
Microsoft®

indows'"
Programmer's Reference

PROGRAMMER'S
REFERENCE
LIBRARY

New for Version 3

- - a;

Microsoft® .

indows'"
Programmer's Reference

New for Version 3

Written, edited, and produced by
Microsoft Corporation

Distributed by Microsoft Press

MICROSOFT®
WINDOWSTM

Information in this document is subject to change without notice and does not represent a commitment on
the part of Microsoft Corporation. The software and/or databases described in this document are furnished
under a license agreement or nondisclosure agreement. The software and/or databases may be used or
copied only in accordance with the terms of the agreement. It is against the law to copy the software on
any medium except as specifically allowed in the license or nondisclosure agreement. No part of this
manual and/or databases may be reproduced or transmitted in any form or by any means. electronic or
mechanical. including photocopying. recording. or information storage and retrieval systems. for any
purpose other than the purchaser's personal use without the express written permission of Microsoft
Corporation.

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way, Redmond, Washington 98052-6399

© 1990 Microsoft Corporation. All right'> reserved.
Printed and bound in the United States of America.

Lucida Typeface Software. © 1985-1988 and 1990 by Bigelow & Holmes.
U.S. Patent Nos. D289420. D289421, D289422, D289773

Library of Congress Cataloging-in-Publications Data

Microsoft Windows programmer's referenr.e / Microsoft Corporation.
p. cm. -- (Microsoft Windows programmer's reference library)

Includes index.
ISBN 1-55615-309-0
1. Microsoft Windows (Computer programs) I. Microsoft.

II. Series.
QA 76.76.W56M533 1990
005.4'3--dc20 90-6037

CIP
6 7 8 9 FGFG 4 3 2 1

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.
Distributed to the book trade outside the United States and Canada by Penguin Books Ltd.
Penguin Books Ltd., Harmondsworth. Middlesex. England
Penguin Books Australia Ltd., Ringwood. Victoria. Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

Microsoft, the Microsoft logo, MS, MS-DOS, Multiplan, PowerPoint. CodeView, GW-BASIC. QuickC,
and XENIX are registered trademarks and Information at your fingertips, Making it all make sense, the
Microsoft Mouse design, Toolbar, Windows, Windows/286, Windows/386, and Press are trademarks of
Microsoft Corporation.

U.S. Patent No. D302426

Arial, Monotype, and Times New Roman are registered trademarks of The Monotype Corporation. PLC.

AT and IBM are registered trademarks and PC/XT is a trademark of International Business Machines
Corporation.

AT&T is a registered trademark of American Telephone and Telegraph Company.

Epson is a registered trademark of Epson America, Inc.

Hewlett-Packard. HP Laserjet, and PCL are registered trademarks of Hewlett-Packard Company.

Intel is a registered trademark and 386 is a trademark of Intel Corporation.

Lotus, Signal. and 1-2-3 are registered trademarks of Lotus Development Corporation.

Lucida is a registered trademark of Bigelow & Holmes.

Nokia is a trademark of Nokia Corporation.

Olivetti is a registered trademark of Ing. C. Olivetti.

Paintbrush is a trademark of ZSoft Corporation.

POSTSCRIPT is a registered trademark of Adobe Systems, Inc.

Document No. SY0302a-300-ROO-l 089

Foreword
The Microsoft Windows Programmer's Reference Library is the core documenta­
tion for Windows programmers that Microsoft provides with the Microsoft®
Windows™ Software Development Kit (SDK). The.information in these books is
the most accurate and up-to-date information on Windows programming avail­
able anywhere. The information represents everything Microsoft knows about
programming Windows version 3.0 with Microsoft C (the recommended
Windows programming language) and the tools we provide in the SDK.

Certain example programs and tools referred to in this book are available only.
in the Microsoft Windows SDK or Microsoft C 6.0 Professional Development
System. However, if you are not currently programming for Windows, these
volumes will still provide an excellent overview of the services that Microsoft
Windows and the SDK provide to programmers-Microsoft Windows: A Guide
to Programming and Microsoft Windows Programming Tools in particular-and
an introduction to graphical user interface (GUI) programming. It is our hope
that once you have "kicked the tires" of the Windows SDK by reading these
books, you'll be thoroughly convinced-and already prepared-to begin
Windows programming the Microsoft way.

Then as you continue to explore the Windows programming environment,
Microsoft Windows Programmer's Reference will answer many of your program­
ming questions. The book provides information on each Windows application
programming interface (API) and describes its calls and services. For many
Windows programmers, this book is the most frequently "thumbed," dog-eared,
and marked-up volume in the set.

The Microsoft Windows Software Development Kit is available from your
Microsoft product dealer. For further information on the Windows SDK or to
obtain the name of your nearest Microsoft dealer, call the Microsoft Information
Center at 1-800-426-9400.

The Windows Software Development Kit
The Windows high-level application programming interface consists of the
functions, messages, data structures, data types, and files you need to develop
applications that unleash the full capabilities of personal computers using Intel®
286 and 386™ processors. The API's device independence ensures compatibility
with a broad array of displays, printers, and other devices, allowing you to con­
centrate on your applications and their features and implementation. Develop­
ment tasks are handled automatically, and advanced tools enable you to design
icons, dialog boxes, fonts, menus, and other interface elements.

Here are some of the new or improved features:

Foreword

• Improved and comprehensive Guide to Programming, Advanced Intelface
Design Guide, Reference, and Tools manuals.

• More source-code examples for hands-on learning.

• Improved tools for editing visual resources.

• New online help-engine facility so you can include a Help system with your
applications.

• The Microsoft Code View® for Windows debugger-the powerful yet easy­
to-use source-code debugger for any Windows application.

• New code-execution profiler and segment-swapping analysis facility.

Take advantage of the success of the Microsoft Windows environment-use the
Microsoft Windows Software Development Kit to develop powerful, feature-rich
graphical applications.

Other Recommended Reading
The following books are recommended for efficient Windows programming and
are available from Microsoft Press®:

• Programming Windows. Charles Petzold. 862 pages, softcover. An updated
second edition will be available in October 1990.

• Windows: Programmer's Problem Solver. Richard Wilton. 400 pages, soft­
cover. Available November 1990.

• Microsoft C Run-Time Library Reference. Covers version 6. Microsoft
Corporation. 852 pages, softcover.

Table of Contents
Introduction

Application Programming Interface xvii

Windows Features .. xvii

Window Manager Interface xviii

Window Manager Interface Function Groups xviii

Graphics Device Interface xix

Graphics Device Interface Function Groups xx

System Services Interface xxi

System Services Interface Function Groups xxi

Naming Conventions ... xxii

Parameter Names xxii

Windows Calling Convention xxiii

'Manual Overview ... xxiii

Document Conventions xxvi

Volume 1
PART 1 Windows Functions

Chapter 1 Window Manager Interface Functions
1.1 Message Functions 1-2

1.1.1 Generating and Processing Messages 1-3

1.1.2 Translating Messages 1-4

1.1.3 Examining Messages : . .. 1-5

1.1.4 Sending Messages . 1-5

1.1.5 Avoiding Message Deadlocks 1-6

1.2 Window-Creation Functions 1-7

1.2.1 Window Classes 1-8

1.2.2 How Windows Locates a Class 1-9

1.2.3 How Windows Determines the Owner of a Class 1-9

1.2.4 Registering a Window Class 1-9

1.2.5 Shared Window Classes 1-10

1.2.6 Predefined Window Classes 1-10

vi Contents

1.2.7 Elements of a Window Class 1-10

1.2.8 Class Styles 1-14

1.2.9 Internal Data Structures 1-16

1.2.10 Window Subclassing 1-16

1.2.11 Redrawing the Client Area 1-17

1.2.12 Class and Private Display Contexts 1-17

1.2.13 Window Function 1-18

1.2.14 Window Styles 1-21

1.2.15 Multiple Document Interface Windows 1-24

1.2.16 TitleBar 1-25

1.2.17 System Menu 1-25

1.2.18 ScrollBars 1-25

1.2.19 Menus 1-25

1.2.20 Window State 1-26

1.2.21 Life Cycle of a Window 1-27

1.3 Display and Movement Functions1-28

1.4 Input Functions 1-29

1.5 Hardware Functions .. 1-30
1.6 Painting Functions 1-31

1.6.1 How Windows Manages the Display 1-32

1.6.2 Display Context Types 1-32

1.6.3 Display-Context Cache. .. 1-36

1.6.4 Painting Sequence. .. 1-36

1.6.5 WM_PAINT Message. .. 1-37

1.6.6 Update Region 1-37

1.6.7 Window Background 1-38
1.6.8 Brush Alignment 1-38

1.6.9 Painting Rectangular Areas 1-39

1.6.10 Drawing Icons 1-39

1.6.11 Drawing Formatted Text. .. 1-39

1.6.12 Drawing Gray Text 1-41

1.6.13 Nonclient-Area Painting .. 1-42

1.7 Dialog-Box Functions 1-43

1.7.1 Uses for Dialog Boxes 1-45

1.7.2 Creating a Dialog Box 1-46

1.7.3 Return Values from a Dialog Box 1-47

1.7.4 Controls in a Dialog Box 1-47

1.7.5 Dialog-Box Keyboard Interface 1-51

1.8 Scrolling Functions . 1-53

1.8.1 Standard Scroll Bars and Scroll-Bar Controls 1-53

1.8.2 Scroll-Bar Thumb 1-54

1.8.3 Scrolling Requests 1-54

1.8.4 Processing Scroll Messages 1-55

1.8.5 Scrolling the Client Area 1-55

1.8.6 Hiding a Standard Scroll Bar 1-55

1.9 Menu Functions 1-56

1.10 Information Functions. 1-57

1.11 System Functions 1-58

1.12 Clipboard Functions 1-58

1.13 ~rror Functions 1-59

1.14 Caret Functions 1-60

1.14.1

1.14.2

Creating and Displaying a Caret 1-60

Sharing the Caret . 1-61

1.15 Cursor Functions 1-61

1.15.1 Pointing Devices and the Cursor 1-62

1.15.2 Displaying and Hiding the Cursor ; 1-62

1.15.3 Positioning the Cursor 1-62

1.15.4 The Cursor Hotspot and Confining the Cursor 1-63

1.15.5 Creating a Custom Cursor 1-63

1.16 Hook Functions 1-63

1.16.1 Filter-Function Chain 1-64

1.16.2 Installing a Filter Function 1-65

1.17 Property Functions 1-65

1.18 ~ectangle Functions 1-67

1.18 .1 Using Rectangles in a Windows Application 1-67

1.18.2 Rectangle Coordinates . 1-68

1.18.3 Creating and Manipulating Rectangles 1-68

1.19 Summary .. 1-69

. Chapter 2 Graphics Device Interface Functions
2.1 Device-Context Functions 2-2

2.1.1 Device-Context Attributes 2-3

2.1.2 Saving a Device Context ~ 2-4

2.1.3 Deleting a Device Context 2-4

2.1.4 Compatible Device Contexts 2-4

Contents vii

viii Contents

2.1.5 Information Contexts 2-5

2.2 Drawing-Tool Functions 2-5

2.2.1 Drawing-Tool Uses 2-6

2.2.2 Color ... 2-8

2.3 Color-Palette Functions 2-9

2.3.1 How Color Palettes Work 2-11

2.3.2 Using a Color Palette 2-12

2.4 Drawing-Attribute Functions 2-13

2.4.1 Background Mode and Background Color 2-14

2.4.2 Stretch Mode 2-14
2.4.3 Text Color 2-15

2.5 Mapping Functions 2-15

2.5.1 Constrained Mapping Modes 2-16

2.5.2 Partially Constrained and Unconstrained Mapping
Modes 2-17

2.5.3 Transformation Equations 2-18

2.5.4 Example: MM_TEXT 2-19

2.5.5 Example: MM_LOENGLISH 2-19

2.6 Coordinate Functions 2-20

2.7 Region Functions 2-21

2.8 Clipping Functions .. 2-22

2.9 Line-Output Functions 2-22

2.9.1 Function Coordinates 2-23

2.9.2 Pen Styles, Colors, Widths 2-23

2.10 Ellipse and Polygon Functions 2-24

2.10.1 Function Coordinates 2-24
2.10.2 Bounding Rectangles 2-25

2.11 Bitmap Functions 2-25

2.11.1 Bitmaps and Devices 2-26

2.11.2 Device-Independent Bitmap Functions 2-26

2.12 Text Functions 2-27

2.13 Font Functions ... 2-28

2.13.1 Font Family 2-29

2.13.2 Character Cells 2-30

2.13.3 Altering Characters 2-31

2.13.4 Leading 2-33

2.13.5 Character Set 2-34

2.13.6 Pitch 2-35

2.13.7 Selecting Fonts with GDI 2-36

2.13.8 Font Files and Font Resources 2-40

2.14 Metafile Functions 2-41

2.14.1 Creating a Metafile 2-41

2.14.2

2.14.3

2.14.4

Storing a Metafile in Memory or on Disk 2-43

Deleting a Metafile 2-43

Changing How Windows Plays a Metafile 2-43

2.15 Printer-Control Functions 2-44

2.16 Printer-Escape Function 2-44

2.16.1 Creating Output on a Printer 2-44

2.16.2 Banding Output 2-45

2.16.3

2.16.4

2.16.5

2.16.6

Starting and Endin!? a Print Job 2-46

Terminating a Print Job 2-46

Information Escapes 2-47

Additional Escape Calls 2-47

2.17 Environment Functions 2-47

2.18 Summary .. 2-48

Chapter 3 System Services Interface Functions
3.1 Module-Management Functions 3-2

3.2 Memory-Management Functions 3-2

3.3 Segment Functions 3-5

3.4 Operating-System Interrupt Functions 3-6

3.5 Task Functions .. 3-6

3.6 Resource-Management Functions 3-7

3.7 String-Manipulation Functions 3-8

3.8 Atom-Management Functions 3-9

3.9 Initialization-File Functions 3-10

3.10 Communication Functions 3-11

3.11 Sound Functions 3-12

3.12 Utility Macros and Functions 3-12

3.13 File I/O Functions 3-13

3.14 Debugging Functions 3-14

3.15 Optimization-Tool Functions 3-14

3.16 Application-Execution Functions 3-15

3.17 Summary .. 3-16

Contents ix

x Contents

Chapter 4 Functions Directory

PART2 Windows Messages

Chapter 5 Messages Overview
5.1 Window-Management Messages 5-1

5.2 Initialization Messages ; 5-4

5.3 Input Messages ... 5-4

5.4 System Messages 5-6

5.5 Clipboard Messages 5-7

5.6 System-Infonnation Messages 5-8

5.7 Control Messages 5-8

5.7.1 Button -Control Messages 5-9

5.7.2 Edit-Control Messages 5-9

5.7.3 List-Box Messages 5-12

5.7.4 Combo-Box Messages 5-13

5.7.5 Owner Draw-Control Messages 5-15

5.8 Notification Messages 5-15

5.8.1 Button Notification Codes 5-15

5.8.2 Edit-Control Notification Codes 5-16

5.8.3 List-Box Notification Codes 5-16
5.8.4 Combo-Box NotificatIon Codes 5-17

5.9 Scroll-Bar Messages 5-17

5.10 Nonc1ient-AreaMessages ; 5-17

5.11 Multiple Document Interface Messages 5-19

5.12 Summary ... 5-20

Chapter 6 Messages Directory

Contents xi

Volume 2
PART 3 General Reference

Chapter 7 Data Types and Structures
7.1 Data Types .. 7-1

7.2 Data Structures .. 7-5

Chapter 8 Resource Script Statements
8.1 Single-Line Statements 8-1

8.2 User-Defined Resources 8-3

8.3 RCDATA Statement 8-4
8.4 STRINGTABLE Statement 8-5

8.5 ACCELERATORS Statement 8-7

8.6 MENU Statement 8-8

8.6.1 Item-Definition Statements 8-10

8.7 DIALOG Statement 8-13

8.7.1 Dialog Option Statements 8-15

8.7.2 Dialog Control Statements 8-20

8.8 Directives ... 8-47

8.8.1 #include Statement 8-47

8.8.2 #define Statement 8-48

8.8.3 #undef Statement 8-48

8.8.4 #ifdef Statement 8-48

8.8.5 #ifndef Statement 8-49

8.8.6 #if Statement 8-49

8.8.7 #elif Statement 8-50

8.8.8 #else Statement 8-50

8.8.9 #endif Statement 8-51

8.9 Summary .. 8-51

Chapter 9 File Formats
9.1 Bitmap File Formats 9-1

9.2 Icon Resource File Format 9-2

9.3 Cursor Resource File Format 9-3

xii Contents

9.4 Clipboard File Fonnat 9-5

9.5 Metafile Fonnat .. 9-6

9.5.1 Metafile Header 9-6

9.5.2 Metafile Records 9-7

9.5.3 Sample Metafile Program Output 9-28

9.6 Summary ... 9-30

Chapter 10 Module-Definition Statements

Chapter 11 Binary and Ternary Raster-Operation Codes
11.1 Binary Raster Operations 11-1

11.2 Ternary Raster Operations 11-4

11.3 Summary ... 11-14

Chapter 12 Printer Escapes

Chapter 13 Assembly-Language Macros Overview
13.1 Guidelines for Creating Assembly-Language Windows

Applications 13-1

13.1.1 Specifying a Memory Model 13-2

13.1.2 Selecting a Calling Convention 13-3

13.1.3 Enabling the Windows Prolog/Epilog Option 13-4

13.1.4 Including the File CMACROS.lNC 13-4

13.1.5 Creating the Application Entry Point 13-5

13.1.6 Declaring Callback Functions 13-5

13.1.7 Linking with Libraries 13-5

13.1.8 Enabling Stack Checking 13-6

13.2 Cmacro Groups 13-6

13.2.1 Segment Macros 13-6

13.2.2 Storage-Allocation Macros 13-7

13.2.3 Function Macros 13-8

13.2.4 Call Macros. .. 13-8

13.2.5 Special-Definition Macros 13-8

13.2.6 Error Macros 13-9

13.3 Using the Cmacros 13-9

13.3.1 Overriding Types 13-9

13.3.2 Symbol Redefinition 13-10

13.3.3 Cmacros: a Sample Function 13-10

13.4 Summary ... 13-12

Chapter 14 Assembly-Language Macros Directory

Chapter 15 Windows DDE Protocol Definition
Conventions Used in This Chapter . IS-1

IS.1 Using the DDE Message Set IS-1

IS.2 Synchronizing the DDE Conversation IS-2

IS.3 Using Atoms ... IS-3

IS.4 Using Shared Memory Objects IS-4

IS.S Using Clipboard Formats IS-4

IS.6 Using the System Topic IS-4

IS.7 DDE Message Directory IS-S

Appendixes

A Virtual-Key Codes

B RC Diagnostic Messages

C Windows Debugging Messages
User Error Codes ... C-l

GDI Error Codes ... C-3

Kernel Error Codes ... C-4

D Character Tables
IBM PC Extended Character Set D-l

ANSI Table ... D-2

E Windows 32-Bit Memory Management DLL
E.l Segmented and Flat Memory Models E-2

E.2 Using the WINMEM32.DLL Library E-3

E.3 Considerations for Using 32-Bit Memory E-4

E.3.1 The Flat Model Under Windows E-S

Contents xiii

xiv Contents

E.3.2 The Application Stack E-5

E.3.3 Interrupt-Time Code E-6

E.3.4 Programming Languages E-7

E.4 Using 32-Bit Memory in a Windows Application E-7

E.4.1 Using 32-Bit Data Objects E-7

E.4.2 Using 32-Bit Code and Data in a Subroutine Library .. E-8

E.4.3 Using 32-Bit Code and Data for the Main Program ... E-8

E.5 Functions Directory E-9

Index

Tables
Table 1.1

Table 1.2

Table 1.3

Table 1.4

Table 1.5

Table 1.6

Table 1.7

Table 1.8

Table 2.1

Table 2.2

Table 2.3

Table 2.4

Table 2.5

Table 2.6

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 4.6

Table 4.7

Table 4.8

Table 4.9

Table 4.10

Table 4.11

Table 4.12

Table 4.13

Table 4.14

Window Class Elements

Window Class Styles .

Default Actions for Messages

Defaults for a Display Context

Text Formatting Styles

DrawText Control Characters

Dialog-Box Keyboard Interface

System Hooks

Default Device-Context Attributes and Related GDI Functions

GDI Mapping Modes

Logical/physical Conversion Table

Font Families

Font -Mapping Characteristics

Sample Font Selection Ratings

Raster Operations

Control Classes

Window Styles

Control Styles .

Extended Window Styles

DOS File Attributes

DrawText Formats

Communications Error Codes

GDI Information Indexes

System Metric Indexes

Message Box Types

Raster Operations

Predefined Data Formats

Event Values

1-10

1-14

1-20

1-33

1-40

1-41

1-51

1-64

.2-3

2-16

2-17

2-30

2-38

2-40

4-19

4-64

. 4-66

4-68

4-77

.4-101

.4-108

.4-161

.4-167

.4-212

.4-308

.4-329

.4-370

.4-373

xvi Contents

Table 4.15 Mapping Modes .4-383

Table 4.16 Drawing Modes .4-395

Table 4.17 System Color Indexes .4-401

Table 4.18 Window States .4-432

Table 6.1 Button Styles .6-6

Table 6.2 Hit-Test Codes 6-85

Table 8.1 Window Styles 8-16

Table 8.2 Control Classes 8-35

Table 8.3 Control Styles 8-37

Table 9.1 Bit Mask Results .9-4

Table 9.2 GDI Functions and Values .9-8

Table 11.1 Operation Indexes for DPo and DPan 11-2

Table 11.2 Operation Indexes for PSo and DPSoo 11-5

Table 11.3 Raster-Operation Codes 11-6

Table 12.1 Meaning of BANDINFOSTRUCT Fields 12-4

Table 13.1 Memory Options 13-3

Table 13.2 Calling Conventions 13-3

Table 13.3 Prolog/Epilog Code Options 13-4

Table 15.1 DDE Messages 15-2

Introduction

Application Programming Interface
This manual describes the application programming interface (API) of the
Microsoft ® Windows ™ presentation manager. The API contains the functions,
messages, data structures, data types, statements, and files that application
developers use to create programs that run with Windows.

The API can be thought of as a set of tools which, when properly used, creates a
Windows application that is portable across a variety of computers.

Windows Features
A Windows application can take advantage of a number of features provided by
the API. These features include the following:

• Shared display, memory, keyboard, mouse, and system timer

• Data interchange with other applications

• Device-independent graphics

• Multitasking

• Dynamic linking

Windows allows applications, running simultaneously on the system, to share
hardware resources; application developers do not need to write specific code to
accomplish this complex task.

The clipboard, another Windows feature, acts as a place for data interchange be­
tween applications. The information sent between applications can be in the form
of text, bitmaps, or graphic operations. Windows provides a number of functions
and messages that regulate the transmission of information with the clipboard.
These functions and the corresponding messages are part of the window manager
interface, one of several libraries in the API.

Windows contains functions that an application can use for device-independent
graphic operations. These functions create output that is compatible with raster
displays and printers of varying resolution, as well as with a number of vector
devices (plotters). These functions are part of the graphics device interface
(GDI), the second of the API libraries.

xviii Reference

Windows provides multitasking, which means that several applications can run
simultaneously. The functions that affect multitasking and memory management
in general are part of the system services interface, the third API library.

Because of the memory limitations imposed by DOS, it is important to keep
applications as compact as possible. Windows accomplishes this compaction
through dynamic linking and the use of discardable code, which allows an appli­
cation to load and execute a subset of the library of functions at run time. Only a
single copy of a library is necessary, no matter how many applications access it.

Window Manager Interface
The window manager interface contains the functions that create, move, and alter
a window, the most basic element in a Windows application. A window is a rec­
tangular region that contains graphic representations of user input, input options,
and system output.

Windows is a menu-driven environment; menus are the principal means of pre­
senting options to a user from within an applic·ation. The functions that create
menus, alter their contents, and obtain the status of menu items are also part of
the window manager interface.

The window manager interface also contains functions that create system output.
An example of this output is the dialog box that applications use to request user
input and to display information.

The window manager interface also contains messages and the functions that
process them. A message is a special data structure that contains information
about changes within an application. These changes include keyboard, mouse,
and timer events, as well as requests for information or actions that an applica­
tion should carry out.

Window Manager Interface Function Groups
The following list describes the function groups found in the window manager in­
terface:

• Message functions

• Information functions

• Window-creation functions

• System functions

.. Display and movement functions

• Clipboard functions

• Error functions

Introduction xix

• Input functions

• Caret functions

• Hardware functions

• Cursor functions

• Painting functions

• Hook functions

• Dialog functions

• Property functions

• Scrolling functions

• Rectangle functions

• Menu functions

Graphics Device Interface
The graphics device interface (GDI) contains the functions that perform device­
independent graphic operations within a Windows application. These functions
create a wide variety of line, text, and bitmap output on a number of different out­
put devices. GDI allows an application to create pens, brushes, fonts, and bit­
maps for specific output operations. The following figure shows a sample of text,
line, and bitmap output from Microsoft Windows Paintbrush™, an application
that was created with GDI functions:

xx Reference

Ii iI

Text, Line and Bitmap Output

Graphics Device Interface Function Groups
The following list describes the function groups found in GDI:

• Device-context functions

• Ellipse and polygon functions

• Drawing-tool functions

• Bitmap functions

• Drawing-attribute functions

• Text functions

• Mapping functions

• Font functions

• Coordinate functions

• Metafile functions

• Region functions

• Printer-escape functions

Introduction xxi

• Clipping functions

• Environment functions

• Line-output functions

• System functions

System Services Interface
The system services interface contains the functions that access code and data in·
modules, allocate and manage memory (both local and global), manage tasks,
load program resources, translate strings from one character set to another, alter
the Windows initialization file, assist in system debugging, carry out communica­
tions through the system's I/O ports, create and open files, and create sounds
using the system's sound generator.

System Services Interface Function Groups
The following list describes the function groups found in the system services in­
terface:

• Module-management functions

• Initialization-file functions

• Memory-management functions

• Communication functions

• Task functions

• Sound functions

• Resource-management functions

• Utility functions

• String-translation functions

• File I/O functions

• Atom-management functions

• System functions

xxii Reference

Naming Conventions
Many Windows functions have been named with a verb-noun model to help you
remember and become familiar with the function. The function name indicates
both what the function does (verb) and the target of its action (noun). All func­
tion names begin with an uppercase letter. If the name is composed of several
words, each word begins with an uppercase letter and all words are adjoined (no
spaces or underscore characters separate the words). Some examples of function
names are shown below:

• Create Window

• RegisterClass

• SetMapMode

Parameter Names
Most parameters and local variables have a lowercase prefix that indicates the
general type of the parameter, followed by one or more words that describe the
content of the parameter. The standard prefixes used in parameter and variable
names are defined below:

Prefix

b

c

dw

f
h

/p

n

p

pt

rgb

w

Meaning

Boolean (a nonzero value means true, zero means
false)

Character (a one-byte value)

Long (32-bit) unsigned integer

Bit flags packed into a 16-bit integer

16-bit handle

Long (32-bit) integer

Long (32-bit) pointer

Short (16-bit) integer

Short (16-bit) pointer

x- and y-coordinates packed into an unsigned 32-bit
integer

RGB color value packed into a 32-bit integer

Short (16-bit) unsigned integer

Introduction xxiii

If no lowercase prefix is given, the parameter is a short integer whose name is
descriptive.

Some examples of parameter and variable names are shown as follows:

blconic

fAction

hWnd

IpString

nBytes

pMsg

Windows Calling Convention

ptXY

rgbColor

Height

X

Width

Y

Windows uses the same calling convention used by Microsoft Pascal.
Throughout this manual, this calling convention will be referred to as the Pascal
calling convention. The Pascal calling convention entails the following:

• Parameters are pushed onto the stack in the order in which they appear in the
function call.

• The code that restores the stack is part of the called function (rather than the
calling function).

This convention differs from the calling convention used in other languages, such
as C. In C, parameters are pushed onto the stack in reverse order, and the calling
function is responsible for restoring the stack.

When developing Windows applications in a language that does not ordinarily
use the Pascal calling convention, such as C, you must ensure that the Pascal cal­
ling convention is used for any function that is called by Windows. In C, this re­
quires the use of the PASCAL key word when the function is declared.

Manual Overview
This manual gives the Windows-application developer general as well as detailed
information about Windows functions, messages, data types, resource-compiler
statements, assembly-language macros, and file formats. It does not attempt to ex­
plain how to create a Windows application. Rather, this manual provides detailed
descriptions of each component of the Windows API for readers who already
have a basic understanding of Windows programming.

xxiv Reference

This manual is divided into two volumes. The following sections describe the
purpose and contents of each volume.

Volume 1
Volume 1 contains reference information describing the Windows functions and
messages. It is made up of six chapters:

Chapter 1, "Window Manager Interface Functions," categorizes window­
manager functions into their related groups and briefly describes individual func­
tions. This chapter also supplies additional information about particular function
groups, including definitions of new terms and descriptions of models that are
unique to Windows. This chapter is designed to assist the application developer
who is new to Windows or who has questions about a particular group of
Windows functions.

Chapter 2, "Graphics Device Interface Functions," categorizes the functions that
perform device-independent graphics operations in the Windows environment,
provides brief descriptions of the functions, and explains the most important fea­
tures of the Windows graphics interface.

Chapter 3, "System Services Interface Functions," categorizes the various utility
functions that perform services not directly related to managing a window or pro­
ducing graphical output.

Chapter 4, "Functions Directory," contains an alphabetical list of Windows func­
tions. The documentation for each function gives the syntax, states the function's
purpose, lists its input parameters, and describes its return value. For some func­
tions, additional information the developer needs in order to use those functions
is given.

Chapter 5, "Messages Overview," categorizes messages into their related groups
and briefly describes individual messages. This chapter also supplies additional
information about particular message groups, including definitions of new terms
and descriptions of models that are unique to Windows. This chapter is designed
to assist the application developer who is new to Windows or who has question's
about a particular group of Windows messages.

Chapter 6, "Messages Directory," contains an alphabetical list of Windows mes­
sages. The documentation for each message states the message's purpose, lists its
input parameters, and describes its return value (if one exists). For some mes­
sages, additional information the developer needs in order to use those messages
is given.

Volume 2
Volume 2 contains reference material for other components of the Windows API.
It contains nine chapters and five appendixes:

Chapter 7, "Data Types and Structures," contains a table of data types and an al­
phabeticallist of structures found in Windows.

Introduction xxv

Chapter 8, "Resource Script Statements," describes the statements that define
resources which the Resource Compiler adds to an application's executable file.
The statements are arranged according to functional groups.

Chapter 9, "File Formats," describes the formats of five types of files: bitmap
files, icon resource files, cursor resource files, clipboard files, and metafiles.
Each description gives the general file structure and information about specific
parts of the file.

Chapter 10, "Module-Definition Statements," describes the statements contained
in the module-definition file that defines the application's contents and system re­
quirements for the LINK program.

Chapter 11, "Binary and Ternary Raster-Operation Codes," describes the raster
operations used for line output and those used for bitmap output.

Chapter 12, "Printer Escapes," lists the printer escapes that are available in
Windows.

Chapter 13, "Assembly-Language Macros Overview," categorizes and briefly de­
scribes the Windows assembly-language macros which provide a simplified inter­
face to the function and segment conventions of high-level languages.

Chapter 14, "Assembly-Language Macros Directory," lists the assembly-lan­
guage macros alphabetically and, for each macro, provides a detailed description
and one or more examples of how to use it in a program.

Chapter 15, "Windows DDE Protocol Definition," contains an alphabetical
listing and description of the Windows messages which comprise the Windows
Dynamic Data Exchange protocol.

Appendix A, "Virtual-Key Codes," lists the symbolic names and hexadecimal
values of Windows virtual-key codes and includes a brief description of each key.

Appendix B, "RC Diagnostic Messages," contains a listing of Resource Com­
piler error messages and provides a brief description of each message.

Appendix C, "Windows Debugging Messages," contains a listing of Windows de­
bugging messages and provides a brief description of each message.

Appendix D, "Character Tables," shows the layout of the ANSI character set and
the IBM PC Extended Character set.

Appendix E, "32-Bit Memory Management DLL," describes how to implement a
32-bit flat memory model for your application.

xxvi Reference

Document Conventions
Throughout this manual, the teIm "DOS" refers to both MS-DOS® and PC­
DOS, except when noting features that are unique to one or the other.

The following document conventions are used throughout this manual:

Convention

Bold text

()

Italic text

Monos pa ced type

BEGIN

END

Description of Convention

Bold letters indicate a specific teIm or punctua­
tion mark intended to be used literally:
language key words or functions (such as
EXETYPE or CreateWindow), DOS com­
mands, and command-line options (such as
/Zi). You must type these terms and punctua­
tion marks exactly as shown. However, the use
of uppercase or lowercase letters is not always
significant. For instance, you can invoke the
linker by typing either LINK, link, or Link at
the DOS prompt.

In syntax statements, parentheses enclose one
or more parameters that you pass to a function.

Words in italics indicate a placeholder; you are
expected to provide the actual value. For ex­
ample, the following syntax for the
SetCursorPos function indicates that you must
substitute values for the X and Y coordinates,
separated by a comma:

SetCursorPos(X, Y)

Code examples are displayed in a nonpropor­
tional typeface.

Vertical ellipses in program examples indicate
that a portion of the program is omitted.

Ellipses following an item indicate that more
items having the same fOIm may appear. In the
following example, the horizontal ellipses indi­
cate that you can specify more than one
breakaddress for the g command:

g [=startaddress] [breakaddress] ...

[]

{ }

SMALL CAPITAL LETTERS

Introduction xxvii

Double brackets enclose optional fields or para­
meters in command lines and syntax
statements. In the following example, option
and executable-file are optional parameters of
the RC command:

RC [option]filename [executable-file]

A vertical bar indicates that you may enter one
of the entries shown on either side of the bar.
The following command-line syntax illustrates
the use of a vertical bar:

DB [address I range]

The bar indicates that following the Dump
Bytes command (DB), you can specify either
an address or a range.

Quotation marks set off terms defined in the
text.

Curly braces indicate that you must specify
one of the enclosed items.

Small capital letters indicate the names of keys
and key sequences, such as:

ALT + SPACEBAR

A box containing a Microsoft Windows ver­
sion number indicates that a function, message,
or data structure is compatible only with the
specified version and later versions.

Microsoft Windows Software Development Kit Documentation Set
Throughout this documentation set, "SDK" refers specifically to the Microsoft
Windows Software Development Kit and its contents. The SDK includes the fol­
lowing manuals:

xxviii Reference

Title

Installation and
Update Guide

Guide to Programming

Tools

Reference

System Application
Architecture, Common
User Access:
Advanced InteJiace
Design Guide

Contents

Provides an orientation to the SDK, explains how to
install the SDK software, and highlights the changes
for version 3.0.

Explains how to write Windows applications, and
provides sample applications that you can use as
templates for writing your own programs. The
Guide to Programming also addresses some more
advanced Windows programming topics.

Explains how to use the software-development tools
you'll need to build Windows applications, such as
debuggers and specialized SDK editors.

Is a comprehensive guide to all the details of the
Microsoft Windows application program interface
(API). The Reference lists in alphabetical order all
the current functions, messages, and data structures
of the API, and provides extensive overviews on
how to use the API.

Provides guidelines and recommendations for writ­
ing programs that look and act consistently with
other Microsoft Windows applications~

Volume 1

Part

1
Windows Functions

Part 1 describes the functions which are the core of the Windows application pro­
grammer interface (API). You use these functions as part of a C- or assembly­
language program to create an application that takes advantage of Windows'
user-interface, graphics and multitasking capabilities.

CHAPTERS
1 Window Manager Interface Functions
2 Graphics Device Interface Functions
3 System Services Interface Functions
4 Functions Directory

Chapter

1
Window Manager Interface
Functions

This chapter describes the Microsoft Windows functions that process messages,
create, move, or alter a window, or create system output. These functions consti­
tute the window manager interface.

This chapter describes the following topics:

• Message functions

• Window-creation functions

• Display and movement functions

• Input functions

• Hardware functions

• Painting functions

• Dialog-box functions

• Scrolling functions

• Menu functions

• Information functions

• System functions

• Clipboard functions

• Error functions

• Caret functions

• Cursor functions

• Hook functions

• Property functions

• Rectangle functions

1-2 Reference - Volume 1

1. 1 Message Functions
Message functions read and process Windows messages in an application's
queue. Messages represent a variety of input to a Windows application. A
message is a data structure that contains a message identifier and message para­
meters. The content of the parameters varies with the message type. The follow­
ing list briefly describes each function:

Function

CallWindowProc

DispatchMessage

GetMessage

Description

Passes message information to the specified function.

Passes a message to a window function of the
specified window.

Retrieves a message from the specified range of
messages.

GetMessagePos Returns the position of the mouse at the time the last
message was retrieved.

GetMessageTime Returns the time at which the last message was
retrieved.

InSendMessage Determines whether the current window function is
processing a message passed to it through a call to
the SendMessage function.

PeekMessage Checks the application queue and places the
message appropriately.

PostAppMessage Posts a message to the application.

PostMessage Places a message in the application queue.

PostQuitMessage Posts a WM_QUIT message to the application.

ReplyMessage Replies to a message.

SendMessage Sends a message to a window or windows.

SetMessageQueue Creates a new message queue of a different size.

TranslateAccelerator Processes keyboard accelerators for menu com­
mands.

TranslateMDISysAccel Processes multiple document interface (MDI) child
window command accelerators.

TranslateMessage Translates virtual key-stroke messages into character
messages.

WaitMessage Yields control to other applications.

Function

WinMain

Window Manager Interface Functions 1-3

Description

Serves as an entry point for execution of a Windows
application.

1.1.1 Generating and Processing Messages
Windows generates a message at each input event, such as when the user moves
the mouse or presses a keyboard key. Windows collects these input messages in a
system-wide queue and then places these messages, as well as timer and paint
messages, in an application's queue. The application queues are first-in/first-out
queues that belong to individual applications; however, timer and paint messages
are held in the queue until the application has processed all other messages.
Windows places messages that belong to a specific application in that applica­
tion 's queue. The application then reads the messages by using the GetMessage
function and dispatches them to the appropriate window function by using the .
DispatchMessage function.

Windows sends some messages directly to an application's window function,
without placing them in the ~pplication queue. Such messages are called un­
queued messages. In general, an unqueued message is any message that affects
the window only. The SendMessage function sends messages directly to a
window.

For example, the CreateWindow function directs Windows to send a
WM_CREATE message to the window function of the application and to wait
until the message has been processed by the window function. Windows sends
this message directly to the function and does not place it in the application
queue.

Although most messages are generated by Windows, applications can create their
own messages and place them in the application queues of other applications.

An application can pull messages from its queue by using the GetMessage func­
tion. This function searches the application queue for messages and, if a message
exists, returns the top message in the application queue. If the application queue
is empty, GetMessage waits for a message to be placed in the queue. While wait­
ing, GetMessage relinquishes control to Windows, allowing other applications to
take control and pr,ocess their own messages.

Once a main function has a message from a queue, it can dispatch the message to
a window function by using the DispatchMessage function. This function directs
Windows to call the window function of the window associated with the
message, and then passes the content of the message as function arguments. The
window function can then process the message and carry out any requested
changes to.the window. When the window function returns, Windows returns
control to the main function. The main function can then pull the next message
from the queue.

1-4 Reference - Volume 1

NOTE Unless noted otherwise, Windows can send messages in any sequence. An applica­
tion should not rely on receiving messages in a particular order.

Windows generates a virtual-key message each time the user presses a keyboard
key. The virtual-key message contains a virtual-key code that defines which key
was pressed, but does not define the character value of that key. To retrieve the
character value, the main function must translate the virtual-key message by
using the TranslateMessage function. This function puts another message with
an appropriate character value in the application queue. The message can then be
dispatched to a window function.

1.1.2 Translating Messages
In general, a main function should use the TranslateMessage function to trans­
late every message, not just virtual-key messages. Although TranslateMessage
has no effect on other types of messages, it guarantees that any keyboard input is
translated correctly.

The following program fragment illustrates the typical loop that a main function
uses to pull messages from the queues and dispatch them to window functions:

int PASCAL WinMain(hlnstance, hPrevlnstance, lpCmdLine, nShowCmd)
HANDLE hlnstance;
HANDLE hPrevlnstance;
LPSTR 1 pCmd Line;
int nShowCmd;
{

MSG msg;

while (GetMessage«LPMSG)&msg, NULL, 0, 0))
{

TranslateMessage«LPMSG)&msg);
DispatchMessage«LPMSG)&msg);

exit(msg.wParam);

Applications that use accelerator keys must load an accelerator table from
the resource file by using the LoadAccelerator function, and then translate
keyboard messages into accelerator-key messages by using the Translate­
Accelerator function. The main loop for applications that use accelerator keys
should have the following fonn:

while (GetMessage«LPMSG)&msg, (HWND)NULL, 0, 0))
{

if (TranslateAccelerator(hWindow, hAccel, «LPMSG)&msg) 0)
{

I
I

TranslateMessage((LPMSG)&msg);
DispatchMessage((LPMSG)&msg);

Window Manager Interface Functions 1-5

exit(msg.wParam);

The TranslateAccelerator function must appear before the standard Trans­
lateMessage and DispatchMessage functions. Furthermore, since Trans­
lateAccelerator automatically dispatches the accelerator message to the
appropriate window function, the TranslateMessage and DispatchMessage
functions should not be called if TranslateAccelerator returns a nonzero value.

1.1.3 Examining Messages
An application can use the PeekMessage function when it checks the queues for
messages but does not want to pull the message from the queue. The function re­
turns a nonzero value if a message is in the queue, and lets the application re­
trieve the message and process it without going through the application's main
loop.

Typically, an application uses PeekMessage to check periodically for messages
when the application is carrying out a lengthy operation, such as processing input
and output. For example, this function can be used to check for messages that ter­
minate the operation. PeekMessage also gives the application a chance to yield
control if no messages are present because PeekMessage can yield if no mes­
sages are in the queue.

1.1.4 Sending Messages
The SendMessage and PostMessage functions let applications pass messages to
their windows or to the windows of other applications.

The PostMessage function directs Windows to post the message by placing it in
the application queue. Control returns immediately to the calling application, and
any action to be carried out as a result of the message does not occur until the
message is read from the queue.

The SendMessage function directs Windows to send a message directly to the
given window function, bypassing the application queue. Windows does not re­
turn control to the calling application until the window function that receives the
message processes the message.

When an application transmits a message, it must send the message by calling
SendMessage if the application relies on the return value of a message. The re­
turn value of SendMessage is the same as the return value of the function that
processed the message. PostMessage returns immediately after sending the
message, so its return value is only a Boolean value indicating wh~her the
message was successfully sent and so does not indicate how the message was
processed.

1-6 Reference - Volume 1

Windows communicates with applications through window messages. The mes­
sages are passed (sent or posted) to an application's window function to let the
function process the messages as desired. Although an application's main func-

. tion may read and dispatch window messages, in most cases only the window
function processes them.

1.1.5 Avoiding Message Oead/ocks
An application can create a deadlock condition in Windows if it yields control
while processing a message sent from another application (or by Windows on
behalf of another application) by means of the SendMessage function. The appli­
cation does not have to yield explicitly. Calling anyone of the following func­
tions can result in the application yielding control:

• DialogBox

• DialogBoxlndirect

• DialogBoxlndirectParam

• DialogBoxParam

• GetMessage

• MessageBox

• PeekMessage

• Yield

Normally a task that calls SendMessage to send a message to another task will
not continue executing until the window procedure that receives the message re­
turns. However, if a task that receives the message yields control, Windows can
be placed in a deadlock situation where the sending task needs to execute and
process messages but cannot because it is waiting for SendMessage to return.

A window function can determine whether a message it receives was sent by
SendMessage by calling the InSendMessage function. Before calling any of the
functions listed above while processing a message, the window function should
. first call InSendMessage. If InSendMessage returns TRUE, the window func­
tion must call the Reply Message function before calling any function that yields
control.

As an alternative, can use a system modal dialog box or message box. Because
system modal windows prevent other windows from receiving input focus or
messages, an application should use system modal windows only when necessary.

Window Manager Interface Functions 1-7

1.2 Window-Creation Functions
Window-creation functions create, destroy, modify, and obtain information about
windows. The following list briefly describes each window-creation function:

Function

AdjustWindowRect

AdjustWindowRectEx

CreateWindow

Create WindowEx

DeIDlgProc

DefFramePrQc

DefMDIChiidProc

DefWindowProc

DestroyWindow

GetClasslnfo

GetClassLong

GetClassName

GetClassWord

GetLastActivePopup

GetWindowLong

GetWindowWord

RegisterClass

Description

Computes the size of a window to fit a given client
area.

Computes the size of a window with extended style
to fit a given client area ..

Creates overlapped, pop-up, and child windows.

Creates overlapped, pop-up, and child windows with
extended styles.

Provides default processing for those dialog-box
messages that an application does not process.

Provides default processing for those multiple docu­
ment interface (MDI) frame window messages that
an application does not process.

Provides default processing those for MDI child
window messages an that application does not
process.

Provides default processing for those window mes­
sages that an application does not process.

Destroys a window.

Retrieves information about a specified class.

Retrieves window-class information from a WND­
CLASS structure.

Retrieves a window-class name.

Retrieves window-class information from a WND­
CLASS structure.

Determines which popup window owned by another
window was most recently active.

Retrieves information about a window.

Retrieves information about a window.

Registers a window class.

1-8 Reference - Volume 1

Function

SetClassLong

SetClassWord

SetWindowLong

Set WindowWord

U nregisterClass

1.2. 1 Window Classes

Description

Replaces information in a WNDCLASS structure.

Replaces information in a WNDCLASS structure.

Changes a window attribute.

Changes a window attribute.

Removes a window class from the window-class
table.

A window class is a set of attributes that defines how a window looks and be­
haves. Before an application can create and use a window, it must defin~ and
register a window class for that window. An application registers a class by pass­
ing values for each element of the class to the RegisterClass function. Any num­
ber of window classes can be registered. Once a class has been registered,
Windows lets the application create any number of windows belonging to that
class. The registered class remains avaiJable until it is deleted or the application
terminates.

Although the complete window class consists of many elements, Windows re­
quires only that an application supply a class name, an address to the window pro­
cedure that will process all messages sent to windows belonging to this class, and
an instance handle that identifies the application that registered the class. The
other elements of the window class define default attributes for windows of the
class, such as the shape of the cursor and the content of the menu for the window.

There are three types of window classes. They differ in scope and when they are
created and destroyed.

System Global Classes
Windows creates system global classes when it starts. These classes are available
for use by all applications at all times. Because Windows creates system global
classes on behalf of all applications, an application cannot create or destroy any
of these classes. Examples of system global classes include edit-control and list­
box control classes.

Application Global Classes
An application or (more likely) a library creates an application global class by
specifying the CS_GLOBALCLASS style for the class. Once created, it is
globally available to all applications within the system. Most often, a library
creates an application global class so that applications which call the library can
use the class. Windows destroys an application global class when the application
or library that created it terminates. For this reason, it is essential that all applica-

Window Manager Interface Functions 1-9

tions destroy all windows using that class before the library or application that
created the class terminates.

Application Local Classes
An application local class is any window class created by an application for its
exclusive use. This is the most common type of class created by an application.

1.2.2 How Windows Locates a Class
When an application creates a window with a specified class, Windows uses the
following algorithm to find the class:

1. Windows searches for a local class of the specified name.

2. If Windows does not find a local class with the name, then it searches the
application global class list.

3. If Windows does not find the name in the application global class list, then it
searches the system global class list.

This procedure is used for all windows created by the application, including
windows created on the application's behalf, such as dialog controls. It is
possible, then, to override system global classes without affecting other applica­
tions.

1.2.3 How Windows Determines the Owner of a Class
Windows determines class ownership from the hlnstance field of the WND­
CLASS structure passed to the RegisterClass function when the application or li­
brary registers the class. For Windows libraries, this must be the instance handle
of the library. When the application that registered the class terminates or the li­
brary that registered the class is unloaded, the class is destroyed. For this reason,
all windows using the class must be destroyed before the application or library
terminates.

1.2.4 Registering a Window Class
When Windows registers a window class, it copies the attributes into its own
memory area. Windows uses the internally stored attributes when an application
refers to the window class by name; it is not necessary for the application that
originally registered the class to keep the structure available.

1-10 Reference - Volume 1

1.2.5 Shared Window Classes
Applications must not share registered classes with other applications. Some
information in a window class, such as the address of the window function, is
specific to a given application and cannot be used by other applications.
However, applications can share an application global class. See "Application
Global Classes," in Section 1.2.1 for more information.

Although applications must not .share registered classes, different instances of the
same application can share a registered class. Once a window class has been
registered by an application, it is available to all subsequent instances of that
application. This means that new instances of an application do not need to, and
should not, register window classes that have been registered by previous in­
stances.

1.2.6 Predefined Window Classes
Windows provides several predefined window classes. These classes define
special control windows that carry out common input tasks that let the user input
text, direct scrolling, and select from a list of names. The predefined window
classes are available to all applications and can be used any number of times to
create any number of these control windows.

1.2.7 Elements of a Window Class
The elements of the window class define the default behavior of the windows
created from that class. The application that registers the window class assigns
elements to the class by setting appropriate fields in a WNDCLASS data struc­
ture and passing the structure to the RegisterClass function. An application can
retrieve information about a given window class with the GetClassInfo function.

Table 1.1 shows the window class elements:

Table 1.1 Window Class Elements

Element Purpose

Class name Distinguishes the class from other registered
classes.

Window-function address

Instance handle

Class cursor

Points to the function that processes all messages
that are sent to windows in the class, and defines
the behavior of the window.

Identifies the application that registered the class.

Defines the shape of the cursor when the cursor is
in a window of the class.

Window Manager Interface Functions 1-11

Table 1.1 Window Class Elements (continued)

Element

Class icon

Class background brush

Class menu

Class styles

Class extra

Window extra

Purpose

Defines the shape of the icon Windows displays
when a window belonging to the class is closed.

Defines the color and pattern Windows uses to fill
the client area when the window is opened or
painted.

Specifies the default menu used for any window
in the class that does not explicitly define a menu.

Defines how to update the window after moving
or resizing, how to process double-clicks of the
mouse, how to allocate space for the display con­
text, and other aspects of the window.

Specifies the amount of memory (in bytes) that
Windows should reserve at the end of the class
data structure.

Specifies the amount of memory (in bytes) that
Windows should reserve at the end of any
window structure an application creates with this
class.

The following sections describe the elements of a window class and explain the
default values for these elements if no explicit value is given when the class is
registered.

Class Name
Every window class needs a class name. The class name distinguishes one class
from another. An application assigns a class name to the class by setting the
IpszClassName field of the WNDCLASS structure to the address of a null­
terminated string that contains the name.

In the case of an application global class, the class name must be unique to distin­
guish it from other application global classes. If an application registers another
application global class with the name of an existing application global class, the
RegisterClass function returns FALSE, indicating failure. A conventional
method for ensuring this uniqueness is to include the application name in the
name of the application global class.

The class name must be unique among all the classes registered by an applica­
tion. An application cannot register an application local class and an application
global class with the same class name.

1-12 Reference - Volume 1

Window-Function Address
Every class needs a window-function address. The address defines the entry
point of the window function that is used to process all messages for windows in
the class. Windows passes messages to the function when it wants the window to
carry out tasks, such as painting its client area or responding to input from the
user. An application assigns a window function address by copying the address
to the Ipfn WndProc field of the WNDCLASS structure. The window function
must be exported in the module-definition (.DEF) file. See Chapter 10, "Module­
Definition Statements," in Reference, Volume 2, for more information on ex­
porting functions.

For details about the window function, see Section 1.2.13, "Window Function."

Instance Handle
Every window class needs an instance handle to identify the application that
registered the class. As a multitasking system, Windows lets several applications
run at the same time, so it needs instance handles to keep track of all applica­
tions. Windows assigns a unique handle to each copy of a running application.

Windows passes an instance handle to an application when the application first
begins operation. The application assigns this instance handle to the class by
copying it to the hlnstance field of the WNDCLASS structure.

Class Cursor,
The class cursor defines the shape of the cursor when the cursor is in the client
area of a window in the class. Windows automatically sets the cursor to the given
shape as soon as the cursor enters the window's client area, and ensures that the
cursor keeps that shape while it remains in the client area. To assign a cursor
shape to a window class, an application typically loads the shape from the appli­
cation's resources by using the LoadCursor function, and then assigns the
returned cursor handle to the hCursor field of the WNDCLASS structure.

Windows does not require a class cursor. If a class cursor is not defined,
Windows assumes that the window will set the cursor shape each time the cursor
moves into the window.

Class Icon
The class icon defines the shape of the icon used when the window of the given
class is minimized. To assign an icon to a window class, an application typically
loads the icon from the application's resources by using the Loadlcon function,
and then assigns the returned icon handle to the hlcon field of the WNDCLASS
structure.

Windows does not require a class icon. If a class icon is not defined, Windows
assumes the application will draw the icon whenever the window is minimized.

Window Manager Interface Functions 1-13

In this case, Windows sends appropriate messages to the window procedure,
requesting that the icon be painted.

Class Background Brush
A class background brush is the brush used to prepare the client area of a
window for subsequent drawing by the application. Windows uses the brush
to fill the client area with a solid color or pattern, thereby removing all previous
images from that location whether they belonged to the window or not.

To assign a background brush to a class, an application typically creates a brush
by using the appropriate functions from GDI, and then assigns the returned brush
handle to the hbrBackground field of the WNDCLASS structure.

Instead of creating a brush, an application can use a standard system color by
setting the field to one of the following color values:

• COLOR_ACTIVECAPTION

• COLOR_APPWORKSPACE

• COLOR_BACKGROUND

• COLOR_BTNFACE

• COLOR_BTNSHADOW

• COLOR_BTNTEXT

• COLOR_CAPTIONTEXT

• COLOR_GRAYTEXT

• COLOR_HIGHLIGHT

• COLOR_HIGHLIGHTTEXT

• COLOR_INACTIVECAPTION

• COLOR_MENU

• COLOR_MENUTEXT

• COLOR_SCROLLBAR

• COLOR_WINDOW

• COLOR_ WINDOWFRAME

• COLOR_ WINDOWTEXT

To use a standard system color, the application must increase the background­
color value by one. For example, COLOR_BACKGROUND + 1 is the system
background color.

1-14 Reference - Volume 1

Class Menu
A class menu defines the default menu to be used by the windows in the class if
no explicit menu is given when the windows are created. A menu is a list of com­
mands that appears at the top of a window, under the title bar, from which a user
can select actions for the application to carry out. To assign a menu to a class, an
application sets the IpszMenuName field of the WNDCLASS structure to the
address of a null-terminated string that contains the resource name of the menu.
The menu is assumed to be a resource in the given application. Windows auto­
matically loads the menu when it is needed. Note that if the menu resource is
identified by an integer and not by a name, the IpszMenuName field can be set
to that integer value by applying the MAKEINTRESOURCE macro before
assigning the value.

Windows does not require a class menu. If a menu is not given, Windows as­
sumes that the windows in the class have no menu bars. Even if no class menu is
given, an application can still define a menu bar for a window when it creates the
window.

Windows does not allow menu bars with child windows. If a menu is given and a
child window is created using the class, the menu is ignored.

1.2.8 Class Styles
The class styles define additional elements of the window class. Two or more
styles can be combined by using the bitwise OR operator. Table 1.2 lists the class
styles:

Table 1.2 Window Class Styles

Style

CS_BYTEALIGNCLIENT

CS_BYTEALIGNWINDOW

Description

Aligns the window's client area on a byte
boundary (in the x direction).

Aligns the window on a byte boundary (in the x
direction).

Allocates one display context to be shared by
all windows in the class.

Sends double-click messages to the window
function.

Window Manager Interface Functions 1-15

Table 1.2 Window Class Styles (continued)

Style

CS_ GLOBALCLASS

CS_NOCLOSE

CS_OWNDC

Description

Specifies that the window class is an applica­
tion global class. An application global class is
created by an application or library and is avail­
able to all applications. The class is destroyed
when the application or library that created the
class terminates; it is essential, therefore, that
all windows created with the application global
class be closed before this occurs.

Requests that the entire client area be redrawn
if a movement or adjustment to the size
changes the width of the client area.

Inhibits the close option on the System menu.

Allocates a unique display context for each
window in the class.

Gives the parent window's display context to
the window class.

Saves the portion of the screen image that is ob­
scured by a window; Windows uses the saved
bitmap to re-create the screen image when the
window is removed. Windows displays the bit­
map at its original location and does not send
WM_PAINT messages to windows which had
been obscured by the window if the memory
used by the bitmap has not been discarded and
if other screen actions have not invalidated the
stored image.

Requests that the entire client area be redrawn
if a movement or adjustment to the size
changes the height of the client area.

To assign a style to a window class, an application assigns the style value to the
style field of the WNDCLASS structure.

1-16 Reference - Volume 1

1.2.9 Internal Data Structures
Windows maintains internal data structures for each window class and window.
These structures are not directly accessible to applications but can be examined
and modified by using the following functions:

• GetClassInfo

• GetClassLong

• GetClassName

• GetClassWord

• GetWindowLong

• GetWindowWord

• SetClassLong

• SetClassWord

• SetWindowLong

• SetWindowWord

Section 1.2.10 describes some ways in which a window class or window can be
modified.

1.2.10 Window Subclassing
A subclass is a window or set of windows that belong to the same window class,
and whose messages are intercepted and processed by another window function
(or functions) before being passed to the class window function.

To create the subclass, the SetWindowLong function is used to change the
window function associated with a particular window, causing Windows to call
the new window function instead of the previous one. Any messages not
processed by the new window function must be passed to the previous window
function by calling the CallWindowProc function. This allows Windows to
create a chain of window functions. The address of the previous window function
can be retrieved by using the GetWindowLong function before using SetWin­
dowLong.

Similarly, the SetClassLong function changes the window function associated
with a window class. Any window that is subsequently created with that class
will be associated with the replacement window function for that class, as will
the wiD0IJw whose handle is passed to SetClassLong. Other existing windows
that were previously created with the class are not affected, however.

Window Manager Interface Functions 1-17

When you subclass a window or class of windows, you must export the replace­
ment window procedure in your application's definition file, and you must create
the address of the procedure which you pass to SetWindowLong or Set­
ClassLong by calling the MakeProcInstance function.

NOTE An application should not attempt to create a window subclass for standard
Windows controls such as combo boxes and buttons.

1.2.11 Redrawing the Client Area
When a window is moved, Windows automatically copies the contents of the
client area to the new location. This saves time because a window does not have
to recalculate and redraw the contents of the client area as part of the move. If the
window moves and changes size, Windows copies only as much of the previous
client area as is needed to fill the new location. If the window increases in size,
Windows copies the entire client area and sends a WM_P AI NT message to the
window to fill in the newly exposed areas. When a window is moved, Windows
assumes the contents of the client area remain valid and can be copied without
modification to the new location.

For some windows, however, the contents of the client area are not valid after a
move, especially if the move includes a change in size. For example, a clock
application whose window must always contain the complete image of the clock
has to redraw the window anytime the window changes size, alld has to update
the time after the move. To prevent the windows from copying the previous con­
tents of the client area, a window should specify the CS_ VREDRAW and
CS_HREDRA W styles in the window class.

1.2.12 Class and Private Display Contexts
A display context is a special set of values that applications use for drawing in
the client area of their windows. Windows requires a display context for each
window on the system display, but allows some flexibility in how that display
context is stored and treated by the system.

If no explicit display-context style is given, Windows assumes that each window
will use a display context retrieved from a pool of contexts maintained by
Windows. In such cases, each window must retrieve and initialize the display
context before painting, and then free it after painting.

In order not to retrieve a display context each time it wants to paint in a window,
an application can specify the CS_OWNDC style for the window class. This
class style directs Windows to create a private display context, that is, to allocate
a unique display context for each window in the class. The application need only
retrieve the context once, and then use it for all subsequent painting. Although
the CS_OWNDC style is convenient, it must be used carefully because each dis­
play context occupies approximately 800 bytes of memory in the GDI heap:

1-18 Reference - Volume 1

By specifying the CS_CLASSDC style, an application can have some of the con­
venience of a private display context without allocating a separate display con­
text for each window. The CS_CLASSDC style directs Windows to create a
single class display context, that is, one display context to be shared by all
windows in the class. An application need only retrieve the display context for a
window; then as long as no other window in the class retrieves that display con­
text, the window can continue to use the context.

Similarly, by specifying the CS_PARENTDC style, an application can create
child windows that inherit the device context of their parent.

1.2.13 Window Function
A window function processes all messages sent to a window in a given class.
Windows sends messages to a window function when it receives input from the
user that is intended for the given window, or when it needs information or the
procedure to carry out some action on its window, such as painting in the client
area.

A window function receives input messages from the keyboard, mouse, and
timer. It receives requests for information, such as a request for the window title.
It receives reports of changes made to the system by other windows, such as a
change to the WIN.INI file. It receives messages that give it an opportunity to
modify the standard system response to certain actions, such as an opportunity to
adjust a menu before it is displayed. It receives requests to carry out some action
on its window or client area, such as a request to update the client area. And a
window function receives information about its status in relation to other
windows, such as losing access to the keyboard or becoming the active window.

Most of the messages a window function receives are from Windows, but it can
also receive messages from other windows, including windows it owns. These
messages can be requests for information or notification that a given event has oc­
curred within another window.

A window function continues to receive messages from the system and possibly
other windows in the system until it, or the window function of a parent window,
or the system destroys the window. Even in the process of being destroyed, the
window function receives additional messages that give it the opportunity to
carry out any clean-up tasks before terminating. But once the window is de­
stroyed, no more messages are passed to the function for that particular window.
If there is more than one window of the class, however, the window function con­
tinues to receive messages for the other windows until they, too, are destroyed.

A window function defines how a given window actually behaves; that is, it de­
fines what response the window makes to commands from the user or system.
The messages the window function receives from the system contain information
that the function knows; for example, the user clicked the scroll bar or selected
the Open command in the File menu, or double-clicked in the client area. The
window function must examine these messages and determine what action, if

Window Manager Interface Functions 1-19

any, to take. For example, if the user clicks the scroll bar, the window function
may scroll the contents of the client area. Windows provides detailed information
about what happens and provides some tools to carry out tasks, such as drawing
and scrolling, but the window function must carry out the actual task.

A window function can also choose not to respond to a given message. If it does
not respond, the function must give the system the opportunity to respond by
passing the message to the DefWindowProc function. This function carries out
default actions based on the given message and its parameters. Many messages,
especially nonclient-area messages, must be processed, so the DefWindowProc
function is required in all window functions.

A window function also receives messages that are really intended to be
processed by the system. These messages, called nonclient-area messages, in­
form the function either that the user has carried out some action in a nonclient
area of the window, such as clicking the title bar, or that some information about
the window is required by the system to carry out an action, such as for moving
or adjusting the size of the window. Although Windows passes these messages to
the window function, the function should pass them to the DefWindowProc
function and not attempt to process them. In any case, the window procedure
must not ignore the message or return without passing it to DefWindowProc.

Window Messages
A window message is a set of values that Windows sends to a window function
when it requests some action or informs the window of input. Every message con­
sists of four values: a handle that identifies the window, a message identifier, a
16-bit message-specific value, and a 32-bit message-specific value. These values
are passed as individual parameters to the window function. The window func­
tion then examines the message identifier to determine what response to make
and how to interpret the 16- and 32-bitvalues.

Windows has a wide variety of messages that it or applications can send to a
window function. Most messages are sent to a window as a result of a given func­
tion being executed or as input from the user.

To send a message to a window procedure, Windows expects the window func­
tion to have four parameters and use the Pascal calling convention. The follow­
ing illustrates the window procedure syntax:

LONG FAR PASCAL WndProc(hWnd, wMsg, wPm'am, IParam)
HWND hWnd;
WORDwMsg;
WORD wPm'am;
DWORD IParam;

The hWndparameter identifies the window receiving the message; the wMsg
parameter is the message identifier; the wPm'am parameter is 16 bits of addi­
tional message-specific information; and lParam is 32 bits of additional informa­
tion. The window procedure must return a 32-bit value that indicates the result of

1-20 Reference - Volume 1

message processing. The possible return values depend on the actual message
sent.

Windows expects to make an intersegment call to the window function, so the
function must be declared with the FAR attribute. The window-function name
must be exported by including it in an EXPORTS statement in the application's
module-definition file.

De/ault Window Function
The DefWindowProc function is the default message processor for window func­
tions that do not or cannot process some of the messages sent to them. For most
window functions, the DefWindowProc function carries out most, if not all, pro­
cessing of nonclient-area messages. Those are the messages that signify actions
to be carried out on parts of the window other than the client area. Table 1.3 lists
the messages DefWindowProc processes and the default actions for each:

Table 1.3 Default Actions for Messages

Message

WM_ACTIVATE

WM_CANCELMODE

WM_CLOSE

WM_CTLCOLOR

WM_ERASEBKGND

WM_GETTEXT

WM_GETTEXTLENGTH

WM_ICONERASEBKGND

WM_NCACTIVATE

WM_NCCALCSIZE

WM_NCCREATE

Default Action

Sets or kills the input focus.

Tenninates internal processing of standard scroll
bar input, tenninates internal menu processing,
and releases mouse capture.

Calls the DestroyWindow function.

Sets the background and text color and returns a
, handle to the brush used to fill the control back­
ground.

Fills the client area with the color and pattern
specified by the class brush, if any.

Copies the window title into a specified buffer.

Returns the length (in characters) of the window
title.

Fills the icon client area with the background
brush of the parent window.

Activates or deactivates the window and draws
the icon or title bar to show the new state.

Computes the size of the client area.

Initializes standard scroll bars, if any, and sets the
default title for the window.

Frees any space internally allocated for the
window title.

Window Manager Interface Functions 1-21

Table 1.3 Default Actions for Messages (continued)

Message

WM_NCLBUITONDBLCLK

WM_NCLBUITONDOWN

WM_NCLBUITONUP

WM_NCMOUSEMOVE

WM_NCPAINT

WM_PAINT

WM_QUERYENDSESSION

WM_QUERYOPEN

WM_SETREDRAW

WM_SETTEXT

WM_SHOWWINDOW

WM_SYSCHAR

WM_SYSCOMMAND

WM_SYSKEYDOWN

1.2.14 Window Styles

Default Action

Determines what part of the window the mouse is
in.

Tests the given point to determine the location of
the mouse and, if necessary, generates additional
messages.

Determines whether the left mouse button was
pressed while the mouse was in the nonclient area
ofa window.

Tests the given point to determine the location of
the mouse and, if necessary, generates additional
messages.

Tests the given point to determine the location of
the mouse and, if necessary, generates additional
messages.

Paints the nonclient parts of the window.

Validates the current update region, but does not
paint the region.

Draws the window class icon when a window is
minimized.

Returns TRUE.

Returns TRUE.

Forces an immediate update of information about
the clipping area of the complete window.

Sets and displays the window title.

Opens or closes a window.

Generates a WM_SYSCOMMAND message for
menu input.

Carries out the requested system command.

Examines the given key and generates a
WM_SYSCOMMAND message if the key is
either TAB or ENTER.

Windows provides several different window styles that can be combined to form
different kinds of windows. The styles are used in the CreateWindow function
when the window is created.

1-22 Reference - Volume 1

Overlapped Windows
An overlapped window is always a top-level window. In other words, an over­
lapped window never has a parent window. It has a client area, a border, and a
title bar. It can also have a System menu, minimize/maximize boxes, scroll bars,
and a menu, if these items are specified when the window is created. For
windows used as a main interface, the System menu and minimize/maximize
boxes are strongly recommended.

Every overlapped window can have a corresporid.ing icon that Windows displays
when the window is minimized. A minimized window is not destroyed. It can be
opened again by restoring the icon. An application minimizes a window to save
screen space when several windows are open at the same time.

You create an overlapped window by using the WS_OVERLAPPED or
WS_OVERLAPPEDWINDOW style with the CreateWindow function. An
overlapped window created with the WS_OVERLAPPED style always has a
caption and a border. The WS_OVERLAPPEDWINDOW style creates an over­
lapped window with a caption, a thick-frame border, a system menu, and min­
imize and maximize boxes.

Owned Windows
An owned.window is a special type of overlapped window. Every owned
window has an owner. This owner must also be an overlapped window. Being
owned forces several constraints on a window:

• An owned window will always be "above" its owner when the windows are
ordered. Attempting to move the owner above the owned window will cause
the owned window to also change position to ensure that it will always be
above its owner.

• Windows automatically destroys an owned window when it destroys the
window's owner.

• An owned window is hidden when its owner is minimized.

An application creates an owned window by specifying the owner's window
handle as the hWndParent parameter of the CreateWindow function when creat­
ing a window that has the WS_OVERLAPPED style.

Dialog boxes are owned windows by default. The function that creates the dialog
box receives the handle of the owner window as its hWndParent parameter.

Pop-up Windows
Pop-up windows are another special type of overlapped window. The main differ­
ence between a pop-up window and an overlapped window is that an overlapped
window always has a caption, while the caption bCl;r is optional for a pop-up
window. Like overlapped windows, pop-up windows can be owned.

Window Manager Interface Functions 1-23

You create a pop-up window by using the WS_POPUP window style with the
CreateWindow function. A pop-up window can be opened and closed by using
the ShowWindow function.

Child Windows
A child window is the window style used for windows that are confined to the
client area of a parent window. Child windows are typically used to divide the
client area of a parent window into different functional areas.

You create a child window by using the WS_CHILD window style with the
CreateWindow function. A child window can be shown and hidden by using the
ShowWindow function.

Every child window must have a parent window. The parent window can be an
overlapped window, a pop-up window, or even another child window. The
parent window relinquishes a portion of its client area to the child window, and
the child window receives all input from this area. The window class does not
have to be the same for each of the child windows in the parent window. This
means an application can fill a parent window with child windows that look
different and carry out different tasks.

A child window has a client area, but it does not have any other features unless
these are explicitly requested. An application can request a border, title bar, min­
imize/maximize boxes, and scroll bars for a child window. In most cases, the
application designs its own features for the child window.

Although not required, every child window should have a unique integer identi­
fier. The identifier, given in the menu parameter of the CreateWindow function
in place of a menu, helps identify the child window when its parent window has
many other child windows. The child window should use this identifier in any
messages it sends to the parent window. This is the way a parent window with
several child windows can identify which child window is sending the message.

Windows always positions the child window relative to the upper-left comer of
the parent window's client area. The coordinates are always client coordinates.
(For information about mapping, see Section 2.5, "Mapping Functions.") If all or
part of a child window is moved outside the visible portion of the parent
window's client area, the child window is clipped; that is, the portion outside the
parent window's client area is not displayed. .

A child window is an independent window that receives its own input and other
messages. Input intended for a child window goes directly to the child window
and is not passed through the parent window. The only exception is if input to the
child window has been disabled by the Enable Window function. In this case,
Windows passes any input that would have gone to the child window to the
parent window instead. This gives the parent window an opportunity to examine
the input and enable the child window, if necessary.

1-24 Reference - Volume 1

Actions that affect the parent window can also affect the child window. The fol­
lowing is a list of actions affecting parent windows that can affect child windows:

Parent Window

Shown

Hidden

Destroyed

Moved

Increased in size or
maximized

Child Window

Shown after the parent window.

Hidden prior to the parent window being closed. A
. child window can be visible only when the parent

window is visible.

Destroyed prior to the parent window being de­
stroyed.

Moved with the parent window's client area. The
child window is responsible for painting after the
move.

Paints any portions of the parent window that have
been exposed as a result of the increased size of the
client area.

Windows does not automatically clip a child window from the parent window's
client area. This means the parent window will draw over the child window if it
carries out any drawing in the same location as the child window. Windows does
clip the child window from the parent window's client area if the parent window
has a WS_CLIPCHILDREN style. If the child window is clipped, the parent
window cannot draw over it.

A child window can overlap other child windows in the same client area. Two
child windows of the same parent window may draw in each other's client area
unless one child window has a WS_CLIPSIBLINGS style. Sibling windows are
child windows that share the same parent window. If the application specifies
this style for a child window, any portion of that child's sibling window that lies
within this window will be clipped.

If a window has either the WS_CLIPCHILDREN or WS_CLIPSIBLINGS style,
a slight loss in performance occurs.

1.2.15 Multiple Document Interface Windows
Windows multiple document interface (MDI) provides applications with a stand­
ard interface for displaying multiple documents within the same instance of an
application. An MDI application creates a frame window which contains a client
window in place of its client area. An application creates an MDI client window
by calling CreateWindow with the class MDICLIENT and passing a CLIENT­
CREATESTRUCT data structure as the function's [pPm-am parameter. This
client window in turn can own multiple child windows, each of which displays a

1.2.16 Title Bar

Window Manager Interface Functions 1-25

separate document. An MDI application controls these child windows by sending
messages to its client window.

For more infonnation on the multiple document interface, see the Guide to
Programming.

The title bar, a rectangle at the top of the window, provides space for the window
title or name. An application defines the window title when it creates the
window. It can also change this name anytime by using the SetWindowText
function. If a window has a title bar, Windows lets the user use the mouse to
move the window.

1.2. 17 System Menu
The System menu, identified by an icon at the left end of the title bar, is a pop-up
menu that contains the system commands. The system commands are commands
selected by the user to direct Windows to carry out actions on the window, such
as moving and closing it.

If a System menu or close box is desired for a window, the WS_SYSMENU and
WS_CAPTION window styles must be specified when the window is created.

1.2.18 Scroll Bars

1.2.19 Menus

The horizontal and vertical scroll bars, bars on the right and lower sides of a
window, let a user scroll the contents of the client area. Windows sends scroll re­
quests to a window as WM_HSCROLL and WM_ VSCROLL messages. If the
window penn its scrolling, the window function must process these messages.

A window can have one or both scroll bars. To create a window with a scroll bar,
the application must specify the WS_HSCROLL or WS_ VSCROLL window
style when the window is created.

A menu is a list of commands from which the user can select using the mouse or
the keyboard. When the user selects an item, Windows sends a corresponding
message to the window function to indicate which command was selected.
Windows provides two types of menus: menu bars (sometimes called static
menus) and pop-up menus.

A menu bar is a horizontal menu that appears at the top of a window and below
the title bar, if one exists. Any window except a child window can have a menu
bar. If an application does not specify a menu when it creates a window; the
window receives the default menu bar (if any) defined by the window class.

1-26 Reference - Volume 1

Pop-up menus contain a vertical list of items and are often displayed when a user
selects a menu-bar item. In tum, a pop-up menu item can display another pop..:up
menu. Also, a pop-up menu can be "floating." A floating pop-up menu can ap­
pear anywhere on the screen designated by the application. An application
creates an empty pop-up menu by calling the CreatePopupMenu function, and
then fills in the menu using the AppendMenu and InsertMenu functions. It dis­
plays the pop-up menu by calling TrackPopupMenu.

Individual menu items can be created or modified with the MF _ OWNERDRA W
style, indicating that the item is an owner-draw item. In this case, the owner of
the menu is responsible for drawing all visual aspects of the menu item, includ­
ing checked, grayed, and highlighted states. When the menu is displayed for the
first time, the window that owns the menu receives a WM_MEASUREITEM
message. The IParam parameter of this message points to a MEASURE­
ITEMSTRUCT data structure. The owner then fills in this data structure with
the dimensions of the item and returns. Windows uses the information in the data

. structure to determine the size of the item so that Windows can appropriately de­
tect the user's interaction with the item.

Windows sends the WM_DRA WITEM message whenever the owner of the
menu must update the visual appearance of the item. Unlike other owner-draw
controls, however, the owner of the menu item does not receive the
WM_DELETEITEM message when the menu item is removed from the menu. A
top-level menu item cannot be an owner-draw item.

When the application calls AppendMenu, InsertMenu, or ModifyMenu to add
an owner-draw menu item to a menu or to change an existing menu item to be an
owner-draw menu item, the application can supply a 32-bit value as the
IpNewltem parameter to the function. The application can use this value to main­
tain additional data associated with the item. This value is available to the appli­
cation as the itemData field of the structures pointed to by the IParam parameter
of the WM_MEASUREITEM and WM_DRA WITEM messages. For example, if
an application were to draw the text in a menu item using a specific color, the 32-
bit value could contain a pointer to a string. The application could then set the
text color before drawing the item when it received the WM_DRAWITEM
message.

1.2.20 Window State
The window state can be opened or closed (iconic), hidden or visible, and
enabled or disabled. The initial state of a window can be set by using the follow­
ing window styles:

• WS_DISABLED

• WS_MINIMIZE

• WS_MAXIMIZE

Window Manager Interface Functions 1-27

Windows creates windows that are initially enabled for input, that is, windows
that can start receiving input messages immediately. In some cases, an applica­
tion may need to disable input to a new window. It can disable input by specify­
ing the WS_DISABLED window style.

A new window is not displayed until an application opens it by using the Show­
Window function or specifies the WS_ VISIBLE window style when it creates
the window. For overlapped windows, the WS_ICONIC window style creates a
window that is minimized initially.

1.2.21 Life Cycle of a Window
Because the purpose of any window is to let the user enter data or to let the appli­
cation display information, a window starts its life cycle when the application has
a need for input or output. A window continues its life cycle until there is no
longer a need for it, or the application is terminated. Some windows, such as the
window used for the application's main user interface, last the life of the applica­
tion. Other windows, such as a window used as a dialog box, may last only a few
seconds.

The first step in a window's life cycle is creation. Given a registered window
class with a corresponding window function, the application uses the CreateWin­
dow function to create the window. This function directs Windows to prepare in­
ternal data structures for the window and to return a unique integer value, called
a window handle, that the application can use to identify the window in sub­
sequent function calls.

The first message most windows process is WM_ CREATE, the window-creation
message. Again, the Create Window function sends this message to inform the
window function that it can now perform any initialization, such as allocating
memory and preparing data files. The wPm'am parameter is not used, but the
IParam parameter contains a long pointer to a CREATESTRUCT data struc­
ture, whose fields correspond to the parameters passed to Create Window.

Both the WM_CREATE and WM_NCCREATE messages are sent directly to the
window function, bypassing the application queue. This means an application
will create a window and process the WM_CREATE message before it enters the
main program loop.

After a window has been created, it must be opened (displayed) before it can be
used. An application can open the window in one of two ways: it can specify the
WS_ VISIBLE window style in the CreateWindow function to open the window
immediately after creation, or it can wait until later and call the ShowWindow
function to open the window. When creating a main window, an application
should not specify WS_ VISIBLE, but should call ShowWindow from the Win­
Main function with the nCmdShow parameter set to the desired value.

1-28 Reference - Volume 1

When the window is no longer needed or the application is terminated, the
window must be destroyed. This is done by using the DestroyWindow function.
DestroyWindow removes the window from the system display and invalidates
the window handle. It also sends WM_DESTROY and WM_NCDESTROY mes­
sages to the window function.

The WM_DESTROY message is usually the last message a window function
processes. This occurs when the DestroyWindow function is called or when a
WM_CLOSE message is processed by the DefWindowProc function. When a
window function receives a WM_DESTROY message, it should free any allo­
cated memory and close any open data files.

The window used as the application's main user interface should always be the
last window destroyed and should always cause the application to terminate.
When this window receives a WM_DESTROY message, it should call the Post­
QuitMessage function. This function copies a WM_QUIT message to the appli­
cation's message queue as a signal for the application to terminate when the
message is read from the queue.

1.3 Display and Movement Functions
Display and movement functions show, hide, move, and obtain information

, about the number and position of windows on the screen. The following list
briefly describes each display and movement function:

Function Description

ArrangelconicWindows Arranges minimized (iconic) child windows.

BeginDeferWindowPos Initializes memory used by the DeferWindowPos
function.

BringWindowToTop Brings a window to the top of a stack of overlapped
windows.

Close Window Hides the specified window or minimizes it.

DeferWindowPos Records positioning information for a window to be
moved or resized by the EndDeferWindowPos
function.

EndDeferWindowPos Positions or sizes several windows simultaneously
based on information recorded by the DeferWin­
dowPos function.

GetClientRect Copies the coordinates of a window's client area.

GetWindowRect Copies the dimensions of an entire window.

GetWindowText Copies a window caption into a buffer.

Window Manager Interface Functions 1-29

Function Description

GetWindowTextLength Returns the length (in characters) of the given
window's caption or text.

IsIconic Specifies whether a window is open or closed
(iconic).

IsWindowVisible Detennines whether the given window is visible.

IsZoomed Determines whether a window is maximized.

MoveWindow Changes the size and position of a window.

OpenIcon Opens the specified window.

SetWindowPos Changes the size, position, and ordering of child or
pop-up windows.

SetWindowText Sets the window caption or text.

ShowOwnedPopups Shows or hides all pop-up windows.

ShowWindow Displays or removes the given window.

1.4 Input Functions
Input functions disable input from system devices, take control of the system dev­
ices, or define special actions that Windows takes when an application receives
input from a system device. (The system devices are the mouse, the keyboard,
and the timer.) The following list briefly describes each input function:

Function

Enable Window

GetActive Window

GetCapture

GetCurrentTime

GetDoubleClickTime

GetFocus

GetTickCount

Description

Enables and disables mouse and keyboard input
throughout the application.

Returns a handle to the active window.

Returns a handle to the window with the mouse
capture.

Retrieves the current Windows time.

Retrieves the current double-click time for the
mouse.

Retrieves the handle of the window that currently
owns the input focus.

Returns the number of timer ticks recorded since the
system was booted.

1-30 Reference - Volume 1

Function

IsWindowEnabled

KillTimer

ReleaseCapture

SetActive Window

SetCapture

SetDoubleClickTime

SetFocus

SetSysModalWindow

SetTimer

SwapMouseButton

1.5 Hardware Functions

Description

Determines whether the specified window is enabled
for mouse and keyboard input.

Kills the specified timer event.

Releases mouse input and restores normal input
processing.

Makes a window the active window.

Causes mouse input to be sent to a specified window.

Sets the double-click time for the mouse.

Assigns the input focus to a specified window.

Makes the specified window a system modal
window.

Creates a system-timer event.

Reverses the meaning of left and right mouse
buttons.

Hardware functions alter the state of input devices and obtain state information.
Windows uses the mouse and the keyboard as input devices. The following list
briefly describes each hardware function:

Function

EnableHardwarelnput

GetAsyncKeyState

GetInputState

GetKBCodePage

GetKeyboardState

GetKeyNameText

GetKeyState

Description

Enables or disables mouse and keyboard input
throughout the application.

Returns interrupt-level information about the key
state.

Returns TRUE if there is mouse or keyboard input.

Determines which OEM/ANSI tables are loaded.

Copies an array that contains the state of keyboard
keys.

Retrieves a string containing the name of a key from
a list maintained by the keyboard driver.

Retrieves the state of a virtual key.

Function

Map VirtualKey

OemKeyScan

SetKeyboardState

VkKeyScan

1.6 Painting Functions

Window Manager Interface Functions 1-31

Description

Accepts a virtual-key code or scan code for a key
and returns the corresponding scan code, virtual-key
code, or ASCII value.

Maps OEM ASCII codes 0 through OxOFF into the
OEM scan codes and shift states.

Sets the state of keyboard keys by altering values in
an array.

Translates an ANSI character to the corresponding
virtual-key code and shift state for the current
keyboa~d.

Painting functions ptepare a window for painting and carry out some useful
general-purpose graphics operations. Although all the paint functions are specifi­
cally intended for the system display, some can be used for other output devices.
The following list briefly describes each painting function:

Function

BeginPaint

DrawFocusRect

Drawlcon

DrawText

EndPaint

Exclude U pdateRgn

FillRect

FrameRect

GetDC

GetUpdateRect

GetUpdateRgn

GetWindowDC

GrayString

InvalidateRect

Description

Prepares a window for painting.

Draws a rectangle in the style used to indicate focus.

Draws an icon.

Draws characters of a specified string.

Marks the end of window repainting.

Prevents drawing within invalid areas of a window.

Fills a given rectangle by using the specified brush.

, Draws a border for the given rectangle.

Retrieves the display context for the client area.

Copies the dimensions of a window region's bound-'
ing rectangle.

Copies a window's update region.

Retrieves the display context for an entire window.

Writes the characters of a string using gray text.

Marks a rectangle for repainting.

1-32 Reference - Volume 1

Function

InvalidateRgn

InvertRect

ReleaseDC

UpdateWindow

ValidateRect

ValidateRgn

Description

Marks a region for repainting.

Inverts the display bits of the specified rectangle.

Releases a display context.

Notifies the application when parts of a window
need redrawing.

Releases the specified rectangle from repainting.

Releases the specified region from repainting.

1.6.1 How Windows Manages the Display
The system display is the principal display device for all applications running
with Windows. All applications are free to display some form of output on the
system display, but since many applications can run at one time, applications are
not entitled to the entire system display. The complete system display must be
shared. Windows shares the system display by carefully managing the access that
applications have to it. Windows ensures that applications have space to display
output but do not draw in the space reserved for other applications.

Windows manages the system display by using the display context type. The dis­
play context is a special device context that treats each window as a separate dis­
play surface. An application that retrieves a display context for a specific
window has complete control of the system display within that window, but can­
not access or paint over any part of the display outside the window. With a dis­
play context, an application can use GDI painting functions, as well as the output
functions described in this section, to draw in the given window.

1.6.2 Display Context Types
There are four types of display contexts: common, class, private, and window.
The common, class, and private display contexts permit drawing in the client
area of a given window. The window display context permits drawing anywhere
in the window. When a WIndow is created, Windows assigns a common, class, or
private display context to it, based on the type of display context specified in that
window's class style.

Common Display Context
A common display context is the default context for all windows. Windows as­
signs a common display context to the window if a display-context type is not
explicitly specified in the window's class style.

Window Manager Interface Functions 1-33

A common display context permits drawing in a window's client area, but it is
not immediately available for use by a window. A common display context must
be retrieved from a cache of display contexts before a window can carry out any
drawing in its client area. The GetDC or BeginPaint function retrieves the dis­
play context and returns a handle to the context. The handle can be used with
GDI functions to draw in the client area of the given window. After drawing is
complete, the context must be returned to the cache by using the ReleaseDC or
EndPaint function. After the context is released, drawing cannot occur until
another display context is retrieved.

When a common display context is retrieved, Windows gives it default selections
for pen, brush, font, clipping area, and other attributes. These attributes define the
tools currently available to carry out the actual drawing. Table 1.4 lists the de­
fault selections for a common display context:

Table 1.4 Defaults for a Display Context

Attribute

Background color

Background mode

Bitmap

Brush

Brush origin

Clipping region

Color palette

Current pen position

Device origin

Drawing mode

Font

Intercharacter spacing

Mapping mode

Pen

Polygon-filling mode

Relative-absolute flag

Stretching mode

Text color

Viewport extent

Viewport origin

Default

White

OPAQUE

No default.

WHITE_BRUSH

(0,0)

Entire client area with the update region clipped as ap­
propriate. Child and pop-up windows in the client area
may also be clipped.

DEFAULT_PALETTE

(0,0)

Upper-left corner of client area.

R2_COPYPEN

SYSTEM_FONT (SYSTEM_FIXED_FONT for appli­
cations written to run with Windows versions prior to
3.0)

° MM_TEXT

BLACK_PEN

ALTERNATE

ABSOLUTE

BLACKONWHITE

Black

(1,1)

(0,0)

1-34 Reference - Volume 1

Table 1.4 Defaults for a Display Context (continued)

Attribute

Window extents

Window origin

Default

(1,1)

(0,0)

An application can modify the attributes of the display context by using the selec­
tion functions and display-context attribute functions. For example, applications
typically change the selected pen, brush, and font.

When a common display context is released, the current selections, such as map­
ping mode and clipping area, are lost. Windows does not preserve the previous
selections of a common display context since these contexts are shared and
Windows has no way to guarantee that the next window to use a given common
display context will be the last window to use that context. Applications that
modify the attributes of a common display context must do so each time another
context is retrieved.

Class Display Context
A window has a class display context if the window class specifies the
CS_CLASSDC style. A class display context is shared by all windows in a given
class. A class display context is not part of the display context cache. Instead,
Windows specifically allocates a class context for sole use by the window class.

A class display context must be retrieved before it can be used, but it does not
'have to be released after use. As long as only one window from the class uses the
context, the class display context can be kept and reused. If another window in
the class needs to use the context, that window must retrieve it before any draw­
ing occurs. Retrieving the context sets the correct origin and clipping for the new
window and ensures that the context will be applied to the correct window. A
handle to the class display context can be retrieved by using the GetDC or Begin­
Paint function. The ReleaseDC and EndPaint functions have no effect on the
class display context.

A class display context is given the same default selections as a common display
context when the first window of the class is created (see Table 1.4, "Defaults for
a Display Context"). These selections can be modified at any time. Windows pre­
serves all new selections made for the class display context, except for the clip­
ping region and device origin, which are adjusted for the current window when
the context is retrieved. Otherwise, all other attributes remain unchanged. This
means a change made by one window applies to all windows that subsequently
use the context.

Window Manager Interface Functions 1-35

NOTE Changing the mapping mode of a class display context may have an undesirable ef­
fect on how a window's background is erased. For more information, see Section 1.6.7,
"Window Background," and Section 2.5, "Mapping Functions."

Private Display Context
A window has a private display context if the window class specifies the
CS_OWNDC style. A private display context is used exclusively by a given
window. A private display context is not part of the display context cache. In­
stead, Windows specifically allocates the context for sole use by the window.

A private display context needs to be retrieved only once. Thereafter, it can be
kept and used any number of times by the window. Windows automatically up­
dates the context to reflect changes to the window, such as moving or sizing. A
handle to a private display context can be retrieved by using the GetDC or Begin­
Paint function. The ReleaseDC and EndPaint functions have no effect on the
private display context.

A private display context is given the same default selections as a common dis­
play context when the window is created (see Table 1.4, "Defaults for a Display
Context"). These selections can be modified at any time. Windows preserves any
new selections made for the context. New selections, such as clipping region and
brush, remain selected until the window specifically makes a change.

NOTE Changing the mapping mode of a private display context may have an undesirable
effect on how the window's background is erased. For more information, see Section 1.6.7,
"Window Background," and Section 2.5, "Mapping Functions."

Window Display Context
A window display context permits painting anywhere in a window, including the
caption bar, menus, and scroll bars. Its origin is the upper-left comer of the
window, instead of the upper-left comer of the client area.

The GetWindowDC function retrieves a window display context from the same
cache as it does common display contexts. Therefore, a window that uses a
window display context must release it with the ReleaseDC function immedi­
ately after drawing.

Windows always sets the current selections of a window display context to the
same default selections as a common display context and does not preserve any
change the window may have made to these selections (see Table 1.4, "Defaults
for a Display Context"). Windows does not allow private or class window dis­
play contexts, so CS_OWNDC and CS_CLASSDC class styles have no effect on
the window display context.

A window display context is intended to be used for special painting within a
window's nonclient area. Since painting in nonclient areas of overlapped
windows is not recommended, most applications reserve a display context for

1-36 Reference - Volume 1

designing custom child windows. For example, an application may use the dis­
play context to draw a custom border around the window. In such cases, the
window usually processes the WM_NCP AINT message instead of passing it on
to the DefWindowProc function. For applications that do not process
WM_NCP AINT messages but still wish to paint in the nonclient area, the
GetSystemMetrics function can be used to retrieve the dimensions of various
parts of the nonclient area, such as the caption bar, menu bar, and scroll bars.

1.6.3 Display-Context Cache
Windows maintains a cache of display contexts that it uses for common and
window display contexts. This cache contains five display contexts, which means
only five common display contexts can be active at anyone time. To prevent
more than five from being retrieved, a window that uses a common or window
display context must release that context immediately after drawing.

If a window fails to release a common display context, all five display contexts
may eventually be active and unavailable for any other window. In such a case,
Windows ignores all subsequent requests for a common display context. In the re­
tail version of Windows, the system will appear to be deadlocked, while the de­
bugging version of Windows will undergo a fatal exit, alerting the developer of a
problem.

The ReleaseDC function releases a display context and returns it to the cache.
Class and private display contexts are individually allocated for each class or
window; they do not belong to the cache so they do not need to be released after
use.

1.6.4 Painting Sequence
Windows carries out many operations to manage the system display that '!ffect
the content of the client area. If Windows moves, sizes, or alters the appearance
of the display, the change may affect a given window. If so, Windows marks the
area changed by the operation as ready for updating and, at the next opportunity,
sends a WM_P AINT message to the window so that it can update the window in
the update region. If a window paints in its client area, it must call the Begin­
Paint function to retrieve a handle to a display context, must update the changed
area as defined by the update region, and finally, must call the EndPaint func­
tion to complete the operation.

A window is free to paint in its client area at any time, that is, at times other than
in response to a WM_P AINT message. The only requirement is that it retrieve a
,display context for the client area before carrying out any operations.

Window Manager Interface Functions 1-37

1.6.5 WM_PAINT Message
The WM_P AINT message is a request from Windows to a given window to up­
date its display. Windows sends a WM_PAINT message to a window whenever
it is necessary to repaint a portion of an application's window. When a window
receives a WM_PAINT message, it should retrieve the update region by using
the BeginPaint function, and it should carry out whatever operations are neces­
sary to update that part of the client area.

The InvalidateRect and InvalidateRgn functions do not actually generate
WM_P AINT messages. Instead, Windows accumulates the changes made by
these functions and its own changes while a window processes other messages in
its application queue. Postponing the WM_P AINT message lets a window
process all changes at once instead of updating bits and pieces in time-consuming
individual steps.

A window can require Windows to send a WM_P AINT message by using the
UpdateWindow function. The UpdateWindow function sends the message
directly to the window, regardless of the number of other messages in the applica­
tion queue. UpdateWindow is typically used when a window wants to update its
client area immediately, such as just after the window is created.

Once a window receives a WM_PAINT message, it must call the BeginPaint
function to retrieve the display context for the client area and to retrieve other
information such as the update region and whether the background has been
erased.

Windows automatically selects the update region as the clipping region of the dis­
play context. Since GDI discards (clips) drawing that extends outside the clip­
ping region, only drawing that is in the update region is actually visible. For
more information about the clipping region, see Section 2.8, "Clipping Func­
tions."

The BeginPaint function empties the update region to prevent the same region
from generating subsequent WM_P AI NT messages.

After completing the painting operation, the window must call the EndPaint
function to release the display context.

1.6.6 Update Region
An update region defines the part of the client area that is marked for painting on
the next WM_P AINT message. The purpose of the update region is to save some
applications the time it takes to paint the entire contents of the client area. If only
the part that needs painting is added to the update region, only that part is
painted. For example, if a word changes in the client area of a word-processing
application, only the word needs to be painted, not the entire line of text. This
saves the time it takes the application to draw the text, especially if there are
many different sizes and typefaces.

1-38 Reference - Volume 1

The InvaiidateRect and InvaiidateRgn functions add a given rectangle or re­
gion to the update region. The rectangle or region must be given in client coordi­
nates. The update region itself is defined in client coordinates. Windows adds its
own rectangles and regions to a window's update region after operations such as
moving, sizing, and scrolling the window.

The VaiidateRect and VaiidateRgn functions remove a given rectangle or re­
gion from the update region. These functions are typically used when the
window has updated a specific part of the display in the update region before re­
ceiving the WM_PAINT message.

The GetUpdateRect and GetUpdateRgn functions retrieve the smallest
rectangle that encloses the entire update region. These functions can be used to
compute the current size of the update region to determine if painting is required.

1.6.7 Window Background
The window background is the color or pattern the client area is filled with
before a window begins painting in the client area. Windows paints the back­
ground for a window or gives the window the opportunity to do so by sending a
WM_ERASEBKGND message to the window when the application calls the
BeginPaint function.

The background is important since if not erased, the client area will contain
whatever was originally on the system display before the window was moved
there. Windows erases the background by filling it with the background brush
specified by the window's class.

Windows applications that use class or private display contexts should be careful
about erasing the background. Windows assumes the background is to be com­
puted by using the MM_ TEXT mapping mode. If the display context has any
other mapping mode, the area erased may not be within the visible part of the
client area.

1.6.8 Brush Alignment
Brush alignment is particularly important on the system display where scrolling
and moving are commonplace. A brush is a pattern of bits with a minimum size
of 8-by-8 bits. GDI paints with a brush by repeating the pattern again and again
within a given rectangle or region. If the region is moved by an arbitrary
amount-for example, if the window is scrolled-and the brush is used again to
filled empty areas around the original area, there is no guarantee that the original
pattern and the new pattern will be aligned. For example, if the scroll moves the
original filled area up one pixel, the intersection of the original area and any new
painting will be out of alignment by one pixel, or bit. Depending on the pattern,
this may have a undesirable visual effect.

Window Manager Interface Functions 1-39

To ensure that a brush is aligned after a window is moved, an application must
take the following steps:

1. Call the SelectObject function to select a different brush.

2. Call the SetBrushOrg function to realign the current brush.

3. Call the UnrealizeObject function to realign the origin of the original brush
when it is selected next.

4. Call the SelectObject function to select the original brush:

1.6.9 Painting Rectangular Areas
The FillRect, FrameRect, and InvertRect functions provide an easy way to
carry out painting operations on rectangles in the client area.

The FillRect function fills a rectangle with the color and pattern of a given
, brush. This function fills all parts of the rectangle, including the edges or borders.

The FrameRect function uses a brush to draw a border around a rectangle. The
border width and height is one unit.

The InvertRect function inverts the contents of the given rectangle. On mono­
chrome displays, white pixels become black, and vice versa. On color displays,
the results depend on the method used by the display to generate color. In either
case, calling InvertRect twice with the same rectangle restores the display to its
original colors.

1.6.10 Drawing Icons
The Drawlcon function draws an icon at a given location in the client area. An
icon is a bitmap that a window uses as a symbol to represent an item or concept,
such as an application or a warning.

An icon can be created by using the SDKPaint program, added to an applica­
tion's resources by using the Resource Compiler, and loaded into memory by
using the Loadlcon function. Applications can also call the Createlcon function
to create an icon and can modify a previously loaded or created icon at any time.
An icon resource is in global memory and its handle is the handle to that
memory. An application can free memory used to store an icon created by
Createlcon by calling Deletelcon.

1.6.11 Drawing Formatted Text
The DrawText function formats and draws text within a given rectangle in the
client area. This function provides simple text processing that most applications,
other than word processors, can use to display text. DrawText output is similar

1-40 Reference - Volume 1

to the output generated by a tenninal, except it uses the selected font and can clip
the text if it extends outside a given rectangle. DrawText provides many differ­
ent fonnatting styles. Table 1.5 lists the styles that are available:

Table 1.5 Text Formatting Styles

Value Description

DT_BOTTOM Bottom-justified (single line only).

DT _CENTER Centered.

DT_EXPANDTABS

DT_EXTERNALLEADING

DT_RIGHT

DT_SINGLELINE

DT_TOP

DT_VCENTER

DT_ WORDBREAK

Expands tab characters into spaces. Otherwise,
tabs are treated as single characters. The number
of spaces depends on the tab stop size specified
by DT_TABSTOP. IfDT_TABSTOP is not given,
the default is eight spaces.

Includes the font external leading in line height.
External leading is not included in the height of a
line of text. (Leading is the space between lines of
text.) If DT_EXTERNALLEADING is not
given, there is no spacing between lines of text.
Depending on the selected font, this means that
characters in different lines may touch or overlap.

Left-j~stified. Default.

Draws text without clipping. All textwiIl be
drawn even if it extends outside the specified
rectangle. The DrawText function is somewhat
faster when DT _NOCLIP is used.

Right-justified.

Single line only. Carriage returns and linefeeds do
not break the line. Default is multiple-line format­
ting.

Sets tab stops. The high-order byte of the wFor­
mat parameter is the number of characters for
each tab. If DT _ TABSTOP is not given, the de­
fault tab size is eight spaces.

Top-justified (single line only). Default.

Vertically centered (single line only).

Sets word breaks. Lines are automatically broken
between words if a word would extend past the
edge of the rectangle specified by the /pRect para­
meter. Carriage-returnllinefeed sequence also
causes a line break. Word-break characters are
space, tab, carriage return, linefeed, and carriage­
return/linefeed combinations. Applies to
multiple-line formatting only.

Window Manager Interface Functions 1-41

The DrawText function uses the selected font, so applications can draw for­
matted text in other than the system font.

DrawText does not hyphenate, and although it can justify text to the left, right,
or center, it cannot combine justification styles. In other words, it cannot justify
both left and right.

DrawText recognizes a number of control characters and carries out special ac­
tions when it encounters them. Table 1.6 lists the control characters and the re­
spective action:

Table 1.6 DrawText Control Characters

Character (ANSI value)

Carriage retum(13)

Linefeed(I 0)

Space(32)

Tab (9)

1.6.12 Drawing Gray Text

Action

Interpreted as a line-break character. The text is
immediately broken and started on the next line
down in the rectangle.

Interpreted as a line-break character. The text is
immediately broken and started on the next line
down in the rectangle.

A carriage-retum/linefeed character combination
is interpreted as a single line-break character.

Interpreted as a word-break character if the
DT_ WORDBREAK style is given. If the text is
too long to fit on the current line in the formatting
rectangle, the line is broken at the closest word­
break character to the end of the line.

Expanded into a given number of spaces if the
DT _EXPANDTABS style is given. The number
of spaces depends on what tab-stop value is given
with the DT_TABSTOP style. The default is eight.

An application can draw gray text by calling the SetTextColor function to set
the current text color to the COLOR_ORA YTEXT, the solid gray system color
used to draw disabled text. However, if the curent display driver does not support
a solid gray color, this value is set to zero.

The GrayString function is a multiple-purpose function that gives applications
another way to gray text or carry out other customized operations on text or bit­
maps before drawing the result in a client area. To gray text, the function creates
a memory bitmap, draws the string in the bitmap, and then grays the string by
combining it with a gray brush. The GrayString function finally copies the gray
text to the display. An application can intercept or modify each step of this

1-42 Reference - Volume 1

process, however, to carry out custom effects, such as changing the gray brush to
a patterned brush or drawing an icon instead of a string.

If GrayString is used to draw gray text only, GrayString uses the selected font
of the given display context. GrayString sets text color to black. It creates a bit­
map, and then uses the TextOut function to write a given string to the bitmap. It
then uses the PatBIt function and a gray brush to gray the text, and uses the
BitBIt function to copy the bitmap to the client area.

GrayString assumes that the display context for the client area has MM_ TEXT
mapping mode. Other mapping modes cause undesirable results.

GrayString lets an application modify this graying procedure in three ways: by
defining an additional brush to be combined with the text before being displayed,
by replacing the call to the TextOut function with a call to an application-sup­
plied function, and by disabling the call to the PatBIt function.

The additional brush is defined as a parameter. This brush is combined with the
text as the text is being copied to the client area by the BitBIt function. The addi­
tional brush is intended to be used to give the text a desired color, since the bit­
map used to draw the text is a monochrome bitmap.

The application-supplied function is also defined as a parameter. If a non-NULL
value is given for the function, GrayString automatically calls the application­
supplied function instead of the TextOut function and passes it a handle to the
display context for the memory bitmap as well as the long pointer and count
passed to GrayString. The function can carry out any operation and interpret the
long pointer and count in any way. For example, a negative count could be used
to indicate that the long pointer points to an icon handle that signals the applica­
tion-supplied function to draw the icon and let GrayString gray and display it.
No matter what type of drawing the function carries out, GrayString assumes it
is successful if the application-supplied function returns TRUE.

GrayString suppresses graying if it receives an ncount parameter equal to -1
and the application-supplied function returns FALSE. This is a way to combine
custom patterns with the text without interference from the gray brush.

1.6.13 Nonclient-Area Painting
Windows sends a WM_NCPAINT message to the window whenever the non­
client area of the window, such as the title bar, menu bar, and window frame,
needs painting. Processing this message is not recommended since a window that
does so must be able to paint all the required parts of the nonclient area for the
window. In other words, a window should pass this message on to the DefWin­
dowProc function for default processing unless the Windows application is creat­
ing a custom nonclient area for a child window.

Window Manager Interface Functions 1-43

1.7 Dialog-Box Functions
Dialog-box functions create, alter, test, and destroy dialog boxes and controls
wi thin dialog boxes. A dialog box is a temporary window that Windows creates
for special-purpose input, and then destroys immediately after use. An applica­
tion typically uses a dialog box to prompt the user for additional information
about a current command selection. The following list briefly describes each
dialog function:

Function

CheckDlgB utton

CheckRadioButton

CreateDialog

CreateDialoglndirect

CreateDialoglndirectParam

CreateDialogParam

DeIDlgProc

DialogBox

DialogBoxIndirect

DialogBoxIndirectParam

DialogBoxParam

DlgDirList

DlgDir ListComboBox

Description

Places/removes a check, or changes
the state of the three-state button.

Checks a specified button and re­
moves checks from all others.

Creates a modeless dialog box.

Creates a modeless dialog box from a
template.

Creates a modeless dialog box from a
template and passes data to it when it
is created.

Creates a modeless dialog box and
passes data to it when it is created.

Provides default processing for any
Windows messages that a dialog box
with a private window class does not
process.

Creates a modal dialog box.

Creates a modal dialog box from a
template.

Creates a modal dialog box from a
template and passes data to it when it
is created.

Creates a modal dialog box and
passes data to it when it is created.

Fills the list box with names of files
matching a path.

Fills a combo box with names of files
matching a path.

1-44 Reference - Volume 1

Function

DlgDirSelect

DlgDirSelectComboBox

EndDialog

GetDialogBase Units

GetDIgCtrlID

GetDlgltem

GetDlgltemlnt

GetDlgltemText

GetNextDlgGroupltem

GetNextDlgTabltem

IsDialogMessage

IsDlgButtonChecked

MapDialogRect

SendDlgltemMessage

SetDlgltemlnt

SetDlgltemText

Description

Copies the current selection from a
list box to a string.

Copies the current selection from a
combo box to a string.

Frees resources and destroys
windows associated with a modal
dialog box.

Retrieves the base dialog units used
by Windows when creating a dialog
box.

Returns the ID value of a control
window.

Retrieves the handle of a dialog item
from the given dialog box.

Translates the control text of an item
into an integer value.

Copies an item's control text into a
string.

Returns the window handle of the
next item in a group.

Returns the window handle of the
next or previous item.

Determines whether a message is in­
tended for the given dialog box.

Tests whether a button is checked.

Converts the dialog-box coordinates
to client coordinates.

Sends a message to an item within a
dialog box.

Sets the caption or text of an item to
a string that represents an integer.

Sets the caption or text of an item to
a string.

Window Manager Interface Functions 1-45

1.7.1 Uses for Dialog Boxes
For convenience and to keep from introducing device-dependent values into the
application code, applications use dialog boxes instead of creating their own
windows. This device independence is maintained by using logical coordinates in
the dialog-box template. Dialog boxes are convenient to use because all aspects
of the dialog box, except how to carry out its tasks, are predefined. Dialog boxes
supply a window class and procedure, and create the window for the dialog box
automatically. The application supplies a dialog function to carry out tasks and a
dialog-box template that describes the dialog style and content.

Modeless Dialog Box
A modeless dialog box allows the user to supply information to the dialog box
and return to the previous task without canceling or removing the dialog box.
Modeless dialog boxes are typically used as a way to let the user continually
supply information about the current task without having to select a command
from a menu each time. For example, modeless dialog boxes are often used with
a text-search command in word-processing applications. The dialog box remains
displayed while the search is carried out. The user can then return to the dialog
box and search for the same word again, or change the entry in the dialog box
and search for a new word.

An application with a modeless dialog box processes messages for that box by
using the IsDialogMessage function inside the main message loop. The dialog
function of a modeless dialog box must send a message to the parent window
when it has input for the parent window. It must also destroy the dialog box
when it is no longer needed. A modeless dialog box can be destroyed by using
the DestroyWindow function. An application must not call the EndDialog func­
tion to destroy a modeless dialog box.

Modal Dialog Box
A modal dialog box requires the user to respond to a request before the applica­
tion continues. Typically, a modal dialog box is used when a chosen command
rieeds additional information before it can proceed. The user should not be able
to continue some other operation unless the command is canceled or additional
information is provided.

A modal dialog box disables its parent window, and it creates its own message
loop, temporarily taking control of the application queue from the main loop of
the program. A modal dialog box is displayed when the application calls the
DialogBox function.

By default, a modal dialog box cannot be moved by the user. An application can
create a moveable dialog box by specifying the WS_CAPTION and, optionally,
the WS_SYSMENU window styles.

1-46 Reference - Volume 1

The dialog box is displayed until the dialog function calls the EndDialog func­
tion, or until Windows is tenninated. The parent window remains disabled unless
the dialog box enables it. Note that enabling the parent window is not recom­
mended since it defeats the purpose of the modal dialog box.

System-Modal Dialog Box
A system-modal dialog box is identical to a modal dialog box except that all
windows, not just the parent window, are disabled. System-modal dialog boxes
must be used with care since they effectively shut down the system until the user
supplies the required infonnation.

1 .. 7.2 . Creating a Dialog Box
A dialog box is created by using either the CreateDialog or DialogBox function.
These functions load a dialog-box template from the application's executable
file, and then create a pop-up window that matches the template's specifications.
The dialog box belongs to the predefined dialog-box class unless another class is
explicitly defined. The DialogBox function creates a modal dialog box; the
CreateDialog function creates a modeless dialog box.

Use the WS_ VISIBLE style for the dialog-box template if you want the dialog
box to appear upon creation.

Dialog-Box Template
The dialog-box template is a description of the dialog box: its height and width,
the controls it contains, its style, the type of border it uses, and so on. A template
is an application's resource and must be added to the application's executable file
by using the Resource Compiler.

Dialog boxes can be easily modified and are system independent, enabling an
application developer to change the template without changing the source code.

The CreateDialog and DialogBox functions load the resource into memory
when they create the dialog box, and then use the infonnation in the dialog tem­
plate to create the dialog box, position it, and create and position the controls for
the dialog box.

The Resource Compiler takes a text description of the template and converts it to
the required binary fonn. This binary fonn is added to the application's exe­
cutable file.

Dialog-Box Measurements
Dialog box and control dimensions and coordinates are device independent.
Since a dialog box may be displayed on system displays that have widely varying
pixel resolutions, dialog-box dimensions are specified in system character widths
and heights instead of pixels. Characters are guaranteed to give the best possible

Window Manager Interface Functions 1-47

appearance for a given display. One unit in the x direction is equal to 1/4 of the
dialog base width unit. One unit in the y direction is equal to 1/8 of the dialog
base height unit. The dialog base units are computed from the height and width
of the system font; the GetDialogBaseUnits function returns the dialog base
units for the current display. Applications can convert these measurements to pix­
els by using the MapDialogRect function.

Windows does not allow the height of a dialog box to exceed the height of a full­
screen window. The width of a dialog box is not allowed to be greater than the
width of the screen.

1.7.3 Return Values from a Dialog Box
The DialogBox function that creates a modal dialog box does not return until the
dialog function has called the EndDialog function to signal the end of the dialog
box. When control finally returns from the DialogBox function, the return value
is equal to the value specified in the EndDialog function. This means a modal
dialog box can return a value through the EndDialog function.

Modeless dialog boxes cannot return values in this way since they do not use the
EndDialog function to terminate execution and do not return control in the same
way a modal dialog box does. Instead, modeless dialog boxes return values to
their parent windows by using the SendMessage function to send a notification
message to the parent window. Although Windows does not explicitly define the
content of a notification message, most applications use a WM_COMMAND
message with an integer value that identifies the dialog box in the wPm'am para­
meter and the return value in the lParam parameter. Modal dialog boxes may
also use this technique to return values to their parent windows before terminat­
ing.

