Microsoft’

Windows

Programmer’s Reference

MICROSOFT.]
WINDOWS..

PROGRAMMER'S
REFERENCE

LIBRARY

Microsoft”

Windows

Programmer’s Reference

New for Version 3

Written, edited, and produced by
Microsoft Corporation

Distributed by Microsoft Press

MICROSOFT.

WINDOWS..

Information in this document is subject to change without notice and does not represent a commitment on
the part of Microsoft Corporation. The software and/or databases described in this document are furnished
under a license agreement or nondisclosure agreement. The software and/or databases may be used or
copied only in accordance with the terms of the agreement. It is against the law to copy the software on
any medium except as specifically allowed in the license or nondisclosure agreement. No part of this
manual and/or databases may be reproduced or transmitted in any form or by any means, electronic or
mechanical. including photocopying, recording. or information storage and retrieval systems, for any
purpose other than the purchaser’s personal use without the express written permission of Microsoft
Corporation.

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation

One Microsoft Way, Redmond, Washington 98052-6399

©1990 Microsoft Corporation. All rights reserved.
Printed and bound in the United States of America.

Lucida Typeface Software. ©1985-1988 and 1990 by Bigelow & Holmes.
U.S. Patent Nos. D289420, D289421, D289422, D289773

Library of Congress Cataloging-in-Publications Data

Microsoft Windows programmer’s reference / Microsoft Corporation.
p.- cm. -- (Microsoft Windows programmer’s reference library)
Includes index.
ISBN 1-55615-309-0
1. Microsoft Windows (Computer programs) 1. Microsoft.
I1. Series.
QA76.76.W56M533 1990
005.4'3--dc20 ' 90-6037
CIP
6789FGFG4321

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.

Distributed to the book trade outside the United States and Canada by Penguin Books Ltd.
Penguin Books Ltd., Harmondsworth, Middlesex, England

Penguin Books Australia Ltd., Ringwood. Victoria, Australia

Penguin Books N.Z. Lid., 182-190 Wairau Road, Auckland 10, New Zealand

Microsoft, the Microsoft logo, MS, MS-DOS, Multiplan, PowerPoint, CodeView, GW-BASIC, QuickC,
and XENIX are registered trademarks and Information at your fingertips, Making it all make sense, the
Microsoft Mouse design, Toolbar, Windows, Windows/286, Windows/386, and Press are trademarks of
Microsoft Corporation.

U.S. Patent No. D302426

Arial, Monotype, and Times New Roman are registered trademarks of The Monotype Corporation, PLC.

AT and IBM are registered trademarks and PC/XT is a trademark of International Business Machines
Corporation.

AT&T is aregistered trademark of American Telephone and Telegraph Company.

Epson is a registered trademark of Epson America, Inc.

Hewlett-Packard, HP Laserjet, and PCL are registered trademarks of Hewlett-Packard Company.
Intel is a registered trademark and 386 is a trademark of Intel Corporation.

Lotus, Signal. and 1-2-3 are registered trademarks of Lotus Development Corporation.

Lucida is a registered trademark of Bigelow & Holmes.

Nokia is a trademark of Nokia Corporation.

Olivetti is a registered trademark of Ing. C. Olivetti.

Paintbrush is a trademark of ZSoft Corporation.

PostScripT is a registered trademark of Adobe Systems, Inc.

Document No. SY0302a-300-R00-1089

Foreword

The Microsoft Windows Programmer’s Reference Library is the core documenta-
tion for Windows programmers that Microsoft provides with the Microsoft®
Windows™ Software Development Kit (SDK). The information in these books is
the most accurate and up-to-date information on Windows programming avail-
able anywhere. The information represents everything Microsoft knows about
programming Windows version 3.0 with Microsoft C (the recommended
Windows programming language) and the tools we provide in the SDK.

Certain example programs and tools referred to in this book are available only -
in the Microsoft Windows SDK or Microsoft C 6.0 Professional Development
System. However, if you are not currently programming for Windows, these
volumes will still provide an excellent overview of the services that Microsoft
Windows and the SDK provide to programmers—~Microsoft Windows: A Guide
to Programming and Microsoft Windows Programming Tools in particular—and
an introduction to graphical user interface (GUI) programming. It is our hope
that once you have “kicked the tires” of the Windows SDK by reading these
books, you’ll be thoroughly convinced—and already prepared—to begin
Windows programming the Microsoft way.

Then as you continue to explore the Windows programming environment,
Microsoft Windows Programmer’s Reference will answer many of your program-
ming questions. The book provides information on each Windows application
programming interface (API) and describes its calls and services. For many
Windows programmers, this book is the most frequently “thumbed,” dog-eared,
and marked-up volume in the set.

The Microsoft Windows Software Development Kit is available from your
Microsoft product dealer. For further information on the Windows SDK or to
obtain the name of your nearest Microsoft dealer, call the Microsoft Information
Center at 1-800-426-9400.

The Windows Software Development Kit

The Windows high-level application programming interface consists of the
functions, messages, data structures, data types, and files you need to develop
applications that unleash the full capabilities of personal computers using Intel®
286 and 386™ processors. The API’s device independence ensures compatibility
with a broad array of displays, printers, and other devices, allowing you to con-
centrate on your applications and their features and implementation. Develop-
ment tasks are handled automatically, and advanced tools enable you to design
icons, dialog boxes, fonts, menus, and other interface elements.

Here are some of the new or improved features:

Foreword

Improved and comprehensive Guide to Programming, Advanced Interface
Design Guide, Reference, and Tools manuals.

More source-code examples for hands-on learning.
Improved tools for editing visual resources.

New online help-engine facility so you can include a Help system with your
applications.

The Microsoft CodeView® for Windows debugger—the powerful yet easy-
to-use source-code debugger for any Windows application.

New code-execution profiler and segment-swapping analysis facility.

Take advantage of the success of the Microsoft Windows environment—use the
Microsoft Windows Software Development Kit to develop powerful, feature-rich
graphical applications.

Other Recommended Reading

The following books are recommended for efficient Windows programming and
are available from Microsoft Press®:

Programming Windows. Charles Petzold. 862 pages, softcover. An updated
second edition will be available in October 1990.

Windows: Programmer’s Problem Solver. Richard Wilton. 400 pages, soft-
cover. Available November 1990.

Microsoft C Run-Time Library Reference. Covers version 6. Microsoft
Corporation. 852 pages, softcover.

Table of Contents

Introduction
Application Programming Interface xvii
Windows Featuresottt i xvii
Window Manager Interface o i i xVviii
Window Manager Interface Function Groups xviii
Graphics DeviceInterface ool Xix
Graphics Device Interface Function Groups XX
System Services Interfaceo o il xxi
System Services Interface Function Groups XXi
Naming CONVEntionsueeeeunneeeenmneneeenuninnneeens Xxii
Parameter Names, xxii
Windows Calling Convention, xxiii
Manual OVervIEW . ..ottt ittt et i xxiii
Document Conventionscc.viuiiiiiunniiennnnn. XXVi

Volume 1
PART 1 Windows Functions

Chapter 1 Window Manager Interface Functions

1.1 Message Functionscoiiiiiiiiiiniiinninn. 1-2
1.1.1 Generating and Processing Messages 1-3
1.1.2 Translating Messages i 1-4
1.1.3 Examining Messagescceeniieeerneeain.. 145
1.1.4 Sending Messagesovviiiiiiiii i, 1-5
1.1.5 Avoiding Message Deadlocks 1-6
1.2 Window-Creation Functionsooiviiiiinn.. 1-7
1.2.1 Window Classescooviiiiiiiiiiiinnenn. 1-8
1.2.2 How Windows LocatesaClass 1-9
1.2.3 How Windows Determines the Ownerof aClass 1-9
1.2.4 Registeringa Window Class0.0 1-9
1.2.5 Shared Window Classescoounnen 1-10

1.2.6 Predefined Window Classescovvvnnenn. 1-10

vi Contents
|

1.2.7 Elements ofa Window Class 1-10
1.2.8 ClassStyles .. .oovvviinn it ii e 1-14
1.29 Internal Data Structuresccovvvvnn.. 1-16
1.2.10 Window Subclassingcooviiiiiinn, 1-16
1.2.11 Redrawingthe ClientArea 1-17
1.2.12 Class and Private Display Contexts 1-17
1.2.13 Window Function oL, 1-18
1.2.14 Window Stylesovetireinnrinnnrrnnennnns 1-21
1.2.15 Multiple Document Interface Windows 1-24
1216 TitleBarccoviiiiiiiiiiiii e 1-25
1.2.17 SystemMenucoiiiiiiiiiiiiiiia. 1-25
1218 ScrollBars......c.covviiiiiiin i 1-25
1219 Menus ...civiniiniin ittt 1-25
1.220 Window State it 1-26
1.221 LifeCycleofaWindow 1-27
1.3 Display and Movement Functions 1-28
1.4 InputFunctions..........c.coiiiiiiiiiiniinnnennnenn.. 1-29
1.5 Hardware Functions o i, 1-30
1.6 Painting Functionsccovviiiinrrnennrnnennnn 1-31
1.6.1 How Windows Manages the Display 1-32
1.6.2 Display ContextTypesccoiviviiieinnn.. 1-32
1.6.3 Display-ContextCache, 1-36
1.6.4 Painting Sequencecovuieeirrnion.. 1-36
1.6.5 WM _PAINT MeESSagE . oot vvvveiiennennnennnns 1-37
1.6.6 UpdateRegioncoiiiiiiiiinninnn. 1-37
1.6.7 Window Background, 1-38
1.6.8 Brush Alignment T 1-38
1.6.9 Painting RectangularAreas 1-39
1.6.10 DrawingIcons.............................;.. 1-39
1.6.11 Drawing Formatted Textcon... 1-39
1.6.12 DrawingGrayTextccoviriieiinenn... 1-41
1.6.13 Nonclient-Area Painting 1-42
1.7 Dialog-Box Functionsccoiiiiiiiiiinnnn. 1-43
1.7.1 Uses for Dialog Boxesoon... 1-45
1.7.2 CreatingaDialogBox 1-46
1.7.3 Return Values from a DialogBox 1-47
1.74 ControlsinaDialogBox 1-47

1.7.5 Dialog-Box Keyboard Interface 1-51

Contents vii

1.8

1.9

1.10
1.11
1.12
1.13
1.14

1.15

1.16

1.17
1.18

1.19

~Chapter 2
2.1

Scrolling Functionsccoiiiiiiiiiiiiininennn.n. 1-53
1.8.1 Standard Scroll Bars and Scroll-Bar Controls 1-53
1.8.2 Scroll-BarThumb 1-54
1.8.3 Scrolling Requestscoviiiiiiniinn, 1-54
1.8.4 Processing Scroll Messagescocu..n. 1-55
1.85 Scrolling the ClientAreao ooo.t. 1-55
1.8.6 Hiding a Standard Scroll Bar 1-55
MenuFunctions i i 1-56
Information Functionso, 1-57
System Functions il 1-58
Clipboard Functionsccooviiiiiiiiinennnn.. 1-58
Error Functions e 1-59
Caret Functionscoiiviniiiennnnn, e 1-60
1.14.1 Creating and DisplayingaCaret 1-60
1.14.2 SharingtheCaretciiiiiinnn. 1-61
Cursor Functionsttt en.n. 1-61
1.15.1 Pointing Devices and the Cursor 1-62
1.15.2 Displaying and Hiding the Cursor........ A 1-62
1.15.3 Positioningthe Cursorcooiia.... 1-62
1.154 The Cursor Hotspot and Confining the Cursor 1-63
1.15.5 Creating a Custom Cursorooevennnn... 1-63
Hook Functionsooiiiiieiini it 1-63
1.16.1 Filter-Function Chain 1-64
1.16.2 Installing a Filter Function 1-65
Property Functionso, 1-65
Rectangle Functionso, 1-67
1.18.1 Using Rectangles in a Windows Application 1-67
1.18.2 Rectangle Coordinatescoveunnnnn. 1-68
1.18.3 Creating and Manipulating Rectangles 1-68

SUMMATIY ottt ettt et i e e e e eanaeneenanann 1-69

Graphics Device Interface Functions

Device-Context Functionsc.ooiiviuieiennnn.. 2-2
2.1.1 Device-Context Attributescoon... 2-3
2.1.2 SavingaDevice Contextouu... 2-4
2.1.3 Deleting a Device Contextc ..., 2-4

2.14 Compatible Device Contextsc..covevvnvenn. 2-4

viii Contents
.|

215 Information Contextscoveinienn.nn. 2-5

2.2 Drawing-Tool Functionscciiiiiiiiiinrnnenn. 2-5

2.2.1 Drawing-Tool Usescooiiiiiiiiiiiiinennn. 2-6

222 [70] (o) N 2-8

2.3 Color-Palette Functionsccoiiiiiiiiinnn..n. 29

2.3.1 How Color Palettes Workcoouiin. 2-11

232 UsingaColorPaletteccovvivinvennn. 2-12

2.4 Drawing-Attribute Functions 2-13

2.4.1 Background Mode and Background Color........... 2-14

24.2 StretchMode oo, 2-14

243 TextColorovvviii ittt een 2-15

2.5 Mapping Functionst 2-15

25.1 Constrained Mapping Modes 2-16

2.5.2 Partially Constrained and Unconstrained Mapping

Modes . ..ot e e 2-17

2.5.3 Transformation Equations 2-18

254 Example: MM_TEXT ..., 2-19

2.5.5 Example: MM_LOENGLISH 2-19

2.6 Coordinate Functionsciviiiiiiiinninenenn. 2-20

277 RegionFunctionsccoiiuiiriiineiniineneinnn. 2-21

2.8 ClippingFunctionsccoiiiiiiiiiiinnnennn.. 2-22

2.9 Line-OutputFunctionst ienennnn, 2-22

2.9.1 Function Coordinatesccivininennenn. 2-23

2.9.2 Pen Styles, Colors, Widths 2-23

2.10 Ellipse and Polygon Functionsoovviinn.t. 2-24

2.10.1 Function Coordinatesoovueunnen. .2-24

2.10.2 BoundingRectangles, 2-25

2.11 BitmapFunctionsciiiiiiiiiiiiiiiiiiia.n 2-25

2.11.1 Bitmaps and Devicescoiiun... 2-26

2.11.2 Device-Independent Bitmap Functions 2-26

212 TeXtFunctionsc.c.eeervennennennenennnnaenns 2-27
2,13 FontFunctionsceenieiiierineaiineenneennnn 2-28 ~

2.13.1 FontFamilycoiiiiiiiinennan.. 2-29

2132 CharacterCellsooiiiii i, 2-30

2.13.3 AlteringCharactersccvvvienrneuaenennn. 2-31

2134 Leadingooviiiiiiiiiiiia e 2-33

2.13.5 Character Setcvviriieeneinennennennnnnn 2-34

2136 Pitch i 2-35

Contents

ix

2.14

2.15
2.16

2.17
2.18

Chapter 3

3.1
3.2
33
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.1
3.12
3.13
3.14
3.15
3.16
3.17

2.13.7 Selecting Fonts withGDI 2-36
2.13.8 Font Files and Font Resources 2-40
Metafile Functionscoviiiiiiiiiniiiiinnn.. 2-41
2.14.1 CreatingaMetafileoiiiiiin.t. 2-41
2.14.2 Storing a Metafile in Memory oronDisk 2-43
2.143 DeletingaMetafile 2-43
2.144 Changing How Windows Plays a Metafile 2-43
Printer-Control Functionso, 2-44
Printer-Escape Functiono oot 2-44
2.16.1 Creating OutputonaPrinter 2-44
2,162 BandingOutputcoviiiiiiiiiiiiaia, 2-45
2.16.3 Starting and Ending a PrintJob................... 2-46
2.164 TerminatingaPrintJob 2-46
2.16.5 InformationEscapesoiion.. 2-47
2.16.6 Additional Escape Calls 2-47
Environment Functions oo, 2-47
SUMMATY .ottt it e et en et tnnreeeinonnanns 2-48

System Services Interface Functions

Module-Management Functions 32
Memory-Management Functions 32
Segment Functionsc.oviiiiiiniiinnennann. 3-5
Operating-System Interrupt Functions e 3-6
Task FUnctionscouiiiiuiiieinieinineennnan. 3-6
Resource-Management Functions 37
String-Manipulation Functions 3-8
Atom-Management Functions 0oiu.. 39
Initialization-File Functionsoooiiint, 3-10
Communication Functions 3-11
Sound Functionst 3-12
Utility Macros and Functions, 3-12
FileI/OFunctions, 3-13
Debugging Functionscccoiiiieiiiiiinnanen. 3-14
Optimization-Tool Functions 3-14
Application-Execution Functionst 3-15

SUMMAIY .. o i i et e 3-16

x Contents

Chapter 4 Functions Directory

PART 2 Windows Messages

Chapter 5 Messages Overview

5.1 Window-Management Messagescovvuureunnennnnn.
5.2 Initialization MeSSagesottt
53 Input Messagescuiiiiiiiiii i e e :
54 System Messagesottt et
55 Clipboard MEsSages - .. .vvvnretnreennrennenaneeneeenninn
5.6 System-Information Messagesl
5.7 Control Messages ... vvvvrivteerntnnerneanenrnneenenenans
571 Button-Control Messagesccceiuennen..
5.7.2 Edit-Control Messagescccovviiivnnnn..
573 List-BoxMessagesooverrnrunnenneennnnn.
574 Combo-Box Messagescovvvunviuninnnnn
5.7.5 Owner Draw—Control Messages
5.8 Notification Messagesccovviuiiieinnniinenn..
5.8.1 Button Notification Codes
5.8.2 Edit-Control Notification Codes
. 583 List-Box Notification Codes
5.84 Combo-Box Notification Codes
5.9 Scroll-Bar Messages . . .o vvvvie s e ncneenannnaennenas
5.10 Nonclient-Area MesSagesc.ovvenreneeeeneeiennens
5.11 Multiple Document Interface Messages
502 Summary ... i e e

Chapter 6 Messages Directory

...................

..................

Contents xi

Volume 2

PART 3 General Reference

Chapter 7 Data Types and Structures

7.1 DataTypes . ..covciiiiiei i it iiaann.
7.2 DataStructuresoooveennieernnnrennnns

Chapter 8 Resource Script Statements

8.1 Single-Line Statementsccuu....
8.2 User-DefinedResourcescovvvenn...
8.3 RCDATA Statement ccvtiininenrnnnnn
8.4 STRINGTABLE Statement
8.5 ACCELERATORS Statement
8.6 MENU Statementovueiennenenennn
8.6.1 Item-Definition Statements
8.7 DIALOG Statementccovieunvun...
8.7.1 Dialog Option Statements
8.7.2 Dialog Control Statements
8.8 DirectiVes . ..vvi et i i e e
8.8.1 #include Statement
8.8.2 #define Statement
8.8.3 #undef Statement
8.8.4 #ifdef Statement
8.8.5 #ifndef Statement
8.8.6 #if Statement
8.8.7 #elif Statement
8.8.8 #else Statement,
8.8.9 #endif Statement
89 Summary ...t i i

Chapter 9 File Formats

9.1 Bitmap File Formats
9.2 Icon Resource File Format
9.3 Cursor Resource File Format

Xii

Contents

94 Clipboard File Formatcoiiiiiiiiinna.. 9-5
9.5 MetafileFormat i 9-6
9.5.1 Metafile Headercccoivviinn.. 9-6
952 MetafileRecordsooiviiiiiii i, 9-7
9.5.3 Sample Metafile Program Output 9-28
0.6 SUMMATY ...ttt ettt ia e 9-30

Chapter 10 Module-Definition Statements

Chapter 11 Binary and Ternary Raster-Operation Codes

11.1 Binary Raster Operationsccoiiiniieinnennnn 11-1
11.2 Ternary Raster Operationscoeuiivuniennnnn 11-4
1.3 Summaryouiiiii i i i i 11-14

Chapter 12 Printer Escapes

Chapter 13 Assembly-Language Macros Overview
13.1 Guidelines for Creating Assembly-Language Windows

Applicationsttt e e 13-1
13.1.1 Specifyinga Memory Model 13-2
13.1.2 Selecting a Calling Convention 13-3
13.1.3 Enabling the Windows Prolog/Epilog Option 13-4
13.1.4 Including the File CMACROS.INC 13-4
13.1.5 Creating the Application Entry Point 13-5
13.1.6 Declaring Callback Functions 1355
13.1.7 Linking with Libraries 13-5
13.1.8 Enabling Stack Checking 13-6
132 Cmacto GIOUPS . .vvvvtvtitiit ittt ennn, 13-6
13.2.1 Segment Macros -...........c.oovvuniiiiiinn... 13-6
13.2.2 Storage-Allocation Macroscocivvunvene. 13-7
1323 FunctionMacrosc.ooiiiiiinin. 13-8
1324 CallMacroscoovviiiiin i, 13-8
13.2.5 Special-Definition Macros 13-8
132.6 ErrorMacros ..ot 13-9
133 Usingthe Cmacrosoovviiniiiiiniiniinnennn.. 13-9
13.3.1 Overriding Typescoviiiiiiiiiiiinnn, 139

13.3.2 Symbol Redefinition 13-10

Contents xiii

13.3.3 Cmacros: a Sample Function 13-10
134 Summary ...t e e 13-12

Chapter 14 AsSembly-Language Macros Directory

Chapter 15 Windows DDE Protocol Definition

Conventions Used in This Chapter 15-1
15.1 Usingthe DDEMessage Set........c.veurneieninnnnnn.. 15-1
152 Synchronizing the DDE Conversation 15-2
153 USINGAIOMS ..ottt ittt iee e 15-3
154 Using Shared Memory Objectsc.ovvvvvnn... 15-4
15.5 Using Clipboard Formatsccooviiiiiiuana... 15-4
15.6 Usingthe System Topicc.ciiviiineinnnennnn.n. 15-4
1577 DDEMessage Directoryovveiiennennneennannn. 15-5

Appendixes

A YVirtual-Key Codes
B RC Diagnostic Messages

C Windows Debugging Messages

USer Error Codes .. oot ei it ettt et it ettt et e C-1

GDIErmror Codes .. ovvvti ittt et et et et et e C-3
Kemel Error Codes . ..o ittt it i e e i C4

D Character Tables

IBM PC Extended Character Setc.cviiiiiinnnnnennnn. D-1
ANSITable ..o i i e e D-2

E Windows 32-Bit Memory Management DLL

E.l Segmented and Flat Memory Models E-2.
E2 Using the WINMEM32.DLL Library E-3
E.3 Considerations for Using 32-Bit Memory E-4

E.3.1 The Flat Model Under Windowsccov.... E-5

xiv Contents

E.3.2 The ApplicationStack E-5
E3.3 Interrupt-TimeCodeccviivenvunann. E-6
E34 Programming Languages E-7
E4 Using 32-Bit Memory in a Windows Application v...E-7
E4.1 Using32-BitDataObjectscc.vvvnn.. E-7

E4.2 Using 32-Bit Code and Data in a Subroutine Library .. E-8
E4.3 Using 32-Bit Code and Data for the Main Program ... E-8
E5 Functions Directoryccoiiiiiinieneiinneneennn. E-9

Index

Tables

Table 1.1
Table 1.2
Table 1.3
Table 1.4
Table 1.5
Table 1.6
Table 1.7
Table 1.8
Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5
Table 2.6
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7
Table 4.8
Table 4.9
Table 4.10
Table 4.11
Table 4.12
Table 4.13
Table 4.14

Window Class Elements 00 1-10
Window Class Styles oo 1-14
Default Actions for Messages 000 e e e 1-20
Defaults for a Display Context 133
Text Formatting Styleso oo 1-40
DrawText Control Characters« v v v v 1-41
Dialog-Box Keyboard Interface 1-51
System Hooks L. oL s e e e e e 1-64
Default Device-Context Attributes and Related GDI Functions 2-3
GDIMappingModes oL e 2-16
Logical/Physical Conversion Table 2-17
FontFamilies e 2-30
Font-Mapping Characteristics 2-38
Sample Font SelectionRatings 2-40
Raster Operations e e e e e e e e e e 4-19
Control CIASSES . .« « « v v v e e e e e e e e e e e e e e 4-64
Window Styles 4-66
Control Styleso e e e e 4-68
Extended Window Styleso oL 4-77
DOSFile Attributes oo 4-101
DrawText Formatso 4-108
Communications ErrorCodes00 0000 4-161
GDI Information Indexeso 0o 4-167
System MetricIndexes oL oL oL Lo o0 4-212
Message Box Types o000 0000 e 4-308
Raster Operations00 e e e 4-329
Predefined Data Formats o . .4-370

EventValues« . . e e e e e e e e e 4-373

xvi Contents

Table 4.15
Table 4.16
Table 4.17
Table 4.18
Table 6.1
Table 6.2
Table 8.1
Table 8.2
Table 8.3
Table 9.1
Table 9.2
Table 11.1
Table 11.2
Table 11.3
Table 12.1
Table 13.1
Table 13.2
Table 13.3
Table 15.1

MappingModes L Lo s e e 4-383
DrawingModes L . oL o0 e e e e 4-395
System Color Indexes o000 4-401
Window States L Lo e e e e e e 4-432
Button Styles oL oL oo e e e e e e 6-6
Hit-TestCodes o . o o . o o e 6-85
Window Styles L0 Lo L Lo oL e e e e 8-16
Control Classes o . v v v v v v b e e e e e 8-35
Control Styleso e e e e e e e e e 8-37
BitMaskResultso 9-4
GDI Functionsand Valueso . .98
Operation Indexes forDPoandDPan 11-2
Operation Indexes forPSoand DPSoo e e e e e 11-5
Raster—Operatioh Codes0 e e e e e v. .. 11-6
Meaning of BANDINFOSTRUCT Fields 12-4
Memory Options e e e e e e e e e e 13-3
Calling Conventions ¢ o o oo e e 13-3
Prolog/Epilog Code Options 13-4

DDEMEeSSages « v v v v v v e e e e e e e e e e e e e e 15-2

Introduction

Application Programming Interface

This manual describes the application programming interface (API) of the
Microsoft ® Windows ™ presentation manager. The API contains the functions,
messages, data structures, data types, statements, and files that application
developers use to create programs that run with Windows.

The API can be thought of as a set of tools which, when properly used, creates a
Windows application that is portable across a variety of computers.

Windows Features

A Windows application can take advantage of a number of features provided by
the APL These features include the following:

® Shared display, memory, keyboard, mouse, and system timer
m Data interchange with other applications

® Device-independent graphics

®m Multitasking

® Dynamic linking

Windows allows applications, running simultaneously on the system, to share
hardware resources; application developers do not need to write specific code to
accomplish this complex task.

The clipboard, another Windows feature, acts as a place for data interchange be-
tween applications. The information sent between applications can be in the form
of text, bitmaps, or graphic operations. Windows provides a number of functions
and messages that regulate the transmission of information with the clipboard.
These functions and the corresponding messages are part of the window manager
interface, one of several libraries in the APL

Windows contains functions that an application can use for device-independent
graphic operations. These functions create output that is compatible with raster
displays and printers of varying resolution, as well as with a number of vector
devices (plotters). These functions are part of the graphics device interface
(GDI), the second of the API libraries. ’

Xviii Reference

Windows provides multitasking, which means that several applications can run
simultaneously. The functions that affect multitasking and memory management
in general are part of the system services interface, the third API library.

Because of the memory limitations imposed by DOS, it is important to keep
applications as compact as possible. Windows accomplishes this compaction
through dynamic linking and the use of discardable code, which allows an appli-
cation to load and execute a subset of the library of functions at run time. Only a
single copy of a library is necessary, no matter how many applications access it.

Window Manager Interface

The window manager interface contains the functions that create, move, and alter
a window, the most basic element in a Windows application. A window is a rec-
tangular region that contains graphic representations of user input, input options,
and system output. '

Windows is a menu-driven environment; menus are the principal means of pre-
senting options to a user from within an application. The functions that create
menus, alter their contents, and obtain the status of menu items are also part of
the window manager interface.

The window manager interface also contains functions that create system output.
An example of this output is the dialog box that applications use to request user
input and to display information.

The window manager interface also contains messages and the functions that
process them. A message is a special data structure that contains information
about changes within an application. These changes include keyboard, mouse,
and timer events, as well as requests for information or actions that an applica-
tion should carry out.

Window Manager Interface Function Groups

The following list describes the function groups found in the window manager in-
terface:

m Message functions

® Information functions

®m Window-creation functions

m System functions

® Display and movement functions

m Clipboard functions

m Error functions

Introduction xix

= Input functions

® Caret functions

m Hardware functions
® Cursor functions

® Painting functions
® Hook functions

= Dialog functions

= Property functions
m Scrolling functions
m Rectangle functions

® Menu functions

Graphics Device Interface

The graphics device interface (GDI) contains the functions that perform device-
independent graphic operations within a Windows application. These functions
create a wide variety of line, text, and bitmap output on a number of different out-
put devices. GDI allows an application to create pens, brushes, fonts, and bit-
maps for specific output operations. The following figure shows a sample of text,
line, and bitmap output from Microsoft Windows Paintbrush™, an application
that was created with GDI functions:

Xx Reference

| Paintbrush - TOOLS.PCX M

24| s

P4 O[0|O[LN =il

ile Edit View Font Style Size Pick Options Help

The one that got away ;’

¥
|

T I

Text, Line and Bitmap Output

Graphics Device Interface Function Groups

The following list describes the function groups found in GDI:

® Device-context functions

m Ellipse and polygon functions ‘
® Drawing-tool functions

® Bitmap functions

® Drawing-attribute functions
m Text functions

= Mapping functions

® Font functions

® Coordinate functions

m Metafile functions

® Region functions

® Printer-escape functions

Introduction xxi

m Clipping functions
® Environment functions
® Line-output functions

® System functions

System Services Interface

The system services interface contains the functions that access code and data in-
modules, allocate and manage memory (both local and global), manage tasks,
load program resources, translate strings from one character set to another, alter
the Windows initialization file, assist in system debugging, carry out communica-
tions through the system’s I/O ports, create and open files, and create sounds
using the system’s sound generator.

System Services Interface Function Groups

The following list describes the function groups found in the system services in-
terface:

® Module-management functions
® Initialization-file functions

= Memory-management functions
m Communication functions

m Task functions

® Sound functions

®m Resource-management functions
m Utility functions

m String-translation functions

m File I/O functions

= Atom-management functions

m System functions

Xxxii Reference

Naming Conventions

Many Windows functions have been named with a verb-noun model to help you
remember and become familiar with the function. The function name indicates
both what the function does (verb) and the target of its action (noun). All func-
tion names begin with an uppercase letter. If the name is composed of several
words, each word begins with an uppercase letter and all words are adjoined (no
spaces or underscore characters separate the words). Some examples of function
names are shown below:

CreateWindow

RegisterClass
SetMapMode

Parameter Names

Most parameters and local variables have a lowercase prefix that indicates the
general type of the parameter, followed by one or more words that describe the
content of the parameter. The standard prefixes used in parameter and variable
names are defined below:

Prefix Meaning

b Boolean (a nonzero value means true, zero means
false)

c Character (a one-byte value)

aw Long (32-bit) unsigned integer

f Bit flags packed into a 16-bit integer

h 16-bit handle

l Long (32-bit) integer

Ip Long (32-bit) pointer

n Short (16-bit) integer

p Short (16-bit) pointer

pt x- and y-coordinates packed into an unsigned 32-bit
integer

rgb RGB color value packed into a 32-bit integer

w Short (16-bit) unsigned integer

Introduction xXxiii

If no lowercase prefix is given, the parameter is a short integer whose name is
descriptive.

Some examples of parameter and variable names are shown as follows:

blconic pXY
fAction rgbColor
hWnd Height
IpString X

nBytes Width
pMsg Y

Windows Galling Convention

Windows uses the same calling convention used by Microsoft Pascal.
Throughout this manual, this calling convention will be referred to as the Pascal
calling convention. The Pascal calling convention entails the following:

m Parameters are pushed onto the stack in the order in which they appear in the
function call.

w The code that restores the stack is part of the called function (rather than the
calling function).

This convention differs from the calling convention used in other languages, such
as C. In C, parameters are pushed onto the stack in reverse order, and the calling
function is responsible for restoring the stack.

When developing Windows applications in a language that does not ordinarily
use the Pascal calling convention, such as C, you must ensure that the Pascal cal-
ling convention is used for any function that is called by Windows. In C, this re-
quires the use of the PASCAL key word when the function is declared.

Manual Overview

This manual gives the Windows-application developer general as well as detailed
information about Windows functions, messages, data types, resource-compiler
statements, assembly-language macros, and file formats. It does not attempt to ex-
plain how to create a Windows application. Rather, this manual provides detailed
descriptions of each component of the Windows API for readers who already
have a basic understanding of Windows programming.

Xxiv Reference

This manual is divided into two volumes. The following sections describe the
purpose and contents of each volume.

Volume 1

Volume 1 contains reference information describing the Windows functions and
messages. It is made up of six chapters:

Chapter 1, “Window Manager Interface Functions,” categorizes window-
manager functions into their related groups and briefly describes individual func-
tions. This chapter also supplies additional information about particular function
groups, including definitions of new terms and descriptions of models that are
unique to Windows. This chapter is designed to assist the application developer
who is new to Windows or who has questions about a particular group of
Windows functions.

Chapter 2, “Graphics Device Interface Functions,” categorizes the functions that
perform device-independent graphics operations in the Windows environment,
provides brief descriptions of the functions, and explains the most important fea-
tures of the Windows graphics interface.

Chapter 3, “System Services Interface Functions,” categorizes the various utility
functions that perform services not directly related to managing a window or pro-
ducing graphical output.

Chapter 4, “Functions Directory,” contains an alphabetical list of Windows func-
tions. The documentation for each function gives the syntax, states the function’s
purpose, lists its input parameters, and describes its return value. For some func-
tions, additional information the developer needs in order to use those functions
is given.

Chapter 5, “Messages Overview,” categorizes messages into their related groups
and briefly describes individual messages. This chapter also supplies additional
information about particular message groups, including definitions of new terms
and descriptions of models that are unique to Windows. This chapter is designed
to assist the application developer who is new to Windows or who has questions
about a particular group of Windows messages.

Chapter 6, “Messages Directory,” contains an alphabetical list of Windows mes-
sages. The documentation for each message states the message’s purpose, lists its
input parameters, and describes its return value (if one exists). For some mes-
sages, additional information the developer needs in order to use those messages
is given,

Volume 2

Volume 2 contains reference material for other components of the Windows APIL.
It contains nine chapters and five appendixes:

Chapter 7, “Data Types and Structures,” contains a table of data types and an al-
phabetical list of structures found in Windows.

Introduction xxv

Chapter 8, “Resource Script Statements,” describes the statements that define
resources which the Resource Compiler adds to an application’s executable file.
The statements are arranged according to functional groups.

Chapter 9, “File Formats,” describes the formats of five types of files: bitmap
files, icon resource files, cursor resource files, clipboard files, and metafiles.
Each description gives the general file structure and information about specific
parts of the file.

Chapter 10, “Module-Definition Statements,” describes the statements contained
in the module-definition file that defines the application’s contents and system re-
quirements for the LINK program.

Chapter 11, “Binary and Ternary Raster-Operation Codes,” describes the raster
operations used for line output and those used for bitmap output.

Chapter 12, “Printer Escapes,” lists the printer escapes that are available in
Windows.

Chapter 13, “Assembly-Language Macros Overview,” categorizes and briefly de-
scribes the Windows assembly-language macros which provide a simplified inter-
face to the function and segment conventions of high-level languages.

Chapter 14, “Assembly-Language Macros Directory,” lists the assembly-lan-
guage macros alphabetically and, for each macro, provides a detailed description
and one or more examples of how to use it in a program.

Chapter 15, “Windows DDE Protocol Definition,” contains an alphabetical
listing and description of the Windows messages which comprise the Windows
Dynamic Data Exchange protocol.

Appendix A, “Virtual-Key Codes,” lists the symbolic names and hexadecimal
values of Windows virtual-key codes and includes a brief description of each key.

Appendix B, “RC Diagnostic Messages,” contains a listing of Resource Com-
piler error messages and provides a brief description of each message.

Appendix C, “Windows Debugging Messages,” contains a listing of Windows de-
bugging messages and provides a brief description of each message.

Appendix D, “Character Tables,” shows the layout of the ANSI character set and
the IBM PC Extended Character set.

Appendix E, “32-Bit Memory Management DLL,” describes how to implement a
32-bit flat memory model for your application.

xxvi Reference

Document Conventions

Throughout this manual, the term “DOS” refers to both MS-DOS® and PC-
DOS, except when noting features that are unique to one or the other.

The following document conventions are used throughout this manual:

Convention

Bold text

O

Italic text

Monospaced type

BEGIN

END

Description of Convention

Bold letters indicate a specific term or punctua-
tion mark intended to be used literally:
language key words or functions (such as
EXETYPE or CreateWindow), DOS com-
mands, and command-line options (such as
/Zi). You must type these terms and punctua-
tion marks exactly as shown. However, the use
of uppercase or lowercase letters is not always
significant. For instance, you can invoke the
linker by typing either LINK, link, or Link at
the DOS prompt.

In syntax statements, parentheses enclose one
or more parameters that you pass to a function.

Words in italics indicate a placeholder; you are
expected to provide the actual value. For ex-
ample, the following syntax for the
SetCursorPos function indicates that you must
substitute values for the X and Y coordinates,
separated by a comma:

SetCursorPos(X, Y)

Code examples are displayed in a rionpropor—
tional typeface.

Vertical ellipses in program examples indicate
that a portion of the program is omitted.

Ellipses following an item indicate that more
items having the same form may appear. In the
following example, the horizontal ellipses indi-
cate that you can specify more than one
breakaddress for the g command:

g [=startaddress] [breakaddress]...

Introduction xxvii

[l

“

{1

SMALL CAPITAL LETTERS

Double brackets enclose optional fields or para-
meters in command lines and syntax :
statements. In the following example, option
and executable-file are optional parameters of
the RC command:

RC [[option] filename [[executable-file]]

A vertical bar indicates that you may enter one
of the entries shown on either side of the bar.
The following command-line syntax illustrates
the use of a vertical bar:

DB [[address | rangelj

The bar indicates that following the Dump
Bytes command (DB), you can specify either
an address or a range.

Quotation marks set off terms defined in the
text.

Curly braces indicate that you must specify
one of the enclosed items.

Small capital letters indicate the names of keys
and key sequences, such as:

ALT + SPACEBAR

A box containing a Microsoft Windows ver-
sion number indicates that a function, message,
or data structure is compatible only with the
specified version and later versions.

Microsoft Windows Software Development Kit Documentation Set

Throughout this documentation set, “SDK?” refers specifically to the Microsoft
Windows Software Development Kit and its contents. The SDK includes the fol-

lowing manuals:

Xxviii Reference

Title

Installation and
Update Guide

Guide to Programming

Tools

Reference

System Application
Architecture, Common
User Access:
Advanced Interface
Design Guide

Contents

Provides an orientation to the SDK, explains how to
install the SDK software, and highlights the changes
for version 3.0.

Explains how to write Windows applications, and
provides sample applications that you can use as
templates for writing your own programs. The
Guide to Programming also addresses some more
advanced Windows programming topics.

Explains how to use the software—developfnent tools
you’ll need to build Windows applications, such as
debuggers and specialized SDK editors.

Is a comprehensive guide to all the details of the
Microsoft Windows application program interface
(API). The Reference lists in alphabetical order all
the current functions, messages, and data structures
of the API, and provides extensive overviews on
how to use the APL

Provides guidelines and recommendations for writ-
ing programs that look and act consistently with
other Microsoft Windows applications.

Volume 1

Part | Windows Functions

Part 1 describes the functions which are the core of the Windows application pro-
grammer interface (API). You use these functions as part of a C- or assembly-
language program to create an application that takes advantage of Windows’
user-interface, graphics and multitasking capabilities.

CHAPTERS

1 Window Manager Interface Functions
2 Graphics Device Interface Functions
3 System Services Interface Functions
4 Functions Directory

Chapter

Window Manager Interface
Functions

This chapter describes the Microsoft Windows functions that process messages,
create, move, or alter a window, or create system output. These functions consti-
tute the window manager interface.

This chapter describes the following topics:

® Message functions

m Window-creation functions
= Display and movement functions
m Input functions

m Hardware functions

= Painting functions

m Dialog-box functions

m Scrolling functions

m Menu functions

] 1nformation functions

= System functions

m Clipboard functions

m Error functions

m Caret functions

m Cursor functions

m Hook functions

® Property functions

m Rectangle functions

1-2 Reference — Volume 1

1.1 Message Functions

Message functions read and process Windows messages in an application’s
queue. Messages represent a variety of input to a Windows application. A
message is a data structure that contains a message identifier and message para-
meters. The content of the parameters varies with the message type. The follow-
ing list briefly describes each function:

Function
CallWindowProc
DispatchMessage

GetMessage
GetMessagePos
GetMessageTime

InSendMessage

PeekMessage

PostAppMessage
PostMessage
PostQuitMessage
ReplyMessage
SendMessage
SetMessageQueue

TranslateAccelerator
TranslateMDISysAccel
TranslateMessage

WaitMessage

Description
Passes message information to the specified function.

Passes a message to a window function of the
specified window.

Retrieves a message from the specified range of
messages.

Returns the position of the mouse at the time the last
message was retrieved.

Returns the time at which the last message was
retrieved.

Determines whether the current window function is
processing a message passed to it through a call to
the SendMessage function.

Checks the application queue and places the
message appropriately.

Posts a message to the application.

Places a message in the application queue.

Posts a WM_QUIT message to the application.
Replies to a message.

Sends a message to a window or windows.
Creates a new message queue of a different size.

Processes keyboard accelerators for menu com-
mands.

Processes multiple document interface (MDI) child
window command accelerators.

Translates virtual key-stroke messages into character
messages.

Yields control to other applications.

Window Manager Interface Functions 1-3

Function Description
WinMain Serves as an entry point for execution of a Windows
application.

1.1.1 Generating and Processing Messages

Windows generates a message at each input event, such as when the user moves
the mouse or presses a keyboard key. Windows collects these input messages in a
system-wide queue and then places these messages, as well as timer and paint
messages, in an application’s queue. The application queues are first-in/first-out
queues that belong to individual applications; however, timer and paint messages
are held in the queue until the application has processed all other messages.
Windows places messages that belong to a specific application in that applica-
tion’s queue. The application then reads the messages by using the GetMessage
function and dispatches them to the appropriate window function by using the
DispatchMessage function.

Windows sends some messages directly to an application’s window function,
without placing them in the application queue. Such messages are called un-
queued messages. In general, an unqueued message is any message that affects
the window only. The SendMessage function sends messages directly to a
window.

For example, the CreateWindow function directs Windows to send a
WM_CREATE message to the window function of the application and to wait
until the message has been processed by the window function. Windows sends
this message directly to the function and does not place it in the application
queue.

© Although most messages are generated by Windows, applications can create their
own messages and place them in the application queues of other applications.

An application can pull messages from its queue by using the GetMessage func-
tion. This function searches the application queue for messages and, if a message
exists, returns the top message in the application queue. If the application queue
is empty, GetMessage waits for a message to be placed in the queue. While wait-
ing, GetMessage relinquishes control to Windows, allowing other applications to
take control and process their own messages.

Once a main function has a message from a queue, it can dispatch the message to
a window function by using the DispatchMessage function. This function directs
Windows to call the window function of the window associated with the
message, and then passes the content of the message as function arguments. The
window function can then process the message and carry out any requested
changes to the window. When the window function returns, Windows returns
control to the main function. The main function can then pull the next message
from the queue. '

1-4 Reference — Volume 1

NOTE Unless noted otherwise, Windows can send messages in any sequence. An applica-
tion should not rely on receiving messages in a particular order.

Windows generates a virtual-key message each time the user presses a keyboard
key. The virtual-key message contains a virtual-key code that defines which key
was pressed, but does not define the character value of that key. To retrieve the
character value, the main function must translate the virtual-key message by
using the TranslateMessage function. This function puts another message with
an appropriate character value in the application queue. The message can then be
dispatched to a window function.

1.1.2 Translating Messages

In general, a main function should use the TranslateMessage function to trans-
late every message, not just virtual-key messages. Although TranslateMessage
has no effect on other types of messages, it guarantees that any keyboard input is
translated correctly.

The following program fragment illustrates the typical loop that a main function
uses to pull messages from the queues and dispatch them to window functions:

int PASCAL WinMain(hInstance, hPrevInstance, 1pCmdLine, nShowCmd)
HANDLE hlInstance;
HANDLE hPrevInstance;
LPSTR TpCmdLine;
int nShowCmd;
{
MSG msg;

while (GetMessage((LPMSG)&msg, NULL, @, 0))
{
TranslateMessage((LPMSG)&msg);
DispatchMessage((LPMSG)&msg);
}
exit(msg.wParam);

Applications that use accelerator keys must load an accelerator table from

the resource file by using the LoadAccelerator function, and then translate
keyboard messages into accelerator-key messages by using the Translate-
Accelerator function. The main loop for applications that use accelerator keys
should have the following form:

while (GetMessage((LPMSG)&msg, (HWND)NULL, @, @))
{
if (TranslateAccelerator(hWindow, hAccel, ((LPMSG)&msg) == @)
{

Window Manager Interface Functions 1-5

TranslateMessage((LPMSG)&msg);
DispatchMessage((LPMSG)&msg);
}
)
exit(msg.wParam);

The TranslateAccelerator function must appear before the standard Trans-
lateMessage and DispatchMessage functions. Furthermore, since Trans-
lateAccelerator automatically dispatches the accelerator message to the
appropriate window function, the TranslateMessage and DispatchMessage
functions should not be called if TranslateAccelerator returns a nonzero value.

1.1.3 Examining Messages

An application can use the PeekMessage function when it checks the queues for
messages but does not want to pull the message from the queue. The function re-
turns a nonzero value if a message is in the queue, and lets the application re-
trieve the message and process it without going through the application’s main
loop.

Typically, an application uses PeekMessage to check periodically for messages
when the application is carrying out a lengthy operation, such as processing input
and output. For example, this function can be used to check for messages that ter-
minate the operation. PeekMessage also gives the application a chance to yield
control if no messages are present because PeekMessage can yield if no mes-
sages are in the queue.

1.1.4 Sending Messages

The SendMessage and PostMessage functions let applications pass messages to
their windows or to the windows of other applications.

The PostMessage function directs Windows to post the message by placing it in
the application queue. Control returns immediately to the calling application, and
any action to be carried out as a result of the message does not occur until the
message is read from the queue.

The SendMessage function directs Windows to send a message directly to the
given window function, bypassing the application queue. Windows does not re-
turn control to the calling application until the window function that receives the
message processes the message.

When an application transmits a message, it must send the message by calling
SendMessage if the application relies on the return value of a message. The re-
turn value of SendMessage is the same as the return value of the function that
processed the message. PostMessage returns immediately after sending the
message, so its return value is only a Boolean value indicating whether the
message was successfully sent and so does not indicate how the message was
processed.

1-6 Reference — Volume 1

Windows communicates with applications through window messages. The mes-
sages are passed (sent or posted) to an application’s window function to let the
function process the messages as desired. Although an application’s main func-
.tion may read and dispatch window messages, in most cases only the window
function processes them.

1.1.5 Avoiding Message Deadlocks

An application can create a deadlock condition in Windows if it yields control
while processing a message sent from another application (or by Windows on
behalf of another application) by means of the SendMessage function. The appli-

. cation does not have to yield explicitly. Calling any one of the following func-
tions can result in the application yielding control:

= DialogBox

= DialogBoxIndirect

m DialogBoxIndirectParam
.= DialogBoxParam

m GetMessage

m MessageBox

= PeekMessage

= Yield

Normally a task that calls SendMessage to send a message to another task will
not continue executing until the window procedure that receives the message re-
turns. However, if a task that receives the message yields control, Windows can
be placed in a deadlock situation where the sending task needs to execute and
process messages but cannot because it is waiting for SendMessage to return.

A window function can determine whether a message it receives was sent by
SendMessage by calling the InSendMessage function. Before calling any of the
functions listed above while processing a message, the window function should
first call InSendMessage. If InSendMessage returns TRUE, the window func-
tion must call the ReplyMessage function before calling any function that yields
control. ‘

As an alternative, can use a system modal dialog box or message box. Because
system modal windows prevent other windows from receiving input focus or
messages, an application should use system modal windows only when necessary.

Window Manager Interface Functions 1-7

1.2 Window-Creation Functions

Window-creation functions create, destroy, modify, and obtain information about
windows. The following list briefly describes each window-creation function:

Function

AdjustWindowRect
AdjustWindowRectEx

CreateWindow

CreateWindowEx
DefDIgProc

DefFrameProc

DefMDIChildProc

DefWindowProc

DestroyWindow
GetClassInfo
GetClassLong

GetClassName
GetClassWord

GetLastActivePopup

GetWindowLong
GetWindowWord
RegisterClass

Description

Computes the size of a window to fit a given client
area.

Computes the size of a window with extended style
to fit a given client area. . -

Creates overlapped, pop-up, and child windows.

Creates overlapped, pop-up, and child windows with
extended styles.

Provides default processing for those dialog-box
messages that an application does not process.

Provides default processing for those multiple docu-
ment interface (MDI) frame window messages that
an application does not process.

Provides default processing those for MDI child
window messages an that application does not
process.

Provides default processing for those window mes-
sages that an application does not process.

Destroys a window.
Retrieves information about a specified class.

Retrieves window-class information from a WND-
CLASS structure.

Retrieves a window-class name.

Retrieves window-class information from a WND-
CLASS structure.

Determines which i)opup window owned by another
window was most recently active.

Retrieves information about a window.
Retrieves information about a window.

Registers a window class.

1-8 Reference — Volume 1

Function Description

SetClassLong Replaces information in a WNDCLASS structure.

SetClassWord Replaces information in a WNDCLASS structure.

SetWindowLong Changes a window attribute.

SetWindowWord Changes a window attribute.

UnregisterClass Ri:)rlnoves a window class from the window-class
table.

1.2.1 Window Classes

A window class is a set of attributes that defines how a window looks and be-
haves. Before an application can create and use a window, it must define and
register a window class for that window. An application registers a class by pass-
ing values for each element of the class to the RegisterClass function. Any num-
ber of window classes can be registered. Once a class has been registered,
Windows lets the application create any number of windows belonging to that
class. The registered class remains available until it is deleted or the application
terminates.

Although the complete window class consists of many elements, Windows re-
quires only that an application supply a class name, an address to the window pro-
cedure that will process all messages sent to windows belonging to this class, and
an instance handle that identifies the application that registered the class. The
other elements of the window class define default attributes for windows of the
class, such as the shape of the cursor and the content of the menu for the window.

There are three types of window classes. They differ in scope and when they are
created and destroyed.

System Global Classes

Windows creates system global classes when it starts. These classes are available
for use by all applications at all times. Because Windows creates system global
classes on behalf of all applications, an application cannot create or destroy any
of these classes. Examples of system global classes include edit-control and list-
box control classes.

Application Global Classes

An application or (more likely) a library creates an application global class by
specifying the CS_GLOBALCLASS style for the class. Once created, it is
globally available to all applications within the system. Most often, a library
creates an application global class so that applications which call the library can
use the class. Windows destroys an application global class when the application
or library that created it terminates. For this reason, it is essential that all applica-

Window Manager Interface Functions 1-9

tions destroy all windows using that class before the library or application that
created the class terminates.

Application Local Classes

An application local class is any window class created by an application for its
exclusive use. This is the most common type of class created by an application.

