TU) by computer. This article surveys the current state of thai theoretical basc. As the intellectual climate
for progress in 1U improved, so funding became available for mhch nceded basic rescarch. Most of
the work des«:l‘ibéd in this survey was conducted under the Dcfcnse Advanced Rescarch Project Agency’s
(DARPA) image understanding prdgram at a small number of basic rescarch centers: Carncgic Mellon
University, the Univcréity of Marqund, Massachusctts Institute of Technology, the University of Rochester, '
SRI International, Stanford Univcrsity, the University of Southern California; and Virginia Polytechnic and
State University. The DARPA TU program has also produced a number of innovative applications oriented
techniques. For reasons of space, these and other applications are omitted from the present discussion.

‘There is a considerable diversity of approaches to processing visual irﬁugcs by computer. As a rcsult,
the boundafy between different thrusts is often vague, necessarily so. ‘The ch;u*znclcriétic feature of 1U is the
construction of rich descriptions from an image, an idea that is made more precise in the _I‘()Ilowing pages. Of

the many disciplines closely related 1o TU, four are of particular interest to the computer science connmunity:




image processing, computer graphics, computer aided design and manufacture, and pattern fecognition. image
processing is primarily concerned with the transmission, storage, cnhancement, and restoration of images.

"There are significant overlaps between TU and image processing, especially in the carly processing operations

of edge detection and region ﬁnding. William K. Pratt’s book [PRAT78] is an excellent introduction to the -

subject. Computer graphics is concerned primarily with the disp]éy of visual information. Considerable atten-
tion has been given to representing points, cdges, surfaces, and volumes to facilitate display. The gcometry
of perspective and parallel (or orthographic) prpjecti(m has been studicd in detail. Newman and Sproull’s
[INEWM73] book is a fine introduction. Computer aided design and manufacture (CAD/CAM) also gives
~attention to surface representations in order to dcﬁnc paths for numerically controlled tools and for making
design by traditional techniques such as "lofting” amenable to mathcmatical analysis. The book by Faux
and Pratt [I*‘AUX79] introduces the mathematics of CAD/CAM. Although these three disciplines are closely
related to 1U, sometimes developing similar rcprcscntatidns and uncovering similar constraints, they differ

from 1U in that they arc not concerned with the interpretation or understanding of images.

Pattern recognition is much more closcly rclatéd to [U. Good introductions are available, including Duda
and Hart [DUDAT73] and Pavlidis [PAVL78]. The significant differences between 1U and pattern recognition
are the following: ' |

e pattern recognition systems are concerned typically with recognizing the input as onc of a (usually)

small set of possibilitics. 1U aims to construct rich desceriptions that can not be enuméetrated in advance but

need to be constructed for each individual image. Three dimensional scencs, viewed from an arbitraty loca-

tion, give rise to a wide variety of occlusion (overlap) relationships. One can hope to compute descriptions of
three-dimensional Tayout but not to recognise it as an instance of one of a smiall number of stored prototypes.
e pattern recognition sysiems are mostly concerned with two dimensional images, such as leaf samples

or fingerprints. When the images are of three-dimensional objects, such as engine parts, they are cffectively

treated as (wo dimensional, by treating cach stable position as a separate object. U has dealt extensively with: ‘

three dimenstonal images.,
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e Most significantly, pattern recognition systcms typically operate directly on the image. 1U approaches
to stereo, texture, shape from shading, indeed most visual processes, operate not on the image but on symbolic

representations that have been computed by earlier processing such as cdge detection.

Before we begin the survey proper, we note some common themes that have crystallized over the past

decade.

e Attention has shifted from restrictions on the domain of application of a vision system lo restrictions on

visual abilities.

The most fundamental differences between image understanding as it is now, and as it was a decade
ago, stem from the current concentration on topics corresponding to identifiable modules in the human visual
system. Substantial progress has been made in, for example, binocular sterco, the extraction of iimportant in-

tensity changes from an image, the interpretation of surface contours, the determination of surface orientation

from texture, the computation of motion, and the representation of three-dimensional objects. The focus of

current research is defined more narrowly in terms of visual abilities than by restricting attention from the start
to a domain of application. The depth of analysis is correspondingly greater. Increasingly, the progression is
from general theoretical developments to specific practical applications. The alternative approach of inferring

general principles from work in a limited practical domain is still present, but less so than formerly.

What identifics a particular 6pcration as a distinguishable module in the visual system? Some of the most
solid evidence for the claims of individual modules is offered by psychophysical demonstrations of human
visual abilities. Care is taken, as far as possible, to isolate a particular source of information and show that
the pereeptual ability in question survives. Onc particularly intriguing source of evidence for modules in
the human visual system comes from the study of patients with disabilities resulting from brain lesions (for
example Weiskrantz, Warrir)gton, Sanders and Marshall [WEIS74], Marshall and Newcombe [MARS 73],
Stevens [STEV.76]. Many psychophysical experiments, sccmingly isolating particular modules of the human
visual syﬁ(cm. have been reported in the literature. Notable examples includc Gibson’s demonstration of the

pereeption of surface shape from texture gradients [GIBSS0], Land’s demonstration of the computation of




lighmeés [LAND71], [HORN74], and Julesz’s demonstration of stercoscopic fusion withoﬁt monocular cues
[JULE71‘]. In some cases there is clear evidence of a human perceptual ability, although suc'h cvidence would
hardly be referred to as psychophysical. Horn's work at MIT considers the highly developed human ability
to infer shape ffom shading [HORN77, WOODS81, IKEU81]. Stevens considers the thrcc-dimcnsiona] inter-
pretation of surface contours by humans [STEV81]. On the other hand, it is equally clear that we do not
have a specific module in our visual system to recognize "ycllow‘ Volkswagens" (see for cx'ample [WEIS7 3]

It is less clear whether we compute depth directly, as opposcd to indirectly through integrating over surface

orientations, or what use we make of dircctional selectivity or optical flow.

The change of focus from a narrowly specified domain of application to a particular module of the human

visual system has had a number of far-reaching consequences for the way IU rescarch is conducted. One ‘
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“consequence has been a sharp decline in the construction of entire vision systems that mobilize knowledge at
all levels, including information specific to some domain of application. In order to complete the construction

of such systems, it is almost incvitable that corners be cut and many overly simplificd assumptions be made.
e Representations have been developed that make explicit the information computed by a module.

A number of representations are discussed in this survey, including the primal sketch, the reflectance
map, intrinsic images, normalized tcxt-ure»propci'ty maps, and object representations based on gencralized
cones. A simple obscrvatmn whnch nevertheless has profound conscqucnccs is' that not all modules work
directly on the image. Indeced, it scems that few do. Instead, they operate on reprmentamms of the informa-
tion computed, or made explicit, by other processes. In the case of sterco, Marr and Poggio argue against
“correlating the intensity information in the left and right images [MARR79b]. Instead, they suggest that edge
feature points are matched (sce Scction 4.1). Baker and Binford, Arnold, and Mayhew and I°risby argue that
I]‘Iil[(.‘hi-l-l.g should in fact take place on a different representation, called the primal sketclfBAKEST, ARNOTS,
MAYHS1]. |
Combining (his‘_(v)hScryanim] with the previous point about modules of the visual system feads to a view

of visualperception as the process of constructing instances of a sequence of representations. To cach modnle

s




therc corresponds a representation on which it operates, and a répresentatioﬁ that it produécs. The first of
these representations, and the one whose structure is least subject to dispute, is the image itsclf. Not surpris-
ingly, rﬁost attention has centered on those modules that operate upon the image (section 3). As we shall see,
the further we progress up the processing ﬁierarchy, the less secure the story becomes, as the exact structure:
of the representations becomes more subject to dispute. This is hardly surprising. The image aside, any
representation is one module’s input and another’s output. Computer science teaches us that all of them shape

its cventual structure.

For example, several modules of the visual system provide information about the layout of visible sur--
faces. Stereo provides disparity, from which local shape and relative depth can be computed. Motion, texture,
and shading all provide evidence for shape. Barrow and Tenenbaum hévc suggcstcd"that a number of different
viewer ccnfercd representations make explicit important information associated with surfaces [BARR78]. They
call such feprescntatidns intrinsic images and proposc speéiﬁc intrinsic images for depth, motion, surface
topography, and color. The name intrinsic images stems from Barrow and Tenebaum’s idea that the repre-
scnmtipns are addi’csscd using the sa:ﬁe coordinates as the image. For example the color at an image point
whose coordinates are p might be found in representation C as C(p). Others, notably Marr and Horn have
suggested a single rcprcéentati'on that makes explicit local surface orientation and discontinuitics of dcpth

[MARR78a, HORN82]. The precise details arc uncertain at the time of writing.
o The mathematics of image understanding are becoming more sophisticated.

Mathematical analyses have been offered for some of the clements of visual perception, such as the
relationship between image irradiance and scene radiance, the ldcation of important intensity changes, and
motion primitives. In each casc, it is observed that the information in the image only partially constrains
the interpretation of the image, and further constraints arc sought. "T'he additional constraints cmbody commit-
ments about the way the world is, at least most of the time. For example, the world mostly consists of smooth
surfaces, and scenes are mostly viewed fmm a position free of accidental alignments. Perceptual abilities such

as stereopsis, lightness determination, and shape from shading and from texture, require that the appropriate



constraints be uncovered and appropriately expressed.

Most of the analyses to be discussed below begin with a precise description of the representations
operated on and produced by the visual process under scrutiny. Increasingly, "precise” means "mathematically
precisc”, as the technical content of image undcrsfanding has become steadily more sophisticated. Many

observations about the world, as well as our assumptions about it, are naturally articulated in terms of the

"smoothness" of some appropriate quantity. This intuitive idea is made mathematically precisc in a number of

ways in real analysis, for example in conditions for differentiability. Relationships between smoothly varying
quantities give rise to differential equations, such as Horn’s ixnage Irradiance Equation. We shall discover the
valuc of making the image formihg process exblicit. This in turn leads to a concern with geometry, such as
the properties of the gradient, sterquraphic, and'dual spaces. Combining geometry and smoothness leads
naturally to multi-variate vector analysis, and to differential geometry. For the most part, ia represgntation
“does not of itsclf contain sufficient infbnn'ation'to guarantee that a module can uniquely arrive at the result
computed so cffortlcssly by the human visual system. Additional assumptions,'in the form of constraints, are
rcqmrcd This obscrvation has led to appllcauon of constraint satisfaction and’ cquauon solving tcchmquc-
from numcncal analysis as well as various instantiations of l.agrange multlplxcr‘; (espccially in the form of the

L

calculus of variations).
e Locally parallel architectures have been developed,

'The majority of the work to be described ])crc had its initial cxpreésion in the form of complex computer
programs. A common compiaint about artificial intclligence in general, and image understanding in particular,
used to be that it not only did not run in real time, but inhcrcntly could not. To the extent that this referred to
so-called "heterarchical” prbgrams of the 1970's vintage, this was-justiﬁcd. However, artificial intelligence has
been well advised not to m‘ukc real time perfi ormance its most important metric of success, since such a metric
often implicitly assumes a particular, usually sequential, model of computation.

Mdn/ recent vision algorithms take the form of parallel Compumtmns m\nl\mg local interactions. Once

the ideas are fully fixed in software, they are naturally realized in hardware. Davis and Rosenfeld review one

o
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popular class of program structures, called "relaxation” [DAVISI]. In the case of edge ﬁnding, one algori(hm
has been im;ﬁ]cmented in TTL ldgic [NISH81], and several others in CCD[NUDD?79]. The current rapid pace

of devclopments in VLSI has further motivated research into local parallel programming architectures. It is

 likely that our concept of computation will change as a result of such developments. Vision will be one of the

first areas to benefit from such advances. It seems that it will also be a continuing source of inspiration to VLSI

designers [BATA81, NUDID79]. As more sophisticated ideas are embodied in hardware, new appliéations of

image understanding will become feasible.
o There are growing links between image understanding and theories of human vision.

For many authors, the changing style.of rescarch in image understanding has nof been simply a mafter
of a narrowing of attention and a more highly developed technical content. Instead, greater significance is
attached to forging explicit links between IU and psychophysics and neurophysiology. From this perspective, ' '
image understénding aims at the construction of computational theories of human visual perception. In
large part, this approach stems from a series of papers written by David Marr and his colleagues at MI’I
Marr’s work derives from a background in ncurophysiology, a.nd is expressly addressed to psychophysicisfs
and neurophysiologists, among whom it has excited considerable interest. In particular, it is couc_hed in
terms they are accustomed to, and makes extensive reference to their literature, rather than that of computer
vision. A book describing Marr’s thoughts about human visual perception and .fncorporating summaries of
the contributions he and his colleagucs have made across the entire range of the subject is currently in press

[MARRS2].

It might be imagined that there would be considerable differences of cmphasis‘, subject matter, and ;cch-
nical content between the work of those researchers who see themsclves constructing a computational theory
of human visual perception and those for Whom human visual perception is at most a matter of sccondary con- .
cern. 'This turns out not to be the case. For exampl'c, the ACRONYM system’s rcpréscntalion of objects based
upon generalized cones bears many similaritics to that proposed by Marr and Nishihara, who relate their wqu

to human perceptionf BROO79, MAR R78b]. Again, Hoin and Schunck’s work on the determination of optical
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flow has intriguing similaritics to the directional selectivity work of Marr and Ullman that was inspired by
neurophysiology [HORN81c, MARRS1].

Figure 1 shows some of the rcpresehtations and modules tb be discussed in the remainder of the paper.
The figure is intended to make the organizatiori of the paper easier to understand, but it should be treated with
caution. The organiiation implicit in the figure is similar to that given in Barrow and Tenenbaum [BARRS1b]
and Marr [MARR78]. The representation referred to here as the “surface orientation map” is intended to
cover what Marr calls the "24 D sketch” [MARR78a], Horn calls the "needle map” [H'ORN82], and Barrow
and Tenenbaum call "intrinsic images” [BARR78].

The paper, and hence the ﬁgure, is limited in scope. As mentioned above, there is little discussion of

applications. There is little if anything about color, and only cursory discussions of motion. 'Ijhc extraction of

useful information from color is still extremely rudimentary. Motion has received some attention recently, but

findings are preliminary. For cxample, it is far too early to know what information can be computed reliably

from the changing patterns of brightness called the opticéll flow (see section 3.2). A pervasive view of motion
perception is that _it arises from temporal changes to the representations that arc important for static vision.
'The Marr-Hildreth theory of edge detccvtion inspired Marr and Ullman’s work on directional selectivity, the
primal skctch ted to Ullman’s work on long range motion, and Horn’s work on shape from shading underlies

the work of Horn and Schunck on the determination of optical flow.

Judged as a ﬂow’diagrakm, figure 1 suggests that the flow of information, and the construction of repre-
sentations, is entirely sequential, procceding from the lowest level operations on the image to more semantic
higher level operations. M‘any authors havc argued that perceptual broccssing cannot be so rigidly scquential.
‘They suggest that perception is oppol;tunistic, taking advantage of whatever information becomes available in
an iﬁmgc. Natural scenes are 1)0:‘nmlly highfy redundant. Gibson [GIBS50] notes approximately 23 distinct
cucs for determining dcpth and surface Tayout, many of which arc available in most imagcs. ;I fowever if only
an uﬁprcdicthblc small selection of cues are available, vision is not usually impaired. Only when a single cue is

present, as in the laboratory settings of experimental psychology, is our pereeptual system easy (o fool. Minsky
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Figure 1. Some of the representations and modules discussed in the paper.
~ and Papert [MINS72] suggested that the flexible processing of information by the perceptual system might
T best be modelled by process interactions. This produced a rash of programs in which relatively high level
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knowledge could actively intervene to modify the course of low level processing. Exampl'eé include [SHIR73,
BAJCT75, BAJC76B, TENE77, BRAD78, HANS77, BROO79, SELF81]. Similar "heterarchical” programs
were experimented with in speech perception [LESS77]. The performance of such programs did not give cause

for unbridled celebration. Some of the associated difficultics are reviewed in [BRAD79].