1.7.4 Controls in a Dialog Box
A dialog box can contain any number and any type of controls. A control is a
child window that belongs to a predefined or application-defined window class
and that gives the user a method of supplying input to the application. Examples
of controls are push buttons and edit controls. Most dialog boxes contain one or
more controls of the predefined class. The number of controls, the order in which
they should be created, and the location of each in the dialog box are defined by
the control statements given in the dialog-box template.

Control Identifiers
Every control in a dialog box needs a unique control identifier, or ID, to distin­
guish it from other controls. Since all controls send information to the dialog
function through WM_COMMAND messages, the control identifiers are essen­
tial for the dialog box to determine which control sent a given message.

1-48 Reference - Volume 1

All identifiers for all controls in the dialog box must be unique. If a dialog box
has a menu bar, there must be no conflict between menu-item identifiers and con­
trol identifiers. Since Windows sends menu input to a dialog function as
WM_COMMAND messages, conflicts with menu and control identifiers can
cause errors. Menus in dialog boxes are not recommended.

The dialog function usually identifies the dialog-box controls by using their con­
trol identifier. Occasionally the dialog function requires the window handle that
was given to the control when it was created. The dialog function can retrieve
this window handle by using the GetDlgltem function.

GeneralConuolStyles
The WS_TABSTOP style specifies that the user can move the input focus to the
given control by pressing the TAB or SHlFT+TAB keys. Typically, every control in
the dialog box has this style, so the user can move the input focus from one con­
trol to the other. If two or more controls are in the dialog box, the TAB key moves
the input focus to the controls in the order in which they have been created. The
SHIFT + T AB keys move the input focus in reverse order. For modal dialog boxes,
the TAB and SHIFT+TAB keys are automatically enabled for moving the input
focus. For modeless dialog boxes, the IsDialogMessage function must be used to
filter messages for the dialog box and to process these key strokes. Otherwise,
the keys have no special meaning and the WS_TABSTOP style is ignored.

The WS_GROUP style specifies that the user can move the input focus to the
given control by using a DIRECTION key. Typically, the first and last controls in a
group of consecutive controls in the dialog box have this style, so the user can
move the input focus from one control to the other. The DOWN and RIGHT keys
move the input focus to controls in the order in which they have been created.
The UP and LEFT keys move the input focus in reverse order. For modal dialog
boxes, the DIRECTION keys are automatically enabled for moving the input focus.
For modeless dialog boxes, the IsDialogMessage function must be used to filter
messages for the dialog box and to process these key strokes. Otherwise, the keys
have no special meaning and the WS_GROUP style is ignored.

Buttons
Button controls are the principal interface of a dialog box. Almost all dialog
boxes have at least one push-button control and most have one default push but­
ton and one or more other push buttons. Many dialog boxes have collections of
radio buttons enclosed in group boxes, or lists of check boxes.

Most modal or modeless dialog boxes that use the special keyboard interface
have a default push button whose control identifier is set to 1 so that the action
the dialog function takes when the button is clicked is identical to the action
taken when the ENTER key is pressed. There can be only one button with the de­
fault styie; however, an application can assign the default style to any button at
any time. These dialog boxes may also set the control identifier of another push

Window Manager Interface Functions 1-49

button to 2 so that the action of the ESCAPE key is duplicated by clicking that
button.

When a dialog box first starts, the dialog function can set the initial state of the
button controls by using the CheckDlgButton function, which sets or clears the
button state. This function is most useful when used to set the state of radio but­
tons or check boxes. If the dialog box contains a group of radio buttons in which
only one button should be set at any given time, the dialog function can use the
CheckRadioButton function to set the button and automatically clear any other
radio button.

Before a dialog box terminates, the dialog function can check the state of each
button control by using the IsDlgButtonChecked function, which returns the cur­
rent state of the button. A dialog box typically saves this information to initialize
the buttons the next time the dialog box is created.

Edit Controls
Many dialog boxes have edit controls that let the user supply text as input. Most
dialog functions initialize an edit control when the dialog box first starts. For ex­
ample, the function may place a proposed filename in the control that the user
can adapt or modify. The dialog function can set the text in an edit control by
using the SetDlgItemText function, which copies text in a given buffer to the
edit control. When the edit control receives the input focus, the complete text
will automatically be selected for editing.

Since edit controls do not automatically return their text to the dialog box, the
dialog function must retrieve the text before terminating. It can retrieve the text
by using the GetDlgItemText function, which copies the edit-control text to a
buffer. The dialog function typically saves this text to initialize the edit control
later, or passes it on to the parent window for processing.

Some dialog boxes use edit controls that let the user enter numbers. The dialog
function can retrieve a number from an edit control by using the GetDlgItemlnt
function, which retrieves the text of the control and converts the text to a decimal
value. The user enters the number in decimal digits. It can be either signed or un­
signed. The dialog function can display an integer by using the SetDlgItemlnt
function. It converts a signed or unsigned integer to a string of decimal digits.

List Boxes and Directory Listings
Some dialog boxes display lists, such as filenames, from which the user can
select one or more names. Dialog boxes that display a list typically use list-box
controls. Dialog boxes that display a list of filenames typically use a list-box
control and the DlgDirList and DlgDirSelect functions. The DlgDirList func­
tion automatically fills a list box with the filenames in the current directory. The
DlgDirSelect function retrieves the selected filename from the list box. Together
they provide a convenient way for a dialog box to display a directory listing, and
let the user select a file without having to type in the name of the directory and
file.

1-50 Reference - Volume 1

Combo Boxes
Another method for providing a list of items to a user is by means of a combo
box. A combo box consists of either a static text field or edit field combined with
a list box. The list box can be displayed at all times or pulled down by the user. If
the combo box contains a static text field, the text field always displays the cur­
rent selection (if any) in the list-box portion of the combo box. If it uses an edit
field, the user can type in the desired selection; the list box highlights the first
item (if any) which matches what the user has entered in the edit field. The user
can then select the item highlighted in the list box to complete the choice.

Owner-Draw Dialog-Box Controls
List boxes, combo boxes, and buttons can be designated as owner-draw controls
by creating them with the appropriate style:

Style

LBS_OWNERDRAWFIXED

LBS_ OWNERDRAWVARIABLE

CBS_OWNERDRAWFIXED

CBS_OWNERDRAWVARIABLE

BS_OWNERDRAW

Meaning

Creates an owner-draw list box with
items that have the same, fixed height.

Creates an owner-draw list box with
items that have different heights.

Creates an owner-draw combo box
with items that have the same, fixed
height.

Creates an owner-draw combo box
with items that have different heights.

Creates an owner-draw button.

When a control has the owner-draw style, Windows handles the user's interac­
tion with the control as usual, such as detecting when a user has clicked a button
and notifying the button's owner of the event. However, because it is an owner­
draw control, the owner of the control is completely responsible for the visual ap­
pearance of the control.

When Windows first creates a dialog box containing owner-draw controls, it
sends the owner a WM_MEASUREITEM message for each owner-draw control.
The IParam parameter of this message contains a pointer to a MEASURE­
ITEMSTRUCT data structure. When the owner receives the message for a con­
trol, the owner fills in the appropriate fields of the structure and returns. This
informs Windows of the dimensions of the control or of its items so that
Windows can appropriately detect the user's interaction with the control. If a list
box or combo box is created with the LBS_OWNERDRA WVARIABLE or
CBS_OWNERDRA WV ARIABLE style, this message is sent to the owner for

Window Manager Interface Functions 1-51

each item in the control, since each item can differ in height. Otherwise, this
message is sent once for the entire owner-draw control.

Whenever an owner-draw control needs to be redrawn, Windows sends the
WM_DRA WITEM message to the owner of the control. The IParam parameter
of this message contains a pointer to a DRA WITEMSTRUCT data structure
that contains information about the drawing required for the control. Similarly, if
an item is deleted from a list box or combo box, Windows sends the
WM_DELETEITEM message containing a pointer to a DELETEITEM­
STRUCT data structure that describes the deleted item.

Messages for Dialog-Box Controls
Many controls recognize predefined messages that, when sent to the control,
cause it to carry out some action. A dialog function can send a message to a con­
trol by supplying the control identifier and using the SendDlgItemMessage func­
tion, which is identical to the SendMessage function except that it uses a control
identifier instead of a window handle to identify the control that is to receive the
message.

1.7.5 Dialog-Box Keyboard Interface
Windows provides a special keyboard interface for modal dialog boxes and
modeless dialog boxes that use the IsDialogMessage function to filter messages.
This keyboard interface carries out special processing for several keys and gener­
ates messages that correspond to certain buttons in the dialog box or changes the
input focus from one control to another. Table 1.7 lists the keys used in this inter­
face and the respective action:

Table 1.7

Key

DOWN

ENTER

ESCAPE

LEFf

RIGHT

SHIFf+TAB

Dialog-Box Keyboard Interface

Action

Moves the input focus to the next control that has the
WS_GROUP style.

Sends a WM_COMMAND message to the dialog function. The
wPm"am parameter is set to 1 or the default button.

Sends a WM_COMMAND message to the dialog function. The
wPm"am parameter is set to 2.

Same as UP.

Same as DOWN.

Moves the input focus to the previous control that has the
WS_TABSTOP style.

1-52 Reference - VO/llme 1

Table 1.7

Key

TAB

UP

Dialog-Box Keyboard Interface (continued)

Action

Moves the input focus to the next control that has the WS_ TAB­
STOP style.

Moves the input focus to the previous control that has the
WS_GROUP style.

The TAB and DIRECTION keys have no effect if the controls in the dialog box do
not have the WS_TABSTOP or WS_GROUP style. The keys have no effect in a
modeless dialog box if the IsDialogMessage function is not used to filter mes­
sages for the dialog box.

NOTE For applications that use accelerators and have modeless dialog boxes, the
IsDialogMessage function must be called before the TranslateAccelerator function. Other­
wise, the keyboard interface for the dialog box may not be processed correctly.

Applications that have modeless dialog boxes and want those boxes to have the
special keyboard interface must filter all messages retrieved from the application
queue through the IsDialogMessage function before carrying out any other pro­
cessing. This means that the application must pass the message to the function
immediately after retrieving the message by using the GetMessage or PeekMes­
sage function. Most applications that have modeless dialog boxes incorporate the
IsDialogMessage function as part of the main message loop in the WinMain
function. The IsDialogMessage function automatically processes any messages
for the dialog box. This means that if the function returns a nonzero value, the
message does not require additional processing and must not be passed to the
TranslateMessage or DispatchMessage function.

The IsDialogMessage function also processes the ALT+mnemonic sequence.

Scrol/ing in Dialog Boxes
In modal dialog boxes, the DIRECTION keys have specific functions that depend
on the controls in the box. For example, the keys move the input focus from con­
trol to control in group boxes, move the cursor in edit controls, and scroll the con­
tents of list boxes. The DIRECTION keys cannot be used to scroll the contents of
any dialog box that has its own scroll bars. If a dialog box has scroll bars, the
application must provide an appropriate keyboard interface for the scroll bars.
Note that the mouse interface for scrolling is available if the system has a mouse.

Window Manager Interface Functions 1-53

1.8 Scrolling Functions
Scrolling functions control the scrolling of a window's contents and control the
window's scroll bars. Scrolling is the movement of data in and out of the client
area at the request of the user. It is a way for the user to see a document or
graphic in parts if Windows cannot fit the entire document or graphic inside the
client area. A scroll bar allows the user to control scrolling. The following list
briefly describes each scrolling function:

Function

GetScrollPos

GetScrollRange

ScrollDC

ScrollWindow

SetScrollPos

SetScrollRange

ShowScrollBar

Description

-Retrieves the current position of the scroll-bar
thumb.

Copies the minimum and maximum scroll-bar posi­
tions for given scroll-bar positions for a specified
scroll.

Scrolls a rectangle of bits horizontally and vertically.

Moves the contents of the client area.

Sets the scroll-bar thumb.

Sets the minimum and maximum scroll-bar posi­
tions.

Displays or hides a scroll bar and its controls.

1.8.1 Standard Scroll Bars and Scroll-Bar Controls
A standard scroll bar is a part of the nonclient area of a window. It is created with
the window and displayed when the window is displayed. The sole purpose of a
standard scroll bar is to let users generate scrolling requests for the window's.
client area. A window has standard scroll bars if it is created with the
WS_ VSCROLL or WS_HSCROLL style. A standard scroll bar is either vertical
or horizontal. A vertical bar always appears at the right of the client area; a hori­
zontal bar always appears at the bottom. A standard scroll bar always has the
standard scroll-bar height and width as defined by the SM_CXVSCROLL and
SM_CYHSCROLL system metric values. (For more information, see the GetSys­
temMetrics function in Chapter 4, "Functions Directory.")

A scroll-bar control is a control window that looks and acts like a standard scroll
bar. But unlike a standard scroll bar, a scroll-bar control is not part of any
window. As a separate window, a scroll-bar control can receive the input focus,
and indicates this by displaying a flashing caret in the thumb. When a scroll-bar
control has the input focus, the user can use the keyboard to direct the scrolling.
Unlike standard scroll bars, a scroll-bar control provides a built-in keyboard inter­
face. Scroll-bar controls also can be used for other purposes. For example, a

1-54 Reference - Volume 1

scroll-bar control can be used to select values from a range of values, such as a
color from a rainbow of colors.

1.8.2 Scroll-Bar Thumb
The scroll-bar thumb is the small rectangle in a scroll bar. It shows the approxi­
mate location within the current document or file of the data currently displayed
in the client area. For example, the thumb is in the middle of the scroll bar when
page three of a five-page.document is in the client area.

The SetScrollPos function sets the thumb position in a scroll bar. Since
Windows does not automatically update the thumb position when an application
scrolls, SetScroIlPos must be used to update the thumb position. The Get­
ScrollPos function retrieves the current position.

A thumb position is an integer. The position is relative to the left or upper end of
the scroll bar, depending on whether the scroll bar is horizontal or vertical. The
position must be within the scroll-bar range, which is defined by minimum and
maximum values. The positions are distributed equally along the scroll bar. For
example, if the range is 0 to 100, there are 100 positions along the scroll bar,
each equally spaced so that position 50 is in the middle of the scroll bar. The ini­
tial range depends on the scroll bar. Standard scroll bars have an initial range of 0
to 100; scroll-bar controls have an empty range (both minimum and maximum
values are zero) ifno explicit range is given when the control is created. The Set­
ScrollRange function sets new minimum and maximum values so that applica­
tions can change the range at any time. The GetScrollRange function retrieves
the current minimum and maximum values. The minimum and maximum values
can be any integers. For example, a spreadsheet program with 255 rows can set
the vertical scroll range to 1 to 255.

If SetScrollPos specifies a position value that is less than the minimum or more
than the maximum, the minimum or maximum value is used instead. Set­
ScrollPos moves the thumb along the thumb positions.

1.8.3 Scrolling Requests
A user makes a scrolling request by clicking in a scroll bar. Windows sends the
request to the given window in the form of WM_HSCROLL and
WM_ VSCROLL messages. The IParam parameter contains a position value and
the handle of the scroll-bar control that generated the message (lParam is zero if
a standard scroll bar generated the message). The wParam parameter specifies
the type of scroll, such as scroll up one line, scroll down a page, or scroll to the
bottom. The type of scroll is determined by which area of the scroll bar the user
clicks.

The user can also make a scrolling request by using the scroll-bar thumb, the
small rectangle inside the scroll bar. The user moves the thumb by moving the
mouse while holding the left mouse button down when the cursor is in the

Window Manager Interface Functions 1-55

thumb. The scroll bar sends SB_THUMBTRACK and SB_THUMBPOSITION
flags with a WM_HSCROLL or WM_ VSCROLL message to an application as
the user moves the thumb. Each message specifies the current position of the
thumb.

1.8.4 Processing Scroll Messages
A window that permits scrolling needs a standard scroll bar or a scroll-bar con­
trol to let the user generate scrolling requests, and a window function to process
the WM_HSCROLL and WM_ VSCROLL messages that represent the scrolling
requests. Although the result of a scrolling request is entirely up to the window, a
window typically carries out a scroll by moving in some direction from the cur­
rent location or to a known beginning or end, and by displaying the data at the
new location. For example, a word-processing application can scroll to the next
line, the next page, or to the end of the document.

1.8.5 Scrolling the Client Area
The simplest way to scroll is to erase the current contents of the client area, and
then pai~t the new information. This is the method an application is likely to use
with SB_PAGEUP, SB_PAGEDOWN, SB_TOP, and SB_END requests where
completely new contents are required.

For some requests, such as SB_LINEUP and SB_LINEDOWN, not all the con­
tents need to be erased, since some will still be visible after the scroll. The
ScrollWindow function preserves a portion of the client area's contents, moves
the preserved portion the specified amount, and prepares the rest of the client
area for painting new information. ScrollWindow uses the BitBIt function to
move a specific part of the client area to a new location within the client area.
Any part of the client area that is uncovered (not in the part to be preserved) is
invalidated and will be erased and painted over at the next WM_P AINT message.

ScrollWindow also lets an application clip a part of the client area from the
scroll. This is to keep items that have fixed positions in the client area, such as
child windows, from moving. This action automatically invalidates the part of
the client area that is to receive the new information so that the application does
not have to compute its own clipping regions.

1.8.6 Hiding a Standard Scroll Bar
For standard scroll bars, if the minimum and maximum values are equal, the
scroll bar is considered disabled and is hidden. This is the way to temporarily
hide a scroll bar when it is not needed for the current contents of the client area.

The SetScrollRange function hides and disables a standard scroll bar when it·
sets the minimum and maximum values to equal values. No scrolling requests
can be made through the scroll bar when it is hidden. SetScrollRange enables

1-56 Reference - Volume 1

the scroll bar and shows it again when it sets the minimum and maximum values
to unequal values. The ShowScrollBar function can also be used to hide or show
a scroll bar. It does not affect the scroll bar's range or thumb position.

1.9 Menu Functions
Menu functions create, modify, and destroy menus. A menu is an input tool in a
Windows application that offers users one or more choices, which they can select
with the mouse or keyboard. An item in a menu bar can display a pop-up menu,
and any item in a pop-up menu can display another pop-up menu. In addition, a
pop-up menu can appear anywhere on the screen. The following list briefly de­
scribes each menu function:

Function

AppendMenu

CheckMenuItem

CreateMenu

CreatePopupMenll

DeleteMenu

DestroyMenu

DrawMenuBar

EnableMenuItem

GetMenll

GetMenuCheckMarkDimensions

GetMenuItemCount

GetMenuItemID

GetMenuState

GetMenllString

GetSubMenu

Description

Appends a menu item to a menu.

Places or removes checkmarks next
to pop-up menu items.

Creates an empty menu.

Creates an empty pop-up rrienu.

Removes a menu item and destroys
any associated pop-up menus.

Destroys the specified menu.

Redraws a menu bar.

Enables, disables, or grays a menu
item.

Retrieves a handle to the menu of a
specified window.

Retrieves the dimensions of the de­
fault menu checkmark bitmap.

Returns the count of items in a menu.

Returns the item's identification.

Obtains the status of a menu item.

Copies a menu label into a string.

Retrieves the menu handle of a pop­
up menu.

Function

GetSystemMenu

HiliteMenuItem

InsertMenu

LoadMenulndirect

ModifyMenu

RemoveMenu

SetMenu

SetMenuItemBitmaps

TrackPopupMenu

1.10 Information Functions

Window Manager Interface Functions 1-57

Description

Accesses the System menu for copy­
ing and modification.

Highlights or removes the highlight­
ing from a top-level (menu-bar)
menu item.

Inserts a menu item in a menu.

Loads a menu resource.

Changes a menu item.

Removes an item from a menu but
does not destroy it.

Specifies a new menu for a window.

Associates bitmaps with a menu item
for display when an item is and is not
checked.

Displays a pop-up menu at a
specified screen location and tracks
user interaction with the menu.

Information functions obtain information about the number and position of
windows on the screen. The following list briefly describes each information
function:

Function Description

AnyPopup Indicates whether any pop-up window exists.

ChildWindowFromPoint Determines which child window contains a specific
point.

EnumChiidWindows

EnumTask Windows

Enum Windows

FindWindow

Enumerates the child windows that belong to a
specific parent window.

Enumerates all windows associated with a given
task.

Enumerates windows on the display.

Returns the handle of a window with the given class
and caption.

1-58 Reference - Volume 1

Function

GetNextWindow

GetParent

GetTop Window

GetWindow

GetWindowTask

IsChiid

IsWindow

SetParent

WindowFromPoint

1. 11 System Functions

Description

Returns a handle to the next or previous window.

Retrieves the handle of the specified window's
parent window.

Returns a handle to the top-level child window.

Returns a handle from the window manager's list.

Returns the handle of a task associated with a
window.

Determines whether a window is the descendent of a
specified window.

Determines whether a window is a valid, existing
window.

Changes the parent window of a child window.

Identifies the window containing a specified point.

System functions return information about the system metrics, color, and time.
The following list briefly describes each system function:

Function

GetCurrentTime

GetSysColor

GetSystemMetrics

SetSysColors

1.12 Clipboard Functions

Description

Returns the time elapsed since the system was
booted.

Retrieves the system color.

Retrieves information about the system metrics.

Changes one or more system colors.

Clipboard functions carry out data interchange between Windows applications.
The clipboard is the place for this interchange; it provides a place from which
'applications can pass data handles to other applications. The following list briefly
describes each clipboard function:

Function

ChangeCIi pboard Chain

CloseCIi p board

EmptyClipboard

EnumClipboardFormats

GetClipboardData

GetClipboardFormatName

GetClipboardOwner

GetClip board Viewer

GetPriorityClipboardFormat

IsClipboardFormatAvaiiable

OpenClipboard

RegisterClipboardFormat

SetClipboardData

SetClipboardViewer

1. 13 Error Functions

Window Manager Interface Functions 1-59

Description

Removes a window from the chain of
clipboard viewers.

Closes the clipboard.

Empties the clipboard and reassigns
clipboard ownership.

Enumerates the available clipboard
formats.

Retrieves data from the clipboard.

Retrieves the clipboard format.

Retrieves the window handle as­
sociated with the current clipboard
owner.

Retrieves the handle of the first
window in the clipboard viewer chain.

Retrieves data from the clipboard in
the first format in a prioritized format
list.

Returns TRUE if the data in the
given format is available.

Opens the clipboard.

Registers a new clipboard format.

Copies a handle for data.

Adds a handle to the clipboard
viewer chain.

Error functions display errors and prompt the user for a response. The following
Iistbriefly describes each error function:

Function

Flash Window

MessageBeep

MessageBox

Description

Flashes the window by inverting its active/inactive
state.

Generates a beep on the system speaker.

Creates a window with the given text and caption.

1-60 Reference - Volume 1

1.14 CaretFuncffons
Caret functions affect the Windows caret, which is a flashing line, block, or bit­
map that marks a location in a window's client area. The caret is especially use­
ful in word-processing applications to mark a location in text for keyboard
editing. These functions create, destroy, display, hide, and alter the blink time of
the caret. The following list briefly describes each. caret function:

Function

CreateCaret

DestroyCaret

GetCaretBlinkTime

GetCaretPos

HideCaret

SetCaretBlinkTime

SetCaretPos

ShowCaret

Description

Creates a caret.

Destroys the current caret.

Returns the caret flash rate.

Returns the current caret position.

Removes a caret from a given window.

Establishes the caret flash rate.

Moves a caret to the specified position.

Displays the newly created caret or redisplays a hid­
den caret.

1.14.1 Creating and Displaying a Caret
Windows forms a caret by inverting the pixel color within the rectangle given by
the caret's position and its width and height. Windows flashes the caret by alter­
nately inverting the display, and then restoring it to its previous appearance. The
caret blink time (in milliseconds) defines the elapsed time between inverting and
restoring the display. A complete flash (on-off-on) takes twice the blink time.

The CreateCaret function creates the caret shape and assigns ownership of the
caret to the given window. The caret can be solid or gray, or, for bitmap carets,
any desired pattern. The caret can have any shape, but typical shapes are a line, a
solid block, a gray block, and a pattern, as shown in Figure 1.1:

Underlin§

Vertical line I

Solid bloc~

Gray bloc

Bitmap~

Figure 1.1 Caret Shapes

Window Manager Interface Functions 1-61

Windows displays a solid caret by inverting everything in the rectangle defined
by the caret's width and height. For a gray caret, Windows inverts every other
pixel. For a pattern, Windows inverts only the white bits of the bitmap that de­
fines the pattern. The width and height of a caret are given in logical units, which
means they are subject to the window's mapping mode.

1.14.2 Sharing the Caret
There is only one caret, so only one caret shape can be active at a time. Applica­
tions must cooperatively share the caret to prevent undesired effects. Windows
does not inform an application when a caret is created or destroyed, so to be
coope~ative a window should create, move, show, and hide a caret only when it
has the input focus or is active. A window should destroy the caret before losing
the input focus or becoming inactive.

Bitmaps for the caret can be created by using the CreateBitmap function, or
loaded from the application's resources by using the LoadBitmap function. Bit­
maps loaded from resources can be created by using the SDKPaint program and
added to an application's resources by using the Resource Compiler. (For more
information about the Resource Compiler, see Tools.)

1. 15 Cursor Functions
Cursor functions set, move, show, hide, and confine the cursor. The cursor is a
bitmap, displayed on the display screen, that shows a current location. The fol­
lowing list briefly describes each cursor function:

1-62 Reference - Volume 1

Function

ClipCursor

CreateCursor

DestroyCursor

GetCursorPos

LoadCursor

SetCursor

SetCursorPos

ShowCursor

Description

Restricts the cursor to a given rectangle.

Creates a cursor from two bit masks.

Destroys a cursor created by the CreateCursor func­
tion.

Stores the cursor position (in screen coordinates).

Loads a cursor from the resource file.

Sets the cursor shape.

Sets the position of the cursor.

Increases or decreases the cursor display count.

1.15.1 Pointing Devices and the Cursor
When a system has a mouse (or any other type of pointing device), the cursor
shows the current location of the mouse. Windows automatically displays and
moves the cursor when the mouse is moved. If a system does not have a mouse,
Windows does not automatically display or move the cursor. Applications can
use the cursor functions to display or move the cursor when a system does not
have a mouse.

1.15.2 Displaying and Hiding the Cursor
In a system without a mouse, Windows does not display or move the cursor un­
less the user chooses certain system commands, such as commands for sizing and
moving. This means that after a call to SetCursor, the cursor remains on the
screen until a subsequent call to SetCursor with a NULL parameter removes the
cursor, or until a system command is carried out. Applications that wish to use
the cursor without a mouse usually simulate mouse input by using keyboard
keys, such as the DIRECTION keys, and display and move the cursor by using the
cursor functions.

The ShowCursor function shows or hides the cursor. It is used to temporarily
hide the cursor, and then restore it without changing the current cursor shape.
This function actually sets an intemai counter that determines whether the cursor
should be drawn. Hiding and showing are accumulative, so hiding the cursor five
times requires that it be shown five times before the cursor will be drawn.

1.15.3 Positioning the Cursor
The SetCursorPos and GetCursorPos functions set and retrieve the current
screen coordinates of the cursor. Although the cursor can be set at a location

Window Manager Interface Functions 1-63

other than the current mouse location, if the system has a mouse, the next "mouse
movement will redraw the cursor at the mouse location. The SetCursorPos and
GetCursorPos functions are most often used in applications that use the key­
board and specified key strokes to move the cursor. Notice that screen coordi­
nates are not affected by the mapping mode in a window's client area.

1.15.4 The Cursor Hotspot and Confining the Cursor
A cursor has a hotspot. When Windows draws the cursor, it always places the
hotspot over the point on the display screen that represents the current position of
the mouse or keyboard DIRECTION key. For example, the hotspot on the pointer is
the point at the tip of the arrow.

The Clip Cursor function confines the cursor to a given rectangle on the display
screen. The cursor can move to the edge of the rectangle but cannot move out of
it. Clip Cursor is typically used to restrict the cursor to a given window such as a
dialog box that contains a warning about a serious error. The rectangle is always
given in screen coordinates and does not have to be within the window of the cur­
rently running application.

1.15.5 Creating a Custom Cursor
The SetCursor function sets the cursor shape and draws the cursor. When a sys­
tem has a mouse, Windows automatically changes the shape of the cursor when it
crosses a window border or enters a different part of a window, such as a title or,
menu bar. It uses standard cursor shapes for the different parts of the screen, such
as a pointer in a title bar. The SetCursor function lets an application delete the
standard cursor and draw its own custom cursor. The cursor keeps its new shape
until the mouse moves or a system command is carried out.

1. 16 Hook Functions
Hook functions manage system hooks, which are shared resources that install a
specific type of filter function. A filter function is an application-supplied call­
back function, specified by the SetWindowsHook function, that processes
events before they reach any application's message loop. Windows sends mes­
sages generated by a specific type of event to filter functions installed by the
same type of hook. The following list briefly describes each hook function:

Function

CallMsgFilter

DefHookProc

Description

Passes a message and other data to the current
message-filter function.

Calls the next filter function in a filter-function
chain.

1-64 Reference - Volume 1

Function

SetWindowsHook

UnhookWindowsHook

1.16.1 Filter-Function Chain

Description

Installs a system and/or application filter function.

Removes a Windows filter function from a filter­
function chain.

A filter-function chain is a series of connected filter functions for a particular sys­
tem hook. For example, all keyboard filter functions are installed by WH_KEY­
BOARD and all journaling-record filter functions are installed by
WH_JOURNALRECORD. Applications pass these filter functions to the system
hooks with calls to the SetWindowsHook function. Each call adds a new filter
function to the beginning of the chain. Whenever an application passes a filter
function to a system hook, it must reserve space for the address of the next filter
function in the chain. SetWindowsHook returns this address.

Once each filter function completes its task, it must call the DefHookProc func­
tion. DefHookProc uses the address stored in the location reserved by the appli­
cation to access the next filter function in the chain.

To remove a filter function from a filter chain, an application must call the Un­
hookWindowsHook function with the type of hook and a pointer to the function.

There are five types of standard window hooks and two types of debugging
hooks. Table 1.8 lists each type and describes its purpose:

Table 1.8 System Hooks

Type

WH_CALLWNDPROC

WH_GETMESSAGE

WH_JOURNALPLAYBACK

WH_JOURNALRECORD

WH_KEYBOARD

WH_MSGFILTER

WH_SYSMSGFILTER

Purpose

Installs a window function filter.

Installs a message filter (on debugging ver­
sions only).

Installs a joumaling playback filter.

Installs a joumaling record filter.

Installs a keyboard filter.

Installs a message filter.

Installs a system-wide message filter.

NOTE The WH_CALLWNDPROC and WH_GETMESSAGE nooks will affect system perform­
ance. They are supplied for debugging purposes only.

Window Manager Interface Functions 1-65

1.16.2 Installing a Filter Function
To install a filter function, an application must do the following:

1. Export the function in its module definition file.

2. Obtain the function's address by using the MakeProclnstance function.

3. Call the SetWindowsHook function, specifying the type of hook function
(see Table 1.8, "System Hooks") and the address of the function (returned by
MakeProcInstance).

4. Store the return value from SetWindowsHook in a reserved location. This
value is the address of the previous filter function.

NOTE Filter functions and the return value from SetWindowsHook must reside in fixed li­
brary code and data. This allows these hooks to operate in a large-frame EMS environment.

1. 17 Property Functions
Property functions create and access a window's property list. A property list is a
storage area that contains handles for data that the application wishes to associate
with a window. The following list briefly describes each property function:

Function

EnumProps

GetProp

RemoveProp

SetProp

Using Property Lists

Description

Passes the properties of a window to an enumeration
function.

Retrieves a handle associated with. a string from the
window property list.

Removes a string from the property list.

Copies a string and a data handle to a window's
property list.

Once a data handle is in a window's property list, any application can access the
handle if it can also access the window. This makes the property list a convenient
way to make data (for example, alternate' captions or menus for the window)
available to the application when it wishes to modify the window.

Every window has its own property list. When the window is created, the list is
empty. The SetProp function adds entries to the list. Each entry contains a
unique ANSI string and a data handle. The ANSI string identifies the handle; the
handle identifies the data associated with the window, as illustrated in Figure 1.2:

1-66 Reference - Volume 1

ANSI String Handle

"binary data" hMemory

"icon" hicon

"screen text" hText

Figure 1.2 Property list

The data handle can identify any object or memory block that the application
wishes to associate with the window. The GetProp function retrieves the data
handle of an entry from the list without removing the entry. The handle can then
be used to retrieve or use the data. The RemoveProp function removes an entry
from the list when it is no longer needed.

Although the purpose of the property list is to associate data with a window for
use by the application that owns the window, the handles in a property list are ac­
tually accessible to any application that has access to the window. This means an
application can retrieve and use a data handle from the property list of a window
created by another application. But using another application's data handles must
be done with care. Only shared, global memory objects, such as GDI drawing ob­
jects, can be used by other applications. If a property list contains local or global
memory handles or resource handles, only the application that has created the
window may use them. Global memory handles can be shared with other applica­
tions by using the Windows clipboard. (For more information, see Section 1.12,
"Clipboard Functions.") Local memory handles cannot be shared.

The contents of a property list can be enumerated by using the EnumProps func­
tion. The function passes the string and data handle of each entry in the list to an
application-supplied function. The application-supplied function can carry out
any task.

The data handles in a property list always belong to the application that created
them. The property list itself, like other window-related data, belongs to
Windows. A window's property list is actually allocated in the the USER heap,
the local heap of the USER library. Although there is no defined limit to the num­
ber of entries in a property list, the actual number of entries depends on how
much room is available in the USER heap. This depends on how many windows,
window classes, and other window-related objects have been created.

The application creates the entries in a property list. Before a window is de­
stroyed or the application that owns the window terminates, all entries in the
property list must be removed by using the RemoveProp function. Failure to re­
move the entries leaves the property list in the USER heap and makes the space it
occupies unusable for subsequent applications. This can ultimately cause an over­
flow of the USER heap. Entries in the property list can be removed at any time
by using the RemoveProp function. If there are entries in the property list when

Window Manager Interface Functions 1-67

the WM_DESTROY message is received for the window, the entries must be re­
moved at that time. To ensure that all entries are removed, use the EnumProps
function to enumerate all entries in the property list. An application should re­
move only those properties that it added to the property list. Windows adds prop­
erties for its own use and disposes of them automatically. An application must
not remove properties which Windows has added to the list.

1.18 Rectangle Functions
Rectangle functions alter and obtain information about rectangles in a window's
client area. In Windows, a rectangle is defined by a RECT data structure. The
structure contains two points: the upper-left and lower-right comers of the
rectangle. The sides of a rectangle extend from these two points and are parallel
to the x- and y-axes. The following list briefly describes each rectangle function:

Function

CopyRect

EqualRect

InflateRect

IntersectRect

OffsetRect

PtInRect

SetRectEmpty

UnionRect

Description

Makes a copy of an existing rectangle.

Determines whether two rectangles are equal.

Expands or shrinks the specified rectangle.

Finds the intersection of two rectangles.

Moves a given rectangle.

Indicates whether a specified point lies within a
given rectangle.

Sets a rectangle to an empty rectangle.

Stores the union of two rectangles.

1.18.1 Using Rectangles in a Windows Application
Rectangles are used to specify rectangular areas on the display or in a window,
such as the cursor clipping area, the client repaint area, a formatting area for for­
matted text, and the scroll area. Rectangles are also used to fill, frame, or invert
an area in the client area with a given brush, and to retrieve the coordinates of a
window or a window's client area.

Since rectangles are used for many different purposes, the rectangle functions do
not use an explicit unit of measure. Instead, all rectangle coordinates and dimen­
sions are given in signed, logical values. The actual units are determined by the
function in which the rectangle is used.

1-68 Reference - Volume 1

1.18.2 Rectangle .Coordinates
Coordinate values for a rectangle can be within the range -32,768 to 32,767.
Widths and heights, which must be positive, are within the range 0 to 32,767.
This means that a rectangle whose left and right sides or whose top and bottom
are further apart than 32,768 units is not valid. Figure 1.3 shows a rectangle
whose upper-left comer is left of the origin, but whose width is less than 32,767:

y (16000,2000

(-16000, -2000)

~~---------------.vr----------------/

Width = 16000 - (-16000) = 32000 <= 32767

Figure 1.3 Rectangle Limits

1.18.3 Creating and Manipulating Rectangles

x

The SetRect function creates a rectangle, the CopyRect function makes a copy
of a given rectangle, and the SetRectEmpty function creates an empty. rectangle.
An empty rectangle is any rectangle that has zero width, zero height, or both.

The InflateRect function increases or decreases the width and height of a
rectangle. It adds or removes width from both ends of the rectangle, or adds or re­
moves height from both the top and bottom of the rectangle.

. The OffsetRect function moves the rectangle by a given amount. It moves the
comers of the rectangle by adding the given x and y amounts to the comer coordi­
nates.

The PtlnRect function determines whether a given point lies within a given
rectangle. The point is in the rectangle if it lies on the left or top side or is
completely within the rectangle. .

The IsRectEmpty function determines whether the given rectangle is empty.

The IntersectRect function creates a new rectangle that is the intersection of two
existing rectangles. The intersection is the largest rectangle contained in both ex­
isting rectangles. The intersection of two rectangles is shown in Figure 1.4:

1. 1 9 Summary

Window Manager Interface Functions 1-69

Rectangle 1

Rectangle 2

Intersection

Figure 1.4 Intersection of Two Rectangles

The UnionRect function creates a new rectangle that is the union of two existing
rectangles. The union is the smallest rectangle that contains both existing
rectangles. The union of two rectangles is shown in Figure 1.5:

,....- Union

Union
.I

1\ ,
~

-f-- Rectangle 1

'<

I

l Rectan Ie 2 g

Figure 1.5 Union of Two Rectangles

For information about functions that draw ellipses and polygons, see Section
2.10, "Ellipse and Polygon Functions."

Window manager interface functions process messages, create, move, or alter a
window, or create system output. For more information on topics related to
window manager interface functions, see the following:

1-70 Reference - Volume 1

Topic

Function descriptions

Windows messages

Windows data types and
structures

U sing the Resource
Compiler

General information on
Windows programming

Creating and managing a
window

Handling input

Icons

Menus

Controls and dialog boxes

Creating icons and cursors

Designing dialog boxes

Reference

Reference, Volume 1: Chapter 4, "Functions
Directory"

Reference, Volume 1: Chapter 5, "Messages
Overview," and Chapter 6, "Messages
Directory"

Reference, Volume 2: Chapter 7, "Data Types
and Structures"

Reference, Volume 2: Chapter 8, "Resource
Script Statements"

Tools: Chapter 3, "Compiling Resources:
The Resource Compiler"

Guide to Programming: Chapter 1, "An
Overview of the Windows Environment"

Guide to Programming: Chapter 2, "A
Generic Windows Application"

Guide to Programming: Chapter 4,
"Keyboard and Mouse Input," and Chapter
6, "The Cursor, the Mouse, and the
Keyboard"

Guide to Programming: Chapter 5, "Icons"

Guide to Programming: Chapter 7, "Menus"

Guide to Programming: Chapter 8,
"Controls," and Chapter 9, "Dialog Boxes"

Tools: Chapter 4, "Designing Images:
SDKPaint"

Tools: Chapter 5, "Designing Dialog Boxes:
The Dialog Editor"

Chapter

2
Graphics Device Interface
Functions

This chapter describes the functions that perform device-independent graphics
operations within a Windows application, including creating a wide variety of
line, text, and bitmap output on many output devices. These functions constitute
the Windows graphics device interface (GDI).

The chapter covers the following function categories:

• Device-context functions

• Drawing-tool functions

• Color-palette functions

• Drawing-attribute functions

• Mapping functions

• Coordinate functions

• Region functions

• Clipping functions

• Line-output functions

• Ellipse and polygon functions

• Bitmap functions

• Text functions

• Font functions

• Metafile functions

• Printer-control functions

• Printer-escape function

• Environment functions

2-2 Reference - Volume 1

2. 1 Oevice-Context Functions
Device-context functions create, delete, and restore device contexts (DC). A
device context is a link between a Windows application, a device driver, and an
output device, such as a printer or plotter.

Figure 2.1 shows the flow of information from a Windows application through a
device context and a device driver to an output device:

r-
~I 11)1~ GOI

..,

Device Device Output
Application ----+

context ~ driver ----+ device

J

-:9:- () {1

Figure 2.1 Information Flow to an Output Device

Any Windows application can use GDI functions to access an output device.
GDI passes calls (which are device independent) from the application to the
device driver. The device driver then translates the calls into device-dependent
operations.

The following list briefly describes each device-context function:

Function

CreateCompatibleDC

CreateDC

CreateIC

DeleteDC

GetDCOrg

RestoreDC

SaveDC

Description

Creates a memory device context.

Creates a device context.

Creates an information context.

Deletes a device context.

Retrieves the origin of a specified device context.

Restores a device context.

Saves the current state of the device context.

Graphics Device Interface Functions 2-3

2. 1. 1 Device-Context Attributes
Device-context attributes describe selected drawing objects (pens and brushes),
the selected font and its color, the way in which objects are drawn (or mapped) to
the device, the area on the device available for output (clipping region), and other
important information. The data structure that contains these attributes is called
the DC data block.

Table 2.1 lists the default device-context attributes and the GDI functions that af­
fect or use these attributes:

Table 2.1 Default Device-Context Attributes and Related GDI Functions

Attribute

Background color

Background mode

Bitmap

Brush

Brush origin

Clipping region

Color palette

Current pen position

Drawing mode

Font

Default

White

OPAQUE

No default

(0,0)

Display surface

(0,0)

R2_COPYPEN

SYSTEM_FONT

GDI Functions

SetBkColor

SctBkMode

CreateBitmap
CreateBitmapIndirect
CreateCompatible­
Bitmap
SelectObject

CreateBrushIndirect
CreateD IB PatternB rush
CreateHatchBrush
CreatePatternBrush
CreateSolidBrush
SelectObject

SetBrushOrg
UnrealizeObject

ExcludeClipRect
IntersectClipRect
OffsetClipRgn
SelectClipRgn

CreatePalette
RealizePalette
SelectPalette

MoveTo

SetROP2

CreateFont
CreateFontlndirect
SelectObject

2-4 Reference - Volume 1

Table 2.1 Default Device-Context Attributes and Related GDI Functions
(continued)

Attribute

Intercharacter spacing

Mapping mode

Pen

Polygon-filling mode

Stretching mode

Text color

Viewport extent

Viewport origin

Window extent

Window origin

2. 1.2 Saving a Device Context

Default

° MM_TEXT

BLACK_PEN

ALTERNATE

BLACKONWHITE

Black

(1,1)

(0,0)

(1,1)

(0,0)

GDI Functions

SetTextCharacterExtra

SetMapMode

CreatePen
CreatePenIndirect
SelectObject

SetPoly Fill Mode

SetStretchBltMode

SetTextColor

Set ViewportExt

Set ViewportOrg

SetWindowExt

SetWindowOrg

Occasionally, it is necessary to save a device context so that the original at­
tributes will be available at a later time. For example, a Windows application
may need to save its original clipping region so that it can restore the client
area's original state after a series of alterations occur. The SaveDC and Re­
storeDC functions make this possible.

2.1.3 Deleting a Device Context
The DeleteDC function deletes a device context and ensures that shared
resources are not removed until the last context is deleted. The device driver is a
shared resource.

2.1.4 Compatible Device Contexts
The CreateCompatibleDC function causes Windows to treat a portion of
memory as a virtual device. This means that Windows prepares a device context
that has the same attributes as the device for which it was created, but the device
context has no connected output device. To use the compatible device context,
the application creates a compatible bitmap and selects it into the device context.
Any output it sends to the device is drawn in the selected bitmap. Since the
device context is compatible with some actual device, the context of the bitmap
can be copied directly to the actual device, or vice versa. This also means that the
application can send output to memory (prior to sending it to the device). Note

Graphics Device Interface Functions 2-5

that the CreateCompatibleDC function works only for devices that have BitBIt
capabilities.

2.1.5 Information Contexts
The CreateIC function creates an information context for a device. An informa­
tion context is a device context with limited capabilities; it cannot be used to
write to the device. An application uses an information context to gather informa­
tion about the selected device. Information contexts are useful in large applica­
tions that require memory conservation.

By using an information context and the GetDeviceCaps function, you can ob­
tain the following device information:

• Device technology

• Physical display size

• Color capabilities of the device

• Color-palette capabilities of the device

• Drawing objects available on the device

• Clipping capabilities of the device

• Raster capabilities of the device

• Curve-drawing capabilities of the device

a Line-drawing capabilities of the device

• Polygon-drawing capabilities of the device

• Text capabilities of the device

2.2 Ora wing-Tool Functions
Drawing-tool functions create and delete the drawing tools that GDI uses when it
creates output on a device or display surface. The following list briefly describes
each drawing-tool function:

Function Description

CreateBrushlndirect Creates a logical brush.

CreateDIBPatternBrush Creates a logical brush that has a pattern defined by
a device-independent bitmap (DIB).

CreateHatchB rush Creates a logical brush that has a hatched pattern.

2-6 Reference - Volume 1

Function

CreatePatternBrush

CreatePen

CreatePenlndirect

CreateSoIidBrush

DeleteObject

EnumObjects

GetBrushOrg

GetObject

GetStockO bject

SelectObject

SetBrushOrg

UnreaIizeObject

2.2. 1 Drawing-Tool Uses

Description

Creates a logical brush that has a pattern defined by
a memory bitmap.

Creates a logical pen.

Creates a logical pen.

Creates a logical brush.

Deletes a logical pen, brush, font, bitmap, or region.

Enumerates the available pens or brushes.

Retrieves the current brush origin for a device con­
text.

Copies the bytes of logical data that define an object.

Retrieves a handle to one of the predefined stock
pens, brushes, fonts, or color palettes.

Selects an object as the current object.

Sets the origin of all brushes selected into a given
device context.

Directs GDI to reset the origin of the given brush.

A Windows application can use any of three tools when it creates output: a bit­
map, a brush, or a pen. An application can use the pen and brush together, outlin­
ing a region or object with the pen and filling the region's or object's interior
with the brush. GDI allows the application to create pens with solid colors, bit­
maps with solid or combination colors, and brushes with solid or combination
colors. (The available colors and color combinations depend on the capabilities
of the intended output device.)

Brushes
There are seven predefined brushes available in GDI; an application selects any
one of them by using the GetStockObject function. The following list describes
these brushes:

• Black

• Dark-Gray

• Gray

• Hollow

Graphics Device Interface Functions 2-7

• Light-Gray

• Null

• White

There are six hatched brush patterns; an application can select anyone of these
patterns by using the CreateHatchBrush function. (A hatch line is a thin line
that appears at regular intervals on a solid background.) The following list de­
scribes these hatch patterns:

• Backward Diagonal

• Cross

• Diagonal Cross

• Forward Diagonal

• Horizontal

• Vertical

Figure 2.2 shows each hatched brush pattern. A simple Windows application
created this figure:

HS_HORIZONTAL HS_BDIAGONAL HS_FDIAGONAL

§ ~ ~
HS_ VERTICAL HS_CROSS HS_DIAGCROSS

D • II
Figure 2.2 Hatched Brush Patterns

2-8 Reference - Volume 1

2.2.2 Color

Pens
There are three predefined pens available in GDI; an application selects anyone
of them by using the GetStockObject function. The following list describes
these pens:

• Black

• Null

• White

In addition to selecting a stock pen, an application creates an original pen by
using the GDI CreatePen function. This function allows the application to select
one of six pen styles, a pen width, and a pen color (if the device has color capa­
bilities). The pen style can be solid, dashed, dotted, a combination of dots and
dashes, or null. The pen width is the number of logical units GDI maps to a cer­
tain number of pixels (this number is dependent on the current mapping mode if
the pen is selected into a device context). The pen color is an RGB color value.

Figure 2.3 shows a variety of pen patterns obtained from calls to the CreatePen
function. A simple Windows application created this figure:

Solid Line width of 1

Dash Line width of 4

Dot Line width of 7

Dash and dot Line width of 10

Dash and two dots Line width of 13

Figure 2.3 Pen Patterns

Many of the GDI functions that create pens and brushes require that the calling
application specify a color in the form of a COLORREF value. A COLORREF
value specifies color in one of three ways:

• As an explicit RGB value

• As an index to a logical-palette entry

• As a palette-relative RGB value

Graphics Device Interface Functions 2-9

The second and third methods require the application to create a logical palette.
Section 2.3, "Color Palette Functions," describes Windows color palettes and the
functions used by an application to exploit their capabilities.

An explicit RGB COLORREF value is a long integer that contains a red, a
green, and a blue color field. The first (low-order) byte contains the red field, the
second byte contains the green field, and the third byte contains the blue field;
the fourth (high-order) byte must be zero. Each field specifies the intensity of the
color; zero indicates the lowest intensity and 255 indicates the highest. For ex­
ample, OxOOFFOOOO specifies pure blue, and OxOOOOFFOO specifies pure green.
The RGB macro accepts values for the relative intensities of the three colors and
returns an explicit RGB COLORREF value. When GDI receives the RGB value
as a function parameter, it passes the RGB color value directly to the output
device driver, which selects the closest available color on the device. The Get­
NearestColor function returns the closest logical color to a specified logical
color that a given device can represent.

If the device is a plotter, the driver converts the RGB value to a single color that
matches one of the pens on the device.

If the device uses color raster technology and the RGB value specifies a color for
a pen, the driver will select a solid color. If the device uses color raster tech­
nology and the RGB value specifies a color for a brush, the driver will select
from a variety of available color combinations. Since many color devices can dis­
play only a few colors, the actual color is simulated by "dithering," that is,
mixing pixels of the colors which the display can actually render.

If the device is monochrome (black-and-white), the driver will select black,
white, or a shade of gray, depending on the RGB value. If the sum of the RGB
values is zero, the driver selects a black brush. If the sum of the RGB values is
765, the driver selects a white brush. lithe sum of the RGB values is between
zero and 765, the driver selects one of the gray patterns available.

The GetRValue, GetGValue, and GetBValue functions extract the values for
red, green, and blue from an explicit RGB COLORREF value.

2.3 Color-Palette Functions
Many color graphic displays are capable of displaying a wide range of colors. In
most cases, however, the actual number of colors which the display can render at
any given time is more limited. For example, a display that is potentially able to
produce over 262,000 different colors may be able to show only 256 of those
colors at a time because of hardware limitations. In such cases, the display device
often maintains a palette of colors; when an application requests a color that is
not currently displayed, the display device adds the requested color to the palette.
However, when the number of requested colors exceeds the maximum number
for the device, it must replace an existing color with the requested color. As a
result, if the total number of colors requested by one or more windows exceeds

2-10 Reference - Volume 1

the number available on the display, many of the actual colors displayed will be
incorrect.

Windows color palettes act as a buffer between color-intensive applications and
the system, allowing an application to use as many colors as needed without inter­
fering with its own color display or colors displayed by other windows. When a
window has input focus, Windows ensures that the window will display all the
colors it requests, up to the maximum number simultaneously available on the
display, and displays additional colors by matching them to available colors. In
addition, Windows matches the colors requested by inactive windows as closely
as possible to :the available colors. This significantly reduces undesirable changes
in the colors displayed in inactive windows.

The following list briefly describes the functions an application calls to use color
palettes:

Function Description

AnimatePalette Replaces entries in a logical palette; Windows maps
the new entries into the system palette immediately.

CreatePalette Creates a logical palette.

GetNearestPaletteIndex Retrieves the index of a logical palette entry most
nearly matching a specified ROB value.

GetPaletteEntries Retrieves entries from a logical palette.

GetSystemPaletteEntries Retrieves a range of palette entries from the system
palette.

GetSystemPalette U se

ReaIizePalette

SelectPalette

SetPaletteEntries

SetSystemPalette U se

UpdateColors

Determines whether an application has access to the
full system palette.

Maps entries in a logical palette to the system palette.

Selects a logical palette into a device context.

Sets new palette entries in a logical palette;
Windows does not map the new entries to the sys­
tem palette until the application realizes the logical
palette.

Allows an application to use the full system palette.

Performs a pixel-by-pixel translation of each pixel's
current color to the system palette. This allows an
inactive window to correct its colors without redraw­
ing its client area.

Graphics Device Interface Functions 2-11

2.3.1 How Color Palettes Work
Color palettes provide a device-independent method for accessing the color capa­
bilities of a display device by managing the device's physical (or system) palette,
if one is available. Typically, devices that can display at least 256 colors use a
physical palette.

An application employs the system palette by creating and using one or more
logical palettes. Each entry in the palette contains a specific color. Then, instead
of specifying an explicit value for a color when performing graphics operations,
the application indicates which color is to be displayed by supplying an index
into its logical palette.

Since more than one application can use logical palettes, it is possible that the
total number of colors requested for display can exceed the capacity of the dis­
play device. Windows acts as a mediator among these applications.

When a window requests that its logical palette be given its requested colors (a
process known as realizing its palette), Windows first exactly matches entries in
the logical palette to current entries in the system palette.

If an exact match for a given logical-palette entry is not possible, Windows sets
the entry in the logical palette into an unused entry in the system palette.

Finally, when all entries in the system palette have been used, Windows takes
these logical palette entries that do not exactly match and matches them as
closely as possible to entries already in the system palette. To further aid this
color matching, Windows sets aside 20 static colors (called the "default palette")
in the system palette to which it can match entries in a background palette.

Windows always satisfies the color requests of the foreground window first; this
ensures that the active window will have the best color display possible. For the
remaining windows, Windows satisfies the color requests of the window which
most recently received input focus, the window which was active before that one,
and so on.

2-12 Reference - Volume 1

o

2

3

4

5

6

7

System Palette

p;..;.;..~ ~

1----------1

1----------1

1----------1

:-
A

B~~

Logical Palette 1
(Active Window)

============~ ~~
2
3

1--~ ____ ---I4

1---------1 5
1--_____ --1 6
1.....-_____ ---17

-=mmmlmlmmm. 0
1

~~~mI.2 
"I'TnTTTT"I"I"I;"""""",.,:,I3 

~~lIlIlIlIlIlIi 1--_______ ---1 7 
'--_____ ----'8 

Figure 2.4 Palette Manager Color-Mapping Algorithm 

Figure 2.4 illustrates this process. In this figure, a hypothetical display has a sys­
tem palette capable of containing 12 colors. The application that created Logical 
Palette 1 owns the active window and was the first to realize its logical palette, 
which consists of 8 colors. Logical Palette 2 is owned by a window which real­
ized its logical palette while it was inactive. 

Because the active window was active when it realized its palette, Windows 
mapped all of the colors in Logical Palette 1 directly to the system palette. 

Three of the colors (1, 3, and 5) in Logical Palette 2 are identical to colors in the 
system palette; to save space in the palette, then, Windows simply matched those 
colors to the existing system colors when the second application realized its 
palette. Colors 0, 2,4, and 6 were not already in the system palette, however, and 
so Windows mapped those colors into the system palette. 

Because the system palette is now full, Windows was not able to map the remain­
ing two colors (which do not exactly match existing colors in the system palette) 
into the system palette. Instead, it matched them to the closest colors in the sys­
tem palette. 

2.3.2 Using a C%r Palette 
Before drawing to the display device using a color palette, an application must 
first create a logical palette by calling the CreatePalette function and then call 
SelectPalette to select the palette for the device context (DC) for the output 



Graphics Device Interface Functions 2-13 

device for which it will be used. An application cannot select a palette into a 
device context using the SelectObject function. 

All functions which accept a color parameter accept an index to an entry in the 
logical palette. The palette-index specifier is a long integer value with the first bit 
in its high-order byte set to 1 and the palette index in the two low-order bytes. 
For example, OxOl000005 would specify the palette entry with an index of 5. 
The PALETTEINDEX macro accepts an integer value representing the index of 
a logical-palette entry and returns a palette-index COLORREF value which an 
application can use as a parameter for GDI functions that require a color. 

An application can also specify a palette index indirectly by using a palette-rela­
tive RGB COLORREF value. If the target display device supports logical 
palettes, Windows matches the palette-relative RGB COLORREF value to the 
closest palette entry; if the target device does not support palettes, then the RGB 
value is used as though it were an explicit RGB COLORREF value. The palette­
relative RGB COLORREF value is identical to an explicit RGB COLORREF 
value except that the second bit of the high-order byte is set to 1. For example, 
Ox02FFOOOO would specify a palette-relative RGB COLORREF value for pure 
blue. The PALETTERGB macro accepts values for red, green and blue, and re­
turns a palette-relative RGB COLORREF value which an application can use as 
a parameter for GDI functions that require a color. 

If an application does specify an RGB value instead of a palette entry, Windows 
will use the closest matching color in the default palette of 20 static colors. 

NOTE If the source and destination device contexts have selected and realized different 
palettes, the BitBlt function does not properly move bitmap bits to or from a memory device 
context. In this case, you must call the GetDlBits with the wUsage parameter set to 
DIB_RGB_COLORS to retrieve the bitmap bits from the source bitmap in a device-inde­
pendent format. You then use the SetDlBits function to set the retrieved bits in the destina­
tion bitmap. This ensures that Windows will properly match colors between the two device 
contexts. 

BitBII can successfully move bitmap bits between two screen display contexts, even if they 
have selected and realized different palettes. The StretchBlt function properly moves bitmap 
bits between device contexts whether or not they use different palettes. 

2.4 Drawing-Attribute Functions 
Drawing-attribute functions affect the appearance of Windows output, which has 
four forms: line, brush, bitmap, and text. The following list describes each draw­
ing-attribute function: 



2-14 Reference - Volume 1 

Function 

GetBkColor 

GetBkMode 

GetPoly FillMode 

GetROP2 

GetStretchBltMode 

GetTextColor 

SetBkColor 

SetBkMode 

SetPolyFillMode 

SetROP2 

SetStretchBltMode 

SetTextColor 

Description 

Returns the current background color. 

Returns the current background mode. 

Retrieves the current polygon-filling mode. 

Retrieves the current drawing mode. 

Retrieves the current stretching mode. 

Retrieves the current text color. 

Sets the background color. 

Sets the background mode. 

Sets the polygon-filling mode. 

Sets the current drawing mode. 

Sets the stretching mode. 

Sets the text color. 

2.4.1 Background Mode and Background C%r 
Line output can be solid or broken (dashed, dotted, or a combination of the two). 
If it is broken, the space between the breaks can be filled by setting the back­
ground mode to OPAQUE and selecting a color. By setting the background mode 
to TRANSPARENT, the space between breaks is left in its original state. The 
SetBkMode and SetBkColor functions accomplish this task. 

Brush output is solid, patterned, or hatched. The space between hatch marks can 
be filled by setting the background mode to OPAQUE and selecting a color. 
When Windows creates brush output on a display, it combines the existing color 
on the display surface with the brush color to yield a new and final color; this is a 
binary raster operation. If the default raster operation is not appropriate, a new 
one is chosen by using the SetROP2 function. 

2.4.2 Stretch Mode 
If an application copies a bitmap to a device and it is necessary to shrink or ex­
pand the bitmap before drawing, the effects of the StretchBlt and StretchDIBits 
functions can be controlled by calling SetStretchBltMode to set the current 
stretch mode for a device context. The stretch mode determines how lines elimi­
nated from the bitmap are combined. 



2.4.3 Text C%r 

Graphics Device Interface Functions 2-15 

The appearance of text output is limited only by the number of available fonts 
and the color capabilities of the output device. The SetBkColor function sets the 
color of the text background (the unused portion of each character's cell) and the 
SetTextColor function sets the color of the character itself. 

2.5 Mapping Functions 
Mapping functions alter and retrieve information about the GDI mapping modes. 
In order to maintain device independence, GDI creates output in a logical space 
and maps it to the display. The mapping mode defines the relationship between 
units in the logical space and pixels on a device. The following list briefly de­
scribes each mapping function: 

Function 

GetMapMode 

Get ViewportExt 

Get ViewportOrg 

GetWindowExt 

GetWindowOrg 

OffsetViewportOrg 

OffsetWindowOrg 

Scale ViewportExt 

Scale Window Ext 

SetMapMode 

Set ViewportExt 

Set ViewportOrg 

SetWindowExt 

SetWindowOrg 

Description 

Retrieves the current mapping mode. 

Retrieves a device context's viewport extents. 

Retrieves a device context's viewport origin. 

Retrieves a device context's window extents. 

Retrieves a device context's window origin. 

Modifies a viewport origin. 

Modifies a window origin. 

Modifies the viewport extents. 

Modifies the window extents. 

Sets the mapping mode of a specified device context. 

Sets a device context's viewport extents. 

Sets a device context's viewport origin. 

Sets a device context's window extents. 

Sets a device context's window origin. 



2-16 Reference - Volume 1 

There are eight different mapping modes: MM_ANISOTROPIC, MM_HIEN­
GLISH, MM_HIMETRIC, MM_ISOTROPIC, MM_LOENGLISH, 
MM_LOMETRIC, MM_TEXT, and MM_TWIPS. Each mode has a specific use 
in a Windows application. Table 2.2 summarizes the eight GDI mapping modes: 

Table 2.2 GDI Mapping Modes 

Mapping Mode 

MM_ANISOTROPIC 

MM_TWIPS 

Intended Use 

Used in applications that map one logical unit to an arbi­
trary physical unit. The x- and y-axes are arbitrarily 
scaled. 

Used in applications that map one logical unit to 0.001 
inch. Positive y extends upward. 

Used in applications that map one logical unit to 0.01 
millimeter. Positive y extends upward. 

Used in applications that map one logical unit to an arbi­
trary physical unit. One unit along the x-axis is always 
equal to one unit along the y-axis. 

Used in applications that map one logical unit to 0.01 
inch. Positive y extends upward. 

Used in applications that map one logical unit to 0.1 mil­
limeter. Positive y extends upward. 

Used in applications that map one logical unit to one 
pixel. Positive y extends downward. 

Used in applications that map one logical unit to 1/1440 
inch (1/20 of a printer's point). Positive y extends up­
ward. 

2.5.1 Constrained Mapping Modes 
GDI classifies six of the mapping modes as constrained mapping modes: 
MM_HIENGLISH, MM_HIMETRIC, MM_LOENGLISH, MM_LOMETRIC, 
MM_TEXT, and MM_TWIPS. In each of these modes, one logical unit is 
mapped to a predefined physical unit. For instance, the MM_ TEXT mode maps 
one logical unit to one device pixel, and the MM_LOENGLISH mode maps one 
logical unit to 0.01 inch on the device. These mapping modes are constrained be­
cause the scaling factor is fixed, so an application cannot change the number of 
logical units that Windows maps to a physical unit. Table 2.3 shows the number 
of logical units in various mapping modes that result in a certain physical unit: 



Graphics Device Interface Functions 2-17 

Table 2.3 Logical/Physical Conversion Table 

Mapping 
Mode 

MM_HIENGLISH 

MM_HIMETRIC 

MM_LOENGLISH 

MM_LOMETRIC 

MM_TEXT 

MM_TWIPS 

Logical 
Units 

1000 

100 

100 

10 

1440 

Physical 
Unit 

1 inch 

1 millimeter 

1 inch 

1 millimeter 

Device pixel 

1 inch 

2.5.2 Partially Constrained and Unconstrained Mapping Modes 
The unconstrained mapping modes, MM_ISOTROPIC and MM_ANI­
SOTROPIC, use two rectangular regions to derive a scaling factor and an orienta­
tion: the window and the viewport. The window lies within the 
logical-coordinate space and the viewport lies within the physical-coordinate 
space. Both possess an origin, an x-extent, and a y-extent. The origin may be any 
one of the four comers. The x-extent is the horizontal distance from the origin to 
its opposing comer. The y-extent is the vertical distance from the origin to its op­
posing comer. Windows creates a horizontal scaling factor by dividing the view­
port's x-extent by the window's x-extent and creates a vertical scaling factor by 
dividing the viewport's y-extent by the window's y-extent. These scaling factors 
determine the number of logical units that Windows maps to a number of pixels. 
In addition to determining scaling factors, the window and viewport determine 
the orientation of an object. Windows always maps the window origin to the 
viewport origin, the window x-extent to the viewport x-extent, and the window y­
extent to the viewport y-extent. . 
Partially Constrained Mapping Mode 
An application creates output with equally scaled axes by using the· 
MM_ISOTROPIC mapping mode. This means that Windows will map a sym­
metrical object (for example, a square or a circle) in the logical space as a sym­
metrical object in the physical space. In order to maintain this symmetry, GDI 
shrinks one of the viewport extents. The amount of shrinkage depends on the re­
quested extents and the aspect ratio of the device. This mapping mode is called 
partially constrained because the application does not have complete control in al­
tering the scaling factor. 



2-18 Reference - Volume 1 

Unconstrained Mapping Mode 
An application can completely alter the horizontal and vertical scaling factors by 
using the MM_ANISOTROPIC mapping mode and setting the window and view­
port extents to any value after selecting this mapping mode. Windows will not 
alter either scaling factor in this mode. 

2.5.3 Transformation Equations 
GDI uses the following equations to transform logical points to device points, 
and device points to logical points: 

• Transforming logical points to device points: 

Dx = (Lx - xWO) x xVE/xWE + xVO 
Dy = (Ly - yWO) x yVE/yWE + yVO 

• Transforming device points to logical points: 

Lx = (Dx - xVO) x xWE/xVE + xWO 
Ly = (Dy - yVO) x yWE/yVE + yWO 

The following list describes the variables used in these transformation equations: 

Variable 

xWO 

yWO 

xWE 

yWE 

xVO 

yVO 

xVE 

yVE 

Lx 

Ly 

Dx 

Dy 

Description 

Window origin x-coordinate 

Window origin y-coordinate 

Window extent x-coordinate 

Window extent y-coordinate 

Viewport origin x-coordinate 

Viewport origin y-coordinate 

Viewport extent x-coordinate 

Viewport extent y-coordinate 

Logical-coordinate system x-coordinate 

Logical-coordinate system y-coordinate 

Device x-coordinate 

Device y-coordinate 



Graphics Device Interface Functions 2-19 

The following four ratios are scaling factors: 

xVE/xWE 

yVE/yWE 

xWE/xVE 

yWE/yVE 

They are used to determine the necessary stretching or compressing of logical 
units. The subtraction and addition of viewport and window origins is referred to 
as the translational component of the equation. 

2.5.4 Example: MM_ TEXT 
The default mapping mode is MM_TEXT. In this mapping mode, one logical 
unit is mapped to one pixel on the device or display. 

A simple Windows application created three rectangles as they appear in the logi­
cal and physical coordinate spaces when MM_ TEXT is the mapping mode, as 
shown in Figure 2.5. The drawing on the left illustrates the logical space; the 
drawing on the right illustrates the device, or physical, space. The rectangles ap­
pear vertically elongated in the physical space because pixels on the chosen dis­
play are longer than they are wide. The rectangles appear to be upside-down 
because positive y extends downward in the physical-coordinate system. 

Logical Coordinate System 

y-axis 

• (+li 
I 
I 
I 
I 

I 

... _________ :.. _____ .J-_...L. ______ .. x-axis 
(-) : Origin (+) 

(-)i 

Figure 2.5 Mapping with MM_TEXT 

2.5.5 Example: MM_LOENGLISH 

Physical Coordinate System 

Origin 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

(+)+ 

y-axis 

--------------------+- x-axis 
(+) 

A Windows application created three rectangles and mapped them from the logi­
cal space to the physical space by using the MM_LOENGLISH mapping mode, 



2-20 Reference - Volume 1 

as shown in Figure 2.6. The drawing on the left illustrates how the rectangles ap­
pear in relation to the x- and y-axes in the logical coordinate system. The drawing 
on the right illustrates how the rectangles appear in relation to the x- and y-axes 
in the physical coordinate system. 

Logical Coordinate System 

y-axis 

• (+)l 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 

Physical Coordinate System 

y-axis 

(-) • 

• _________ '- _____ ~____:...J... ______ ~ x-axis 
(-) : Origin (+) 

. ---------~ -~ ------------. 
(-) : Origin (+) 

x-axis 

(-)i (+): , 
Figure 2.6 Mapping with MM_LOENGLISH 

2.6 Coordinate Functions 
Coordinate functions convert client coordinates to screen coordinates (or vice 
versa), and determine the location of a specific point. These functions are useful 
in graphics-intensive applications. The following list briefly describes each 
coordinate function: 

Function Description 

ChiidWindowFromPoint Determines which child window contains a specified 
point. 

ClientToScreen 

DPtoLP 

LPtoDP 

ScreenToClient 

WindowFromPoint 

Converts client coordinates into screen coordinates. 

Converts device points (that is, points relative to the 
window origin) into logical points. 

Converts logical points into device points. 

Converts screen coordinates into client coordinates. 

Determines which window contains a specified 
point. 



Graphics Device Interface Functions 2-21 

2.7 Region Functions 
Region functions create, alter, and retrieve infonnation about regions. A region is 
an elliptical or polygonal area within a window that can be filled with graphical 
output. An application uses these functions in conjunction with the clipping func­
tions to create clipping regions. For more information about clipping functions, 
see Section 2.8, "Clipping Functions." The following list briefly describes each 
region function: 

Function 

CombineRgn 

CreateEllipticRgn 

CreateEllipticRgnlndirect 

CreatePolygonRgn 

CreatePolyPolygonRgn 

CreateRectRgn 

CreateRectRgnlndirect 

CreateRoundRectRgn 

EqualRgn 

FillRgn 

FrameRgn 

GetRgnBox 

InvertRgn 

OffsetRgn 

PaintRgn 

PtInRegion 

Description 

Combines two existing regions into a 
new region. 

Creates an elliptical region. 

Creates an elliptical region. 

Creates a polygonal region. 

Creates a region consisting of a series 
of closed polygons that are filled as 
though they were a single polygon. 

Creates a rectangular region. 

Creates a rectangular region. 

Creates a rounded rectangular region. 

Detennines whether two regions are 
identical. 

Fills the given region with a brush 
pattern. 

Draws a border for a given region. 

Retrieves the coordinates of the 
bounding rectangle of a region. 

Inverts the colors in a region. 

Moves the given region. 

Fills the region with the selected 
brush pattern. 

Tests whether a point is within a re­
gion. 



2-22 Reference - Volume 1 

Function 

RectlnRegion 

SetRectRgn 

2.8 Clipping Functions 

Description 

Tests whether any part of a rectangle 
is within a region. 

Creates a rectangular region. 

Clipping functions create, test, and alter clipping regions. A clipping region is the 
portion of a window's client area where GDI creates output; any output sent to 
that portion of the client area which is outside the clipping region will not be vis­
ible. Clipping regions are useful in any Windows application that needs to save 
one part of the client area and simultaneously send output to another. The follow­
ing list briefly describes each clipping function: 

Function 

ExcludeCIipRect 

GetCIipBox 

IntersectCIipRect 

OffsetCii pRgn 

PtVisible 

Rect Visible 

SelectCIipRgn 

2.9 Line-Output Functions 

Description 

Excludes a rectangle from the clipping region. 

Copies the dimensions of a bounding rectangle. 

Fonns the intersection of a clipping region and a 
rectangle. 

Moves a clipping region. 

Tests whether a point lies in a region. 

Detennines whether part of a rectangle lies in a re­
gion. 

Selects a clipping region. 

Line-output functions create simple and complex line output with the selected 
pen. The following list briefly describes each line-output function: 

Function 

Arc 

LineDDA 

LineTo 

MoveTo 

Polyline 

Description 

Draws an arc. 

Computes successive points on a line. 

Draws a line with the selected pen. 

Moves the current position to the specified point. 

Draws a set of line segments. 



Graphics Device Interface Functions 2-23 

Figure 2.7 shows an arc created by using the Arc function. The upper portion of 
the illustration shows the arc as it would appear on a display; the lower portion 
shows the arc suspended in its bounding rectangle, which GDI uses to detennine 
the size and shape of the arc: 

, ................................................................................... . 

................................. . ................................ . 

Figure 2.7 Arc and Its Bounding Rectangle 

2.9.1 Function Coordinates 
Line-output functions require coordinates in logical units, which GDI uses to 
draw a line in logical space. The use of logical units ensures device independence 
in Windows. GDI maps this line from the logical space to the physical space on 
the device. The number of logical units that GDI maps to a pixel depends on the 
current mapping mode. When GDI draws a line, it excludes the last specified 
point. For example, if the LineTo function is given the arguments (Xl, YI) and 
(X2, Y2), the line will be drawn from (Xl, YI) to (X2 - 1, Y2 - 1). 

2.9.2 Pen Styles, Colors, Widths 
If an application draws lines and does not create a new pen, GDI uses the default 
pen. This pen is black and is one pixel wide when the mapping mode is 
MM_TEXT. An application can create a new pen of a different width, style, and 
color by using the CreatePen function. The new color is dependent on the color 
capabilities of the output device. The new style can be solid, dotted, dashed, or a 
combination of dotted and dashed. Once an application creates a new pen, it can 
select it into a display context by using the SelectObject function. 

Figure 2.8 shows simple line output created by the LjneTo and MoveTo func­
tions. The application created the rectangle on the left by using a styled pen and 
the rectangle on the right by using a solid pen: 



2-24 Reference - Volume 1 

JSOlid pen 

~ _______ ---J 

Figure 2.8 Styled-Pen and Solid-Pen Rectangles 

2.10 Ellipse and Polygon Functions 
Ellipse and polygon functions draw ellipses and polygons. GDI draws the perime­
ter of each object with the selected pen and fills the interior by using the selected 
brush. These functions are particularly useful in drawing and charting applica­
tions. The following list briefly describes each ellipse and polygon function: 

Function 

Chord 

DrawFocusRect 

Ellipse 

Pie 

Polygon 

Poly Polygon 

Rectangle 

RoundRect 

2.10.1 Function Coordinates 

Description 

Draws a chord. 

Draws a rectangle in the style used to indicate focus. 

Draws an ellipse. 

Draws a pie. 

Draws a polygon. 

Draws a series of closed polygons that are filled as 
though they were a single polygon. 

Draws a rectangle. 

Draws a rounded rectangle. 

Ellipse and polygon functions require coordinates in logical units, which GDI 
uses to determine the location and size of an object in logical space. The use of 
logical units ensures device independence in Windows. GDI uses a mapping 
function to map logical units to pixels on the device. The number of logical units 
that Windows maps to a pixel depends on the current mapping mode. The default 
mapping mode, MM_ TEXT, maps one logical unit to one pixel. 

When GDI draws a rectangle, it uses four arguments. The first two arguments 
specify the rectangle's upper-left comer. The last two arguments do not actually 
specify part of the rectangle; they specify the point adjacent to the lower-right 
comer. For example, if the first point is specified by (Xl, YI) and the second 



Graphics Device Interface Functions 2-25 

point is specified by (X2, Y2), the rectangle's upper-left comer will be (Xl, Yl) 
and the lower-right comer will be (X2 - 1, Y2 - 1). 

2.10.2 Bounding Rectangles 
Instead of requiring a radius or circumference measurement, the Chord, Ellipse, 
and Pie functions use a bounding rectangle to define the size of the object they 
create. The bounding rectangle is hidden; GDI uses it only to describe the ob­
ject's location and size. 

For information about functions that alter or obtain information about rectangles 
in a window's client area, see Section 1.18, "Rectangle Functions." 

2. 11 Bitmap Functions 
Bitmap functions display bitmaps. A bitmap is a matrix of memory bits that, 
when copied to a device, defines the color and pattern of a corresponding matrix 
of pixels on the device's display surface. Bitmaps are useful in drawing, charting, 
and word-processing applications because they let you prepare images in 
memory and then quickly copy them to the display. The following list briefly de­
scribes each bitmap function: 

Function 

BitBlt 

CreateBitmap 

CreateBitmaplndirect 

CreateCompatibleBitmap 

CreateDiscardableBitmap 

ExtFloodFill 

FloodFill 

GetBitmapBits 

GetBitmapDimension 

Description 

Copies a bitmap from a source to a 
destination device. 

Creates a bitmap. 

Creates a bitmap described in a data 
structure. 

Creates a bitmap that is compatible 
with a specified device. 

Creates a discardable bitmap that is 
compatible with a specified device. 

Fills the display surface within a 
border or over an area of a given 
color. 

Fills the display surface within a 
border. 

Retrieves the bits in memory for a 
specific bitmap. 

Retrieves the dimensions of a bitmap. 



2-26 Reference - Volume 1 

Function 

GetPixel 

LoadBitmap 

PatBIt 

SetBitmapBits 

SetBitmapDimension 

SetPixel 

StretchBIt 

2.11.1 Bitmaps and Devices 

Description 

Retrieves the RGB value for a pixel. 

Loads a bitmap from a resource file. 

Creates a bit pattern. 

Sets the bits of a bitmap. 

Sets the height and width of a bitmap. 

Sets the RGB value for a pixel. 

Copies a bitmap from a source to a 
destination device (compresses or 
stretches, if necessary). 

The relationship between bitmap bits in memory and pixels on a device is device­
dependent. On a monochrome device, the correspondence is usually one-to-one, 
where one bit in memory corresponds to one pixel on the deviCe. 

2.11.2 Device-Independent Bitmap Functions 
Microsoft Windows version 3.0 provides a set of functions that define and 
manipulate color bitmaps which can be appropriately displayed on any device 
with a given resolution, regardless of the method by which the display represents 
color in memory. These functions translate a device-independent bitmap specifi­
cation into the device-specific format used by the current display. The following 

. is a list of these functions: 

Function 

CreateDIBitmap 

GetDIBits 

SetDIBits 

SetDIBitsToDevice 

Description 

Creates a device-specific memory bitmap from a 
device-independent bitmap (DIB) specification and 
optionally initializes bits in the bitmap. This func­
tion is similar to CreateBitmap. 

Retrieves the bits in memory for a specific bitmap in 
device-independent form. This function is similar to 
GetBitmapBits. 

Sets a memory bitmap's bits from a DIB. This func­
tion is similar to SetBitmapBits. 

Sets bits on a device surface directly from a DIB. 



Function 

StretchDIBits 

Graphics Device Interface Functions 2-27 

Description 

Moves a device-independent bitmap (DIB) from a 
source rectangle into a destination rectangle, stretch­
ing or compressing the bitmap as required. 

A device-independent bitmap specification consists of two parts: 

1. A BITMAPINFO data structure that defines the format of the bitmap ~nd op­
tionally supplies a table of colors used by the bitmap 

2. An array of bytes that contain the bitmap bit values 

Depending on the values contained in the bitmap information data structure, the 
bitmap bit values can specify explicit color (RGB) values or indexes into the 
color table. In addition, the color table can consist of indexes into the currently re­
alized logical palette instead of explicit RGB color values. It is important to note 
that the coordinate-system origin for DIBs is the lower-left comer, not the 
Windows default upper-left comer. 

2.12 Text Functions 
Text functions retrieve text information, alter text alignment, alter text justifica­
tion, and write text on a device or display surface. GDI uses the current font for 
text output. The following list briefly describes each text function: 

Function 

ExtTextOut 

GetTabbedTextExtent 

GetTextAlign 

GetTextExtent 

GetTextFace 

GetTextMetrics 

SetTextAlign 

SetTextJ ustification 

Description 

Writes a character string, within a rectangular re­
gion, using the currently selected font. The rectangu­
lar region can be opaque (filled with the current 
background color) and it can be a clipping region. 

Computes the width and height of a line of text con­
taining tab characters. 

Returns a mask of the text alignment flags. 

Uses the current font to compute the width and 
height of text. 

Copies the current font name to a buffer. 

Fills the buffer with metrics for the selected font. 

Positions a string of text on a display or device. 

Justifies a text line. 



2-28 Reference - Volume 1 

Function 

TabbedTextOut 

TextOut 

2.13 FontFuncffons 

Description 

Writes a character string with expanded tabs, using 
the current font. 

Writes a character string using the current font. 

Font functions select, create, remove, and retrieve information about fonts. A 
font is a subset of a particular typeface, which is a set of characters that share a 
similar fundamental design. 

The following list briefly describes each font function: 

Function 

AddFontResource 

CreateFont 

CreateFontlndire~t 

EnumFonts 

GetCharWidth 

RemoveFontResource 

SetMapperFlags 

Description 

Adds a font resource in the specified file to the sys­
tem font table. 

Creates a logical font that has the specified charac­
teristics. 

Creates a logical font that has the specified charac­
teristics. 

Enumerates the fonts available on a given device. 

Retrieves the widths of individual characters. 

Removes a font resource from the font table. 

Alters the algorithm the font mapper uses. 

A font family is a group of typefaces that have similar stroke-width and serif 
characteristics. A typeface is a set of characters (letters, numerals, punctuation 
marks, symbols) that share a common design. Font characters share very specific 
characteristics, such as point size and weight. 

Note that the terms GDI uses to describe fonts, typefaces, and families of fonts 
do not necessarily correspond to traditional typographic terms. 

The Helv typeface is an example of a familiar typeface. Available fonts within 
this typeface include 8-point Helv bold and IO-point Helv italic. 

Figure 2.9 shows several fonts from the Helv and Courier typefaces: 



Graphics Device Interface Functions 2-29 

This is a line of 12 point Helv. 

This is a line of 12 point Helv bold. 

This is a line of 12 point Helv italic. 

This is a line of 12 point Courier. 

This is a line of 12 point Courierbold. 

This is a line of 12 point Courier italic. 

Figure 2.9 Fonts from Two Typefaces 

2. 13. 1 Font Family 
GDI organizes fonts by family; each family consists of typefaces and fonts that 
share a common design. The families are divided by stroke width and serif 
characteristics. The term stroke, which means a horizontal or vertical line, comes 
from handwritten characters composed of one or more pen strokes. The horizon­
tal stroke is called a cross-stroke. The main vertical line is called a stem. 
Figure 2.10 shows a lowercase f composed of a cross-stroke and a stem with a 
loop at the top: 

lfs

-r
ke 

Stem 

Figure 2.10 Cross-Stroke and Stem 

Serifs are short cross-lines drawn at the ends of the main strokes of a letter. If a 
typeface does not have serifs, it is generally called a sans-serif (without serif) 
typeface. Figure 2.11 shows serifs: 

[rAJ [g:::: 
Figure 2.11 Serifs 



2-30 Reference - Volume 1 

GDI uses five distinct family names to categorize typefaces and fonts. A sixth 
name is used for generic cases. Note that GDI's family names do not correspond 
to traditional typographic categories. Table 2.4 lists the font-family names and 
briefly describes each family: 

Table 2.4 

Name 

Dontcare 

Decorative 

Modem 

Roman 

Script 

Swiss 

2.13.2 Character Cells 

Font Families 

Description 

Generic family name. Used when infonnation about a font does 
not exist or does not matter. 

Novelty fonts. 

Constant stroke width (fixed-pitch), with or without serifs. 
Fixed-pitch fonts are usually modern. 

Variable stroke width (proportionally spaced), with serifs. 

Designed to look like handwriting. 

Variable stroke width (proportionally spaced), without serifs. 

A character is the basic element in a font. In GDI, each character is contained 
within a rectangular region known as a character cell. This rectangular region 
consists of a specific number of rows and columns, and possesses six points of 
measurement: ascent, baseline, descent, height, origin, and width. The following 
list describes these measurements: 

Measurement 

Ascent 

Baseline 

Descent 

Height 

Description 

Specifies the distance in character-cell rows from 
the character-cell baseline to the top of the character 
cell. 

Serves as the base on which all characters stand 
(some lowercase letters have descenders, such as the 
tail of the g or y, that descend below the baseline). 

Specifies the distance in character-cell rows from 
the character-cell baseline to the bottom of the 
character cell. 

Specifies the height of a character-cell row. 



Measurement 

Origin 

Width 

Graphics Device Interface Functions 2-31 

Description 

Used as a point of reference when the character is 
written on a device or a display surface. The origin 
is the upper-left corner of the character cell. 

Specifies the width of a character-cell column. 

'Figure 2.12 shows a character cell that contains an uppercase A. The baseline ap­
pears at the top of the second row. Note that the uppercase A uses the baseline as 
its starting point. Also note that the width and height values refer to the character­
cell width and height, not the width and height of the individual character: 

\Origin 

IJi;} AJcent f 
~L Height 

L Width --I ±---L-
I """""1 ~ Descent 

Figure 2.12 Character-Cell Dimensions 

2. 13.3 Altering Characters 
Characters exist in many sizes and shapes. The following sections describe how 
characters are altered in GDI to produce a particular font. 

Italic 
For an italic font, GDI skews the characters so that they appear slanted. When 
italicized, the base of the character remains intact while the upper portion shifts 
to the right. The greatest amount of shifting occurs at the top of the character, the 
least amount at the base. Figure 2.13 shows characters before and after being itali­
cized: 

These two examples illustrate the result of 
italic type. The base of each character 
remains intact while the upper portion is 
skewed to the right. 

Figure 2.13 Normal and Italic Characters 



2-32 Reference - Volume 1 

Bold 
A font is made bold by increasing its weight, which refers to the thickness of the 
lines or strokes that compose a character. Fonts with a heavy weight are referred 
to as bold. Figure 2.14 shows normal and bold characters: 

These two examples illustrate the result of 
varying font weight. A heavier weight gives 
you a bolder font. . . 

Figure 2.14 Normal and Bold Characters 

Underline 
An underline font has a line under each character. When a character is under­
lined, a solid line appears directly below the baseline of the character cell. Figure 
2.15 shows underlined characters: 

This font is underlined. 
A solid line is drawn 
below the baseline of 
each character cell. 

Figure 2.15 Underlined Characters 

Strikeout 
A strikeout font has a solid horizontal line drawn through each character. The 
position of this line within each character cell is constant for a given font. Figure 
2.16 shows characters that are struck out: 



2.13.4 Leading 

This string of text 
illustrates the effect 
of implementing the 
stril(eout attribute. 

Graphics Device Interface Functions 2-33 

Figure 2.16 Strikeout Characters 

Leading is the distance from baseline to baseline of two adjacent rows of text. 
When font designers develop a font, they specify that a given amount of space 
should appear between rows. The addition of this space ensures that a character 
is not obscured by part of another character in an adjacent row. There are two 
ways of adding this additional space: by inserting it within the character cells of a 
font (internal leading) or by inserting it between rows of text as they are printed 
on a device (external leading). 

Internal Leading 
Internal leading refers to the space inserted within character cells of a particular 
font. Only marks such as accents, umlauts, and tildes in foreign character sets ap­
pear within the space allocated for internal leading. Figure 2.17 shows two rows 
of text that use internal leading: 

[Iernalleading 

T 

/ Top of character cell 

/ 
Character-cell 
baseline 

I 
Leading 

~~~L 
(

L....-__ ..L.-. __ __ ...I "- Character-cell
Bottom of baseline
character-cell

Figure 2.17 Internal Leading

2-34 Reference - Volume 1

External Leading
External leading is space inserted between the top and bottom of character cells
in adjacent rows of text. The font designer must specify the amount of external
leading necessary to produce easily readable text from a particular font. External
leading is not built into a font; you must add it before you print text on a device.
Figure 2.18 shows external leading:

A B C
A b c

Figure 2.18 External Leading

2.13.5 Character Set

External
leading

All fonts use a character set. A character set contains punctuation marks, numer­
als, uppercase and lowercase letters, and all other printable characters. The de­
signer of a character set assigns a numeric value to each element in the set. You
use this number to access an element within the set.

Most character sets used in Windows are supersets of the U.S. ASCII character
set, which defines characters for the 96 numeric values from 32 to 127. There are
four major groups of character sets:

• ANSI

• OEM

• Symbol

• Vendor specific

ANSI Character Set
The ANSI character set is the most commonly used character set. The blank
character is the first character in the ANSI character set. It has a hexadecimal
value of Ox20, which is equivalent to the decimal value 32. The last character in
the ANSI character set has a hexadecimal value of OxFF, which is equivalent to
the decimal value 255.

Many fonts specify a default character. Whenever a request is made for a
character not in the set, this default character is given. Most fonts using the ANSI

2.13.6 Pitch

Graphics Device Interface Functions 2-35

character set specify the period (.) as the default character. The hexadecimal
value for the period is Ox2E, or decimal 46 in the ANSI character set.

Fonts use a break character to separate words and justify text. Most fonts using
the ANSI character set specify the blank character, whose hexadecimal value is
Ox20, decimal 32.

OEM Character Set
Windows supports a second character set, referred to as the OEM character set.
This is generally the character set used internally by DOS for screen display.
Chanicters 32 to 127 of the OEM set are usually identical to the same characters
in the U.S. ASCII set, which are also in the ANSI set. The remaining characters
in the OEM set (0 to 31, and 128 to 255) correspond to the characters which may
be shown on the computer's DOS display, and generally differ from ANSI
characters.

Symbol Character Set
The symbol character set contains special characters typically used to represent
mathematical and scientific formulas.

Vendor-Specific Character Sets
Many printers and other output devices contain fonts based on character sets
which differ from the ANSI and OEM sets, such as the EBCDIC character set. In
such cases, the printer driver must translate from the ANSI character set to one or
more of the sets provided by the printer or other device.

The term pitch traditionally refers to the number of characters from a particular
font that will fit in a single inch. GDI, however, uses this term differently. The
term fixed-pitch refers to a font whose character-cell size is constant for each
character. The term variable-pitch refers to a font whose character cells vary in
size, depending on the actual width of the characters.

Average Character Width
Variable-pitch fonts use the average character width to specify the average width
of character cells in the font. Since there is no variance in character-cell width for
fixed-pitch fonts, the average character width specifies the character width of any
character in the fixed-pitch font.

Maximum Character Width
Variable-pitch fonts use the maximum character width to specify the maximum
width of any character cell in the font. Since there is no variance in character

2-36 Reference - Volume 1

width for fixed-pitch fonts, the maximum character width is equivalent to the
average character width in the fixed-pitch font.

Digitized Aspect
When raster fonts are created, they are designed with one particular aspect ratio
In mind. The aspect ratio is the ratio of the width and height of a device's pixel.
GDI maintains a record of the ideal x-aspect and y-aspect for individual fonts.
The ideal x-aspect is the width value from the aspect ratio of the device. The
ideal y-aspect is the height value from the aspect ratio of the device. These values
are called the digitized aspects for x and y. The GetAspectRatioFilter function
retrieves the setting for the current aspect-ratio filter. Windows provides a special
filter, the aspect-ratio filter, to select fonts designed for a particular aspect ratio
from all of the available fonts. The filter uses the aspect ratio specified by the
SetMapperFlags function.

Overhang
When a particular font is not available on a device, GDI sometimes synthesizes
that font. The process of synthesizing may add width or height to an existing
font. Whenever GDI synthesizes an italic or bold font from a normal font, extra
columns are added to individual character cells in that font. The difference in
width (the extra columns) between a string created with the normal font and a
string created with the synthesized font is called the overhang.

2.13.7 Selecting Fonts with GOI
GDI maintains a collection of fonts from different typefaces. In addition to this
collection, some devices maintain a collection of hardware fonts in their ROM.
GDI lets you describe a font and then selects the closest matching available font
from your description.

GDI requires you to describe the font you want to use to create text. The font you
describe is a logical font (it mayor may not actually exist). GDI compares this
logical font to the available physical fonts and selects the closest match.

The process of selecting the physical font that bears the closest resemblance to
the specified logical font is known as font mapping. ODI also maintains a font
table. Each entry in the font table describes a physical font and its attributes. In­
cluded in each entry is a pointer to a corresponding font resource. Figure 2.19
shows a font table that contains fonts X, Y, and Z:

Graphics Device Interface Functions 2-37

Font Table

Font X information

leading I italic I underline I weight

char set I width I height I first char

pitch and family I last char I · .. I --Pointer to
font X resource

Font Y information

leading I italic I underline I weight

char set I width I height I first char

pitch and family I last char I · .. I -- Pointer to
font Y resource

Font Z information

leading I italic I underline I weight

char set I width I height I first char

pitch and family I last char I · .. I --Pointer to
font Z resource

Figure 2.19 A GDI Font Table

Font-Mapping Scheme
GDI cannot guarantee that a physical font exists that exactly matches a requested
logical font, so GDI attempts to pick a font that has the fewest differences from
the requested logical font. Since fonts have many different attributes, the GDI
font mapper assigns penalties to physical fonts whose characteristics do not
match the characteristics of the specified logical font. The physical font with the
fewest penalties assigned is the. one that GDI selects.

To begin the mapping, GDI transforms the requested height and width of the logi­
cal font to device units. This transformation depends on the current mapping
mode and window and viewport extents. GDI then asks the device to realize the
physical font. A device can realize a font if it can create it or a font very close to
it.

If the device can realized a physical font, GDI compares this font with its own set
of fonts. If GDI has a font that more closely matches the logical font, GDI uses it.
But if the device signals that it can take device-realized fonts only, GDI uses the
realized font.

If the device cannot realize a font, GDI searches its own fonts for a match.

To determine how good a match a given physical font is to the requested logical
font, the mapper takes the logical font and compares it one attribute at a time
with each physical font in the system.

Table 2.5 lists the characteristics that are penalized by GDI's font mapper. The
characteristics are grouped according to penalty weights, with the heaviest

2-38 Reference - Volume 1

penalty assigned to the CharSet characteristic and the lightest penalty assigned to
the Weight, Slant, Underline, and StrikeOut characteristics.

Table 2.5 Font-Mapping Characteristics

Characteristic Penalty Scheme

CharSet If the character set does not match, the candidate
font is penalized heavily. Fonts with the wrong
character set are very rarely selected as the physi­
cal font. There is no default character set. This
means a logical font must alway specify the
desired set.

Pitch The wrong pitch is penalized heavily. If the re­
quested pitch is fixed, a wrong pitch is assessed a
greater penalty since an application that handles
fixed pitches may not be able to handle variable­
pitch fonts.

Family If the font families do not match, the candidate
font is penalized heavily. If a default font family
is requested, no penalties are assessed.

FaceName If the font typeface names do not match, the candi­
date font is penalized heavily. If a default font
facename is requested, no penalties are assessed.

Height The wrong height is penalized. GDI always
chooses or synthesizes a shorter font if the exact
height is not available. GDI can synthesize a font
by expanding a font's character bitmaps by an in­
teger multiple. GDI will expand a font up to eight
times. If a default height is requested, GDI arbi­
trarily searches for a twelve-point font.

Width The wrong width is penalized. GDI always
chooses or synthesizes a narrower font if the exact
width is not available. If a default width is re­
quested, GDI assesses a penalty for any difference
between the aspect ratio of the device and the
aspect ratio of the font. The mapper can give unex­
pected results if there are no fonts for the given
aspect ratio.

Weight Although GDI can synthesize bold, an actual bold
font is preferred. The mapper penalizes for synthe­
sizing.

Slant Although GDI can synthesize italics, an actual
italic font is preferred. The mapper penalizes for
synthesizing.

Penalty
Weight

4

3

3

3

2

2

Graphics Device Interface Functions 2-39

Table 2.5 Font-Mapping Characteristics (continued)

Characteristic Penalty Scheme

Underline

StrikeOut

Although GDI can synthesize underlining, an ac­
tual underline font is preferred. The mapper
penalizes for synthesizing.

Although GDI can synthesize strikeouts, an actual
strikeout font is preferred. The mapper penalizes
for synthesizing.

Penalty
Weight

If GDI synthesizes a font, the mapper assesses a penalty that depends on the num­
ber of times the font was replicated. Furthermore, a penalty is added if the font
was synthesized in both directions and the synthesizing was uneven, that is, if the
font was stretched more in one direction than the other.

When the m~pper has compared all the fonts in the system, it picks the one with
the smallest penalty. The application should retrieve the metrics of the font to
find out the characteristics of the font it received.

The penalty weights listed in Table 2.5 are the default penalties used by GDI.

Example of Font Selection
For the purpose of this example, assume that the system font table lists only the
three fonts shown in Figure 2.19, "A GDI Font Table," fonts X, Y, and Z. Sup­
pose you need to use a specific font, font Q, to create text on an output device.
You will need to describe font Q so that GDI can choose the physical font (X, Y,
or Z) that bears the closest resemblance to Q.

To describe font Q, you use the CreateFont or CreateFontlndirect GDI func­
tion. These functions create a logical font which is a description of the desired
physical font.

Use the SelectObject function to select the physical font that most closely
matches logical font Q. (The SelectObject function requires that you pass a
handle to font Q.) Once a call to the SelectObject function occurs, GDI will in­
itiate the selection process.

2-40 Reference - Volume 1

~able 2.6 shows the physical fonts in the font table and the penalties that GDI as­
signs to each as it tries to find a font that will match font Q. The left column
shows the font attributes that GDI compares; the second column gives the at­
tributes of font Q, the desired font. The attributes of fonts X, Y, and Z-the fonts
that are actually in the system font table-are followed by the penalty values that
GDI gives to each one. The bottom row of the table gives the penalty totals for
each font:

Table 2.6 Sample Font Selection Ratings

Desired Available Fonts/Penalty Score

Attributes Q X Y Z

CharSet ANSI OEM 4 OEM 4 ANSI 0

Pitch Fixed Variable 3 Fixed 0 Variable 3

Family Roman Modern 3 Roman 0 Modern 3

FaceName Tms Pica 3 Tms 0 Elite 3
Rmn Rmn

Height 8 10 2 10 2 8 0

Width 4 6 2 6 2 4 0

Slant None None 0 None 0 None 0

Underline None None 0 None 0 None 0

StrikeOut None None 0 None 0 None 0

Penalty Total 17 8 9

The penalty totals show that font Y has the lowest penalty score and therefore re­
sembles font Q most closely. In this example, GDI would select font Y as the
physical font on the output device.

2.13.8 Font Files and Font Resources
GDI stores information about the physical font in font files. The font file consists
of a header and a bitmap. The font-file header contains a detailed description of
the font. If the font file is a raster file, the font-file bitmap contains actual repre­
sentations of the font characters. If the font file is a vector file, the font-file bit­
map contains character strokes for the font characters. A font resource is a
collection of one or more of these physical-font files.

Graphics Device Interface Functions 2-41

2.14 Metafile Functions
Metafile functions close, copy, create, delete, retrieve, play, and return informa­
tion about metafiles. A metafile is a collection of GDI commands that creates
desired text or images.

Metafiles provide a convenient method of storing graphics commands that create
text or images. Metafiles are especially useful in applications that use specific
text or a particular image repeatedly. They are also device-independent; by creat­
ing text or images with GDI commands and then placing the commands in a
metafile, an application can re-create the text or images repeatedly on a variety
of devices. Metafiles are also useful in applications that need to pass graphics
information to other applications.

The following list briefly describes each metafile function:

Function

CloseMetaFile

CopyMetaFile

CreateMetaFile

DeleteMetaFile

EnumMetaFile

GetMetaFile

GetMetaFileBits

Play MetaFile

Play MetaFileRecord

SetMetaFileBits

2. 14.1 Creating a Metafile

Description

Closes a metafile and creates a metafile handle.

Copies a source metafile to a file.

Creates a metafile display context.

Deletes a metafile from memory.

Enumerates the GDI calls within a metafile.

Creates a handle to a metafile.

Stores a metafile as a collection of bits in a global
memory block.

Plays the contents of a specified metafile.

Plays a metafile record.

Creates a memory metafile.

A Windows application must create a metafile in a special device context. It can­
not use the device contexts that the CreateDC or GetDC functions return; in­
stead, it must use the device context that the CreateMetaFile function returns.

Windows allows an application to use a subset of the GDI functions to create a
metafile. This subset is the set of all GDI functions that create output (it is not
necessary to use those functions that provide state information, such as the
GetDeviceCaps or GetEnvironment functions). The following is a list of GDI
functions an application can use in a metafile: .

2-42 Reference - Volume 1

AnimatePalette
Arc
BitBIt
Chord
CreateBrushIndirect
CreateDIBPatternBrush
CreateFontlndirect
CreatePatternBrush
CreatePenIndirect
CreateRegion
DrawText
Ellipse
Escape
ExcludeClipRect
ExtTextOut
FloodFiII
IntersectClipRect
LineTo
MoveTo
OffsetClipRgn

Offset ViewportOrg
Offset WindowOrg
PatBIt
Pie
Polygon
Polyline
Poly Polygon
RealizePalette
Rectangle
ResizePalette
RestoreDC
RoundRect
SaveDC
Scale ViewportExt
Scale WindowExt
SelectClipRegion
SelectObject
SelectPalette
SetBkColor
SetBkMode

SetDIBitsToDevice
SetMapMode
SetMapperFlags
SetPixel
SetPolyFiIIMode
SetROP2
SetStretchBItMode
SetTextAlign
SetTextCharExtra
SetTextColor
SetTextJ ustification
Set ViewportExt
Set ViewportOrg
SetWindowExt
SetWindowOrg
StretchBIt
StretchDIBits
TextOut

To create output with a metafile, an application must follow four steps:

1. Create a special device context by using the CreateMetaFile function.

2. Send GDI commands to the metafile by using the special device context.

3. Close the metafile by calling the CloseMetaFile function. This function re­
turns a metafile handle.

4. Display the image or text on a device by using the PlayMetaFile function,
passing to the function the metafile handle obtained from CloseMetaFile and
a device-context handle for the device to which the metafile is to be played.

The device context which CreateMetaFile creates does not have default at­
tributes of its own. Whatever device-context attributes are in effect for the output
device when an application plays a metafile will be the defaults for the metafile.
The metafile can change these attributes while it is playing. If the application
needs to retain the same device-context attributes after the metafile has finished
playing, it should save the output device context by calling the SaveDC function
before calling PlayMetaFile. Then, when PlayMetaFile returns, the application
can call the RestoreDC function (with -1 as the nSavedDC parameter) to restore
the original device-context attributes.

Although the maximum size of a metafile is 232 bytes or records, the actual size
of a metafile is limited by the amount of memory or disk space available.

Graphics Device Interface Functions 2-43

2. 14.2 Storing a Metafile in Memory or on Disk
An application can store a metafile in system memory or in a disk file.

To store the metafile in memory, an application calls CreateMetafile and passes
NULL as the function parameter.

There are two ways of storing a metafile in a disk file:

• When the application calls CreateMetaFile to open a metafile, it passes a
filename as the function parameter; the metafile will then be recorded in a
disk file.

• After the application has created a metafile in memory, it calls the Copy­
MetaFile function. This function accepts the handle of a memory metafile
and the filename of the disk file which is to save the metafile.

The GetMetaFile function opens a metafile stored in a disk file and makes it
available for replay or modification. This function accepts the filename of a meta­
file stored on disk and returns a metafile handle.

2. 14.3 Deleting a Metafile
An application frees the memory which Windows uses to store the metafile by
calling the DeleteMetafile function. This function removes a metafile from
memory and invalidates its handle. It has no effect on disk files.

2. 14.4 Changing How Windows Plays a Metafile
A metafile does not have to be played back in its entirety or exactly in the form
in which it was recorded. An application can use the EnumMetaFile function to
locate a specific metafile record. EnumMetaFile calls an application-supplied
callback function and passes it the following:

• The metafile device context

• A pointer to the metafile handle table

• A pointer to a f!1etafile record

• The number of associated objects with handles in the handle table

• A pointer to application-supplied data

The callback function can then use this information to playa single record, to
query it, copy it, or modify it. The Play MetaFileRecord function plays a single
metafile record.

2-44 Reference - Volume 1

Chapter 9, "File Fonnats," in Reference, Volume 2, shows the fonnats of the
various metafile records and describes their contents.

When Windows plays or enumerates the records in a metafile, it identifies each
object with an index into a handle table. Functions that select objects (such as
SelectObject and SelectPalette) identify the object by means of the object
handle which the application passes to the function.

Objects are added to the table in the order in which they are created. For ex­
ample, jf a brush is the first object created in a metafile, the brush is given index
zero. If the second object is a pen, it is given index 1, and so on. See the descrip­
tion of the HANDLET ABLE data structure in Chapter 7, "Data Types and Struc­
tures," in Reference, Volume 2, for infonnation on the fonnat of the handle table.

2.15 Printer-Control Functions
Printer-control functions retrieve infonnation about a printer and modify its in­
itialization state. The printer driver, rather than GDI itself, provides these func­
tions. The following list briefly describes each printer-control function:

Function

DeviceCapabilities

DeviceMode

ExtDeviceMode

2. 16 Printer-Escape Function

Description

Retrieves capabilities of a printer device driver.

Sets the current printing modes for a device by
prompting the user with a dialog box.

Retrieves or modifies device initialization infonna­
tion for a given printer driver or displays a driver­
supplied dialog box for configuring the driver.

The Escape function allows an application to access facilities of a particular
device that are not directly available through GD!. The nEscape parameter of this
function specifies the escape function to be perfonned. When an application calls
Escape for a printer device context, the escape functions regulate the flow of
printer output from Windows applications, retrieve infonnation about a printer,
and alter the settings of a printer.

2.16.1 Creating Output on a Printer
Windows applications use only the standard Windows functions to access system
memory, the output ~evice, the keyboard, and the mouse. Each application inter­
acts with the user through one or more windows that are created and maintained·
by the user. GDI assists an application in creating output by passing device-inde­
pendent function calls from the application to the device driver. The device

Graphics Device Interface Functions 2-45

driver first translates these device-independent function calls into device-depend­
ent operations that create images on a device's display surface, and then sends
them to Print Manager (the spooler). Print Manager serves two purposes: it col­
lects translated commands from one application and stores them in a correspond­
ing job, and it passes a complete job to the device for output. Figure 2.20 shows
the path of output from a Windows application to a device:

{} {l

Application -.
1

Application -.
2

GOI

Figure 2.20 Output Path

Print
Manager

If only one Windows application were allowed to run at any given time, Print
Manager and many of the escape functions would be unnecessary. However,
Windows allows several applications to run at once. If two or more of these appli­
cations send output simultaneously, each application's output must be separated
and remain separated during printing or plotting. Print Manager maintains this
separation. The printer-escape functions affect the way Print Manager handles
this separation task.

2.16.2 Banding Output
The model used by GDI states that any point on an output device can be written
to at any time. This model is easily implemented on vector devices but poses a
problem on many dot-matrix devices that cannot scroll backward. Banding pro­
vides a solution to this problem.

Banding involves several steps:

1. The application creates a metafile and uses it as an intermediate storage
device for the output.

2-46 Reference - Volume 1

2. Beginning at the top of the metafile, GDI translates a rectangular region
(band) of output into device-specific commands, and then sends it to a corre­
sponding job.

3. The application repeats this process until the entire metafile has been con­
verted to bands and the output from these bands has been translated into
device-specific commands and stored in a job.

4. The application sends the job to the output device.

When creating a device context, GDI verifies whether the device has banding
capabilities. If it does, GDI creates the metafile that will be used during the band­
ing process. To implement banding, you call the necessary output functions and
the NEXTBAND escape. The NEXTBAND escape requires a long pointer to a
RECT data structure as its output parameter. The device driver copies the coordi­
nates of the next band into this structure. When the entire metafile has been con­
verted into device-specific commands, the driver returns four zeros (0,0,0,0) in
the RECT structure.

GDI does the banding for you if your output device has banding capabilities and
you call the NEWFRAME escape. Although NEWFRAME requires more
memory and is slower, it does simplify the output process. After the application
creates each page of output, it calls the NEWFRAME escape. If the device is
capable of banding, GDI copies output to a metafile and calls the NEXTBAND
escape for you. As discussed earlier, the NEXTBAND escape causes the con­
tents of the metafile to be converted into device-specific commands and to be
copied to a corresponding job. If a memory problem occurs or the user terminates
a job, the NEWFRAME escape returns a message that defines the error or abort
message.

2.16.3 Starting and Ending a Print Job
The ST ARTDOC escape informs the device driver that an application is begin­
ning a new print job. After the ST ARTDOC call is issued, Print Manager queues
all output from a particular application in a corresponding job until an ENDDOC
escape is issued. (Note that you cannot use the ENDDOC escape to terminate a
job.)

2.16.4 Terminating a Print Job
If you send output to a device with the NEWFRAME escape, you are required
to write a termination procedure and supply it with the application. The SET­
ABORTPROC escape sets a pointer to this procedure; it should be called prior
to the ST ARTDOC escape. The ABORTDOC escape terminates print jobs if it
is called before the first call to NEWFRAME. It should also be used to termi­
nate jobs that use the NEXTBAND escape.

Graphics Device Interface Functions 2-47

2.16.5 Information Escapes
Four of the escape functions are used to retrieve infonnation about the selected
device and its settings. The GETPHYSPAGESIZE escape retrieves the physical
page size of the output device (in device units), the smallest addressable units on
the device. For example, one-fortieth of a millimeter is the smallest addressable
unit on some vector devices. A pixel is the smallest addressable unit on a dot­
matrix device. The GETPRINTINGOFFSET escape retrieves the distance (in
device units) from the upper-left comer of the page to the point at which printing
begins. The GETSCALINGF ACTOR escape retrieves the scaling factors for
the x- and y-axes of a device. The scaling factor expresses the number of logical
units that are mapped to a device unit. The QUERYESCSUPPORT escape de­
termines whether a particular escape function is implemented on a device driver.
If the escape in question is implemented, QUERYESCSUPPORT returns a non­
zero value. If the escape is not implemented, QUERYESCSUPPORT returns
zero.

2.16.6 Additional Escape Calls
There are two additional escapes that alter the state of the device: the FLUSH­
OUTPUT and DRAFTMODE escapes. The FLUSHOUTPUT escape flushes
the output in the device's buffer (the device stores device operations in the buffer
before sending them to Print Manager). The DRAFTMODE escape turns on the
device's draft mode. This means that the device will use one of its own fonts in­
stead of using a GDI font. It also means that calls to the text-justification func­
tions that alter interword and intercharacter spacing are ignored. For a detailed
description of the functions that alter interword and intercharacter spacing, see
Sections 2.12, "Text Functions," and 2.13, "Font Functions."

2. 17 Environment Functions
Environment functions alter and retrieve infonnation about the environment as­
sociated with an output device. The following list briefly describes the two en­
viornment functions:

Function

GetEnvironment

SetEnvironment

Description

Copies environment infonnation into a buffer.

Copies data to the environment associated with an at­
tached device.

2-48 Reference - Volume 1

2.18 Summary
Graphics device interface (GDI) functions perform device-independent graphics
operations within a Windows application. For more information on topics related
to GDI functions, see the following:

Topic

Function descriptions

Windows data types and
structures

Metafile formats

Raster operations

Printer escapes

Drawing text and graphics
in a window

Drawing bitmaps

Sending outPut to a printer

Text fonts

Color palettes

Reference

Reference, Volume 1: Chapter 4, "Functions
Directory"

Reference, Volume 2: Chapter 7, "Data Types
and Structures"

Reference, Volume 2: Chapter 9, "File
Formats"

Reference, Volume 2: Chapter 11, "Binary
and Ternary Raster-Operation Codes"

Reference, Volume 2: Chapter 12, "Printer
Escapes"

Guide to Programming: Chapter 3, "Output
to a Window"

Guide to Programming: Chapter 11,
"Bitmaps"

Guide to Programming: Chapter 12,
"Printing," and Chapter 17, "Print Settings"

Guide to Programming: Chapter 18, "Fonts"

Guide to Programming: Chapter 19, "Color
Palettes"

Chapter

3
System Services Interface
Functions

This chapter describes the system services interface functions. These functions
access code and data in modules, allocate and manage both local and global
memory, manage tasks, load program resources, translate strings from one
character set to another, alter the Microsoft Windows initiali~ation file, assist in
system debugging, carry out communications through the system's I/O ports,
create and open files, and create sounds using the system's sound generator.