1.2.2 How Windows Locates a Class

When an application creates a window with a specified class, Wmdows uses the
following algorithm to find the class:

1. Windows searches for a local class of the specified name.

2. If Windows does not find a local class with the name, then it searches the
application global class list.

3. If Windows does not find the name in the application global class list, then it
searches the system global class list.

This procedure is used for all windows created by the application, including
windows created on the application’s behalf, such as dialog controls. It is
possible, then, to override system global classes without affecting other applica-
tions.

1.2.3 How Windows Determines the Owner of a Class

Windows determines class ownership from the hInstance field of the WND-
CLASS structure passed to the RegisterClass function when the application or li-
brary registers the class. For Windows libraries, this must be the instance handle
of the library. When the application that registered the class terminates or the li-
brary that registered the class is unloaded, the class is destroyed. For this reason,
all windows using the class must be destroyed before the application or library
terminates.

1.2.4 Registering a Window Class

When Windows registers a window class, it copies the attributes into its own
memory area. Windows uses the internally stored attributes when an application
refers to the window class by name; it is not necessary for the application that
originally registered the class to keep the structure available.

1-10 Reference — Volume 1

1.2.5 Shared Window Classes

Applications must not share registered classes with other applications. Some
information in a window class, such as the address of the window function, is

_ specific to a given application and cannot be used by other applications.
However, applications can share an application global class. See “Application
Global Classes,” in Section 1.2.1 for more information.

Although applications must not share registered classes, different instances of the
same application can share a registered class. Once a window class has been
registered by an application, it is available to all subsequent instances of that
application. This means that new instances of an application do not need to, and
should not, register window classes that have been registered by previous in-
stances.

1.2.6 Predefined Window Classes

Windows provides several predefined window classes. These classes define
special control windows that carry out common input tasks that let the user input
text, direct scrolling, and select from a list of names. The predefined window
classes are available to all applications and can be used any number of times to
create any number of these control windows.

1.2.7 Elements of a Window Class

The elements of the window class define the default behavior of the windows
created from that class. The application that registers the window class assigns
elements to the class by setting appropriate fields in a WNDCLASS data struc-
ture and passing the structure to the RegisterClass function. An application can
retrieve information about a given window class with the GetClassInfo function.

Table 1.1 shows the window class elements:

Table 1.1 Window Class Elements

Element Purpose

Class name Distinguishes the class from other registered
classes.

Window-function address Points to the function that processes all messages

that are sent to windows in the class, and defines
the behavior of the window.

Instance handle Identifies the application that registered the class.

Class cursor Defines the shape of the cursor when the cursor is
in a window of the class. ‘

Window Manager Interface Functions 1-11

Table1.1 Window Class Elements (continued)

Element Purpose

Class icon Defines the shape of the icon Windows displays
when a window belonging to the class is closed.

Class background brush Defines the color and pattern Windows uses to fill
the client area when the window is opened or
painted.

Class menu Specifies the default menu used for any window

in the class that does not explicitly define a menu.

Class styles Defines how to update the window after moving
or resizing, how to process double-clicks of the
mouse, how to allocate space for the display con-
text, and other aspects of the window.

Class extra Specifies the'amount of memory (in bytes) that
Windows should reserve at the end of the class
data structure.

Window extra Specifies the amount of memory (in bytes) that
Windows should reserve at the end of any
window structure an application creates with this
class.

The following sections describe the elements of a window class and explain the
default values for these elements if no explicit value is given when the class is
registered.

Class Name

Every window class needs a class name. The class name distinguishes one class
from another. An application assigns a class name to the class by setting the
IpszClassName field of the WNDCLASS structure to the address of a null-
terminated string that contains the name.

In the case of an application global class, the class name must be unique to distin-
guish it from other application global classes. If an application registers another
application global class with the name of an existing application global class, the
RegisterClass function returns FALSE, indicating failure. A conventional
method for ensuring this uniqueness is to include the application name in the
name of the application global class.

The class name must be unique among all the classes registered by an applica-
tion. An application cannot register an application local class and an application
global class with the same class name.

1-12 Reference — Volume 1

Window-Function Address

Every class needs a window-function address. The address defines the entry
point of the window function that is used to process all messages for windows in
the class. Windows passes messages to the function when it wants the window to
carry out tasks, such as painting its client area or responding to input from the
user. An application assigns a window function address by copying the address
to the IpfaWndProc field of the WNDCLASS structure. The window function
must be exported in the module-definition (.DEF) file. See Chapter 10, “Module-
Definition Statements,” in Reference, Volume 2, for more information on ex-
porting functions.

For details about the window function, see Section 1.2.13, “Window Function.”

Instance Handle

Every window class needs an instance handle to identify the application that
registered the class. As a multitasking system, Windows lets several applications
run at the same time, so it needs instance handles to keep track of all applica-
tions. Windows assigns a unique handle to each copy of a running application.

Windows passes an instance handle to an application when the applicatiofl first
begins operation. The application assigns this instance handle to the class by
copying it to the hInstance field of the WNDCLASS structure.

Class Cursor.

The class cursor defines the shape of the cursor when the cursor is in the client
area of a window in the class. Windows automatically sets the cursor to the given
shape as soon as the cursor enters the window’s client area, and ensures that the
cursor keeps that shape while it remains in the client area. To assign a cursor
shape to a window class, an application typically loads the shape from the appli-
cation’s resources by using the LoadCursor function, and then assigns the
returned cursor handle to the hCursor field of the WNDCLASS structure.

Windows does not require a class cursor. If a class cursor is not defined,
Windows assumes that the window will set the cursor shape each time the cursor
moves into the window.

Class Icon

The class icon defines the shape of the icon used when the window of the given

class is minimized. To assign an icon to a window class, an application typically
loads the icon from the application’s resources by using the LoadIcon function,
and then assigns the returned icon handle to the hlcon field of the WNDCLASS
structure.

Windows does not require a class icon. If a class icon is not defined, Windows
assumes the application will draw the icon whenever the window is minimized.

Window Manager Interface Functions 1-13

In this case, Windows sends appropriate messages to the window procedure,
requesting that the icon be painted.

Class Background Brush

A class background brush is the brush used to prepare the client area of a
window for subsequent drawing by the application. Windows uses the brush

to fill the client area with a solid color or pattern, thereby removing all previous
images from that location whether they belonged to the window or not.

To assign a background brush to a class, an application typically creates a brush
by using the appropriate functions from GDI, and then assigns the returned brush
handle to the hbrBackground field of the WNDCLASS structure.

Instead of creating a brush, an application can use a standard system color by
setting the field to one of the following color values:

= COLOR_ACTIVECAPTION

= COLOR_APPWORKSPACE

= COLOR_BACKGROUND

® COLOR_BTNFACE

= COLOR_BTNSHADOW

m COLOR_BTNTEXT

m COLOR_CAPTIONTEXT

8 COLOR_GRAYTEXT

= COLOR_HIGHLIGHT

= COLOR_HIGHLIGHTTEXT

s COLOR_INACTIVECAPTION
s COLOR_MENU

= COLOR_MENUTEXT

m COLOR_SCROLLBAR

s COLOR_WINDOW

s COLOR_WINDOWFRAME

= COLOR_WINDOWTEXT

To use a standard system color, the application must increase the background-

color value by one. For example, COLOR_BACKGROUND + 1 is the system
background color.

1-14 Reference — Volume 1

Class Menu

A class menu defines the default menu to be used by the windows in the class if
no explicit menu is given when the windows are created. A menu is a list of com-
mands that appears at the top of a window, under the title bar, from which a user
can select actions for the application to carry out. To assign a menu to a class, an
application sets the IpszMenuName field of the WNDCLASS structure to the
address of a null-terminated string that contains the resource name of the menu.
The menu is assumed to be a resource in the given application. Windows auto-
matically loads the menu when it is needed. Note that if the menu resource is
identified by an integer and not by a name, the IpszMenuName field can be set
to that integer value by applying the MAKEINTRESOURCE macro before
assigning the value.

Windows does not require a class menu. If a menu is not given, Windows as-
sumes that the windows in the class have no menu bars. Even if no class menu is
given, an application can still define a menu bar for a window when it creates the
window.

Windows does not allow menu bars with child windows. If a menu is given and a
child window is created using the class, the menu is ignored.

1.2.8 Class Styles

The class styles define additional elements of the window class. Two or more
styles can be combined by using the bitwise OR operator. Table 1.2 lists the class
styles:

Table1.2 Window Class Styles

Style Description

CS_BYTEALIGNCLIENT Aligns the window’s client area on a byte
boundary (in the x direction).

CS_BYTEALIGNWINDOW Aligns the window on a byte boundary (in the x
direction).

CS_CLASSDC Allocates one display context to be shared by
all windows in the class.

CS_DBLCLKS Sends double-click messages to the window

function.

Window Manager Interface Functions 1-15

Table 1.2 Window Class Styles (continued)

Style Description

CS_GLOBALCLASS Specifies that the window class is an applica-
tion global class. An application global class is
created by an application or library and is avail-
able to all applications. The class is destroyed
when the application or library that created the
class terminates; it is essential, therefore, that
all windows created with the application global
class be closed before this occurs.

CS_HREDRAW Requests that the entire client area be redrawn
if a movement or adjustment to the size
changes the width of the client area.

CS_NOCLOSE Inhibits the close option on the System menu.

CS_OWNDC Allocates a unique display context for each
window in the class.

CS_PARENTDC Gives the parent window’s display context to

the window class.

CS_SAVEBITS Saves the portion of the screen image that is ob-
scured by a window; Windows uses the saved
bitmap to re-create the screen image when the
window is removed. Windows displays the bit-
map at its original location and does not send
WDM_PAINT messages to windows which had
been obscured by the window if the memory
used by the bitmap has not been discarded and
if other screen actions have not invalidated the
stored image.

CS_VREDRAW Requests that the entire client area be redrawn
if a movement or adjustment to the size
changes the height of the client area.

To assign a style to a window class, an application assigns the style value to the
style field of the WNDCLASS structure.

1-16 Reference — Volume 1

1.2.9 Internal Data Structures

Windows maintains internal data structures for each window class and window.
These structures are not directly accessible to applications but can be examined
and modified by using the following functions:

m GetClassInfo

® GetClassLong

m GetClassName

m GetClassWord

® GetWindowLong
m GetWindowWord
m SetClassLong

B SetClassWord

m SetWindowLong
u SetWindowWord

Section 1.2.10 describes some ways in which a window class or window can be
modified.

1.2.10 Window Subclassing

A subclass is a window or set of windows that belong to the same window class,
and whose messages are intercepted and processed by another window function
(or functions) before being passed to the class window function.

To create the subclass, the SetWindowLong function is used to change the
window function associated with a particular window, causing Windows to call
the new window function instead of the previous one. Any messages not
processed by the new window function must be passed to the previous window
function by calling the CallWindowProc function. This allows Windows to
create a chain of window functions. The address of the previous window function
can be retrieved by using the GetWindowLong function before using SetWin-
dowLong.

Similarly, the SetClassLong function changes the window function associated
with a window class. Any window that is subsequently created with that class
will be associated with the replacement window function for that class, as will
the window whose handle is passed to SetClassLong. Other existing windows
that were previously created with the class are not affected, however.

Window Manager Interface Functions 1-17

When you subclass a window or class of windows, you must export the replace-
ment window procedure in your application’s definition file, and you must create
the address of the procedure which you pass to SetWindowLong or Set-
ClassLong by calling the MakeProcInstance function.

NOTE An application should not attempt to create a window subclass for standard
Windows controls such as combo boxes and buttons.

1.2.11 Redrawing the Client Area

When a window is moved, Windows automatically copies the contents of the
client area to the new location. This saves time because a window does not have
to recalculate and redraw the contents of the client area as part of the move. If the
window moves and changes size, Windows copies only as much of the previous
client area as is needed to fill the new location. If the window increases in size,
Windows copies the entire client area and sends a WM_PAINT message to the
window to fill in the newly exposed areas. When a window is moved, Windows
assumes the contents of the client area remain valid and can be copied without
modification to the new location.

For some windows, however, the contents of the client area are not valid after a
move, especially if the move includes a change in size. For example, a clock
application whose window must always contain the complete image of the clock
has to redraw the window anytime the window changes size, and has to update
the time after the move. To prevent the windows from copying the previous con-
tents of the client area, a window should specify the CS_VREDRAW and
CS_HREDRAW styles in the window class.

1.2.12 Class and Private Display Contexts

A display context is a special set of values that applications use for drawing in
the client area of their windows. Windows requires a display context for each

window on the system display, but allows some flexibility in how that display
context is stored and treated by the system.

If no explicit display-context style is given, Windows assumes that each window
will use a display context retrieved from a pool of contexts maintained by
Windows. In such cases, each window must retrieve and initialize the display
context before painting, and then free it after painting.

In order not to retrieve a display context each time it wants to paint in a window,
an application can specify the CS_OWNDC style for the window class. This
class style directs Windows to create a private display context, that is, to allocate
a unique display context for each window in the class. The application need only
retrieve the context once, and then use it for all subsequent painting. Although
the CS_OWNDOC style is convenient, it must be used carefully because each dis-
play context occupies approximately 800 bytes of memory in the GDI heap.

1-18 Reference — Volume 1

By specifying the CS_CLASSDC style, an application can have some of the con-
venience of a private display context without allocating a separate display con-
text for each window. The CS_CLASSDC style directs Windows to create a
single class display context, that is, one display context to be shared by all
windows in the class. An application need only retrieve the display context for a
window; then as long as no other window in the class retrieves that display con-
text, the window can continue to use the context.

Similarly, by specifying the CS_PARENTDC style, an application can create
child windows that inherit the device context of their parent.

1.2.13 Window Function

A window function processes all messages sent to a window in a given class.
Windows sends messages to a window function when it receives input from the
user that is intended for the given window, or when it needs information or the
procedure to carry out some action on its window, such as painting in the client
area.

A window function receives input messages from the keyboard, mouse, and
timer. It receives requests for information, such as a request for the window title.
It receives reports of changes made to the system by other windows, such as a
change to the WIN.INI file. It receives messages that give it an opportunity to
modify the standard system response to certain actions, such as an opportunity to
adjust a menu before it is displayed. It receives requests to carry out some action
on its window or client area, such as a request to update the client area. And a
window function receives information about its status in relation to other
windows, such as losing access to the keyboard or becoming the active window.

Most of the messages a window function receives are from Windows, but it can
also receive messages from other windows, including windows it owns. These
messages can be requests for information or notification that a given event has oc-
curred within another window.

A window function continues to receive messages from the system and possibly
other windows in the system until it, or the window function of a parent window,
or the system destroys the window. Even in the process of being destroyed, the
window function receives additional messages that give it the opportunity to
carry out any clean-up tasks before terminating. But once the window is de-
stroyed, no more messages are passed to the function for that particular window.
If there is more than one window of the class, however, the window function con-
tinues to receive messages for the other windows until they, too, are destroyed.

A window function defines how a given window actually behaves; that is, it de-
-fines what response the window makes to commands from the user or system.
The messages the window function receives from the system contain information
that the function knows; for example, the user clicked the scroll bar or selected
the Open command in the File menu, or double-clicked in the client area. The
window function must examine these messages and determine what action, if

Window Manager Interface Functions 1-19

any, to take. For example, if the user clicks the scroll bar, the window function
may scroll the contents of the client area. Windows provides detailed information
about what happens and provides some tools to carry out tasks, such as drawing
and scrolling, but the window function must carry out the actual task.

A window function can also choose not to respond to a given message. If it does
not respond, the function must give the system the opportunity to respond by
passing the message to the DefWindowProc function. This function carries out
default actions based on the given message and its parameters. Many messages,
especially nonclient-area messages, must be processed, so the DefWindowProc
function is required in all window functions.

A window function also receives messages that are really intended to be
processed by the system. These messages, called nonclient-area messages, in-
form the function either that the user has carried out some action in a nonclient
area of the window, such as clicking the title bar, or that some information about
the window is required by the system to carry out an action, such as for moving
or adjusting the size of the window. Although Windows passes these messages to
the window function, the function should pass them to the DefWindowProc
function and not attempt to process them. In any case, the window procedure
must not ignore the message or return without passing it to DefWindowProc.

Window Messages

A window message is a set of values that Windows sends to a window function
when it requests some action or informs the window of input. Every message con-
sists of four values: a handle that identifies the window, a message identifier, a
16-bit message-specific value, and a 32-bit message-specific value. These values
are passed as individual parameters to the window function. The window func-
tion then examines the message identifier to determine what response to make
and how to interpret the 16- and 32-bit values.

Windows has a wide variety of messages that it or applications can send to a
window function. Most messages are sent to a window as a result of a given func-
tion being executed or as input from the user.

To send a message to a window procedure, Windows expects the window func-
tion to have four parameters and use the Pascal calling convention. The follow-
ing illustrates the window procedure syntax:

LONG FAR PASCAL WndProc(hWnd, wMsg, wParam, IParam)
HWND /hWnd;

WORD wMsg;

WORD wParams;

DWORD [Param;

The hWnd parameter identifies the window receiving the message; the wMsg
parameter is the message identifier; the wParam parameter is 16 bits of addi-
tional message-specific information; and /Param is 32 bits of additional informa-
tion. The window procedure must return a 32-bit value that indicates the result of

1-20 Reference — Volume 1

message processing. The possible return values depend on the actual message

sent.

Windows expects to make an intersegment call to the window function, so the
function must be declared with the FAR attribute. The window-function name
must be exported by including it in an EXPORTS statement in the application’s

module-definition file.

Default Window Function

The DefWindowProc function is the default message processor for window func-
tions that do not or cannot process some of the messages sent to them. For most
window functions, the DefWindowProc function carries out most, if not all, pro-
cessing of nonclient-area messages. Those are the messages that signify actions

to be carried out on parts of the window other than the client area. Table 1.3 lists
the messages DefWindowProc processes and the default actions for each:

Table 1.3

Default Actions for Messages

Message

Default Action

WM_ACTIVATE
WM_CANCELMODE

WM_CLOSE
WM_CTLCOLOR
WM_ERASEBKGND

WM_GETTEXT
WM_GETTEXTLENGTH

WM_ICONERASEBKGND
WM_NCACTIVATE

WM_NCCALCSIZE
WM_NCCREATE

WM_NCDESTROY

Sets or kills the input focus.

Terminates internal processing of standard scroll
bar input, terminates internal menu processing,
and releases mouse capture.

Calls the DestroyWindow function.
Sets the background and text color and returns a

- handle to the brush used to fill the control back-

ground.

Fills the client area with the color and pattern
specified by the class brush, if any.

Copies the window title into a specified buffer.

Returns the length (in characters) of the window
title.

Fills the icon client area with the background
brush of the parent window.

Activates or deactivates the window and draws
the icon or title bar to show the new state.

Computes the size of the client area.

Initializes standard scroll bars, if any, and sets the
default title for the window.

Frees any space internally allocated for the
window title.

Window Manager Interface Functions 1-21

Table 1.3

Default Actions for Messages (continued)

Message

Default Action

WM_NCHITTEST

WM_NCLBUTTONDBLCLK

WM_NCLBUTTONDOWN

WM_NCLBUTTONUP

WM_NCMOUSEMOVE

WM_NCPAINT

WM_PAINT

WM_PAINTICON

WM_QUERYENDSESSION
WM_QUERYOPEN
WM_SETREDRAW

WM_SETTEXT
WM_SHOWWINDOW
WM_SYSCHAR

WM_SYSCOMMAND
WM_SYSKEYDOWN

Determines what part of the window the mouse is
in.

Tests the given point to determine the location of
the mouse and, if necessary, generates additional
messages.

Determines whether the left mouse button was
pressed while the mouse was in the nonclient area
of a window.

Tests the given point to determine the location of
the mouse and, if necessary, generates additional
messages.

Tests the given point to determine the location of
the mouse and, if necessary, generates additional
messages.

Paints the nonclient parts of the window.

Validates the current update region, but does not
paint the region.

Draws the window class icon when a window is
minimized.

Returns TRUE.

Returns TRUE.

Forces an immediate update of information about
the clipping area of the complete window.

Sets and displays the window title.
Opens or closes a window.

Generates a WM_SYSCOMMAND message for
menu input.
Carries out the requested system command.

Examines the given key and generates a
WM_SYSCOMMAND message if the key is
either TAB or ENTER.

1.2.14 Window Styles

Windows provides several different window styles that can be combined to form
different kinds of windows. The styles are used in the CreateWindow function
when the window is created.

1-22 Reference — Volume 1

Overlapped Windows

An overlapped window is always a top-level window. In other words, an over-
lapped window never has a parent window. It has a client area, a border, and a
title bar. It can also have a System menu, minimize/maximize boxes, scroll bars,
and a menu, if these items are specified when the window is created. For
windows used as a main interface, the System menu and minimize/maximize
boxes are strongly recommended.

Every overlapped window can have a corresponding icon that Windows displays
when the window is minimized. A minimized window is not destroyed. It can be
opened again by restoring the icon. An application minimizes a window to save
screen space when several windows are open at the same time.

You create an overlapped window by using the WS_OVERLAPPED or
WS_OVERLAPPEDWINDOW style with the CreateWindow function. An
overlapped window created with the WS_OVERLAPPED style always has a
caption and a border. The WS_OVERLAPPEDWINDOW style creates an over-
lapped window with a caption, a thick-frame border, a system menu, and min-
imize and maximize boxes.

Owned Windows

An owned window is a special type of overlapped window. Every owned
window has an owner. This owner must also be an overlapped window. Being
owned forces several constraints on a window:

®m Anowned window will always be “above” its owner when the windows are
ordered. Attempting to move the owner above the owned window will cause
the owned window to also change position to ensure that it will always be
above its owner.

®m Windows automatically destroys an owned window when it destroys the
window’s owner.

® An owned window is hidden when its owner is minimized.

An application creates an owned window by specifying the owner’s window
handle as the ”WndParent parameter of the CreateWindow function when creat-
ing a window that has the WS_OVERLAPPED style.

Dialog boxes are owned windows by default. The function that creates the dialog
box receives the handle of the owner window as its AWWndParent parameter.

Pop-up Windows

Pop-up windows are another special type of overlapped window. The main differ-
ence between a pop-up window and an overlapped window is that an overlapped
window always has a caption, while the caption bar is optional for a pop-up
window. Like overlapped windows, pop-up windows can be owned.

Window Manager Interface Functions 1-23

You create a pop-up window by using the WS_POPUP window style with the
CreateWindow function. A pop-up window can be opened and closed by using
the ShowWindow function.

Child Windows

A child window is the window style used for windows that are confined to the
client area of a parent window. Child windows are typically used to divide the
client area of a parent window into different functional areas.

You create a child window by using the WS_CHILD window style with the
CreateWindow function. A child window can be shown and hidden by using the
ShowWindow function.

Every child window must have a parent window. The parent window can be an
overlapped window, a pop-up window, or even another child window. The
parent window relinquishes a portion of its client area to the child window, and
the child window receives all input from this area. The window class does not
have to be the same for each of the child windows in the parent window. This
means an application can fill a parent window with child windows that look
different and carry out different tasks.

A child window has a client area, but it does not have any other features unless
these are explicitly requested. An application can request a border, title bar, min-
imize/maximize boxes, and scroll bars for a child window. In most cases, the
application designs its own features for the child window.

Although not required, every child window should have a unique integer identi-
fier. The identifier, given in the menu parameter of the CreateWindow function
in place of a menu, helps identify the child window when its parent window has
many other child windows. The child window should use this identifier in any
messages it sends to the parent window. This is the way a parent window with
several child windows can identify which child window is sending the message.

Windows always positions the child window relative to the upper-left corner of
the parent window’s client area. The coordinates are always client coordinates.
(For information about mapping, see Section 2.5, “Mapping Functions.”) If all or
part of a child window is moved outside the visible portion of the parent
window’s client area, the child window is clipped; that is, the portion outside the
parent window’s client area is not displayed. '

A child window is an independent window that receives its own input and other
messages. Input intended for a child window goes directly to the child window
and is not passed through the parent window. The only exception is if input to the
child window has been disabled by the EnableWindow function. In this case,
Windows passes any input that would have gone to the child window to the
parent window instead. This gives the parent window an opportunity to examine
the input and enable the child window, if necessary.

1-24 Reference — Volume 1

Actions that affect the parent window can also affect the child window. The fol-
lowing is a list of actions affecting parent windows that can affect child windows:

Parent Window Child Window
Shown Shown after the parent window.
Hidden Hidden prior to the parent window being closed. A

- child window can be visible only when the parent
window is visible.

Destroyed Destroyed prior to the parent window being de-

stroyed.

Moved Moved with the parent window’s client area. The
child window is responsible for painting after the
move.

Increased in size or Paints any portions of the parent window that have
maximized been exposed as a result of the increased size of the
client area.

Windows does not automatically clip a child window from the parent window’s
client area. This means the parent window will draw over the child window if it
carries out any drawing in the same location as the child window. Windows does
clip the child window from the parent window’s client area if the parent window
has a WS_CLIPCHILDREN style. If the child window is clipped, the parent
window cannot draw over it.

A child window can overlap other child windows in the same client area. Two
child windows of the same parent window may draw in each other’s client area
unless one child window has a WS_CLIPSIBLINGS style. Sibling windows are
child windows that share the same parent window. If the application specifies
this style for a child window, any portion of that child’s sibling window that lies
within this window will be clipped.

If a window has either the WS_CLIPCHILDREN or WS_CLIPSIBLINGS style,
a slight loss in performance occurs.

1.2.15 Multiple Document Interface Windows

Windows multiple document interface (MDI) provides applications with a stand-
ard interface for displaying multiple documents within the same instance of an
application. An MDI application creates a frame window which contains a client
window in place of its client area. An application creates an MDI client window
by calling CreateWindow with the class MDICLIENT and passing a CLIENT-
CREATESTRUCT data structure as the function’s [pParam parameter. This
client window in turn can own multiple child windows, each of which displays a

Window Manager Interface Functions 1-25

1.2.16 Title Bar

separate document. An MDI application controls these child windows by sending
messages to its client window.

For more information on the multiple document interface, see the Guide to
Programming.

The title bar, a rectangle at the top of the window, provides space for the window
title or name. An application defines the window title when it creates the
window. It can also change this name anytime by using the SetWindowText
function. If a window has a title bar, Windows lets the user use the mouse to
move the window.

1.2.17 System Menu

The System menu, identified by an icon at the left end of the title bar, is a pop-up
menu that contains the system commands. The system commands are commands
selected by the user to direct Windows to carry out actions on the window, such
as moving and closing it.

If a System menu or close box is desired for a window, the WS_SYSMENU and
WS_CAPTION window styles must be specified when the window is created.

1.2.18 Scroll Bars

1.2.19 Menus

The horizontal and vertical scroll bars, bars on the right and lower sides of a
window, let a user scroll the contents of the client area. Windows sends scroll re-
quests to a window as WM_HSCROLL and WM_VSCROLL messages. If the
window permits scrolling, the window function must process these messages.

A window can have one or both scroll bars. To create a window with a scroll bar,
the application must specify the WS_HSCROLL or WS_VSCROLL window
style when the window is created.

A menu is a list of commands from which the user can select using the mouse or
the keyboard. When the user selects an item, Windows sends a corresponding
message to the window function to indicate which command was selected.
Windows provides two types of menus: menu bars (sometimes called static
menus) and pop-up menus.

A menu bar is a horizontal menu that appears at the top of a window and below
the title bar, if one exists. Any window except a child window can have a menu
bar. If an application does not specify a menu when it creates a window; the
window receives the default menu bar (if any) defined by the window class.

1-26 Reference — Volume 1

Pop-up menus contain a vertical list of items and are often displayed when a user
selects a menu-bar item. In turn, a pop-up menu item can display another pop-up
menu. Also, a pop-up menu can be “floating.” A floating pop-up menu can ap-
pear anywhere on the screen designated by the application. An application
creates an empty pop-up menu by calling the CreatePopupMenu function, and
then fills in the menu using the AppendMenu and InsertMenu functions. It dis-
plays the pop-up menu by calling TrackPopupMenu.

Individual menu-items can be created or modified with the MF_OWNERDRAW
style, indicating that the item is an owner-draw item. In this case, the owner of
the menu is responsible for drawing all visual aspects of the menu item, includ-
ing checked, grayed, and highlighted states. When the menu is displayed for the
first time, the window that owns the menu receives a WM_MEASUREITEM
message. The [Param parameter of this message points to a MEASURE-
ITEMSTRUCT data structure. The owner then fills in this data structure with
the dimensions of the item and returns. Windows uses the information in the data
-structure to determine the size of the item so that Windows can appropriately de-
tect the user’s interaction with the item.

Windows sends the WM_DRAWITEM message whenever the owner of the
menu must update the visual appearance of the item. Unlike other owner-draw
controls, however, the owner of the menu item does not receive the
WM_DELETEITEM message when the menu item is removed from the menu. A
top-level menu item cannot be an owner-draw item.

When the application calls AppendMenu, InsertMenu, or ModifyMenu to add
an owner-draw menu item to a menu or to change an existing menu item to be an
owner-draw menu item, the application can supply a 32-bit value as the
IpNewltem parameter to the function. The application can use this value to main-
tain additional data associated with the item. This value is available to the appli-
cation as the itemData field of the structures pointed to by the /Param parameter
of the WM_MEASUREITEM and WM_DRAWITEM messages. For example, if
an application were to draw the text in a menu item using a specific color, the 32-
bit value could contain a pointer to a string. The application could then set the
text color before drawing the item when it received the WM_DRAWITEM
message.

1.2.20 Window State

The window state can be opened or closed (iconic), hidden or visible, and
enabled or disabled. The initial state of a window can be set by using the follow-
ing window styles:

» WS_DISABLED

s WS_MINIMIZE

s WS_MAXIMIZE

Window Manager Interface Functions 1-27

m WS_VISIBLE

Windows creates windows that are initially enabled for input, that is, windows
that can start receiving input messages immediately. In some cases, an applica-
tion may need to disable input to a new window. It can disable input by specify-
ing the WS_DISABLED window style.

A new window is not displayed until an application opens it by using the Show-
Window function or specifies the WS_VISIBLE window style when it creates
the window. For overlapped windows, the WS_ICONIC window style creates a
window that is minimized initially.

1.2.21 Life Cycle of a Window

Because the purpose of any window is to let the user enter data or to let the appli-
cation display information, a window starts its life cycle when the application has
a need for input or output. A window continues its life cycle until there is no
longer a need for it, or the application is terminated. Some windows, such as the
window used for the application’s main user interface, last the life of the applica-
tion. Other windows, such as a window used as a dialog box, may last only a few
seconds. '

The first step in a window’s life cycle is creation. Given a registered window
class with a corresponding window function, the application uses the CreateWin-
dow function to create the window. This function directs Windows to prepare in-
ternal data structures for the window and to return a unique integer value, called

a window handle, that the application can use to identify the window in sub-
sequent function calls.

The first message most windows process is WM_CREATE, the window-creation
message. Again, the CreateWindow function sends this message to inform the
window function that it can now perform any initialization, such as allocating
memory and preparing data files. The wParam parameter is not used, but the
[Param parameter contains a long pointer to a CREATESTRUCT data struc-
ture, whose fields correspond to the parameters passed to CreateWindow.

Both the WM_CREATE and WM_NCCREATE messages are sent directly to the
window function, bypassing the application queue. This means an application
will create a window and process the WM_CREATE message before it enters the
main program loop.

After a window has been created, it must be opened (displayed) before it can be
used. An application can open the window in one of two ways: it can specify the
WS_VISIBLE window style in the CreateWindow function to open the window
immediately after creation, or it can wait until later and call the ShowWindow
function to open the window. When creating a main window, an application
should not specify WS_VISIBLE, but should call ShowWindow from the Win-
Main function with the nCmdShow parameter set to the desired value.

1-28 Reference — Volume 1

When the window is no longer needed or the application is terminated, the
window must be destroyed. This is done by using the Destroy Window function.
DestroyWindow removes the window from the system display and invalidates
the window handle. It also sends WM_DESTROY and WM_NCDESTROY mes-
sages to the window function.

The WM_DESTROY message is usually the last message a window function
processes. This occurs when the DestroyWindow function is called or when a
WM_CLOSE message is processed by the DefWindowProc function. When a
window function receives a WM_DESTROY message, it should free any allo-
cated memory and close any open data files.

The window used as the application’s main user interface should always be the
last window destroyed and should always cause the application to terminate.
When this window receives a WM_DESTROY message, it should call the Post-
QuitMessage function. This function copies a WM_QUIT message to the appli-
cation’s message queue as a signal for the application to terminate when the
message is read from the queue.

1.3 Display and Movement Functions

Display and movement functions show, hide, move, and obtain information
. about the number and position of windows on the screen. The following list
briefly describes each display and movement function:

Function Description
ArrangelconicWindows Arranges minimized (iconic) child windows.

~ BeginDeferWindowPos Initializes memory used by the DeferWindowPos

function.

BringWindowToTop Brings a window to the top of a stack of overlapped
windows.

CloseWindow Hides the specified window or minimizes it.

DeferWindowPos Records positioning information for a window to be
moved or resized by the EndDefer WindowPos
function.

EndDefer WindowPos Positions or sizes several windows simultaneously

based on information recorded by the DeferWin-
dowPos function.

GetClientRect Copies the coordinates of a window’s client area.
GetWindowRect Copies the dimensions of an entire window.

GetWindowText Copies a window caption into a buffer.

Window Manager Interface Functions 1-29

Function

GetWindowTextLength
IsIconic

IsWindowVisible
IsZoomed
MoveWindow
Openlcon
SetWindowPos

SetWindowText
ShowOwnedPopups
ShowWindow

1.4 Input IFunctians

Description

Returns the length (in characters) of the given
window’s caption or text.

Specifies whether a window is open or closed
(iconic).

Determines whether the given window is visible.
Determines whether a window is maximized.
Changes the size and position of a window.
Opens the specified window.

Changes the size, position, and ordering of child or
pop-up windows.

Sets the window caption or text.
Shows or hides all pop-up windows.

Displays or removes the given window.

Input functions disable input from system devices, take control of the system dev-
ices, or define special actions that Windows takes when an application receives
input from a system device. (The system devices are the mouse, the keyboard,
and the timer.) The following list briefly describes each input function:

Function

EnableWindow

GetActiveWindow
GetCapture

GetCurrentTime
GetDoubleClickTime

GetFocus

GetTickCount

Description

Enables and disables mouse and keyboard input
throughout the application.

Returns a handle to the active window.

Returns a handle to the window with the mouse
capture.

Retrieves the current Windows time.

Retrieves the current double-click time for the
mouse.

Retrieves the handle of the window that currently
owns the input focus.

Returns the number of timer ticks recorded since the
system was booted.

1-30 Reference — Volume 1

I —

Function Description

IsWindowEnabled Determines whether the specified window is enabled
for mouse and keyboard input.

KillTimer Kills the specified timer event.

ReleaseCapture Releases mouse input and restores normal input
processing.

SetActiveWindow Makes a window the active window.

SetCapture Causes mouse input to be sent to a specified window.

SetDoubleClickTime Sets the double-click time for the mouse.

SetFocus Assigns the input focus to a specified window.

SetSysModalWindow Makes the specified window a system modal
window.

SetTimer Creates a system-timer event.

SwapMouseButton Reverses the meaning of left and right mouse
buttons.

1.5 Hardware Functions

Hardware functions alter the state of input devices and obtain state information.
Windows uses the mouse and the keyboard as input devices. The following list
briefly describes each hardware function:

Function Description

EnableHardwareInput Enables or disables mouse and keyboard input
throughout the application.

GetAsyncKeyState Returns interrupt-level information about the key
state.

GetInputState Returns TRUE if there is mouse or keyboard input.

GetKBCodePage Determines which OEM/ANSI tables are loaded.

GetKeyboardState Copies an array that contains the state of keyboard
keys.

GetKeyNameText Retrieves a string containing the name of a key from

a list maintained by the keyboard driver.

GetKeyState Retrieves the state of a virtual key.

Window Manager Interface Functions 1-31

Function

MapVirtualKey

OemKeyScan
SetKeyboardState

VkKeyScan

1.6 Painting Functions

Description

Accepts a virtual-key code or scan code for a key
and returns the corresponding scan code, virtual-key
code, or ASCII value.

Maps OEM ASCII codes 0 through OxOFF into the
OEM scan codes and shift states.

Sets the state of keyboard keys by altering values in
an array.

Translates an ANSI character to the corresponding
virtual-key code and shift state for the current
keyboard.

Painting functions ptepare a window for painting and carry out some useful
general-purpose graphics operations. Although all the paint functions are specifi-
cally intended for the system display, some can be used for other output devices.
The following list briefly describes each painting function:

Function
BeginPaint
DrawFocusRect
Drawlcon
DrawText
EndPaint
ExcludeUpdateRgn
FillRect
FrameRect
GetDC
GetUpdateRect

GetUpdateRgn
GetWindowDC
GrayString

InvalidateRect

Description

Prepares a window for painting.

Draws a rectangle in the style used to indicate focus.
Draws an icon.

Draws characters of a specified string.

Marks the end of window repainting.

Prevents drawing within invalid areas of a window.

Fills a given rectangle by using the specified brush.

. Draws a border for the given rectangle.

Retrieves the display context for the client area.

Copies the dimensions of a window region’s bound-’
ing rectangle.

Copies a window’s update region.
Retrieves the display context for an entire window.
Writes the characters of a string using gray text.

Marks a rectangle for repainting.

1-32 Reference — Volume 1

Function Description

invalidateRgn Marks a region for repainting.

InvertRect Inverts the display bits of the specified rectangle.

ReleaseDC Releases a display context.

UpdateWindow Notifies the application when parts of a window
need redrawing.

ValidateRect Releases the specified rectangle from repainting.

ValidateRgn Releases the specified region from repainting.

1.6.1 How Windows Manages the Display

The system display is the principal display device for all applications running
with Windows. All applications are free to display some form of output on the
system display, but since many applications can run at one time, applications are
not entitled to the entire system display. The complete system display must be
shared. Windows shares the system display by carefully managing the access that
applications have to it. Windows ensures that applications have space to display
output but do not draw in the space reserved for other applications.

Windows manages the system display by using the display context type. The dis-
play context is a special device context that treats each window as a separate dis-
play surface. An application that retrieves a display context for a specific
window has complete control of the system display within that window, but can-
not access or paint over any part of the display outside the window. With a dis-
play context, an application can use GDI painting functions, as well as the output
functions described in this section, to draw in the given window.

1.6.2 Display Context Types

There are four types of display contexts: common, class, private, and window.
The common, class, and private display contexts permit drawing in the client
area of a given window. The window display context permits drawing anywhere
in the window. When a window is created, Windows assigns a common, class, or
private display context to it, based on the type of display context specified in tha
window’s class style. :

Common Display Context

A common display context is the default context for all windows. Windows as-
signs a common display context to the window if a display-context type is not
explicitly specified in the window’s class style.

Window Manager Interface Functions 1-33

A common display context permits drawing in a window’s client area, but it is
not immediately available for use by a window. A common display context must
be retrieved from a cache of display contexts before a window can carry out any
drawing in its client area. The GetDC or BeginPaint function retrieves the dis-
play context and returns a handle to the context. The handle can be used with
GDI functions to draw in the client area of the given window. After drawing is
complete, the context must be returned to the cache by using the ReleaseDC or
EndPaint function. After the context is released, drawing cannot occur until
another display context is retrieved.

When a common display context is retrieved, Windows gives it default selections
for pen, brush, font, clipping area, and other attributes. These attributes define the
tools currently available to carry out the actual drawing. Table 1.4 lists the de-
fault selections for a common display context:

Table 1.4 Defaults for a Display Context

Attribute Default

Background color White

Background mode OPAQUE

Bitmap No default.

Brush WHITE_BRUSH

Brush origin 0,0)

Clipping region Entire client area with the update region clipped as ap-
propriate. Child and pop-up windows in the client area
may also be clipped.

Color palette DEFAULT_PALETTE

Current pen position
Device origin
Drawing mode

Font

Intercharacter spacing
Mapping mode

Pen

Polygon-filling mode
Relative-absolute flag
Stretching mode

Text color

Viewport extent

Viewport origin

0,0)
Upper-left corner of client area.
R2_COPYPEN

SYSTEM_FONT (SYSTEM_FIXED_FONT for appli-
cations written to run with Windows versions prior to
3.0)

0

MM_TEXT
BLACK_PEN
ALTERNATE
ABSOLUTE
BLACKONWHITE
Black

(1,1

©00)

1-34 Reference — Volume 1

Table1.4 Defaults for a Display Context (continued)

Attribute Default
Window extents (1,1
Window origin 0,0)

An application can modify the attributes of the display context by using the selec-
tion functions and display-context attribute functions. For example, applications
typically change the selected pen, brush, and font.

When a common display context is released, the current selections, such as map-
ping mode and clipping area, are lost. Windows does not preserve the previous
selections of a common display context since these contexts are shared and
Windows has no way to guarantee that the next window to use a given common
display context will be the last window to use that context. Applications that
modify the attributes of a common display context must do so each time another
context is retrieved.

Class Display Context

A window has a class display context if the window class specifies the
CS_CLASSDC style. A class display context is shared by all windows in a given
class. A class display context is not part of the display context cache. Instead,
Windows specifically allocates a class context for sole use by the window class.

A class display context must be retrieved before it can be used, but it does not
‘have to be released after use. As long as only one window from the class uses the
context, the class display context can be kept and reused. If another window in
the class needs to use the context, that window must retrieve it before any draw-
ing occurs. Retrieving the context sets the correct origin and clipping for the new
window and ensures that the context will be applied to the correct window. A
handle to the class display context can be retrieved by using the GetDC or Begin-
Paint function. The ReleaseDC and EndPaint functions have no effect on the
class display context.

A class display context is given the same default selections as a common display
context when the first window of the class is created (see Table 1.4, “Defaults for
a Display Context”). These selections can be modified at any time. Windows pre-
serves all new selections made for the class display context, except for the clip-
ping region and device origin, which are adjusted for the current window when
the context is retrieved. Otherwise, all other attributes remain unchanged. This
means a change made by one window applies to all windows that subsequently
use the context.

Window Manager Interface Functions 1-35

NOTE Changing the mapping mode of a class display context may have an undesirable ef-
fect on how a window’s background is erased. For more information, see Section 1.6.7,
“Window Background,” and Section 2.5, “Mapping Functions.”

Private Display Context

A window has a private display context if the window class specifies the
CS_OWNDC style. A private display context is used exclusively by a given
window. A private display context is not part of the display context cache. In-
stead, Windows specifically allocates the context for sole use by the window.

A private display context needs to be retrieved only once. Thereafter, it can be
kept and used any number of times by the window. Windows automatically up-
dates the context to reflect changes to the window, such as moving or sizing. A
handle to a private display context can be retrieved by using the GetDC or Begin-
Paint function. The ReleaseDC and EndPaint functions have no effect on the
private display context.

A private display context is given the same default selections as a common dis-
play context when the window is created (see Table 1.4, “Defaults for a Display
Context”). These selections can be modified at any time. Windows preserves any
new selections made for the context. New selections, such as clipping region and
brush, remain selected until the window specifically makes a change.

NOTE Changing the mapping mode of a private display context may have an undesirable
effect on how the window’s background is erased. For more information, see Section 1.6.7,
“Window Background,” and Section 2.5, “Mapping Functions.”

Window Display Context

A window display context permits painting anywhere in a window, including the
caption bar, menus, and scroll bars. Its origin is the upper-left corner of the
window, instead of the upper-left corner of the client area.

The GetWindowDC function retrieves a window display context from the same
cache as it does common display contexts. Therefore, a window that uses a
window display context must release it with the ReleaseDC function immedi-
ately after drawing.

Windows always sets the current selections of a window display context to the
same default selections as a common display context and does not preserve any
change the window may have made to these selections (see Table 1.4, “Defaults
for a Display Context”). Windows does not allow private or class window dis-
play contexts, so CS_OWNDC and CS_CLASSDC class styles have no effect on
the window display context.

A window display context is intended to be used for special painting within a
window’s nonclient area. Since painting in nonclient areas of overlapped
windows is not recommended, most applications reserve a display context for

1-36 Reference — Volume 1

designing custom child windows. For example, an application may use the dis-
play context to draw a custom border around the window. In such cases, the
window usually processes the WM_NCPAINT message instead of passing it on
to the DefWindowProc function. For applications that do not process
WM_NCPAINT messages but still wish to paint in the nonclient area, the
GetSystemMetrics function can be used to retrieve the dimensions of various
parts of the nonclient area, such as the caption bar, menu bar, and scroll bars.

1.6.3 Display-Context Cache

Windows maintains a cache of display contexts that it uses for common and
window display contexts. This cache contains five display contexts, which means
only five common display contexts can be active at any one time. To prevent
more than five from being retrieved, a window that uses a common or window
display context must release that context immediately after drawing.

If a window fails to release a common display context, all five display contexts
may eventually be active and unavailable for any other window. In such a case,
Windows ignores all subsequent requests for a common display context. In the re-
tail version of Windows, the system will appear to be deadlocked, while the de-
bugging version of Windows will undergo a fatal exit, alerting the developer of a
problem.

The ReleaseDC function releases a display context and returns it to the cache.
Class and private display contexts are individually allocated for each class or
window; they do not belong to the cache so they do not need to be released after
use.

1.6.4 Painting Sequence

Windows carries out many operations to manage the system display that affect
the content of the client area. If Windows moves, sizes, or alters the appearance
of the display, the change may affect a given window. If so, Windows marks the
area changed by the operation as ready for updating and, at the next opportunity,
sends a WM_PAINT message to the window so that it can update the window in
the update region. If a window paints in its client area, it must call the Begin-
Paint function to retrieve a handle to a display context, must update the changed
area as defined by the update region, and finally, must call the EndPaint func-
tion to complete the operation.

A window is free to paint in its client area at any time, that is, at times other than
in response to a WM_PAINT message. The only requirement is that it retrieve a
display context for the client area before carrying out any operations.

Window Manager Interface Functions 1-37

1.6.5 WM_PAINT Message

The WM_PAINT message is a request from Windows to a given window to up-
date its display. Windows sends a WM_PAINT message to a window whenever
it is necessary to repaint a portion of an application’s window. When a window
receives a WM_PAINT message, it should retrieve the update region by using
the BeginPaint function, and it should carry out whatever operations are neces-
sary to update that part of the client area.

The InvalidateRect and InvalidateRgn functions do not actually generate
WM_PAINT messages. Instead, Windows accumulates the changes made by
these functions and its own changes while a window processes other messages in
its application queue. Postponing the WM_PAINT message lets a window
process all changes at once instead of updating bits and pieces in time-consuming
individual steps.

A window can require Windows to send a WM_PAINT message by using the
UpdateWindow function. The UpdateWindow function sends the message
directly to the window, regardless of the number of other messages in the applica-
tion queue. UpdateWindow is typically used when a window wants to update its
client area immediately, such as just after the window is created.

Once a window receives a WM_PAINT message, it must call the BeginPaint
function to retrieve the display context for the client area and to retrieve other
information such as the update region and whether the background has been
erased.

Windows automatically selects the update region as the clipping region of the dis-
play context. Since GDI discards (clips) drawing that extends outside the clip-
ping region, only drawing that is in the update region is actually visible. For

more information about the clipping region, see Section 2.8, “Clipping Func-
tions.”

The BeginPaint function empties the update region to prevent the same region
from generating subsequent WM_PAINT messages.

After completing the painting operation, the window must call the EndPaint
function to release the display context.

1.6.6 Update Region

An update region defines the part of the client area that is marked for painting on
the next WM_PAINT message. The purpose of the update region is to save some
applications the time it takes to paint the entire contents of the client area. If only
the part that needs painting is added to the update region, only that part is
painted. For example, if a word changes in the client area of a word-processing
application, only the word needs to be painted, not the entire line of text. This
saves the time it takes the application to draw the text, especially if there are
many different sizes and typefaces.

1-38 Reference — Volume 1

The InvalidateRect and InvalidateRgn functions add a given rectangle or re-
gion to the update region. The rectangle or region must be given in client coordi-
nates. The update region itself is defined in client coordinates. Windows adds its
own rectangles and regions to a window’s update region after operations such as
moving, sizing, and scrolling the window.

The ValidateRect and ValidateRgn functions remove a given rectangle or re-
gion from the update region. These functions are typically used when the
window has updated a specific part of the display in the update region before re-
ceiving the WM_PAINT message.

The GetUpdateRect and GetUpdateRgn functions retrieve the smallest
rectangle that encloses the entire update region. These functions can be used to
compute the current size of the update region to determine if painting is required.

1.6.7 Window Background

The window background is the color or pattern the client area is filled with
before a window begins painting in the client area. Windows paints the back-
ground for a window or gives the window the opportunity to do so by sending a
WM_ERASEBKGND message to the window when the application calls the
BeginPaint function.

The background is important since if not erased, the client area will contain
whatever was originally on the system display before the window was moved
there. Windows erases the background by filling it with the background brush
specified by the window’s class.

Windows applications that use class or private display contexts should be careful
about erasing the background. Windows assumes the background is to be com-
puted by using the MM_TEXT mapping mode. If the display context has any
other mapping mode, the area erased may not be within the visible part of the
client area.

1.6.8 Brush Alignment

Brush alignment is particularly important on the system display where scrolling
and moving are commonplace. A brush is a pattern of bits with a minimum size
of 8-by-8 bits. GDI paints with a brush by repeating the pattern again and again
within a given rectangle or region. If the region is moved by an arbitrary
amount—for example, if the window is scrolled—and the brush is used again to
filled empty areas around the original area, there is no guarantee that the original
pattern and the new pattern will be aligned. For example, if the scroll moves the
original filled area up one pixel, the intersection of the original area and any new
painting will be out of alignment by one pixel, or bit. Depending on the pattern,
this may have a undesirable visual effect.

Window Manager Interface Functions 1-39

To ensure that a brush is aligned after a window is moved, an application must
take the following steps:

1. Call the SelectObject function to select a different brush.
2. Call the SetBrushOrg function to realign the current brush.

3. Call the UnrealizeObject function to realign the origin of the original brush
when it is selected next.

4. Call the SelectObject function to select the original brush.

1.6.9 Painting Rectangular Areas

The FillRect, FrameRect, and InvertRect functions provide an easy way to
carry out painting operations on rectangles in the client area.

The FillRect function fills a rectangle with the color and pattern of a given
" brush. This function fills all parts of the rectangle, including the edges or borders.

The FrameRect function uses a brush to draw a border around a rectangle. The
border width and height is one unit.

The InvertRect function inverts the contents of the given rectangle. On mono-
chrome displays, white pixels become black, and vice versa. On color displays,
the results depend on the method used by the display to generate color. In either
case, calling InvertRect twice with the same rectangle restores the display to its
original colors.

1.6.10 Drawing Icons

The Drawlcon function draws an icon at a given location in the client area. An
icon is a bitmap that a window uses as a symbol to represent an item or concept,
such as an application or a warning.

An icon can be created by using the SDKPaint program, added to an applica-
tion’s resources by using the Resource Compiler, and loaded into memory by
using the LoadIcon function. Applications can also call the CreateIlcon function
to create an icon and can modify a previously loaded or created icon at any time.
An icon resource is in global memory and its handle is the handle to that
memory. An application can free memory used to store an icon created by
Createlcon by calling Deletelcon.