A rather different kind of flexibility is made available by local parallelism. [WALT72]‘ showed how a
variety of cues could be combined to yield an overall interpretation. [DAVI81] stress that an attribuie of such
process structures is their insensitivity to the sequence in which operations are performed. However, local
parallcl processes have their own problems. It is casy enough to start local parallel processes going. It is less
casy to guarantee that they Will stop (but sce [HUMMSO]), or to be able to make solid assertions about the final
statc of computation when they do stop. It may be that process structuring will become a kgy component of
image understanding, but currently it is simply too early to be sure. For the moment it seems best to remain
agnostic and concentrate on the solid achievements of the past decade, most of which are largely independent
of pfocess structuring.

Organization of the paper

| In the next section we present a brief review of work in geometrically simple "microworlds”. Some
of the generally importvant‘idcas developed initially for the blocks world of linc drawings Qf polyhedra are
introduced. Kanade’s extension to the world of origami, and Barrow and Tenenbaum’s work on curved "play
dough” figures is mentioned.

Section 3, by far the longest in the pdpcr, discusses modules that operate directly upon. the image.
Subscction 3.1 éonccrns edge finding, 3.2 the determination of shape from shading, 3.3 texture, and 3.4
segmentation. -

Scction 4 discusses modules that operate on the output of section 3, which, following [MARR76a), we

“call the primal sketch, Subscction 4.1 discusses stereo, 4.2 shape from contour, 4.3 shape from texture and.
Kender's gcncm‘lir{atbiun to "shape from you name it". Finally, subsection 4.4 bricfly discusses shape from

motion.
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Scctions 5 and 6 discuss modules that operate on surface orientations and viewpoint independent repre-

sentations.

2. Review of work on geometrically simple microworlds

- Beginning with the seminal work of [ROBE62], much early attention of 1U was devoted to intclprcth;g
line drawings of polyhedra automatically. This work marked a éigniﬁcant brgak from pattern recognition in
that it emphasized descriptions of the objccts present in-a scenc and the spatial relationships between them.
For example, figure 2 might be described as a cube standing in front of a block. Clowes ahd Huffman stressed
that the relationship between a scene and its ixnagc needs to be made explicit [CLOWT1, HUFF71]. A line is
the imagé of the édge of a polyhedron in the scene. They noted that lines can bé labelled as convex, concave,
or occluding(figure 3a). The interpretation of a line can not change along its length. A junction is the image
of a three-dimensional vertex. Enumeration of the local volumes occupicd by vertices, and the appearance
of such vertices from all possible viewpoints gives rise to a sct of labellings for junctions (figure 3b). Vertex
labellings embody a local constraint: although there are three lines forming an arrow junction, and cach line
has four possible interpretations (counting the two sénscs of occlusion separately), there are not 4° = 64
physically realizable labcl.]ings for an arrow vertex but only 3. Notice that every interpretation of a T-junction
is assumed to signal an occlusion of the stem. Conversely, cvery scene occlusion gives rise to a T-junction, T hé
constraints local to cach junction propagate along the lines that connect them to adjacent junctions, possibly
rendering some of the initial set of labellings at both junctions impossible. Clowes determined consistent
interpretations by a scarch space technique. Surprisingly, many simple line drawings have many consistent

interpretations, though occlusion often resolves ambiguity.

Despite the geometric restrictions imposed by Huffiman and Clowes, their scheme had limited com-
petence. First, as Kanade pointed out, the Huffman-Clowes scheme was essentially qualitative in that it could
not distinguish between the truncated pyramid shown in figure 4a and the cube shown in figure 4b [KANASI].

Human pereeption is at least partly quantitative since we readily assign slopes to line drawn surfaces and
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Figure 2. A typical line drawing of polyhedra studied by Huffman and Clowes,

estimate rectangularity of vertices from junctions. Since the line drawing in figure 4b can be the image of an
infinite set of scenes, it is more precise to say that the Huffman-Clowes scheme could not determine that figure
4a has no interpretation for which vertex A is rectangular while figurc 4b docs. It is also interesting to ask why

the cube is perceived as a cube. One proposal, due to Kanade, is sketched below.

: /\ sccond manifestation of the qualitétiye nature of the Huffman-Clowes scheme is its inability to detect
lhé 'ilﬁp()ssibility of the liilc drawing shoWn‘ in figure 5. Huffman’s paper was princi‘pally concerned with
Mimpossible objcds" (such as dmt depicted in figure §), and the consequent need for a more expressive repre-
scntz;tioh. He proposed a rcprcs'cm:.uvion called dual sﬁacc and an orthographic pmjéction of it called the dual
picture graph. Mackworth [MACK73] developed lhé idca of a representation of surface shape further by intro-
ducing gradient sp:lc.c. an‘ idca Lﬁul was developed in [DRAPS0, DRAPSI, HORN7V7, KANARD, KANASI,

KENDSO, HUEE77, SUGITS, SUGIST].

e’
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Figure 3. a. The possible interpretations of an image line. b. The possible interpretations of a
trihedral vertex.

Consider the imaging geometry depicted in figure 6: a surface f(z, y) ~— z = 0 is viewed from a great

distance along the negative z-axis. Applying the chain rule,
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Figure 4. The Huffman-Clowes scheme could not distinguish these line drawings.

of
dz + —dy —dz =0,
+ay y

of
Oz

that is

o of _ o da) —
(0x’<9y’ 1)(d:l:, dy: dZ) - 0;

so that (%’, :,’{,, —1) are the dircction ratios of the surface normal or gradient. Tt is customary to denote ;% by

and ¥ by g. The courdinate frame based on (p, q) is called gradient space. As an example consider a planar
P Ay q i ‘ q p p
facet az - by + ¢ — z = 0. '[he gradient has p = a,q = b. The origin of gradicnt space corresponds to

surface facets that point directly at the viewer, Moving away from the origin, it is casy to show that (p*+ q‘l)‘%

s the slant of the surface normal. The angle 7 whose tangent is ¢/p is the tilt of the surface normal(figure 7).
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Figure 5. The Huffman-Clowes scheme could not determine that this-line drawing depicts an
" "impossible object”.

The coordinates can be aligned so that a 'vector (z,y,2) = v projects to (z, y) =k X (v X k), where
k is the unit vector in the z dircction. In particular, the gradient vector (p, g, —1) projects to (p, g). Suppose
two planes Py and P, have surface normals (p;, g;, —1), and suppose that they meet in a space vector v; It is
casy to show that the image ! of v is perpendicular to the dual line connecting gy = (p1, /) to g = (p2, )
[MACKT3]. Furthermore, v is convex if and only if the order of the g; across  is thé same as the order of the
images of P; across { (figurc 8). Mackworth.exploited this obscr\‘/ation in a program that was capable of deter-
mining the impossibility of the notched tetrahedron shown in figure 5. However, Mackworth’s triangulation
solution scheme could not determine the impossibility of the notched cube also shown in figure S [MACK73].
Draper [DRAP81] has analyzed the competence of Mackworth's gradicnt space scheme and an extension due

to Huffman based on "dual space” [HUFF77].

The notched cube of figure § illustrates an assumption discussed by Kanade [KANAST], namely lines that
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Figure 6. Viewing geometry for defining gradient space.

are parallel in the image are the images of vectors that are parallel in space. 1If lines {; and lp are the images of
scene vectors ¥, and u,, then it is easy to show that Iy is parallel to &y if and only if the triple scalar product
[v1, vy, K] is zero. It follows that Kanadce's parallel line assumption fails only when vy, vy, and k arc coplanar.

Generally, people find it difficult to interpret such foreshortencd figures properly [MARIUSb, MARR78a).

Kanade [KANASI] has also studicd an intcvrésting assumption involving what he calls "skew-symmetry".
Consider figures ‘9a, 9b and 9c. All three are interpreted as symmetric, planar figures viewed obliquely. As
figure 9d sh_ows, a skew symmetry dcfinés two directions: the imégc of Lhc axis of symmetry, called the skewed _
symmclfy bxis, and the image of the norlhal to the axis of symmetry that lies in the planc of the figure, called
the skewed lransvcrsé axis., Skew symmetrics féathrc prontinently on the cube and truncated pyramid 5]1()\vn.
in figure 4. Kanade proposes that a skewed symmetry is ;1lwz|y§ intérprctcd as the image of a real syﬁunctry

viewed obliguely. 'This assumption gives rise to a constraint, expressed in terms of the angles a and 8 defined
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Figure 7. Slant and it in gradient space.

in figure 9d, relating the possible gradicnts of the surface containing the real symmetry. In fact, the possible
gradients form the hyperbola shown in figure 10. Notice that the possible plancs with least slant (the tips
of the hyperboia) have a normal that projects into the bisector of the skewed symmetry axis and the skewed

Ltransverse axfs. This accords with a heuristic finding of Stevens [STEVS0].

It is important to realize that the parallelisim and skew-symmetry assumptions apply beyond the blocks
world. Kanade has shown how they can be combined with H\.lffman-Clowcs style labelling and Mackworth-
style algebraic analysis to give both a quantitative and a qualitative interpretation of line drawings in the

microworlds of blocks and origami constructions [KANASBI1].

The junction labelling constraints of Huffman and Clowes are essentially local. The constraints of surface
planarity, skew symmetry, and parallelism arc less local and support more competent programs. However,

none of the constraints are global in the sense that they apply simultancously to all parts of the image. Waltz
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Figure 8. Convexity preserves order across the gradient line.

investigated the global constraint afforded by the shadows cast by a single distant light source [WAL’F72].
The number of interpretations of a line rose from 4 to 12, with a consequent massive number of possible.
junction labellings. As Draper has pointed out the large (and probably unverified) labelling sets would be .
considerably larger without thc’assumption of gencral p_ositi(m of the viewer [DRAP80]. Waltz’s line labels
incorporate information about the surfacc geometry, illumination, and surfdcc-objcct boundarics. The huge
label sets prccluded a tree search of the sort uscd by Clowes '[CLOW71]. Instead, Waltz designed a filter
-program, potentially capénblcﬁ ovf running as a local parallel program, that usually converged to a single labelling
in near lincar time. The Waltz ﬁltcf accelerated invcstigﬁ(ion of local pzu‘ullcvlismT Linc labelling is discussed
by [ZUC k77, ZUCKS81, I"IUMMSO]. Waltz’s program reaflirmed llic value of rcdundzn‘xcy when processing
can make appropriate use of it. However, the complex linc lzll)cliings confounded tob much information from

different levels of the visual system in an imrpoverished fepresentation,
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Figure 9. Skewed symmetry. a-c: examples of skew symmetry. d. definition of skewed-symmetry
axis and skewed transverse axis. (Reproduced from [KANAS1], figure 16)

The figures discussed in this scction have all been images of objects with planar surfaces, Some authors
have tried to relax this restriction. One difficulty with drawings of curved surfaces is that one of: the basic -
éssumptions of the Huffman-Clowes work no longer holds: a line can cﬁangé its interpretation from onc end
to the uthcr [HUFI71). Turner [YTURN74] noted that such changes of interpretation are not arbitrary, and

he allowed a small number of transformations of a line label to arrive at an interpretation. Recently, Binford
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Figure 10. A skewed symmetry defined by the angles a and B can be the projection of a real
symmetry on a plane whose gradient is (p,g) if and only if the gradient lics on the hyperbola
shown(Reproduced from [KANAS1], figure 17)

[BINI81] and Lowe and Binford [LOWES1] have suggested more getieral interpretations of curved lines that
may cnable labelling techniques to be extended to line drawings of arbitrarily cutved surfaces (see also section

3.1.3),

Barrow and ‘Tenenbaum [BARRT8] have also studiced a microworld of curved objects. They combine line
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labelling techniques with Horn's work on shape from shading (see section 3.2) to interpret idealized images of

"play dough" scenes.

Work in geometrically simple microworlds has playéd an important role in the development of imagé
understanding. From the pioncering work of Roberts, Clowes, and Huffman to the present day, Lﬁc goal has
been to gcneraté descriptions rather than transformed or classified images. The key has been to make the
relationships between the scene and the image explicit. Examples include the interpretations of image lines as
visible edges, and the analyses of skew symmetry and parallelism. Mackworth’s development of g_radiént space
points up the need for rich representations. Finally, Waltz's work shows that redundancy can be exploited by

appropriate computing mechanisms.

Microworlds also set traps. It is irresistably tempting to deploy domain spcciﬁc information at the carliest
opportunity. Planar objects have a numbcr of global properties that are not cnjoyed by curvcd ObjCLtS For
example, two plancs intersect along a single straight edge in space, so that from any given v1<.wp01m one
planc is always in front of the other on one side of the image of the cdge, and always behind it on the other
[DRAPS1]. The labelling schemes of Huffiman, Clowes, and Waltz, extended to idcalised images of curved
objects with reflectance patches and shadows, produce a vast number of labels that confound many distinct
sources of information in a single lébel. It seems more fruitful to attempt tb tease out the information provided

by cach of these sources separately.

3. Modules that operate on the image

3.1 Fdge detection

A great deal of cffort has been devoted to understanding how the significant intensity changes in an
image can be extracted, and how the resultant information can best be represented. Marr coined the term.
primal sketch to describe such a representation [M ARR76a]. Significant intensity changes correspond to a

varicty of events in a scene, such as depth, reflectance, and shadow boundaries, as well as discontinuitics in
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" surface orientation. The image intensities I(x,y) form a surface that is a discrete approximation to one that is
continuous nczirly everywhere [ROSET76, PRAT79]. Quantization and sensor noise of various sorts complicate
the formulation of a predicate that can completely reliably determine which intensity changes correspond to

perceptible scene events (that is, which are "significant”).

It has bcén observed repcatedly over the vpast twenty years that intensity changes correspond to maxima
of the gradient of the image surface, equiyalcntly a place at which the second derivative crosses'zero and
chaﬁges sign. Many local operators have beén &eveloped to apptoximétc first énd sccond directional deriva-
tives by first and second diffcrences. A representative sample is shown in figure 11. Mostly, such operators

were developed and tuned for a limited domain of application.

Figure 12 shows an idealized step change in intensity and the response of first and second difference ”

opcerators. In practice, gradient operémrs tend to produce a large response over a broad region flanking an
edge (sec figure 14, also [BINF81]), espécially with inte'ns,it_y changeé other than steps. As a result, feature
points from a gradient operator have to be thinned, a process that x'nake’s. 1t difficult to localize the position
of the edge as accurately as with sccbnd diffcrence operators. On the oihcr hand, errors grow rapidly as

differences are taken, so that sccond differences are much noisicr than first differences.

A rceent edge finder, which appears to work well on a range of natural ima‘gés, is due to Nevatia and
Babu [NEVAT8)]. It applics the six gradicnt’opcr'atofs shown in figure 13 to each point of an image and
- chooses the one giving the best response if (1) it is high enough and (2) it is not dominated by the responses

at neighboring points ina di:rcctio‘n which is normal to the same apparent edge. This process is followed by

thinning, thresholding, and line fitting. Somnc indication of the performance of the Nevatia-Babu al'gorithm“

can be seen in figure 14, |

Binford has argucd that it is important ‘m‘{distinguish between the detection of an 'intcnsity change and
its subscquent loc:glization [BlNESl]. He sm.uggcsis that a maximum of a noisy signal is good for detecting
élmngc but'not for isolation. Conversely, a z;ﬁr() cmssing-is idéai for localizing change but not for detection.