This chapter lists the following categories of functions:

• Module-management functions

• Memory-management functions

• Segment functions

• Operating-system interrupt functions

• Task functions

• Resource-management functions

• String-manipulation functions

• Atom-management functions

• Initialization-file functions

• Communication functions

• Sound functions

• Utility macros and functions

• File I/O functions

• Debugging functions

• Optimization-tool functions

• Application-execution functions

3-2 Reference - Volume 1

3. 1 Module-Management Functions
Module-management functions alter and retrieve information about Windows
modules, which are loadable, executable units of code and data. The following
list briefly describes each module-management function:

Function

FreeLibrary

FreeModule

FreeProcInstance

GetCodeHandle

GetlnstanceData

GetModuleFileName

GetModuleHandle

GetModuleUsage

GetProcAddress

GetVersion

LoadLibrary

MakeProcInstance

Description

Decreases the reference count of a library by one
and removes it from memory if the reference count
is zero.

Decreases the reference count of a module by one
and removes it from memory if the reference count
is zero.

Removes a function instance entry at an address.

Determines which code segment contains a specified
function.

Copies data from an offset in one instance to an off­
set in another instance.

Copies a module filename.

Returns the module handle of a module.

Returns the reference count of a module.

Returns the address of a function in a module.

Returns the current version number of Windows.

Loads a library module.

Returns a function-instance address.

3.2 Memory-Management Functions
Memory-management functions manage system memory. There are two catego­
ries of functions: those that manage global memory and those that manage local
memory. Global memory is all memory in the system that has not been allocated
by an application or reserved by the system. Local memory is the memory within
a Windows application's data segment. The following list briefly describes each
memory-management function:

Function

DefineHandleTable

GetFreeSpace

GetWinFlags

GlobalAlloc

GlobalCompact

GlobalDiscard

GlobaiDosAlloc

GlobalDosFree

GlobalFlags

GlobalFree

GlobalHandle

GlobalLock

GlobalLR UNewest

GlobalLRUOldest

GlobalNotify

GlobalReAlloc

GlobalSize

System Services Interface Functions 3-3

Description

Creates a private handle table in an application's de­
fault data segment.

Retrieves the number of bytes available in the global
heap.

Retrieves information about the system memory con­
figuration.

Allocates memory from the global heap.

Compacts global memory to generate free bytes.

Discards a global memory block if the lock count is
zero, but does not invalidate the handle of the
memory block.

Allocates global memory that can be accessed by
DOS running in real or protected mode.

Frees global memory previously allocated by the
GlobalDosAlloc function.

Returns the flags and lock count of a global memory
block.

Removes a global memory block and invalidates the
handle of the memory block.

Retrieves the handle of a global memory object.

Retrieves a pointer to a global memory block
specified by a handle. Except for nondiscardable ob­
jects in protected (standard or 386 enhanced) mode,
the block is locked into memory at the given address
and its lock count is increased by one.

Moves a global memory object to the newest least­
recently-used (LRU) position.

Moves a global memory object to the oldest least-re­
cently-used (LRU) position.

Installs a notification procedure for the current task.

Reallocates a global memory block.

Returns the size (in bytes) of a global memory block.

3-4 . Reference - Volume 1

Function

GlobalUnlock

GlobalUnwire

GlobalWire

LimitEMSPages

LocalAlloc

LocalCompact

LocalDiscard

LocalFlags

LocalFree

LocalHandle

Locallnit

LocalLock

LocalReAlloc

LocalShrink

LocalSize

LocalUnlock

LockData

LockSegment

SetSwapAreaSize

Description

Invalidates the pointer to a global memory block pre­
viously retrieved by the GlobalLock function. In
real mode, or if the block is discardable, GlobalUn­
lock decreases the block's lock count by one.

Decreases the lock count set by the GlobalWire
function, and unlocks the memory block if the count
is zero.

Moves an object to low memory and increases the
lock count.

Limits the amount of expanded memory that
Windows will assign to an application.

Allocates memory from the local heap.

Compacts local memory.

Discards a local memory block if the lock count is
zero, but does not invalidate the handle of the
memory block.

Returns the memory type of a local memory block.

Frees a local memory block from memory if the lock
count is zero and invalidates the handle of the
memory block.

Retrieves the handle of a local memory object.

Initializes a local heap in the specified segment.

Locks a block of local memory by increasing its
lock count.

Reallocates a local memory block.

Shrinks the local heap.

Returns the size (in bytes) of a local memory block.

Unlocks a local memory block.

Locks the current data segment in memory.

Locks a specified data segment in memory.

Increases the amount of memory that an application
reserves for code segments.

Function

SwitchStackBack

SwitchStackTo

UnlockData

UnLockSegment

3.3 Segment Functions

System Services Interface Functions 3-5

Description

Returns the stack of the current task to the task's
data segment after it had been previously redirected
by the SwitchTasksBack function.

Changes the stack of the current task to the specified
data segment, such as the data segment of a dynamic­
link library (DLL).

Unlocks the current data segment.

Unlocks a specified data segment.

Segment functions allocate, free, and convert selectors; lock and unlock memory
blocks referenced by selectors; and retrieve information about segments. The fol­
lowing list briefly describes each selector function:

Function

AllocDStoCSAlias

AllocSelector

ChangeS elector

DefineHandleTable

FreeSelector

GetCodelnfo

GlobalFix

Description

Accepts a data-segment selector and returns a code­
segment selector that can be used to execute code in
a data segment.

Allocates a new selector.

Generates a temporary code selector that corre­
sponds to a given data selector, or a temporary data
selector that corresponds to a given code selector.

Creates a private handle table which Windows up­
dates automatically.

Frees a selector originally allocated by the Alloc­
Selector, AllocCStoDSAlias, or AllocDStoCSAlias
functions.

Retrieves information about a code segment.

Prevents a global memory block from moving in
linear memory.

3-6 Reference - Volume 1

Function

GlobalPageLock

GlobalPage Unlock

GlobalUnfix

LockSegment

U nlockSegment

Description

Page-locks the memory associated with the specified
global selector and increments its page-lock count.
Memory that is page-locked cannot be moved or
paged out to disk.

Decrements the page-lock count for a block of
memory. If the page-lock count reaches zero, the
memory can be moved and paged out to disk.

Unlocks a global memory block previously fixed by
the GlobalFix function.

Locks a segment in memory.

Unlocks a segment previously locked by the Lock­
Segment function.

NOTE An application should not use these functions unless it is absolutely necessary.
Use of these functions violates preferred Windows programming practices.

3.4 Operating-System Interrupt Functions
Operating-system interrupt functions allow an assembly-language application to
perform certain DOS and NETBIOS interrupts without directly coding the inter­
rupt. This ensures compatibility with future Microsoft products.

The following list briefly describes these functions:

Function

DOS3CaII

NetBIOSCaII

3.5 Task Functions

Description

Issues a DOS 21H (function-request) interrupt.

Issues a NETBIOS 5CH interrupt.

Task functions alter the execution status of tasks, return information associated
with a task, and retrieve information about the environment in which the task is
executing. A task is a single Windows application call. The following list briefly
describes each task function:

Function

Catch

ExitWindows

Description

Copies the current execution environment to a buffer.

Initiates the standard Windows shutdown procedure.

Function

GetCurrentPDB

GetCurrentTask

GetDOSEnvironment

GetNumTasks

SetErrorMode

Throw

Yield

System Services Interface Functions 3-7

Description

Returns the current DOS Program Data Base (POB),
also known as the Program Segment Prefix (PSP).

Returns the task handle of the current task.

Retrieves the environment string of the currently run­
ning task.

Returns the number of tasks currently executing in
the system.

Controls whether Windows handles DOS Function
24H errors or allows the calling application to
handle them.

Restores the execution environment to the specified
values.

Halts the current task and starts any waiting task.

3.6 Resource-Management Functions
Resource-management functions find and load application resources from a
Windows executable file. A resource can be a cursor, icon, bitmap, string, or
font. The following list briefly describes each resource-management function:

Function

AccessResource

AlIocResource

FindResource

FreeResource

LoadAccelerators

LoadBitmap

LoadCursor

Loadlcon

LoadMenu

LoadResource

LoadString

LockResource

Description

Opens the specified resource.

Allocates uninitialized memory for a resource.

Determines the location of a resource.

Removes a loaded resource from memory.

Loads an accelerator table.

Loads a bitmap resource.

Loads a cursor resource.

Loads an icon resource.

Loads a menu resource.

Loads a resource.

Loads a string resource.

Retrieves the absolute memory address of a resource.

3-8 Reference - Volume 1

Function

SetResourceHandler

SizeofResource

U nlockResource

Description

Sets up a function to load resources.

Supplies the size (in bytes) of a resource.

Unlocks a resource.

3.7 String-Manipulation Functions
String-manipulation functions translate strings from one character set to another,
determine and convert the case of strings, determine whether a character is alpha­
betic or alphanumeric, find adjacent characters in a string, and perform other
string manipulation. The following list briefly describes each string-translation
function:

Function

AnsiLower

AnsiLowerBuff

AnsiNext

AnsiPrev

AnsiToOem

AnsiToOemBuff

AnsiUpper

AnsiUpperBuff

IsCharAlpha

IsCharAlphaNumeric

IsCharLower

IsCharUpper

Istrcat

Istrcmp

Istrcmpi

Description

Converts a character string to lowercase.

Converts a character string in a buffer to lowercase.

Returns a long pointer to the next character in a
string.

Returns a long pointer to the previous character in a
string.

Converts an ANSI string to an OEM character string.

Converts an ANSI string in a buffer to an OEM
character string.

Converts a character string to uppercase.

Converts a character string in a buffer to uppercase.

Determines whether a character is alphabetical.

Determines whether a character is alphanumeric.

Determines whether a character is lowercase.

Determines whether a character is uppercase.

Concatenates two strings identified by long pointers.

Performs a case-sensitive comparison of two strings
identified by long pointers.

Performs a case-insensitive comparison of two
strings identified by long pointers.

Function

lstrcpy

lstrlen

OemToAnsi

OemToAnsiBuff

ToAscii

wsprintf

wvsprintf

System Services Interface Functions 3-9

Description

Copies one string to another; both strings are iden­
tified by long pointers.

Detennines the length of a string identified by a long
pointer.

Converts an OEM character string to an ANSI string.

Converts an OEM character string in a buffer to an
ANSI string.

Translates a virtual-key code to the corresponding
ANSI character or characters.

Fonnats and stores a series of characters and values
in a buffer. Fonnat arguments are passed separately.

Fonnats and stores a series of characters and values
in a buffer. Fonnat arguments are passed through an
array.

3.8 Atom-Management Functions
Atom-management functions create and manipulate atoms. Atoms are integers
that uniquely identify character strings. They are useful in applications that use
many character strings and in applications that need to conserve memory.
Windows stores atoms in atom tables. A local atom table is allocated in an appli­
cation's data segment; it cannot be accessed by other applications. The global
atom table can be shared, and is useful in applications that use dynamic data ex­
change (DDE). The following list briefly describes each atom-management func­
tion:

Function

AddAtom

DeleteAtom

FindAtom

GetAtomHandle

GetAtomName

GlobalAddAtom

GlobalDeleteAtom

Description

Creates an atom for a character string.

Deletes an atom if the reference count is zero.

Retrieves an atom associated with a character string.

Retrieves a handle (relative to the local heap) of the
string that corresponds to a specified atom.

Copies the character string associated with an atom.

Creates a global atom for a character string.

Deletes a global atom if the reference count is zero.

3-10 Reference - Volume 1

Function

GlobalFindAtom

GlobalGetAtomName

InitAtoinTable

MAKEINTATOM

Description

Retrieves a global atom associated with a character
string.

Copies the charact~r string associated with a global
atom.

Initializes an atom hash table.

Casts an integer for use as a function argument.

3.9 Initialization-File Functions
Initialization-file functions obtain information from and copy information to the
Windows initialization file WIN.INI and private initialization files. A Windows
initialization file is a special ASCII file that contains key-name-value pairs that
represent run-time options for applications. The following list briefly describes
each initialization-file function:

Function

GetPrivateProfileInt

GetPrivateProfileString

GetProfileInt

GetProfileString

WritePrivateProfileString

WriteProfileString

Description

Returns an integer value in a section
from a private initialization file.

Returns a character string in a section
from a private initialization file.

Returns an integer value in a section
from the WIN.INI file.

Returns a character string in a section
from the WIN.INI file.

Copies a character string to a private
initialization file, or deletes one or
more lines in a private initialization
file.

Copies a character string to the
WIN .INI file, or deletes one or more
lines from WIN. IN!.

An application should use a private (application-specific) initialization file to re­
cord information which affects only that application. This improves both the per­
formance of the application and Windows itself by reducing the amount of
information that Windows must read when it accesses the initialization file. An
application should record information in WIN.INI only if it affects the Windows
environment or other applications; in such cases, the application should send the
WM_ WININICHANGE message to all top-level windows.

System Services Interface Functions 3-11

The files WININI.TXT and SYSINI.TXT supplied with the retail version of
Windows describe the contents of WIN .IN I and SYSTEM.INI, respectively.

3.10 Communication Functions
Communication functions carry out communications through the system's serial
and parallel I/O ports. The following list briefly describes each communication
function:

Function

BuildCommDCB

ClearCommBreak

CloseComm

EscapeCommFunction

FlushComm

GetCommError

GetCommEventMask

GetCommState

OpenComm

ReadComm

SetCommBreak

SetCommEventMask

SetCommState

TransmitCommChar

UngetCommChar

WriteComm

Description

Fills a device control block with control codes.

Clears the communication break state from a com­
munication device.

Closes a communication device after transmitting
the current buffer.

Directs a device to carry out an extended function.

Flushes characters from a communication device.

Fills a buffer with the communication status.

Retrieves, then clears, an event mask.

Fills a buffer with a device control block.

Opens a communication device.

Reads the bytes from a communication device into a
buffer.

Sets a break state on the communication device.

Retrieves and then sets an event mask on the com­
munication device.

Sets a communication device to the state specified
by the device control block.

Places a character at the head of the transmit queue.

Specifies which character will be the next character
to be read.

Writes the bytes from a buffer to a communication
device.

3-12 Reference - Volume 1

3.11 Sound Functions
Sound functions create sound and music for the system's sound generator. The
following list briefly describes each sound function:

Function

CloseSound

CountVoiceNotes

GetThresholdEvent

GetThresholdStatus

OpenSound

SetSoundN oise

Set VoiceAccent

Set VoiceEnvelope

SetVoiceNote

Set VoiceQueueSize

Set VoiceSound

Set VoiceThreshold

StartSound

StopSound

SyncAIIVoices

WaitSoundState

Description

Closes the play device after flushing the voice
queues and freeing the buffers.

Returns the number of notes in the specified queue.

Returns a long" pointer to a threshold flag.

Returns the threshold-event status for each voice.

Opens the play device for exclusive use.

Sets the source and duration of a noise from the play
device.

Places an accent in the voice queue.

Places the voice envelope in the voice queue.

Places a note in the specified voice queue.

Allocates a specified number of bytes for the voice
queue.

Places the specified sound frequency and durations
in a voice queue.

Sets the threshold level for a given voice.

Starts playing each voice queue.

Stops playing all voice queues and flushes their con­
tents.

Places a sync mark in each voice queue.

Waits until the play driver enters the specified state.

3.12 Utility Macros and Functions
Utility macros and functions return contents of words and bytes, create unsigned
long integers and data structures, and perform specialized arithmetic. The follow­
ing list briefly describes each utility macro or function:

System Services Interface Functions 3-13

Function Description

HIBYTE Returns the high-order byte of an integer.

HIWORD Returns the high-order word of a long integer.

LOBYTE Returns the low-order byte of an integer.

LOWORD Returns the low-order word of a long integer.

MAKEINTATOM Casts an integer for use as a function argument.

MAKEINTRESOURCE Converts an integer value into a long pointer to a
string, with the high-order word of the long pointer
set to zero.

MAKELONG Creates an unsigned long integer.

MAKEPOINT Converts a long value that contains the x- and y­
coordinates of a point into a POINT data structure.

MulDiv Multiplies two word-length values and then divides
the result by a third word-length value, returning the
result rounded to the nearest integer.

PALETTEINDEX Converts an integer into a palette-index
COLORREF value.

PALETTERGB Converts three values for red, green, and blue into a
palette-relative RGB COLORREF value.

RGB Converts three values for red, green, and blue into
an explicit RGB COLORREF value.

3.13 File I/O Functions
File I/O functions create, open, read from, write to, and close files. The following
list briefly describes each file I/O function:

Function

GetDriveType

GetSystemDirectory

GetTempDrive

GetTempFileName

GetWindowsDirectory

Description

Determines whether a disk drive is removeable,
fixed, or remote.

Retrieves the pathname of the Windows system sub­
directory.

Returns the letter of the optimal drive for temporary
file storage.

Creates a temporary filename.

Retrieves the pathname of the Windows directory.

3-14 Reference - Volume 1

Function

Iclose

Icreat

IIseek

_Iopen

Iread

Iwrite

OpenFiIe

SetHandleCount

3.14 Debugging Functions

Description

Closes a file.

Creates a new file or opens and truncates an existing
file.

Positions the pointer to a file.

Opens an existing file.

Reads data from a file.

Writes data in a file.

Creates, opens, reopens, or deletes the specified file.

Changes the number of file handles available to a
task.

Debugging functions help locate programming errors in an application or library.
The following briefly describes these functions:

Function

DebugBreak

FatalAppExit

FatalExit

OutputDebugString

VaIidateCodeSegments

VaIidateFreeSpaces

Description

Forces a break to the debugger.

Displays a message box and then terminates the
application.

Displays the current state of Windows and prompts
for instructions on how to proceed.

Sends a debugging message to the debugger if pre­
sent, or to the AUX device if the debugger is not pre­
sent.

Determines whether any code segments have been
altered by random memory overwrites.

Checks free segments in memory for valid contents.

3.15 Optimization-Tool Functions
Optimization-tool functions control how the Windows Profiler and Swap soft­
ware development tools interact with an application being developed. The follow­
ing list briefly describes these functions:

Function

Prof Clear

ProfFinish

ProfFlush

ProfInsChk

ProfSampRate

ProfSetup

ProfStart

ProfS top

SwapRecording

System Services Interface Functions 3-15

Description

Discards all samples in the Profiler sampling buffer.

Stops sampling by Profiler and flushes the buffer to
disk.

Flushes the Profiler sampling buffer to disk.

Determines if Profiler is installed.

Sets the rate of code sampling by Profiler.

Sets up the Profiler sampling buffer and recording
rate.

Starts sampling by Profiler.

Stops sampling by Profiler.

Begins or ends analyzing by Swap of the applica­
tion's swapping behavior.

3.16 Application-Execution Functions
Application-execution tasks permit one application to execute another program.
The following list briefly describe these functions:

Function

LoadModule

WinExec

WinHelp

Description

Executes a separate application.

Executes a separate application.

Runs the Windows Help application and passes con­
text or topic information to Help.

The WinExec function provides a high-level method for executing any Windows
or standard DOS application. The calling application supplies a string containing
the name of the executable file to be run and any command parameters, and
specifies the initial state of the application's window.

The LoadModule function is similar, but provides more control over the environ­
ment in which the application is executed. The calling application supplies the
name of the executable file and a DOS Function 4BH, Code DOH, parameter
block.

The WinHelp function executes the Windows Help application and optionally
passes data to it indicating the nature of the help requested by the application.
This data is either an integer which specifies a context identifier in the help file
or a string containing a key word in the help file.

3-16 Reference - Volume 1

3.17 Summary
System services interface functions access code and data in modules, allocate and
manage both local and global memory, manage tasks, load program
resources, translate strings from one character set to another, alter the Windows
initialization file, assist in system debugging, carry out communications through
the system's I/O ports, create and open files, and create sounds using the sys­
tern's sound generator. For more information on topics related to system services
interface functions, see the following:

Topic

Function descriptions

Windows data types and
structures

Initialization-file formats

Diagnostic messages for
debugging

Writing and reading from
files

Managing memory

Libraries

Using Profiler

Using Swap

Reference

Reference, Volume 1: Chapter 4, "Functions
Directory"

Reference, Volume 2: Chapter 7, "Data Types
and Structures"

Reference, Volume 2: Chapter 9, "File
Formats"

Reference, Volume 2: Appendix C,
"Windows Debugging Messages"

Guide to Programming: Chapter 10, "File
Input and Output"

Guide to Programming: Chapter 15,
"Memory Management," and Chapter 16,
"More Memory Management"

Guide to Programming: Chapter 20,
"Dynamic-Link Libraries"

Tools: Chapter 13, "Analyzing CPU Time:
Profiler"

Tools: Chapter 14, "Analyzing Swaps: Swap"

Chapter

4
Functions Directory

This chapter contains an alphabetical list of functions from the Microsoft
Windows application programming interface (API). The documentation for each
function contains a line illustrating correct syntax, a statement about the func­
tion's purpose, a description of its input parameters, and a description of its re­
turn value. The documentation for some functions contains additional, important
information that an application developer needs in order to use the function.

CD
I

<C

AccessResource 4-2

AccessResource
Syntax

Return Value

Comments

AddAtom
Syntax

int AccessResource(hlnstance, hResI nfo)

This fun~tion opens the specified resource file and moves the file pointer to the begin­
ning of the specified resource, letting an application read the resource from the file. The
AccessResource function supplies a DOS file handle that can be used in subsequent file­
read calls to load the resource. The file is opened for reading only.

Applications that use this function must close the resource file by calling the _Idose func­
tion after reading the resource.

Parameter

hlnstance

hReslnfo

Type/Description

HANDLE Identifies the instance of the module whose exe­
cutable file contains the resource.

HANDLE Identifies the desired resource. This handle should
be created by using the FindResource function.

The return value specifies a DOS file handle to the designated resource file. It is -1 if the
resource cannot be found.

AccessResource can exhaust available DOS file handles and cause errors if the opened
file is not closed after the resource is accessed.

ATOM AddAtom(lpString)

This function adds the character string pointed to by the ipString parameter to the atom
table and creates a new atom that uniquely identifies the string. The atom can be used in a
subsequent GetAtomName function to retrieve the string from the atom table.

The AddAtom function stores no more than one copy of a given string in the atom table. If
the string is already in the table, the function returns the existing atom value and increases
the string's reference count by one.

Parameter

ipString

Type/Description

LPSTR Points to the character string to be added to the table.
The string must be a null-terminated character string.

4-3

Return Value

Comments

AddFontResOUfce

The return value specifies the newly created atom if the function is successful. Otherwise,
it is NULL.

The atom values returned by AddAtom range from OxCOOO to OxFFFF. Atoms are case in­
sensitive.

AddFontResource
Syntax

Return Value

Comments

int AddFontResollrce(/pFilename)

This function adds the font resource from the file named by the IpFilename parameter to
the Windows font table. The font can subsequently be used by any application.

Parameter

IpFilename

Type/Description

LPSTR Points to a character string that names the font­
resource file or contains a handle to a loaded module. If
lpFilename points to the font-resource filename, the string must
be null-terminated, have the DOS filename format, and include
the extension. If IpFilename contains a handle, the handle is in
the low-order word and the high-order word is zero.

The return value specifies the number of fonts added. The return value is zero if no fonts
are loaded.

Any application that adds or removes fonts from the Windows font table should notify
other windows of the change by using the SendMessage function with the hWnd parame­
ter set to -1 to send a WM_FONTCHANGE message to all top-level windows in the sys­
tem.

It is good practice to remove any font resource an application has added once the applica­
tion is through with the resource.

For a description of font resources, see the Guide to Programming.

AdjustWindowRect
Syntax void AdjllstWindowRect(/pRect, dwStyle, bMenu)

This function computes the required size of the window rectangle based on the desired
client-rectangle size. The window rectangle can then be passed to the CreateWindow
function to create a window whose client area is the desired size. A client rectangle is the
smallest rectangle that completely encloses a client area. A window rectangle is the

l>
I

OJ

co
I

<t.

A djustWindowRectEx 4-4

Return Value

Comments

smallest rectangle that completely encloses the window. The dimensions of the resulting
window rectangle depend on the window styles and on whether the window has a menu.

Parameter

IpRect

dwStyle

bMenu

None.

Type/Description

LPRECT Points to a RECT data structure that contains the
coordinates of the client rectangle.

DWORD Specifies the window styles of the window whose
client rectangle is to be converted.

BOOL Specifies whether the window has a menu.

This function assumes a single menu row. If the menu bar wraps to two or more rows, the
coordinates are incorrect.

AdjustWindowRectEx ~
Syntax void AdjustWindowRectEx(lpRect, dwStyle, bMenu, dwExStyle)

This function computes the required size of the rectangle of a window with extended style
based on the desired client-rectangle size. The window rectangle can then be passed to the
Create WindowEx function to create a window whose client area is the desired size.

A client rectangle is the smallest rectangle that completely encloses a client area. A
window rectangle is the smallest rectangle that completely encloses the window. The
dimensions of the resulting window rectangle depends on the window styles and on
whether the window has a menu.

Parameter

IpRect

dwStyle

bMenu

dwExStyle

Type/Description

LPRECT Points to a RECT data structure that contains the
coordinates of the client rectangle.

DWORD Specifies the window styles of the window whose
client rectangle is to be converted.

BOOL Specifies whether the window has a menu.

DWORD Specifies the extended style of the window being
created.

4-5

Return Value

Comments

A lIocOSto CSA lias

None.

This function assumes a single menu row. If the menu bar wraps to two or more rows, the
coordinates are incorrect.

AllocDStoCSAlias []]]
Syntax

Return Value

Comments

AliocResource
Syntax

WORD AllocDStoCSAlias(wSelector)

This function accepts a data-segment selector and returns a code-segment selector that can
be used to execute code in the data segment. When in protected mode, attempting to exe­
cute code directly in a data segment will cause a general protection violation. Alloc­
DStoCSAlias allows an application to execute code which the application had created in
its own stack segment.

The application must free the new selector by calling the FreeSelector function.

Parameter Type/Description

wSelector WORD Specifies the data-segment selector.

The return value is the code-segment selector corresponding to the data-segment selector.
If the function cannot allocate a new selector, the return value is zero.

Windows does not track segment movements. Consequently, the data segment must be
fixed and nondiscardable; otherwise, the data segment might move, invalidating the code­
segment selector.

The ChangeSelector function provides another method of obtaining a code selector corre­
sponding to a data selector.

An application should not use this function unless it is absolutely necessary. Use of this
function violates preferred Windows programming practices.

HANDLE AllocResollrce(hlnstance, hReslnfo, dwSize)

This function allocates uninitialized memory for the passed resource. All resources must
be initially allocated by using the AllocResolirce function. The LoadResolirce function
calls this funct~on before loading the resource.

~
I
tD

Illi
I

ct:

AllocSelector 4-6

Return Value

Parameter

hlnstance

hReslnfo

dwSize

Type/Description

HANDLE Identifies the instance of the module whose exe­
cutable file contains the resource.

HANDLE Identifies the desired resource. It is assumed that
this handle was created by using the FindResource function.

DWORD Specifies an override size in bytes to allocate for
the resource. The override is ignored if the size is zero.

The return value identifies the global memory block allocated for the resource.

AllocSelector [1QJ
Syntax

Return Value

Comments

WORD AllocSelector(wSelector)

This function allocates a new selector. If the wSelector parameter is a valid selector, Alloc­
Selector returns a new selector which is an exact copy of the one specified by wSelector.
If wSelector is NULL, AllocSelector returns a new, uninitialized selector.

The application must free the new selector by calling the FreeSelector function.

Parameter

wSelector

Type/Description

WORD Specifies the selector to be copied, or NULL if Alloc­
Selector is to allocate a new, uninitialized selector.

The return value is either a selector that is a copy of an existing selector, or a new, uninitial­
ized selector. If the function could not allocate a new selector, the return value is zero.

An application can call AllocSelector to allocate a selector that it can pass to the Change­
Selector function.

An application should not use this function unless it is absolutely necessary. Use of this
function violates preferred Windows programming practices.

4-7 Anima tePaie tte

AnimatePalette []]J
Syntax

Return Value

Comments

AnsiLower
Syllfax

void AnimatePalette(hPalette, wStartIndex, wNlimEntries, lpPaletteColors)

This function replaces entries in the logical palette identified by the hPalette parameter.
When an application calls AnimatePalette, it does not have to update its client area be­
cause Windows maps the new entries into the system palette immediately.

Parameter

hPalette

wStartIndex

wNlimEntries

lpPaletteColors

None.

Type/Description

"PALETTE Identifies the logical palette.

WORD Specifies the first entry in the palette to be animated.

WORD Specifies the number of entries in the palette to be an­
imated.

LPPALETTEENTRY Points to the first member of an array
of PALETTEENTRY data structures to replace the palette en­
tries identified by wStartIndex and wNlimEntries.

Ani~atePalette will only change entries with the PC_RESERVED flag set in the corre­
sponding palPaletteEntry field of the LOGPALETTE data structure that defines the cur­
rent logical palette. The CreatePalette function creates a logical palette.

LPSTR AnsiLower(lpString)

This function converts the given character string to lowercase. The conversion is made by
the language driver based on the criteria of the current language selected by the user at
setup or with the Control Panel.

Parameter

lpString

Type/Description

LPSTR Points to a null-terminated character string or speci­
fies single character. If lpString specifies single character, that
character is in the low-order byte of the low-order word, and the
high-order word is zero.

l:.
I
0:

AnsiLowerBuff 4-8

Return Value The return value points to a converted character string if the function parameter is a
character string. Otherwise, it is a 32-bit value that contains the converted character in the
low-order byte of the low-order word.

AnsilowerBuff Q]J
Syntax

Return Value

AnsiNext
Syntax

Return Value

Comments

WORD AnsiLowerBuff(lpString, nLength)

This function converts character string in a buffer to lowercase. The conversion is made by
the language driver based on the criteria of the current language selected by the user at
setup or with the Control Panel.

Parameter

lpString

nLength

Type/Description

LPSTR Points to a buffer containing one or more characters.

WORD Specifies the number of characters in the buffer iden­
tified by the lpString parameter. If nLength is zero, the length is
64K (65,536).

The return value specifies the length of the converted string.

LPSTR AnsiNext(lpCurrentChar)

This function moves to the next character in a string.

Parameter Type/Description

lpCurrentC har LPSTR Points to a character in a null-terminated string.

The return value points to the next character in the string, or, if there is no next character,
to the null character at the end of the string.

The AnsiNext function is used to move through strings whose characters are two or more
bytes each (for example, strings that contain characters from a Japanese character set).

4-9

AnsiPrev
Syntax

Return Value

Comments

AnsiToOem
Syntax

Return Value

AnsiPrev

LPSTR AnsiPrev(lpStart,lpCurrentChar)

This function moves to the previous character in a string.

Parameter

IpStart

/pCurrentC hal'

Type/Description

LPSTR Points to the beginning of the string.

LPSTR Points to a character in a null-terminated string.

The return value points to the previous character in the string, or to the first character in
the string if the IpCurrentChar parameter is equal to the /pStart parameter.

The AnsiPrev function is used to move through strings whose characters are two or more
bytes each (for example, strings that contain characters from a Japanese character set).

int AnsiToOem(lpAnsiStr, lpOemStr)

This function translates the string pointed to by the IpAnsiStr parameter from the ANSI
character set into the OEM-defined character set. The string can be greater than 64K in
length.

Parameter

IpAnsiStr

IpOemStr

Type/Description

LPSTR Points to a null-terminated string of characters from
the ANSI character set.

LPSTR Points to the location where the translated string is to
be copied. The IpOemStr parameter can be the same as /pAnsiStr
to translate the string in place.

The return value is always-I.

.):11

I
til

A nsiTo OemBuff 4-10

~ AnsiToOemBuff []]]
ct·

Syntax void AnsiToOemBufT(lpAnsiStr, IpOemStr, nLength)

Return Value

AnsiUpper
Syntax

Return Value

This function translates the string in the buffer pointed to by the IpAnsiStr parameter from
the ANSI character set into the OEM-defined character set.

Parameter

IpAnsiStr

IpOemStr

nLength

None.

Type/Description

LPSTR Points to a buffer containing one or more characters
from the ANSI character set.

LPSTR Points to the location where the translated string is to
be copied. The IpOemStr parameter can be the same as IpAnsiStr
to translate the string in place.

WORD Specifies the number of characters in the buffer iden­
tified by the IpAnsiStr parameter. If nLength is zero, the length is
64K (65,536).

LPSTR AnsiUpper(lpString)

This function converts the given character string to uppercase. The conversion is made by
the language driver based on the criteria of the current language selected by the user at
setup or with the Control Panel.

Parameter

IpString

Type/Description

LPSTR Points to a null-terminated character string or speci­
fies single character. If IpString specifies a single character, that
character is in the low-order byte of the low-order word, and the
high-order word is zero.

The return value points to a converted character string if the function parameter is a
character string; otherwise, it is a 32-bit value that contains the converted character in the
low-order byte of the low-order word.

4-11 AnsiUpperBuff

AnsiUpperBuff [];[I
Syntax

Return Value

AnyPopup
Syntax

Return Value

WORD AnsiUpperBuff(lpString, nLength)

This function converts a character string in a buffer to uppercase. The conversion is made
by the language driver based on the criteria of the current language selected by the user at
setup or with the Control Panel.

Parameter

lpString

nLength

Type/Description

LPSTR Points to a buffer containing one or more characters.

WORD Specifies the number of characters in the buffer iden­
tified by the lpString parameter. If nLength is zero, the length is
64K (65,536).

The return value specifies the length of the converted string.

BOOL AnyPopup()

This function indicates whether a pop-up window exists on the screen. It searches the en­
tire Windows screen, not just the caller's client area. The AnyPopup function returns non­
zero even if a pop-up window is completely covered by another window.

This function has no parameters.

The return value is nonzero if a pop-up window exists. Otherwise, it is zero.

AppendMenu [];[I
Syntax BOOL AppendMenu(hMenu, wFlags, wIDNewltem, IpNewltem)

This function appends a new item to the end of a menu. The application can specify the
state of the menu item by setting values in the wFlags parameter.

):l

I
IX

D
I
it

AppendMenu 4-12

Return Value .

Comments

Parameter

hMenu

wFlags

wIDNewltem

IpNewltem

Type/Description

HMENU Identifies the menu to be changed.

WORD Specifies information about the state of the new
menu item when it is added to the menu. It consists of one or
more values listed in the following "Comments" section.

WORD Specifies either the command ID of the new menu
item or, if wFlags is set to MF _POPUP, the menu handle of
the pop-up menu.

LPSTR Specifies the content of the new menu item. The
interpretation of the IpNewltem parameter depends upon the
setting of the wFlags parameter.

IfwFlags is

MF_OWNERDRAW

ipNewltem

Contains a long pointer to a null­
terminated character string.

Contains a bitmap handle HBIT­
MAP in its low-order word.

Contains an application-supplied
32-bit value which the application
can use to maintain additional data
associated with the menu item.
This 32-bit value is available to
the application in the itemData
field of the structure pointed to by
the IParam parameter of the
WM_MEASUREITEM and
WM_DRA WITEM messages sent
when the menu item is initially dis­
played or is changed.

The return value specifies the outcome of the function. It is TRUE if the function is
successful. Otherwise, it is FALSE.

Whenever a menu changes (whether or not the menu resides in a window that is dis­
played), the application should call DrawMenuBar.

Each of the following groups lists flags that are mutually exclusive and should not be used
together:

4-13 AppendMenu

• MF _BYCOMMAND and MF _BYPOSITION

• MF_DISABLED, MF_ENABLED, and MF_GRAYED

• MF _BITMAP, MF _STRING, and MF _OWNERDRAW

• MF _MENUBARBREAK and MF _MENUBREAK

• MF _CHECKED and MF _UNCHECKED

The following list describes the flags which may be set in the wF/ags parameter:

Value

MF_CHECKED

MF_GRAYED

MF _MENUBARBREAK

MF _MENUBREAK

MF_OWNERDRAW

Meaning

Uses a bitmap as the item. The low-order word of the
/pNewltem parameter contains the handle of the bitmap.

Places a checkmark next to the item. If the application
has supplied checkmark bitmaps (see SetMenuItemBit­
maps), setting this flag displays the "checkmark on"
bitmap next to the menu item.

Disables the menu item so that it cannot be selected, but
does not gray it.

Enables the menu item so that it can be selected and re­
stores it from its grayed state.

Disables the menu item so that it cannot be selected and
grays it.

Same as MF _MENUBREAK except that for pop-up
menus, separates the new column from the old column
with a vertical line.

Places the item on a new line for static menu-bar items.
For pop-up menus, places the item in a new column,
with no dividing line between the columns.

Specifies that the item is an owner-draw item. The
window that owns the menu receives a
WM_MEASUREITEM message when the menu is dis­
played for the first time to retrieve the height and width
of the menu item. The WM_DRA WITEM message is
then sent whenever the owner must update the visual ap­
pearance of the menu item. This option is not valid for a
top-level menu item.

:D
I '
ee'

Arc

Arc
Syntax

Value

MF_UNCHECKED

4-14

Meaning

Specifies that the menu item has a pop-up menu as­
sociated with it. The wIDNewltem parameter specifies a
handle to a pop-up menu to be associated with the item.
This is used for adding either a top-level pop-up menu or
adding a hierarchical pop-up menu to a pop-up menu
item.

Draws a horizontal dividing line. Can only be used in a
pop-up menu. This line cannot be grayed, disabled, or
highlighted. The IpNewltem and wIDNewltem parame­
ters are ignored.

Specifies that the menu item is a character string; the
IpNewltem parameter points to the string for the menu
item.

Does not place a checkmark next to the item (default). If
the application has supplied checkmark bitmaps (see Set­

. MenultemBitmaps), setting this flag displays the
"checkmark off' bitmap next to the menu item.

BOOL Arc(hDC,Xl, Yl,X2, Y2,X3, Y3,X4, Y4)

This function draws an elliptical arc. The center of the arc is the center of the bounding
rectangle specified by the points (Xl, Y 1) and (X2, Y2). The arc starts at the point (X3, Y3)
and ends at the point (X4, Y4). The arc is drawn using the selected pen and moving in a
counterclockwise direction. Since an arc does not define a closed area, it is not filled.

Parameter

hDC

Xl

Yl

X2

Type/Description

HDC Identifies the device context.

int Specifies the logical x-coordinate of the upper-left comer
of the bounding rectangle.

int Specifies the logical y-coordinate of the upper-left comer
of the bounding rectangle.

int Specifies the logical x-coordinate of the lower-right comer
of the bounding rectangle.

4-15

Return Value

Comments

Parameter

Y2

X3

Y3

X4

Y4

A rrange Ie onie Windows

Type/Descri ption

int Specifies the logical y-coordinate of the lower-right corner
of the bounding rectangle.

int Specifies the logical x-coordinate of the arc's starting
point. This point does not have to lie exactly on the arc.

int Specifies the logical y-coordinate of the arc's starting
point. This point does not have to lie exactly on the arc.

int Specifies the logical x-coordinate of the arc's endpoint.
This point does not have to lie exactly on the arc.

int Specifies the logical y-coordinate of the arc's endpoint.
This point does not have to lie exactly on the arc.

The return value specifies whether the arc is drawn. It is nonzero if the arc is drawn. Other­
wise, it is zero.

The width of the rectangle specified by the absolute value of X2 - Xl must not exceed
32,767 units. This limit applies to the height of the rectangle as well.

ArrangelconicWindows []]]
Syntax

Return Value

Comments

WORD ArrangelconicWindows(hWnd)

This function arranges all the minimized (iconic) child windows of the window specified
by the h Wnd parameter.

Parameter Type/Description

hWnd HWND Identifies the window.

The return value is the height of one row of icons, or zero if there were no icons.

Applications that maintain their own iconic child windows call this function to arrange
icons in a client window. This function also arranges icons on the desktop window, which
covers the entire screen. The GetDesktop Window function retrieves the window handle
of the desktop window.

To arrange iconic MDI child windows in an MDI client window, an application sends the
WM_MDIICONARRANGE message to the MDI client window.

):

I
C

BeginOeferWindowPos 4-16

~ BeginDeferWindowPos [[QJ
:(.

Syntax HANDLE BeginDeferWindowPos(nNumWindows)

Return Value

. BeginPaint
Syntax

This function allocates memory to contain a multiple window-position data structure and
returns a handle to the structure. The DeferWindowPos function fills this data structure
with information about the target position for a window that is about to be moved. The
EndDeferWindowPos function accepts this data structure and instantaneously repositions
the windows using the information stored in the structure.

Parameter

nNumWindows

Type/Description

int Specifies the initial number of windows for which position
information is to be stored in the data structure. The Defer­
WindowPos function increases the size of the structure if
needed.

The return value identifies the multiple window-position data structure. The return value is
NULL if system resources are not available to allocate the structure .

HDC BeginPaint(hWnd,lpPaint)

This function prepares the given window for painting and fills the paint structure pointed
to by the ipPaint parameter with information about the painting.

The paint structure contains a handle to the device context for the window, a RECT data
structure that contains the smallest rectangle that completely encloses the update region,
and a flag that specifies whether or not the background has been erased.

The BeginPaint function automatically sets the clipping region of the device context to ex­
clude any area outside the update region. The update region is set by the InvalidateRect or
InvalidateRgn functions and by the system after sizing, moving, creating, scrolling, or
any other operation that affects the client area. If the update region is marked for erasing,
BeginPaint sends a WM_ERASEBKGND message to the window.

An application should not call the BeginPaint function except in response to a
WM_PAINT message. Each BeginPaint call must have a matching call to the EndPaint
function.

4-17

Return Value

Comments

BitBlt
Syntax

Parameter

hWnd

ipPaint

BilB11

Type/Description

HWND Identifies the window to be repainted.

LPPAINTSTRUCT Points to the PAINTSTRUCT data structure
that is to receive painting information, such as the device context for
the window and the update rectangle.

The return value identifies the device context for the specified window.

If the caret is in the area to be painted, the BeginPaint function automatically hides the
caret to prevent it from being erased.

BOOL BitBIt(hDestDC, X, Y, nWidth, nHeight, hSrcDC, XSrc, YSrc, dwRop)

This function moves a bitmap from the source device given by the hSrcDC parameter to
the destination device given by the hDestDC parameter. The XSrc and YSrc parameters
specify the origin on the source device of the bitmap that is to be moved. The X, Y, nWidth,
and nHeight parameters specify the origin, width, and height of the rectangle on the desti­
nation device that is to be filled by the bitmap. The dwRop parameter (raster operation) de­
fines how the bits of the source and destination are combined.

Parameter

hDestDC

X

Y

nWidth

nHeight

hSrcDC

Type/Description

HDC Identifies the device context that is to receive the bitmap.

int Specifies the logical x-coordinate of the upper-left comer of the
destination rectangle.

int Specifies the logical y-coordinate of the upper-left comer of the
destination rectangle.

int Specifies the width (in logical units) of the destination
rectangle and source bitmap.

int Specifies the height (in logical units) of the destination
rectangle andsource bitmap.

HDC Identifies the device context from which the bitmap will be
copied. It must be NULL if the dwRop parameter specifies a raster
operation that does not include a source.

. , . '

Bit Bit

Return Value

Comments

Parameter

XSrc

YSrc

dwRop

4-18

Type/Description

int Specifies the logical x-coordinate of the upper-left comer of the
source bitmap.

int Specifies the logical y-coordinate of the upper-left comer of the
source bitmap.

DWORD Specifies the raster operation to be performed. Raster­
operation codes define how the graphics device interface (ODI)
combines colors in output operations that involve a current brush, a
possible source bitmap, and a destination bitmap. For a list of raster­
operation codes, see Table 4.1, "Raster Operations."

The return value specifies whether the bitmap is drawn. It is nonzero if the bitmap is
drawn. Otherwise, it is zero.

ODI transforms the nWidth and nHeight parameters, once by using the destination display
context, and once by using the source display context. If the resulting extents do not
match, ODI uses the StretchBIt function to compress or stretch the source bitmap as neces­
sary. If destination, source, and pattern bitmaps do not have the same color format, the
BitBIt function converts the source and pattern bitmaps to match the destination. The fore­
ground and background colors of the destination are used in the conversion.

If BitBIt converts monochrome bitmaps to color, it sets white bits (1) to the background
color and black bits (0) to the foreground color.' The foreground and background colors of
the destination device context are used. To convert color to monochrome, BitBIt sets pix­
els that match the background color to white (1), and sets all other pixels to black (0). The
foreground and background colors of the color-source device context are used.

The foreground color is the current text color for the specified device context, and the
background color is the current background color for the specified device context.

Not all devices support the BitBIt function. For more information, see the RC_BITBLT
raster capability in the GetDeviceCaps function, later in this chapter.

4-19 BitBlt

Table 4.1 lists the various raster-operation codes for the dwRop parameter:

Table 4.1 Raster Operations

Code

BLACKNESS

DSTINVERT

MERGECOPY

MERGEPAINT

NOTSRCCOPY

NOTSRCERASE

PATCOPY

PATINVERT

PATPAINT

SRCAND

SRCCOPY

SRCERASE

SRCINVERT

SRCPAINT

WHITENESS

Description

Turns all output black.

Inverts the destination bitmap.

Combines the pattern and the source bitmap using the Boolean AND
operator.

Combines the inverted source bitmap with the destination bitmap using
the Boolean OR operator.

Copies the inverted source bitmap to the destination.

Inverts the result of combining the destination and source bitmaps using
the Boolean OR operator.

Copies the pattern to the destination bitmap.

Combines the destination bitmap with the pattern using the Boolean
XOR operator.

Combines the inverted source bitmap with the pattern using the
Boolean OR operator. Combines the result of this operation with the
destination bitmap using the Boolean OR operator.

Combines pixels of the destination and source bitmaps using the
Boolean AND operator.

Copies the source bitmap to the destination bitmap.

Inverts the destination bitmap and combines the result with the source
bitmap using the Boolean AND operator.

Combines pixels of the destination and source bitmaps using the
Boolean XOR operator.

Combines pixels of the destination and source bitmaps using the
Boolean OR operator.

Turns all output white.

For a complete list of the raster-operation codes, see Chapter 11, "Binary and Ternary
Raster-Operation Codes," in Reference, Volume 2.

l>
I

OJ

BringWindowToTop 4-20

~' BringWindowToTop
c. Syntax void BringWindowToTop(hWnd)

Return Value

This function brings a pop-up or child window to the top of a stack of overlapping
windows. In addition, it activates pop-up and top-level windows. The BringWindowTo­
Top function should be used to uncover any window that is partially or completely ob­
scured by any overlapping windows.

Parameter

hWnd

None.

Type/Description

HWND Identifies the pop-up or child window that is to be brought
to the top.

BuildCommDCB
Syntax

Return Value

Comments

int BlliidCommDCB(lpDej, lpDCB)

This function translates the definition string specified by the lpDeJ parameter into appro­
priate device-control block codes and places these codes into the block pointed to by the
lpDCB parameter.

Parameter

lpDeJ

lpDCB

Type/Description

LPSTR Points to a null-terminated character string that specifies
the device-control information for a device. The string must have the
same form as the DOS MODE command-line parameter.

DCB FAR * Points to the DCB data structure that is to receive the
translated string. The structure defines the control setting for the se­
rial-communication device.

The return value specifies the result of the function. It is zero if the string is translated. It is
negative if an error occurs.

The BlliidCommDCB function only fills the buffer. An application should call SetComm­
State to apply these settings to the port. Also, by default, BlliidCommDCB specifies
Xon/Xoff and hardware flow control as disabled. An application should set the appropriate
fields in the DCB data structure to enable flow control.

4-21

CallMsgFilter
Syntax

Return Value

Comments

CallMsgFilter

BOOL CaIlMsgFilter(lpMsg, nCode)

This function passes the given message and code to the current message filter function.
The message filter function is an application-specified function that examines and modi­
fies all messages. An application specifies the function by using the SetWindowsHook
function.

Parameter

/pMsg

nCode

Type/Description

LPMSG Points to an MSG data structure that contains the
message to be filtered.

int Specifies a code used by the filter function to determine how to
process the message.

The return value specifies the state of message processing. It is FALSE if the message
should be processed. It is TRUE if the message should not be processed further.

The CallMsgFilter function is usually called by Windows to let applications examine and
control the flow of messages during internal processing in menus and scroll bars or when
moving or sizing a window.

Values given for the nCode parameter must not conflict with any of the MSGF _ and HC_
values passed by Windows to the message filter function.

CaliWindowProc
Syntax LONG CallWindowProc(lpPrevWndFunc, hWnd, wMsg, wParam, /Param)

This function passes message information to the function specified by the /pPrevWndFunc
parameter. The CallWindowProc function is used for window subclassing. Normally, all
windows with the same class share the same window function. A subclass is a window or
set of windows belonging to the same window class whose messages are intercepted and
processed by another function (or functions) before being passed to the window function
of that class.

The SetWindowLong function creates the subclass by changing the window function as­
sociated with a particular window, causing Windows to call the new window function in­
stead of the previous one. Any messages not processed by the new window function must
be passed to the previous window function by calling CallWindowProc. This allows a
chain of window functions to be created.

o

) ,

Catch

Return Value

Catch
Syntax

Return Value

Comments

Parameter

IpPrevWndFunc

hWnd

wMsg

wParam

lParam

4-22

Type/Description

FARPROC Is the procedure-instance address of the previous
window function.

HWND Identifies the window that receives the message.

WORD Specifies the message number.

WORD Specifies additional message-dependent information.

DWORD Specifies additional message-dependent informa­
tion.

The return value specifies the result of the message processing. The possible return values
depend on the message sent.

int Catch(lpCatchBuj)

This function catches the current execution environment and copies it to the buffer pointed
to by the lpCatchBuJparameter. The execution environment is the state of all system
registers and the instruction counter.

Parameter

lpCatchBuJ

Type/Description

LPCATCHBUF Points to the CATCHBUF structure that
will receive the execution environment.

The return value specifies whether the execution environment is copied to the buffer. It is
zero if the environment is copied to the buffer.

The Throw function uses the buffer to restore the execution environment to its previous
values.

The Catch function is similar to the C run-time setjmp function (which is incompatible
with the Windows environment).

4-23 ChangeClipboardChain

Cha ngeCI i pb oard Cha i n
Syntax

Return Value

ChangeMenu

BOOL ChangeClipboardChain(IzWnd, IzWndNext)

This function removes the window specified by the IzWnd parameter from the chain of clip­
board viewers and makes the window specified by the IzWndNext parameter the descen­
dant of the hWnd parameter's ancestor in the chain.

Parameter

hWnd

hWndNext

Type/Description

HWND Identifies the window that is to be removed from the
chain. The handle must previously have been passed to the Set­
ClipboardViewer function.

HWND Identifies the window that follows hWnd in the clip­
board-viewer chain (this is the handle returned by the
SetClipboardViewer function, unless the sequence was
changed in response to a WM_CHANGECBCHAIN message).

The return value specifies the status of the hWnd window. It is nonzero if the window is
found and removed. Otherwise, it is zero.

The Microsoft Windows version 3.0 SDK has replaced this function with five specialized
functions. These new functions are:

Function

AppendMenu

DeleteMenu

InsertMenu

ModifyMenu

RemoveMenu

Description

Appends a menu item to the end of a menu.

Deletes a menu item from a menu, destroying the menu item.

Inserts a menu item into a menu.

Modifies a menu item in a menu.

Removes a menu item from a menu but does not destroy the
menu item.

Applications written for SDK versions 2.1 and earlier may continue to call ChangeMenu
as previously documented. New applications should call the new functions listed above.

o

ChangeSelector 4-24

ChangeSelector []]]
Syntax

Return Value

Comments

WORD ChangeSelector(wDestSelector, wSourceSelector)

This function generates a code selector that corresponds to a given data selector, or a data
selector that corresponds to a given code selector.

The wSourceSelector parameter specifies the selector to be copied and converted; the
wDestSelector parameter is a selector previously allocated by a call to the AlIocSelector
function. ChangeS elector modifies the destination selector to have the same properties as
the source selector, but with the opposite code or data attribute. This function changes only
the attributes of the selector, not the value of the selector.

Parameter

wDestSelector

wSourceSelector

Type/Description

WORD Specifies a selector previously allocated by AlIoc­
Selector that receives the converted selector.

WORD Specifies the selector to be converted.

The return value is the copied and converted selector. It is zero if the function failed.

Windows does not attempt to track changes to the source selector. Consequently, the appli­
cation should use the converted destination selector immediately after it is returned by this
function before any movement of memory can occur.

An application should not use this function unless it is absolutely necessary. Use of this
function violates preferred Windows programming practices.

CheckDlgButton
Syntax void CheckDlgButton(hDlg, nIDButton, wCheck)

This function places a checkmark next to or removes a checkmark from a button control,
or changes the state of a three-state button. The CheckDlgButton function sends a
BM_SETCHECK message to the button control that has the specified ID in the given
dialog box.

Parameter

hDlg

nIDButton

Type/Description

HWND Identifies the dialog box that contains the button.

int Specifies the button control to be modified.

4-25

Parameter

wCheck

Return Value None.

CheckMenultem

Type/Description

WORD Specifies the action to take. If the wCheck parameter
is nonzero, the CheckDlgButton function places a checkmark

. next to the button; if zero, the checkmark is removed. For three­
state buttons, if wCheck is 2, the button is grayed; if wCheck is
1, it is checked; if wCheck is 0, the checkmark is removed.

CheckMenultem
Syntax BOOL CheckMenuItem(hMenu, wIDCheckItem, wCheck)

This function places checkmarks next to or removes checkmarks from menu items in the
. pop-up menu specified by the hMenu parameter. The wIDCheckItem parameter specifies
the item to be modified.

Parameter

hMenu

wIDCheck­
Item

wCheck

Type/Description

HMENU Identifies the menu.

WORD Specifies the menu item to be checked.

WORD Specifies how to check the menu item and how to deter­
mine the item's position in the menu. The wCheck parameter can be a
combination of the MF _CHECKED or MF _UNCHECKED with
MF _BYPOSITION or MF _BYCOMMAND flags. These flags can
be combined by using the bitwise OR operator. They have the follow­
ing meanings:

Value

MF _BYPOSITION

MF_CHECKED

MF_UNCHECKED

Meaning

Specifies that the wIDCheckItem para­
meter gives the menu-item ID
(MF _BYCOMMAND is the default).

Specifies that the wIDCheckItem para­
meter gives the position of the menu item
(the first item is at position zero).

Adds checkmark.

Removes checkmark.

o

CJ

CheckRadioButton 4-26

Return Value

Comments

The return value specifies the previous state of the item. It is either MF _CHECKED or
MF _UNCHECKED. The return value is -1 if the menu item does not exist.

The wIDCheckltem parameter may identify a pop-up menu item as well as a menu item.
No special steps are required to check a pop-up menu item.

Top-level menu items cannot be checked.

A pop-up menu item should be checked by position since it does not have a menu-item
identifier associated with it.

CheckRadioButton
Syntax

Return Value

void CheckRadioButton(hDlg, nIDFirstButton, nIDLastButton, nIDCheckButton)

This function checks the radio button specified by the nIDCheckButton parameter and re­
moves the checkmark from all other radio buttons in the group of buttons specified by the
nIDFirstButton and nIDLastButton parameters. The CheckRadioButton function sends a
BM_SETCHECK message to the radio-button control that has the specified ID in the
given dialog box.

Parameter

hDlg

nIDFirstButton

nIDLastButton

nIDCheckButton

None.

Type/Description

HWND Identifies the dialog box.

int Specifies the integer identifier of the first radio button in
the group.

int Specifies the integer identifier of the last radio button in
the group.

int Specifies the integer identifier of the radio button to be
checked.

ChildWindowFromPoint
Syntax HWND ChiidWindowFromPoint(hWndParent, Point)

This function determines which, if any, of the child windows belonging to the given parent
window contains the specified point.

4-27

Return Value

Chord
Syntax

Parameter

hWndParen(

Point

Chord

Type/Description

HWND Identifies the parent window.

POINT Specifies the client coordinates of the point to be
tested.

The return value identifies the child window that contains the point. It is NULL if the
given point lies outside the parent window. If the point is within the parent window but is
not contained within any child window, the handle of the parent window is returned.

BOOL Chord(hDC, Xl, Yl, X2, Y2, X3, Y3, X4, Y4)

This function draws a chord (a region bounded by the intersection of an ellipse and a line
segment). The (Xl, Yl) and (X2, Y2) parameters specify the upper-left and lower-right
comers, respectively, of a rectangle bounding the ellipse that is part of the chord. The (X3,
Y3) and (X4, Y4) parameters specify the endpoints of a line that intersects the ellipse. The
chord is drawn by using the selected pen and filled by using the selected brush.

Parameter

hDC

Xl

Yl

X2

Y2

X3

Y3

X4

Y4

Type/Description

HDC Identifies the device context in which the chord will appear.

int Specifies the x-coordinate of the bounding rectangle's upper­
left comer.

int Specifies the y-coordinate of the bounding rectangle's upper­
left comer.

int Specifies the x-coordinate of the bounding rectangle'S lower­
right comer.

int Specifies the y-coordinate of the bounding rectangle'S lower­
right comer.

int Specifies the x-coordinate of one end of the line segment.

int Specifies the y-coordinate of one end of the line segment.

int Specifies the x-coordinate of one end of the line segment.

int Specifies the y-coordinate of one end of the line segment.

(')

ClearCommBreak 4-28

Return Value The return value specifies whether or not the arc is drawn. It is nonzero if the arc is drawn.
Otherwise, it is zero.

ClearCommBreak
:'>. Syntax

Return Value

ClientToScreen
Syntax

Return Value

Comments

int ClearCommBreak(nCid)

This function restores character transmission and places the transmission line in a non­
break state.

Parameter

nCid

Type/Description

int Specifies the communication device to be restored. The Open­
Comm function returns this value.

The return value specifies the result of the function. It is zero if the function is successful.
It is negative if the nCid parameter is not a valid device.

void ClientToScreen(hWnd, ipPoint)

This function converts the client coordinates of a given point on the display to screen
coordinates. The ClientToScreen function uses the client coordinates in the POINT data
structure, pointed to by the ipPoint parameter, to compute new screen coordinates; it then
replaces the coordinates in the structure with the new coordinates. The new screen coordi­
nates are relative to the upper-left comer of the system display.

Parameter

hWnd

ipPoint

None.

Type/Description

HWND Identifies the window whose client area will be used for
the conversion.

LPPOINT Points to a POINT data structure that contains the
client coordinates to be converted.

The ClientToScreen function assumes that the given point is in client coordinates and is
relative to the given window.

4-29

ClipCursor
Syntax

Return Value

Comments

CloseClipboard
Syntax

Clip Cursor

void ClipCursor(lpRect)

This function confines the cursor to the rectangle on the display screen given by the lpRect
parameter. If a subsequent cursor position, given with the SetCursorPos function or the
mouse, lies outside the rectangle, Windows automatically adjusts the position to keep the
cursor inside. If lpRect is NULL, the cursor is free to move anywhere on the display screen.

Parameter

lpRect

None.

Type/Description

LPRECT Points to a RECT data structure that contains the screen
coordinates of the upper-left and lower-right corners of the confining
rectangle.

The cursor is a shared resource. An application that has confined the cursor to a given
rectangle must free it before relinquishing control to another application.

BOOL CloseClipboard()

I. This function closes the clipboard. The CloseClipboard function should be called when a
window has finished examining or changing the clipboard. It lets other applications access
the clipboard.

Return Value .

CloseComm
Syntax

This function has no parameters.

The return value specifies whether the clipboard is closed. It is nonzero if the clipboard is
closed. Otherwise, it is zero.

int CloseComm(nCid)

This function closes the communication device specified by the nCid parameter and frees
any memory allocated for the device's transmit and receive queues. All characters in the
output queue are sent before the communication device is closed.

o

CioseMetaFiie 4-30

o Return Value

CloseMetaFile
Syntax

Return Value

CloseSound
Syntax

Return Value

CloseWindow
Syntax

Parameter

nCid

Type/Description

int Specifies the device to be closed. The OpenComm function re­
turns this value.

The return value specifies the result of the function. It is zero if the device is closed. It is
negative if an error occurred.

HANDLE CloseMetaFile(hDC)

This function closes the metafile device context and creates a metafile handle that can be
used to play the metafile by using the PlayMetaFile function.

Parameter Type/Description

hDC HANDLE Identifies the metafile device context to be closed.

The return value identifies the metafile if the function is successful. Otherwise, it is NULL.

void CloseSound()

This function closes access to the play device and frees the device for opening by other
applications. The CloseSound function flushes all voice queues and frees any buffers allo­
cated for these queues.

This function has no parameters.

None.

void CloseWindow(hWnd)

This function minimizes the specified window. If the window is an overlapped window, it
is minimized by removing the client area and caption of the open window from the display
screen and moving the window's icon into the icon area of the screen.

4-31

Return Value

Comments

CombineRgn
Syntax

CombineRgn

Parameter Type/Description

hWnd HWND Identifies the window to be minimized.

None.

This function has no effect if the hWnd parameter is a handle to a pop-up or child window.

int CombineRgn(hDestRgn, hSrcRgni, hSrcRgn2, nCombineMode)

This function creates a new region by combining two existing regions. The method used to
combine the regions is specified by the nCombineMode parameter.

Parameter

hDestRgn

hSrcRgni

hSrcRgn2

nC ombineM ode

Type/Description

HRGN Identifies an existing region that will be replaced by
the new region.

HRGN Identifies an existing region.

HRGN Identifies an existing region.

int Specifies the operation to be performed on the two ex­
isting regions. It can be anyone of the following values:

Value Meaning

Uses overlapping areas of both regions
(intersection).

Creates a copy of region 1 (identified by
hSrcRgni).

Saves the areas of region 1 (identified by
the hSrcRgni parameter) that are not part
of region 2 (identified by the hSrcRgn2
parameter).

Combines all of both regions (union).

Combines both regions but removes over­
lapping areas.

CopyMetaFile 4-32

Return Value

Comments

CopyMetaFile
Syntax

Return Value

CopyRect
Syntax

The return value specifies the type of the resulting region. It can be anyone of the follow­
ing values:

Value

COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

Meaning

New region has overlapping borders ..

No new region created.

New region is empty.

New region has no overlapping borders.

If the hDestRgn parameter does not identify an existing region, the application must pass a
far pointer to a previously allocated HRGN as the hDestRgn parameter.

HANDLE Copy MetaFile(hSrcM etaFile, lpFilename)

This function copies the source metafile to the file pointed to by the lpFilename parameter
and returns a handle to the new metafile. If lpFilename is NULL, the source is copied to a
memory metafile.

Parameter

hSrcMetaFile

lpFilename

Type/Description

HANDLE Identifies the source metafile.

LPSTR Points to a null-terminated character string that speci­
fies the file that is to receive the metafile.

The return value identifies the new metafile.

int CopyRect(lpDestRect, lpSourceRect)

This function copies the rectangle pointed to by the lpSourceRect parameter to the RECT
data structure pointed to by the lpDestRect parameter.

4-33

Return Value

Parameter

lpDestRect

lpSourceRect

CountClipboardFormats

Type/Description

LPRECT Points to a RECT data structure.

LPRECT Points to a RECT data structure.

Although the CopyRect function return type is an integer, the return value is not used and
has no meaning.

CountClipboardFormats
Syntax

Return Value

int CountClipboardFormats()

This function retrieves a count of the number of formats the clipboard can render.

This function has no parameters.

The return value specifies the number of data formats in the clipboard.

CountVoiceNotes
Syntax

Return Value

CreateBitmap
Syntax

int CountVoiceNotes(nVoice)

This function retrieves a count of the number of notes in the specified queue. Only those
queue entries that result from calls to the SetVoiceNote function are counted.

Parameter

nVoice

Type/Description

int Specifies the voice queue to be counted. The first voice queue
is numbered 1.

The return value specifies the number of notes in the given queue.

HBITMAP CreateBitmap(nWidth, nHeight, nPlanes, nBitCount, lpBits)

This function creates a device-dependent memory bitmap that has the specified width,
height, and bit pattern. The bitmap can subsequently be selected as the current bitmap for a
memory display by using the SelectObject function.

o

)

CreateBitmaplndirect 4-34

Return Value

Although a bitmap cannot be copied directly to a display device, the BitBlt function can
copy it from a memory display context (in which it is the current bitmap) to any com­
patible device.

Parameter

nWidth

nHeight

nPlanes

nBitCount

IpBits

Type/Description

int Specifies the width (in pixels) of the bitmap.

int Specifies the height (in pixels) of the bitmap.

BYTE' Specifies the number of color planes in the bitmap. Each
plane has nWidth x nHeight x nBitCount bits.

BYTE Specifies the number of color bits per display pixel.

LPSTR Points to a short-integer array that contains the initial bit­
map bit values. If it is NULL, the new bitmap is left uninitialized.
For more information, see the description of the bmBits field in the
BITMAP data structure in Chapter 7, "Data Types and Structures,"
in Reference, Volume 2.

The return value identifies a bitmap if the function is successful. Otherwise, it is NULL.

CreateBitmaplndirect
Syntax

Return Value

HBITMAP CreateBitmapIndirect(lpBitmap)

This function creates a bitmap that has the width, height, and bit pattern given in the data
structure pointed to by the IpBitmap parameter. Although a bitmap cannot be directly
selected for a display device, it can be selected as the current bitmap for a memory display
and copied to any compatible display device by using the BitBIt function.

Parameter

IpBitmap

Type/Description

BITMAP FAR * Points to a BITMAP data structure that contains
information about the bitmap.

The return value identifies a bitmap if the function is successful. Otherwise, it is NULL.

4-35 CreateBrushlndirect

CreateBrushlndirect
Syntax

Return Value

Comments

Create Caret
Syntax

HBRUSH CreateBrushlndirect(lpLogBrush)

This function creates a logical brush that has the style, color, and pattern given in the data
structure pointed to by the /pLogBrush parameter. The brush can subsequently be selected
as the current brush for any device.

Parameter

/pLogBrush

Type/Description

LOG BRUSH FAR * Points to a LOGBRUSH data structure that
contains information about the brush.

The return value identifies a logical brush if the function is successful. Otherwise, it is
NULL.

A brush created using a monochrome (one plane, one bit per pixel) bitmap is drawn using
the current text and background colors. Pixels represented by a bit set to 0 will be drawn
with the current text color, and pixels represented by a bit set to 1 will be drawn with the
current background color.

void CreateCaret(hWnd, hBitmap, nWidth, nHeight)

This function creates a new shape for the system caret and assigns ownership of the caret
to the given window. The caret shape can be a line, block, or bitmap as defined by the hBit­
map parameter. If hBitmap is a bitmap handle, the nWidth and nHeight parameters are ig­
nored; the bitmap defines its own width and height. (The bitmap handle must have been
previously created by using the CreateBitmap, CreateDIBitmap, or LoadBitmap func­
tion.) If hBitmap is NULL or 1, nWidth and nHeight give the caret's width and height (in
logical units); the exact width and height (in pixels) depend on the window's mapping
mode.

If nWidth or nHeight is zero, the caret width or height is set to the system's window-border
width or height. Using the window-border width or height guarantees that the caret will be
visible on a high-resolution display.

The CreateCaret function automatically destroys the previous caret shape, if any, regard­
less of which window owns the caret. Once created, the caret is initially hidden. To show
the caret, the ShowCaret function must be called.

o

o

Crea te Compa tible Bitmap 4-36

Return Value

Comments

Parameter

hWnd

hBitmap

nWidth

nHeight

None.

Type/Description

HWND Identifies the window that owns the new caret.

HBITMAP Identifies the bitmap that defines the caret shape. If
hBitmap is NULL, the caret is solid; if hBitmap is 1, the caret is gray.

int Specifies the width of the caret (in logical units).

int Specifies the height of the caret (in logical units).

The system caret is a shared resource. A window should create a caret only when it has the
input focus or is active. It should destroy the caret before losing the input focus or becom­
ing inactive.

The system's window-border width or height can be retrieved by using the GetSystem­
Metrics function with the SM_CXBORDER and SM_CYBORDER indexes.

CreateCompatibleBitmap
Syntax HBITMAP CreateCompatibleBitmap(hDC, nlVidth, nHeight)

This function creates a bitmap that is compatible with the device specified by the hDC
parameter. The bitmap has the same number of color planes or the same bits-per-pixel for­
mat as the specified device. It can be selected as the current bitmap for any memory device
that is compatible with the one specified by hDC.

If hDC is a memory device context, the bitmap returned has the same format as the cur­
rently selected bitmap'in that device context. A memory device context is a block of
memory that represents a display surface. It can be used to prepare images in memory
before copying them to the actual display surface of the compatible device.

When a memory device context is created, GDI automatically selects a monochrome stock
bitmap for it.

Since a color memory device context can have either color or monochrome bitmaps
selected, the format of the bitmap returned by the CreateCompatibleBitmap function is
not always the same; however, the format of a compatible bitmap for a nonmemory device
context is always in the format of the device.

4-37

Return Value

Parameter

hDC

nWidth

nHeight

CreateCompatibleOC

Type/Description

HDC Identifies the device context.

int Specifies the width (in bits) of the bitmap.

int Specifies the height (in bits) of the bitmap.

The return value identifies a bitmap if the function is successful. Otherwise, it is NULL.

CreateCompatibleDC
Syntax

Return Value

Comments

HDC CreateCompatibleDC(hDC)

This function creates a memory device context that is compatible with the device specified
by the hDC parameter. A memory device context is a block of memory that represents a
display surface. It can be used to prepare images in memory before copying them to the ac­
tual device surface of the compatible device.

When a memory device context is created, GDI automatically selects a I-by-l mono­
chrome stock bitmap for it.

Parameter

hDC

Type/Description

HDC Identifies the device context. If hDC is NULL, the function
creates a memory device context that is compatible with the system
display.

The return value identifies the new memory device context if the function is successful.
Otherwise, it is NULL.

This function can only be used to create compatible device contexts for devices that sup­
port raster operations. For more information, see the RC_BITBLT raster capability in the
GetDeviceCaps function, later in this chapter.

GDI output functions can be used with a memory device context only if a bitmap has been
created and selected into that context.

When the application no longer requires the device context, it should free it by calling the
DeleteDC function. .

o

Create Cursor 4-38

CreateCursor [I[]
Syntax

Return Value

CreateDC
Syntax

HCURSOR. CreateCursor(hlnstance, nXhotspot, nYhotspot, nWidth, nHeight,
IpANDbitPlane,lpXORbitPlane)

This function creates a cursor that has specified width, height, and bit patterns.

Parameter

hlnstance

nXhotspot

nYhotspot

nWidth

nHeight

IpANDbitPlane

IpXORbitPlane

Type/Description

HANDLE Identifies an instance of the module creating the
cursor.

int Specifies the horizontal position of the cursor hotspot.

int Specifies the vertical position of the cursor hotspot.

int Specifies the width in pixels of the cursor.

int Specifies the height in pixels of the cursor.

LPSTR Points to an array of bytes containing the bit values
for the AND mask of the cursor. This can be the bits of a
device-dependent monochrome bitmap.

LPSTR Points to an array of bytes containing the bit values
for the XOR mask of the cursor. This can be the bits of a
device-dependent monochrome bitmap.

The return value identifies the cursor if the function was successful. Otherwise, it is NULL.

HDC CreateDC(lpDriverName, IpDeviceName, IpOutput, IplnitData)

This function creates a device context for the specified device. The IpDriverName, IpDevi­
ceName, and IpOutput parameters specify the device driver, device name, and physical out­
put medium (file or port), respectively.

Parameter

IpDriverName

Type/Description

LPSTR Points to a null-terminated character string that speci­
fies the DOS filename (without extension) of the device driver
(for example, Epson ®).

4-39

Return Value

Comments

CreateDialog
Syntax

Parameter

lpDeviceName

lpOutput

lplnitData

Crea teOia log

Type/Description

LPSTR Points to a null-terminated character string that speci­
fies the name of the specific device to be supported (for
example, Epson FX-80). The lpDeviceName parameter is used if
the module supports more than one device.

LPSTR Points to a null-terminated character string that speci­
fies the DOS file or device name for the physical output medium
(file or output port).

LPDEVMODE Points to a DEVMODE data structure con­
taining device-specific initialization data for the device driver.
The ExtDeviceMode retrieves this structure filled in for a given
device. The lplnitData parameter must be NULL if the device
driver is to use the default initialization (if any) specified by the
user through the Control Panel.

The return value identifies a device context for the specified device if the function is
successful. Otherwise, it is NULL.

DOS device names follow DOS conventions; an ending colon (:) is recommended, but op­
tional. Windows strips the terminating colon so that a device name ending with a colon is
mapped to the same port as the same name without a colon. The driver and port names
must not contain leading 9r trailing spaces.

HWND CreateDialog(hlnstance, IpTemplateName, hWndParent, IpDialogFunc)

This function creates a modeless dialog box that has the size, style, and controls defined by
the dialog-box template given by the IpTemplateName parameter. The hWndParent para­
meter identifies the application window that owns the dialog box. The dialog function
pointed to by the lpDialogFunc parameter processes any messages received by the dialog
box.

The CreateDialog function sends a WM_INITDIALOG message to the dialog function
before displaying the dialog box. This message allows the dialog function to initialize the
dialog-box controls.

CreateDialog returns immediately after creating the dialog box. It does not wait for the
dialog box to begin processing input.

o

CreateOia/og 4-40

Return Value

Comments

Parameter

hlnstance

IpTemplateName

hWndParent

IpDialogFunc

Type/Description

HANDLE Identifies an instance of the module whose exe­
cutable file contains the dialog-box template.

LPSTR Points to a character string that names the dialog-box
template. The string must be a null-terminated character string.

HWND Identifies the window that owns the dialog box.

FARPROC Is the procedure-instance address for the dialog
function. See the following "Comments" section for details.

The return value is the window handle of the dialog box. It is NULL if the function cannot
create the dialog box.

Use the WS_ VISIBLE style for the dialog-box template if the dialog box should appear in
the parent window upon creation.

Use the DestroyWindow function to destroy a dialog box created by the CreateDialog
function.

A dialog box can contain up to 255 controls.

The callback function must use the Pascal calling convention and must be declared FAR.

Cal/back Function BOOL FAR PASCAL DialogFunc(hDlg, wMsg, wParam, IParam)
HWNDhDlg;
WORDwMsg;
WORD wParam;
DWORD IParam;

DialogFunc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in an EXPORTS statement in the application's module­
definition file.

Parameter

hDlg

wMsg

wParam

IParam

Definition

Identifies the dialog box that receives the message.

Specifies the message number.

Specifies 16 bits of additional message-dependent information.

Specifies 32 bits of additional message-dependent information.

4-41 Crea leOia login dire cl

Return Value

Except in response to the WM_INITDIALOG message, the dialog function should return
nonzero if the function processes the message, and zero if it does not. In response to a
WM_INITDIALOG message, the dialog function should return zero if it calls the SetFo­
CllS function to set the focus to one of the controls in the dialog box. Otherwise, it should
return nonzero, in which case Windows will set the focus to the first control in the dialog
box that can be given the focus.

Comments

The dialog function is used only if the dialog class is used for the dialog box. This is the de­
fault class and is used if no explicit class is given in the dialog-box template. Although the
dialog function is similar to a window function, it must not call the DefWindowProc func­
tion to process unwanted messages. Unwanted messages are processed internally by the
dialog-class window function.

The dialog-function address, passed as the lpDialogFunc parameter, must be created by
using the MakeProcInstance function.

CreateDialoglndirect
Syntax HWND CreateDialoglndirect(hlnstance, lpDialogTemplate, hWndParent,

lpDialogFunc)

This function creates a modeless dialog box that has the size, style, and controls defined by
the dialog-box template given by the lpDialogTemplate parameter. The hWndParent para­
meter identifies the application window that owns the dialog box. The dialog function
pointed to by the IpDialogFunc parameter processes any messages received by the dialog
box.

The CreateDialoglndirect function sends a WM_INITDIALOG message to the dialog
function before displaying the dialog box. This message allows the dialog function to ini­
tialize the dialog-box controls.

CreateDialoglndirect returns immediately after creating the dialog box. It does not wait
for the dialog box to begin processing input.

Parameter

hlnstance

lpDialogTemplate

hWndParent

Type/Description

HANDLE Identifies an instance of the module whose exe­
cutable file contains the dialog-box template.

LPSTR Points to a block of memory that contains a
DLGTEMPLATE data structure.

HWND Identifies the window that owns the dialog box.

CreateDialoglndirect 4-42

Return Value

Comments

Parameter

lpDialogFunc

Type/Description

FARPROC Is the procedure-instance address of the dialog
function. See the following "Comments" section for details.

The return val,ue is the window handle of the dialog box. It is NULL if the function cannot
create either the dialog box or any controls in the dialog box.

Use the WS_ VISIBLE style in the dialog-box template if the dialog box should appear in
the parent window upon creation.

A dialog box can contain up to 255 controls.

The callback function must use the Pascal calling convention and must be declared FAR.

Callback Function BOOL FAR PASCAL DialogFunc(hDlg, wMsg, wParam, IParam)
HWNDhDlg;
WORD wMsg;
WORD wParam;
DWORD lParam;

DialogFunc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in an EXPORTS statement in the application's module­
definition file.

Parameter

hDlg

wMsg

wParam

lParam

Return Value

Definition

Identifies the dialog box that receives the message.

Specifies the message number.

Specifies 16 bits of additional message-dependent information.

Specifies 32 bits of additional message-dependent information.

Except in response to the WM_INITDIALOG message, the dialog function should return
nonzero if the function processes the message, and zero if it does not. In response to a
WM_INITDIALOG message, the dialog function should return zero if it calls the SetFo­
CllS function to set the focus to one of the controls in the dialog box. Otherwise, it should
return nonzero, in which case Windows will set the focus to the first control in the dialog
box that can be given the focus.

4-43 CreateDialoglndirectParam

Comments

The dialog function is used only if the dialog class is used for the dialog box. This is ,the de­
fault class and is used if no explicit class is given in the dialog-box template. Although the
dialog function is similar to a window function, it must not call the DetWindowProc func­
tion to process unwanted messages. Unwanted messages are processed internally by the
dialog-class window function.

The dialog-function address, passed as the IpDialogFunc parameter, must be created by
using the MakeProcInstance function.

CreateDialoglndirectParam [IQJ

Syntax

Return Value

HWND CreateDialogIndirectParam(hlnstance, IpDialogTemplate; hWndParent,
IpDialogFunc, dwlnitParam)

This function creates a modeless dialog box, sends a WM_INITDIALOG message to the
dialog function before displaying the dialog box, and passes dwlnitParam as the message
IParam. This message allows the dialog function to initialize the dialog-box controls.
Otherwise, this function is identical to the CreateDialogIndirect function.

For more infonnation on creating a modeless dialog box, see the description of the Create­
DialogIndirect function.

Parameter

hlnstance

IpDia log Temp la te

hWndParent

IpDialogFunc

dwlnitParam

Type/Description

HANDLE Identifies an instance of the module whose exe­
cutable file contains the dialog-box template.

LPSTR Points to a block of memory that contains a
DLGTEMPLATE data structure.

HWND Identifies the window that owns the dialog box.

FARPROC Is the procedure-instance address of the dialog
function. For details, see the "Comments" section in the descrip­
tion of the CreateDialogIndirect function.

DWORD Is a 32-bit value which CreateDialogIndirect­
Param passes to the dialog function when it creates the dialog
box.

The return value is the window handle of the dialog box. It is NULL if the function cannot
create either the dialog box or any controls in the dialog box.

o

.):

CreateOialogParam 4-44

CreateDialogParam [IQJ

Syntax

Return Value

HWND CreateDialogParam(hlnstance, IpTemplateName, hWndParent, IpDialogFunc,
dwlnitParam)

This function creates a modeless dialog box, sends a WM_INITDIALOG message to the
dialog function before displaying the dialog box, and passes dwlnitParam as the message
IParam. This message allows the dialog function to initialize the dialog-box controls.
Otherwise, this function is identical to the CreateDialog function.

For more information on creating a modeless dialog box, see the description of the Create­
Dialog function.

Parameter

hlnstance

IpTemplateName

hWndParent

IpDialogFunc

dwlnitParam

Type/Description

HANDLE Identifies an instance of the module whose exe­
cutable file contains the dialog-box template.

LPSTR Points to a character string that names the dialog-box
template. The string must be a null-terminated character string.

HWND Identifies the window that owns the dialog box.

FARPROC Is the procedure-instance address for the dialog
function. For details, see the "Comments" section of the Create­
Dialog function.

DWORD Is a 32-bit value which CreateDialogParam passes
to the dialog function when it creates the dialog box.

The return value is the window handle of the dialog box. It is -1 if the function cannot
create the dialog box.

CreateDIBitmap [IQJ

Syntax HBITMAP CreateDIBitmap(hDC, IplnfoHeader, dwUsage, IplnitBits, lplnitlnfo,
wUsage)

This function creates a device-specific memory bitmap from a device-independent bitmap
(DIB) specification and optionally sets bits in the bitmap.

4-45

Return Value

Comments

Parameter

hDC

IpInfoH eader

dwUsage

IpInitBits

IpInitInfo

wUsage

CreateD/Bitmap

Type/Description

HDC Identifies the device context.

LPBITMAPINFOHEADER Points to a BITMAPINFO­
HEADER structure that describes the size and fonnat of the
device-independent bitmap.

DWORD Indicates whether the memory bitmap is to be ini­
tialized. If dwUsage is set to CBM_INIT, CreateDIBitmap will
initialize the bitmap with the bits specified by IpInitBits and IpIn­
itInfo.

LPSTR Points to a byte array that contains the initial bitmap
values. The fonnat of the bitmap values depends on the biBit­
Count field of the BIT~APINFO structure identified by
IpInitInfo. See the description of the BITMAPINFO data struc­
ture in Chapter 7, "Data Types and Structures," in Reference,
Volume 2, for more infonnation.

LPBITMAPINFO Points to a BITMAPINFO data structure
that describes the dimensions and color fonnat of IpInitBits.

WORD Specifies whether the bmiColors[] fields of the IpIni­
tInfo data structure contain explicit ROB values or indexes into
the currently realized logical palette. The wUsage parameter
must be one of the following values:

Value Meaning

The color table consists of an
array of 16-bit indexes into
the currently realized logical
palette.

The color table contains lit­
eral RGB values.

The return value identifies a bitmap if the function is successful. Otherwise, it is NULL.

This function also accepts a device-independent bitmap specification fonnatted for
Microsoft OS/2 Presentation Manager versions 1.1 and 1.2 if the IpInfoHeader points to a
BITMAPCOREHEADER data structure and the IpInitInfo parameter points to a
BITMAPCOREINFO data structure.

) ,

CreateOIBPatternBrush 4-46

CreateDIBPatternBrush [[[]
Syntax

Return Value

HBRUSH CreateDIBPatternBrush(hPackedDIB, wUsage)

This function creates a logical brush that has the pattern specified by the device-inde­
pendent bitmap (DIB) defined by the the hPackedDIB parameter. The brush can sub­
sequently be selected for any device that supports raster operations. For more information,
see the RC_BITBLT raster capability in the GetDeviceCaps function, later in this chapter.

Parameter

hPackedDIB

wUsage

Type/Description

GLOBALHANDLE Identifies a global memory object con­
taining a packed device-independent bitmap. To obtain this
handle, an application calls the GlobalAlloc function to allocate
a block of global memory and then fills the memory with the
packed DIB. A packed DIB consists of a BITMAPINFO data
structure immediately followed by the array of bytes which
define the pixels of the bitmap.

WORD Specifies whether the bmiColors[] fields of the
BITMAPINFO data structure contain explicit ROB values or in­
dexes into the currently realized logical palette. The wU sage
parameter must be one of the following values:

Value Meaning

The color table contains lit­
eral ROB values. into the
currently realized logical
palette.

The color table consists of an
array of 16-bit indexes.

The return value identifies a logical brush if the function is successful. Otherwise, it is
NULL.

CreateDiscardableBitmap
Syntax HBITMAP CreateDiscardableBitmap(hDC, nWidth, nHeight)

This function creates a discardable bitmap that is compatible with the device identified by
the hDC parameter. The bitmap has the same number of color planes or the same bits-per­
pixel format as the specified device. An application can select this bitmap as the current bit­
map for a memory device that is compatible with the one specified by the hDC parameter.

4-47

Return Value

Comments

Parameter

hDC

nWidth

nHeight

CreateEllipticRgn

Type/Description

HDC Identifies a device context.

int Specifies the width (in bits) of the bitmap.

int Specifies the height (in bits) of the bitmap.

The return value identifies a bitmap if the function is successful. Otherwise, it is NULL.

Windows can discard a bitmap created by this function only if an application has not
selected it into a display context. If Windows discards the bitmap when it is not selected
and the application later attempts to select it, the SelectObject function will return zero.
When this occurs, the application should remove the handle to the bitmap by using
DeleteObject. ..

CreateEllipticRgn
Syntax

Return Value

Comments

HRGN CreateEllipticRgn(XI, Y I, X2, Y2)

This function creates an elliptical region.

Parameter

Xl

YI

X2

Y2

Type/Description

int Specifies the x-coordinate of the upper-left corner of the bound­
ing rectangle of the ellipse.

int Specifies the y-coordinate of the upper-left corner of the bound­
ing rectangle of the ellipse.

int Specifies the x-coordinate of the lower-right corner of the
bounding rectangle of the ellipse.

int Specifies the y-coordinate of the lower-right corner of the
bounding rectangle of the ellipse.

The return value identifies a new region if the function is successful. Otherwise, it is
NULL.

The width of the rectangle, specified by the absolute value of X2 - Xl , must not exceed
32,767 units. This limit also applies to the height of the rectangle.

o

CreateEllipticRgnlndirect 4-48

CreateEllipticRgnlndirect
Syntax

Return Value

Comments

CreateFont
Syntax

HRGN CreateEllipticRgnlndirect(lpReet)

This function creates an elliptical region.

Parameter

IpReet

Type/Description

LPRECT Points to a RECT data structure that contains the coordi­
nates of the upper-left and lower-right corners of the bounding
rectangle of the ellipse.

The return value identifies a new region if the function is successful. Otherwise, it is
NULL.

The width of the rectangle must not exceed 32,767 units. This limit applies to the height of
the rectangle as well.

HFONT CreateFont(nHeight, nWidth, nEseapement, nOrientation, nWeight, cItalie,
eUnderline, eStrikeOut, eCharSet, eOutputPrecision, eClipPrecision, eQuality,
ePitehAndF amity, IpF aeename)

This function creates a logical font that has the specified characteristics. The logical font
can subsequently be selected as the font for. any device.

Parameter

nHeight

Type/Description

int Specifies the desired height (in logical units) of the font.
The font height can be specified in three ways: If nHeight is
greater than zero, it is transformed into device units and matched
against the cell height of the available fonts. If it is zero, a rea­
sonable default size is used. If it is less than zero, it is
transformed into device units and the absolute value is matched
against the character height of the available fonts. For all height
comparisons, the font mapper looks for the largest font that does
not exceed the requested size, and, if there is no such font, looks
for the smallest font available.

4-49

Parameter

nWidth

nEscapement

nOrientation

nWeight

cItalic

cUnderline

cStrikeOut

cCharSet

cOutputPrecision

CreateFont

Type/Description

int Specifies the average width (in logical units) of characters
in the font. If nWidth is zero, the aspect ratio of the device will
be matched against the digitization aspect ratio of the available
fonts to find the closest match, detennined by the absolute value
of the difference.

int Specifies the angle (in tenths of degrees) of each line of
text written in the font (relative to the bottom of the page).

int Specifies the angle (in tenths of degrees) of each
character's baseline (relative to the bottom of the page).

int Specifies the desired weight of the font in the range 0 to
1000 (for example, 400 is normal, 700 is bold). If nWeight is
zero, a default weight is used.

BYTE Specifies whether the font is italic.

BYTE Specifies whether the font is underlined.

BYTE Specifies whether characters in the font are struck out.

BYTE Specifies the desired character set. The following
values are predefined:

ANSI_CHARSET
OEM_CHARSET
SYMBOL_CHARSET

The OEM character set is system-dependent.

Fonts with other character sets may exist in the system. If an
application uses a font with an unknown character set, it should
not attempt to translate or interpret strings that are to be ren­
dered with that font. Instead, the strings should be passed
directly to the output device driver.

BYTE Specifies the desired output precision. The output pre­
cision defines how closely the output must match the requested
font's height, width, character orientation, escapement, and
pitch. It can be anyone of the following values:

OUT _CHARACTER_PRECIS
OUT_DEFAULT_PRECIS
OUT_STRING_PRECIS
OUT_STROKE_PRECIS

o

CreateFont

Parameter

eC lipPrecision

)

eQuality

ePitehAndFamily

IpFaeename

4-50

Type/Description

BYTE Specifies the desired clipping precision. The clipping
precision defines how to clip characters that are partially outside
the clipping region. It can be anyone of the following values:

CLIP _CHARACTER_PRECIS
CLIP _DEFAULT_PRECIS
CLIP _STROKE_PRECIS

BYTE Specifies the desired output quality. The output quality
defines how carefully GDI must attempt to match the logical­
font attributes to those of an actual physical font. It can be any
one of the following values:

DEFAULT_QUALITY
DRAFT_QUALITY
PROOF_QUALITY

BYTE Specifies the pitch and family of the font. The two low­
order bits specify the pitch of the font and can be anyone of the
following values: .

DEFAULT_PITCH
FIXED_PITCH
VARIABLE_PITCH

The four high-order bits of the field specify the font family and
can be anyone of the following values:

FF _DECORATIVE
FF _DONTCARE
FF_MODERN
FF_ROMAN
FF_SCRIPT
FF_SWISS

LPSTR Points to a null-terminated character string that speci­
fies the typeface name of the font. The length of this string must
not exceed 30 characters. The EnumFonts function can be used
to enumerate the typeface names of all currently available fonts.

4-51

Return Value

Comments

CreateFontlndirect

The return value identifies a logical font if the function is successful. Otherwise, it is
NULL.

The CreateFont function does not create a new font. It merely selects the closest match
from the fonts available in GDI's pool of physical fonts.

CreateFontlndirect
Syntax

Return Value

Comments

HFONT CreateFontlndirect(lpLogFont)

This function creates a logical font that has the characteristics given in the data structure
pointed to by the /pLogFont parameter. The font can subsequently be selected as the cur­
rent font for any device.

Parameter

/pLogFont

Type/Description

LOGFONT FAR * Points to a LOGFONT data structure that de­
fines the characteristics of the logical font.

The return value identifies a logical font if the function is successful. Otherwise, it is
NULL.

The CreateFontlndirect function creates a logical font that has all the specified charac­
teristics. When the font is selected by using the SelectObject function, GDI's font mapper
attempts to match the logical font with an existing physical font. If it fails to find an exact
font, it provides an alternate whose characteristics match as many of the requested charac­
teristics as possible. For a description of the font mapper, see Chapter 2, "Graphics Device
Interface Functions."

CreateHatchBrush
Syntax HBRUSH CreateHatchBrush(nlndex, creolor)

This function creates a logical brush that has the specified hatched pattern and color. The
brush can subsequently be selected as the current brush for any device.

CreatelC

Return Value

CreatelC
Syntax

Parameter

nlndex

ClAColor

4-52

Type/Description

int Specifies the hatch style of the bI1lsh. It can be anyone of the
following values:

Value

HS_CROSS

HS_DIAGCROSS

HS_FDIAGONAL

HS_HORIZONTAL

HS_ VERTICAL

Meaning

45-degree downward hatch (left to
right)

Horizontal and vertical crosshatch

45-degree crosshatch

45-degree upward hatch (left to
right)

Horizontal hatch

Vertical hatch

COLORREF Specifies the foreground color of the brush (the
color of the hatches).

The return value identifies a logical brush if the function is successful. Otherwise, it is
NULL.

HDC CreateIC(lpDriverName, lpDeviceName, lpOutput, lplnitData)

This function creates an information context for the specified device. The information con­
text provides a fast way to get information about the device without creating a device con­
text.

Parameter

lpDriverName

lpDeviceName

Type/Description

LPSTR Points to a null-terminated character string that speci­
fies the DOS filename (without extension) of the device driver
(for example, EPSON).

LPSTR Points to a null-terminated character string that speci­
fies the name of the specific device to be supported (for
example, EPSON FX-80). The lpDeviceName parameter is used
if the module supports more than one device.

4-53

Return Value

Comments

Parameter

lpOutput

lplnitData

Create/con

Type/Description

LPSTR Points to a null-terminated character string that speci­
fies the DOS file or device name for the physical output medium
(file or port).

LPSTR Points to device-specific initialization data for the
device driver. The lplnitData parameter must be NULL if the
device driver is to use the default initialization (if any) specified
by the user through the Control Panel.

The return value identifies an information context for the specified device if the function is
successful. Otherwise, it is NULL.

DOS device names follow DOS conventions; an ending colon (:) is recommended, but op­
tional. Windows strips the terminating colon so that a device name ending with a colon is
mapped to the same port as the same name without a colon.

The driver and port names must not contain leading or trailing spaces.

GDI output functions cannot be used with information contexts.

Createlcon []]]
Syntax HICON Createlcon(hlnstance, nWidth, nHeight, nPlanes, nBitsPixel, lpANDbits,

lpXORbits)

This function creates an icon that has specified width, height, colors, and bit patterns.

Parameter

hlnstance

nWidth

nHeight

nPlanes

nBitsPixel

Type/Description

HANDLE Identifies an instance of the module creating the
icon.

int Specifies the width in pixels of the icon.

int Specifies the height in pixels of the icon.

BYTE Specifies the number of planes in the XOR mask of
the icon.

BYTE Specifies the number of bits per pixel in the XOR
mask of the icon.

o

)'

CreateMenu

Return Value

CreateMenu
Syntax

Return Value

CreateMetaFile
Syntax

Return Value

4-54

Parameter Type/Description

IpANDbits LPSTR Points to an array of bytes that contains the bit
values for the AND mask of the icon. This array must specify
a monochrome mask.

IpXORbits LPSTR Points to an array of bytes that contains the bit
values for the XOR mask of the icon. This can be the bits of a
monochrome or device-dependent color bitmap.

The return value identifies an icon if the function is successful. Otherwise, it is NULL.

HMENU CreateMenu()

This function creates a menu. The menu is initially empty, but can be filled with me~u
items by using the AppendMenu or InsertMenu function.

This function has no parameters.

The return value identifies the newly created menu. It is NULL if the menu cannot be
created.

HANDLE CreateMetaFile(lpFilename)

This function creates a metafile device context.

Parameter

IpFilename

Type/Description

LPSTR Points to a null-terminated character string that specifies
the name of the metafile. If the IpFilename parameter is NULL, a
device context for a memory metafile is returned.

The return value identifies a metafile device context if the function is successful. Other­
wise, it is NULL.

4-55 CreatePaiette

CreatePalette I]]J
Syntax

Return Value

HPALETTE CreatePalette{lpLogPalette)

This function creates a logical color palette.

Parameter Type/Description 0

IpLogPalette LPLOGPALETTE Points to a LOGPALETTE data structure
that contains information about the colors in the logical palette.

The return value identifies a logical palette if the function was successful. Otherwise, it is
NULL.

Create Pattern Brush
Syntax

Return Value

Comments

HBRUSH CreatePatternBrush(hBitmap)

This function creates a logical brush that has the pattern specified by the hBitmap para­
meter. The brush can subsequently be selected for any device that supports raster opera­
tions. For more information, see the RC_BITBLT raster capability in the GetDeviceCaps
function, later in this chapter.

Parameter

hBitmap

Type/Description

HBITMAP Identifies the bitmap. It is assumed to have been
created by using the CreateBitmap, CreateBitmapIndirect, Load­
Bitmap, or CreateCompatibleBitmap function. The minimum size
for a bitmap to be used in a fill pattern is 8-by-8.

The return value identifies a logical brush if the function is successful. Otherwise, it is
NULL.

A pattern brush can be deleted without affecting the associated bitmap by using the
DeleteObject function. This means the bitmap can be used to create any number of pattern
brushes.

A brush created using a monochrome (one plane, one bit per pixel) bitmap is drawn using
the current text and background colors. Pixels represented by a bit set to 0 will be drawn
with the current text color, and pixels represented by a bit set to 1 will be drawn with the
current background color.

CreatePen

CreatePen
Syntax

Return Value

Comments

4-56

HPEN CreatePen(nPenStyle, nWidth, crColor)

This function creates a logical pen having the specified style, width, and color. The pen
can be subsequently selected as the current pen for any device.

Parameter

nPenStyle

nWidth

crColor

Type/Description

int Specifies the pen style. It can be anyone of the following
values:

Pen Style Value

PS_SOLID 0

PS_DASH

PS_DOT 2

PS_DASHDOT 3

PS_DASHDOTDOT 4

PS_NULL 5

PS_INSIDEFRAME 6

If the width of the pen is greater than 1 and the pen style is PS_IN­
SIDEFRAME, the line is drawn inside the frame of all primitives
except polygons and polylines; the pen is drawn with a logical
(dithered) color if the pen color does not match an available ROB
value. The PS_INSIDEFRAME style is identical to PS_SOLID if
the pen width is less than or equal to 1.

int Specifies the width of the pen (in logical units).

COLORREF Specifies the color of the pen.

The return value identifies a logical pen if the function is successful. Otherwise, it is
NULL.

Pens with a physical width greater than one pixel will always have either null or solid style
or will be dithered if the pen style is PS_INSIDEFRAME.

4-57 CreatePenindirect

CreatePenlndirect
Syntax

Return Value

Comments

HPEN CreatePenIndirect(lpLogPen)

This function creates a logical pen that has the style, width, and color given in the data
structure pointed to by the lpLogPen parameter.

Parameter Type/Descri ption

lpLogPen LOGPENFAR* Points to the LOGPEN data structure that con-
tains information about the logical pen.

The return value identifies a logical pen object if the function is successful. Otherwise, it is
NULL.

Pens with a physical width greater than one pixel will always have either null or solid style
or will be dithered if the pen style is PS_INSIDEFRAME.

CreatePolygonRgn
Syntax

Return Value

HRGN CreatePolygonRgn(lpPoints, nCount, nPolyFillMode)

This function creates a polygonal region.

Parameter

lpPoin ts

nCount

nPolyFillMode

Type/Description

LPPOINT Points to an array of POINT data structures. Each
point specifies the x- and y-coordinates of one vertex of the poly- ,
gon.

int Specifies the number of points in the array.

int Specifies the polygon-filling mode to be used for filling
the region. It can be ALTERNATE or WINDING (for an ex­
planation of these modes, see the SetPolyFillMode function,
later in this chapter).

The return value identifies a new region if the function is successful. Otherwise, it is
NULL.

o

CreatePolyPolygonRgn 4-58

CreatePolyPolygonRgn []]]
Syntax

Return Value

Comments

HRGN CreatePolyPolygonRgn(/pPoints, IpPolyCounts, nCount, nPolyFillMode)

This function creates a region consisting of a series of closed polygons. The region is filled
using the mode specified by the nPolyFillMode parameter. The polygons may overlap, but
they do not have to overlap.

Parameter

IpPoints

IpPolyCounts

nCount

nPolyFillMode

Type/Description

LPPOINT Points to an array of POINT data structures that
define the vertices of the polygons. Each polygon must be a
closed polygon. The polygons are not automatically closed. The
polygons are specified consecutively.

LPINT Points to an array of integers, each of which specifies
the number of points in one of the polygons in the IpPoints array.

int Specifies the total number of integers in the IpPolyCounts
array.

int Specifies the filling mode for the region. The nPolyFill­
Mode parameter may be either of the following values:

Value

ALTERNATE

WINDING

Meaning

Selects alternate mode.

Selects winding number mode.

The return value identifies the region if the function was successfull. Otherwise, it is
NULL.

In general, the polygon fill modes differ only in cases where a complex, overlapping poly­
gon must be filled (for example, a five-sided polygon that forms a five-pointed star with a
pentagon in the center) .. In such cases, ALTERNATE mode fills every other enclosed re­
gion within the polygon (that is, the points of the star), but WINDING mode fills all re­
gions (that is, the points and the pentagon).

When the filling mode is ALTERNATE, GDI fills the area between odd-numbered and
even-numbered polygon sides on each scan line. That is, GDI fills the area between the
first and second side, between the third and fourth side, and so on.

To fill all parts of the region, WINDING mode causes GDI to compute and draw a border
that encloses the region but does not overlap. For example, in WINDING mode, the five­
sided polygon that forms the star is computed as a ten-sided polygon with no overlapping
sides; the resulting star is filled.

4-59 CreatePopupMenu

CreatePopupMenu []]]
Syntax

Return Value

CreateRectRgn
Syntax

Return Value

Comments

HMENU CreatePopupMenu()

This function creates and returns a handle to an empty pop-up menu.

An application adds items to the pop-up menu by calling InsertMenu and AppendMenu.
The application can add the pop-up menu to an existing menu or pop-up menu, or it may 0
display and track selections on the pop-up menu by calling TrackPopupMenu.

This function has no parameters.

The return value identifies the newly created menu. It is NULL if the menu cannot be
created.

HRGN CreateRectRgn(Xl, YI,X2, Y2)

This function creates a rectangular region.

Parameter

Xl

YI

X2

Y2

Type/Description

int. Specifies the x-coordinate of the upper-left comer of the re­
gion.

int Specifies the y-coordinate of the upper-left comer of the re­
gion.

int Specifies the x-coordinate of the lower-right comer of the
region.

int Specifies the y-coordinate of the lower-right comer of the
region.

The return value identifies a new region if the function is successful. Otherwise, it is
NULL.

The width of the rectangle, specified by the absolute value of X2 - Xl , must not exceed
32,767 units. This limit applies to the height of the rectangle as well.

CreateRectRgnlndirect 4-60

CreateRectRgnlndirect
Syntax

Return Value

Comments

HRGN CreateRectRgnlndirect(lpRect)

This function creates a rectangular region.

Parameter

IpRect

Type/Description

LPRECT Points to a RECT data structure that contains the
coordinates of the upper-left and lower-right comers of the re­
gion.

The return value identifies a new region if the function is successful. Otherwise, it is
NULL.

The width of the rectangle must not exceed 32,767 units. This limit applies to the height of
the rectangle as well.

CreateRoundRectRgn IT[]
Syntax

Return Value

HRGN CreateRoundRectRgn(Xl, Yl, X2, Y2, X3, Y3)

This function creates a rectangular region with rounded comers.

Parameter

Xl

Yl

X2

Y2

X3

Y3

Type/Description

int Specifies the x-coordinate of the upper-left corner of the region.

int Specifies the y-coordinate of the upper-left corner of the region.

int Specifies the x-coordinate of the lower-right comer of the re­
gion.

int Specifies the y-coordinate of the lower-right comer of the re­
gion.

int Specifies the width of the ellipse used to create the rounded
comers.

int Specifies the height of the ellipse used to create the rounded
comers.

The return value identifies a new region if the function was successful. Otherwise, it is
NULL.

4-61

Comments

CreateSolidBrush

The width of the rectangle, specified by the absolute value of X2 - Xl, must not exceed
32,767 units. This limit applies to the height of the rectangle as well.

CreateSolidBrush
Syntax

Return Value

CreateWindow
Syntax

HBRUSH CreateSolidBrush(crColor)

This function creates a logical brush that has the specified solid color. The brush can sub­
sequently be selected as the current brush for any device.

Parameter Type/Description

crColor COLORREF Specifies the color of the brush.

The return value identifies a logical brush if the function is successful. Otherwise, it is
NULL.

HWND CreateWindow(lpClassName, IpWindowName, dwStyle, X, Y, nWidth, nHeight,
hWndParent, hMenu, hlnstance, [pPm'am)

This function creates an overlapped, pop-up, or child window. The Create Window func­
tion specifies the window class, window title, window style, and (optionally) initial posi­
tion and size of the window. The CreateWindow function also specifies the window's
parent (if any) and menu.

For overlapped, pop-up, and child windows, the CreateWindow function sends
WM_CREATE, WM_GETMINMAXINFO, and WM_NCCREATE messages to the
window. The IParam parameter of the WM_CREATE message contains a pointer to a
CREATESTRUCT data structure. IfWS_ VISIBLE style is given, CreateWindow sends
the window all the messages required to activate and show the window.

If the window style specifies a title bar, the window title pointed to by the [pWindowName
parameter is displayed in the title bar. When using CreateWindow to create controls such
as buttons, check boxes, and text controls, the lpWindowName parameter specifies the text
of the control.

o

Create Window

Parameter

IpClassName

IpWindowName

dwStyle

x

y

nWidth

Type/Description

LPSTR Points to a null-terminated character string that
names the window class. The class name can be any name
registered with the RegisterClass function or any of the prede­
fined control-class names specified in Table 4.2, "Control
Classes."

4-62

LPSTR Points to a null-terminated character string that repre­
sents the window name.

DWORD Specifies the style of window being created. It can
be any combination of the styles given in Table 4.3, "Window
Styles," the control styles given in Table 4.4, "Control Styles,"
or a combination of styles created by using the bitwise OR opera­
tor.

int Specifies the initial x-position of the window. For an over­
lapped or pop-up window, the X parameter is the initial
x-coordinate of the window's upper-left comer (in screen coordi­
nates). If this value is CW_USEDEFAULT, Windows selects the
default position for the window's upper-left comer. For a child'
window, X is the x-coordinate of the upper-left comer of the
window in the client area of its parent window.

int Specifies the initial y-position of the window. For an over­
lapped window, the Y parameter is the initial y-coordinate of the
window's upper-left comer. For a pop-up window, Y is the y­
coordinate (in screen coordinates) of the upper-left comer of the
pop-up window. For list-box controls, Y is the y-coordinate of
the upper-left comer of the control's client area. For a child
window, Y is the y-coordinate of the upper-left comer of the
child window. All of these coordinates are for the window, not
the window's client area.

int Specifies the width (in device units) of the window. For
overlapped windows, the n Width parameter is either the
window's width (in screen coordinates) or CW _USEDEFAULT.
If nWidth is CW _USEDEFAULT, Windows selects a default
width and height for the window (the default width extends from
the initial x-position to the right edge of the screen, and the de­
fault height extends from the initial y-position to the top of the
icon area).

4-63

Return Value

Comments

Parameter

nHeight

hWndParent

hMenu

hlnstance

IpParam

Create Window

Type/Description

int Specifies the height (in device units) of the window. For
overlapped windows, the nHeight parameter is the window's
height in screen coordinates. If the nWidtlz parameter is
CW _USEDEFAULT, Windows ignores nHeight.

HWND Identifies the parent or owner window of the window
being created. A valid window handle must be supplied when
creating a child window or an owned window. An owned
window is an overlapped window that is destroyed when its
owner window is destroyed, hidden when its owner is made
iconic, and which is always displayed on top of its owner
window. For pop-up windows, a handle can be supplied, but is
not required. If the window does not have a parent or is not
owned by another window, the hWndParent parameter must be
set to NULL.

HMENU Identifies a menu or a child-window identifier. The
meaning depends on the window style. For overlapped or pop­
up windows, the hMenu parameter identifies the menu to be
used with the window. It can be NULL, if the class menu is to be
used. For child windows, hMenu specifies the child-window
identifier, an integer value that is used by a dialog-box control to
notify its parent of events (such as the EN_HSCROLL message).
The child-window identifier is determined by the application
and should be unique for all child windows with the same parent
window.

HANDLE Identifies the instance of the module to be as­
sociated with the window.

LPSTR Points to a value that is passed to the window through
the CREATESTRUCT data structure referenced by the IParam
parameter of the WM_CREATE message. If an application is
calling CreateWindow to create a multiple document interface
(MDI) client window, IpParam must point to a CLIENT­
CREATESTRUCT data structure.

The return value identifies the new window. It is NULL if the window is not created.

For overlapped windows where the X parameter is CW _USEDEFAULT, the Yparameter
can be one of the show-style parameters described with the ShowWindow function, or, for
the first overlapped window to be created by the application, it can be the nCmdShow para­
meter passed to the WinMain function.

o

o

Create Window 4-64

Table 4.2 lists the window control classes; Table 4.3 lists the window styles; Table 4.4 lists
the control styles:

Table 4.2

Class

BUTTON

COMBOBOX

EDIT

Control Classes

Meaning

Designates a small rectangular child window that represents a button
the user can turn on or off by clicking it. Button controls can be used
alone or in groups, and can either be labeled or appear without text. But­
ton controls typically change appearance when the user clicks them.

Designates a control consisting of a selection field similar to an edit
control plus a list box. The list box may be displayed at all times or may
be dropped down when the user selects a "pop box" next to the selec-
tion field. .

Depending on the style of the combo box, the user can or cannot edit
the contents of the selection field. If the list box is visible, typing
characters into the selection box will cause the first list box entry that
matches the characters typed to be highlighted. Conversely, selecting an
item in the list box displays the selected text in the selection field.

Designates a rectangular child window in which the user can enter text
from the keyboard. The user selects the control, and gives it the input
focus by clicking it or moving to it by using the TAB key. The user can
enter text when the control displays a flashing caret. The mouse can be
used to move the cursor and select characters to be replaced, or to posi­
tion the cursor for inserting characters. The BACKSPACE key can be used
to delete characters.

Edit controls use the variable-pitch system font and display ANSI
characters. Applications compiled to run with previous versions of
Windows display text with a fixed-pitch system font unless they have
been marked by the Windows 3.0 MARK utility with the MEMORY
FONT option. An application can also send the WM_SETFONT
message to the edit control to change the default font.

4-65

Table 4.2

Class

LISTBOX

MDICLIENT

SCROLLBAR

STATIC

Create Window

Control Classes (continued)

Meaning

Edit controls expand tab characters into as many
space characters as are required to move the cursor
to the next tab stop. Tab stops are assumed to be at
every eighth character position.

Designates a list of character strings. This control
is used whenever an application needs to present a
list of names, such as filenames, that the user can
view and select. The user can select a string by
pointing to it and clicking. When a string is
selected, it is highlighted and a notification
message is passed to the parent window. A vertical
or horizontal scroll bar can be used with a list-box
control to scroll lists that are too long for the con­
trol window. The list box automatically hides or
shows the scroll bar as needed.

Designates an MDI client window. The MDI client
window receives messages which control the MDI
application's child windows. The recommended
style bits are WS_CLIPCHILDREN and
WS_CHILD. To create a scrollable MDI client
window which allows the user to scroll MDI child
windows into view, an application can also use the
WS_HSCROLL and WS_ VSCROLL styles.

Designates a rectangle that contains a thumb and
has direction arrows at both ends. The scroll bar
sends a notification message to its parent window
whenever the user clicks the control. The parent
window is responsible for updating the thumb posi­
tion, if necessary. Scroll-bar controls have the
same appearance and function as scroll bars used
in ordinary windows. Unlike scroll bars, scroll-bar
controls can be positioned anywhere in a window
and used whenever needed to provide scrolling
input for a window.

The scroll-bar class also includes size-box controls.
A size-box control is a small rectangle that the user
can expand to change the size of the window.

Designates a simple text field, box, or rectangle
that can be used to label, box, or separate other
controls. Static controls take no input and provide
no output.

(')

Create Window

Table 4.3 Window Styles

Style

DS_LOCALEDIT

DS_MODALFRAME

DS_SYSMODAL

WS_BORDER

WS_CAPTION

WS_CHILDWINDOW

WS_CLIPCHILDREN

WS_ CLIPSIBLINGS

4-66

Meaning

Specifies that edit controls in the dialog box will use
memory in the application's data segment. By default, all
edit controls in dialog boxes use memory outside the appli­
cation's data segment. This feature may be suppressed by
adding the DS_LOCALEDIT flag to the STYLE command
for the dialog box. If this flag is not used,
EM_GETHANDLE and EM_SETHANDLE messages
must not be used since the storage for the control is not in
the application's data segment. This feature does not affect
edit controls created outside of dialog boxes.