1.6.11 Drawing Formatted Text

The DrawText function formats and draws text within a given rectangle in the
client area. This function provides simple text processing that most applications,
other than word processors, can use to display text. DrawText output is similar

1-40 Reference — Volume 1

to the output generated by a terminal, except it uses the selected font and can clip
the text if it extends outside a given rectangle. DrawText provides many differ-
ent formatting styles. Table 1.5 lists the styles that are available:

Table 1.5 Text Formatting Styles

Value Description

DT_BOTTOM Bottom-justiﬁed (single line only).
DT_CENTER Centered.

DT_EXPANDTABS Expands tab characters into spaces. Otherwise,

tabs are treated as single characters. The number
of spaces depends on the tab stop size specified
by DT_TABSTOP. If DT_TABSTOP is not given,
the default is eight spaces.

DT_EXTERNALLEADING Includes the font external leading in line height.
External leading is not included in the height of a
line of text. (Leading is the space between lines of
text.) If DT_EXTERNALLEADING is not
given, there is no spacing between lines of text.
Depending on the selected font, this means that
characters in different lines may touch or overlap.

DT _LEFT Left-justified. Default.

DT_NOCLIP Draws text without clipping. All text. will be
drawn even if it extends outside the specified
rectangle. The DrawText function is somewhat
faster when DT_NOCLIP is used.

DT_RIGHT Right-justified.

DT_SINGLELINE Single line only. Carriage returns and linefeeds do
not break the line. Default is multiple-line format-
ting.

DT_TABSTOP Sets tab stops. The high-order byte of the wFor-

mat parameter is the number of characters for
each tab. If DT_TABSTOP is not given, the de-
fault tab size is eight spaces.

DT_TOP Top-justified (single line only). Default.
DT_VCENTER Vertically centered (single line only).
DT_WORDBREAK Sets word breaks. Lines are automatically broken

between words if a word would extend past the
edge of the rectangle specified by the IpRect para-
meter. Carriage-return/linefeed sequence also
causes a line break. Word-break characters are
space, tab, carriage return, linefeed, and carriage-
return/linefeed combinations. Applies to
multiple-line formatting only.

Window Manager Interface Functions 1-41

The DrawText function uses the selected font, so applications can draw for-
matted text in other than the system font.

DrawText does not hyphenate, and although it can justify text to the left, right,
or center, it cannot combine justification styles. In other words, it cannot justify
both left and right.

DrawText recognizes a number of control characters and carries out special ac-
tions when it encounters them. Table 1.6 lists the control characters and the re-
spective action:

Table 1.6 DrawText Control Characters

Character (ANSI value) Action

Carriage return(13) Interpreted as a line-break character. The text is
immediately broken and started on the next line
down in the rectangle.

Linefeed(10) Interpreted as a line-break character. The text is
immediately broken and started on the next line
down in the rectangle.

A carriage-return/linefeed character combination
is interpreted as a single line-break character.

Space(32) Interpreted as a word-break character if the
DT_WORDBREAK style is given. If the text is
too long to fit on the current line in the formatting
rectangle, the line is broken at the closest word-
break character to the end of the line.

Tab(9) Expanded into a given number of spaces if the
: DT_EXPANDTABS style is given. The number
of spaces depends on what tab-stop value is given
with the DT_TABSTOP style. The default is eight.

1.6.12 Drawing Gray Text

An application can draw gray text by calling the SetTextColor function to set
the current text color to the COLOR_GRAYTEXT, the solid gray system color
used to draw disabled text. However, if the curent display driver does not support
a solid gray color, this value is set to zero.

The GrayString function is a multiple-purpose function that gives applications
another way to gray text or carry out other customized operations on text or bit-
maps before drawing the result in a client area. To gray text, the function creates
a memory bitmap, draws the string in the bitmap, and then grays the string by
combining it with a gray brush. The GrayString function finally copies the gray
text to the display. An application can intercept or modify each step of this

1-42 Reference — Volume 1

process, however, to carry out custom effects, such as changing the gray brush to
a patterned brush or drawing an icon instead of a string.

If GrayString is used to draw gray text only, GrayString uses the selected font
of the given display context. GrayString sets text color to black. It creates a bit-
map, and then uses the TextOut function to write a given string to the bitmap. It
then uses the PatBIt function and a gray brush to gray the text, and uses the
BitBIt function to copy the bitmap to the client area.

GrayString assumes that the display context for the client area has MM_TEXT
mapping mode. Other mapping modes cause undesirable results.

GrayString lets an application modify this graying procedure in three ways: by
defining an additional brush to be combined with the text before being displayed,
by replacing the call to the TextOut function with a call to an application-sup-
plied function, and by disabling the call to the PatBIt function.

The additional brush is defined as a parameter. This brush is combined with the
text as the text is being copied to the client area by the BitBIt function. The addi-
tional brush is intended to be used to give the text a desired color, since the bit-
map used to draw the text is a monochrome bitmap.

The application-supplied function is also defined as a parameter. If a non-NULL
value is given for the function, GrayString automatically calls the application-
supplied function instead of the TextOut function and passes it a handle to the
display context for the memory bitmap as well as the long pointer and count
passed to GrayString. The function can carry out any operation and interpret the
long pointer and count in any way. For example, a negative count could be used
to indicate that the long pointer points to an icon handle that signals the applica-
tion-supplied function to draw the icon and let GrayString gray and display it.
No matter what type of drawing the function carries out, GrayString assumes it
is successful if the application-supplied function returns TRUE.

GrayString suppresses graying if it receives an ncount parameter equal to —1
and the application-supplied function returns FALSE. This is a way to combine
custom patterns with the text without interference from the gray brush.

1.6.13 Nonclient-Area Painting

Windows sends a WM_NCPAINT message to the window whenever the non-
client area of the window, such as the title bar, menu bar, and window frame,
needs painting. Processing this message is not recommended since a window that
does so must be able to paint all the required parts of the nonclient area for the
window. In other words, a window should pass this message on to the DefWin-
dowProc function for default processing unless the Windows application is creat-
ing a custom nonclient area for a child window.

Window Manager Interface Functions 1-43

1.7 Dialog-Box Functions

Dialog-box functions create, alter, test, and destroy dialog boxes and controls
within dialog boxes. A dialog box is a temporary window that Windows creates
for special-purpose input, and then destroys immediately after use. An applica-
tion typically uses a dialog box to prompt the user for additional information
about a current command selection. The following list briefly describes each

dialog function:

Function

CheckDIgButton
CheckRadioButton

CreateDialog
CreateDialogIndirect

CreateDialogIndirectParam

CreateDialogParam

DefDIgProc

DialogBox
DialogBoxIndirect

DialogBoxIndirectParam

DialogBoxParam
DigDirList

DigDirListComboBox

Description

Places/removes a check, or changes
the state of the three-state button.

Checks a specified button and re-
moves checks from all others.

Creates a modeless dialog box.

Creates a modeless dialog box from a
template.

Creates a modeless dialog box from a
template and passes data to it when it
is created.

Creates a modeless dialog box and
passes data to it when it is created.

Provides default processing for any
Windows messages that a dialog box
with a private window class does not
process.

Creates a modal dialog box.

Creates a modal dialog box from a
template.

Creates a modal dialog box from a
template and passes data to it when it
is created.

Creates a modal dialog box and
passes data to it when it is created.

Fills the list box with names of files
matching a path.

Fills a combo box with names of files
matching a path.

1-44 Reference — Volume 1

Function

DigDirSelect
DIgDirSelectComboBox

EndDialog

GetDialogBaseUnits

GetDIgCtrlID
GetDlgltem
GetDlgltemInt
GetDIgltemText
GetNextDIgGroupltem
GetNextDlgTabItem
IsDialogMessage

IsDIlgButtonChecked
MapDialogRect

SendDIgltemMessage
SetDigltemInt

SetDigltemText

Description

Copies the current selection from a
list box to a string.

Copies the current selection from a
combo box to a string.

Frees resources and destroys
windows associated with a modal
dialog box.

Retrieves the base dialog units used
by Windows when creating a dialog
box. .

Returns the ID value of a control
window.

Retrieves the handle of a dialog item
from the given dialog box.

Translates the control text of an item
into an integer value.

Copies an item’s control text into a
string.

Returns the window handle of the
next item in a group.

Returns the window handle of the
next or previous item.

Determines whether a message is in-
tended for the given dialog box.

Tests whether a button is checked.

Converts the dialog-box coordinates
to client coordinates.

Sends a message to an item within a
dialog box.

Sets the caption or text of an item to
a string that represents an integer.

Sets the caption or text of an item to
a string.

Window Manager Interface Functions 1-45

1.7.1 Uses for Dialog Boxes

For convenience and to keep from introducing device-dependent values into the
application code, applications use dialog boxes instead of creating their own
windows. This device independence is maintained by using logical coordinates in
the dialog-box template. Dialog boxes are convenient to use because all aspects
of the dialog box, except how to carry out its tasks, are predefined. Dialog boxes
supply a window class and procedure, and create the window for the dialog box
automatically. The application supplies a dialog function to carry out tasks and a
dialog-box template that describes the dialog style and content.

Modeless Dialog Box

A modeless dialog box allows the user to'supply information to the dialog box
and return to the previous task without canceling or removing the dialog box.
Modeless dialog boxes are typically used as a way to let the user continually
supply information about the current task without having to select a command
from a menu each time. For example, modeless dialog boxes are often used with
a text-search command in word-processing applications. The dialog box remains
displayed while the search is carried out. The user can then return to the dialog
box and search for the same word again, or change the entry in the dialog box
and search for a new word.

An application with a modeless dialog box processes messages for that box by
using the IsDialogMessage function inside the main message loop. The dialog
function of a modeless dialog box must send a message to the parent window
when it has input for the parent window. It must also destroy the dialog box
when it is no longer needed. A modeless dialog box can be destroyed by using
the Destroy Window function. An application must not call the EndDialog func-
tion to destroy a modeless dialog box.

Modal Dialog Box

A modal dialog box requires the user to respond to a request before the applica-
tion continues. Typically, a modal dialog box is used when a chosen command

needs additional information before it can proceed. The user should not be able
to continue some other operation unless the command is canceled or additional

information is provided.

A modal dialog box disables its parent window, and it creates its own message
loop, temporarily taking control of the application queue from the main loop of
the program. A modal dialog box is displayed when the application calls the
DialogBox function.

By default, a modal dialog box cannot be moved by the user. An application can
create a moveable dialog box by specifying the WS_CAPTION and, optionally,
the WS_SYSMENU window styles.

1-46 Reference — Volume 1

The dialog box is displayed until the dialog function calls the EndDialog func-
tion, or until Windows is terminated. The parent window remains disabled unless
the dialog box enables it. Note that enabling the parent window is not recom-
mended since it defeats the purpose of the modal dialog box.

System-Modal Dialog Box

A system-modal dialog box is identical to a modal dialog box except that all
windows, not just the parent window, are disabled. System-modal dialog boxes
must be used with care since they effectively shut down the system until the user
supplies the required information.

1.7.2 Creating a Dialog Box

A dialog box is created by using either the CreateDialog or DialogBox function.
These functions load a dialog-box template from the application’s executable
file, and then create a pop-up window that matches the template’s specifications.
The dialog box belongs to the predefined dialog-box class unless another class is
explicitly defined. The DialogBox function creates a modal dialog box; the
CreateDialog function creates a modeless dialog box.

Use the WS_VISIBLE style for the dialog-box template if you want the dialog
box to appear upon creation.

Dialog-Box Template

The dialog-box template is a description of the dialog box: its height and width,
the controls it contains, its style, the type of border it uses, and so on. A template
is an application’s resource and must be added to the application’s executable file
by using the Resource Compiler.

Dialog boxes can be easily modified and are system independent, enabling an
application developer to change the template without changing the source code.

The CreateDialog and DialogBox functions load the resource into memory
when they create the dialog box, and then use the information in the dialog tem-
plate to create the dialog box, position it, and create and position the controls for
the dialog box.

The Resource Compiler takes a text description of the template and converts it to
the required binary form. This binary form is added to the application’s exe-
cutable file.

Dialog-Box Measurements

Dialog box and control dimensions and coordinates are device independent.
Since a dialog box may be displayed on system displays that have widely varying
pixel resolutions, dialog-box dimensions are specified in system character widths
and heights instead of pixels. Characters are guaranteed to give the best possible

Window Manager Interface Functions 1-47

appearance for a given display. One unit in the x direction is equal to V4 of the
dialog base width unit. One unit in the y direction is equal to /3 of the dialog
base height unit. The dialog base units are computed from the height and width
of the system font; the GetDialogBaseUnits function returns the dialog base
units for the current display. Applications can convert these measurements to pix-
els by using the MapDialogRect function.

Windows does not allow the height of a dialog box to exceed the height of a full-
screen window. The width of a dialog box is not allowed to be greater than the
width of the screen.

1.7.3 Return Values from a Dialog Box

The DialogBox function that creates a modal dialog box does not return until the
dialog function has called the EndDialog function to signal the end of the dialog
box. When control finally returns from the DialogBox function, the return value
is equal to the value specified in the EndDialog function. This means a modal
dialog box can return a value through the EndDialog function.

Modeless dialog boxes cannot return values in this way since they do not use the
EndDialog function to terminate execution and do not return control in the same
way a modal dialog box does. Instead, modeless dialog boxes return values to
their parent windows by using the SendMessage function to send a notification
message to the parent window. Although Windows does not explicitly define the
content of a notification message, most applications use a WM_COMMAND
message with an integer value that identifies the dialog box in the wParam para-
meter and the return value in the /Param parameter. Modal dialog boxes may
also use this technique to return values to their parent windows before terminat-

ing.

1.7.4 Controls in a Dialog Box

A dialog box can contain any number and any type of controls. A control is a
child window that belongs to a predefined or application-defined window class
and that gives the user a method of supplying input to the application. Examples
of controls are push buttons and edit controls. Most dialog boxes contain one or
more controls of the predefined class. The number of controls, the order in which
they should be created, and the location of each in the dialog box are defined by
the control statements given in the dialog-box template.

Control Identifiers

Every control in a dialog box needs a unique control identifier, or ID, to distin-
guish it from other controls. Since all controls send information to the dialog
function through WM_COMMAND messages, the control identifiers are essen-
tial for the dialog box to determine which control sent a given message.

1-48 Reference — Volume 1

All identifiers for all controls in the dialog box must be unique. If a dialog box
has a menu bar, there must be no conflict between menu-item identifiers and con-
trol identifiers. Since Windows sends menu input to a dialog function as
WM_COMMAND messages, conflicts with menu and control identifiers can
cause errors. Menus in dialog boxes are not recommended.

The dialog function usually identifies the dialog-box controls by using their con-
trol identifier. Occasionally the dialog function requires the window handle that
was given to the control when it was created. The dialog function can retrieve
this window handle by using the GetDlgltem function.

General Control Styles

The WS_TABSTOP style specifies that the user can move the input focus to the
given control by pressing the TAB or SHIFT+TAB keys. Typically, every control in
the dialog box has this style, so the user can move the input focus from one con-
trol to the other. If two or more controls are in the dialog box, the TAB key moves
the input focus to the controls in the order in which they have been created. The
SHIFT+TAB keys move the input focus in reverse order. For modal dialog boxes,
the TAB and SHIFT+TAB keys are automatically enabled for moving the input »
focus. For modeless dialog boxes, the IsDialogMessage function must be used to
filter messages for the dialog box and to process these key strokes. Otherwise,

the keys have no special meaning and the WS_TABSTOP style is ignored.

The WS_GROUP style specifies that the user can move the input focus to the
given control by using a DIRECTION key. Typically, the first and last controls in a
group of consecutive controls in the dialog box have this style, so the user can
move the input focus from one control to the other. The DOWN and RIGHT keys
move the input focus to controls in the order in which they have been created.
The UP and LEFT keys move the input focus in reverse order. For modal dialog
boxes, the DIRECTION keys are automatically enabled for moving the input focus.
For modeless dialog boxes, the IsDialogMessage function must be used to filter
messages for the dialog box and to process these key strokes. Otherwise, the keys
have no special meaning and the WS_GROUP style is ignored.

Buttons

Button controls are the principal interface of a dialog box. Almost all dialog
boxes have at least one push-button control and most have one default push but-
ton and one or more other push buttons. Many dialog boxes have collections of
radio buttons enclosed in group boxes, or lists of check boxes.

Most modal or modeless dialog boxes that use the special keyboard interface
have a default push button whose control identifier is set to 1 so that the action
the dialog function takes when the button is clicked is identical to the action
taken when the ENTER key is pressed. There can be only one button with the de-
fault styie; however, an application can assign the default style to any button at
any time. These dialog boxes may also set the control identifier of another push

Window Manager Interface Functions 1-49

button to 2 so that the action of the ESCAPE key is duplicated by clicking that
button.

When a dialog box first starts, the dialog function can set the initial state of the
button controls by using the CheckDlgButton function, which sets or clears the
button state. This function is most useful when used to set the state of radio but-
tons or check boxes. If the dialog box contains a group of radio buttons in which
only one button should be set at any given time, the dialog function can use the
CheckRadioButton function to set the button and automatically clear any other
radio button.

Before a dialog box terminates, the dialog function can check the state of each
button control by using the IsDlgButtonChecked function, which returns the cur-
rent state of the button. A dialog box typically saves this information to initialize
the buttons the next time the dialog box is created.

Edit Controls

Many dialog boxes have edit controls that let the user supply text as input. Most
dialog functions initialize an edit control when the dialog box first starts, For ex-
ample, the function may place a proposed filename in the control that the user
can adapt or modify. The dialog function can set the text in an edit control by
using the SetDlgltemText function, which copies text in a given buffer to the
edit control. When the edit control receives the input focus, the complete text
will automatically be selected for editing.

Since edit controls do not automatically return their text to the dialog box, the
dialog function must retrieve the text before terminating. It can retrieve the text
by using the GetDIgItemText function, which copies the edit-control text to a
buffer. The dialog function typically saves this text to initialize the edit control
later, or passes it on to the parent window for processing.

Some dialog boxes use edit controls that let the user enter numbers. The dialog
function can retrieve a number from an edit control by using the GetDlgItemInt
function, which retrieves the text of the control and converts the text to a decimal
value. The user enters the number in decimal digits. It can be either signed or un-
signed. The dialog function can display an integer by using the SetDlgltemInt
function. It converts a signed or unsigned integer to a string of decimal digits.

List Boxes and Directory Listings

Some dialog boxes display lists, such as filenames, from which the user can
select one or more names. Dialog boxes that display a list typically use list-box
controls. Dialog boxes that display a list of filenames typically use a list-box
control and the DigDirList and DlgDirSelect functions. The DIgDirList func-
tion automatically fills a list box with the filenames in the current directory. The
DigDirSelect function retrieves the selected filename from the list box. Together
they provide a convenient way for a dialog box to display a directory listing, and
let the user select a file without having to type in the name of the directory and
file.

1-50 Reference — Volume 1

Combo Boxes

Another method for providing a list of items to a user is by means of a combo
box. A combo box consists of either a static text field or edit field combined with
a list box. The list box can be displayed at all times or pulled down by the user. If
the combo box contains a static text field, the text field always displays the cur-
rent selection (if any) in the list-box portion of the combo box. If it uses an edit
field, the user can type in the desired selection; the list box highlights the first
item (if any) which matches what the user has entered in the edit field. The user
can then select the item highlighted in the list box to complete the choice.

Owner-Draw Dialog-Box Controls

List boxes, combo boxes, and buttons can be designated as owner-draw controls
by creating them with the appropriate style:

Style Meaning

LBS_OWNERDRAWFIXED Creates an owner-draw list box with
items that have the same, fixed height.

LBS_OWNERDRAWVARIABLE Creates an owner-draw list box with
items that have different heights.

CBS_OWNERDRAWFIXED Creates an owner-draw combo box
with items that have the same, fixed
height.

CBS_OWNERDRAWVARIABLE Creates an owner-draw combo box
with items that have different heights.

BS_OWNERDRAW Creates an owner-draw button.

When a control has the owner-draw style, Windows handles the user’s interac-
tion with the control as usual, such as detecting when a user has clicked a button
and notifying the button’s owner of the event. However, because it is an owner-
draw control, the owner of the control is completely responsible for the visual ap-
pearance of the control.

When Windows first creates a dialog box containing owner-draw controls, it
sends the owner a WM_MEASUREITEM message for each owner-draw control.
The [Param parameter of this message contains a pointer to a MEASURE-
ITEMSTRUCT data structure. When the owner receives the message for a con-
trol, the owner fills in the appropriate fields of the structure and returns. This
informs Windows of the dimensions of the control or of its items so that
Windows can appropriately detect the user’s interaction with the control. If a list
box or combo box is created with the LBS_ OWNERDRAWYVARIABLE or
CBS_OWNERDRAWVARIABLE style, this message is sent to the owner for

Window Manager Interface Functions 1-51

each item in the control, since each item can differ in height. Otherwise, this
message is sent once for the entire owner-draw control.

Whenever an owner-draw control needs to be redrawn, Windows sends the
WM_DRAWITEM message to the owner of the control. The /[Param parameter
of this message contains a pointer to a DRAWITEMSTRUCT data structure
that contains information about the drawing required for the control. Similarly, if
an item is deleted from a list box or combo box, Windows sends the
WM_DELETEITEM message containing a pointer to a DELETEITEM-
STRUCT data structure that describes the deleted item.

Messages for Dialog-Box Controls

Many controls recognize predefined messages that, when sent to the control,

cause it to carry out some action. A dialog function can send a message to a con-
trol by supplying the control identifier and using the SendDIgIltemMessage func-
tion, which is identical to the SendMessage function except that it uses a control
identifier instead of a window handle to identify the control that is to receive the
message.

1.7.5 Dialog-Box Keyhoard Interface

Windows provides a special keyboard interface for modal dialog boxes and
modeless dialog boxes that use the IsDialogMessage function to filter messages.
This keyboard interface carries out special processing for several keys and gener-
ates messages that correspond to certain buttons in the dialog box or changes the
input focus from one control to another. Table 1.7 lists the keys used in this inter-
face and the respective action:

Table 1.7 Dialog-Box Keyboard Interface

Key Action

DOWN Moves the input focus to the next control that has the
WS_GROUP style.

ENTER Sends a WM_COMMAND message to the dialog function. The
wParam parameter is set to 1 or the default button.

ESCAPE Sends a WM_COMMAND message to the dialog function. The
wParam parameter is set to 2.

LEFT Same as UP.

RIGHT Same as DOWN.

SHIFT+TAB Moves the input focus to the previous control that has the

WS_TABSTOP style.

1-52 Reference — Volume 1

g

Table 1.7 Dialog-Box Keyboard Interface (continued)

Key Action

TAB Moves the input focus to the next control that has the WS_TAB-
STOP style. ‘

UP Moves the input focus to the previous control that has the

WS_GROUP style.

The TAB and DIRECTION keys have no effect if the controls in the dialog box do
not have the WS_TABSTOP or WS_GROUP style. The keys have no effect in a
modeless dialog box if the IsDialogMessage function is not used to filter mes-
sages for the dialog box. ‘

NOTE For applications that use accelerators and have modeless dialog boxes, the
IsDialogMessage function must be called before the TranslateAccelerator function. Other-
wise, the keyboard interface for the dialog box may not be processed correctly.

Applications that have modeless dialog boxes and want those boxes to have the
special keyboard interface must filter all messages retrieved from the application
queue through the IsDialogMessage function before carrying out any other pro-
cessing. This means that the application must pass the message to the function
immediately after retrieving the message by using the GetMessage or PeekMes-
sage function. Most applications that have modeless dialog boxes incorporate the
IsDialogMessage function as part of the main message loop in the WinMain
function. The IsDialogMessage function automatically processes any messages
for the dialog box. This means that if the function returns a nonzero value, the
message does not require additional processing and must not be passed to the
TranslateMessage or DispatchMessage function.

The IsDialogMessage function also processes the ALT+mnemonic sequence.

Scrolling in Dialog Boxes

In modal dialog boxes, the DIRECTION keys have specific functions that depend
on the controls in the box. For example, the keys move the input focus from con-
trol to control in group boxes, move the cursor in edit controls, and scroll the con-
tents of list boxes. The DIRECTION keys cannot be used to scroll the contents of
any dialog box that has its own scroll bars. If a dialog box has scroll bars, the
application must provide an appropriate keyboard interface for the scroll bars.
Note that the mouse interface for scrolling is available if the system has a mouse.

Window Manager Interface Functions 1-53

1.8 Scrolling Functions

Scrolling functions control the scrolling of a window’s contents and control the
window’s scroll bars. Scrolling is the movement of data in and out of the client
area at the request of the user. It is a way for the user to see a document or
graphic in parts if Windows cannot fit the entire document or graphic inside the
client area. A scroll bar allows the user to control scrolling. The following list
briefly describes each scrolling function:

Function Description

GetScrollPos "Retrieves the current position of the scroll-bar
thumb.

GetScrollRange Copies the minimum and maximum scroll-bar posi-
tions for given scroll-bar positions for a specified
scroll.

ScrollDC Scrolls a rectangle of bits horizontally and vertically.

ScrollWindow Moves the contents of the client area.

SetScrollPos Sets the scroll-bar thumb.

SetScrollRange Sets the minimum and maximum scroll-bar posi-
tions.

ShowScrollBar Displays or hides a scroll bar and its controls.

1.8.1 Standard Scroll Bars and Scroll-Bar Gontrols

A standard scroll bar is a part of the nonclient area of a window. It is created with
the window and displayed when the window is displayed. The sole purpose of a
standard scroll bar is to let users generate scrolling requests for the window’s
client area. A window has standard scroll bars if it is created with the
WS_VSCROLL or WS_HSCROLL style. A standard scroll bar is either vertical
or horizontal. A vertical bar always appears at the right of the client area; a hori-
zontal bar always appears at the bottom. A standard scroll bar always has the
standard scroll-bar height and width as defined by the SM_CXVSCROLL and
SM_CYHSCROLL system metric values. (For more information, see the GetSys-
temMaetrics function in Chapter 4, “Functions Directory.”)

A scroll-bar control is a control window that looks and acts like a standard scroll
bar. But unlike a standard scroll bar, a scroll-bar control is not part of any
window. As a separate window, a scroll-bar control can receive the input focus,
and indicates this by displaying a flashing caret in the thumb. When a scroll-bar
control has the input focus, the user can use the keyboard to direct the scrolling.
Unlike standard scroll bars, a scroll-bar control provides a built-in keyboard inter-
face. Scroll-bar controls also can be used for other purposes. For example, a

1-54 Reference — Volume 1

scroll-bar control can be used to select values from a range of values, such as a
color from a rainbow of colors. '

1.8.2 Scroll-Bar Thumb

The scroll-bar thumb is the small rectangle in a scroll bar. It shows the approxi-
mate location within the current document or file of the data currently displayed
in the client area. For example, the thumb is in the middle of the scroll bar when
page three of a five-page document is in the client area.

The SetScrollPos function sets the thumb position in a scroll bar. Since
Windows does not automatically update the thumb position when an application
scrolls, SetScrollPos must be used to update the thumb position. The Get-
ScrollPos function retrieves the current position.

A thumb position is an integer. The position is relative to the left or upper end of
the scroll bar, depending on whether the scroll bar is horizontal or vertical. The
position must be within the scroll-bar range, which is defined by minimum and
maximum values. The positions are distributed equally along the scroll bar. For
example, if the range is O to 100, there are 100 positions along the scroll bar,
each equally spaced so that position 50 is in the middle of the scroll bar. The ini-
tial range depends on the scroll bar. Standard scroll bars have an initial range of 0
to 100; scroll-bar controls have an empty range (both minimum and maximum
values are zero) if no explicit range is given when the control is created. The Set-
ScrollRange function sets new minimum and maximum values so that applica-
tions can change the range at any time. The GetScrollRange function retrieves
the current minimum and maximum values. The minimum and maximum values
can be any integers. For example, a spreadsheet program with 255 rows can set
the vertical scroll range to 1 to 255.

If SetScrollPos specifies a position value that is less than the minimum or more
than the maximum, the minimum or maximum value is used instead. Set-
ScrollPos moves the thumb along the thumb positions.

1.8.3 Scrolling Requests

A user makes a scrolling request by clicking in a scroll bar. Windows sends the
request to the given window in the form of WM_HSCROLL and
WM_VSCROLL messages. The /Param parameter contains a position value and
the handle of the scroll-bar control that generated the message (/Param is zero if
a standard scroll bar generated the message). The wParam parameter specifies
the type of scroll, such as scroll up one line, scroll down a page, or scroll to the
bottom. The type of scroll is determined by which area of the scroll bar the user
clicks.

The user can also make a scrolling request by using the scroll-bar thumb, the
small rectangle inside the scroll bar. The user moves the thumb by moving the
mouse while holding the left mouse button down when the cursor is in the

Window Manager Interface Functions 1-55

thumb. The scroll bar sends SB_THUMBTRACK and SB_THUMBPOSITION
flags with a WM_HSCROLL or WM_VSCROLL message to an application as
the user moves the thumb. Each message specifies the current position of the
thumb.

1.8.4 Processing Scroll Messages

A window that permits scrolling needs a standard scroll bar or a scroll-bar con-
trol to let the user generate scrolling requests, and a window function to process
the WM_HSCROLL and WM_VSCROLL messages that represent the scrolling
requests. Although the result of a scrolling request is entirely up to the window, a
window typically carries out a scroll by moving in some direction from the cur-
rent location or to a known beginning or end, and by displaying the data at the
new location. For example, a word-processing application can scroll to the next
line, the next page, or to the end of the document.

1.8.5 Scrolling the Client Area

The simplest way to scroll is to erase the current contents of the client area, and
then paint the new information. This is the method an application is likely to use
with SB_PAGEUP, SB_PAGEDOWN, SB_TOP, and SB_END requests where
completely new contents are required.

For some requests, such as SB_LINEUP and SB_LINEDOWN, not all the con-
tents need to be erased, since some will still be visible after the scroll. The
ScrollWindow function preserves a portion of the client area’s contents, moves
the preserved portion the specified amount, and prepares the rest of the client
area for painting new information. ScrollWindow uses the BitBlt function to
move a specific part of the client area to a new location within the client area.
Any part of the client area that is uncovered (not in the part to be preserved) is
invalidated and will be erased and painted over at the next WM_PAINT message.

ScrollWindow also lets an application clip a part of the client area from the
scroll. This is to keep items that have fixed positions in the client area, such as
child windows, from moving. This action automatically invalidates the part of
the client area that is to receive the new information so that the application does
not have to compute its own clipping regions.

1.8.6 Hiding a Standard Scroll Bar

For standard scroll bars, if the minimum and maximum values are equal, the
scroll bar is considered disabled and is hidden. This is the way to temporarily
hide a scroll bar when it is not needed for the current contents of the client area.

The SetScrollRange function hides and disables a standard scroll bar when it~
sets the minimum and maximum values to equal values. No scrolling requests
can be made through the scroll bar when it is hidden. SetScrollRange enables

1-56 Reference — Volume 1

the scroll bar and shows it again when it sets the minimum and maximum values
to unequal values. The ShowScrollBar function can also be used to hide or show
a scroll bar. It does not affect the scroll bar’s range or thumb position.

1.9 Menu Functions

Menu functions create, modify, and destroy menus. A menu is an input tool in a
Windows application that offers users one or more choices, which they can select
with the mouse or keyboard. An item in a menu bar can display a pop-up menu,
and any item in a pop-up menu can display another pop-up menu. In addition, a
pop-up menu can appear anywhere on the screen. The following list briefly de-

scribes each menu function:

Function
AppendMenu
CheckMenultem

CreateMenu
CreatePopupMenu
DeleteMenu

DestroyMenu
DrawMenuBar

EnableMenultem
GetMenu
GetMenuCheckMarkDimensions

GetMenultemCount
GetMenultemID
GetMenuState
GetMenuString
GetSubMenu

Description
Appends a menu item to a menu.

Places or removes checkmarks next
to pop-up menu items.

Creates an empty menu.
Creates an empty pop-up nienu.

Removes a menu item and destroys
any associated pop-up menus.

Destroys the specified menu.
Redraws a menu bar.

Enables, disables, or grays a menu
item.

Retrieves a handle to the menu of a
specified window.

Retrieves the dimensions of the de-
fault menu checkmark bitmap.

Returns the count of items in a menu.
Returns the item’s identification.
Obtains the status of a menu item.
Copies a menu label into a string.

Retrieves the menu handle of a pop-
up menu.

Window Manager Interface Functions 1-57

Function

GetSystemMenu

HiliteMenultem
InsertMenu
LoadMenulndirect

ModifyMenu

RemoveMenu

SetMenu
SetMenultemBitmaps

TrackPopupMenu

1.10 Information Functions

Description

Accesses the System menu for copy-
ing and modification.

Highlights or removes the highlight-
ing from a top-level (menu-bar)
menu item.

Inserts a menu item in a menu.
Loads a menu resource.
Changes a menu item.

Removes an item from a menu but
does not destroy it.

Specifies a new menu for a window.

Associates bitmaps with a menu item
for display when an item is and is not
checked.

Displays a pop-up menu at a
specified screen location and tracks
user interaction with the menu.

Information functions obtain information about the number and position of
windows on the screen. The following list briefly describes each information

function:

Function
AnyPopup
ChildWindowFromPoint

EnumChildWindows
EnumTaskWindows

EnumWindows

FindWindow

Description
Indicates whether any pop-up window exists.

Determines which child window contains a specific
point.

Enumerates the child windows that belong to a
specific parent window.

Enumerates all windows associated with a given
task.

Enumerates windows on the display.

Returns the handle of a window with the given class
and caption.

1-58 Reference — Volume 1

Function
GetNextWindow
GetParent

GetTopWindow
GetWindow
GetWindowTask

IsChild
IsWindow

SetParent

WindowFromPoint

1.11 System Functions

Description
Returns a handle to the next or previous window.

Retrieves the handle of the specified window’s
parent window.

Returns a handle to the top-level child window.
Returns a handle from the window manager’s list.

Returns the handle of a task associated with a
window.

Determines whether a window is the descendent of a
specified window.

Determines whether a window is a valid, existing
window.

Changes the parent window of a child window.

Identifies the window containing a specified point.

System functions return information about the system metrics, color, and time.
The following list briefly describes each system function:

Function

GetCurrentTime

GetSysColor
GetSystemMetrics
SetSysColors

1.12 Clipboard Functions

Description

Returns the time elapsed since the system was
booted.

Retrieves the system color.
Retrieves information about the system metrics.

Changes one or more system colors.

Clipboard functions carry out data interchange between Windows applications.
The clipboard is the place for this interchange; it provides a place from which
applications can pass data handles to other applications. The following list briefly
describes each clipboard function:

Window Manager Interface Functions 1-59

Function

ChangeClipboardChain

CloseClipboard
EmptyClipboard

EnumClipboardFormats

GetClipboardData
GetClipboardFormatName
GetClipboardOwner

GetClipboardViewer

GetPriorityClipboardFormat

IsClipboardFormatAvailable

OpenClipboard
RegisterClipboardFormat
SetClipboardData
SetClipboardViewer

Description

Removes a window from the chain of
clipboard viewers.

Closes the clipboard.

Empties the clipboard and reassigns
clipboard ownership.

Enumerates the available clipboard
formats.

Retrieves data from the clipboard.
Retrieves the clipboard format.

Retrieves the window handle as-
sociated with the current clipboard
owner.

Retrieves the handle of the first
window in the clipboard viewer chain.

Retrieves data from the clipboard in
the first format in a prioritized format
list.

Returns TRUE if the data in the
given format is available.

Opens the clipboard.
Registers a new clipboard format.
Copies a handle for data.

Adds a handle to the clipboard
viewer chain.

1.13 Error Functions

Error functions display errors and prompt the user for a response. The following
list briefly describes each error function:

Function Description

FlashWindow Flashes the window by inverting its active/inactive

state.
MessageBeep Generates a beep on the system speaker.

MessageBox Creates a window with the given text and caption.

1-60 Reference — Volume 1

1.14 Caret Functions

Caret functions affect the Windows caret, which is a flashing line, block, or bit-
map that marks a location in a window’s client area. The caret is especially use-
ful in word-processing applications to mark a location in text for keyboard
editing. These functions create, destroy, display, hide, and alter the blink time of
the caret. The following list briefly describes each. caret function:

Function Description

CreateCaret Creates a caret.

DestroyCaret Destroys the current caret.

GetCaretBlinkTime Returns the caret flash rate.

GetCaretPos Returns the current caret position.

HideCaret Removes a caret from a given window.

SetCaretBlinkTime Establishes the caret flash rate.

SetCaretPos Moves a caret to the specified position.

ShowCaret » Displays the newly created caret or redisplays a hid-
den caret.

1.14.1 Creating and Displaying a Caret

Windows forms a caret by inverting the pixel color within the rectangle given by
the caret’s position and its width and height. Windows flashes the caret by alter-

nately inverting the display, and then restoring it to its previous appearance. The
caret blink time (in milliseconds) defines the elapsed time between inverting and
restoring the display. A complete flash (on-off-on) takes twice the blink time.

The CreateCaret function creates the caret shape and assigns ownership of the
caret to the given window. The caret can be solid or gray, or, for bitmap carets,
any desired pattern. The caret can have any shape, but typical shapes are a line, a
solid block, a gray block, and a pattern, as shown in Figure 1.1:

Window Manager Interface Functions 1-61

Underline
Vertical line|

Solid blocd

Bitmap @
Figure 1.1 Caret Shapes

Windows displays a solid caret by inverting everything in the rectangle defined
by the caret’s width and height. For a gray caret, Windows inverts every other
pixel. For a pattern, Windows inverts only the white bits of the bitmap that de-
fines the pattern. The width and height of a caret are given in logical units, which
means they are subject to the window’s mapping mode.

1.14.2 Sharing the Caret

There is only one caret, so only one caret shape can be active at a time. Applica-
tions must cooperatively share the caret to prevent undesired effects. Windows
does not inform an application when a caret is created or destroyed, so to be
cooperative a window should create, move, show, and hide a caret only when it
has the input focus or is active. A window should destroy the caret before losing
the input focus or becoming inactive.

Bitmaps for the caret can be created by using the CreateBitmap function, or
loaded from the application’s resources by using the LoadBitmap function. Bit-
maps loaded from resources can be created by using the SDKPaint program and
added to an application’s resources by using the Resource Compiler. (For more
information about the Resource Compiler, see Tools.)

1.15 Cursor Functions

Cursor functions set, move, show, hide, and confine the cursor. The cursor is a
bitmap, displayed on the display screen, that shows a current location. The fol-
lowing list briefly describes each cursor function:

1-62 Reference — Volume 1

Function Description

ClipCursor _ Restricts the cursor to a given rectangle.

CreateCursor Creates a cursor from two bit masks.

DestroyCursor]?estroys a cursor created by the CreateCursor func-
tion.

GetCursorPos Stores the cursor position (in screen coordinates).

LoadCursor Loads a cursor from the resource file.

SetCursor Sets the cufsor shape.

SetCursorPos Sets the position of the cursor.

ShowCursor Increases or decreases the cursor display count.

1.15.1 Pointing Devices and the Cursor

When a system has a mouse (or any other type of pointing device), the cursor
shows the current location of the mouse. Windows automatically displays and
moves the cursor when the mouse is moved. If a system does not have a mouse,
Windows does not automatically display or move the cursor. Applications can
use the cursor functions to display or move the cursor when a system does not
have a mouse.

1.15.2 Displaying and Hiding the Cursor

In a system without a mouse, Windows does not display or move the cursor un-
less the user chooses certain system commands, such as commands for sizing and
moving. This means that after a call to SetCursor, the cursor remains on the
screen until a subsequent call to SetCursor with a NULL parameter removes the
cursor, or until a system command is carried out. Applications that wish to use
the cursor without a mouse usually simulate mouse input by using keyboard
keys, such as the DIRECTION keys, and display and move the cursor by using the
cursor functions.

The ShowCursor function shows or hides the cursor. It is used to temporarily
hide the cursor, and then restore it without changing the current cursor shape.
This function actually sets an internai counter that determines whether the cursor
should be drawn. Hiding and showing are accumulative, so hiding the cursor five
times requires that it be shown five times before the cursor will be drawn.

1.15.3 Paositioning the Cursor

The SetCursorPos and GetCursorPos functions set and retrieve the current
screen coordinates of the cursor. Although the cursor can be set at a location

Window Manager Interface Functions 1-63

other than the current mouse location, if the system has a mouse, the next mouse
movement will redraw the cursor at the mouse location. The SetCursorPos and
GetCursorPos functions are most often used in applications that use the key-
board and specified key strokes to move the cursor. Notice that screen coordi-
nates are not affected by the mapping mode in a window’s client area.

1.15.4 The Cursor Hotspot and Confining the Cursor

A cursor has a hotspot. When Windows draws the cursor, it always places the
hotspot over the point on the display screen that represents the current position of
the mouse or keyboard DIRECTION key. For example, the hotspot on the pointer is
the point at the tip of the arrow.

The ClipCursor function confines the cursor to a given rectangle on the display
screen. The cursor can move to the edge of the rectangle but cannot move out of
it. ClipCursor is typically used to restrict the cursor to a given window such as a
dialog box that contains a warning about a serious error. The rectangle is always
given in screen coordinates and does not have to be within the window of the cur-
rently running application.

1.15.5 Creating a Custom Cursor

The SetCursor function sets the cursor shape and draws the cursor. When a sys-
tem has a mouse, Windows automatically changes the shape of the cursor when it
crosses a window border or enters a different part of a window, such as a title or.
menu bar. It uses standard cursor shapes for the different parts of the screen, such
as a pointer in a title bar. The SetCursor function lets an application delete the
standard cursor and draw its own custom cursor. The cursor keeps its new shape
until the mouse moves or a system command is carried out.

1.16 Hook Functions

Hook functions manage system hooks, which are shared resources that install a
specific type of filter function. A filter function is an application-supplied call-
back function, specified by the SetWindowsHook function, that processes
events before they reach any application’s message loop. Windows sends mes-
sages generated by a specific type of event to filter functions installed by the
same type of hook. The following list briefly describes each hook function:

Function Description

CallMsgFilter Passes a message and other data to the current
message-filter function.

DefHookProc Calls the next filter function in a filter-function
chain.

1-64 Reference — Volume 1

Function Description
SetWindowsHook Installs a system and/or application filter function.

UnhookWindowsHook Removes a Windows filter function from a filter-
function chain.

1.16.1 Filter-Function Chain

A filter-function chain is a series of connected filter functions for a particular sys-
tem hook. For example, all keyboard filter functions are installed by WH_KEY-
BOARD and all journaling-record filter functions are installed by
WH_JOURNALRECORD. Applications pass these filter functions to the system
hooks with calls to the SetWindowsHook function. Each call adds a new filter
function to the beginning of the chain. Whenever an application passes a filter
function to a system hook, it must reserve space for the address of the next filter
function in the chain. SetWindowsHook returns this address.

Once each filter function completes its task, it must call the DefHookProc func-
tion. DefHookProc uses the address stored in the location reserved by the appli-
cation to access the next filter function in the chain.

To remove a filter function from a filter chain, an application must call the Un-
hookWindowsHook function with the type of hook and a pointer to the function.

There are five types of standard window hooks and two types of debugging
hooks. Table 1.8 lists each type and describes its purpose:

Table 1.8 System Hooks

Type Purpose

WH_CALLWNDPROC Installs a window function filter.

WH_GETMESSAGE Installs a message filter (on debugging ver-
sions only).

WH_JOURNALPLAYBACK Installs a journaling playback filter.

WH_JOURNALRECORD Installs a journaling record filter.

WH_KEYBOARD Installs a keyboard filter.

WH_MSGFILTER Installs a message filter.

WH_SYSMSGFILTER Installs a system-wide message filter.

NOTE The WH_CALLWNDPROG and WH_GETMESSAGE hooks will affect system perform-
ance. They are supplied for debugging purposes only.

Window Manager Interface Functions 1-65

1.16.2 Installing a Filter Function

To install a filter function, an application must do the following:

1. Export the function in its module definition file.
2. Obtain the function’s address by using the MakeProcInstance function.

3. Call the SetWindowsHook function, specifying the type of hook function
(see Table 1.8, “System Hooks”) and the address of the function (returned by
MakeProclInstance).

4. Store the return value from SetWindowsHook in a reserved location. This
value is the address of the previous filter function. '

NOTE Filter functions and the return value from SetWindowsHook must reside in fixed li-
brary code and data. This allows these hooks to operate in a large-frame EMS environment.

1.17 Property Functions

Property functions create and access a window’s property list. A property list is a
storage area that contains handles for data that the application wishes to associate
with a window. The following list briefly describes each property function:

Function Description

EnumProps Passes the properties of a window to an enumeration
function.

GetProp Retrieves a handle associated with a string from the
window property list.

RemoveProp Removes a string from the property list.

SetProp Copies a string and a data handle to a window’s
property list.

Using Property Lists

Once a data handle is in a window’s property list, any application can access the
handle if it can also access the window. This makes the property list a convenient
way to make data (for example, alternate captions or menus for the window)
available to the application when it wishes to modify the window.

Every window has its own property list. When the window is created, the list is
empty. The SetProp function adds entries to the list. Each entry contains a
unique ANSI string and a data handle. The ANSI string identifies the handle; the
handle identifies the data associated with the window, as illustrated in Figure 1.2:

1-66 Reference — Volume 1

ANSI String Handle

“binary data” hMemory
‘icon” hicon
“screen text” ~ hText

Figure 1.2 Property List

The data handle can identify any object or memory block that the application
wishes to associate with the window. The GetProp function retrieves the data
handle of an entry from the list without removing the entry. The handle can then
be used to retrieve or use the data. The RemoveProp function removes an entry
from the list when it is no longer needed.

Although the purpose of the property list is to associate data with a window for
use by the application that owns the window, the handles in a property list are ac-
tually accessible to any application that has access to the window. This means an
application can retrieve and use a data handle from the property list of a window
created by another application. But using another application’s data handles must
be done with care. Only shared, global memory objects, such as GDI drawing ob-
jects, can be used by other applications. If a property list contains local or global
memory handles or resource handles, only the application that has created the
window may use them. Global memory handles can be shared with other applica-
tions by using the Windows clipboard. (For more information, see Section 1.12,
*“Clipboard Functions.”) Local memory handles cannot be shared.

The contents of a property list can be enumerated by using the EnumProps func-
tion. The function passes the string and data handle of each entry in the list to an
application-supplied function. The application-supplied function can carry out
any task.

The data handles in a property list always belong to the application that created
them. The property list itself, like other window-related data, belongs to
Windows. A window’s property list is actually allocated in the the USER heap,
the local heap of the USER library. Although there is no defined limit to the num-
ber of entries in a property list, the actual number of entries depends on how
much room is available in the USER heap. This depends on how many windows,
window classes, and other window-related objects have been created.

The application creates the entries in a property list. Before a window is de-
stroyed or the application that owns the window terminates, all entries in the
property list must be removed by using the RemoveProp function. Failure to re-
move the entries leaves the property list in the USER heap and makes the space it
occupies unusable for subsequent applications. This can ultimately cause an over-
flow of the USER heap. Entries in the property list can be removed at any time
by using the RemoveProp function. If there are entries in the property list when

Window Manager Interface Functions 1-67

the WM_DESTROY message is received for the window, the entries must be re-
moved at that time. To ensure that all entries are removed, use the EnumProps
function to enumerate all entries in the property list. An application should re-
move only those properties that it added to the property list. Windows adds prop-
erties for its own use and disposes of them automatically. An application must
not remove properties which Windows has added to the list.

1.18 Rectangle Functions

Rectangle functions alter and obtain information about rectangles in a window’s
client area. In Windows, a rectangle is defined by a RECT data structure. The
structure contains two points: the upper-left and lower-right corners of the
rectangle. The sides of a rectangle extend from these two points and are parallel
to the x- and y-axes. The following list briefly describes each rectangle function:

Function Description

CopyRect Makes a copy of an existing rectangle.
EqualRect Determines whether two recfangles are equal.
InflateRect Expands or shrinks the specified rectangle.
IntersectRect Finds the intersection of two rectangles.
OffsetRect Moves a given rectangle.

PtInRect Indicates whether a specified point lies within a

given rectangle.
SetRectEmpty Sets a rectangle to an empty rectangle.

UnionRect Stores the union of two rectangles.

1.18.1 Using Rectangles in a Windows Application

Rectangles are used to specify rectangular areas on the display or in a window,
such as the cursor clipping area, the client repaint area, a formatting area for for-
matted text, and the scroll area. Rectangles are also used to fill, frame, or invert
an area in the client area with a given brush, and to retrieve the coordinates of a
window or a window’s client area.

Since rectangles are used for many different purposes, the rectangle functions do
not use an explicit unit of measure. Instead, all rectangle coordinates and dimen-
sions are given in signed, logical values. The actual units are determined by the
function in which the rectangle is used.

1-68 Reference — Volume 1

1.18.2 Rectangle Coordinates

Coordinate values for a rectangle can be within the range —32,768 to 32,767.
Widths and heights, which must be positive, are within the range 0 to 32,767.
This means that a rectangle whose left and right sides or whose top and bottom
are further apart than 32,768 units is not valid. Figure 1.3 shows a rectangle
whose upper-left corner is left of the origin, but whose width is less than 32,767:

y (16000, 3000)

®
(—16000, —2000)

\

Vv

Width = 16000 — (~16000) = 32000 <= 32767

Figure 1.3 Rectangle Limits

1.18.3 cfeating and Manipulating Rectangles

The SetRect function creates a rectangle, the CopyRect function makes a copy
of a given rectangle, and the SetRectEmpty function creates an empty.rectangle.
An empty rectangle is any rectangle that has zero width, zero height, or both.

The InflateRect function increases or decreases the width and height of a
rectangle. It adds or removes width from both ends of the rectangle, or adds or re-
moves height from both the top and bottom of the rectangle.

" The OffsetRect function moves the rectangle by a given amount. It moves the
corners of the rectangle by adding the given x and y amounts to the corner coordi-
nates.

The PtInRect function determines whether a given point lies within a given
rectangle. The point is in the rectangle if it lies on the left or top side or is
completely within the rectangle. '

The IsRectEmpty function determines whether the given rectangle is empty.

The IntersectRect function creates a new rectangle that is the intersection of two
existing rectangles. The intersection is the largest rectangle contained in both ex-
isting rectangles. The intersection of two rectangles is shown in Figure 1.4:

Window Manager Interface Functions 1-69

Rectangle 1

r
I

Rectangle 2

r
1

Intersection

Figure 1.4 Intersection of Two Rectangles

The UnionRect function creates a new rectangle that is the union of two existing
rectangles. The union is the smallest rectangle that contains both existing
rectangles. The union of two rectangles is shown in Figure 1.5:

__ Union
Union

L ' — -1 Rectangle 1

I
I. Rectangle 2

Figure 1.5 Union of Two Rectangles

For information about functions that draw ellipses and polygons, see Section
2.10, “Ellipse and Polygon Functions.”