MucVicar-Whelan and Binford find adjacent pixels between which a second diﬁ‘crcnciﬁg-likc operator changes

—
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Tigure 11. A sclection of masks from the image understanding literature used to compule
approximations to the first derivative of an image in the x direction.

sign [MACV8I1]. Using lincar interpolation they claim to be able to localize intensity changes with sub-pixel

accriracy. Sub-pixel accuracy is also claimed by [MARR7Y] in the context of vernier acuity, where the cyce is
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Figure 12. The response of an edge and bar operator to an ideal step change in intensity. a. The
intensity change. b. The response of a typical first difference edge operator such as that shown
in figure 11a. ¢. The response of a typical bar operator such as that shown in figure 1le.

able to perceive breaks in lines Lhéi are more closely spaced than the physiology of the eye would scem to
permit [MARR79]. | |

Real images ‘are further complicated by defocussing and the frequcnt occurence of slow intensity
gradients across large portions of the image. Humans afe largely unaWare of slow lincar intensity gradients
[LLANDT1, MCCA74]. 'l’his scems to be because of "lateral inhibition", where the image is processed by

“center surround” operators (figure 15) that resemble rotationally symmetric sccond differential operators.

Herskovits and Binford [HERS70] proposed an carly taxonomy for the int»cvnsity changes they found in
images of polyhédré, classifying them as "step”, "roof”, or "edge" changes v(ﬁgurc 16). As we shall claborate
below, they proposed different operators Fypep, Froop, and Figge to detect cach different type of intensity

change. Itis commonly supposed, especially in applications where scencs are effectively flat, that the majority

of intensity chanpes are of the simiple step type. Many detection schemes are predicated upon this assumption.

—
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Figure 13, The masks used by [Neva78] to compute first derivatives of an image at 30 ‘degree
intervals, '
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Figure 1. Sample resulis of running the Nevatia and Babu operator over @ natural image. '
.. .
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Figure 15. A center surround operator.

Herskovits and Binford [HERS70] and Horn [HORN77] observe Lhat_ step edges typically corréspond to depth
or reflectance boundarics, whereas the cqually important class of intensity changes corresponding to surface
orientation discontinuitics often give rise to roof and edge transitions. Marr refined the Herskovits and Binford
cléssiﬁcation to include "extended edge”, and "thin and wide bar" (figure 17) and proposed a varicty of

operators of different sizes to discriminate between them [MARR76a).

The construction of a primal sketch representation from an image has three distinguishable stages: (1)
"feature points” are detected at which the intensity change is deemed to be significant; (2) feature points

arc grouped to form line segments, or small closed contours; (3) these line segments arc interpreted as scene

events, say as bounding contours or as truc edges of visible surfaces. These three stages are discussed in turn in

the following subscctions.

The operators shown in figure 11 are directionally selective. Some authors have proposed the use of roti-

s 10
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Figure 16. The‘taxonomy of intensity profiles proposed by Herskovits and Binford. a. idealization
b. examples, ,

tionally symmetric opcrators, such as the Laplacian A, for edge detection [BRADS1b]. Several reasons have

been advanced. Some authors prefer theoretical arguments, noting the (near) isotropy of human vision and

the fact that the center surrqund operators giving lateral inhibition are rotationally symmetric. Othcers have
stressed practical considcrﬁtions. Fof example, in hcr-discussion'of the Marr-Hildreth thcovry of edge detection
(to be discussed in section 3.1 H ildrcth [H11.D80,page 13] notes that "a number of practical considerations,
which will be illuminated in the discussion of the imﬁlcmcntation, suggested that the ... operators not be
directional”., Supposc instead that dircc‘tional operators are uscd. Most algorithms for ﬁndihg feature points
have two stages: first, the image is convolved with dircctional operators in "sufliciently many™ dircctions, and
second, the outputs are conhbincd to determine the orientation and cxtent of intensity chaﬁ1gcs. Regarding
the first stage, both Marr and Hildreth [MARRS0a, page 193] and Hildreth [HIT.D8O0, page 40] comment

on the cost of convolving with a "suflicient” number of operators. They show that a single rotationally sym-

amar
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* Figure 17. Marr’s classification of the intensity changes that occur in natural images. After figure
2 of [MARRT762]

metric operator (the Laplacian) gives precisely the same results if a condition called "linear variation" holds.
Regarding the second stage, Hildreth [HI1.D80, page 36] observes that edges in‘a dircctiod close to that of
the mask are clongated (“smeared") in the direction of the mask. She also notes that operators at several
orientations give significant responses to any givén cdge, and that Eombining the responses is non-trivial,

Other authors are less convinced of the need for rotationally sym metric operators for edge finding [BINF81].

The issuc of control arises in edge finding as it does in all other arcas of image understanding. It has
bcén argucd that it is not possible to find significant intensity changes, group them, or iﬁtcrprct them without
engaging quite high level knowledge. Bajesy and Tavakoli [BAJCTS, BAJC76B] were carly pmp’oncmsvof' this
view, as was Shirai [SHIR73]. Davis and Rosenfeld survey the application of relaxation processing to isolate

feature points [DAVI8I].
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" 3.1.1. Finding feature points.

Although many ‘bf the publi'shec‘ifschemes for detecting and isolating'feéture points were discovered
émpirica]ly, there have been three main approaches to making edge finding more precise. The first consists
of locally modelling the image by a parameterized analytic surface and determining the best fitting choice
of parameters given the aétual intensity distribution. The second is Binford’s applicétion of signal theory to
edge finding. Finally, Marr {MARR76a] and Marr and Hildreth [MARR80] have developed a theory of edge
E finding in the human visual system that takes account of ncurophysiology and psychophysics. We discuss eachb

[}
of these approaches in turn, "

Surface fitting v
The derivation of opc.rators to approximate first and second differences by least squares surfacc fitting
was introduced by Prewitt [PREW70], and Hueckel [HUEC71]. [BROO78, HUMM?79, HARA8(] give good

introductions to the method. In the simplest case, where noise considerations-are ignored, two things must be

chosen: (1) the size of the local ncighb‘orhood or window in which the surface will be fit, and (2) the function

to approximatc the image surface in the windqw. For simplicity, we chodsc a window of size 2 by 2 and
approximate the image surface in such a window by-a plane P(z, y) = az + by +c. Haralick [HARAS0] calls
this the "sloped facet” Amodel. Assumi‘ng, that the icsponse of an edgc operator is independcn\t' of the choice of
coordinate origin, we assume that the window covers z = 0,1,y = 0,1 (figure 18). We determine the best
fitting choice of parameters a, b and ¢ by least squares minimization 61’ the difference between the intensity
values actually found in the window and thosc ﬁredictcd by the function P(z, y). The sdtlarc of this difference

is given by

= @+ bk o I D oo+ ¢ = IO+ o+ e — 10, 1)+ (e — 10,0))

© For aleast squares fit, we first set

[

s
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This implies

2+ b -+ 2 = I(1, 1) + I(1,0).

Similarly, setting % and 82 equal to zero, we get

a+2b+2C=I(1: 1)+I(O)1)u

and

2 + 2b + 4¢ = I(0,0) -+ I(1,0) + 1(0, 1) + I(1, 1).

Solving, we see that

9a = I(1,1) + I(1,0) — I(0, 1) — 1(0,0),

~and

26 = I(1,1) + 1(0, 1) — 1(1,0) — 1(0,0).

The gradient of P(z, y) in the z-dircction is 2PEY) = a. Similarly, 254 = b, We can depict the
gradient operators a and b as in figure 18. |

Haralick has extended the basic scheme illustrated above to model the effect of sensor noisce [HARASO].
He adds a normally distributed noise term n(z, y) to the function P(z,y) and shows that an F-test is ap-
propriate for deciding whether or not there is a significant change in the slope of adjacent sloped facets. Here

"significant™ is given its usual 1% statistical meaning.
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Figure 18. a. The 2 by 2 window covering pixels (0,0) to (11). b and c¢. The gradient operators
that result from best fitting a plane ("sloped facet”) in the window shown in a. .

Brooks [BROO78] considers fitting plancs and quadraiics to 3 by 3 windows. The best fit plane gives the
Prewitt operator shown in figure 11, and ihé_second derivative of the best fit quadratic gives the bar mask
shown in figure 11. Brooks observes thai the dot product of the gradient operators @ and b in figure 18 is
zero. This suggests that it may bc‘.possiblc to develop an orthogonal set of increasingly highér order masks,
‘ One natural chéicc for such an orthogonal sct is the sct of Fourier basis functions. Other choices are Walsh or
FHadamard functions. The best fitting choice of Fouricr basis functions was developed by Hucckel in an carly
application of the function fitting idea [HUECT]. O’Gormzn; proposed the use of Ecst ﬁtting Walsh functions

{OGORT6).
Binford's signal l/mnjf approach

Recently, Binford [BINF81] has m.ul.incd an approach to edge finding that has its roots in two carly un-

published papers [HERS70, HORN73]. ‘The details are not-completely clear and would "bc a'valuable addition
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tb the literature. It was noted above that image noise makes it difficult to determine reliably which intensity
changes are significant. Herskovits and Binford showed how to estimate the signal to noise ratio for an image,
and determined that the error is typically about 1% for a zero signal. They studied intensity profiles in scenes
of polyhedra and proposed the classification shown in figure 16. The response of a bar mask to an ideal step
edge is shown in figure 19 (see also [MARR76a]. Clearly, as the number of points in the bar mask increases,
the opera_tor can detect steps'of lesser héi’ghts more reliably. qukovits and Binford make this idea more

precise by defining the sensitivity of an operator as the signal for which detection is 50%% successful.

‘.The intensity values determined by sensors are most reliable in the middle range. Accofdingly, Herskovits
and Binford [HERS70, page 36] suggest upper and lower thresholds » and ! on intensity. The idecal step gives
rise to a band of u’s flanked by a band of Is. Deﬁn.e L to be the number of points at which the valﬁe isuin
the left band minus the number of points at which the thresholded intensity is I. Similarly, R is the number
of points in the right band at which the thresholded value is & minus the number af which the value is I. If

“step = L — R is big cnough, a local maximum is found. In this wéy the step is detected though not localized.

Figure 19 also shows the response of a bar mask to an ideal roof intensity change. Note that unlike step
changes, the response reaches a maximum in the vicinity of the top of the roof. Accordingly‘an operator Fiey
is defined as the difference R -+ L, that is the difference between the number of values u's ahd I's summed
over both bands.

A refinement of the scheme is described in [BINF81]. The operétor F¢p approximates the derivative
of the second derivative, or cquivalently, detects the step 'intcn'sity change by looking at the third derivative
of intensity. The intensity change is then localized from the zero crossing of the second derivative. A roof
chzuigc is detected from the maximum of the sccond derivative and localized from the zero crossing of the
third derivative.

‘The operators Fyyep, F,;of, and a similar one for "edge cffects” were incorporated in the Binford-Horn
line finder [HORN73] and discussed retrospectively in [BINF81), |

Marr’s approach to edge detection by the human visual system
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l'ngure 19. Response of a bar mask to an ideal step (d) and roof edge (b). 1. The intensity
change. 2. Response to a lateral inhibition operator. 3. Derivative of 2,

A novel feature of Marr's dcvclopmcnt of the primal sketch [MARR76a] was its dncct reference to

m‘uruphywﬂny and psychophysics, a commitment Marr continued to stress in later work. Marr’s alwmuhm
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for computmg the pnmal skctch from an image had a number of i mterestmg features First bemg inspired
by neurophysrology, Marr applicd the findings of Hubcl Wiesel, Barlow, and others which seem to suggest
that an carly stage in the processing of visual information consrsts of convolvmg the image wuh edgc and
bar masks As we observed above, such masks signal an approximation to the first and second (directional)
derivatives of the intensity function. Marr based his algorithm on an analysis of the respohse of bar and edge
masks to ideal insteﬁces of the scene events that give rise to intensity changes. The elgorithm itscif consisted
of convolving an image with a number of edge and bar masks and then "parsing" the results by comparing the
actual responses to those predieted for ideal scene events. It was noted that bar masks seemed to give more |
reliable information than edge masks, an observation whose explanation awaited the laier devclopment of
AFG' operators which have a sirnilar cross section (sec belbw).v The algorithm convolved the image with masks
of different panel widths. Although the later justification for this would be in terms of scparate processing
channels, the original cxplanation was based on the need for noise reduction, although this idea was never
formulated precisely. In any case, the outputs of the individual channels were combined, not only to reduce
the cffects of noise, but to compute measures such as the "fuzziness” of an edge. The idea of combining
the outputs of independent channels remains an important goal of the work on zero crossiﬁgs, but, withvthe

singular exception of sterco (see below), it has not yet been worked out.

Marr and Hildreth [MARRSO0, page 189] point out that "a major difficulty with natural images is that
changes can and do occur over a wide range of scales, so it follows that one should scck a way of dealing with
the changes occuring at different scales." One way to do this, which has been proposed several times in the
image processing literature, is to pass the iinage through a niimbcr of band limited filters. The difficult issues
raised by the idea concern the choice of filters (bar mask, Fourier, G‘aussian), the number of them, and the

cxact band pass characteristics of each.

Intensity changes are localized in space, a fact which derives from their physical causes [HORN77,
MARR76, MARR80a]. Marr and Hildreth argue that they are also localized in the frequency domain. Marr

and Hildreth [MARRS0, page 191] note that "unfortunately, these two localization rcquircmcnts, the one in
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the spatial and the other in the frequency domain, are conflicting". The Fourier transform of a bar mask has
components of arbitrarily high frequency. Similarly, the inverse transform of a bar-like band pass filter in
the Fouricr domain has significant "echoes"; [HILDB80] gives cxamples. They point out that a Gaussian filter
optimizes localization in both domains simultaneously, and so it ié chosen as the band limiting filter in their
: theéry. _ |

For the practical considerations given in the introdxiction to this section, Marr and Hildreth propbsg the
usevof a rotationally symmetric operator to find feature points. An obvious candidate is the Laplacian A (see
[BRADSI] for a discussion of rotationally symmetric operators). The Marr and Hildreth appr.oach to edge
finding follows Gaussian smoothing by convolving the image with a Laplacian, thus isolating the positions of

* zero crossings. In fact, by the convolution theorem [BRAC6S, page 118}, , ‘ 9

A(G*image) = (AG)*image, '

where G is a Gaﬂssi'an \‘operatqr, and * denotes convolution. Marr and Hildreth [MARRS0, page 193] point

out that the AG operator closely resembles the difference of Gaussian (DOG) operators proposed by Wilson

" and Giese [W11.877] (sce also [WI1.S79]). Indecd they show that AG is the limit of a DOG, and that the DOG

closely approximates it. The two-dimensional cross section of the AG operator is shown in figure 20a. It can
be thought of as a smoothed version of a bar mask 6ross section, and may explain Marr's hcd}l'istic preference
for bar masks over edge masks mentioned carlier. Wilson and Bcrgeﬁ’s work suggests that there should be
four bandpass channels at éach retinal cccentricity, and that their characteristic sizes should scale lincarly with
cccentricity, being sm;ﬁlc_st in the fovea and doubling in size by about £,

.Shmnnugam, Dickey, and G‘rccn. investigated the characteristics of the optimal frequency domain filter
for edge detection |'§I-IAN79]. By "optimal" thcy mean the filter that produccs the maximum cnergy in the
vumuy of the location nl a (xup) cdge. Jcmlgan and Wardeli [Jl ‘RN81] have shown that th(‘l(, is no significant
difference between th optlnn/mg filter derived by Sl\anmubam Dickey, and Green, and fhc difference of

Gaussian filter proposed by Wikion and Bcry,cn. The characleristics of the Shanmugan, Dickey and Green

o~
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ﬁiter are largely determined by a constant ¢ that is the pfoduct of the frequency domain' bandwidth of the
optimal filter and its spatial interval. As ¢ increascs, the signal to noise ratio increases. However, for fixed
bahdwidth’, the ixﬂprovcd signz_al to noise ratio is achieved at the expense of resolution.

- Recently, Marr, Hildreth, and Poggio have noted.evidence for a fifth, smaller cha‘nncl in the fovea
[MARR79a). Brady [BRAD80a] has shown how the Marr-Hildreth theory can be used to éxplain a number of
psychophysical results about parafoveal processing in reading. . |

Figure 21 shows images of a leaf and a coffee jar which has been sprayed \“Jith black paint to provide
a textured surface for stercoscopic fusion (see belbw). Figures 22 and 23 shov;' thé imagés in ﬁ)gurc 21

filtered respectively through the coarsest and finest resolution channels in the fovea. Figure 24 shows the zero

- crossings of the Laplzician applied to the filtered images shown in figures 22 and 23.