Creates a dialog box with a modal dialog-box frame that
can be combined with a title bar and System menu by
specifying the WS_CAPTION and WS_SYSMENU styles.

Suppresses WM_ENTERIDLE messages that Windo~s
would otherwise send to the owner of the dialog box while
the dialog box is displayed.

Creates a system-modal dialog box.

Creates a window that has a border.

Creates a window that has a title bar (implies the
WS_BORDER style). This style cannot be used with the
WS_DLGFRAME style.

Creates a child window. Cannot be used with the
WS_POPUP style.

Creates a child window that has the WS_CHILD style.

Excludes the area occupied by child windows when draw­
ing within the parent window. Used when creating the
parent window.

Clips child windows relative to each other; that is, when a
particular child window receives a paint message, the
WS_CLIPSIBLINGS style clips all other overlapped child
windows out of the region of the child window to be up­
dated. (If WS_CLIPSIBLINGS is not given and child
windows overlap, it is possible, when drawing within the
client area of a child window, to draw within the client area
of a neighboring child window.) For use with the
WS_CHILD style only.

4-67 Create Window

Table 4.3 Window Styles (continued)

Style Meaning
--e---
, WS_DISABLED

WS_DLGFRAME

WS_GROUP

WS_HSCROLL

WS_ICONIC

WS_MAXIMIZE

WS_MAXIMIZEBOX

WS_MINIMIZE

WS_MINIMIZEBOX

WS_OVERLAPPED

WS_OVERLAPPEDWINDOW

Creates a window that is initially disabled.

Creates a window with a double border but no title.

Specifies the first control of a group of controls in
which the user can move from one control to the
next by using the DIRECfION keys. All controls de­
fined with the WS_GROUP style after the first
control belong to the same group. The next control
with the WS_GROUP style ends the style group
and starts the next group (that is, one group ends
where the next begins). Only dialog boxes use this
style.

Creates a window that has a horizontal scroll bar.

Creates a window that is initially iconic. For use
with the WS_OVERLAPPED style only.

Creates a window of maximum size.

Creates a window that has a maximize box.

Creates a window of minimum size.

Creates a window that has a minimize box.

Creates an overlapped window. An overlapped
window has a caption and a border.

Creates an overlapped window having the
WS_OVERLAPPED, WS_CAPTION, WS_SYS­
MENU, WS_THICKFRAME,
WS_MINIMIZEBOX, and WS_MAXIMIZEBOX
styles.

Creates a pop-up window. Cannot be used with the
WS_CHILD style.

Creates a pop-up window that has the
WS_BORDER, WS_POPUP, and WS_SYS­
MENU styles. The WS_CAPTION style must be
combined with the WS_POPUPWINDOW style to
make the system menu visible.

Creates a window that has a System-menu box in
its title bar. Used only for windows with title bars.

Specifies one of any number of controls through
which the user can move by using the TAB key. The
TAB key moves the user to the next control
specified by the WS_ TAB STOP style. Only dialog
boxes use this style.

o

o

Create Window 4-68

Table 4.3 Window Styles (continued)

Style

WS_THICKFRAME

WS_VISIBLE

Meaning

Creates a window with a thick frame that can be
used to size the window.

Creates a window that is initially visible. This ap­
plies to overlapped and pop-up windows. For
overlapped windows, the Y parameter is used as a
ShowWindow function parameter.

WS_ VSCROLL Creates a window that has a vertical scroll bar.

Table 4.4 Control Styles

Style Meaning

BUTTON Class

BS_AUTOCHECKBOX

BS_AUTORADIOBUTTON

B S_AUT03 STATE

BS_DEFPUSHBUTTON

Identical to BS_CHECKBOX, excep~ that the but­
ton automatically toggles its state whenever the
user clicks it.

Identical to BS_RADIOBUTTON, except that the
button is checked, the application is notified by
BN_CLICKED, and the checkmarks are removed
from all other radio buttons in the group.

Identical to BS_3STATE, except that the button au­
tomatically toggles its state when the user clicks it.

Designates a small rectangular button that may be
checked; its border is bold when the user clicks the
button. Any text appears to the right of the button.

Designates a button with a bold border. This button
represents the default user response. Any text is dis­
played within the button. Windows sends a
message to the parent window when the user clicks
the button.

Designates a rectangle into which other buttons are
grouped. Any text is displayed in the rectangle's
upper-left comer.

Causes text to appear on the left side of the radio
button or check-box button. Use this style with the
BS_CHECKBOX, BS_RADIOBUTTON, or
BS_3STATE styles.

4-69 Create Window

Table 4.4 Control Styles (continued)

Style

BS_RADIOBUTTON

COMBOBOX Class

CBS_AUTOHSCROLL

CBS_DROPDOWNLIST

CBS_HASSTRINGS

Meaning

Designates an owner-draw button. The parent
window is notified when the button is clicked.
Notification includes a request to paint, invert, and
disable the button.

Designates a button that contains the given text.
The control sends a message to its parent window
whenever the user clicks the button.

Designates a small circular button that can be
checked; its border is bold when the user clicks the
button. Any text appears to the right of the button.
Typically, two or more radio buttons are grouped
together to represent mutually exclusive choices,
so no more than one button in the group is checked
at any time.

Identical to BS_CHECKBOX, except that a button
can be grayed as well as checked. The grayed state
typically is used to show that a check box has been
disabled.

Automatically scrolls the text in the edit control to
the right when the user types a character at the end
of the line. If this style is not set, only text which
fits within the rectangular boundary is allowed.

Similar to CBS_SIMPLE, except that the list box
is not displayed unless the user selects an icon next
to the selection field.

Similar to CBS_DROPDOWN, except that the edit
control is replaced by a static text item which dis­
plays the current selection in the list box.

An owner-draw combo box contains items con­
sisting of strings. The combo box maintains the
memory and pointers for the strings so the applica­
tion can use the LB_GETTEXT message to
retrieve the text for a particular item.

o

(Ji

Create Window 4-70

Table 4.4 Control Styles (continued)

Style

CBS_OEMCONVERT

CBS_OWNERDRAWFIXED

CBS_OWNERDRAWVARIABLE

EDIT Class

ES_AUTOHSCROLL

ES_AUTOVSCROLL

ES_CENTER

ES_LEFf

ES_LOWERCASE

ES_MULTILINE

Meaning

Text entered in the combo box edit control is con­
verted from the ANSI character set to the OEM
character set and then back to ANSI. This ensures
proper character conversion when the application
calls the AnsiToOem function to convert an ANSI
string in the combo box to OEM characters. This
style is most useful for combo boxes that contain
filenames and applies only to combo boxes created
with the CBS_SIMPLE or CBS_DROPDOWN
styles.

The owner of the list box is responsible for draw­
ing its contents; the items in the list box are all the
same height.

The owner of the list box is responsible for draw-·
ing its contents; the items in the list box are
variable in height.

The list box is displayed at all times. The current
selection in the list box is displayed in the edit con­
trol.

Automatically sorts strings entered into the list
box.

Automatically scrolls text to the right by 10
characters when the user types a character at the
end of the line. When the user presses the ENTER

key, the control scrolls all text back to position
zero.

Automatically scrolls text up one page when the
user presses ENTER on the last line.

Centers text in a multiline edit control.

Aligns text flush-left.

Converts all characters to lowercase as they are
typed into the edit control.

Designates multiple-line edit control. (The default
is single-line.) If the ES_AUTOVSCROLL style is
specified, the edit control shows as many lines as
possible and scrolls vertically when the user
presses the ENTER key. If ES_AUTOVSCROLL is
not given, the edit control shows as many lines as
possible and beeps if ENTER is pressed when no
more lines can be displayed.

4-71 Create Window

Table 4.4 Control Styles (continued)

Style

ES_OEMCONVERT

ES_RIGHT

ES_UPPERCASE

LISTBOX Class

LBS_EXTENDEDSEL

Meaning

If the ES_AUTOHSCROLL style is specified, the
multiple-line edit control automatically scrolls hori­
zontally when the caret goes past the right edge of
the control. To start a new line, the user must press
ENTER. If ES_AUTOHSCROLL is not given, the
control automatically wraps words to the begin­
ning of the next line when necessary; a new line is
also started if ENTER is pressed. The position of the
word wrap is determined by the window size. If the
window size changes, the wordwrap position
changes, and the text is redisplayed.

Multiple-line edit controls can have scroll bars. An
edit control with scroll bars processes its own
scroll-bar messages. Edit controls without scroll
bars scroll as described above, and process any
scroll messages sent by the parent window.

Normally, an edit control hides the selection when
the control loses the input focus, and inverts the
selection when the control receives the input focus.
Specifying ES_NOHIDESEL deletes this default
action.

Text entered in the edit control is converted from
the ANSI character set to the OEM character set
and then back to ANSI. This ensures proper
character conversion when the application calls the
AnsiToOem function to convert an ANSI string in
the edit control to OEM characters. This style is
most useful for edit controls that contain filenames.

Displays all characters as an asterisk (*) as they are
typed into the edit control. An application can use
the EM_SETPASSWORDCHAR message to
change the character that is displayed.

Aligns text flush-right in a multiline edit control.

Converts all characters to uppercase as they are
typed into the edit control.

The user can select multiple items using the SHIFT

key and the mouse or special key combinations.

Create Window 4-72

Table 4.4 Control Styles (continued)

Style

LBS_HASSTRINGS

LBS_MULTICOLUMN

LBS_MULTIPLESEL

LBS_NOINTEGRALHEIGHT

LBS_OWNERDRA WFIXED

LBS_OWNERDRAWVARIABLE

LBS_SORT

LBS_STANDARD

LBS_ USETABSTOPS

Meaning

Specifies an owner-draw list box which contains
items consisting of strings. The list box maintains
the memory and pointers for the strings so the
application can use the LB_GETTEXT message to
retrieve the text for a particular item.

Specifies a multi column list box that is scrolled
horizontally. The LB_SETCOLUMNWIDTH
message sets the width of the columns.

String selection is toggled each time the user clicks
or double-clicks the string. Any number of strings
can be selected.

The size of the list box is exactly the size specified
by the application when it created the list box. Nor­
mally, Windows sizes a list box so that the list box
does not display partial items.

List-box display is not updated when changes are
made. This style can be changed at any time by
sending a WM_SETREDRAW message.

Parent window receives an input message when­
ever the user clicks or double-clicks a string.

The owner of the list box is responsible for draw­
ing its contents; the items in the list box are the
same height.

The owner of the list box is responsible for draw­
ing its contents; the items in the list box are
variable in height.

Strings in the list box are sorted alphabetically.

Strings in the list box are sorted alphabetically and
the parent window receives an input message
whenever the user clicks or double-clicks a string.
The list box contains borders on all sides.

Allows a list box to recognize and expand tab
characters when drawing its strings. The default
tab positions are 32 dialog units. (A dialog unit is a
horizontal or vertical distance. One horizontal
dialog unit is equal to 1f4 of the current dialog base
width unit. The dialog base units are computed
based on the height and width of the current sys­
tem font. The GetDialogBaseUnits function
returns the current dialog base units in pixels.)

4-73 Create Window

Table 4.4 Control Styles (continued)

Style

LBS_ WANTKEYBOARDINPUT

SCROLLBAR Class

SBS_BOTTOMALIGN

Meaning

The owner of the list box receives WM_ VKEY­
TOITEM or WM_CHARTOITEM messages
whenever the user presses a key when the list box
has input focus. This allows an application to per­
form special processing on the keyboard input.

Used with the SBS_HORZ style. The bottom edge
of the scroll bar is aligned with the bottom edge of
the rectangle specified by the X, Y, nWidth, and
nHeight parameters given in the CreateWindow
function. The scroll bar has the default height for
system scroll bars.

Designates a horizontal scroll bar. If neither the
SBS_BOTTOMALIGN nor SBS_TOPALIGN
style is specified, the scroll bar has the height,
width, and position given in the CreateWindow
function.

SBS_LEFfALIGN Used with the SBS_ VERT style. The left edge of
the scroll bar is aligned with the left edge of the
rectangle specified by the X, Y, nWidth, and
nHeight parameters given in the CreateWindow
function. The scroll bar has the default width for
system scroll bars.

SBS_RIGHTALIGN Used with the SBS_ VERT style. The right edge of
the scroll bar is aligned with the right edge of the
rectangle specified by the X, Y, nWidth, and
nHeight parameters given in the CreateWindow
function. The scroll bar has the default width for
system scroll bars.

SBS_SIZEBOX Designates a size box. If neither the SBS_SIZE­
BOXBOTTOMRIGHTALIGN nor
SBS_SIZEBOXTOPLEFfALIGN style is
specified, the size box has the height, width, and
position given in the Create Window function.

SBS_SIZEBOXBOTTOMRIGHTALIGN Used with the SBS_SIZEBOX style. The lower­
right comer of the size box is aligned with the
lower-right comer of the rectangle specified by the
X, Y, nWidth, and nHeight parameters given in the
Create Window function. The size box has the de­
fault size for system size boxes.

()

CrealeWindow 4-74

Table 4.4 Control Styles (continued)

Style

SBS_SIZEBOXTOPLEFfALIGN

SBS_VERT

STATIC Class

SS_BLACKFRAME

Meaning

Used with the SBS_SIZEBOX style. The upper­
left comer of the size box is aligned with the
upper-left comer of the rectangle specified by the
X, Y, nWidth, and nHeight parameters given in the
CreateWindow function. The size box has the de­
fault sIze for system size boxes.

Used with the SBS_HORZ style. The top edge of
the scroll bar is aligned with the top edge of the
rectangle specified by the X, Y, n Width, and
nHeight parameters given in the CreateWindow
function. The scroll bar has the default height for
system scroll bars.

Designates a vertical scroll bar. If neither the
SBS_RIGHTALIGN nor SBS_LEFfALIGN style
is specified, the scroll bar has the height, width,
and position given in the CreateWindow function.

Specifies a box with a frame drawn with the same
color as window frames. This color is black in the
default Windows color scheme.

Specifies a rectangle filled with the color used to
draw window frames. This color is black in the de­
fault Windows color scheme.

Designates a simple rectangle and displays the
given text centered in the rectangle. The text is for­
matted before it is displayed. Words that would
extend past the end of a line are automatically
wrapped to the beginning of the next centered line.

Specifies a box with a frame drawn with the same
color as the screen background (desktop). This
color is gray in the default Windows color scheme.

Specifies a rectangle filled with the color used to
fill the screen background. This color is gray in the
default Windows color scheme.

Designates an icon displayed in the dialog box.
The given text is the name of an icon (not a
filename) defined elsewhere in the resource file.
The nWidth and nHeight parameters are ignored;
the icon automatically sizes itself.

4-75 Create Window

Table 4.4 Control Styles (continued)

Style

SS_LEFTNOWORDWRAP

SS_USERITEM

SS_ WHITEFRAME

SS_ WHITERECT

Meaning

Designates a simple rectangle and displays the
given text flush-left in the rectangle. The text is for­
matted before it is displayed. Words that would
extend past the end of a line are automatically
wrapped to the beginning of the next flush-left
line.

Designates a simple rectangle and displays the
given text flush-left in the rectangle. Tabs are ex­
panded, but words are not wrapped. Text that
extends past the end of a line is clipped.

Unless this style is specified, windows will inter­
pret any "&" characters in the control's text to be
accelerator prefix characters. In this case, the" &"
is removed and the next character in the string is
underlined. If a static control is to contain text
where this feature is not wanted, SS_NOPREFIX
may be added. This static-control style may be in­
cluded with any of the defined static controls.

You can combine SS_NOPREFIX with other
styles by using the bitwise OR operator. This is
most often used when filenames or other strings
that may contain an "&" need to be displayed in a
static control in a dialog box.

Designates a simple rectangle and displays the
given text flush-right in the rectangle. The text is
formatted before it is displayed. Words that would
extend past the end of a line are 'automatically
wrapped to the beginning of the next flush-right
line.

Designates a simple rectangle and displays a single
line of text flush-left in the rectangle. The line of
text cannot be shortened or altered in any way.
(The control's parent window or dialog box must
not process the WM_CTLCOLOR message.)

Specifies a user-defined item.

Specifies a box with a frame drawn with the same
color as window backgrounds. This color is white
in the default Windows color scheme.

Specifies a rectangle filled with the color used to
fill window backgrounds. This color is white in the
default Windows color scheme.

:C":

CreateWindowEx 4-76

CreateWindowEx [[QJ
Syntax

Return Value

Comments

HWND CreateWindowEx(dwExStyle, lpClassName, lpWindowName, dwStyle,X, Y,
nWidth, nHeight, hWndParent, hMenu, hlnstance, lpParam)

This function creates an overlapped, pop-up, or child window with an extended style
specified in the dwExStyle parameter. Otherwise, this function is identical to the
Create Window function. See the description of the Create Window function for more
information on creating a window and for a full descriptions of the other parameters of
Create WindowEx.

Parameter

dwExStyle

lpClassName

lpWindowName

dwStyle

X

Y

nWidth

nHeight

hWndParent

hMenu

hlnstance

lpParam

Type/Description

DWORD Specifies the extended style of the window being
created. Table 4.5, "Extended Window Styles," lists the ex­
tended window styles.

LPSTR Points to a null-terminated character string that
names the window class.

LPSTR Points to a null-terminated character string that repre­
sents the window name.

DWORD Specifies the style of window being created.

int Specifies the initial x-position of the window.

int Specifies the initial y-position of the window.

int Specifies the width (in device units) of the window.

int Specifies the height (in device units) of the window.

HWND Identifies the parent or owner window of the window
being created.

HMENU Identifies a menu or a child-window identifier. The
meaning depends on the window style.

HANDLE Identifies the instance of the module to be as­
sociated with the window.

LPSTR Points to a value that is passed to the window through
the CREATESTRUCT data structure referenced by the lParam
parameter of the WM_CREATE message.

The return value identifies the new window. It is NULL if the window is not created.

Table 4.5 lists the extended window styles.

4-77 CreateWindowEx

Table 4.5 Extended Window Styles

Style

WS_EX_DLGMODALFRAME

WS_EX_NOPARENTNOTIFY

Meaning

Designates a window with a double border that may op­
tionally be created with a title bar by specifying the
WS_CAPTION style flag in the dwStyle parameter.

Specifies that a child window created with this style will
not send the WM_PARENTNOTIFY message to its
parent window when the child window is created or de­
stroyed.

Table 4.2, "Control Classes," lists the window control classes. Table 4.3, "Window Styles,"
lists the window styles. Table 4.4, "Control Styles," lists the control styles. See the descrip­
tion of the CreateWindow function for these tables.

OebugBreak 4-78

DebugBreak WJ
Syntax

Return Value

void DebugBreak()

This function forces a break to the debugger.

This function has no parameters.

None.

DefDlgProc WJ
Syntax

Return Value

Comments

LONG DeIDlgProc(hDlg, wMsg, wParam, IParam)

This function provides default processing for any Windows messages that a dialog box
with a private window class does not process.

All window messages that are not explicitly processed by the window function must be
passed to the DeIDlgProc function, not the DefWindowProc function. This ensures that
all messages not handled by their private window procedure will be handled properly.

Parameter

hDlg

wMsg

wParam

IParam

Type/Description

HWND Identifies the dialog box.

WORD Specifies the message number.

WORD Specifies 16 bits of additional message-dependent infor­
mation.

DWORD Specifies 32 bits of additional message-dependent infor­
mation.

The return value specifies the result of the message processing and depends on the actual
message sent.

The source code for the DeIDlgProc function is provided on the SDK disks.

An application creates a dialog box by calling one of the following functions:

Function

CreateDialog

CreateDialoglndirect

Description

Creates a modeless dialog box.

Creates a modeless dialog box.

4-79

Function

CreateDialoglndirectParam

CreateDialogParam

DialogBox

DialogBoxlndirect

DialogBoxlndirectParam

DialogBoxParam

OeferWindowPos

Description

Creates a modeless dialog box and passes data to it
when it is created.

Creates a modeless dialog box and passe~ data to it
when it is created.

Creates a modal dialog box.

Creates a modal dialog box.

Creates a modal dialog box and passes data to it
when it is created.

Creates a modal dialog box and passes data to it
when it is created.

DeferWindowPos []]J
Syntax HANDLE DeferWindowPos(hWinPoslnfo, hWnd, hWndlnsertAfter, x, y, ex, ey,

wFlags)

This function updates the multiple window-position data structure identified by the hWin­
Poslnfo parameter for the window identified by hWnd parameter and returns the handle of
the updated structure. The EndDeferWindowPos function uses the information in this
structure to change the position and size of a number of windows simultaneously. The
BeginDeferWindowPos function creates the multiple window-position data structure used
by this function.

The x and y parameters specify the new position of the window, and the ex and ey para­
meters specify the new size of the window.

Parameter

hWinPoslnfo

hWnd

hWndlnsertAfter

Type/Description

HANDLE Identifies a multiple window-position data struc­
ture that contains size and position information for one or more
windows. This structure is returned by the BeginDeferWindow­
Pos function or the most recent call to the DeferWindowPos
function.

HWND Identifies the window for which update information
is to be stored in the data structure.

HWND Identifies the window following which the window
identified by the hWnd parameter is to be updated.

OeferWindowPos 4-80

Return Value

Parameter

x

y

ex

ey

wFlags

Type/Description

int Specifies the x-coordinate of the window's upper-left
comer.

int Specifies the y-coordinate of the window's upper-left
comer.

int Specifies the window's new width.

int Specifies the window's new height.

WORD Specifies one of eight possible 16-bit values that af­
fect the size and position of the window. It must be one of the
following values:

Value

SWP _DRAWFRAME

SWP _HIDEWINDOW

SWP _NOACTIVATE

SWP_NOREDRAW

SWP_NOSIZE

Meaning

Draws a frame (defined in the
window's class description)
around the window.

Hides the window.

Does not activate the
window.

Retains current position (ig­
nores the x and y parameters).

Does not redraw changes.

Retains current size (ignores
the ex and ey parameters).

Retains current ordering (ig­
nores the hWndlnsertAfter
parameter) .

Displays the window.

The return value identifies the updated multiple window-position data structure. The
handle returned by this function may differ from the handle passed to the function as the
hWinPoslnfo parameter. The new handle returned by this function should be passed to the
next call to DeferWindowPos or the EndDeferWindowPos function.

The return value is NULL if insufficient system resources are available for the function to
complete successfully.

4-81

Comments

DefFrameProc

If the SWP _NOZORDER flag is not specified, Windows places the window identified by
the hWnd parameter in the position following the window identified by the hWndlnser­
tAfter parameter. If hWndlnsertAfter is NULL, Windows places the window identified by
hWnd at the top of the list. If hWndlnsertAfter is set to 1, Windows places the window iden­
tified by hWnd at the bottom of the list.

If the SWP _SHOWWINDOW or the SWP _HIDEWINDOW flags are set, scrolling and
moving cannot be done simultaneously.

All coordinates for child windows are relative to the upper-left comer of the parent
window's client area.

DefFrameProc []I]
Syntax

Return Value

Comments

LONG DefFrameProc(hWnd, hWndMDIClient, wMsg, wPm"am, IParam)

This function provides default processing for any Windows messages that the window
function of a multiple document interface (MDI) frame window does not process. All
window messages that are not explicitly processed by the window function must be passed
to the DefFrameProc function, not the DefWindowProc function.

Parameter

hWnd

hWndMDIClient

wMsg

wParam

IParam

Type/Description

HWND Identifies the MDI frame window.

HWND Identifies the MDI client window.

WORD Specifies the message number.

WORD Specifies 16 bits of additional message-dependent
information.

DWORD Specifies 32 bits of additional message-dependent
information.

The return value specifies the result of the message processing and depends on the actual
message sent. If the hWndMDIClient parameter is NULL, the return value is the same as
for the DefWindowProc function.

Normally, when an application's window procedure does not handle a message, it passes
the message to the DefWindowProc function, which processes the message. MDI applica­
tions use the DefFrameProc and DefMDIChildProc functions instead of DefWindow­
Proc to provide default message processing. All messages that an application would
normally pass to DefWindowProc '(such as nonclient messages and WM_SETTEXT)
should be passed to DefFrameProc instead. In addition to these, DefFrameProc also han­
dles the following messages:

OefHookProc 4-82

DefHookProc
Syntax

Message Default Processing by DefFrameProc

The frame window of an MDI application receives the
WM_COMMAND message to activate a particular MDI
child window. The window ID accompanying this message
will be the ID of the MDI child window assigned by
Windows, starting with the first ID specified by the applica­
tion when it created the MDI client window. This value of
the first ID must not conflict with menu-item IDs.

When the ALT+HYPHEN key is pressed, the control menu of
the active MDI child window will be selected.

This message causes the control menu of the active MDI
child window to be selected.

DefFrameProc passes focus on to the MDI client, which in
tum passes the focus on to the active MDI child window.

If the frame window procedure passes this message to Def­
FrameJlroc, the MDI client window will be resized to fit in
the new client area. If the frame window procedure sizes the
MDI client to a different size, it should not pass the message
to DetWindowProc.

DWORD DefHookProc(code, wParam, IParam, IplpfnNextHook)

This function calls the next function in a chain of hook functions. A hook function is a
function that processes events before they are sent to an application's message-processing
loop in the WinMain function. When an application defines more than one hook function
by using the SetWindowsHook function, Windows forms a linked list or hook chain.
Windows places functions of the same type in a chain.

Parameter

code

wParam

IParam

Type/Description

iot Specifies a code used by the Windows hook function (also
called the message filter function) to determine how to process
the message.

WORD Specifies the word parameter of the message that the
hook function is processing.

DWORD Specifies the long parameter of the message that the
hook function is processing.

4-83

Return Value

Parameter

IplpfnN extH ook

Oefin eHan die Table

Type/Description

FARPROC FAR * Points to a memory location that contains
the FARPROC structure returned by the SetWindowsHook
function. Windows changes the value at this location after an
application calls the UnhookWindowsHook function.

The return value specifies a value that is directly related to the code parameter.

DefineHandleTable []]]
Syntax

Return Value

Comments

BOOL DefineHandleTable(wOjfset)

This function creates a private handle table in an application's default data segment. The
application stores in the table the segment addresses of global memory objects returned by
the GlobalLock function. In real mode, Windows updates the corresponding address in the
private handle table when it moves a global memory object. When Windows discards an
object with a corresponding table entry, Windows replaces the address of the object in the
table with the object's handle. Windows does not update addresses in the private handle
table in protected (standard or 386 enhanced) mode.

Parameter

wOjfset

Type/Description

WORD Specifies the offset from the beginning of the data
segment to the beginning of the private handle table. If wOjfset
is zero,' Windows no longer updates the private handle table.

The return value is nonzero if the function was successful. Otherwise, it is zero.

The private handle table has the following format:

Count
Clear_Number
Entry[0]

Entry[Count-l]

The first WORD (Count) in the table specifies the number of entries in the table. The sec­
ond WORD (Clear Number) specifies the number of entries (from the beginning of the
table) which Windows will set to zero when Windows updates its least-recently-used

'0

OefMOIChildProc 4-84

(LRU) memory list. The remainder of the table consists of an array of addresses returned
by GlobalLock.

The application must initialize the Count field in the table before calling DefineHandle­
Table. The application can change either the Count or Clearn _Number fields at any time.

DefMDIChiidProc []]]

Syntax

Return Value

Comments

LONG DefMDIChiidProc(hWnd, wMsg, wParam, IParam)

This function provides default processing for any Windows messages that the window
function of a mUltiple document interface (MDI) child window does not process. All
window messages that are not explicitly processed by the window function must be passed
to the DefMDIChiidProc function, not the DefWindowProc function.

Parameter

hWnd

wMsg

wParam

IParam

Type/Description

HWND Identifies the MDI child window.

WORD Specifies the message number.

WORD Specifies 16 bits of additional message-dependent infor­
mation.

DWORD Specifies 32 bits of additional message-dependent infor­
mation.

The return value specifies the result of the message processing and depends on the actual
message sent.

This function assumes that the parent of the window identified by the h W nd parameter was
created with the MDICLIENT class.

Normally, when an application's window procedure does not handle a message, it passes
the message to the DefWindowProc function, which processes the message. MDI applica­
tions use the DefFrameProc and DefMDIChiidProc functions instead of DefWindow­
Proc to provide default message processing. All messages that an application would
normally pass to DefWindowProc (such as nonclient messages and WM_SETTEXT)
should be passed to DefMDIChiidProc instead. In addition to these, DefMDIChiidProc
also handles the following messages:

4-85

Message

WM_CHILDACTIVATE

WM_GETMINMAXINFO

WM_MENUCHAR

WM_MOVE

OefWindowProc

Default Processing by DefMDIChildProc

Performs activation processing when child windows
are sized, moved, or shown. This message must be
passed.

Calculates the size of a maximized MDI child
window based on the current size of the MDI client
window.

Sends the key to the frame window.

Recalculates MDI client scroll bars, if they are pre­
sent.

Wraps back to the frame menu bar or frame control
menu.

Activates the child window if it is not the active
MDI child.

Performs necessary operations when changing the
size of a window, especially when maximizing or re­
storing an MDI child window. Failing to pass this
message to DefMDIChildProc will produce highly
undesirable results.

Also handles the "next window" command.

DefWindowProc
Syntax LONG DefWindowProc(hWnd, wMsg, wParam, IParam)

This function provides default processing for any Windows messages that a given applica­
tion does not process. All window messages that are not explicitly processed by the class
window function must be passed to the DefWindowProc function.

Parameter

hWnd

wMsg

wParam

Type/Description

HWND Identifies the window that passes the message.

WORD Specifies the message number.

WORD Specifies 16 bits of additional message-dependent infor­
mation.

c

Dele teA tom 4-86

Return Value

Comments

DeleteAtom
Syntax

Return Value

DeleteDC
Syntax

Parameter

IParam

Type/Description

DWORD Specifies 32 bits of additional message-dependent infor­
mation.

The return value specifies the result of the message processing and depends on the actual
message sent.

The source code for the DetWindowProc function is provided on the SDK disks.

ATOM DeleteAtom(nAtom)

This function deletes an atom and, if the atom's reference count is zero, removes the as­
sociated string from the atom table.

An atom's reference count specifies the number of times the atom has been added to the
. atom table. The AddAtom function increases the count on each call; the DeleteAtom func­

tion decreases the count on each call. DeleteAtom removes the string only if the atom's
reference count is zero.

Parameter Type/Description

nAtom ATOM Identifies the atom and character string to be deleted.

The return value specifies the outcome of the function. It is NULL if the function is
successful. It is equal to the nAtom parameter if the function failed and the atom has not
been deleted.

BOOL DeleteDC(hDC)

This function deletes the specified device context. If the hDC parameter is the last device
context for a given device, the device is notified and all storage and system resources used
by the device are released.

Parameter Type/Description

hDC HDC Identifies the device context.

4-87

Return Value

Comments

OeleteMenu

The return value specifies whether the device context is deleted. It is nonzero if the device
context is successfully deleted (regardless of whether the deleted device context is the last
context for the device). If an error occurs, the return value is zero.

An application must not delete a device context whose handle was obtained by calling the
GetDC function. Instead, it must call the ReleaseDC function to free the device context.

DeleteMenu []]]
Syntax

Return Value

Comments

DeleteMetaFile
Syntax

BOOL DeleteMenu(hMenu, nPosition, wFlags)

This function deletes an item from the menu identified by the hMenu parameter; if the
menu item has an associated pop-up menu, DeleteMenu destroys the handle by the pop-up
menu and frees the memory used by the pop-up menu.

Parameter

hMenu

nPosition

wFlags

Type/Description

HMENU Identifies the menu to be changed.

WORD Specifies the menu item whichis to be deleted. If wFlags
is set to MF _BYPOSITION, nPosition specifies the position of the
menu item; the first item in the menu is at position o. If wFlags is set
to MF _BYCOMMAND, then nPosition specifies the command ID of
the existing menu item.

WORD Specifies how the nPosition parameter is interpreted. It
may be set to either MF _BYCOMMAND (the default) or MF _BY.
POSITION.

The return value specifies the outcome of the function. It is TRUE if the function is
successful. Otherwise, it is FALSE.

Whenever a menu changes (whether or not the menu resides in a window that is dis­
played), the application should call DrawMenuBar.

BOOL DeleteMetaFile(hMF)

This function deletes access to a metafile by freeing the system resources associated with
that metafile. It does not destroy the metafile itself, but it invalidates the metafile handle,
hMF. Access to the metafile can be reestablished by retrieving a new handle by using the
GetMetaFile function.

c

Q

OeleleObjecl 4-88

Return Value

DeleteObject
Syntax

Return Value

Comments

DestroyCaret
Syntax

Parameter Type/Description

hMF HANDLE Identifies the metafile to be deleted.

The return value specifies whether the metafile handle is invalidated. It is nonzero if the
metafile's system resources are deleted. It is zero if the hMF parameter is not a valid
handle.

BOOL DeleteObject(hObject)

This function deletes a logical pen, brush, font, bitmap, region, or palette from memory by
freeing all system storage associated with the object. After the object is deleted, the hOb­
ject handle is no longer valid.

Parameter

hObject

Type/Description

HANDLE Identifies a handle to a logical pen, brush, font, bitmap,
region, or palette.

The return value specifies whether the specified object is deleted. It is nonzero if the object
is deleted. It is zero if the hObject parameter is not a valid handle or is currently selected
into a device context.

The object to be deleted should not be currently selected into a device context.

When a pattern brush is deleted, the bitmap associated with the brush is not deleted. The
bitmap must be deleted independently.

An application must not delete a stock object.

void DestroyCaret()

This function destroys the current caret shape, frees the caret from the window that cur­
rently owns it, and removes the caret from the screen if it is visible. The DestroyCaret
function checks the ownership of the caret and destroys the caret only if a window in the
current task owns it.

4-89

Return Value

Comments

OestroyCursor

If the caret shape was previously a bitmap, DestroyCaret does not free the bitmap.

This function has no parameters.

None.

The caret is a shared resource. If a window has created a caret shape, it destroys that shape
before it loses the input focus or becomes inactive.

DestroyCursor []]]
Syntax

Return Value

BOOL DestroyCursor(hCursor)

This function destroys a cursor that was previously created by the CreateCursor function
and frees any memory that the cursor occupied. It should not be used to destroy any cursor
that was not created with the Create Cursor function.

Parameter

hCursor

Type/Description

HCURSOR' Identifies the cursor to be destroyed. The
cursor must not be in current use.

The return value is nonzero if the function was successful. It is zero if the function failed.

Destroylcon []]]
Syntax

Return Value

BOOL DestroyIcon(hlcon)

This function destroys an icon that was previously created by the CreateIcon function and
frees any memory that the icon occupied. It should not be used to destroy any icon that
was not created with the CreateIcon function.

Parameter

hlcon

Type/Description

HICON Identifies the icon to be destroyed. The icon must
not be in current use.

The return value is nonzero if the function was successful. It is zero if the function failed.

o

OestroyMenu 4-90

DestroyMenu
Syntax

C Return Value

BOOL DestroyMenu(hMenu)

This function destroys the menu specified by the hM enu parameter and frees any memory
that the menu occupied.

Parameter Type/Description

hMenu HMENU Identifies the menu to be destroyed.

The return value specifies whether or not the specified menu is destroyed. It is nonzero if
the menu is destroyed. Otherwise, it is zero.

DestroyWindow
Syntax

Return Value

BOOL DestroyWindow(hWnd)

This function destroys the specified window. The DestroyWindow function hides or per­
manently closes the window, sending the appropriate messages to the window to deacti­
vate it and remove the input focus. It also destroys the window menu, flushes the
application queue, destroys outstanding timers, removes clipboard ownership, and breaks
the clipboard-viewer chain, if the window is at the top of the viewer chain. It sends
WM_DESTROY and WM_NCDESTROY messages to the window.

If the given window is the parent of any windows, these child windows are automatically
destroyed when the parent window is destroyed. DestroyWindow destroys child windows
first, and then the window itself.

DestroyWindow also destroys modeless dialog boxes created by the CreateDialog func­
tion.

Parameter Type/Description

hWnd HWND Identifies the window to be destroyed.

The return value specifies whether or not the specified window is destroyed. It is nonzero
if the window is destroyed. Otherwise, it is zero.

4-91 De vice Capabilities

DeviceCapabilities [[QJ
Syntax DWORD DeviceCapabilities(lpDeviceName, lpPort, nlndex, lpOutput, lpDevMode)

This function retrieves the capabilities of the printer device driver.

Parameter

lpDeviceName

lpPort

nlndex

Type/Description

LPSTR Points to a null-terminated character string that con­
tains the name of the printer device, such as "PCL/HP LaserJet."

LPSTR Points to a null-terminated character string that con­
tains the name of the port to which the device is connected, such
as LPTl:.

WORD Specifies the capabilities to query. It can be anyone of
the following values:

Value

DC:....BINS

Meaning

Copies a structure identical to that re­
turned by the ENUMPAPERBINS
escape. A printer driver does not need
to support this index if it has only
bins corresponding to predefined in­
dexes, in which case no data is
copied and the return value is O. If
the index is supported, the return
value is the number of bins copied. If
lpOutput is NULL, the return value is
the number of bin entries required.

Retrieves a list of available bins. The
function copies the list to lpOutput as
a WORD array. If lpOutput is
NULL, the function returns the num­
ber of supported bins to allow the
application the opportunity to allo­
cate a buffer with the correct size.
See the description of the dmDefault­
Source field of the DEVMODE
data structure for information on
these values. An application can de­
termine the name of device-specific
bins by using the ENUMPAPER-o
BINS escape.

OeviceCapabililies

Parameter Type/Description

Value

0:

Meaning

Returns the printer driver version
number.

4-92

Returns the level of duplex support.
The function returns 1 if the printer is
capable of duplex printing. Other­
wise, the return value is zero.

Returns the number of bytes required
for the device-specific portion of the
DEVMODE data structure for the
printer driver.

Returns the dmFields field of the
printer driver's DEVMODE data
structure. The dmFields bitfield indi­
cates which fields in the
device-independent portion of the
structure are supported by the printer
driver.

Returns a POINT data structure con­
taining the maximum paper size that
the dmPaperLength and dmPaper­
Width fields of the printer driver's
DEVMODE data structure can
specify.

Returns a POINT data structure con­
taining the minimum paper size that
the dmPaperLength and dmPaper­
Width fields of the printer driver's
DEVMODE data structure can
specify.

4-93

Return Value

Parameter

IpOutput

lpDevMode

Type/Description

Value

DC_VERSION

De vice Capabilities

Meaning

Retrieves a list of supported paper
sizes. The function copies the list to
IpOutput as a WORD array and re­
turns the number of entries in the
array. If IpOutput is NULL, the func­
tion returns the number of supported
paper sizes to allow the application
the opportunity to allocate a buffer
with the correct size. See the descrip­
tion of the dmPaperSize field of the
DEVMODE data structure for infor­
mation on these values.

Copies the dimensions of supported
paper sizes in tenths of a millimeter
to an array of POINT structures in
IpOutput. This allows an application
to obtain information about nonstand­
ard paper sizes.

Returns the dmSize field of the
printer driver's DEVMODE data
structure.

Returns the specification version to
which the printer driver conforms.

LPSTR Points to an array of bytes. The actual format of the
array depends on the setting of nlndex. If set to zero, DeviceCapa­
bilities returns the number of bytes required for the output data.

DEVMODE FAR * Points to a DEVMODE data structure. If
IpDevMode is NULL, this function retrieves the current default in­
itialization values for the specified printer driver. Otherwise, the
function retrieves the values contained in the structure to which
lpDevMode points.

The return value depends on the setting of the nlndex parameter; see the description of that
parameter for details.

c

Q

OeviceMode 4-94

Comments This function is supplied by the printer driver. An application must include the
DRIVINIT.H file and call the LoadLibrary and GetProcAddress functions to call the
DeviceCapabilities function.

DeviceMode
Syntax

Return Value

Comments

void DeviceMode(hWnd, hModule, lpDeviceName, lpOutput)

This function sets the current printing modes for the device identified by the lpDestDev­
Type by prompting for those modes using a dialog box. An application calls the Device­
Mode function to allow the user to change the printing modes of the corresponding device.
The function copies the mode information to the environment block associated with the
device and maintained by GDI.

Parameter

hWnd

hModule

lpDeviceName

lpOutput

None.

Type/Description

HWND Identifies the window that will own the dialog box.

HANDLE Identifies the printer-driver module. The applica­
tion should retrieve this handle by calling either the .
GetModuleHandle or LoadLibrary function.

LPSTR Points to a null-terminated character string that speci­
fies the name of the specific device to be supported (for
example, Epson FX-80). The device name is the same as the
name passed to the CreateDC function.

LPSTR Points to a null-terminated character string that speci­
fies the DOS file or device name for the physical output medium
(file or output port). The output name is the same as the name
passed to the CreateDC function.

The DeviceMode function is actually part of the printer's device driver, and not part of
GDI. To call this function, the application must load the printer device driver by calling
LoadLibrary and retrieve the address of the function by using the GetProcAddress func­
tion. The application can then use the address to set up the printer.

4-95

DialogBox
Syntax

Return Value

Comments

DialogBox

int DialogBox(hlnstance, IpTemplateName, hWndParent, IpDialogFunc)

This function creates a modal dialog box that has the size, style, and controls specified by
the dialog-box template given by the IpTemplateName parameter. The hWndParent para­
meter identifies the application window that owns the dialog box. The callback function
pointed to by the IpDialogFunc parameter processes any messages received by the dialog
box.

The DialogBox function does not return control until the callback function terminates the
modal dialog box by calling the EndDialog function.

Parameter

hlnstance

lpTemplateName

hWndParent

lpDialogFunc

Type/Description

HANDLE Identifies an instance of the module whose exe­
cutable file contains the dialog-box template.

LPSTR Points to a character string that names the dialog-bQx
template. The string must be a null-terminated character string.

HWND Identifies the window that owns the dialog box.

FARPROC Is the procedure-instance address of the dialog
function. See the following "Comments" section for details.

The return value specifies the value of the nResult parameter in the EndDialog function
that is used to terminate the dialog box. Values returned by the application's dialog box are
processed by Windows and are not returned to the application. The return value is -1 if the
function could not create the dialog box.

The DialogBox function calls the GetDC function in order to obtain a display-context.
Problems will result if all the display contexts in the Windows display-context cache have
been retrieved by GetDC and DialogBox attempts to access another display context.

A dialog box can contain up to 255 controls.

The callback function must use the Pascal calling convention and must be declared FAR.

Callback Function int FAR PASCAL DialogFunc(hDlg, wMsg, wParam, IParam)
HWND hDlg;
WORDwMsg;
WORD wParam;
DWORD lParam;

c

OialogBoxlndirect 4-96

DialogFunc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in an EXPORTS statement in the application's module­
definition file.

Parameter

hDlg

wMsg

wParam

IParam

Return Value

Description

Identifies the dialog box that receives the message.

Specifies the message number.

Specifies 16 bits of additional message-dependent information.

Specifies 32 bits of additional message-dependent information.

The callback function should return nonzero if the function processes the message and
zero if it does not.

Comments

Although the callback function is similar to a window function, it must not call the Def­
WindowProc function to process unwanted messages. Unwanted messages are processed
internally by the dialog-class window function.

The callback-function address, passed as the IpDialogFunc parameter, must be created by
using the MakeProcInstance function.

DialogBoxlndirect
Syntax int DialogBoxlndirect(hlnstance, hDialogTemplate, hWndParent, IpDialogFunc)

This function creates an application's modal dialog box that has the size, style, and con­
trols specified by the dialog-box template associated with the hDialogTemplate parameter.
The hWndParent parameter identifies the application window that owns the dialog box.
The callback function pointed to by IpDialogFunc processes any messages received by the
dialog box.

The DialogBoxlndirect function does not return control until the callback function termi­
nates the modal dialog box by calling the EndDialog function.

Parameter

hlnstance

Type/Description

HANDLE Identifies an instance of the module whose exe­
cutable file contains the dialog-box template.

4-97

Return Value

Comments

Parameter

hDialogTemplate

hWndParent

IpDialogFunc

DialogBoxlndirect

Type/Description

HANDLE Identifies a block of global memory that contains a
DLGTEMPLATE data structure.

HWND Identifies the window that owns the dialog box.

FARPROC Is the procedure-instance address of the dialog
function. See the following "Comments" section for details.

The return value specifies the value of the wResult parameter specified in the EndDialog
function that is used to terminate the dialog box. Values returned by the application's
dialog box are processed by Windows and are not returned to the application. The return
value is -1 if the function could not create the dialog box.

A dialog box can contain up to 255 controls.

The callback function must use the Pascal calling convention and be declared FAR.

Callback Function BOOL FAR PASCAL DialogFunc(hDlg, wMsg, wParam, IParam)
HWNDhDlg;
WORDwMsg;
WORD wParam;
DWORD IParam;

DialogFunc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in an EXPORTS statement in the application's module­
definition file.

Parameter

hDlg

wMsg

wParam

IParam

Return Value

Description

Identifies the dialog box that receives the message.

Specifies the message number.

Specifies 16 bits of additional message-dependent information.

Specifies 32 bits of additional message-dependent information.

The callback function should return nonzero if the function processes the message and
zero if it does not.

c

OialogBoxlndirectParam 4-98

Comments

Although the callback function is similar to a window function, it must not call the Def­
WindowProc function to process unwanted messages. Unwanted messages are processed
internally by the dialog-class window function.

The callback-function address, passed as the IpDialogFunc parameter, must be created by
using the MakeProcInstance function.

DialogBoxlndirectParam [[QJ
C Syntax

Return Value

int DialogBoxIndirectParam(hlnstance, hDialogTemplate, hWndParent,
IpDialogFunc, dwlnitParam)

This function creates an application's modal dialog box, sends a WM_INITDIALOG
message to the dialog function before displaying the dialog box and passes dwlnitParam
as the message IParam. This message allows the dialog function to initialize the dialog­
box controls.

For more information on creating an application modal dialog box, see the description of
the DialogBoxlndirect function.

Parameter

hlnstance

hDialogTemplate

hWndParent

IpDialogFunc

dwlnitParam

Type/Description

HANDLE Identifies an instance of the module whose exe­
cutable file contains the dialog-box template.

HANDLE Identifies a block of global memory that contains a
DLGTEMPLATE data structure.

HWND Identifies the window that owns the dialog box.

FARPROC Is the procedure-instance address of the dialog
function. For details, see the "Comments" section in the descrip­
tion of the DialogBoxlndirect function.

DWORD Is a 32-bit value which DialogBoxlndirectParam
passes to the dialog function when it creates the dialog box.

The return value specifies the value of the wResult parameter specified in the EndDialog
function that is used to terminate the dialog box. Values returned by the application's
dialog box are processed by Windows and are not returned to the application. The return
value is -1 if the function could not create the dialog box.

4-99 OialogBoxParam

DialogBoxParam ~
Syntax

Return Value

int DialogBoxParam(hlnstance, lpTemplateName, hWndParent, lpDialogFunc,
dwlnitParam)

This function creates a modal dialog box, sends a WM_INITDIALOG message to the
dialog function before displaying the dialog box, and passes dwlnitParam as the message
lParam. This message allows the dialog function to initialize the dialog-box controls.

For more information on creating a modal dialog box, see the description of the Dialog­
Box function.

Parameter

hlnstance

lpTemplateName

hWndParent

lpDialogFunc

dwlnitParam

Type/Description

HANDLE Identifies an instance of the module whose exe­
cutable file contains the dialog-box template.

LPSTR Points to a character string that names the dialog-box
template. The string must be a null-terminated character string.

HWND Identifies the window that owns the dialog box.

FARPROC Is the procedure-instance address of the dialog
function. For details, see the "Comments" section of the descrip­
tion of the DialogBox function.

DWORD Is a 32-bit value which DialogBoxParam passes to
the dialog function when it creates the dialog box.

The return value specifies the value of the nResult parameter in the EndDialog function
that is used to terminate the dialog box. Values returned by the application's dialog box are
processed by Windows and are not returned to the application. The return value is -1 if the
function could not create the dialog box.

DispatchMessage
Syntax LONG DispatchMessage(lpMsg)

This function passes the message in the MSG structure pointed to by the lpMsg parameter
to the window function of the specified window.

c

c:

OlgOirLisl

Return Value

DlgDirList
Syntax

Parameter

IpMsg

Type/Description

LPMSG Points to an MSG data structure that contains
message information from the Windows application queue.

4-100

The structure must contain valid message values. If IpMsg points
to a WM_TIMER message and the IParam parameter of the
WM_ TIMER message is not NULL, then the IParam parameter
is the address of a function that is called instead of the window
function.

The return value specifies the value returned by the window function. Its meaning depends
on the message being dispatched, but generally the return value is ignored.

int DIgDirList(hDlg, IpPathSpec, nIDListBox, nIDStaticPath, wFiletype)

This function fills a list-box control with a file or directory listing. It fills the list box
specified by the nIDListBox parameter with the names of all files matching the pathname
given by the IpPathSpec parameter.

The DIgDirList function shows subdirectories enclosed in square brackets ([]), and shows
drives in the form [-x-J, where x is the drive letter.

The IpPathSpec parameter has the following form:

[drive:] [[\]directory[\directory] ... \] [filename]

In this example, drive is a drive letter, directory is a valid directory name, andfilename is a
valid filename that must contain at least one wildcard character. The wildcard characters
are a question mark (?), meaning "match any character," and an asterisk (*), meaning
"match any number of characters."

If the IpPathSpec parameter includes a drive and/or directory name, the current drive and
directory are changed to the designated drive and directory before the list box is filled. The
text control identified by the nIDStaticPath parameter is also updated with the new drive
and/or directory name.

After the list box is filled, IpPathSpec is updated by removing the drive and/or directory
portion of the pathname.

DIgDirList sends LB_RESETCONTENT and LB_DIR messages to the list box.

4-101

Return Value

Parameter

hDlg

IpPathSpec

nIDListBox

nIDStaticPath

wFiletype

OlgOirList

Type/Descri ption

HWND Identifies the dialog box that contains the list box.

LPSTR Points to a pathname string. The string must be a null­
terminated character string.

int Specifies the identifier of a list-box control. If nIDListBox
is zero, DlgDirList assumes that no list box exists and does not
attempt to fill it.

int Specifies the identifier of the static-text control used for
displaying the current drive and directory. If nIDStaticPath is
zero, DlgDirList assumes that no such text control is present.

WORD Specifies DOS file attributes of the files to be dis­
played. It can be any combination of the values given in Table
4.6, "DOS File Attributes." Values can be combined by using the
bitwise OR operator.

The return value specifies the outcome of the function. It is nonzero if a listing was made,
even an empty listing. A zero return value implies that the input string did not contain a
valid search path.

The wFiletype parameter specifies the DOS attributes of the files to be listed. Table 4.6 de­
scribes these attributes.

Table 4.6 DOS File Attributes

Attribute Value

OxOOOO

OxOOOl

Ox0002

Ox0004

OxOOlO

Ox0020

Ox2000

Ox4000

Ox8000

Meaning

Read/write data files with no additional attributes

Read-only files

Hidden files

System files

Subdirectories

Archives

LB_DIR flag l

Drives

Exclusive bit2

I If the LB_DIR flag is set, Windows places the messages generated by DlgDirList in the application's queue;
otherwise they are sent directly to the dialog function.

2 If the exclusive bit is set, only files of the specified type are listed. Otherwise, files of the specified type are
listed in addition to normal files.

c

Q

DlgDirLislComboBox 4-102

DlgDirListComboBox []II
Syntax int DIgDirListComboBox(hDlg, IpPathSpec, nIDComboBox, nIDStaticPath, wFiletype)

This function fills the list box of a combo-box control with a file or directory listing. It fills
the list box of the combo box specified by the nIDComboBox parameter with the names of
all files matching the pathname given by the IpPathSpec parameter.

The DIgDirListComboBox function shows subdirectories enclosed in square brackets
([]), and shows drives in the form [-x-], where x is the drive letter.

The IpPathSpec parameter has the following form:

[drive:] [[\]directory[\directory] ... \] [filename]

In this example, drive is a drive letter, directory is a valid directory name, andfilename is a
valid filename that must contain at least one wildcard character. The wildcard characters
are a question mark (?), meaning "match any character," and an asterisk (*), meaning
"match any number of characters."

If the IpPathSpec parameter includes a drive and/or directory name, the current drive and
directory are changed to the designated drive and directory before the list box is filled. The
text control identified by the nIDStaticPath parameter is also updated with the new drive
and/or directory name.

After the combo-box list box is filled, IpPathSpec is updated by removing the drive and/or
directory portion of the pathname.

DIgDirListComboBox sends CB_RESETCONTENTand CB_DIR messages to the
combo box.

Parameter

hDlg

IpPathSpec

nIDComboBox

nIDStaticPath

Type/Description

HWND Identifies the dialog box that contains the combo box.

LPSTR Points to a path name string. The string must be a null­
terminated character string.

int Specifies the identifier of a combo-box control in a dialog
box. If nIDComboBox is zero, DIgDirListComboBox assumes
that no combo box exists and does not attempt to fill it.

int Specifies the identifier of the static-text control used for
displaying the current drive and directory. If nIDStaticPath is
zero, DIgDirListComboBox assumes that no such text control
is present.

4-103

Return Value

DlgDirSelect
Syntax

Return Value

Comments

Parameter

wFiletype

OlgOirSelect

Type/Description

WORD Specifies DOS file attributes of the files to be dis­
played. It can be any combination of the values given in Table
4.6, "DOS File Attributes." Refer to the description of the
DlgDirList function for this table. Values can be combined by
using the bitwise OR operator.

The return value specifies the outcome of the function. It is nonzero if a listing was made,
even an empty listing. A zero return value implies that the input string did not contain a
valid search path.

BOOL DlgDirSelect(hDlg, lpString, nIDListBox)

This function retrieves the current selection from a list box. It assumes that the list box has
been filled by the DlgDirList function and that the selection is a drive letter, a file, or a
directory name.

The DlgDirSelect function copies the selection to the buffer given by the lpString para­
meter. If the current selection is a directory name or drive letter, DlgDirSelect removes the
enclosing square brackets (and hyphens, for drive letters) so that the name or letter is ready
to be inserted into a new pathname. If there is no selection, lpString does not change.

DlgDirSelect sends LB_GETCURSEL and LB_GETTEXT messages to the list box.

Parameter

hDlg

lpString

nIDListBox

Type/Description

HWND Identifies the dialog box that contains the list box.

LPSTR Points to a buffer that is to receive the selected
pathname.

int Specifies the integer ID of a list-box control in the dialog
box.

The return value specifies the status of the current list-box selection. It is nonzero if the
current selection is a directory name. Otherwise, it is zero.

The DlgDirSelect function does not allow more than one filename to be returned from a
list box.

c

o

OlgOirSelectComboBox 4-104

The list box must not be a multiple-selection list box. If it is, this function will not return a
zero value and IpString will remain unchanged.

DlgDirSelectComboBox [1QJ
Syntax

Return Value

Comments

BOOL DlgDirSelectComboBox(hDlg, ipString, nIDComboBox)

This function retrieves the current selection from the list box of a combo box. It assumes
that the list box has been filled by the DlgDirListComboBox function and that the selec­
tion is a drive letter, a file, or a directory name.

The DlgDirSelectComboBox function copies the selection to the buffer given by the
IpString parameter. If the current selection is a directory name or drive letter, DlgDir­
SelectComboBox removes the enclosing square brackets (and hyphens, for drive letters)
so that the name or letter is ready to be inserted into a new pathname. If there is no selec­
tion, IpString does not change.

DlgDirSelectComboBox sends CB_GETCURSEL and CB_GETLBTEXT messages to
the combo box.

Parameter

hDlg

IpString

nIDComboBox

Type/Description

HWND Identifies the dialog box that contains the combo box.

LPSTR Points to a buffer that is to receive the selected
pathname.

int Specifies the integer ID of the combo-box control in the
dialog box.

The return value specifies the status of the current combo-box selection. It is nonzero if the
current selection is a directory name. Otherwise, it is zero.

The DlgDirSelectComboBox function does not allow more than one filename to be re­
turned from a combo box.

DOS3Cail [1QJ
This function allows an application to issue a DOS function-request interrupt 21H. An
application can use this function instead of a directly coded DOS 21H interrupt. The
DOS3Call function executes somewhat faster than the equivalent DOS 21H software inter­
rupt under Windows.

4-105

DPtoLP
Syntax

Return Value

OPtoLP

An application can call this function only from an assembly-language routine. It is ex­
ported from KERNEL.EXE and is not defined in any Windows include files.

To use this function call, an application should declare it in an assembly-language program
. as shown:

extrn DOS3Ca11 :far

If the application includes CMACROS.INC, the application declares it as shown:

extrnFP Dos3Ca11

Before calling DOS3Call, all registers must be set as for an actual INT 21H. All registers
at the function's exit are the same as for the corresponding INT 21H function. . t

This function has no parameters and returns the registers of the DOS function.

The following is an example of using DOS3Call:

extrn DOS3Ca11 : far

; set registers
mov ah, DOSFUNC
cCa 11 DOS3Ca 11

BOOL DPtoLP(hDC, /pPoints, nCount)

This function converts device points into logical points. The function maps the coordinates
of each point specified by the /pP oints parameter from the device coordinate system into
GDl's logical coordinate system. The conversion depends on the current mapping mode
and the settings of the origins and extents for the device's window and viewport.

Parameter

hDC

/pPoin ts

nCount

Type/Description

HDC Identifies the device context.

LPPOINT Points to an array of points. Each point must be a
POINT data structure.

int Specifies the number of points in the array.

The return value specifies whether the conversion has taken place. It is nonzero if all
points are converted. Otherwise, it is zero.

l 1

DrawFocusRect 4-106

DrawFoeusRect em
Syntax

Return Value

Comments

Drawleon
Syntax

void DrawFocusRect(hDC, lpRect)

This function draws a rectangle in the style used to indicate focus.

Parameter

hDC

/pRect

None.

Type/Description

HDC Identifies the device context.

LPRECT Points to a RECT data structure that specifies the
coordinates of the rectangle to be drawn.

Since this is an XOR function, calling this function a second time with the same rectangle
removes the rectangle from the display.

The rectangle drawn by this function cannot be scrolled. To scroll an area containing a
rectangle drawn by this function, call DrawFocusRect to remove the rectangle from the
display, scroll the area, and then call DrawFocusRect to draw the rectangle in the new
position.

BOOL DrawIcon(hDC, X, Y, hIcon)

This function draws an icon on the specified device. The DrawIcon function places the
icon's upper-left comer at the location specified by the X and Y parameters. The location is
subject to the current mapping mode of the device context.

Parameter

hDC

X

Y

hIcon

Type/Description

HDC Identifies the device context for a window.

int Specifies the logical x-coordinate of the upper-left comer of the
icon.

int Specifies the logical y-coordinate of the upper-left comer of the
icon.

HICON Identifies the icon to be drawn.

4-107

Return Value

Comments

DrawMenuBar
Syntax

Return Value

DrawText
Syntax

DrawMenuBar

The return value specifies the outcome of the function. It is nonzero if the function is
successful. Otherwise, it is zero.

The icon resource must have been previously loaded by using the Loadlcon function. The
MM_TEXT mapping mode must be selected prior to using this function.

void DrawMenuBar(hWnd)

This function redraws the menu bar. If a menu bar is changed after Windows has created
the window, this function should be called to draw the changed menu bar.

Parameter Type/Description

hWnd HWND Identifies the window whose menu needs redrawing.

None.

int DrawText(hDC, IpString, nCount, IpRect, wFormat)

This function draws formatted text in the rectangle specified by the IpRect parameter. It for­
mats text by expanding tabs into appropriate spaces, justifying text to the left, right, or
center of the given rectangle, and breaking text into lines that fit within the given
rectangle. The type of formatting is specified by the wF ormat parameter.

The DrawText function uses the device context's selected font, text color, and background
color to draw the text. Unless the DT_NOCLIP format is used, DrawText clips the text so
that the text does not appear outside the given rectangle. All formatting is assumed to have
multiple lines unless the DT _SINGLELINE format is given.

Parameter

hDC

IpString

nCount

Type/Description

HDC Identifies the device context.

LPSTR Points to the string to be drawn. If the nCount parameter
is -1, the string must be null-terminated.

int Specifies the number of bytes in the string. If nCount is -1,
then IpString is assumed to be a long pointer to a null-terminated
string and DrawText computes the character count automatically.

DrawText

Return Value

l Comments

Parameter

IpRect

wFormat

4-108

Type/Description

LPRECT Points to a RECT data structure that contains the
rectangle (in logical coordinates) in which the text is to be fonnatted.

WORD Specifies the method of formatting the text. It can be a
combination of the values given in Table 4.7, "DrawText Fonnats."

. The return value specifies the height of the text.

If the selected font is too large for the specified rectangle, the DrawText function does not
attempt to substitute a smaller font.

Table 4.7 lists the values for the wF ormat parameter. These values can be combined by
using the bitwise OR operator. Note that the DT_CALCRECT, DT_EXTERNALLEAD­
lNG, DT_INTERNAL, DT_NOCLIP, and DT_NOPREFIX values cannot be used with the
DT_TABSTOP value.

Table 4.7 DrawText Formats

Value Meaning

DT _BOTTOM Specifies bottom-justified text. This value must be combined
with DT _SINGLELINE.

DT_CALCRECT

DT_CENTER

DT_EXPANDTABS

DT_EXTERNALLEADING

Determines the width and height of the rectangle. If there are
multiple lines of text, DrawText will use the width of the
rectangle pointed to by the /pRect parameter and extend the
base of the rectangle to bound the last line of text. If there is
only one line of text, DrawText will modify the right side of
the rectangle so that it bounds the last character in the line. In
either case, DrawText returns the height of the formatted text
but does not draw the text.

Centers text horizontally.

Expands tab characters. The default number of characters per
tab is eight.

Includes the font external leading in line height. Normally, ex­
ternalleading is not included in the height of a line of text.

Aligns text flush-left.

Draws without clipping. DrawText is somewhat faster when
DT_NOCLIP is used.

4-109 OrawText

Table 4.7 DrawText Formats (continued)

Value

DT_RIGHT

DT _SINGLELINE

DT_TOP

DT_VCENTER

DT _ WORDBREAK

Meaning

Turns off processing of prefix characters. Normally, DrawText
interprets the mnemonic-prefix character "&" as a directive to
underscore the character that follows, and the mnemonic-prefix
characters "&&" as a directive to print a single "&". By speci­
fying DT_NOPREFIX, this processing is turned off.

Aligns text flush-right.

Specifies single line only. Carriage returns and linefeeds do not
break the line.

Sets tab stops. The high-order byte of the wF ormat parameter
is the number of characters for each tab. The default number of
characters per tab is eight.

Specifies top-justified text (single line only).

Specifies vertically centered text (single line only).

Specifies word breaking. Lines are automatically broken be­
tween words if a word would extend past the edge of the
rectangle specified by the /pRect parameter. A carriage re­
turn/line sequence will also break the line.

Ellipse

Ellipse
Syntax

Return Value

Comments

4-110

BOOL ElIipse(hDC, Xl, Yl, X2, Y2)

This function draws an ellipse. The center of the ellipse is the center of the bounding
rectangle specified by the Xl, Yl, X2, and Y2 parameters. The ellipse border is drawn with
the current pen, and the interior is filled with the current brush.

If the bounding rectangle is empty, nothing is drawn.

Parameter

hDC

Xl

Yl

X2

Y2

Type/Description

HDC Identifies the device context.

int Specifies the logical x-coordinate of the upper-left comer of the
bounding rectangle.

int Specifies the logical y-coordinate of the upper-left comer of the
bounding rectangle.

int Specifies the logical x-coordinate of the lower-right comer of
the bounding rectangle.

int Specifies the logical y-coordinate of the lower-right comer of
the bounding rectangle.

The return value specifies whether the ellipse is drawn. It is nonzero if the ellipse is drawn.
Otherwise, it is zero.

The width of the rectangle, specified by the absolute value, of X2 - Xl, must not exceed
32,767 units. This limit applies to the height'of the rectangle as well.

The current position is neither used nor updated by this function.

EmptyClipboard
Syntax BOOL EmptyClipboard()

This function empties the clipboard and frees handles to data in the clipboard. It then as­
signs ownership of the clipboard to the window that currently has the clipboard open.

This function has no parameters.

4-111

Return Value

Comments

EnableHardwarelnpul

The return value specifies the status of the clipboard. It is nonzero if the clipboard is
emptied. It is zero if an error occurs.

The clipboard must be open when the EmptyClipboard function is called.

EnableHardwarelnput
Syntax

Return Value

BOOL EnableHardwarelnput(bEnablelnput)

This function disables mouse and keyboard input. The input is saved if the bEnableInput
parameter is TRUE and discarded if it is FALSE.

Parameter

bEnablelnput

Type/Description

BOOL Specifies that the function should save input if the
bEnablelnput parameter is set to a nonzero value; specifies that
the function should discard input if the bEnablelnput parameter
is set to zero.

The return value specifies whether mouse and keyboard input is disabled. It is nonzero if
input was previously enabled. Otherwise, it is zero. The default return value is nonzero
(TRUE).

EnableMenultem
Syntax BOOL EnableMenuItem(hMenu, wIDEnableItern, wEn able)

This function enables, disables, or grays a menu item.

Parameter

hMenu

wIDEnableltern

wEnable

Type/Description

HMENU Specifies the menu.

WORD Specifies the menu item to be checked. The wIDEn a­
bleltern parameter can specify pop-up menu items as well as menu
items.

WORD Specifies the action to take. It can be a combination of
MF _DISABLED, MF _ENABLED, or MF _GRAYED, with
MF _BYCOMMAND or MF _BYPOSITION. These values can be
combined by using the bitwise OR operator. These values have
the following meanings:

m
I
."

IJ..
I

W

Enable Window 4-112

Return Value

Comments

EnableWindow
Syntax

Parameter Type/Description

Value

MF _BYPOSITION

MF _DISABLED

MF_ENABLED

MF_GRAYED

Meaning

Specifies that the wIDEnableltem
parameter gives the menu item ID
(MF _BYCOMMAND is the default
ID).

Specifies that the wIDEnableItem par­
ameter gives the position of the menu
item (the first item is at position
zero).

Menu item is disabled.

Menu item is enabled.

Menu item is grayed.

The return value specifies the previous state of the menu item. The return value is -1 if the
menu item does not exist.

To disable or enable input to a menu bar, see the WM_SYSCOMMAND message.

BOOL EnableWindow(hWnd, bEnable)

This function enables or disables mouse and keyboard input to the specified window or
control. When input is disabled, input such as mouse clicks and key presses are ignored by
the window. When input is enabled, all input is processed.

The Enable Window function enables mouse and keyboard input to a window if the
bEnable parameter is nonzero, and disables it if bEnable is zero.

Parameter

hWnd

bEnable

Type/Description

HWND Identifies the window to be enabled or disabled.

BOOL Specifies whether the given window is to be enabled or dis­
abled.

4-113

Return Value

Comments

EndOeferMfindowPos

The return value specifies the outcome of the function. It is nonzero if the window is
enabled or disabled as specified. It is zero if an error occurs.

A window must be enabled before it can be activated. For example, if an application is dis­
playing a modeless dialog box and has disabled its main window, the main window must
be enabled before the dialog box is destroyed. Otherwise, another window will get the
input focus and be activated. If a child window is disabled, it is ignored when Windows
tries to determine which window should get mouse messages.

Initially, all windows are enabled by default. EnableWindow must be used to disable a
window explicitly.

EndDeferWindowPos ITQ]
Syntax

Return Value

EndDialog
Syntax

void EndDefer Window Pos(h WinP osI nfo)

This function simultaneously updates the position and size of one or more windows in a
single screen-refresh cycle. The hWinPosInfo parameter identifies a multiple window-posi­
tion data structure that contains the update information for the windows. The Defer­
WindowPos function stores the update information in the data structure; the BeginDefer­
WindowPos function creates the initial data structure used by these functions.

Parameter

hWinPosInfo

None.

Type/Description

HANDLE Identifies a multiple window-position data struc­
ture that contains size and position information for one or more
windows. This structure is returned by the BeginDeferWindow­
Pos function or the most recent call to the DeferWindowPos
function.

void EndDialog(hDlg, nResult)

This function terminates a modal dialog box and returns the given result to the DialogBox
function that created the dialog box. The EndDialog function is required to complete pro­
cessing whenever the DialogBox function is used to create a modal dialog box. The func­
tion must be used in the dialog function of the modal dialog box and should not be used for
any other purpose.

m
I
."

EndPaint

7: Return Value
&j'

EndPaint
Syntax

Return Value

Comments

4-114

The dialog function can call EndDialog at any time, even during the processing of the
WM_INITDIALOG message. If called during the WM_INITDIALOG message, the dialog
box is terminated before it is shown or before the input focus is set.

EndDialog does not terminate the dialog box immediately. Instead, it sets a flag that
directs the dialog box to terminate as soon as the dialog function ends. The EndDialog
function returns to the dialog function, so the dialog function must return control to
Windows.

Parameter

hDlg

nResult

None.

Type/Description

HWND Identifies the dialog box to be destroyed.

int Specifies the value to be returned from the dialog box to the
DialogBox function that created it.

void EndPaint(hWnd,lpPaint)

This function marks the end of painting in the given window. The EndPaint function is re­
quired for each call to the BeginPaint function, but only after painting is complete.

Parameter

hWnd

lpPaint

None.

Type/Description

HWND Identifies the window that is repainted.

LPPAINTSTRUCT Points to a PAINTSTRUCT data structure
that contains the painting information retrieved by the BeginPaint
function.

If the caret was hidden by the BeginPaint function, EndPaint restores the caret to the
screen.

4-115 EnumChildWindows

EnumChiidWindows
Syntax

Return Value

Comments

BOOL EnumChiidWindows(hWndParent, lpEnumFunc, lParam)

This function enumerates the child windows that belong to the specified parent window by
passing the handle of each child window, in tum, to the application-supplied callback func­
tion pointed to by the lpEnumFunc parameter.

The EnumChiidWindows function continues to enumerate windows until the called func­
tion returns zero or until the last child window has been enumerated.

Parameter

hWndParent

lpEnumFunc

lParam

Type/Description

HWND Identifies the parent window whose child windows
are to be enumerated.

FARPROC Is the procedure-instance address of the callback
function.

DWORD Specifies the value to be passed to the callback
function for the application's use.

The return value specifies nonzero if all child windows have been enumerated. Otherwise,
it is zero.

This function does not enumerate pop-up windows that belong to the hWndParent parame­
ter.

The address passed as the lpEnumFunc parameter must be created by using the Make­
ProcInstance function.

The callback function must use the Pascal calling convention and must be declared FAR.

Callback Function BOOL FAR PASCAL EnumFunc(hWnd, lParam)
HWND hWnd;
DWORD lParam;

EnumFunc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in an EXPORTS statement in the application's module­
definition file.

m
I
."

EnumClipboardFormats 4-116

Parameter Description

hWnd Identifies the window handle.

IParam Specifies the long parameter argument of the EnumChiidWindows
function.

Return Value

The callback function should return a nonzero value to continue enumeration; it should re­
turn zero to stop enumeration.

Enu mel i pboa rd Formats
Syntax

Return Value

Comments

WORD EnumClipboardFormats(wFormat)

This function enumerates the formats found in a list of available formats that belong to the
clipboard. On each call to this function, the wFormat parameter specifies a known availa­
ble format, and the function returns the format that appears next in the list. The first format
in the list can be retrieved by setting wF ormat to zero.

Parameter Type/Description

wFormat WORD Specifies a known format.

The return value specifies the next known clipboard data format. It is zero if wF ormat
specifies the last format in the list of available formats. It is zero if the clipboard is not
open.

Before it enumerates the formats by using the EnumClipboardFormats function, an appli­
cation must open the clipboard by using the Open Clipboard function.

The order that an application uses for putting alternative formats for the same data into the
clipboard is the same order that the enumerator uses when returning them to the pasting
application. The pasting application should use the first format enumerated that it can
handle. This gives the donor a chance to recommend formats that involve the least loss of
data.

4-117

EnumFonts
Syntax

Return Value

Comments

EnumFonts

int EnumFonts(hDC, lpFacename, lpFontFunc, lpData)

This function enumerates the fonts available on a given device. For each font having the
typeface name specified by the lpFacename parameter, the EnumFonts function retrieves
information about that font and passes it to the function pointed to by the lpFontFunc para­
meter. The application-supplied callback function can process the font information as
desired. Enumeration continues until there are no more fonts or the callback function re­
turns zero.

Parameter

hDC

lpFacename

/pFontFunc

/pData

Type/Description

HDC Identifies the device context.

LPSTR Points to a null-terminated character string that specifies
the typeface name of the desired fonts. If /pFacename is NULL,
EnumFonts randomly selects and enumerates one font of each avail-
able typeface. .

FARPROC Is the procedure-instance address of the callback func­
tion. See the following "Comments" section for details.

LPSTR Points to the application-supplied data. The data is passed
to the callback function along with the font information.

The return value specifies the last value returned by the callback function. Its meaning is
user-defined.

The address passed as the /pFontFunc parameter must be created by using the Make­
ProcInstance function.

The callback function must use the Pascal calling convention and must be declared FAR.

Callback Function int FAR PASCAL FontFunc(lpLogFont, /pTextMetrics, nFontType, /pData)
LPLOGFONT /pLogFont;
LPTEXTMETRICS /pTextMetrics;
short nF ontType;
LPSTR /pData;

FontFunc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in an EXPORTS statement in the application's module­
definition file.

m
. I
."

I
J'

EnumMetaFile 4-118

EnumMetaFile
Syntax

Parameter

/pLogFont

/pTextM etrics

nFontType

/pData

Return Value

Description

Points to a LOGFONT data structure that contains infonnation
about the logical attributes of the font.

Points to a TEXTMETRIC data structure that contains infonna­
tion about the physical attributes of the font.

Specifies the type of the font.

Points to the application-supplied data passed by EnumFonts.

The return value can be any integer.

Comments

The AND (&) operator can be used with the RASTER_FONTTYPE and DEVICE_FONT­
TYPE constants to determine the font type. The RASTER_FONTTYPE bit of the F ont­
Type parameter specifies whether the font is a raster or vector font. If the bit is one, the
font is a raster font; if zero, it is a vector font. The DEVICE_FONTTYPE bit of FontType
specifies whether the font is a device- or GDI-based font. If the bit is one, the font is a
device-based font; if zero, it is a GDI-based font.

If the device is capable of text transfonnations (scaling, italicizing, and so on) only the
base font will be enumerated. The user must inquire into the device's text-transfonnation
abilities to detennine which additional fonts are available directly from the device. GDI
can simulate the bold, italic, underlined, and strikeout attributes for any GDI-based font.

EnumFonts only enumerates fonts from the GDI internal table. This does not include
fonts that are generated by a device, such as fonts that are transfonnations of fonts from
the internal table. The GetDeviceCaps function can be used to detennine which transfor­
mations a device can perform. This infonnation is available by using the TEXTCAPS
index.

GDIcan scale GDI-based raster fonts by one to five horizontally and one to eight verti­
cally, unless PROOF_QUALITY is being used.

BOOL EnumMetaFile(hDC, hMF, /pCallbackFunc, /pClientData)

This function enumerates the GDI calls within the metafile identified by the hMF parame­
ter. The EnumMetaFile function retrieves each GDI call within the metafile and passes it
to the function pointed to by the /pCallbackFunc parameter. This callback function, an

4-119

Return Value

EnumMetaFile

application-supplied function, can process each GDI call as desired. Enumeration con­
tinues until there are no more GDI calls or the callback function returns zero.

Parameter

hDC

hMF

IpCalibackFunc

IpClientData

Type/Description

HDC Identifies the device context associated with the meta­
file.

LOCALHANDLE Identifies the metafile.

FARPROC Is the procedure-instance callback function. See
the following "Comments" section for details.

llYTE FAR * Points to the callback-function data.

The return value specifies the outcome of the function. It is nonzero if the callback func­
t~on enumerates all the GDI calls in a metafile; otherwise, it returns zero.

Comments The callback function must use the Pascal calling convention and must be declared FAR.

Callback Function int FAR PASCAL EnumFunc(hDC, IpHTable, IpMFR, nObj, IpClientData)
HDChDC;
LPHANDLETABLE IpHTable;
LPMETARECORD IpMFR;
int nObj;
BYTE FAR * IpClientData;

EnumFunc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in an EXPORTS statement in the application's module­
definition file.

Parameter

hDC

IpHTable

IpMFR

nObj

IpC lie ntData

Description

Identifies the special device context that contains the metafile.

Points to a table of handles associated with the objects (pens,
brushes, and so on) in the metafile.

Points to a metafile record contained in the metafile.

Specifies the number of objects with associated handles in the
handle table.

Points to the application-supplied data.

m
I

"

EnumObjects 4-120

EnumObjects
Syntax

Return Value

Comments

Return Value

The function can carry out any desired task. It must return a nonzero value to continue
enumeration, or a zero value to stop it.

int EnumObjects(hDC, llObjectType, /pObjectFunc, /pData)

This function enumerates the pens and brushes available on a device. For each object that
belongs to the given style, the callback function is called with the information for that ob­
ject. The callback function is called until there are no more objects or the callback function
returns zero.

Parameter

hDC

nObjectType

/pObjectFunc

/pData

Type/Description

HDC Identifies the device context.

int Specifies the object type. It can be one of the following
values:

OBJ_BRUSH
OBJ_PEN

FARPROC Is the procedure-instance address of the applica-"
tion-supplied callback function. See the following "Comments"
section for details.

LPSTR Points to the application-supplied data. The data is
passed to the callback function along with the object informa­
tion.

The return value specifies the last value returned by the callback function. Its meaning is
user-defined.

The address passed as the /pObjectFunc parameter must be created by using the Make­
ProcInstance function.

The callback function must use the Pascal calling convention and must be declared FAR.

Callback Function int FAR PASCAL ObjectFunc(/pLogObject, /pData)
char FAR * /pLogObject;
char FAR * /pData;

4-121

EnumProps
Syntax

Return Value

Comments

EnumProps

ObjectFunc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in an EXPORTS statement in the application's module­
definition file.

Parameter

/pLogObject

/pData

Description

Points to a LOGPEN or LOGBRUSH data structure that contains
information about the logical attributes of the object.

Points to the application-supplied data passed to the EnumObjects
function.

int EnumProps(hWnd, /pEnumFunc)

This function enumerates all entries in the property list of the specified window. It enumer­
ates the entries by passing them, one by one, to the callback function specified by /pEnum­
Func. EnumProps continues until the last entry is enumerated or the callback function
returns zero.

Parameter

hWnd

/pEnumFunc

Type/Description

HWND Identifies the window whose property list is to be
enumerated.

FARPROC Is the procedure-instance address of the callback func­
tion. See the following "Comments" section for details.

The return value specifies the last value returned by the callback function. It is -1 if the
function did not find a property for enumeration.

An application can remove only those properties which it has added. It should not remove
properties added by other applications or by Windows itself.

The following restrictions apply to the callback function:

1. The callback function must not yield control or do anything that might yield control to
other tasks.

2. The callback function can call the RemoveProp function. However, the RemoveProp
function can remove only the property passed to the callback function through the call­
back function's parameters.

3. A callback function should not attempt to add properties.

;m
, I
."

u...
I

W

EnumProps

Fixed Data
Segments

Moveable Data
Segments

4-122

The address passed in the IpEnumFunc parameter must be created by using the Make­
ProcInstance function.

The callback function must use the Pascal calling convention and must be declared FAR.
In applications and dynamic libraries with fixed data segments and in dynamic libraries
with moveable data segments that do not contain a stack, the callback function must have
the form shown below.

Callback Function

int FAR PASCAL EnumFunc(hWnd, IpString, hData)
HWNDhWnd;
LPSTR IpString;
HANDLE hData;

EnumFunc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in an EXPORTS statement in the application's module­
definition file.

Parameter

hWnd

IpString

hData

Return Value

Description

Identifies a handle to the window that contains the property list.

Points to the null-terminated character string associated with the data
handle when the application called the SetProp function to set the
property. If the application passed an atom instead of a string to the
SetProp function, the IpString parameter contains the atom in its low­
order word, and the high-order word is zero.

Identifies the data handle.

The callback function can carry out any desired task. It must return a nonzero value to con­
tinue enumeration, or a zero value to stop it.

The callback function must use the Pascal calling convention and must be declared FAR.
In applications with moveable data segments and in dynamic libraries whose moveable
data segments also contain a stack, the callback function must have the form shown below.

4-123 Enum TaskWindows

Callback Function

int FAR PASCAL EnumFunc(hWnd, nDummy, pString, hData)
HWND hWnd;
WORD nDummy;
PSTR pString;
HANDLE hData;

EnumFunc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in an EXPORTS statement in the application's module­
definition file.

Parameter

hWnd

nDummy

pString

hData

Return Value

Description

Identifies a handle to the window that contains the property list.

Specifies a dummy parameter.

Points to the null-terminated character string associated with the data
handle when the application called the SetProp function to set the
property. If the application passed an atom instead of a string to the
SetProp function, the pString parameter contains the atom.

Identifies the data handle.

The callback function can carry out any desired task. It should return a nonzero value to
continue enumeration, or a zero value to stop it.

Comments

The alternate form above is required since movement of the data will invalidate any long
pointer to a variable on the stack, such as the IpString parameter. The data segment typi­
cally moves if the callback function allocates more space in the local heap than is currently
available.

EnumTaskWindows
Syntax BOOL EnumTaskWindows(hTask, IpEnumFunc, IParam)

This function enumerates all windows associated with the hTask parameter, which is re­
turned by the GetCurrentTask function. (A task is any program that executes as an inde­
pendent unit. All applications are executed as tasks and each instance of an application is a
task.) The enumeration terminates when the callback function, pointed to by IpEnumFunc,
returns FALSE.

'm
: I
."

, EnumTaskWindows 4-124

Return Value

Parameter

hTask

lpEnumFunc

lParam

Type/Description

HANDLE Identifies the specified task. The GetCurrentTask
function returns this handle.

FARPROC Is the procedure-instance address of the window's
callback function.

DWORD Specifies the 32-bit value that contains additional
parameters that are sent to the callback function pointed to by
lpEnumFunc.

The return value specifies the outcome of the function. It is nonzero if all the windows as­
sociated with a particular task are enumerated. Otherwise, it is zero.

u... Comments
I

The callback function must use the Pascal calling convention and must be declared FAR.
The callback function must have the following form: w

Cal/back Function BOOL FAR PASCAL EnumFunc(hWnd, lParam)
HWND hWnd;
DWORD lParam;

EnumFunc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in an EXPORTS statement in the application's module­
definition file.

Parameter

hWnd

lParam

Return Value

Description

Identifies a window associated with the current task.

Specifies the same argument that was passed to the Enum­
Task Windows function.

The callback function can carry out any desired task. It must return a nonzero value to con­
tinue enumeration, or a zero value to stop it.

4-125

EnumWindows
Syntax

Return Value

Comments

EnumWindows

BOOL EnumWindows(lpEnumFunc,IParam)

This function enumerates all parent windows on the screen by passing the handle of each
window, in turn, to the callback function pointed to by the lpEnumFullc parameter. Child
windows are not enumerated.

The Enum Windows function continues to enumerate windows until the called function re­
turns zero or until the last window has been enumerated.

Parameter

lpEnumFunc

lParam

Type/Description

"FARPROC Is the procedure-instance address of the callback func­
tion. See the following "Comments" section for details.

DWORD Specifies the value to be passed to the callback function
for the application's use.

The return value specifies the outcome of the function. It is nonzero if all windows have
been enumerated. Otherwise, it is zero.

The address passed as the lpEnumFunc parameter must be created by using the Make­
ProcInstance function.

The callback function must use the Pascal calling convention and must be declared FAR.
The callback function must have the following form:

Callback Function BOOL FAR PASCAL EnumFunc(hWnd, lParam)
HWNDhWnd;
DWORD lParam;

EnumFunc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in an EXPORTS statement in the application's module­
definition file.

Parameter Description

hWnd Identifies the window handle.

lParam Specifies the 32-bit argument of the Enum Windows function.

Return Value

The function must return a nonzero value to continue enumeration, or zero to stop it.

m
I

'TI

u.
I

W

EqualRect

EqualRect
Syntax

Return Value

EqualRgn
Syntax

Return Value

Escape
Syntax

4-126

BOOL EqualRect(lpRectl, IpRect2)

This function determines whether two rectangles are equal by comparing the coordinates
of their upper-left and lower-right comers. If the values of these coordinates are equal,
EqualRect returns a nonzero value; otherwise, it returns zero.

Parameter

IpRectl

IpRect2

Type/Description

LPRECT Points to a RECT data structure that contains the upper­
left and lower-right comer coordinates of the first rectangle.

LPRECT Points to a RECT data structure that contains the upper­
left and lower-right comer coordinates of the second rectangle.

The return value specifies whether the specified rectangles are equal. It is. nonzero if the
two rectangles are identical. Otherwise, it is zero.

BOOL EquaIRgn(hSrcRgnl, hSrcRgn2)

This function checks the two given regions to determine whether they are identical.

Parameter

hSrcRgnl

hSrcRgn2

Type/Description

. HRGN Identifies a region.

HRGN Identifies a region.

The return value specifies whether the specified regions are equal. It is nonzero if the two
regions are equal. Otherwise, it is zero.

int Escape(hDC, nEscape, nCount, IplnData, IpOutData)

This function allows applications to access facilities of a particular device that are not
directly available through GD!. Escape calls made by an application are translated and sent
to the device driver.

I.

4-127

Return Value

Parameter

hDC

nEscape

nCount

IplnData

IpOutData

EscapeCommFunction

Type/Description

HDC Identifies the device context.

int Specifies the escape function to be performed. For a complete
list of escape functions, see Chapter 12, "Printer Escapes," in
Reference, Volume 2.

int Specifies the number of bytes of data pointed to by the lpln­
Data parameter.

LPSTR Points to the input data structure required for this escape.

LPSTR Points to the data structure to receive output from this
escape. The IpOutData parameter should be NULL if no data are re­
turned.

The return value specifies the outcome of the function. It is positive if the function is
successful except for the QUERYESCSUPPORT escape, which only checks for implemen­
tation. The return value is zero if the escape is not implemented. A negative value indicates
an error. The following list shows common error values:

Value

SP_ERROR

SP _ OUTOFDISK

SP _ OUTOFMEMORY

SP _ USERABORT

Meaning

General error.

Not enough disk space is currently available for spool­
ing, and no more space will become available.

Not enough memory is available for spooling.

User terminated the job through the Print Manager.

EscapeCommFunction
Syntax int EscapeCommFunction(nCid, nFunc)

This function directs the communication device specified by the nCid parameter to carry
out the extended function specified by the nFunc parameter.

Parameter

nCid

Type/Description

int Specifies the communication device to carry out the ex­
tended function. The OpenComm function returns this value.

IT
I ,.

ExcludeClipRecl 4-128

Return Value

Parameter

nFunc

Type/Description

int Specifies the function code of the extended function. It can
be anyone of the following values:

Value

CLRDTR

CLRRTS

RESETDEV

SETDTR

SETRTS

SETXOFF

SETXON

Description

Clears the data-terminal-ready (DTR) signal.

Clears the request-to-send (RTS) signal.

Resets the device if possible.

Sends the data-terminal-ready (DTR) signal.

Sends the request-to-send (RTS) signal.

Causes transmission to act as if an XOFF
character has been received.

Causes transmission to act as if an XON
character has been received.

The return value specifies the result of the function. It is zero if it is successful. It is nega­
tive if the nFunc parameter does not specify a valid function code.

ExcludeClipRect
Syntax int ExcludeClipRect{hDC , Xl, Y 1 , X2, Y2)

This function creates a new clipping region that consists of the existing clipping region
minus the specified rectangle.

Parameter

hDC

Xl

Yl

X2

Type/Description

HDC Identifies the device context.

int Specifies the logical x-coordinate of the upper-left comer
of the rectangle.

int Specifies the logical y-coordinate of the upper-left comer
of the rectangle.

int Specifies the logical x-coordinate of the lower-right comer
of the rectangle.

4-129

Return Value

Comments

Parameter

Y2

Exclude Up da teRgn

Type/Description

int Specifies the logical y-coordinate of the lower-right comer
of the rectangle.

The return value specifies the new clipping region's type. It can be anyone of the follow­
ing values:

Value

COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

Meaning

The region has overlapping borders.

No region was created.

The region is empty.

The region has no overlapping borders.

The width of the rectangle, specified by the absolute value of X2 - Xl , must not exceed
32,767 units. This limit applies to the height of the rectangle as well.

ExcludeUpdateRgn
Syntax

Return Value

int ExcludeUpdateRgn(hDC, hWnd)

This function prevents drawing within invalid areas of a window by excluding an updated
region in the window from a clipping region.

Parameter

hDC

hWnd

Type/Description

HANDLE Identifies the device context associated with the
clipping region.

HWND Identifies the window being updated.

This value specifies the type of resultant region. It can be anyone of the following values:

Value

COMPLEXREGION

ERROR

Meaning

The region has overlapping borders.

No region was created.

" , I .,

ExitWindows 4-130

Value

NULLREGION

SIMPLEREGION

Meaning

The region is empty.

The region has no overlapping borders.

ExitWindows []]]
Syntax

Return Value

BOOL ExitWindows(dwReserved, wReturnCode)

This function initiates the standard Windows shutdown procedure. If all applications agree
to terminate, the Windows session is terminated and control returns to DOS. Windows
sends the WM_QUERYENDSESSION message to notify all applications that a request
has been made to terminate Windows. If all applications agree to terminate, Windows
sends the WM_ENDSESSION message to all applications before exiting.

Parameter

dwReserved

wReturnCode

Type/Description

DWORD Is reserved and should be set to zero.

WORD Specifies the return value to be passed to DOS
when Windows exits.

The return value is FALSE if one or more applications refused to terminate. The function
does not return if all applications agree to be terminated.

ExtDeviceMode []]]
Syntax int ExtDeviceMode(hWnd, hDriver, IpDevModeOutput, IpDeviceName, IpPort,

IpDevModelnput, IpProfile, wMode)

This function retrieves or modifies device initialization information for a given printer
driver, or displays a driver-supplied dialog box for configuring the printer driver. Printer
drivers that support device initialization by applications export this ExtDeviceMode so
that applications can call it.

Parameter

hWnd

Type/Description

HWND Identifies a window. If the application calls Ext­
DeviceMode to display a dialog box, the specified window
is the parent of the dialog box.

4-131

Parameter

hDriver

/pDevModeOutput

/pDeviceName

/pPort

/pDevModelnput

/pProfile

wMode

ExtOeviceMode

Type/Description

HANDLE Identifies the device-driver module. The Get­
ModuleHandle function or LoadLibrary function returns
a module handle.

DEVMODE FAR * Points to a DEVMODE data struc­
ture. The driver writes the initialization information
supplied in the /pDevModelnput parameter to this structure.

LPSTR Points to a null-terminated character string that
contains the name of the printer device, such as "PCL/HP
LaserJet."

LPSTR Points to a null-terminated character string that
contains the name of the port to which the device is con­
nected, such as LPTl:.

DEVMODE FAR * Points to a DEVMODE data struc­
ture that supplies initialization information to the printer
driver.

LPSTR Points to a null-terminated string that contains
the name of the initialization file which initialization infor­
mation is recorded in and read from. If this parameter is
NULL, WIN .INI is the default.

WORD Specifies a mask of values which determine the
types of operations the function will perform. If wMode is
zero, ExtDeviceMode returns the number of bytes required
by the printer device driver's DEVMODE structure. Other­
wise, wMode must be one or more of the following values:

Value Meaning

Writes the printer driver's cur­
rent print settings to the
DEVMODE data structure
identified by IpDevMode­
Output. The calling application
must allocate a buffer suffi­
ciently large to contain the
information. If this bit is clear,
/pDevModeOutput can be
NULL.

m
I
."

J..
I
.u'

ExtOeviceMode 4-132

Return Value

Comments

Parameter Type/Description

Value Meaning

Changes the printer driver's cur­
rent print settings to match the
partial initialization data in the
DEVMODE data structure
identified by /pDevModelnput
before prompting, copying, or
updating.

Presents the printer driver's
Print Setup dialog box and then
changes the current print set­
tings to those the user specifies.

Writes the printer driver's cur­
rent print settings to the printer
environment and the WIN.lNI
initialization file.

If the wMode parameter is.zero, the return value is the size of the DEVMODE data struc­
ture required to contain the printer driver initialization data. If the function displays the in­
itialization dialog box, the return value is either IDOK or IDCANCEL, depending on
which button the user selected. If the function does not display the dialog box and was
successful, the return value is IDOK. The return value is less than zero if the function
failed.

The ExtDeviceMode function is actually part of the printer's device driver, and not part of
GDI. To call this function, the application must include the DRIVINT.H file, load the
printer device driver, and retrieve the address of the function by using the GetProc­
Address function. The application can then use the address to set up the printer.

An application can set the wMode parameter to DM_COPY to obtain a DEVMODE data
structure filled in with the printer driver's initialization data. The application can then pass
this data structure to the CreateDC function to set a private environment for the printer
device context.

4-133 ExtFloodFil1

ExtFloodFili []]]
Syntax BOOL ExtFloodFiIl(hDC, X, Y, crColor, wFillType)

This function fills an area of the display surface with the current brush.

If wFillType is set to FLOODFILLBORDER, the area is assumed to be completely
bounded by the color specified by the crColor parameter. The ExtFloodFill function
begins at the point specified by the X and Y parameters and fills in all directions to the
color boundary.

If wFillType is set to FLOODFILLSURFACE, the ExtFloodFill function begins at the
point specified by X and Y and continues in all directions, filling all adjacent areas contain­
ing the color specified by crColor.

Parameter

hDC

X

Y

crColor

wFillType

Type/Description

HDC Identifies the device context.

int Specifies the logical x-coordinate of the point where filling
begins.

int Specifies the logical y-coordinate of the point where filling
begins.

COLORREF Specifies the color of the boundary or of the area to
be filled. The interpretation of crColor depends on the value of the
wFillType parameter.

WORD Specifies the type of flood fill to be performed. It must be
one of the following values:

Value

FLOODFILLBORDER

FLOODFILLSURFACE

Meaning

The fill area is bounded by the
color specified by crColor. This
sty Ie is identical to the filling
performed by the FloodFill
function.

The fill area is defined by the
color specified by crColor.
Filling continues outward in all
directions as long as the color is
encountered. This style is useful
for filling areas with multi­
colored boundaries.

m
I
."

u..
I \

W;

ExtTextOut 4-134

Return Value The return value specifies the outcome of the function. It is nonzero if the function is
successful. It is zero if:

Comments

ExtTextOut
Syntax

• The filling could not be completed

• The given point has the boundary color specified by crColor (if FLOOD­
FILLBORDER was requested)

• The given point does not have the color specified by crColor (if FLOOD­
FILLSURFACE was requested)

• The point is outside the clipping region

Only memory device contexts and devices that support raster-display technology support
the ExtFloodFill function. For more information, see the RC_BITBLT raster capability in
the GetDeviceCaps function, later in this chapter.

BOOL ExtTextOut(hDC, X, Y, wOptions, lpRect, lpString, nCount, lpDx)

This function writes a character string, within a rectangular region on the specified display,
using the currently selected font. The rectangular region can be opaque (filled with the cur­
rent background color) and it can be a clipping region.

Parameter

hDC

X

Y

wOptions

lpRect

Type/Description

HDC Identifies the device context.

int Specifies the logical x-coordinate of the origin of the character
cell for the first character in the specified string.

int Specifies the logical y-coordinate of the origin of the character
cell for the first character in the specified string.

WORD Specifies the rectangle type. It can be one or both of the
following values, or neither:

ETO_ CLIPPED
ETO_OPAQUE

The ETO_CLIPPED value specifies that Windows will clip text to
the rectangle. The ETO_OPAQUE value specifies that the current
background color fills the rectangle.

LPRECT Points to a RECT data structure. The lpRect parameter
can be NULL.

4-135

Return Value

Comments

Parameter

/pString

nCount

/pDx

Ext TextOut

Type/Description

LPSTR Points to the specified character string.

int Specifies the number of characters in the string.

LPINT Points to an array of values that indicate the distance be­
tween origins of adjacent character cells. For instance, /pDx[i] logical
units will separate the origins of character cell i and character cell i +
1.

The return value specifies whether or not the string is drawn. It is nonzero if the string is
drawn. Otherwise, it is zero.

If /pDx is NULL, the function uses the default spacing between characters.

The character-cell origins and the contents of the array pointed to by the /pDx parameter
are given in logical units. A character-cell origin is defined as the upper-left comer of the
character cell.

By default, the current position is not used or updated by this function. However, an appli­
cation can call the SetTextAlign function with the wFlags parameter set to TA_UP­
DATECP to permit Windows to use and update the current position each time the
application calls ExtTextOut for a given device context. When this flag is set, Windows ig­
nores the X and Y parameters on subsequent ExtTextOut calls.

m
I
-n

U.
I .

W 1

FatalAppExit 4-136

FatalAppExit [IQJ
Syntax VOID FataIAppExit(wAction,lpMessageText)

This function displays a message containing the text specified by the lpMessageText para­
meter and terminates the application when the message box is closed. When called under
the debugging version of Windows, the message box gives the user the opportunity to ter­
minate the application or to return to the caller.

Parameter

wAction

lpMessageText

Type/Description

WORD Is reserved and must be set to o.
LPSTR Points to a character string that is displayed in the
message box. The message is displayed on a single line. To ac­
commodate low-resolution displays, the string should be no
more than 35 characters in length.

: Return Value None.

Comments

FatalExit
Syntax

Return Value

An application that encounters an unexpected error should terminate by freeing all its
memory and then returning from its main message loop. It should call FatalAppExit only
when it is not capable of terminating any other way. FatalAppExit may not always free an
application's memory or close its files, and it may cause a general failure of Windows.

void FataIExit(Code)

This function displays the current state of Windows on the debugging monitor and prompts
for instructions on how to proceed. The display includes an error code, the Code parame­
ter, followed by a symbolic stack trace, showing the flow of execution up to the point of
call.

An application should call this function only for debugging purposes; it should not call the
function in a retail version of the application. Calling this function in the retail version will
terminate the application.

Parameter Type/Description

Code int Specifies the error code to be displayed.

None.

4~137

Comments

FiliRect
Syntax

Return Value

Comments

FillRect

The FatalExit function prompts the user to respond to an "Abort, Break or Ignore"
message. FatalExit processes the response as follows:

Response

A (Abort)

B (Break)

I (Ignore)

Description

Terminates Windows.

Simulates a non-maskable interrupt (NMI) to enter the debugger.

Returns to the caller.

The FatalExit function is for debugging only.

An application should call this function whenever the application detects a fatal error. All
input and output is received and transmitted through the computer's auxiliary port (AUX)
or through the debugger if a debugger is installed.

int FillRect(hDC, /pRect, hBrush)

This function fills a given rectangle by using the specified brush. The FillRect function
fills the complete rectangle, including the left and top borders, but does not fill the right
and bottom borders.

Parameter

hDC

/pRect

hBrush

Type/Description

HDC Identifies the device context.

LPRECT Points to a RECT data structure that contains the logical
coordinates of the rectangle to be filled.

HBRUSH Identifies the brush used to fill the rectangle.

Although the FillRect function return type is an integer, the return value is not used and
has no meaning.

The brush must have been created previously by using either the CreateHatchBrush,
CreatePatternBrush, or CreateSolidBrush function, or retrieved using the GetStockOb­
ject function.

When filling the specified rectangle, the FillRect function does not include the rectangle's
right and bottom sides. GDI fills a rectangle up to, but does not include, the right column
and bottom row, regardless of the current mapping mode.

FillRgn

FiliRgn
Syntax

Return Value

FindAtom
Syntax

Return Value

4-138

FiIlRect compares the values of the top, bottom, left, and right fields of the specified
rectangle. If bottom is less than or equal to top, or if right is less than or equal to left, the
rectangle is not drawn.

BOOL FiIlRgn(hDC, hRgn, hBrush)

This function fills the region specified by the hRgn parameter with the brush specified by
the hBrush parameter.

Parameter

hDC

hRgn

hBrush

Type/Description

HDC Identifies the device context.

HRGN Identifies the region to be filled. The coordinates for the
given region are specified in device units.

HBRUSH Identifies the brush to be used to fill the region.

The return value specifies the outcome of the function. It is nonzero if the function is
successful. Otherwise, it is zero.

ATOM FindAtom(lpString)

This function searches the atom table for the character string pointed to by the ipString par­
ameter and retrieves the atom associated with that string.

Parameter

ipString

Type/Description

LPSTR Points to the character string to be searched for. The string
must be null-terminated.

The return value identifies the atom associated with the given string. It is NULL if the
string is not in the table.

4-139

FindResource
Syntax

Return Value

Comments

FindResource

HANDLE Find~esource(hlnstance, /pName, /pType)

This function determines the location of a resource in the specified resource file. The
/pName and /pType parameters define the resource name and type, respectively.

Parameter

hlnstance

/pName

/pType

Type/Description

HANDLE Identifies the instance of the module whose executable
file contains the resource.

LPSTR Points to a null-terminated character string that represents
the name of the resource.

LPSTR Points to a null-terminated character string that represents
the type name of the resource. For predefined resource types, the
/pType parameter should be one of the following values:

Value

RT_ACCELERATOR

RT_BITMAP

RT_DIALOG

RT_FONT

RT_FONTDIR

RT_MENU

RT_RCDATA

Meaning

Accelerator table

Bitmap resource

Dialog box

Font resource

Font directory resource

Menu resource

User-defined resource (raw data)

The return value identifies the named resource. It is NULL if the requested resource cannot
be found.

An application must not call FindResource and the LoadResource function to load
cursor, icon, and string resources. Instead, it must load these resources by calling the fol­
lowing functions:

• LoadCursor

• Loadlcon

• LoadString

n
I ,

FindWindow 4-140

FindWindow
Syntax

Return Value

An application can call FindResource and LoadResource to load other predefined
resource types. However, it is recommended that the application load the corresponding
resources by calling the following functions:

II LoadAccelerators

• LoadBitmap

II LoadMenu

If the high-order word of the lpName or lpType parameter is zero, the low-order word
specifies the integer ID of the name or type of the given resource. Otherwise, the parame­
ters are long pointers to null-terminated character strings. If the first character of the string
is a pound sign (#), the remaining characters represent a decimal number that specifies the
integer ID of the resource's name or type. For example, the string #258 represents the in­
teger ID 258.

To reduce the amount of memory required for the resources used by an application, the
application should refer to the resources by integer ID instead of by name.

HWND FindWindow(lpClassName,lpWindowName)

This function returns the handle of the window whose class is given by the lpClassName
parameter and whose window name, or caption, is given by the lpWindowName parameter.

Parameter

lpClassName

lpWindowName

Type/Description

LPSTR Points to a null-terminated character string that speci­
fies the window's class name. If lpClassName is NULL, all class
names match.

LPSTR Points to a null-terminated character string that speci­
fies the window name (the window's text caption). If
lpWindowName is NULL, all window names match.

The return value identifies the window that has the specified class name and window
name. It is NULL if no such window is found.

4-141

FlashWindow
Syntax

Return Value

Comments

FloodFili
Syntax

Flash Window

BOOL FlashWindow(hWnd, blnvert)

This function "flashes" the given window once. Flashing a window means changing the ap­
pearance of its caption bar as if the window were changing from inactive to active status,
or vice versa. (An inactive caption bar changes to an active caption bar; an active caption
bar changes to an inactive caption bar.)

Typically, a window is flashed to inform the user that the window requires attention, but
that it does not currently have the input focus.

Parameter

hWnd

blnvert

Type/Description

HWND Identifies the window to be flashed. The window can be
either open or iconic.

BOOL Specifies whether the window is to be flashed or returned
to its original state. The window is flashed from one state to the other
if the blnvert parameter is nonzero. If the blnvert parameter is zero,
the window is returned to its original state (either·active or inactive).

The return value specifies the window's state before call to the FlashWindow function. It
is nonzero if the window was active before the call .. Otherwise, it is zero.

The Flash Window function flashes the window only once; for successive flashing, the
application should create a system timer.

The blnvert parameter should be zero only when the window is getting the input focus and
will no longer be flashing; it should be nonzero on successive calls while waiting to get the
input focus.

This function always returns a nonzero value for iconic windows. If the window is iconic,
FlashWindow will simply flash the icon; blnvert is ignored for iconic windows.

BOOL FloodFill(hDC, X, Y, crColor)

This function fills an area of the display surface with the current brush. The area is as­
sumed to be bounded as specified by the crColor parameter. The FloodFill function begins
at the point specified by the X and Y parameters and continues in all directions to the color
boundary.

IT
I
'T

FlushComm

Return Value

Comments

FlushComm
Syntax

Return Value

Parameter

hDC

X

y

erC%r

Type/Description

HDC Identifies the device context.

int Specifies the logical x-coordinate of the point where filling
begins.

int Specifies the logical y-coordinate of the point where filling
begins.

COLORREF Specifies the color of the boundary.

4-142

The return value specifies the outcome of the function. It is nonzero if the function is
successful. It is zero if the filling could not be completed, the given point has the boundary
color specified by erC%r, or the point is outside the clipping region.

Only memory device contexts and devices that support raster-display technology support
the FloodFiII function. For more information, see the RC_BITBLT raster capability in the
GetDeviceCaps function, later in this chapter.

int FlushComm(nCid, nQueue)

This function flushes all characters from the transmit or receive queue of the communica­
tion device specified by the nCid parameter. The nQueue parameter specifies which queue
is to be flushed.

Parameter

nCid

nQueue

Type/Description

int Specifies the communication device to be flushed. The Open­
Comm function returns this value.

int Specifies the queue to be flushed. If nQueue is zero, the trans­
mit queue is flushed. If it is 1, the receive queue is flushed.

The return value specifies the result of the function. It is zero if it is successful. It is nega­
tive if nCid is not a valid device, or if nQueue is not a valid queue.

4-143

FrameRect
Syntax

Return Value

Comments

FrameRgn
Syntax

FrameRect

int FrameRect(hDC, lpRect, hBrush)

This function draws a border around the rectangle specified by the lpRect parameter. The
FrameRect function uses the given brush to draw the border. The width and height of the
border is always one logical unit.

Parameter

hDC

lpRect

hBrush

Type/Description

HDC Identifies the device context of the window.

LPRECT Points to a RECT data structure that contains the logical
coordinates of the upper-left and lower-right corners of the rectangle.

HBRUSH Identifies the brush to be used for framing the rectangle.

Although the return value type is integer, its contents should be ignored.

The brush identified by the hBrush parameter must have been created previously by using
the CreateHatchBrush, CreatePatternBrush, or CreateSolidBrush function.

If the bottom field is less than or equal to the top field, or if right is less than or equal to
left, the rectangle is not drawn.

BOOL FrameRgn(hDC, hRgn, hBrush, nWidth, nHeight)

This function draws a border around the region specified by the hRgn parameter, using the
brush specified by the hBrush parameter. The nWidth parameter specifies the width of the
border in vertical brush strokes; the nHeight parameter specifies the height in horizontal
brush strokes ..

Parameter

hDC

hRgn

Type/Descri ption

HDC Identifies the device context.

HANDLE Identifies the region to be enclosed in a border. The
coordinates for the given region are specified in device units.

m
I
."

FreeLibrary

Return Value

FreeLibrary
LL Syntax
I

w

Return Value

Parameter

hBrush

nWidth

nHeight

4-144

Type/Description

HBRUSH Identifies the brush to be used to draw the border.

int Specifies the width in vertical brush strokes (in logical units).

int Specifies the height in horizontal brush strokes (in logical
units).

The return value specifies the outcome of the function. It is nonzero if the function is
successful. Otherwise, it is zero.

void FreeLibrary(hLibM odule)

This function decreases the reference count of the loaded library module by one. \Vhen the
reference count reaches zero, the memory occupied by the module is freed.

Parameter Type/Description

hLibModule HANDLE Identifies the loaded library module.

None.

FreeModule []]]
Syntax

Return Value

void FreeModule(hM odule)

This function decreases the reference count of the loaded module by one. When the
reference count reaches zero, the memory occupied by the module is freed.

Parameter Type/Description

hModule HANDLE Identifies the loaded module.

None.

4-145 FreeProcinstance

FreeProclnstance
Syntax

Return Value

Comments

FreeResource
Syntax

Return Value

void FreeProcInstance(lpProc)

This function frees the function specified by the ipProc parameter from the data segment
bound to it by the MakeProcInstance function.

Parameter

ipProc

None.

Type/Description

FARPROC Is the procedure-instance address of the function to be
freed. It must have been created previously by using the Make­
ProcInstance function.

After freeing a procedure instance, attempts to call the function using the freed procedure­
instance address will result in an unrecoverable error.

BOOL FreeResource(hResData)

This function removes a loaded resource from memory by freeing the allocated memory
occupied by that resource.

The FreeResource function does not actually free the resource until the reference count is
zero (that is, the number of calls to the function equals the number of times the application
called the LoadResource function for this resource). This ensures that the data remain in
memory for the application to use.

Parameter

hResData

Type/Description

HANDLE Identifies the data associated with the resource. The
handle is assumed to have been created by using the LoadResource
function.

The return value specifies the outcome of the function. The return value is nonzero if the
function has failed and the resource has not been freed. The return value is zero if the func­
tion is successful.

m
I

"

LL ..
f

UJ

FreeSe/ector 4-146

FreeSelector [[[]
Syntax

Return Value

Comments

WORD FreeSelector(wSelector)

This function frees a selector originally allocated by the AllocSelector, AlIocCStoDS­
Alias, or AlIocDStoCSAlias functions. After the application calls this function, the selec­
tor is invalid and must not be used.

Parameter Type/Description

wSelector WORD Specifies the selector to be freed.

The return value is NULL if the function was successful. Otherwise, it is the selector
specified by the wSelector parameter.

An application should not use this function unless it is absolutely necessary. Use of this
function violates preferred Windows programming practices.

4-147 GetActiveWindow

GetActiveWindow
Syntax

Return Value

HWND GetActive Window()

This function retrieves the window handle of the active window. The active window is
either the window that has the current input focus, or the window explicitly made active by
the SetActive Window function.

This function has no parameters.

The return value identifies the active window.

GetAspectRatioFilter
Syntax

Return Value

DWORD GetAspectRatioFilter(hDC)

This function retrieves the setting for the current aspect-ratio filter. The aspect ratio is the
ratio formed by a device's pixel width and height. Information about a device's aspect ratio
is used in the creation, selection, and displaying of fonts. Windows provides a special fil­
ter, the aspect-ratio filter, to select fonts designed for a particular aspect ratio from all of
the available fonts. The filter uses the aspect ratio specified by the SetMapperFlags func­
tion.

Parameter

hDC

Type/Description

HDC Identifies the device context that contains the specfied aspect
ratio.

The return value specifies the aspect ratio used by the current aspect-ratio filter. The x­
coordinate of the aspect ratio is contained in the high-order word, and the y-coordinate is
contained in the low-order word.

GetAsyncKeyState
Syntax int GetAsyncKeyState(vKey)

This function determines whether a key is up or down at the time the function is called,
and whether the key was pressed after a previous call to the GetAsyncKeyState function.
If the most significant bit of the return value is set, the key is currently down; if the least
significant bit is set, the key was pressed after a previous call to the function.