1.19 Summary

Window manager interface functions process messages, create, move, or alter a
window, or create system output. For more information on topics related to
window manager interface functions, see the following:

1-70 Reference — Volume 1

Topic

Function descriptions

Windows messages

Windows data types and
structures

Using the Resource
Compiler

General information on
Windows programming

Creating and managing a
window

Handling input

Icons
Menus

Controls and dialog boxes
Creating icons and cursors

Designing dialog boxes

Reference

Reference, Volume 1: Chapter 4, “Functions
Directory”

Reference, Volume 1: Chapter 5, “Messages
Overview,” and Chapter 6, “Messages
Directory”

Reference, Volume 2: Chapter 7, “Data Types
and Structures”

Reference, Volume 2: Chapter 8, “Resource
Script Statements”

Tools: Chapter 3, “Compiling Resources:
The Resource Compiler”

Guide to Programming: Chapter 1, “An
Overview of the Windows Environment”

Guide to Programming: Chapter 2, “A
Generic Windows Application”

Guide to Programming: Chapter 4,
“Keyboard and Mouse Input,” and Chapter
6, “The Cursor, the Mouse, and the
Keyboard”

Guide to Programming: Chapter 5, “Icons”
Guide to Programming: Chapter 7, “Menus”

Guide to Programming: Chapter 8,
“Controls,” and Chapter 9, “Dialog Boxes”

Tools: Chapter 4, “Designing Images:
SDKPaint”

Tools: Chapter 5, “Designing Dialog Boxes:
The Dialog Editor”

Chapter

2

~ Graphics Device Interface
Functions

This chapter describes the functions that perform device-independent graphics
operations within a Windows application, including creating a wide variety of
line, text, and bitmap output on many output devices. These functions constitute
the Windows graphics device interface (GDI).

The chapter covers the following function categories:

®m Device-context functions

® Drawing-tool functions

m Color-palette functions

m Drawing-attribute functions
® Mapping functions

m Coordinate functions

= Region functions

m Clipping functions

m Line-output functions

m Ellipse and polygon functions
= Bitmap functions

m Text functions

® Font functions

m Metafile functions

w Printer-control functions

m Printer-escape function

m Environment functions

2-2 Reference — Volume 1

2.1 Device-Context Functions

Device-context functions create, delete, and restore device contexts (DC). A
device context is a link between a Windows application, a device driver, and an
output device, such as a printer or plotter.

Figure 2.1 shows the flow of information from a Windows application through a
device context and a device driver to an output device:

= [2]8 GDI
) . Output
I S Device . Device .)
Application [—* context > driver > device
- o g

Figure 2.1 Information Flow to an Output Device

Any Windows application can use GDI functions to access an output device.
GDI passes calls (which are device independent) from the application to the
device driver. The device driver then translates the calls into device-dependent
operations.

The following list briefly describes each device-context function:

Function Description

CreateCompatibleDC Creates a memory device context.

CreateDC Creates a device context.

CreatelC Creates an information context.

DeleteDC Deletes a device context.

GetDCOrg Retrieves the origin of a specified device context.
RestoreDC Restores a device context.

SaveDC Saves the current state of the device context.

Graphics Device Interface Functions 2-3

2.1.1 Device-Context Attributes

Device-context attributes describe selected drawing objects (pens and brushes),
the selected font and its color, the way in which objects are drawn (or mapped) to
the device, the area on the device available for output (clipping region), and other
important information. The data structure that contains these attributes is called

the DC data block.

Table 2.1 lists the default device-context attributes and the GDI functions that af-

fect or use these attributes:

Table 2.1

Default Device-Context Attributes and Related GDI Functions

Attribute

Default

GDI Functions

Background color
Background mode

Bitmap

Brush

Brush origin

Clipping region

Color palette

Current pen position
Drawing mode
Font

White
OPAQUE
No default

WHITE_BRUSH

0,0)

Display surface

DEFAULT_PALETTE

(0,0)
R2_COPYPEN
SYSTEM_FONT

SetBkColor
SetBkMode

CreateBitmap
CreateBitmapIndirect
CreateCompatible-
Bitmap

SelectObject

CreateBrushIndirect
CreateDIBPatternBrush
CreateHatchBrush
CreatePatternBrush
CreateSolidBrush
SelectObject

SetBrushOrg
UnrealizeObject

" ExcludeClipRect

IntersectClipRect
OffsetClipRgn
SelectClipRgn

CreatePalette
RealizePalette
SelectPalette

MoveTo
SetROP2

CreateFont
CreateFontIndirect
SelectObject

2-4 Reference — Volume 1

Table 2.1 Default Device-Context Attributes and Related GDI Functions
(continued)

Attribute Default GDI Functions

Intercharacter spacing 0 SetTextCharacterExtra

Mapping mode MM_TEXT SetMapMode

Pen BLACK_PEN CreatePen
CreatePenIndirect
SelectObject

Polygon-filling mode ALTERNATE SetPolyFillMode

Stretching mode BLACKONWHITE SetStretchBltMode

Text color Black SetTextColor

Viewport extent 1,0 SetViewportExt

Viewport origin (0,0) SetViewportOrg

Window extent (1,1) SetWindowExt

Window origin (0,0) SetWindowOrg

2.1.2 Saving a Device Context

Occasionally, it is necessary to save a device context so that the original at-
tributes will be available at a later time. For example, a Windows application
may need to save its original clipping region so that it can restore the client
area’s original state after a series of alterations occur. The SaveDC and Re-
storeDC functions make this possible.

2.1.3 Deleting a Device Gontext

The DeleteDC function deletes a device context and ensures that shared
resources are not removed until the last context is deleted. The device driver is a
shared resource.

2.1.4 Compatible Device Gontexts

The CreateCompatibleDC function causes Windows to treat a portion of
memory as a virtual device. This means that Windows prepares a device context
that has the same attributes as the device for which it was created, but the device
context has no connected output device. To use the compatible device context,
the application creates a compatible bitmap and selects it into the device context.
Any output it sends to the device is drawn in the selected bitmap. Since the
device context is compatible with some actual device, the context of the bitmap
can be copied directly to the actual device, or vice versa. This also means that the
application can send output to memory (prior to sending it to the device). Note

Graphics Device Interface Functions 2-5

that the CreateCompatibleDC function works only for devices that have BitBlt
capabilities.

2.1.5 Information Gontexts

The CreatelC function creates an information context for a device. An informa-
tion context is a device context with limited capabilities; it cannot be used to
write to the device. An application uses an information context to gather informa-
tion about the selected device. Information contexts are useful in large applica-
tions that require memory conservation.

By using an information context and the GetDeviceCaps function, you can ob-
tain the following device information:

Device technology

m Physical display size

m Color capabilities of the device

m Color-palette capabilities of the device

®m Drawing objects available on the device

m Clipping capabilities of the device

m Raster capabilities of the device

= Curve-drawing capabilities of the device
Line-drawing capabilities of the device

® Polygon-drawing capabilities of the device

m Text capabilities of the device

2.2 Drawing-Tool Functions

Drawing-tool functions create and delete the drawing tools that GDI uses when it
creates output on a device or display surface. The following list briefly describes
each drawing-tool function:

Function Description

CreateBrushIndirect Creates a logical brush.

CreateDIBPatternBrush Creates a logical brush that has a pattern defined by
a device-independent bitmap (DIB).

CreateHatchBrush Creates a logical brush that has a hatched pattern.

2-6 Reference — Volume 1

Function

CreatePatternBrush

CreatePen
CreatePenlndirect
CreateSolidBrush
DeleteObject
EnumObjects
GetBrushOrg

GetObject
GetStockObject

SelectObject
SetBrushOrg

UnrealizeObject

2.2.1 Drawing-Tool Uses

Description

Creates a logical brush that has a pattern defined by
a memory bitmap.

Creates a logical pen.

Creates a logical pen.

Creates a logical brush.

Deletes a logical pen, brush, font, bitmap, or region.
Enumerates the available pens or brushes.

Retrieves the current brush origin for a device con-
text.

Copies the bytes of logical data that define an object.

Retrieves a handle to one of the predefined stock
pens, brushes, fonts, or color palettes.

Selects an object as the current object.

Sets the origin of all brushes selected into a given
device context.

Directs GDI to reset the origin of the given brush.

A Windows application can use any of three tools when it creates output: a bit-
map, a brush, or a pen. An application can use the pen and brush together, outlin-
ing a region or object with the pen and filling the region’s or object’s interior
with the brush. GDI allows the application to create pens with solid colors, bit-
maps with solid or combination colors, and brushes with solid or combination
colors. (The available colors and color combinations depend on the capabilities
of the intended output device.)

Brushes

There are seven predefined brushes available in GDI; an application selects any
one of them by using the GetStockObject function. The following list describes

these brushes:

® Black
® Dark-Gray
B Gray

= Hollow

Graphics Device Interface Functions 2-7

m Light-Gray

= Null

m White

There are six hatched brush patterns; an application can select any one of these
patterns by using the CreateHatchBrush function. (A hatch line is a thin line
that appears at regular intervals on a solid background.) The following list de-
scribes these hatch patterns:

® Backward Diagonal

m Cross

m Diagonal Cross

m Forward Diagonal

m Horizontal

m Vertical

Figure 2.2 shows each hatched brush pattern. A simple Windows application
created this figure:

HS_HORIZONTAL HS_BDIAGONAL HS_FDIAGONAL
7 / \
HS_VERTICAL HS_CROSS HS_DIAGCROSS

Figure 2.2 Hatched Brush Patterns

2-8 Reference — Volume 1

2.2.2 Color

Pens

There are three predefined pens available in GDI; an application selects any one
of them by using the GetStockObject function. The following list describes
these pens:

® Black
® Null
® White

In addition to selecting a stock pen, an application creates an original pen by
using the GDI CreatePen function. This function allows the application to select
one of six pen styles, a pen width, and a pen color (if the device has color capa-
bilities). The pen style can be solid, dashed, dotted, a combination of dots and
dashes, or null. The pen width is the number of logical units GDI maps to a cer-
tain number of pixels (this number is dependent on the current mapping mode if
the pen is selected into a device context). The pen color is an RGB color value.

Figure 2.3 shows a variety of pen patterns obtained from calls to the CreatePen
function. A simple Windows application created this figure:

Solid Line width of 1
Dash Line width of 4
Dot Line width of 7
Dash and dot Line width of 10
Dash and two dots Line width of 13

Figure 2.3 Pen Patterns

Many of the GDI functions that create pens and brushes require that the calling
application specify a color in the form of a COLORREEF value. A COLORREF
value specifies color in one of three ways:

® As an explicit RGB value
® As an index to a logical-palette entry

m As a palette-relative RGB value

Graphics Device Interface Functions 2-9

The second and third methods require the application to create a logical palette.
Section 2.3, “Color Palette Functions,” describes Windows color palettes and the
functions used by an application to exploit their capabilities.

An explicit RGB COLORREF value is a long integer that contains a red, a
green, and a blue color field. The first (low-order) byte contains the red field, the
second byte contains the green field, and the third byte contains the blue field;
the fourth (high-order) byte must be zero. Each field specifies the intensity of the
color; zero indicates the lowest intensity and 255 indicates the highest. For ex-
ample, 0xO0OFF0000 specifies pure blue, and 0x0000FF00 specifies pure green.
The RGB macro accepts values for the relative intensities of the three colors and
returns an explicit RGB COLORREF value. When GDI receives the RGB value
as a function parameter, it passes the RGB color value directly to the output
device driver, which selects the closest available color on the device. The Get-
NearestColor function returns the closest logical color to a specified logical
color that a given device can represent.

If the device is a plotter, the driver converts the RGB value to a single color that
matches one of the pens on the device.

If the device uses color raster technology and the RGB value specifies a color for
a pen, the driver will select a solid color. If the device uses color raster tech-
nology and the RGB value specifies a color for a brush, the driver will select
from a variety of available color combinations. Since many color devices can dis-
play only a few colors, the actual color is simulated by “dithering,” that is,
mixing pixels of the colors which the display can actually render.

If the device is monochrome (black-and-white), the driver will select black,
white, or a shade of gray, depending on the RGB value. If the sum of the RGB
values is zero, the driver selects a black brush. If the sum of the RGB values is
765, the driver selects a white brush. If the sum of the RGB values is between
zero and 765, the driver selects one of the gray patterns available.

The GetRValue, GetGValue, and GetBValue functions extract the values for
red, green, and blue from an explicit RGB COLORREF value.

2.3 Color-Palette Functions

Many color graphic displays are capable of displaying a wide range of colors. In
most cases, however, the actual number of colors which the display can render at
any given time is more limited. For example, a display that is potentially able to
produce over 262,000 different colors may be able to show only 256 of those
colors at a time because of hardware limitations. In such cases, the display device
often maintains a palette of colors; when an application requests a color that is
not currently displayed, the display device adds the requested color to the palette.
However, when the number of requested colors exceeds the maximum number
for the device, it must replace an existing color with the requested color. As a
result, if the total number of colors requested by one or more windows exceeds

2-10 Reference — Volume 1

the number available on the display, many of the actual colors displayed will be
incorrect.

Windows color palettes act as a buffer between color-intensive applications and
the system, allowing an application to use as many colors as needed without inter-
fering with its own color display or colors displayed by other windows. When a
window has input focus, Windows ensures that the window will display all the
colors it requests, up to the maximum number simultaneously available on the
display, and displays additional colors by matching them to available colors. In
addition, Windows matches the colors requested by inactive windows as closely
as possible to the available colors. This significantly reduces undesirable changes
in the colors displayed in inactive windows.

The following list briefly describes the functions an application calls to use color

palettes:

Function Description

AnimatePalette Replaces entries in a logical palette; Windows maps
the new entries into the system palette immediately.

CreatePalette Creates a logical palette.

GetNearestPaletteIndex Retrieves the index of a logical palette entry most
nearly matching a specified RGB value.

GetPaletteEntries Retrieves entries from a logical palette.

GetSystemPaletteEntries Retrieves a range of palette entries from the system
palette. :

GetSystemPaletteUse Determines whether an application has access to the
full system palette.

RealizePalette Maps entries in a logical palette to the system palette.

SelectPalette Selects a logical palette into a device context.

SetPaletteEntries Sets new palette entries in a logical palette;

Windows does not map the new entries to the sys-
tem palette until the application realizes the logical

palette.
SetSystemPaletteUse Allows an application to use the full system palette.
UpdateColors Performs a pixel-by-pixel translation of each pixel’s

current color to the system palette. This allows an
inactive window to correct its colors without redraw-
ing its client area.

Graphics Device Interface Functions 2-11

2.3.1 How Color Palettes Work

Color palettes provide a device-independent method for accessing the color capa-
bilities of a display device by managing the device’s physical (or system) palette,
if one is available. Typically, devices that can display at least 256 colors use a
physical palette.

An application employs the system palette by creating and using one or more
logical palettes. Each entry in the palette contains a specific color. Then, instead
of specifying an explicit value for a color when performing graphics operations,
the application indicates which color is to be displayed by supplying an index
into its logical palette,

Since more than one application can use logical palettes, it is possible that the
total number of colors requested for display can exceed the capacity of the dis-
play device. Windows acts as a mediator among these applications.

When a window requests that its logical palette be given its requested colors (a
process known as realizing its palette), Windows first exactly matches entries in
the logical palette to current entries in the system palette.

If an exact match for a given logical-palette entry is not possible, Windows sets
the entry in the logical palette into an unused entry in the system palette.

Finally, when all entries in the system palette have been used, Windows takes
these logical palette entries that do not exactly match and matches them as
closely as possible to entries already in the system palette. To further aid this
color matching, Windows sets aside 20 static colors (called the “default palette™)
in the system palette to which it can match entries in a background palette.

Windows always satisfies the color requests of the foreground window first; this
ensures that the active window will have the best color display possible. For the
remaining windows, Windows satisfies the color requests of the window which
most recently received input focus, the window which was active before that one,
and so on.

2-12 Reference — Volume 1

System Palette Logical Palette 1
(Active Window)

NOOAWN=O

Logical Palette 2

s nasasmEs

s
sasusas
1
=

W D> o © N O O A W N 2 o

ONOORANWN~O

Figure 2.4 Palette Manager Galor-Mapping Algorithm

Figure 2.4 illustrates this process. In this figure, a hypothetical display has a sys-
tem palette capable of containing 12 colors. The application that created Logical
Palette 1 owns the active window and was the first to realize its logical palette,
which consists of 8 colors. Logical Palette 2 is owned by a window which real-
ized its logical palette while it was inactive.

Because the active window was active when it realized its palette, Windows
mapped all of the colors in Logical Palette 1 directly to the system palette.

Three of the colors (1, 3, and 5) in Logical Palette 2 are identical to colors in the
system palette; to save space in the palette, then, Windows simply matched those
colors to the existing system colors when the second application realized its
palette. Colors 0, 2, 4, and 6 were not already in the system palette, however, and
so Windows mapped those colors into the system palette.

Because the system palette is now full, Windows was not able to map the remain-
ing two colors (which do not exactly match existing colors in the system palette)
into the system palette. Instead, it matched them to the closest colors in the sys-
tem palette.

2.3.2 Using a Color Palette

Before drawing to the display device using a color palette, an application must
first create a logical palette by calling the CreatePalette function and then call
SelectPalette to select the palette for the device context (DC) for the output

Graphics Device Interface Functions 2-13

device for which it will be used. An application cannot select a palette into a
device context using the SelectObject function.

All functions which accept a color parameter accept an index to an entry in the
logical palette. The palette-index specifier is a long integer value with the first bit
in its high-order byte set to 1 and the palette index in the two low-order bytes.
For example, 0x01000005 would specify the palette entry with an index of 5.
The PALETTEINDEX macro accepts an integer value representing the index of
a logical-palette entry and returns a palette-index COLORREF value which an
application can use as a parameter for GDI functions that require a color.

An application can also specify a palette index indirectly by using a palette-rela-
tive RGB COLORRETF value. If the target display device supports logical
palettes, Windows matches the palette-relative RGB COLORREF value to the
closest palette entry; if the target device does not support palettes, then the RGB
value is used as though it were an explicit RGB COLORREF value. The palette-
relative RGB COLORREF value is identical to an explicit RGB COLORREF
value except that the second bit of the high-order byte is set to 1. For example,
0x02FF0000 would specify a palette-relative RGB COLORREEF value for pure
blue. The PALETTERGB macro accepts values for red, green and blue, and re-
turns a palette-relative RGB COLORREF value which an application can use as
a parameter for GDI functions that require a color.

If an application does specify an RGB value instead of a palette entry, Windows
will use the closest matching color in the default palette of 20 static colors.

NOTE If the source and destination device contexts have selected and realized different
palettes, the BitBIt function does not properly move bitmap bits to or from a memory device
context. In this case, you must call the GetDIBits with the wlsage parameter set to
DIB_RGB_COLORS to retrieve the bitmap bits from the source bitmap in a device-inde-
pendent format. You then use the SetDIBits function to set the retrieved bits in the destina-
tion bitmap. This ensures that Windows will properly match colors between the two device
contexts.

BitBIt can successfully move bitmap bits between two screen display contexts, even if they
have selected and realized different palettes. The StretchBIt function properly moves bitmap
bits between device contexts whether or not they use different palettes.

2.4 Drawing-Attribute Functions

Drawing-attribute functions affect the appearance of Windows output, which has
four forms: line, brush, bitmap, and text. The following list describes each draw-
ing-attribute function:

2-14 Reference — Volume 1

Function Description

GetBkColor Returns the current background color.
GetBkMode Returns the current background mode.
GetPolyFillMode Retrieves the current polygon-filling mode.
GetROP2 Retrieves the current drawing mode.
GetStretchBltMode Retrieves the current stretching mode.
GetTextColor Retrieves the current text color.
SetBkColor Sets the background color.

SetBkMode Sets the background mode.
SetPolyFillMode Sets the polygon-filling mode.
SetROP2 Sets the current drawing mode.
SetStretchBltMode Sets the stretching mode.

SetTextColor Sets the text color.

2.4.1 Background Mode and Background Color

Line output can be solid or broken (dashed, dotted, or a combination of the two).
If it is broken, the space between the breaks can be filled by setting the back-
ground mode to OPAQUE and selecting a color. By setting the background mode
to TRANSPARENT, the space between breaks is left in its original state. The
SetBkMode and SetBkColor functions accomplish this task.

Brush output is solid, patterned, or hatched. The space between hatch marks can
be filled by setting the background mode to OPAQUE and selecting a color.
When Windows creates brush output on a display, it combines the existing color
on the display surface with the brush color to yield a new and final color; this is a
binary raster operation. If the default raster operation is not appropriate, a new
one is chosen by using the SetROP2 function.

2.4.2 Stretch Mode

If an application copies a bitmap to a device and it is necessary to shrink or ex-
pand the bitmap before drawing, the effects of the StretchBlt and StretchDIBits
functions can be controlled by calling SetStretchBltMode to set the current
stretch mode for a device context. The stretch mode determmes how lines elimi-
nated from the bitmap are combined.

Graphics Device Interface Functions 2-15

2.4.3 Text Color

The appearance of text output is limited only by the number of available fonts
and the color capabilities of the output device. The SetBkColor function sets the
color of the text background (the unused portion of each character’s cell) and the
SetTextColor function sets the color of the character itself.

2.5 Mapping Functions

Mapping functions alter and retrieve information about the GDI mapping modes.
In order to maintain device independence, GDI creates output in a logical space
and maps it to the display. The mapping mode defines the relationship between
units in the logical space and pixels on a device. The following list briefly de-
scribes each mapping function:

Function
GetMapMode
GetViewportExt
GetViewportOrg
GetWindowExt
GetWindowOrg
OffsetViewportOrg
OffsetWindowOrg
ScaleViewportExt
ScaleWindowExt
SetMapMode
SetViewportExt
SetViewportOrg
SetWindowExt
SetWindowOrg

Description

Retrieves the current mapping mode.
Retrieves a device context’s viewport extents.
Retrieves a device context’s viewport origin.
Retrieves a device context’s window extents.
Retrieves a device context’s window origin.
Modifies a viewport origin.

Modifies a window origin.

Modifies the viewport extents.

Modifies the window extents.

Sets the mapping mode of a specified device context.
Sets a device context’s viewport extents.

Sets a device context’s viewport origin.

Sets a device context’s window extents.

Sets a device context’s window origin.

2-16 Reference — Volume 1

There are eight different mapping modes: MM_ANISOTROPIC, MM_HIEN-
GLISH, MM_HIMETRIC, MM_ISOTROPIC, MM_LOENGLISH,
MM_LOMETRIC, MM_TEXT, and MM_TWIPS. Each mode has a specific use
in a Windows application. Table 2.2 summarizes the eight GDI mapping modes:

Table 2.2 GDI Mapping Modes

Mapping Mode Intended Use

MM_ANISOTROPIC Used in applications that map one logical unit to an arbi-
trary physical unit. The x- and y-axes are arbitrarily
scaled.

MM_HIENGLISH Used in applications that map one logical unit to 0.001
inch. Positive y extends upward.

MM_HIMETRIC Used in applications that map one logical unit to 0.01

millimeter. Positive y extends upward.

MM_ISOTROPIC Used in applications that map one logical unit to an arbi-
trary physical unit. One unit along the x-axis is always
equal to one unit along the y-axis.

MM_LOENGLISH Used in applications that map one logical unit to 0.01
inch. Positive y extends upward.

MM_LOMETRIC Used in applications that map one logical unit to 0.1 mil-
limeter. Positive y extends upward.

MM_TEXT Used in applications that map one logical unit to one
pixel. Positive y extends downward.

MM_TWIPS Used in applications that map one logical unit to 1/1440
inch (1/20 of a printer’s point). Positive y extends up-
ward.

2.5.1 Constrained Mapping Modes

GDI classifies six of the mapping modes as constrained mapping modes:
MM_HIENGLISH, MM_HIMETRIC, MM_LOENGLISH, MM_LOMETRIC,
MM_TEXT, and MM_TWIPS. In each of these modes, one logical unit is
mapped to a predefined physical unit. For instance, the MM_TEXT mode maps
one logical unit to one device pixel, and the MM_LOENGLISH mode maps one
logical unit to 0.01 inch on the device. These mapping modes are constrained be-
cause the scaling factor is fixed, so an application cannot change the number of
logical units that Windows maps to a physical unit. Table 2.3 shows the number
of logical units in various mapping modes that result in a certain physical unit:

Graphics Device Interface Functions 2-17

Table 2.3 Logical/Physical Conversion Table

Mapping Logical Physical
Mode Units . Unit
MM_HIENGLISH - 1000 1 inch
MM_HIMETRIC 100 1 millimeter
MM_LOENGLISH 100 1 inch
MM_LOMETRIC 10 1 millimeter
MM_TEXT 1 Device pixel
MM_TWIPS 1440 1 inch

2.5.2 Partially Gonstrained and Unconstrained Mapping Modes

The unconstrained mapping modes, MM_ISOTROPIC and MM_ANI-
SOTROPIC, use two rectangular regions to derive a scaling factor and an orienta-
tion: the window and the viewport. The window lies within the
logical-coordinate space and the viewport lies within the physical-coordinate
space. Both possess an origin, an x-extent, and a y-extent. The origin may be any
one of the four corners. The x-extent is the horizontal distance from the origin to
its opposing corner. The y-extent is the vertical distance from the origin to its op-
posing corner. Windows creates a horizontal scaling factor by dividing the view-
port’s x-extent by the window’s x-extent and creates a vertical scaling factor by
dividing the viewport’s y-extent by the window’s y-extent. These scaling factors
determine the number of logical units that Windows maps to a number of pixels.
In addition to determining scaling factors, the window and viewport determine
the orientation of an object. Windows always maps the window origin to the
viewport origin, the window x-extent to the viewport x-extent, and the window y-
extent to the viewport y-extent.

Partially Constrained Mapping Mode

An application creates output with equally scaled axes by using the’
MM_ISOTROPIC mapping mode. This means that Windows will map a sym-
metrical object (for example, a square or a circle) in the logical space as a sym-
metrical object in the physical space. In order to maintain this symmetry, GDI
shrinks one of the viewport extents. The amount of shrinkage depends on the re-
quested extents and the aspect ratio of the device. This mapping mode is called
partially constrained because the application does not have complete control in al-
tering the scaling factor.

2-18 Reference — Volume 1

Unconstrained Mapping Mode

An application can completely alter the horizontal and vertical scaling factors by
using the MM_ANISOTROPIC mapping mode and setting the window and view-

* port extents to any value after selecting this mapping mode. Windows will not
alter either scaling factor in this mode.

2.5.3 Transformation Equations

GDI uses the following equations to transform logical points to device points,
and device points to logical points:

® Transforming logical points to device points:

Dx = (Lx —xWO) X xXVE/XxWE + xVO
Dy = (Ly - yWO) X yVE/yWE + yVO

m Transforming device points to logical points:

Lx = (Dx - xVO) x XWE/XxVE + xWO
Ly = (Dy-yVO) xyWE/yVE + yWO

The following list describes the variables used in these transformation equations:

Variable Description

xWO Window origin x-coordinate

ywo Window origin y-coordinate

xWE Window extent x-coordinate

yWE Window extent y-coordinate

xVO Viewport origin x-coordinate

yvoO Viewport origin y-coordinate

xVE . Viewport extent x-coordinate

yVE Viewport extent y-coordinate

Lx Logical-coordinate system x-coordinate
Ly Logical-coordinate system y-coordinate
Dx Device x-coordinate

Dy ‘ Device y-coordinate

Graphies Device Interface Functions 2-19

The following four ratios are scaling factors:
xVE/XWE
yVE/yWE
xWE/xVE
yWE/yVE

They are used to determine the necessary stretching or compressing of logical
units. The subtraction and addition of viewport and window origins is referred to
as the translational component of the equation.

2.5.4 Example: MM_TEXT

The default mapping mode is MM_TEXT. In this mapping mode, one loglcal
unit is mapped to one pixel on the device or display.

A simple Windows application created three rectangles as they appear in the logi-
cal and physical coordinate spaces when MM_TEXT is the mapping mode, as
shown in Figure 2.5. The drawing on the left illustrates the logical space; the
drawing on the right illustrates the device, or physical, space. The rectangles ap-
pear vertically elongated in the physical space because pixels on the chosen dis-
play are longer than they are wide. The rectangles appear to be upside-down
because positive y extends downward in the physical-coordinate system.

Logical Coordinate System Physical Coordinate System
y-axis

A
(+)

-------------------- > Xx-axis

(+)

Figure 2.5 Mapping with MM_TEXT

2.5.5 Example: MM_LOENGLISH

A Windows application created three rectangles and mapped them from the logi-
cal space to the physical space by using the MM_LOENGLISH mapping mode,

2-20 Reference — Volume 1

as shown in Figure 2.6. The drawing on the left illustrates how the rectangles ap-
pear in relation to the x- and y-axes in the logical coordinate system. The drawing
on the right illustrates how the rectangles appear in relation to the x- and y-axes
in the physical coordinate system.

Logical Coordinate System Physical Coordinate System
y-axis y-axis
4 4
()1 (OH

Figure 2.6 Mapping with MM_LOENGLISH

2.6 Coordinate Functions

Coordinate functions convert client coordinates to screen coordinates (or vice
versa), and determine the location of a specific point. These functions are useful
in graphics-intensive applications. The following list briefly describes each
coordinate function:

Function Description

ChildWindowFromPoint Determines which child window contains a specified

point.
ClientToScreen Converts client coordinates into screen coordinates.
DPtoLP Converts device points (that is, points relative to the
window origin) into logical points.
LPtoDP Converts logical points into device points.
ScreenToClient Converts screen coordinates into client coordinates.
WindowFromPoint Determines which window contains a specified

point.

Graphics Device Interface Functions 2-21

2.7 Region Functions

Region functions create, alter, and retrieve information about regions. A region is
an elliptical or polygonal area within a window that can be filled with graphical
output. An application uses these functions in conjunction with the clipping func-
tions to create clipping regions. For more information about clipping functions,
see Section 2.8, “Clipping Functions.” The following list briefly describes each

region function:

Function

CombineRgn

CreateEllipticRgn
CreateEllipticRgnIndirect
CreatePolygonRgn
CreatePolyPolygonRgn

CreateRectRgn
CreateRectRgnIndirect
CreateRoﬁndRecthn
EqualRgn

FillRgn

FrameRgn
GetRgnBox

InvertRgn
OffsetRgn
PaintRgn

PtInRegion

Description

Combines two existing regions into a
new region.

Creates an elliptical region.
Creates an elliptical region.
Creates a polygonal region.

Creates a region consisting of a series
of closed polygons that are filled as
though they were a single polygon.

Creates a rectangular region.
Creates a rectangular region.
Creates a rounded rectangular region.

Determines whether two regions are
identical.

Fills the given region with a brush
pattern.

Draws a border for a given region.

Retrieves the coordinates of the
bounding rectangle of a region.

Inverts the colors in a region.
Moves the given region.

Fills the region with the selected
brush pattern.

Tests whether a point is within a re-
gion.

2-22 Reference — Volume 1

Function Description

RectInRegion Tests whether any part of a rectangle
is within a region.

SetRectRgn Creates a rectangular region.

2.8 Clipping Functions

Clipping functions create, test, and alter clipping regions. A clipping region is the
portion of a window’s client area where GDI creates output; any output sent to
that portion of the client area which is outside the clipping region will not be vis-
ible. Clipping regions are useful in any Windows application that needs to save
one part of the client area and simultaneously send output to another. The follow-
ing list briefly describes each clipping function:

Function Description
ExcludeClipRect Excludes a rectangle from the clipping region.
GetClipBox Copies the dimensions of a bounding rectangle.
IntersectClipRect Forms the intersection of a clipping region and a
' rectangle.
OffsetClipRgn Moves a clipping region.
PtVisible Tests whether a point lies in a region.
RectVisible Determines whether part of a rectangle lies in a re-
gion.
SelectClipRgn Selects a clipping region.

2.9 Line-Output Functions

Line-output functions create simple and complex line output with the selected
pen. The following list briefly describes each line-output function:

Function Description

Arc Draws an arc.

LineDDA Computes successive points on a line.

LineTo Draws a line with the selected pen.

MoveTo Moves the current position to the specified point.

Polyline Draws a set of line segments.

Graphics Device Interface Functions 2-23

Figure 2.7 shows an arc created by using the Arc function. The upper portion of
the illustration shows the arc as it would appear on a display; the lower portion
shows the arc suspended in its bounding rectangle, which GDI uses to determine
the size and shape of the arc:

Figure 2.7 Arc and Its Bounding Rectangle

2.9.1 Function Coordinates

Line-output functions require coordinates in logical units, which GDI uses to
draw a line in logical space. The use of logical units ensures device independence
in Windows. GDI maps this line from the logical space to the physical space on
the device. The number of logical units that GDI maps to a pixel depends on the
current mapping mode. When GDI draws a line, it excludes the last specified
point. For example, if the LineTo function is given the arguments (X1, Y1) and
(X2, Y2), the line will be drawn from (X/, YI)to (X2 -1,Y2 - 1).

2.9.2 Pen Styles, Golors, Widths

If an application draws lines and does not create a new pen, GDI uses the default
pen. This pen is black and is one pixel wide when the mapping mode is
MM_TEXT. An application can create a new pen of a different width, style, and
color by using the CreatePen function. The new color is dependent on the color
capabilities of the output device. The new style can be solid, dotted, dashed, or a
combination of dotted and dashed. Once an application creates a new pen, it can
select it into a display context by using the SelectObject function.

Figure 2.8 shows simple line output created by the LineTo and MoveTo func-
tions. The application created the rectangle on the left by using a styled pen and
the rectangle on the right by using a solid pen:

2-24 Reference — Volume 1

Styled pen Solid pen

Lo [

Figure 2.8 Styled-Pen and Solid-Pen Rectangles

2.10 Ellipse and Polygon Functions

Ellipse and polygon functions draw ellipses and polygons. GDI draws the perime-
ter of each object with the selected pen and fills the interior by using the selected
brush. These functions are particularly useful in drawing and charting applica-
tions. The following list briefly describes each ellipse and polygon function:

Function Description

Chord Draws a chord.

DrawFocusRect Draws a rectangle in the style used to indicate focus.

Ellipse Draws an ellipse.

Pie Draws a pie.

Polygon Draws a polygon.

PolyPolygon Draws a series of closed polygons that are filled as
though they were a single polygon.

Rectangle Draws a rectangle.

RoundRect Draws a rounded rectangle.

2.10.1 Function Coordinates

Ellipse and polygon functions require coordinates in logical units, which GDI
uses to determine the location and size of an object in logical space. The use of
logical units ensures device independence in Windows. GDI uses a mapping
function to map logical units to pixels on the device. The number of logical units
that Windows maps to a pixel depends on the current mapping mode. The default
mapping mode, MM_TEXT, maps one logical unit to one pixel.

When GDI draws a rectangle, it uses four arguments. The first two arguments
specify the rectangle’s upper-left corner. The last two arguments do not actually
specify part of the rectangle; they specify the point adjacent to the lower-right
corner. For example, if the first point is specified by (X1, Y1) and the second

Graphics Device Interface Functions 2-25

point is specified by (X2, Y2), the rectangle’s upper-left corner will be (X1, Y1)
and the lower-right corner will be (X2 - 1, Y2 - 1).

2.10.2 Bounding Rectangles

Instead of requiring a radius or circumference measurement, the Chord, Ellipse,
and Pie functions use a bounding rectangle to define the size of the object they
create. The bounding rectangle is hidden; GDI uses it only to describe the ob-
ject’s location and size.

For information about functions that alter or obtain information about rectangles
in a window’s client area, see Section 1.18, “Rectangle Functions.”

2.11 Bitmap Functions

Bitmap functions display bitmaps. A bitmap is a matrix of memory bits that,
when copied to a device, defines the color and pattern of a corresponding matrix
of pixels on the device’s display surface. Bitmaps are useful in drawmg, charting,
and word-processing applications because they let you prepare images in
memory and then quickly copy them to the display. The following list briefly de-
scribes each bitmap function:

Function Description

BitBIt Copies a bitmap from a source to a
destination device.

CreateBitmap Creates a bitmap.

CreateBitmapIndirect Creates a bitmap described in a data
structure.

CreateCompatibleBitmap Creates a bitmap that is compatible
with a specified device.

CreateDiscardableBitmap Creates a discardable bitmap that is

‘ compatible with a specified device.

ExtFloodFill Fills the display surface within a
border or over an area of a given
color.

FloodFill Fills the display surface within a
border.

GetBitmapBits Retrieves the bits in memory for a

specific bitmap.

GetBitmapDimension Retrieves the dimensions of a bitmap.

2-26 Reference — Volume 1

Function

GetPixel
LoadBitmap

PatBIt
SetBitmapBits
SetBitmapDimension
SetPixel

StretchBIt

2.11.1 Bitmaps and Devices

Description

Retrieves the RGB value for a pixel.
Loads a bitmap from a resource file.
Creates a bit pattern.

Sets the bits of a bitmap.

Sets the height and width of a bitmap.
Sets the RGB value for a pixel.

Copies a bitmap from a source to a
destination device (compresses or
stretches, if necessary).

The relationship between bitmap bits in memory and pixels on a device is device-
dependent. On a monochrome device, the correspondence is usually one-to-one,
where one bit in memory corresponds to one pixel on the device.

2.11.2 Device-Independent Bitmap Functions

Microsoft Windows version 3.0 provides a set of functions that define and
manipulate color bitmaps which can be appropriately displayed on any device
with a given resolution, regardless of the method by which the display represents
color in memory. These functions translate a device-independent bitmap specifi-
cation into the device-specific format used by the current display. The following

* is a list of these functions:

Function

CreateDIBitmap

GetDIBits

SetDIBits

SetDIBitsToDevice

Description

Creates a device-specific memory bitmap from a
device-independent bitmap (DIB) specification and
optionally initializes bits in the bitmap. This func-
tion is similar to CreateBitmap.

Retrieves the bits in memory for a specific bitmap in
device-independent form. This function is similar to
GetBitmapBits.

Sets a memory bitmap’s bits from a DIB. This func-
tion is similar to SetBitmapBits.

Sets bits on a device surface directly from a DIB.

Graphics Device Interface Functions 2-27

Function Description

StretchDIBits Moves a device-independent bitmap (DIB) from a
source rectangle into a destination rectangle, stretch-
ing or compressing the bitmap as required.

A device-independent bitmap specification consists of two parts:

1. A BITMAPINFO data structure that defines the format of the bitmap and op-
tionally supplies a table of colors used by the bitmap

2. An array of bytes that contain the bitmap bit values

Depending on the values contained in the bitmap information data structure, the
bitmap bit values can specify explicit color (RGB) values or indexes into the
color table. In addition, the color table can consist of indexes into the currently re-
alized logical palette instead of explicit RGB color values. It is important to note
that the coordinate-system origin for DIBs is the lower-left corner, not the
Windows default upper-left corner.

2.12 Text Functions | ,

Text functions retrieve text information, alter text alignment, alter text justifica-
tion, and write text on a device or display surface. GDI uses the current font for
text output. The following list briefly describes each text function:

Function Description

ExtTextOut Writes a character string, within a rectangular re-
gion, using the currently selected font. The rectangu-
lar region can be opaque (filled with the current
background color) and it can be a clipping region.

GetTabbedTextExtent Computes the width and height of a line of text con-
taining tab characters.

GetTextAlign Returns a mask of the text alignment flags.

GetTextExtent Uses the current font to compute the width and
height of text.

GetTextFace Copies the current font name to a buffer.

GetTextMetrics ‘Fills the buffer with metrics for the selected font.

SetTextAlign Positions a string of text on a display or device.

SetText Justification Justifies a text line.

2-28 Reference — Volume 1

Function

TabbedTextOut

TextOut

2.13 Font Functions

Description

Writes a character string with expanded tabs, using
the current font.

Writes a character string using the current font.

Font functions select, create, remove, and retrieve information about fonts. A
font is a subset of a particular typeface, which is a set of characters that share a

similar fundamental design.

The following list briefly describes each font function:

Function

AddFontResource
CreateFont
CreateFontIndirect

EnumFonts
GetCharWidth
RemoveFontResource

SetMapperFlags

Description

Adds a font resource in the specified file to the sys-
tem font table.

Creates a logical font that has the specified charac-
teristics.

Creates a logical font that has the specified charac-
teristics.

Enumerates the fonts available on a given device.
Retrieves the widths of individual characters.
Removes a font resource from the font table.

Alters the algorithm the font mapper uses.

A font family is a group of typefaces that have similar stroke-width and serif
characteristics. A typeface is a set of characters (letters, numerals, punctuation
marks, symbols) that share a common design. Font characters share very specific
characteristics, such as point size and weight.

Note that the terrns GDI uses to describe fonts, typefaces, and families of fonts
do not necessarily correspond to traditional typographic terms.

The Helv typeface is an example of a familiar typeface. Available fonts within
this typeface include 8-point Helv bold and 10-point Helv italic.

Figure 2.9 shows several fonts from the Helv and Courier typefaces:

Graphics Device Interface Functions 2-29

This is aline of 12 point Helv.
This is a line of 12 point Helv bold.
This is a line of 12 point Helv italic.

Thisisalineof 12 point Courier.
Thisisalineof 12 point Courierbold.

Thisisalineof1l2point Courieritalic.

Figure 2.9 Fonts from Two Typefaces

2.13.1 Font Family

GDI organizes fonts by family; each family consists of typefaces and fonts that
share a common design. The families are divided by stroke width and serif
characteristics. The term stroke, which means a horizontal or vertical line, comes
from handwritten characters composed of one or more pen strokes. The horizon-
tal stroke is called a cross-stroke. The main vertical line is called a stem.

Figure 2.10 shows a lowercase f composed of a cross-stroke and a stem with a
loop at the top:

(

Cross-stroke

N\
| Stem

Figure 2.10 Cross-Stroke and Stem

Serifs are short cross-lines drawn at the ends of the main strokes of a letter. If a
typeface does not have serifs, it is generally called a sans-serif (without serif)
typeface. Figure 2.11 shows serifs:

Serif

___ Serif

Al L}

Figure 2.11 Serifs

2-30 Reference — Volume 1

GDI uses five distinct family names to categorize typefaces and fonts. A sixth
name is used for generic cases. Note that GDI’s family names do not correspond
to traditional typographic categories. Table 2.4 lists the font-family names and
briefly describes each family:

Table 2.4 Font Families

Name Description

Dontcare Generic family name. Used when information about a font does
not exist or does not matter.

Decorative Novelty fonts.

Modem Constant stroke width (fixed-pitch), with or without serifs.
Fixed-pitch fonts are usually modern.

Roman Variable stroke width (proportionally spaced), with serifs.

Script Designed to look like handwriting.

Swiss Variable stroke width (proportionally spaced), without serifs.

2.13.2 Character Cells

A character is the basic element in a font. In GDI, each character is contained
within a rectangular region known as a character cell. This rectangular region
consists of a specific number of rows and columns, and possesses six points of
measurement: ascent, baseline, descent, height, origin, and width. The following
list describes these measurements:

Measurement Description

Ascent Specifies the distance in character-cell rows from
the character-cell baseline to the top of the character
cell.

Baseline Serves as the base on which all characters stand

(some lowercase letters have descenders, such as the
tail of the g or y, that descend below the baseline).

Descent Specifies the distance in character-cell rows from
the character-cell baseline to the bottom of the
character cell.

Height Specifies the height of a character-cell row.

Graphics Device Interface Functions 2-31

Measurement Description

Origin Used as a point of reference when the character is
written on a device or a display surface. The origin
is the upper-left corner of the character cell.

Width Specifies the width of a character-cell column.
‘Figure 2.12 shows a character cell that contains an uppercase A. The baseline ap-
pears at the top of the second row. Note that the uppercase A uses the baseline as

its starting point. Also note that the width and height values refer to the character-
cell width and height, not the width and height of the individual character:

Crigin

A Lont |
Ascent
Height
I\
I‘- Width _’i \- Descent

Figure 2.12 Character-Cell Dimensions

N

2.13.3 Altering Characters

Characters exist in many sizes and shapes. The following sections describe how
characters are altered in GDI to produce a particular font.

Italic

For an italic font, GDI skews the characters so that they appear slanted. When
italicized, the base of the character remains intact while the upper portion shifts

to the right. The greatest amount of shifting occurs at the top of the character, the
least amount at the base. Figure 2.13 shows characters before and after being itali-
cized: :

Allal |Alla

These two examples illustrate the result of
italic type. The base of each character
remains intact while the upper portion is
skewed to the right.

Figure 2.13 Normal and Italic Characters

2-32 Reference — Volume 1

Bold

A font is made bold by increasing its weight, which refers to the thickness of the
lines or strokes that compose a character. Fonts with a heavy weight are referred
to as bold. Figure 2.14 shows normal and bold characters:

Allal |Alla

These two examples illustrate the result of
varying font weight. A heavier weight gives
you a bolder font.)

Figure 2.14 Normal and Bold Characters

Underline

An underline font has a line under each character. When a character is under-
lined, a solid line appears directly below the baseline of the character cell. Figure
2.15 shows underlined characters:

Alla

This font is underlined.

A solid line is drawn -
low th line of

each character cell.

Figure 2.15 Underlined Characters

Strikeout

A strikeout font has a solid horizontal line drawn through each character. The
position of this line within each character cell is constant for a given font. Figure
2.16 shows characters that are struck out:

Graphics Device Interface Functions 2-33

2.13.4 Leading

Alla

This string of text
illustrates the-effeet

efimplementing-the

Figure 2.16 Strikeout Characters

Leading is the distance from baseline to baseline of two adjacent rows of text.
When font designers develop a font, they specify that a given amount of space
should appear between rows. The addition of this space ensures that a character
is not obscured by part of another character in an adjacent row. There are two .
ways of adding this additional space: by inserting it within the character cells of a
font (internal leading) or by inserting it between rows of text as they are printed
on a device (external leading).

Internal Leading

Internal leading refers to the space inserted within character cells of a particular
font. Only marks such as accents, umlauts, and tildes in foreign character sets ap-
pear within the space allocated for internal leading. Figure 2.17 shows two rows
of text that use internal leading:

Internal leading Top of character cell
_L .
T Character-cell

e / baseline
: I
T A B C:: Leading

\ Character-cell
[Bottom of baseline
character-cell

Figure 2.17 Internal Leading

2-34 Reference — Volume 1

External Leading

External leading is space inserted between the top and bottom of character cells
in adjacent rows of text. The font designer must specify the amount of external
leading necessary to produce easily readable text from a particular font. External
leading is not built into a font; you must add it before you print text on a device.
Figure 2.18 shows external leading:

AB|C
Alb|c

Figure 2.18 External Leading

— _ External
leading

2.13.5 Character Set

All fonts use a character set. A character set contains punctuation marks, numer-
als, uppercase and lowercase letters, and all other printable characters. The de-
signer of a character set assigns a numeric value to each element in the set. You
use this number to access an element within the set.

Most character sets used in Windows are supersets of the U.S. ASCII character
set, which defines characters for the 96 numeric values from 32 to 127. There are
four major groups of character sets:

® ANSI

= OEM

®m Symbol

® Vendor specific

ANSI Character Set

‘The ANSI character set is the most commonly used character set. The blank
character is the first character in the ANSI character set. It has a hexadecimal
value of 0x20, which is equivalent to the decimal value 32. The last character in
the ANSI character set has a hexadecimal value of OxFF, which is equivalent to
the decimal value 255.

Many fonts specify a default character. Whenever a request is made for a
character not in the set, this default character is given. Most fonts using the ANSI

Graphics Device Interface Functions 2-35

2.13.6 Pitch

character set specify the period (.) as the default character. The hexadecimal
value for the period is 0x2E, or decimal 46 in the ANSI character set.

Fonts use a break character to separate words and justify text. Most fonts using
the ANSI character set specify the blank character, whose hexadecimal value is
0x20, decimal 32.

OEM Character Set

Windows supports a second character set, referred to as the OEM character set.
This is generally the character set used internally by DOS for screen display.
Characters 32 to 127 of the OEM set are usually identical to the same characters
in the U.S. ASCII set, which are also in the ANSI set. The remaining characters
in the OEM set (0 to 31, and 128 to 255) correspond to the characters which may
be shown on the computer’s DOS display, and generally differ from ANSI
characters.

Symbol Character Set

The symbol character set contains special characters typically used to represent
mathematical and scientific formulas.

Vendor-Specific Character Sets

Many printers and other output devices contain fonts based on character sets
which differ from the ANSI and OEM sets, such as the EBCDIC character set. In
such cases, the printer driver must translate from the ANSI character set to one or
more of the sets provided by the printer or other device.

The term pitch traditionally refers to the number of characters from a particular
font that will fit in a single inch. GDI, however, uses this term differently. The
term fixed-pitch refers to a font whose character-cell size is constant for each
character. The term variable-pitch refers to a font whose character cells vary in
size, depending on the actual width of the characters.

Average Character Width

Variable-pitch fonts use the average character width to specify the average width

. of character cells in the font. Since there is no variance in character-cell width for

fixed-pitch fonts, the average character width specifies the character width of any
character in the fixed-pitch font.

Maximum Character Width

Variable-pitch fonts use the maximum character width to specify the maximum
width of any character cell in the font. Since there is no variance in character

2-36 Reference — Volume 1

width for fixed-pitch fonts, the maximum character width is equivalent to the
average character width in the fixed-pitch font.

Digitized Aspect

‘When raster fonts are created, they are designed with one particular aspect ratio
in mind. The aspect ratio is the ratio of the width and height of a device’s pixel.
GDI maintains a record of the ideal x-aspect and y-aspect for individual fonts.
The ideal x-aspect is the width value from the aspect ratio of the device. The
ideal y-aspect is the height value from the aspect ratio of the device. These values
are called the digitized aspects for x and y. The GetAspectRatioFilter function
retrieves the setting for the current aspect-ratio filter. Windows provides a special
filter, the aspect-ratio filter, to select fonts designed for a particular aspect ratio
from all of the available fonts. The filter uses the aspect ratio specified by the
SetMapperFlags function.

Overhang

When a particular font is not available on a device, GDI sometimes synthesizes
that font. The process of synthesizing may add width or height to an existing
font. Whenever GDI synthesizes an italic or bold font from a normal font, extra
columns are added to individual character cells in that font. The difference in
width (the extra columns) between a string created with the normal font and a
string created with the synthesized font is called the overhang.

2.13.7 Selecting Fonts with GDI

GDI maintains a collection of fonts from different typefaces. In addition to this
collection, some devices maintain a collection of hardware fonts in their ROM.
GDI lets you describe a font and then selects the closest matching available font
from your description.

GDI requires you to describe the font you want to use to create text. The font you
describe is a logical font (it may or may not actually exist). GDI compares this
logical font to the available physical fonts and selects the closest match.

The process of selecting the physical font that bears the closest resemblance to
the specified logical font is known as font mapping. GDI also maintains a font
table. Each entry in the font table describes a physical font and its attributes. In-
cluded in each entry is a pointer to a corresponding font resource. Figure 2.19
shows a font table that contains fonts X, Y, and Z:

Graphics Device Interface Functions 2-37

Font Table
Font X information
leading | italic | underline] weight
char set | width | height | first char

Pointer to

pitch and family | last char | R | N font X resource

Font Y information

leading I italic l underline I weight

char set | width | height L first char

pitch and family | lastchar | ... | 4~ f;f;";‘ffréosource
Font Z information

leading I italic l underline | weight

char sed width] height | first char

pitch and family L/ast char I o | -—Z, %Tt;rrégource

Figure 2.19 A GDI Font Table

Font-Mapping Scheme

GDI cannot guarantee that a physical font exists that exactly matches a requested
logical font, so GDI attempts to pick a font that has the fewest differences from
the requested logical font. Since fonts have many different attributes, the GDI
font mapper assigns penalties to physical fonts whose characteristics do not
match the characteristics of the specified logical font. The physical font with the
fewest penalties assigned is the one that GDI selects.

To begin the mapping, GDI transforms the requested height and width of the logi-
cal font to device units. This transformation depends on the current mapping
mode and window and viewport extents. GDI then asks the device to realize the
physical font. A device can realize a font if it can create it or a font very close to
it.