One of the novel aspects of the implementation of the theory concerns the sizes of the AG operato‘rs.’
Edge ﬁndiﬁg operators arc typically at most 7 pixels sqﬁarc,; the smallest operator used in the implementation
of the Marr-Hildreth theory .at MIT is 35 pixels square. Not only are the resulting operators much closer
approximations to the Gaussian (or any other filter for that matter), but the signal to noise characteristics of
the smoothed imagcs is vastly improved. One practical consequcncé of this seems to be that for computing
the oricntation of visible edges one can approximate differential operators by simple difference operators.
Conventional cdgc finding operators confound filtering and differentiation, and have poor and essentially un-
predictable filter characteristics. The first implemented version of the Marr-Hildreth theory took on the order
of three hours to compute the zero crossings in the coarse channel of an image 512 pixels square. A prototype
hardware implementation reduced this to 30 minutes. Nishihara and Larson report a TTL implementation
that computes and dispiays the. zcro crossings in any channel of an image 128 pixcls squarc in under 0.25

scconds [NISH81].
Directional selectivity for motion

Marr and Ullman [MARRS1] investigate the possibility that the time ratc of change of




Figure 20. (a) Two’ dimensional cross section of the AG operalor, showing ils resemblance to
the center surround operators in the human fovea. (b) The cross section of a typical bar mask
used by |[MARR76a). :

S(e,1,8) = (MG 1(z, 1 1)
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Figure 21, images of (a) a leaf and (b) a coflee jar spraycd' to produce a textured surface.
(Reproduced from (o) [HILDS0] and (b) [GRIMSO)
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Figure 22, The result of bandpass filtering the images shown in figure 21 to simulate the information
availuble throngh the coarsest channel in the human fovea.
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Figare 23.  The result of bandpass filtering the images shown in figure 21 to simulate the information
available through the finest channel in the human fovea.
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can enable one to detect the direction of motion of zero-crossings. Define

, 9S(z,y,
T(z) Y, t) == __(5;1{.’_2,
so that
Ol(z,y,1)

— *
T(z,y,t) = AG’. £

Figure 25 is bascd on [MARRS], figure 3]. It shows the response of S(z,y,t) and T(z,y,t) in the
vicinity of an isolated'intensity edge. Notice that for motion to the right, T(z, y,t) is'positivc at the zero
crossing, while for motion to the left it is negative. Marr and »Ullman proposc that motion to fhe right can
be detected by the simultancous activity of S+, T+, and S" On th¢ basis of this analyéis they find close

agreement at moderate speeds between theoretical predictions and cell recordings (sce figure 15). Richter

- and Ullman [RICH80] have accounted for the discrepancy at high speeds, and generally refined the model

of diréctioﬁal selectivity, by noting that the two Gaussians whose difference approximates AG act like RC
filters, cOmposed of a resistor and a capacitor, with different time constants. This causes a slight delay in the
onsct of the negative outer part reiative to the pdsitivc c‘cntrél pért._ Richter and Ullman’s predictions show
remarkable agreement with cell recordings for a wide vax‘icty of stimuli (sce figure 26). Coincidentally, Richter
and Ullman have proposed a theoretical structure for the outer plexiform layer of thc human retina in which
AG is computed. This suggests a particular VLSI implchentation of AG. The general scheme is illustrated in -

figure 27.

3.1.2 Grouping fcature points.

The methods of the previous section pmduce'a sct of feature points (figurc 28) corresponding to places in
the image at which the intcyxsit)' change is considered significant. The next stage of processing imposes struc-

turc on the sca of individuated feature points by grouping them to form cxlcndcdcontoufs. Marr [MARRT6,
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Figure 25. Derivation of the STS operator proposed by Marr and Uliman for computing directional
L~

selectivity of motion. (a) The response of @ vertical contrast boundary at time t to a AG operator,
showing the position 2 of the zero crossing. (h) At time ((+dy) the edge has moved slightly o —
to the right. Subtracting viclds an approxinmation o T(x.y,t). Notice that 1 is positive at z. (c) '
“analogously, an edge moving o the left is deteeted by a negative value for T at z. (Reproduced

fiom [MARRSI, figure 3] ' '
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Lo £ Figure 26. Comparison of theoretical predictions for the response ol an X-ganglion cell to moving

stimuli using the models of Marr-Ullman and  Richter-Ullman, and actual cell recordings. (1)
Response curves taken from the nearophysiology literature for an edpe, a wide bar, and a thin
bar. (¢) Theoretical predictions by the Man-Ullman model. (b) Predictions by the Richter-Ullman
madel. (Reproduced from [RICHS0, figure 13] '
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Figure 27. Spatial formation of a midget bipolar receptive field in the Richter-Uliman’ model. (a)
The arrangement of cones and horizontal cells. Fach horizontal cell covers a circle (the shaded
arci) with o radivs three times larger than the cone pedicle (the dots). It contacts 7 cones. Thus
seven horizontal cells contact cach cone, connecting a total of 19 cones to create the surround
area of a mijdget-bipolar cell. (b) The contribution to the suround of the fisst, second, and third
ting of cones. ‘The receptive ficld of a midget bipolar cell resulting from the ceunter coptribution
of one cone and-the above surround is shown in 5 and a stice through its center s shown in 6.
(figure reproduced from {RICHSRO, ligure 3] ‘
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page 501] argues that "grouping processes are available precisely because they are riceded to help interpret
the primal sketch; and furthermore that these symbolic processes together with first order discriminations,
operating recursively on the description of the pnmal sketch, are sufﬁcnent to account for most of the range of

‘non- attermve vision of which we are capable."”

We may assume mat_there are few accidental alignments of ebject boundaries, shadows, reflectance
boundaﬁes, and surface discontinuities (also called "true cdges") in the scene, that is, the image is taken
~ from “gencral position”. Then nearby feature points mostly arlse from nearby scene points and for the same
underlying physical cause. It follows that the descriptions assocnated with adjacent feature points that are per- |
ceptually grouped are very similar. If feature points have rehable and rich dcscnpuons, perceptual grouping |
can be more effective. Similar considerations apply to other cases of local matehing in v>isi0‘n°such as stereo, |
- motion computation, and the determination of texture. | |
 Each of the methods for finding feature points described in the previous scction 'ﬁés'!’éssdeiéted gr’oup'ing.' “
processes. For example the Binford-Horn line finder compares feature points ldcally on the basis of the size
of the contrast step across the intensity change, the type of intensity change, and the slope of the gradient
[HORN73, page 7). Marr [MARR76, .page 503] also 'groups' feature points on the basis of "orientation, ;
contrast, type(EDGE, LIﬁE, etc.), and fuzziness". He notes that "the first stage of grouping combines two
clements only if they match in almost all respects, are very close to one another, and if there are no other )
- candidates." Typical results of this process arc shown in figures 29 and 30. Marr proposes a number of opera-
btions that group the shorl line segments produced by ihc first stage on the basis of collinearity, proicimity, and
similarity of slopc [MARR76aj. The results of these opcrations are Histogrammed locally and the dominaﬁt

structures made explicit. Figure 29b shows the herring bone stripes computed from figure 29,

Many images contain extended straight contours, mostly corresponding to the straight edges that prevail
in our man-made environment. Duda and Hart [DUDA73} and O'Gorman and Clowes [OGOR73] popularized
a mcthod introduced by l-iough for finding straight lines in images. Ballard [BALL79] has extended the

mcthod considerably, and we follow his development here. Suppose that one is interested in discovering
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instances of circles in all image. Ballard proposes to find the circles from the feature points that form their |

contours. Let there be a feature point at point (z, y), and suppose that the gradient of the intensity change is in
direction 8. A circle is uniquely specificd by three parameters: its center (a, b) and its radius r. To pass through

the feature point (z, y), such acircle has to satisfy the constraint

@+W+wéwéﬂ

The gradlent slope nnposes the addmonal constraint r = (y — b)secd. It follows that each feature

point constrains the circles passing through it with the given slope to a one parameter family. As before,

adjacent feature points llormally cdmc from the same circle. There are two simple techniques for cnmbining
the additional cbnstraint. l-“irst, one might intersect the one parameter families in the spirit of line labelling
(see sectio'n'2) ‘The }no'ise inherent in thé measurement of the éenter and radius suggésts that something akin
to a rclaxatlon techmque be used to find optimal circles. Several authors have suggested such an approach

[ZUCKT7, DAVISI] Line labelling csscntlally combmcs ewdence by an AND operation. Alternatlvely an

: OR opcranon can be uscd corresponding to a summanon or hlstogram To accommodate noise, the range of ‘

pqssnblc valucs for the centel"and radius are q.uannzed for each parameter to produce an accumulator ar ray .
- Each feature point contributes one vote to the (a;, bj, ) buckets in its one parameter family. Local maxima ln"

the accumulator array are assumed to correspond to instances of circles.

Ballard hae cxtcndcd the Hough tlansform technique of combmmg constmmte on defining palametcr

values to non-analyuc funcgl()ns and has shown how to esumat,e,thcxcﬂ"ccts}of noise [BALL81].

313 lntcrpr¢ting feature point sc'gménts as scene cvents

~ In the discussion of the .mi_crowdflds in section 2, we noted the key contribution of Clowes and Huffman

“who stressed the necd to make cxplicit the rclationship bctwccn imagc fragments and scene events. _'l‘hc line

labcllmg s(,hcmcs ol Iluﬂm.m Clowes, Kanade, Suglh.nm, and Walt/ and the smlacc labcllmg schcmcs of

Mackworth, llullm:m .md l)mpu all dcvclupcd this fundamental idea. Gcncrall/ml, from lhe blmls \«ml(l
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Figure 28. image of a leaf and lhe feature points found in it using the Marr-Hlldreth theory of
edge detection, (Reproduced from [HILDS0, ﬁgure ki|

"Turner and Barrow and Tenenbaum developed labelling schemes that madc explicit the poSsibl'}: interpreta-

tions of edges and surfaces in their microworlds.
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N d
“Figure 29, image of a piece of herring-bone cloth and typical stripes extracted from it on the
«basis of slope of gradient at feature points. (Reproduced from [MARR76a, figure 19])
Onc would like to extend line interpretation to feature point sdgmcn_ts. Flongated scgments cor'rcspond.lo

boundaries that mark important scene events: that is why feature points were isolated in the first place. ‘The

e
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Figure 30. a. An image of a piece of tweced and the feature points found in it using the Marr-
Hildreth theory of edge detection. The figure illustrates grouping on the busis of orientation of
the gradient of feature points. b. image of bricks and feature points grouped on the basis of
contrast. Reproduced from [HILD8O, figure 25]

P first attempt to extend blocks world labelling schemes to real images scems to have been Bajesy and Tavakoli's




model based interpretation of aerial photogré’phs [BA-J‘C76a].

' Marr noted a .corrclation betwéén different types of intensity change and the scene events that often gave
rise to them. Entrics in the primal sketch were marked with their interpretation in the scene, such as "edgé"’,
“shading edge", and “"extended cdge" [MARRT6, page 490]. With the development of zero crdssingé and
the de- emphasis of bar and edge masks, it 1s unfortunately no longer obvious how to compute the assertions
that Marr had prekusly advocated for mclusmn in the pnmal sketch [HILDS0, page 75). Fhe whole issue of
constructing the primal sketch from zcro-crossmgs is far from being resolved.

_Bmfurd [BINI‘SI] and Lowe and Binford [LOWES1] have recently made an initial péss at the pfoblein
of interpreting feature point scgments. Corﬁparcd with the blocks world labelling schemes, the labellings
that Lowe and Bmford propose ate very general. A segment is interpreted as a space curve, and constraints
formulated on coincidence and the situations in which a curve corresponds to a bounding contour or true

edge.

s

g
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3.2. Determining surface shape from intensity valucs

Horn and his colleagues at MIT have studicd the perception of shape from grey level shading. 'The in‘put
to the "shape from shading” process is the imagc and the output is some appropriate representation of éurfacc
shape. The exact form of the latter representation is not yet fixed, although [HORNS2] offers some thoughts.
Since we can perceive surface shape locaﬂy‘, in scenes with little or no semantic con(ent, a reasonable first
approximétion is to represent the shape of a surface by its loéal surface normal. "This requires two parameters,

say p and ¢. The relationship between shape and the intensity I ata point (z, y) m an image takes.the form
I(z,y) = R(p,q),

which Horn [HORN77] calls the image irradiance equation, Mathcmatically, the image iljra'di‘zincc’ equation is a
noﬁli;ﬁaf first order partial dif’fcrenﬁal equation. Horn [HORN77] notes that the fi ﬁncti{m R encodes Lhc posi-
tion of the viewer, the distribution of\__lright sources (assumed to be fixed), and the reflectance characteristics
of the surface material. Horn and Sjoberg [HOR‘N79] derive tﬁe relationship between the fhnction I and the
bidirectional reflectivity functions used by phbtumctrists, and they show how to calculate it in pattieulaf cascs.
Onc important special case is I.ambertian reﬂcctam;, where the intensity varics as the vector dot ﬁl'odlnct of
the local surface normal and the direction of the light source, : |
One useful parameterization of the local surface normal uses the partial derivatives P = % and g = 5‘,’5
where the viewed surface is z = f(z, ¥). This gives rise to the reprcséntation-inuodlxccd in Scction 2 called
gradient space. Two comments are in order; First, since slant and tilt (as defined by figure 7) have natural
pereeptual meanings, one might argue that'the polar form of grédicnt spacc is prcfcrréd by the human visuécl ’
system. Stcv}ens [STEV80] develops this argument, and some further support for the p‘ositbioAn,is pr(widcd by
[WITKS1]. . |
| Second, there is a basic problem with gradient space, namely its inability to répréscm occluding bound-
aries at which the sutface trns away from the \*iéwcr. At cecluding boundarics the slant angle is 3, so

that its tangent (s in figure 7) is infinite (note that this objection does not apply to using the angles o and
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7 as [STEV80] notes. Ikeuchi and Horn [l'KEUVSI] introduce a different paramctcrizati,dn (f,9) of surface

oricntation that they call siereogr_aphic space. Formally, fandg arc relatcd top and g by

_ V1t + ¢ — l)

p? 4 ¢2

and .