GetAtomHandle 4-148

Return Value

GetAtomHandle
Syntax

Return Value

GetAtomName
Syntax

Return Value

Parameter Type/Description

vKey int Specifies one of 256 possible virtual-key code values.

The return value specifies whether the key was pressed since the last call to GetAsyncKey­
State and whether the key is currently up or down. If the most significant bit is set, the key
is down, and if the least significant bit is set, the key was pressed after a preceding
GetAsyncKeyState call.

HMEM GetAtomHandle(wAtom)

This function retrieves a handle (relative to the local heap) of the string that corresponds to
the atom specified by the wAtom parameter.

Parameter

wAtom

Type/Description

WORD Specifies an unsigned integer that identifies the atom
whose handle is to be retrieved.

The return value identifies the given atom's string. It is zero if no such atom exists.

WORD GetAtomName(nAtom, /pBuffer, nSize)

This function retrieves a copy of the character string associated with the nAtom parameter
and places it in the buffer pointed to by the /pBuffer parameter. The nSize parameter speci­
fies the maximum size of the buffer.

Parameter

nAtom

/pBuffer

nSize

Type/Description

ATOM Identifies the character string to be retrieved.

LPSTR Points to the buffer that is to receive the character string.

int Specifies the maximum size (in bytes) of the buffer.

The return value specifies the actual number of bytes copied to the buffer. It is zero if the
specified atom is not valid.

4-149

GetBitmapBits
Syntax

Return Value

GetBitmapBits

DWORD GetBitmapBits(hBitmap, dwCount, lpBits)

This function copies the bits of the specified bitmap into the buffer that is pointed to by the
lpBits parameter. The dwCount parameter specifies the number of bytes to be copied to the
buffer. The GetObject function should be used to determine the correct dwCount value for
the given bitmap.

Parameter

hBitmap

dwCount

lpBits

Type/Description

HBITMAP Identifies the bitmap.

DWORD Specifies the number of bytes to be copied.

LPSTR Long pointer to the buffer that is to receive the bitmap.
The bitmap is an array of bytes. The bitmap byte array conforms to a
structure where horizontal scan lines are multiples of 16 bits.

The return value specifies the actual number of bytes in the bitmap. It is zero if there is an
error.

GetBitmapDimension
Syntax

Return Value

DWORD GetBitmapDimension(hBitmap)

This function returns the width and height of the bitmap specified by the hBitmap parame­
ter. The height and width is assumed to have been set previously by using the SetBit­
mapDimension function.

Parameter Type/Description

hBitmap HBITMAP Identifies the bitmap.

The return value specifies the width and height of the bitmap, measured in tenths of milli­
meters. The height is in the high-order word, and the width is in the low-order word. If the
bitmap width and height have not been set by using SetBitmapDimension, the return
value is zero.

:C

GelBke%r

GetBkColor
Syntax

Return Value

GetBkMode
Syntax

Return Value

GetBrushOrg
Syntax

Return Value

Comments

4-150

DWORD GetBkColor(hDC)

This function returns the current background color of the specified device.

Parameter Type/Description

hDC HDC Identifies the device context.

The return value specifies an ROB color value that names the current background color.

int GetBkMode(hDC)

This function returns the background mode of the specified device. The background mode
is used with text, hatched brushes, and pen style that is not a solid line.

Parameter Type/Description

hDC HDC Identifies the device context.

The return value specifies the current background mode. It can be OPAQUE or TRANS­
PARENT.

DWORD GetBrushOrg(hDC)

This function retrieves the current brush origin for the given device context.

Parameter Type/Description

hDC HDC Identifies the device context.

The return value specifies the current origin of the brush. The x-coordinate is in the low
word, and the y-coordinate is in the high word. The coordinates are assumed to be in
device units.

The initial brush origin is at the coordinate (0,0).

4-151

GetBValue
Syntax

Return Value

Comments

GetCapture
Syntax

Return Value

Comments

GetBVa/ue

BYTE GetBValue(rgbColor)

This macro extracts the blue value from an ROB color value.

Parameter Type/Description

rgbColor DWORD Specifies a red, a green, and a blue color field, each
specifying the intensity of the given color.

The return value specifies a byte that contains the blue value of the rgbColor parameter.

The value OFFH corresponds to the maximum intensity value for a single byte; OOOH corre­
sponds to the minimum intensity value for a single byte.

HWND GetCapture()

This function retrieves a handle that identifies the window that has the mouse capture. ' !
Only one window has the mouse capture at any given time; this window receives mouse
input whether or not the cursor is within its borders.

This function has no parameters.

The return value identifies the window that has the mouse capture; it is NULL if no
window has the mouse capture.

A window receives the mouse capture when its handle is passed as the hWnd parameter of
the Set Capture function.

GelCaretBlinkTime
Syntax

Return Value

WORD GetCaretBlinkTime()

This function retrieves the caret blink rate. The blink rate is the elapsed time in millisec­
onds between flashes of the caret.

This function has no parameters.

The return value specifies the blink rate (in milliseconds).

GetCaretPos 4-152

GetCaretPos
Syntax

Return Value

Comments

GetCharWidth
Syntax

Return Value

void GetCaretPos(lpPoint)

This function retrieves the caret's current position (in screen coordinates), and copies them
to the POINT structure pointed to by the /pPoint parameter.

Parameter

/pPoint

None.

Type/Description

LPPOINT Points to the POINT structure that is to receive the
screen coordinates of the caret.

The caret position is always given in the client coordinates of the window that contains the
caret.

BOOL GetCharWidth(hDC, wFirstChar, wLastChar, /pBuffer)

This function retrieves the widths of individual characters in a consecutive group of
characters from the current font. For example, if the wFirstChar parameter identifies the
letter a and the wLastChar parameter identifies the letter z, the GetCharWidth function re­
trieves the widths of all lowercase characters. The function stores the values in the buffer
pointed to by the /pBuffer parameter.

Parameter

hDC

wFirstChar

wLastChar

/pBuffer

Type/Description

HDC Identifies the device context.

WORD Specifies the first character in a consecutive group of
characters in the current font.

WORD Specifies the last character in a consecutive group of
characters in the current font.

LPINT Points to a buffer that will receive the width values for a
consecutive group of characters in the current font.

The return value specifies the outcome of the function. It is nonzero if the function is
successful. Otherwise, it is zero.

4-153

Comments

GetClasslnfo

If a character in the consecutive group of characters does not exist in a particular font, it
will be assigned the width value of the default character.

GetClasslnfo []I]
Syntax

Return Value

Comments

GetClassLong
Syntax

BOOL GetClasslnfo(hlnstance, lpClassName, lpWndClass)

This function retrieves information about a window class. The hlnstance parameter identi­
fies the instance of the application that created the class, and the lpClassName parameter
identifies the window class. If the function locates the specified window class, it copies the
WNDCLASS data used to register the window class to the WNDCLASS data structure
pointed to by lpWndClass.

Parameter

hlnstance

lpClassName

lpWndClass

Type/Description

HANDLE Identifies the instance of the application that created the
class. To retrieve information on classes defined by Windows (such
as buttons or list boxes), set hlnstance to NULL.

LPSTR Points to a null-terminated string that contains the name of
the class to find. If the high-order word of this parameter is NULL,
the low-order word is assumed to be a value returned by the
MAKEINTRESOURCE macro used when the class was created.

LPWNDCLASS Points to the WNDCLASS structure to which
the function will copy the class information.

The return value is TRUE if the function found a matching class and successfully copied
the data; the return value is FALSE if the function did not find a matching class.

The IpszClassName, IpszMenuName, and hlnstance fields in the WNDCLASS data
structure are ilOt returned by this function. The menu name is not stored internally and can­
not be returned. The class name is already known since it is passed to this function. The
GetClasslnfo function returns all other fields with the values used when the class was
registered.

LONG GetClassLong(hWnd, nlndex)

This function retrieves the long value specified by the nlndex parameter from the WND­
CLASS structure of the window specified by the hWnd parameter.

GetClassName 4-154

Return Value

Comments

GetClassName
Syntax

Return Value

Parameter

hWnd

nlndex

Type/Description

HWND Identifies the window.

int Specifies the byte offset of the value to be retrieved. It can also
be the following value:

Value Meaning

Retrieves a long pointer to the window
function.

The return value specifies the value retrieved from the WNDCLASS structure.

To access any extra four-byte values allocated when the window-class structure was
created, use a positive byte offset as the index specified by the nI ndex parameter. The first
four-byte value in the extra space is at offset zero, the next four-byte value is at offset 4,
and so on.

int GetClassName(hWnd, lpClassName, nMaxCount)

This function retrieves the class name of the window specified by the h W nd parameter.

Parameter

hWnd

lpClassName

nMaxCount

Type/Description

HWND Identifies the winqow whose class name is to be re­
trieved.

LPSTR Points to the buffer that is to receive the class name.

int Specifies the maximum number of bytes to be stored in the
lpClassName parameter. If the actual name is longer, a truncated
name is copied to the buffer.

The return value specifies the number of characters actually copied to lpClassName. The
return value is zero if the specified class name is not valid.

4-155

GetClassWord
Syntax

Return Value

Comments

GetClassWord

WORD GetClassWord(hWnd, nlndex)

This function retrieves the word that is specified by the nI ndex parameter from the WND­
CLASS structure of the window specified by the hWnd parameter.

Parameter

hWnd

nlndex

Type/Description

HWND Identifies the window.

int Specifies the byte offset of the value to be retrieved. It can also
be one of the following values:

Value

GCW_HBRBACKGROUND

GCW _HCURSOR

GCW_HICON

GCW _HMODULE

Meaning

Tells how many bytes of addi­
tional class information you
have. For information on how
to access this memory, see the
following "Comments" section.

Tells how many bytes of addi­
tional window information you
have. For information on how
to access this memory, see the
following "Comments" section.

Retrieves a handle to the back­
ground brush.

Retrieves a handle to the cursor.

Retrieves a handle to the icon.

Retrieves a handle to the mod­
ule.

Retrieves the window-class
style bits.

The return value specifies the value retrieved from the WNDCLASS structure.

To access any extra two-byte values allocated when the window-class structure was
created, use a positive byte offset as the index specified by the nlndex parameter, starting
at zero for .the first two-byte value in the extra space, 2 for the next two-byte value and so
on.

GetClientRect 4-156

GetClientRect
Syntax

Return Value

void GetClientRect(hWnd,lpRect)

This function copies the client coordinates of a window's client area into the data structure
pointed to by the IpRect parameter. The client coordinates specify the upper-left and lower­
right corners of the client area. Since client coordinates are relative to the upper-left
corners of a window's client area, the coordinates of the upper-left comer are (0,0).

Parameter Type/Description

hWnd HWND Identifies the window associated with the client area.

IpRect LPRECT Points to a RECT data structure.

None.

GetClipboardData
Syntax

Return Value

Comments

HANDLE GetClipboardData(wF ormat)

This function retrieves data from the clipboard in the format given by the wFormat parame­
ter. The clipboard must have been opened previously.

Parameter

wFormat

Type/Description

WORD Specifies a data format. For a description of the data for­
mats, see the SetClipboardData function, later in this chapter.

The return value identifies the memory block that contains the data from the clipboard.
The handle type depends on the type of data specified by the wF ormat parameter. It is
NULL if there is an error.

The available formats can be enumerated in advance by using the EnumClipboardFor­
mats function.

The data handle returned by GetClipboardData is controlled by the clipboard, not by the
application. The application should copy the data immediately, instead of relying on the
data handle for long-term use. The application should not free the data handle or leave it
locked.

Windows supports two formats for text, CF _TEXT and CF _OEMTEXT. CF _TEXT is the
default Windows text clipboard format, while Windows uses the CF _OEMTEXT format
for text in non-Windows applications. If you call GetClipboardData to retrieve data in

4-157 GetClipboardFormatName

one text fonnat and the other text fonnat is the only available text fonnat, Windows auto­
matically converts the text to the requested fonnat before supplying it to your application.

If the clipboard contains data in the CF _PALETTE (logical color palette) fonnat, the appli­
cation should assume that any other data in the clipboard is realized against that logical
palette.

GetClipboardFormatName
Syntax

Return Value

int GetClipboardFormatName(wFormat, IpFormatName, nMaxCount)

This function retrieves from the clipboard the name of the registered fonnat specified by
the wFormat parameter. The name is copied to the buffer pointed to by the IpFormatName
parameter.

Parameter

wFormat

IpFormatName

nMaxCount

Type/Description

WORD Specifies the type of fonnat to be retrieved. It must
not specify any of the predefined clipboard fonnats.

LPSTR Points to the buffer that is to receive the fonnat name.

int Specifies the maximum length (in bytes) of the string to be
copied to the buffer. If the actual name is longer, it is truncated.

The return value specifies the actual length of the string copied to the buffer. It is zero if
the requested fonnat does not exist or is a predefined fonnat.

GetClipboardOwner
Syntax

Return Value

Comments

HWND GetClipboardOwner()

This function retrieves the window handle of the current owner of the clipboard.

This function has no parameters.

The return value identifies the window that owns the clipboard. It is NULL if the clipboard
is not owned.

The clipboard can still contain data even if the clipboard is not currently owned.

GetClipboardViewer 4-158

GetCI ipboardViewer
Syntax

Return Value

GetClipBox
Syntax

Return Value

HWND GetClipboardViewer()

This function retrieves the window handle of the first window in the clipboard-viewer
chain.

This function has no parameters.

The return value identifies the window currently responsible for displaying the clipboard.
It is NULL if there is no viewer.

int GetClipBox(hDC, /pRect)

This function retrieves the dimensions of the tightest bounding rectangle around the cur­
rent clipping boundary. The dimensions are copied to the buffer pointed to by the /pRect
parameter.

Parameter Type/Description

hDC HDC Identifies the device context.

/pRect LPRECT Points to the RECT data structure that is to receive the
rectangle dimensions.

The return value specifies the clipping region's type. It can be anyone of the following
values:

Value

COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

Meaning

Clipping region has overlapping borders.

Device context is not valid.

Clipping region is empty.

Clipping region has no overlapping borders.

4-159

GetCodeHandle
Syntax

Return Value

Comments

GetCodeHandle

HANDLE GetCodeHandle(lpProc)

This function detennines which code segment contains the function pointed to by the
/pProc parameter.

Parameter Type/Description

/pProc FARPROC Is a procedure-instance address.

The return value identifies the code segment that contains the function.

If the code segment that contains the function is already loaded, the GetCodeHandle func­
tion marks the segment as recently used. If the code segment is not loaded, GetCode­
Handle attempts to load it. Thus, an application can use this function to attempt to preload
one or more segments needed to perfonn a particular task.

GetCodelnfo ITQ]
Syntax

Return Value

Comments

void GetCodelnfo(lpProc, /pSegln[o)

This function retrieves a pointer to an array of 16-bit values containing information about
the code segment that contains the function pointed to by the /pProc parameter.

Parameter

lpProc

lpSeglnfo

None.

Type/Description

FARPROC Is the address of the function in the segment for
which infonnation is to be retrieved. Instead of a segment:offset
address, this value can also be in the form of a module handle and
segment number. The GetModuleHandle function returns the handle
of a named module.

LPVOID Points to an array of four 32-bit values that will be filled
with infonnation about the code segment. See the following "Com­
ments" section for a description of the values in this array.

The /pSegln[o parameter points to an array of four 32-bit values that contains such infonna­
tion as the location and size of the segment and its attributes. The following list describes
each of these values:

GetCodelnfo

Offset

o

2

4

4-160

Description

Specifies the logical-sector offset (in bytes) to the contents of the segment
data, relative to the beginning of the file. Zero means no file data is availa­
ble.

Specifies the length of the segment in the file (in bytes). Zero means 64K.

Contains flags which specify attributes of the segment. The following list de­
scribes these flags:

Bit

0-2

3

4

5

6

7

8

9

10-11

12-15

Meaning

Specifies the segment type. If bit 0 is set to 1, the segment is a
data segment. Otherwise, the segment is a code segment.

Specifies whether segment data is iterated. When this bit set to
1, the segment data is iterated.

Specifies whether the segment is moveable or fixed. When this
bit is set to 1, the segment is moveable. Otherwise, it is fixed.

Is not returned.

Is not returned.

Specifies whether the segment is a read-only data segment or an
execute-only code segment. If this bit is set to 1 and the segment
is a code segment, the segment is an execute-only segment. If
this bit is set to zero and the segment is a data segment, it is a
read-only segment.

Specifies whether the segment has associated relocation informa­
tion. If this bit is set to 1, the segment has relocation
information. Otherwise, the segment does not have relocation
information.

Specifies whether the segment has debugging information. If
this bit is set to 1, the segment has debugging information. Other­
wise, the segment does not have debugging infonnation.

Is not returned.

Is not returned.

6 Specifies the total amount of memory allocated for the segment. This
amount may exceed the actual size of the segment. Zero means 65,536.

4-161

GetCommError
Syntax

Return Value

GetCommError

int GetCommError(nCid, IpS tat)

In case of a communications error, Windows locks the communications port until the error
is cleared by using the GetCommError function. This function fills the status buffer
pointed to by the lpStat parameter with the current status of the communication device
specified by the nCid parameter. It also returns the error codes that have occurred since the
last GetCommError call. If lpStat is NULL, only the error code is returned. For a list of
the error codes, see Table 4.8, "Communications Error Codes."

Parameter

nCid

lpStat

Type/Description

int Specifies the communication device to be examined. The Open­
Comm function returns this value.

COMSTAT FAR * Points to the COMSTAT structure that is to re­
ceive the device status. The structure contains information about a
communication device.

The return value specifies the error codes returned by the most recent communications
function. It can be a combination of one or more of the values given in Table 4.8.

Table 4.8 Communications Error Codes

Value Meaning

CE_BREAK The hardware detects a break condition.

CE_CTSTO Clear-to-send timeout. CTS is low for the duration specified by
CtsTimeout while trying to transmit a character.

CE_DNS The parallel device is not selected.

CE_DSRTO Data-set-ready timeout. DSR is low for the duration specified by
DsrTimeout while trying to transmit a character.

CE_FRAME The hardware detects a framing error.

CE_IOE An I/O error occurs while trying to communicate with a parallel device.

CE_MODE Requested mode is not supported, or the nCid parameter is invalid. If
set, this is the only valid error.

CE_OOP The parallel device signals that it is out of paper.

A character is not read from the hardware before the next character ar­
rives. The character is lost.

Timeout occurs while trying to communicate with a parallel device.

Receive-line-signal-detect timeout. RLSD is low for the duration
specified by RlsdTimeout while trying to transmit a character.

GetCommEventMask 4-162

Table 4.8 Communications Error Codes (continued)

Value Meaning

CE_RXOVER Receive queue overflow. There is either no room in the input queue or a
character is received after the EofChar character is received.

CE_RXPARITY

CE_TXFULL

The hardware detects a parity error.

The transmit queue is full while trying to queue a character.

GetCommEventMask
Syntax

Return Value

GetCommState
Syntax

WORD GetCommEventMask(nCid, nEvtMask)

This function retrieves the value of the current event mask, and then clears the mask. This
function must be used to prevent loss of an event.

Parameter

nCid

nEvtMask

Type/Description

int Specifies the communication device to be examined. The
OpenComm function returns this value.

int Specifies which events are to be enabled. For a list of the
event values, see the SetCommEventMask function, later in
this chapter.

The return value specifies the current event-mask value. Each bit in the event mask speci­
fies whether a given event has occurred. A bit is set to 1 if the event has occurred.

int GetCommState(nCid, ipDCB)

This function fills the buffer pointed to by the ipDCB parameter with the device control
block of the communication device specified by the nCid parameter.

4-163

Return Value

Parameter

nCid

ipDCB

GetCurrentPOB

Type/Description

int Specifies the device to be examined. The OpenComm function
returns this value.

DCB FAR * Points to the DCB data structure that is to receive the
current device control block. The structure defines the control setting
for the device.

The return value specifies the outcome of the function. It is zero if the function was
successful. If an error occurred, the return value is negative.

GetCurrentPDB ITQJ
Syntax

Return Value

WORD GetCurrentPDBO

This function returns the paragraph address or selector of the current DOS Program Data
Base (PDB), also known as the Program Segment Prefix (PSP).

This function has no parameters.

The return value is the paragraph address or selector of the current PDB.

GetCurrentPosition
Syntax

Return Value

DWORD GetCurrentPosition(hDC)

This function retrieves the logical coordinates of the current position.

Parameter Type/Description

hDC HDC Identifies a device context.

The return value specifies the current position. The y-coordinate is in the high-order word;
the x-coordinate is in the low-order word.

GetCurrentTask 4-164

GetCurrentTask
Syntax

Return Value

HANDLE GetCurrentTask()

This function returns the handle of the currently executing task.

This function has no parameters.

The return value identifies the task if the function is successful. Otherwise, it is NULL.

GetCurrentTime
Syntax

Return Value

Comments

GetCursorPos
Syntax

DWORD GetCurrentTime()

This function retrieves the current Windows time. Windows time is the number of millisec­
onds that have elapsed since the system was booted.

This function has no parameters.

The return value specifies the current time (in milliseconds).

The GetCurrentTime and GetMessageTime functions return different times. GetMes­
sage Time returns the Windows time when the given message was created, not the current
Windows time.

The system timer eventually overflows and resets to zero.

void GetCursorPos(lpPoint)

This function retrieves the cursor's current position (in screen coordinates), that copies
them to the POINT structure pointed to by the lpPoint parameter.

Parameter

lpPoint

Type/Description

LPPOINT Points to the POINT structure that is to receive the
screen coordinates of the cursor.

Return Value None

4-165

Comments

GetDC
Syntax

Return Value

Comments

GetDCOrg
Syntax

GelDe

The cursor position is always given in screen coordinates and is not affected by the map­
ping mode of the window that contains the cursor.

HDC GetDC(hWnd)

This function retrieves a handle to a display context for the client area of the given
window. The display context can be used in subsequent GDI functions to draw in the client
area.

The GetDC function retrieves a common, class, or private display context depending on
the class style specified for the given window. For common display contexts, GetDC as­
signs default attributes to the context each time it is retrieved. For class and private
contexts, GetDC leaves the previously assigned attributes unchanged.

Parameter

hWnd

Type/Description

HWND Identifies the window whose display context is to be re­
trieved.

The return value identifies the display context for the given window's client area if the
function is successful. Otherwise, it is NULL.

After painting with a common display context, the ReleaseDC function must be called to
release the context. Class and private display contexts do not have to be released. Since
only five common display contexts are available at any given time, failure to release a dis­
play context can prevent other applications from accessing a display context.

DWORD GetDCOrg(hDC)

This function obtains the final translation origin for the device context. The final transla­
tion origin specifies the offset used by Windows to translate device coordinates into client
coordinates for points in an application's window. The final translation origin is relative to
the physical origin of the screen display.

GetOesktopWindow 4-166

Return Value

Parameter Type/Description

hDC HDC Identifies the device context whose origin is to be retrieved.

The return value specifies the final translation origin (in device coordinates). The y-coordi­
nate is in the high-order word; the x-coordinate is in the low-order word.

GetDesktopWindow [IQJ
Syntax

Return Value

GetDeviceCaps
Syntax

Return Value

HWND GetDesktop Window()

This function returns the window handle to the Windows desktop window. The desktop
window covers the entire screen and is the area on top of which all icons and other
windows are painted.

This function has no parameters.

The return value identifies the Windows desktop window.

int GetDeviceCaps(hDC, nIndex)

This function retrieves device-specific information about a given display device. The nIn­
dex parameter specifies the type of information desired.

Parameter

hDC

nIndex

Type/Description

HDC Identifies the device context.

int Specifies the item to return. It can be anyone of the values
given in Table 4.9, "GDI Information Indexes."

The return value specifies the value of the desired item.

4-167

Comments

GetOeviceCaps

Table 4.9 lists the values for the nlndex parameter:

Table 4.9 GDI Information Indexes

Index Meaning

DRIVERVERSION Version number; for example, Oxl00 for 1.0.

TECHNOLOGY Device technology. It can be anyone of the following values:

HORZSIZE

VERTSIZE

HORZRES

VERTRES

LOGPIXELSX

LOGPIXELSY

BITSPIXEL

PLANES

NUMB RUSHES

NUMPENS

NUMFONTS

NUMCOLORS

ASPECTX

ASPECTY

ASPECTXY

PDEVICESIZE

CLIPCAPS

SIZEPALETTE

Value Meaning

DT _PLOTIER Vector plotter

DT_RAS DIS PLAY

DT _RASPRINTER

DT_RASCAMERA

DT_CHARSTREAM

DT_METAFILE

DT _DISPFILE

Raster display

Raster printer

Raster camera

Character stream

Metafile

Display file

Width of the physical display (in millimeters).

Height of the physical display (in millimeters).

Width of the display (in pixels).

Height of the display (in raster lines).

Number of pixels per logical inch along the display width.

Number of pixels per logical inch along the display height.

Number of adjacent color bits for each pixel.

Number of color planes.

Number of device-specific brushes.

Number of device-specific pens.

Number of device-specific fonts.

Number of entries in the device's color table.

Relative width of a device pixel as used for line drawing.

Relative height of a device pixel as used for line drawing.

Diagonal width of the device pixel as used for line drawing.

Size of the PDEVICE internal data structure.

Flag that indicates the clipping capabilities of the device. It is 1 if the
device can clip to a rectangle, 0 if it cannot.

Number of entries in the system palette. This index is valid only if the
device driver sets the RC_PALETTE bit in the RASTERCAPS index and
is available only if the driver version is 3.0 or higher.

:!)

GelOeviceCaps 4-168

Table 4.9 GDI Information Indexes (continued)

Index

NUMRESERVED

COLORRES

RASTERCAPS

CURVECAPS

Meaning

Number of reserved entries in the system palette. This index is valid only
if the device driver sets the RC_PALETTE bit in the RASTERCAPS
index and is available only if the driver version is 3.0 or higher.

Actual color resolution of the device in bits per pixel. This index is valid
only if the device driver sets the RC_PALETTE bit in the RASTER­
CAPS index and is available only if the driver version is 3.0 or higher.

Value that indicates the raster capabilities of the device, as shown in the
following list:

Capability

RC_BANDING

RC_BITBLT

RC_BITMAP64

RC_DCBITMAP

RC_DIBTODEV

RC_FLOODFILL

RC_GDI20_0UTPUT

RC_PALETTE

RC_SCALING

RC_STRETCHBLT

RC_STRETCHDIB

Meaning

Requires banding support.

Capable of transferring bitmaps.

Capable of supporting bitmaps larger than
64K.

Capable of supporting SetDIBits and
GetDIBits.

Capable of supporting the SetDI-
BitsToDevice function.

Capable of performing flood fills.

Capable of supporting Windows version
2.0 features.

Palette-based device.

Capable of scaling.

Capable of performing the StretchBIt func-
tion.

Capable of performing the StretchDIBits
function.

A bitmask that indicates the curve capabilities of the device. The bits
have the following meanings:

Bit Meaning

o

2

3

4

5

6

Device can do circles.

Device can do pie wedges.

Device can do chord arcs.

Device can do ellipses.

Device can do wide borders.

Device can do styled borders.

Device can do borders that are wide and
styled.

4-169 GetOeviceCaps

Table 4.9 GDI Information Indexes (continued)

Index

LINECAPS

POLYGONAL­
CAPS

TEXTCAPS

Meaning

7 Device can do interiors.

The high byte is O.

A bitmask that indicates the line capabilities of the device. The bits have
the following meanings:

Bit Meaning

o

2

3

4

5

6

7

The high byte is O.

Reserved.

Device can do polyline.

Reserved.

Reserved.

Device can do wide lines.

Device can do styled lines.

Device can do lines that are wide and
styled.

Device can do interiors.

A bitmask that indicates the polygonal capabilities of the device. The bits
have the following meanings:

Bit Meaning

o
1

2

3

4

5

6

7

The high byte is O.

Device can do alternate fill polygon.

Device can do rectangle.

Device can do winding number fill poly­
gon.

Device can do scanline.

Device can do wide borders.

Device can do styled borders.

Device can do borders that are wide and
styled.

Device can do interiors.

A bitmask that indicates the text capabilities of the device. The bits have
the following meanings:

Bit Meaning

o
1

2

Device can do character output precision.

Device can do stroke output precision.

Device can do stroke clip precision.

GetDialogBaseUnits 4-170

Table 4.9 GDI Information Indexes (continued)

Index Meaning

3

4

5

6

7

8

9

10

11

12

13

14

15

Device can do 90-degree character rotation.

Device can do any character rotation.

Device can do scaling independent of X
and Y.

Device can do doubled character for scal­
ing.

Device can do integer multiples for scaling.

Device can do any multiples for exact scal­
ing.

Device can do double-weight characters.

Device can do italicizing.

Device can do underlining.

Device can do strikeouts.

Device can do raster fonts.

Device can do vector fonts.

Reserved. Must be returned zero.

For a list of all the available abilities, see the LOGFONT data structure in Chapter 7,
"Data Types and Structures," in Reference, Volume 2.

GetDialogBaseUnits []]]
Syntax

Return Value

LO N G GetDialogBase U nits()

This function returns the dialog base units used by Windows when creating dialog boxes.
An application should use these values to calculate the average width of characters in the
system font.

This function has no parameters.

The return value specifies the dialog base units. The high-order word contains the height in
pixels of the current dialog base height unit derived from the height of the system font, and
the low-order word contains the width in pixels of the current dialog base width unit
derived from the width of the system font.

4-171

Comments

GetDIBits []]J
Syntax

GeiD/Bils

The values returned represent dialog base units before being scaled to actual dialog units.
The actual dialog unit in the x direction is V4 of the width returned by GetDialog­
BaseUnits. The actual dialog unit in the y direction is 'Vs of the height returned by the func­
tion.

To determine the actual height and width in pixels of a control, given the height (x) and
width (y) in dialog units and the return value (lDlgBaseUnits) from calling GetDialog­
BaseUnits, use the following formula:

(x * LOWORD(lDlgBaseUnits))/4
(y * HIWORD(lDlgBaseUnits))/8

To avoid rounding problems, perform the multiplication before the division in case the
dialog base units are not evenly divisible by four.

int GetDIBits(hDC, hBitmap, nStartScan, nNumScans, lpBits, lpBitsInfo, wUsage)

This function retrieves the bits of the specified bitmap and copies them, in device-inde­
pendent format, into the buffer that is pointed to by the lpBits parameter. The lpBitsInfo
parameter retrieves the color format for the device-independent bits.

Parameter

hDC

,hBitmap

nStartScan

nNumScans

lpBits

lpBitsInfo

wUsage

Type/Description

HDC Identifies the device context.

HBITMAP Identifies the bitmap.

WORD Specifies the first scan line in the destination bitmap to
set in lpBits.

WORD Specifies the number of lines to be copied.

LPSTR Points to a buffer that will receive the bitmap bits in
device-independent format.

LPBITMAPINFO Points to a BITMAPINFO data structure
that specifies the color format and dimension for the device-inde­
pendent bitmap.

WORD Specifies whether the bmiColors[] fields of the lpBits­
Info parameter are to contain explicit RGB values or indexes into
the currently realized logical palette. The wU sage parameter must
be one of the following values:

GetD/getr//D 4-172

Return Value

Comments

Parameter Type/Description

Value

DIB_ROB_COLORS

Meaning

The color table is to consist of an
array of 16-bit indexes into the cur­
rently realized logical palette.

The color table is to contain literal
ROB values.

The return value specifies the number of scan lines copied from the bitmap. It is zero if
there was an error.

If the lpBits parameter is NULL, GetDIBits fills in the BITMAPINFO data structure to
which the lpBitslnfo parameter points, but does not retrieve bits from the bitmap.

The bitmap identified by the hBitmap parameter must not be selected into a device context
when the application calls this function.

The origin for device-independent bitmaps is the bottom-left comer of the bitmap, not the
top-left comer, which is the origin when the mapping mode is MM_TEXT.

This function also retrieves a bitmap specification formatted for Microsoft OS/2 Presenta­
tion Manager versions 1.1 and 1.2 if the lpBitslnfo parameter points to a BITMAPCORE­
INFO data structure.

GetDlgCtrliD ITQJ
Syntax

Return Value

Comments

int GetDlgCtrIlD(hWnd)

This function returns the ID value of the child window identified by the hWnd parameter.

Parameter Type/Description

hWnd HWND Identifies the child window.

The return value is the numeric identifier of the child window if the function is successful.
If the function fails, or if hWnd is not a valid window handle, the return value is NULL.

Since top-level windows do not have an ID value, the return value of this function is in­
valid if the hWnd parameter identifies a top-level window.

4-173

GetDlgltem
Syntax

Return Value

Comments

GetDlgltemlnt
Syntax

GetDlgltem

HWND GetDlgltem(hDlg, nIDDlgltem)

This function retrieves the handle of aO control contained in the dialog box specified by the
hDlg parameter.

Parameter

hDlg

nIDDlgltem

Type/Description

HWND Identifies the dialog box that contains the control.

int Specifies the integer ID of the item to be retrieved.

The return value identifies the given control. It is NULL if no control with the integer ID
given by the nIDDlgltem parameter exists.

The GetDIgltem function can be used with any parent-child window pair, not just dialog
boxes. As long as the hDlg parameter specifies a parent window and the child window has
a unique ID (as specified by the hMenu parameter in the CreateWindow function that
created the child window), GetDlgltem returns a valid handle to the child window.

WORD GetDIgltemInt(hDlg, nIDDlgltem, lpTranslated, bSigned)

This function translates the text of a control in the given dialog box into an integer value.
The GetDlgltemlnt function retrieves the text of the control identified by the nIDDlgltem
parameter. It translates the text by stripping any extra spaces at the beginning of the text
and converting decimal digits, stopping the translation when it reaches the end of the text
or encounters any nonnumeric character. If the bSigned parameter is nonzero, Get­
Dlgltemlnt checks for a minus sign (-) at the beginning of the text and translates the text
into a signed number. Otherwise, it creates an unsigned value.

GetDlgltemlnt returns zero if the translated number is greater than 32,767 (for signed
numbers) or 65,535 (for unsigned). When errors occur, such as encountering nonnumeric
characters and exceeding the given maximum, GetDlgltemInt copies zero to the location
pointed to by the IpTranslated parameter. If there are no errors, lpTranslated receives a
nonzero value. If IpTranslated is NULL, GetDIgltemlnt does not warn about errors. Get­
DIgltemlnt sends a WM_ GETfEXT message to the control.

G

GetOlgltemText 4-174

Parameter

hDlg

nIDDlgltem

lpTranslated

Type/Description

HWND Identifies the dialog box.

int Specifies the integer identifier of the dialog-box item to be
translated.

BOOL FAR * Points to the Boolean variable that is to receive the
translated flag .

. bSigned BOOL Specifies whether the value to be retrieved is signed.

Return Value

GetDlgltemText
Syntax

Return Value

The return value specifies the translated value of the dialog-box item text. Since zero is a
valid return value, the lpTranslated parameter must be used to detect errors. If a signed re­
turn value is desired, it should be cast as an int type.

int GetDIgltemText(hDlg, nIDDlgltem, lpString, nMaxCount)

This function retrieves the caption or text associated with a control in a dialog box. The
GetDIgltemText function copies the text to the location pointed to by the lpString parame­
ter and returns a-count of the number of characters it copies.

GetDIgltemText sends a WM_GETTEXT message to the control.

Parameter

hDlg

nIDDlgltem

lpString

nMaxCount

Type/Description

HWND Identifies the dialog box that contains the control.

int Specifies the integer identifier of the dialog-box item whose
caption or text is to be retrieved.

LPSTR Points to the buffer to receive the text.

int Specifies the maximum length (in bytes) of the string to be
copied to lpString. If the string is longer than nMaxCount, it is trun­
cated.

The return value specifies the actual number of characters copied to the buffer. It is zero if
no text is copied.

4-175 GetOOSEnvironment

GetDOSEnvironment IT[]
Syntax

Comments

LPSTR GetDOSEnvironment()

This function returns a far pointer to the environment string of the currently running task.
See Microsoft MS-DOS Programmer's Reference for more information on the format and
contents of the environment string.

This function has no parameters.

Unlike an application, a dynamic-link library (DLL) does not have a copy of the environ­
ment string. As a result, a library must call this function to retrieve the environment string.

GetDoubleClickTime
Syntax

Return Value

WORD GetDoubleClickTime()

This function retrieves the current double-click time for the mouse. A double-click is a ser­
ies of two clicks of the mouse button, the second occurring within a specified time after
the first. The double-click time is the maximum number of milliseconds that may occur be­
tween the first and second click of a double-click.

This function has no parameters.

The return value specifies the current double-click time (in milliseconds).

GetDriveType IT[]
Syntax WORD GetDriveType(nDrive)

This function determines whether a disk drive is removeable, fixed, or remote.

Parameter

nDrive

Type/Description

int Specifies the drive for which the type is to be determined.
Drive A: is 0, drive B: is 1, drive C: is 2, and so on.

GetEnvironment 4-176

Return Value The return value specifies the type of drive. It can be one of the following values:

Value Meaning

DRIVE_REMOVEABLE Disk can be removed from the drive.

DRIVE_FIXED Disk cannot be removed from the drive.

DRIVE_REMOTE Drive is a remote (network) drive.

The return value is zero if the function cannot determine the drive type, or 1 if the
specified drive does not exist.

GetEnvironment
Syntax

Return Value

int GetEnvironment(lpPortName, /pEnviron, nMaxCount)

This function retrieves the current environment that is associated with the devke attached
to the system port specified by the /pPortName parameter, and copies it into the buffer
specified by the /pEnviron parameter. The environment, maintained by GDI, contains bi­
nary data used by GDI whenever a device context is created for the device on the given
port.

The function fails if there is no environment for the given port.

An application can call this function with the lpEnviron parameter set to NULL to deter­
mine the size of the buffer required to hold the environment. It can then allocate the buffer
and call GetEnvironment a second time to retrieve the environment.

Parameter

/pPortName

/pEnviron

nMaxCount

Type/Description

LPSTR Points to the null-terminated character string that specifies
the name of the desired port.

LPSTR Points to the buffer that will receive the environment.

WORD Specifies the maximum number of bytes to copy to the
buffer.

The return value specifies the number of bytes copied to /pEnviron. If /pEnviron is NULL,
the return value is the size in bytes of the buffer required to hold the environment. It is zero
if the environment cannot be found.

4-177

Comments

GetFocus
Syntax

Return Value

GetFocus

The first field in the buffer pointed to by /pEnviron must be the same as that passed in the
/pDeviceName parameter of the CreateDC function. If /pPortName specifies a null port
(as defined in the WIN.INI file), the device name pointed to by /pEnviron is used to locate
the desired environment.

HWND GetFocus()

This function retrieves the handle of the window that currently owns the input focus.

This function has no parameters.

The return value identifies the window that currently owns the focus if the function is
successful. Otherwise, it is NULL.

GetFreeSpace []I]
Syntax

Return Value

DWORD GetFreeSpace(wF/ags)

This function scans the global heap and returns the number of bytes of memory currently
available.

Parameter

wF/ags

Type/Description

WORD Specifies whether to scan the heap above or below the
EMS bank line in large-frame and small-frame EMS systems. If it is
set to GMEM_NOT_BANKED, GetFreeSpace returns the amount
of memory available below the line. If wF/ags is zero, Get­
FreeSpace returns the amount is the memory available above the
EMS bank line. The wF/ags parameter is ignored for non-EMS sys­
tems.

The return value is the amount of available memory in bytes. This memory is not neces­
sarily contiguous; the GlobalCompact function returns the number of bytes in the largest
block of free global memory.

GetGVa!ue

GetGValue
Syntax

Return Value

Comments

G ell n p utState
Syntax

Return Value

BYTE GetG Value(rgbColor)

This macro extracts the green value from an ROB color value.

Parameter

rgbColor

Type/Description

DWORD Specifies a red, a green, and a blue color field, each
specifying the intensity of the given color.

4-178

The return value specifies a byte that contains the green value of the rgbColor parameter.

The value OFFH corresponds to the maximum intensity value for a single byte; OOOH corre­
sponds to the minimum intensity value for a single byte.

BOOL GetInputState()

This function determines whether there are mouse, keyboard, or timer events in the system
queue that require processing. An event is a record that describes interrupt-level input.
Mouse events occur when a user moves the mouse or clicks a mouse button. Keyboard
events occur when a user presses one or more keys. Timer events occur after a specified
number of clock ticks. The system queue is the location in which Windows stores mouse,
keyboard, and timer events.

This function has no parameters.

The return value specifies whether mouse, keyboard or timer input occurs. It is nonzero if
input is detected. Otherwise, it is zero.

GetlnstanceData
Syntax int GetInstanceData(hlnstance, pData, nCount)

This function copies data from a previous instance of an application into the data area of
the current instance. The hlnstance parameter specifies which instance to copy data from,
pData specifies where to copy the data, and nCount specifies the number of bytes to copy.

4-179

Return Value

Parameter

hlnstance

pData

nCount

GetKBCodePage

Type/Description

HANDLE Identifies a previous call of the application.

NPSTR Points to a buffer in the current instance.

int Specifies the number of bytes to copy.

The return value specifies the number of bytes actually copied.

GetKBCodePage []]J
Syntax

Return Value

Comments

int GetKBCodePage()

This function determines which OEM/ANSI tables are loaded by Windows.

This function has no parameters.

The return value specifies the code page currently loaded by Windows. It can be one of the
following values:

Value

437

850

860

861

863

865

Meaning

Default (USA, used by most countries: indicates that there is no
OEMANSI.BIN in the Windows directory)

International (OEMANSI.BIN = XLAT850.BIN)

Portugal (OEMANSI.BIN = XLAT860.BIN)

Iceland (OEMANSI.BIN = XLAT861.BIN)

French Canadian (OEMANSI.BIN = XLAT863.BIN)

Norway/Denmark (OEMANSI.BIN = XLAT865.BIN)

If the file OEMANSI.BIN is in the Windows directory, Windows reads it and overwrites
the OEM/ANSI translation tables in the keyboard driver.

,

j,

GetKeyboardState 4-180

When the user selects a language within the Setup program and the language does not use
the default code page (437), Setup copies the appropriate file (such as XLATPO.BIN) to
OEMANSI.BIN in the Windows system directory. If the language uses the default code
page, Setup deletes OEMANSI.BIN, if it exists, from the Windows system directory.

GetKeyboardState
Syntax

Return Value

Comments

void GetKeyboardState(lpKeyState)

This function copies the status of the 256 virtual-keyboard keys to the buffer specified by
the /pKeyState parameter. The high bit of each byte is set to 1 if the key is down, or it is set
to 0 if it is up. The low bit is set to 1 if the key was pressed an odd number of times since

_ startup. Otherwise, it is set to O.

Parameter Type/Description

/pKeyState BYTE FAR * Points to the 256-byte buffer of virtual-key codes.

None.

An application calls the GetKeyboardState function in response to a keyboard-input
message. This function retrieves the state of the keyboard when the input message was
generated.

To obtain state information for individual keys, follow these steps:

1. Create an array of characters that is 265 bytes long.

2. Copy the contents of the buffer pointed to by the IpKeyState parameter into the array.

3. Use the virtual-key code "from Appendix A, "Virtual-Key Codes," in Reference, Volume
2, to obtain an individual key state.

4-181 GetKeyb oard Type

GetKeyboardType []]J
Syntax

Return Value

int GetKeyboardType(nTypeFlag)

This function retrieves the system-keyboard type.

Parameter

nTypeFlag

Type/Descri ption

int Determines whether the function returns a value indicating
the type or subtype of the keyboard. It may be one of the following
values:

Value

o

2

Meaning

Function returns the keyboard type.

Function returns the keyboard sUbtype.

Function returns the number of function keys on the
keyboard.

The return value indicates the type or subtype of the system keyboard or the number of
function keys on the keyboard. The subtype is an OEM-dependent value. The type may be
one of the following values:

Value

2

3

4

5

6

Meaning

IBM® PC/XTTM, or compatible (83-key) keyboard

Olivetti® M24 "ICO" (102-key) keyboard

IBM AT® (84-key) or similar keyboard

IBM Enhanced (101- or 102-key) keyboard

Nokia 1050 and similar keyboards

Nokia 9140 and similar keyboards

The return value is zero if the nTypeFlag parameter is greater than 2 or if the function fails.

,.

GetKeyNameText 4-182

Comments An application can detennine the number of function keys on a keyboard from the key­
board type. The following shows the number of function keys for each keyboard type: .

Type Number of Function Keys

10

2 12 (sometimes 18)

3 10

4 12

5 10

6 24

GetKeyNameText [[[]
Syntax

Return Value

int GetKeyNameText(IParam, lpBuffer, nSize)

This function retrieves a string which contains the name of a key.

The keyboard driver maintains a list of names in the fonn of character strings for keys with
names longer than a single character. The key name is translated according to the layout of
the currently installed keyboard. The translation is perfonned for the principal language
supported by the keyboard driver.

Parameter

lParam

lpBuffer

nSize

Type/Description

DWORD Specifies the 32-bit parameter of the keyboard message
(such as WM_KEYDOWN) which the function is processing. Byte 3
(bits 16-23) of the long parameter is a scan code. Bit 20 is the ex­
tended bit that distinguishes some keys on an enhanced keyboard. Bit
21 is a "don't care" bit; the application calling this function sets this
bit to indicate that the function should not distinguish between left
and right control and shift keys, for example.

LPSTR Specifies a buffer to receive the key name.

WORD Specifies the maximum length in bytes of the key name,
not including the tenninating NULL character.

The return value is the actual length of the string copied to IpBuffer.

4-183

GetKeyState
Syntax

Return Value

Comments

GetKeyState

int GetKeyState(nVirtKey)

This function retrieves the state of the virtual key specified by the nVirtKey parameter. The
state specifies whether the key is up, down, or toggled.

Parameter

nVirtKey

Type/Description

int Specifies a virtual key. If the desired virtual key is a letter or
digit (A through Z, a through z, or 0 through 9), n VirtKey must be set
to the ASCII value of that character. For other keys, it must be one of
the values listed in Appendix A, "Virtual-Key Codes," in Reference,
Volume 2.

The return value specifies the state of the given virtual key. If the high-order bit is 1, the
key is down. Otherwise, it is up. If the low-order bit is 1, the key is toggled. A toggle key,
such as the CAPS LOCK key, is toggled if it has been pressed an odd number of times since
the system was started. The key is untoggled if the low bit is O.

An application calls the GetKeyState function in response to a keyboard-input message.
This function retrieves the state of the key when the input message was generated.

GetLastActivePopup ~
Syntax

Return Value

HWND GetLastActivePopup(hwndOwner)

This function determines which pop-up window owned by the window identified by the
hwndOwner parameter was most recently active.

Parameter Type/Description

hwndOwner HWND Identifies the owner window.

The return value identifies the most-recently active pop-up window. The return value will
be hwndOwner if any of the following conditions are met:

• The window identified by hwndOwner itself was most recently active.

• The window identified by hwndOwner does not own any pop-up windows.

• The window identified by hwndOwner is not a top-level window or is owned by
another window.

,

GetMapMode 4-184

GetMapMode
Syntax

Return Value

GetMenu
Syntax

Return Value

int GetMapMode(hDC)

This function retrieves the current mapping mode. See the SetMapMode function, later in
this chapter, for a description of the mapping modes.

Parameter Type/Description

hDC HDC Identifies the device context.

The return value specifies the mapping mode.

HMENU GetMenu(hWnd)

This function retrieves a handle to the menu of the specified window.

Parameter Type/Description

hWnd HWND Identifies the window whose menu is to be examined.

The return value identifies the menu. It is NULL if the given window has no menu. The re­
turn value is undefined if the window is a child window.

GetMenuCheckMarkDimensions 1m
Syntax

Return Value

DWORD GetMenuCheckMarkDimensions()

This function returns the dimensions of the default checkmark bitmap. Windows displays
this bitmap next to checked menu items. Before calling the SetMenuItemBitmaps func­
tion to replace the default checkmark, an application should call the GetMenuCheck­
MarkDimensions function to determine the correct size for the bitmaps.

This function has no parameters.

The return value specifies the height and width of the default checkmark bitmap. The high­
order word contains the height in pixels and the low-order word contains the width.

4-185 GetMenultemCount

GetMenultemCount
Syntax

Return Value

GetMenultemlD
Syntax

Return Value

GetMenuState
Syntax

WORD GetMenuItemCount(hM enu)
) "

This function detennines the number of items in the menu identified by the hMenu parame­
ter. This may be either a pop-up or a top-level menu.

Parameter Type/Description

hMenu HMENU Identifies the handle to the menu to be examined.

The return value specifies the number of items in the menu specified by the hMenu para­
meter if the function is successful. Otherwise, it is -1.

WORD GetMenuItemID(hMenu, nPos)

This function obtains the menu-item identifier for a menu item located at the position de­
fined by the nPos parameter.

Parameter

hMenu

nPos

Type/Description

HMENU Identifies a handle to the pop-up menu that contains the
item whose ID is being retrieved.

int Specifies the position (zero-based) of the menu item whose ID
is being retrieved.

The return value specifies the item ID for the specified item in a pop-up menu if the func­
tion is successful; if hMenu is NULL or if the specified item is a pop-up menu (as opposed
to an item within the pop-up menu), the return value is-1.

WORD GetMenuState(hMenu, wId, wFlags)

This function obtains the number of items in the pop-up menu associated with the menu
item specified by the wId parameter if the hMenu parameter identifies a menu with an as­
sociated pop-up menu. If hMenu identifies a pop-up menu, this function obtains the status
of the menu item associated with wId.

GetMenuState 4-186

Return Value

Parameter

IzMenu

wId

wFlags

Type/Description

HMENU Identifies the menu.

WORD Specifies the menu-item ID.

WORD Specifies the nature of the wId parameter. If the wFlags
parameter contains MF _BYPOSITION, wId specifies a (zero-based)
relative position; if wFlags contains MF _BYCOMMAND, wId speci­
fies the item ID.

The return value specifies the outcome of the function. It is -1 if the specified item does
not exist. If the menu itself does not exist, a fatal exit occurs. If wId identifies a pop-up
menu, the return value contains the number of items in the pop-up menu in its high-order
byte, and the menu flags associated with the pop-up menu in its low-order byte; otherwise,
it is a mask (Boolean OR) of the values from the following list (this mask describes the sta­
tus of the menu item that wId identifies):

Value

MF_CHECKED

MF _DISABLED

MF_ENABLED

MF_GRAYED

MF _MENUB ARB REAK

MF _UNCHECKED

Meaning

Checkmark is placed next to item (pop-up menus only).

Item is disabled.

Item is enabled.

Item is disabled and grayed.

Same as MF _MENUBREAK, except for pop-up menus
where the new column is separated from the old column
by a vertical dividing line.

Item is placed on a new line (static menus) or in a new
column (pop-up menus) without separating columns.

Horizontal dividing line is drawn (pop-up menus only).
This line cannot be enabled, checked, grayed, or
highlighted. The lpNewItem and wIDNewItem parame­
ters are ignored.

Checkmark is not placed next to item (default).

4-187

GetMenuString
Syntax

Return Value

Comments

GetMenuString

int GetMenuString(hMenu, wIDItem, lpString, nMaxCollllt, wFlag)
I

This function copies the label of the' specified menu item into the IpString parameter.

Parameter

hMenll

wIDItem

ipString

nMaxCount

wFlag

Type/Description

HMENU Identifies the menu.

WORD Specifies the integer identifier of the menu item (from the
resource file) or the offset of the menu item in the menu, depending
on the value of the wFlag parameter.

LPSTR Points to the buffer that is to receive the label.

int Specifies the maximum length of the label to be copied. If the
label is longer than the maximum specified in nMaxCount, the extra
characters are truncated.

WORD Specifies the nature of the wID parameter. If wFlags con­
tains MF _BYPOSITION, wId specifies a (zero-based) relative
position; if the wFlags parameter contains MF _BYCOMMAND, wId
specifies the item ID.

The return value specifies the actual number of bytes copied to the buffer.

The nMaxCount parameter should be one larger than the number of characters in the label
to accommodate the null character that terminates a string.

GetMessage 4-188

GetMessage
Syntax

Return Value

Comments

BOOL GetMessage(lpMsg, hWnd, wMsgFilterMin, wMsgFilterMax)

This function retrieves a message from the application queue and places the message in the
data structure pointed to by the /pMsg parameter. If no message is available, the GetMes­
sage function yields control to other applications until a message becomes available.

GetMessage retrieves only messages associated with the window specified by the hWnd
parameter and within the range of message values given by the wMsgFilterMin and
wMsgFilterMax parameters. If hWnd is NULL, GetMessage retrieves messages for any
window that belongs to the application making the call. (The GetMessage function does
not retrieve messages for windows that belong to other applications.) If wMsgFilterMin
and wMsgFilterMax are both zero, GetMessage returns all available messages (no filtering
is performed).

The constants WM_KEYFIRST and WM_KEYLAST can be used as filter values to re­
trieve all messages related to keyboard input; the constants WM_MOUSEFIRST and
WM_MOUSELAST can be used to retrieve all mouse-related messages.

Parameter

/pMsg

hWnd

wMsgFilterMin

wMsgFilterMax

Type/Description

LPMSG Points to an MSG data structure that contains
message information from the Windows. application queue.

HWND Identifies the window whose messages are to be ex­
amined. If hWnd is NULL, GetMessage retrieves messages for
any window that belongs to the application making the call.

WORD Specifies the integer value of the lowest message
value to be retrieved.

WORD Specifies the integer value of the highest message
value to be retrieved.

The return value specifies the outcome of the function. It is nonzero if a message other
than WM_QUIT is retrieved. It is zero if the WM_QUIT message is retrieved.

The return value is usually used to decide whether to terminate the application's main loop
and exit the program.

In addition to yielding control to other applications when no messages are available, the
GetMessage and PeekMessage functions also yield control when WM_PAINT or
WM_ TIMER messages for other tasks are available.

The GetMessage, PeekMessage, and WaitMessage functions are the only ways to let
other applications run. If your application does not call any of these functions for long peri­
ods of time, other applications cannot run.

4-189 GetMessagePos

When GetMessage, PeekMessage, and WaitMessage yield control to other applications,
the stack and data segments of the application calling the function may move in memory to
accommodate the changing memory requirements of other applications. If the application
has stored long pointers to objects in the data or stack segment (that is, global or local vari­
ables), these pointers can become invalid after a call to GetMessage, PeekMessage, or
WaitMessage. The [pM sg parameter of the called function remains valid in any case.

GetMessagePos
Syntax

Return Value

Comments

DWORD GetMessagePos()

This function returns a long value that represents the cursor position (in screen coordi­
nates) when the last message obtained by the GetMessage function occurred.

This function has no parameters.

The return value specifies the x- and y-coordinates of the cursor position. The x-coordinate
is in the low-order word, and the y-coordinate is in the high-order word. If the return value
is assigned to a variable, the MAKEPOINT macro can be used to obtain a POINT struc­
ture from the return value; the LOWORD or HIWORD macro can be used to extract the
x- or the y-coordinate.

To obtain the current position of the cursor instead of the position when the last message
occurred, use the GetCursorPos function.

GetMessageTime
Syntax

Return Value

Comments

DWORD GetMessageTime()

This function returns the message time for the last message retrieved by the GetMessage
function. The time is a long integer that specifies the elapsed time (in milliseconds) from
the time the system was booted to the time the message was created (placed in the applica­
tion queue).

This function has no parameters.

The return value specifies the message time.

Do not assume that the return value is always increasing. The return value will "wrap
around" to zero if the timer count exceeds the maximum value for long integers.

To calculate time delays between messages, subtract the time of the second message from
the time of the first message.

GetMetaFile

GetMetaFile
Syntax

Return Value

4-190

HANDLE GetMetaFiIe{lpFilename)

This function creates a handle for the metafile named by the IpFilename parameter.

Parameter

IpFilename

Type/Description

LPSTR Points to the null-terminated character string that specifies
the DOS filename of the metafile. The metafile is assumed to exist.

The return value identifies a metafile if the function is successful. Otherwise, it is NULL.

GetMetaFileBits
Syntax

Return Value

Comme{7ls

HANDLE GetMetaFileBits(hMF)

This function returns a handle to a global memory block that contains the specified meta­
file as a collection of bits. The memory' block can be used to determine the size of the meta­
file or to save the metafile as a file. The memory block should not be modified.

Parameter Type/Description

hMF HANDLE Identifies the memory metafile.

The return value identifies the global memory block that contains the metafile. If an error
occurs, the return value is NULL.

The handle used as the hMF parameter becomes invalid when the getMetaFiIeBits func­
tion returns, so the returned global memory handle must be used to refer to the metafile.

Memory blocks created by this function are unique to the calling application and are not
shared by other applications. These blocks are automatically deleted when the application
terminates.

GetModuleFileName
Syntax int GetModuleFileName(hModule, IpFilename, nSize)

This function retrieves the full pathname of the executable file from which the specified
module was loaded. The function copies the null-terminated filename into the buffer
pointed to by the IpFilename parameter.

4-191

Return Value

Parameter

hModule

IpFilename

nSize

GetModuleHandle

Type/Description

HANDLE Identifies the module or the instance of the module.

LPSTR Points to the buffer that is to receive the filename.

int Specifies the maximum number of characters to copy. If the
filename is longer than the maximum number of characters specified
by the nSize parameter, it is truncated.

The return value specifies the actual length of the string copied to the buffer.

GetModuleHandle
Syntax

Return Value

HANDLE GetModuleHandle(lpModuleName)

This function retrieves the module handle of the specified module.

Parameter

lpModuleName

Type/Description

LPSTR Points to a null-terminated character string that specifies
the module.

The return value identifies the module if the function is successful. Otherwise, it is NULL.

GetModuleUsage
Syntax int GetModuleUsage(hModule)

This function returns the reference count of a specified module.

Parameter Type/Description

hModule HANDLE Identifies the module or an instance of the module.

Return Value The return value specifies the reference count of the module.

GetNearestC%r 4-192

GetNearestColor
Syntax

Return Value

DWORD GetNearestColor(hDC, crColor)

This function returns the closest logical color to a specified logical color the given device
can represent.

Parameter Type/Description

hDC HDC Identifies the device context.

crColor COLORREF Specifies the color to be matched.

The return value specifies an RGB color value that names the solid color closest to the
crColor value that the device can represent.

GetNearestPalettelndex []]]
Syntax

Return Value

WORD GetNearestPalettelndex(hPalette, crColor)

This function returns the index of the entry in a logical palette which most closely matches
a color value.

Parameter

hPalette

crColor

Type/Description

HPALETTE Identifies the logical palette.

COLORREF Specifies the color to be matched.

The return value is the index of an entry in a logical palette. The entry contains the color
which most nearly matches the specified color.

GetNextD IgGroupltem
Syntax HWND GetNextDlgGroupltem(hDlg, hCtl, bPrevious)

This function searches for the next (or previous) control within a group of controls in the
dialog box identified by the hDlg parameter. A group of controls consists of one or more
controls with WS_GROUP style.

4-193

Return Value

Comments

Parameter

hDlg

hCll

bPrevious

GetNextDlgTabltem

Type/Description

HWND Identifies the dialog box being searched.

HWND Identifies the control in the dialog box where the search
starts.

BOOL Specifies how the function is to search the group of con­
trols in the dialog box. If the bPrevious parameter is zero, the
function searches for the previous control in the group. If bPrevious
is nonzero, the function searches for the next control in the group.

The return value identifies the next or previous control in the group.

If the current item is the last item in the group and bPrevious is zero, the GetNext­
DlgGroupItem function returns the window handle of the first item in the group. If the
current item is the first item in the group and bPrevious is nonzero, GetNext­
DIgGroupltem returns the window handle of the last item in the group.

GetNextDlgTabltem
Syntax

Return Value

HWND GetNextDIgTabItem(hDlg, hCtl, bPrevious)

This function obtains the handle of the first control that has the WS_TABSTOP style that
precedes (or follows) the control identified by the hCll parameter.

Parameter

hDlg

hCll

bPrevious

Type/Description

HWND Identifies the dialog box being searched.

HWND Identifies the control to be used as a starting point for the
search.

BOOL Specifies how the function is to search the dialog box. If
the bPrevious parameter is zero, the function searches for the pre­
vious control in the dialog box. If bPrevious is nonzero, the function
searches for the next control in the dialog box. Identifies the control
to be used as a starting point for the search.

The return value identifies the previous (or next) control that has the WS_TABSTOP style
set.

GetNextWindow 4-194

GetNextWindow
Syntax

Return Value

GetNumTasks
Syntax

Return Value

HWND GetNextWindow(hWnd, wFlag)

This function searches for a handle that identifies the next (or previous) window in the
window-manager's list. The window-manager's list contains entries for all top-level
windows, their associated child windows, and the child windows of any child windows. If
the hWnd parameter is a handle to a top-level window, the function searches for the next
(or previous) handle to a top-level window; if hWnd is a handle to a child window, the
function searches for a handle to the next (or previous) child window.

Parameter

hWnd

wFlag

Type/Description

HWND Identifies the current window.

WORD Specifies whether the function returns a handle to the
next window or to the previous window. It can be either of the fol­
lowing values:

Value

GW _HWNDNEXT

GW _HWNDPREV

Meaning

The function returns a handle to the
next window.

The function returns a handle to the
previous window.

The return value identifies the next (or the previous) window in the window-manager's list.

int GetNumTasks()

This function returns the number of tasks currently executing in the system. A task is a
unique instance of a Windows application.

This function has no parameters.

The return value specifies an integer that represents the number of tasks currently execut­
ing in the system.

4-195

GetObject
Syntax

Return Value

GetObject

int GetObject(IzObject, nCoullt, lpObject)

This function fills a buffer with the logical data that defines the logical object specified by
the IzObject parameter. The GetObject function copies the number of bytes of data
specified by the nCount parameter to the buffer pointed to by the lpObject parameter. The
function retrieves data structures of the LOGPEN, LOGBRUSH, LOGFONT, or BIT­
MAP type, or an integer, depending on the logical object. The buffer must be sufficiently
large to receive the data.

If hObject specifies a bitmap, the function returns only the width, height, and color format
information of the bitmap. The actual bits must be retrieved by using the GetBitmapBits
function.

If hObject specifies a logical palette, it retrieves a two-byte value that specifies the number
of entries in the palette; it does not retrieve the entire LOGPALETTE data structure that
defines the palette. To get information on palette entries, an application must call the Get­
PaletteEntries function.

Parameter

hObject

llCOUllt

lpObject

Type/Description

HANDLE Identifies a logical pen, brush, font, bitmap, or
palette.

int Specifies the number of bytes to be copied to the buffer.

LPSTR Points to the buffer that is to receive the information.

The return value specifies the actual number of bytes retrieved. It is zero if an error occurs.

GetPaletteEntries []I]
Syntax WORD GetPaletteEntries(hPalette, wStartIlldex, wNumEntries, lpPaletteElltries)

This function retrieves a range of palette entries in a logical palette.

GetParent

Return Value

GetParent
Syntax

Return Value

GetPixel
Syntax

Parameter

hPalette

wStartIndex

wNumEntries

IpPa Ie tteEn tries

4-196

Type/Description

HPALETTE Identifies the logical palette.

WORD Specifies the first entry in the logical palette to be re­
trieved.

WORD Specifies the number of entries in the logical palette
to be retrieved.

LPPALETTEENTRY Points to an array of PALETTE­
ENTRY data structures to receive the palette entries. The array
must contain at least as many data structures as specified by the
wNumEntries parameter.

The return value is the number of entries retrieved from the logical palette. It is zero if the
function failed.

HWND GetParent(hWnd)

This function retrieves the window handle of the specified window's parent window (if
any).

Parameter

hWnd

Type/Description

HWND Identifies the window whose parent window handle is to
be retrieved.

The return value identifies the parent.window. It is NULL if the window has no parent
window.

DWORD GetPixel(hDC, X, y)

This function retrieves the RGB color value of the pixel at the point specified by the X and
Y parameters. The point must be in the clipping region. If the point is not in the clipping re­
gion, the function .is ignored.

4-197

Return Value

Comments

Parameter

hDC

X

Y

GetPolyFillMode .

Type/Description

"DC Identifies the device context.

int Specifies the logical x-coordinate of the point to be examined.

int Specifies the logical y-coordinate of the point to be examined.

The return value specifies an RGB color value for the color of the given point. It is -1 if
the coordinates do not specify a point in the clipping region.

Not all devices support the GetPixel function. For more information, see the RC_BITBLT
raster capability in the GetDeviceCaps function, earlier in this chapter.

GetPolyFiliMode
Syntax

Return Value

int GetPolyFillMode(hDC)

This function retrieves the current polygon-filling mode.

Parameter Type/Description

hDC "DC Identifies the device context.

The return value specifies the polygon-filling mode. It can be anyone of the following
values:

Value

ALTERNATE

WINDING

Meaning

Alternate mode

Winding-number mode

For a description of these modes, see the SetPolyFillMode function, later in this chapter.

GetPriorityClipboardFormat []]]
Syntax int GetPriorityClipboardFormat(ipPriorityList, nCount)

This function returns the first clipboard format in a list for which data exist in the clip­
board.

GetPrivateProfiieint 4-198

Return Value

Parameter

IpPriorityList

nCount

Type/Description

WORD FAR * Points to an integer array that contains a list of
clipboard fonnats in priority order. For a description of the data for­
mats, see the SetClipboardData function later in this chapter.

int Specifies the number of entries in IpPriorityList. This value
must not be greater than the actual number of entries in the list.

The return value is the highest priority clipboard fonnat in the list for which data exist. If
no data exist in the clipboard, this function returns NULL. If data exist in the clipboard
which did not match any fonnat in the list, the return value is -1.

GetPrivateProfilelnt []]]
Syntax WORD GetPrivateProfileInt(lpApplicationName, IpKeyName, nDefault, IpFileName)

This function retrieves the value of an integer key from the specified initialization file.

The function searches the file for a key that matches the name specified by the IpKeyName
parameter under the application heading specified by the IpApplicationName parameter.
An integer entry in the initialization file must have the following fonn:

[application nam~J
keyname = value

Parameter

IpApplicationN ame

IpKeyName

nDefault

IpFileName

Type/Description

LPSTR Points to the name of a Windows application that
appears in the initialization file.

LPSTR Points to a key name that appears in the initializa­
tion file.

int Specifies the default value for the given key if the key
cannot be found in the initialization file.

LPSTR Points to a string that names the initialization file.
If IpFileName does not contain a path to the file, Windows
searches for the file in the Windows directory.

4-199

Return Value

Comments

GetPrivateProfileString

The return value specifies the result of the function. The return value is zero if the value
that corresponds to the specified key name is not an integer or if the integer is negative. If
the value that corresponds to the key name consists of digits followed by nonnumeric
characters, the function returns the value of the digits. For example, if the entry Key­
Name=102abc is accessed, the function returns 102. If the key is not found, this function
returns the default value, nDefault.

The GetPrivateProfilelnt function is not case dependent, so the strings in IpApplicatioll­
Name and IpKeyName may be in any combination of uppercase and lowercase letters.

GetPrivateProfileString [1[]
Syntax int GetPrivateProfileString(ipApplicationName, IpKeyName, IpDefault,

IpReturnedString, nSize, IpFileName)

This function copies a character string from the specified initialization file into the buffer
pointed to by the IpReturnedString parameter.

The function searches the file for a key that matches the name specified by the IpKeyName
parameter under the application heading specified by the IpApplicationName parameter. If
the key is found, the corresponding string is copied to the buffer. If the key does not exist,
the default character string specified by the IpDefault parameter is copied. A string entry in G"l
the initialization file must have the following form:

[application name]
keyname = string

If IpKeyName is NULL, the GetPrivateProfileString function enumerates all key nam~s
associated with IpApplicationName by filling the location pointed to by IpReturnedString
with a list of key names (not values). Each key name in the list is terminated with a null
character.

Parameter

IpAppl icationN ame

IpKeyName

IpDefault

Type/Description

LPSTR Points to the name of a Windows application that
appears in the initialization file.

LPSTR Points to a key name that appears in the initializa­
tion file.

LPSTR Specifies the default value for the given key if the
key cannot be found in the initialization file.

GetProcAddress 4-200

Return Value

Comments

Parameter

IpReturnedString

nSize

IpFileName

Type/Description

LPSTR Points to the buffer that receives the character
string.

int Specifies the maximum number of characters (including
the last null character) to be copied to the buffer.

LPSTR Points to a string that names the initialization file.
If IpFileName does not contain a path to the file, Windows
searches for the file in the Windows directory.

The return value specifies the number of characters copied to the buffer identified by the
IpReturnedString parameter, not including the terminating null character. If the buffer is
not large enough to contain the entire string and IpKeyName is not NULL, the return value
is equal to the length specified by the nSize parameter. If the buffer is not large enough to
contain the entire string and IpKeyName is NULL, the return value is equal to the length
specified by the nSize parameter minus 2.

GetPrivateProfileString is not case dependent, so the strings in IpApplicationName and
IpKeyName may be in any combination of uppercase and lowercase letters.

GetProcAddress
Syntax

Return Value

FARPROC GetProcAddress(hModule,lpProcName)

This function retrieves the memory address of the function whose name is pointed to by
the IpProcName parameter. The GetProcAddress function searches for the function in the
module specified by the hModule parameter, or in the current module if hModule is NULL.
The function must be an exported function; the module's definition file must contain an ap­
propriate EXPORTS line for the function.

Parameter

hModule

IpProcName

Type/Description

HANDLE Identifies the library module that contains the function.

LPSTR Points to the function name, or contains the ordinal value
of the function. If it is an ordinal value, the value must be in the low­
order word and zero must be in the high-order word. The string must
be a null-terminated character string.

The return value points to the function's entry point if the function is successful. Other­
wise, it is NULL.

4-201

Comments

GetProfilelnt
Syntax

Return Value

GelProfilelnl

If the lpProcName parameter is an ordinal value and a function with the specified ordinal
does not exist in the module, GetProcAddress can still return a non-NULL value. In cases
where the function may not exist, specify the function by name rather than ordinal value.

Only use GetProcAddress to retrieve addresses of exported functions that belong to li­
brary modules. The MakeProcInstance function can be used to access functions within
different instances of the current module.

The spelling of the function name (pointed to by lpProcName) must be identical to the
spelling as it appears in the source library's definition (.DEF) file. The function can be re­
named in the definition file.

WORD GetProfilelnt(/pAppName, lpKeyName, nDefault)

This function retrieves the value of an integer key from the Windows initialization file,
WIN.lNI. The function searches WIN.lNI for a key that matches the name specified by the
lpKeyName parameter under the application heading specified by the lpAppName parame­
ter. An integer entry in WIN.lNI must have the following form:

[application name]
keyname = value

Parameter

lpAppName

lpKeyName

nDefault

Type/Description

LPSTR Points to the name of a Windows application that appears
in the Windows initialization file.

LPSTR Points to a key name that appears in the Windows initiali­
zation file.

int Specifies the default value for the given key if the key cannot
be found in the Windows initialization file.

The return value specifies the result of the function. The return value is zero if the value
that corresponds to the specified key name is not an integer or if the integer is negative. If
the value that corresponds to the key name consists of digits followed by nonnumeric
characters, the function returns the value of the digits. For example, if the entry Key­
Name=102abc is accessed, the function returns 102. If the key is not found, this function
returns the default value, nDefault.

GetProfileString 4-202

GetProfileString
Syntax

Return Value

Comments

int GetProfileString(/pAppName, IpKeyName, IpDefault, IpReturnedString, nSize)

This function copies a character string from the Windows initialization file, WIN.INI, into
the buffer pointed to by the IpReturnedString parameter. The function searches WIN.lNI
for a key that matches the name specified by the IpKeyName parameter under the applica­
tion heading specified by the IpAppName parameter. If the key is found, the corresponding
string is copied to the buffer. If the key does not exist, the default character string specified
by the IpDefault parameter is copied. A string entry in WIN.INI must have the following
form:

[application name]
keyname = value

If IpKeyName is NULL, the GetProfileString function enumerates all key names as­
sociated with IpAppName by filling the location pointed to by IpReturnedString with a list
of key names (not values). Each key name in the list is terminated with a null character.

Parameter

IpAppName

IpKeyName

IpDefault

IpReturnedString

nSize

Type/Description

LPSTR Points to a null-terminated character string that
names the application.

LPSTR Points to a null-terminated character string that
names a key.

LPSTR Specifies the default value for the given key if the
key cannot be found in the initialization file.

LPSTR Points to the buffer that receives the character string.

int Specifies the number of characters (including the last null
character) that will be copied to the buffer.

The return value specifies the number of characters copied to the buffer identified by the
IpReturnedString parameter, not including the terminating null character. If the buffer is
not large enough to contain the entire string and IpKeyName is not NULL, the return value
is equal to the length specified by the nSize parameter. If the buffer is not large enough to
contain the entire string and IpKeyName is NULL, the return value is equal to the length
specified by the nSize parameter minus 2.

GetProfileString is not case-dependent, so the strings in IpAppName and IpKeyNa"!e may
be in any combination of uppercase and lowercase letters.

4-203

GetProp
Syntax

Return Value

Comments

GetProp

HANDLE GetProp(hWnd,lpString)

This function retrieves a data handle from the property list of the specified window. The
character string pointed to by the ipString parameter identifies the handle to be retrieved.
The string and handle are assumed to have been added to the property list by using the Set­
Prop function.

Parameter

hWnd

IpString

Type/Description

HWND Identifies the window whose property list is to be
searched.

LPSTR Points to a null-tenninated character string or an atom that
identifies a string. If an atom is given, it must have been created pre­
viously by using the AddAtom function. The atom, a 16-bit value,
must be placed in the low-order word of the IpString parameter; the
high-order word must be set to zero.

The return value identifies the associated data handle if the property list contains the given
string. Otherwise, it is NULL.

The value retrieved by the GetProp function can be any 16-bit value useful to the applica­
tion.

GetRgnBox []]J
Syntax

Return Value

int GetRgnBox(hRgn, IpRect)

This function retrieves the coordinates of the bounding rectangle of the region specified by
the hRgn parameter.

Parameter

hRgn

IpRect

Type/Description

HRGN Identifies the region.

LPRECT Points to a RECT data structure to receive the
coordinates of the bounding rectangle.

The return value specifies the region's type. It can be any of the following values.

GetROP2

GetROP2
Syntax

Return Value

Comments

GetRValue
Syntax

Return Value

Value

COMPLEXREOION

NULLREOION

SIMPLEREOION

Meaning

Region has overlapping borders.

Region is empty.

Region has no overlapping borders.

The return value is NULL if the hRgn parameter does not specify a valid region.

int GetROP2(hDC)

4-204

This function retrieves the current drawing mode. The drawing mode specifies how the
pen or interior color and the color already on the display surface are combined to yield a
new color.

Parameter Type/Description

hDC HDC Identifies the device context for a raster device.

The return value specifies the drawing mode. For a list of the drawing modes, see Table
4.16, "Drawing Modes," in the SetROP2 function, later in this chapter.

For more information about the drawing modes, see Chapter 11, "Binary and Ternary
Raster-Operation Codes," in Reference, Volume 2.

BYTE GetRValue(rgbColor)

This macro extracts the red value from an ROB color value.

Parameter

rgbColor

Type/Description

DWORD Specifies a red, a green, and a blue color field, each
specifying the intensity of the given color.

The return value specifies a byte that contains the red value of the rgbColor parameter.

4-205

Comments

GetScroliPos
Syntax

Return Value

GetScrollPos

The value OFFH corresponds to the maximum intensity value for a single byte; OOOH corre­
sponds to the minimum intensity value for a single byte.

int GetScrollPos(IzWnd, nBar)

This function retrieves the current position of a scroll-bar thumb. The current position is a
relative value that depends on the current scrolling range. For example, if the scrolling
range is 0 to 100 and the thumb is in the middle of the bar, the current position is 50.

Parameter

IzWnd

nBar

Type/Description

HWND Identifies a window that has standard scroll bars or a
scroll-bar control, depending on the value of the nBar parameter.

int Specifies the scroll bar to examine. It can be one of the fol­
lowing values:

Value

SB_VERT

Meaning

Retrieves the position of a scroll-bar control.
In this case, the IzWnd parameter must be the
window handle of a scroll-bar control.

Retrieves the position of a window's horizon­
tal scroll bar.

Retrieves the position of a window's vertical
scroll bar.

The return value specifies the current position of the scroll-bar thumb.

GetScroliRange ,
Syntax void GetScrollRange(IzWnd, nBar, ipMinPos, ipMaxPos)

This function copies the current minimum and maximum scroll-bar positions for the given
scroll bar to the locations specified by the lpMinPos and lpMaxPos parameters. If the
given window does not have standard scroll bars or is not a scroll-bar control, then the Get­
ScrollRange function copies zero to ipMinPos and lpMaxPos.

G

GetScrollRange 4-206

Return Value

Comments

Parameter

hWnd

nBar

/pMinPos

/pMaxPos

None.

Type/Description

HWND Identifies a window that has standard scroll bars or a
scroll-bar control, depending on the value of the nBar parameter.

int Specifies an integer value that identifies which scroll bar to
retrieve. It can be one of the following values:

Value

SB_VERT

Meaning

Retrieves the position of a scroll-bar control;
in this case, the hWnd parameter must be the
handle of a scroll-bar control.

Retrieves the position of a window's horizon­
tal scroll bar.

Retrieves the position of a window's vertical
scroll bar.

LPINT Points to the integer variable that is to receive the min­
imum position.

LPINT Points to the integer variable that is to receive the maxi­
mum position.

The default range for a standard scroll bar is 0 to 100. The default range for a scroll-bar
control is empty (both values are zero).

4-207

GetStockObject
Syntax

GelSlockObjecl

HANDLE GetStockObject(nlndex)

This function retrieves a handle to one of the predefined stock pens, brushes, or fonts.

Parameter

nlndex

Type/Description

int Specifies the type of stock object desired. It can be anyone of
the following values:

Value Meaning

BLACK_BRUSH Black brush

DKGRAY_BRUSH Dark gray brush

GRAY_BRUSH Gray brush

HOLLOW_BRUSH Hollow brush

LTGRAY_BRUSH Light gray brush

NULL_BRUSH Null brush

WHITE_BRUSH White brush

BLACK_PEN Black pen

NULL_PEN Null pen

WHITE_PEN White pen

ANSCFIXED _FONT ANSI fixed system font

ANSC VAR_FONT ANSI variable system font

DEVICE_DEFAULT_FONT Device-dependent font

OEM_FIXED_FONT OEM-dependent fixed font

SYSTEM_FONT The system font. By default,
Windows uses the system font
to draw menus, dialog-box con-
trols, and other text. In
Windows versions 3.0 and later,
. the system font is proportional
width; earlier versions of
Windows use a fixed-width sys-
tem font.

G

,

GetStretchBltMode 4-208

Return Value

Comments

Parameter Type/Description

Value Meaning

The fixed-width system font
used in earlier versions of
Windows. This stock object is
available for compatibility pur­
poses.

Default color palette. This
palette consists of the 20 static
colors always present in the sys­
tem palette for matching colors
in the logical palettes of back­
ground windows.

The return value identifies the desired logical object if the function is successful. Other­
wise, it is NULL.

The DKGRAY_BRUSH, GRAY_BRUSH, and LTGRAY_BRUSH objects should not be
used as background brushes or for any other purpose in a window whose class does not
specify CS_HREDRAW and CS_ VREDRAW styles. Using a gray stock brush in such
windows can lead to misalignment of brush patterns after a window is moved or sized.
Stock-brush origins cannot be adjusted (for more information, see the SetBrushOrg func­
tion, later in this chapter).

GetStretchBltMode
Syntax

Return Value

int GetStretchBItMode(hDC)

This function retrieves the current stretching mode. The stretching mode defines how infor­
mation is to be added or removed from bitmaps that are stretched or compressed by using
the StretchBlt function.

Parameter Type/Description

hDC HDC Identifies the device context.

The return value specifies the current stretching mode. It can be WHlTEONBLACK,
BLACKONWHITE, or COLORONCOLOR. For more information, see the SetStretch­
BItMode function, later in this chapter.

4-209

GetSubMenu
Syntax

Return Value

GetSysColor
Syntax

Return Value

Comments

GetSubMenu

HMENU GetSubMenu(hMenu, nPos)

This function retrieves the menu handle of a pop-up menu.

Parameter

hMenu

nPos

Type/Description

HMENU Identifies the menu.

int Specifies the position in the given menu of the pop-up menu.
Position values start at zero for the first menu item. The pop-up
menu's integer ID cannot be used in this function.

The return value identifies the given pop-up menu. It is NULL if no pop-up menu exists at
the given position.

DWORD GetSysColor(nlndex)

This function retrieves the current color of the display element specified by the nlndex par- Co
ameter. Display elements are the various parts of a window and the Windows display that
appear on the system display screen.

Parameter

nlndex

Type/Description

int Specifies the display element whose color is to be retrieved.
For a list of the index values, see the SetSysColor function, later in
this chapter.

The return value specifies an ROB color value that names the color of the given element.

System colors for monochrome displays are usually interpreted as various shades of gray.

GetSysModalWindow 4-210

GetSysModalWindow
Syntax

Return Value

HWND GetSysModalWindow()

This function returns the handle of a system-modal window, if one is present.

This function ·has no parameters.

The return value identifies the system-modal window, if one is present. If no such window
is present, the return value is NULL.

GetSystemDirectory lm
Syntax

Return Value

Comments

WORD GetSystemDirectory(lpBuffer, nSize)

This function obtains the pathname of the Windows system subdirectory. The system sub­
directory contains such files as Windows libraries, drivers, and font files.

Parameter

IpBuffer

nSize

Type/Description

LPSTR Points to the buffer that is to receive the null-terminated
character string containing the pathname.

int Specifies the maximum size (in bytes) of the buffer. This value
should be set to at least 144 to allow sufficient room in the buffer for
the pathname.

The return value is the length of the string copied to IpBuffer, not including the terminating
null character. If the return value is greater than nSize, the return value is the size of the
buffer required to hold the pathname. The return value is zero if the function failed.

The pathname retrieved by this function does not end with a backslash (\), unless the sys­
tem directory is the root directory. For example, if the system directory is named
WINDOWS\5YSTEM on drive C:, the pathname of the system subdirectory retrieved by
this function is C:\ WINDOWS\sYSTEM.

4-211 GetSystemMenu

GetSystemMenu
Syntax

Return Value

Comments

HMENU GetSystemMenu(hWnd, bRevert)

This function allows the application to access the System menu for copying and modifica­
tion.

Parameter

hWnd

bRevert

Type/Description

HWND Identifies the window that will own a copy of the System
menu.

BOOL Specifies the action to be taken.

If bRevert is:

zero

nonzero

Description

GetSystemMenu returns a handle to a copy of the
System menu currently in use. This copy is ini­
tially identical to the System menu, but can be
modified.

GetSystemMenu destroys the possibly modified
copy of the System menu (if there is one) that
belongs to the specified window and returns a
handle to the original, unmodified version of the
System menu.

The return value identifies the System menu if bRevert is nonzero and the System menu
has been modified. If bRevert is nonzero and the System menu has not been modified, the
return value is NULL. If bRevert is zero, the return value identifies a copy of the System
menu.

Any window that does not use the GetSystemMenu function to make its own copy of the
System menu receives the standard System menu.

The handle returned by the GetSystemMenu function can be used with the Append­
Menu, InsertMenu or ModifyMenu functions to change the System menu. The System
menu initially contains items identified with various ID values such as SC_CLOSE,
SC_MOVE, and SC_SIZE. Menu items on the System menu send WM_SYSCOMMAND
messages. All predefined System-menu items have ID numbers greater than OxFOOO. If an
application adds commands to the System menu, it should use ID numbers less than FooO.

Windows automatically grays items on the standard System menu, depending on the situa­
tion. The application can carry out its own checking or graying by responding to the
WM_INITMENU message, which is sent before any menu is displayed.

GetSystemMetrics 4-212

G etSystemM etrics
Syntax

Return Value

Comments

int GetSystemMetrics(nlndex)

This function retrieves the system metrics. The system metrics are the widths and heights
of various display elements of the Windows display. The GetSystemMetrics function can
also return flags that indicate whether the current version is a debugging version, whether
a mouse is present, or whether the meaning of the left and right mouse buttons have been
exchanged.

Parameter Type/Description

nlndex int Specifies the system measurement to be retrieved. All measure­
ments are given in pixels. The system measurement must be one of
the values listed in Table 4.10, "System Metric Indexes."

The return value specifies the requested system metric.

System metrics depend on the system display and may vary from display to display. Table
4.10 lists the system-metric values for the nlndex parameter:

Table 4.10 System Metric Indexes

Index Meaning

SM_ CXSCREEN

SM_CYSCREEN

SM_CXFRAME

SM_CYFRAME

SM_CXVSCROLL

SM_CYVSCROLL

SM_CXHSCROLL

SM_CYHSCROLL

SM_CYCAPTION

SM_CXBORDER

SM_CYBORDER

SM_CXDLGFRAME

SM_CYDLGFRAME

SM_CXHTHUMB

SM_CYVTHUMB

Width of screen.

Height of screen.

Width of window frame that can be sized.

Height of window frame that can be sized.

Width of arrow bitmap on vertical scroll bar.

Height of arrow bitmap on vertical scroll bar.

Width of arrow bitmap on horizontal scroll bar.

Height of arrow bitmap on horizontal scroll bar.

Height of caption.

Width of window frame that cannot be sized.

Height of window frame that cannot be sized.

Width of frame when window has WS_DLGFRAME style.

Height of frame when window has WS_DLGFRAME style.

Width of thumb box on horizontal scroll bar.

J:Ieight of thumb box on vertical scroll bar.

4-213 Ge tSystemPa Ie tte Entries

Table 4.10 System Metric Indexes (continued)

Index Meaning

SM_CXICON Width of icon.

SM_CYICON Height of icon.

SM_CXCURSOR

SM_CYCURSOR

SM_CYMENU

SM_CXFULLSCREEN

SM_CYFULLSCREEN

SM_CYKANJIWINDOW

SM_CXMINTRACK

SM_CYMINTRACK

SM_CXMIN

SM_CYMIN

SM_CXSIZE

SM_CYSIZE

SM_MOUSEPRESENT

SM_DEBUG

SM_SWAPBUTTON

Width of cursor.

Height of cursor.

Height of single-line menu bar.

Width of window client area for full-screen window.

Height of window client area for full-screen window (equiv­
alent to the height of the screen minus the height of the
window caption).

Height of Kanji window.

Minimum tracking width of window.

Minimum tracking height of window.

Minimum width of window.

Minimum height of window.

Width of bitmaps contained in the title bar.

Height of bitmaps contained in the title bar.

Nonzero if mouse hardware installed.

Nonzero if Windows debugging version.

Nonzero if left and right mouse buttons swapped.

GetSystemPaletteEntries [1[]
Syntax WORD GetSystemPaletteEntries(hDC, wStartIndex, wNumEntries, IpPaletteEntries)

This function retrieves a range of palette entries from the system palette.

Parameter

hDC

wStartIndex

wNumEntries

Type/Description

HDC Identifies the device context.

WORD Specifies the first entry in the system palette to be re­
trieved.

WORD Specifies the number of entries in the system palette
to be retrieved.

GetSystemPaletteUse 4-214

Return Value

Parameter

lpPa Ie tteEn tries

Type/Description

LPPALETTEENTRY Points to an array of PALETTE­
ENTRY data structures to receive the palette entries. The array
must contain at least as many data structures as specified by the
wNumEntries parameter.

The return value is the number of entries retrieved from the system palette. It is zero if the
function failed.

GetSystemPaletteUse [I[]
Syntax

Return Value

WORD GetSystemPaletteUse(hDC)

This function determines whether an application has access to the full system palette. By
default, the system palette contains 20 static colors which are not changed when an applica­
tion realizes its logical palette. An application can gain access to most of these colors by
calling the SetSystemPaletteUse function.

The device context identified by the hDC parameter must refer to a device that supports
color palettes.

Parameter Type/Description

hDC HDC Identifies the device context.

The return value specifies the current use of the system palette. It is either of the following
values:

Value

SYSPAL_NOSTATIC

Meaning

System palette contains no static colors except black and
white.

System palette contains static colors which will not
change when an application realizes its logical palette.

4-215 Get Tabbed TextExtent

GetTabbedTextExtent []]]
Syntax

Return Value

Comments

DWORD GetTabbedTextExtent(hDC, ipString, IlCount, IlTabPositiollS,
ipnTabStopPositions)

This function computes the width and height of the line of text pointed to by the ipString
parameter. If the string contains one or more tab characters, the width of the string is based
upon the tab stops specified by the ipnTabStopPositions parameter. The GetTabbedTex­
tExtent function uses the currently selected font to compute the dimensions of the string.
The width and height (in logical units) are computed without considering the current clip­
ping region.

Parameter

hDC

ipString

nCount

nTabPositions

ipnTabStopPositions

Type/Description

HDC Identifies the device context.

LPSTR Points to a text string.

int Specifies the number of characters in the text string.

int Specifies the number of tab-stop positions in the array
to which the ipnTabStopPositions points.

LPINT Points to an array of integers containing the tab­
stop positions in pixels. The tab stops must be sorted in
increasing order; back tabs are not allowed.

The return value specifies the dimensions of the string. The height is in the high-order
word; the width is in the low-order word.

Since some devices do not place characters in regular cell arrays (that is, they carry out
kerning), the sum of the extents of the characters in a string may not be equal to the extent
of the string.

If the nTabPositions parameter is zero and the ipnTabStopPositions parameter is NULL,
tabs are expanded to eight average character widths.

If nTabPositions is 1, the tab stops will be separated by the distance specified by the first
value in the array to which ipnTabStopPositions points.

If ipnTabStopPositions points to more than a single value, then a tab stop is set for each
value in the array, up to the number specified by nTabPositions.

GetTempOrive 4-216

GetTempDrive
Syntax

Return Value

BYTE GetTempDrive(cDriveLetter)

This function takes a drive letter or zero and returns a letter that specifies the optimal drive
for a temporary file (the disk drive that can provide the best access time during disk opera­
tions with a temporary file).

The GetTempDrive function returns the drive letter of a hard disk if the system has one. If
the cDriveLetter parameter is zero, the function returns the drive letter of the current disk;
if cDriveLetter is a letter, the function returns the letter of that drive or the letter of another
available drive.

Parameter Type/Description

cDriveLetter BYTE Specifies a disk-drive letter.

The return value specifies the optimal disk drive for temporary files.

GetTempFileName
Syntax int GetTempFiIeName(cDriveLetter, /pPrefixString, wUnique, /pTempFileName)

This function creates a temporary filename of the following form:

drive:\path\prefixuuuu.tmp

In this syntax line, drive is the drive letter specified by the cDriveLetter parameter; path is
the pathname of the temporary file (either the root directory of the specified drive or the
directory specified in the TEMP environment variable); prefix is all the letters (up to the
first three) of the string pointed to by the /pPrefixString parameter; and uuuu is the hex­
adecimal value of the number specified by the wUnique parameter.

Parameter

cDriveLetter

/pPrefixString

wUnique

Type/Description

BYTE Specifies the suggested drive for the temporary
filename. If cDriveLetter is zero, the default drive is used.

LPSTR Points to a null-terminated character string to be used
as the temporary filename prefix. This string must consist of
characters in the OEM-defined character set.

WORD Specifies an unsigned short integer.

4-217

Return Value

Comments

GetTextAlign
Syntax

Parameter

/pTempFileName

Get TextAlign

Type/Description

LPSTR Points to the buffer that is to receive the temporary
filename. This string consists of characters in the OEM-defined
character set. This buffer should be at least 144 bytes in length
to allow sufficient room for the pathname.

The return value specifies a unique numeric value used in the temporary filename. If a non­
zero value was given for the wUnique parameter, the return value specifies this same num­
ber.

To avoid problems resulting from converting OEM character an string to an ANSI string,
an application should call the _Iopen function to create the temporary file.

The GetTempFileName function uses the suggested drive letter for creating the temporary
filename, except in the following cases:

• If a hard disk is present, GetTempFileName always uses the drive letter of the first
hard disk.

• Otherwise, if a TEMP environment variable is defined and its value begins with a drive
letter, that drive letter is used. ! G')

If the TF _FORCEDRIVE bit of the cDriveLetter parameter is set, the above exceptions do
not apply. The temporary filename will always be created in the current directory of the
drive specified by cDriveLetter, regardless of the presence of a hard disk or the TEMP en­
vironment variable.

If the wUnique parameter is zero, GetTempFileName attempts to form a unique number
based on the current system time. If a file with the resulting filename exists, the number is
increased by one and the test for existence is repeated. This continues until a unique
filename is found; GetTempFileName then creates a file by that name and closes it. No at­
tempt is made to create and open the file when wUnique is nonzero.

WORD GetTextAlign(hDC)

This function retrieves the status of the text-alignment flags. The text-alignment flags de­
termine how the TextOut and ExtTextOut functions align a string of text in relation to the
string's starting point.

GetTextAlign 4-218

Return Value

Comments

Parameter Type/Description

hDC HDC Identifies the device context.

The return value specifies the status of the text-alignment flags. The return value is a com­
bination of one or more of the following values:

Value

TA_CENTER

TA_NOUPDATECP

TA_RIGHT

TA_UPDATECP

Meaning

Specifies alignment of the x-axis and the baseline of the
chosen font within the bounding rectangle.

Specifies alignment of the x-axis and the bottom of the
bounding rectangle.

Specifies alignment of the y-axis and the center of the bound­
ing rectangle.

Specifies alignment of the y-axis and the left side of the
bounding rectangle.

Specifies that the current position is not updated.

Specifies alignment of the y-axis and the right side of the
bounding rectangle.

Specifies alignment of the x-axis and the top of the bounding
rectangle.

Specifies that the current position is updated.

The text-alignment flags are not necessarily single-bit flags and may be equal to zero. To
verify that a particular flag is set in the return value of this function, build an application
that will perform the following steps:

1. Apply the bitwise OR operator to the flag and its related flags.

The following list shows the groups of related flags:

• TA_LEFT, TA_CENTER, and TA_RIGHT

• TA_BASELINE, TA_BOTTOM, and TA_ TOP

• TA_NOUPDATECPandTA_UPDATECP

2. Apply the bitwise AND operator to the result and the return value.

3. Test for the equality of this result and the flag.

4-219 GetTextCharacterExtra

The following example shows a method for determining which horizontal-alignment flag
is set:

switch «TA_LEFT TA_RIGHT ITA_CENTER) & GetTextAlign(hDC)) I
case TA_LEFT

GetTextCharacterExtra
Syntax

Return Value

GetTextColor
Syntax

int GetTextCharacter Extra(hDC)

This function retrieves the current intercharacter spacing. The intercharacter spacing de­
fines the extra space (in logical units) that the TextOut or ExtTextOut functions add to
each character as they write a line. The spacing is used to expand lines of text.

If the current mapping mode is not MM_ TEXT, the GetTextCharacter Extra function
transforms and rounds the result to the nearest unit.

Parameter Type/Description

hDC HDC Identifies the device context.

The return value specifies the current intercharacter spacing.

DWORD GetTextColor(hDC)

This function retrieves the current text color. The text color defines the foreground color of
characters drawn by using the TextOut or ExtTextOut functions. .

Get TextExtent 4-220

Return Value

GetTextExtent
Syntax

Return Value

Comments

GetTextFace
Syntax

Parameter Type/Description

hDC HDC Identifies the device context.

The return value specifies the current text color as an RGB color value.

DWORD GetTextExtent(hDC, lpString, nCount)

This function computes the width and height of the line of text pointed to by the lpString
parameter. The GetTextExtent function uses the currently selected font to compute the di­
mensions of the string. The width and height (in logical units) are computed without con­
sidering the current clipping region.

Parameter

hDC

lpString

nCount

Type/Description

HDC Identifies the device context.

LPSTR Points to a text string.

int Specifies the number of characters in the text string.

The return value specifies the dimensions of the string. The height is in the high-order
word; the width is in the low-order word.

Since some devices do not place characters in regular cell arrays (that is, they carry out
kerning), the sum of the extents of the characters in a string may not be equal to the extent
of the string.

int GetTextFace(hDC, nCount, lpFacename)

This function copies the typeface name of the selected font into a buffer pointed to by the
lpFacename parameter. The typeface name is copied as a null-terminated character string.
The nCount parameter specifies the maximum number of characters to be copied. If the
name is longer than the number of characters specified by nCount, it is truncated.

4-221

Return Value

GetTextMetrics
Syntax

Return Value

GetTextMetrics

Parameter Type/Description

hDC HDC Identifies the device context.

nCount int Specifies the size of the buffer in bytes.

/pFacename LPSTR Points to the buffer that is to receive the typeface name.

The return value specifies the actual number of bytes copied to the buffer. It is zero if an
error occurs.

BOOL GetTextMetrics(hDC, /pMetrics)

This function fills the buffer pointed to by the /pMetrics parameter with the metrics for the
selected font.

Parameter

hDC

/pMetrics

Type/Description

HDC Identifies the device context.

LPTEXTMETRIC Points to the TEXTMETRIC data structure
that is to receive the metrics.

The return value specifies the outcome of the function. It is nonzero if the function is
successful. Otherwise, it is zero.

GetThresholdEvent
Syntax

Return Value

LPINT GetThresholdEvent()

This function retrieves a flag that identifies a recent threshold event. A threshold event is
any transition of a voice queue from n to n - 1 where n is the threshold level in notes.

This function has no parameters.

The return value points to a short integer that specifies a threshold event.

Get ThresholdStatus 4-222

GetThresholdStatus
Syntax

Return Value

GetTickCount
Syntax

Return Value

Comments

GetTopWindow
Syntax

Return Value

int GetThresholdStatus()

This function retrieves the threshold-event status for each voice. Each bit in the status rep­
resents a voice. If a bit is set, the voice-queue level is currently below threshold.

The GetThresholdStatus function also clears the threshold-event flag.

This function has no parameters.

The return value specifies the status flags of the current threshold event.

DWORD GetTickCount()

This function obtains the number of milliseconds that have elapsed since the system was
started.

This function has no parameters.

The return value specifies the number of milliseconds that have elapsed since the system
was started.

The count is accurate within ±55 milliseconds.

HWND GetTop Window(hWnd)

This function searches for a handle to the top-level child window that belongs to the parent
window associated with the hWnd parameter. If the window has no children, this function
returns NULL.

Parameter Type/Description

hWnd HWND Identifies the parent window.

The return value identifies a handle to the top-level child window in a parent window's
linked list of child windows. If no child windows exist, it is NULL.

4-223

GetUpdateRect
Syntax

Return Value

Comments

GetUpdateRgn
Syntax

GetUpdateRect

BOOL GetUpdateRect(hWnd, ipRect, bErase)

This function retrieves the coordinates of the smallest rectangle that completely encloses
the update region 9f the given window. If the window was created with the CS_OWNDC
style and the mapping mode is not MM_TEXT, the GetUpdateRect function gives the
rectangle in logical coordinates. Otherwise, GetUpdateRect gives the rectangle in client
coordinates. If there is no update region, GetUpdateRect makes the rectangle empty (sets
all coordinates to zero).

The bErase parameter specifies whether GetUpdateRect should erase the background of
the update region. If bErase is TRUE and the update region is not empty, the background
is erased. To erase the background, GetUpdateRect sends a WM_ERASEBKGND
message to the given window.

Parameter

hWnd

/pRect

bErase

Type/Description

HWND Identifies the window whose update region is to be re­
trieved.

LPRECT Points to the RECT data structure that is to receive the
client coordinates of the enclosing rectangle.

BOOL Specifies whether the background in the update region is to
be erased.

The return value specifies the status of the update region of the given window. It is non­
zero if the update region is not empty. Otherwise, it is zero.

The update rectangle retrieved by the BeginPaint function is identical to that retrieved by
the GetU,pdateRect function.

BeginPaint automatically validates the update region, so any call to GetUpdateRect
made immediately after the BeginPaint call retrieves an empty update region.

int GetUpdateRgn(hWnd, hRgn,jErase)

This function copies a window's update region into a region identified by the hRgn parame­
ter. The coordinates of this region are relative to the upper-left comer of the window
(client coordinates).

Get Version

Return Value

Comments

GetVersion
Syntax

Return Value

Parameter

hWnd

hRgn

Type/Description

HWND Identifies the window that contains the region to be up­
dated.

HRGN Identifies the update region.

4-224

/Erase BOOL Specifies whether or not the window background should be
erased and nonc1ient areas of child windows should be drawn. If it is
zero, no drawing is done.

The return value specifies a short-integer flag that indicates the type of resulting region. It
can be anyone of the following values:

Value

COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

Meaning

The region has overlapping borders.

No region was created.

The region is empty.

The region has no overlapping borders.

BeginPaint automatically validates the update region, so any call to GetUpdateRgn made
immediately after the BeginPaint call retrieves an empty update region.

WORD GetVersion()

This function returns the current version number of Windows.

This function has no parameters.

The return value specifies the major and minor version numbers of Windows. The high­
order byte specifies the minor version (revision) number; the low-order byte specifies the
major version number.

4-225

GetViewportExt
Syntax

Return Value

GelViewporlExl

DWORD GetViewportExt(hDC)

This function retrieves the x- and y-extents of the device context's viewport.

Parameter Type/Description

hDC HDC Identifies the device context.

The return value specifies the x- and y-extents (in device units). The y-extent is in the high­
order word; the x-extent is in the low-order word.

GetViewportOrg
Syntax

Return Value

GetWindow
Syntax

DWORD GetViewportOrg(hDC)

This function retrieves the x- and y-coordinates of the origin of the viewport associated
with the specified device context.

Parameter Type/Description

hDC HDC Identifies the device context.

The return value specifies the origin of the viewport (in device coordinates). The y-coordi­
nate is in the high-order word; the x-coordinate is in the low-order word.

HWND GetWindow(hWnd, wCmd)

This function searches for a handle to a window from the window manager's list. The
window-manager's list contains entries for all top-level windows, their associated child
windows, and the child windows of any child windows. The wCmd parameter specifies the
relationship between the window identified by the hWnd parameter and the window whose
handle is returned.

i C

J.

GetWindowOC 4-226

Return Value

GetWindowDC
Syntax

Parameter

hWnd

wCmd

Type/Description

HWND Identifies the original window.

WORD Specifies the relationship between the original window
and the returned window. It may be one of the following values:

Value

GW _HWNDFIRST

GW _HWNDLAST

GW _HWNDNEXT

GW _HWNDPREV

GW_OWNER

Meaning

Identifies the window's first child
window.

Returns the first sibling window for
a child window. Otherwise, it re­
turns the first top-level window in
the list.

Returns the last sibling window for
a child window. Otherwise, it re­
turns the last top-level window in
the list.

Returns the window that follows the
given window on the window
manager's list.

Returns the previous window on the
window manager's list.

Identifies the window's owner.

The return value identifies a window. It is NULL if it reaches the end of the window
manager's list or if the wCmd parameter is invalid.

HDC GetWindowDC(hWnd)

This function retrieves the display context for the entire window, including caption bar,
menus, and scroll bars. A window display context permits painting anywhere in a window,
including the caption bar, menus, and scroll bars, since the origin of the context is the
upper-left comer of the window instead of the client area.

4-227

Return Value

Comments

GetWindowExt
Syntax

Return Value

GetWindowExt

GetWindowDC assigns default attributes to the display context each time it retrieves the
context. Previous attributes are lost.

Parameter

hWnd

Type/Description

HWND Identifies the window whose display context is to be re­
trieved.

The return value identifies the display context for the given window if the function is
successful. Otherwise, it is NULL.

The GetWindowDC function is intended to be used for special painting effects within a
window's nonclient area. Painting in nonc1ient areas of any window is not recommended.

The GetSystemMetrics function can be used to retrieve the dimensions of various parts of
the nonc1ient area, such as the caption bar, menu, and scroll bars.

After painting is complete, the ReleaseDC function must be called to release the display
context. Failure to release a window display context will have serious effects on painting
requested by applications.

DWORD GetWindowExt(hDC)

This function retrieves the x- and y-extents of the window associated with the specified
device context.

Parameter Type/Description

hDC HDC Identifies the device context.

The return value specifies the x- and y-extents (in logical units). The y-extent is in the high­
order word; the x-extent is in the low-order word.

GetWindowLong 4-228

GetWindowlong
Syntax

Return Value

Comments

GetWindowOrg
Syntax

Return Value

LONG GetWindowLong(hWnd, nlndex)

This function retrieves infonnation about the window identified by the hWnd parameter.

Parameter

hWnd

nlndex

Type/Description

HWND Identifies the window.

int Specifies the byte offset of the value to be retrieved. It can also
be one of the following values:

Value

GWL_EXSTYLE

GWL_STYLE

GWL_ WNDPROC

Meaning

Extended window style

Window style

Long pointer to the window function

The return value specifies infonnation about the given window.

To access any extra four-byte values allocated when the window-class structure was
created, 'Use a positive byte offset as the index specified by the nlndex parameter, starting
at zero for the first four-byte value in the extra space, 4 for the next four-byte value and so
on.

DWORD GetWindowOrg(hDC)

This function retrieves the x- and y-coordinates of the origin of the window associated with
the specified device context.

Parameter Type/Description

hDC HDC Identifies the device context.

The return value specifies the origin of the window (in logical coordinates). The y-coordi­
nate is in the high-order word; the x-coordinate is in the low-order word.

4-229 GelWindowRecl

GetWindowRect
Syntax

Return Value

void GetWindowRect(hWnd, /pRect)

This function copies the dimensions of the bounding rectangle of the specified window
into the structure pointed to by the /pRect parameter. The dimensions are given in screen
coordinates, relative to the upper-left corner of the display screen, and include the caption,
border, and scroll bars, if present.

Parameter

hWnd

/pRect

None.

Type/Description

HWND Identifies the window.

LPRECT Points to a RECT data structure that contains the screen
coordinates of the upper-left and lower-right corners of the window.

GetWindowsDirectory []]]
Syntax

Return Value

Comments

WORD GetWindowsDirectory(lpBuffer, nSize)

This function obtains the pathname of the Windows directory. The Windows directory con­
tains such files as Windows applications, initialization files, and help files.

Parameter

/pBuffer

nSize

Type/Description

LPSTR Points to the buffer that is to receive the null-terminated
character string containing the pathname.

int Specifies the maximum size (in bytes) of the buffer. This value
should be set to at least 144 to allow sufficient room in the buffer for
the pathname.

The return value is the length of the string copied to /pBuffer, not including the terminating
null character. If the return value is greater than nSize, the return value is the size of the
buffer required to hold the pathname. The return value is zero if the function failed.

The pathname retrieved by this function does not end with a backslash (\), unless the
Windows directory is the root directory. For example, if the Windows directory is named
WINDOWS on drive C:, the pathname of the Windows directory retrieved by this function
is C:\WINDOWS. If Windows was installed in the root directory of drive C:, the pathname
retrieved by this function is C:\

,

GelWindowTask 4-230

GetWindowTask
Syntax

Return Value

GetWindowText
Syntax

Return Value

Comments

HANDLE GetWindowTask(hWnd)

This function searches for the handle of a task associated with the hWnd parameter. A task
is any program that executes as an independent unit. All applications are executed as tasks.
Each instance of an application is a task.

Parameter Type/Description

hWnd HWND Identifies the window for which a task handle is retrieved.

The return value identifies the task associated with a particular window.

int GetWindowText(hWnd, IpString, nMaxCount)

This function copies the given window's caption title (if it has one) into the buffer pointed
to by the IpString parameter. If the hWnd parameter identifies a control, the GetWin­
dowText function copies the text within the control instead of copying the caption.

Parameter

hWnd

IpString

nMaxCount

Type/Description

HWND Identifies the window or control whose caption or text is
to be copied.

LPSTR Points to the buffer that is to receive the copied string.

int Specifies the maximum number of characters to be copied to
the buffer. If the string is longer than the number of characters
specified in the nMaxCount parameter, it is truncated.

The return value specifies the length of the copied string. It is zero if the window has no
caption or if the caption is empty.

This function causes a WM_ GETTEXT message to be sent to the given window or control.

/

4-231 GelWindowTexlLenglh

GetWindowTextLength
Syntax

Return Value

int GetWindowTextLength(hWnd)

This function returns the length of the given window's caption title. If the hWnd parameter
identifies a control, the GetWindowTextLength function returns the length of the text
within the control instead of the caption.

Parameter Type/Description

hWnd HWND Identifies the window or control.

The return value specifies the text length. It is zero if no such text exists.

GetWindowWord
Syntax

Return Value

WORD GetWindowWord(hWnd, nlndex)

This function retrieves information about the window identified by hWnd.

Parameter

hWnd

nlndex

Type/Description

HWND Identifies the window.

int Specifies the byte offset of the value to be retrieved. It can
also be one of the following values:

Value

GWW _HINSTANCE

GWW _HWNDPARENT

Meaning

Instance handle of the module that
owns the window.

Handle of the parent window, if
any. The SetParent function
changes the parent window of a
child window. An application
should not call the SetWin­
dowLong function to change the
parent of a child window.

Control ID of the child window.

The return value specifies information about the given window.

GelWinFlags 4-232

Comments To access any extra two-byte values allocated when the window-class structure was
created, use a positive byte offset as the index specified by the nI ndex parameter, starting
at zero for the first two-byte value in the extra space, 2 for the next two-byte value and so
on.

GetWinFlags [I[]
Syntax

Return Value

DWORD GetWinFlags()

This function returns a 32-bit value containing flags which specify the memory configura­
tion under which Windows is running.

This function has no parameters.

The return value 'contains flags specifying the current memory configuration. These flags
may be any of the following values:

Value

WF_80x87

WF_CPU086

WF_CPUI86

WF_CPU286

WF_CPU386

WF_CPU486

WF _ENHANCED

WF _SMALLFRAME

Meaning

System contains an Intel math coprocessor.

System CPU is an 8086.

System CPU is an 80186.

System CPU is an 80286.

System CPU is an 80386.

System CPU is an 80486.

Windows is running in 386 enhanced mode. The
WF _PMODE flag is always set when WF _ENHANCED
is set.

Windows is running in EMS large-frame memory con­
figuration.

Windows is running in protected mode. This flag is al­
ways set when either WF _ENHANCED or
WF _STANDARD is set.

Windows is running in EMS small-frame memory con­
figuration.

Windows is running in standard mode. The
WF _PMODE flag is always set when WF _STANDARD
is set.

4-233

GlobalAddAtom
Syntax

Return Value

Comments

GlobalAlioc
Syntax

GlobalAddAtom

If neither WF _ENHANCED nor WF _STANDARD is set, Windows is running in real
mode.

ATOM GlobaIAddAtom(lpString)

This function adds the character string pointed to by the lpString parameter to the atom
table and creates a new global atom that uniquely identifies the string. A global atom is an
atom that is available to all applications. The atom can be used in a subsequent Global­
GetAtomName function to retrieve the string from the atom table.

The GlobalAddAtom function stores no more than one copy of a given string in the atom
table. If the string is already in the table, the function returns the existing atom value and
increases the string's reference count by one. The string's reference count is a number that
specifies the number of times GlobalAddAtom has been called for a particular string.

Parameter

lpString

Type/Description

LPSTR Points to the character string to be added to the table.
The string must be a null-terminated character string.

The return value identifies the newly created atom if the function is successful. Otherwise,
it is NULL.

The atom values returned by GlobalAddAtom are within the range OxCOOO to OxFFFF.