If the device can realized a physical font, GDI compares this font with its own set
of fonts. If GDI has a font that more closely matches the logical font, GDI uses it.
But if the device signals that it can take device-realized fonts only, GDI uses the
realized font.

If the device cannot realize a font, GDI searches its own fonts for a match.

To determine how good a match a given physical font is to the requested logical
font, the mapper takes the logical font and compares it one attribute at a time
with each physical font in the system.

Table 2.5 lists the characteristics that are penalized by GDI’s font mapper. The
characteristics are grouped according to penalty weights, with the heaviest

2-38 Reference — Volume 1

penalty assigned to the CharSet characteristic and the lightest penalty assigned to
the Weight, Slant, Underline, and StrikeOut characteristics.

Table 2.5 Font-Mapping Characteristics

Characteristic Penalty Scheme Penalty

Weight
CharSet If the character set does not match, the candidate 4

font is penalized heavily. Fonts with the wrong
character set are very rarely selected as the physi-
cal font. There is no default character set. This
means a logical font must alway specify the
desired set.

Pitch The wrong pitch is penalized heavily. If the re- 3
quested pitch is fixed, a wrong pitch is assessed a
greater penalty since an application that handles
fixed pitches may not be able to handle variable-
pitch fonts.

Family If the font families do not match, the candidate 3
font is penalized heavily. If a default font family ’
is requested, no penalties are assessed.

FaceName If the font typeface names do not match, the candi- 3
date font is penalized heavily. If a default font
facename is requested, no penalties are assessed.

Height The wrong height is penalized. GDI always 2
chooses or synthesizes a shorter font if the exact o
height is not available. GDI can synthesize a font
by expanding a font’s character bitmaps by an in-
teger multiple. GDI will expand a font up to eight
times. If a default height is requested, GDI arbi-
trarily searches for a twelve-point font.

Width The wrong width is penalized. GDI always 2
chooses or synthesizes a narrower font if the exact
width is not available. If a default width is re-
quested, GDI assesses a penalty for any difference
between the aspect ratio of the device and the
aspect ratio of the font. The mapper can give unex-
pected results if there are no fonts for the given
aspect ratio.

Weight Although GDI can synthesize bold, an actual bold 1
font is preferred. The mapper penalizes for synthe-
sizing.

Slant Although GDI can synthesize italics, an actual 1

italic font is preferred. The mapper penalizes for
synthesizing.

Graphics Device Interface Functions 2-39

Table 2.5 Font-Mapping Characteristics (continued)

Characteristic Penalty Scheme Penalty
Weight
Underline Although GDI can synthesize underlining, an ac- 1

tual underline font is preferred. The mapper
penalizes for synthesizing.

StrikeOut Although GDI can synthesize strikeouts, an actual 1
strikeout font is preferred. The mapper penalizes
for synthesizing.

If GDI synthesizes a font, the mapper assesses a penalty that depends on the num-
ber of times the font was replicated. Furthermore, a penalty is added if the font
was synthesized in both directions and the synthesizing was uneven, that is, if the
font was stretched more in one direction than the other.

When the mapper has compared all the fonts in the system, it picks the one with
the smallest penalty. The application should retrieve the metrics of the font to
find out the characteristics of the font it received.

The penalty weights listed in Table 2.5 are the default penalties used by GDI.

Example of Font Selection

For the purpose of this example, assume that the system font table lists only the
three fonts shown in Figure 2.19, “A GDI Font Table,” fonts X, Y, and Z. Sup-
pose you need to use a specific font, font Q, to create text on an output device.
You will need to describe font Q so that GDI can choose the physical font (X, Y,
or Z) that bears the closest resemblance to Q.

To describe font Q, you use the CreateFont or CreateFontIndirect GDI func-
tion. These functions create a logical font which is a description of the desired
physical font.

Use the SelectObject function to select the physical font that most closely
matches logical font Q. (The SelectObject function requires that you pass a
handle to font Q.) Once a call to the SelectObject function occurs, GDI will in-
itiate the selection process.

2-40 Reference — Volume 1

Table 2.6 shows the physical fonts in the font table and the penalties that GDI as-
signs to each as it tries to find a font that will match font Q. The left column
shows the font attributes that GDI compares; the second column gives the at-
tributes of font Q, the desired font. The attributes of fonts X, Y, and Z—the fonts
that are actually in the system font table—are followed by the penalty values that
GDI gives to each one. The bottom row of the table gives the penalty totals for
each font:

Table 2.6 Sample Font Selection Ratings

Desired Available Fonts/Penalty Score
Attributes Q X 7 Y Z
CharSet ANSI OEM 4 OEM 4 ANSI 0
Pitch Fixed Variable 3 Fixed 0 Variable 3
Family Roman Modern 3 Roman 0 Modern 3
FaceNaine Tms Pica 3 Tms 0 Elite 3

Rmn Rmn
Height 8 10 2 10 2 8 0
Width 4 6 2 6 2 4 0
Slant None None 0 None 0 None 0
Underline None None 0 None 0 None 0
StrikeOut None None 0 None 0 None 0
Penalty Total 17 8 9

The penalty totals show that font Y has the lowest penalty score and therefore re-
sembles font Q most closely. In this example, GDI would select font Y as the
physical font on the output device.

2.13.8 Font Files and Font Resources

GDI stores information about the physical font in font files. The font file consists
of a header and a bitmap. The font-file header contains a detailed description of
the font. If the font file is a raster file, the font-file bitmap contains actual repre-
sentations of the font characters. If the font file is a vector file, the font-file bit-
map contains character strokes for the font characters. A font resource is a
collection of one or more of these physical-font files.

Graphics Device Interface Functions 2-41

2.14 Metafile Functions

2.14.1 Creating

Metafile functions close, copy, create, delete, retrieve, play, and return informa-
tion about metafiles. A metafile is a collection of GDI commands that creates
desired text or images.

Metafiles provide a convenient method of storing graphics commands that create
text or images. Metafiles are especially useful in applications that use specific
text or a particular image repeatedly. They are also device-independent; by creat-
ing text or images with GDI commands and then placing the commands in a
metafile, an application can re-create the text or images repeatedly on a variety
of devices. Metafiles are also useful in applications that need to pass graphics
information to other applications.

The following list briefly describes each metafile function:

Function Description

CloseMetaFile Closes a metafile and creates a metafile handle.
CopyMetaFile Copies a source metafile to a file.
CreateMetaFile Creates a metafile display context.
DeleteMetaFile Deletes a metafile from memory.
EnumMetaFile Enumerates the GDI calls within a metafile.
GetMetaFile Creates a handle to a metafile.

GetMetaFileBits Stores a metafile as a collection of bits in a global

memory block.
PlayMetaFile Plays the contents of a specified metafile.
PlayMetaFileRecord Plays a metafile record.

SetMetaFileBits Creates a memdry metafile.

a Metafile

A Windows application must create a metafile in a special device context. It can-
not use the device contexts that the CreateDC or GetDC functions return; in-
stead, it must use the device context that the CreateMetaFile function returns.

Windows allows an application to use a subset of the GDI functions to create a
metafile. This subset is the set of all GDI functions that create output (it is not
necessary to use those functions that provide state information, such as the
GetDeviceCaps or GetEnvironment functions). The following is a list of GDI
functions an application can use in a metafile:

2-42 Reference — Volume 1

AnimatePalette OffsetViewportOrg SetDIBitsToDevice
Arc OffsetWindowOrg SetMapMode
BitBIt PatBIt SetMapperFlags
Chord Pie SetPixel
CreateBrushIndirect Polygon SetPolyFillMode
CreateDIBPatternBrush Polyline SetROP2
CreateFontIndirect PolyPolygon SetStretchBltMode
CreatePatternBrush RealizePalette SetTextAlign
CreatePenlIndirect Rectangle SetTextCharExtra
CreateRegion ResizePalette SetTextColor
DrawText RestoreDC SetTextJustification
Ellipse RoundRect SetViewportExt
Escape SaveDC SetViewportOrg
ExcludeClipRect ScaleViewportExt SetWindowExt
ExtTextOut ScaleWindowExt SetWindowOrg
FloodFill SelectClipRegion StretchBIt
IntersectClipRect SelectObject StretchDIBits
LineTo SelectPalette TextOut

MoveTo SetBkColor

OffsetClipRgn SetBkMode

To create output with a metafile, an application must follow four steps:

1. Create a special device context by using the CreateMetaFile function.

2. Send GDI commands to the metafile by using the special device context.

3. Close the metafile by calling the CloseMetaFile function. This function re-
turns a metafile handle.

4. Display the image or text on a device by using the PlayMetaFile function,
passing to the function the metafile handle obtained from CloseMetaFile and
a device-context handle for the device to which the metafile is to be played.

The device context which CreateMetaFile creates does not have default at-
tributes of its own. Whatever device-context attributes are in effect for the output
device when an application plays a metafile will be the defaults for the metafile.
The metafile can change these attributes while it is playing. If the application
needs to retain the same device-context attributes after the metafile has finished
playing, it should save the output device context by calling the SaveDC function
before calling PlayMetaFile. Then, when PlayMetaFile returns, the application
can call the RestoreDC function (with —1 as the nSavedDC parameter) to restore
the original device-context attributes.

Although the maximum size of a metafile is 232 bytes or records, the actual size
of a metafile is limited by the amount of memory or disk space available.

Graphics Device Inferface Functions 2-43

2.14.2 Storing a Metafile in Memory or on Disk

An application can store a metafile in system memory or in a disk file.

To store the metafile in memory, an application calls CreateMetafile and passes
NULL as the function parameter.

There are two ways of storing a metafile in a disk file:
= When the application calls CreateMetaFile to open a metafile, it passes a

filename as the function parameter; the metafile will then be recorded in a
disk file.

m After the application has created a metafile in memory, it calls the Copy-
MetaFile function. This function accepts the handle of a memory metafile
and the filename of the disk file which is to save the metafile.

The GetMetaFile function opens a metafile stored in a disk file and makes it
available for replay or modification. This function accepts the filename of a meta-
file stored on disk and returns a metafile handle.

2.14.3 Deleting a Metafile

An application frees the memory which Windows uses to store the metafile by
calling the DeleteMetafile function. This function removes a metafile from
memory and invalidates its handle. It has no effect on disk files.

2.14.4 Changing How Windows Plays a Metafile

A metafile does not have to be played back in its entirety or exactly in the form
in which it was recorded. An application can use the EnumMetaFile function to
locate a specific metafile record. EnumMetaFile calls an application-supplied
callback function and passes it the following:

® The metafile device context

® A pointer to the metafile handle table

= A pointer to a metafile record

® The number of associated objects with handles in the handle table

® A pointer to application-supplied data

The callback function can then use this information to play a single record, to

query it, copy it, or modify it. The PlayMetaFileRecord function plays a single
metafile record.

2-44 Reference — Volume 1

Chapter 9, “File Formats,” in Reference, Volume 2, shows the formats of the
various metafile records and describes their contents.

When Windows plays or enumerates the records in a metafile, it identifies each
object with an index into a handle table. Functions that select objects (such as
SelectObject and SelectPalette) identify the object by means of the object
handle which the application passes to the function.

Objects are added to the table in the order in which they are created. For ex-
ample, if a brush is the first object created in a metafile, the brush is given index
zero. If the second object is a pen, it is given index 1, and so on. See the descrip-
tion of the HANDLETABLE data structure in Chapter 7, “Data Types and Struc-
tures,” in Reference, Volume 2, for information on the format of the handle table.

2.15 Printer-Control Functions

Printer-control functions retrieve information about a printer and modify its in-
itialization state. The printer driver, rather than GDI itself, provides these func-
tions. The following list briefly describes each printer-control function:

Function Description
DeviceCapabilities Retrieves capabilities of a printer device driver.
DeviceMode Sets the current printing modes for a device by

prompting the user with a dialog box.

ExtDeviceMode Retrieves or modifies device initialization informa-
tion for a given printer driver or displays a driver-
supplied dialog box for configuring the driver.

2.16 Printer-Escape Function

The Escape function allows an application to access facilities of a particular
device that are not directly available through GDI. The nEscape parameter of this
function specifies the escape function to be performed. When an application calls
Escape for a printer device context, the escape functions regulate the flow of
printer output from Windows applications, retrieve information about a printer,
and alter the settings of a printer.

2.16.1 GCreating Output on a Printer

Windows applications use only the standard Windows functions to access system
memory, the output device, the keyboard, and the mouse. Each application inter-
acts with the user through one or more windows that are created and maintained
by the user. GDI assists an application in creating output by passing device-inde-
pendent function calls from the application to the device driver. The device

Graphics Device Interface Functions 2-45

driver first translates these device-independent function calls into device-depend-
ent operations that create images on a device’s display surface, and then sends
them to Print Manager (the spooler). Print Manager serves two purposes: it col-
lects translated commands from one application and stores them in a correspond-
ing job, and it passes a complete job to the device for output. Figure 2.20 shows
the path of output from a Windows application to a device:

Em oTY)
Appliglzation . ? .
= —] Gl — \l, > Mgr:g]gt]er
Appligation » ? l
Job 1
v
Job 2

Figure 2.20 Output Path

If only one Windows application were allowed to run at any given time, Print
Manager and many of the escape functions would be unnecessary. However,
Windows allows several applications to run at once. If two or more of these appli-
cations send output simultaneously, each applicaticn’s output must be separated
and remain separated during printing or plotting. Print Manager maintains this
separation. The printer-escape functions affect the way Print Manager handles
this separation task.

2.16.2 Banding Output

The model used by GDI states that any point on an output device can be written
to at any time. This model is easily implemented on vector devices but poses a

' problem on many dot-matrix devices that cannot scroll backward. Banding pro-
vides a solution to this problem.

Banding involves several steps:

1. The application creates a metafile and uses it as an intermediate storage
device for the output.

2-46 Reference — Volume 1

2. Beginning at the top of the metafile, GDI translates a rectangular region
(band) of output into device-specific commands, and then sends it to a corre-
sponding job.

3. The application repeats this process until the entire metafile has been con-
verted to bands and the output from these bands has been translated into
device-specific commands and stored in a job.

4. The application sends the job to the output device.

When creating a device context, GDI verifies whether the device has banding
capabilities. If it does, GDI creates the metafile that will be used during the band-
ing process. To implement banding, you call the necessary output functions and
the NEXTBAND escape. The NEXTBAND escape requires a long pointer to a
RECT data structure as its output parameter. The device driver copies the coordi-
nates of the next band into this structure. When the entire metafile has been con-
verted into device-specific commands, the driver returns four zeros (0,0,0,0) in
the RECT structure. :

GDI does the banding for you if your output device has banding capabilities and
you call the NEWFRAME escape. Although NEWFRAME requires moré
memory and is slower, it does simplify the output process. After the application
creates each page of output, it calls the NEWFRAME escape. If the device is
capable of banding, GDI copies output to a metafile and calls the NEXTBAND
escape for you. As discussed earlier, the NEXTBAND escape causes the con-
tents of the metafile to be converted into device-specific commands and to be
copied to a corresponding job. If a memory problem occurs or the user terminates
a job, the NEWFRAME escape returns a message that defines the error or abort
message.

2.16.3 Starting and Ending a Print Job

The STARTDOC escape informs the device driver that an application is begin-
ning a new print job. After the STARTDOC call is issued, Print Manager queues
all output from a particular application in a corresponding job until an ENDDOC
escape is issued. (Note that you cannot use the ENDDOC escape to terminate a
job.)

2.16.4 Terminating a Print Job

If you send output to a device with the NEWFRAME escape, you are required
to write a termination procedure and supply it with the application. The SET-
ABORTPROC escape sets a pointer to this procedure; it should be called prior
to the STARTDOC escape. The ABORTDOC escape terminates print jobs if it
is called before the first call to NEWFRAME. It should also be used to termi-
nate jobs that use the NEXTBAND escape.

Graphics Device Interface Functions 2-47

2.16.5 Information Escapes

Four of the escape functions are used to retrieve information about the selected
device and its settings. The GETPHYSPAGESIZE escape retrieves the physical
page size of the output device (in device units), the smallest addressable units on
the device. For example, one-fortieth of a millimeter is the smallest addressable
unit on some vector devices. A pixel is the smallest addressable unit on a dot-
matrix device. The GETPRINTINGOFFSET escape retrieves the distance (in
device units) from the upper-left corner of the page to the point at which printing
begins. The GETSCALINGFACTOR escape retrieves the scaling factors for
the x- and y-axes of a device. The scaling factor expresses the number of logical
units that are mapped to a device unit. The QUERYESCSUPPORT escape de-
termines whether a particular escape function is implemented on a device driver.
If the escape in question is implemented, QUERYESCSUPPORT returns a non-
zero value, If the escape is not implemented, QUERYESCSUPPORT returns
ZEero.

2.16.6 Additional Escape Calls

There are two additional escapes that alter the state of the device: the FLUSH-
OUTPUT and DRAFTMODE escapes. The FLUSHOUTPUT escape flushes
the output in the device’s buffer (the device stores device operations in the buffer
before sending them to Print Manager). The DRAFTMODE escape turns on the
device’s draft mode. This means that the device will use one of its own fonts in-
stead of using a GDI font. It also means that calls to the text-justification func-
tions that alter interword and intercharacter spacing are ignored. For a detailed
description of the functions that alter interword and intercharacter spacing, see
Sections 2.12, “Text Functions,” and 2.13, “Font Functions.”

2.17 Environment Functions

Environment functions alter and retrieve information about the environment as-
sociated with an output device. The following list briefly describes the two en-

viornment functions:

Function Description

GetEnvironment Copies environment information into a buffer.
SetEnvironment Copies data to the environment associated with an at-

tached device.

2-48 Reference — Volume 1

2.18 Summary

Graphics device interface (GDI) functions perform device-independent graphics
operations within a Windows application. For more information on topics related
to GDI functions, see the following:

Topic

Function descriptions
Windows data types and
structures

Metafile formats

Raster operations

Printer escapes

Drawing text and graphics
in a window

Drawing bitmaps

Sending output to a printer

Text fonts

Color palettes

Reference -

Reference, Volume 1: Chapter 4, “Functions
Directory”

Reference, Volume 2: Chapter 7, “Data Types
and Structures”

Reference, Volume 2: Chapter 9, “File
Formats™

Reference, Volume 2: Chapter 11, “Binary
and Ternary Raster-Operation Codes”

Reference, Volume 2: Chapter 12, “Printer
Escapes”

Guide to Programming: Chapter 3, “Output
to a Window”

Guide to Programming: Chapter 11,
“Bitmaps”

Guide to Programming: Chapter 12,
“Printing,” and Chapter 17, “Print Settings”

Guide to Programming: Chapter 18, “Fonts”

Guide to Programming: Chapter 19, “Color
Palettes”

Chapter

System Services Interface
Functions

This chapter describes the system services interface functions. These functions
access code and data in modules, allocate and manage both local and global
memory, manage tasks, load program resources, translate strings from one
character set to another, alter the Microsoft Windows initialization file, assist in
system debugging, carry out communications through the system’s I/O ports,
create and open files, and create sounds using the system’s sound generator.

This chapter lists the following categories of functions:

® Module-management functions
® Memory-management functions
® Segment functions

®m Operating-system interrupt functions
m Task functions

m Resource-management functions
® String-manipulation functions

®m Atom-management functions

m Initialization-file functions

® Communication functions

® Sound functions

m Utility macros and functions

® File [/O functions

® Debugging functions

m Optimization-tool functions

®m Application-execution functions

3-2 Reference — Volume 1

S

3.1 Module-Management Functions

Module-management functions alter and retrieve information about Windows
modules, which are loadable, executable units of code and data. The following
list briefly describes each module-management function:

Function

FreeLibrary

FreeModule

FreeProclInstance
GetCodeHandle

GetlInstanceData .

GetModuleFileName
GetModuleHandle
GetModuleUsage
GetProcAddress
GetVersion
LoadLibrary

MakeProclnstance

Description

Decreases the reference count of a library by one
and removes it from memory if the reference count
is zero.

Decreases the reference count of a module by one
and removes it from memory if the reference count
is zero.

Removes a function instance entry at an address.

Determines which code segment contains a specified
function.

Copies data from an offset in one instance to an off-
set in another instance.

Copies a module filename.

Returns the module handle of a module.

Returns the reference count of a module.
Returns the address of a function in a module.
Returns the current version number of Windows.
Loads a library module.

Returns a function-instance address.

3.2 Memory-Management Functions

Memory-management functions manage system memory. There are two catego-
ries of functions: those that manage global memory and those that manage local
memory. Global memory is all memory in the system that has not been allocated
by an application or reserved by the system. Local memory is the memory within
a Windows application’s data segment. The following list briefly describes each
memory-management function:

System Services Interface Functions 3-3

Function

DefineHandleTable
GetFreeSpace
GetWinFlags

GlobalAlloc
GlobalCompact
GlobalDiscard
GlobalDosAlloc
GlobalDosFree
GlobalFlags

GlobalFree

GlobalHandle
GlobalLock

GlobalLRUNewest
GlobalLRUOIdest

GlobalNotify
GlobalReAlloc
GlobalSize

Description

Creates a private handle table in an application’s de-
fault data segment.

Retrieves the number of bytes available in the global
heap.

Retrieves information about the system memory con-
figuration.

Allocates memory from the global heap.
Compacts global memory to generate free bytes.

Discards a global memory block if the lock count is
zero, but does not invalidate the handle of the
memory block.

Allocates global memory that can be accessed by
DOS running in real or protected mode.

Frees global memory previously allocated by the
GlobalDosAlloc function.

Returns the flags and lock count of a global memory
block.

Removes a global memory block and invalidates the
handle of the memory block.

Retrieves the handle of a global memory object.

Retrieves a pointer to a global memory block
specified by a handle. Except for nondiscardable ob-
jects in protected (standard or 386 enhanced) mode,
the block is locked into memory at the given address
and its lock count is increased by one.

Moves a global memory object to the newest least-
recently-used (LRU) position.

Moves a global memory object to the oldest least-re-
cently-used (LRU) position.

Installs a notification procedure for the current task.
Reallocates a global memory block.

Returns the size (in bytes) of a global memory block.

3-4 Reference — Volume 1

Function

GlobalUnlock

GlobalUnwire

GlobalWire

LimitEMSPages

LocalAlloc
LocalCompact

LocalDiscard

LocalFlags

LocalFree

LocalHandle
Locallnit

LocalLock

LocalReAlloc
LocalShrink
LocalSize
LocalUnlock
LockData
LockSegment

SetSwapAreaSize

Description

Invalidates the pointer to a global memory block pre-
viously retrieved by the GlobalLock function. In
real mode, or if the block is discardable, GlobalUn-
lock decreases the block’s lock count by one.

Decreases the lock count set by the GlobalWire
function, and unlocks the memory block if the count
is zero.

Moves an object to low memory and increases the
lock count.

Limits the amount of expanded memory that
Windows will assign to an application.

Allocates memory from the local heap.
Compacts local memory.

Discards a local memory block if the lock count is
zero, but does not invalidate the handle of the
memory block.

Returns the memory type of a local memory block.

Frees a local memory block from memory if the tock
count is zero and invalidates the handle of the
memory block.

Retrieves the handle of a local memory object.
Initializes a local heap in the specified segment.

Locks a block of local memory by increasing its
lock count.

Reallocates a local memory block.

Shrinks the local heap.

Returns the size (in bytes) of a local memory block.
Unlocks a local memory block.

Locks the current data segment in memory.

Locks a specified data segment in memory.

Increases the amount of memory that an application
reserves for code segments.

System Services Interface Functions 3-5

Function

- SwitchStackBack
SwitchStackTo

UnlockData
UnLockSegment

3.3 Segment Functions

Description

Returns the stack of the current task to the task’s
data segment after it had been previously redirected
by the SwitchTasksBack function.

Changes the stack of the current task to the specified
data segment, such as the data segment of a dynamic-
link library (DLL).

Unlocks the current data segment.

Unlocks a specified data segment.

Segment functions allocate, free, and convert selectors; lock and unlock memory
blocks referenced by selectors; and retrieve information about segments. The fol-
lowing list briefly describes each selector function:

Function

AllocDStoCSAlias

AllocSelector

ChangeSelector

DefineHandleTable

FreeSelector

GetCodelnfo
GlobalFix

Description

Accepts a data-segment selector and returns a code-
segment selector that can be used to execute code in
a data segment.

Allocates a new selector.

Generates a temporary code selector that corre-
sponds to a given data selector, or a temporary data
selector that corresponds to a given code selector.

Creates a private handle table which Windows up-
dates automatically.

Frees a selector originally allocated by the Alloc-
Selector, AllocCStoDSAlias, or AllocDStoCSAlias
functions.

Retrieves information about a code segment.

Prevents a global memory block from moving in
linear memory.

3-6 Reference — Volume 1

— . N

Function Description

GlobalPageLock Page-locks the memory associated with the specified
global selector and increments its page-lock count.
Memory that is page-locked cannot be moved or
paged out to disk.

GlobalPageUnlock Decrements the page-lock count for a block of
memory. If the page-lock count reaches zero, the
memory can be moved and paged out to disk.

GlobalUnfix Unlocks a global memory block previously fixed by
the GlobalFix function.

LockSegment Locks a segment in memory.

UnlockSegment Unlocks a segment previously locked by the Lock-

Segment function.

NOTE An application should not use these functions unless it is absolutely necessary.
Use of these functions violates preferred Windows programming practices.

3.4 Operating-System Interrupt Functions

Operating-system interrupt functions allow an assembly-language application to
perform certain DOS and NETBIOS interrupts without directly coding the inter-
rupt. This ensures compatibility with future Microsoft products.

The following list briefly describes these functions:

Function Description
DOS3Call Issues a DOS 21H (function-request) interrupt.
NetBIOSCall Issues a NETBIOS 5CH interrupt.

3.5 Task Functions

Task functions alter the execution status of tasks, return information associated
with a task, and retrieve information about the environment in which the task is
executing. A task is a single Windows application call. The following list briefly
describes each task function:

Function Description
Catch Copies the current execution environment to a buffer.

ExitWindows Initiates the standard Windows shutdown procedure.

System Services Interface Functions 3-7

Function

GetCurrentPDB

GetCurrentTask
GetDOSEnvironment

GetNumTasks

SetErrorMode

Throw

Yield

Description

Returns the current DOS Program Data Base (PDB),
also known as the Program Segment Prefix (PSP).

Returns the task handle of the current task.

Retrieves the environment string of the currently run-
ning task.

Returns the number of tasks currently executing in
the system. ‘

Controls whether Windows handles DOS Function
24H errors or allows the calling application to
handle them.

Restores the execution environment to the specified
values.

Halts the current task and starts any waiting task.

3.6 Resource-Management Functions

Resource-management functions find and load application resources from a
* Windows executable file. A resource can be a cursor, icon, bitmap, string, or
font. The following list briefly describes each resource-management function:

Function
AccessResource
AllocResource
FindResource
FreeResource
LoadAccelerators
LoadBitmap
LoadCursor
LoadIcon
LoadMenu
LoadResource
LoadString

LockResource

Description

Opens the specified resource.

Allocates uninitialized memory for a resource.
Determines the location of a resource.
Removes a loaded resource from memory.
Loads an accelerator table.

Loads a bitmap resource.

Loads a cursor resource.

Loads an icon resource.

Loads a menu resource.

Loads a resource.

Loads a string resource.

Retrieves the absolute memory address of a resource.

3-8 Reference — Volume 1

Function
SetResourceHandler
SizeofResource

UnlockResource

Description
Sets up a function to load resources.
Supplies the size (in bytes) of a resource.

Unlocks a resource.

3.7 String-Manipulation Functions

String-manipulation functions translate strings from one character set to another,
determine and convert the case of strings, determine whether a character is alpha-
betic or alphanumeric, find adjacent characters in a string, and perform other
string manipulation. The following list briefly describes each string-translation

function:

Function
AnsiLower
AnsiLowerBuff
AnsiNext

AnsiPrev

AnsiToOem
AnsiToOemBuff

AnsiUpper
AnsiUpperBuff
IsCharAlpha
IsCharAlphaNumeric
IsCharLower
IsCharUpper

Istrcat

Istremp

Istrcmpi

Description
Converts a character string to lowercase.
Converts-a character string in a buffer to lowercase.

Returns a long pointer to the next character in a
string.

Returns a long pointer to the previous character in a
string.

Converts an ANSI string to an OEM character string.

Converts an ANSI string in a buffer to an OEM
character string.

Converts a character string to uppercase.

Converts a character string in a buffer to uppercase.
Determines whether a character is alphabetical.
Determines whether a character is alphanumeric.
Determines whether a character is lowercase.
Determines whether a character is uppercase.
Concatenates two strings identified by long pointers.

Performs a case-sensitive comparison of two strings
identified by long pointers.

Performs a case-insensitive comparison of two
strings identified by long pointers.

System Services Interface Functions 3-9

Function

Istrepy
Istrlen

OemToAnsi
. OemToAnsiBuff

ToAscii
wsprintf

wysprintf

Description

Copies one string to another; both strings are iden-
tified by long pointers.

Determines the length of a string identified by a long
pointer.

Converts an OEM character string to an ANSI string.

Converts an OEM character string in a buffer to an
ANSI string.

Translates a virtual-key code to the corresponding
ANSI character or characters.

Formats and stores a series of characters and values
in a buffer. Format arguments are passed separately.

Formats and stores a series of characters and values
in a buffer. Format arguments are passed through an
array.

3.8 Atom-Management Functions

Atom-management functions create and manipulate atoms. Atoms are integers
that uniquely identify character strings. They are useful in applications that use
many character strings and in applications that need to conserve memory.
Windows stores atoms in atom tables. A local atom table is allocated in an appli-
cation’s data segment; it cannot be accessed by other applications. The global
atom table can be shared, and is useful in applications that use dynamic data ex-
change (DDE). The following list briefly describes each atom-management func-

tion:

Function
AddAtom
DeleteAtom
FindAtom
GetAtomHandle

GetAtomName
GlobalAddAtom
GlobalDeleteAtom

Description

Creates an atom for a character string.

Deletes an atom if the reference count is zero.
Retrieves an atom associated with a character string.

Retrieves a handle (relative to the local heap) of the
string that corresponds to a specified atom.

Copies the character string associated with an atom.
Creates a global atom for a character string.

Deletes a global atom if the reference count is zero.

3-10 Reference — Volume 1

— S
Function Description
GlobalFindAtom Retrieves a global atom associated with a character
string.
GlobalGetAtomName Copies the character string associated with a global
atom.
InitAtomTable Initializes an atom hash table.
MAKEINTATOM Casts an integer for use as a function argument.

3.9 Initialization-File Functions

Initialization-file functions obtain information from and copy information to the
Windows initialization file WIN.INI and private initialization files. A Windows
initialization file is a special ASCII file that contains key-name—value pairs that
represent run-time options for applications. The following list briefly describes
each initialization-file function:

Function Description

GetPrivateProfileInt Returns an integer value in a section
from a private initialization file.

GetPrivateProfileString Returns a character string in a section
from a private initialization file.

GetProfileInt Returns an integer value in a section
from the WIN.INI file.

GetProfileString Returns a character string in a section
from the WIN.INI file.

WritePrivateProfileString Copies a character string to a private

initialization file, or deletes one or
more lines in a private initialization
file.

WriteProfileString Copies a character string to the.
WINL.INI file, or deletes one or more
lines from WIN.INL

An application should use a private (application-specific) initialization file to re-
cord information which affects only that application. This improves both the per-
formance of the application and Windows itself by reducing the amount of
information that Windows must read when it accesses the initialization file. An
application should record information in WIN.INI only if it affects the Windows
environment or other applications; in such cases, the application should send the
WM_WININICHANGE message to all top-level windows.

System Services Interface Functions 3-11

The files WININL.TXT and SYSINLTXT supplied with the retail version of
Windows describe the contents of WIN.INI and SYSTEM.INI, respectively.

3.10 Communication Functions

Communication functions carry out communications through the system’s serial
and parallel I/O ports. The following list briefly describes each communication

function:

Function
BuildCommDCB

ClearCommBreak
CloseComm

EscapeCommFunction
FlushComm
GetCommError
GetCommEventMask
GetCommState
OpenComm

ReadComm

SetCommBreak

SetCommEventMask
SetCommState

TransmitCommChar

UngetCommChar

WriteComm

Description
Fills a device control block with control codes.

Clears the communication break state from a com-
munication device.

Closes a communication device after transmitting
the current buffer.

Directs a device to carry out an extended function.
Flushes characters from a communication device.
Fills a buffer with the communication status.
Retrieves, then clears, an event mask.

Fills a buffer with a device control block.

Opens a communication device.

Reads the bytes from a communication device into a
buffer.

Sets a break state on the communication device.

Retrieves and then sets an event mask on the com-
munication device.

Sets a communication device to the state specified
by the device control block.

Places a character at the head of the transmit queue.

Specifies which character will be the next character
to be read.

Writes the bytes from a buffer to a communication
device.

3-12 Reference — Volume 1

3.11 Sound Functions

Sound functions create sound and music for the system’s sound generator. The
following list briefly describes each sound function:

Function

CloseSound

CountVoiceNotes
GetThresholdEvent
GetThresholdStatus
OpenSound
SetSoundNoise

SetVoiceAccent
SetVoiceEnvelope
SetVoiceNote

SetVoiceQueueSize
SetVoiceSound

SetVoiceThreshold
StartSound
StopSound

SyncAllVoices
WaitSoundState

Description

Closes the play device after flushing the voice
queues and freeing the buffers.

Returns the number of notes in the specified queue.
Returns a long pointer to a threshold flag.

Returns the threshold-event status for each voice.
Opens the play device for exclusive use.

Sets the source and duration of a noise from the play
device.

Places an accent in the voice queue.
Places the voice envelope in the voice queue.
Places a note in the specified voice queue.

Allocates a specified number of bytes for the voice
queue.

Places the specified sound frequency and durations
in a voice queue.

Sets the threshold level for a given voice.
Starts playing each voice queue.

Stops playing all voice queues and flushes their con-
tents.

Places a sync mark in each voice queue.

Waits until the play driver enters the specified state.

3.12 Utility Macros and Functions

Utility macros and functions return contents of words and bytes, create unsigned
long integers and data structures, and perform specialized arithmetic. The follow-
ing list briefly describes each utility macro or function:

System Services Interface Functions 3-13

Function

HIBYTE

HIWORD

LOBYTE

LOWORD
MAKEINTATOM
MAKEINTRESOURCE

MAKELONG
MAKEPOINT

MulDiv

PALETTEINDEX
PALETTERGB

RGB

3.13 File I/0 Functions

Description

Returns the high-order byte of an integer.
Returns the high-order word of a long integer.
Returns the low-order byte of an integer.
Returns the low-order word of a long integer.
Casts an integer for use as a function argument.

Converts an integer value into a long pointer to a
string, with the high-order word of the long pointer
set to zero.

Creates an unsigned long integer.

Converts a long value that contains the x- and y-
coordinates of a point into a POINT data structure.

Multiplies two word-length values and then divides
the result by a third word-length value, returning the
result rounded to the nearest integer.

Converts an integer into a palette-index
COLORREF value.

Converts three values for red, green, and blue into a
palette-relative RGB COLORREF value.

Converts three values for red, green, and blue into
an explicit RGB COLORREF value.

File I/O functions create, open, read from, write to, and close files. The following
list briefly describes each file I/O function:

Function

GetDriveType
GetSystemDirectory
GetTempDrive

GetTempFileName
GetWindowsDirectory

Description

Determines whether a disk drive is removeable,
fixed, or remote.

Retrieves the pathname of the Windows system sub-
directory.

Returns the letter of the optimal drive for temporary
file storage.

Creates a temporary filename.

Retrieves the pathname of the Windows directory.

3-14 Reference — Volume 1

L _

Function
_Iclose

_lcreat

_liseek

_lopen

_Iread

_lwrite
OpenFile
SetHandleCount

3.14 Debugging Functions

Description
Closes a file.

Creates a new file or opens and truncates an existing
file.

Positions the pointer to a file.

Opens an existing file.

Reads data from a file.

Writes data in a file.

Creates, opens, reopens, or deletes the specified file.

Changes the number of file handles available to a
task.

Debugging functions help locate programming errors in an application or library.
The following briefly describes these functions:

Function
DebugBreak
FatalAppExit

FatalExit

OutputDebugString

ValidateCodeSegments

ValidateFreeSpaces

Description
Forces a break to the debugger.

D'isplays a message box and then terminates the
application.

Displays the current state of Windows and prompts
for instructions on how to proceed.

Sends a debugging message to the debugger if pre-
sent, or to the AUX device if the debugger is not pre-
sent.

Determines whether any code segments have been
altered by random memory overwrites.

Checks free segments in memory for valid contents.

3.15 Optimization-Tool Functions

Optimization-tool functions control how the Windows Profiler and Swap soft-
ware development tools interact with an application being developed. The follow-
ing list briefly describes these functions:

System Services Interface Functions 3-15

Function Description

ProfClear Discards all samples in the Profiler sampling buffer.

ProfFinish Stops sampling by Profiler and flushes the buffer to
disk.

ProfFlush Flushes the Profiler sampling buffer to disk.

ProfInsChk Determines if Profiler is installed.

ProfSampRate Sets the rate of code sampling by Profiler.

ProfSetup Sets up the Profiler sampling buffer and recording
rate.

ProfStart Starts sampling by Profiler.

ProfStop Stops sampling by Profiler.

SwapRecording Begins or ends analyzing by Swap of the applica-

tion’s swapping behavior.

3.16 Application-Execution Functions

Application-execution tasks permit one application to execute another program.
The following list briefly describe these functions:

Function Description

LoadModule Executes a separate application.

WinExec Executes a separate application.

WinHelp Runs the Windows Help application and passes con-

text or topic information to Help.

The WinExec function provides a high-level method for executing any Windows
or standard DOS application. The calling application supplies a string containing
the name of the executable file to be run and any command parameters, and
specifies the initial state of the application’s window.

The LoadModule function is similar, but provides more control over the environ-
ment in which the application is executed. The calling application supplies the
name of the executable file and a DOS Function 4BH, Code 00H, parameter
block.

The WinHelp function executes the Windows Help application and optionally
passes data to it indicating the nature of the help requested by the application.
This data is either an integer which specifies a context identifier in the help file
or a string containing a key word in the help file.

3-16 Reference — Volume

1

3.17 Summary

System services interface functions access code and data in modules, allocate and
manage both local and global memory, manage tasks, load program

resources, translate strings from one character set to another, alter the Windows
initialization file, assist in system debugging, carry out communications through
the system’s I/O ports, create and open files, and create sounds using the sys-
tem’s sound generator. For more information on topics related to system services
interface functions, see the following:

Topic

Function descriptions

Windows data types and
structures

Initialization-file formats

Diagnostic messages for
debugging

‘Writing and reading from
files

Managing memory

_ Libraries

Using Profiler

Using Swap

Reference

Referencé, Volume 1: Chapter 4, “Functions
Directory”

Reference, Volume 2: Chapter 7, “Data Types
and Structures”

Reference, Volume 2: Chapter 9, “File
Formats”

Reference, Volume 2: Appendix C,
“Windows Debugging Messages”

Guide to Programming: Chapter 10, “File
Input and Output”

Guide to Programming: Chapter 15,
“Memory Management,” and Chapter 16,
“More Memory Management”

Guide to Programming: Chapter 20,
“Dynamic-Link Libraries”

Tools: Chapter 13, “Analyzing CPU Time:
Profiler”

Tools: Chapter 14, “Analyzing Swaps: Swap”

Chapter

Functions Directory

This chapter contains an alphabetical list of functions from the Microsoft
Windows application programming interface (API). The documentation for each
function contains a line illustrating correct syntax, a statement about the func-
tion’s purpose, a description of its input parameters, and a description of its re-
turn value. The documentation for some functions contains additional, important
information that an application developer needs in order to use the function.

AccessResource

4-2

@ AccessResource

Syntax

Return Value

int AccessResource(hlnstance, hReslnfo)

This function opens the specified resource file and moves the file pointer to the begin-
ning of the specified resource, letting an application read the resource from the file. The
AccessResource function supplies a DOS file handle that can be used in subsequent file-
read calls to load the resource. The file is opened for reading only.

Applications that use this function must close the resource file by calling the _lclose func-
tion after reading the resource.

Parameter Type/Description

hinstance HANDLE Identifies the instance of the module whose exe-
cutable file contains the resource.

hResInfo HANDLE Identifies the desired resource. This handle should

be created by using the FindResource function.

The return value specifies a DOS file handle to the designated resource file. It is —1 if the
resource cannot be found.

Comments AccessResource can exhaust available DOS file handles and cause errors if the opened
file is not closed after the resource is accessed.

AddAtom

Syntax ATOM AddAtom(lpString)

This function adds the character string pointed to by the [pString parameter to the atom
table and creates a new atom that uniquely identifies the string. The atom can be used in a
subsequent GetAtomName function to retrieve the string from the atom table.

The AddAtom function stores no more than one copy of a given string in the atom table. If
the string is already in the table, the function returns the existing atom value and increases
the string’s reference count by one.

Parameter Type/Description

IpString LPSTR Points to the character string to be added to the table.
The string must be a null-terminated character string.

43

AddFontResource

Return Value

The return value specifies the newly created atom if the function is successful. Otherwise,
it is NULL.

Comments The atom values returned by AddAtom range from 0xC000 to OxFFFF, Atoms are case in-
sensitive.

AddFontResource

Syntax int AddFontResource(IpFilename)

Return Value

Comments

This function adds the font resource from the file named by the IpFilename parameter to
the Windows font table. The font can subsequently be used by any application.

Parameter Type/Description

IpFilename LPSTR Points to a character string that names the font-

' resource file or contains a handle to a loaded module. If
IpFilename points to the font-resource filename, the string must
be null-terminated, have the DOS filename format, and include
the extension. If IpFilename contains a handle, the handle is in
the low-order word and the high-order word is zero.

The return value specifies the number of fonts added. The return value is zero if no fonts
are loaded.

Any application that adds or removes fonts from the Windows font table should notify
other windows of the change by using the SendMessage function with the /Wnd parame-
ter set to —1 to send a WM_FONTCHANGE message to all top-level windows in the sys-
tem.

It is good practice to remove any font resource an application has added once the applica-
tion is through with the resource.

For a description of font resources, see the Guide to Programming.

AdjustWindowRect

Syntax

void AdjustWindowRect(IpRect, dwStyle, bMenu)

This function computes the required size of the window rectangle based on the desired
client-rectangle size. The window rectangle can then be passed to the CreateWindow
function to create a window whose client area is the desired size. A client rectangle is the
smallest rectangle that completely encloses a client area. A window rectangle is the

AdjustWindowRectEx 4-4

smallest rectangle that completely encloses the window. The dimensions of the resulting
window rectangle depend on the window styles and on whether the window has a menu.

Parameter Type/Description
IpRect LPRECT Points to a RECT data structure that contains the
coordinates of the client rectangle.
dwStyle DWORD Specifies the window styles of the window whose
client rectangle is to be converted.
bMenu BOOL Specifies whether the window has a menu.
Return Value None.
Comments This function assumes a single menu row. If the menu bar wraps to two or more rows, the

coordinates are incorrect.

AdjustWindowRectEx
Syntax void AdjustWindowRectEx(IpRect, dwStyle, bMenu, dwExStyle)

This function computes the required size of the rectangle of a window with extended style
based on the desired client-rectangle size. The window rectangle can then be passed to the
CreateWindowEx function to create a window whose client area is the desired size.

A client rectangle is the smallest rectangle that completely encloses a client area. A
window rectangle is the smallest rectangle that completely encloses the window. The
dimensions of the resulting window rectangle depends on the window styles and on
whether the window has a menu.

Parameter Type/Description

IpRect LPRECT Points to a RECT data structure that contains the
coordinates of the client rectangle.

dwStyle DWORD Specifies the window styles of the window whose
client rectangle is to be converted.

bMenu BOOL Specifies whether the window has a menu.

dwExStyle DWORD Specifies the extended style of the window being

created.

4-5

AllocDStoCSAlias

Return Value

Comments

None.

This function assumes a single menu row. If the menu bar wraps to two or more rows, the
coordinates are incorrect.

AllocDStoCSAlias

Syntax

Return Value

Comments

WORD AllocDStoCSAlias(wSelector)

This function accepts a data-segment selector and returns a code-segment selector that can
be used to execute code in the data segment. When in protected mode, attempting to exe-
cute code directly in a data segment will cause a general protection violation. Alloc-
DStoCSAlias allows an application to execute code which the application had created in
its own stack segment.

The application must free the new selector by calling the FreeSelector function.

Parameter Type/Description

wSelector WORD Specifies the data-segment selector.

The return value is the code-segment selector corresponding to the data-segment selector
If the function cannot allocate a new selector, the return value is zero.

Windows does not track segment movements. Consequently, the data segment must be
fixed and nondiscardable; otherwise, the data segment might move, invalidating the code-
segment selector.

The ChangeSelector function provides another method of obtaining a code selector corre-
sponding to a data selector.

An application should not use this function unless it is absolutely necessary. Use of this
function violates preferred Windows programming practices.

AllocResource
Syntax

HANDLE AllocResource(hlnstance, hReslnfo, dwSize)

This function allocates uninitialized memory for the passed resource. All resources must
be initially allocated by using the AllocResource function. The LoadResource function
calls this function before loading the resource.

AllocSelector | 4-6

g

Return Value

Parameter Type/Description

hinstance HANDLE Identifies the instance of the module whose exe-
cutable file contains the resource.

hReslInfo HANDLE Identifies the desired resource. It is assumed that
this handle was created by using the FindResource function.

awSize DWORD Specifies an override size in bytes to allocate for
the resource. The override is ignored if the size is zero.

The return value identi.fies the global memory block allocated for the resource.

AllocSelector

Syntax

Return Value

Commenls

WORD AllocSelector(wSelector)

This function allocates a new selector. If the wSelector parameter is a valid selector, Alloc-
Selector returns a new selector which is an exact copy of the one specified by wSelector.
If wSelector is NULL, AllocSelector returns a new, uninitialized selector.

The application must free the new selector by calling the FreeSelector function.

Parameter Type/Description

wSelector WORD Specifies the selector to be copied, or NULL if Alloc-
Selector is to allocate a new, uninitialized selector.

The return value is either a selector that is a copy of an existing selector, or a new, uninitial-
ized selector. If the function could not allocate a new selector, the return value is zero.

An application can call AllocSelector to allocate a selector that it can pass to the Change-
Selector function.

An application should not use this function unless it is absolutely necessary. Use of this
function violates preferred Windows programming practices.

4-7

AnimatePalette

AnimatePalette

Syntax

Return Value

void AnimatePalette(hPalette, wStartindex, wNumEntries, IpPaletteColors)

This function replaces entries in the logical palette identified by the iPalette parameter.
When an application calls AnimatePalette, it does not have to update its client area be-
cause Windows maps the new entries into the system palette immediately.

Parameter Type/Description

hPalette HPALETTE Identifies the logical palette.

wStartindex WORD Specifies the first entry in the palette to be animated.

wNumEntries WORD Specifies the number of entries in the palette to be an-
imated.

IpPaletteColors LPPALETTEENTRY Points to the first member of an array

of PALETTEENTRY data structures to replace the palette en-
tries identified by wStartIndex and wNumEntries.

None.

Comments AnimatePalette will only change entries with the PC_RESERVED flag set in the corre-
sponding palPaletteEntry field of the LOGPALETTE data structure that defines the cur-
rent logical palette. The CreatePalette function creates a logical palette.

AnsiLower

Synlax LPSTR AnsiLower(lpString)

This function converts the given character string to lowercase. The conversion is made by
the language driver based on the criteria of the current language selected by the user at
setup or with the Control Panel.

Parameter Type/Description

IpString LPSTR Points to a null-terminated character string or speci-
fies single character. If [pString specifies single character, that
character is in the low-order byte of the low-order word, and the
high-order word is zero.

AnsilowerBuff 4-8

Return Value The return value points to a converted character string if the function parameter is a
character string. Otherwise, it is a 32-bit value that contains the converted character in the
low-order byte of the low-order word.

AnsiLowerBuff
Syntax - WORD AnsiLowerBuff(/pString, nLength)
This function converts character string in a buffer to lowercase. The conversion is made by

the language driver based on the criteria of the current language selected by the user at
setup or with the Control Panel.

Parameter Type/Description

IpString LPSTR Points to a buffer containing one or more characters.

nLength WORD Specifies the number of characters in the buffer iden-

tified by the IpString parameter. If nLength is zero, the length is
64K (65,536).

Return Value The return value specifies the length of the converted string.

AnsiNext
Syntax LPSTR AnsiNext(/pCurrentChar)

This function moves to the next character in a string.

Parameter - Type/Description

IpCurrentChar LPSTR Points to a character in a null-terminated string.

Return Value The return value points to the next character in the string, or, if there is no next character,
to the null character at the end of the string.

Comments The AnsiNext function is used to move through strings whose characters are two or more
bytes each (for example, strings that contain characters from a Japanese character set).

4-9 AnsiPrev

AnsiPrev
Synfax LPSTR AnsiPrev(ipStart, [pCurrentChar)

This function moves to the previous character in a string.

Parameter Type/Description

IpStart LPSTR Points to the beginning of the string.

IpCurrentChar LPSTR Points to a character in a null-terminated string.
Return Value The return value points to the previous character in the string, or to the first character in

the string if the IpCurrentChar parameter is equal to the [pStart parameter.

Comments The AnsiPrev function is used to move through strings whose characters are two or more
bytes each (for example, strings that contain characters from a Japanese character set).

AnsiToOem
Syntax int AnsiToOem(/pAnsiStr, [pOemStr)

This function translates the string pointed to by the I[pAnsiStr parameter from the ANSI
character set into the OEM-defined character set. The string can be greater than 64K in

length.

Parameter Type/Description

IpAnsiStr LPSTR Points to a null-terminated string of characters from
the ANSI character set.

IpOemStr LPSTR Points to the location where the translated string is to

be copied. The IpOemStr parameter can be the same as IpAnsiStr
to translate the string in place.

Return Value The return value is always —1.

AnsiToOemBuff

4-10

AnsiToOemBuff
void AnsiToOemBuff(IpAnsiStr, IpOemStr, nLength)

Syntax

Return Value

This function translates the string in the buffer pointed to by the IpAnsiStr parameter from
the ANSI character set into the OEM-defined character set.

Parameter

IpAnsiStr

IpOemStr

nLength

None.

Type/Description

LPSTR Points to a buffer containing one or more characters
from the ANSI character set.

LPSTR Points to the location where the translated string is to
be copied. The [pOemStr parameter can be the same as [pAnsiStr
to translate the string in place.

WORD Specifies the number of characters in the buffer iden-

tified by the IpAnsiStr parameter. If nlength is zero, the length is
64K (65,536).

AnsiUpper
Syntax

Return Value

LPSTR AnsiUpper(IpString)

This function converts the given character string to uppercase. The conversion is made by
the language driver based on the criteria of the current language selected by the user at
setup or with the Control Panel.

Parameter

IpString

Type/Description

LPSTR Points to a null-terminated character string or speci-
fies single character. If IpString specifies a single character, that
character is in the low-order byte of the low-order word, and the
high-order word is zero.

The return value points to a converted character string if the function parameter is a
character string; otherwise, it is a 32-bit value that contains the converted character in the
low-order byte of the low-order word.

4-11

AnsiUpperBuff

AnsiUpperBuff

Syntax

Return Value

WORD AnsiUpperBuff(IpString, nLength)

This function converts a character string in a buffer to uppercase. The conversion is made
by the language driver based on the criteria of the current language selected by the user at
setup or with the Control Panel.