24(\/1 +p2+q"-,- 1)
P+

Ikeuchi and Horn introduce the Gaussian sphere, and show that gradient space corresponds to projecting the

Gaussian sphere onto the plzine from its center, whereas stereographic space is the result of projecting from the

north pole (when the viewing dircction is from the south pole).
Although it cannot represent occluding boundaries, the mathematical development associated with
gradient space is easier, and so it is used in most of this scction. For a fixed distribution of light sources, and

fixed reflectance characteristics, the image irradiancc equation associates a brightness value with cach surface

Cor mntauon [hus we can assxgn a bnghtness value to cach point of gradient space. The rcpncsentatxon is thcn _

called the ¢ //eclance map[HORN77] Iti 1s convcmcnt to scale brightness values to the range [0, 1], and to make
iso-brightncss contours explicit. Figure 31 shows the iso-brightness contours for a Lambertian reflector in the
case of a Qingle light sdurcc near the viewer. 'Figufc 32 shuws thc rewlt of moving the light SOUIce away from

the viewer, whtlc ﬁgurc 33 shows the rcﬂcctancc map for a gl(w; sulface which approxlmates whxtc pamt

Havmg sct up thc rcprcaematwn of the output of shape from hadmg, we now consider some of the
- algorithms lhat have becn p.roposed for actually determining shape from an 1magc. Rccall Lhdt thc mmge |
irradiance cquation is a (usually nonlmcar) first order p’il‘ﬂdl differential cquauon As bll(,h lt can be ap-
proached using one of the standard tcchmqum for solving paitial diﬂ‘crcntl.\l cquauom llmn [HORN7)]:

applied the (Imrattcrlstlc su ip method of solving pamal differential equations to reformulate the image ir-

radiance ¢q uat ion as a set of five ordinary differential cquul:ons. The solution surfacc is

feie=e,

L~
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Figure 31, lso-brightness contours for a Lambertian reflector when the light source is near the
observer. The brightness at a point is determined by the cosine of the angle between the local
surface normal and the view vedtor. (Reproduced from [HORNT?, figure §)
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~ Figore 32 Iso-brightness contours for a Lambertian reflector when the light source is removed

from the observer, The brightness at o puoint is detetmined by the colive of e angle between
the locd suilace nonnal md the veaor lmm the surtace point 1o the lizn ‘ouxw(l\qnnduwd
from [HORNT7, hl,m o) '
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Figure 33. Iso-brightness contours for a reflector that approximutes white gloss paint. Notice the
peak relative o the Lambertian wellector shown in figure 13, corresponding to the mirror like
component ol reflection of gloss paint. (Reproduced fiom [HORNTY, figurs 7}




and the image irradiance equation is

8

le)—Rp)=0. )

The surface hqnnal has direction ratios b(p,. q,—1). The characteri§tic strip method computes the solution
v surf"acc by finding a famil‘y of space curves (strips) whose local tangents all lie in the tangent plane of the
solution surface. Such a curve can be specificd bly aone pa_ramétcr fami!y of points (a&(s), y(s), 2(s)), where s
corresponds to the distance traversed along the curve.'}DifYcrentiming_ cquation (D with respect to s, we find:

dz dy dz __
pE;+qu *daﬂ‘o'

It follows that (42, %, 2) fies in the tangent plane of the solution surface. Since pR,, -+ gRy — (PR, +- qR,)
is identically zero, (Rp, Ry, pRp, -} qRRy) also lics in the tangent plane. Equating these two vectors gives the

following three cquations:

as
dy
d,B ""Rqr
dz

- =PRy+ aRq,

Finally, differentiating équution (2) with respect to z gives:

I = Rppx -+ R,q’lx- v

Since py, == f,y?—'-" e WC find

,1' == R)»p.r + ‘R"lp-"’ |

and so
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d
I, = E—E.
Similarly,
dg
Iy = a—s'-

The characteristic strip formulation was used by Horn [HORN75] as the basis of an itcrativé'complltation
as follows. Supposé that we know that image point (zn, y.) corrcspdnds th a surfacé point at which the surface
gradient is (pp, ). -Refer to figure 34, which shows iso-brightness contours passing through (z,, y») in the
image and (pp, ¢,,) in the réﬂcctance map. Consider a step ds along the characteristic strip, from (2, Yn) to
(Tnt-1) Yn-p1) and, correspondingly, from (pn, gn) to (Pnt-1, Gnt-1). The five ordinary differential equat?ons
given above show that thé step in the image is in the dircction (Rp, R,), that is to say, along the normarl" to
thé iso-brightness contour in the reficctance map. Similarly, the step in the reflectance map is in the direction
normal to the iso-brighm.css contour computed in the image. In this way, knowing the reflectance map, one
can proceed to compute a sequence of points and local gradients along the characteristic strip starting from a
‘po‘int in the image at which the surface gradient is known. Figure 35 illustrates the results of applying Horn's
algorithm,

One problem with this method concerns the choice of the singulﬁr image point (zy, w) required to start
the iterative process at which the surface gradient (py, @) is determined uniqucly by the intensity data. A
further problem is that Horn's algoriﬂnﬁ depends on the assumbtion that the underlying surface is locally
~ convex at the singular point, P‘in}aliy, the class of image irradiance equations for Which Horn's algorithm
works was unknown. (The latter question has recently been answcrcd_ by [BRUSS81].) Conscquently research
was directed to discover the criteria under which the shape of d surface is uniquely determined by an image,
One suggestion was that bounding or oc,cluding contours |5|'(Svidcd such conditions, Along such contours, the

surface normal can be computed exactly from the image. However, occluding contours pose a problem for




|
I
i

62

i

Figure 34. The hasis of Horn's iterative computation of shape from shading by the characteristic
strip method. The surtuce gradient at the image point (0, yn) i knows 1o be (p,,q,). lso-
brightness contours are showi in the image and in the retlectanee nup. A hore movement in the
image along the characteristic strip s in the ditcction of the solid tne,“hich is normal o the
iso-brightness contour in the refiectance map. The converse relation also” holds, and is depicted
by the dotied line. ‘

.
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~ Figure 35. A sample result of Horn's characteristic strip algorithm. The figure shows the picture of
B o - a nose with superimposed characteristic strips (top figure) and contouts (hottom figure). Reproduced
" from [HORNT>, digure 1), -




the gradient parameterization of local surface orientation, namely that at least one of the gradients p or ¢ is
infinite. This led Tkeuchi and Horn [1 KEUB81] to propose stereographic projection as defined above.

Ikeuchi and i{om [IKEU81] note some additional pmblems?wim the characteristic strip method. First,
sincg the iterative method outlined above proceeds unidirectioﬁaily along a characteristic strip, it cannot
exploit bouﬁdary conditions at both ends of the strip. Second, the build up of numerical errors along any in-
dividual strip can be subsmntial.'A novel feature of Horn’s {HORN7S] algorithm is the simultancous dcve;lop-
ment of several characteristics to control the build up of error in any one. Woodham [WOOD81] observes
that one can solve for surface shape if dnc makes a global assumption about the surface type, for .cxamplc that
it is convex, a ruled surface, or the surface of a géneralized cylinder(see Section 6). Other authors propose
smoothness constraints derived from the fact that the integral of depth around a closed loop in the 'ima‘gc is
zero [BROO79, STRA79]. Ikeuchi and Horn [IKEU81] discuss a more direct formulation of a smoothness

condition that they state in terms of the stereographic parameterization of surface orientation. This cnables

~ them to use the bounding contour of an object as a source of boundary values for an iterative computation -

which fills in the surface orientation in the interior. Formally, denote the nth iterative approximation to the
value of f; ; at image point (¢, §) by f1; with an analogous formula for g; ;. lcuing the local (four point)

average at the nth 1terat1()n be f Ikeuchi and Horn derive the following recurrence relatlon as the basis of

1,7°

an iterative algorithm [[KEUSI]:

fn+l —_ 7:"1 _+_ 7\[1;3 R (ft J;g:tj)] gﬁ

Here, R, is the partial derivative of the reflectivity function R in the case of stercographic projection,

“analogous to I, which was used above in the characteristic strip method. The resulting algorithm has been

tested on a varicty of images and works well, In particular, it appears to degrade gracefully as errors are
introduced to the placement of the light source, the surface orientation on the boundary, and the nature of
the reflectivity assumed for the surface. Strong empirical cv:dcncc is provided that the algorithm umwrgm.

although no pmnf is dcnmnslr.md In case the oecluding contour is partially incomplete, Hu.ll(.hl atd Hoimn's
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algorithm still appears to converge, though it is not known at how many points it is neccséary to specify the
stereographic parameterization of the surface normal. |
Bruss [BRUS81] has recently studicd some of the 1némégnatical propertics of the image irradiance equa-
tion. Fir_st, she has shown that discontinuous solution surfaces can arise from a continuous imagc irradiance
equation. It fo]lows that one cannot determine for a cominuous image irradiancc 'equation whether or not
there is an cdge. The curvature of a surface also cannot be determmcd in gcneral from |ts mmge As an
cxample the image madnance cquatmn 2?4 y? = p? + ¢? has two different solution surﬁccs one of which
= zy consists enurely of hypcrbohc pomts, while the other z = .J;(z + y2) consxsts entirely of elliptic
points. However, Bruss has proved that therc is only one solutlon that i is cunvex She has also shown that
bounding contours can be determmed from the- 1mage only when the image 1rrad1ance cquanon is singular.
This means that the reflectance function I? and its ﬁrst ordcr pamal dcmatlves are contmuous while the
mtcnsny funcuon Iis smgular inz and/or . For any gwcn smou]ax 1mage lrradnance cquauon the points on
the occluding contour can be found by inspection of the intensity function I(z, y) ‘
Bruss also studicd singular "eikohal" image irradiance cquations that are of the form p? + ¢ = I(z, y).

If the intensity fuhction 1(x.y) vanishes to second order at the singular point, that is to say has the form

I(z,y) = az® + fzy +v° + 0(1°| + y)),

then there is cxactly one positive locally convex solution surface in the ncighborhood of the singular point.
This result is applied to show that if there is a closed bounding contour, the solution suiface is unique (up to
translation along the z axis). If either the reflectance function is not p? -|- ¢% = I(z, y), the intensity function

docs not vanish precisely to sccond order, or there is not a smooth closed bounding contour, there is not a

~ unique solution syrface. The reflectance function p? -}~ g2 closely models a number of practical situations such

as imaging with scanning clectron microscopes.
Woodham and Horn, Woodham, and Silver have developed a rather different method for computing

shape from shading that may prove very important in practice, even if it bears very little resemblance to the
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processes ;of human vision [WOOD81, HORN78b]. Suppose that we fix the view (camera) position, and that |

we sct up two light sources at different known points. Suppose that the intensity levels at any image point
(z, y) in the first and second images are Ji(z, y) and I(z, y).'bThe first of these restricts the surfacc orientation

at (z, ) to the iso-brightness contour in the reflectance map corresponding to the brightness value computed

from Ij(z, y) (figure 36a). Simi]arly,vthe surface normal is constrained by the iso-brightness contour defined

by L(z,y) (ﬁgﬁre 36b), and hence to their intersection (figure 36c). A third light source provides complete
disambiguation. This process has been cailed photometric stereo, and can be implemented very efficiently as
follows. First, there is a calibration pliase in which an object whose surface shape is known, such as a sphere,
is il.lumin‘ated in turn by the set of light sources and imaged. This generates a set of n-tuples of intensity
valucs (n isvthc number of light sources), each of which i§ associated with a known local surface orientation
on the known calibration object. The surface orientation distribution of an unknown object can then be
computcd by using thc n-tuples of mtcnsxty values at cach corrcspondmg image point as a lookup key mto a
- table. To keep the storage requnemcnts of the algorithm within bounds the intensity values are quanu/cd
Onc current unplementatlon quantizes mten51ty to ten values in cach of three mcasummcnts Intcrmcdldte
~ intensity triples arc handled by in tcfp()latlon from thc ncarest entries in the table. The mcthod whnch has been
implemented by Silver, is fast and remarkably accurate [SILV80]. Figure 37 shows the reconstruction of an
cgg after a calibratioﬁ phase using a sphere. Figure 38 is the superposition of a cross scctibn of the known
surface onto one computed by photometric Stcreo. Photometric sterco has been extended to handle objects
-with spccula{rities by Ikeuchi [IKEEUS81], and has rccenﬂy been applied to the industrial prob]lem‘ of bin-bicking
[BIRKS1]. | |
- Optical ﬂow

| In Scction 3.1.1, we snryeyc'd the w"ork of Marr and his group based on the détcctioh of the impon‘tazm
intcnsi(y' changes in an image. In particular, we mentioned the recent work of Marr, Ullman, and Richter
on detecting the direction of motion of a zero crossing by taking the time differential of AG*I(z,y,t). We

conclude this section with a brief discussion of the work of Horn and Schunck JHORNSI¢] that aroposes
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Figure 36. An illustration of photometric sterco. Suppose () the the brightness measured at the
point (z,3) in the fist image is 0.6 and (b) in the second image the brightness at the same point -’
is 0.2, (¢) superposition of the fint two constraints shows that there are at most two  consistent
surface gradients.



Figure 37, The reconstruction of an egg shape by Silver's implementation of photometric stereo
after a calibration phase using a sphere. The reflectance of all surfaces was Lambertian. (Reproduced
from [SH.V80] .
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Figure 38, Compar
sterea Gohd lines) &
from [S1L.VE0]
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)

ison of the cross section of an cgg and a knob shape computed by photometric
nd the true cross sections extracted from photgraphs (dotied lines). (Reproduced
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a method for computing optical flow by differentiating the brightness distribution in the image with respect
to time. Optical flow is the distribution of velocities of apparent movement caused by smoothly changing
brightness patterns. It has been noted that optical flows encode rich information about a scene and observer
motion, axid it has been suggested that this information can be computed from the flow field. This position
is particularly associated with the followers of . J. Gibson, who first studied flow ficlds [GIBSSQ GIBS66,
CLOC80, KOEN75, KOENT7S, KOENT77, PRAZ80]. In particular, it has been suggested that optxcal flow
facxhtates object segmentatlon [NAKA74 CLOC80] computation of thc parameters of the obscrver s own
motion relative to the scene [PRAZ380, LONG80], and the determination of visible local surface normals
. [PRAZ80]. | |
The work on inle}preling optical flow has écncrally assumed that thé flow is given, that it is sbme’ho‘w
- computed automatically and sufficiently nmsc-free "Velocity sensitive neurons” have been postulated to com-
pute the opucal flow in ammate visual systcms [NAKA74]. Horn and Schunck 13 [ORNSlc] have studied the
genermlon of the optxcal flow from bnghtness patterns that vary smoothly wnth time. “They restrict attcntmn
o imaging a flat surfacc with uniform incident illumination, and smoothly varying reflectance. Thc image
brightness at point (:'c,'y) ét time ¢ docs notAchangc, alnd S0 | o

dl(z,y,t)

T == {,

ﬂ' Expanding, by the chain rule we find

Lu+Ly+ =0,

where (u,v) is the optical flow (4§, 3%). This shows that the componert of the flow field in the dircction of

ihe bri_gliinéss gradient (I, L)is
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It is not possible to determine the component of the flow ficld perpendicular to the intensity gradient,
“that is to say along the iso-brightness contours. In practice, quantization errors and noise imply that ﬁf is not

exactly zero. To account for this, an error term Ej, is introduced and defined by:

Ey = Lu+4 Lyv—1.

To compute the component of the flow field along iso-brightness contours _rcquifeé an cxtra constraint.
Horn and Schunck derive a mcasure of the departure from smoothness of the fow [HORN81c]. Smoothness
can be estimated by the square of the magnitude of the gradient of the optical flow velocity:

'2‘_‘9_1‘2 Ouvg , BV | Oy
B =GP+ Gl + Gl + G

The estimate of the departure from smoothness and the change in brightness combine in a measure of the

error:
2 272 2
E® = a°E; 4 Ej.

Using the calculus of variations, Horn and Schunck eventually derive the iterative computation:

utl =g — Ix[lf{f.n + ‘va" + I} '
(@ + 124+ 12)

it o gn . Bll@” + " 4 1)
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Initially, the components (u, v) of optical flow are assumed to be zero everywhere. The algorithm works

well on synthetic patterns as figure 39 shows,

33 chmbntation

A great deal of cffort continues to be expended on segmentation, a process that is essentially the dual of

WURAETRY RN
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Figure 39, Optical flow p:\uvems computed by the Horu-Schunck algorithm. (Reproduced from
D IHORNSIe, figuse 10)



73

edge ﬁhding. Recall that edge finding has three stages. First, significant intensity changes arc detected and
localized. The feature points are then grouped to form linear segments. Finally, scgmcnts are interpreted

as scenc events, such as depth, reflectance, and shadow boundaries, as well as discontinuitics in surface orien-

tation (true cdges). Analogously, the process of segmentation begins by isolating those regions Qf an image.

in which there are no significant changes of intensity, and adjacent regions are then grouped, or "merged”.

Finally, the regions are interpreted as scene events; typically visible surfaces, shadowed areas, or patches in’

which the reflectance is uniform. As in the case of edge finding, the difficult issuc is to frame a precise

definition of "significant” so that segmented regions correspond to the perceptual entitics that are their inter-

pretations.