HANDLE GlobaIAlloc(wFlags, dwBytes)

This function allocates the number of bytes of memory specified by the dwBytes parameter
from the global heap. The memory can be fixed or moveable, depending on the memory
type specified by the wFlags parameter.

GlobalAlloc 4-234

Parameter Type/Description

wFlags WORD Specifies one or more flags that tell the GlobalAlIoc
function how to allocate the memory. It can be one or more of the
following values:

Value Meaning

GMEM_DDESHARE Allocates sharable memory. This
is used for dynamic data exchange
(DDE) only. Note, however, that
Windows automatically discards
memory allocated with this at-
tribute when the application that
allocated the memory terminates.

GMEM_DISCARDABLE Allocates discardable memory.
Can only be used with
GMEM_MOVEABLE.

GMEM_FIXED Allocates fixed memory.

GMEM_MOVEABLE Allocates moveable memory. Can-

(!' not be used with GMEM_FIXED.

GMEM_NOCOMPACT Does not compact or discard to
satisfy the allocation request.

GMEM_NODISCARD Does not discard to satisfy the allo-
cation request.

GMEM_NOT_BANKED Allocates non-banked memory.
Cannot be used with
GMEM_NOTIFY.

GMEM_NOTIFY Calls the notification routine if the
memory object is ever discarded.

GMEM_ZEROINIT Initializes memory contents to
zero.

Choose GMEM_FIXED or GMEM_MOVEABLE, and then com-
bine others as needed by using the bitwise OR operator.

dwBytes DWORD Specifies the number of bytes to be allocated.

Return Value The return value identifies the allocated global memory if the function is successful. Other-
wise, it is NULL.

4-235

Comments

GlobalCompact
Syntax

Return Value

Comments

GlobalCompact

If this function is successful, it allocates at least the amount requested. The actual amount
allocated may be greater, and the application can use the entire amount. To determine the
actual amount allocated, call the GlobalSize function.

The largest block of memory that an application can allocate is I MB in standard mode
and 64 MB in 386 enhanced mode.

DWORD GlobaICompact(dwMinFree)

This function generates the number of free bytes of global memory specified by the
dwMinFree parameter by compacting and, if necessary, discarding from the system's
global heap. The function always compacts memory before checking for free memory. It
then checks the global heap for the number of contiguous free bytes specified by the
dwMinFree parameter. If the bytes do not exist, the GlobalCompact function discards un­
locked discardable blocks until the requested space is generated, whenever possible.

Parameter Type/Description

dwMinFree DWORD Specifies the number of free bytes desired.

The return value specifies the number of bytes in the largest block of free global memory.

If dwMinFree is zero, the return value specifies the number of bytes in the largest free seg­
ment that Windows can generate if it removes all discardable segments.

If an application uses the return value as the dwBytes parameter to the GlobalAlloc func­
tion, the GMEM_NOCOMPACT or GMEM_NODISCARD flags should not be used.

GlobalDeleteAtom
Syntax ATOM GlobaIDeleteAtom(nAtom)

This function decreases the reference count of a global atom by one. If the atom's
reference count becomes zero, this function removes the associated string from the atom
table. (A global atom is an atom that is available to all Windows applications.)

An atom's reference count specifies the number of times the atom has been added to the
atom table. The GlobalAddAtom function increases the count on each call~ the Global­
DeleteAtom function decreases the count on each call. GlobalDeleteAtom removes the
string only if the atom's reference count is zero.

Glob a IOiscard 4-236

Return Value

GlobalDiscard
Syntax

Return Value

Comments

Parameter Type/Description

nAtom ATOM Identifies the atom and character string to be deleted.

The return value specifies the outcome of the function. It is NULL if the function is
successful. It is equal to nAtom if the function failed and the atom has not been deleted.

HANDLE GlobaIDiscard(hMem)

This function discards a global memory block specified by the hM em parameter. The lock
count of the memory block must be zero.

The global memory block is removed from memory, but its handle remains valid. An appli­
cation can subsequently pass the handle to the GlobalReAlloc function to allocate another
global memory block identified by the same handle.

Parameter

hMem

Type/Description

HANDLE Identifies the global memory block to be dis­
carded.

The return value identifies the discarded block if the function is successful. Otherwise, it is
zero.

The GlobalDiscard function discards only global objects that an application allocated
with the GMEM_DISCARDABLE and GMEM_MOVEABLE flags set. The function fails
if an application attempts to discard a fixed or locked object.

GlobalDosAlioc []I]
Syntax DWORD GlobaIDosAlloc(dwBytes)

This function allocates global memory which can be accessed by DOS running in real
mode. The memory is guaranteed to exist in the first megabyte of linear address space.

Parameter Type/Description

dwBytes DWORD Specifies the number of bytes to be allocated.

4-237

Return Value

Comments

GlobalOosFree

The return value contains a paragraph-segment value in its high-order word and a selector
in its low-order word. An application can use the paragraph-segment value to access
memory in real mode and the selector to access memory in protected mode. If Windows is
running in real mode, the high-order and low-order words will be equal. If Windows can­
not allocate a block of memory of the requested size, the return value is NULL.

An application should not use this function unless it is absolutely necessary. The memory
pool from which the object is allocated is a scarce system resource.

GlobalDosFree []]]
Syntax

Return Value

WORD GlobaIDosFree(wSelector)

This function frees a block of global memory previously allocated by a call to the Global­
DosAlloc function.

Parameter Type/Description

wSelector WORD Specifies the memory to be freed.

The return value identifies the outcome of the function. It is NULL if the function is
successful. Otherwise, it is equal to wSelector.

GlobalFindAtom
Syntax

Return Value

ATOM GlobaIFindAtom(lpString)

This function searches the atom table for the character string pointed to by the IpString par­
ameter and retrieves the global atom associated with that string. (A global atom is an atom
that is available to all Windows applications.)

Parameter

IpString

Type/Description

LPSTR Points to the character string to be searched for. The string
must be a null-terminated character string.

The return value identifies the global atom associated with the given string. It is NULL if
the string is not in the table.

G/oba/Fix 4-238

GlobalFix []]]
Syntax

Return Value

" Comments

GlobalFlags
Syntax

Return Value

void GlobalFix(hMem)

This function prevents the global memory block identified by the hM em parameter from
moving in linear memory. The block is locked into linear memory at its current address
and its lock count is increased by one. Locked memory is not subject to moving or dis­
carding except when the memory block is being reallocated by the GlobalReAlloc func­
tion. The block remains locked in memory until its lock count is decreased to zero.

Each time an application calls GlobalFix for a memory object, it must eventually call
GlobalUnfix for the object. The GlobalUnfix function decreases the lock count for the ob­
ject. Other functions also can affect the lock count of a memory object. See the description
of the GlobalFlags function for a list of the functions that affect the lock count.

Parameter Type/Description

hMem HANDLE Identifies the global memory block.

None.

Calling this function interferes with Windows memory management and results in linear­
address fragmentation. Very few applications need to fix memory in linear address space.

WORD GlobaIFlags(hMem)

This function returns information about the global memory block specified by the hM em
parameter.

Parameter Type/Description

hMem HANDLE Identifies the global memory block.

The return value specifies a memory-allocation flag in the high byte. The flag will be one
of the following values:

4-239

Comments

GlobalFree
Syntax

Return Value

Value

GMEM_DISCARDABLE

GMEM_DISCARDED

GMEM_NOT _BANKED

G/oba/Free

Meaning

The block can be shared. This is used for dynamic
data exchange (DDE) only.

The block can be discarded.

The block has been discarded.

The block cannot be banked.

The low byte of the return value contains the lock count of the block. Use the
GMEM_LOCKCOUNT mask to retrieve the lock-count value from the return value.

To test whether or not an object can be discarded, AND the return value of GlobalFlags
with GMEM_DISCARDABLE.

The following functions can affect the lock count of a global memory block:

Increases Lock Count Decreases Lock Count

GlobalFix

GlobalLock

GlobalWire

LockSegment

GlobalUnfix

GlobalUnlock

GlobalUn Wire

U nlockSegment

HANDLE GlobaIFree(hMem)

This function frees the global memory block identified by the hM em parameter and
invalidates the handle of the memory block.

Parameter Type/Description

hMem HANDLE Identifies the global memory block to be freed.

The return value identifies the outcome of the function. It is NULL if the function is
successful. Otherwise, it is equal to hMem.

GlobalGetAtomName 4-240

Comments The GlobalFree function must not be used to free a locked memory block, that is, a
memory block with a lock count greater than zero. See the description of the GlobalFlags
function for a list of the functions that affect the lock count.

GlobalGetAtomName
Syntax

~ Return Value

GlobalHandle
Syntax

Return Value

WORD GlobaIGetAtomName(nAtom, /pBuffer, nSize)

This function retrieves a copy of the character string associated with the nAtom parameter
and places it in the buffer pointed to by the /pBuffer parameter. The nSize parameter speci­
fies the maximum size of the buffer. (A global atom is an atom that is available to all
Windows applications.)

Parameter

nAtom

/pBuffer

nSize

Type/Description

ATOM Identifies the character string to be retrieved.

LPSTR Points to the buffer that is to receive the character string.

int Specifies the maximum size (in bytes) of the buffer.

The return value specifies the actual number of bytes copied to the buffer. I~ is zero if the
specified global atom is not valid.

DWORD GlobalHandle(wMem)

This function retrieves the handle of the global memory object whose segment address or
selector is specified by the wMem parameter.

Parameter

wMem

Type/Description

WORD Specifies an unsigned integer value that gives the segment
address or selector of a global memory object.

The low-order word of the return value specifies the handle of the global memory object.
The high-order word of the return value specifies the segment address or selector of the
memory object. The return value is NULL if no handle exists for the memory object.

4-241

GlobalLock
Syntax

Return Value

Comments

G/oba/Lock

LPSTR GlobaILock(hMem)

This function retrieves a pointer to the global memory block specified by the hM em para­
meter.

Except for nondiscardable objects in protected (standard or 386 enhanced) mode, the block
is locked into memory at the given address and its lock count is increased by one. Locked
memory is not subject to moving or discarding except when the memory block is being re­
allocated by the GlobalReAlIoc function. The block remains locked in memory until its
lock count is decreased to zero.

In protected mode, GlobalLock increments the lock count of discardable objects and auto­
matic data segments only.

Each time an application calls GlobalLock for an object, it must yventually call GlobalUn­
lock for the object. The GlobalUnlock function decreases the lock count for the object if
GlobalLock increased the lock count for the object. Other functions also can affect the
lock count of a memory object. See the description of the GlobalFlags function for a list
of the functions that affect the lock count.

Parameter Type/Description

hMem HANDLE Identifies the global memory block to be locked.

The return value points to the first byte of memory in the global block if the function is
successful. If the object has been discarded or an error occurs, the return value is NULL.

Discarded objects always have a lock count of zero.

GlobalLRUNewest
Syntax HANDLE GlobaILRUNewest(hMem)

This function moves the global memory object identified by hMem to the newest least-re­
cently-used (LRU) position in memory. This greatly reduces the likelihood that the object
will be discarded soon, but does not prevent the object from eventually being discarded.

Parameter Type/Description

hMem HANDLE Identifies the global memory object to be moved.

GlohalLRUDldest 4-242

Return Value The return value is NULL if the hM em parameter does not specify a valid handle.

Comments This function is useful only if hM em is discardable.

GlobalLRUOldest
Syntax

Return Value

Comments

GlobalNotify
Syntax

Return Value

Comments

HANDLE GlobaILRUOldest(hMem)

This routine moves the global memory object identified by hMem to the oldest least-re­
cently-used (LRU) position in memory and, in so doing, makes it the next candidate for
discarding.

Parameter Type/Description

hMem HANDLE Identifies the global memory object to be moved.

The return value is NULL if the hM em parameter does not specify a valid handle.

This function is useful only if hM em is discardable.

void GlobalNotify(lpN otifyProc)

This function installs a notification procedure for the current task. Windows calls the notifi­
cation procedure whenever a global memory block allocated with the GMEM_NOTIFY
flag is about to be discarded.

Parameter

IpNotifyProc

None.

Type/Description

FARPROC Is the procedure instance address of the current task's
notification procedure.

An application must not call GlobalNotify more than once per instance.

Windows does not call the notification procedure when it discards memory belonging to a
DLL.

4-243 GlobalPageLock

If the object is discarded, the application must use the GMEM_NOTIFY flag when it recre­
ates the object by calling the GlobalRealloc function. Otherwise, the application will not
be notified when the object is discarded again.

If the notification procedure returns a nonzero value, Windows discards the global memory
block. If it returns zero, the block is not discarded.

The callback function must use the Pascal calling convention and must be declared FAR.
The callback function must reside in a fixed code segment of a DLL.

Callback Function BOOL FAR PASCAL NotifyProc(hMem)

NotifyProc is a placeholder for the application-supplied function name. Export the name
by including it in an EXPORTS statement in the DLL's module-definition statement.

Parameter Type/Description

hMem HANDLE Identifies the global memory block being discarded.

Return Value

The function returns a nonzero value if Windows is to discard the memory block, and zero
if it should not. G)

Comments

The callback function is not necessarily called in the context of the application that owns
the routine. For this reason, the callback function should not assume the stack segment of
the application. The callback function should not call any routine that might move memory.

GlobalPageLock [ill
Syntax WORD GlobaIPageLock(wSelector)

This function increments the page-lock count of the memory associated with the specified
global selector. As long as its page-lock count is nonzero, the data which the selector
references is guaranteed to remain in memory at the same physical address and to remain
paged in.

GlobalPageLock increments the page-lock count for the block of memory, and the
GlobalPageUnlock function decrements the page-lock count. Page-locking operations can
be nested, but each page lock must be balanced by a corresponding unlock.

GlobalPageUnlock 4-244

Return Value

Comments

Parameter Type/Description

wSelector WORD Specifies the selector of the memory to be page-locked.

The return value specifies the page-lock count after the function has incremented it. If the
function fails, the return value is zero.

An application should not use this function unless it is absolutely necessary. Use of this
function violates preferred Windows programming practices. It is intended to be used for
dynamically allocated data that must be accessed at interrupt time. For this reason, it must
only be called from a DLL.

GlobalPageUnlock []]]
Syntax

Return Value

GlobalReAlioc
Syntax

WORD GlobaIPageUnlock(wSelector)

This function decrements the page-lock count for the block of memory identified by the
wSelector parameter and, if the page-lock count reaches zero, allows the block of memory
to move and to be paged to disk.

The GlobalPageLock function increments the page-lock count for the block of memory,
and GlobalPageUnlock decrements the page-lock count. Page-locking operations can be
nested, but each page lock must be balanced by a corresponding unlock.

Only libraries can call this function.

Parameter Type/Description

wSelector WORD Specifies the selector of the memory to be page-unlocked.

The return value specifies the page-lock count after the function has decremented it. If the
function fails, the return value is zero.

HANDLE GlobaIReAlloc(hMem, dwBytes, wFlags)

This function reallocates the global memory block specified by the hM em parameter by in­
creasing or decreasing its size to the number of bytes specified by the dwBytes parameter.

4-245

Parameter

hMem

dwBytes

wFlags

GlobalReAlloc

Type/Description

HANDLE Identifies the global memory block to be reallocated.

DWORD Specifies the new size of the memory block.

WORD Specifies how to reallocate the global block.

If the existing memory flags can be modified, use either one or both of
the following flags (if both flags are specified, join them with the
bitwise OR operator):

Value

GMEM_DISCARDABLE

GMEM_MOVEABLE

Meaning

Memory can be discarded. Use only
with GMEM_MODIFY.

Memory flags are modified. The
dwBytes parameter is ignored. Use
only if an application will modify ex­
isting memory flags and not
reallocate the memory block to a
new size.

Memory is movable. If dwBytes is
zero, this flag causes an object pre­
viously allocated as moveable and
discardable to be discarded if the
block's lock count is zero. If the
block is not moveable and discard­
able, the GlobalReAlloc will fail. If
dwBytes is nonzero and the block
specified by hM em is fixed, this flag
allows the reallocated block to be
moved to a new fixed location. If a
moveable object is locked, this flag
allows the object to be moved. This
may occur even if the object is cur­
rently locked by a previous call to
GlobalLock. (Note that the handle
returned by the GlobalReAlloc func­
tion in this case may be different
from the handle passed to the func­
tion.) Use this flag with
GMEM_MODIFY to make a fixed
memory block moveable.

G/oba/Size

Return Value

GlobalSize
Syntax

Parameter Type/Description

Value

GMEM_NOCOMPACT

GMEM_NODISCARD

4-246

Meaning

Memory will not be compacted or
discarded in order to satisfy the allo­
cation request. This flag is ignored if
the GMEM_MODIFY flag is set.

Objects will not be discarded in
order to satisfy the allocation re­
quest. This flag is ignored if the
GMEM_MODIFY flag is set.

If the blo~k is growing, the addi­
tional memory contents are
initialized to zero. This flag is ig­
nored if the GMEM_MODIFY flag
is set.

The return value identifies the reallocated global memory if the function is successful. The
return value is NULL if the block cannot be reallocated.

If the function is successful, the return value is always identical to the hM em parameter, un­
less any of the following conditions is true:

• The GMEM_MOVEABLE flag is used to allow movement of a fixed block to a new
fixed location.

• Windows is running in standard mode and the object is reallocated past a mUltiple of
65,519 bytes (17 bytes less than 64K).

• Windows is running in 386 enhanced mode and the object is reallocated past a multiple
of 64K.

DWORD GlobaISize(hMem)

This function retrieves the current size (in bytes) of the global memory block specified by
the hM em parameter.

Parameter Type/Description

hMem HANDLE Identifies the global memory block.

4-247

Return Value

Comments

GJobaJUnfix

The return value specifies the actual size (in bytes) of the specified memory block. It is
zero if the given handle is not valid or if the object has been discarded.

The actual size of a memory block is sometimes larger than the size requested when the
memory was allocated.

An application should call the GlobalFlags function prior to calling the GlobalSize func­
tion in order to verify that the specified memory block was not discarded. If the memory
block were discarded, the return value for GlobalSize would be meaningless.

GlobalUnfix []]]
Syntax

Return Value

GlobalUnlock
Syntax

BOOL GlobaIUnfix(hMem)

This function unlocks the global memory block specified by the hMem parameter.

GlobalUnfix decreases the block's lock count by one. The block is completely unlocked
and subject to moving or discarding if the lock count is decreased to zero. Other functions
also can affect the lock count of a memory object. See the description of the GlobalFlags
function for a list of the functions that affect the lock count.

Each time an application calls GlobalFix for an object, it must eventually call GlobalUn­
fix for the object.

Parameter Type/Description

hMem HANDLE Identifies the global memory block to be unlocked.

The return value specifies the outcome of the function. It is zero if the block's lock count
was decreased to zero. Otherwise, the return value is nonzero.

BOOL GlobaIUnlock(hMem)

This function unlocks the global memory block specified by the hMem parameter.

In real mode, or if the block is discardable, GlobalUnlock decreases the block's lock count
by one. In protected mode, GlobalUnock decreases the lock count of discardable objects
and automatic data segments only.

The block is completely unlocked and subject to moving or discarding if the lock count is
decreased to zero. Other functions also can affect the lock count of a memory object. See
the description of the GlobalFlags function for a list of the functions that affect the lock
count.

G/oba/UnWire 4-248

Return Value

GlobalUnWire
Syntax

Return Value

GlobalWire
Syntax

In all cases, each time an application calls GlobalLock for an object, it must eventually
call GlobalUnlock for the object.

Parameter Type/Description

hMem HANDLE Identifies the global memory block to be unlocked.

The return value specifies the outcome of the function. It is zero if the block's lock count
was decreased to zero. Otherwise, the return value is nonzero. An application should not
rely on the return value to determine the number of times it must subsequently call
GlobalUnlock for the memory block.

BOOL GlobaIUnWire(hMem)

This function unlocks a memory segment that was locked by the GlobalWire function and
decreases the lock count by one.

The block is completely unlocked and subject to moving or discarding if the lock count is
decreased to zero. Other functions also can affect the lock count of a memory object. See
the description of the GlobalFlags function for a list of the functions that affect the lock
count.

Each time an application calls GlobalWire for an object, it must eventually call GlobalUn­
Wire for the object.

Parameter Type/Description

hMem HANDLE Identifies the segment that will be unlocked.

The return value specifies the outcome of the function. It is TRUE if the memory segment
was unlocked, that is, its lock count was decreased to zero. Otherwise, it is FALSE.

LPSTR GlobaIWire(hMem)

This function moves a segment into low memory and locks it-a procedure that is ex­
tremely useful if an application must lock a segment for a long period of time. If a segment
from the middle portion of memory is locked for a long period of time, it causes memory­
management problems by reducing the size of the largest, contiguous available block of

4-249

Return Value

GrayString
Syntax

GrayString

memory. The GlobalWire function moves a segment to the lowest possible address in
memory and locks it, thereby freeing the memory area Windows uses most often.

Each time an application calls GlobalWire for an object, it must eventually call GlobalUn­
Wire for the object. The GlobalUn Wire function decreases the lock count for the object.
Other functions also can affect the lock count of a memory object. See the description of
the GlobalFlags function for a list of the functions that affect the lock count.

An application must not call the GlobalUnlock function to unlock the object.

Parameter Type/Description

hMem HANDLE Identifies the segment that will be moved and locked.

The return value points to the new segment location. It is NULL if the function failed.

BOOL GrayString(hDC, hBrush, lpOutputFunc, lpData, nCount, X, Y, nWidth,
nHeight)

This function draws gray text at the given location. The GrayString function draws gray ; C
text by writing the text in a memory bitmap, graying the bitmap, and then copying the bit-
map to the display. The function grays the text regardless of the selected brush and back­
ground. GrayString uses. the font currently selected for the device context specified by the
hDC parameter.

If the lpOutputFunc parameter is NULL, GDI uses the TextOut function, and the lpData
parameter is assumed to be a long pointer to the character string to be output. If the
characters to be output cannot be handled by TextOut (for example, the string is stored as
a bitmap), the application must supply its own output function.

Parameter

hDC

hBrush

lpOutputFunc

lpData

Type/Description

HDC Identifies the device context.

HBRUSH Identifies the brush to be used for graying.

FARPROC Is the procedure-instance address of the applica­
tion-supplied function that will draw the string, or, if the
TextOut function is to be used to draw the string, it is a NULL
pointer. See the following "Comments" section for details.

DWORD Specifies a long pointer to data to be passed to the
output function. If the lpOutputFunc parameter is NULL, lpData
must be a long pointer to the string to be output.

GraySlring

Return Value

Comments

Parameter

nCount

x

y

nWidth

nHeight

4-250

Type/Description

int Specifies the number of characters to be output. If the
nCount parameter is zero, GrayString calculates the length of
the string (assuming that lpData is a pointer to the string). If
nCount is -1 and the function pointed to by lpOutputFunc re­
turns zero, the image is shown but not grayed.

int Specifies the logical x-coordinate of the starting position
of the rectangle that encloses the string.

int Specifies the logical y-coordinate of the starting position
of the rectangle that encloses the string.

int. Specifies the width (in logical units) of the rectangle that
encloses the string. If the n Width parameter is zero, GrayString
calculates the width of the area, assuming lpData is a pointer to
the string.

int Specifies the height (in logical units) of the rectangle that
encloses the string. If the nHeight parameter is zero, Gray­
String calculates the height of the area, assuming lpData is a
pointer to the string.

The return value specifies the outcome of the function. It is nonzero if the string is drawn.
A return value of zero means that either the TextOut function or the application-supplied
output function returned zero, or there was insufficient memory to create a memory bitmap
for graying.

An application can draw grayed strings on devices that support a solid gray color, without
calling the GrayString function. The system color COLOR_GRAYTEXT is the solid-gray
system color used to draw disabled text. The application can call the GetSysColor func­
tion to retrieve the color value of COLOR_GRAYTEXT. If the color is other than zero
(black), the application can call the SetTextColor to set the text color to the color value
and then draw the string directly. If the retrieved color is black, the application must call
GrayString to gray the text.

The callback function must use the Pascal calling convention and must be declared FAR.

Callback Function BOOL FAR PASCAL OutputFunc(hDC, lpData, nCount)
HDChDC;
DWORD lpData;
int nCount;

4-251 GrayString

OutputFunc is a placeholder for the application-supplied callback function name. The ac­
tual name must be exported by including it in an EXPORTS statement in the application's
module-definition file.

Parameter

hDC

IpData

nCount

Return Value

Description

Identifies a memory device context with a bitmap of at least the
width and height specified by the nWidth and nHeight parameters, re­
spectively.

Points to the character string to be drawn.

Specifies the number of characters to be output.

The return value must be nonzero to indicate success. Otherwise, it is zero.

Comments

This output function (OutputFunc) must draw an image relative to the coordinates (0,0)
rather than (X,y). The address passed as the IpOutputFunc parameter must be created by
using the MakeProcInstance function, and the output function name must be exported; it G'>
must be explicitly defined in an EXPORTS statement of the application's module-defini-
tion file.

The MM_ TEXT mapping mode must be selected before using this function.

..I
1
1:'

HIBYTE

HIBYTE
Syntax

Return Value

HideCaret
Syntax

Return Value

4-252

BYTE HIBYTE(nlnteger)

This macro retrieves the high-order byte from the integer value specified by the nlnteger
parameter.

Parameter Type/Description

nlnteger int Specifies the value to be converted.

The return value specifies the high-order byte of the given value.

void HideCaret(h W nd)

This function hides the caret by removing it from the display screen. Although the caret is
no longer visible, it can be displayed again by using the ShowCaret function. Hiding the
caret does not destroy its current shape.

The HideCaret function hides the caret only if the given window owns the caret. If the
hWnd parameter is NULL, the function hides the caret only if a window in the current task
owns the caret.

Hiding is cumulative. If HideCaret has been called five times in a row, ShowCaret must
be called five times before the caret will be shown.

Parameter

hWnd

None.

Type/Description

HWND Identifies the window that owns the caret, or it is NULL to
indirectly specify the window in the current task that owns the caret.

4-253

HiliteMenultem
Syntax

Return Value

Comments

HiliteMenultem

BOOL HiliteMenultem(hWnd, hMenu, wIDHiliteltem, wHiffte)

This function highlights or removes the highlighting from a top-level (menu-bar) menu
item. -

Parameter

hWnd

hMenu

wIDHiliteltem

wHilite

Type/Description

HWND Identifies the window that contains the menu.

HMENU Identifies the top-level menu that contains the item to
be highlighted.

WORD Specifies the integer identifier of the menu item or the
offset of the menu item in the menu, depending on the value of the
wHilite parameter.

WORD Specifies whether the menu item is highlighted or the
highlight is removed. It can be a combination of MF _HILITE or
MF _UNHILITE with MF _BYCOMMAND or MF _BYPOSI­
TION. The values can be combined using the bitwise OR operator.
These values have the following meanings:

Value

MF _BYPOSITION

MF _UNHILITE

Meaning

Interprets wIDHiliteltem as the
menu-item ID (the default inter­
pretation).

Interprets wIDHiliteItem as an off­
set.

Highlights the item. If this value is
not given, highlighting is removed
from the item.

Removes highlighting from the
item.

The return value specifies whether or not the menu item is highlighted the outcome of the
function. It is nonzero if the item is highlighted was set to the specified highlight state.
Otherwise, it is zero FALSE.

The MF _HILITE and MF _ UNHILITE flags can be used only with the HiliteMenultem
function; they cannot be used with the ModifyMenu function.

:::J:
I
r

.J
I
3::

HI WORD

HIWORD
Syntax

Return Value

4-254

WORD HIWORD(dwlnteger)

This macro retrieves the high-order word from the 32-bit integer value specified by the
dwlnteger parameter.

Parameter Type/Description

dwlnteger DWORD Specifies the value to be converted.

The return value specifies the high-order word of the given 32-bit integer value.

4-255

InflateRect
Syntax

Return Value

Comments

InitAtomTable
Syntax

Return Value

InflateRect

void InflateRect(/pRect, X, y)

This function increases or decreases the width and height of the specified rectangle. The
InflateRect function adds X units to the left and right ends of the rectangle, and adds Y
units to the top and bottom. The X and Y parameters are signed values; positive values in­
crease the width and height, and negative values decrease them.

Parameter

/pRect

X

Y

None.

Type/Description

LPRECT Points to the RECT data structure to be modified.

int Specifies the amount to increase or decrease the rectangle
width. It must be negative to decrease the width.

int Specifies the amount to increase or decrease the rectangle
height. It must be negative to decrease the height.

The coordinate values of a rectangle must not be greater than 32,767 units or less than
-32,768 units. The X and Y parameters must be chosen carefully to prevent invalid
rectangles.

BOOL InitAtomTable(nSize)

This function initializes an atom hash table and sets its size to that specified by the nSize
parameter. If this function is not called, the atom hash table size is set to 37 by default.

If used, this function should be called before any other atom-management function.

Parameter

nSize

Type/Description

int Specifies the size (in table entries) of the atom hash table. This
value should be a prime number.

The return value specifies the outcome of the function. It is nonzero if the function is
successful. Otherwise, it is zero.

::J:
I
r

..I
I
J:

InSendMessage 4-256

Comments If an application uses a large number of atoms, it can reduce the time required to add an
atom to the atom table or to find an atom in the table by increasing the size of the table.
However, this increases the amount of memory required to maintain the table.

The size of the global atom table cannot be changed from its default size of 37.

InSendMessage
Syntax

Return Value

Comments

BOOL InSendMessage()

This function specifies whether the current window function is processing a message that
is passed to it through a call to the SendMessage function.

This function has no parameters.

The return value specifies the outcome of the function. It is TRUE if the window function
is processing a message sent to it with SendMessage. Otherwise, it is FALSE.

Applications use the InSendMessage function to determine how to handle errors that
occur when an inactive window processes messages. For example, if the active window
uses SendMessage to send a request for information to another window, the other window
cannot become active until it returns control from the SendMessage call. The only method
an inactive window has to inform the user of an error is to create a message box .

InsertMenu []]]
Syntax BOOL InsertMenu(hMenu, nPosition, wFlags, wIDNewltem, IpNewltem)

This function inserts a new menu item at the position specified by the nPosition parameter,
moving other items down the menu. The application can specify the state of the menu item
by setting values in the wFlags parameter.

Parameter

hMenu

nPosition

Type/Description

HMENU Identifies the menu to be changed.

WORD Specifies the menu item before which the new menu
item is to be inserted. The interpretation of the nPosition parameter
depends upon the setting of the wFlags parameter.

4-257

Return Value

Comments

Parameter

wFlags

wIDNewltem

IpNewltem

Type/Description

If wFlags is:

MF _BYPOSITION

MF _BYCOMMAND

InsertMenu

nPosition:

Specifies the position of the ex­
isting menu item. The first item in
the menu is at position zero.

If nPosition is -1, the new menu
item is appended to the end of the
menu.

Specifies the command ID of the ex­
isting menu item.

WORD Specifies how the nPosition parameter is interpreted
and information about the state of the new menu item when it is
added to the menu. It consists of one or more values listed in the
following "Comments" section.

WORD Specifies either the command ID of the new menu item
or, if wFlags is set to MF _POPUP, the menu handle of the pop-up
menu.

LPSTR Specifies the content of the new menu item. If wFlags is
set to MF _STRING (the default), then lpNewltem is a long pointer
to a null-terminated character string. If wFlags is set to MF _BIT­
MAP instead, then lpNewltem contains a bitmap handle
(HBITMAP) in its low-order word. If wFlags is set to
MF _OWNERDRAW, lpNewltem specifies an application-supplied
32-bit value which the application can use to maintain additional
data associated with the menu item. This 32-bit value is available
to the application in the itemData field of the data structure
pointed to by the lParam parameter of the following messages:

WM_MEASUREITEM
WM_DRAWITEM

These messages are sent when the menu item is initially displayed,
or is changed.

The return value specifies the outcome of the function. It is TRUE if the function is
successful. Otherwise, it is FALSE.

Whenever a menu changes (whether or not the menu resides in a window that is dis­
played), the application should call DrawMenuBar.

::z::
I
r

InsertMenu

.J
I '
I:

4-258

Each of the following groups lists flags that should not be used together:

• MF _BYCOMMAND and MF _BYPOSITION

• MF _DISABLED, MF _ENABLED, and MF _GRAYED

• MF _BITMAP, MF _STRING, MF _ OWNERDRA W, and MF _SEPARATOR

• MF _MENUBARBREAK and MF _MENUBREAK

• MF _CHECKED and MF _UNCHECKED

The following list describes the flags which may be set in the wFlags parameter:

Value

MF _BYPOSITION

MF_CHECKED

MF_GRAYED

MF _MENUBARBREAK

Meaning

Uses a bitmap as the item. The low-order word of the
lpNewltem parameter contains the handle of the bitmap.

Specifies that the nPosition parameter gives the menu­
item control ID number (default).

Specifies that the nPosition parameter gives the position
of the menu item to be changed rather than an ID num­
ber.

Places a checkmark next to the menu item. If the applica­
tion has supplied checkmark bitmaps (see the
SetMenultemBitmaps function), setting this flag dis­
plays the "checkmark on" bitmap next to the menu item .

Disables the menu item so that it cannot be selected, but
does not gray it.

Enables the menu item so that it can be selected and re­
stores it from its grayed state.

Disables the menu item so that it cannot be selected and
grays it.

Same as MF _MENUBREAK except that for pop-up
menus, separates the new column from the old column
with a vertical line.

Places the menu item on a new line for static menu-bar
items. For pop-up menus, places the menu item in a new
column, with no dividing line between the columns.

4-259

Value

MF_OWNERDRAW

MF _UNCHECKED

IntersectClipRect

Meaning

Specifies that the item is an owner-draw item. The
window that owns the menu receives a
WM_MEASUREITEM message when the menu is dis­
played for the first time to retrieve the height and width
of the menu item. The WM_DRA WITEM message is
then sent to the owner whenever the owner must update
the visual appearance of the menu item. This option is
not valid for a top-level menu item.

Specifies that the menu item has a pop-up menu as­
sociated with it. The wIDNewltem parameter specifies a
handle to a pop-up menu to be associated with the item.
Use the MF _OWNER DRAW flag to add either a top­
level pop-up menu or a hierarchical pop-up menu to a
pop-up menu item.

Draws a horizontal dividing line. You can use this flag in
a pop-up menu. This line cannot be grayed, disabled, or
highlighted. Windows ignores the IpNewltem and wID­
Newltem parameters.

Specifies that the menu item is a character string; the
IpNewltem parameter points to the string for the item.

Does not place a checkmark next to the item (default). If
the application has supplied checkmark bitmaps (see Set­
MenuItemBitmaps), setting this flag displays the
"checkmark off' bitmap next to the menu item.

IntersectClipRect
Syntax int IntersectClipRect(hDC, Xl, fl, X2, f2)

This function creates a new clipping region by forming the intersection of the current re­
gion and the rectangle specified by Xl, fl, X2, and f2. GDI clips all subsequent output to
fit within the new boundary.

Parameter

hDC

Xl

Type/Description

"DC Identifies the device context.

int Specifies the logical x-coordinate of the upper-left corner of the
rectangle.

%
I
r-

...J
I

:t

intersectRect 4-260

Return Value

Comments

IntersectRect
Syntax

Parameter

Yl

X2

Y2

Type/Description

int Specifies the logical y-coordinate of the upper-left comer of the
rectangle.

int Specifies the logical x-coordinate of the lower-right comer of
the rectangle.

int Specifies the logical y-coordinate of the lower-right comer of
the rectangle.

The return value specifies the new clipping region's type. It can be anyone' of the follow­
ing values:

Value Meaning

COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

New clipping region has overlapping borders.

Device context is not valid.

New clipping region is empty.

New clipping region has no overlapping borders.

The width of the rectangle, specified by the absolute value of X2 - Xl , must not exceed
32,767 units. This limit applies to the height of the rectangle as well .

int IntersectRect(/pDestReet, IpSrc1 Reet, IpSre2Reet)

This function creates the intersection of two existing rectangles. The intersection is the
largest rectangle contained in both rectangles. The IntersectRect function copies the new
rectangle to the RECT data structure pointed to by the IpDestReet parameter.

Parameter

IpDestReet

IpSrc1Reet

IpSre2Reet

Type/Description

LPRECT Points to the RECT data structure that is to receive the
intersection.

LPRECT Points to a RECT data structure that contains a source
rectangle.

LPRECT Points to a RECT·data structure that contains a source
rectangle.

4-261

Return Value

InvalidateRect
Syntax

Return Value

Comments

InvalidateRgn
Syntax

In va lidateRect

The return value specifies the intersection of two rectangles. It is nonzero if the
intersection of the two rectangles is not empty. It is zero if the intersection is empty.

void InvalidateRect(hWnd, ipRect, bErase)

This function invalidates the client area within the given rectangle by adding that rectangle
to the window's update region. The invalidated rectangle, along with all other areas in the
update region, is marked for painting when the next WM_PAINT message occurs. The
invalidated areas accumulate in the update region until the region is processed when the
next WM_PAINT message occurs, or the region is validated by using the ValidateRect or
ValidateRgn function.

The bErase parameter specifies whether the background within the update area is to be
erased when the update region is processed. If bErase is nonzero, the background is erased
when the BeginPaint function is called; if bErase is zero, the background remains un­
changed. If bErase is nonzero for any part of the update region, the background in the en­
tire region is erased, not just in the given part.

Parameter

hWnd

/pRect

bErase

None.

Type/Description

HWND Identifies the window whose update region is to be mod­
ified.

LPRECT Points to a RECT data structure that contains the
rectangle (in client coordinates) to be added to the update region. If
the lpRect parameter is NULL, the entire client area is added to the
region.

BOOL Specifies whether the background within the update region
is to be erased.

Windows sends a WM_PAINT message to a window whenever its update region is not
empty and there are no other messages in the application queue for that window.

void InvalidateRgn(hWnd, hRgn, bErase)

This function invalidates the client area within the given region by adding it to the current
update region of the given window. The invalidated region, along with all other areas in

::c
I
r-

InvertRect

Return Value

Comments

InvertRect
Syntax

4-262

the update region, is marked for painting when the next WM_PAINT message occurs. The
invalidated areas accumulate in the update region until the region is processed when the
next WM_PAINT message occurs, or the region is validated by using the ValidateRect or
ValidateRgn function.

The bErase parameter specifies whether the background within the update area is to be
erased when the update region is processed. If bErase is nonzero, the background is erased
when the BeginPaint function is called; if bErase is zero, the background remains un­
changed. If bErase is nonzero for any part of the update region, the background in the en­
tire region is erased, not just in the given part.

Parameter

hWnd

hRgn

bErase

None.

Type/Description

HWND Identifies the window whose update region is to be mod­
ified.

HRGN Identifies the region to be added to the update region. The
region is assumed to have client coordinates.

BOOL Specifies whether the background within the update region
is to be erased.

Windows sends a WM_PAINT message to a window whenever its update region is not
empty and there are no other messages in the application queue for that window.

The given region must have been previously created by using one of the region functions
(for more information, see Chapter 1, "Window Manager Interface Functions").

void InvertRect(hDC,lpRect)

This function inverts the contents of the given rectangle. On monochrome displays, the In­
vertRect function makes white pixels black, and black pixels white. On color displays, the
inversion depends on how colors are generated for the display. Calling InvertRect twice
with the same rectangle restores the display to its previous colors.

Parameter

hDC

IpRect

Type/Description

HDC Identifies the device context.

LPRECT Points to a RECT data structure that contains the logi­
cal coordinates of the rectangle to be inverted.

4-263

Return Value

Comments

InvertRgn
Syntax

Return Value

InvertRgn

None.

The InvertRect function compares the values of the top, bottom, left, and right fields of
the specified rectangle. If bottom is less than or equal to top, or if right is less than or
equal to left, the rectangle is not drawn.

BOOL InvertRgn(hDC, hRgn)

This function inverts the colors in the region specified by the hRgn parameter. On mono­
chrome displays, the InvertRgn function makes white pixels black, and black pixels
white. On color displays, the inversion depends on how the colors are generated for the dis­
play.

Parameter

hDC

hRgn

Type/Descri ption

HDC Identifies the device context for the region.

HRGN Identifies the region to be filled. The coordinates for the re­
gion are specified in device units.

The return value specifies the outcome of the function. It is nonzero if the function is
successful. Otherwise, it is zero.

IsCharAlpha []]]
Syntax

Return Value

BOOL IsChar Alpha(cChar)

This function determines whether a character is an alphabetical character. This determina­
tion is made by the language driver based on the criteria of the current language selected
by the user at setup or with the Control Panel.

Parameter Type/Description

cChar char Specifies the character to be tested.

The return value is TRUE if the character is alphabetical. Otherwise, it is FALSE.

::J
I
r

J
I .

IsCharAlphaNumeric 4-264

IsCharAlphaNumeric []]]
Syntax

Return Value

BOOL IsCharAlphaNumeric(cChar)

This function determines whether a character is an alphabetical or numerical character.
This determination is made by the language driver based on the criteria of the current lan­
guage selected by the user at setup or with the Control Panel.

Parameter Type/Description

cChar char Specifies the character to be tested.

The return value is TRUE if the character is an alphanumeric character. Otherwise, it is
FALSE.

IsCharLower []]]
Syntax

Return Value

BOOL IsCharLower(cCha"r)

This function determines whether a character is a lowercase character. This determination
is made by the language driver based on the criteria of the current language selected by the
user at setup or with the Control Panel.

Parameter Type/Description

cChar char Specifies the character to be tested.

The return value is TRUE if the character is lowercase. Otherwise, it is FALSE.

IsCharUpper []]]
Syntax BOOL IsCharUpper(cChar)

This function determines whether a character is an uppercase character. This determination
is made by the language driver based on the criteria of the current language selected by the
user at setup or with the Control Panel.

Parameter Type/Description

cChar char Specifies the character to be tested.

4-265

Return Value

IsChild
Syntax

Return Value

Is Child

The return value is TRUE if the character is uppercase. Otherwise, it is FALSE.

BOOL IsChild(hWndParent, hWnd)

This function indicates whether the window specified by the hWnd parameter is a child
window or other direct descendant of the window specified by the hWndParent parameter.
A child window is the direct descendant of a given parent window if that parent window is
in the chain of parent windows that leads from the original pop-up window to the child
window.

Parameter Type/Description

hWndParent HWND Identifies a window.

hWnd HWND Identifies the window to be checked.

The return value specifies the outcome of the function. It is TRUE if the window identified
by the hWnd parameter is a child window of the window identified by the hWndParent par­
ameter. Otherwise, it is FALSE.

IsClipboardFormatAvailable
Syntax

Return Value

Comments

BOOL IsClipboardFormatAvailable(wF ormat)

This function specifies whether data of a certain type exist in the clipboard.

Parameter

wFormat

Type/Description

WORD Specifies a registered clipboard format. For information
on clipboard formats, see the description of the SetClipboardData
function, later in this chapter.

The return value specifies the outcome of the function. It is TRUE if data having the
specified format are present. Otherwise, it is FALSE.

This function is typically called during processing of the WM_INITMENU or WM_INIT -
MENUPOPUP message to determine whether the clipboard contains data that the applica­
tion can paste. If such data are present, the application typically enables the Paste
command (in its Edit menu).

.::E:
, I
:,...

...J;
I '

IsOialogMessage 4-266

IsDialogMessage
Syntax

Return Value

BOOL IsDialogMessage(hDlg,lpMsg)

This function determines whether the given message is intended for the modeless dialog
box specified by the hDlg parameter, and automatically processes the message if it is.
When the IsDialogMessage function processes a message, it checks for keyboard mes­
sages and converts them into selection commands for the corresponding dialog box. For ex­
ample, the TAB key selects the next control or group of controls, and the DOWN key selects
the next control in a group.

If a message is processed by IsDialogMessage, it must not be passed to the Translate­
Message or DispatchMessage function. This is because IsDialogMessage performs all
necessary translating and dispatching of messages.

IsDialogMessage sends WM_GETDLGCODE messages to the dialog function to deter­
mine which keys should be processed.

Parameter

hDlg

IpMsg

Type/Description

HWND Identifies the dialog box.

LPMSG Points to an MSG data structure that contains the
message to be checked.

The return value specifies whether or not the given message has been processed. It is non­
zero if the message has been processed. Otherwise, it is zero .

::I: Comments Although IsDialogMessage is intended for modeless dialog boxes, it can be used with any
window that contains controls to provide the same keyboard selection as in a dialog box.

IsDlgButtonChecked
Syntax WORD IsDIgButtonChecked(hDlg, nIDButton)

This function determines whether a button control has a checkmark next to it, and whether
a three-state button control is grayed, checked, or neither. The IsDIgButtonChecked func­
tion sends a BM_GETCHECK message to the button control.

4-267

Return Value

Islconic
Syntax

Return Value

IsRectEmpty
Syntax

Return Value

Parameter

hDlg

nIDButton

Is/conic

Type/Description

HWND Identifies the dialog box that contains the button control.

int Specifies the integer identifier of the button control.

The return value specifies the outcome of the function. It is nonzero if the given control
has a checkmark next to it. Otherwise, it is zero. For three-state buttons, the return value is
2 if the button is grayed, 1 if the button has a checkmark next to it, and zero otherwise.

BOOL IsIconic(hWnd)

This function specifies whether a window is minimized (iconic).

Parameter Type/Description

hWnd HWND Identifies the window.

The return value specifies whether the window is minimized. It is nonzero if the window is
minimized. Otherwise, it is zero.

BOOL IsRectEmpty(lpRect)

This function determines whether or not the specified rectangle is empty. A rectangle is
empty if the width and/or height are zero.

Parameter

lpRect

Type/Description

LPRECT Points to a RECT data structure that contains the
specified rectangle.

The return value specifies whether or not the given rectangle is empty. It is nonzero if the
rectangle is empty. It is zero if the rectangle is not empty.

::t
I
r

Is Window

IsWindow
Syntax

Return Value

4-268

BOOL IsWindow(hWnd)

This function determines whether the window identified by the hWnd parameter is a valid,
existing window.

Parameter Type/Description

hWnd HWND Identifies the window.

The return value specifies whether or not the given window is valid. It is nonzero if hWnd
is a valid window. Otherwise, it is zero.

IsWindowEnabled
Syntax

Return Value

Comments

BOOL IsWindowEnabled(hWnd)

This function specifies whether the specified window is enabled for mouse and keyboard
input.

Parameter Type/Description

hWnd HWND Identifies the window.

The return value specifies whether or not the given window is enabled. It is nonzero if the
window is enabled. Otherwise, it is zero.

A child window receives inputonly if it is both enabled and visible.

4-269 Is Win do w Visible

IsWindowVisible
Syntax

Return Value

IsZoomed
Syntax

Return Value

BOOL IsWindowVisible(hWnd)

The IsWindowVisible function returns nonzero anytime an application has made a
window visible by using the ShowWindow function (even if the specified window is
completely covered by another child or pop-up window, the return value is nonzero).

Parameter Type/Description

hWnd HWND Identifies the window.

The return value specifies whether or not a given window exists on the screen. It is non­
zero if the given window exists on the screen. Otherwise, it is zero.

BOOL IsZoomed(hWnd)

This function determines whether or not a window has been maximized.

Parameter Type/Description

hWnd HWND Identifies the window.

The return value specifies whether or not the given window is maximized. It is nonzero if
the window is maximized. Otherwise, it is zero.

::E
I
....

..I
I
I:

KiffTimer

KiliTimer
Syntax

Return Value

4-270

BOOL KillTimer(hWnd, nIDEvent)

This function kills the timer event identified by the hWnd and nIDEvent parameters. Any
pending WM_ TIMER messages associated with the timer are removed from the message
queue.

Parameter

hWnd

nIDEvent

Type/Description

HWND Identifies the window associated with the given timer
event. This must be the same value passed as the hWnd parameter to
the SetTimer function call that created the timer event.

int Specifies the timer event to be killed. If the application called
SetTimer with the hWnd parameter set to NULL, this must be the
event identifier returned by SetTimer. If the hWnd parameter of Set­
Timer was a valid window handle, nIDEvent must be the value of
the nIDEvent parameter passed to SetTimer.

The return value specifies the outcome of the function. It is nonzero if the event was killed.
It is zero if the Kill Timer function could not find the specified timer event.

4-271

_Iclose
Syntax

Return Value

_Icreat
Syntax

Iclose

int _lclose(hFile)

This function closes the file specified by the hFile parameter. As a result, the file is no
longer available for reading or writing.

The hFile argument is returned by the call that created or last opened the file.

Parameter Type/Description

hFile int Specifies the MS-DOS file handle of the file to be closed.

The return value indicates whether the function successfully closed the file. It is zero if the
function closed the file, or -1 if the function failed.

int _lcreat(lpPathName, iAttribute)

This function opens a file with the name specified by the lpPathName parameter. The
iAttribute parameter specifie.s the attributes of the file when the function opens it. If the file
does not exist, the function creates a new file and opens it,for writing. If the file does exist,
the function truncates the file size to zero and opens it for reading and writing. When the
function opens the file, the pointer is set to the beginning of the file.

Parameter

lpPathName

iAttribute

Type/Description

LPSTR Points to a null-terminated character string that names the
file to be opened. The string must consist of characters from the
ANSI character set.

int Specifies the file attributes. The parameter must be one of these
values:

Value

o

2

3

Meaning

Normal; can be read or written without restriction.

Read-only; cannot be opened for write; a file with
the same name cannot be created.

Hidden; not found by directory search.

System; not found by directory search.

:J
I

I'"'

J
I

LimitEmsPages 4-272

Return Value

limitEmsPages
Syntax

Return value

Comments

lineDDA
Syntax

The return value specifies an MS-DOS file handle if the function was successful. Other­
wise, the return value is -1.

void LimitEmsPages (dwKbytes)

This function limits the amount of expanded memory that Windows will assign to an appli­
cation. It does not limit the amount of expanded memory that the application can get by
directly calling INT 67H.

Parameter

dwKbytes

None.

Type/Description

DWORD Specifies the number of kilobytes of expanded memory
to which the application is to have access.

LimitEmsPages has an effect only if expanded memory is installed and being used by
Windows. If Windows is not using expanded memory, then the function has no effect.

void LineDDA(XI, YI, X2, Y2, lpLineFunc, lpData)

This function computes all successive points in a line starting at the poinfspecified by the
Xl and YI parameters and ending at the 'point specified by the X2 and Y2 parameters. The
endpoint is not included as part of the line. For each point on the line, the LineDDA func­
tion calls the application-supplied function pointed to by the lpLineFunc parameter, pass­
ing to the function the coordinates of the current point and the lpData parameter.

Parameter

Xl

YI

X2

Y2

lpLineFunc

Type/Description

int Specifies the logical x-coordinate of the first point.

int Specifies the logical y-coordinate of the first point.

int Specifies the logical x-coordinate of the endpoint.

int Specifies the logical y-coordinate of the endpoint.

FARPROC Is the procedure-instance address of the application­
supplied function. See the following "Comments" section for details.

4-273

Return Value

Comments

Line To

Parameter Type/Description

/pData LPSTR Points to the application-supplied data.

None.

The address passed by the /pLineFunc parameter must be created by using the Make­
ProcInstance function.

The callback function must use.the Pascal calling convention and must be declared FAR.

Callback Function void FAR PASCAL LineFunc(X, Y, /pData)
int X;

LineTo
Syntax

int Y;
LPSTR /pData;

LineFunc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in an EXPORTS statement in the application's module­
definition file.

Parameter

X

Y

/pData

Return Value

Definition

Specifies the x-coordinate of the current point.

Specifies the y-coordinate of the current point.

Points to the application-supplied data.

The function can perform any task. It has no return value.

BOOL LineTo(hDC, X, y)

This function draws a line from the current position up to, but not including, the point
specified by the X and Y parameters. The line is drawn with the selected pen. If no error
occurs, the position is set to (X,Y).

Parameter Type/Description

hDC HDC Identifies the device context.

:I:
I
r

J ,
I
[:

Iiseek

Return Value

_lIseek
Syntax

Return Value

Comments

Parameter

x
y

4-274

Type/Description

int Specifies the logical x-coordinate of the endpoint for the line.

int Specifies the logical y-coordinate of the endpoint for the line.

The return value specifies whether or not the line is drawn. It is nonzero if the line is
drawn. Otherwise, it is zero.

LONG Jlseek(hFile, IOffset, iOrigin)

This function repositions the pointer in a previously opened file. The iOrigin parameter
specifies the starting position in the file, and IOffset specifies how far (in bytes) the func­
tion is to move the pointer.

Parameter

hFile'

IOffset

iOrigin

Type/Description

int Specifies the MS-DOS file handle of the file.

LONG Specifies the number of bytes the pointer is to be moved.

int Specifies the starting position and direction of the pointer. The
parameter must be one of the following values:

Value

o

2

Meaning

Move the file pointer IOffset bytes from the begin­
ning of the file.

Move the file pointer IOffset bytes from the cur­
rent position of the file.

Move the file pointer IOffset bytes from the end of
the file.

The return value specifies the new offset of the pointer (in bytes) from the beginning of the
file. The return value is -1 if the function fails.

When a file is initially opened, the file pointer is positioned at the beginning of the file.
The Jlseek function permits random access to a file's contents by moving the pointer an
arbitrary amount without reading data.

4-275 LoadAcceierators

loadAccelerators
Syntax

Return Value

loadBitmap
Syntax

Return Value

Comments

HANDLE LoadAccelerators(hlnstance,lpTableName)

This function loads the accelerator table named by the lpTableName parameter from the
executable file associated with the module specified by the hlnstance parameter.

The LoadAccelerators function loads the table only if it has not been previously loaded.
Otherwise, it retrieves a handle to the loaded table.

Parameter

hlnstance

lpTableName

Type/Description

HANDLE Identifies an instance of the module whose executable
file contains the accelerator table.

LPSTR Points to a string that names the accelerator table. The
string must be a null-terminated character string.

The return value identifies the loaded accelerator table if the function is successful. Other­
wise, it is NULL.

HBITMAP LoadBitmap(hlnstance,lpBitmapName)

This function loads the bitmap resource named by the IpBitmapName parameter from the
executable file associated with the module specified by the hlnstance parameter.

Parameter

hlnstance

IpBitmapName

Type/Description

HANDLE Identifies the instance of the module whose exe­
cutable file contains the bitmap.

LPSTR Points to a character string that names the bitmap. The
string must be a null-terminated character string.

The return value identifies the specified bitmap. It is NULL if no such bitmap exists.

The application must call the DeleteObject function to delete each bitmap handle returned
by the LoadBitmap function. This also applies to the predefined bitmaps described in the
following paragraph.

:::J
I
r

LoadBitmap

I'

The LoadBitmap function can also be used to access the predefined bitmaps used
by Windows. The hlnstance parameter must be set to NULL, and the IpBitmapName
parameter must be one of the following values:

• OBM_BTNCORNERS

• OBM_BTSIZE

• OBM_CHECK

• OBM_CHECKBOXES

• OBM_CLOSE

• OBM_COMBO

• OBM_DNARROW

• OBM_DNARROWD

• OBM_LFARROW

• OBM_LFARROWD

• OBM_MNARROW

• OBM_OLD_CLOSE

• OBM_OLD_DNARROW

• OBM_OLD_LFARROW

• OBM_OLD_REDUCE

• OBM_OLD_RESTORE

• OBM_OLD_RGARROW

• OBM_OLD_UPARROW

• OBM_OLD_ZOOM

• OBM_REDUCE

• OBM_REDUCED

• OBM_RESTORE

• OBM_RESTORED

• OBM_RGARROW

• OBM_RGARROWD

4-276

4-277

LoadCursor
Syntax

Return Value

Comments

LoadCursor

• OBM_SIZE

• OBM_UPARROW

• OBM_UPARROWD

• OBM_ZOOM

• OBM_ZOOMD

Bitmap names that begin OBM_OLD represent bitmaps used by Windows versions prior
to 3.0.

The /pBitmapName parameter can also be a value created by the MAKEINTRESOURCE
macro. If it is, the ID must reside in the low-order word of lpBitmapName, and the high­
order word must contain zeros.

HCURSOR LoadCursor(hlnstance, /pCursorName)

This function loads the cursor resource named by the /pCursorName parameter from the
executable file associated with the module specified by the hlnstance parameter. The func­
tion loads the cursor into memory only if it has not been previously loaded. Otherwise, it
retrieves a handle to the existing resource.

Parameter

hlnstance

/pCursorName

Type/Description

HANDLE Identifies an instance of the module whose exe­
cutable file contains the cursor.

LPSTR Points to a character string that names the cursor
resource. The string must be a null-terminated character string.

The return value identifies the newly loaded cursor if the function is successful. Otherwise,
it is NULL.

The LoadCursor function returns a valid cursor handle only if the /pCursorName parame­
ter identifies a cursor resource. If lpCursorName identifies any type of resource other than
a cursor (such as an icon), the return value will not be NULL, even though it is not a valid
cursor handle.

Use the LoadCursor function to access the predefined cursors used by Windows. To do
this, the hlnstance parameter must be set to NULL, and the lpCursorName parameter must
be one of the following values:

:::t:
I
r

J
I ;
~

Load/con

loadleon
Syntax

Value

IDC_ARROW

IDC_CROSS

IDC_IBEAM

IDC_ICON

IDC_SIZE

IDC_SIZENESW

IDC_SIZENS

IDC_SIZENWSE

IDC_SIZEWE

IDC_UPARROW

IDC_WAIT

Meaning

Standard arrow cursor.

Crosshair cursor.

Text I-beam cursor.

Empty icon.

Loads a square with a smaller square inside its lower-right
comer.

Double-pointed cursor with arrows pointing northeast and
southwest.

Double-pointed cursor with arrows pointing north and south.

Double-pointed cursor with arrows pointing northwest and
southeast.

Double-pointed cursor with arrows pointing west and east.

Vertical arrow cursor.

Hourglass cursor.

4-278

The lpCursorName parameter can contain a value created by the MAKEINTRE­
SOURCE macro. If it does, the ID must reside in the low-order word of lpCursorName,
and the high-order word must be set to zero.

HICON Loadlcon(hlnstance,lplconName)

This function loads the icon resource named by the lplconName parameter from the exe­
cutable file associated with the module specified by the hlnstance parameter. The function
loads the icon only if it has not been previously loaded. Otherwise, it retrieves a handle to
the loaded resource.

Parameter

hlnstance

lpIconName

Type/Description

HANDLE Identifies an instance of the module whose executable
file contains the icon.

LPSTR Points to a character string that names the icon resource.
The string must be a null-terminated character string.

4-279

Return Value

Comments

LoadLibrary
Syntax

Return Value

LoadLibrary

The return value identifies an icon resource if the function is successful. Otherwise, it is
NULL.

Use the Loadlcon function to access the predefined icons used by Windows. To do this,
the hlnstance parameter must be set to NULL, and the /pIconName parameter must be one
of the following values:

Value

IDCAPPLICATION

IDCASTERISK

IDCEXCLAMATION

IDCHAND

IDCQUESTION

Meaning

Default application icon.

Asterisk (used in informative messages).

Exclamation point (used in warning messages).

Hand-shaped icon (used in serious warning messages).

Question mark (used in prompting messages).

The /pIconName parameter can also contain a value created by the MAKEINTRE­
SOURCE macro. If it does, the ID must reside in the low-order word of /pIconName,
and the high-order word must be set to zero.

HANDLE LoadLibrary(lpLibFileName)

This function loads the library module contained in the specified file and retrieves a handle
to the loaded module instance.

Parameter

/pLibFileName

Type/Description

LPSTR Points to a string that names the library file. The string
must be a null-terminated character string.

The return value identifies the instance of the loaded library module. Otherwise, it is a
value less than 32 that specifies the error. The following list describes the error values
returned by this function:

Value

o
2

Meaning

Out of memory.

File not found.

:::t:
I
r

LoadMenu

.:.J
I

:::t: i
LoadMenu
Syntax

Return Value

4-280

Value Meaning

3 Path not found.

5 Attempt to dynamically link to a task.

6 Library requires separate data segments for each task.

10 Incorrect Windows version.

11 Invalid .EXE file (non-Windows .EXE or error in .EXE image).

12 OS/2 application .

. 13 DOS 4.0 application.

14 Unknown .EXE type.

15 Attempt in protected (standard or 386 enhanced) mode to load an
.EXE created for an earlier version of Windows.

16 Attempt to load a second instance of an .EXE containing multiple,
writeable data segments.

17 Attempt in large-frame EMS mode to load a second instance of an
application that links to certain nonshareable DLLs already in use.

18 Attempt in real mode to load an application marked for protected
mode only .

HMENU LoadMenu(hlnstance, /pMenuName)

This function loads the menu resource named by the /pMenuName parameter from the exe­
cutable file associated with the module specified by the hlnstance parameter.

Parameter

hlnstance

/pMenuName

Type/Description

HANDLE Identifies an instance of the module whose exe­
cutable file contains the menu.

LPSTR Points to a character string that names the menu
resource. The string must be a null-terminated character string.

The return value identifies a menu resource if the function is successful. Otherwise, it is
NULL.

4-281

Comments

LoadMenulndirect

The IpMenuName parameter can contain a value created by the MAKEINTRESOURCE
macro. If it does, the ID must reside in the low-order word of IpMenuName, and the high­
order word must be set to zero.

LoadMenulndirect
Syntax

Return Value

HMENU LoadMenlllndirect{lpMenuTemplate)

This function loads into memory the menu named by the IpMenuTemplate parameter. The
template specified by IpMenuTemplate is a header followed by a collection of one or more
MENUITEMTEMPLATE structures, each of which may contain one or more menu
items and pop-up menus.

Parameter

IpMenuTemplate

Type/Description

LPSTR Points to a menu template (which is a collection of
one or more MENUITEMTEMPLATE structures).

The return value identifies the menu if the function is successful. Otherwise, it is NULL.

LoadModule []]]
Syntax HANDLE LoadModllle{lpModuleName, IpParameterBlock)

This function loads and executes a Windows program or creates a new instance of an ex­
isting Windows program.

Parameter

IpModuleName

Type/Description

LPSTR Points to a null-terminated string that contains
the filename of the application to be run. If the
IpModuleName string does not contain a directory path,
Windows will search for the executable file in this order:

1. The current directory

2. The Windows directory (the directory containing
WIN. COM); the GetWindowsDirectory function ob­
tains the pathname of this directory

:::t:
. I
:

..J
I

:I:

LoadModu/e

Parameter

IpParameterBlock

4-282

Type/Description

3. The Windows system directory (the directory containing
such system files as KERNEL.EXE); the GetSystem­
Directory function obtains the pathname of this
directory

4. The directories listed in the PATH environment variable

5. The list of directories mapped in a network

If the application filename does not contain an extension,
then .EXE is assumed.

LPVOID Points to a data structure consisting of four
fields that defines a parameter block. This data structure
consists of the following fields:

Field

wEnvSeg

IpCmdLine

IpCmdShow

dwReserved

Type/Description

WORD Specifies the segment
address of the environment under which
the module is to run; 0 indicates that the
Windows environment is to be copied.

LPSTR Points to a null-terminated
character string that contains a correctly
formed command line. This string must
not exceed 120 bytes in length .

LPVOID Points to a data structure
containing two WORD-length values.
The first value must always be set to two.
The second value specifies how the appli­
cation window is to be shown. See the
description of the nCmdShow paramter
of the ShowWindow function for a list
of the acceptable values.

DWORD Is reserved and must be
NULL.

All unused fields should be set to NULL, except for
IpCmdLine, which must point to a null string if it is not
used.

4-283

Return Value

Comments

LoadResource
Syntax

LoadResource

The return value identifies the instance of the loaded module if the function was success­
ful. Otherwise, it is a value less than 32 that specifies the error. The following list describes
the error values returned by this function:

Value

o
2

3

5

6

10

11

12

13

14

15

16

17

18

Meaning

. Out of memory.

File not found.

Path not found.

Attempt to dynamically link to a task.

Library requires separate data segments for each task.

Incorrect Windows version.

Invalid .EXE file (non-Windows .EXE or error in .EXE image).

OS/2 application.

DOS 4.0 application.

Unknown .EXE type.

Attempt in protected (standard or 386 enhanced) mode to load an
.EXE created for an earlier version of Windows.

Attempt to load a second instance of an .EXE containing multiple,
writeable data segments.

Attempt in large-frame EMS mode to load a second instance of an
application that links to certain nonshareable DLLs already in use.

Attempt in real mode to load an application marked for protected
mode only.

The WinExec function provides an alternative method for executing a program.

HANDLE LoadResource(hlnstance, hReslnfo)

This function loads a resource identified by the hReslnfo parameter from the executable
file associated with the module specified by the hlnstance parameter. The function loads
the resource into memory only if it has not been previously loaded. Otherwise, it retrieves
a handle to the existing resource.

::c
I
r-

...I
I

::J:~

LoadString

Return Value

Comments

LoadString
Syntax

Return Value

Parameter

hInstance

hResInfo

4-284

Type/Description

HANDLE Identifies an instance of the module whose executable
file contains the resource.

HANDLE Identifies the desired resource. This handle is assumed
to have been created by using the FindResource function.

The return value identifies the global memory block to receive the data associated with the
resource. It is NULL if no such resource exists.

The resource is not actually loaded until the LockResource function is called to translate
the handle returned by LoadResource into a far pointer to the resource data.

int LoadString(hInstance, wID, lpBuffer, nBufferMax)

This function loads a string resource identified by the wID parameter from the executable
file associated with the module specified by the hInstance parameter. The function copies
the string into the buffer pointed to by the lpBuffer parameter, and appends a terminating
null character.

Parameter

hInstance

wID

lpBuffer

nBufferMax

Type/Description

HANDLE Identifies an instance of the module whose executable
file contains the string resource.

WORD Specifies the integer identifier of the string to be loaded.

LPSTR Points to the buffer that receives the string.

int Specifies the maximum number of characters to be copied to
the buffer. The string is truncated if it is longer than the number of
characters specified.

The return value specifies the actual number of characters copied into the buffer. It is zero
if the string resource does not exist.

4-285

lOBYTE
Syntax

Return Value

localAlioc
Syntax

LOBYTE

BYTE LOBYTE(nlnteger)

This macro extracts the low-order byte from the short-integer value specified by the
nlnteger parameter.

Parameter Type/Description

nlnteger int Specifies the value to be converted.

The return value specifies the low-order byte of the value.

HANDLE LocaIAlloc(wFlags, wBytes)

This function allocates the number of bytes of memory specified by the wBytes parameter
from the local heap. The memory block can be either fixed or moveable, as specified by
the wFlags parameter.

Parameter

wFlags

Type/Description

WORD Specifies how to allocate memory. It can be one or more of
the following values:

Value

LMEM_DISCARDABLE

LMEM_FIXED

LMEM_MODIFY

LMEM_MOVEABLE

LMEM_NOCOMPACT

Meaning

Allocates discardable memory. Can
onl y be used with
LMEM_MOVEABLE.

Allocates fixed memory.

Modifies the LMEM_DISCARD­
ABLE flag. Can only be used with
LMEM_DISCARDABLE.

Allocates moveable memory. Cannot
be used with LMEM_FIXED.

Does not compact or discard
memory to satisfy the allocation
request.

::J:
I
r

Loca/Compact 4-286

....I
I

Return Value

Comments

J: LocalCompact
Syntax

Return Value

Parameter

wBytes

Type/Description

Value

LMEM_NODISCARD

Meaning

Does not discard memory to satisfy
the allocation request.

Initializes memory contents to zero.

Choose LMEM_FIXED or LMEM_MOVEABLE, and then combine
others as needed by using the bitwise OR operator.

WORD Specifies the total number of bytes to be allocated.

The return value identifies the newly allocated local memory block if the function is
successful. Otherwise, it is NULL.

If the data segment that contains the heap is moveable, calling this function will cause the
data segment to move if Windows needs to increase the size of the heap and cannot in­
crease the size of the heap in its current location. An application can prevent Windows
from moving the data segment by calling the LockData function to lock the data segment.

If this function is successful, it allocates at least the amount requested. The actual amount
allocated may be greater. To determine the actual amount allocated, call the LocalSize
function .

WORD LocaICompact(wMinFree)

This function generates the number of free bytes of memory specified by the wMinFree
parameter by compacting, if necessary, the module's local heap. The function checks the
local heap for the specified number of contiguous free bytes. If the bytes do not exist, the
LocalCompact function compacts local memory by first moving all unlocked moveable
blocks into high memory. If this does not generate the requested amount of space, the
function discards moveable and discardable blocks that are not locked down, until the
requested amount of space is generated, whenever possible.

Parameter

wMinFree

Type/Description

WORD Specifies the number of free bytes desired. If wMinFree is
zero, the function returns a value but does not compact memory.

The return value specifies the number of bytes in the largest block of free local memory.

4-287

LocalDiscard
Syntax

Return Value

LocalFlags
Syntax

Return Value

Loca/Discard

HANDLE LocaIDiscard(hMem)

This function discards the local memory block specified by the hM em parameter. The lock
count of the memory block must be zero.

The local memory block is removed from memory, but its handle remains valid. An appli­
cation can subsequently pass the handle to the LocalReAlIoc function to allocate another
local memory block identified by the same handle.

Parameter Type/Description

hMem HANDLE Identifies the local memory block to be discarded.

The return value specifies the outcome of the function. It is NULL if the function is
successful. Otherwise, it is equal to hMem.

WORD LocaIFlags(hMem)

This function returns information about the specified local memory block.

Parameter Type/Description

hMem HANDLE Identifies the local memory block.

The return value contains one of the following memory-allocation flags in the high byte:

Value

LMEM_DISCARDABLE

LMEM_DISCARDED

Meaning

Block is marked as discardable.

Block has been discarded.

The low byte of the return value contains the reference count of the block. Use the
LMEM_LOCKCOUNT mask to retrieve the lock-count value from the return value.

::J:
I
r

..J
I

J:

Loea/Free

LocalFree
Syntax

Return Value

LocalHandle
Syntax

Return Value

Locallnit
Syntax

HANDLE LocaIFree(hMem)

This function frees the local memory block identified by the hM em parameter and
invalidates the handle of the memory block.

Parameter Type/Description

hMem HANDLE Identifies the local memory block to be freed.

The return value specifies the outcome of the function. It is NULL if the function is
successful. Otherwise, it is equal to hMem.

HANDLE LocaIHandle(wMem)

4-288

This function retrieves the handle of the local memory object whose address is specified
by the wMem parameter.

Parameter Type/Description

wMem WORD Specifies the address of a local memory object.

The return value identifies the local memory object.

BOOL LocalInit(wSegment, pStart, pEnd)

This function initializes a local heap in the segment specified by the wSegment parameter.

Parameter

wSegment

pStart

Type/Description

WORD Specifies the segment address of the segment that is to
contain the local heap.

PSTR Specifies the address of the start of the local heap within the
segment.

4-289

Return Value

Comments

LocalLock
Syntax

Return Value

Parameter

pEnd

Loca/Lock

Type/Description

PSTR Specifies the address of the end of the local heap within the
segment.

The return value specifies a Boolean value that is nonzero if the heap is initialized. Other­
wise, it is zero.

If the pStart parameter is zero, the pEnd parameter specifies the offset of the last byte of
the global heap from the end of the segment. For example, to initialize a 4096-byte heap
with the first byte at byte 0, set pStart to 0 and pEnd to 4095.

Locallnit calls the GlobalLock function for the data segment that contains the local heap.
This ensures that the data segment will not be moved in memory. However, the memory
will be moved if both of these conditions are true:

1. The data segment is moveable.

2. The application calls the LocalAlloc or LocalReAlloc function and, as a result,
Windows must increase the size of the heap. If Windows cannot increase the size of the
data segment that contains the local heap without moving it, Windows will move the
data segment.

An application can explicitly prevent Windows from moving the data segment by calling
the LockData function to lock the data segment.

An application can remove this initial lock count by calling the UnlockData function.

PSTR LocaILock(hMem)

This function locks the local memory block specified by the hM em parameter. The block is
locked into memory at the given address and its reference count is increased by one.
Locked memory cannot be moved or discarded. The block remains locked in memory until
its reference count is decreased to zero by using the LocalUnlock function.

Parameter Type/Description

hMem HANDLE Identifies the local memory block to be locked.

The return value points to the first byte of memory in the local block if the function is
successful. Otherwise, it is NULL.

:::t:
I
r-

..I
I
I:

Loea/ReAlloe 4-290

LocalReAlioc
Syntax HANDLE LocaIReAlIoc(hMem, wBytes, wFlags)

This function changes the size of the local memory block specified by the hMem para­
meter by incrcasing or decreasing its size to the number of bytes specified by the wBytes
parameter, or changes the attributes of the specified memory block.

Parameter

hMem

wBytes

wFlags

Type/Description

HANDLE Identifies the local memory block to be reallocated.

WORD Specifies the new size of the memory block.

WORD Specifies how to reallocate the local memory block. It can
be one or more of the following values:

Value

LMEM_DISCARDABLE

LMEM_MOVEABLE

LMEM_NOCOMPACT

Meaning

Memory is discardable. This flag can
only be used with LMEM_MODIFY.

Memory flags are modified. The
wBytes parameter is ignored. This
flag can only be used with
LMEM_DISCARDABLE.

Memory is moveable. If wBytes is
zero, this flag causes a previously
fixed block to be freed or a pre­
viously moveable object to be
discarded (if the block's reference
count is zero). If wBytes is nonzero
and the block specified by hM em is
fixed, this flag allows the reallocated
block to be moved to a new fixed lo­
cation. (Note that the handle
returned by the LocalReAlloc func­
tion in this case may be different
from the handle passed to the func­
tion.) This flag cannot be used with
LMEM_MODIFY.

Memory will not be compacted or
discarded to satisfy the allocation re­
quest. This flag cannot be used with
LMEM_MODIFY.

4-291

Return Value

Comments

LocalShrink
Syntax

Return Value

Parameter Type/Description

Value

LMEM_NODISCARD

Loea/Shrink

Meaning

Objects will not be discarded to
satisfy the allocation request. This
flag cannot be used with
LMEM_MODIFY.

If the block is growing, the addi­
tional memory contents are
initialized to zero. This flag cannot
be used with LMEM_MODIFY.

The return value identifies the reallocated local memory if the function is successful. It is
NULL if the local memory block cannot be reallocated.

The return value is always identical to the hMem parameter, unless the
LMEM_MOVEABLE flag is used to allow movement of a fixed block of memory to a
new fixed location.

If the data segment that contains the heap is moveable, calling this function will cause the
data segment to move if Windows must increase the size of the heap and cannot increase
the size of the heap in its current location. An application can prevent Windows from
moving the data segment by calling the LockData function to lock the data segment.

WORD LocaIShrink(hSeg, wSize)

This function shrinks the specified heap to the size specified by the wSize parameter.
The minimum size for the automatic local heap is defined in the application's module­
definition file.

Parameter

hSeg

wSize

Type/Description

HANDLE Identifies the segment that contains the local heap.

WORD Specifies the size (in bytes) desired for the local heap after
shrinkage.

The return value specifies the size of the local heap after shrinkage.

'::t:
I
r

Loea/Size 4-292

Comments If hSeg is zero, the LocalShrink function reduces the local heap in the current data seg­
ment. Windows will not shrink that portion of the data segment that contains the stack and
the static variables.

LocalSize
Syntax

Return Value

Comments

Use the GlobalSize function to determine th.e new size of the data segment.

WORD LocaISize(hMem)

This function retrieves the current size (in bytes) of the local memory block specified by
the hM em parameter.

Parameter Type/Description

hMem HANDLE Identifies the local memory block.

The return value specifies the size (in bytes) of the specified memory block. It is NULL if
the given handle is not valid.

The actual size of a memory block sometimes is larger than the size requested when the
memory was allocated .

..I LocalUnlock
I

:z:: Syntax BOOL LocaIUnlock(hMem)

Return Value

This function unlocks the local memory block specified by the hMem parameter and
decreases the block's reference count by one. The block is completely unlocked, and
subject to moving or discarding, if the reference count is decreased to zero.

Parameter Type/Description

hMem HANDLE Identifies the local memory block to be unlocked.

The return value is zero if the block's reference count was decreased to zero. Otherwise,
the return value is nonzero.

4-293

LockData
Syntax

Return Value

LockResource
Syntax

Return Value

LockData

HANDLE LockData(Dummy)

This macro locks the current data segment in memory. It is intended to be used in modules
that have moveable data segments.

Parameter Type/Description

Dummy int Is not used. It should be set to zero.

The return value identifies the locked data segment if the function is successful. Other­
wise, it is NULL.

LPSTR LockResource(hResData)

This function retrieves the absolute memory address of the loaded resource identified by
the hResData parameter. The resource is locked in memory and the given address and its
reference count are increased by one. The locked resource is not subject to moving or dis­
carding.

The resource remains locked in memory until its reference count is decreased to zero
through calls to the FreeResource function.

If the resource identified by hResData has been discarded, the resource-handler function
(if any) associated with the resource is called before the LockResource function returns.
The resource-handler function can recalculate and reload the resource if desired. After the
resource-handler function returns, LockResource makes another attempt to lock the
resource and returns with the result.

Parameter

hResData

Type/Description

HANDLE Identifies the desired resource. This handle is assumed
to have been created by using the LoadResource function.

The return value points to the first byte of the loaded resource if the resource was locked.
Otherwise, it is NULL.

:z::
I
r

..J
I

:::C'

LockSegment 4-294

Comments

LockSegment
Syntax

Return Value

_Iopen
Syntax

Using the handle returned by the FindResource function for the hResData parameter
causes an error.

Use the UnlockResource macro to unlock a resource that was locked by using Lock­
Resource.

HANDLE LockSegment(wSegment)

This function locks the segment whose segment address is specified by the wSegment para­
meter. If wSegment is -1, the LockSegment function locks the current data segment.

Except for nondiscardable segments in protected (standard or 386 enhanced) mode, the
segment is locked into memory at the given address and its lock count is increased by one.
Locked memory is not subject to moving or discarding except when a portion of the seg­
ment is being reallocated by the GlobalReAlloc function. The segment remains locked in
memory until its lock count is decreased to zero.

In protected mode, LockSegment increments the lock count of discardable and automatic
data segments only.

Each time an application calls LockSegment for a segment, it must eventually call Un­
lockSegment for the segment. The UnlockSegment function decreases the lock count for
the segment. Other functions also can affect the lock count of a memory object. See the
description of the GlobalFlags function for a list of the functions that affect the lock count.

Parameter

wSegment

Type/Description

WORD Specifies the segment address of the segment to be
locked. If wSegment is -1, the LockSegment function locks the cur­
rent data segment.

The return value identifies the data segment if the function is successful. If the object has
been discarded or an error occurs, the return value is NULL.

int Jopen(lpPathName, iReadWrite)

This function opens the file with the name specified by the /pPathName parameter. The
iReadWrite parameter specifies the access mode of the file when the function opens it. If
the file exists and is opened for writing only, the function truncates the file size to zero.
When the function opens the file, the pointer is set to the beginning of the file.

4-295

Parameter

/pPathName

iReadWrite

Type/Description

LPSTR Points to a null-=terminated character string that
names the file to be opened. The string must consist of
characters from the ANSI character set.

int Specifies whether the function is to open the file with read
access, write access, or both. The parameter must be one of the
following values:

Value Meaning

Opens the file for reading
only.

Opens the file for reading and
writing.

Opens the file with compati­
bility mode, allowing any
process on a given machine
to open the file any number
of times. OpenFile fails if
the file has been opened with
any of the other sharing
modes.

Opens the file without deny­
ing other processes read or
write access to the file. Open­
File fails if the file has been
opened in compatibility
mode by any other process.

Opens the file and denies
other processes read access to
the file. OpenFile fails if the
file has been opened in com­
patibility mode or for read
access by any other process.

Opens the file and denies
other processes write access
to the file. OpenFile fails if
the file has been opened in
compatibility or for write
access by any other process.

:I
I
r

.l;
I .

I:

LOWORD

Return Value

LOWORD
Syntax

Return Value

LPtoDP
Syntax

Parameter Type/Description

Value

4-296

Meaning

Opens the file with exclusive
mode, denying other
processes both read and write
access to the file. OpenFile
fails if the file has been
opened in any other mode for
read or write access, even by
the current process.

Opens the file for writing
only.

The return value specifies an MS-DOS file handle if the function opened "the file. Other­
wise, it is-I.

WORD LOWORD(dwlnteger)

This macro extracts the low-order word from the 32-bit integer value specified by the
dwlnteger parameter .

Parameter Type/Description

,dwlnteger DWORD Specifies the value to be converted.

The return value specifies the low-order word of the 32-bit integer value.

BOOL LPtoDP(hDC, ipPoints, nCount)

This function converts logical points into device points. The LPtoDP function maps the
coordinates of each point specified by the ipPoints parameter from GDI's logical coordi­
nate system into a device coordinate system. The conversion depends on the current map­
ping mode.

4-297

Return Value

Iread
Syntax

Return Value

Istrcat
Syntax

Parameter

hDC

IpPoin ts

nCount

Iread

Type/Description

HANDLE Identifies the device context.

LPPOINT Points to an array of points. Each point in the array is a
POINT data structure.

int Specifies the number of points in the array.

The return value specifies whether or not all points are converted. It is nonzero if all points
are converted. Otherwise, it is zero.

int Jread(hFile, IpBuffer, wBytes)

This function reads data from the file identified by the hFile parameter. The wBytes para­
meter specifies the number of bytes to read. The function return value indicates the num­
ber of bytes actually read. The return value is zero if the function attempted to read the file
at EOF.

Parameter

hFile

IpBuffer

wBytes

Type/Description

int Specifies the MS-DOS file handle of the file to be read.

LPSTR Points to a buffer that is to receive the data read from the
file.

WORD Specifies the number of bytes to be read from the file.

The return value indicates the number of bytes which the function actually read from the
file, or -1 if the function fails. The return value is less than wBytes if the function en­
countered the end of the file (EOF) before reading the specified number of bytes.

LPSTR Istrcat(/pString1, IpString2)

This function concatenates IpString2 to the string specified by IpString1, terminates the re­
sulting string with a null character, and returns a far pointer to the concatenated string
(lpString 1).

All strings must be less than 64K in size.

-I
I

:c

Istrcmp

Return Value

Istrcmp []]J
Syntax

Return Value

Parameter

IpString1

IpString2

4-290

Type/Description

LPSTR Points to byte array containing a null-terminated string to
which the function is to append IpString2. The byte array containing
the string must be large enough to contain both strings.

LPSTR Points to the null-tenninated string which the function is
to append to /pString1.

The return value specifies a pointer to IpString 1. It is zero if the function fails.

int Istrcmp(ipStringl, IpString2)

This function compares the two strings identified by IpStringl and IpString2 lexicographi­
cally and returns a value indicating their relationship. The comparison is made based on
the current language selected by the user at setup or with the Control Panel. The compari­
son is case-sensitive. This function is not equivalent to the strcmp C run-time library func­
tion.

All strings must be less than 64K in size.

Parameter

IpStringl

IpString2

Type/Description

LPSTR Points to the first null-terminated string to be compared.

LPSTR Points to the second null-tenninated string to be com­
pared.

The return value indicates whether IpString1 is less than, equal to, or greater than
IpString2. This relationship is outlined in the following:

Value

<0

=0

>0

Meaning

IpStringl is less than IpString2.

IpStringl is identical to IpString2.

IpStringl is greater than IpString2.

4-299

Istrcmpi []]]
Syntax

Return Value

Istrcpy
Syntax

Istrcmpi

int Istrcmpi(/pString 1, /pString2)

This function compares the two strings identified by /pStringi and /pString2 lexicographi­
cally and returns a value indicating their relationship. The comparison is made based on
the current language selected by the user at setup or with the Control Panel. The compari­
son is case-sensitive. This function is not equivalent to the strcmpi C run-time library func­
tion.

All strings must be less than 64K in size.

Parameter

/pStringi

/pString2

Type/Description

LPSTR Points to the first null-terminated string to be compared.

LPSTR Points to the second null-terminated string to be com­
pared.

The return value indicates whether /pString 1 is less than, equal to, or greater than
IpString2. This relationship is outlined in the following table:

Value Meaning

<0 IpStringi is less than IpString2.

=0 IpStringi is identical to IpString2.

>0 IpString 1 is greater than IpString2.

LPSTR Istrcpy(lpStringI,lpString2)

This function copies IpString2, including the terminating null character, to the location
specified by IpString 1, and returns IpString 1.

All strings must be less than 64K in size.

::I
I
r

J
I

/sfr/en

Return Value

Istrlen
Syntax

Return Value

_Iwrite
Syntax

Parameter

/pStringl

/pString2

4-300

Type/Description

LPSTR Points to a buffer to receive the contents of /pString2. The
buffer must be large enough to contain /pString2.

LPSTR Points to the null-terminated string to be copied.

The return value specifies a pointer to /pStringl. It is zero if the function fails.

int Istrlen(lpString)

This function returns the length, in bytes, of /pString, not including the terminating null
character.

All strings must be less than 64K in size.

Parameter Type/Description

/pString LPSTR Points to a null-terminated string.

The return value specifies the length of /pString. There is no error return.

int Jwrite(hFile, /pBuffer, wBytes)

This function writes data into the file specified by the hFile parameter. The wBytes para­
meter specifies the number of bytes to write from the buffer identified by /pBuffer. The
function return value indicates the number of bytes actually written to the file.

Parameter

hFile

/pBuffer

wBytes

Type/Description

int Specifies the MS-DOS file handle of the file to be read.

LPSTR Points to it buffer that contains the data to be written to the
file.

WORD Specifies the number of bytes to be written to the file.

4-301

Return Value

Comments

Iwrite

The return value indicates the number of bytes actually written to the file, or -1 if the
function fails.

The buffer specified by /pBuffer cannot extend past the end of a segment.

:r:
I
r

MAKEINTATOM 4-302

MAKEINTATOM
Syntax

Return Value

Comments

LPSTR MAKEINTATOM(wlnteger)

This macro creates an integer atom that represents a character string of decimal digits.

Integer atoms created by this macro can be added to the atom table by means of the Add­
Atom function.

Parameter Type/Description

wlnteger WORD Specifies the numeric value of the atom's character string.

The return value points to the atom created for the given integer.

The DeleteAtom function always succeeds for integer atoms, even though it does nothing,
and the GetAtomName function always returns the string form of the integer atom.

MAKEINTRESOURCE
Syntax LPSTR MAKEINTRESOURCE (nlnteger)

This macro converts an integer value into a long pointer to a string, with the high-order
word of the long pointer set to zero.

Parameter Type/Description

nlnteger int Specifies the integer value to be converted.

C Return Value The return value points to a string.
I ;
2'

MAKELONG
Syntax DWORD MAKELONG(wLow, wHigh)

This macro creates an unsigned long integer by concatenating two integer values, specified
by the wLow and wHigh parameters.

4-303

Return Value

MAKEPOINT
Syntax

Return Value

Parameter

wLow

wHig/z

MAKEPOINT

Type/Description

WORD Specifies the low-order word of the new long value.

WORD Specifies the high-order word of the new long value.

The return value specifies an unsigned long-integer value.

POINT MAKEPOINT(dwlnteger)

This macro converts a long value that contains the x- and y-coordinates of a point into a
POINT data structure.

Parameter Type/Description

dwlnteger DWORD Specifies the x- and y-coordinates of a point.

The return value specifies the POINT data structure.

MakeProclnstance
Syntax

Return Value

FARPROC MakeProcInstance(/pProc, hlnstance)

This function creates a procedure-instance address. A procedure-instance address points to
prolog code that is executed before the function is executed. The prolog binds the data seg­
ment of the instance specified by the hlnstance parameter to the function pointed to by the
lpProc parameter. When the function is executed, it has access to variables and data in that
instance's data segment.

Parameter

/pProc

hlnstance

Type/Description

FARPROC Is a procedure-instance address.

HANDLE Identifies the instance associated with the desired data
segment.

The return value points to the function if the function is successful. Otherwise, it is NULL.

S
I

:J:

C
I
iE

MapDialogRecl 4-304

Comments

MapDialogRect
Syntax

Return Value

Comments

The MakeProcInstance function must only be used to access functions from instances of
the current module. The function is not required for library modules.

After MakeProcInstance has been called for a particular function, all calls to that function
should be made through the retrieved address.

MakeProcInstance will create more than one procedure instance. An application should
not call MakeProcInstance more than once using the same function and instance handle
to avoid wasting memory.

To bind a data segment to a function, the function must be exported in the EXPORTS
statement of the module-definition file.

void MapDialogRect(hDlg, lpRect)

This function converts the dialog-box units given in the lpRect parameter to screen units.
Dialog-box units are stated in terms of the current dialog base unit derived from the aver­
age width and height of characters in the system font. One horizontal unit is one-fourth of
the dialog base width unit, and one vertical unit is one-eighth of the dialog base height
unit. The GetDialogBaseUnits function returns the dialog base units in pixels.

The MapDialogRect function replaces the dialog-box units in lpRect with screen units
(pixels), so that the rectangle can be used to create a dialog box or position a control within
a box.

Parameter

hDlg

lpRect

None.

Type/Description

HWND Identifies a dialog box.

LPRECT Points to a RECT data structure that contains the dialog­
box coordinates to be converted.

The hDlg parameter must be created by using the CreateDialog or DialogBox function.

4-305 MapVirlualKey

MapVirtualKey []]]
Syntax

Return Value

max
Syntax

WORD MapVirtuaIKey(wCode, wMapType)

This function accepts a virtual-key code or scan code for a key and returns the correspond­
ing scan code, virtual-key code, or ASCII value. The value of the wMapType parameter de­
terinines the type of mapping which this function performs.

Parameter

wCode

wMapType

Description

WORD Specifies the virtual-key code or scan code for a key. The
interpretation of the wCode parameter depends on the value of the
wMapType parameter.

WORD Specifies the type of mapping to be performed. The
wMapType parameter can be any of the following values:

Value

o

2

Meaning

The wCode parameter specifies a virtual-key code,
and the function returns the corresponding scan
code.

The wCode parameter specifies a scan code, and
the function returns the corresponding virtual-key
code.

The wCode parameter specifies a virtual-key code,
and the function returns the corresponding un­
shifted ASCII value.

Other values are reserved.

The return value depends on the value of the wCode and wMapType parameters. See the
description of the wMapType parameter for more information.

int max(valuel, value2)

This macro returns the greater of the values contained in the valuel and value2 parameters.

== I
::0

a:
I

:e

MessageBeep 4-306

Return Value

Comments

Message8eep
Syntax

Return Value

Message80x
Syntax

Parameter

value}

value2

Description

Specifies the first of two values.

Specifies the second of two values.

The return value specifies value} or value2, whichever is greater.

The values identified by the value} and value2 parameters can be any ordered type.

void MessageBeep(wType)

This function generates a beep at the system speaker.

Parameter Type/Description

wType WORD Is not used. It should be set to zero.

None.

int MessageBox(hWndParent, IpText, IpCaption, wType)

This function creates and displays a window that contains an application-supplied message
and caption, plus any combination of the predefined icons and push buttons described in
the following list.

Parameter

hWndParent

IpText

IpCaption

Type/Description

HWND Identifies the window that owns the message box.

LPSTR Points to a null-terminated string containing the message
to be displayed.

LPSTR Points to a null-terminated character string to be used for
the dialog-box caption. If the IpCaption parameter is NULL, the de­
fault caption "Error" is used.

4-307

Return Value

Comments

Parameter

wType

Message Box

Type/Description

WORD Specifies the contents of the dialog box. It can be any com­
bination of the values shown in Table 4.11, "Message Box Types,"
joined by the bitwise OR operator.

The return value specifies the outcome of the function. It is zero if there is not enough
memory to create the message box. Otherwise, it is one of the following menu-item values
returned by the dialog box:

Value Meaning

IDABORT Abort button pressed.

IDCANCEL Cancel button pressed.

IDIGNORE Ignore button pressed.

IDNO No button pressed.

IDOK OK button pressed.

IDRETRY Retry button pressed.

IDYES Yes button pressed.

If a message box has a Cancel button, the IDCANCEL value will be returned if either the
ESCAPE key or Cancel button is pressed. If the message box has no Cancel button, pressing
the ESCAPE key has no effect.

When a system-modal message box is created to indicate that the system is low on
memory, the strings passed as the lpText and lpCaption parameters should not be taken
from a resource file, since an attempt to load the resource may fail.

When an application calls the MessageBox function and specifies the MB_ICONHAND
and MB_SYSTEMMODAL flags for the wType parameter, Windows will display the re­
sulting message box regardless of available memory. When these flags are specified,
Windows limits the length of the message-box text to one line.

If a message box is created while a dialog box is present, use the handle of the dialog box
as the hWndParent parameter. The hWndParent parameter should not identify a child
window, such as a dialog-box control.

x:
I

:e

MessageBox 4-308

Table 4.11 shows the message box types.

Table 4.11 Message Box Types

Value Meaning

MB_ABORTRETRYIGNORE

MB_APPLMODAL

MB_DEFBUTTONI

MB_DEFBUTTON2

MB_DEFBUTTON3

MB_ICONASTERISK

MB_ICONEXCLAMATION

MB_ICONHAND

MB_ICONINFORMATION

MB_ICONQUESTION

MB_ICONSTOP

MB_OK

MB_OKCANCEL

MB_RETRYCANCEL

Message box contains three push buttons: Abort, Retry,
and Ignore.

The user must respond to the message box before con­
tinuing work in the window identified by the
hWndParent parameter. However, the user can move to
the windows of other applications and work in those
windows. MB_APPLMODAL is the default if neither
MB_SYSTEMMODAL nor MB_TASKMODAL are
specified.

First button is the default. Note that the first button is al­
ways the default unless MB_DEFBUITON2 or
MB_DEFBUTTON3 is specified.

Second button is the default.

Third button is the default.

Same as MB_ICONINFORMATION.

An exclamation-point icon appears in the message box.

Same as MB_ICONSTOP.

An icon consisting of a lowercase i in a circle appears in
the message box.

A question-mark icon appears in the message box.

A stop sign icon appears in the message box.

Message box contains one push button: OK.

Message box contains two push buttons: OK and Can­
cel.

Message box contains two push buttons: Retry and Can­
cel.

All applications are suspended until the user responds to
the message box. Unless the application specifies
MB_ICONHAND, the message box does not become
modal until after it is created; consequently, the parent
window and other windows continue to receive mes­
sages resulting from its activation. System-modal
message boxes are used to notify the user of serious,
potentially damaging errors that require immediate atten­
tion (for example, running out of memory).

4-309 min

min
Syntax

Return Value

Comments

Table 4.11 Message Box Types (continued)

Value Meaning

MB_YESNO

Same as MB_APPMODAL except that all the top-level
windows belonging to the current task are disabled if the
hWndOwner parameter is NULL. This flag should be
used when the calling application or library does not
have a window handle available, but still needs to pre­
vent input to other windows in the current application
without suspending other applications.

MB_ YESNOCANCEL

Message box contains two push buttons: Yes and No.

Message box contains three push buttons: Yes, No, and
Cancel.

int min(value}, val ue2)

This macro returns the lesser of the values specified by the value} and value2 parameters,
respectively.

Parameter

value}

value2

Description

Specifies the first of two values.

Specifies the second of two values.

The return value specifies value} or value2, whichever is less.

The values identified by the value} and value2 parameters can be any ordered type.

ModifyMenu [ill
Syntax BOOL MOdifYMenu(hMenu, nPosition, wFlags, wIDNewltem, IpNewltem)

This function changes an existing menu item at the position specified by the nPosition
parameter. The application specifies the new state of the menu item by setting values in the
wFlags parameter. If this function replaces a pop-up menu associated with the menu item,
it destroys the old pop-up menu and frees the memory used by the pop-up menu.

3:
I

;:0

ModifyMenu

Return Value

Parameter

hMenu

nPosition

wFlags

wIDNewltem

lpNewltem

4-310

Type/Description

HMENU Identifies the menu to be changed.

WORD Specifies the menu item to be changed. The interpretation
of the nPosition parameter depends upon the setting of the wFlags
parameter.

If wFlags is:

MF _BYPOSITION

MF _BYCOMMAND

nPosition

Specifies the position of the existing
menu item. The first item in the menu is
at position zero.

Specifies the command ID of the existing
menu item.

WORD Specifies how the nPosition parameter is interpreted and
information about the changes to be made to the menu item. It con­
sists of one or more values listed in the following "Comments"
section.

WORD Specifies either the command ID of the modified menu
item or, ifwFlags is set to MF _POPUP, the menu handle of the pop­
up menu.

LPSTR Specifies the content of the changed menu item. If
wFlags is set to MF _STRING (the default), then lpNewltem is a
long pointer to a null-terminated character string. If wFlags is set to
MF~BITMAP instead, then lpNewltem contains a bitmap handle
(HBITMAP) in its low-order word. If wFlags is set to MF _OWNER­
DRAW, lpNewltem specifies an application-supplied 32-bit value
which the application can use to maintain additional data associated
with the menu item. This 32-bit value is available to the application
in the itemData field of the structure, pointed to by the lParam para­
meter of the following messages:

WM_MEASUREITEM
WM_DRAWITEM

These messages are sent when the menu item is initially displayed, or
is changed.

The return value specifies the outcome of the function. It is TRUE if the function is
successful. Otherwise, it is FALSE.

4-311

Comments

ModifyMenu

Whenever a menu changes (whether or not the menu resides in a window that is dis­
played), the application should call DrawMenuBar. In order to change the attributes of ex­
isting menu items, it is much faster to use the CheckMenuItem and EnableMenuItem
functions.

Each of the following groups lists flags that should not be used together:

• MF _BYCOMMAND and MF _BYPOSITION

• MF _DISABLED, MF _ENABLED, and MF _GRAYED

• MF _BITMAP, MF _STRING, MF _OWNERDRAW, and MF _SEPARATOR

• MF _MENUBARBREAK and MF _MENUBREAK

• MF _CHECKED and MF _UNCHECKED

The following list describes the flags which may be set in the wFlags parameter:

Value

MF _BYPOSITION

MF_CHECKED

MF_GRAYED

MF _MENUBARBREAK

Meaning

Uses a bitmap as the menu item. The low-order word of
the IpNewltem parameter contains the handle of the bit­
map.

Specifies that the nPosition parameter gives the menu
item control ID number. This is the default if neither
MF _BYCOMMAND nor MF _POSITION is set.

Specifies that the nPosition parameter gives the position
of the menu item to be changed rather than an ID num­
ber.

Places a checkmark next to the menu item. If the applica­
tion has supplied checkmark bitmaps (see SetMenu­
ItemBitmaps), setting this flag displays the "checkmark
on" bitmap next to the menu item.

Disables the menu item so that it cannot be selected, but
does not gray it.

Enables the menu item so that it can be selected and re­
stores it from its grayed state.

Disables the menu item so that it cannot be selected and
grays it.

Same as MF _MENUBREAK except that for pop-up
menus, separates the new column from the old column
with a vertical line.

;:
I

::rJ

a:
I

:E

Move To

MoveTo
Syntax

Value

MF_OWNERDRAW

4-312

Meaning

Places the menu item on a new line for static menu-bar
items. For pop-up menus, this flag places the item in a
new column, with no dividing line between the columns.

Specifies that the menu item is an owner-draw item. The
window that owns the menu receives a WM_MEASURE­
ITEM message when the menu is displayed for the first
time to retrieve the height and width of the menu item.
The WM_DRAWITEM message is then sent whenever
the owner must update the visual appearance of the
menu item. This option is not valid for a top-level menu
item.

Specifies that the item has a pop-up menu associated
with it. The wIDNewltem parameter specifies a handle to
a pop-up menu to be associated with the menu item. Use
this flag for adding either a top-level pop-up menu or
adding a hierarchical pop-up menu to a pop-up menu
item.

Draws a horizontal dividing line. You can only use this
flag in a pop-up menu. This line cannot be grayed, dis­
abled, or highlighted. The /pNewltem and wIDNewltem
parameters are ignored.

Specifies that the menu item is a character string; the
/pNewltem parameter points to the string for the menu
item.

Does not place a checkmark next to the menu item. No
checkmark is the default if neither MF _CHECKED nor
MF _UNCHECKED is set. If the application has supplied
checkmark bitmaps (see SetMenultemBitmaps), setting
this flag displays the "checkmark off' bitmap next to the
menu item.

DWORD MoveTo(hDC, X, y)

This function moves the current position to the point specified by the X and Y parameters.

4-313

Return Value

Comments

MoveWindow
Syntax

Return Value

Parameter

hDC

X

Y

Move Window

Type/Description

HDC Identifies the device context.

int Specifies the logical x-coordinate of the new position.

int Specifies the logical y-coordinate of the new position.

The return value specifies the x- and y-coordinates of the previous position. The y-coordi­
nate is in the high-order word; the x-coordinate is in the low-order word.

Although the MoveTo function has no output, it affects other output functions that use the
CUlTent position.

void MoveWindow(hWnd, X, Y, nWidth, nHeight, bRepaint)

This function causes a WM_SIZE message to be sent to the given window. The X, Y,
nWidth, and nHeight parameters give the new size of the window.

Parameter

hWnd

X

Y

nWidth

nHeight

bRepaint

None.

Type/Description

HWND Identifies a pop-up or child window.

int Specifies the new x-coordinate of the upper-left comer of the
window.

int Specifies the new y-coordinate of the upper-left comer of the
window. For pop-up windows, X and Yare in screen coordinates
(relative to the upper-left comer of the screen). For child windows,
they are in client coordinates (relative to the upper-left comer of the
parent window's client area).

int Specifies the new width of the window.

int Specifies the new height of the window.

BOOL Specifies whether or not the window is repainted after
moving. If bRepaint is zero, the window is not repainted.

s:
I

,::D

IX:
I

:5

MulOiv

Comments

MulDiv []]]

Syntax

Return Value

4-314

Any child or pop-up window has a minimum width and height. These minimums depend
on the style and content of the window. Any attempt to make the width and height smaller
than the minimum by using the Move Window function will fail. The WM_SIZE message
created by this function gives the new width and height of the client area of the window,
not of the full window.

int MulDiv(nNumber, nNumerator, nDenominator)

This function mUltiplies two word-length values and then divides the result by a third
word-length value. The return value is the final result, rounded to the nearest integer.

Parameter

nNumber

nNumerator

nDenominator

Type/Description

int Specifies the number to be multiplied by nNumerator.

int Specifies the number to be multiplied by nNumber.

int Specifies the number by which the result of the multiplica­
tion is to be divided.

The return value is the result of the multipliation and division. The return value is 32,767
or -32,767 if either an overflow occurred or wDenominator was zero.

4-315 NetBIOSCal1

NetBIOSCall []]J
This function allows an applications to issue the NETBIOS interrupt 5CH. An application
should call this function instead of directly issuing a NETBIOS 5CH interrupt to preserve
compatibility with future Microsoft products.

An application can call this function only from an assembly-language routine. It is
exported from KERNEL.EXE and is not defined in any Windows include files.

To use this function call, an application should declare it in an assembly-language program
as shown:

extrn NETBIOSCALL :far

If the application includes CMACROS.lNC, the application declares it as shown:

externFP NetBIOSCa11

Before calling NetBIOSCall, all registers must be set as for an actual INT 5CH. All
registers at the function's exit are the same as for the corresponding INT 5CH function.

This function has no parameters and no return value.

The following is an example of how to use the NetBIOSCall function:

extrn NETBIOSCALL : far

;set registers
cCa 11 NetB IOSCa 11

~
. I

::D

a:
I

:5

OemKeyScan 4-316

OemKeyScan [IQJ
Syntax

Return Value

Comments

OemToAnsi
Syntax

DWORD OemKeyScan(wOemChar)

This function maps OEM ASCII codes 0 through OxOFF into the OEM scan codes and
shift states. It provides information which allows a program to send OEM text to another
program by simulating keyboard input and is used specifically for this purpose by
Windows in 386 enhanced mode.

Parameter Type/Description

wOemChar WORD Specifies the ASCII value of the OEM character.

The return value contains in its low-order word the scan code of the OEM character iden­
tified by the wOemChar parameter. The high-order word of the return value contains flags
which indicate the shift state. The following lists the flag bits and their meani~gs:

Bit Meaning

2 CTRL key is pressed.

Either SHIff key is pressed.

If the character is not defined in the OEM character tables, both the low-order and high­
order words of the return value contain -1.

This function does not provide translations for characters which require CTRL-ALT or dead
keys. Characters not translated by this function must be copied by simulating input using
the "ALT + keypad" mechanism. The NUMLOCK key must be off.

This function calls the VkKeyScan function in recent versions of the keyboard drivers.

int OemToAnsi(lpOemStr, /pAnsiStr)

This function translates the string pointed to by the [pOemStr parameter from the OEM­
defined character set into the ANSI character set. The string can be greater than 64K in
length.

4-317

Return Value

OemToAnsiBuff
Syntax

Return Value

OffsetClipRgn
Syntax

Parameter

IpOemStr

IpAnsiStr

Oem ToAnsiBuff

Type/Description

LPSTR Points to a null-tenninated string of characters from the
OEM-defined character set.

LPSTR Points to the location where the translated string is to be
copied. The IpAnsiStr parameter can be the same as IpOemStr to
translate the string in place.

The return value is always-1.

void OemToAnsiBuff(lpOemStr, IpAnsiStr, nLength)

This function translates the string in the buffer pointed to by the IpOemStr parameter from
the OEM-defined character set into the ANSI character set.

Parameter

IpOemStr

IpAnsiStr

nLength

None.

Type/Description

LPSTR Points to a buffer containing one or more characters from
the OEM-defined character set.

LPSTR Points to the location where the translated string is to be
copied. The IpAnsiStr parameter can be the same as IpOemStr to
translate the string in place.

WORD Specifies the number of characters in the buffer identified
by the IpOemStr parameter. If nLength is zero, the length is 64K
(65,536).

int OffsetClipRgn(hDC, X, y)

This function moves the clipping region of the given device by the specified offsets. The
function moves the region X units along the x-axis and Y units along the y-axis.

a:
I

::E

OffsetRect

Return Value

OffsetRect
Syntax.

Return Value

Comments

Parameter

hDC

X

Y

Type/Description

HDC Identifies the device context.

int Specifies the number of logical units to move left or right.

int Specifies the number of logical units to move up or down.

4-318

The return value specifies the new region's type. It can be anyone of the following values:

Value Meaning

COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

Clipping region has overlapping borders.

Device context is not valid.

Clipping region is empty.

Clipping region has no overlapping borders.

void OffsetRect(ipRect, X, y)

This function moves the given rectangle by the specified offsets. The OffsetRect function
moves the rectangle X units along the x-axis and Y units along the y-axis. The X and Ypara­
meters are signed values, so the rectangle can be moved left or right, and up or down.

Parameter

IpRect

X

y

None.

Type/Description

LPRECT Points to a RECT data structure that contains the
rectangle to be moved.

int Specifies the amount to move left or right. It must be negative
to move left.

int Specifies the amount to move up or down. It must be negative
to move up.

The coordinate values of a rectangle must not be greater than 32,767 or less than -32,768.
The X and Y parameters must be chosen carefully to prevent invalid rectangles.

4-319

OffsetRgn
Syntax

Return Value

Comments

OffsetRgn

int OffsetRgn(hRgn, X, y)

This function moves the given region by the specified offsets. The function moves the re­
gion X units along the x-axis and Y units along the y-axis.

Parameter Type/Description

hRgn

X

HRGN Identifies the region to be moved.

Y

int Specifies the number of units to move left or right.

int Specifies the number of units to move up or down.

The return value specifies the new region's type. It can be anyone of the following values:

Value

COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

Meaning

Region has overlapping borders.

Region handle is not valid.

Region is empty.

Region has no overlapping borders.

The coordinate values of a region must not be greater than 32,767 or less than -32,768.
The X and Yparameters must be carefully chosen to prevent invalid regions.

OffsetViewportOrg
Syntax DWORD OfTsetViewportOrg(hDC, X, y)

This function modifies the viewport origin relative to the current values. The formulas are
written as follows:

xNewVO = xOldVO + X
yNewVO = yOldVO + Y

The new origin is the sum of the current origin and the X and Y values.

::
I
:0

a:
I

::e

OffsetWindowOrg 4-320

Return Value

Parameter

hDC

X

y

Type/Description

HDC Identifies the device context.

int Specifies the number of device units to add to the current
origin's x-coordinate.

int Specifies the number of device units to add to the current
origin's y-coordinate.

The return value specifies the previous viewport origin (in device coordinates). The pre­
vious y-coordinate is in the high-order word; the previous x-coordinate is in the low-order
word.

OffselWi ndowO rg
Syntax

Return Value

DWORD OffsetWindowOrg(hDC, X, y)

This function modifies the viewport origin relative to the current values. The formulas are
written as follows:

xNewWO = xOldWO + X
yNewWO = yOldWO + Y

The new origin is the sum of the current origin and the X and Y values.

Parameter

hDC

X

Y

Type/Description

HDC Identifies the device context.

int Specifies the number of logical units to add to the current
origin's x-coordinate.

int Specifies the number of logical units to add to the current
origin's y-coordinate.

The return value specifies the previous window origin (in logical coordinates). The pre­
vious y-coordinate is in the high-order word; the previous x-coordinate is in the low-order
word.

4-321

OpenClipboard
Syntax

Return Value

Comments

OpenComm
Syntax

Return Value

OpenClipboard

BOOL OpenClipboard(hWnd)

This function opens the clipboard for examination and prevents other applications from
modifying the clipboard contents.

Parameter

hWnd

Type/Description

HWND Identifies the window to be associated with the open clip­
board.

The return value specifies the status of the clipboard. It is nonzero if the clipboard is
opened. If the clipboard has already been opened by another application, the return value
is zero.

An application should call the CloseClipboard function for every successful call to the
OpenClipboard function.

int OpenComm(lpComName, wlnQueue, wOutQueue)

This function opens a communication device and assigns an nCid handle to it. The com­
munication device is initialized to a default configuration. The SetCommState function
should be used to initialize the device to alternate values. The OpenComm function allo­
cates space for receive and transmit queues. The queues are used by the interrupt-driven
transmit/receive software.

Parameter

/pComName

wlnQueue

wOutQueue

Type/Description

LPSTR Points to a string which contains COMn or LPTn, where n
ranges from 1 to the number of communication devices available for
the particular type of I/O port.

WORD Specifies the size of the receive queue.

WORD Specifies the size of the transmit queue.

The return value specifies the open communication device. If an error occurs, the return
value is one of the following negative error values:

OpenFile

Comments

OpenFile
Syntax

4-322

Value Meaning

IE_BADID Invalid or unsupported ID.

IE_BAUDRATE Unsupported baud rate.

IE_B YTESIZE Invalid byte size.

IE_DEFAULT Error in default parameters.

IE_HARDWARE Hardware not present.

IE_MEMORY Unable to allocate queues.

IE_NOPEN Device not open.

IE_OPEN Device already open.

LPT ports are not interrupt driven. For these ports, the nlnQueue and nOutQueue
parameters are ignored, and the queue size is set to zero.

int OpenFile(lpFileName, IpReOpenBujf, wStyle)

This function creates, opens, reopens, or deletes a file.

Parameter

IpFileName

IpReOpenBuJf

wStyle

Type/Description

LPSTR Points to a null-terminated character string that
names the file to be opened. The string must consist of
characters from the ANSI character set.

LPOFSTRUCT Points to the OFSTRUCT data structure
that is to receive information about the file when the file is first
opened. The structure can be used in subsequent calls to the
OpenFile function to refer to the open file.

The szPathName field of this data structure contains characters
from the OEM character set.