Parameter Type/Description

IpString LPSTR Points to a buffer containing one or more characters.

nLength WORD Specifies the number of characters in the buffer iden-
tified by the IpString parameter. If nLength is zero, the length is
64K (65,536).

The return value specifies the length of the converted string.

AnyPopup
Syntax

Return Value

BOOL AnyPopup()

This function indicates whether a pop-up window exists on the screen. It searches the en-
tire Windows screen, not just the caller’s client area. The AnyPopup function returns non-
zero even if a pop-up window is completely covered by another window.

This function has no parameters.

The return value is nonzero if a pop-up window exists. Otherwise, it is zero.

AppendMenu

Syntax

BOOL AppendMenu(hMenu, wFlags, wIDNewltem, IpNewltent)

This function appends a new item to the end of a menu. The application can specify the
state of the menu item by setting values in the wFlags parameter.

AppendMenu 4-12

Return Value -

Comments

Parameter Type/Description
hMenu ‘ HMENU Identifies the menu to be changed.
wFlags WORD Specifies information about the state of the new

menu item when it is added to the menu. It consists of one or
more values listed in the following “Comments” section.

wIDNewltem WORD Specifies either the command ID of the new menu
item or, if wFlags is set to MF_POPUP, the menu handle of
the pop-up menu.

IpNewltem LPSTR Specifies the content of the new menu item. The
interpretation of the [pNewltem parameter depends upon the
setting of the wFlags parameter.

If wFlags is IpNewltem

MF_STRING Contains a long pointer to a null-
terminated character string.

MF_BITMAP Contains a bitmap handle HBIT-

MAP in its low-order word.

MF_OWNERDRAW Contains an application-supplied
32-bit value which the application
can use to maintain additional data
associated with the menu item.
This 32-bit value is available to
the application in the itemData
field of the structure pointed to by
the [Param parameter of the
WM_MEASUREITEM and
WM_DRAWITEM messages sent
when the menu item is initially dis-
played or is changed.

The return value specifies the outcome of the function. It is TRUE if the function is
successful. Otherwise, it is FALSE.

Whenever a menu changes (whether or not the menu resides in a window that is dis-
played), the application should call DrawMenuBar. '

Each of the following groups lists flags that are mutually exclusive and should not be used
together:

4-13

AppendMenu

= MF_BYCOMMAND and MF_BYPOSITION

» MF_DISABLED, MF_ENABLED, and MF_GRAYED
= MF_BITMAP, MF_STRING, and MF_OWNERDRAW
= MF_MENUBARBREAK and MF_MENUBREAK

m MF_CHECKED and MF_UNCHECKED

The following list describes the flags which may be set in the wFlags parameter:

Value Meaning

MF_BITMAP Uses a bitmap as the item. The low-order word of the
IpNewltem parameter contains the handle of the bitmap.

MF_CHECKED Places a checkmark next to the item. If the application
has supplied checkmark bitmaps (see SetMenultemBit-
maps), setting this flag displays the “checkmark on”
bitmap next to the menu item.

MF_DISABLED Disables ‘the menu item so that it cannot be selected, but
does not gray it.

MF_ENABLED Enables the menu item so that it can be selected and re-
stores it from its grayed state.

MF_GRAYED Disables the menu item so that it cannot be selected and
grays it.

MF_MENUBARBREAK Same as MF_MENUBREAK except that for pop-up
menus, separates the new column from the old column
with a vertical line.

MF_MENUBREAK Places the item on a new line for static menu-bar items.
For pop-up menus, places the item in a new column,
with no dividing line between the columns.

MF_OWNERDRAW Specifies that the item is an owner-draw item. The
window that owns the menu receives a
WM_MEASUREITEM message when the menu is dis-
played for the first time to retrieve the height and width
of the menu item. The WM_DRAWITEM message is
then sent whenever the owner must update the visual ap-
pearance of the menu item. This option is not valid for a
top-level menu item.

Arc

4-14

Value Meaning

MF_POPUP Specifies that the menu item has a pop-up menu as-
sociated with it. The wIDNewltem parameter specifies a
handle to a pop-up menu to be associated with the item.
This is used for adding either a top-level pop-up menu or
adding a hierarchical pop-up menu to a pop-up menu
item.

MF_SEPARATOR Draws a horizontal dividing line. Can only be used in a
pop-up menu. This line cannot be grayed, disabled, or
highlighted. The [pNewltem and wIDNewltem parame-
ters are ignored.

MF_STRING Specifies that the menu item is a character string; the
. IpNewltem parameter points to the string for the menu
item.
MF_UNCHECKED Does not place a checkmark next to the item (default). If

the application has supplied checkmark bitmaps (see Set-
- MenultemBitmaps), setting this flag displays the
“checkmark off” bitmap next to the menu item.

Arc
Syntax

BOOL Arc(hDC,X1,Y1,X2,Y2,X3,Y3, X4, Y4)

This function draws an elliptical arc. The center of the arc is the center of the bounding
rectangle specified by the points (X7, Y7) and (X2, Y2). The arc starts at the point (X3, Y3)
and ends at the point (X4, Y4). The arc is drawn using the selected pen and moving in a
counterclockwise direction. Since an arc does not define a closed area, it is not filled.

Parameter Type/Description
hDC HDC Identifies the device context.
X1 int Specifies the logical x-coordinate of the upper-left corner

of the bounding rectangle.

Yl int Specifies the logical y-coordinate of the upper-left corner
of the bounding rectangle.

X2 int Specifies the logical x-coordinate of the lower-right corner
of the bounding rectangle.

4-15

ArrangelconicWindows

Return Value

Comments

Parameter Type/Description

Y2 int Specifies the logical y-coordinate of the lower-right corner
of the bounding rectangle.

X3 int Specifies the logical x-coordinate of the arc’s starting
point. This point does not have to lie exactly on the arc.

Y3 int Specifies the logical y-coordinate of the arc’s starting
point. This point does not have to lie exactly on the arc.

X4 int Specifies the logical x-coordinate of the arc’s endpoint.
This point does not have to lie exactly on the arc.

Y4 int Specifies the logical y-coordinate of the arc’s endpoint.
This point does not have to lie exactly on the arc.

The return value specifies whether the arc is drawn. It is nonzero if the arc is drawn. Other-
wise, it is zero.

The width of the rectangle specified by the absolute value of X2 — X1 must not exceed
32,767 units. This limit applies to the height of the rectangle as well.

ArrangelconicWindows

Syntax

Return Value

Comments

WORD ArrangelconicWindows(hWnd)
This function arranges all the minimized (iconic) child windows of the window specified

by the ”Wnd parameter.

Parameter Type/Description

hWnd HWND Identifies the window.

The return value is the height of one row of icons, or zero if there were no icons.

Applications that maintain their own iconic child windows call this function to arrange
icons in a client window. This function also arranges icons on the desktop window, which
covers the entire screen. The GetDesktopWindow function retrieves the window handle
of the desktop window.

To arrange iconic MDI child windows in an MDI client window, an application sends the
WM_MDIICONARRANGE message to the MDI client window.

BeginDeferWindowPos +16

Syntax

Return Value

BeginDeferWindowPos

HANDLE BeginDefer WindowPos(nNumWindows)

This function allocates memory to contain a multiple window-position data structure and
returns a handle to the structure. The DeferWindowPos function fills this data structure
with information about the target position for a window that is about to be moved. The
EndDefer WindowPos function accepts this data structure and instantaneously repositions
the windows using the information stored in the structure.

Parameter Type/Description

nNumWindows int Specifies the initial number of windows for which position
information is to be stored in the data structure. The Defer-
WindowPos function increases the size of the structure if
needed.

The return value identifies the multiple window-position data structure. The return value is
NULL if system resources are not available to allocate the structure.

- BeginPaint
Synlax

HDC BeginPaint(h#Wnd, IpPaint)

This function prepares the given window for painting and fills the paint structure pointed
to by the [pPaint parameter with information about the painting.

The paint structure contains a handle to the device context for the window, a RECT data
structure that contains the smallest rectangle that completely encloses the update region,
and a flag that specifies whether or not the background has been erased.

The BeginPaint function automatically sets the clipping region of the device context to ex-
clude any area outside the update region. The update region is set by the InvalidateRect or
InvalidateRgn functions and by the system after sizing, moving, creating, scrolling, or
any other operation that affects the client area. If the update region is marked for erasing,
BeginPaint sends a WM_ERASEBKGND message to the window.

An application should not call the BeginPaint function except in response to a
WM_PAINT message. Each BeginPaint call must have a matching call to the EndPaint
function.

4-17

BitBIt

Return Value

Parameter

Type/Description

hWnd
IpPaint

HWND Identifies the window to be repainted.

LPPAINTSTRUCT Points to the PAINTSTRUCT data structure
that is to receive painting information, such as the device context for
the window and the update rectangle.

The return value identifies the device context for the specified window.

Comments If the caret is in the area to be painted, the BeginPaint function automatically hides the
caret to prevent it from being erased.

BitBit

Syntax BOOL BitBlt(hDestDC, X, Y, nWidth, nHeight, hSrcDC, XSrc, YSrc, dwRop)

This function moves a bitmap from the source device given by the 4ASrcDC parameter to
the destination device given by the #DestDC parameter. The XSrc and YSrc parameters
specify the origin on the source device of the bitmap that is to be moved. The X, Y, nWidth,
and nHeight parameters specify the origin, width, and height of the rectangle on the desti-
nation device that is to be filled by the bitmap. The dwRop parameter (raster operation) de-
fines how the bits of the source and destination are combined.

HDC Identifies the device context that is to receive the bitmap.

int Specifies the logical x-coordinate of the upper-left corner of the
int Specifies the logical y-coordinate of the upper-left corner of the
int Specifies the width (in logical units) of the destination

int Specifies the height (in logical units) of the destination

Parameter Type/Description
hDestDC
X

destination rectangle.
Y

destination rectangle.
nWidth

rectangle and source bitmap.
nHeight

rectangle and source bitmap.
hSreDC

HDC Identifies the device context from which the bitmap will be
copied. It must be NULL if the dwRop parameter specifies a raster
operation that does not include a source.

BitBit 4-18
Parameter Type/Description
XSrc int Specifies the logical x-coordinate of the upper-left corner of the
source bitmap.
YSrc int Specifies the logical y-coordinate of the upper-left corner of the

Return Value

Comments

source bitmap.

dwRop DWORD Specifies the raster operation to be performed. Raster-
operation codes define how the graphics device interface (GDI)
combines colors in output operations that involve a current brush, a
possible source bitmap, and a destination bitmap. For a list of raster-
operation codes, see Table 4.1, “Raster Operations.”

The return value specifies whether the bitmap is drawn. It is nonzero if the bitmap is
drawn. Otherwise, it is zero.

GDI transforms the nWidth and nHeight parameters, once by using the destination display
context, and once by using the source display context. If the resulting extents do not

match, GDI uses the StretchBIt function to compress or stretch the source bitmap as neces-
sary. If destination, source, and pattern bitmaps do not have the same color format, the
BitBIt function converts the source and pattern bitmaps to match the destination. The fore-
ground and background colors of the destination are used in the conversion.

If BitBIt converts monochrome bitmaps to color, it sets white bits (1) to the background
color and black bits (0) to the foreground color. The foreground and background colors of
the destination device context are used. To convert color to monochrome, BitBIt sets pix-
els that match the background color to white (1), and sets all other pixels to black (0). The
foreground and background colors of the color-source device context are used.

The foreground color is the current text color for the specified device context, and the
background color is the current background color for the specified device context.

Not all devices support the BitBIt function. For more information, see the RC_BITBLT
raster capability in the GetDeviceCaps function, later in this chapter.

4-19

BitBIt

Table 4.1 lists the various raster-operation codes for the dwRop parameter:

Table 4.1 Raster Operations

Code Description

BLACKNESS Tums all output black.

DSTINVERT Inverts the destination bitmap.

MERGECOPY Combines the pattern and the source bitmap using the Boolean AND
operator.

MERGEPAINT Combines the inverted source bitmap with the destination bitmap using
the Boolean OR operator.

NOTSRCCOPY Copies the inverted source bitmap to the destination.

NOTSRCERASE Inverts the result of combining the destination and source bitmaps using
the Boolean OR operator.

PATCOPY Copies the pattern to the destination bitmap.

PATINVERT Combines the destination bitmap with the pattern using the Boolean
XOR operator.

PATPAINT Combines the inverted source bitmap with the pattern using the
Boolean OR operator. Combines the result of this operation with the
destination bitmap using the Boolean OR operator.

SRCAND Combines pixels of the destination and source bitmaps using the
Boolean AND operator.

SRCCOPY Copies the source bitmap to the destination bitmap.

SRCERASE Inverts the destination bitmap and combines the result with the source
bitmap using the Boolean AND operator.

SRCINVERT Combines pixels of the destination and source bitmaps using the
Boolean XOR operator.

SRCPAINT Combines pixels of the destination and source bitmaps using the
Boolean OR operator.

WHITENESS Tumns ali output white.

For a complete list of the raster-operation codes, see Chapter 11, “Binary and Ternary
Raster-Operation Codes,” in Reference, Volume 2.

BringWindowToTop 4-20

BringWindowToTop

Syntax

void BringWindowToTop(#Wnd)

This function brings a pop-up or child window to the top of a stack of overlapping
windows. In addition, it activates pop-up and top-level windows. The BringWindowTo-
Top function should be used to uncover any window that is partially or completely ob-
scured by any overlapping windows.

Parameter Type/Description
hWhnd HWND ' Identifies the pop-up or child window that is to be brought
to the top.
Return Value None.
BuildCommDCB

Syntax

Return Value

Comments

int BuildCommDCB(/pDef, IpDCB)
This function translates the definition string specified by the IpDef parameter into appro-

priate device-control block codes and places these codes into the block pointed to by the
IpDCB parameter.

Parameter Type/Description

IpDef LPSTR Points to a null-terminated character string that specifies
the device-control information for a device. The string must have the
same form as the DOS MODE command-line parameter.

IpDCB DCB FAR * Points to the DCB data structure that is to receive the
translated string. The structure defines the control setting for the se-
rial-communication device.

The return value specifies the result of the function. It is zero if the string is translated. It is
negative if an error occurs.

The BuildCommDCB function only fills the buffer. An application should call SetComm-
State to apply these settings to the port. Also, by default, BuildCommDCB specifies
Xon/Xoff and hardware flow control as disabled. An application should set the appropriate
fields in the DCB data structure to enable flow control.

4-21

CallMsgFilter

CallMsgFilter
Synlax

Return Value

Comments

BOOL CallMsgFilter(IlpMsg, nCode)

This function passes the given message and code to the current message filter function.
The message filter function is an application-specified function that examines and modi-
fies all messages. An application specifies the function by using the SetWindowsHook
function.

Parameter Type/Description

IpMsg LPMSG Points to an MSG data structure that contains the
message to be filtered.

nCode int Specifies a code used by the filter function to determine how to
process the message.

The return value specifies the state of message processing. It is FALSE if the message
should be processed. It is TRUE if the message should not be processed further.

The CallMsgFilter function is usually called by Windows to let applications examine and
control the flow of messages during internal processing in menus and scroll bars or when
moving or sizing a window.

Values given for the nCode parameter must not conflict with any of the MSGF_ and HC _
values passed by Windows to the message filter function.

CallWindowProc

Syntax

LONG CallWindowProc(lpPrevWndFunc, hWWnd, wMsg, wParam, [Param)

This function passes message information to the function specified by the IpPrevWndFunc
parameter. The CallWindowProc function is used for window subclassing. Normally, all
windows with the same class share the same window function. A subclass is a window or
set of windows belonging to the same window class whose messages are intercepted and
processed by another function (or functions) before being passed to the window function
of that class.

The SetWindowLong function creates the subclass by changing the window function as-
sociated with a particular window, causing Windows to call the new window function in-
stead of the previous one. Any messages not processed by the new window function must
be passed to the previous window function by calling CallWindowProc. This allows a
chain of window functions to be created.

Catch 4-22

Parameter Type/Description

IpPrevWndF unc FARPROC Is the procedure-instance address of the previous
window function.

hWnd HWND Identifies the window that receives the message.

wMsg WORD Specifies the message number.

wParam . WORD Specifies additional message-dependent information.

[Param I?WORD Specifies additional message-dependent informa-
tion.

Return Value

The return value specifies the result of the message processing. The possible return values
depend on the message sent.

Catch
Syntax

Return Value

Comments

int Catch(lpCatchBuf)

This function catches the current execution environment and copies it to the buffer pointed
to by the [pCatchBuf parameter. The execution environment is the state of all system
registers and the instruction counter.

Parameter Type/Description

IpCatchBuf LPCATCHBUF Points to the CATCHBUF structure that
will receive the execution environment.

The return value specifies whether the execution environment is copied to the buffer. Itis
zero if the environment is copied to the buffer.

The Throw function uses the buffer to restore the execution environment to its previous
values.

The Catch function is similar to the C run-time setjmp function (which is incompatible
with the Windows environment).

4-23 ChangeClipboardChain

ChangeClipboardChain
Syntax BOOL ChangeClipboardChain(iWnd, hWndNext)

This function removes the window specified by the #Wnd parameter from the chain of clip-
board viewers and makes the window specified by the h'WndNext parameter the descen-
dant of the #Wnd parameter’s ancestor in the chain.

Parameter Type/Description

hWnd HWND Identifies the window that is to be removed from the
chain. The handle must previously have been passed to the Set-
ClipboardViewer function.

hWndNext HWND Identifies the window that follows hWnd in the clip-
board-viewer chain (this is the handle returned by the
SetClipboardViewer function, unless the sequence was
changed in response to a WM_CHANGECBCHAIN message).

Return Value The return value specifies the status of the AWnd window. It is nonzero if the window is
found and removed. Otherwise, it is zero.

ChangeMenu

The Microsoft Windows version 3.0 SDK has replaced this function with five specialized
functions. These new functions are:

Function Description

AppendMenu Appends a menu item to the end of a menu.

DeleteMenu Deletes a menu item from a menu, destroying the menu item.

InsertMenu Inserts a menu item into a menu.

ModifyMenu Modifies a menu item in a menu.

RemoveMenu Removes a menu item from a menu but does not destroy the
menu item.

Applications written for SDK versions 2.1 and earlier may continue to call ChangeMenu
as previously documented. New applications should call the new functions listed above.

ChangeSelector 4-24

ChangeSelector

Syntax

Return Value

WORD ChangeSelector(wDestSelector, wSourceSelector)

This function generates a code selector that corresponds to a given data selector, or a data
selector that corresponds to a given code selector.

The wSourceSelector parameter specifies the selector to be copied and converted; the
wDestSelector parameter is a selector previously allocated by a call to the AllocSelector
function. ChangeSelector modifies the destination selector to have the same properties as
the source selector, but with the opposite code or data attribute. This function changes only
the attributes of the selector, not the value of the selector.

Parameter Type/Description

wDestSelector WORD Specifies a selector previously allocated by Alloc-
Selector that receives the converted selector.

wSourceSelector WORD Specifies the selector to be converted.

The return value is the copied and converted selector. It is zero if the function failed.

Comments Windows does not attempt to track changes to the source selector. Consequently, the appli-
cation should use the converted destination selector immediately after it is returned by this
function before any movement of memory can occur.

An application should not use this function unless it is absolutely necessary. Use of this
function violates preferred Windows programming practices.

CheckDIgButton

Syntax void CheckDIgButton(kDIg, nIDButton, wCheck)

This function places a checkmark next to or removes a checkmark from a button control,
or changes the state of a three-state button. The CheckDIgButton function sends a
BM_SETCHECK message to the button control that has the specified ID in the given
dialog box.

Parameter Type/Description

hDIg HWND Identifies the dialog box that contains the button.

nIDButton int Specifies the button control to be modified.

CheckMenultem

Type/Description

WORD Specifies the action to take. If the wCheck parameter
is nonzero, the CheckDIgButton function places a checkmark

" next to the button; if zero, the checkmark is removed. For three-
state buttons, if wCheck is 2, the button is grayed; if wCheck is
1, it is checked; if wCheck is 0, the checkmark is removed.

4-25
Parameter
wCheck
Hetum Value None.
CheckMenultem

Syntax

BOOL CheckMenuItém(hMenu, wIDCheckltem, wCheck)

This function places checkmarks next to or removes checkmarks from menu items in the

_pop-up menu specified by the hiMenu parameter. The wIDCheckiItem parameter specifies

the item to be modified.

Parameter

hMenu

wIDCheck-
Item

wCheck

Type/Description
HMENU Identifies the menu.
WORD Specifies the menu item to be checked.

WORD Specifies how to check the menu item and how to deter-
mine the item’s position in the menu. The wCheck parameter can be a
combination of the MF_CHECKED or MF_UNCHECKED with
MF_BYPOSITION or MF_BYCOMMAND flags. These flags can
be combined by using the bitwise OR operator. They have the follow-
ing meanings:

Value Meaning

MF_BYCOMMAND Specifies that the wIDCheckltem para-
meter gives the menu-item ID
(MF_BYCOMMAND is the default).

MF_BYPOSITION Specifies that the wIDCheckltem para-
meter gives the position of the menu item
(the first item is at position zero).

MF_CHECKED Adds checkmark.
MF_UNCHECKED Removes checkmark.

CheckRadioButton 426

Return Value

Comments

The return value specifies the previous state of the item. It is either MF_CHECKED or
MF_UNCHECKED. The return value is —1 if the menu item does not exist.

The wiDCheckltem parameter may identify a pop-up menu item as well as a menu item.
No special steps are required to check a pop-up menu item.

Top-level menu items cannot be checked.

A pop-up menu item should be checked by position since it does not have a menu-item
identifier associated with it.

CheckRadioButton

Syntax

Return Value

void CheckRadioButton(hDIg, nIDFirstButton, nIDLastButton, nIDCheckButton)

This function checks the radio button specified by the nIDCheckButton parameter and re-
moves the checkmark from all other radio buttons in the group of buttons specified by the
nIDFirstButton and nIDLastButton parameters. The CheckRadioButton function sends a
BM_SETCHECK message to the radio-button control that has the spec1f1ed ID in the
given dialog box.

Parameter Type/Description
hDlg HWND Identifies the dialog box.
nIDFirstButton int Specifies the integer identifier of the first radio button in
the group.
nIDLastButton int Specifies the integer identifier of the last radio button in
' the group.
nIDCheckButton int Specifies the integer identifier of the radio button to be
checked.
None.

ChildWindowFromPoint

Syntax

HWND ChildWindowFromPoint(AWndParent, Point)

This function determines which, if any, of the child windows belonging to the given parent
window contains the specified point.

4-27

Chord

Return Value

Parameter

hWndParent

Point

Type/Description

HWND Identifies the parent window.

POINT Specifies the client coordinates of the point to be
tested.

The return value identifies the child window that contains the point. It is NULL if the
given point lies outside the parent window. If the point is within the parent window but is
not contained within any child window, the handle of the parent window is returned.

Chord
Syntax

BOOL Chord(hDC, X1, Y1, X2, Y2, X3, Y3, X4, Y4)

This function draws a chord (a region bounded by the intersection of an ellipse and a line
segment). The (X1, Y1) and (X2, Y2) parameters specify the upper-left and lower-right
corners, respectively, of a rectangle bounding the ellipse that is part of the chord. The (X3,
Y3) and (X4, Y4) parameters specify the endpoints of a line that intersects the ellipse. The
chord is drawn by using the selected pen and filled by using the selected brush.

Parameter

hDC
X1

Yl

X2

Y2

X3
Y3
X4
Y4

Type/Description

HDC

int

Identifies the device context in which the chord will appear.

Specifies the x-coordinate of the bounding rectangle’s upper-
left corner.

int Specifies the y-coordinate of the bounding rectangle’s upper-
left corner.
int Specifies the x-coordinate of the bounding rectangle’s lower-

right corner.

int

" int

int
int

int

Specifies the y-coordinate of the bounding rectangle’s lower-
right corner.

Specifies the x-coordinate of one end of the line segment.
Specifies the y-coordinate of one end of the line segment.
Specifies the x-coordinate of one end of the line segment.

Specifies the y-coordinate of one end of the line segment.

ClearCommBreak 428

Return Value The return value specifies whether or not the arc is drawn. It is nonzero if the arc is drawn.
Otherwise, it is zero.

ClearCommBreak
Syntax int ClearCommBreak(nCid)
This function restores character transmission and places the transmission line in a non-
break state.
Parameter Type/Description
nCid int Specifies the communication device to be restored. The Open-
Comm function returns this value.
Return Value The return value specifies the result of the function. It is zero if the function is successful.

It is negative if the nCid parameter is not a valid device.

ClientToScreen
Syntax void ClientToScreen(AWnd, [pPoint)

This function converts the client coordinates of a given point on the display to screen

coordinates. The ClientToScreen function uses the client coordinates in the POINT data

structure, pointed to by the /pPoint parameter, to compute new screen coordinates; it then
replaces the coordinates in the structure with the new coordinates. The new screen coordi-
nates are relative to the upper-left comer of the system display.

Parameter Type/Description

hWnd HWND Identifies the window whose client area will be used for
the conversion.

IpPoint LPPOINT Points to a POINT data structure that contains the
client coordinates to be converted.

Return Value None.

Comments The ClientToScreen function assumes that the given point is in client coordinates and is
relative to the given window.

4-29

ClipCursor

ClipCursor
Syntax

Return Value

void ClipCursor(/pRect)

This function confines the cursor to the rectangle on the display screen given by the IpRect
parameter. If a subsequent cursor position, given with the SetCursorPos function or the
mouse, lies outside the rectangle, Windows automatically adjusts the position to keep the

cursor inside. If IpRect is NULL, the cursor is free to move anywhere on the display screen.

Parameter Type/Description

IpRect LPRECT Points to a RECT data structure that contains the screen
coordinates of the upper-left and lower-right corners of the confining
rectangle.

None.

Comments The cursor is a shared resource. An application that has confined the cursor to a given
rectangle must free it before relinquishing control to another application.

CloseClipboard

Syntax BOOL CloseClipboard()

Return Value

This function closes the clipboard. The CloseClipboard function should be called when a
window has finished examining or changing the clipboard. It lets other applications access
the clipboard.

This function has no parameters.

The return value specifies whether the clipboard is closed. It is nonzero if the clipboard is
closed. Otherwise, it is zero.

CloseComm
Syntax

int CloseComm(nCid)

This function closes the communication device specified by the nCid parameter and frees
any memory allocated for the device’s transmit and receive queues. All characters in the
output queue are sent before the communication device is closed.

0

ClaoseMetaFile 4-30

Return Value

Parameter Type/Description

nCid int Specifies the device to be closed. The OpenComm function re-
turns this value.

The return value specifies the result of the function. It is zero if the device is closed. It is
negative if an error occurred.

CloseMetaFile
Syntax

Return Value

HANDLE CloseMetaFile(hDC)

This function closes the metafile device context and creates a metafile handle that can be
used to play the metafile by using the PlayMetaFile function.

Parameter Type/Description

hDC HANDLE Identifies the metafile device context to be closed.

The return value identifies the metafile if the function is successful. Otherwise, it is NULL.

CloseSound
Syntax

Return Value

void CloseSound()

This function closes access to the play device and frees the device for opening by other
applications. The CloseSound function flushes all voice queues and frees any buffers allo-
cated for these queues.

This function has no parameters.

None.

CloseWindow
Syntax

void CloseWindow(hWnd)

This function minimizes the specified window. If the window is an overlapped window, it
is minimized by removing the client area and caption of the open window from the display
screen and moving the window’s icon into the icon area of the screen.

4-31

CombineRgn

Return Value

Parameter Type/Description
hWnd HWND Identifies the window to be minimized.
None.

Comments This function has no effect if the AWnd parameter is a handle to a pop-up or child window.
CombineRgn
Syntax int CombineRgn(hDestRgn, hSrcRgnl, hSrcRgn2, nCombineMode)

This function creates a new region by combining two existing regions. The method used to
combine the regions is specified by the nCombineMode parameter.

Parameter Type/Description

hDestRgn HRGN Identifies an existing region that will be replaced by
the new region.

hSrcRgnl HRGN Identifies an existing region.

hSrcRgn2 HRGN Identifies an existing region.

nCombineMode int Specifies the operation to be performed on the two ex-

isting regions. It can be any one of the following values:

Value Meaning

RGN_AND Uses overlapping areas of both regions
(intersection).

RGN_COPY Creates a copy of region 1 (identified by
hSrcRgnl).

RGN_DIFF Saves the areas of region 1 (identified by

the hSrcRgnl parameter) that are not part
of region 2 (identified by the hSrcRgn2

parameter).
RGN_OR Combines all of both regions (union).
RGN_XOR Combines both regions but removes over-

lapping areas.

CopyMetaFile 4-32

Return Value

The return value specifies the type of the resulting region. It can be any one of the follow-
ing values: ‘

Value Meaning
COMPLEXREGION New region has overlapping borders.
ERROR No new region created.
NULLREGION New region is empty.
SIMPLEREGION New region has no overlapping borders.
Comments If the hDestRgn parameter does not identify an existing region, the application must pass a
far pointer to a previously allocated HRGN as the hDestRgn parameter.
CopyMetaFile
Syntax HANDLE CopyMetaFile(hSrcMetaFile, IpFilename)

Return Value

This function copies the source metafile to the file pointed to by the IpFilename parameter
and returns a handle to the new metafile. If IpFilename is NULL, the source is copied to a

memory metafile.

Parameter Type/Description
hSrcMetaFile HANDLE Identifies the source metafile.
IpFilename LPSTR Points to a null-terminated character string that speci-

fies the file that is to receive the metafile.

The return value identifies the new metafile.

CopyRect
Syntax

int CopyRect(IpDestRect, IpSourceRect)

This function copies the rectangle pointed to by the IpSourceRect parameter to the RECT
data structure pointed to by the IpDestRect parameter.

4-33 CountClipboardFormats

Parameter Type/Description
IpDestRect LPRECT Points to a RECT data structure.
IpSourceRect LPRECT Points to a RECT data structure.
Return Value Although the CopyRect function return type is an integer, the return value is not used and

has no meaning.

CountClipboardFormats
Syntax int CountClipboardFormats()

This function retrieves a count of the number of formats the clipboard can render.

This function has no parameters.

" Return Value The return value specifies the number of data formats in the clipboard.
CountVoiceNotes
Synlax int CountVoiceNotes(nVoice)

This function retrieves a count of the number of notes in the specified queue. Only those
queue entries that result from calls to the SetVoiceNote function are counted.

Parameter Type/Description

nVoice int Specifies the voice queue to be counted. The first voice queue
is numbered 1.

Return Value The return value specifies the number of notes in the given queue.
CreateBitmap
Syntax HBITMAP CreateBitmap(nWidth, nHeight, nPlanes, nBitCount, IpBits)

This function creates a device-dependent memory bitmap that has the specified width,
height, and bit pattern. The bitmap can subsequently be selected as the current bitmap for a
memory display by using the SelectObject function.

CreateBitmapindirect 4-34

Although a bitmap cannot be copied directly to a display device, the BitBIt function can
copy it from a memory display context (in which it is the current bitmap) to any com-
patible device.

Parameter Type/Description

nWidth int Specifies the width (in pixels) of the bitmap.

nHeight int Specifies the height (in pixels) of the bitmap.

nPlanes BYTE Specifies the number of color planes in the bitmap. Each
plane has nWidth x nHeight X nBitCount bits.

nBitCount BYTE Specifies the number of color bits per display pixel.

IpBits LPSTR Points to a short-integer array that contains the initial bit-

map bit values. If it is NULL, the new bitmap is left uninitialized.
For more information, see the description of the bmBits field in the
BITMAP data structure in Chapter 7, “Data Types and Structures,”
in Reference, Volume 2.

Return Value The return value identifies a bitmap if the function is successful. Otherwise, it is NULL.

CreateBitmapindirect
Syntax HBITMAP CreateBitmapIndirect(/pBitmap)

This function creates a bitmap that has the width, height, and bit pattern given in the data
structure pointed to by the [pBitmap parameter. Although a bitmap cannot be directly
selected for a display device, it can be selected as the current bitmap for a memory display
and copied to any compatible display device by using the BitBlt function.

Parameter Type/Description

IpBitmap BITMAPFAR * Points to a BITMAP data structure that contains
information about the bitmap.

Return Value The return value identifies a bitmap if the function is successful. Otherwise, it is NULL.

4-35

CreateBrushindirect

CreateBrushindirect

Syntax

Return Value

Comments

HBRUSH CreateBrushlndirect({pLogBrush)

This function creates a logical brush that has the style, color, and pattern given in the data
structure pointed to by the IpLogBrush parameter. The brush can subsequently be selected
as the current brush for any device.

Parameter Type/Description

IpLogBrush LOGBRUSH FAR * Points to a LOGBRUSH data structure that
contains information about the brush.

The return value identifies a logical brush if the function is successful Otherwise, it is
NULL.

A brush created using a monochrome (one plane, one bit per pixel) bitmap is drawn using
the current text and background colors. Pixels represented by a bit set to O will be drawn
with the current text color, and pixels represented by a bit set to 1 will be drawn with the
current background color.

CreateCaret
Syntax

void CreateCaret(hWnd, hBitmap, nWidth, nHeight)

This function creates a new shape for the system caret and assigns ownership of the caret
to the given window. The caret shape can be a line, block, or bitmap as defined by the hBit-
map parameter. If hBitmap is a bitmap handle, the nWidth and nHeight parameters are ig-
nored; the bitmap defines its own width and height. (The bitmap handle must have been
previously created by using the CreateBitmap, CreateDIBitmap, or LoadBitmap func-
tion.) If ABitmap is NULL or 1, nWidth and nHeight give the caret’s width and height (in
logical units); the exact width and height (in pixels) depend on the window’s mapping
mode.

If nWidth or nHeight is zero, the caret width or height is set to the system’s window-border
width or height. Using the window-border width or height guarantees that the caret will be -
visible on a high-resolution display.

The CreateCaret function automatically destroys the previous caret shape, if any, regard-
less of which window owns the caret. Once created, the caret is mmally hidden. To show
the caret, the ShowCaret function must be called.

CreateCompatibleBitmap 4-36

Return Value

Comments

Parameter Type/Description

hWnd "HWND Identifies the window that owns the new caret.

hBitmap HBITMAP Identifies the bitmap that defines the caret shape. If
hBitmap is NULL, the caret is solid; if #Bitmap is 1, the caret is gray.

nWidth int Specifies the width of the caret (in logical units).

nHeight int Specifies the height of the caret (in logical units).

None.

The system caret is a shared resource. A window should create a caret only when it has the
input focus or is active. It should destroy the caret before losing the input focus or becom-
ing inactive.

The system’s window-border width or height can be retrieved by using the GetSystem-
Metrics function with the SM_CXBORDER and SM_CYBORDER indexes.

CreateCompatibleBitmap

Syntax

HBITMAP CreateCompatibleBitmap(hDC, nWidth, nHeight)

This function creates a bitmap that is compatible with the device specified by the ADC
parameter. The bitmap has the same number of color planes or the same bits-per-pixel for-
mat as the specified device. It can be selected as the current bitmap for any memory device
that is compatible with the one specified by ADC.

If hDC is a memory device context, the bitmap returned has the same format as the cur-
rently selected bitmap in that device context. A memory device context is a block of
memory that represents a display surface. It can be used to prepare images in memory
before copying them to the actual display surface of the compatible device.

When a memory device context is created, GDI automatically selects a monochrome stock
bitmap for it.

Since a color memory device context can have either color or monochrome bitmaps
selected, the format of the bitmap returned by the CreateCompatibleBitmap function is
not always the same; however, the format of a compatible bitmap for a nonmemory device
context is always in the format of the device.

4-37

CreateCompatibleDC

Return Value

Parameter

Type/Description

hDC
nWidth
nHeight

HDC Identifies the device context.
int Specifies the width (in bits) of the bitmap.

int Specifies the height (in bits) of the bitmap.

The return value identifies a bitmap if the function is successful. Otherwise, it is NULL.

CreateCompatibleDC
HDC CreateCompatibleDC(2DC)

Syntax

Return Value

Comments

This function creates a memory device context that is compatible with the device specified
by the #DC parameter. A memory device context is a block of memory that represents a
display surface. It can be used to prepare images in memory before copying them to the ac-
tual device surface of the compatible device.

When a memory device context is created, GDI automatically selects a 1-by-1 mono-
chrome stock bitmap for it.

Parameter

hDC

Type/Description

HDC Identifies the device context. If ADC is NULL, the function
creates a memory device context that is compatible with the system
display.

The return value identifies the new memory device context if the function is successful.
Otherwise, it is NULL.

This function can only be used to create compatible device contexts for devices that sup-
port raster operations. For more information, see the RC_BITBLT raster capability in the
GetDeviceCaps function, later in this chapter.

GDI output functions can be used with a memory device context only if a bitmap has been
created and selected into that context.

When the application no longer requires the device context, it should free it by calling the

DeleteDC function.

CreateCursor

4-38

CreateCursor

HCURSOR. CreateCursor(hlnstance, nXhotspot, nYhotspot, nWidth, nHeight,
IpANDBbitPlane, IpXORDbitPlane)

Syntax

Return Value

This function creates a cursor that has specified width, height, and bit patterns.

Parameter

hinstance

nXhotspot
nYhotspot
nWidth
nHeight
IpANDbitPlane

IpXORbitPlane

Type/Description

HANDLE Identifies an instance of the module creating the
CUrSOr.

int Specifies the horizontal position of the cursor hotspot.
int Specifies the vertical position of the cursor hotspot.
int Specifies the width in pixels of the cursor.

int Specifies the height in pixels of the cursor.

LPSTR Points to an array of bytes containing the bit values .
for the AND mask of the cursor. This can be the bits of a
device-dependent monochrome bitmap. .

LPSTR Points to an array of bytes containing the bit values
for the XOR mask of the cursor. This can be the bits of a
device-dependent monochrome bitmap.

The return value identifies the cursor if the function was successful. Otherwise, it is NULL.

CreateDC
Syntax

HDC CreateDC(/pDriverName, IpDeviceName, IpOutput, IplnitData)

This function creates a device context for the specified device. The IpDriverName, IpDevi-
ceName, and IpOutput parameters specify the device driver, device name, and physical out-
put medium (file or port), respectively.

Parameter

IpDriverName

Type/Description

LPSTR Points to a null-terminated character string that speci-
fies the DOS filename (without extension) of the device driver
(for example, Epson ®).

4-39 | CreateDialog

Parameter Type/Description

IpDeviceName LPSTR Points to a null-terminated character string that speci-
fies the name of the specific device to be supported (for
example, Epson FX-80). The IpDeviceName parameter is used if
the module supports more than one device.

IpOutput LPSTR Points to a null-terminated character string that speci-
fies the DOS file or device name for the physical output medium
(file or output port).

IpinitData LPDEVMODE Points to a DEVMODE data structure con-
taining device-specific initialization data for the device driver.
The ExtDeviceMode retrieves this structure filled in for a given
device. The Ip/nitData parameter must be NULL if the device
driver is to use the default initialization (if any) specified by the
user through the Control Panel.

Return Value The return value identifies a device context for the specified device if the function is
successful. Otherwise, it is NULL.

Comments DOS device names follow DOS conventions; an ending colon (:) is recommended, but op-
tional. Windows strips the terminating colon so that a device name ending with a colon is
mapped to the same port as the same name without a colon. The driver and port names
must not contain leading or trailing spaces.

CreateDialog
Syntax HWND CreateDialog(hlnstance, ipTemplateName, hWndParent, IpDialogFunc)

This function creates a modeless dialog box that has the size, style, and controls defined by
the dialog-box template given by the IpTemplateName parameter. The iWndParent para-
meter identifies the application window that owns the dialog box. The dialog function
pointed to by the [pDialogFunc parameter processes any messages received by the dialog
box.

The CreateDialog function sends a WM_INITDIALOG message to the dialog function
before displaying the dialog box. This message allows the dialog function to initialize the
dialog-box controls.

CreateDialog returns immediately after creating the dialog box. It does not wait for the
dialog box to begin processing input.

CreateDialog 4-40

Return Value

Comments

Callback Function

Parameter Type/Description

hinstance HANDLE Identifies an instance of the module whose exe-
cutable file contains the dialog-box template.

IpTemplateName LPSTR Points to a character string that names the dialog-box
template. The string must be a null-terminated character string.

hWndParent HWND Identifies the window that owns the dialog box.

IpDialogFunc FARPROC Is the procedure-instance address for the dialog

function. See the following “Comments” section for details.

The return value is the window handle of the dialog box. It is NULL if the function cannot
create the dialog box.

Use the WS_VISIBLE style for the dialog—box template if the dialog box should appear in
the parent window upon creation.

Use the DestroyWindow function to destroy a dialog box created by the CreateDialog
function. ,

A dialog box can contain up to 255 controls.

The callback function must use the Pascal calling convention and must be declared FAR.

BOOL FAR PASCAL DialogFunc(hDlg, wMsg, wParam, IParam)
HWND /Dlg;

WORD wMsg;

WORD wParams;

DWORD [Param;

DialogFunc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in an EXPORTS statement in the application’s module-
definition file.

Parameter Definition

hDIg Identifies the dialog box that receives the message.

wMsg Specifies the message number.

wParam Specifies 16 bits of additional message-dependent information.

IParam Specifies 32 bits of additional message-dependent information.

4-41

CreateDialogindirect

-

Return Value

Except in response to the WM_INITDIALOG message, the dialog function should return
nonzero if the function processes the message, and zero if it does not. In response to a
WM_INITDIALOG message, the dialog function should return zero if it calls the SetFo-
cus function to set the focus to one of the controls in the dialog box. Otherwise, it should
return nonzero, in which case Windows will set the focus to the first control in the dialog
box that can be given the focus.

Comments

The dialog function is used only if the dialog class is used for the dialog box. This is the de-
fault class and is used if no explicit class is given in the dialog-box template. Although the
dialog function is similar to a window function, it must not call the DefWindowProc func-
tion to process unwanted messages. Unwanted messages are processed internally by the
dialog-class window function.

The dialog-function address, passed as the IpDialogFunc parameter, must be created by
using the MakeProcInstance function.

CreateDialogindirect

Syntax

HWND CreateDialoglndirect(hi/nstance, IpDialogTemplate, hWndParent,
IpDialogFunc)

This function creates a modeless dialog box that has the size, style, and controls defined by
the dialog-box template given by the IpDialogTemplate parameter. The hWndParent para-
meter identifies the application window that owns the dialog box. The dialog function
pointed to by the IpDialogFunc parameter processes any messages received by the dialog
box.

The CreateDialogIndirect function sends a WM_INITDIALOG message to the dialog
function before displaying the dialog box. This message allows the dialog function to ini-
tialize the dialog-box controls.

CreateDialogIndirect returns immediately after creating the dialog box. It does not wait
for the dialog box to begin processing input.

Parameter Type/Description

hinstance HANDLE Identifies an instance of the module whose exe-
cutable file contains the dialog-box template.

IpDialogTemplate LPSTR Points to a block of memory that contains a
DLGTEMPLATE data structure.

hWndParent HWND Identifies the window that owns the dialog box.

CreateDialogindirect 442

Parameter Type/Description

IpDialogFunc FARPROC Is the procedure-instance address of the dialog
function. See the following “Comments” section for details.

Return Value The return value is the window handle of the dialog box. It is NULL if the function cannot
create either the dialog box or any controls in the dialog box.

Comments Use the WS_VISIBLE style in the dialog-box template if the dialog box should appear in
the parent window upon creation.

A dialog box can contain up to 255 controls.

The callback function must use the Pascal calling convention and must be declared FAR.

Callback Function BOOL FAR PASCAL DialogFunc(hDlg, wMsg, wParam, [Param)
HWND #Dlg;
WORD wMsg;
WORD wParams;
DWORD [Param;

DialogFunc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in an EXPORTS statement in the application’s module-
definition file.

Parameter Definition

hDlg Identifies the dialog box that receives the message.

wMsg Specifies the message number.

wParam Specifies 16 bits of additional message-dependent information.
[Param Specifies 32 bits of additional message-dependent information.

Return Value

Except in response to the WM_INITDIALOG message, the dialog function should return
nonzero if the function processes the message, and zero if it does not. In response to a
WM_INITDIALOG message, the dialog function shoiild return zero if it calls the SetFo-
cus function to set the focus to one of the controls in the dialog box. Otherwise, it should
return nonzero, in which case Windows will set the focus to the first control in the dialog
box that can be given the focus.

4-43 CreateDialogindirectParam

Comments

The dialog function is used only if the dialog class is used for the dialog box. This is the de-
fault class and is used if no explicit class is given in the dialog-box template. Although the
dialog function is similar to a window function, it must not call the DefWindowProc func-
tion to process unwanted messages. Unwanted messages are processed internally by the
dialog-class window function.

The dialog-function address, passed as the IpDialogFunc parameter, must be created by
using the MakeProcInstance function.

CreateDialogindirectParam

Syntax HWND CreateDialogIndirectParam(hinstance, [pDialogTemplate, hWWndParent,
. IpDialogFunc, dwlnitParam)

This function creates a modeless dialog box, sends a WM_INITDIALOG message to the
dialog function before displaying the dialog box, and passes dwlnitParam as the message
[Param. This message allows the dialog function to initialize the dialog-box controls.
Otherwise, this function is identical to the CreateDialogIndirect function.

For more information on creating a modeless dialog box, see the description of the Create-
DialogIndirect function.

Parameter Type/Description

hinstance HANDLE Identifies an instance of the module whosé exe-
cutable file contains the dialog-box template.

IpDialogTemplate LPSTR Points to a block of memory that contains a
DLGTEMPLATE data structure,

hWndParent HWND Identifies the window that owns the dialog box.

IpDialogFunc FARPROC s the procedure-instance address of the dialog
function. For details, see the “Comments” section in the descrip-
tion of the CreateDialogIndirect function.

dwlnitParam DWORD Is a 32-bit value which CreateDialogIndirect-
Param passes to the dialog function when it creates the dialog
box.
Return Value The return value is the window handle of the dialog box. It is NULL if the function cannot

create either the dialog box or any controls in the dialog box.

CreateDialogParam 4-44

CreateDialogParam

Syntax

Return Value

HWND CreateDialogParam(hinstance, IpTemplateName, hWndParent, IpDialogFunc,
dwlnitParam)

This function creates a modeless dialog box, sends a WM_INITDIALOG message to the
dialog function before displaying the dialog box, and passes dwlnitParam as the message
IParam. This message allows the dialog function to initialize the dialog-box controls.
Otherwise, this function is identical to the CreateDialog function.

For more information on creating a modeless dialog box, see the description of the Create-
Dialog function.

Parameter Type/Description

hinstance HANDLE Identifies an instance of the module whose exe-
cutable file contains the dialog-box template.

IpTemplateName LPSTR Points to a character string that names the dialog-box
template. The string must be a null-terminated character string.

hWndParent HWND Identifies the window that owns the dialog box.

IpDialogFunc FARPROC Is the procedure-instance address for the dialog
function. For details, see the “Comments” section of the Create-
Dialog function.

dwlnitParam DWORD s a 32-bit value which CreateDialogParam passes

to the dialog function when it creates the dialog box.

The return value is the window handle of the dialog box. It is —1 if the function cannot
create the dialog box.

CreateDiBitmap

Syntax

HBITMAP CreateDIBitmap(hDC, ipInfoHeader, dwUsage, IpInitBits, IpInitinfo,
wUsage)

This function creates a device-specific memory bitmap from a device-independent bitmap
(DIB) specification and optionally sets bits in the bitmap.

4-45 . CreateDIBitmap

Parameter Type/Description
hDC HDC Identifies the device context.
IpInfoHeader LPBITMAPINFOHEADER Points to a BITMAPINFO-

HEADER structure that describes the size and format of the
device-independent bitmap.

dwUsage DWORD Indicates whether the memory bitmap is to be ini-
tialized. If dwUsage is set to CBM_INIT, CreateDIBitmap will
initialize the bitmap with the bits specified by Ip/nitBits and Ipin-
itinfo.

IpInitBits LPSTR Points to a byte array that contains the initial bitmap
values. The format of the bitmap values depends on the biBit-
Count field of the BITMAPINFO structure identified by
IpInitinfo. See the description of the BITMAPINFO data struc-
ture in Chapter 7, “Data Types and Structures,” in Reference,
Volume 2, for more information.

IpInitInfo LPBITMAPINFO Points to a BITMAPINFO data structure
that describes the dimensions and color format of IpInitBits.
wUsage WORD Specifies whether the bmiColors|] fields of the /pIni-

tInfo data structure contain explicit RGB values or indexes into
the currently realized logical palette. The wUsage parameter
must be one of the following values:

Value Meaning

DIB_PAL_COLORS The color table consists of an
array of 16-bit indexes into
the currently realized logical

palette.
DIB_RGB_COLORS The color table contains lit-
eral RGB values.
Return Value The return value identifies a bitmap if the function is successful. Otherwise, it is NULL.
Comments This function also accepts a device-independent bitmap specification formatted for

Microsoft OS/2 Presentation Manager versions 1.1 and 1.2 if the IpInfoHeader points to a
BITMAPCOREHEADER data structure and the Iplnitinfo parameter points to a
BITMAPCOREINFO data structure.

CreateDIBPatternBrush : 4-46

CreateDIBPatternBrush
Syntax HBRUSH CreateDIBPatternBrush(hPackedDIB, wUsage)

This function creates a logical brush that has the pattern specified by the device-inde-
pendent bitmap (DIB) defined by the the hPackedDIB parameter. The brush can sub-
sequently be selected for any device that supports raster operations. For more information,
see the RC_BITBLT raster capability in the GetDeviceCaps function, later in this chapter.

Parameter Type/Description

hPackedDIB GLOBALHANDLE Identifies a global memory object con-
taining a packed device-independent bitmap. To obtain this
handle, an application calls the GlobalAlloc function to allocate
a block of global memory and then fills the memory with the
packed DIB. A packed DIB consists of a BITMAPINFO data
structure immediately followed by the array of bytes which
define the pixels of the bitmap.

wUsage WORD Specifies whether the bmiColors|] fields of the
BITMAPINFO data structure contain explicit RGB values or in-
dexes into the currently realized logical palette. The wUsage
parameter must be one of the following values:

Value Meaning

DIB_PAL_COLORS The color table contains lit-
eral RGB values. into the
currently realized logical
palette.

DIB_RGB_COLORS The color table consists of an
array of 16-bit indexes.

Return Value The return value identifies a logical brush if the function is successful. Otherwise, it is
NULL.

CreateDiscardableBitmap _
Syntax HBITMAP CreateDiscardableBitmap(hDC, nWidth, nHeight)

This function creates a discardable bitmap that is compatible with the device identified by
the hDC parameter. The bitmap has the same number of color planes or the same bits-per-
pixel format as the specified device. An application can select this bitmap as the current bit-
map for a memory device that is compatible with the one specified by the ZDC parameter.

4-47

CreateEllipticRgn

Return Value

Comments

Parameter Type/Description

hDC HDC Identifies a device context.

nWidth int Specifies the width (in bits) of the bitmap.
nHeight int Specifies the height (in bits) of the bitmap.

The return value identifies a bitmap if the function is successful. Otherwise, it is NULL.

Windows can discard a bitmap created by this function only if an application has not
selected it into a display context. If Windows discards the bitmap when it is not selected
and the application later attempts to select it, the SelectObject function will return zero.
When this occurs, the application should remove the handle to the bitmap by using
DeleteObject. ‘ '

CreateEllipticRgn

Syntax

Return Value

Comments

HRGN CreateEllipticRgn(X!, Y1, X2, Y2)

This function creates an elliptical region.