Some authors [MARR78, page 64] have concluded that segmentation is an ill-defined operation, since

regions do not always correspond to portions of visible surfaces. Certainly, simple schemes for segmentation

produce many spurious regions, just as sﬁnplc approaches to edge finding ascribe sjgniﬁcaﬂcc to spurious
intcnsity changes. Several authors have pointed out that region finding is no more, and no less, difficult than
cdge finding [HARA79, BINF81]. If segmentation and edge finding differ at all, it is with respect to the

descriptions naturally associated with two-dimensional regions and onc dimensional segments.

Early work on scgmentation implicitly modelled an image as a collage of regions that are homogceneous
in intensity and scparatcd by step changes. A slight refinement was to accommodate noise heuristically by

merging across weakest contrast boundariés [BRIC70, BARR71}. -

Onc approach to improving segmentation schemes isto inqofporatc better models of edge finding. | Each
of the processes for discovering feature points outlined in section 3.1.1 can be adapted to segmentation.
Haralick [HARASO, page 62] QSscrvcs that two pixcls arc part of the same region if and only if there is no
significant difference between their associated sloped facets. If every intensity change uncovered by the Mén’-

Hildreth theory of edge finding is significant then closed contours of zcru-érossings correspond to regions.

An alternative approach to improving segmentation is to invoke domain specific semantic information

cither to encourage or inhibit the merging of regions [I'ENE77, SELE81]. Such schemes for segmentation are

R R TR SR T
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analogous to the semantically guided edge finders advocated by [BAJC75, BAICT6b, SHIR‘7'3].

Horn’s work on shape from shading discussed in the previous section implies that there can be significant

variations in intensity within a perceptual surface. In general, only a planar surface produces a region that is

uniform in intensity (ignoring noise). Scgmentation on the basis of intcngity values is a heuristic consequence
of the carly preoccupation -with scenes composed of planar surfaces (sec section 2). Accor@illg to the image
irradiance equation, intensity is uniform within the image of a planar region because the surface orientation is
constant. Ballard [BALL80] suggests that the concept of segmentation is more naturally associated with repre-
sentations based on surfaces: Marr's 24D sketch, Horn's needle map, and Barrow and Tencnbaum’s intrinsic

images. As before, segmentation is the dual of discovering signiﬁcant changes, say of surface orientation or

depth. Such processés await investigation. Ballard proposes that the Hough transform can be generalized for '

this purpose [B’ALL80]. ‘

Many surfaces have constant texture or color. Color may be perceptually uniform ‘across‘ a surface
even if there is significant vari_ation in intensity. Horn’s work [HORN74], based on Land’s retinex theory,
embodied the idea of segmentation on the basis of "lightness" for a two-dimensional world of "Moxldrians;'.
Exicnding Horn’s work to three dimensions would not be trivial. l" omita, Yachida, and Tsuji [TOM173] also
experikﬁcmed with segmentation on the basis of color. Ohlander, Price, and Reddy [OHLA78] experimented
with multi-spectral _desc';'iptions including hue, saturation, and brightness. Brady and Wielinga [BRAD78] note
that the Ohlander program wovrks'.well on "patchwork quilt” images that are composed of large regions that
are uniform in one of its nine descriptors. Tenenbaum and Barrow [TENE??] observe mgt because it is based

on this heuristic, the program is casily fooled, espcecially by regions of repeated texture.

3.4 Texture

(28 . . . '\ | - - ’ ’ . N Ce 3
Texture is a compelling visual cue to the propertics of a surface. We can recognize a region of an image
as grass or the foliage of a bush or tree, and ofien we can do so in a black-white image without the aid

of color We eanily distinguish velvet, woollen weaves, herring bone, and raflia. Pebbled paths stand out
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ffom the surrounding soil. It scems that most terrain classification from satcllite images‘ is based on texture

discrimination and recognition.

ﬁéialick [HARA79] points out tﬁat althouéh hundreds of articles have been written on the subject of
computer rccognition and‘description of texture (mostly from tﬁc stand;ﬁoint of pattern recognition), fow
precise deﬁnitions of texture have been given. As a result, texture discrimination techniques are largely ad
hoc. Most accounts of texture are based on the idea that its distinguishing characteristic is regularity of the
"primitive” elements, called fexels, of which the texture is composcd, and of the Spatiai relationships between
texels. If there is wide variation in the size of individual blades of grass, or if the blades are sparsely and non-
uniformly distribﬁted in the image, the grassy texturc appears "ragged”. Ih gencral, the strength of a texture is
determined by the rcgulérity of its texels and regularity in the spatial relationships between the texeis._ Zucker
proposes that ideal textures dr_e com_p]etely regular and can be modclled by regular two-dimensional graphs

[ZUCK76]. He suggests that naturally occurring textures are distortions of ideal textures.

We prefer a rather different view of texture, based on an idca of what purpose texture perception
serves. A grassy lawn, the foliage of a tree, and a pcbbled path are all perceived as surfaces. Mi’croSc’opic
variations in a surface determine its rcﬂeétance [HORN79], while large scale variations in a surface detcrmine
its topography. The processes of determining shape from stereo, contour, texture, and motion are discussed
in scctioﬁ 4. Mostly they operate on isolated edges and regions found by oné of the processes discussed in
sections 3.1 and 3.3. We suggest that texture refers to surface variations intermediate between microscopic
reflectance changes and topographical changes made explicit by edge finding and segmentation. It follows that
descriptions of texture require the isolation of macroscopic surface facets and the determination of the spatial
rc]ationships between such facets. In order (o be perceived as a single surface, surface facets (tcxéis) that are |
[ﬁllysically close should have similar descriptions. Regularity is the physical basis for grouping facets as a single
surface. Surface variations arc labelled fcﬂcctance, tcxturc; or topographic depending upon the resolution at

which they are viewed. (Sce [MALE77] for similar remarks).

The twin themes of statistics and structure run through most of the literature on texture. We commented
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above that rcgularity is central to texture. Inevitably, regularity has been m_odellcd statistically; for example,
 the distribution of slopes of individual blades of grass has a strong peak and small variance. Statistics has
been applicd more or less uncrirically to texture. Maleson, Brown and Feldman [MALE77] quip that "the
problem with statistical analysis is that if an inappropriate set of statistical mcasures is used, the final results
are meaningless. For this reason, it is important to base statistics on a reasonable model of the phenomena to
bé measured.” One approach to a 'reasonable model’ ié to apply statistical analysis only to texekls that carry

significant information about surface structure, in particular, those isolated by edge finding and scgmentation.

Haralick [HARAT9] has presented a good survey of purcly statistical approaches to texture. Simple ideas

such as comf:uting autocorrelation functions perform relatively poorly [WESK76]. Bajcsy [BAJCT3, BAICT6]

model regularity by p'eriodi.;:ity as determined from features of the polar form P(r, ¢) of the Fourier transform
of subimages. Combining all r to show ’the dependence on ¢, peaks in P,(¢) give cvidence of direét’i’orihl
texturcs such as grass If there. are no peaks i in P,(8), Py(r) is mvcstigatcd for peaks that give evrdence of
blob-like textures. ’lcxtures nced to be strongly periodlc to be found by the mcthod A bcttcr model was
introduced by Julesz [JULE62] and refined by several authors, mcludmg Rosenfeld and Troy [ROSET0] and
Harralick [HARATI]. The co-occurrence P(%, j, @) specifies the relative frequencics with which two grey levels
i and § occur separated by a distance d. Haralick and ﬁoslcy [HARA73] computed a number of ‘fcatur‘es'jf'rom
co-océurrénr:e ‘matrices and used fheni to classify terrain from satellite im‘agcs, achieving ﬁsucc_css: rates of over
80%. Julesz [J ULET™] conjcctured that textures can be diqcriminatcd‘ by non-attentive vision if and only if
they differ in their sccond order statistics (csscntmlly their co-occurrence matrices). As orrgmally formuldtcd

co-occurrence matrices spccnty thc rclanve ﬂcqucnctes of mdmdual grcy levels. Horn’s work on ShdpL from
shading shows how much mf‘ommtmn is confounded in a single grey lcvcl Only when surfaces are cqscntlally
- planar, for example q.ztdlnc rm.ngcny. is grey level a reliable basis for aggregatmn into regions cor 1cspundmg
to surfaccs. Il.nmluk [HARAT9, page 787] notes that while co- ocaurrcncc bascd on grcy !cvcls capturcs sparml‘
‘relationships it dncs not captuu shfnpc aspu:ts and hence does not work well for tuxturcs composcd of large-

area texels. In short, individual pixels are poor deseri iptors of surface facets.
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Co-occurrence is not restricted to grey levels, however. Maleson, Brown, éuid Feldman [MALE77] ‘
propose segm‘ented regions as texels. They suggest region descriptors that are insensitive to scalé; such és
the orientation of the major axis and eccentrigity of the best fitting ellipse to a regidn. Dctaiis of the perfor-
mance of a system based on this technique on a range of textures has yet to be published. Marr [MARR76]
suggests that texture discrimination based on c&occtnrrence matrices couid be accounted for by discrimination
on ordinary statistics applied to the prjmél sketch. The scheme was not implemented, nor_Wcre deécriptions
perosed for texture. To this end, the main advance has been due to Vilnrotter, Nevatia, and Price [VILNS1].
Their work is based on the Nevatia and Babu edge finder (see sectiqn 3.1). Textures are detected frofn cdge
rcpet_ition arrays that specify the co-occurrence of edges in a particular dircction ata partiéular spa_éing. Once
detected, texels are described in terms of their average size and intensity. Spatial organization is found by g
relating texels in different directions. Figures 40 and 41 show the results computed by the system for raffia and

brick textures,



Figure 40. a. image of raffla. b. Sample of output from analysis of edge repetition arrays. c.
abstract representation of the texels found in the raffia image. d. Reconstruction of the raffia
image using the abstract texels (Reproduced from [VILNS1, figures 1-4]

.
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Figure 41. a. Two images of brickwork. b. Hlustration of abstract primitives found in the images
of a. c. IHustration of the spatial organization found in the textures in a. (Reproduced from
[Viln81 figures 6,8,9] . .
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4, Determining shape from the primal sketch

4.1. Shape from sterco

The slight disparities in the images reccived by the left and right eyes enable humans to deterrﬁine the

'shape and relative depth of visible surfaces. The importance of automating stereo, and the difficulty of the

problem, is well stated in a recent overview of Defense Mapping Agency applications [MAHO81).
There have becn several attempts to develop a computational thcory of binocular stereopsis since
Julesz's demonstrations in the carly 1960’s that it is possible to fuse images stercoscopically without extensive

monocular processing. Julesz [JULE71] presented substantial experimental evidence regarding binocular fu-

sion of random dot _stereoérams, a perceptual device that he originated(sce figure 42). The essence of stereo '

vision is the matching of descriptions computed from the images presented to the left and right cyes. The

Julesz demonstrations argue that the descriptions to be matched are available at an early stage of visual

processing. 'wa cau'didatc descriptions considcrcd for matching to date até the image (area correlation), and a |
representation of intensity changes (edge based stereo).

Julesz conjectured that sterco is a local parallel process, and a number of algorithms have been designed
with this C()njccfurc in mind. The first of these is due to Dev [DEVTS], closely f()]l()wcd by Marr and Poggio
[MARR76b, MARR76c]. Marr and Poggio call their algorithm "cooperative” by analogy with boundary value
computations in physics. “The algorithm could equally well be called Ia relaxation process [DAVIS81]. Marr
[MARR78] notes a 'numbbcr-ofiq:i-ﬁicultics with such algorithms as a thcbry of human sterco vision, namely
human tolerance for the dcfdcm.nssing of ont image, and the apparent ubiquity of vergence movements of the

cyes as two images are fused. Perhaps more important are the so-calfed hysteresis effects in which images

arc matched only after a delay, or remain fused when they are putfed apart by an amount greater than is

apparcntly possible for matching. Marr and Poggio [MARR79b] argue that while hysteresis effects suggest

coaperativity, the effect can also be achieved by postulating a dynamic memory in which intermediate results -

of stereo pracessing can be stored.
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Figure 42. A random dot stereogram devized by [JULE71]. First, an image is produced for the
left eye, composed of random dots. The view from the right image is determined by translating
each dot in the random dot image leflwards by an amount that depends on the relative distance
of the corresponding point in a conceptual scene. Some dots are occluded as a result. Other image
points that could not be seen by the left eye are now visible in the nghl eye. Such points are
randomly ﬁlled by new dots.

Most work on area correlation stereo [HANN74, QUAMTI, HEND78] operates on a succession of small
windows (typically 10 by 10) from one image. For each window in the left image, a search is conducted
for that window in the right image that optifnizcs a suitable corrclation relation between the grey levels in
the two windows. Area correlation has proven to be particularly effective in textured or smooth shaded
arcas. It has supported terrain following automatic guidance systems, zmd- some automatic mapping systems
where the goal is to generate a digital terrain model associating a hcight with caéh map point imaged.
Arca correlation implicitly assumes that the left and right images differ only in viewpoint, that is they only
differ photometrically. As a result, arca correlation performs poorly near surface discontinuitics where this

photometric assumption is false. Conversely, edge based sterco assumes that the invariance between the left
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Figure 43 The zero u‘ossmgs located in the four channels of the Marr-Hildreth theory for the
random dot image shown in a. (Reproduced from Grimson’s forthcoming book [GRIMSI1)).

and right imagesb is gcomctric. Baker and Binford [BAKES1] obscrve that in general the geometric assumption
: implicit in edge based sterco is more rc.'ilistic than the photometric assumption impljcit in arca corrclation. A
further shortcoming of currcnt arca cdrrclaticn techniques is that their accuracy is limited to a fraction of the
window sizc (typically S picturc elements). Pdgcs can nonmlly be localized with subplxcl accuracy [MACVS81,

MARR791]

[mplicit in the above remarks about thc suiwbility nf arca corrclation for stereo matching of textured
arcas is a model of tcxtuw based on grey levels. Wc found c.nhcr(%m(m 3.4) that texture describes suxta
macrostructure with tcxcls concspunduu, to surfdcc facets. 'The extension nl' the approaches to edge buscd

“sterco to denscly textured arcas zlwuils further work on cdge and region based accounts of texture,

Edge based stereo is strong where arca correlation is weak, and conversely. An additional advantage of

edge based stereo is its potentially greater efficiency; as there arce considerably fewer edges than grey levels,
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St.érco rests upon, aynd prqvidcs a stiff test for, any account of cdge ﬁndfng. In scctioh 311 we discussed a
number 0}' '_apypvr:oachcs to edge finding. Marr and Hildreth's appr()acih to dc;egting f'catu'r'c points h:is been ab'
plicd to stereo by Marr and Poggio [MARR79b). The left and right images are convolvvcdv with AG operators
as described in 3.1.1. Matching takes place between the paired sets of zero crossings. Figure 21 Ashowcd the
ihiage of a coffee jar sprayed with spots of paint to yicld a Julesz~ﬁkc random dot stercogram from a real scenc;
ahd_ figure 24 shov;/cd the zero crossings prdddced by cach of the fo_ﬁr ch_anncl_s proposed by the M’arr-Hi'IQreth
theory. Figure 43 shows the zero crossings produced in cach of thie four channels for the random dot image
shown iAn‘ﬁgurc 43a. In both figures 24 and 43, it is cvident that ii is considcrably ‘more diiﬁﬁlnit to cstablish
én optimal match between the output of the fine channel from the left and right images than between the out-
puts of the coarse channel.. Exploiting this observation, matching proceeds from the coarsest channél, which
rﬁakcs explicit gross detail and establishes a rough correspondence, down to the finest resolution channel.
This cqax'se-to-ﬁxlc strategy, in which a rough rplan is used to narrow the search space prior to more detailed
proccssing. is a basic idea in artificial iﬁtelligencc. The application of a vcoarsc;-to-ﬁnc. strategy like that in the
Marr-Poggio theory of stereo seems to have been used by Moravec [MORAB0] in a system conétructcd at
Stanford. Note that the coarsc-to-fine stratcgy may have to be xﬁodiﬁcd for closcly spaced cdges that occur

with textured surfaces.