WORD Specifies the action to take. These styles can be com­
bined by using the bitwise OR operator:

4-323

Parameter Type/Description

Value

OF_DELETE"

OF_EXIST

OpenFile

Meaning

Adds a Cancel button to the
" OF_PROMPT dialog box.
Pressing the Cancel button
directs OpenFile to return a
file-not-found error message.

Directs OpenFile to create a
new file. If the file already ex­
ists, it is truncated to zero
length.

Deletes the file.

Opens the file, and then
closes it. Used to test for file
existence.

Fills the OFSTRUCT data
structure but carries out no
other action.

Displays a dialog box if the
requested file does not exist.
The dialog box informs "the
user that Windows cannot
find the file and prompts the
user to insert the file in drive
A.

Opens the file for reading
only.

Opens the file for reading
and writing.

Opens the file using informa­
tion in the re-open buffer.

OpenFile

Parameter Type/Description

Value

4-324

Meaning

Opens the file with compati­
bility mode, allowing any
process on a given machine
to open the file any number
of times. OpenFile fails if
the file has been opened with
any of the other sharing
modes.

Opens the file without deny­
ing other processes read or
write access to the file. Open­
File fails if the file has been
opened in compatibility
mode by any other process.

Opens the file and denies
other processes read access to
the file. OpenFile fails if the
file has been opened in com­
patibility mode or for read
access by any other process.

Opens the file and denies
other processes write access
to the file. OpenFile fails if
the file has been opened in
compatibility or for write
access by any other process.

Opens the file with exclusive
mode, denying other
processes both read and write
access to the file. OpenFile
fails if the file has been
opened in any other mode for
read or write access, even by
the current process.

4-325

Return Value

Comments

Openlcon
Syntax

Parameter Type/Description

Value

OF_VERIFY

Open/con

Meaning

Verifies that the date and
time of the file are the same
as when it was previously
opened. Useful as an extra
check for read-only files.

Opens the file for writing
only.

The return value specifies a DOS file handle if the function is successful. Otherwise, it is
-1.

If the /pFileName parameter specifies a filename and extension only, this function searches
for a matching file in the following directories:

1. The current directory.

2. The Windows directory (the directory containing WIN.COM); the Get­
WindowsDirectory function obtains the pathname of this directory.

3. The Windows system directory (the directory containing such system files as KER­
NEL.EXE); the GetSystemDirectory function obtains the pathname of this directory.

4. Any of the directories listed in the PATH environment variable.

5. Any directory in the list of directories mapped in a network.

Windows searches the directories in the listed order.

The IpFileName parameter cannot contain wildcard characters.

To close the file after use, the application should call the Jclose function.

BOOL Openlcon(hWnd)

This function activates and displays an iconic (minimized) window. Windows restores it to
its original size and position.

a:
I
::

Op en So und

Return Value

OpenSound
Syntax

Return Value

Parameter Type/Description

hWnd HWND Identifies the window.

The return value specifies the outcome of the function. It is nonzero if the function is
successful. Otherwise, it is zero.

int OpenSound()

4-326

This function accesses the play device and prevents it from being opened subsequently by
other applications.

This function has no parameters.

The return value specifies the number of voices available. The return value is
S_SERDVNA if the play device is in use, and S_SEROFM if insufficient memory is avail­
able.

OutputDebugString []]]
Syntax

Return Value

Comments

void OutputDebugString(lpOutputString)

This function sends a debugging message to the debugger if present, or to the auxiliary
(AUX) device if the debugger is not present.

Parameter Type/Description

IpOutputString LPSTR Points to a null-terminated string.

None.

This function preserves all registers. It is available only in the debugging version of
Windows.

4-327

PaintRgn
Syntax

Return Value

PaintRgn

BOOL PaintRgn(hDC, hRgn)

This function fills the region specified by the hRgn parameter with the selected brush.

Parameter

hDC

hRgn

Type/Description

HDC Identifies the device context that contains the region.

HRGN Identifies the region to be filled. The coordinates for the
given region are specified in device units.

The return value specifies the outcome of the function. It is nonzero if the function is
successful. Otherwise, it is zero.

PALETTEINDEX []]J
Syntax

Return Value

COLORREF PALETTEINDEX(nPalettelndex)

This macro accepts an index to a logical color palette entry and returns a value consisting
of 1 in the high-order byte and the palette entry index in the low-order bytes. This is called
a palette-entry specifier. An application using a color palette can pass this specifier instead
of an explicit ROB value to functions that expect a color. This allows the function to use
the color in the specified palette entry.

Parameter

nPalettelndex

Type/Description

int Specifies an index to the palette entry containing the color
to be used for a graphics operation.

The return value is a logical-palette index specifier. When using a logical palette, an appli­
cation can use this specifier in place of an explicit ROB value for ODI functions that re­
quire a color.

PALETTERGB []]J
Syntax COLORREF PALETTERGB(cRed, cGreen, cBlue)

This macro accepts three values representing relative intensities of red, green, and blue,
and returns a value consisting of 2 in the high-order byte and an ROB value in the three
low-order bytes. This is called a palette-relative ROB specifier. An application using a

PatSlt

Return Value

PatBIt
Syntax

4-328

color palette can pass this specifier instead of an explicit ROB value to functions that ex­
pect a color.

For output devices that support logical palettes, Windows matches a palette-relative ROB
value to the nearest color in the logical palette of the device context, as though the applica­
tion had specified an index to that palette entry. If an output device does not support a sys­
tem palette, then Windows uses the palette-relative ROB as though it were a conventional
ROB DWORD returned by the RGB macro.

Parameter

cRed

cGreen

cBlue

Type/Description

BYTE Specifies the intensity of the red color field.

BYTE Specifies the intensity of the green color field.

BYTE Specifies the intensity of the blue color field.

The return value specifies a palette-relative ROB value.

BOOL PatBlt(hDC, X, Y, nWidth, nHeight, dwRop)

This function creates a bit pattern on the specified device. The pattern is a combination of
the selected brush and the pattern already on the device. The raster-operation code
specified by the dwRop parameter defines how the patterns are to be combined.

Parameter

hDC

X

Y

nWidth

nHeight

Type/Description

HDC Identifies the device context.

int Specifies the logical x-coordinate of the upper-left comer of the
rectangle that is to receive the pattern.

int Specifies the logical y-coordinate of the upper-left comer of the
rectangle that is to receive the pattern.

int Specifies the width (in logical units) of the rectangle that is to
receive the pattern.

int Specifies the height (in logical units) of the rectangle that is to
receive the pattern.

4-329

Return Value

Comments

PeekMessage
Syntax

Parameter

dwRop

PeekMessage

Type/Description

DWORD Specifies the raster-operation code. Raster-operation
codes (ROPs) define how GDI combines colors in output operations
that involve a current brush, a possible source bitmap, and a destina­
tion bitmap. For a list of the raster-operation codes, see Table 4.12,
"Raster Operations."

The return value specifies the outcome of the function. It is nonzero if the bit pattern is
drawn. Otherwise, it is zero.

The values of dwRop for this function are a limited subset of the full 256 ternary raster­
operation codes; in particular, an operation code that refers to a source cannot be used.

Not all devices support the PatBlt function. For more information, see the RC_BITBLT
capability in the GetDeviceCaps function, earlier in this chapter.

Table 4.12 lists the various raster-operation codes for the dwRop parameter:

Table 4.12

Code

PATCOPY

PATINVERT

DSTINVERT

BLACKNESS

WHITENESS

Raster Operations

Description

Copies pattern to destination bitmap.

Combines destination bitmap with pattern using the Boolean
OR operator.

Inverts the destination bitmap.

Turns all output black.

Turns all output white.

BOOL PeekMessage(lpMsg, hWnd, wMsgFilterMin, wMsgFilterMax, wRemoveMsg)

This function checks the application queue for a message and places the message (if any)
in the data structure pointed to by the /pMsg parameter. Unlike the GetMessage function,
the PeekMessage function does not wait for a message to be placed in the queue before re­
turning. It does, however, yield control (if the PM_NOYIELD flag isn't set) and does not
return control after the yield until Windows returns control to the application.

PeekMessage retrieves only messages associated with the window specified by the hWnd
parameter, or any of its children as specified by the IsChild function, and within the range
of message values given by the wMsgFilterMin and wMsgFilterMax parameters. If hWnd

x:
I

:E

PeekMessage 4-330

Return Value

Comments

is NULL, PeekMessage retrieves messages for any window that belongs to the application
making the call. (The PeekMessage function does not retrieve messages for windows that
belong to other applications.) If hWnd is -1, PeekMessage returns only messages with a
hWnd of NULL as posted by the PostAppMessage function. If wMsgFilterMin and
wMsgFilterMax are both zero, PeekMessage returns all available messages (no range fil­
tering is performed).

The WM_KEYFIRST and WM_KEYLAST flags can be used as filter values to retrieve all
key messages; the WM_MOUSEFIRST and WM_MOUSELAST flags can be used to re­
trieve all mouse messages.

Parameter

IpMsg

hWnd

wMsgFilterMin

wMsgFilterMax

wRernoveMsg

Type/Description

LPMSG Points to an MSG data structure that contains
message information from the Windows application queue.

HWND Identifies the window whose messages are to be ex­
amined.

WORD Specifies the value of the lowest message position to
be examined.

WORD Specifies the value of the highest message position to
be examined.

WORD Specifies a combination of the flags described in the
following list. PM_NO YIELD can be combined with either
PM_NOREMOVE or PM_REMOVE:

Value Meaning

Messages are not removed from the
queue after processing by PeekMessage.

Prevents the current task from halting
and yielding system resources to another
task.

Messages are removed from the queue
after processing by PeekMessage.

The return value specifies whether or not a message is found. It is nonzero if a message is
available. Otherwise, it is zero.

PeekMessage does not remove WM_PAINT messages from the queue. The messages re­
main in the queue until processed. The GetMessage, PeekMessage, and WaitMessage
functions yield control to other applications. These calls are the only way to let other

4-331

Pie
Syntax

Pie

applications run. If your application does not call any of these functions for long periods of
time, other applications cannot run.

When GetMessage, PeekMessage, and WaitMessage yield control to other applications,
the stack and data segments of the application calling the function may move in memory to
accommodate the changing memory requirements of other applications.

If the application has stored long pointers to objects in the data or stack segment (global or
local variables), and if they are unlocked, these pointers can become invalid after a call to
GetMessage, PeekMessage, or WaitMessage. The IpMsg parameter of the called function
remains valid in any case.

BOOL Pie(hDC,Xl, Yl,X2, Y2,X3, Y3,X4, Y4)

This function draws a pie-shaped wedge by drawing an elliptical arc whose center and two
endpoints are joined by lines. The center of the arc is the center of the bounding rectangle
specified by the Xl, Y 1 , X2, and Y2 parameters. The starting and ending points of the arc
are specified by the X3, Y3, X4, and Y4 parameters. The arc is drawn with the selected pen,
moving in a counterclockwise direction. Two additional lines are drawn from each end­
point to the arc's center. The pie-shaped area is filled with the selected brush.

If X3 equals X4 and Y3 equals Y4, the result is an ellipse with a single line from the center
of the ellipse to the point (X3, Y3), or (X4, Y4).

Parameter

hDC

Xl

Yl

X2

Y2

X3

Y3

Type/Description

HDC Identifies the device context.

int Specifies the logical x-coordinate of the upper-left corner of the
bounding rectangle.

int Specifies the logical y-coordinate of the upper-left corner of the
bounding rectangle.

int . Specifies the logical x-coordinate of the lower-right corner of
the bounding rectangle.

int Specifies the logical y-coordinate of the lower-right corner of
the bounding rectangle.

int Specifies the logical x-coordinate of the starting point of the
arc. This point does not have to lie exactly on the arc.

int Specifies the logical y-coordinate of the starting point of the
arc. This point does not have to lie exactly on the arc.

I
:::l

PlayMetaFile 4-332

Return Value

Comments

PlayMetaFile
Syntax

c· 1 Return Value
I ;

Parameter

X4

Y4

Type/Description

int Specifies the logical x-coordinate of the endpoint of the arc.
This point does not have to lie exactly on the arc.

int Specifies the logical y-coordinate of the endpoint of the arc.
This point does not have to lie exactly on the arc.

The return value specifies whether or not the pie shape is drawn. It is nonzero if the pie
shape is drawn. Otherwise, it is zero.

The width of the rectangle, specified by the absolute value of X2 - Xl , must not exceed
32,767 units. This limit applies to the height of the rectangle as well.

The current position is neither used nor updated by this function.

BOOL PlayMetaFile(hDC, hMF)

This function plays the contents of the specified metafile on the given device. The metafile
can be played any number of times.

Parameter

hDC

hMF

Type/Description

HDC Identifies the device context of the output device.

HANDLE Identifies the metafile.

The return value specifies the outcome of the function. It is nonzero if the function is
successful. Otherwise, it is zero.

PlayMetaFileRecord
Syntax void PlayMetaFileRecord(hDC, IpHandletable, IpMetaRecord, nHandles)

This function plays a metafile record by executing the GDI function call contained within
the metafile record.

4-333

Return Value

Comments

Polygon
Syntax

Return Value

Comments

Parameter

hDC

lpH andletable

lpMetaRecord

nHandles

None.

Polygon

Type/Description

HDC Identifies the device context of the output device.

LPHANDLETABLE Points to the object handle table to be
used for the metafile playback.

LPMETARECORD Points to the metafile to be played.

WORD Specifies the number of handles in the handle table.

An application typically uses this function in conjunction with the EnumMetafile function
to modify and then playa metafile.

BOOL Polygon(hDC, IpPoints, nCount)

This function draws a polygon consisting of two or more points (vertices) connected by
lines. The polygons are filled using the current polygon-filling mode. For a description of
the polygon-filling mode, see the SetPolyFillMode function, later in this chapter. The poly­
gon is automatically closed, if necessary, by drawing a line from the last vertex to the first.

Parameter

hDC

lpPoints

nCount

Type/Description

HDC Identifies the device context.

LPPOINT Points to an array of points that specify the vertices of
the polygon. Each point in the array is a POINT data structure.

int Specifies the number of vertices given in the array.

The return value specifies the outcome of the function. It is nonzero if the function is
successful. Otherwis~, it is zero.

The current position is neither used nor updated by this function.

The current polygon-filling mode can be retrieved or set by using the GetPolyFillMode
and SetPolyFillMode functions.

:s
I

::x

x:
I
I;

Polyline

Polyline
Syntax

Return Value

Comments

4-334

BOOL Polyline(hDC, IpPoints, nCount)

This function draws a set of line segments, connecting the points specified by the IpPoints
parameter. The lines are drawn from the first point through subsequent points with the
result as if the MoveTo and LineTo functions were used to move to each new point and
then connect it to the next. However, the current position is neither used nor updated by
the Polyline function.

Parameter

hDC

IpPoin ts

nCount

Type/Description

HDC Identifies the device context.

LPPOINT Points to an array of points to be connected. Each point
in the array is a POINT data structure.

int Specifies the number of points in the array. The nCount parame­
ter must be at least 2.

The return value specifies whether or not the line segments were drawn. It is nonzero if the
line segments were drawn. Otherwise, it is zero.

This function draws lines with the selected pen.

PolyPolygon []]]
Syntax BOOL PolyPolygon(hDC, IpPoints, IpPolyCounts, nCount)

This function creates a series of closed polygons. The polygons are filled using the current
polygon-filling mode. For a description of the polygon-filling mode, see the SetPolyFill­
Mode function, later in this chapter. The polygons may overlap, but they do not have to
overlap.

Parameter

hDC

IpPoints

Description

HDC . Identifies the device context.

LPPOINT Points to an array of POINT data structures that define
the vertices of the polygons. Each polygon must be a closed polygon.
Unlike polygons created by the Polygon function, the polygons
created by PolyPolygon are not automatically closed. The polygons
are specified consecutively.

4-335

Return Value

Parameter

IpPolyCoul1ts

nCount

PostAppMessage

Description

LPINT Points to an array of integers, each of which specifies the
number of points in one of the polygons in the lpPoil1ts array.

int Specifies the total number of integers in the IpPolyCoul1ts
array.

The return value specifies the outcome of the function. It is nonzero if the polygons were
drawn. Otherwise, it is zero.

PostAppMessage
Syntax

Return Value

PostMessage
Syntax

BOOL PostAppMessage(hTask, wMsg, wPm"am, IParam)

This function posts a message to an application identified by a task handle, and then re­
turns without waiting for the application to process the message. The application receiving
the message obtains the message by calling the GetMessage or PeekMessage function.
The h W nd parameter of the returned MSG structure is NULL.

Parameter

hTask

wMsg

wPm"am

IParam

Type/Description

HANDLE Identifies the task that is to receive the message. The
GetCurrentTask function returns this handle.

WORD Specifies the type of message posted.

WORD Specifies additional message information.

DWORD Specifies additional message information.

The return value specifies whether or not the message is posted. It is nonzero if the
message is posted. Otherwise, it is zero.

BOOL PostMessage(hWnd, wMsg, wParam, IParam)

This function places a message in a window's application queue, and then returns without
waiting for the corresponding window to process the message. The posted message can be
retrieved by calls to the GetMessage or PeekMessage function.

s:
I

.::0

x:
I
:i5'

PostQuitMessage 4-336

Return Value

Comments

Parameter

hWnd

wMsg

wParam

lParam

Type/Description

HWND Identifies the window to receive the message. If the
hWnd parameter is OxFFFF, the message is sent to all overlapped
or pop-up windows in the system. The message is not sent to
child windows.

WORD Specifies the type of message posted.

WORD Specifies additional message information.

DWORD Specifies additional message information.

The return value specifies whether or not the message is posted. It is nonzero if the
message is posted. Otherwise, it is zero.

An application should never use the PostMessage function to send a message to a control.
If a system running Windows is configured for an expanded-memory system (EMS) and
an application sends a message (by using the PostMessage function) with related data
(that are pointed to by the lParam parameter) to a second application, the first application
must place the data (that lParam points to) in global memory allocated with the GlobalAl­
loc function and the GMEM LOWER flag. Note that this allocation of memory is neces­
sary only if lParam contains a pointer.

Unlike other Windows functions, an application may call PostMessage at the hardware­
interrupt level.

PostQuitMessage
Syntax void PostQuitMessage(nExitC ode)

This function informs Windows that the application wishes to terminate execution. It is
typically used in response to a WM_DESTROY message.

The PostQuitMessage function posts a WM_QUIT message to the application and returns
immediately; the function merely informs the system that the application wants to quit
sometime in the future.

• When the application receives the WM_QUIT message, it should exit the message loop in
the main function and return control to Windows. The exit code returned to Windows must
be the wParam parameter of the WM_QUIT message.

4-337

Return Value

Prof Clear []]J
Syntax

Return Value

Parameter

nExitCode

None.

void ProfClear()

Prole/ear

Type/Description

int Specifies an application exit code. It is used as the
wPm'am parameter of the WM_QUIT message.

When running the Microsoft Windows Profiler, this function discards all samples currently
in the sampling buffer. See Tools for more information on using the Profiler.

This function has no parameters.

None.

Prof Finish []]J
Syntax

Return Value

void ProfFinish()

When running the Microsoft Windows Profiler, this function stops sampling and flushes
the output buffer to disk.

When running with Windows in 386 enhanced mode, ProfFinish also frees the buffer for
system use. See Tools for more information on using the Profiler.

This function has no parameters.

None.

Prof Flush []]J
Syntax void ProfFlush()

When running the Microsoft Windows Profiler, this function flushes the sampling buffer to
disk, provided that samples do not exceed predefined limits.

When running with Windows in any mode other than 386 enhanced mode, you must
specify the size of the output buffer and the amount of samples to be written to disk.

::
I
:0

rx:
I

==

ProflnsChk

Return Value

Comments

4-338

When running with Windows in 386 enhanced mode, an application calls the ProfSetup
function to specify the size of the output buffer and the amount of samples to be written to
disk.

See Tools for more information on using the Profiler.

This function has no parameters.

None.

Do not call ProfFlush repeatedly because it can seriously impair the performance of the
application. Additionally, do not call the function when DOS may be unstable, as in inter­
rupt handling.

ProfinsChk []]J
Syntax

Return Value

int ProflnsChk()

This function determines if the Microsoft Windows Profiler is installed. See Tools for more
information on using the Profiler.

This function has no parameters.

The return value specifies whether Profiler is installed and the version installed. The return
value is zero if Profiler is not installed, 1 if the Windows Profiler is installed for a mode
other than 386 enhanced mode, and 2 if the Windows 386 enhanced mode Profiler is in­
stalled.

ProfSampRate []]J
Syntax void ProfSampRate(nRate286, nRate386)

When running the Microsoft Windows Profiler, this function sets the rate of code sam­
pling. See Tools for more information on using the Profiler.

Parameter

nRate286

Type/Description

int Specifies the sampling rate of Profiler if the application is
running with Windows in any mode other than 386 enhanced
mode. The value of nRate286 ranges from I to 13, indicating the
following sampling rates:

4-339

Return Value

Comments

Parameter

nRate386

None.

ProlSetup

Type/Description

Value Sampling Rate

122.070 microseconds

2 244.141 microseconds

3 488.281 microseconds

4 976.562 microseconds

5 1.953125 milliseconds

6 3.90625 milliseconds

7 7.8125 milliseconds

8 15.625 milliseconds

9 31.25 milliseconds

10 62.5 milliseconds

11 125 milliseconds

12 250 milliseconds

13 500 milliseconds

int Specifies the sampling rate of Profiler if the application is
running with Windows in 386 enhanced mode. The value of
nRate386 can range from 1 to 1000, specifying the sampling rate
in milliseconds.

The default rate is 5 (1.953125 milliseconds) for Windows in any mode other than 386 en­
hanced mode. The default rate is 2 milliseconds for Windows in 386 enhanced mode.

Profiler only selects the parameter appropriate for the version of Windows being used.

Prof Setup [1]J.
Syntax void ProfSetup(nBujferSize, nSamples)

When running the Microsoft Windows Profiler with Windows in 386 enhanced mode, this
function specifies the size of the output buffer and the amount of samples written to disk.

3:
I

;:XJ

x:
I

:E

Prof Start

Prof Start [IQJ
Syntax

Return Value

Prof Stop [IQJ
Syntax

Return Value

PtinRect
Syntax

4-340

Profiler ignores the ProfSetup function when running with Windows in any mode other
than 386 enhanced mode. See Tools for more information on using the Profiler.

Parameter

nBufierSize

nSamples

void ProfStart()

Type/Description

int Specifies the size of the output buffer in kilobytes. The
nBufferSize parameter can range from 1 to 1064. The default is
64.

int Specifies how much sampling data Profiler writes to disk.
A value of zero specifies unlimited sampling data. The default is
zero.

When running the Microsoft Windows Profiler, this function starts sampling. See Tools for
more information on using the Profiler.

This function has no parameters.

None.

void ProfStop()

When running the Microsoft Windows Profiler, this function stops sampling. See Tools for
more information on using the Profiler.

This function has no parameters.

None.

BOOL PtlnRect(/pRect, Point)

This function specifies whether the specified point lies within a given rectangle. A point is
within a rectangle if it lies on the left or top side, or is within all four sides. A point on the
right or bottom side is outside the rectangle.

4-341

Return Value

PtinRegion
Syntax

Return Value

PtVisible
Syntax

Parameter

/pRect

Point

PtlnRegion

Type/Description

LPRECT Points to a RECT data structure that contains the
specified rectangle.

POINT Specifies a POINT data structure that contains the
specified point.

The return value specifies whether the specified point lies within the given rectangle. It is
nonzero if the point lies within the given rectangle. Otherwise, it is zero.

BOOL PtlnRegion(hRgn, X, y)

This function specifies whether the point given by the X and Y parameters is in the given
region.

Parameter

hRgn

X

Y

Type/Description

HRGN Identifies the region to be examined.

int Specifies the logical x-coordinate of the point.

int Specifies the logical y-coordinate of the point.

The return value specifies whether the specified point is in the given region. It is nonzero
if the point is in the region. Otherwise, it is zero.

BOOL PtVisible(hDC, X, Y)

This function specifies whether the given point is within the clipping region of the
specified device context.

Parameter

hDC

X

Y

Type/Description

HDC Identifies the device context.

int Specifies the logical x-coordinate of the point.

int Specifies the logical y-coordinate of the point.

s::
I

::rJ

c:
I
E

PI Visible

Return Value

4-342

The return value specifies whether the specified point is within the clipping region of the
given display context. It is nonzero if the point is within the clipping region. Otherwise, it
is zero.

4-343

ReadComm
Syntax

Return Value

ReadComm

int . ReadComm(nCid, lpBuJ, nSize)

This function reads the number of characters specified by the nSize parameter from the
communication device specified by the nCid parameter and copies the characters into the
buffer pointed to by the lpBuJparameter.

Parameter

nCid

lpBuJ

nSize

Type/Description

int Specifies the communication device to be read. The Open­
Comm function returns this value.

LPSTR Points to the buffer that is to receive the characters read.

int Specifies the number of characters to be read.

The return value specifies the number of characters actually read. It is less than the number
specified by nSize only if the number of characters in the receive queue is less than that
specified by nSize. If it is equal to nSize, additional characters may be queued for the
device. If the return value is zero, no characters are present.

When an error occurs, the return value is set to a value less than zero, with the absolute
value being the actual number of characters read. The cause of the error can be determined
by using the GetCommError function to retrieve the error code and status. Since errors
can occur when no bytes are present, if the return value is zero, the GetCommError func­
tion should be used to ensure that no error occurred.

For parallel I/O ports, the return value will always be zero.

RealizePalette []]]
Syntax int RealizePalette(hDC)

This function maps to the system palette entries in the logical palette currently selected
into a device context.

A logical color palette acts as a buffer between color-intensive applications and the system,
allowing an application to use as many colors as needed without interfering with its own
color display, or with colors displayed by other windows. When a window has input focus
and calls .RealizePalette, Windows ensures that it will display all the colors it requests, up
to the maximum number simultaneously available on the display, and displays additional
colors by matching them to available colors. In addition, Windows matches the colors re­
quested by inactive windows that call RealizePalette as closely as possible to the available
colors. This significantly reduces undesirable changes in the colors displayed in inactive
windows.

s::
I

::D

IX:
I

:e

Rectangle

Return Value

Rectangle
Syntax

Return Value

Comments

4-344

Parameter Type/Description

hDC HDC Identifies the device context.

The return value specifies how many entries in the logical palette were mapped to different
entries in the system palette. This represents the number of entries which this function re­
mapped to accommodate changes in the system palette since the logical palette was last re­
alized.

BOOL Rectangle(hDC, Xl, Yl, X2, Y2)

This function draws a rectangle. The interior of the rectangle is filled by using the selected
brush, and a border is drawn with the selected pen.

Parameter

hDC

Xl

Yl

X2

Y2

Type/Description

HDC Identifies the device context.

int Specifies the logical x-coordinate of the upper-left corner of the
rectangle.

int Specifies the logical y-coordinate of the upper-left corner of the
rectangle.

int Specifies the logical x-coordinate of the lower-right corner of
the rectangle.

int Specifies the logical y-coordinate of the lower-right corner of
the rectangle.

The return value specifies whether the rectangle is drawn. It is nonzero if the rectangle is
drawn. Otherwise, it is zero.

The width of the rectangle specified by the Xl, Y 1 , X2, and Y2 parameters must not exceed
32,767 units. This limit applies to the height of the rectangle as well.

The current position is neither used nor updated by this function.

4-345 RectlnRegion

RectinRegion []]]
Syntax

Return Value

RectVisible
Syntax

Return Value

RegisterClass
Syntax

BOOL RectlnRegion(hRegion, /pRect)

This function detennines whether any part of the rectangle specified by the lpRect parame­
ter is within the boundaries of the region identified by the hRegion parameter.

Parameter

hRegion

lpRect

Type/Description

HRGN Identifies the region.

LPRECT Identifies the rectangle.

The return value is TRUE if any part of the specified rectangle lies within the boundaries
of the region. Otherwise, the return value is FALSE.

BOOL RectVisible(hDC,lpRect)

This function detennines whether any part of the given rectangle lies within the clipping re­
gion of the specified display context.

Parameter

hDC

lpRect

Type/Description

HDC Identifies the device context.

LPRECT Points to a RECT data structure that contains the logi­
cal coordinates of the specified rectangle.

The return value specifies whether the rectangle is within the clipping region. It is nonzero
if some portion of the given rectangle lies within the clipping region. Otherwise, it is zero.

BOOL RegisterClass(lpWndClass)

This function registers a window class for subsequent use in calls to the Create Window
function. The window class has the attributes defined by the contents of the data structure
pointed to by the lpWndClass parameter. If two classes with the same name are registered,
the second attempt fails and the infonnation for that class is ignored.

::
I

:::0

a:
I

:E

RegisterClipboardFormat 4-346

Parameter

lpWn dC lass

Type/Description

LPWNDCLASS Points to a WNDCLASS data structure. The
structure must be filled with the appropriate class attributes before
being passed to the function. See the following "Comments" section
for details.

Return Value The return value specifies whether the window class is registered. It is nonzero if the class
is registered. Otherwise, it is zero.

Comments The callback function must use the Pascal calling conventions and must be declared FAR.

Callback Function BOOL FAR PASCAL WndProc(hWnd, wMsg, wParam, lParam)
HWNDhWnd;
WORDwMsg;
WORD wParam;
DWORD IParam;

WndProc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in an EXPORTS statement in the application's module­
definition file.

Parameter

hWnd

wMsg

wParam

IParam

Return Value

Description

Identifies the window that receives the message.

Specifies the message number.

Specifies additional message-dependent information.

Specifies additional message-dependent information.

The window function returns the result of the message processing. The possible return
values depend on the actual message sent.

RegisterClipboardFormat
Syntax WORD RegisterClipboardFormat(/pF ormatName)

This function registers a new clipboard format whose name is pointed to by the lpF ormat­
Name parameter. The registered format can be used in subsequent clipboard functions as a
valid format in which to render data, and it will appear in the clipboard's list of formats.

4-347

Return Value

Comments

Parameter

lpF ormatN ame

RegisterWindowMessage

Type/Description

LPSTR Points to a character string that names the new for­
mat. The string must be a null-terminated character string.

The return value specifies the newly registered format. If the identical format name has
been registered before, even by a different application, the format's reference count is in­
creased and the same value is returned as when the format was originally registered. The
return value is zero if the format cannot be registered.

The format value returned by the RegisterClipboardFormat function is within the range
of Ox CODa to OxFFFF.

RegisterWindowMessage
Syntax

Return Value

Comments

WORD Register WindowMessage(lpString)

This function defines a new window message that is guaranteed to be unique throughout
the system. The returned message value can be used when calling the SendMessage or
PostMessage function.

RegisterWindowMessage is typically used for communication between two cooperating
applications. .

If the same message string is registered by two different applications, the same message
value is returned. The message remains registered until the user ends the Windows session.

Parameter Type/Description

lpString LPSTR Points to the message string to be registered.

The return value specifies the outcome of the function. It is an unsigned short integer
within the range OxCOOO to OxFFFF if the message is successfully registered. Otherwise, it
is zero.

Use the RegisterWindowMessage function only when the same message must be under­
stood by more than one application. For sending private messages within an application,
an application can use any integer within the range WM_USER to OxBFFF.

a:
I

ReieaseCapture 4-348

ReleaseCapture
Syntax

Return Value

Comments

ReleaseDC
Syntax

Return Value

void ReleaseCapture()

This function releases the mouse capture and restores normal input processing. A window
with the mouse capture receives all mouse input regardless of the position of the cursor.

This function has no parameters.

None.

An application calls this function after calling the SetCapture function.

int ReleaseDC(hWnd, hDC)

This function releases a device context, freeing it for use by other applications. The effect
of the ReleaseDC function depends on the device-context type. It only frees common and
window device contexts. It has no effect on class or private device contexts.

Parameter

hWnd

hDC

Type/Description

HWND Identifies the window whose device context is to be
released.

HDC Identifies the device context to be released.

The return value specifies whether the device context is released. It is 1 if the device con­
text is released. Otherwise, it is zero.

:i Comments The application must call the ReleaseDC function for each call to the GetWindowDC
function and for each call to the GetDC function that retrieves a common device context.

RemoveFontResource
Syntax BOOL RemoveFontResource(lpFilename)

This function removes an added font resource from the file named by the /pFilename para­
meter or from the Windows font table.

4-349

Return Value

Comments

Parameter

/pFilename

RemoveMenu

Type/Description

LPSTR Points to a string that names the font-resource file or con­
tains a handle to a loaded module. If /pFilename points to the
font-resource filename, the string must be null-terminated and have
the DOS filename format. If /pFilename contains a handle, the
handle must be in the low-order word; the high-order word must be
zero.

The return value specifies the outcome of the function. It is nonzero if the function is
successful. Otherwise, it is zero.

Any application that adds or removes fonts from the Windows font table should notify
other windows of the change by using the SendMessage function with the hWnd parame­
ter set to -1 to send a WM_FONTCHANGE message to all top-level windows in the sys­
tem.

The RemoveFontResource function may not actually remove the font resource. If there
are outstanding references to the resource, the font resource remains loaded until the last
referencing logical font has been deleted by using the DeleteObject function.

RemoveMenu [IQJ

Syntax BOOL RemoveMenu(hMenu, nPosition, wFlags)

This function deletes an menu item with an associated pop-up menu from the menu iden­
tified by the hMenu parameter but does not destroy the handle for the pop-up menu, allow­
ing the menu to be reused. Before calling this function, the application should call
GetSubMenu to retrieve the pop-up menu handle.

Parameter

hMenu

nPosition

Type/Description

"MENU Identifies the menu to be changed.

WORD Specifies the menu item to be removed. The interpretation
of the nPosition parameter depends upon the setting of the wFlags
parameter.

::
I

:::D

a:
I

::s

RemoveProp 4-350

Return Value

Comments

RemoveProp
Syntax

Return Value

Parameter

wFlags

Type/Description

IfwFlags is

MF _BYCOMMAND

MF _BYPOSITION

nPosition

Specifies the command ID of the ex­
isting menu item.

Specifies the position of the menu
item. The first item in the menu is at
position zero.

WORD Specifies how the nPosition parameter is interpreted. It
must be either MF _BYCOMMAND or MF _BYPOSITION.

The return value specifies the outcome of the function. It is TRUE if the function is
successful. Otherwise, it is FALSE.

Whenever a menu changes (whether or not the menu resides in a window that is dis­
played), the application should call DrawMenuBar.

HANDLE RemoveProp(hWnd,lpString)

This function removes an entry from the property list of the specified window. The
character string specified by the lpString parameter identifies the entry to be removed.

The RemoveProp function returns the data handle associated with the string so that the
application can free the data associated with the handle.

Parameter

hWnd

lpString

Type/Description

HWND Identifies the window whose property list is to be
changed.

LPSTR Points to a null-terminated character string or to an atom
that identifies a string. If an atom is given, it must have been pre­
viously created by means of the AddAtom function. The atom, a
16-bit value, must be placed in the low-order word of lpString; the
high-order word must be zero.

The return value identifies the given string. It is NULL if the string cannot be found in the
given property list.

4-351

Comments

ReplyMessage
Syntax

Return Value

ReplyMessage

An application must free the data handles associated with entries removed from a property
list. The application should only remove those properties which it added to the property
list.

void ReplyMessage(lReply)

This function is used to reply to a message sent through the SendMessage function
without returning control to the function that called SendMessage.

By calling this function, the window function that receives the message allows the task
that called SendMessage to continue to execute as though the task that received the
message had returned control. The task that calls ReplyMessage also continues to execute.

Normally a task that calls SendMessage to send a message to another task will not con­
tinue executing until the window procedure that Windows calls to receive the message re­
turns. However, if a task that is called to receive a message needs to perform some type of
operation 'that might yield control (such as calling the MessageBox or DialogBox func­
tions), Windows could be placed in a deadlock situation where the sending task needs to
execute and process messages but cannot because it is waiting for SendMessage to return.
An application can avoid this problem if the task receiving the message calls ReplyMes­
sage before performing any operation that could cause the task to yield.

The ReplyMessage function has no effect if the message was not sent through the Send­
Message function or if the message was sent by the same task.

Parameter

IReply

None.

Type/Description

LONG Specifies the result of the message processing. The
possible values depend on the actual message sent.

ResizePalette [IQJ
Syntax BOOL ResizePalette(hPalette, nNumEntries)

This function changes the size of the logical palette specified by the hPalette parameter to
the number of entries specified by the nNumEntries parameter. If an application calls Re­
sizePalette to reduce the' size of the palette, the entries remaining in the resized palette are
unchanged. If the application calls ResizePalette to enlarge the palette, the additional
palette entries are set to black (the red, green, and blue values are all 0) and the flags for all
additional entries are set to O.

c:
I
E

RestoreOC

Return Value

RestoreDC
Syntax

Return Value

RGB
Syntax

Parameter

hPalette

nNumEntries

4-352

Type/Description

HPALETTE Identifies the palette to be changed.

int Specifies the number of entries in the palette after it has been re­
sized.

The return value specifies the outcome of the function. It is TRUE if the palette was
successfully resized. Otherwise, it is FALSE.

BOOL RestoreDC(hDC, nSavedDC)

This function restores the device context specified by the hDC parameter to the previous
state identified by the nSavedDC parameter. The RestoreDC function restores the device
context by copying state information saved on the context stack by earlier calls to the
SaveDC function.

The context stack can contain the state information for several device contexts. If the con­
text specified by nSavedDC is not at the top of the stack, RestoreDC deletes any state
information between the device context specified by the nSavedDC parameter and the top
of the stack. The deleted information is lost.

Parameter

hDC

nSavedDC

Type/Description

HDC Identifies the device context.

int Specifies the device context to be restored. It can be a value re­
turned by a previous SaveDC function call. If nSavedDC is -1, the
most recent device context saved is restored.

The return value specifies the outcome of the function. It is TRUE if the specified context
was restored. Otherwise, it is FALSE.

COLORREF RGB(cRed, cGreen, cBlue)

This macro selects an RGB color based on the parameters supplied and the color capabili­
ties of the output device.

4-353

Return Value

Comments

RoundRect
Syntax

Parameter

cRed

cGreen

cBlue

Type/Description

BYTE Specifies the intensity of the red color field.

BYTE Specifies the intensity of the green color field.

BYTE Specifies the intensity of the blue color field.

RoundRect

The return value specifies the resultant RGB color.

The intensity for each argument can range from 0 to 255. If all three intensities are
specified as 0, the result is black. If all three intensities are specified as 255, the result is
white.

For information on using color values in a color palette, see the descriptions of the
PALETTEINDEX and PALETTERGB macros, earlier in this chapter.

BOOL RoundRect(hDC, Xl, Yl, X2, Y2, X3, Y3)

This function draws a rectangle with rounded comers. The interior of the rectangle is filled
by using the selected brush, and a border is drawn with the selected pen.

Parameter

hDC

Xl

Yl

X2

Y2

X3

Y3

Type/Description

HDC Identifies the device context.

int Specifies the logical x-coordinate of the upper-left comer of the
rectangle.

int Specifies the logical y-coordinate of the upper-left comer of the
rectangle.

int Specifies the logical x-coordinate of the lower-right comer of
the rectangle.

int Specifies the logical y-coordinate of the lower-right comer of
the rectangle.

int Specifies the width of the ellipse used to draw the rounded
comers.

int Specifies the height of the ellipse used to draw the rounded
comers.

r:
I

RoundRect 4-354

Return Value The return value specifies whether the rectangle is drawn. It is nonzero if the rectangle is
drawn. Otherwise, it is zero.

Comments The width of the rectangle specified by the Xl, Y I, X2, and Y2 parameters must not exceed
32,767 units. This limit applies to the height of the rectangle as well.

The current position is neither used nor updated by this function.

4-355

SaveDC
Syntax

Return Value

Comments

SaveOC

int SaveDC(hDC)

This function saves the current state of the device context specified by the hDC parameter
by copying state information (such as clipping region, selected objects, and mapping
mode) to a context stack. The saved device context can later be restored by using the
RestoreDC function.

Parameter Type/Description

hDC HDC Identifies the device context to be saved.

The return value specifies the saved device context. It is zero if an error occurs.

The SaveDC function can be used any number of times to save any number of device­
context states.

ScaleViewportExt
Syntax

Return Value

DWORD ScaleViewportExt(hDC, Xnum, Xdenom, Ynum, Ydenom)

This function modifies the viewport extents relative to the current values. The formulas are
written as follows:

xNewVE = (xOldVE x Xnum)/ X denom
yNewVE = (yOldVE x Ynum) / Y denom

The new extent is calculated by multiplying the current extents by the given numerator and
then dividing by the given denominator.

Parameter Type/Description

hDC HDC Identifies the device context.

Xnum int Specifies the amount by which to multiply the current x-extent.

Xdenom int Specifies the amount by which to divide the current x-extent.

Ynum int Specifies the amount by which to multiply the current y-extent.

Ydenom int Specifies the amount by which to divide the current y-extent.

The return value specifies the previous viewport extents (in device units). The previous
y-extent is in the high-order word; the previous x-extent is in the low-order word.

CJl

Sca/eWindowExt 4-356

ScaleWindowExt
Syntax

Return Value

ScreenToClient
Syntax

DWORD ScaleWindowExt(hDC, Xnum, Xdenom, Ynum, Ydenom)

This function modifies the window extents relative to the current values. The formulas are
written as follows:

xNewWE = (xOldWE x Xnum) / Xdenom
yNewWE = (yOldWE x Ynum) /Ydenom

The new extent is calculated by multiplying the current extents by the given numerator and
then dividing by the given denominator.

Parameter

hDC

Xnum

Xdenom

Ynum

Ydenom

Type/Description

HDC Identifies the device context.

int Specifies the amount by which to multiply the current x-extent.

int Specifies the amount by which to divide the current x-extent.

int Specifies the amount by which to multiply the current y-extent.

int Specifies the amount by which to divide the current y-extent.

The return value specifies the previous window extents (in logical units). The previous y­
extent is in the high-order word; the previous x-extent is in the low-order word.

void ScreenToClient(hWnd, IpPoint)

This function converts the screen coordinates of a given point on the display to client
coordinates. The ScreenToClient function uses the window given by the hWnd parameter
and the screen coordinates given in the POINT data structure pointed to by the IpPoint
parameter to compute client coordinates, and then replaces the screen coordinates with the
client coordinates. The new coordinates are relative to the upper-left comer of the given
window's client area.

Parameter

hWnd

IpPoint

Type/Description

HWND Identifies the window whose client area will be used for
the conversion.

LPPOINT Points to a POINT data structure that contains the
screen coordinates to be converted.

4-357

Return Value

Comments

ScroliDC
Syntax

Return Value

Comments

SerallOe

None.

The ScreenToClient fonnula assumes the given point is in screen coordinates.

BOOL ScroIlDC(hDC, dx, dy, IprcScroll, IprcClip, hrgllUpdate, IprcUpdate)

This function scrolls a rectangle of bits horizontally and vertically. The IprcScroll parame­
ter points to the rectangle to be scrolled, the dx parameter specifies the number of units to
be scrolled horizontally, and the dy parameter specifies the number of units to be scrolled
vertically.

Parameter

hDC

dx

dy

IprcScroli

IprcClip

hrgnUpdate

IprcUpdate

Type/Description

HDC Identifies the device context that contains the bits to be
scrolled.

int Specifies the number of horizontal scroll units.

int Specifies the number of vertical scroll units.

LPRECT Points to the RECT data structure that contains the
coordinates of the scrolling rectangle.

LPRECT Points to the RECT data structure that contains the
coordinates of the clipping rectangle. When this rectangle is smaller
than the original pointed to by lprcScroll, scrolling occurs only in the
smaller rectangle.

HRGN Identifies the region uncovered by the scrolling process.
The ScrollDC function defines this region; it is not necessarily a
rectangle.

LPRECT Points to the RECT data structure that, upon return, con­
tains the coordinates of the rectangle that bounds the scrolling update
region. This is the largest rectangular area that requires repainting.

This value specifies the outcome of the function. It is nonzero if scrolling is executed.
Otherwise, it is zero.

If the lprcUpdate parameter is NULL, Windows does not compute the update rectangle. If
both the hrgnUpdate and IprcUpdate parameters are NULL, Windows does not compute
the update region. If hrgnUpdate is not NULL, Windows assumes that it contains a valid

en

'/),

SerollWindow 4-358

ScroliWindow
Syntax

Return Value

Comments

region handle to the region uncovered by the scrolling process (defined by the ScrolIDC
function).

An application should use the ScrolIWindow function when it is necessary to scroll the en­
tire client area of a window. Otherwise, it should use ScrolIDC.

void ScrollWindow(hWnd, XAmount, YAmount, lpRect, lpClipRect)

This function scrolls a window by moving the contents of the window's client area the
number of units specified by the XAmount parameter along the screen's x-axis and the num­
ber of. units specified by the YAmount parameter along the y-axis. The scroll moves right if
XAmount is positive and left if it is negative. The scroll moves down if YAmount is positive
and up if it is negative.

Parameter

hWnd

XAmount

YAmount

lpRect

lpClipRect

None.

Type/Description

HWND Identifies the window whose client area is to be scrolled.

int Specifies the amount (in device units) to scroll in the x direc­
tion.

int Specifies the amount (in device units) to scroll in the y direc­
tion.

LPRECT Points to a RECT data structure that specifies the por­
tion of the client area to be scrolled. If lpRect is NULL, the entire
client area is scrolled.

LPRECT Points to a RECT data structure that specifies the clip­
ping rectangle to be scrolled. Only bits inside this rectangle are
scrolled. If lpClipRect is NULL, the entire window is scrolled.

If the caret is in the window being scrolled, Scroll Window automatically hides the caret to
prevent it from being erased, then restores the caret after the scroll is finished. The caret
position is adjusted accordingly.

The area uncovered by the ScrollWindow function is not repainted, but is combined into
the window's update region. The application will eventually receive a WM_PAINT
message notifying it that the region needs repainting. To repaint the uncovered area at the
same time the scrolling is done, call the UpdateWindow function immediately after cal­
ling ScrolIWindow.

4-359

SelectClipRgn
Syntax

Return Value

Comments

SelectClipRgn

If the /pRect parameter is NULL, the positions of any child windows in the window are off­
set by the amount specified by XAmount and YAmount, and any invalid (unpainted) areas
in the window are also offset. ScrollWindow is faster when /pRect is NULL.

If the /pRect parameter is not NULL, the positions of child windows are not changed, and
invalid areas in the window are not offset. To prevent updating problems when /pRect is
not NULL, call the UpdateWindow function to repaint the window before calling
ScrollWindow.

int SelectClipRgn(hDC, hRgn)

This function selects the given region as the current clipping region for the specified
device context. Only a copy of the selected region is used. The region itself can be selected
for any number of other device contexts, or it can be deleted.

Parameter Type/Descri ption

hDC HDC Identifies the device context.

hRgn HRGN Identifies the region to be selected.

The return value specifies the region's type. It can be anyone of the following values:

Value

COMPLEXREGION

ERROR

NULLREGION

SIMPLEREGION

Meaning

New clipping region has overlapping borders.

Device context or region handle is not valid.

New clipping region is empty.

New clipping region has no overlapping borders.

The SelectClipRgn function assumes that the coordinates for the given region are
specified in device units.

Some printer devices support graphics at lower resolutions than text output to increase
speed, but at the expense of quality. These devices scale coordinates for graphics so that
one graphics device point corresponds to two or four true device points. This scaling factor
affects clipping. If a region will be used to clip graphics, its coordinates must be divided
down by the scaling factor. If the region will be used to clip text, no scaling adjustment is
needed. The scaling factor is determined by using the GETSCALINGFACTOR printer
escape.

en

'I>

SeiectObject 4-360

SelectObject
Syntax HANDLE SelectObject(hDC, hObject)

This function selects the logical object specified by the hObject parameter as the selected
object of the specified device context. The new object replaces the previous object of the
same type. For example, if hObject is the handle to a logical pen, the SelectObject func­
tion replaces the selected pen with the pen specified by hObject.

Selected objects are the default objects used by the GDI output functions to draw lines, fill
interiors, write text, and clip output to specific areas of the device surface. Although a
device context can have six selected objects (pen, brush, font, bitmap, region, and logical
palette), no more than one object of any given type can be selected at one time. Select­
Object does not select a logical palette; to select a logical palette, the application must use
SelectPalette.

Parameter

hDC

hObject

Type/Description

HDC Identifies the device context.

HANDLE Identifies the object to be selected. It may be anyone of
the following, and must have been created by using one of the follow­
ing functions:

Object

Bitmap (Bitmaps can be
selected for memory device
contexts only, and for only one
device context at a time.)

Brush

Font

Pen

Region

Function

CreateBitmap
CreateBitmaplndirect
CreateCompatibleBitmap
CreateDIBitmap

CreateBrushlndirect
CreateHatchBrush
CreatePatternBrush
CreateSolidBrush

CreateFont
CreateFontlndirect

CreatePen
CreatePenlndirect

CombineRgn
CreateEllipticRgn
CreateEllipticRgnlndirect
CreatePolygonRgn
CreateRectRgn
CreateRectRgnlndirect

4-361

Return Value

Comments

SeiectPaiette

The return value identifies the object being replaced by the object specified by the hObject
parameter. It is NULL if there is an error.

If the hDC parameter specifies a metafile, the return value is nonzero if the function is
successful. Otherwise, it is zero.

If a region is being selected, the return is the same as for SelectClipRgn.

When you select a font, pen, or brush by using the SelectObject function, GDI allocates
space for that object in its data segment. Because data-segment space is limited, you
should use the DeleteObject function to delete each drawing object that you no longer
need.

Before deleting the last of the unneeded drawing objects, an application should select the
original (default) object back into the device context.

An application cannot select a bitmap into more than one device context at any time.

SelectPalette []I]
Syntax

Return Value

HPALETTE SelectPalette(hDC, hPalette, bForceBackground)

This function selects the logical palette specified by the hPalette parameter as the selected
palette object of the device context identified by the hDC parameter. The new palette be­
comes the palette object used by GDI to control colors displayed in the device context and
replaces the previous palette.

Parameter

hDC

hPalette

bF orceBackground

Type/Description

HDC Identifies the device context.

HPALETTE Identifies the logical palette to be selected.
CreatePalette creates a logical palette.

BOOL Specifies whether the logical palette is forced to
be a background palette. If bF orceBackground is nonzero,
the selected palette is always a background palette, regard­
less of whether the window has input focus. If
bF orceBackground is zero, the logical palette is a fore­
ground palette when the window has input focus.

The return value identifies the logical palette being replaced by the palette specified by the
hPalette parameter. It is NULL if there is an error.

, (

SendDlgltemMessage 4-362

Comments An application can select a logical palette into more than one device context. However,
changes to a logical palette will affect all device contexts for which it is selected. If an
application selects a palette object into more than one device context, the device contexts
must all belong to the same physical device (such as a display or printer).

SendDlgltemMessage
Syntax

Return Value

Comments

SendMessage
Syntax

DWORD SendDlgltemMessage(hDlg, nIDDlgltem, wMsg, wParam, IParam)

This function sends a message to the control specified by the nIDDlgltem parameter within
the dialog box specified by the hDlg parameter. The SendDlgltemMessage function does
not return until the message has been processed.

Parameter

hDlg

nIDDlgltem

wMsg

wParam

IParam

Type/Description

HWND Identifies the dialog box that contains the control.

int Specifies the integer identifier of the dialog item that is to re­
ceive the message.

WORD Specifies the message value.

WORD Specifies additional message information.

DWORD Specifies additional message information.

The return value specifies the outcome of the function. It is the value returned by the con­
trol's window function, or zero if the control identifier is not valid.

Using SendDlgltemMessage is identical to obtaining a handle to the given control and cal­
ling the SendMessage function.

DWORD SendMessage(hWnd, wMsg, wParam, IParam)

This function sends a message to a window or windows. The SendMessage function does
not return until the message has been processed. If the window that receives the message is
part of the same application, the window function is called immediately as a subroutine. If
the window is part of another task, Windows switches to the appropriate task and calls the
appropriate window function, and then passes the message to the window function. The
message is not placed in the destination application's queue.

4-363

Return Value

Comments

Parameter

hWnd

wMsg

wParam

lParam

SetActive Window

Type/Description

HWND Identifies the window that is to receive the message. If the
hWnd parameter is OxFFFF, the message is sent to all pop-up
windows in the system. The message is not sent to child windows.

WORD Specifies the message to be sent.

WORD Specifies additional message information.

DWORD Specifies additional message information.

The return value specifies the outcome of the function. It is the value returned by the
window function that received the message; its value depends on the message being sent.

If a system running Windows is configured for expanded memory (EMS) and an applica­
tion sends a message (by using the SendMessage function) with related data (that is
pointed to by the lParam parameter) to a second application, the first application must
place the data (that lParam points to) in global memory allocated by the GlobalAlloc func­
tion and the GMEM_LOWER flag. Note that this allocation of memory is only necessary
if lParam contains a pointer.

SetActiveWindow
Syntax

Return Value

SetBitmapBits
Syntax

HWND SetActive Window(h Wnd)

This function makes a top-level window the active window.

Parameter Type/Description

hWnd . HWND Identifies the top-level window to be activated.

The return value identifies the window that was previously active. The SetActiveWindow
function should be used with care since it allows an application to arbitrarily take over the
active window and input focus. Nonnally, Windows takes care of all activation.

LONG SetBitmapBits(hBitmap, dwCount, lpBits)

This function sets the bits of a bitmap to the bit values given by the lpBits parameter.

(

SetBitmapOimension 4-364

Return Value

Parameter

hBitmap

dwCount

IpBits

Type/Description

HBITMAP Identifies the bitmap to be set.

DWORD Specifies the number of bytes pointed to by IpBits.

LPSTR Points to the bitmap bits that are stored as a long pointer
to a byte array.

The return value specifies the number of bytes used in setting the bitmap bits. It is zero if
the function fails.

SetBitmapDimension
Syntax

Return Value

SetBkColor
Syntax

DWORD SetBitmapDimension(hBitmap, X, y)

This function assigns a width and height to a bitmap in O.I-millimeter units. These values
are not used internally by GDI; the GetBitmapDimension function can be used to retrieve
them.

Parameter

hBitmap

X

Y

Type/Description

HANDLE Identifies the bitmap.

int Specifies the width of the bitmap (in O.I-millimeter units).

int Specifies the height of the bitmap (in O.1-millimeter units).

The return value specifies the previous bitmap dimensions. Height is in the high-order
word, and width is in the low-order word.

DWORD SetBkColor(hDC, crColor)

This function sets the current background color to the color specified by the crColor para­
meter, or to the nearest physical color if the device cannot represent an RGB color value
specified by crColor.

If the background mode is OPAQUE, GDI uses the background color to fill the gaps be­
tween styled lines, gaps between hatched lines in brushes, and character cells. GDI also
uses the background color when converting bitmaps from color to monochrome and vice
versa.

4-365

Return Value

SetBkMode
Syntax

Return Value

SetBrushOrg
Syntax

SetBkMode

The background mode is set by the SetBkMode function. See the BitBIt and StretchBIt
functions, in this chapter, for color-bitmap conversions.

Parameter Type/Description

hDC HDC Identifies the device context.

crColor COLORREF Specifies the new background color.

The return value specifies the previous background color as an RGB color value. If an
error occurs, the return value is Ox80000000. .

int SetBkMode(hDC, nBkMode)

This function sets the background mode used with text and line styles. The background
mode defines whether or not GDI should remove existing background colors on the device
surface before drawing text, hatched brushes, or any pen style that is not a solid line.

Parameter

hDC

nBkMode

Type/Description

HDC Identifies the device context.

int Specifies the background mode. It can be either one of the
following modes:

Value

OPAQUE

TRANSPARENT

Meanili"g

Background is filled with the current
background color before the text,
hatched brush, or pen is drawn.

Background remains untouched.

The return value specifies the previous background mode. It can be either OPAQUE or
TRANSPARENT.

DWORD SetBrushOrg(hDC, X, y)

This function sets the origin of the brush currently selected into the given device context.

(j

)

SetCapture

Return Value

Comments

SetCapture
Syntax

Return Value

Comments

4-366

Parameter Type/Description

HDC Identifies the device context. hDC

X int Specifies the x-coordinate (in device units) of the new origin.
This value must be in the range 0-7.

y int Specifies the y-coordinate (in device units) of the new origin.
This value must be in the range 0-7.

The return value specifies the origin of the brush. The previous x-coordinate is in the low­
order word, and the previous y-coordinate is in the high-order word.

The original brush origin is at the coordinate (0,0).

The SetBrushOrg function should not be used with stock objects.

HWND SetCapture(hWnd)

This function causes all subsequent mouse input to be sent to the window specified by the
hWnd parameter, regardless of the position of the cursor.

Parameter Type/Description

hWnd HWND Identifies the window that is to receive the mouse input.

The return value identifies the window that previously received all mouse input. It is
NULL if there is no such window.

When the window no longer requires all mouse input, the application should call the
ReleaseCapture function so that other windows can receive mouse input.

SetCaretBlinkTime
Syntax void SetCaretBlinkTime(wMSeconds)

This function sets the caret blink rate (elapsed time between caret flashes) to the number
of milliseconds specified by the wMSeconds parameter. The caret flashes on or off each
wMSeconds milliseconds. This means one complete flash (on-off-on) takes 2 x wMSec­
onds milliseconds.

4-367

Return Value

Comments

SetCaretPos
Syntax

Return Value

Comments

SetClassLong
Syntax

SetCaretPos

Parameter Type/Description

wMSeconds WORD Specifies the new blink rate (in milliseconds).

None.

The caret is a shared resource. A window should set the caret blink rate only if it owns the
caret. It should restore the previous rate before it loses the input focus or becomes inactive.

void SetCaretPos(X, Y)

This function moves the caret to the position given by logical coordinates specified by the
X and Y parameters. Logical coordinates are relative to the client area of the window that
owns them and are affected by the window's mapping mode, so the exact position in pixels
depends on this mapping mode.

The SetCaretPos function moves the caret only if it is owned by a window in the current
task. SetCaretPos moves the caret whether or not the caret is hidden.

Parameter

X

Y

None.

Type/Description

int Specifies the new x-coordinate (in logical coordinates) of the
caret.

int Specifies the new y-coordinate (in logical coordinates) of the
caret.

The caret is a shared resource. A window should not move the caret if it does not own the
caret.

LONG SetClassLong(hWnd, nlndex, dwNewLong)

This function replaces the long value specified by the nlndex parameter in the WND­
CLASS data structure of the window specified by the hWnd parameter.

en

SelClassWord 4-368

Return Value

Comments

SelClassWord
Syntax

Parameter

hWnd

nlndex

dwNewLong

Type/Description

HWND Identifies the window.

int Specifies the byte offset of the word to be changed. It can
also be one of the following values: .

Value Meaning

Sets a new long pointer to the
menu name.

Sets a new long pointer to the
window function.

DWORD Specifies the replacement value.

The return value specifies the previous value of the specified long integer.

If the SetClassLong function and GCL_ WNDPROC index are used to set a window func­
tion, the given function must have the window-function form and be exported in the mod­
ule-definition file. See the RegisterClass function earlier in this chapter for details.

Calling SetClassLong with the GCL_ WNDPROC index creates a subclass of the window
class that affects all windows subsequently created with the class. See Chapter 1, "Window
Manager Interface Functions," for more information on window subclassing. An applica­
tion should not attempt to create a window subclass for standard Windows controls such as
combo boxes and buttons.

To access any extra two-byte values allocated when the window-class structure was
created, use a positive byte offset as the index specified by the nlndex parameter, starting
at zero for the first two-byte value in the extra space, 2 for the next two-byte value and so
on.

WORD SetClassWord(hWnd, nlndex, wNewWord)

This function replaces the word specified by the nlndex parameter in the WNDCLASS
structure of the window specified by the h W nd parameter.

4-369

Return Value

Comments

Parameter

hWnd

nlndex

wNewWord

SetClipboardOata

Type/Descri ption

HWND Identifies the window.

int Specifies the byte offset of the word to be changed. It can also
be one of the following values:

Value

GCW _CBCLSEXTRA

GCW _CBWNDEXTRA

GCW_HBRBACKGROUND

GCW _HCURSOR

GCW_HICON

GCW_STYLE

Meaning

Sets two new bytes of addi­
tional window-class data.

Sets two new bytes of addi­
tiomil window-class data.

Sets a new handle to a back­
ground brush.

Sets a new handle to a cursor.

Sets a new handle to an icon.

Sets a new style bit for the
window class.

WORD Specifies the replacement value.

The return value specifies the previous value of the specified word.

The SetClassWord function should be used with care. For example, it is possible to
change the background color for a class by using SetClass Word, but this change does not
cause all windows belonging to the class to be repainted immediately.

To access any extra four-byte values allocated when the window-class structure was
created, use a positive byte offset as the index specified by the nlndex parameter, starting
at zero for the first four-byte value in the extra space, 4 for the next four-byte value and so
on.

SetClipboardData
Syntax HANDLE SetClipboardData(wFormat, hMem)

This function sets a data handle to the clipboard for the data specified by the hM em para­
meter. The data are assumed to have the format specified by the wF ormat parameter. After
setting a clipboard data handle, the SetClipboardData function frees the block of memory
identified by hM em.

SetClipboardData 4-370

Return Value

Comments

Parameter

wFormat

hMem

Type/Description

WORD Specifies a data fonnat. It can be anyone of the prede­
fined fonnats given in Table 4.13, "Predefined Data Fonnats."

In addition to the predefined fonnats, any fonnat value registered
through the RegisterClipboardFormat function can be used as the
wFormat parameter.

HANDLE Identifies the global memory block that contains the
data in the specified fonnat. The hMem parameter can be NULL.
When hMem is NULL the application does not have to fonnat the
data and provide a handle to it until requested to do so through a
WM_RENDERFORMAT message.

The return value identifies the data and is assigned by the clipboard.

Once the hM em parameter has been passed to SetClipboardData, the block of data be­
comes the property of the clipboard. The application may read the data, but should not free
the block or leave it locked.

Table 4.13 shows the various predefined data-fonnat values for the wFormat parameter:

Table 4.13 Predefined Data Formats

Value Meaning

CF _BITMAP A handle to a bitmap (HBITMAP).

CF _DIB A memory block containing a BITMAPINFO data structure
followed by the bitmap bits.

CF _DIF Software Arts' Data Interchange Format.

CF _DSPMETAFILEPICT

CF _METAFILEPICT

Bitmap display format associated with private format. The
hMem parameter must be a handle to data that can be displayed
in bitmap format in lieu of the privately formatted data.

Metafile-picture display format associated with private format.
The hMem parameter must be a handle to data that can be dis­
played in metafile-picture format in lieu of the privately
formatted data.

Text display format associated with private format. The hMem
parameter must be a handle to data that can be displayed in text
format in lieu of the privately formatted data.

Metafile picture format as defined by the METAFILEPICT
data structure.

4-371 SetClipboardOata

Table 4.13 Predefined Data Formats (continued)

Value Meaning

CF _OEMTEXT Text format contining characters in the OEM character set.

CF _OWNERDISPLAY

CF _PRIVATEFIRST to
CF _PRIVATELAST

Each line ends with a carriage return/linefeed (CR-LF) combi­
nation. A null character signals the end of the data.

Owner display format. The clipboard owner must display and
update the clipboard application window, and will receive
WM_ASKCBFORMATNAME, WM_HSCROLLCLIP­
BOARD, WM_PAINTCLIPBOARD, WM_SIZE­
CLIPBOARD, and WM_ VSCROLLCLIPBOARD messages.
The hMem parameter must be NULL.

Handle to a color palette. Whenever an application places data
in the clipboard that depends on or assumes a color palette, it
should also place the palette in the clipboard as ~ell.

If the clipboard contains data in the CF _PALETTE (logical
color palette) format, the application should assume that any
other data in the clipboard is realized against that logical
palette.

The clipboard-viewer application (CLIPBRD.EXE) always
uses as its current palette any object in CF _PALETTE format
that is in the clipboard when it displays the other formats in the
clipboard.

Range of integer values used for private formats. Data handles
associated with formats in this range will not be freed automati­
cally; any data handles must be freed by the application before
the application terminates or when a WM_DESTROY­
CLIPBOARD message is received.

Microsoft Symbolic Link (SYLK) format.

Text format. Each line ends with a carriage return/linefeed
(CR-LF) combination. A null character signals the end of the
data.

Tag Image File Format.

Windows supports two formats for text, CF _TEXT and CF _OEMTEXT. CF _TEXT is the
default Windows text clipboard format, while Windows uses the CF _OEMTEXT format
for text in non-Windows applications. If you call GetClipboardData to retrieve data in
one text format and the other text format is the only available text format, Windows auto- (f)

matically converts the text to the requested format before supplying it to your application.

An application registers other standard formats, such as Rich Text Format (RTF), by name
using the RegisterClipboardFormat function rather than by a symboli~ constant. For
information on these external formats, see the README.TXT file.

SetClipboardViewer 4-372

SetClipboardViewer
Syntax

Return/ Value

Comments

SetCommBreak
Syntax

1) Return Value

HWND SetClipboardViewer(hWnd)

This function adds the window specified by the hWnd parameter to the chain of windows
that are notified (via the WM_DRAWCLIPBOARD message) whenever the contents of
the clipboard are changed.

Parameter

hWnd

Type/Description

HWND Identifies the window to receive clipboard-viewer chain
messages.

The return value identifies the next window in the clipboard-viewer chain. This handle
should be saved in static memory and used in responding to clipboard-viewer chain mes­
sages.

Windows that are part of the clipboard-viewer chain must respond to WM_CHANGECB­
CHAIN, WM_DRAWCLIPBOARD, and WM_DESTROY messages.

If an application wishes to remove itself from the clipboard-viewer chain, it must call the
ChangeClipboardChain function.

int SetCommBreak(nCid)

This function suspends character transmission and places the transmission line in a break
state until the ClearCommBreak function is called.

Parameter

nCid

Type/Description

int Specifies the communication device to be suspended. The
OpenComm function returns this value.

The return value specifies the result of the function. It is zero if the function is successful.
It is negative if nCid does not specify a valid device.

4-373 SetCommEventMask

SetCommEventMask
Syntax

Return Value

Comments

WORD FAR * SetCommEventMask(nCid, nEvtMask)

This function enables and retrieves the event mask of the communication device specified
by the nCid parameter. The bits of the nEvtMask parameter define which events are to be
enabled. The return value points to the current state of the event mask.

Parameter

nCid

nEvtMask

Type/Description

int Specifies the communication device to be enabled. The Open­
Comm function returns this value.

int Specifies which events are to be enabled. It can be any combi­
nation of the values shown in Table 4.14, "Event Values."

The return value points to an integer event mask. Each bit in the event mask specifies
whether or not a given event has occurred. A bit is 1 if the event has occurred.

Table 4.14 lists the event values for the nEvtMask parameter:

Table 4.14 Event Values

Value Meaning

EV _BREAK Sets when a break is detected on input.

EV _CTS Sets when the clear-to-send (CTS) signal changes state.

EV _DSR Sets when the data-set-ready (DSR) signal changes state.

EV _ERR Sets when a line-status error occurs. Line-status errors are
CE_FRAME, CE_OVERRUN, and CE_RXPARITY.

EV _PERR Sets when a printer error is detected on a parallel device. Errors
are CE_DNS, CE_IOE, CE_LOOP, and CE_PTO.

EV _RING . Sets when a ring indicator is detected.

EV _RLSD Sets when the receive-line-signal-detect (RLSD) signal
changes state.

EV_RXFLAG

Sets when any character is received and placed in the receive
queue.

Sets when the event character is received and placed in the re­
ceive queue. The event character is specified in the device's
control block.

Sets when the last character in the transmit queue is sent.

" ;

SetCommState 4-374

SetCommState
Syntax

Return Value

SetCursor
Syntax

Return Value

Comments

int SetCommState(/pDCB)

This function sets a communication device to the state specified by the device control
block pointed to by the ipDCB parameter. The device to be set must be identified by the Id
field of the control block.

This function reinitializes all hardware and controls as defined by ipDCB, but does not
empty transmit or receive queues.

Parameter

ipDCB

Type/Description

DCB FAR * Points to a DCB data structure that contains the
desired communications setting for the device.

The return value specifies the outcome of the function. It is zero if the function is success­
ful. It is negative if an error occurs.

HCURSOR SetCursor(hCursor)

This function sets the cursor shape to the shape specified by the hCursor parameter. The
cursor is set only if the new shape is different from the current shape. Otherwise, the func­
tion returns immediately. The SetCursor function is quite fast if the cursor identified by
the hCursor parameter is the same as the current cursor.

If hCursor is NULL, the cursor is removed from the screen.

Parameter

hCursor

Type/Description

HCURSOR Identifies the cursor resource. The resource must have
been loaded previously by using the LoadCursor function.

The return value identifies the cursor resource that defines the previous cursor shape. It is
NULL if there is no previous shape.

The cursor is a shared resource. A window that uses the cursor should set the shape only
when the cursor is in its client area or when it is capturing all mouse input. In systems
without a mouse, the window should restore the previous cursor shape before the cursor
leaves the client area or before the window relinquishes control to another window.

4-375

SetCursorPos
Syntax

Return Value

Comments

SetDIBits [IQJ
Syntax

SetCursorPos

Any application that needs to change the shape of the cursor while it is in a window must
make sure the class cursor for the given window's class is set to NULL. If the class cursor
is not NULL, Windows restores the previous shape each time the mouse is moved.

The cursor is not shown on the screen if the cursor display count is less than zero. This re­
sults from the HideCursor function being called more times than the ShowCursor func­
tion.

void SetCursorPos(X, Y)

This function moves the cursor to the screen coordinates given by the X and Y parameters.
If the new coordinates are not within the screen rectangle set by the most recent ClipCur­
sor function, Windows automatically adjusts the coordinates so that the cursor stays within
the rectangle.

Parameter

X

Y

None.

Type/Description

int Specifies the new x-coordinate (in screen coordinates) of the
cursor.

int Specifies the new y-coordinate (in screen coordinates) of the
cursor.

The cursor is a shared resource. A window should move the cursor only when the cursor is
in its client area.

int SetDIBits(hDC, hBitmap, nStartScan, nNumScans, IpBits, IpBitslnfo, wUsage)

This function sets the bits of a bitmap to the values given in a device-independent bitmap
(DIB) specification. ' ((J

Parameter Type/Description

hDC HDC Identifies the device context.

hBitmap HBITMAP Identifies the bitmap.

SetOIBits

Return Value

Comments

Parameter

nStartScan

nNumScans

IpBits

IpBitslnfo

wUsage

4-376

Type/Description

WORD Specifies the scan number of the first scan line in the
IpBits buffer.

WORD Specifies the number of scan lines in the IpBits buffer
and the number of lines to set in the bitmap identified by the
hBitmap parameter.

LPSTR Points to the device-independent bitmap bits that are
stored as an array of bytes. The format of the bitmap values de­
pends on the biBitCount field of the BITMAPINFO structure
identified by IpBitslnfo. See the description of the BITMAPINFO
data structure in Chapter 7, "Data Types and Structures," in
Reference, Volume 2, for more information.

LPBITMAPINFO Points to a BITMAPINFO data structure
that contains information about the device-independent bitmap.

WORD Specifies whether the bmiColors[] fields of the
IpBitslnfo parameter contain explicit RGB values or indexes into
the currently realized logical palette. The wU sage parameter must
be one of the following values:

Value Meaning

The color table consists of an array
of 16-bit indexes into the currently
realized logical palette.

The color table contains literal RGB
values.

The return value specifies the number of scan lines successfully copied. It is zero if the
function fails.

The bitmap identified by the hBitmap parameter must not be selected into a device context
when the application calls this function.

The origin for device-independent bitmaps is the bottom-left comer of the bitmap, not the
top-left comer, which is the origin when the mapping mode is MM_TEXT.

This function also accepts a bitmap specification formatted for Microsoft OS/2 Presenta­
tion Manager versions 1.1 and 1.2 if the IpBitslnfo parameter points to a BITMAPCORE­
INFO data structure.

4-377 SetOIBitsToOevice

SetDIBitsToDevice []]]
Syntax WORD SetDIBitsToDevice(hDC, DestX, DestY, nWidth, nHeight, SrcX, SrcY,

nStartScan, nNumScans, /pBits, /pBitslnfo, wUsage)

This function sets bits from a device-independent bitmap (DIB) directly on a device sur­
face. The SrcX, SrcY, nWidth, and nHeight parameters define a rectangle within the total
DIB. SetDIBitsToDevice sets the bits in this rectangle directly on the display surface of
the output device identified by the hDC parameter, at the location described by the DestX
and DestY parameters.

To reduce the amount of memory required to set bits from a large DIB on a device surface,
an application can band the output by repeatedly calling SetDIBitsToDevice, placing a
different portion of the entire DIB into the /pBits buffer each time. The values of the nStart­
Scan and nNumScans parameters identify the portion of the entire DIB which is contained
in the /pBits buffer.

Parameter

hDC

DestX

DestY

nWidth

nHeight

SrcX

SrcY

nStartScan

nNumScans

lpBits

/pBitslnfo

Type/Description

HDC Identifies the device context.

WORD Specifies the x-coordinate of the origin of the destina­
tion rectangle.

WORD Specifies the y-coordinate of the origin of the destina-
tion rectangle. ..

WORD Specifies the x-extent of the rectangle in the DIB.

WORD Specifies the y-extent of the rectangle in the DIB.

WORD Specifies the x-coordinate of the source in the DIB.

WORD Specifies the y-coordinate ofthe source in the DIB.

WORD Specifies the scan-line number of the DIB which is con­
tained in the first scan line of the /pBits buffer.

WORD Specifies the number of scan lines of the DIB which are
contained in the /pBits buffer.

LPSTR Points to the Dill bits that are stored as an array of
bytes.

LPBITMAPINFO Points to a BITMAPINFO data structure
that contains information about the Dill.

SetOlgltemlnt 4-378

Return Value

Comments

SetDlgltemlnt
Syntax

Parameter

wUsage

Type/Description

WORD Specifies whether the bmiColors[] fields of the IpBit­
sInfo parameter contain explicit RGB values or indexes into the
currently realized logical palette. The wUsage parameter must be
one of the following values:

Value Meaning

The color table consists of an array
of 16-bit indexes into the currently
realized logical palette.

The color table contains literal RGB
values.

The return value is the number of scan lines set.

All coordinates are device coordinates (that is, the coordinates of the DIB) except destX
and destY, which are logical coordinates.

The origin for device-independent bitmaps is the bottom-left comer of the DIB, not the top­
left comer, which is the origin when the mapping mode is MM_ TEXT.

This function also accepts a device-independent bitmap specification formatted for
Microsoft OS/2 Presentation Manager versions 1.1 and 1.2 if the IpBitslnfo parameter
points to a BITMAPCOREINFO data structure.

void SetDlgltemlnt(hDlg, nIDDlgltem, wValue, bSigned)

This function sets the text of a control in the given dialog box to the string that represents
the integer value given by the wValue parameter. The SetDlgltemlnt function converts
wValue to a string that consists of decimal digits, and then copies the string to the control.
If the bSigned parameter is nonzero, wValue is assumed to be signed. If wValue is signed
and less than zero, the function places a minus sign before the first digit in the string.

SetDlgltemlnt sends a WM_SETTEXT message to the given control.

Parameter

hDlg

nIDDlgltem

Type/Description

HWND Identifies the dialog box that contains the control.

int Specifies the control to be modified.

4-379

Return Value

SetDlgltemText
Syntax

Return Value

SetDlgltemText

Parameter Type/Description

wValue WORD Specifies the value to be set.

bSigned BOOL Specifies whether or not the integer value is signed.

None.

void SetDlgltemText(hDlg, nIDDlgltem, IpString)

This function sets the caption or text of a control in the dialog box specified by the hDlg
parameter. The SetDlgltemText function sends a WIYCSETIEXT message to the given
control.

Parameter

hDlg

nIDDlgltem

IpString

None.

Type/Description

HWND Identifies the dialog box that contains the control.

int Specifies the control whose text is to be set.

LPSTR Points to the null-terminated character string that is to be
copied to the control.

SetDoubleClickTime
Syntax

Return Value

void SetDoubleClickTime(wCount)

This function sets the double-click time for the mouse. A double-click is a series of two
clicks of the mouse button, the second occurring within a specified time after the first. The
double-click time is the maximum number of milliseconds that may occur between the
first and second clicks of a double-click.

Parameter

wCount

None.

Type/Description

WORD Specifies the number of milliseconds that can occur be­
tween double-clicks.

en

SetEnvironment 4-380

Comments If the wCount parameter is set to zero, Windows will use the default double-click time of
500 milliseconds.

The SetDoubleClickTime function alters the double-click time for all windows in the
system.

SetEnvironment
Syntax

Return Value

Comments

SetErrorMode
Syntax

int SetEnvironment(lpPortName, IpEnviron, nCount)

This function copies the contents of the buffer specified by the IpEnviron parameter into
the environment associated with the device attached to the system port specified by the
IpPortName parameter. The SetEnvironment function deletes any existing environment.
If there is no environment for the given port, SetEnvironment creates one. If the nCount
parameter is zero, the existing environment is deleted and not replaced.

Parameter

IpPortName

IpEnviron

nCount

Type/Description

LPSTR Points to a null-terminated character string that specifies
the name of the desired port.

LPSTR Points to the buffer that contains the new environment.

WORD Specifies the number of bytes to be copied.

The return value specifies the actual number of bytes copied to the environment. It is zero
if there is an error. It is -1 if the environment is deleted.

The first field in the buffer pointed to by the IpEnviron parameter must be the same as that
passed in the IpDeviceName parameter of the CreateDC function. If IpPortName specifies
a null port (as defined in the WIN.INI file), the device name pointed to by IpEnviron is
used to locate the desired environment.

WORD SetErrorMode (wMode)

This function controls whether Windows handles DOS Function 24H errors or allows the
calling application to handle them.

Windows intercepts all INT 24H errors. If the application calls SetErrorMode with the
wMode parameter set to zero and an INT 24H error subsequently occurs, Windows dis­
plays an error message box. If the application calls SetErrorMode with wMode set to 1
and an INT 24H occurs, Windows does not display the standard INT 24H error message

4-381

Return Value

SetFocus
Syntax

Return Value

Comments

SetFocus

box, but rather fails the original INT 21H call back to the application. This allows the appli­
cation to handle disk errors using INT 21H, AH=59H (Get Extended Error) as appro­
priate.

Parameter

wMode

Type/Description

WORD Specifies the error mode flag. If bit 0 is set to zero,
Windows displays an error message box when an INT 24H error oc­
curs. If bit 0 is set to 1, Windows fails the INT 21 H call to the calling
application and does not display a message box.

The return value specifies the previous of the error mode flag.

HWND SetFoclls(hWnd)

This function assigns the input focus to the window specified by the h W nd parameter. The
input focus directs all subsequent keyboard input to the given window. The window, if any,
that previously had the input focus loses it. If hWnd is NULL, key strokes are ignored.

The SetFoclis function sends a WM_KILLFOCUS message to the window that loses the
input focus and a WM_SETFOCUS message to the window that receives the input focus.
It also activates either the window that receives the focus or the parent of the window that
receives the focus.

Parameter Type/Description

hWnd HWND Identifies the window to receive the keyboard input.

The return value identifies the window that previously had the input focus. It is NULL if
there is no such window.

If a window is active but doesn't have the focus (that is, no window has the focus), any
key pressed will produce the WM_SYSCHAR, WM_SYSKEYDOWN, or WM_SYS­
KEYUP message. If the VK_MENU key is also pressed, the IParam parameter of the
message will have bit 30 set. Otherwise, the messages that are produced do not have this
bit set.

SetHandleCount 4-382

SetHandleCount []]]
Syntax

Return Value

WORD SetHandleCount(wNumber)

This function changes the number of file handles available to a task. By default, the maxi­
mum number of file handles available to a task is 20.

Parameter

wNumber

Type/Description

WORD Specifies the number of file handles needed by the
application. The maximum is 255.

The return value specifies the number of file handles actually available to the application.
It may be less than the number specified by the wNumber parameter.

SetKeyboardState
Syntax

Return Value

Comments

void SetKeyboardState(lpKeyState)

This function copies the 256 bytes pointed to by the IpKeyState parameter into the
Windows keyboard-state table.

Parameter

IpKeyState

None.

Type/Description

BYTE FAR * Points to an array of 256 bytes that contains key­
board key states.

In many cases, an application should call the GetKeyboardState function first to initialize
the 256-byte array. The application should then change the desired bytes.

SetKeyboardState sets the LEDs and BIOS flags for the NUMLOCK, CAPSLOCK, and
SCROLL LOCK keys according to the toggle state of the VK_NUMLOCK, VK_CAPITAL,
and VK_OEM_SCROLL entries of the array.

For more information, see the description of GetKeyboardState, earlier in this chapter.

4;'383

SetMapMode
Syntax

Return Value

Comments

SetMapMode

int SetMapMode(hDC, nMapMode)

This function sets the mapping mode of the specified device context. The mapping mode
defines the unit of measure used to transform logical units into device units, and also de­
fines the orientation of the device's x- and y-axes. GDI uses the mapping mode to convert
logical coordinates into the appropriate device coordinates.

Parameter

hDC

nMapMode

Type/Description

HDC Identifies the device context.

int Specifies the new mapping mode. It can be anyone of the
values shown in Table 4.15, "Mapping Modes."

The return value specifies the previous mapping mode.

The MM_ TEXT mode allows applications to work in device pixels, whose size varies
from device to device.

The MM_HIENGLISH, MM_HIMETRIC, MM_LOENGLISH, MM_LOMETRIC, and
MM_TWIPS modes are useful for applications that need to draw in physically meaningful
units (such as inches or millimeters).

The MM_ISOTROPIC mode ensures a 1: 1 aspect ratio, which is useful when preserving
the exact shape of an image is important.

The MM_ANISOTROPIC mode allows the x- and y-coordinates to be adjusted inde­
pendently.

Table 4.15 shows the value and meaning of the various mapping modes:

Table 4.15 Mapping Modes

Value Meaning

MM_ANISOTROPIC Logical units are mapped to arbitrary units with arbitrarily scaled
axes. The SetWindowExt and SetViewportExt functions must be
used to specify the desired units, orientation, and scaling.

Each logical unit is mapped to 0.001 inch. Positive x is to the right;
positive y is up.

Each logical unit is mapped to 0.01 millimeter. Positive x is to the
. right; positive y is up.

'J)

SetMapperFlags 4-384

Table 4.15 Mapping Modes (continued)

Value Meaning

MM_TWIPS

Logical units are mapped to arbitrary units with equally scaled axes;
that is, one unit along the x-axis is equal to one unit along the y­
axis. The SetWindowExt and SetViewportExt functions must be
used to specify the desired units and the orientation of the axes. GDI
makes adjustments as necessary to ensure that the x and y units re­
main the same size.

Each logical unit is mapped to 0.01 inch. Positive x is to the right;
positive y is up.

Each logical unit is mapped to 0.1 millimeter. Positive x is to the
right; positive y is up.

Each logical unit is mapped to one device pixel. Positive x is to the
right; positive y is down.

Each logical unit is mapped to one twentieth of a printer's point
(1/1440 inch). Positive x is to the right; positive y is up.

SetMapperFlags
Syntax

Return Value

Comments

DWORD SetMapperFlags(hDC, dwFlag)

This function alters the algorithm that the font mapper uses when it maps logical fonts to
physical fonts. When the first bit of the wFlag parameter is set to 1, the mapper will only
select fonts whose x-aspect and y-aspect exactly match those of the specified device. If no
fonts exist with a matching aspect height and width, GDI chooses an aspect height and
width and selects fonts with aspect heights and widths that match the one chosen by GDI.

Parameter

hDC

dwFlag

Type/Description

HDC Identifies the device context that contains the font-mapper
flag.

DWORD Specifies whether the font mapper attempts to match a
font's aspect height and width to the device. When the first bit is set
to 1, the mapper will only select fonts whose x-aspect and y-aspect
exactly match those of the specified device.

The return value specifies the previous value of the font-mapper flag.

The remaining bits of the dwFlag parameter must be zero.

4-385

SetMenu
Syntax

Return Value

Comments

SetMenu

BOOL SetMenu(hWnd, hMenu)

This function sets the given window's menu to the menu specified by the hMenu parame­
ter. If hMenu is NULL, the window's current menu is removed. The SetMenu function
causes the window to be redrawn to reflect the menu change.

Parameter

hWnd

hMenu

Type/Descri ption

HWND Identifies the window whose menu is to be changed.

HMENU Identifies the new menu.

The return value specifies whether the menu is changed. It is nonzero if the menu is
changed. Otherwise, it is zero.

SetMenu will not destroy a previous menu. An application should call the DestroyMenu
function to accomplish this task.

SetMenultemBitmaps []]J
Syntax BOOL SetMenuItemBitmaps(hMenu, nPosition, wFlags, hBitmapUnchecked,

hB itmapC hecked)

This function associates the specified bitmaps with a menu item. Whether the menu item is
checked or unchecked, Windows displays the appropriate bitmap next to the menu item.

Parameter

hMenu

nPosition

wFlags

hBitmapU nchecked

Type/Description

HMENU Identifies the menu to be changed.

WORD Specifies the menu item to be changed. If
wFlags is set to MF _BYPOSITION, nPosition specifies the
position of the menu item; the first item in the menu is at
position O. If wFlags is set to MF _BYCOMMAND, then
nPosition specifies the command ID of the menu item.

WORD Specifies how the nPosition parameter is inter­
preted. It may be set to MF _BYCOMMAND (the default)
or MF _BYPOSITION.

HBITMAP Identifies the bitmap to be displayed when
the menu item is not checked.

CJ.

SelMessageQueue 4-386

Return Value

Comments

Parameter

hBitmapChecked

Type/Description

HBITMAP Identifies the bitmap to be displayed when
the menu item is checked.

The return value specifies the outcome of the function. It is TRUE if the function is
successful. Otherwise, it is FALSE.

If either the hBitmapUnchecked or the hBitmapChecked parameters is NULL, then
Windows displays nothing next to the menu item for the corresponding attribute. If both
parameters are NULL, Windows uses the default checkmark when the item is checked and
removes the checkmark when the item is unchecked.

When the menu is destroyed, these bitmaps are not destroyed; it is the responsibility of the
application to destroy them.

The GetMenuCheckMarkDimensions function retrieves the dimensions of the default
. checkmark used for menu items. The application should use these values to determine the
appropriate size for the bitmaps supplied with this function.

SetMessageQueue
Syntax

Return Value

Comments

BOOL SetMessageQueue(cMsg)

This function creates a new message queue. It is particularly useful in applications that re­
quire a queue that contains more than eight messages (the maximum size of the default
queue). The cMsg parameter specifies the size of the new queue; the function must be
called from an application's WinMain function before any windows are created and before
any messages are sent. The SetMessageQueue function destroys the old queue, along with
messages it might contain.

Parameter

cMsg

Type/Description

int Specifies the maximum number of messages that the new
queue may contain.

The return value specifies whether a new message queue is created. It is nonzero if the
function creates a new queue. Otherwise, it is zero.

If the return value is zero, the application has no queue because the SetMessageQueue
function deletes the original queue before attempting to create a new one. The application
must continue calling SetMessageQueue with a smaller queue size until the function re­
turns a nonzero value.

4-387 SetMetaFiieBits

SelMelaFileBils
Syntax

Return Value

Comments

HANDLE SetMetaFileBits(hMem)

This function creates a memory metafile from the data in the global memory block
specified by the hM em parameter.

Parameter

hMem

Type/Description

HANDLE Identifies the global memory block that contains the
metafile data. It is assumed that the data were previously created by
using the GetMetaFileBits function.

The return value identifies a memory metafile if the function is successful. Otherwise, the
return value is NULL.

After the SetMetaFileBits function returns, the metafile handle returned by the function
should be used instead of the handle identified by the hMem parameter to refer to the meta­
file.

SelPalelleEnlries [IQJ
Syntax

Return Value

WORD SetPaletteEntries(hPalette, wStartlndex, wNumEntries, IpPaletteEntries)

This function sets ROB color values and flags in a range of entries in a logical palette.

Parameter

hPalette

wStartlndex

wNumEntries

lpPaletteEntries

Type/Description

HPALETTE Identifies the logical palette.

WORD Specifies the first entry in the logical palette to be set.

WORD Specifies the number of entries in the logical palette
to be set.

LPPALETTEENTRY Points to the first member of an array
of PALETTEENTRY data structures containing the ROB
values and flags.

The return value is the number of entries set in the logical palette. It is zero if the function
failed.

C/.

SetParent 4-388

Comments If the logical palette is selected into a device context when the application calls SetPalette­
Entries, the changes will not take effect until the application calls RealizePalette.

SetParent
Syntax

Return Value

SetPixel
Syntax

Return Value

HWND SetParent(hWndChild, hWndNewParent)

This function changes the parent window of a child window. If the window identified by
the hWndChild parameter is visible, Windows performs the appropriate redrawing and re­
painting.

Parameter Type/Description

hWndChild HWND Identifies the child window.

hWndNewParent HWND Identifies the new parent window.

The return value identifies the previous parent window.

DWORD SetPixel(hDC, X, Y, crColor)

This function sets the pixel at the point specified by the X and Y parameters to the closest
approximation of the color specified by the crColor parameter. The point must be in the
clipping region. If the point is not in the clipping region, the function is ignored.

Parameter

hDC

X

Y

crColor

Type/Description

HDC Identifies the device context.

int Specifies the logical x-coordinate of the point to be set.

int Specifies the logical y-coordinate of the point to be set.

COLORREF Specifies the color used to paint the point.

The return value specifies an ROB color value for the color that the point is actually
painted. This value can be different than that specified by the crColor parameter if an ap­
proximation of that color is used. If the function fails (if the point is outside the clipping re­
gion) the return value is -1.

4-389

Comments

SeIPolyFiliMode

Not all devices support the SetPixel function. For more information, see the RC_BITBLT
capability in the GetDeviceCaps function, earlier in this chapter.

SetPolyFiliMode
Syntax

Return Value

Comments

int SetPolyFillMode(hDC, nPolyFillMode)

This function sets the polygon-filling mode for the GDI functions that use the polygon al­
gorithm to compute interior points.

Parameter

hDC

nPolyFillMode

Type/Description

"DC Identifies the device context.

int Specifies the new filling mode. The nPolyFillMode para­
meter may be either of the following values:

Value

ALTERNATE

WINDING

Meaning

Selects alternate mode.

Selects winding number mode.

The return value specifies the previous filling mode. It is zero if there is an error.

In general, the modes differ only in cases where a complex, overlapping polygon must be
filled (for example, a five-sided polygon that forms a five-pointed star with a pentagon in
the center). In such cases, ALTERNATE mode fills every other enclosed region within the
polygon (that is, the points of the star), but WINDING mode fills all regions (that is, the
points and the pentagon).

When the filling mode is ALTERNATE, GDI fills the area between odd-numbered and
even-numbered polygon sides on each scan line. That is, GDI fills the area between the
first and second side, between the third and fourth side, and so on.

To fill all regions, WINDING mode causes GDI to compute and draw a border that en­
closes the polygon but does not overlap. For example, in WINDING mode, the five-sided
polygon that forms the star is drawn as a ten-sided polygon with no overlapping sides; the CJ.

resulting star is filled.

SetProp

SetProp
Syntax

Return Value

Comments

SetRect
Syntax

4-390

BOOL SetProp(hWnd, IpString, hData)

This function adds a new entry or changes an existing entry in the property list of the
specified window. The SetProp function adds a new entry to the list if the character string
specified by the IpString parameter does not already exist in the list. The new entry con­
tains the string and the handle. Otherwise, the function replaces the string's current handle
with the one specified by the hData parameter.

The hData parameter can contain any 16-bit value useful to the application.

Parameter

hWnd

IpString

hData

Type/Description

HWND Identifies the window whose property list is to receive the
new entry.

LPSTR Points to a null-terminated character string or an atom that
identifies a string. If an atom is given, it must have been previously
created by using the AddAtom function. The atom, a 16-bit value,
must be placed in the low-order word of IpString; the high-order
word must be zero.

HANDLE Identifies a data handle to be copied to the property list.

The return value specifies the outcome of the function. It is nonzero if the data handle and
string are added to the property list. Otherwise, it is zero.

The application is responsible for removing all entries it has added to the property list
before destroying the window (that is, before the application processes the WM_DE­
STROY message). The RemoveProp function must be used to remove entries from a prop­
erty list.

void SetRect(ipRect, Xl, Yl, X2, Y2)

This function creates a new rectangle by filling the RECT data structure pointed to by the
IpRect parameter with the coordinates given by the Xl, Yl, X2, and Y2 parameters.

4-391

Return Value

Comments

SetRectEmpty
Syntax

Return Value

SetRectRgn
Syntax

Parameter

/pRect

Xl

YI

X2

Y2

None.

SetRectEmpty

Type/Description

LPRECT Points to the RECT data structure that is to receive the
new rectangle coordinates.

int Specifies the x-coordinate of the upper-left corner.

int Specifies the y-coordinate of the upper-left corner.

int Specifies the x-coordinate of the lower-right corner.

int Specifies the y-coordinate of the lower-right corner.

The width of the rectangle, specified by the absolute value of X2 - Xl , must not exceed
32,767 units. This limit applies to the height of the rectangle as well.

void SetRectEmpty(lpRect)

This function creates an empty rectangle (all coordinates equal to zero).

Parameter

IpRect

None.

Type/Description

LPRECT Points to the RECT data structure that is to receive the
empty rectangle.

void SetRectRgn(hRgn, Xl, YI, X2, Y2)

This function creates a rectangular region. Unlike CreateRectRegion, however, it does
not call the local memory manager; instead, it uses the space allocated for the region as­
sociated with the hRgn parameter. The points given by the Xl, YI, X2, and Y2 parameters
specify the minimum size of the allocated space.

(

SetResDurceHandler 4-392

Return Value

Comments

Parameter

hRgn

Xl

Yl

X2

Y2

None.

Type/Description

HANDLE Identifies the region.
I

int Specifies the x-coordinate of the upper-left comer of the rec-
tangular region.

int Specifies the y-coordinate of the upper-left comer of the rec­
tangular region.

int Specifies the x-coordinate of the lower-right comer of the rec­
tangular region.

int Specifies the y-coordinate of the lower-right comer of the rec­
tangular region.

Use this function instead of the CreateRectRgn function to avoid calls to the local
memory manager.

SetResourceHandler
Syntax FARPROC SetResourceHandler(hlnstance, IpType, IpLoadFunc)

This function sets up a function to load resources. It is used internally by Windows to im­
plement calculated resources. Applications may find this function useful for handling their
own resource types, but its use is not required. The IpLoadFunc parameter points to an
application-supplied callback function. The function pointed to by the IpLoadFunc parame­
ter receives information about the resource to be locked and can process that information
as desired. After the function pointed to by IpLoadFunc returns, LockResource attempts
to lock the resource once more.

4-393

Return Value

Comments

Parameter

hlnstance

/pType

/pLoadFunc

SetResDurceHandler

Type/Description

HANDLE Identifies the instance of the module whose executable
file contains the resource.

LPSTR Points to a short integer that specifies a resource type.

FARPROC Is the procedure-instance address of the application­
supplied callback function. See the following "Comments" section
for details.

The return value points to the application-supplied function.

The callback function must use the Pascal calling convention and must be declared FAR.

Cal/back Function FARPROC FAR PASCAL LoadFunc(hMem, hlnstance, hReslnfo)
HANDLE hMem;
HANDLE hlnstance;
HANDLE hReslnfo;

LoadFunc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in an EXPORTS statement in the application's module­
definition file.

Parameter

hMem

hlnstance

hReslnfo

Description

Identifies a stored resource.

Identifies the instance of the module whose executable file contains
the resource.

Identifies the resource. It is assumed that the resource was created
previously by using the FindResource function.

en

SetROP2

SetROP2
Syntax

Return Value

Comments

4-394

Comments

The hM em parameter is NULL if the resource has not yet been loaded. If an attempt to
lock a block specified by hM em fails, this means the resource has been discarded and must
be reloaded.

The dialog-function address, passed as the IpLoadFunc parameter, must be created by
using the MakeProcInstance function.

int SetROP2(hDC, nDrawMode)

This function sets the current drawing mode. GDI uses the drawing mode to combine pens
and interiors of filled objects with the colors already on the display surface. The mode
specifies how the color of the pen or interior and the color already on the display surface
yield a new color.

Parameter

hDC

nDrawMode

Type/Description

HDC Identifies the device context.

int Specifies the new drawing mode. It can be anyone of the
values given in Table 4.16, "Drawing Modes."

The return value specifies the previous drawing mode. It can be anyone of the values
given in Chapter 11, "Binary and Ternary Raster-Operation Codes," in Reference, Volume
2.

Drawing modes define how GDI combines source and destination colors when drawing
with the current pen. The drawing modes are actually binary raster-operation codes, repre­
senting all possible Boolean functions of two variables, using the binary operations AND,
OR, and XOR (exclusive OR), and the unary operation NOT. The drawing mode is for
raster devices only; it is not available on vector devices. For more information, see the
RC_BITBLT capability in the GetDeviceCaps function, earlier in this chapter. Table 4.16
shows the value of various drawing modes for the nDrawMode parameter:

4-395 SetROP2

Table 4.16 Drawing Modes

Value Meaning

R2_BLACK Pixel is always black.

R2_ WHITE Pixel is always white.

R2_NOP Pixel remains unchanged.

R2_NOT Pixel is the inverse of the display color.

R2_COPYPEN Pixel is the pen color.

R2_NOTCOPYPEN

R2_MERGEPENNOT

R2_MASKPENNOT

R2_MERGENOTPEN

R2_MASKNOTPEN

R2_MERGEPEN

R2_NOTMERGEPEN

R2_MASKPEN

R2_NOTMASKPEN

R2_XORPEN

Pixel is the inverse of the pen color.

Pixel is a combination of the pen color and the inverse of the
display color.

Pixel is a combination of the colors common to both the pen
and the inverse of the display.

Pixel is a combination of the display color and the inverse of
the pen color.

Pixel is a combination of the colors common to both the dis­
play and the inverse of the pen.

Pixel is a combination of the pen color and the display color.

Pixel is the inverse of the R2_MERGEPEN color.

Pixel is a combination of the colors common to both the pen
and the display.

Pixel is the inverse of the R2_MASKPEN color.

Pixel is a combination of the colors in the pen and in the dis­
play, but not in both.

Pixel is the inverse of the R2_XORPEN color.

For more information about the drawing modes, see Chapter 11, "Binary and Ternary
Raster-Operation Codes," in Reference, Volume 2.

SetScrollPos 4-396

SetScroliPos
Syntax

Return Value

Comments

int SetScrollPos(hWnd, nBar, nPos, bRedraw)

This function sets the current position of a scroll-bar thumb to that specified by the nPos
parameter and, if specified, redraws the scroll bar to reflect the new position.

Parameter

hWnd

nBar

nPos

bRedraw

Type/Description

HWND Identifies the window whose scroll bar is to be set.

int Specifies the scroll bar to be set. It can be one of the fol­
lowing values:

Value Meaning

Sets the position of a scroll-bar control.
In this case, the hWnd parameter must be
the handle of a scroll-bar control.

Sets a window's horizontal scroll-bar
position.

Sets a window's vertical scroll-bar posi­
tion.

int Specifies the new position. It must be within the scrolling
range.

BOOL Specifies whether the scroll bar should be redrawn to
reflect the new position. If the bRedraw parameter is nonzero,
the scroll bar is redrawn. If it is zero, it is not redrawn.

The return value specifies the previous position of the scroll-bar thumb.

Setting the bRedraw parameter to zero is useful whenever the scroll bar will be redrawn by
a subsequent call to another function.

4-397 SetScrollRange

SetScroliRange
Syntax

Return Value

Comments

void SetScroIlRange(IzWlld, IlBar, nMinPos, nMaxPos, bRedraw)

This function sets minimum and maximum position values for the given scroll bar. It can
also be used to hide or show standard scroll bars by setting the nMinPos and nMaxPos par­
ameters to zero.

Parameter

hWnd

nBar

nMinPos

nMaxPos

bRedraw

None.

Type/Description

HWND Identifies a window or a scroll-bar control, depending
on the value of the nBar parameter.

int Specifies the scroll bar to be set. It can be one of the follow­
ing values:

Value Meaning

Sets the range of a scroll-bar control. In
this case, the hWnd parameter must be
the handle of a scroll-bar control.

Sets a window's horizontal scroll-bar
range.

Sets a window's vertical scroll-bar range.

int Specifies the minimum scrolling position.

int Specifies the maximum scrolling position.

BOOL Specifies whether or not the scroll bar should be red­
rawn to reflect the change. If the bRedraw parameter is nonzero,
the scroll bar is redrawn. If it is zero, it is not redrawn.

An application should not call this function to hide a scroll bar while processing a scroll­
bar notification message.

If SetScrollRange immediately follows the SetScrollPos function, the bRedraw parameter
in SetScrollPos should be set to zero to prevent the scroll bar from being drawn twice.

The difference between the values specified by the nMinPos and nMaxPos parameters
must not be greater than 32,767.

CJ

):

SetSoundNoise 4-398

SetSoundNoise
Syntax

Return Value

int SetSoundNoise(nSource, nDuration)

This function sets the source and duration of a noise in the noise hardware of the play
device.

Parameter

nSource

nDuration

Type/Description

int Specifies the noise source. It can be anyone of the following
values, where N is a value used to derive a target frequency:

Value

S_PERIODI024

S_PERIOD2048

S_WHITE512

S_ WHITE 1024

S_ WHITE2048

Meaning

Source frequency is N/512 (high
pitch); hiss is less coarse.

Source frequency is N/I024.

Source frequency is N/2048 (low
pitch); hiss is coarser.

Source frequency from voice chan­
nel3.

Source frequency is N/512 (high
pitch); hiss is less coarse.

Source frequency is N/I024.

Source frequency is N/2048 (low
pitch); hiss is coarser.

Source frequency from voice chan­
nel3.

int Specifies the duration of the noise (in clock ticks).

The return value specifies the result of the function. It is zero if the function is successful.
If the source is invalid, the return value is S_SERDSR.

SetStretchBltMode
Syntax int SetStretchBItMode(hDC, nStretchMode)

This function sets the stretching mode for the StretchBIt function. The stretching mode de­
fines which scan lines and/or columns StretchBIt eliminates when contracting a bitmap ..

4-399

Return Value

Parameter

hDC

nStretchMode

SetS wapA rea Size

Type/Description

"DC Identifies the device context.

int Specifies the new stretching mode. It can be one of the fol­
lowing values:

Value

BLACKONWHITE

COLORONCOLOR

WHITEONBLACK

Meaning

AND in the eliminated lines. This
mode preserves black pixels at the
expense of white pixels by using the
AND operator on the eliminated
lines and those remaining.

Deletes the eliminated lines. This
mode deletes all eliminated lines
without trying to preserve their
information.

OR in the eliminated lines. This
mode preserves white pixels at the
expense of black pixels by using the
OR operator on the lines to be elimi­
nated and the remaining lines.

The BLACKONWHITEand WHITEONBLACK modes are typi­
cally used to preserve foreground pixels in monochrome bitmaps.
The COLORONCOLOR mode is typically used to preserve color
in color bitmaps.

The return value specifies the previous stretching mode. It can be BLACKONWHITE,
COLORONCOLOR, or WHITEONBLACK.

SetSwapAreaSize
Syntax LONG SetSwapAreaSize(rsSize)

This function increases the amount of memory that an application uses for its code
segments. The maximum amount of memory available is one-half of the space remaining
after Windows is loaded.

SetSysColors 4-400

Return Value

Comments

SetSysColors
Syntax

Parameter

rsSize

Type/Description

WORD Specifies the number of 16-byte paragraphs requested by
the application for use as a code segment.

The low-order word of the return value specifies the number of paragraphs obtained for
use as a code segment space (or the current size if rsSize is zero); the high-order word
specifies the maximum size available.

If rsSize specifies a size larger than is available, this function sets the size to the available
amount.

Once memory has been dedicated for use as code segment space, an application cannot use
it as a data segment by calling the GlobalAlloc function.

Calling this function improves an application's performance by helping prevent thrashing.
However, it reduces the amount of memory available for data objects and can reduce the
performance of other applications. Before calling SetSwapAreaSize, an application
should call GetNumTasks to determine how many other tasks are running.

void SetSysColors(nChanges, IpSysC olor, IpC olorValues)

This function sets the system colors for one or more display elements. Display elements
are the various parts of a window and the Windows display that appear on the system dis­
play screen. The SetSysColors function changes the number of elements specified by the
nChanges parameter, using the color and system-color index contained in the arrays
pointed to by the IpSysColor and IpColorValues parameters.

SetSysColors sends a WM_SYSCOLORCHANGE message to all windows to inform
them of the change in color. It also directs Windows to repaint the affected portions of all
currently visible windows.

Parameter

nChanges

IpSysColor

IpColorValues

Type/Description

int Specifies the number of system colors to be changed.

LPINT Points to an array of integer indexes that specify the ele­
ments to be changed. The index values that can be used are listed
in Table 4.17, "System Color Indexes."

DWORD FAR * Points to an array of unsigned long integers
that contains the new RGB color values for each element.

4-401

Return Value

Comments

SelSysModalWindow

None.

SetSysColors changes the internal system list only. It does not change the [COLORS] sec­
tion of the Windows initialization file, WIN.lNI. Changes apply to the current Windows
session only. System colors are a shared resource. An application should not change a
color if it does not wish to change colors for all windows in all currently running applica­
tions. System colors for monochrome displays are usually interpreted as various shades of
gray. Table 4.17 lists the values for the /pSysC alar parameter:

Table 4.17 System Color Indexes

Value Meaning

COLOR_ACTIVE BORDER

COLOR_ACTIVECAPTION

COLOR_APPWORKSPACE

COLOR_BACKGROUND

COLOR_BTNFACE

COLOR_BTNSHADOW

COLOR_BTNTEXT

COLOR_CAPTIONTEXT

COLOR_GRAYTEXT

COLOR_HIGHLIGHT

COLOR_HIGHLIGHTTEXT

COLOR_INACTIVEBORDER

COLOR_INACTIVECAPTION

COLOR_MENU

COLOR_MENUTEXT

COLOR_SCROLLBAR

COLOR_WINDOW

COLOR_ WINDOWFRAME

COLOR_ WINDOWTEXT

Active window border.

Active window caption.

Background color of multiple document interface (MDI)
applications.

Desktop.

Face shading on push buttons.

Edge shading on push buttons.

Text on push buttons.

Text in caption, size box, scroll-bar arrow box.

Grayed (disabled) text. This color is set to 0 if the cur­
rent display driver does not support a solid gray color.

Items selected item in a control.

Text of item selected in a control.

Inactive window border.

Inactive window caption.

Menu background.

Text in menus.

Scroll-bar gray area.

Window background.

Window frame.

Text in windows.

SetSysModalWindow
Syntax HWND SetSysModalWindow(h W nd)

This function makes the specified window a system-modal window.

'(f)

SetSystemPaletteUse 4-402

Return Value

Comments

Parameter Type/Description

hWnd HWND Identifies the window to be made system modal.

The return value identifies the window that was previously the system-modal window.

If another window is made the active window (for example, the system-modal window
creates a dialog box that becomes the active window), the active window becomes the sys­
tem-modal window. When the original window becomes active again, it is system modal.
To end the system-modal state, destroy the system-modal window.

SetSystemPaletteUse [[QJ
Syntax

Return Value

Comments

WORD SetSystemPaletteUse(hDC, wUsage)

This function allows an application to use the full system palette. By default, the system
palette contains 20 static colors which are not changed when an application realizes its
logical palette.

The device context identified by the hDC parameter must refer to a device that supports
color palettes.

Parameter

hDC

wUsage

Type/Description

HDC Identifies the device context.

WORD Specifies the new use of the system palette. It can be
either of these values:

Value

SYSPAL_NOSTATIC

Meaning

System palette contains no static colors
except black and white.

System palette contains static colors
which will not change when an applica­
tion realizes its logical palette.

The return value specifies the previous usage of the system palette. It is either SYS­
PAL_NOSTATIC or SYSPAL_STATIC.

An application must call this function only when its window has input focus.

4-403

SetTextAlign
Syntax

Set TextA lign

If an application calls SetSystemPaletteUse with wUsage set to SYSPAL_NOSTATIC,
Windows continues to set aside two entries in the system palette for pure white and pure
black, respectively.

After calling this function with wUsage set to SYSPAL_NOSTATIC, an application must
follow these steps:

1. Call UnrealizeObject to force GDI to remap the logical palette completely when it is
realized.

2. Realize the logical palette.

3. Call GetSysColors to save the current system-color settings.

4. Call SetSysColors to set the system colors to reasonable values using black and white.
For example, adjacent or overlapping items (such as window frames and borders)
should be set to black and white, respectively.

5. Broadcast the WM_SYSCOLORCHANGE message to allow other windows to be red­
rawn with the new system colors.

When the application's window loses focus or closes, the application must perform the fol­
lowing steps:

1. Call SetSystemPaletteUse with the wUsage parameter set to SYSPAL_STATIC.

2. Call UnrealizeObject to force GDI to remap the logical palette completely when it is
realized.

3. Realize the logical palette.

4. Restore the system colors to their previous values.

5. Broadcast the WM_SYSCOLORCHANGE message.

WORD SetTextAlign(hDC, wFlags)

This function sets the text-alignment flags for the given device context. The TextOut and
ExtTextOut functions use these flags when positioning a string of text on a display or en
device. The flags specify the relationship between a specific point and a rectangle that
bounds the text. The coordinates of this point are passed as parameters to the TextOut
function. The rectangle that bounds the text is formed by the adjacent character cells in the
text string. .

"

SetTextAlign 4-404

, Return Value

Parameter

hDC

wFlags

Type/Description

HDC Identifies the device or display selected for text output.

WORD Specifies a mask of the values in the following list. Only
one flag may be chosen from those that affect horizontal and verti­
cal alignment. In addition, only one of the two flags that alter the
current position can be chosen:

Value

TA_NOUPDATECP

TA_UPDATECP

Meaning

Specifies alignment of the point and
the baseline of the chosen font.

Specifies alignment of the point and
the bottom of the bounding
rectangle.

Specifies alignment of the point and
the horizontal center of the bound­
ing rectangle.

Specifies alignment of the point and
the left side of the bounding
rectangle.

Specifies that the current position is
not updated after each TextOut or
ExtTextOut function call.

Specifies alignment of the point and
the right side of the bounding
rectangle.

Specifies alignment of the point and
the top of the bounding rectangle.

Specifies that the current position is
updated after each TextOut or Ext­
TextOut function call.

The defaults are TA_LEFf, TA_ TOP, and TA_NOUPDATECP.

The return value specifies the previous text alignment setting; the low-order word contains
the horizontal alignment, and the high-order word contains the vertical alignment.

4-405 SetTextCharacterExtra

SetTextCharacterExtra
Syntax

Return Value

SetTextColor
Syntax

Return Value

int SetTextCharacterExtra(hDC, nC harExtra)

This function sets the amount of intercharacter spacing. GDI adds this spacing to each
character, including break characters, when it writes a line of text to the device context.

Parameter

hDC

nCharExtra

Type/Description

HDC Identifies the device context.

int Specifies the amount of extra space (in logical units) to be
added to each character. If the current mapping mode is not
MM_ TEXT, the nC harExtra parameter is transfonned and rounded
to the nearest pixel.

The return value specifies the amount of the previous intercharacter spacing.