Parameter Type/Description

X1 int Specifies the x-coordinate of the upper-left corner of the bound-
ing rectangle of the ellipse.

Y] int Specifies the y-coordinate of the upper-left corner of the bound-
ing rectangle of the ellipse.

X2 int Specifies the x-coordinate of the lower-right corner of the
bounding rectangle of the ellipse.

Y2 int Specifies the y-coordinate of the lower-right corner of the
bounding rectangle of the ellipse.

The return value identifies a new region if the function is successful. Otherwise, it is
NULL.

The width of the rectangle, specified by the absolute value of X2 — X/, must not exceed
32,767 units. This limit also applies to the height of the rectangle.

CreateEllipticRgnindirect 4-48

CreateEllipticRgnindirect

Syntax

Return Value

Comments

HRGN CreateEllipticRgnIndirect(/pRect)

This function creates an elliptical region.

Parameter Type/Description

IpRect LPRECT Points to a RECT data structure that contains the coordi-
nates of the upper-left and lower-right corners of the bounding
rectangle of the ellipse.

The return value identifies a new region if the function is successful. Otherwise, it is
NULL.

The width of the rectangle must not exceed 32,767 units. This limit applies to the height of
the rectangle as well. .

CreateFont
Syntax

. HFONT CreateFont(nHeight, nWidth, nEscapement, nOrientation, nWeight, cltalic,

cUnderline, cStrikeOut, cCharSet, cOutputPrecision, cClipPrecision, cQuality,
cPitchAndF amily, IpFacename)

This function creates a logical font that has the specified characteristics. The logical font
can subsequently be selected as the font for any device.

Parameter Type/Description

nHeight int Specifies the desired height (in logical units) of the font.
The font height can be specified in three ways: If nHeight is
greater than zero, it is transformed into device units and matched
against the cell height of the available fonts. If it is zero, a rea-
sonable default size is used. If it is less than zero, it is
transformed into device units and the absolute value is matched
against the character height of the available fonts. For all height
comparisons, the font mapper looks for the largest font that does
not exceed the requested size, and, if there is no such font, looks
for the smallest font available.

4-49

CreateFont

Parameter

nWidth

nEscapement
nOrientation
nWeight
cltalic
cUnderline

cStrikeOut

cCharSet

cOutputPrecision

Type/Description

int Specifies the average width (in logical units) of characters
in the font. If nWidth is zero, the aspect ratio of the device will
be matched against the digitization aspect ratio of the available
fonts to find the closest match, determined by the absolute value
of the difference.

int Specifies the angle (in tenths of degrees) of each line of
text written in the font (relative to the bottom of the page).

int Specifies the angle (in tenths of degrees) of each
character’s baseline (relative to the bottom of the page).

int Specifies the desired weight of the font in the range 0 to
1000 (for example, 400 is normal, 700 is bold). If nWeight is
zero, a default weight is used.

BYTE Specifies whether the font is italic.
BYTE Specifies whether the font is underlined.
BYTE Specifies whether characters in the font are struck out.

BYTE Specifies the desired character set. The following
values are predefined:

ANSI_CHARSET
OEM_CHARSET
SYMBOL_CHARSET

The OEM character set is system-dependent.

Fonts with other character sets may exist in the system. If an
application uses a font with an unknown character set, it should
not attempt to translate or interpret strings that are to be ren-
dered with that font. Instead, the strings should be passed
directly to the output device driver.

BYTE Specifies the desired output precision. The output pre-
cision defines how closely the output must match the requested
font’s height, width, character orientation, escapement, and
pitch. It can be any one of the following values:

OUT_CHARACTER_PRECIS
OUT_DEFAULT_PRECIS
OUT_STRING_PRECIS
OUT_STROKE_PRECIS

CreateFont

4-50

Parameter

cClipPrecision

cQuality

cPitchAndFamily

IpFacename

Type/Description

BYTE Specifies the desired clipping precision. The clipping
precision defines how to clip characters that are partially outside
the clipping region. It can be any one of the following values:

CLIP_CHARACTER_PRECIS
CLIP_DEFAULT_PRECIS
CLIP_STROKE_PRECIS

BYTE Specifies the desired output quality. The output quality
defines how carefully GDI must attempt to match the logical-
font attributes to those of an actual physical font. It can be any
one of the following values:

DEFAULT_QUALITY
DRAFT_QUALITY
PROOF_QUALITY

BYTE Specifies the pitch and family of the font. The two low-
order bits specify the pitch of the font and can be any one of the
following values:)

DEFAULT_PITCH
FIXED_PITCH
VARIABLE_PITCH

The four high-'order bits of the field specify the font family and
can be any one of the following values:

FF_DECORATIVE
FF_DONTCARE
FF_MODERN
FF_ROMAN
FF_SCRIPT
FF_SWISS

LPSTR Points to a null-terminated character string that speci-
fies the typeface name of the font. The length of this string must
not exceed 30 characters. The EnumFonts function can be used
to enumerate the typeface names of all currently available fonts.

4-51

CreateFontindirect

Return Value

The return value identifies a logical font if the function is successful. Otherwise, it is
NULL.

Comments The CreateFont function does not create a new font. It merely selects the closest match
from the fonts available in GDI’s pool of physical fonts.

CreateFontindirect

Syntax HFONT CreateFontIndirect(/pLogFont)

Return Value

Comments

This function creates a logical font that has the characteristics given in the data structure
pointed to by the IpLogF ont parameter. The font can subsequently be selected as the cur-
rent font for any device.

Parameter Type/Description

IpLogFont LOGFONT FAR * Points to a LOGFONT data structure that de-
fines the characteristics of the logical font.

The return value identifies a logical font if the function is successful. Otherwise, it is
NULL.

The CreateFontIndirect function creates a logical font that has all the specified charac-
teristics. When the font is selected by using the SelectObject function, GDI’s font mapper
attempts to match the logical font with an existing physical font. If it fails to find an exact
font, it provides an alternate whose characteristics match as many of the requested charac-
teristics as possible. For a description of the font mapper, see Chapter 2, “Graphics Device
Interface Functions.”

CreateHatchBrush

Syntax

HBRUSH CreateHatchBrush(n/ndex, crColor)

This function creates a logical brush that has the specified hatched pattern and color. The
brush can subsequently be selected as the current brush for any device.

CreatelC 4-52
Parameter Type/Description
nindex int Specifies the hatch style of the brush. It can be any one of the
following values:
Value Meaning
HS_BDIAGONAL 45-degree downward hatch (left to
right)
HS_CROSS Horizontal and vertical crosshatch
HS_DIAGCROSS 45-degree crosshatch
HS_FDIAGONAL 45-degree upward hatch (left to
right)
) HS_HORIZONTAL Horizontal hatch
HS_VERTICAL Vertical hatch
crColor COLORREF Specifies the foreground color of the brush (the

Return Value

color of the hatches).

The return value identifies a logical brush if the function is successful. Otherwise, it is
NULL.

CreatelC
Syntax

HDC CreatelC(IpDriverName, IpDeviceName, IpOutput, IplnitData)

This function creates an information context for the specified device. The information con-
text provides a fast way to get information about the device without creating a device con-
text.

Parameter Type/Description

IpDriverName LPSTR Points to a null-terminated character string that speci-
fies the DOS filename (without extension) of the device driver
(for example, EPSON).

IpDeviceName LPSTR Points to a null-terminated character string that speci-

fies the name of the specific device to be supported (for
example, EPSON FX-80). The [pDeviceName parameter is used
if the module supports more than one device.

4-53 Createlcon
L N

Parameter Type/Description

IpOutput LPSTR Points to a null-terminated character string that speci-
fies the DOS file or device name for the physical output medium
(file or port).

IplnitData LPSTR Points to device-specific initialization data for the
device driver. The IpInitData parameter must be NULL if the
device driver is to use the default initialization (if any) specified
by the user through the Control Panel.

Return Value The return value identifies an information context for the specified device if the function is
successful. Otherwise, it is NULL.
Comments DOS device names follow DOS conventions; an ending colon (:) is recommended, but op-

tional. Windows strips the terminating colon so that a device name ending with a colon is
mapped to the same port as the same name without a colon.

The driver and port names must not contain leading or trailing spaces.

GDI output functions cannot be used with information contexts.

Createlcon

Syntax HICON Createlcon(hinstance, nWidth, nHeight, nPlanes, nBitsPixel, IpANDDbits,

IPXORDbits)

This function creates an icon that has specified width, height, colors, and bit patterns.

Parameter

hinstance

nWidth
nHeight

nPlanes

nBitsPixel

Type/Description

HANDLE Identifies an instance of the module creating the
icon.

int Specifies the width in pixels of the icon.
int Specifies the height in pixels of the icon.

BYTE Specifies the number of planes in the XOR mask of
the icon.

BYTE Specifies the number of bits per pixel in the XOR
mask of the icon.

CreateMenu 4-54

Parameter Type/Description

IpANDbits LPSTR Points to an array of bytes that contains the bit
values for the AND mask of the icon. This array must specify
a monochrome mask.

IpXORDbits LPSTR Points to an array of bytes that contains the bit
values for the XOR mask of the icon. This can be the bits of a
monochrome or device-dependent color bitmap.

Return Value The return value identifies an icon if the function is successful. Otherwise, it is NULL.
CreateMenu
Syntax HMENU CreateMenu()

This function creates a menu. The menu is initially empty, but can be filled with menu
items by using the AppendMenu or InsertMenu function.

This function has no parameters.

Return Value The return value identifies the newly created menu. It is NULL if the menu cannot be
created.

CreateMetaFile

Syntax HANDLE CreateMetaFile(/pFilename)

This function creates a metafile device context.

Parameter Type/Description

IpFilename LPSTR Points to a null-terminated character string that specifies
the name of the metafile. If the IpFilename parameter is NULL, a
device context for a memory metafile is returned.

Return Value The return value identifies a metafile device context if the function is successful. Other-
wise, it is NULL.

4-55

CreatePalelte

CreatePalette

Syntax

Return Value

HPALETTE CreatePalette(pLogPalette)

This function creates a logical color palette.

Parameter Type/Description

IpLogPalette LPLOGPALETTE Points to a LOGPALETTE data structure
that contains information about the colors in the logical palette.

The return value identifies a logical palette if the function was successful. Otherwise, it is
NULL.

CreatePatternBrush

Synfax

Return Value

Commenls

HBRUSH CreatePatternBrush(.Bitmap)

This function creates a logical brush that has the pattern specified by the hBitmap para-
meter. The brush can subsequently be selected for any device that supports raster opera-
tions. For more information, see the RC_BITBLT raster capability in the GetDeviceCaps
function, later in this chapter.

Parameter Type/Description

hBitmap HBITMAP Identifies the bitmap. It is assumed to have been
created by using the CreateBitmap, CreateBitmapIndirect, Load-
Bitmap, or CreateCompatibleBitmap function. The minimum size
for a bitmap to be used in a fill pattern is 8-by-8.

The return value identifies a logical brush if the function is successful. Otherwise, it is
NULL.

A pattern brush can be deleted without affecting the associated bitmap by using the
DeleteObject function. This means the bitmap can be used to create any number of pattern
brushes.

A brush created using a monochrome (one plane, one bit per pixel) bitmap is drawn using
the current text and background colors. Pixels represented by a bit set to O will be drawn
with the current text color, and pixels represented by a bit set to 1 will be drawn with the
current background color.

CreatePen 4-56

CreatePen
Syntax HPEN CreatePen(nPenStyle, nWidth, crColor)

This function creates a logical pen having the specified style, width, and color. The pen
can be subsequently selected as the current pen for any device.

Parameter Type/Description

nPenStyle int Specifies the pen style. It can be any one of the following
values:
Pen Style Value
PS_SOLID 0
PS_DASH 1
PS_DOT 2
PS_DASHDOT 3
PS_DASHDOTDOT 4
PS_NULL 5
PS_INSIDEFRAME 6

If the width of the pen is greater than 1 and the pen style is PS_IN-
SIDEFRAME, the line is drawn inside the frame of all primitives
except polygons and polylines; the pen is drawn with a logical
(dithered) color if the pen color does not match an available RGB
value. The PS_INSIDEFRAME style is identical to PS_SOLID if
the pen width is less than or equal to 1.

nWidth int Specifies the width of the pen (in logical units).
crColor COLORREF Specifies the color of the pen.

Return Value The return value identifies a logical pen if the function is successful. Otherwise, it is
NULL.

Comments Pens with a physical width greater than one pixel will always have either null or solid style

or will be dithered if the pen style is PS_INSIDEFRAME.

4-57 ‘ CreatePenindirect

CreatePenindirect
Syntax HPEN CreatePenlIndirect(/pLogPen)

This function ‘creates a logical pen that has the style, width, and color given in the data
structure pointed to by the IpLogPen parameter.

Parameter Type/Description

IpLogPen LOGPEN FAR * Points to the LOGPEN data structure that con-
tains information about the logical pen.

Return Value The return value identifies a logical pen object if the function is successful. Otherwise, it is
NULL.
Comments Pens with a physical width greater than one pixel will always have either null or solid style

or will be dithered if the pen style is PS_INSIDEFRAME.

CreatePolygonRgn
Syntax HRGN CreatePolygonRgn(/pPoints, nCount, nPolyFillMode)

This function creates a polygonal region.

Parameter Type/Description

IpPoints LPPOINT Points to an array of POINT data structures. Each
point specifies the x- and y-coordinates of one vertex of the poly-
gon.

nCount int Specifies the number of points in the array.

nPolyFillMode int Specifies the polygon-filling mode to be used for filling

the region. It can be ALTERNATE or WINDING (for an ex-
planation of these modes, see the SetPolyFillMode function,
later in this chapter).

Return Value The return value identifies a new region if the function is successful. Otherwise, it is
NULL. '

CreatePolyPolygonRgn ' 4-58

CreatePolyPolygonRgn

Synlax -

Return Value

Commenis

HRGN CreatePolyPolygonRgn(/pPoints, IpPolyCounts, nCount, nPolyFillMode)

This function creates a region consisting of a series of closed polygons. The region is filled
using the mode specified by the nPolyFillMode parameter. The polygons may overlap, but
they do not have to overlap.

Parameter Type/Description

IpPoints LPPOINT Points to an array of POINT data structures that
define the vertices of the polygons. Each polygon must be a
closed polygon. The polygons are not automatically closed. The
polygons are specified consecutively.

IpPolyCounts LPINT Points to an array of integers, each of which specifies
the number of points in one of the polygons in the [pPoints array.

nCount int Specifies the total number of integers in the [pPolyCounts
array.

nPolyFillMode int Specifies the filling mode for the region. The nPolyFill-
Mode parameter may be either of the following values:

Value Meaning

ALTERNATE Selects alternate mode.
WINDING Selects winding number mode.

The return value identifies the region if the function was successfull. Otherwise, it is
NULL. '

In general, the polygon fill modes differ only in cases where a complex, overlapping poly-
gon must be filled (for example, a five-sided polygon that forms a five-pointed star with a
pentagon in the center). In such cases, ALTERNATE mode fills every other enclosed re-
gion within the polygon (that is, the points of the star), but WINDING mode fills all re-
gions (that is, the points and the pentagon).

When the filling mode is ALTERNATE, GDI fills the area between odd-numbered and
even-numbered polygon sides on each scan line. That is, GDI fills the area between the
first and second side, between the third and fourth side, and so on.

To fill all parts of the region, WINDING mode causes GDI to compute and draw a border
that encloses the region but does not overlap. For example, in WINDING mode, the five-
sided polygon that forms the star is computed as a ten-sided polygon with no overlapping
sides; the resulting star is filled.

4-59

CreatePopupMenu

CreatePopupMenu

Syntax

Return Value

HMENU CreatePopupMenu()

This function creates and returns a handle to an empty pop-up menu.

An application adds items to the pop-up menu by calling InsertMenu and AppendMenu.

The application can add the pop-up menu to an existing menu or pop-up menu, or it may
display and track selections on the pop-up menu by calling TrackPopupMenu.

This function has no parameters.

The return value identifies the newly created menu. It is NULL if the menu cannot be
created.

CreateRectRgn

Syntax

Return Value

Comments

HRGN CreateRectRgn(X1, Y1, X2, Y2)

This function creates a rectangular region.

Parameter Type/Description

X1 int. Specifies the x-coordinate of the upper-left comer of the re-
gion.

Yl int Specifies the y-coordinate of the upper-left corner of the re-
gion. ‘

X2 int Specifies the x-coordinate of the lower-right corner of the
region.

Y2 int Specifies the y-coordinate of the lower-right corner of the
region.

The return value identifies a new region if the function is successful. Otherwise, it is
NULL.

The width of the rectangle, specified by the absolute value of X2 — X1, must not exceed
32,767 units. This limit applies to the height of the rectangle as well.

)

CreateRectRgnindirect - 4-60

CreateRectRgnindirect
Syntax HRGN CreateRectRgnIndirect(ipRect)

This function creates a rectangular region.

Parameter Type/Description
IpRect LPRECT Points to a RECT data structure that contains the
coordinates of the upper-left and lower-right comers of the re-
gion.
Return Value The return value identifies a new region if the function is successful. Otherwise, it is
NULL.
Comments The width of the rectangle must not exceed 32,767 units. This limit applies to the height of

the rectangle as well.

CreateRoundRectRgn
Syntax HRGN CreateRoundRectRgn(X/, Y1, X2, Y2, X3,Y3)

This function creates a rectangular region with rounded corners.

Parameter Type/Description

Xl int Specifies the x-coordinate of the upper-left corner of the region.

Yl int Specifies the y-coordinate of the upper-left corner of the region.

X2 int Specifies the x-coordinate of the lower-right corner of the re-
gion.

Y2 int Specifies the y-coordinate of the lower-right corner of the re-
gion. '

X3 int Specifies the width of the ellipse used to create the rounded
corners.

Y3 int Specifies the height of the ellipse used to create the rounded
cormers.

Return Value The return value identifies a new region if the function was successful. Otherwise, it is

NULL.

4-61 CreateSolidBrush
Comments The width of the rectangle, specified by the absolute value of X2 — X/, must not exceed
: 32,767 units. This limit applies to the height of the rectangle as well.
CreateSolidBrush
Syntax HBRUSH CreateSolidBrush(crColor)

Return Value

This function creates a logical brush that has the specified solid color. The brush can sub-
sequently be selected as the current brush for any device.

Parameter Type/Description

crColor COLORREF Specifies the color of the brush.

The return value identifies a logical brush if the function is successful. Otherwise, it is
NULL. '

CreateWindow
Syntax

HWND CreateWindow(IlpClassName, lpWindowName, dwStyle, X, Y, nWidth, nHeight,
hWndParent, hMenu, hinstance, IpParam)

This function creates an overlapped, pop-up, or child window. The CreateWindow func-
tion specifies the window class, window title, window style, and (optionally) initial posi-
tion and size of the window. The CreateWindow function also specifies the window’s
parent (if any) and menu. :

For overlapped, pop-up, and child windows, the CreateWindow function sends
WM_CREATE, WM_GETMINMAXINFO, and WM_NCCREATE messages to the
window. The [Param parameter of the WM_CREATE message contains a pointer to a
CREATESTRUCT data structure. If WS_VISIBLE style is given, CreateWindow sends
the window all the messages required to activate and show the window.

If the window style specifies a title bar, the window title pointed to by the IpWindowName
parameter is displayed in the title bar. When using CreateWindow to create controls such
as buttons, check boxes, and text controls, the IpWindowName parameter specifies the text
of the control.

CreateWindow

4-62

Parameter

IpClassName

IpWindowName

dwStyle

nWidth

Type/Description

LPSTR Points to a null-terminated character string that
names the window class. The class name can be any name
registered with the RegisterClass function or any of the prede-
fined control-class names specified in Table 4.2, “Control
Classes.”

LPSTR Points to a null-terminated character string that repre-
sents the window name.

DWORD Specifies the style of window being created. It can
be any combination of the styles given in Table 4.3, “Window
Styles,” the control styles given in Table 4.4, “Control Styles,”

or a combination of styles created by using the bitwise OR opera-
tor.

int Specifies the initial x-position of the window. For an over-
lapped or pop-up window, the X parameter is the initial
x-coordinate of the window’s upper-left corner (in screen coordi-
nates). If this value is CW_USEDEFAULT, Windows selects the
default position for the window’s upper-left corner. For a child"
window, X is the x-coordinate of the upper-left comner of the
window in the client area of its parent window.

int Specifies the initial y-position of the window. For an over-
lapped window, the Y parameter is the initial y-coordinate of the
window’s upper-left comer. For a pop-up window, Y is the y-
coordinate (in screen coordinates) of the upper-left corner of the
pop-up window. For list-box controls, Y is the y-coordinate of
the upper-left corner of the control’s client area. For a child
window, Y is the y-coordinate of the upper-left corner of the
child window. All of these coordinates are for the window, not
the window’s client area.

int Specifies the width (in device units) of the window. For
overlapped windows, the nWidth parameter is either the
window’s width (in screen coordinates) or CW_USEDEFAULT.
If nWidth is CW_USEDEFAULT, Windows selects a default
width and height for the window (the default width extends from
the initial x-position to the right edge of the screen, and the de-
fault height extends from the initial y-position to the top of the
icon area).

4-63 CreateWindow

Parameter Type/Description

nHeight int Specifies the height (in device units) of the window. For
‘overlapped windows, the nHeight parameter is the window’s
height in screen coordinates. If the nWidth parameter is
CW_USEDEFAULT, Windows ignores nHeight.

hWndParent HWND Identifies the parent or owner window of the window
being created. A valid window handle must be supplied when
creating a child window or an owned window. An owned
window is an overlapped window that is destroyed when its
owner window is destroyed, hidden when its owner is made
iconic, and which is always displayed on top of its owner
window. For pop-up windows, a handle can be supplied, but is
not required. If the window does not have a parent or is not
owned by another window, the hWndParent parameter must be
set to NULL.

hMenu HMENU Identifies a menu or a child-window identifier. The
meaning depends on the window style. For overlapped or pop-
up windows, the hMenu parameter identifies the menu to be
used with the window. It can be NULL, if the class menu is to be
used. For child windows, hMenu specifies the child-window
identifier, an integer value that is used by a dialog-box control to
notify its parent of events (such as the EN_HSCROLL message).
The child-window identifier is determined by the application
and should be unique for all child windows with the same parent
window.

hinstance HANDLE Identifies the instance of the module to be as-
sociated with the wi_ndow.

IpParam LPSTR Points to a value that is passed to the window through
the CREATESTRUCT data structure referenced by the [Param
parameter of the WM_CREATE message. If an application is
calling CreateWindow to create a multiple document interface
(MDI) client window, IpParam must point to a CLIENT-
CREATESTRUCT data structure.

Return Value The return value identifies the new window. It is NULL if the window is not created.

Comments For overlapped windows where the X parameter is CW_USEDEFAULT, the Y parameter
can be one of the show-style parameters described with the ShowWindow function, or, for
the first overlapped window to be created by the application, it can be the nCmdShow para-
meter passed to the WinMain function.

CreateWindow 4-64

Table 4.2 lists the window control classes; Table 4.3 lists the window styles; Table 4.4 lists
the control styles:

Table 4.2 Control Classes

Class Meaning

BUTTON Designates a small rectangular child window that represents a button
the user can turn on or off by clicking it. Button controls can be used
alone or in groups, and can either be labeled or appear without text. But-
ton controls typically change appearance when the user clicks them.

COMBOBOX Designates a control consisting of a selection field similar to an edit
control plus a list box. The list box may be displayed at all times or may
be dropped down when the user selects a “pop box™ next to the selec-
tion field. ’

Depending on the style of the combo box, the user can or cannot edit
the contents of the selection field. If the list box is visible, typing
characters into the selection box will cause the first list box entry that
matches the characters typed to be highlighted. Conversely, selecting an
item in the list box displays the selected text in the selection field.

EDIT Designates a rectangular child window in which the user can enter text
from the keyboard. The user selects the control, and gives it the input
focus by clicking it or moving to it by using the TAB key. The user can
enter text when the control displays a flashing caret. The mouse can be
used to move the cursor and select characters to be replaced, or to posi-
tion the cursor for inserting characters. The BACKSPACE key can be used
to delete characters.

Edit controls use the variable-pitch system font and display ANSI
characters. Applications compiled to run with previous versions of
Windows display text with a fixed-pitch system font unless they have
been marked by the Windows 3.0 MARK utility with the MEMORY
FONT option. An application can also send the WM_SETFONT
message to the edit control to change the default font.

4-65 CreateWindow

Table 4.2 Control Classes (continued)

Class Meaning

Edit controls expand tab characters into as many
space characters as are required to move the cursor
to the next tab stop. Tab stops are assumed to be at
every eighth character position.

LISTBOX Designates a list of character strings. This control
is used whenever an application needs to present a
list of names, such as filenames, that the user can
view and select. The user can select a string by
pointing to it and clicking. When a string is
selected, it is highlighted and a notification
message is passed to the parent window. A vertical
or horizontal scroll bar can be used with a list-box
control to scroll lists that are too long for the con-
trol window. The list box automatically hides or
shows the scroll bar as needed.

MDICLIENT Designates an MDI client window. The MDI client
‘ window receives messages which control the MDI

application’s child windows. The recommended
style bits are WS_CLIPCHILDREN and
WS_CHILD. To create a scrollable MDI client
window which allows the user to scroll MDI child
windows into view, an application can also use the
WS_HSCROLL and WS_VSCROLL styles.

SCROLLBAR Designates a rectangle that contains a thumb and
has direction arrows at both ends. The scroll bar
sends a notification message to its parent window
whenever the user clicks the control. The parent
window is responsible for updating the thumb posi-
tion, if necessary. Scroll-bar controls have the
same appearance and function as scroll bars used
in ordinary windows. Unlike scroll bars, scroll-bar
controls can be positioned anywhere in a window
and used whenever needed to provide scrolling
input for a window.

The scroll-bar class also includes size-box controls.
A size-box control is a small rectangle that the user
can expand to change the size of the window.

STATIC Designates a simple text field, box, or rectangle
that can be used to label, box, or separate other
controls. Static controls take no input and provide
no output.

CreateWindow 4-66

Table 4.3 Window Styles

Style Meaning

DS_LOCALEDIT Specifies that edit controls in the dialog box will use
memory in the application’s data segment. By default, all
edit controls in dialog boxes use memory outside the appli-
cation’s data segment. This feature may be suppressed by
adding the DS_LOCALEDIT flag to the STYLE command
for the dialog box. If this flag is not used,
EM_GETHANDLE and EM_SETHANDLE messages
must not be used since the storage for the control is not in
the application’s data segment. This feature does not affect
edit controls created outside of dialog boxes.

DS_MODALFRAME Creates a dialog box with a modal dialog-box frame that
can be combined with a title bar and System menu by
specifying the WS_CAPTION and WS_SYSMENU styles.

DS_NOIDLEMSG Suppresses WM_ENTERIDLE messages that Windows
would otherwise send to the owner of the dialog box while
the dialog box is displayed.

DS_SYSMODAL Creates a system-modal dialog box.
WS_BORDER Creates a window that has a border.
WS_CAPTION Creates a window that has a title bar (implies the

WS_BORDER style). This style cannot be used with the
WS_DLGFRAME style.

WS_CHILD Creates a child window. Cannot be used with the
WS_POPUP style.

WS_CHILDWINDOW Creates a child window that has the WS_CHILD style.

WS_CLIPCHILDREN Excludes the area occupied by child windows when draw-

ing within the parent window. Used when creating the
parent window.

WS_CLIPSIBLINGS Clips child windows relative to each other; that is, when a
particular child window receives a paint message, the
WS_CLIPSIBLINGS style clips all other overlapped child
windows out of the region of the child window to be up-
dated. (If WS_CLIPSIBLINGS is not given and child
windows overlap, it is possible, when drawing within the
client area of a child window, to draw within the client area
of a neighboring child window.) For use with the
WS_CHILD style only.

4-67

CreateWindow

Table 4.3 Window Styles (continued)

Style

Meaning

,WS_DISABLED

WS_DLGFRAME
WS_GROUP

WS_HSCROLL
WS_ICONIC

WS_MAXIMIZE
WS_MAXIMIZEBOX
WS_MINIMIZE
WS_MINIMIZEBOX
WS_OVERLAPPED

WS_OVERLAPPEDWINDOW

WS_POPUP

WS_POPUPWINDOW

WS_SYSMENU

WS_TABSTOP

Creates a window that is initially disabled.
Creates a window with a double border but no title.

Specifies the first control of a group of controls in
which the user can move from one control to the
next by using the DIRECTION keys. All controls de-
fined with the WS_GROUP style after the first
control belong to the same group. The next control
with the WS_GROUP style ends the siyle group
and starts the next group (that is, one group ends
where the next begins). Only dialog boxes use this
style.

Creates a window that has a horizontal scroll bar.

Creates a window that is initially iconic. For use
with the WS_OVERLAPPED style only.

Creates a window of maximum size,
Creates a window that has a maximize box.
Creates a window of minimum size.
Creates a window that has a minimize box.

Creates an overlapped window. An overlapped
window has a caption and a border.

Creates an overlapped window having the
WS_OVERLAPPED, WS_CAPTION, WS_SYS-
MENU, WS_THICKFRAME,
WS_MINIMIZEBOX, and WS_MAXIMIZEBOX
styles.

Creates a pop-up window. Cannot be used with the
WS_CHILD style.

Creates a pop-up window that has the
WS_BORDER, WS_POPUP, and WS_SYS-
MENU styles. The WS_CAPTION style must be
combined with the WS_POPUPWINDOW style to
make the system menu visible.

Creates a window that has a System-menu box in
its title bar. Used only for windows with title bars.

Specifies one of any number of controls through
which the user can move by using the TAB key. The
TAB key moves the user to the next control
specified by the WS_TABSTOP style. Only dialog
boxes use this style.

CreateWindow 4-68

.
Table 4.3 Window Styles (continued)
Style Meaning
WS_THICKFRAME Creates a window with a thick frame that can be
used to size the window.
WS_VISIBLE Creates a window that is initially visible. This ap-

plies to overlapped and pop-up windows. For
overlapped windows, the Y parameter is used as a
ShowWindow function parameter.

WS_VSCROLL v Creates a window that has a vertical scroll bar.

Table 4.4 Control Styles

Style Meaning
BUTTON Class
BS_AUTOCHECKBOX Identical to BS_CHECKBOX, except that the but-

ton automatically toggles its state whenever the
user clicks it.

BS_AUTORADIOBUTTON Identical to BS_RADIOBUTTON, except that the
button is checked, the application is notified by
BN_CLICKED, and the checkmarks are removed
from all other radio buttons in the group.

BS_AUTO3STATE Identical to BS_3STATE, except that the button au-
tomatically toggles its state when the user clicks it.
BS_CHECKBOX Designates a small rectangular button that may be

checked; its border is bold when the user clicks the
button. Any text appears to the right of the button.

BS_DEFPUSHBUTTON Designates a button with a bold border. This button
represents the default user response. Any text is dis-
played within the button. Windows sends a
message to the parent window when the user clicks
the button.

BS_GROUPBOX Designates a rectangle into which other buttons are
grouped. Any text is displayed in the rectangle’s
upper-left comner.

BS_LEFTTEXT Causes text to appear on the left side of the radio
button or check-box button. Use this style with the
BS_CHECKBOX, BS_RADIOBUTTON, or
BS_3STATE styles.

.

4-69

CreateWindow

Table 4.4 Control Styles (continued)

Style

Meaning

BS_OWNERDRAW

BS_PUSHBUTTON

BS_RADIOBUTTON

BS_3STATE

Designates an owner-draw button. The parent
window is notified when the button is clicked.
Notification includes a request to paint, invert, and
disable the button.

Designates a button that contains the given text.
The control sends a message to its parent window
whenever the user clicks the button.

Designates a small circular button that can be
checked,; its border is bold when the user clicks the
button. Any text appears to the right of the button.
Typically, two or more radio buttons are grouped
together to represent mutually exclusive choices,
so no more than one button in the group is checked
at any time.

Identical to BS_CHECKBOX, except that a button
can be grayed as well as checked. The grayed state
typically is used to show that a check box has been
disabled.

COMBOBOX Class

CBS_AUTOHSCROLL

CBS_DROPDOWN

CBS_DROPDOWNLIST

CBS_HASSTRINGS

Automatically scrolls the text in the edit control to
the right when the user types a character at the end
of the line. If this style is not set, only text which
fits within the rectangular boundary is allowed.

Similar to CBS_SIMPLE, except that the list box
is not displayed unless the user selects an icon next
to the selection field.

Similar to CBS_DROPDOWN, except that the edit
control is replaced by a static text item which dis-
plays the current selection in the list box.

An owner-draw combo box contains items con-
sisting of strings. The combo box maintains the
memory and pointers for the strings so the applica-
tion can use the LB_GETTEXT message to
retrieve the text for a particular item.

CreateWindow | 4-70

Table 4.4 Control Styles (continued)

Style Meaning

CBS_OEMCONVERT Text entered in the combo box edit control is con-
verted from the ANSI character set to the OEM
character set and then back to ANSI. This ensures
proper character conversion when the application
calls the AnsiToOem function to convert an ANSI
string in the combo box to OEM characters. This
style is most useful for combo boxes that contain
filenames and applies only to combo boxes created
with the CBS_SIMPLE or CBS_DROPDOWN

styles.

CBS_OWNERDRAWFIXED The owner of the list box is responsible for draw-
ing its contents; the items in the list box are all the
same height.

CBS_OWNERDRAWVARIABLE The owner of the list box is responsible for draw--

ing its contents; the items in the list box are
variable in height.

CBS_SIMPLE The list box is displayed at all times. The current

selection in the list box is displayed in the edit con-
trol.

CBS_SORT Automatically sorts strings entered into the list
box. .

EDIT Class

ES_AUTOHSCROLL Automatically scrolls text to the right by 10

characters when the user types a character at the
end of the line. When the user presses the ENTER
key, the control scrolls all text back to position

zZero.
' ES_AUTOVSCROLL Automatically scrolls text up one page when the
user presses ENTER on the last line.
ES_CENTER Centers text in a multiline edit control.
ES_LEFT Aligns text flush-left.
ES_LOWERCASE Converts all characters to lowercase as they are
typed into the edit control.
ES_MULTILINE Designates multiple-line edit control. (The default

is single-line.) If the ES_AUTOVSCROLL style is -
specified, the edit control shows as many lines as
possible and scrolls vertically when the user

presses the ENTER key. If ES_AUTOVSCROLL is
not given, the edit control shows as many lines as
possible and beeps if ENTER is pressed when no
more lines can be displayed.

4-71

CreateWindow

Table 4.4 Control Styles (continued)

Style

Meaning

ES_NOHIDESEL

ES_OEMCONVERT

ES_PASSWORD

ES_RIGHT
ES_UPPERCASE

If the ES_AUTOHSCROLL style is specified, the
multiple-line edit control automatically scrolls hori-
zontally when the caret goes past the right edge of
the control. To start a new line, the user must press
ENTER. If ES_AUTOHSCROLL is not given, the
control automatically wraps words to the begin-
ning of the next line when necessary; a new line is
also started if ENTER is pressed. The position of the
wordwrap is determined by the window size. If the
window size changes, the wordwrap position
changes, and the text is redisplayed.

Multiple-line edit controls can have scroll bars. An
edit control with scroll bars processes its own
scroll-bar messages. Edit controls without scroll
bars scroll as described above, and process any
scroll messages sent by the parent window.

Normally, an edit control hides the selection when
the control loses the input focus, and inverts the
selection when the control receives the input focus.
Specifying ES_NOHIDESEL deletes this default
action.

Text entered in the edit control is converted from
the ANSI character set to the OEM character set
and then back to ANSI. This ensures proper
character conversion when the application calls the
AnsiToOem function to convert an ANSI string in
the edit control to OEM characters. This style is
most useful for edit controls that contain filenames.

Displays all characters as an asterisk (*) as they are
typed into the edit control. An application can use
the EM_SETPASSWORDCHAR message to
change the character that is displayed.

Aligns text flush-right in a multiline edit control.

Converts all characters to uppercase as they are
typed into the edit control.

LISTBOX Class

LBS_EXTENDEDSEL

The user can select multiple items using the SHIFT
key and the mouse or special key combinations.

CreateWindow

4-72

Table 4.4 Control Styles (continued)

Style

Meaning

LBS_HASSTRINGS

LBS_MULTICOLUMN

LBS_MULTIPLESEL

LBS_NOINTEGRALHEIGHT

LBS_NOREDRAW

LBS_NOTIFY

LBS_OWNERDRAWFIXED

LBS_OWNERDRAWVARIABLE

LBS_SORT
LBS_STANDARD

LBS_USETABSTOPS

Specifies an owner-draw list box which contains
items consisting of strings. The list box maintains
the memory and pointers for the strings so the
application can use the LB_GETTEXT message to
retrieve the text for a particular item.

Specifies a multicolumn list box that is scrolled
horizontally. The LB_SETCOLUMNWIDTH
message sets the width of the columns.

String selection is toggled each time the user clicks
or double-clicks the string. Any number of strings
can be selected.

The size of the list box is exactly the size specified
by the application when it created the list box. Nor-
mally, Windows sizes a list box so that the list box
does not display partial items.

List-box display is not updated when changes are
made. This style can be changed at any time by
sending a WM_SETREDRAW message.

Parent window receives an input message when-
ever the user clicks or double-clicks a string.

The owner of the list box is responsible for draw-
ing its contents; the items in the list box are the
same height.

The owner of the list box is responsible for draw-
ing its contents; the items in the list box are
variable in height.

Strings in the list box are sorted alphabetically.

Strings in the list box are sorted alphabetically and
the parent window receives an input message
whenever the user clicks or double-clicks a string.
The list box contains borders on all sides.

Allows a list box to recognize and expand tab
characters when drawing its strings. The default
tab positions are 32 dialog units. (A dialog unit is a
horizontal or vertical distance. One horizontal
dialog unit is equal to V4 of the current dialog base
width unit. The dialog base units are computed
based on the height and width of the current sys-
tem font. The GetDialogBaseUnits function
returns the current dialog base units in pixels.)

4-73 CreateWindow

Table 4.4 Control Styles (continued)

Style Meaning

LBS_WANTKEYBOARDINPUT The owner of the list box receives WM_VKEY-
TOITEM or WM_CHARTOITEM messages
whenever the user presses a key when the list box
has input focus. This allows an application to per-
form special processing on the keyboard input.

SCROLLBAR Class

SBS_BOTTOMALIGN Used with the SBS_HORZ style. The bottom edge
of the scroll bar is aligned with the bottom edge of
the rectangle specified by the X, Y, nWidth, and
nHeight parameters given in the CreateWindow
function. The scroll bar has the default height for
system scroll bars.

SBS_HORZ Designates a horizontal scroll bar. If neither the
' SBS_BOTTOMALIGN nor SBS_TOPALIGN
style is specified, the scroll bar has the height,
width, and position given in the CreateWindow
function.

SBS_LEFTALIGN Used with the SBS_VERT style. The left edge of
the scroll bar is aligned with the left edge of the
rectangle specified by the X, Y, nWidth, and
nHeight parameters given in the CreateWindow
function. The scroll bar has the default width for
system scroll bars.

SBS_RIGHTALIGN Used with the SBS_VERT style. The right edge of
the scroll bar is aligned with the right edge of the
rectangle specified by the X, Y, nWidth, and
nHeight parameters given in the CreateWindow
function. The scroll bar has the default width for
system scroll bars.

SBS_SIZEBOX Designates a size box. If neither the SBS_SIZE-
BOXBOTTOMRIGHTALIGN nor
SBS_SIZEBOXTOPLEFTALIGN style is
specified, the size box has the height, width, and
position given in the CreateWindow function.

SBS_SIZEBOXBOTTOMRIGHTALIGN Used with the SBS_SIZEBOX style. The lower-
, right corer of the size box is aligned with the
lower-right comer of the rectangle specified by the
X, Y, nWidth, and nHeight parameters given in the
CreateWindow function. The size box has the de-
fault size for system size boxes.

CreateWindow

4-74

Table 4.4 Control Styles (continued)

Style

Meaning

SBS_SIZEBOXTOPLEFTALIGN

SBS_TOPALIGN

Used with the SBS_SIZEBOX style. The upper-
left comer of the size box is aligned with the
upper-left corner of the rectangle specified by the
X, Y, nWidth, and nHeight parameters given in the
CreateWindow function. The size box has the de-
fault size for system size boxes.

Used with the SBS_HORZ style. The top edge of
the scroll bar is aligned with the top edge of the
rectangle specified by the X, Y, nWidth, and
nHeight parameters given in the CreateWindow
function. The scroll bar has the default height for
system scroll bars.

SBS_VERT Designates a vertical scroll bar. If neither the
SBS_RIGHTALIGN nor SBS_LEFTALIGN style
is specified, the scroll bar has the height, width,
and position given in the CreateWindow function.

STATIC Class

SS_BLACKFRAME

SS_BLACKRECT

SS_CENTER

SS_GRAYFRAME

SS_GRAYRECT

SS_ICON

Specifies a box with a frame drawn with the same
color as window frames. This color is black in the
default Windows color scheme.

Specifies a rectangle filled with the color used to
draw window frames. This color is black in the de-
fault Windows color scheme.

Designates a simple rectangle and displays the
given text centered in the rectangle. The text is for-
matted before it is displayed. Words that would
extend past the end of a line are automatically
wrapped to the beginning of the next centered line.

Specifies a box with a frame drawn with the same
color as the screen background (desktop). This
color is gray in the default Windows color scheme.

Specifies a rectangle filled with the color used to
fill the screen background. This color is gray in the
default Windows color scheme.

Designates an icon displayed in the dialog box.
The given text is the name of an icon (not a
filename) defined elsewhere in the resource file.
The nWidth and nHeight parameters are ignored;
the icon automatically sizes itself.

SS_LEFTNOWORDWRAP

SS_NOPREFIX

SS_RIGHT

SS_SIMPLE

SS_USERITEM
SS_WHITEFRAME

SS_WHITERECT

4-75 _ CreateWindow
—— — -

Table 4.4 Control Styles (continued)

Style Meaning

SS_LEFT Designates a simple rectangle and displays the

given text flush-left in the rectangle. The text is for-
matted before it is displayed. Words that would
extend past the end of a line are automatically
wrapped to the beginning of the next flush-left

line.

Designates a simple rectangle and displays the
given text flush-left in the rectangle. Tabs are ex-
panded, but words are not wrapped. Text that
extends past the end of a line is clipped.

Unless this style is specified, windows will inter-
pret any “&” characters in the control’s text to be
accelerator prefix characters. In this case, the “&”
is removed and the next character in the string is
underlined. If a static control is to contain text
where this feature is not wanted, SS_NOPREFIX
may be added. This static-control style may be in-
cluded with any of the defined static controls.

You can combine SS_NOPREFIX with other
styles by using the bitwise OR operator. This is
most often used when filenames or other strings
that may contain an “&” need to be displayed in a
static control in a dialog box.

Designates a simple rectangle and displays the
given text flush-right in the rectangle. The text is
formatted before it is displayed. Words that would
extend past the end of a line are’automatically
wrapped to the beginning of the next flush-right
line.

Designates a simple rectangle and displays a single
line of text flush-left in the rectangle. The line of
text cannot be shortened or altered in any way.
(The control’s parent window or dialog box must
not process the WM_CTLCOLOR message.)

Specifies a user-defined item.

Specifies a box with a frame drawn with the same
color as window backgrounds. This color is white
in the default Windows color scheme.

Specifies a rectangle filled with the color used to
fill window backgrounds. This color is white in the
default Windows color scheme.

CreateWindowEx 4-76

CreateWindowEx

Syntax HWND CreateWindowEx(awExStyle, IpClassName, IpWindowName, dwStyle, X, Y,
, nWidth, nHeight, hWndParent, hMenu, hinstance, lpParam)

This function creates an overlapped, pop-up, or child window with an extended style
specified in the dwExStyle parameter. Otherwise, this function is identical to the

" CreateWindow function. See the description of the CreateWindow function for more
information on creating a window and for a full descriptions of the other parameters of

CreateWindowEx.

Parameter Type/Description

awExStyle DWORD Specifies the extended style of the window being
created. Table 4.5, “Extended Window Styles,” lists the ex-
tended window styles.

IpClassName LPSTR Points to a null-terminated character string that
names the window class.

IpWindowName LPSTR Points to a null-terminated character string that repre-
sents the window name.

awStyle DWORD Specifies the style of window being created.

X int Specifies the initial x-position of the window.

Y int Specifies the initial y-position of the window.

nWidth int Specifies the width (in device units) of the window.

nHeight int Specifies the height (in device units) of the window.

hWndParent HWND Identifies the parent or owner window of the window
being created.

hMenu HMENU Identifies a menu or a child-window 1dent1f1er The
meaning depends on the window style.

hInstance HANDLE Identifies the instance of the module to be as-
sociated with the window.

IpParam LPSTR Points to a value that is passed to the window through
the CREATESTRUCT data structure referenced by the [Param
parameter-of the WM_CREATE message.

Return Value The return value identifies the new window. It is NULL if the window is not created.

Comments Table 4.5 lists the extended window styles.

4-77

CreateWindowEx

Table 4.5 Extended Window Styles

Style Meaning

WS_EX _DLGMODALFRAME Designates a window with a double border that may op-
tionally be created with a title bar by specifying the
WS_CAPTION style flag in the dwStyle parameter.

WS_EX_NOPARENTNOTIFY Specifies that a child window created with this style will
not send the WM_PARENTNOTIFY message to its
parent window when the child window is created or de-
stroyed.

]

Table 4.2, “Control Classes,” lists the window control classes. Table 4.3, “Window Styles,’
lists the window styles. Table 4.4, “Control Styles,” lists the control styles. See the descrip-
tion of the CreateWindow function for these tables.

DebugBreak 4-78

DebugBreak
Synlax void DebugBreak()

This function forces a break to the debugger.

This function has no parameters.

Return Value None.

DefDlgProc
Synlax LONG DefDlgProc(hDig, wMsg, wParam, IParam)

This function provides default processing for any Windows messages that a dialog box
with a private window class does not process.

All window messages that are not explicitly processed by the window function must be
passed to the DefDIlgProc function, not the DefWindowProc function. This ensures that
all messages not handled by their private window procedure will be handled properly.

Parameter Type/Description

hDlg HWND Identifies the dialog box.

wMsg WORD Specifies the message number.

wParam WORD Specifies 16 bits of additional message-dependent infor-
mation.

IParam DWORD Specifies 32 bits of additional message-dependent infor-
mation.

Return Value The return value specifies the result of the message processing and depends on the actual

message sent.

Comments The source code for the DefDIgProc function is provided on the SDK disks.

An application creates a dialog box by calling one of the following functions:

Function Description
CreateDiélog Creates a modeless dialog box.

CreateDialogIndirect Creates a modeless dialog box.

4-79

DeferWindowPos

Function Description

CreateDialogIndirectParam Creates a modeless dialog box and passes data to it
when it is created. v

CreateDialogParam Creates a modeless dialog box and passe§ data to it
when it is created.

DialogBox Creates a modal dialog box.

DialogBoxIndirect Creates a modal dialog box.

DialogBoxIndirectParam Creates a modal dialog box and passes data to it
when it is created.

DialogBoxParam Creates a modal dialog box and passes data to it

when it is created.

DeferWindowPos
HANDLE DeferWindowPos(hWinPosinfo, hWnd, hWWndlnsertAfter, x, y, cx, cy,

Syntax

wFlags)

This function updates the multiple window-position data structure identified by the AWin-
Posinfo parameter for the window identified by /Wnd parameter and returns the handle of
the updated structure. The EndDefer WindowPos function uses the information in this
structure to change the position and size of a number of windows simultaneously. The
BeginDeferWindowPos function creates the multiple window-position data structure used

by this function.

The x and y parameters specify the new position of the window, and the cx and cy para-
meters specify the new size of the window.

Parameter

hWinPosinfo

hWnd

hWhndlInsertAfter

Type/Description

HANDLE Identifies a multiple window-position data struc-
ture that contains size and position information for one or more
windows. This structure is returned by the BeginDeferWindow-
Pos function or the most recent call to the Defer WindowPos
function.

HWND Identifies the window for which update information
is to be stored in the data structure.

HWND Identifies the window following which the window
identified by the hWnd parameter is to be updated.

DeferWindowPos 4-80

p— ——————
Parameter " Type/Description
x int Specifies the x-coordinate of the window’s upper-left

- corner.
y lnt . Specifies the y-coordinate of the window’s upper-left

corner.

cx int Specifies the window’s new width.
cy int Specifies the window’s new height.
wFlags WORD Specifies one of eight possible 16-bit values that af-

fect the size and position of the window. It must be one of the
following values:

Value Meaning

SWP_DRAWFRAME Draws a frame (defined in the
window’s class description)
around the window.

SWP_HIDEWINDOW Hides the window.

SWP_NOACTIVATE Does not activate the
window.

SWP_NOMOVE Retains current position (ig-
nores the x and y parameters).

SWP_NOREDRAW Does not redraw changes.

SWP_NOSIZE Retains current size (ignores
the cx and cy parameters).

SWP_NOZORDER Retains current ordering (ig-
nores the AWndlInsertAfter
parameter).

SWP_SHOWWINDOW Displays the window.

Return Value The return value identifies the updated multiple window-position data structure. The

handle returned by this function may differ from the handle passed to the function as the
hWinPosInfo parameter. The new handle returned by this function should be passed to the
next call to DeferWindowPos or the EndDefer WindowPos function.

The return value is NULL if insufficient system resources are available for the function to
complete successfully.

4-81 DefFrameProc

Comments If the SWP_NOZORDER flag is not specified, Windows places the window identified by
the ”Wnd parameter in the position following the window identified by the iWndlInser-
tAfter parameter. If hiWndinsertAfter is NULL, Windows places the window identified by
hWnd at the top of the list. If ”iWndinsertAfter is set to 1, Windows places the window iden-
tified by hWrd at the bottom of the list.

If the SWP_SHOWWINDOW or the SWP_HIDEWINDOW flags are set, scrolling and
moving cannot be done simultaneously.

All coordinates for child windows are relative to the upper-left comer of the parent
window’s client area.

DefFrameProc
Syntax LONG DefFrameProc(hWnd, hWndMDIClient, wMsg, wParam, [Param)

This function provides default processing for any Windows messages that the window
function of a multiple document interface (MDI) frame window does not process. All
window messages that are not explicitly processed by the window function must be passed
to the DefFrameProc function, not the DefWindowProc function.

Parameter Type/Description

hWhnd HWND Identifies the MDI frame window.
hWndMDIClient HWND Identifies the MDI client window.

wMsg WORD Specifies the message number.
wParam WORD Specifies 16 bits of additional message-dependent
information.
IParam DWORD Specifies 32 bits of additional message-dependent
information.
Return Value The return value specifies the result of the message processing and depénds on the actual

message sent. If the ”tWndMDIClient parameter is NULL, the return value is the same as
for the DefWindowProc function. ‘

Comments Normally, when an application’s window procedure does not handle a message, it passes
: the message to the DefWindowProc function, which processes the message. MDI applica-
tions use the DefFrameProc and DefMDIChildProc functions instead of DefWindow-
Proc to provide default message processing. All messages that an application would
normally pass to DefWindowProc (such as nonclient messages and WM_SETTEXT)
should be passed to DefFrameProc instead. In addition to these, DefFrameProc also han-
dles the following messages:

DefHookProc 4-82

R . —
Message Default Processing by DefFrameProc
WM_COMMAND The frame window of an MDI application receives the

WM_COMMAND message to activate a particular MDI
child window. The window ID accompanying this message
will be the ID of the MDI child window assigned by
Windows, starting with the first ID specified by the applica-
tion when it created the MDI client window. This value of
the first ID must not conflict with menu-item IDs.