Once the match between the zero crossings in the two images has been established for the four channels,
onc can compute the angular disparities (or even distances) to matched zero crossings, [GRIM81] gives details,
Figures 44 and 45 show the disparity values computed for the coffce jar and the random dot stercogram shown
in figure 42. A disparity value is recorded only where zero crossings from the two eyes are matched, and
so the disparity map is often discrete. Since we mostly perceive the world as composed of smooth surfaces,
it is necessary to consider ppssiblc interpolation pracesses for smoothly completing the surface orientation
map from the discrete sct of disparity values. This is a gencral prbhlcm and is discussed in the next section,
Grimson’s reconstruction process computes the shape shown in figure 46. Grimson's implementation of the

Marr Pogpio stereo theory demonstrates all of Julesz's experimental findings. 1t has also been applied to a
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Figure 44, Thc disparity map computed from the output of the stereo maicher for the coffee jar.
(Reproduced from Grimson’s forthcoming book [GRIMS1))

small number of stereo pairs of natural images.

In sectioﬁ 3.1 we characterized cdge finding as having 'thrc’cbs'ucce'ssivc stages: determining fcature points,
grouping them on the basis of ’t,hci,r attributes, and interpreting them as scene events, The Marr-Poggio theory
matches feature point descriptions on the bziéis of the position and sign of the 7cro crossing, before the feature
points.arc grouped into lincar scvgm’cnts. Recent psychophysical findings of Mayhew and Fri,sby [MAYI1 31]
seem o indicate that it is necessary to m_utqh richer descriptions than zcrb érqss,ings. Baker and lBianrd
[BAKESI] and Arnold [ARNO78] proposc that ambiguitics can be resolved mor§ cfficiently and successfully
on the basié of the richer dcs,cripﬁons associated with points on lincar segments. Baker and B;in_'fm'd IBA KEBI]
match points at Q';n:‘i(nus scales using the p@).%iti(;:h. contrast, and slope of the segment in the image, and the
imansilicka hoth sides of the inl;‘:us‘ily change. Thesc'separate f)icccﬁ of evidence :\i;c com?biucd by a lincar

weighting function. 'The optimal match is found along horizontal scan linés using a tast lincar programming
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Figure 45. The disparity map computed from the output of the sterco matcher for the randdm
dot stereogram shown in figure 42. (Reproduced from Grimson’s forthcoming book[GRIMS1])

technique. Once edges arc matched, grey lcvc;ls arc corrclated by é similar process. Figure 47 shows the results
computed by Baker and Binford’s program on an image with both texture and edges. Arnold [ARNO78] also
filters putative matches according to 'thc position, slope, and contrast of edge scgments. The cdge segments
arc found using Hueckel's surface fitting technique. Arnold claims that this is the program’s main deficicncy.
It is interesting to speculate how the Baker and Binford or Arnold algorithm might perform if they had the
Marr-Hildreth zero crossing data to work on. Alternatively, it is interesting to ask how the richer descriptions
proposed by Baker and Binford, Arnold, and Mayhew and F;isby could be incorporated into the Marr-Poggio

theory.

All of the programs discussed in this section, except Arnold's, assume that the left and right images have
been rectified prior to sterco matching. That is, they assume that the images have been rotated, translated,

and scaled so that corresponding feature points can be found on the samc horizontal scan line. Arnold’s
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Figure 46. The reconstructed coffee jar interpolated by Grimson's program fiom the disparity
map shown i fignre -H. (Reproduced from: Grimson's fortheoming book [RINST)
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Figure 47. Fxample results of Béker and Binford's stereo program. a. Stereo pair of images of
natural terrain. b. The edges found in the images by a simple differencing operation. c. Illustration
of disparities computed for the images. (Reproduced from [BAKES], figures 10,11, and 17.])

program relies ixpon a rectification procedure developed by Moravee and Gennery [MORA79, GENN79]. In
this procedure, "interesting" points such as corners are found in both images, and an optimal match is found.
The tentative match is refined using a high resolution arca correlator. A camera model solver computes the
dircction of the stereo axis, the relative rotation, scale qhange, and lateral translation between the lcft and right
views, The ground plane is also determined. Lucas and Kanade have recently cxplbrcd the application of a
Newton-Raphson like technique to solve for ;ﬁc camera pax‘axmctgrs[I‘UCA8 1]. Rectification rcn‘mins a difficult

open problem,

4.2 Shape from contour

Witkin [WITK81] has make a start on what seems to be a promising approach to computing shape from

a primal sketch. His work concerns the perccived slant and tilt of a line drawing lying in a plane, such as the
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map outline shown in figure 48. Witkin’s approach relies on making the image forming process explicit, and
using it to derive a probability density function. Assume that the axes in the image and in the planar scene are
aligned, and denote the tangent direction measured in the image by a” and the tangent at the corresponding

pointin the scene by B. fmage- foreshortening gives the relation

‘tanpg

tan(a’ — 1) =
tan(a —7) osa’

whcf_é 7 is the tilt and o is the slant of the. planar scene. A collection of measurements of ' takcn throughout
the image define a distribution of tangent directions, If we hypothesize particular vahncs foro aid 7, the above
relation establishes a distribution fo; B. Given an expected distribution for (3, 0, 7), the likelihood of any
observed distribution of a” can be evaluated. Witkin shows that the probability density function of (8, o, 7) is

siy2 It turns out that the relative likelihood of (o, 7) given a set A* of measurements of a; is

—2:

T “sinocos 0

1<i<n cos?(a — 7) -} smz(a - 'r)cos2

The value of (0,7) for~which this _estimator assumes a maximum is the maximum likelihood estimate for
“surface orientation. Figure’49 -shpr the rcs_ults of this procedure applied tb a varicty of shapes, and compares
it to the til; as cstimated by hur'nanbs. Witkin found that tilt équk_i bcicvstimatcv,d considerably more ;QC.,CH;T.QQQIY
than slant, a rcsuit hc and Stevens [S'I‘EVSO] established indcpcndc‘n‘tly. In further work, Witkin assumes that

surfaces are Jocally planar and applies a similar analysis to compute local surface orientation [WITK81].

4.3 Shape from texture

Of the modules which scem to bridge the gap between the primal sketch and the surface orientation map,

none has received quite as much attention From psychologists as the computation of surface dgrientation and

depth lmm texture k,l«ldltms hvcr since Glbsun [GIBSSO] drcw aucnlmn to Lhcn importance for cnm puting

depth (figure S0). Hn) havc bcm any an cxmccm uflus tn]lowcrs Stevens [STEVE0] notes the smmhm iions

e
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o~ Figuwre 48. A geographic contour shown at various oricntations, with the density function obtained
b at that oricntation. The density function is plotted. by iso-density contours, with (o, 1) represented

in polar form: o is piven by distance o the origin, 7 by the angle. The sharp symmetric peaks
clenly visible at higher slants are the magimum likelihood estimates for (v, 7). Reproduced from
[WIHTKEL, figure 4]




Figure 49, Rcé:ulls of nning Witkin's estimation strategy. A number of shapes are shown at
el The center column plots human estimation of the titt of the shapes. and the right column
shows the tle vectors predicted by the estimation strtegy. (Reproduced from [WIHTKSTLtigure 5]
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Figure S0. A texture gradient in a natural scene. (Reproduced from [GIBS50] |

assumed by most publishéd analyses of texture gradients in the psychological litcrature. Typically, a horizontal
ground plane is assumed that stretches into the far‘distance. Stevens proposcs a two stcp'.computation: @
isolate "characteristic directions" in which there is no depth change, and (2) compute depth from the slant and
tilt representation of surface orientation. The idea has not been implemented. It assumes that primitive texels
can be computed for natural images with sufficiently precise descriptions that the characteristic directions
can be computed accurately. Bajcsy and Licberman [BAJC76a] base the computation of texture gradients on
Bajesy’s applicaton of the Fourier power spectrum to describing texture (see scction 3.4) [BAJCT3]. All of the
other methods for computing texture disc‘usscd in section 3.4 could be adapted to the determination of texture

gradients,

Kender [KIENDS0] has considered the computation of shape from texture as an instance of a gencral

tethodology that vields "shape from™ algorithms from a varicty of image observables. ‘The general plan of
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Kender's ap‘proach,has three parts:

e Primitive texels are extracted from the image. Kender assumes that texels are the image of planar
surface facets, but he offers no guidance for computing them.

o Each texel is assigned a set of possiblc scene parameters. This is the core of the approach. He introduces
a set of normalized texture property maps (NTPM) that generalize; for example, Horn’s reflectance map
(section 3.2). |

e texels that are assumcd to arise frbm neighboring surface facets in three space compare the constraints
on thcir scts of possible parameters, casting ‘out,thosc that are inconsistent on some appropriate‘gr‘ounds of
smoothness. As Kender points out, this step is -similar to relaxation processing as advocated by Davis and
Rosenfeld [DAVI81]. ‘ '

Ballard’s parameter hctworké bear many similéritics to Kender’s scheme [BALI..SI]. Where Kender
prefers intersecting constraints, Ballard préfcrs adding them in accumulator arrays as pﬁrt of his advocaéy of
the generalized Hough transform, | | |

Kender's NTPMs have four associated choices,

e Since the goal of a "shape from" algorithm is a precise dcs’cri’ptioﬁ of surface shape, an appropriate
paramctgrimlion of surface oricntation nécds‘to be chosen. Popiilar choic“éé are gradicnt space (scction 2,
scction 3.2), the Gaussian sphere [HORNS2], and ‘st‘crcographic space [IKEUS81] (see scction 3.2). 1In the
examplc presented below, we choose gradient space. '

e 'I'he imaging geometry is a key 'comp'dhcnt of texturc, gradients. The éss:c‘ntial choice is between
perspective and pafallcl (orthographic) pl"diCCl"iOﬂ. Kéndcr shows that while the mzitﬁématics of pcl‘spcétivc

projection is more complex, the constraint it offers is considerably tighter. For mathematical simplicity, we

choose parallel projection.

o Assuming that texels have somehow been made available, several texture measures cin be computed
and related to possible scene fragments. Popular choices are texel Tength (for example the length of the inajor

axis of one of the barrels shown in figure 50), the stope in-the. image of some dircetion associated with the
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Figure 51. A texture with an unusual relationship betweeﬁ faééls and the vunder'l’)"in'g blanar
surface. (Reproduced from [KENDBSO, figure 34] ‘ ‘

texel (compare [MALET77), the angle in the image between two directions associated with the texel (compare
Kanade’s work on skew symmetry discussed in: section 2 [KENDS0]), or dot or edge density (compare

[ROSET0, ROSET1]. We consider length and slope in the cxample below.

o Finally, the way in which the facet that projects to the texel is connected to the underlying surface has

to be assumed. In ﬁgurc 51 the faccts can be interpreted as lying in the planc or protruding from it.

As an cxample of Kender's approach, consider the abstract texture shown in figure 52. We shall make
the following choices: gradient space representation of surface orientation, parallel projection, and length
and image slope of texels. We shall assume that the texels all lic in a planar surface and form two mutually

orthogonal sets. We shall show that the orientation of the surface is completely determined.

We first consider the N'TPM corresponding to the length of a texel. Figure 53 shows a texel of length L

and slope a in the image. Suppose that one end of the texel is at the image origin and that the corresponding
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Figure 52, An abstract texture. The horizontal and texels slanted at 45° are assumed to have the
same length in the image and in the scene. It is further assumed that the horizontal texels are
orthogonal to the slanted texels in the scene. (Reproduced from [KENDSO0, figure 3.9]

v ‘scene point is (0,0,d). Suppose that the deprojection of the other end of the texel is (L cosa, Lsin g, €).

Since the deprojection of the texel lics in the planc whose normal is (p, g, —1), it follows that e — d =

pL cosa -}- gL sina. The length of the deprojected texel is therefore

Lo = L[1 4+ (pcosa + gsin a)"']i.

" Applying this to the texture shown in figure 52 we have Ly = Ly, thatis

(1+p = (14 2L,

or,




95

Figure 53. Length and slope of a texel in the image.

=’ —2pg=0.

We now consider the NTPM corresponding to image slope a of the texcl shown‘iu figure 53. Consider
a scenc-based coordinate system dcfined by the normal to the planar facet, the line of steepest descent of
the facet, and a dircction chosen to make a right handed syétcm. The gradient line has dircctﬁm ratios
L = (p,q,p* + ¢%). The normal to the plane is 7 == (p,q, —1), and so the third direction of the scene-
based coordinate system is the cross product of these two, namely m = (g, —p, 0). Consider the deprojection
v = (cos @, sin @, d) of the texcl shown in figure 53. Kender [KENDS0, page 114] defines the s!()bc of p to be

B, where



If we assume that v lics in the plane, so that v - n == 0, we find
gcosa — psina
tanf = - .
g (pcosa +gsina)(1 4 p? + ¢?)
Applying this to the texture shown in figure 52, the slope of the horizontal texels f is given by
tan Gy =
p(l1+ p2 + q2)
- Similarly, the slope ﬂ} of the slanted texels is given by
) q—p
tan ﬂ == e —
R R R ()
If we assumc that the texcls all lie in the plane and that they form two orthogonal sets, we have
tanfp-tanfz = —1

Solving, we get another quadratic in p and g. When combined with the length constraint we can solve up
to Necker reversal, Kender points out that if pcrsp‘éctivc projection is assumed the sense of the Necker reversal
is often resolved.

44 Shabc from motion

Just as the ideas about shape from shadmg and edge dctcctlon described in Su:tzons 31 and 3.2 lead
naturally to progress on motion perception, so do the developments surrounding the pnmal skctch The first
treatment of this issuc is due to Ullman [UL.1.M78}, who considered the problem of esmbhsl’ung a correspon-
dence between the primal sketches in two successive image frames. Ullman ulé(_) studied l:_hc problem of
computing the structure of arigid body from the correspondencces of a small number of points in a number of

views. 1t rns out that remarkably few of cach are required to compute rigid three-dimensional structure. Tn
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modelling normal vision of course, sparsity of information is manifestly not the problem! A different way to
view such results is that they give information about how local ah algorithm to deteremine three-dimensional
structure can be. More recently, Webb [WEBB80, WEBB81], Hoffman and Flinchbaugh [I-IOI“FSO], and
Rashid [RASH80] have considered the problem of fcconstructing motion in depth from the output of the
correspondence computation. Flinchbaugh and Chandrasckharan [FLIN81] coin the term "dynamic primal
sketch” to des;:_ri,bc the rcpresentation' t_hey computé, since it associates an image velocity measﬁrc with cvery
primal sketch element. Flinchbaugh and Chandrasckaran [FLINS1] have proposed a number of grouping
primitivcs to apply to the dynamic primal sketch, analogous to those discussed above for the (static) primal

sketch.

5. Modules that operate on representations of surface shape

. Many of the: visual processes discusséd in the prc?ious scctions compute the shapc ofa viéiblc su rfhbc By
finding the local surface orientation everywhere within its boundaries. This includes the wofk of Horn and
his Eo]lcagucs on shape from shading (Sectipn 3.2), the computation of shape from contour investigated by
Witkin (scétion 4.2), and the interpretation of optical flow [PRA'ZS‘O, CI1.OC80]. On the other hand, sixaﬁe

from sterco yields disparity only at the discrete sct of zero crossings. A change of coordinates can convert

~ the angular disparities to depths, but to compute the local surface normal everywhere on the visible surface it

is necessary to interpolate a smooth surface from the discrete sct of given points. We shall discuss this issuc
below. Binocular sterco is not the only module that generates an incomplete surface orientation map. Shape
from texture (section 4.3) computations yicld (con1§tr;:i11cd) surface orientations only at texture p()ihtﬂ, which
may be more or less densely distributed. Stevens [STEV81] considers the interpretation of surface contours,
and finds that they strongly constrain the perception of the underlying surface. Horn [HORNS2] and Marr
[MARRT78a] suggest that in addition to local surface orientation, it is advantageous to make explicit the discon-
tinuites in surface oricnt;uiun and depth. Ttis not yet clear how surface normals should be parameterized, nor

how accurately their values should be represented. Morcover, substantial advantages are likely to accrue from
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attaching texture and color descriptors to visible surfaces, but the details arc as yet unclear.

One might also consider maibntaining scparate representations corresponding io the four (or more) chan-
nels defined in the Marr-Hildreth thcory of edge detection (deséribed in Section 3.1.1 and used in the Marr-
Poggio theory of stereo). This would énablc the visiblevsurfacés in a scene to bc» represented at different scales.
It is clear that surface informatibn needs to be made explicit at different levels of resolution: a pebbled path
maj/ be considcfed approximately planar by a hum'an who is walking along it. On the other hand, an ant
or person on rol]cr bskates may find thé" same piqth extremely difficult to navigate; in such cases the path is

unlikely to be perceived as planar. As this example indicates, the level of resolution of a';:}cpreSentati011 is

determined largely by the process operating upon the representation, and there has been little investigation of -

such processes to date. Hinton shows that different representations of the same volume and set of surfaces

can have a significant influence on the difficulty of pérceptual tasks [H'INT79]. Shﬁilarly, we have seen that

grouping pfocesscs play an important role at several stages of visual processing, from cdge finding to the inter- -

pretation of tcxturc.‘ Such processes have not yet been extensively investigated at the level of r'eprcscncationspf ‘

surface oricntations.

Perhaps the most important operation performed by any vision system is recognition. Representations

below the level of surfaces are gchcrally too unstructured to support recognition. Onc notable exception to this

is recognition of surface type from texture information. lntcrcstingly, we suggested in section 3.4 that texture

is a form of surface rcpresentation. It has been argued that the surﬁ'acc.oricntzuion map is also inappropriate,
in cssence because vit; is yiewcr centered, Marr [:MAR:R78a] notes that we are capable ovf‘ recognizing objects
from a widce varicty of views, agnimt a wide variety of backgrounds To achicve this, hc -;uggcsts a rcpre-
scntallon which makes explicit thc three dimensionat ("volumetric") nature of uhjccts Wc shall consldcr 5\1(,11
ncprcscmatmns in thc next Scction. FFor the moment we nccd only note that it is highly non-trivial to extract
volumetric representations from a surface bascd representation, and S0 practxcal advanmgce might aucmc from

recognition based on the surfacc otientation map

The case against surface hu.scd‘nmdcls of objects for recognition is essentially an argument against mul-

P
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“tiple views. Horn [HORNS2] notes that irrespective of the force of the argument as rcgarvds general human
vision, surface baéed models may still support important practical applications. For example, because of the
limitations imposed by methods of manufacture, many industrial parts only assuine a small number of stable
configurations. Symmetry further reduces the number of substantially different views of a part. Sim:é there are
typically only a small number of parts in a parts mix, onc can store a representation computed from the surfaée
oricntation map corresponding to each different view of a part in each configuration. Hum‘ further suggésts
that it may be sufficient to throw away positional information and model an object by the distribution of its

surface normals on the Gaussian sphere [HORNBS2]. Figure 54 illustrates the idea.

Perhaps the most difficult problem which sighted pcople constantly rely on their vision systems to help
them to solve is the perception or planning of movements through cluttered space. The experience of
programming robots to avoid obstacles and discover a satisfactory trajcctory between two positions reveals
the staggering difficulty of the geometric problems involved, problems which the human visﬁal system solves
effortlessly. Space, considered as an object, typically occupies a volume and consists of a surface whosg
descriptions push current representational frameworks to their limits, if not far beyond them. A solid start hési
been made on the problems of spatial planning by Lozano-Perez [1.OZA81}, who représcnm the set ofvpussil)le -
‘configurations which an object can assume in the presence of obstacles and presents cfficient ailgurithms for
computing near optimal trajectories. A further important application lics in making precise the rather vague
notion of cognitive map. It is usually supposed [LYNC60] ihat this only refers to object representations.
Actually it scems that we have quite considerable navigational processes which operate on the surface orienta-

tion map.

Wc.concludc this section with a discussion of the problem of interpolating a smooth surface from a
discrete st of points, such as the disparity map computed by Grimson’s implementation of the Marr-Poggio
theory of stereo (scction 4.1). One nppr;mch might be to apply the work on Coon§ patches, Bezier surfaces, 4
and Perguson surfaces developed for work in computer aided design (CAD) and computer aided manufacture

(CAND) [EAUXTI) s however worth asking whether the interpolated wurface can be constrained by what we
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Figure ‘34 Object rcprcwulnlmn in terms of the (lhlnbulmn on lhe Cmusamn sphere of ils local
\lllhl(h norals, (chmduud ll()ln [H()RNRZ]

m—
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know about human vision, by isvlating constraints that have perhaps not figured largely in the development of _'

CAID/CAM. Essentially, two such constraints have been uncovered, and are currently reéciving attention.

The first was introduced by Grimson [GRIM8]]. Suppose that D,eq,q1 1S the disp:{rity. m‘ab from which

~ we are to interpolate a smooth surface S. Horn’s work on image formation tells us how to cohslrtlet the image o
I m(S’) and this cnablcs us to compute the set of zero crdssings, and hcnce prcdictv a disparity map D, edict-
The actual and prcdlctcd dlspamy maps should agrec everywhere, Actually, one docs not explicitly construct
the lmage of the interpolated surf'ucc and the predicted dlspanty map. Rather, it is used 1mp11c1t1y in dcnvmg
a numbcr of theorems which constrain the surface S. Grimson has coined a suggesnvc slogan for this analysvs
10 znfomzanon is mfomzatwn since the absence of an initial value at the point (z, y) in the actual dlspanty map

mcans that the gradnent of the interpolated surface S cannol change too rapidly there

The second constraint is based on the idca that the human v1sual system constructs the most conservatzve
solunon consnstcnt with the data. Flgurc 55 is reproduced from [BAR R81b}, and shows aset of possxble space
Curves, ail of which produce an clliptical image. Significantly, we arc unaware of most such possibilitics, espe- '
cially those that are discontinuous. We are able to intcrpoiatc smooth curves and surfaces without involving
rich scmantics. 'It alsb seems that the shape of the boundary plays the most signi'ﬁcant role in determining
the interpolated surface (see for example figure 56, which is reproduced from [B/\R.R8lb]. Taken together, :
thesc ideas suggest that the interpolation process can be modelled in terms of the calculus of variations (sce fdr

example [COUR37, volume .

The idea is to choose an appropriate "performance index” P and define the interpolalcd surfacc to be

that which minimizes the integral of P subject to the boundary constraints. This 1dea has been cxplorcd by

a number of authors. Uuﬁk«."thc 0 dm:fry d]ﬂ‘cwnnal calculus, it is not generally the case umt a minimal |
surface exists, even for "plausible” performance indices. For example, it is not clear that there is a unique -

ian curvature. Grimson [GRIMS81] notes that the existence of

T g RN
surface that minimizes the isiegraliof @i £

I SRS

a minimizing surface can be formally guaranteed if the performance index satisfies t.hc technical condition of

being a seminorm. He suggests the quadratic variation, which is defined w be f2, - 2f,u + f“” and shows
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how to construct the iteration operator shown in figure 57. The squarc Laplacian f?n + fyf_ also satisfics the
seminorm condition. Brady and Horn [BRADS81b] show that any quadratic form in the second derivatives f;,
f,i,, and f,y is a scminorm and leads to a unique minimal surface. They further show that the rotationally sym-
" metric pcrformange indices form a vector space spanned bby the quadratic variation and the square [.aplacian,
Since both opcrator§ satisfy the same Euler equation A2f = 0, they cannot be dis,tihguishcd away from given
boundary points. Brady and Horn apply the statics of‘a thin plate to show that the quadratic \;ariation provides
the tighter constraint. Grimson notes that the null space of the quadratic variation is larger than that of the
square Laplacian, containing for cxample the function f(z,y) = zy [GRIM81]. He has woékcd out several

examples showing that the quadratic variation leads to surfaces that accord better with human intuition. Brady

and Grimson (forthcoming) use these ideas about surface interpolation to propose that subjective contours

arise from surface perception.

Barrow and Tencnbaum [,BARR81b] observe that in ,mfder to interpolate the circular crbss section of a
cylinder and sphere it is sufficient to assume that the c,ur’vature varies linéarly in the image. Tbey suggest that
“in general one should choose a lincar éx-prcssion for the curvaturc to minimize the least squares etror. Brady,
_ Grimson, and Langridge [BR/\I)80b] use an approxnmatlon to the onc dimensional quadratic variation f2 to
arguc that subjcctiv ¢ contours arc cubm The exact mlmmal integral curvature curve has recently been found

by Horh [I—lORN81b].
6. Vicwpbiht independent representations of objects

The surface based representations discussed in the previous section arc different for cach particular view-

point. Fach viewpoint of each viewer in a scene defines a coordinate frame in terms of which’ the points that

arc visible from that viewpoint can be described. Other coordinate frames are naturally associated with the
. objects and surfaces in a scene, and it is often more convenient to describe relative positions and movements
in those frames rather than in the ones lined up with a particular viewpeint. In many scenes there is a natural

"plobal” coordinate frame that is independent of any viewpoint. For examplye, an aitplane or ship has an
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Figure 55.  An clliptical image, and some of the space curves that might have generated it.
(Reproduced from [BARRSTD, figure 3-2)
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Figure 56, Intcipolation of a cylinder from a wumber of stimuli, including a silhouctte, and half
tome images prodeecd from a varicty of reflectance limetions. (Reproduced from IBARRSIb, figure
2-3) - '
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Figure 57. The surface interpolation operator derived by Grimson from minimizing quadratic
variation,

associated frame defined by its bow, stern, starboard, port, up, and down; rotations about those axes specify
the yaw, roll, and pitch. A football ficld or a room has a natural frame defined by the sidelines or walls and by

the gravitational vertical.

Points can be represented in homogencous coordinates, for example, and frame transformations by 4 X 4

matrices that consist of a translation, a rotation, and a scale factor. This approach has proved valuable in
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éohputer graphics [CARL78] and robotics [PAUL79]. Rotations can also be described as quaternions with 4a |
saving of storage [[AYL79, BROOS0). Frames can specify the transformation to scene coordinates, and hence
by composition relate different viewﬁoints. Brooks and Binford [BROO80] note that one important use of
inter-relating frames by composition is to make affixmient relations explicit. The coordinate frame local to an
airplane nceds to be related to that defined by the‘ runway on which it stands. Thc programming language AL

[FINK74] was the first to provide a mechanism for the automatic maintenance of affixment relations.

Most object§ are Eomposcd of connected pafts, éach of which can bé described in its own local frame. A
person hés two arms, each of which is further subdivided into an upper arm, a forearm, and ;i'hand'.' Like any
structured representation, the important issues concetn the choice of "primitives” and the meﬁﬁs by which oite
part of a representation is related to another. Consider the latter issuc first. Work in Robotics has adopted
the Hartenberg-Denavit notation for kincinatic chains to describe thé géometric intér-relationships between
successive lmks of an arm, a leg, or the scveral lcgs of a mobile robot [PAUL79] Marr and Nishihara’s

suggestion [MARR78b] is a special case of this notation.

- One approach to primitives is tov(':onsidcr objects to be composed of instances of a sxﬁall set of prototype
volumes, such as spheres, blocks, and triangular prisms [BRAI73). This approach has been much used in
CAD/CAM. The problem is that cven simplc‘objécts have a compqu description. One might add more
and more primitives, such as truncated cones and pyrarﬁids to reduce this complexity. Binford [BINF71]
suggested another approach that has prowd vcry fruitful. He introduced a more gcnc:al class of vo]umcs
called generalized cones which includes as subclasses thc prlmmvc volumcs ‘mentioned pruvnouely A gcncml- '
ized coric describes a volume by sweeping a crossAsc‘ctum area along a space curve, called the "spinc”, “while
deforming it according to some swccpihg rule. Figure 58'is rcprnducéd frmn[l)ROOSl]‘:md shows a niu]nbcr
of gener; |Im d cones. Notice that allhmn,h d(nwduon is the ‘.Imractuhtn property ofgcnu‘lh/c,d congs, they

~are not necessarily clong,m d. Nm do they require a circular cross scmon No»cnhdus generalized cones’
are particularly well suited to dcscrihing objccu which huvc'a’ natural axis. lhls certainly mcludcs growth

structuis., Hu“c:lmch IH()I 175} noted that Greck mnphur. e also well des .(ul)ud by generalized cones. the
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spine being a result of the process of manufacture on the potters wheel. Similar considerations apply to objects
turned on a lathe or produced by extrusion. Conversely, objects produced by moulding, beating, welding, or

sculpture tend to be awkwardly described in terms of generalized cones.

A nymajor‘ issuc in description and recognition arises from the vast number of objects that we 'cﬁn distin-
guish. ‘This leads to an enormous data base of models and mékc-s the indexing proccss of crucial importance.
‘The problem is ubiquitous in artificial intelligence and has produced a number of schémes for matching on
the basié of partial dcscriptions. One récurrcnt theme is the use of abstraction to produce a smaller search
space, the solution being uscd to guide further scarch in a less abstracted version. At a suitably higﬁ level of
abstraction this can be recognized as the process which underlies the matcher in the Marr-Poggio theory of
sterco described in Section 4.1, In the specific case of vision, Nevatia and Binford [NEVA77] and Marr and
Nishihara [MARR?78b] discuss various schemes for indexing. Agin [AGIN72], Nevatia and Binford [NEVA77],
and Marr and Nishihara [MARR78b] note'that a kincmatic linkage can gencrally be approximated by a Siﬁglé
cone. Such approxﬁnatc descriptions provide for hicrarchical descriptions at a uscful-variety of scales. Often,
the most uscful approximation is based on the most proximal link, more detailed descriptions deriving from
applying the same process to the distal links of the chain. Brooks and Binford [BROO80] usc subcatcgories of
objects to achieve property inheritance and facilitate indexing. For cxamplc; they exploit the fact that a Bocing
747-5? is a special kind of Bocing 747 (with slight variations pertinent to rccbgnizing one), and a Bocing 747 is
a special kind of wide bodied jet (distinguished from other aircraft such as Boeing 727’s on the basis of overall |

length and width to length ratio.)

Brooks and Binford [BROOS0, BROOB81] draw attention to the need to incorporate constraints into ob-
ject descriptions. For example, a person has two icgs which are of (roughly) the sainc length, and are roughly
as long as the person’s body. ‘The actual sizes scale witﬁ (a priori unknown) camera position. As usuai,
constraints propagate. For example, the engine pods of a jet are deployed symmetrically on the front wings on
cither side of the fusclage. Finding an aircraft wing constrains the overall scale of the aircraft, and hence the

length of the fusclage. Such constraints are represented naturally by numerical inequalitics. Brooks [BROO8!]
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Fignre 58, An indication of the range of objects which can be modelled simply using generalized
comes. (Reproduced from [BROOSY]
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déscribés a program that determincs the solutions of a set of such incqualitiics. ilf an object rccognizéd asa
pcrson’s‘ bbdy is mljgh larger than onc thought to be a tree, then the person is probably much nearer than the
frccﬁ Mecchanisms for taking into account relatively remote possibilities such as giants and toy trecs have been
proposed (for example, [ANDES1].

Finally, we consider the process of extraéting from an image the spine, cross scctioh function, and swcep-
ing rule which define a generalized cone. The work on this problem to date rc‘quirc»s‘a number of simplifying
assumptions. For example, Nevatia and Binford implicitly assume that the cross section function is circular
[NEVA77]. Marr [MARR77] considered the problem in considerable detail and showed how, in a restricted
casc, a stfaight spiné can be extracted from thc inflection points on the bounding contour of an objéct. ﬁrady
showed that the spinc can be extracted more reliably by using stationary points of curvature [BRAI79b).
Marr’s work assumes that the bounding contour is planar, which is overly restrictive [BRUSSI]. He also

proposed a classification of the images of the joins bctwccn’tw’{)’ straight spine cones.
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