WM_MENUCHAR When the ALT+HYPHEN key is pressed, the control menu of
the active MDI child window will be selected.

WM_NEXTMENU This message causes the control menu of the active MDI
child window to be selected.

WM__SETFOCUS DefFrameProc passes focus on to the MDI client, which in
turn passes the focus on to the active MDI child window.

WM_SIZE If the frame window procedure passes this message to Def-
FrameProc, the MDI client window will be resized to fit in
the new client area. If the frame window procedure sizes the
MDI client to a different size, it should not pass the message
to DefWindowProc.

DefHookProc
Syntax DWORD DefHookProc(code, wParam, IParam, IplpfnNextHook)

This function calls the next function in a chain of hook functions. A hook function is a
function that processes events before they are sent to an application’s message-processing
loop in the WinMain function. When an application defines more than one hook function
by using the SetWindowsHook function, Windows forms a linked list or hook chain.
Windows places functions of the same type in a chain.

Parameter Type/Description

code int Specifies a code used by the Windows hook function (also
called the message filter function) to determine how to process
the message.

wParam WORD Specifies the word parameter of the message that the
hook function is processing.

IParam DWORD Specifies the long parameter of the message fhat the
hook function is processing.

Return Value

4-83 DefineHandleTable
A - AR
Parameter Type/Description
IplpfaNextHook FARPROC FAR * Points to a memory location that contains

the FARPROC structure returned by the SetWindowsHook
function. Windows changes the value at this location after an
application calls the UnhookWindowsHook function.

The return value specifies a value that is directly related to the code parameter.

DefineHandleTable

Syntax

Return Value

Comments

BOOL DefineHandleTable(wOffset)

This function creates a private handle table in an application’s default data segment. The
application stores in the table the segment addresses of global memory objects returned by
the GlobalLock function. In real mode, Windows updates the corresponding address in the
private handle table when it moves a global memory object. When Windows discards an
object with a corresponding table entry, Windows replaces the address of the object in the
table with the object’s handle. Windows does not update addresses in the private handle
table in protected (standard or 386 enhanced) mode.

Parameter Type/Description

wOffset WORD Specifies the offset from the beginning of the data
segment to the beginning of the private handle table. If wOffset
is zero, Windows no longer updates the private handle table.

The return value is nonzero if the function was successful. Otherwise, it is zero.

The private handle table has the following format:

Count
Clear_Number
Entry(@]

Entry[Count-1]

The first WORD (Count) in the table specifies the number of entries in the table. The sec-
ond WORD (Clear Number) specifies the number of entries (from the beginning of the
table) which Windows will set to zero when Windows updates its least-recently-used

DefMDIChildProc 4-84

(LRU) memory list. The remainder of the table consists of an array of addresses returned
by GlobalLock.

The application must initialize the Count field in the table before calling DefineHandle-
Table. The application can change either the Count or Clearn_Number fields at any time.

DefMDIChildProc

Syntax

Return Value

Comments

LONG DefMDIChildProc(hWnd, wMsg, wParam, IParam)

This function provides default processing for any Windows messages that the window
function of a multiple document interface (MDI) child window does not process. All
window messages that are not explicitly processed by the window function must be passed
to the DefMDIChildProc function, not the DefWindowProc function.

Parameter Type/Description

hWnd HWND Identifies the MDI child window.

wMsg WORD Specifies the message number.

wParam WQRD Specifies 16 bits of additional message-dependent infor-
mation,

[Param DWORD Specifies 32 bits of additional message-dependent infor-
mation.

The return value specifies the result of the message processing and depends on the actual
message sent.

This function assumes that the parent of the window identified by the h#Wnd parameter was
created with the MDICLIENT class.

Normally, when an application’s window procedure does not handle a message, it passes
the message to the DefWindowProc function, which processes the message. MDI applica-
tions use the DefFrameProc and DefMDIChildProc functions instead of DefWindow-
Proc to provide default message processing. All messages that an application would
normally pass to DefWindowProc (such as nonclient messages and WM_SETTEXT)
should be passed to DefMDIChildProc instead. In addition to these, DefMDIChildProc
also handles the following messages:

4-85 DefWindowProc

Message Default Processing by DefMDIChildProc
WM_CHILDACTIVATE Performs activation processing when child windows
are sized, moved, or shown. This message must be
passed.
WM_GETMINMAXINFO Calculates the size of a maximized MDI child
window based on the current size of the MDI client
window.
WM_MENUCHAR Sends the key to the frame window.
WM_MOVE Recalculates MDI client scroll bars, if they are pre- 6
sent.
WM_NEXTMENU Wraps back to the frame menu bar or frame control
menu.
WM_SETFOCUS Activates the child window if it is not the active
MDI child.
WM_SIZE Performs necessary operations when changing the

size of a window, especially when maximizing or re-
storing an MDI child window. Failing to pass this
message to DefMDIChildProc will produce highly
undesirable results.

WM_SYSCOMMAND Also handles the “next window” command.

DefWindowProc
Syntax LONG DefWindowProc(hWnd, wMsg, wParam, IParam)

This function provides default processing for any Windows messages that a given applica-
tion does not process. All window messages that are not explicitly processed by the class
window function must be passed to the DefWindowProc function.

Parameter Type/Description

hWnd HWND Identifies the window that passes the message.

wMsg WORD Specifies the message number.

wParam WORD Specifies 16 bits of additional message-dependent infor-

mation.

DeleteAtom

Return Value

Comments

4-86
R
Parameter Type/Description
[Param DWORD Specifies 32 bits of additional message-dependent infor-
mation.

The return value specifies the result of the message processing and depends on the actual
message sent.

The source code for the DefWindowProc function is provided on the SDK disks.

DeleteAtom
Syntax

Return Value

ATOM DeleteAtom(rnAtom)

This function deletes an atom and, if the atom’s reference count is zero, removes the as-
sociated string from the atom table.

An atom’s reference count specifies the number of times the atom has been added to the

" atom table. The AddAtom function increases the count on each call; the DeleteAtom func-

tion decreases the count on each call. DeleteAtom removes the string only if the atom’s
reference count is zero. :

Parameter Type/Description

nAtom ATOM Identifies the atom and character string to be deleted.

The return value specifies the outcome of the function. It is NULL if the function is
successful. It is equal to the nAtom parameter if the function failed and the atom has not
been deleted.

DeleteDC
Syntax

BOOL DeleteDC(2DC)

This function deletes the specified device context. If the hDC parameter is the last device
context for a given device, the device is notified and all storage and system resources used
by the device are released.

Parameter Type/Description

hDC HDC Identifies the device context.

4-87 DeleteMenu

Return Value The return value specifies whether the device context is deleted. It is nonzero if the device
context is successfully deleted (regardless of whether the deleted device context is the last
context for the device). If an error occurs, the return value is zero.

Comments An application must not delete a device context whose handle was obtained by calling the
GetDC function. Instead, it must call the ReleaseDC function to free the device context.

DeleteMenu

Synlax BOOL DeleteMenu(hMenu, nPosition, wFlags)

This function deletes an item from the menu identified by the ”AMenu parameter; if the
menu item has an associated pop-up menu, DeleteMenu destroys the handle by the pop-up
menu and frees the memory used by the pop-up menu.

Parameter Type/Description
hMenu HMENU Identifies the menu to be changed.
nPosition WORD Specifies the menu item which is to be deleted. If wFlags

is set to MF_BYPOSITION, nPosition specifies the position of the
menu item; the first item in the menu is at position 0. If wFlags is set
to MF_BYCOMMAND, then nPosition specifies the command ID of
the existing menu item.

wFlags WORD Specifies how the nPosition parameter is interpreted. It
may be set to either MF_BYCOMMAND (the default) or MF_BY-
POSITION.
Return Value The return value specifies the outcome of the function. It is TRUE if the function is

successful. Otherwise, it is FALSE.

Comments Whenever a menu changes (whether or not the menu resides in a window that is dis-
played), the application should call DrawMenuBar.

DeleteMetaFile
Syntax BOOL DeleteMetaFile(hMF)

This function deletes access to a metafile by freeing the system resources associated with
that metafile. It does not destroy the metafile itself, but it invalidates the metafile handle,
hMF. Access to the metafile can be reestablished by retrieving a new handle by using the
GetMetaFile function.

gelelet)bject 4-88

Return Value

Parameter Type/Description

hMF HANDLE Identifies the metafile to be deleted.

The return value specifies whether the metafile handle is invalidated. It is nonzero if the
metafile’s system resources are deleted. It is zero if the AMF parameter is not a valid
handle. .

DeleteObject
Syntax

Return Value

BOOL DeleteObject(hObject)

This function deletes a logical pen, brush, font, bitmap, region, or palette from memory by
freeing all system storage associated with the object. After the object is deleted, the hOb-
Jject handle is no longer valid.

Parameter Type/Description

hObject HANDLE Identifies a handle to a logical pen, brush, font, bitmap,
region, or palette.

The return value specifies whether the specified object is deleted. It is nonzero if the object
is deleted. It is zero if the AObject parameter is not a valid handle or is currently selected
into a device context.

Comments The object to be deleted should not be currently selected into a device context.
When a pattemn brush is deleted, the bitmap associated with the brush is not deleted. The
bitmap must be deleted independently.
An application must not delete a stock object.

DestroyCaret

Syntax void DestroyCaret()

This function destroys the current caret shape, frees the caret from the window that cur-
rently owns it, and removes the caret from the screen if it is visible. The DestroyCaret
function checks the ownership of the caret and destroys the caret only if a window in the
current task owns it.

4-89

DestroyGursor

Return Value

R IR

If the caret shape was previously a bitmap, DestroyCaret does not free the bitmap.

This function has no parameters.

None.

Comments The caret is a shared resource. If a window has created a caret shape, it destroys that shape
before it loses the input focus or becomes inactive.

DestroyCursor

Syntax BOOL DestroyCursor(hCursor)

Return Value

This function destroys a cursor that was previously created by the CreateCursor function
and frees any memory that the cursor occupied. It should not be used to destroy any cursor
that was not created with the CreateCursor function.

Parameter Type/Description

hCursor HCURSOR ' Identifies the cursor to be destroyed. The
cursor must not be in current use.

The return value is nonzero if the function was successful. It is zero if the function failed.

Destroylcon

Syntax

Return Value

BOOL DestroyIcon(hlcon)

This function destroys an icon that was previously created by the Createlcon function and
frees any memory that the icon occupied. It should not be used to destroy any icon that
was not created with the Createlcon function.

Parameter Type/Description

hicon HICON Identifies the icon to be destroyed. The icon must
not be in current use. '

The return value is nonzero if the function was successful. It is zero if the function failed.

DestroyMenu 4-90

DestroyMenu
Syntax

Return Value

BOOL DestroyMenu(hMenu)

This function destroys the menu specified by the ZMenu parameter and frees any memory
that the menu occupied.

Parameter Type/Description

hMenu HMENU Identifies the menu to be destroyed.

The return value specifies whether or not the specified menu is destroyed. It is nonzero if
the menu is destroyed. Otherwise, it is zero.

DestroyWindow

Syntax

Return Value

BOOL DestroyWindow(hWnd)

This function destroys the specified window. The DestroyWindow function hides or per-
manently closes the window, sending the appropriate messages to the window to deacti-
vate it and remove the input focus. It also destroys the window menu, flushes the
application queue, destroys outstanding timers, removes clipboard ownership, and breaks
the clipboard-viewer chain, if the window is at the top of the viewer chain. It sends
WM_DESTROY and WM_NCDESTROY messages to the window.

If the given window is the parent of any windows, these child windows are automatically
destroyed when the parent window is destroyed. DestroyWindow destroys child windows
first, and then the window itself. '

DestroyWindow also destroys modeless dialog boxes created by the CreateDialog func-
tion.

Parameter Type/Description

hWnd . HWND Identifies the window to be destroyed.

The return value specifies whether or not the specified window is destroyed. It is nonzero
if the window is destroyed. Otherwise, it is zero. ’ ~

4-91 DeviceCapabilities

DeviceCapabilities
Syntax DWORD DeviceCapabilities(ipDeviceName, IpPort, nlndex, [pOutput, [pDevMode)

This function retrieves the capabilities of the printer device driver.

Parameter Type/Description

IpDeviceName LPSTR Points to a null-terminated character string that con-
tains the name of the printer device, such as “PCL/HP LaserJet.”

IpPort LPSTR Points to a null-terminated character string that con- |
tains the name of the port to which the device is connected, such o
as LPT1.. 9

nindex WORD Specifies the capabilities to query. It can be any one of
the following values:

Value Meaning

DC_BINNAMES Copies a structure identical to that re-
turned by the ENUMPAPERBINS
escape. A printer driver does not need
to support this index if it has only
bins corresponding to predefined in-
dexes, in which case no data is
copied and the return value is 0. If
the index is supported, the return
value is the number of bins copied. If
IpOutput is NULL, the return value is
the number of bin entries required.

DC_BINS Retrieves a list of available bins. The
function copies the list to IpOutput as
a WORD array. If IpOutput is
NULL, the function returns the num-
ber of supported bins to allow the
application the opportunity to allo-
cate a buffer with the correct size.
See the description of the dmDefault-
Source field of the DEVMODE
data structure for information on
these values. An application can de-
termine the name of device-specific
bins by using the ENUMPAPER-
BINS escape.

DeviceCapabilities 4-92

Parameter Type/Description

Value Meaning

DC_DRIVER Returns the printer driver version
number.

DC_DUPLEX Returns the level of duplex support.
The function returns 1 if the printer is
capable of duplex printing. Other-
wise, the return value is zero.

DC_EXTRA Returns the number of bytes required
for the device-specific portion of the
DEVMODE data structure for the
printer driver.

DC_FIELDS Returns the dmFields field of the
printer driver’s DEVMODE data
structure. The dmFields bitfield indi-
cates which fields in the
device-independent portion of the
structure are supported by the printer
driver.

DC_MAXEXTENT Returns a POINT data structure con-
taining the maximum paper size that
the dmPaperLength and dmPaper-
Width fields of the printer driver’s
DEVMODE data structure can
specify.

DC_MINEXTENT Returns a POINT data structure con-
taining the minimum paper size that
the dmPaperLength and dmPaper-
Width fields of the printer driver’s
DEVMODE data structure can
specify.

4-93

Return Value

DeviceCapabilities

Parameter Type/Description

Value

DC_PAPERS

DC_PAPERSIZE

DC_SIZE

DC_VERSION

IpOutput

Meaning

Retrieves a list of supported paper
sizes. The function copies the list to
IpOutput as a WORD array and re-
turns the number of entries in the
array. If [pOutput is NULL, the func-
tion returns the number of supported
paper sizes to allow the application
the opportunity to allocate a buffer
with the correct size. See the descrip-
tion of the dmPaperSize field of the
DEVMODE data structure for infor-
mation on these values.

Copies the dimensions of supported
paper sizes in tenths of a millimeter
to an array of POINT structures in
IpOutput. This allows an application
to obtain information about nonstand-
ard paper sizes.

Returns the dmSize field of the
printer driver’s DEVMODE data
structure.

Returns the specification version to
which the printer driver conforms.

LPSTR Points to an array of bytes. The actual format of the

array depends on the setting of n/ndex. If set to zero, DeviceCapa-
bilities returns the number of bytes required for the output data.

IpDevMode

DEVMODE FAR *

Points to a DEVMODE data structure. If

IpDevMode is NULL, this function retrieves the current default in-
itialization values for the specified printer driver. Otherwise, the
function retrieves the values contained in the structure to which

IpDevMode points.

The return value depends on the setting of the nlndex parameter; see the description of that

parameter for details.

DeviceMode | 494

Comments This function is supplied by the printer driver. An application must include the
DRIVINIT.H file and call the LoadLibrary and GetProcAddress functions to call the
DeviceCapabilities function.

DeviceMode

Syntax void DeviceMode(hWnd, hModule, IpDeviceName, IpOutput)

Return Value

Comments

This function sets the current printing modes for the device identified by the IpDestDev-
Type by prompting for those modes using a dialog box. An application calls the Device-
Mode function to allow the user to change the printing modes of the corresponding device.
The function copies the mode information to the environment block associated with the
device and maintained by GDI.

Parameter Type/Description
hWnd HWND Identifies the window that will own the dialog box.
hModule HANDLE Identifies the printer-driver module. The applica-

tion should retrieve this handle by calling either the -
GetModuleHandle or LoadLibrary function.

IpDeviceName LPSTR Points to a null-terminated character string that speci-
fies the name of the specific device to be supported (for
example, Epson FX-80). The device name is the same as the
name passed to the CreateDC function.

IpOutput LPSTR Points to a null-terminated character string that speci-
fies the DOS file or device name for the physical output medium
(file or output port). The output name is the same as the name
passed to the CreateDC function.

None.

The DeviceMode function is actually part of the printer’s device driver, and not part of
GDIL. To call this function, the application must load the printer device driver by calling
LoadLibrary and retrieve the address of the function by using the GetProcAddress func-
tion. The application can then use the address to set up the printer.

4-95

DialogBox

DialogBox
Syntax

Return Value

Comments

Callback Function

int DialogBox(hinstance, IpTemplateName, hWndParent, IpDialogFunc)

This function creates a modal dialog box that has the size, style, and controls specified by
the dialog-box template given by the [pTemplateName parameter. The hWndParent para-
meter identifies the application window that owns the dialog box. The callback function
pointed to by the IpDialogFunc parameter processes any messages received by the dialog
box.

The DialogBox function does not return control until the callback function terminates the
modal dialog box by calling the EndDialog function.

Parameter Type/Description

hinstance HANDLE Identifies an instance of the module whose exe-
cutable file contains the dialog-box template.

IpTemplateName LPSTR Points to a character string that names the dialog-box

template. The string must be a null-terminated character string.
hWrdParent HWND Identifies the window that owns the dialog box.
IpDialogFunc FARPROC s the procedure-instance address of the dialog

function. See the fcllowing “Comments” section for details.

The return value specifies the value of the nResuit parameter in the EndDialog function
that is used to terminate the dialog box. Values returned by the application’s dialog box are
processed by Windows and are not returned to the application. The return value is —1 if the
function could not create the dialog box.

The DialogBox function calls the GetDC function in order to obtain a display-context.
Problems will result if all the display contexts in the Windows display-context cache have
been retrieved by GetDC and DialogBox attempts to access another display context.

A dialog box can contain up to 255 controls.

The callback function must use the Pascal calling convention and must be declared FAR.

int FAR PASCAL DialogFunc(hDlg, wMsg, wParam, IParam)
HWND #hDlg;

WORD wMsg;

WORD wParam;

DWORD I[Param;

DialogBoxindirect 4-96

DialogFunc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in an EXPORTS statement in the application’s module-
definition file.

Parameter Description

hDlg Identifies the dialog box that receives the message.

wMsg Specifies the message number.

wParam Specifies 16 bits of additional message-dependent information.
IParam Specifies 32 bits of additional message-dependent information.

Return Value

The callback function should return nonzero if the function processes the message and
zero if it does not.

Comments

Although the callback function is similar to a window function, it must not call the Def-
WindowProc function to process unwanted messages. Unwanted messages are processed
internally by the dialog-class window function.

The callback-function address, passed as the [pDialogFunc parameter, must be created by
using the MakeProcInstance function.

DialogBoxIndirect

" Syniax

int DialogBoxIndirect(kInstance, hDialogTemplate, hWndParent, IpDialogFunc)

This function creates an application’s modal dialog box that has the size, style, and con-
trols specified by the dialog-box template associated with the #DialogTemplate parameter.
The hWndParent parameter identifies the application window that owns the dialog box.
The callback function pointed to by IpDialogFunc processes any messages received by the
dialog box.

The DialogBoxIndirect function does not return control until the callback function termi-
nates the modal dialog box by calling the EndDialog function.

Parameter Type/Description

hinstance HANDLE Identifies an instance of the module whose exe-
cutable file contains the dialog-box template.

4-97 DialogBoxIndirect

Parameter Type/Description

hDialogTemplate HANDLE Identifies a block of global memory that contains a
DLGTEMPLATE data structure.

hWndParent HWND Identifies the window that owns the dialog box.

IpDialogFunc FARPROC Is the procedure-instance address of the dialog
function. See the following “Comments” section for details.

Return Value The return value specifies the value of the wResult parameter specified in the EndDialog
function that is used to terminate the dialog box. Values returned by the application’s G
dialog box are processed by Windows and are not returned to the application. The return -
value is —1 if the function could not create the dialog box.

Comments A dialog box can contain up to 255 controls.

The callback function must use the Pascal calling convention and be declared FAR.

Callback Function BOOL FAR PASCAL DialogFunc(hDlg, wMsg, wParam, IParam)
HWND /Dlg;
WORD wMsg;
WORD wParam;
DWORD I[Param;

DialogFunc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in an EXPORTS statement in the application’s module-
definition file.

Parameter Description

hDlg Identifies the dialog box that receives the message.

wMsg Specifies the message number.

wParam Specifies 16 bits of additional message-debendent information.
IParam Specifies 32 bits of additional message-dependent information.

Return Value

The callback function should return nonzero if the function processes the message and
zero if it does not.

DialogBoxIndirectParam 4-98

Comments

Although the callback function is similar to a window function, it must not call the Def-
WindowProc function to process unwanted messages. Unwanted messages are processed
internally by the dialog-class window function.

The callback-function address, passed as the [pDialogFunc parameter, must be created by
using the MakeProcInstance function.

DialogBoxIndirectParam

Syntax

Return Value

int DialogBoxIndirectParam(hlnstance, hDialogTemplate, hWWndParent,
IpDialogFunc, dwlnitParam)

This function creates an application’s modal dialog box, sends a WM_INITDIALOG
message to the dialog function before displaying the dialog box and passes dwinitParam
as the message [Param. This message allows the dialog function to initialize the dialog-
box controls.

For more information on creating an application modal dialog box, see the description of
the DialogBoxIndirect function.

Parameter Type/Description

hinstance HANDLE Identifies an instance of the module whose exe-
cutable file contains the dialog-box template.

hDialogTemplate VHANDLE‘ Identifies a block of global memory that contains a
DLGTEMPLATE data structure.

hWndParent HWND Identifies the window that owns the dialog box.

IpDialogFunc FARPROC Is the procedure-instance address of the dialog
function. For details, see the “Comments” section in the descrip-
tion of the DialogBoxIndirect function.

dwlnitParam DWORD Is a 32-bit value which DialogBoxIndirectParam
passes to the dialog function when it creates the dialog box.

The return value specifies the value of the wResult parameter specified in the EndDialog
function that is used to terminate the dialog box. Values returned by the application’s
dialog box are processed by Windows and are not returned to the application. The return
value is —1 if the function could not create the dialog box.

4-99 DialogBoxParam

DialogBoxParam

Synlax int DialogBoxParam(iinstance, IpTemplateName, hWndParent, IpDialogFunc,
dwlnitParam)

This function creates a modal dialog box, sends a WM_INITDIALOG message to the
dialog function before displaying the dialog box, and passes dwlnitParam as the message
[Param. This message allows the dialog function to initialize the dialog-box controls.

For more information on creating a modal dialog box, see the description of the Dialog-
Box function.

Parameter Type/Description

hinstance HANDLE Identifies an instance of the module whose exe-
cutable file contains the dialog-box template.

IpTemplateName LPSTR Points to a character string that names the dialog-box
template. The string must be a null-terminated character string.

hWndParent HWND Identifies the window that owns the dialog box.

IpDialogFunc FARPROC Is the procedure-instance address of the dialog

function. For details, see the “Comments” section of the descrip-
tion of the DialogBox function.

dwlnitParam DWORD Is a 32-bit value which DialogBoxParam passes to
the dialog function when it creates the dialog box.

Return Value The return value specifies the value of the nResult parameter in the EndDialog function
that is used to terminate the dialog box. Values returned by the application’s dialog box are
processed by Windows and are not returned to the application. The return value is —1 if the
function could not create the dialog box.

DispatchMessage
Syntax LONG DispatchMessage(IlpMsg)

This function passes the message in the MSG structure pointed to by the IpMsg parameter
to the window function of the specified window.

DigDirList

4-100

Return Value

Parameter Type/Description

IpMsg LPMSG Points to an MSG data structure that contains
message information from the Windows application queue.

The structure must contain valid message values. If [pMsg points
to a WM_TIMER message and the /Param parameter of the
WM_TIMER message is not NULL, then the /[Param parameter
is the address of a function that is called instead of the window
function.

The return value specifies the value returned by the window function. Its meaning depends
on the message being dispatched, but generally the return value is ignored.

DigDirList
Syntax

int DIgDirList(ADlg, IpPathSpec, nIDListBox, nIDStaticPath, wFiletype)

This function fills a list-box control with a file or directory listing. It fills the list box
specified by the nIDListBox parameter with the names of all files matching the pathname
given by the [pPathSpec parameter.

The DIgDirList function shows subdirectories enclosed in square brackets ([]), and shows
drives in the form [-x—], where x is the drive letter.

The IpPathSpec parameter has the following form:
[drive:] [I\directory[\directoryll..\] [filename]l

In this example, drive is a drive letter, directory is a valid directory name, and filename is a
valid filename that must contain at least one wildcard character. The wildcard characters
are a question mark (?), meaning “match any character,” and an asterisk (*), meaning
“match any number of characters.”

If the IpPathSpec parameter includes a drive and/or directory name, the current drive and
directory are changed to the designated drive and directory before the list box is filled. The
text control identified by the nIDStaticPath parameter is also updated with the new drive
and/or directory name.

After the list box is filled, /[pPathSpec is updated by removing the drive and/or directory
portion of the pathname.

DIgDirList sends LB_RESETCONTENT and LB_DIR messages to the list box.

4-101

DigDirList

Return Value

Parameter
hDlg
IpPathSpec

nIDListBox

nIDStaticPath

wFiletype

Type/Description

HWND Identifies the dialog box that contains the list box.

LPSTR Points to a pathname string. The string must be a null-
terminated character string.

int Specifies the identifier of a list-box control. If nIDListBox
is zero, DlgDirList assumes that no list box exists and does not
attempt to fill it.

int Specifies the identifier of the static-text control used for
displaying the current drive and directory. If nIDStaticPath is
zero, DlgDirList assumes that no such text control is present.

WORD Specifies DOS file attributes of the files to be dis-
played. It can be any combination of the values given in Table
4.6, “DOS File Attributes.” Values can be combined by using the
bitwise OR operator.

The return value specifies the outcome of the function. It is nonzero if a listing was made,
even an empty listing. A zero return value implies that the input string did not contain a

valid search path.

The wFiletype parameter specifies the DOS attributes of the files to be listed. Table 4.6 de-

scribes these attributes.

Table 4.6 DOS File Attributes

Attribute Value Meaning

0x0000 Read/write data files with no additional attributes
0x0001 Read-only files

0x0002 Hidden files

0x0004 System files

0x0010 Subdirectories

0x0020 Archives

0x2000 LB_DIR flag'

0x4000 Drives

0x8000 Exclusive bit?

UIf the LB_DIR flag is set, Windows places the messages generated by DIgDirList in the application’s queue;
otherwise they are sent directly to the dialog function.

2 1f the exclusive bit is set, only files of the specified type are listed. Otherwise, files of the specified type are
listed in addition to normal files.

DigDirListComboBox 4-102

DigDirListComhoBox

Syntax

int DlgDirListComboBox(thg, IpPathSpec, nIDComboBox, nIDStaticPath, wFiletype)

This function fills the list box of a combo-box control with a file or directory listing. It fills
the list box of the combo box specified by the nIDComboBox parameter with the names of
all files matching the pathname given by the I[pPathSpec parameter.

The DIgDirListComboBox function shows subdirectories enclosed in square brackets
([D, and shows drives in the form [-x—], where x is the drive letter.

The IpPathSpec parameter has the following form:
[drive:] [[[\Idirectory[[\directoryl..\] [filename]l

In this example, drive is a drive letter, directory is a valid directory name, and filename is a
valid filename that must contain at least one wildcard character. The wildcard characters
are a question mark (?), meaning “match any character,” and an asterisk (*), meaning
“match any number of characters.”

If the IpPathSpec parameter includes a drive and/or directory name, the current drive and
directory are changed to the designated drive and directory before the list box is filled. The
text control identified by the nIDStaticPath parameter is also updated with the new drive
and/or directory name.

After the combo-box list box is filled, [pPathSpec is updated by removing the drive and/or
directory portion of the pathname.

DigDirListComboBox sends CB_RESETCONTENT and CB_DIR messages to the
combo box.

Parameter Type/Description
hDlg HWND Identifies the dialog box that contains the combo box.
IpPathSpec LPSTR Points to a pathname string. The string must be a null-

terminated character string,

nIDComboBox int Specifies the identifier of a combo-box control in a dialog
box. If nIDComboBox is zero, DlgDirListComboBox assumes
that no combo box exists and does not attempt to fill it.

nIDStaticPath int Specifies the identifier of the static-text control used for
displaying the current drive and directory. If nIDStaticPath is
zero, DigDirListComboBox assumes that no such text control
is present.

4-103

Return Value

DigDirSelect

Parameter Type/Description

wFiletype WORD Specifies DOS file attributes of the files to be dis-
played. It can be any combination of the values given in Table
4.6, “DOS File Attributes.” Refer to the description of the
DlgDirList function for this table. Values can be combined by
using the bitwise OR operator.

The return value specifies the outcome of the function. It is nonzero if a listing was made,
even an empty listing. A zero return value implies that the input string did not contain a
valid search path.

DigDirSelect
Syntax

Return Value

Comments

BOOL DigDirSelect(hDlg, IpString, nIDListBox)

This function retrieves the current selection from a list box. It assumes that the list box has
been filled by the DlgDirList function and that the selection is a drive letter, a file, or a
directory name.

The DlgDirSelect function copies the selection to the buffer given by the IpString para-
meter. If the current selection is a directory name or drive letter, DlgDirSelect removes the
enclosing square brackets (and hyphens, for drive letters) so that the name or letter is ready
to be inserted into a new pathname. If there is no selection, IpString does not change.

DigDirSelect sends LB_GETCURSEL and LB_GETTEXT messages to the list box.

Parameter Type/Description
hDlg HWND Identifies the dialog box that contains the list box.
IpString LPSTR Points to a buffer that is to receive the selected
pathname.
nIDListBox Lnt Specifies the integer ID of a list-box control in the dialog
OX.

The return value specifies the status of the current list-box selection. It is nonzero if the

current selection is a directory name. Otherwise, it is zero.

The DlgDirSelect function does not allow more than one filename to be returned from a
list box.

DigDirSelectComboBox 4-104

The list box must not be a multiple-selection list box. If it is, this function will not return a
zero value and IpString will remain unchanged.

DigDirSelectComboBox
Syntax BOOL DigDirSelectComboBox(hDlg, IpString, nIDComboBox)

This function retrieves the current selection from the list box of a combo box. It assumes

that the list box has been filled by the DIgDirListComboBox function and that the selec-
tion is a drive letter, a file, or a directory name.

The DlgDirSelectComboBox function copies the selection to the buffer given by the
IpString parameter. If the current selection is a directory name or drive letter, DigDir-
SelectComboBox removes the enclosing square brackets (and hyphens, for drive letters)

so that the name or letter is ready to be inserted into a new pathname. If there is no selec-
tion, IpString does not change.

DIgDirSelectComboBox sends CB_GETCURSEL and CB_GETLBTEXT messages to
the combo box.

Parameter Type/Description
hDlg HWND Identifies the dialog box that contains the combo box.
IpString LPSTR Points to a buffer that is to receive the selected
pathname.
nlDComboBox int Specifies the integer ID of the combo-box control in the
dialog box.
Return Value The return value specifies the status of the current combo-box selection. It is nonzero if the

current selection is a directory name. Otherwise, it is zero.

Comments The DlgDirSelectComboBox function does not allow more than one filename to be re-
turned from a combo box.

DOS3Call

This function allows an application to issue a DOS function-request interrupt 21H. An
application can use this function instead of a directly coded DOS 21H interrupt. The
DOS3Call function executes somewhat faster than the equivalent DOS 21H software inter-
rupt under Windows.

4-105

DPtoLP

An application can call this function only from an assembly-language routine. It is ex-
ported from KERNEL.EXE and is not defined in any Windows include files.

To use this function call, an application should declare it in an assembly-language program

. as shown: -

extrn DOS3Call :far

If the application includes CMACROS.INC, the application declares it as shown:
extrnFP Dos3Call

Before calling DOS3Call, all registers must be set as for an actual INT 21H. All registers
at the function’s exit are the same as for the corresponding INT 21H function.

This function has no parameters and returns the registers of the DOS function.
The following is an example of using DOS3Call:
extrn DOS3Call : far

; set registers
mov ah, DOSFUNC
cCall DOS3Call

DPtoLP
Syntax

Return Value

BOOL DPtoLP(hDC, IpPoints, nCount)

This function converts device points into logical points. The function maps the coordinates
of each point specified by the IpPoints parameter from the device coordinate system into
GDI’s logical coordinate system. The conversion depends on the current mapping mode
and the settings of the origins and extents for the device’s window and viewport.

Parameter Type/Description

hDC HDC Identifies the device context.

IpPoints LPPOINT Points to an array of points. Each point must be a
POINT data structure. ’

nCount int Specifies the number of points in the array.

The return value specifies whether the conversion has taken place. It is nonzero if all
points are converted. Otherwise, it is zero.

DrawFocusRect 4-106

DrawFocusRect

Syntax

Return Value

Comments

void DrawFocusRect(ADC, IpRect)

This function draws a rectangle in the style used to indicate focus.

Parameter Type/Description
hDC HDC Identifies the device context.
IpRect LPRECT Points to a RECT data structure that specifies the

coordinates of the rectangle to be drawn.

None.

Since this is an XOR function, calling this function a second time with the same rectangle
removes the rectangle from the display.

The rectangle drawn by this function cannot be scrolled. To scroll an area containing a
rectangle drawn by this function, call DrawFocusRect to remove the rectangle from the
display, scroll the area, and then call DrawFocusRect to draw the rectangle in the new
position.

Drawlcon
Syntax

BOOL Drawlcon(hDC, X, Y, hicon)

This function draws an icon on the specified device. The Drawlcon function places the
icon’s upper-left corner at the location specified by the X and Y parameters. The location is
subject to the current mapping mode of the device context.

Parameter Type/Description

hDC HDC Identifies the device context for a window.‘

X int Specifies the logical x-coordinate of the upper-left corner of the
icon.

Y - int Specifies the logical y-coordinate of the upper-left corner of the
icon.

hicon HICON Identifies the icon to be drawn.

4-107

Return Value

DrawMenuBar

The return value specifies the outcome of the function. It is nonzero if the function is
successful. Otherwise, it is zero.

Comments The icon resource must have been previously loaded by using the LoadIcon function. The
MM_TEXT mapping mode must be selected prior to using this function.

DrawMenuBar

Synlax void DrawMenuBar(hWnd)

Return Value

This function redraws the menu bar. If a menu bar is changed after Windows has created
the window, this function should be called to draw the changed menu bar.

Parameter Type/Description
hWnd HWND Identifies the window whose menu needs redrawing.
None.

DrawText
Syntax

int DrawText(hDC, IpString, nCount, IpRect, wFormat)

This function draws formatted text in the rectangle specified by the I[pRect parameter. It for-
mats text by expanding tabs into appropriate spaces, justifying text to the left, right, or
center of the given rectangle, and breaking text into lines that fit within the given

rectangle. The type of formatting is specified by the wFormat parameter.

The DrawText function uses the device context’s selected font, text color, and background
color to draw the text. Unless the DT_NOCLIP format is used, DrawText clips the text so
that the text does not appear outside the given rectangle. All formatting is assumed to have
multiple lines unless the DT_SINGLELINE format is given.

Parameter Type/Description
hDC HDC Identifies the device context.
IpString LPSTR Points to the string to be drawn. If the nCount parameter

is —1, the string must be null-terminated.

nCount int Specifies the number of bytes in the string. If nCount is —1,
then IpString is assumed to be a long pointer to a null-terminated
string and DrawText computes the character count automatically.

DrawText 4-108

Parameter Type/Description

IpRect LPRECT Points to a RECT data structure that contains the
rectangle (in logical coordinates) in which the text is to be formatted.

wFormat WORD Specifies the method of formatting the text. It can be a
combination of the values given in Table 4.7, “DrawText Formats.”

Return Value . The return value specifies the height of the text.

Comments If the selected font is too large for the specified rectangle, the DrawText function does not
attempt to substitute a smaller font.

Table 4.7 lists the values for the wFormat parameter. These values can be combined by
using the bitwise OR operator. Note that the DT_CALCRECT, DT_EXTERNALLEAD-
ING, DT_INTERNAL, DT_NOCLIP, and DT_NOPREFIX values cannot be used with the
DT_TABSTOP value.

Table 4.7 DrawText Formats

Value Meaning

DT_BOTTOM Specifies bottom-justified text. This value must be combined
with DT_SINGLELINE. . :

DT_CALCRECT Determines the width and height of the rectangle. If there are

multiple lines of text, DrawText will use the width of the
rectangle pointed to by the [pRect parameter and extend the
base of the rectangle to bound the last line of text. If there is
only one line of text, DrawText will modify the right side of
the rectangle so that it bounds the last character in the line. In
either case, DrawText returns the height of the formatted text
but does not draw the text.

DT_CENTER Centers text horizontally.
DT_EXPANDTABS Expands tab characters. The default number of characters per
tab is eight.

DT_EXTERNALLEADING Includes the font external leading in line height. Normally, ex-
ternal leading is not included in the height of a line of text.

DT_LEFT Aligns text flush-left.

DT_NOCLIP Draws without clipping. DrawText is somewhat faster when
DT_NOCLIP is used.

4-109

DrawText

Table 4.7 DrawText Formats (continued)

Value Meaning

DT_NOPREFIX Tums off processing of prefix characters. Normally, DrawText
interprets the mnemonic-prefix character “&” as a directive to
underscore the character that follows, and the mnemonic-prefix
characters “&&” as a directive to print a single “&”. By speci-
fying DT_NOPREFIX, this processing is turned off.

DT_RIGHT Aligns text flush-right.

DT_SINGLELINE Specifies single line only. Carriage returns and linefeeds do not
break the line.

DT_TABSTOP Sets tab stops. The high-order byte of the wFormat parameter

is the number of characters for each tab. The default number of
characters per tab is eight.

DT_TOP Specifies top-justified text (single line only).
DT_VCENTER Specifies vertically centered text (single line only).
DT_WORDBREAK Specifies word breaking. Lines are automatically broken be-

tween words if a word would extend past the edge of the
rectangle specified by the [pRect parameter. A carriage re-
turn/line sequence will also break the line.

Ellipse

4-110

Ellipse
Syntax

Return Value

BOOL Ellipse(hDC, X1, Y1,X2,Y2)

This function draws an ellipse. The center of the ellipse is the center of the bounding
rectangle specified by the X1, Y1, X2, and Y2 parameters. The ellipse border is drawn with
the current pen, and the interior is filled with the current brush.

If the bounding rectangle is empty, nothing is drawn.

Parameter Type/Description
hDC HDC Identifies the device context.
X1 int Specifies the logical x-coordinate of the upper-left corner of the

bounding rectangle.

Yl int Specifies the logical y-coordinate of the upper-left corner of the
bounding rectangle.

X2 int Specifies the logical x-coordinate of the lower-right corner of
the bounding rectangle.

Y2 int Specifies the logical y-coordinate of the lower-right corner of
the bounding rectangle.

The return value specifies whether the ellipse is drawn. It is nonzero if the ellipse is drawn.
Otherwise, it is zero.

Comments The width of the rectangle, specified by the absolute value of X2 — X/, must not exceed
32,767 units. This limit applies to the height of the rectangle as well.
The current position is neither used nor updated by this function.

EmptyClipboard

Syntax BOOL EmptyClipboard()

This function empties the clipboard and frees handles to data in the clipboard. It then as-
signs ownership of the clipboard to the window that currently has the clipboard open.

This function has no parameters.

4-111 EnableHardwarelnput
Return Value The return value specifies the status of the clipboard. It is nonzero if the clipboard is
emptied. It is zero if an error occurs.
Comments The clipboard must be open when the EmptyClipboard function is called.
EnableHardwarelnput
Syntax BOOL EnableHardwareInput(bEnablelnput)
This function disables mouse and keyboard input. The input is saved if the bEnableInput
parameter is TRUE and discarded if it is FALSE.
Parameter Type/Description
bEnablelnput BOOL Specifies that the function should save input if the
bEnablelnput parameter is set to a nonzero value; specifies that
the function should discard input if the bEnablelnput parameter
is set to zero.
Return Value The return value specifies whether mouse and keyboard input is disabled. It is nonzero if
input was previously enabled. Otherwise, it is zero. The default return value is nonzero
(TRUE).
EnableMenultem
Syntax BOOL EnableMenultem(hMenu, wIDEnableltem, wEnable)

This function enables, disables, or grays a menu item.

Parameter
hMenu
wIDEnableltem

wEnable

Type/Description

HMENU Specifies the menu.

WORD Specifies the menu item to be checked. The wIDEna-
bleltem parameter can specify pop-up menu items as well as menu
items.

WORD Specifies the action to take. It can be a combination of
MF_DISABLED, MF_ENABLED, or MF_GRAYED, with
MF_BYCOMMAND or MF_BYPOSITION. These values can be
combined by using the bitwise OR operator. These values have
the following meanings:

EnableWindow 4-112

Parameter Type/Description

Value Meaning

MF_BYCOMMAND Specifies that the wIDEnableltem
parameter gives the menu item ID
(MF_BYCOMMAND is the default
ID).

MF_BYPOSITION Specifies that the wIDEnableltem par-
ameter gives the position of the menu
item (the first item is at position
Zero).

MF_DISABLED Menu item is disabled.

MF_ENABLED Menu item is enabled.

MF_GRAYED Menu item is grayed.

Return Value The return value specifies the previous state of the menu item. The return value is -1 if the
menu item does not exist.
Comments To disable or enable input to a menu bar, see the WM_SYSCOMMAND message.

EnableWindow
Synfax BOOL EnableWindow(AWnd, bEnable)

This function enables or disables mouse and keyboard input to the specified window or
control. When input is disabled, input such as mouse clicks and key presses are ignored by
the window. When input is enabled, all input is processed.

The EnableWindow function enables mouse and keyboard input to a window if the
bEnable parameter is nonzero, and disables it if bEnable is zero.

Parameter Type/Description
hWnd HWND Identifies the window to be enabled or disabled.
bEnable BOOL Specifies whether the given window is to be enabled or dis-

abled.

4-113 EndDeferWindowPos

Return Value The return value specifies the outcome of the function. It is nonzero if the window is
enabled or disabled as specified. It is zero if an error occurs.

Comments A window must be enabled before it can be activated. For example, if an application is dis-
playing a modeless dialog box and has disabled its main window, the main window must
be enabled before the dialog box is destroyed. Otherwise, another window will get the
input focus and be activated. If a child window is disabled, it is ignored when Windows
tries to determine which window should get mouse messages.

Initially, all windows are enabled by default. EnableWindow must be used to disable a
window explicitly.

EndDeferWindowPos
Syntax void EndDeferWindowPos(hWinPosinfo)

This function simultaneously updates the position and size of one or more windows in a
single screen-refresh cycle. The AWinPosInfo parameter identifies a multiple window-posi-
tion data structure that contains the update information for the windows. The Defer-
WindowPos function stores the update information in the data structure; the BeginDefer-
WindowPos function creates the initial data structure used by these functions.

Parameter Type/Description

hWinPoslInfo HANDLE Identifies a multiple window-position data struc-
ture that contains size and position information for one or more
windows. This structure is returned by the BeginDeferWindow-
Pos function or the most recent call to the Defer WindowPos

function.
Return Value None.
EndDialog
Syntax void EndDialog(hDlg, nResult)

This function terminates a modal dialog box and returns the given result to the DialogBox
function that created the dialog box. The EndDialog function is required to complete pro-
cessing whenever the DialogBox function is used to create a modal dialog box. The func-
tion must be used in the dialog function of the modal dialog box and should not be used for
any other purpose.

EndPaint 4-114

The dialog function can call EndDialog at any time, even during the processing of the
WM_INITDIALOG message. If called during the WM_INITDIALOG message, the dialog
box is terminated before it is shown or before the input focus is set.

EndDialog does not terminate the dialog box immediately. Instead, it sets a flag that
directs the dialog box to terminate as soon as the dialog function ends. The EndDialog
function returns to the dialog function, so the dialog function must return control to

Windows.
Parameter Type/Description
hDlg HWND Identifies the dialog box to be destroyed.
nResult int Specifies the value to be returned from the dialog box to the
DialogBox function that created it.
Return Value None.
EndPaint
Syniax void EndPaint(hWnd, IpPaint)

This function marks the end of painting in the given window. The EndPaint function is re-

quired for each call to the BeginPaint function, but only after painting is complete.

Parameter Type/Description

hWnd - HWND Identifies the window that is repainted.

IpPaint LPPAINTSTRUCT Points to a PAINTSTRUCT data structure
that contains the painting information retrieved by the BeginPaint
function.

Return Value None.
Comments If the caret was hidden by the BeginPaint function, EndPaint restores the caret to the

screen.

4-115 EnumChildWindows
EnumChildWindows
Syntax BOOL EnumChildWindows(hWndParent, IpEnumFunc, [Param)

Return Value

Comments

Callback Function

This function enumerates the child windows that belong to the specified parent window by
passing the handle of each child window, in turn, to the application-supplied callback func-
tion pointed to by the IpEnumFunc parameter.

The EnumChildWindows function continues to enumerate windows until the called func-
tion returns zero or until the last child window has been enumerated.

Parameter Type/Description

hWndParent HWND Identifies the parent window whose child windows
are to be enumerated.

IpEnumFunc FARPROC Is the procedure-instance address of the callback
function.

[Param DWORD Specifies the value to be passed to the callback

function for the application’s use.

The return value specifies nonzero if all child windows have been enumerated. Otherwise,
it is zero.

This function does not enumerate pop-up windows that belong to the h'WndParent parame-
ter.

The address passed as the [pEnumFunc parameter must be created by using the Make-
ProcInstance function.

The callback function must use the Pascal calling convention and must be declared FAR.

BOOL FAR PASCAL EnumFunc(hWnd, IParam)
HWND hWnd;
DWORD [Param;

EnumFunc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in an EXPORTS statement in the application’s module-
definition file.

EnumClipboardFormats 4-116

Parameter Description

hWnd Identifies the window handle.

IParam Specifies the long parameter argument of the EnumChildWindows
function.

Return Value

The callback function should return a nonzero value to continue enumeration; it should re-
turn zero to stop enumeration.

EnumClipboardFormats

Syntax

Return Value

Comments

WORD EnumClipboardFormats(wFormat)

This function enumerates the formats found in a list of available formats that belong to the
clipboard. On each call to this function, the wFormat parameter specifies a known availa-
ble format, and the function returns the format that appears next in the list. The first format
in the list can be retrieved by setting wFormat to zero.

Parameter Type/Description

wFormat WORD Specifies a known format.

The return value specifies the next known clipboard data format. It is zero if wFormat
specifies the last format in the list of available formats. It is zero if the clipboard is not
open.

Before it enumerates the formats by using the EnumClipboardFormats function, an appli-
cation must open the clipboard by using the OpenClipboard function.

The order that an application uses for putting alternative formats for the same data into the
clipboard is the same order that the enumerator uses when returning them to the pasting
application. The pasting application should use the first format enumerated that it can

handle. This gives the donor a chance to recommend formats that involve the least loss of
data.

4-117

EnumFonts
Syntax

Return Value

Comments

Caliback Function

EnumFonts

int EnumFonts(hDC, IpFacename, IpFontFunc, IpData)

This function enumerates the fonts available on a given device. For each font having the
typeface name specified by the [pFacename parameter, the EnumFonts function retrieves
information about that font and passes it to the function pointed to by the IpFontFunc para-
meter. The application-supplied callback function can process the font information as
desired. Enumeration continues until there are no more fonts or the callback function re-
turns zero.

Parameter Type/Description
hDC HDC Identifies the device context.
IpFacename LPSTR Points to a null-terminated character string that specifies

the typeface name of the desired fonts. If IpFacename is NULL,
EnumFonts randomly selects and enumerates one font of each avail-
able typeface.

IpFontFunc FARPROC Is the procedure-instance address of the callback func-
tion. See the following “Comments” section for details.

IpData LPSTR Points to the application-supplied data. The data is passed
to the callback function along with the font information.

The return value specifies the last value returned by the callback function. Its meaning is
user-defined.

The address passed as the IpFontFunc parameter must be created by using the Make-
ProcInstance function.

The callback function must use the Pascal calling convention and must be declared FAR.

int FAR PASCAL FontFunc(lpLogFont, IpTextMetrics, nFontType, IpData)
LPLOGFONT I/pLogFont;

LPTEXTMETRICS IpTextMetrics;

short nFontType;

LPSTR IpData;

FontFunc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in an EXPORTS statement in the application’s module-
definition file.

EnumMetaFile 4-118

Parameter Description ’

IpLogFont Points to a LOGFONT data structure that contains information
about the logical attributes of the font.

IpTextMetrics Points to a TEXTMETRIC data structure that contains informa-
tion about the physical attributes of the font.

nFontType : Specifies the type of the font.

IpData Points to the application-supplied data passed by EnumFonts.

Return Value

The return value can be any integer.

Comments

The AND (&) operator can be used with the RASTER_FONTTYPE and DEVICE_FONT-
TYPE constants to determine the font type. The RASTER_FONTTYPE bit of the Font-
Type parameter specifies whether the font is a raster or vector font. If the bit is one, the
font is a raster font; if zero, it is a vector font. The DEVICE_FONTTYPE bit of FontType
specifies whether the font is a device- or GDI-based font. If the bit is one, the font is a
device-based font; if zero, it is a GDI-based font.

If the device is capable of text transformations (scaling, italicizing, and so on) only the
base font will be enumerated. The user must inquire into the device’s text-transformation
abilities to determine which additional fonts are available directly from the device. GDI
can simulate the bold, italic, underlined, and strikeout attributes for any GDI-based font.

EnumFonts only enumerates fonts from the GDI internal table. This does not include
fonts that are generated by a device, such as fonts that are transformations of fonts from
the internal table. The GetDeviceCaps function can be used to determine which transfor-
mations a device can perform. This information is available by using the TEXTCAPS
index.

GDI can scale GDI-based raster fonts by one to five horizontally and one to eight verti-
cally, unless PROOF_QUALITY is being used.

EnumMetaFile
Syntax

BOOL EnumMetaFile(hDC, hMF, IpCallbackFunc, IpClientData)

This function enumerates the GDI calls within the metafile identified by the AMF parame-
ter. The EnumMetakFile function retrieves each GDI call within the metafile and passes it
to the function pointed to by the [pCallbackFunc parameter. This callback function, an

4-119 EnumMetaFile

application-supplied function, can process each GDI call as desired. Enumeration con-
tinues until there are no more GDI calls or the callback function returns zero.

Parameter Type/Description

hDC HDC Identifies the device context associated with the meta-
file.

hMF LOCALHANDLE Identifies the metaf