DWORD SetTextColor(hDC, crColor)

This function sets the text color to the color specified by the crColor parameter, or to the
nearest physical color if the device cannot represent the color specified by crColor. GDI
uses the text color to draw the face of each character written by the TextOut and ExtText­
Out functions. GDI also uses the text color when converting bitmaps from color to mono­
chrome and vice versa.

The background color for a character is specified by the SetBkColor and SetBkMode
functions. For color-bitmap conversions, see the BitBIt and StretchBIt functions, earlier in
this chapter.

Parameter Type/Description

hDC HDC Identifies the device context.

crColor COLORREF Specifies the color of the text.

The return value specifies an RGB color value for the previous text color.

,

Set TextJustifica tion 4-406

SetTextJustification
Syntax

Return Value

int SetTextjustification(hDC, nBreakExtra, nBreakCount)

This function prepares GDI to justify a line of text using the justification parameters
specified by the nBreakExtra and nBreakCount parameters. To justify text, GDI distributes
extra pixels among break characters in a text line written by the TextOut function. The
break character, used to delimit words, is usually the space character (ASCII 32), but may
be defined by a font as some other character. The GetTextMetrics function can be used to
retrieve a font's break character.

The SetTextjustification function prepares the justification by defining the amount of
space to be added. The nBreakExtra parameter specifies the total amount of space (in logi­
cal units) to be added to the line. The nBreakCount parameter specifies how many break
characters are in the line. The subsequent TextOut function distributes the extra space
evenly between each break character in the line.

GetTextExtent is always used with the SetTextjustification function. The GetText­
Extent function computes the width of a given line before justification. This width must
be known before an appropriate nBreakExtra value can be computed.

SetTextj ustification can be used to justify a line that contains multiple runs in different
fonts. In this case, the line must be created piecemeal by justifying and writing each run
separately.

Because rounding errors can occur during justification, GDI keeps a running error term
that defines the current error. When justifying a line that contains mUltiple runs, GetText­
Extent automatically uses this error term when it computes the extent of the next run, al­
lowing TextOut to blend the error into the new run. After each line has been justified, this
error term must be cleared to prevent it from being incorporated into the next line. The
term can be cleared by calling SetTextjustification with nBreakExtra set to zero.

Parameter

hDC

nBreakExtra

nBreakCount

Type/Description

HDC Identifies the device context.

int Specifies the total extra space (in logical units) to be added to
the line of text. If the current mapping mode is not MM_ TEXT, the
value identified by the nBreakExtra parameter is transformed and
rounded to the nearest pixel.

int Specifies the number of break characters in the line.

The return value specifies the outcome of the function. It is 1 if the function is successful.
Otherwise, it is zero.

4-407

SetTimer
Syntax

Return Value

Comments

SetTimer

WORD SetTimer(hWnd, nIDEvent, wElapse, lpTimerFunc)

This function creates a system timer event. When a timer event occurs, Windows passes a
WM_ TIMER message to the application-supplied function specified by the lpTimerFunc
parameter. The function can then process the event. A NULL value for lpTimerFunc causes
WM_ TIMER messages to be placed in the application queue.

Parameter

hWnd

nIDEvent

wElapse

lpTimerFunc

Type/Description

HWND Identifies the window to be associated with the timer. If
hWnd is NULL, no window is associated with the timer.

int Specifies a nonzero timer-event identifier if the hWnd parame­
ter is not NULL.

WORD Specifies the elapsed time (in milliseconds) between timer
events.

FARPROC Is the procedure-instance address of the function to be
notified when the timer event takes place. If lpTimerFunc is NULL,
the WM_TIMER message is placed in the application queue, and the
hwnd member of the MSG structure contains the hWnd parameter
given in the SetTimer function call. See the following "Comments"
section for details.

The return value specifies the integer identifier for the new timer event. If the hWnd para­
meter is NULL, an application passes this value to the Kill Timer function to kill the timer
event. The return value is zero if the timer was not created.

Timers are a limited global resource; therefore, it is important that an application check the
value returned by the SetTimer function to verify that a timer is actually available.

To install a timer function, SetTimer must receive a procedure-instance address of the
function, and the function must be exported in the application's module-definition file. A
procedure-instance address can be created using the MakeProcInstance function.

The callback function ~ust use the Pascal calling convention and must be declared FAR.

Callback Function WORD FAR PASCAL TimerFunc(hWnd, wMsg, nIDEvent, dwTime)
HWNDhWnd;
WORDwMsg;
int nIDEvent;
DWORD dwTime;

CJ)

SetViewportExt 4-408

SelViewporlExl
Syntax

TimerFunc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in an EXPORTS statement in the application's module­
definition file.

Parameter

hWnd

wMsg

nIDEvent

dwTime

Description

Identifies the window associated with the timer event.

Specifies the WM_TIMER message.

Specifies the timer's ID.

Specifies the current system time.

DWORD SetViewportExt(hDC, X, y)

This function sets the x- and y-extents of the viewport of the specified device context. The
viewport, along with the device-context window, defines how GDI maps points in the logi­
cal coordinate system to points in the coordinate system of the actual device. In other
words, they define how GDI converts logical coordinates into device coordinates.

The x- and y-extents of the viewport define how much GDI must stretch or compress units
in the logical coordinate system to fit units in the device coordinate system. For example,
if the x-extent of the window is 2 and the x-extent of the viewport is 4, GDI maps two logi­
cal units (measured from the x-axis) into four device units. Similarly, if the y-extent of the
window is 2 and the y-extent of the viewport is -1, GDI maps two logical units (measured
from the y-axis) into one device unit.

The extents also define the relative orientation of the x- and y-axes in both coordinate sys­
tems. If the signs of matching window and viewport extents are the same, the axes have
the same orientation. If the signs are different, the orientation is reversed. For example, if
the y-extent of the window is 2 and the y-extent of the viewport is -1, GDI maps the posi­
tive y-axis in the logical coordinate system to the negative y-axis in the device coordinate
system. If the x-extents are 2 and 4, GDI maps the positive x-axis in the logical coordinate
system to the positive x-axis in the device-coordinate system.

Parameter

hDC

X

Y

Type/Description

HDC Identifies the device context.

int Specifies the x-extent of the viewport (in device units).

int Specifies the y-extent of the viewport (in device units).

4-409

Return Value

Comments'

SetVi ewportOrg
Syntax

SelViewporlOrg

The return value specifies the previous extents of the viewport. The previous y-extent is in
the high-order word; the previous x-extent is in the low-order word. When an error occurs;
the return value is zero.

When the following mapping modes are set, calls to the SetWindowExt and SetView­
portExt functions are ignored:

• MM_HIENGLISH

• MM_HIMETRIC

• MM_LOENGLISH

• MM_LOMETRIC

• MM_TEXT

• MM_TWIPS

When MM_ISOTROPIC mode is set, an application must call the SetWindowExt func­
tion before it calls SetViewportExt.

DWORD SetViewportOrg(hDC, X, Y)

This function sets the viewport origin of the specified device context. The viewport, along
with the device-context window, defines how GDI maps points in the logical coordinate
system to points in the coordinate system of the actual device. In other words, they define
how GDI converts logical coordinates into device coordinates.

The viewport origin marks the point in the device coordinate system to which GDI maps
the window origin, a point in the logical coordinate system specified by the SetWindow­
Org function. GDI maps all other points by following the same process required to map
the window origin to the viewport origin. For example, all points in a circle around the
point at the window origin will be in a circle around the point at the viewport origin. Simi­
larly, all points in a line that passes through the window origin will be in a line that passes
through the viewport origin.

Parameter

hDC

X

Type/Description

HDC Identifies the device context.

int Specifies the x-coordinate (in device units) of the origin of the
viewport. The value must be within the range of the device coordi­
nate system.

,/),

SetVoiceAccent 4-410

Return Value

SetVoiceAccent
Syntax

Parameter

y

Type/Description

int Specifies the y-coordinate (in device units) of the origin of the
viewport. The value must be within the range of the device coordi­
nate system.

The return value specifies the previous origin of the viewport (in device coordinates). The
y-coordinate is in the high-order word; the x-coordinate is in the low-order word.

int SetVoiceAccent(nVoice, nTempo, nVolume, nMode, nPitch)

This function places an accent (tempo, volume, mode, and pitch) in the voice queue
specified by the nVoice parameter. The new accent replaces the previous accent and re­
mains in effect until another accent is queued. An accent is not counted as a note.

An error occurs if there is insufficient room in the queue; the SetVoiceAccent function al­
ways leaves space for a single sync mark in the queue. If n Voice is out of range, the
SetVoiceAccent function is ignored.

Parameter

nVoice

nTempo

nVolume

nMode

Type/Description

int Specifies a voice queue. The first voice queue is numbered 1.

int Specifies the number of quarter notes played per minute. It
can be any value from 32 to 255. The default is 120.

int Specifies the volume level. It can be any value from 0
(lowest volume) to 255 (highest).

int Specifies how the notes are to be played. It can be anyone of
the following values:

Value Meaning

Note is held for the full duration and blended
with the beginning of the next note.

Note is held for the full duration, coming to a
full stop before the next note starts.

Note is held for only part of the duration,
creating a pronounced stop between it and the
next note.

4-411

Return Value

Parameter

nPitch

Set VoiceEn velope

Type/Description

int Specifies the pitch of the notes to be played. It can be any
value from 0 to 83. The pitch value is added to the note value,
using modulo 84 arithmetic.

The return value specifies the result of the function. It is zero if the function is successful.
If an error occurs, the return value is one of the following values:

Value

S_SERDMD

S_SERDTP

S_SERDVL

S_SERQFUL

Meaning

Invalid mode

Invalid tempo

Invalid volume

Queue full

SelVoiceEnvelope
Syntax

Return Value

int SetVoiceEnvelope(nVoice, nShape, nRepeat)

This function queues the envelope (wave shape and repeat count) in the voice queue
specified by the n Voice parameter. The new envelope replaces the previous one and re­
mains in effect until the next SetVoiceEnvelope function call. An envelope is not counted
as a note.

An error occurs if there is insufficient room in the queue; the SetVoiceEnvelope function
always leaves space for a single sync mark in the queue. If nVoice is out of range,
SetVoiceEnvelope is ignored.

Parameter

nVoice

nShape

nRepeat

Type/Description

int Specifies the voice queue to receive the envelope.

int Specifies an index to an OEM wave-shape table.

int Specifies the number of repetitions of the wave shape during
the duration of one note.

The return value specifies the result of the function. It is zero if the function is successful.
If an error occurs, the return value is one of the following values:

CJ)

SetVoiceNote 4-412

SetVoiceNote
Syntax

Return Value

Value

S_SERDRC

S_SERDSH

S_SERQFUL

Meaning

Invalid repeat count

Invalid shape

Queue full

int SetVoiceNote(nVoice, nValue, nLength, nCdots)

This function queues a note that has the qualities given by the nValue, nLength, and nCdots
parameters in the voice queue specified by the n Voice parameter. An error occurs if there is
insufficient room in the queue. The function always leaves space in the queue for a single
sync mark.

Parameter

nVoice

nValue

nLength

nCdots

Type/Description

int Specifies the voice queue to receive the note. If n Voice is
out of range, the SetVoiceNote function is ignored.

int Specifies 1 of 84 possible notes (seven octaves). If nValue
is zero, a rest is assumed.

int Specifies the reciprocal of the duration of the note. For ex­
ample, 1 specifies a whole note, 2 a half note, 4 a quarter note,
and so on.

int Specifies the duration of the note in dots. The duration is
equal to nLength x (nCdots x 3/2).

The return value specifies the result of the function. It is zero if the function is successful.
If an error occurs, the return value is one of the following values:

Value Meaning

S_SERDCC Invalid dot count

S_SERDLN Invalid note length

S_SERDNT Invalid note

S_SERQFUL Queue full

4-413 SelVoiceQueueSize

SetVoiceOueueSize
Syntax

Return Value

SetVoiceSound
Syntax

Return Value

int SetVoiceQueueSize(nVoice, IlBytes)

This function allocates the number of bytes specified by the nBytes parameter for the voice
queue specified by the n Voice parameter. If the queue size is not set, the default is 192
bytes, which is room for about 32 notes. All voice queues are locked in memory. The
queues cannot be set while music is playing.

Parameter Type/Description

nVoice int Specifies a voice queue.

nBytes int Specifies the number of bytes in the voice queue.

The return value specifies the result of the function. It is zero if the function is successful.
If an error occurs, the return value is one of the following values:

Value

S_SERMACT

S_SEROFM

Meaning

Music active

Out of memory

int SetVoiceSound(nVoice, lFrequency, nDuration)

This function queues the sound frequency and duration in the voice queue specified by the
nVoice parameter.

Parameter

nVoice

lFrequency

nDuration

Type/Description

int Specifies a voice queue. The first voice queue is numbered
1.

long Specifies the frequency. The high-order word contains
the frequency in hertz, and the low-order word contains the frac­
tional frequency.

int Specifies the duration of the sound (in clock ticks).

The return value specifies the result of the function. It is zero if the function is successful.
If an error occurs, the return value is one of the following values:

tJ)

Set Voice Threshold 4-414

Value

S_SERDDR

S_SERDFQ

S_SERDVL

S_SERQFUL

Meaning

Invalid duration

Invalid frequency

Invalid volume

Queue full

SetVoiceThreshold
Syntax

Return Value

SetWindowExt
Syntax

int SetVoiceThreshold(nVoice, nNotes)

This function sets the threshold level for the given voice. When the number of notes
remaining in the voice queue goes below that specified in the nNotes parameter, the
threshold flag is set. If the queue level is below that specified in nNotes when the
Set VoiceThreshold function is called, the flag is not set. The GetThresholdStatus
function should be called to verify the current threshold status.

Parameter Type/Description

nVoice int Specifies the voice queue to be set.

nNotes int Specifies the number of notes in the threshold level.

The return value specifies the result of the function. It is zero if the function is successful.
It is 1 if the number of notes specified in nNotes is out of range.

DWORD SetWindowExt(hDC, X, y)

This function sets the x- and y-extents of the window associated with the specified device
context. The window, along with the device-context viewport, defines how GDI maps
points in the logical coordinate system to points in the device coordinate system.

The x- and y-extents of the window define how much GDI must stretch or compress units
in the logical coordinate system to fit units in the device coordinate system. For example,
if the x-extent of the window is 2 and the x-extent of the viewport is 4, GDI maps two logi­
cal units (measured from the x-axis) into four device units. Similarly, if the y-extent of the
window is 2 and the y-extent of the viewport is -1, GDI maps two logical units (measured
from the y-axis) into one device unit.

4-415

Return Value

Comments

SetWindowLong

The extents also define the relative orientation of the x- and y-axes in both coordinate sys­
tems. If the signs of matching window and viewport extents are the same, the axes have
the same orientation. If the signs are different, the orientation is reversed. For example, if
the y-extent of the window is 2 and the y-extent of the viewport is -1, GDI maps the posi­
tive y-axis in the logical coordinate system to the negative y-axis in the device coordinate
system. If the x-extents are 2 and 4, GDI maps the positive x-axis in the logical coordinate
system to the positive x-axis in the device coordinate system.

Parameter

hDC

X

Y

Type/Description

"DC Identifies the device context.

int Specifies the x-extent (in logical units) of the window.

int Specifies the y-extent (in logical units) of the window.

The return value specifies the previous extents of the window (in logical units). The y-ex­
tent is in the high-order word; the x-extent is in the low-order word. If an error occurs, the
return value is zero.

When the following mapping modes are set, calls to the SetWindowExt and SetView­
portExt functions are ignored:

• MM_HIENGLISH

• MM_HIMETRIC

• MM_LOENGLISH

• MM_LOMETRIC

• MM_TEXT

• MM_TWIPS

When MM_ISOTROPIC mode is set, an application must call the SetWindowExt func­
tion before calling SetViewportExt.

SetWindowLong
Syntax LONG SetWindowLong(hWnd, nlndex, dwNewLong)

This function changes an attribute of the window specified by the hWnd parameter.

'/)

SelWindowOrg 4-416

Return Value

Comments

SetWindowOrg
Syntax

Parameter

hWnd

nlndex

dwNewLong

Type/Description

HWND Identifies the window.

int Specifies the byte offset of the attribute to be changed. It may
also be one of the following values:

Value Meaning

Sets a new extended window style.

Sets a new window style.

Sets a new long pointer to the
window procedure.

DWORD Specifies the replacement value.

The return value specifies the previous value of the specified long integer.

If the SetWindowLong function and the GWL_ WNDPROC index are used to set a new
window function, that function must have the window-function form and be exported in
the module-definition file of the application. For more information, see the RegisterClass
function, earlier in this chapter.

Calling SetWindowLong with the GCL_ WNDPROC index creates a subclass of the
window class used to create the window. See Chapter 1, "Window Manager Interface Func­
tions," for more information on window subclassing. An application should not attempt to
create a window subclass for standard Windows controls such as combo boxes and but­
tons.

To access any extra four-byte values allocated when the window-class structure was
created, use a positive byte offset as the index specified by the nlndex parameter, starting
at zero for the first four-byte value in the extra space, 4 for the next four-byte value and so
on.

DWORD SetWindowOrg(hDC, X, y)

This function sets the window origin of the specified device context. The window, along
with the device-context viewport, defines how GDI maps points in the logical coordinate
system to points in the device coordinate system.

The window origin marks the point in the logical coordinate system from which GDI maps
the viewport origin, a point in the device coordinate system specified by the SetWindow-

4-417

Return Value

SelWindowPos
Syntax

SetWindowPos

Org function. GDI maps all other points by following the same process required to map
the window origin to the viewport origin. For example, all points in a circle around the
point at the window origin will be in a circle around the point at the viewport origin. Simi­
larly, all points in a line that passes through the window origin will be in a line that passes
through the viewport origin.

Parameter

hDC

X

Y

Type/Description

HDC Identifies the device context.

int Specifies the logical x-coordinate of the new origin of the
window.

int Specifies the logical y-coordinate of the new origin of the
window.

The return value specifies the previous origin of the window. The previous y-coordinate is
in the high-order word; the previous x-coordinate is in the low-order word.

void SetWindowPos(hWnd, hWndlnsertAfter, X, Y, ex, ey, wFlags)

This function changes the size, position, and ordering of child, pop-up, and top-level
windows. Child, pop-up, and top-level windows are ordered according to their appearance
on the screen; the topmost window receives the highest rank, and it is the first window in
the list. This ordering is recorded in a window list.

Parameter

hWnd

h W ndI nsertAfter

X

Y

ex

ey

Type/Description

HWND Identifies the window that will be positioned.

HWND Identifies a window in the window-manager's list
that will precede the positioned window.

int Specifies the x-coordinate of the window's upper-left
comer.

int Specifies the y-coordinate of the window's upper-left
comer.

int Specifies the new window's width.

int Specifies the new window's height.

f)

SetWindowPos 4-418

Return Value

Comments

Parameter

wFlags

None.

Type/Description

WORD Specifies one of eight possible 16-bit values that af­
fect the sizing and positioning of the window. It must be one of
the following values:

Value

SWP _HIDEWINDOW

SWP _NOACTIVATE

SWP_NOMOVE

SWP_NOSIZE

SWP _NOREDRAW

SWP_NOZORDER

Meaning

Draws a frame (defined in the
window's class description)
around the window.

Hides the window.

Does not activate the
window.

Retains current position (ig­
nores the x and y parameters).

Retains current size (ignores
the ex and ey parameters).

Does not redraw changes.

Retains current ordering (ig­
nores the hWndlnsertAfter
parameter).

Displays the window.

If the SWP _NOZORDER flag is not specified, Windows places the window identified by
the hWnd parameter in the position following the window identified by the hWndlnser­
tAfter parameter. If hWndlnsertAfter is NULL, Windows places the window identified by
hWnd at the top of the list. If hWndlnsertAfter is set to 1, Windows places the window iden­
tified by hWnd at the bottom of the list.

If the SWP _SHOWWINDOW or the SWP _HIDEWINDOW flags are set, scrolling and
moving cannot be done simultaneously.

All coordinates for child windows are relative to the upper-left comer of the parent
window's client area.

4-419 SetWindowsHook

SetWindowsHook
Syntax

Return Value

Comments

FARPROC SetWindowsHook(nFilterType,lpFilterFunc)

This function installs a filter function in a chain. A filter function processes events before
they are sent to an application's message loop in the WinMain function. A chain is a linked
list of filter functions of the same type.

Parameter

nFilterType

.lpFilterFunc

Type/Description

int Specifies the system hook to be installed. It can be anyone of
the following values:

Value

WH_CALLWNDPROC

WH_ GETMESSAGE

WH_JOURNALPLAYBACK

WH_JOURNALRECORD

WH_MSGFILTER

WH_SYSMSGFILTER

Meaning

Installs a window-function fil­
ter.

Installs a message filter.

Installs a journaling playback
filter.

Installs a journaling record fil­
ter.

Installs a keyboard filter.

Installs a message filter.

Installs a system-wide message
filter.

FARPROC Is the procedure-instance address of the filter function
to be installed. See the following "Comments" section for details.

The return value points to the procedure-instance address of the previously installed filter
(if any). It is NULL if there is no previous filter. The application or library that calls the
SetWindowsHook function should save this return value in the library's data segment.
The fourth argument of the DefHookProc function points to the location in memory where
the library saves this return value. CJ.

The WH_CALLWNDPROC hook will affect system perfonnance. It is supplied for debug­
ging purposes only.

The system hooks are a shared resource. Installing a hook affects all applications. Most
hook functions must be in libraries. The only exception is WH_MSGFILTER, which is
task-specific. System hooks should be restricted to special-purpose applications or as a

SetWindowsHook 4-420

WH_CALLWNDPROC

development aid during debugging of an application. Libraries that no longer need the
hook should remove the filter function.

To install a filter function, the SetWindowsHook function must receive a procedure-in­
stance address of the function, and the function must be exported in the library's module­
definition file. Libraries can pass the procedure address directly. Tasks must use
MakeProcInstance to get a procedure-instance address. Dynamic-link libraries must use
GetProcAddress to get a procedure-instance address.

The following section describes how to support the individual hook functions.

Windows calls the WH_CALLWNDPROC filter function whenever the SendMessage
function is called. Windows does not call the filter function when the PostMessage func­
tion is called.

The filter function must use the Pascal calling convention and must be declared FAR. The
filter function must have the following form:

Filter Function

void FAR PASCAL FilterFunc(nCode, wParam, IParam)
int nCode;
WORD wParam;
DWORD IParam;

FilterFunc is a placeholder for the application- or library-supplied function name. The ac­
tual name must be exported by including it in an EXPORTS statement in the library's
module-definition file.

Parameter

nCode

wParam

IParam

Description

Specifies whether the filter function should process the message or
call the DefHookProc function. If the nCode parameter is less than
zero, the filter function should pass the message to DemookProc
without further processing.

Specifies whether the message is sent by the current task. It is non­
zero if the message is sent; otherwise, it is NULL.

Points to a data structure that contains details about the message in­
tercepted by the filter. The following shows the order, type, and
description of each field of the data structure:

4-421

WH_GETMESSAGE

Parameter Description

Field

hlParam

IIParam

wParam

wMsg

hWnd

Comments

SelWindowsHook

Type/Description

WORD Contains the high-order word of the
lParam parameter of the message received by
the filter.

WORD Contains the low-order word of the
lParam parameter of the message received by
the filter.

WORD Contains the wParam parameter of
the message received by the filter.

WORD Contains the message received by
the filter.

WORD Contains the window hanClle of the
window that is to receive the message.

The WH_CALLWNDPROC filter function can examine or modify the message as desired.
Once it returns control to Windows, the message, with any modifications, is passed on to
the window function. The filter function does not require a return value.

Windows calls the WH_GETMESSAGE filter function whenever the GetMessage func­
tion is called. Windows calls the filter function immediately after GetMessage has re­
trieved a message from an application queue. The filter function must use the Pascal
calling convention and must be declared FAR. The filter function must have the following
form:

Filter Function

void FAR PASCAL FilterFunc(nCode, wParam, lParam)
int nCode;
WORD wPm'am;
DWORD lParam;

FilterFunc is a placeholder for the library-supplied function name. The actual name must
be exported by including it in an EXPORTS statement in the library's module-definition
file.

CJl

SelWindowsHook

Parameter

nCode

wParam

IParam

Comments

4-422

Description

Specifies whether the filter function should process the message or
call the DefHookProc function. If the nCode parameter is less than
zero, the filter function should pass the message to DefHookProc
without further processing.

Specifies a NULL value.

Points to a message structure.

The WH_GETMESSAGE filter function can examine or modify the message as desired.
Once it returns control to Windows, the GetMessage function returns the message, with
any modifications, to the application that originally called it. The filter function does not
require a return value.

WH_JOURNALPLAYBACK

Windows calls the WH_JOURNALPLAYBACK filter function whenever a request for an
event message is made. The function is intended to be used to supply a previously re­
corded event message.

The filter function must use the Pascal calling convention and must be declared FAR. The
filter function must have the following form:

Filter Function

DWORD FAR PASCAL FilterFunc(nCode, wParam, IParam);
int nCode;
WORD wParam;
DWORD lParam;

FilterFunc is a placeholder for the library-supplied function name. The actual name must
be exported by including it in an EXPORTS statement in the library's module-definition
file.

Parameter

nCode

Description

Specifies whether the filter function should process the message or
call the DefHookProc function. If the nCode parameter is less then
zero, the filter function should pass the message to DefHookProc
without further processing.

4-423 SetWindowsHook

Parameter Description

wPm'am Specifies a NULL value.

IParam Points to the message being processed by the filter function.

Comments

The WH_JOURNALPLAYBACK function should copy an event message to the IParam
parameter. The message must have been previously recorded by using the WH_JOUR­
NALRECORD filter. It should not modify the message. The return value should be the
amount of time (in clock ticks) Windows should wait before processing the message. This
time can be computed by calculating the difference between the time fields in the current
and previous event messages. If the function returns zero, the message is processed imme­
diately. Once it returns control to Windows, the message continues to be processed. If the
nCode parameter is HC_SKIP, the filter function should prepare to return the next re­
corded event message on its next call.

While the WH_JOURNALPLAYBACK function is in effect, Windows ignores all mouse
and keyboard input.

WH_JOURNALRECORD

Windows calls the WH_JOURNALRECORD filter function whenever it processes a
message from the event queue. The filter can be used to record the event for later playback.

The filter function must use the Pascal calling convention and must be declared FAR. The
filter function must have the following form:

Filter Function

void FAR PASCAL FilterFunc(nCode, ·wParam, IPm'am);
int nCode;
WORD wPm'am;
DWORD IParam;

FilterFunc is a placeholder for the library-supplied function name. The actual name must
be exported by including it in an EXPORTS statement in the library's module-definition
file.

Parameter

nCode

Description

Specifies whether the filter function should process the message or
call the DefHookProc function. If the nCode parameter is less than
zero, the filter function should pass the message to DefHookProc
without further processing.

"

SelWindowsHook 4-424

Parameter Description

wParam Specifies a NULL value.

lParam Points to a message structure.

Comments

The WH_JOURNALRECORD function should save a copy of the event message for later
playback. It should not modify the message. Once it returns control to Windows, the
message continues to be processed. The filter function does not require a return value.

Windows calls the WH_KEYBOARD filter function whenever the application calls the
GetMessage or PeekMessage function and there is a keyboard event (WM_KEYUP or
WM_KEYDOWN) to process.

The filter function must use the Pascal calling convention and must be declared FAR. The
filter function must have the following form:

Filter Function

int FAR PASCAL FilterFunc(nCode, wParam, lParam)
int nCode;
WORD wParam;
DWORD lParam;

FilterFunc is a placeholder for the library-supplied function name. The actual name must
be exported by including it in an EXPORTS statement in the library's module-definition
file.

Parameter

nCode

wParam

lParam

Description

Specifies whether the filter function should process the message or call
the DefHookProc function. If this value is HC_NOREMOVE, the
application is using the PeekMessage function with the PM_NO­
REMOVE option and the message will not be removed from the
system queue. If this value is less than zero, the filter function should
pass the message to DefHookProc without further processing.

Specifies the virtual-key code of the given key.

Specifies the repeat count, scan code, key-transition code, previous
key state, and context code, as shown in the following list. Bit 1 is the
low-order bit:

4-425

Parameter

Return Value

Description

Bit

0-15 (low-order word)

16--23 (low byte of high­
order word)

24

25-26

27-28 (Context code (1 if
the ALT key was held down
while the key was pressed, 0
otherwise)

30

31

SetWindowsHook

Value

Repeat count (the number of times
the keystroke is repeated as a result
of the user holding down the key).

Scan code (OEM-dependent value).

Extended key (1 if it is an extended
key).

Not used.

Used internally by Windows.

Previous key state (1 if the key was
held down before the message was
sent, 0 if the key was up).

Transition state (1 if the key is being
released, 0 if the key is being
pressed).

The return value specifies what should happen to the message. It is zero if the message
should be processed by Windows; it is 1 if the message should be discarded.

Windows calls the WH_MSGFILTER filter function whenever a dialog box, message box,
or menu has retrieved a message, and before it has processed that message. The filter al­
lows an application to process or modify the messages.

NOTE This is the only task-specific filter. A task may install this filter.

The WH_MSGFILTER filter function must use the Pascal calling convention and must be
declared FAR. The filter function must have the following form:

SelWindowsHook 4-426

WH_SYSMSGFILTER

Filter Function

int FAR PASCAL FilterFunc(nCode, wParam, lParam)
int nCode;
WORD wParam;
DWORD lParam;

FilterFunc is a placeholder for the library- or application-supplied function name. The ac­
tual name must be exported by including it in an EXPORTS statement in the application's
module-definition file.

Parameter

nCode

wParam

lParam

Return Value

Description

Specifies the type of message being processed. It must be one of the
following values:

Value

MSGF _DIALOGBOX

Meaning

Processing messages inside' a dialog­
box or message-box function.

Processing keyboard and mouse mes­
sages in a menu.

If this value is less than zero, the filter function should pass this
message to DefHookProc without further processing.

Specifies a NULL value.

Points to the message structure.

The return value specifies the outcome of the function. It is nonzero if the hook function
processes the message. Otherwise, it is zero.

Windows calls the WH_SYSMSGFILTER filter function whenever a dialog box, message
box, or menu has retrieved a message and before it has processed that message. The filter
allows an application to process or modify messages for any application in the system.

The filter function must use the Pascal calling convention and must be declared FAR. The
filter function must have the following form:

4-427

SetWindowText
Syntax

SelWindowTexl

Filter Function

int FAR PASCAL FilterFunc(nCode, wParam, lParam)
int nCode;
WORD wParam;
DWORD lParam;

FilterFunc is a placeholder for the library-supplied function name. The actual name must
be exported by including it in an EXPORTS statement in the library's module-definition
file.

Parameter

nCode

wParam

lParam

Return Value

Description

Specifies the type of message being processed. It must be one of the
following values:

Value

MSGF _DIALOGBOX

MSGF _MESSAGEBOX

Meaning

Processing messages inside the
DialogBox function.

Processing keyboard and mouse
messages in menu.

Processing messages inside the
MessageBox function.

If this value is less than zero, the filter function should pass the
message to DemookProc without further processing.

Specifies a NULL value.

.Points to the message structure.

The return value specifies the outcome of the function. It is nonzero if the hook function
processes the message. Otherwise, it is zero.

void SetWindowText(hWnd, lpString)

This function sets the given window's caption title (if one exists) to the string pointed to by
the lpString parameter. If the hWnd parameter is a handle to a control, the SetWindowText
function sets the text within the control instead of within the caption.

SetWindowWord 4-428

Parameter

hWnd

ipString

Return Value None.

Type/Description

HWND Identifies the window or control whose text is to be
changed~

LPSTR Points to a null-terminated character string.

SetWindowWord
Syntax

Return Value

Comments

WORD SetWindowWord(hWnd, nlndex, wNewWord)

This function changes an attribute of the window specified by the hWnd parameter.

Parameter

hWnd

nlndex

wNewWord

Type/Description

HWND Identifies the window to be modified.

int Specifies the byte offset of the word to be changed. It can also be
one of the following values:

Value Meaning

Instance handle of the module that
owns the window.

Control ID of the child window.

WORD Specifies the replacement'value.

The return value specifies the previous value of the specified word.

To access any extra two-byte values allocated when the window-class structure was
created, use a positive byte offset as the index specified by the nlndex parameter, starting
at zero for the first two-byte value in the extra space, 2 for the next two-byte value and so
on.

4-429

ShowCaret
Syntax

Return Value

Comments

ShowCursor
Syntax

ShowCaret

void ShowCaret(h Wild)

This function shows the caret on the display at the caret's current position. Once shown,
the caret begins flashing automatically.

The ShowCaret function shows the caret only if it has a current shape and has not been
hidden two or more times in a row. If the caret is not owned by the given window, the caret
is not shown. If the hWnd parameter is NULL, the SetCaret function shows the caret only
if it is owned by a window in the current task.

Hiding the caret is accumulative. If the HideCaret function has been called five times in a
row, ShowCaret must be called five times to show the caret.

Parameter

hWnd

None.

Type/Description

HWND Identifies the window that owns the caret, or is NULL to
specify indirectly the owner window in the current task.

The caret is a shared resource. A window should show the caret only when it has the input
focus or is active.

int ShowCursor(bShow)

This function shows or hides the cursor. The ShowCursor function actually sets an inter­
nal display counter that determines whether the cursor should be displayed. If the bShow
parameter is nonzero, ShowCursor adds one to the display count. If bShow is zero, the dis­
play count is decreased by one. The cursor is displayed only if the display count is greater
than or equal to zero. Initially, the display count is zero if a mouse is installed. Otherwise,
itis-l.

Parameter

bShow

Type/Description

BOOL Specifies whether the display count is to be increased or
decreased. The display count is increased if bShow is nonzero. Other­
wise, it is decreased.

f).

ShowOwnedPopups 4-430

Return Value

Comments

The return value specifies the new display count.

The cursor is a shared resource. A window that hides the cursor should show the cursor
before the cursor leaves its client area, or before the window relinquishes control to
another window.

ShowOwnedPopups
Syntax

Return Value

ShowScroliBar
Syntax

void ShowOwnedPopups(h Wnd,fShow)

This function shows or hides all pop-up windows that are associated with the hWnd para­
meter. If the fShow parameter is nonzero, all hidden pop-up windows are shown; if fShow
is zero, all visible pop-up windows are hidden.

Parameter

hWnd

fShow

None.

Type/Description

HWND Identifies the window that owns the pop-up windows that
are to be shown or hidden.

BOOL Specifies whether or not pop-up windows are hidden. It is
nonzero if all hidden pop-up windows should be shown; it is zero if
all visible pop-up windows should be hidden.

void ShowScrollBar(hWnd, wBar, bShow)

This function displays or hides a scroll bar, depending on the value of the bShow parame­
ter. If bShow is nonzero, the scroll bar is displayed; if bShow is zero, the scroll bar is hid­
den.

Parameter

hWnd

wBar

Type/Description

HWND Identifies a window that contains a scroll bar in its non­
client area if the wBar parameter is SB_HORZ, SB_ VERT, or
SB_BOTH. If wBar is SB_CTL, hWnd identifies a scroll-bar control.

WORD Specifies whether the scroll bar is a control or part of a
window's nonclient area. If it is part of the nonclient area, wBar also
indicates whether the scroll bar is positioned horizontally, vertically, or
both. It must be one of the following values:

4-431

Return Value

Comments

ShowWindow
Syntax

Return Value

Comments

Parameter

bShow

None.

ShowWindow

Type/Description

Value

SB_CTL

SB_HORZ

SB_VERT

Meaning

Specifies the window's horizontal and vertical scroll
bars.

Specifies that the scroll bar is a control.

Specifies the window's horizontal scroll bar.

Specifies the window's vertical scroll bar.

BOOL Specifies whether or not Windows hides the scroll bar. If
bShow is zero, the scroll bar is hidden. Otherwise, the scroll bar is dis­
played.

An application should not call this function to hide a scroll bar while processing a scroll­
bar notification message.

BOOL ShowWindow(hWnd, nCmdShow)

This function displays or removes the given window, as specified by the nCmdShow para­
meter.

Parameter

hWnd

nCmdShow

Type/Description

HWND Identifies the window.

int Specifies how the window is to be shown. It must be one of the
values shown in Table 4.18, "Window States."

The return value specifies the previous state of the window. It is nonzero if the window
was previously visible. It is zero if the window was previously hidden.

The ShowWindow function must be called only once per program with the nCmdShow
parameter from the WinMain function. Subsequent calls to ShowWindow must use one of
the values listed above, instead of one specified by the nCmdShow parameter from the
WinMain function. Table 4.18 lists the values for the nCmdShow parameter:

SizeofResource 4-432

SizeofResource
Syntax

Return Value

Table 4.18 Window States

Value Meaning

SW _HIDE Hides the window and passes activation to another
window.

SW_RESTORE

SW_SHOW

Minimizes the specified window and activates the top­
level window in the window-manager's list.

Same as SW _SHOWNORMAL.

Activates a window and displays it in its current size and
position.

SW _SHOWMAXIMIZED Activates the window and displays it as a maximized
window.

SW _SHOWMINIMIZED

SW _SHOWMINNOACTIVE

Activates the window and displays it as iconic.

Displays the window as iconic. The window that is cur­
rently active remains active.

Displays the window in its current state. The window that
is currently active remains active.

SW _SHOWNOACTIVATE Displays a window in its most recent size and position.
The window that is currently active remains active.

Activates and displays a window. If the window is min­
imized or maximized, Windows restores it to its original
size and position.

WORD SizeofResource(hlnstance, hReslnfo)

This function supplies the size (in bytes) of the specified resource. It is typically used with
the AccessResource function to prepare memory to receive a resource from the file.

Parameter

hlnstance

hReslnfo

Type/Description

HANDLE Identifies the instance of the module whose executable
file contains the resource.

HANDLE Identifies the desired resource. This handle is assumed
to have been created by using the FindResource function.

The return value specifies the number of bytes in the resource. It is zero if the resource can­
not be found.

4-433

Comments

StartSound
Syntax

Return Value

StopSound
Syntax

Return Value

Stretch Bit
Syntax

StartSound

The value returned may be larger than the actual resource due to alignment. An application
should not rely upon this value for the exact size of a resource.

int StartSound()

This function starts play in each voice queue. The StartSound function is not destructive,
so it may be called any number of times to replay the current queues.

This function has no parameters.

Although the return-value type is integer, its contents should be ignored.

int StopSound()

This function stops playing all voice queues, then flushes the contents of the queues. The
sound driver for each voice is turned off.

This function has no parameters.

Although the return-value type is integer, its contents should be ignored.

BOOL StretchBlt(hDestDC, X, Y, nWidth, nHeight, hSrcDC, XSrc, YSrc, nSrcWidth,
nSrcHeight, dwRop)

This function moves a bitmap from a source rectangle into a destination rectangle, stretch­
ing or compressing the bitmap if necessary to fit the dimensions of the destination
rectangle. The StretchBlt function uses the stretching mode of the destination device con­
text (set by the SetStretchBltMode function) to determine how to stretch or compress the
bitmap.

StretchBIt moves the bitmap from the source device given by the hSrcDC parameter to
the destination device given by the hDestDC parameter. The XSrc, YSrc, nSrcWidth, and
nSrcHeight parameters define the origin and dimensions of the source rectangle. The X, Y,
nWidth, and nHeight parameters give the origin and dimensions of the destination
rectangle. The raster operation specified by the dwRop parameter defines how the source
bitmap and the bits already on the destination device are combined.

en

StretchBlt

Return Value

Comments

4-434

StretchBlt creates a mirror image of a bitmap if the signs of the nSrcWidth .and n Width or
nSrcHeight and nHeight parameters differ. If nSrcWidth and nWidth have different signs,
the function creates a mirror image of the bitmap along the x-axis. If nSrcHeight and
nHeight have different signs, the function creates a mirror image of the bitmap along the y­
axis.

Parameter

hDestDC

x

Y

nWidth

nHeight

hSrcDC

XSrc

YSrc

nSrcWidth

nSrcHeight

dwRop

Type/Description

HDC Identifies the device context to receive the bitmap.

int Specifies the logical x-coordinate of the upper-left comer of the
destination rectangle.

int Specifies the logical y-coordinate of the upper-left comer of the
destination rectangle.

int Specifies the width (in logical units) of the destination
rectangle.

int Specifies the height (in logical units) of the destination
rectangle. .

HDC Identifies the device context that contains the source bitmap.

int Specifies the logical x-coordinate of the upper-left comer of the
source rectangle.

int Specifies the logical y-coordinate of the upper-left comer of the
source rectangle.

int Specifies the width (in logical units) of the source rectangle.

int Specifies the height (in logical units) of the source rectangle.

DWORD Specifies the raster operation to be performed. Raster
operation codes define how GDI combines colors in output opera­
tions that involve a current brush, a possible source bitmap, and a
destination bitmap. For a list of raster-operation codes, see the BitBIt
function, earlier in this chapter. For a complete list of the operations,
see Chapter 11, "Binary and Ternary Raster-Operation Codes,." in
Reference, Volume 2.

The return value specifies whether the bitmap is drawn. It is nonzero if the bitmap is
drawn. Otherwise, it is zero.

StretchBIt stretches or compresses the source bitmap in memory, then copies the result to
the destination. If a pattern is to be merged with the result, it is not merged until the
stretched source bitmap is copied to the destination.

4-435 StretchOIBits

If a brush is used, it is the selected brush in the destination device context.

The destination coordinates are transfonned according to the destination device context;
the source coordinates are transfonned according to the source device context.

If destination, source, and pattern bitmaps do not have the same color fonnat, StretchBIt
converts the source and pattern bitmaps to match the destination bitmaps. The foreground
and background colors of the destination are used in the conversion.

If StretchBIt must convert a monochrome bitmap to color, it sets white bits (1) to back­
ground color and black bits (0) to foreground color. To convert color to monochrome, it
sets pixels that match the background color to white (1), and sets all other pixels to black
(0). The foreground and background colors of the device context with color are used.

Not all devices support the StretchBIt function. For more infonnation, see the
RC_BITBLT capability in the GetDeviceCaps function, earlier in this chapter.

StretchDIBits I]]]
Syntax WORD StretchDIBits(hDC, DestX, DestY, wDestWidth, wDestHeight, SrcX, SrcY,

wSrcWidth, wSrcHeight, IpBits, IpBitslnfo, wUsage, dwRop)

This function moves a device-independent bitmap (DIB) from a source rectangle into a
destination rectangle, stretching or compressing the bitmap if necessary to fit the dimen­
sions of the destination rectangle. The StretchDIBits function uses the stretching mode of
the destination device context (set by the SetStretchBltMode function) to detennine how
to stretch or compress the bitmap.

StretchDIBits moves the bitmap from the device-independent bitmap specified by the
IpBits, IpBitslnfo, and wUsage parameters to the destination device specified by the hDC
parameter. The XSrc, YSrc, wSrcWidth, and wSrcHeight parameters define the origin and di­
mensions of the source rectangle. The origin of coordinate system of the device-inde­
pendent bitmap is the lower-left comer. The DestX, DestY, wDestWidth, and wDestHeight
parameters give the origin and dimensions of the destination rectangle. The origin of the
coordinates of the destination depends on the current mapping mode of the device context.
See the SetMapMode function earlier in this chapter for more infonnation on mapping
modes.

The raster operation specified by the dwRop parameter defines how the source bitmap and
the bits already on the destination device are combined.

StretchDIBits creates a mirror image of a bitmap if the signs of the wSrcWidth and
wDestWidth or wSrcHeight and wDestHeight parameters differ. If wSrcWidth and nWidth
have different signs, the function creates a mirror image of the bitmap along the x-axis. If
wSrcHeight and nHeight have different signs, the function creates a mirror image of the bit­
map along the y-axis.

en

StretchOIBits

Parameter

hDC

DestX

DestY

wDestWidth

wDestHeight

SrcX

SrcY

wSrcWidth

wSrcHeight

/pBits

/pBitslnfo

wUsage

"

4-436

Type/Description

HDC Identifies the destination device context for a display sur­
face or memory bitmap.

WORD Specifies the x-coordinate (in logical units) of the origin
of the destination rectangle.

WORD Specifies the y-coordinate (in logical units) of the origin
of the destination rectangle.

WORD Specifies the x-extent (in logical units) of the destina­
tion rectangle.

WORD Specifies the y-extent (in logical units) of the destina­
tion rectangle.

WORD Specifies the x-coordinate (in pixels) of the source in
the DIB.

WORD Specifies the y-coordinate (in pixels) of the source in
the DIB.

WORD Specifies the width (in pixels) of the source rectangle in
the DIB.

WORD Specifies the height (in pixels) of the source rectangle in
the DIB.

LPSTR Points to the DIB bits that are stored as an array of
bytes.

LPBITMAPINFO Points to a BITMAPINFO data structure
that contains information about the DIB.

WORD Specifies whether the bmiColors[] fields of the /pBit­
sInfo parameter contain explicit ROB values or indexes into the
currently realized logical palette. The wU sage parameter must be
one of the following values:

Value Meaning

The color table consists of an array
of 16-bit indexes into the currently
realized logical palette.

The color table contains literal ROB
values.

4-437

Return Value

Comments

Parameter

dwRop

SwapMouseButton

Type/Description

DWORD Specifies the raster operation to be perfonned. Raster
operation codes define how GDI combines colors in output opera­
tions that involve a current brush, a possible source bitmap, and a
destination bitmap. For a list of raster-operation codes, see the
BitBlt function, earlier in this chapter. For a complete list of the
operations, see Chapter 11, "Binary and Ternary Raster-Operation
Codes," in Reference, Volume 2.

The return value is the number of scan lines copied.

This function also accepts a device-independent bitmap specification formatted for
Microsoft OS/2 Presentation Manager versions 1.1 and 1.2 if the IpBitslnfo parameter
points to a BITMAPCOREINFO data structure.

SwapMouseButton
Syntax

Return Value

Comments

BOOL SwapMouseButton(bSwap)

This function reverses the meaning of left and right mouse buttons. If the bSwap parameter
is TRUE, the left button generates right-button mouse messages and the right button gener­
ates left-button messages. If bSwap is FALSE, the buttons are restored to their original
meaning.

Parameter

bSwap

Type/Description

BOOL Specifies whether the button meanings are reversed or
restored.

The return value specifies the outcome of the function. It is TRUE if the fuction reversed
the meaning of the mouse buttons. Otherwise, it is FALSE.

Button swapping is provided as a convenience to people who use the mouse with their left
hands. The SwapMouseButton function is usually called by the control panel only. Al­
though applications are free to call the function, the mouse is a shared resource and re­
versing the meaning of the mouse button affects all applications.

SwapRecording 4-438

SwapRecording I]]]
Syntax

Return Value

void SwapRecording(wF lag)

When running Microsoft Windows Swap, this function begins or ends analyzing swapping
behavior. For more information on Swap, see Tools.

Parameter

wFlag

None.

Type/Description

WORD Specifies whether Swap is to start or stop analyzing swap­
ping behavior. The following are acceptable values:

Value

o

2

Meaning

Specifies that Swap stop analyzing.

Record swap calls, discard swap returns.

Same as 1, plus calls through thunks. This option
records a large amount of data.

SwitchStackBack I]]]
Syntax

Return Value

Comments

void. SwitchStackBack()

This function returns the stack of the current task to the task's data segment after it had
been previously redirected by the SwitchTasksBack function.

This function has no parameters.

None.

This function preserves the contents of the AX:DX register when it returns.

SwitchStackTo I]]]
Syntax void SwitchStackTo(wStackSegment, wStackPointer, wStackTop)

This function changes the stack of the current task to the segment identified by the wStack­
Segment parameter.

4-439

Return Value

Comments

SyncAIiVoices
Syntax

Return Value

SyncA II Voices

Dynamic-link libraries (DLLs) do not have a stack; instead, a DLL uses the stack of the
task which calls the library. As a result, DLL functions that assume that the contents of the
code-segment (CS) and stack-segment (SS) registers are the same will fail. The Switch­
StackTo function redirects the stack of the task to the data segment of a DLL, permitting
the DLL to call these functions. SwitchStackTo copies the arguments on the stack of the
task to the new stack location.

Parameter

wStackSegment

wStackPointer

wStackTop

None.

Type/Description

WORD Specifies the data segment which is to contain the
stack.

WORD Specifies the offset of the beginning of the stack in
the data segment.

WORD Specifies the offset of the top of the stack from the
beginning of the stack.

A task can call SwitchStackTo before calling a function in a DLL that assumes the CS and
DS registeres are equal. When the DLL function returns, the task must then call Switch­
StackBack to redirect its stack to its own data segment.

A DLL can also call SwitchStackTo before calling a routine that assumes CS and DS are
equal and then call SwitchStackBack before returning to the task that called the DLL func­
tion.

Calls to SwitchStackTo and SwitchStackBack cannot be nested. That is, after calling
SwitchStackTo, a program must call SwitchStackBack before calling SwitchStackTo
again.

int SyncAllVoices()

This function queues a sync mark in each queue. Upon encountering a sync mark in a
voice queue, the voice is turned off until sync marks are encountered in all other queues. en
This forces synchronization among all voices.

This function has no parameters.

The return value specifies the result of the function. It is zero if the function is successful.
If a voice queue is full, the return value is S_SERQFUL.

TabbedTextOut 4-440

TabbedTextOut []]]
Syntax

Return Value

Comments

long TabbedTextOut(hDC, X, Y IpString, nCount, nTabPositions, IpnTabStopPositions,
nTabOrigin)

This function writes a character string on the specified display, using the currently selected
font and expanding tabs to the columns specified in the IpnTabStopPositions field.

Parameter

hDC

X

Y

IpString

nCount

nTabP ositions

IpnTabStopPositions

nTabOrigin

Type/Description

HDC Identifies the device context.

int Specifies the logical x-coordinate of the starting point
of the string.

int Specifies the logical y-coordinate of the starting point
of the string.

LPSTR Points to the character string that is to be drawn.

int Specifies the number of characters in the string.

int Specifies the number of tab-stop positions in the array
to which the IpnTabStopPositions points.

LPINT Points to an array of integers containing the tab­
stop positions in pixels. The tab stops must be sorted in
increasing order; back tabs are not allowed.

int Specifies the logical x-coordinate of the starting posi­
tion from which tabs are expanded.

The return value specifies the dimensions of the string. The height is in the high-order
word; the width is in the low-order word.

If the nTabPositions parameter is zero the the IpnTabStopPositions parameter is NULL,
tabs are expanded to eight average character widths.

If nTabPositions is 1, the tab stops will be separated by the distance specified by the first
value in the array to which ipnTabStopPositions points.

If ipnTabStopPositions points to more than a single value, then a tab stop is set for each
value in the array, up to the number specified by nTabPositions.

The nTabOrigin parameter allows an application to call the TabbedTextOut function
several times for a single line. If the application calls TabbedTextOut more than once
with the nTabOrigin set to the same value each time, the function expands all tabs relative
to the position specified by nTabOrigin.

4-441

TextOut
Syntax

Return Value

Comments

Throw
Syntax

TextOut

BOOL TextOut(hDC, X, Y, ipString, nCount)

This function writes a character string on the specified display, using the currently selected
font. The starting position of the string is given by the X and Y parameters.

Parameter

hDC

X

Y

ipString

nCount

Type/Description

"DC Identifies the device context.

int Specifies the logical x-coordinate of the starting point of the
string.

int Specifies the logical y-coordinate of the starting point of the
string.

LPSTR Points to the character string that is to be drawn.

int Specifies the number of characters in the string.

The return value specifies whether or not the string is drawn. It is nonzero if the string is
drawn. Otherwise, it is zero.

Character origins are defined to be at the upper-left comer of the character cell.

By default, the current position is not used or updated by this function. However, an appli­
cation can call the SetTextAlign function with the wFiags parameter set to TA_VP­
DATECP to permit Windows to use and update the current position each time the
application calls TextOut for a given device context. When this flag is set, Windows ig­
nores the X and Y parameters on subsequent TextOut calls.

void Throw(lpCatchBuf, nThrowBack)

This function restores the execution environment to the values saved in the buffer pointed
to by the ipCatchBuJparameter. The execution environment is the state of all system
registers and the instruction counter. Execution continues at the Catch function that copied
the environment pointed to by lpCatchBuJ. The nThrowBack parameter is passed as the re­
turn value to the Catch function. It can be a nonzero value.

-I
I
-<

ToAscii

Return Value

Comments

ToAscii [IQJ
Syntax

Return Value

Parameter

IpCatchBuJ

nThrowBack

None.

4-442

Type/Description

LPCATCHBUF Points to an array that contains the execution en­
vironment.

int Specifies the value to be returned to the Catch function.

The Throw function is similar to the C run-time LongJmp function (which is incompat­
ible with the Windows environment).

int ToAscii(wVirtKey, wScanCode, IpKeyState, IpChar, wFlags)

This function translates the virtual-key code specified by the wVirtKey parameter and the
current keyboard state specified by the IpKeyState parameter to the corresponding ANSI
character or characters.

Parameter

wVirtKey

wScanCode

IpKeyState

IpChar

wFlags

Type/Description

WORD Specifies the virtual-key code to be translated.

WORD Specifies the "hardware" raw scan code of the key to
be translated. The high-order bit of this value is set if the key is
up.

LPSTR Points to an array of 256 bytes, each of which con­
tains the state of one key. If the high-order bit of the byte is set
the key is up.

LPVOID Points to a 32-bit buffer which receives the trans­
lated ANSI character or characters.

WORD The bit 0 flag's menu display.

The return value specifies the number of characters copied to the buffer identified by the
IpChar parameter. The return value is negative if the key was a dead key. Otherwise, it is
one of the following values:

4-443

Comments

Value

2

o

TrackPopupMenu

Meaning

Two characters were copied to the buffer. This is usually an ac­
cent and a dead-key character, when the dead key cannot be
translated otherwise.

One ANSI character was copied to the buffer.

The specified virtual key has no translation for the current state
of the keyboard.

The parameters supplied to the ToAscii function might not be sufficient to translate the vir­
tual-key code because a previous dead key is stored in the keyboard driver.

Typically, ToAscii performs the translation based on the virtual-key code. In some cases,
however, the wScanCode parameter may be used to distinguish between a key depression
or a key release. The scan code is used for translating ALT +NUMBER key combinations.

TrackPopupMenu []]]
Syntax BOOL TrackPopupMenu(hMenu, wFlags, x, y, nReserved, hWnd, lpReserved)

This function displays a "floating" pop-up menu at the specified location and tracks the
selection of items on the pop-up menu. A floating pop-up menu can appear anywhere on
the screen. The hMenu parameter specifies the handle of the menu to be displayed; the
application obtains this handle by calling CreatePopupMenu to create a new pop-up
menu or by calling GetSubMenu to retrieve the handle of a pop-up menu associated with
an existing menu item.

Windows sends messages generated by the menu to the window identified by the hWnd
parameter.

Parameter

hMenu

wFlags

x

y

nReserved

Type/Description

HMENU Identifies the pop-up menu to be displayed.

WORD Not used. This parameter must be set to zero.

int Specifies the horizontal position in screen coordinates of the
left side of the menu on the screen.

int Specifies the vertical position in screen coordinates of the top
of the menu on the screen.

int Is reserved and must be set to zero.
:-f

J
-<

>

Tra nsia teA cceiera tor 4-444

Return Value

Parameter,

hWnd'

IpReserved

Type/Description

HWND Identifies the window which owns the pop-up menu. This
window receives all WM_COMMAND messages from the menu.

LPVOID Is reserved and must be set to NULL.

The return value specifies the outcome of the function. It is TRUE if the function is
s~ccessful. Otherwise, it is FALSE.

Tra nslateAcce I erator
Syntax int TranslateAccelerator(hWnd, hAccTable, IpMsg)

This function processes keyboard accelerators for menu commands. The TranslateAccel­
erator function translates WM_KEYUP and WM_KEYDOWN messages to WM_COM­
MAND or WM_SYSCOMMAND messages, if there is an ehtry for the key in the
application's accelerator table. The high-order word of the IParam parameter of the
WM_COMMAND or WM_SYSCOMMAND message contains the value 1 to differen­
tiate the message from messages sent by menus or controls.

WM_COMMAND or WM_SYSCOMMAND messages are sent directly to the window,
rather than being posted to the application queue. The TranslateAccelerator function does
not return until the message is processed.

Accelerator key strokes that are defined to select items from the system menu are trans­
lated into WM_SYSCOMMAND messages; all other accelerators are translated into
WM_COMMAND messages.

Parameter

hWnd

hAccTable

IpMsg

Type/Description

HWND Identifies the window whose messages are to be trans­
lated.

HANDLE Identifies an accelerator table (loaded by using the
LoadAccelerators function).

LPMSG Points to a message retrieved by using the GetMessage
or PeekMessage function. The message must be an MSG data struc­
ture and contain message information from the Windows application
queue.

~ Return Value The return value specifies the outcome of the function. It is nonzero if translation occurs.
Otherwise, it is zero.

4-445

Comments

TranslateMOISysAccel

When TranslateAccelerator returns nonzero (meaning that the message is translated), the
application should not process the message again by using the TranslateMessage function.

Commands in accelerator tables do not have to correspond to menu items.

If the accelerator command does correspond to a menu item, the application is sent
WM_INITMENU and WM_INITMENUPOPUP messages, just as if the user were trying
to display the menu. However, these messages are not sent if any of the following condi­
tions are present:

• The window is disabled.

• The menu item is disabled.

• The command is not in the System menu and the window is minimized.

• A mouse capture is in effect (for more information, see the SetCapture function, ear­
lier in this chapter).

If the window is the active window and there is no keyboard focus (generally true if the
window is minimized), then WM_SYSKEYUP and WM_SYSKEYDOWN messages are
translated instead of WM_KEYUP and WM_KEYDOWN messages.

If an accelerator key stroke that corresponds to a menu item occurs when the window that
owns the menu is iconic, no WM_COMMAND message is sent. However, if an accel­
erator key stroke that does not match any of the items on the window's menu or the Sys­
tem menu occurs, a WM_COMMAND message is sent, even if the window is iconic.

TranslateMDISysAccel [ill"
Syntax BOOL TranslateMDISysAccel(hWndClient,lpMsg)

This function processes keyboard accelerators for multiple document interface (MDI)
child window System-menu commands. The TranslateMDISysAccel function translates
WM_KEYUP and WM_KEYDOWN messages to WM_SYSCOMMAND messages. The
high-order word of the IParam parameter of the WM_SYSCOMMAND message contains
the value 1 to differentiate the message from messages sent by menus or controls.

Parameter

hWndClient

IpMsg

Type/Description

HWND Identifies the parent MDI client window.

LPMSG Points to a message retrieved by using the GetMessage
or PeekMessage function. The message must be an MSG data struc­
ture and contain message information from the Windows application
queue.

-I
" I
-<

>
I

I-

TranslateMessage 4-446

Return Value The return value is TRUE if the function translated a message into a system command.
Otherwise, it is FALSE.

TranslateMessage
Syntax

Return Value

Comments

BOOL TranslateMessage(lpMsg)

This function translates virtual-key messages into character messages, as follows:

• WM_KEYDOWN/WM_KEYUP combinations produce a WM_CHAR or a
WM_DEADCHAR message.

• WM_SYSKEYDOWN/WM_SYSKEYUP combinations produce a WM_SYSCHAR
or a WM_SYSDEADCHAR message.

The character messages are posted to the application queue, to be read the next time the
application calls the GetMessage or PeekMessage function.

Parameter

lpMsg

Type/Description

LPMSG Points to an MSG data structure retrieved through the
GetMessage or PeekMessage function. The structure contains
message information from the Windows application queue.

The return value specifies the outcome of the function. It is nonzero if the message is trans­
lated (that is, character messages are posted to the application queue). Otherwise, it is zero.

The TranslateMessage function does not modify the message given by the lpMsg parame­
ter.

TranslateMessage produces WM_CHAR messages only for keys which are mapped to
ASCII characters by the keyboard driver.

An application should not call TranslateMessage if the application processes virtual-key
messages for some other purpose. For instance, an application should not call the Trans­
lateMessage function if the TranslateAccelerator function returns nonzero.

TransmitCommChar
Syntax int TransmitCommChar(nCid, cChar)

This function marks the character specified by the cChar parameter for immediate trans­
mission, by placing it at the head of the transmit queue.

4-447

Return Value

Parameter

nCid

cChar

TransmitCommChar

Type/Description

int Specifies the communication device to receive the character.
The OpenComm function returns this value.

char Specifies the character to be transmitted.

The return value specifies the result of the function. It is zero if the function is successful.
It is negative if the character cannot be transmitted. A character cannot be transmitted if
the character specified by the previous TransmitCommChar function has not yet been
sent.

-I
I
-<

UngetCommChar 4-448

UngetCommChar
Syntax

Return Value

int UngetCommChar(nCid, cChar)

This function places the character specified by the cChar parameter back into the receive
queue, making this character the first to be read on a subsequent read from the queue.

Consecutive calls to the UngetCommChar function are not allowed. The character placed
back into the q1:leue must be read before attempting to place another.

Parameter

nCid

cChar

Type/Description

int Specifies the communication device to receive the character.

char Specifies the character to be placed in the receive queue.

The return value specifies the outcome of the function. It is zero if the function is success­
ful. It is negative if an error occurs.

UnhookWindowsHook
Syntax BOOL Unhook WindowsHook(nH ook, /pfnH ook)

This function removes the Windows hook function pointed to by the /pfnHook parameter
from a chain of hook functions. A Windows hook function processes events before they are
sent to an application's message loop in the WinMain function.

Parameter

nHook

Type/Description

int Specifies the type of hook function removed. It may be one of
the following values:

Value

WH_CALLWNDPROC

WH_GETMESSAGE

WH_JOURNALPLAYBACK

WH_JOURNALRECORD

Meaning

Installs a window-function fil­
ter.

Installs a message filter.

Installs a journaling playback
filter.

Installs a journaling record fil­
ter.

Install a keyboard filter.

4-449

Return Value

UnionRect
Syntax

Return Value

Comments

UnlockData
Syntax

Parameter

IpfnHook

UnionRect

Type/Description

Value Meaning

Installs a message filter.

FARPROC Is the procedure-instance address of the hook func­
tion.

The return value specifies the outcome of the function. It is nonzero if the hook function is
successfully removed. Otherwise, it is zero.

int UnionRect(lpDestRect, IpSrclRect, IpSrc2Rect)

This function creates the union of two rectangles. The union is the smallest rectangle that
contains both source rectangles.

Parameter

IpDestRect

lpSrclRect

lpSrc2Rect

Type/Description

LPRECT Points to the RECT data structure that is to receive the
new union.

LPRECT Points to a RECT data structure that contains a source
rectangle.

LPRECT Points to a RECT data structure that contains a source
rectangle.

The return value specifies the outcome of the function. It is nonzero if the union is not
empty. It is zero if the union is empty.

Windows ignores the dimensions of an "empty" rectangle, that is, a rectangle that has no
height or has no width.

HANDLE UnlockData(Dummy)

This macro unlocks the current data segment. It is intended to be used by modules that
have moveable data segments.

"'" I

UnlockResource 4-450

Parameter Type/Description

Dummy int Is not used; can be set to zero.

Return Value None.

UnlockResource
Syntax

Return Value

BOOL UnlockResource(hResData)

This macro unlocks -the resource specified by the hResData parameter and decreases the
resource's reference count by one.

Parameter Type/Description

hResData HANDLE Identifies the global memory block to be unlocked.

The return value specifies the outcome of the macro. It is zero if the block's reference
count is decreased to zero. Otherwise, it is nonzero.

UnlockSegment
Syntax BOOL UnlockSegment(wSegment)

This function unlocks the segment whose segment address is specified by the wSegment
parameter. If wSegment is -1, the UnlockSegment function unlocks the current data seg­
ment.

In real mode, or if the segment is discardable, UnlockSegment decreases the segment's
lock count by one. In protected mode, UnlockSegment decreases the lock count of discard­
able objects and automatic data segments only. The segment is completely unlocked and
subject to moving or discarding if the lock count is decreased to zero. Other functions also
can affect the lock count of a memory object. See the description of the GlobalFlags func­
tion for a list of the functions that affect the lock count.

In all cases, each time an application calls LockSegment for a segment, it must eventually
call UnlockSegment for the segment.

4-451

Return Value

Parameter

wSegment

UnrealizeObjecl

Type/Description

WORD Specifies the segment address of the segment to be un­
locked. If wSegment is -1, the UnlockSegment function unlocks the
current data segment.

The return value specifies the outcome of the function. It is zero if the segment's lock
count was decreased to zero. Otherwise, the return value is nonzero. An application should
not rely on the return value to determine the number of times it must subsequently call Un­
lockSegment for the segment.

UnrealizeObject
Syntax

Return Value

Comments

BOOL UnrealizeObject(hObject)

If the hObject parameter specifies a brush, this function directs GDI to reset the origin of
the given brush the next time it is selected.

If hObject specifies a logical palette, this function directs GDI to realize the palette as
though it had not previously been realized. The next time the application calls the Realize­
Palette function for the specified palette, GDI completely remaps the logical palette to the
system palette.

Parameter Type/Description

hObject HANDLE Identifies the object to be reset.

The return value specifies the outcome of the function. It is nonzero if the function is
successful. Otherwise, it is zero.

The UnrealizeObject function should not be used with ssock objects.

This function must be called whenever a new brush origin is set (by means of the
SetBrushOrigin function).

A brush specified by the hObject parameter must not be the currently selected brush of any
display context.

A palette specified by hObject can be the currently selected palette of a display context.

...

UnregisterClass 4-452

UnregisterClass []I]
Syntax

Return Value

Comments

BOOL UnregisterClass(/pClassName, hlnstance)

This function removes the window class specified by IpClassName from the window-class
table, freeing the storage required for the class.

Parameter

IpClassName

hlnstance

Type/Description

LPSTR Points to a null-terminated string containing the class
name. This class name must have been previously registered by cal­
ling the RegisterClass function with a valid hlnstance field in the
WNDCLASS structure parameter. Predefined classes, such as dialog­
box controls, may not be unregistered.

HANDLE Identifies the instance of the module that created the
class.

The return value is TRUE if the function successfully removed the window class from the
window-class table. It is FALSE if the class could not be found or if a window exists that
was created with the class.

Before using this function, destroy all windows created with the specified class.

UpdateColors []I]
Syntax

Return Value

int UpdateColors(hDC)

This function updates the client area of the device context identified by the hDC parameter
by matching the current colors in the client area to the system palette on a pixel-by-pixel
basis. An inactive window with a realized logical palette may call UpdateColors as an al­
ternative to redrawing its client area when the system palette changes. For more informa­
tion on using cblor palettes, see Guide to Programming.

Parameter Type/Descrlption

hDC HDC Identifies the device context.

The return value is not used.

4-453

Comments

UpdateWindow
Syntax

Return Value

Update Window

Update Colors typically updates a client area faster than redrawing the area. However, be­
cause UpdateColors performs the color translation based on the color of each pixel before
the system palette changed, each call to this function results in the loss of some color ac­
curacy.

void UpdateWindow(hWnd)

This function updates the client area of the given window by sending a WM_PAINT
message to the window if the update region for the window is not empty. The Update­
Window function sends a WM_PAINT message directly to the window function of the
given window, bypassing the application queue. If the update region is empty, no message
is sent.

Parameter Type/Description

hWnd HWND Identifies the window to be updated.

None.

ValidateCodeSegments 4-454

ValidateCodeSegments ill]
Syntax

Return Value

void VaiidateCodeSegments()

This function outputs debugging infonnation to a tenninal if any code segments have been
altered by random memory overwrites. It is only available in the debugging version of
Windows and is enabled by default. To disable the function, set the EnableSegment­
Checksum flag in the [kernel] section of WIN.INI to o. Windows does not validate code
segments in protected (standard or 386 enhanced) mode.

This function has no parameters.

None.

ValidateFreeSpaces
Syntax

Return Value

Comments

LPSTR VaiidateFreeSpaces()

This function (available only in the debugging version of Windows) checks free segments
in memory for valid contents. In the debugging version of Windows, the kernel fills all the
bytes in free segments with the hexadecimal value CC. This function begins checking for
valid contents in the free segment with the lowest address, and continues checking until it
finds an invalid byte or until it has detennined that all free space contains valid contents.
Before calling this function, put the following lines in the WIN.INI file:

[kernel]
EnableFreeChecking=l
EnableHeapChecking=l

This function has no parameters.

None.

Windows sends debugging infonnation to the debugging tenninal if an invalid byte is en­
countered and performs a fatal exit.

The [kernel] entries in WIN.INI will cause automatic checking of free memory. Before re­
turning a memory block to the application in response to a GlobalAlloc call, Windows
checks that memory to make sure it is filled with OCCH. Before a GlobalCompact call, all
free memory is checked. Note that using this function slows Windows down system-wide
by about 20%.

4-455

ValidateRect
Syntax

Return Value

Comments

ValidateRgn
Syntax

Return Value

ValidateRect

void ValidateRect(hWnd,lpRect)

This function validates the client area within the given rectangle by removing the rectangle
from the update region of the given window. If the IpRect parameter is NULL, the entire
window is validated.

Parameter

hWnd

lpRect

None.

Type/Description

HWND Identifies the window whose update region is to be mod­
ified.

LPRECT Points to a RECT data structure that contains the
rectangle (in client coordinates) to be removed from the update re­
gion.

The BeginPaint function automatically validates the entire client area. Neither the
ValidateRect nor ValidateRgn function should be called if a portion of the update
region needs to be validated before the next WM_PAINT message is generated.

Windows continues to generate WM_PAINT messages until the current update region is
validated.

void ValidateRgn(hWnd, hRgn)

This function validates the client area within the given region by removing the region from
the current update region of the given window. If the hRgn parameter is NULL, the entire
window is validated.

Parameter

hWnd

hRgn

None.

Type/Description

HWND Identifies the window whose update region is to be mod­
ified.

HRGN Identifies a region that defines the area to be removed
from the update region.

VkKeyScan 4-456

Comments The given region must have been created previously by means of a region function (for
more information, see Chapter 1, "Window Manager Interface Functions"). The region
coordinates are assumed to be client coordinates.

VkKeyScan
Syntax

Return Value

Comments

int VkKeyScan (cChar)

This function translates an ANSI character to the corresponding virtual-key code and shift
state for the current keyboard. Applications which send character by means of
WM_KEYUP and WM_KEYDOWN messages use this function.

Parameter

cChar

Type/Description

char Specifies the character for which the corresponding virtual­
key code is to be found.

The VK_ code is returned in the low-order byte and the shift state in the high-order byte.
The shift states are:

Value

o

2

6

7

3,4,5

Meaning

No shift.

Character is shifted.

Character is control character.

Charcter is CONTROL+ALT.

Character is SHIFT +CONTROL+ALT.

A shift key combination that is not used for characters.

If no key is found that translates to the passed ANSI code, a -1 is returned in both the low­
order and high-order bytes.

Translations for the numeric keypad (VK_NUMPADO through VK_DIVIDE) are ignored.
This function is intended to force a translation for the main keyboard only.

4-457

WaitMessage
Syntax

Return Value

Comments

WaitMessage

void WaitMessage()

This function yields control to other applications when an application has no other tasks to
perfonn. The WaitMessage function suspends the application and does not return until a
new message is placed in the application's queue.

This function has no parameters.

None.

The GetMessage, PeekMessage, and WaitMessage functions yield control to other appli­
cations. These calls are the only way to let other applications run. If your application does
not call any of these functions for long periods of time, other applications cannot run.

When GetMessage, PeekMessage, and WaitMessage yield control to other applications,
the stack and data segments of the application calling the function may move in memory to
accommodate the changing memory requirements of other applications. If the application
has stored long pointers to objects in the data or stack segment (that is, global or local vari­
ables), these pointers can become invalid after a call to GetMessage, PeekMessage, or
WaitMessage.

WaitSoundState
Syntax int WaitSoundState(nState)

This function waits until the play driver enters the specified state.

Parameter

nState

Type/Description

int Specifies the state of the voice queues. It can be anyone of
the following values:

Value

S_ALLTHRESHOLD

S_QUEUEEMPTY

S_THRESHOLD

Meaning

All voices have reached threshold.

All voice queues are empty and
sound drivers turned off.

A voice queue has reached thre­
shold, and returns voice.

WindowFromPoint 4-458

Return Value The return value specifies the result of the function. It is zero if the function is successful.
If the state is not valid, the return value is S_SERDST.

WindowFromPoint
Syntax

Return Value

WinExec [ill
Syntax

HWND WindowFromPoint(Point)

This function identifies the window that contains the given point; Point must specify the
screen coordinates of a point on the screen.

Parameter

Point

Type/Descri ption

POINT Specifies a POINT data structure that defines the point to
be checked.

The return value identifies the window in which the point lies. It is NULL if no window ex­
ists at the given point.

WORD WinExec(lpCmdLine, nCmdShow)

This function executes the Windows or non-Windows application identified by the
IpCmdLine parameter. The nCmdShow parameter specifies the initial state of the applica­
tion's main window when it is created.

Parameter

IpCmdLine

Type/Description

LPSTR Points to a null-terminated character string that contains
the command line (filename plus optional parameters) for the applica­
tion to be executed. If the IpCmdLine string does not contain a
directory path, Windows will search for the executable file in this
order:

1. The current directory

2. The Windows directory (the directory containing WIN.COM); the
Get WindowsDirectory function obtains the pathname of this
directory

3. The Windows system directory (the directory containing such sys­
tem files as KERNEL.EXE); the GetSystemDirectory function
obtains the pathname of this directory

4-459

Return Value

Parameter

nCmdShow

WinExec

Type/Description

4. The directories listed in the PATH environment variable

5. The list of directories mapped in a network

If the application filename does not contain an extension, then .EXE
is assumed.

int Specifies how a Windows application window is to be shown.
See the description of the ShowWindow function for a list of the
acceptable values for the nCmdShow parameter. For a non-Windows
application, the PIF file, if any, for the application determines the
window state.

The return value specifies whether the function was successful. If the function was success­
ful, the return value is greater than 32. Otherwise, it is a value less than 32 that specifies
the error. The following list describes the error values returned by this function:

Value

o
2

3

5

6

10

11

12

13

14

15

16

17

Meaning

Out of memory.

File not found.

Path not found.

Attempt to dynamically link to a task.

Library requires separate data segments for each task.

Incorrect Windows version.

Invalid .EXE file (non-Windows .EXE or error in .EXE image).

OS/2 application.

DOS 4.0 application.

Unknown .EXE type.

Attempt in protected (standard or 386 enhanced) mode to load an
.EXE created for an earlier version of Windows.

Attempt to load a second instance of an .EXE containing multiple,
writeable data segments.

Attempt in large-frame EMS mode to load a second instance of an
application that links to certain nonshareable DLLs already in use.

WinHelp

Comments

WinHelp []I]
Syntax

Value

18

Meaning

Attempt in real mode to load an application marked for protected
mode only.

4-460

The LoadModule function provides an alternative method for executing a program.

BOOL WinHelp(hWnd, IpHelpFile, wCommand, dwData)

This function invokes the Windows Help application and passes optional data indicating
the nature of the help requested by the application. The application specifies the name and,
where required, the directory path of the help file which the Help application is to display.
See Tools for information on creating and using help files.

Parameter

hWnd

IpHelpFile

wCommand

Type/Description

HWND Identifies the window requesting help.

LPSTR Points to a null-terminated string containing the
directory path, if needed, and the name of the help file which the
Help application is to display.

WORD Specifies the type of help requested. It may be anyone
of the following values:

Value

HELP_CONTEXT

HELP _HELPONHELP

Meaning

Displays help for a particular con­
text identified by a 32-bit unsigned
integer value in dwData.

Displays help for using the help
application itself. If the wCommand
parameter is set to HELP _HELP­
ONHELP, WinHelp ignores the
IpHelpFile and dwpata parameters.

Displays the index of the specified
help file. An application should use
this value only for help files with a
single index. It should not use this
value with HELP _SETINDEX.

4-461

Return Value

Parameter

dwData

Type/Description

Value

HELP _MULTIKEY

WinHelp

Meaning

Displays help for a particular key
word identified by a string pointed
to by dwData.

Displays help for a key word in an
alternate keyword table.

Notifies the help application that
the specified help file is no longer
in use.

Sets the context specified by the
dwData parameter as the, current
index for the help file specified by
the lpHelpFile parameter. This
index remains current until the user
accesses a different help file. To
help ensure that the correct index re­
mains set, the application should
call WinHelp with wCommand set
to HELP _SETINDEX (with
dwData specifying the correspond­
ing context identifier) following
each call to WinHelp with wCom­
mand set to HELP_CONTEXT. An
application should use this value
only for help files with more than
one index. It should not use this
value with HELP_INDEX.

DWORD Specifies the context or key word of the help re­
quested. If wCommand is HELP_CONTEXT, dwData is a 32-bit

. unsigned integer containing a context-identifier number. If wCom­
mand is HELP_KEY, dwData is a long pointer to a null-terminated
string that contains a key word identifying the help topic. If wCom­
mand is HELP _MULTIKEY, dwData is a long pointer to a
MULTIKEYHELP data structure. Otherwise, dwData is ignored
and should be set to NULL.

The return value specifies the outcome of the function. It is TRUE if the function was
successful. Otherwise it is FALSE.

WriteComm 4-462

Comments The application must call WinHelp with wCommand set to HELP_QUIT before closing
the window that requested the help. The Help application will not actually terminate until
all applications that have requested help have called WinHelp with wCommand set to
HELP_QUIT.

WriteComm
Syntax

Return Value

Comments

int. WriteComm(nCid, /pBuf, nSize)

This function writes the number of characters specified by the nSize parameter to the com­
munication device specified by the nCid parameter from the buffer pointed to by the /pBuJ
parameter.

Parameter

nCid

/pBuJ

nSize

Type/Description

int Specifies the device to receive the characters. The OpenComm
function returns this value.

LPSTR Points to the buffer that contains the characters to be writ­
ten.

int Specifies the number of characters to write.

The return value specifies the number of characters actually written. When an error occurs,
the return value is set to a value less than zero, making the absolute value of the return
value the actual number of characters written. The cause of the error can be determined by
using the GetCommError function to retrieve the error code and status.

The WriteComm function will delete data in the transmit queue if there is not enough
room in the queue for the additional characters. Applications should check the available
space in the transmit queue with the GetCommError function before calling Write­
Comm. Also, applications should use the OpenComm function to set the size of the trans­
mit queue to an amount no smaller than the size of the largest expected output string.

WritePrivateProfHeString []]]
Syntax BOOL WritePrivateProfileString(/pApplicationName, /pKeyName, /pString,

/pFileName)

This function copies the character string pointed to by the /pString parameter into the
specified initialization file. It searches the file for the key named by the /pKeyName para­
meter 'under the application heading specified by the /pApplicationName parameter. If
there is no match, it adds to the user profile a new string entry containing the key name

4-463

Return Value

Comments

WritePrivateProfileString

and the key value specified by the /pString parameter. If there is a matching key, the func­
tion replaces that key's value with /pString.

Parameter

/pApplicationN ame

lpKeyName

/pString

lpFileName

Type/Description

LPSTR Points to an application heading in the initialization
file.

LPSTR Points to a key name that appears under the applica­
tion heading in the initialization file.

LPSTR Points to the string that contains the new key
value.

LPSTR Points to a null-terminated character string that
names the initialization file. If /pFileName does not contain a
fully qualified pathname for the file, this function searches
the Windows directory for the file. If the file does not exist
and lpFileName does not contain a fully qualified pathname,
this function creates the file in the Windows directory. The
WritePrivateProfileString does not create a file if
/pFileName contains the fully qualified pathname of a file
that does not exist.

The return value specifies the result of the function. It is nonzero if the function is success­
ful. Otherwise, it is zero.

An application should use a private (application-specific) initialization file to record infor­
mation which affects only that application. This improves both the performance of the
application and Windows itself by reducing the amount of information that Windows must
read when it accesses the initialization file.

If there is no application field for lpApplicationName, this function creates a new applica­
tion field and places an appropriate key-value line in that field of the initialization file.

A string entry in the initialization file has the following form:

[application name]
keyname = string

An application can also call WritePrivateProfileString to delete lines from its private in­
itialization file. If /pString is NULL, the function deletes the entire line identified by the
/pKeyName parameter. If /pString points to a null string, the function deletes only the
value; the key name remains in the file. If lpKeyName is NULL, the function deletes the

WrileProfileSlring 4-464

entire section identified by the IpApplicationName parameter; however, the function does
not delete any lines beginning with the semicolon (;) comment character.

Write Profi I eStri ng
Syntax

Return Value

Comments

BOOL WriteProfileString(lpApplicationName, IpKeyName, IpString)

This function copies the character string pointed to by the IpString parameter into the
Windows initialization file, WIN.lNI. It searches WIN.lNI for the key named by the IpKey­
Name parameter under the application heading specified by the IpApplicationName para­
meter. If there is no match, it adds to the user profile a new string entry containing the key
name and the key value specified by the IpString parameter. If there is a matching key, the
function replaces that key's value with IpString.

Parameter

IpAppl icationN ame

IpKeyName

IpString

Type/Description

LPSTR Points to. an application heading in WIN.lNI.

LPSTR Points to a key name that appears under the appli­
cation heading WIN.lNI.

LPSTR Points to the string that contains the new key
value.

The return value specifies the result of the function. It is nonzero if the function is success­
ful. Otherwise, it is zero.

If there is no match for IpApplicationName, this function creates a new application field
and adds the string pointed to by IpString.

A string entry in WIN.lNI has the following form:

[application name]
keyname = string

An application can also call WriteProfileString to delete lines from WIN.INI. If IpString
is NULL, the function deletes the entire line identified by the IpKeyName parameter. If
IpString points to a null string, the function deletes only the value; the key name remains
in the file. If IpKeyName is NULL, the function deletes the entire section identified by the
IpApplicationName parameter; however, the function does not delete any lines beginning
with the semicolon (;) comment character.

4-465

wsprintf []]]
Syntax

Return Value

Comments

wsprintf

int wsprintf(lpOutput, lpFormat[, argument] . ••)

This function formats and stores a series of characters and values in a buffer. Each argu­
ment (if any) is converted and output according to the corresponding format specification
in the format string. The function appends a NULL to the end of the characters written, but
the return value does not include the terminating null character in its character count.

Parameter

lpOutput

IpFormat

argument

Type/Descri ption

LPSTR Points to a null-terminated charaCter string to receive the
formatted output.

LPSTR Points to a null-terminated character string that contains
the format-control string. In addition to ordinary ASCII characters, a
format specification for each argument appears in this string. See the
following "Comments" section for more information on the format
specification.

Is one or more optional arguments. The number and type of argument
parameters depends on the corresponding format-control character
sequences in lpFormat.

The return value is the number of characters stored in lpOutput, not counting the terminat­
ing NULL. If an error occurs, the function returns a value less than the length of lpF ormat.

The format-control string contains format specifications that determine the output format
for the arguments which follow the lpF ormat parameter. Format specifications, discussed
below, always begin with a percent sign (%). If a percent sign is followed by a character
that has no meaning, such as a fonnat field, the character is output as is. For example, %%
produces a single percent-sign character.

The format-control string is read from left to right. When the first format specification (if
any) is encountered, it causes the value of the first argument after the format-control string
to be converted and output according to the format specification. The second format speci­
fication causes the second argument to be converted and output, and so on. If there are
more arguments than there are fonnat specifications, the extra arguments are ignored. The
results are undefined if there are not enough arguments for all of the format specifications.

A format specification has the following form:

% [-][#][0] [width] [.precision]type

Each field of the format specification is a single character or a number signifying a particu­
lar format option. The type characters, which appear after the last optional format field, de­
termine whether the associated argument is interpreted as a character, a string, or a

'-

wsprinlt 4-466

number. The simplest format specification contains only the percent sign and a type
character (for example, %s). The optional fields control other aspects of the formatting.
The following shows the optional and required fields and their meaning:

Field

o

width

precision

type

Description

Pad the output with blanks or zeroes to the right to fill the field
width, justifying the output to the left. If this field is omitted, the out­
put is padded to the left, justifying the output to the right.

Prefix hexadecimal values with Ox (lowercase) or OX (uppercase).

Pad the output value with zeroes to fill the field width. If this field is
omitted, the output value is padded with blank spaces.

Output the specified minimum number of characters. The width field
is a nonnegative integer. The width specification never causes a value
to be truncated; if the number of characters in the output value is
greater than the specified width, or if the width field is not present,
all characters of the value are printed, subject to the precision specifi­
cation.

Output the specified minimum number of digits. If the number of
digits in the argument is less than the specified precision, the output
value is padded on the left with zeroes. The value is not truncated
when the number of digits exceeds the specified precision. If the
specified precision is 0, omitted entirely, or if the period (.) appears
without a number following it, the precision is set to 1.

For strings, output the specified maximum number of characters.

Output the corresponding argument as a character, string, or a num­
ber. This field may be any of the following character sequences:

Sequence

s

c

d, i

ld, Ii

u

lu

Meaning

Insert a string argument referenced by a long
pointer. The argument corresponding to this
sequence must be passed as a long pointer
(LPSTR).

Insert a single character argument.

Insert a signed decimal integer argument.

Insert a long signed decimal integer argument.

Insert an unsigned integer argument.

Insert a long unsigned integer argument.

4-467

wvsprintf []]]
Syntax

Field Description

Sequence

x,X

lx, IX

wvsprintt

Meaning

Insert an unsigned hexadecimal integer argument
in lowercase or uppercase.

Insert a long unsigned hexadecimal integer argu­
ment in lowercase or uppercase.

NOTE Unlike all other Windows functions, wsprintf uses the C calling convention (cdecl), rather than
the Pascal calling convention. As a result, it is the caller's responsibility to pop arguments off the stack,
and arguments are pushed in reverse order (that is, the IpOutputparameter is pushed last, to the
lowest address). In C-Ianguage modules, the C compiler performs this task.

int wvsprintf(lpOutput, lpFormat, lpArglist)

This function formats and stores a series of characters and values in a buffer. The items
pointed to by the argument list are converted and output according to the corresponding
format specification in the format string. The function appends a NULL to the end of the
characters written, but the return value does not include the terminating null character in
its character count.

Parameter

lpOutput

lpFormat

Type/Description

LPSTR Points to a null-terminated character string to receive the
formatted output.

LPSTR Points to a null-terminated character string that contains
the format-control string. In addition to ordinary ASCII characters, a
format specification for each argument appears in this string. See the
description of the wsprintf function, earlier in this chapter, for more
information on the format specification.

>
I

I-

wvsprintt

Return Value

Parameter

/pA rg list

4-468

Type/Description

LPSTR Points to an array of words, each of which specifies an ar­
guement for the format-control string. The number, type and
interpretation of the arguments depend on the corresponding format­
control character sequences in /pF ormat. Each character or
word-sized integer (%c, %d, %x, %i) requires one word in /pArglist.
Long integers (%ld, %li, %lx) require two words, the low-order word
of the integer followed by the high-order word. A string (%s) requires
two words, the offset followed by the segment (which together make
up a far pointer).

The return value is the number of characters stored in /pOutput, not counting the terminat­
ing NULL. If an error occurs, the function returns a value less than the length of /pF ormat.

4-469

Yield
Syntax

Return Value

Comments

void Yield()

This function halts the current task and starts any waiting task.

This function has no parameters.

None.

Yield

Applications that contain windows should use a DispatchMessage, PeekMessage, or
TranslateMessage loop rather than calling the Yield function directly. The PeekMessage
loop handles message synchronization properly and yields at the appropriate times.

;-1
, I
:-<

Part

2
Windows Messages

Part 2 provides reference infonnation on Windows messages. Windows mes­
sages allow Windows applications to communicate with each other and with the
Windows system within a nonpreemptive multitasking environment.

CHAPTERS
5 Messages Overview
6 Messages Directory

Chapter

5
Messages Overview

This chapter describes groups of related Microsoft Windows messages. Each sec­
tion states the purpose of the message group, lists the messages in the group, and
describes each message. Some of the. sections contain additional information. See
Chapter 1, "Window Manager Interface Functions," for an explanation of send­
ing and receiving messages.

This chapter lists the following categories of Windows messages:

• Window-management messages

• Initialization messages

• Input messages

• System messages

• Clipboard messages

• System-information messages

• Control messages

• Notification messages

• Scroll-bar messages

• Nonc1ient-area messages

• Multiple document interface messages

5. 1 Window-Management Messages
Window-management messages are sent by Windows to an application when the
state of a window changes. The following list briefly describes each window­
management message:

5-2 Reference - Volume 1

Message

WM_ACTIVATEAPP

WM_CANCELMODE

WM_CHILDACTIVATE

WM_CLOSE

WM_CREATE

WM_ENDSESSION

WM_ERASEBKGND

WM_GETDLGCODE

Description

Sent when a window becomes active
or inactive.

Sent when the window being acti­
vated belongs to a different appli­
cation than the window that was
previously active.

Cancels any mode the system is in,
such as one that tracks the mouse in a
scroll bar or moves a window.
Windows sends the WM_CANCEL­
MODE message when an application
displays a message box.

Notifies a child window's parent
window when the SetWindowPos
function moves a child window.

Sent whenever the window is closed.

Sent when the CreateWindow func­
tion is called.

Sent to the parent window of a prede­
fined control or message box when
the control or message box is about
to be drawn.

Sent when the DestroyWindow func­
tion is called, after the window has
been removed from the screen.

Sent after a window has been enabled
or disabled.

Tells an application that has re­
sponded nonzero to aWM_QUERY­
ENDSESSION message whether the
session is actually being ended.

Informs a window that a dialog box
or menu is displayed and waiting for
user action.

Sent when the window background
needs to be erased.

Sent to an input procedure associated
with a control.

Message

WM_ GETMINMAXINFO

WM_GETTEXT

WM_ GETTEXTLENGTH

WM_ICONERASEBKGND

WM_KILLFOCUS

WM_MENUSELECT

WM_QUERYDRAGICON

WM_QUERYENDSESSION

WM_QUERYNEWPALETTE

Messages Overview 5-3

Description

Retrieves the maximized size of the
window, the minimum or maximum
tracking size of the window, and the
maximized position of the window.

Copies the text that corresponds to a
window.

Retrieves the length (in bytes) of the
text associated with a window.

Sent to an iconic window with a class
icon when the background of the icon
needs to be erased.

Sent immediately before a window
loses the input focus.

Notifies the window that owns the
menu when the user presses a menu
mnemonic character that doesn.'t
match any of the predefined mnemon­
ics in the current menu.

Notifies a window that the user has
selected a menu item.

Sent when a window is moved.

Sent whenever Windows or an appli­
cation makes a request to repaint a
portion of an application's window.

Sent whenever Windows or an appli­
cation makes a request to repaint a
portion of an application's minimized
(iconic) window.

Sent to the parent of a child window
when the child window is created or
destroyed.

Sent when the user is about to drag a
minimized (iconic) window.

Sent when the user chooses the End
Session command.

Sent when a window is about to re­
ceive the input focus to allow it to re­
alize its logical color palette.

5-4 Reference - Volume 1

Message

WM_QUERYOPEN

WM_QUIT

WM_SETTEXT

WM_SHOWWINDOW

5.2 Initialization Messages

Description

Sent to an icon when the user re­
quests that the icon be opened into a
window.

Indicates a request to terminate an
application.

Sent after a window receives the
input focus.

Changes the font used by a control
for drawing text.

Sets or clears the redraw flag, which
determines whether or not updates to
a control are displayed.

Sets the text of a window.

Sent whenever a window is to be hid­
den or shown.

Sent after the size of a window has
been changed.

Initialization messages are sent by Windows when an application creates a menu
or dialog box. The following list briefly describes each initialization message:

Message

WM_INITDIALOG

WM_INITMENU

WM_INITMENUPOPUP

5.3 Input Messages

Description

Sent immediately before a dialog box
is displayed.

Requests that a menu be initialized.

Sent immediately before a pop-up
menu is displayed.

Input messages are sent by Windows when an application receives input through
the mouse, keyboard, scroll bars, or system timer. The following list briefly de­
scribes each input message:

Message

WM_CHAR

WM_CHARTOITEM

WM_COMMAND

WM_LBUTTONDBLCLK

WM_LBUTTONDOWN

WM_MBUTTONDBLCLK

WM_MBUTTONDOWN

WM_MOUSEACTIVATE

WM_MOUSEMOVE

Messages Overview 5-5

Description

Results when a WM_KEYUP and a
WM_KEYDOVvN message are trans­
lated.

Sent by a list box with the
LBS_ WANTKEYBOARDINPUT
style to its owner in response to a
WM_CHAR message.

Sent when the user selects an item
from a menu, when a control passes a
message to its parent window, or
when an accelerator key stroke is
translated.

Results when a.WM_KEYUP and a
WM_KEYDOWN message are trans­
lated.

Sent when the user clicks the horizon­
tal scroll bar with the mouse.

Sent when a nonsystem key is
pressed.

Sent when a nonsystem key is
released.

Sent when the user double-clicks the
left mouse button.

Sent when the user presses the left
mouse button.

Sent when the user releases the left
mouse button.

Sent when the user double-clicks the
middle mouse button.

Sent when the user presses the
middle mouse button.

Sent when the user releases the
middle mouse button.

Sent when the cursor is in an inactive
window and any mouse button is
pressed.

Sent when the user moves the mouse.

5-6 Reference - Volume 1

Message

WM_RBUTTONDBLCLK

WM_RBUTTONDOWN

WM_RBUTTONUP

WM_ VKEYTOITEM

WM_VSCROLL

5.4 System Messages

Description

Sent when the user double-clicks the
right mouse button.

Sent when the user presses the right
mouse button.

Sent when the user releases the right
mouse button.

Sent when mouse input is not cap­
tured and the mouse causes cursor
movement within a window.

Sent when the time limit set for a
given timer has elapsed.

Sent by a list box with the
LBS_ WANTKEYBOARDINPUT
style to its owner in response to a
WM_CHAR message.

Sent when the user clicks the vertical
scroll bar with the mouse.

System messages are sent by Windows to an application when a user accesses a
window's System menu, scroll bars, or size box. Although an application can
process these messages, most applications pass them on to the DefWindowProc
function for default processing. The following list briefly describes each system
message:

Message

WM_SYSDEADCHAR

Description

Results when a WM_SYSKEYUP
and a WM_SYSKEYDOWN
message are translated.

Sent when the user selects a com­
mand from the System menu.

Results when a WM_SYSKEYUP
and a WM_SYSKEYDOWN
message are translated.

Sent when the user holds down the
ALT key and then presses another key.

Message

5.5 Clipboard Messages

Messages Overview 5-7

Description

Sent when the user releases a key that
was pressed while the ALT key was
held down.

Clipboard messages are sent by Windows to an application when other applica­
tions try to access a window's clipboard. The following list briefly describes
each clipboard message:

Message

WM_ASKCBFORMATNAME

WM_CHANGECBCHAIN

WM_DESTROYCLIPBOARD

WM_DRAWCLIPBOARD

WM_HSCROLLCLIPBOARD

WM_RENDERALLFORMATS

WM_RENDERFORMAT

WM_SIZECLIPBOARD

WM_ VSCROLLCLIPBOARD

Description

Requests the name of the
CF _OWNERDISPLA Y format.

Notifies viewing-chain members of a
change in the chain.

Signals that the contents of the clip­
board are being destroyed.

Signals an application to notify the
next application in the chain of a clip­
board change. .

Requests horizontal scrolling for the
CF _OWNERDISPLA Y format.

Requests painting of the
CF _OWNERDISPLA Y format.

Notifies the clipboard owner that it
must render the clipboard data in all
possible formats.

Notifies the clipboard owner that it
must format the last data copied to
the clipboard.

Notifies the clipboard owner that the
clipboard application's window size
has changed.

Requests vertical scrolling for the
CF _OWNERDISPLA Y format.

5-8 Reference - Volume 1

5.6 System-Information Messages
System-infonnation messages are sent by Windows when an application or a
user makes a system-wide change that affects other applications. The following
list briefly describes each system-infonnation message:

Message

WM_COMPACTING

WM_DEVMODECHANGE

WM_FONTCHANGE

WM_PALETTECHANGED

WM_SPOOLERSTATUS

WM_SYSCOLORCHANGE

WM_ TIMECHANGE

WM_ WININICHANGE

5.7 Control Messages

Description

Sent to all top-level windows when
Windows requires too much system
time compacting memory, indicating
that system memory is low.

Sent to all top-level windows when
the user changes device-mode set­
tings.

Sent when the pool of font resources
changes.

Notifies all windows that the system
color palette has changed.

Sent from Print Manager whenever a
job is added to or removed from the
Print Manager queue.

Sent to all top-level windows when a
change is made in the system color
setting.

Sent when an application makes a
change or set of changes to the sys­
tem time.

Sent when the Windows initialization
file, WIN.lNI, changes.

Control messages are predefined window messages that direct a control to carry
out a specified task. Applications send control messages to a control by using the
SendMessage function. The control carries out the specified task and returns a
value that indicates the result.

The following messages apply to all controls:

Message

WM_NEXTDLGCTL

Messages Overview 5-9

Description

Sent to a dialog box's window func­
tion, to alter the control focus.

Retrieves the current font used by a
control for drawing text.

Changes the font used by a control
for drawing text.

Sections 5.7.1 through 5.7.5 briefly describe the control messages for each con­
trol class.

5.7. 1 Button-Control Messages
Button-control messages are sent by an application to a button control. The fol­
lowing list briefly describes each button-control message:

Message

BM_SETSTATE

BM_SETSTYLE

DM_GETDEFID

5.7.2 Edit-Control Messages

Description

Determines whether a radio button or
check box is checked.

Returns nonzero if the cursor is over
the button and the user presses the
mouse button or the SPACEBAR.

Checks or removes the checkmark
from a radio button or check box.

Highlights a button or check box.

Alters the style of a button.

Retrieves the ID of the default push­
button control for a dialog box.

Changes the default push-button
control ID for a dialog box.

Edit-control messages are sent by an application to an edit control. In addition to
the messages described below, the WM_ENABLE, WM_GETTEXT,
WM_GETTEXTLENGTH, WM_KILLFOCUS, WM_SETFOCUS,
WM_SETREDRA W, and WM_SETTEXT window messages can be used. The
following list briefly describes each edit-control message:

5-10 Reference - Volume 1

Message

EM_CANUNDO

EM_EMPTYUNDOBUFFER

EM_GETHANDLE

EM_GETLINE

EM_GETLINECOUNT

EM_GETMODIFY

EM_GETRECT

EM_LINEFROMCHAR

EM_LINELENGTH

EM_LINES CROLL

Description

Determines whether or not an edit
control can respond correctly to an
EM_UNDO message.

Disables an edit control's ability to
undo the last edit.

Directs the edit control to add or re­
move the end-of-line character from
word wrapped text lines.

Returns the data handle of the buffer
used to hold the contents of the con­
trol window.

Copies a line from the edit control.

Returns the number of lines of text in
the edit control.

Returns the current value of the mod­
ify flag for a given edit control. The
flag is set by the control if the user
enters or modifies text within the con­
trol.

Returns the formatting rectangle of
the edit control.

Returns the starting and ending
character positions of the current
selection.

Limits the length of the text (in
bytes) the user may enter.

Returns the line number of the line
that contains the character whose
position (indexed from the beginning
of the text) is specified by the
wParam parameter.

Returns the number of character posi­
tions that occur before the first
character in a given line.

Returns the length of a line (in bytes)
in the edit control's text buffer.

Scrolls the contents of the edit con­
trol by the given number of lines.

Message

EM_REPLACESEL

EM_SETPASSWORDCHAR

EM_SETWORDBREAK

EM_UNDO

WM_CLEAR

WM_COPY

WM_UNDO

Messages Overview 5-11

Description

Replaces the current selection with
new text.

Establishes the text buffer used to
hold the contents of the edit-control
window.

Sets the modify flag for a given edit
control.

Changes the password character for
an edit control created with the
ES_PASSWORD styles.

Sets the formatting rectangle for an
edit control.

Identical to EM_SETRECT, except
that the control is not repainted.

Selects all characters in the current
text that are within the starting and
ending character positions given by
the IParam parameter.

Sets tab-stop positions in a multiline
edit control.

Informs a multiline edit control that
Windows has replaced the default
word-break function with an appli­
cation-supplied word-break function.

Undoes the last edit in an edit control.

Deletes the current selection.

Sends the current selection to the clip­
board in CF _TEXT format.

Sends the current selection to the clip­
board in CF _TEXT format, and then
deletes the selection from the control
window.

Inserts the data from the clipboard
into the control window at the current
cursor position.

Undoes the previous action.

5-12 Reference- Volume 1

5.7.3 List-Box Messages
List-box messages are sent by an application to a list box. The following list
briefly describes each list-box message:

Message

LB_ADDSTRING

LB_DELETESTRING

LB_DIR

LB_FINDSTRING

LB_GETCURSEL

LB_GETHORIZONTALEXTENT

LB_GETITEMDATA

LB_GETITEMRECT

LB_GETSEL

LB_GETSELCOUNT

LB_GETSELITEMS

LB_GETTEXTLEN

LB_GETTOPINDEX

LB_INSERTSTRING

Description

Adds a string to the list box.

Deletes a string from the list box.

Adds a list of the files from the cur­
rent directory to the list box.

Finds the first string in the list box
which matches prefix text.

Returns a count of the number of
items in the list box.

Returns the index of the currently
selected item, if any.

Retrieves the width by which a list
box can be scrolled horizontally.

Retrieves a 32-bit value associated
with an item in an owner-draw list
box.

Retrieves the coordinates of the
rectangle that bounds a list-box item.

Returns the selection state of an item.

Returns the total number of selected
items in a multiselection list box.

Retrieves the indexes of the selected
items in a multi selection list box.

Copies a string from the list box into
a buffer.

Returns the length of a string in the
list box.

Returns the index of the first visible
item in a list box.

Inserts a string in the list box.

Message

LB_RESETCONTENT

LB_SELECTSTRING

LB_SELITEMRANGE

LB_SETCOLUMNWIDTH

LB_SETCURSEL

LB_SETHORIZONTALEXTENT

LB_SETITEMDATA

LB_SETSEL

LB_SETTABSTOPS

LB_SETTOPINDEX

5.7.4 Combo-Box Messages

Messages Overview 5-13

Description

Removes all strings from a list box
and frees any memory allocated for
those strings.

Changes the current selection to the
first string that has the specified pre­
fix.

Selects one or more consecutive
items in a multiple-selection list box.

Sets the width in pixels of all
columns in a multicolumn list box.

Selects a string and scrolls it into
view, if necessary.

Sets the width by which a list box can
be scrolled horizontally.

Sets a 32-bit value associated with an
item in an owner-draw list box.

Sets the selection state of a string.

Sets tab-stop positions in a list box.

Sets the first visible item in a list box
to the item identified by an index.

Combo-box messages are sent by an application to a combo box. The following
list briefly describes each combo-box message:

Message

CB_DELETESTRING

CB_FINDSTRING

Description

Adds a string to the list box of a
combo box.

Deletes a string from the list box of a
combo box.

Adds a list of the files from the cur­
rent directory to the combo box.

Finds the first string in the combo­
box list box which matches a prefix.

5-14 Reference - Volume 1

Message

CB_GETEDITSEL

CB_GETITEMDATA

CB_GETLBTEXT

CB_GETLBTEXTLEN

CB_INSERTSTRING

CB_LIMITTEXT

.CB_RESETCONTENT

CB_SELECTSTRING

CB_SETCURSEL

CB_SETITEMDATA

CB_SHOWDROPDOWN

Description

Returns a count of the number of
items in the combo box.

Returns the index of the currently
selected item, if any.

Returns the starting and ending posi­
tions of the selected text in the edit
control of a combo box.

Retrieves a 32-bit value associated
with an item in an owner-draw
combo box.

Copies a string from the list box of a
combo box into a buffer.

Returns the length of a string in the
list box of a combo box.

Inserts a string in the combo box.

Limits the length of the text that the
user may enter into the edit control of
a combo box.

Removes all strings from a combo
box and frees any memory allocated
for those strings.

Changes the current selection to the
first string that has the specified pre­
fix. The text in the edit control is
changed to reflect the new selection.

Selects a string and scrolls it into
view, if necessary.

Selects all characters in the edit con­
trol that are within specified starting
and ending positions.

Sets a 32-bit value associated with an
item in an owner-draw combo box.

Shows or hides a drop-down list box
in a combo box.

Messages Overview 5-15

5.1.5 Owner Draw-Control Messages
Owner draw--control messages notify the owner of a control created with the
OWNERDRA W style that the control needs to be drawn and to provide informa­
tion about the drawing required. The following list briefly describes these mes­
sages:

Message

WM_COMPAREITEM

WM_DELETEITEM

WM_MEASUREITEM

5.8 Notification Messages

Description

Determines which of two items sorts above the other
in a sorted owner-draw list box or combo box.

Indicates that an item in an owner-draw list box or
combo box has been deleted.

Indicates that an owner-draw control needs to be red­
rawn.

Requests the dimensions of an owner-draw combo
box, list box, or menu item.

Notification messages notify a control's parent window of actions that occur
within a control. Sections 5.8.1 through 5.8.4 briefly describe the notification
messages for each notification class.

Controls use the WM_ COMMAND message to notify the parent window of ac­
tions that occur within the control. The wPm"am parameter of the WM_COM­
MAND message contains the control ID; the low-order word of the IParam
parameter contains the control-window handle; and the high-order word of
IParam contains the control notification code.

5.8.1 Button Notification Codes
The following notification codes apply to buttons:

Message Description

BN_CLICKED Indicates that the button has been clicked.

BN_DOUBLECLICKED Indicates that the user has double-clicked an owner-
draw or radio button.

5-16 Reference - Volume 1

5.8.2 Edit-Control Notification Codes
The following notification codes apply to edit controls:

Message

EN_ERRSPACE

EN_HSCROLL

EN_KILLFOCUS

EN_MAXTEXT

EN_VSCROLL

5.8.3 List-Box Notification Codes

Description

Indicates that the user has taken some action that
may have changed the content of the text.

Indicates that the edit control is out of space.

Indicates that the user has clicked the edit control's
horizontal scroll bar with the mouse; the parent
window is notified before the screen is updated.

Indicates that the edit control has lost the input
focus.

Specifies that the current insertion has exceeded a
specified number of characters for the edit control.

Indicates that the edit control has obtained the input
focus.

Specifies that the edit control will display altered
text.

Indicates that the user has clicked the edit control's
vertical scroll bar with the mouse; the parent
window is notified before the screen is updated.

The following notification codes apply only to list-box controls that have
LBS_NOTIFY style:

Message

LBN_ERRSPACE

LBN_KILLFOCUS

LBN_SELCHANGE

LBN_SETFOCUS

Des.cription

Sent when the user double-clicks a string with the
mouse.

Sent when the system is out of memory.

Indicates that a list box has lost input focus.

Sent when the selection has been changed.

Indicates that the list box has received input focus.

Messages Overview 5-17

5.8.4 Combo-Box Notification Codes
The following notification codes apply to combo boxes:

Message

CBN_EDITCHANGE

CBN_EDITUPDATE

CBN_ERRSPACE

CBN_KILLFOCUS

CBN_SELCHANGE

CBN_SETFOCUS

5.9 Scroll-Bar Messages

Description

Sent when the user double-clicks a string with the
mouse.

Informs the owner of the combo box that its list box
is about to be dropped down.

Indicates that the user has altered text in the edit con­
trol.

Indicates that the edit control will display altered
text.

Sent when the system is out of memory.

Indicates that a combo box has lost input focus.

Sent when the selection has been changed.

Indicates that the combo box has received input
focus.

There are two messages in the scroll-bar group: WM_HSCROLL and
WM_ VSCROLL. Scroll-bar controls send these messages to their parent
windows whenever the user clicks in the control. The wPm'am parameter con­
tains the same values as those defined for the scrolling messages of a standard
window. The high-order word of the IParam parameter contains the window
handle of the scroll-bar control.

5.10 Nonclient-Area Messages
Nonclient-area messages are sent by Windows to create and maintain the non­
client area of an application's window. Normally, applications do not process
these messages, but send them on to the DefWindowProc function for pro­
cessing. The following list briefly describes each nonclient-area message:

5-18 Reference- Volume 1

Message

WM_NCACTIVATE

WM_NCCALCSIZE

WM_NCDESTROY

WM_NCLBUTTONDBLCLK

WM_NCLBUTTONDOWN

WM_NCLBUTTONUP

WM_NCMBUTTONDBLCLK

WM_NCMBUTTONDOWN

WM_NCMBUTTONUP

Description

Sent to a window when its caption
bar or icon needs to be changed to in­
dicate an active or inactive state.

Sent when the size of a window's
client area needs to be calculated.

Sent prior to the WM_ CREATE
message when a window is first
created.

Sent after the WM_DESTROY
message.

Sent to the window that contains the
cursor (unless a window has captured
the mouse).

Sent to a window when the left
mouse button is double-clicked while
the cursor is in a nonclient area of the
window.

Sent to a window when the left
mouse button is pressed while the
cursor is in a nonclient area of the
window.

Sent to a window when the left
mouse button is released while the
cursor is in a nonclient area of the
window.

Sent to a window when the middle
mouse button is double-clicked while
the cursor is in a nonclient area of the
window.

Sent to a window when the middle
mouse button is pressed while the
cursor is in a nonclient area of the
window.

Sent to a window when the left
mouse button is released while the
cursor is in a nonclient area of the
window.

Message

WM_NCMOUSEMOVE

WM_NCRBUTTONDBLCLK

WM_NCRBUTTONDOWN

WM_NCRBUTTONUP

Messages Overview 5-19

Description

Sent to a window when the cursor is
moved in a nonclient area of the
window.

Sent to a window when its border
needs painting.

Sent to a window when the right
mouse button is double-clicked while
the cursor is in a nonclient area of the
window.

Sent to a window when the right
mouse button is pressed while the
cursor is in a nonclient area of the
window.

Sent to a window when the right
mouse button is released while the
cursor is in a nonclient area of the
window.

5.11 Multiple Document Interface Messages
Windows multiple document interface (MDI) provides applications with a stand­
ard interface for displaying multiple documents within the same instance of an
application. An MDI application creates a frame window which contains a client
window in place of its client area. The application creates an MDI client window
by calling CreateWindow with the MDICLIENT class and passing a CLIENT­
CREATESTRUCT data structure as the function's ipParam parameter. This
client window in tum can own multiple child windows, each of which displays a
separate document. An MDI application controls these child windows by sending
messages to its client window. The following briefly describes these MDI mes­
sages:

Message

WM_MDIACTIVATE

WM_MDICASCADE

WM_MDICREATE

WM_MDIDESTROY

WM_MDIGETACTIVE

Description

Activates a child window.

Arranges child windows in a cascade
format.

Creates a child window.

Closes a child window.

Returns the current active MDI child
window.

5-20 Reference - Volume 1

5.12 Summary

Message

WM_MDIICONARRANGE

WM_MDIMAXIMIZE

WM_MDINEXT

WM_MDIRESTORE

WM_MDISETMENU

Description

Arranges all minimized child
windows.

Maximizes an MDI child window.

Activates the next child window.

Restores a child window from a maxi­
mized or minimized state.

Replaces the menu of an MDI frame
window, the Window pop-up menu,
or both.

Arranges all child windows in a tiled
format.

Windows messages provide the means of communication between the Windows
system and applications, as well as among applications, in a nonpreemptive multi­
tasking environment. For more information on topics related to Windows mes­
sages, see the following:

Topic

Message-processing
functions

Function descriptions

Message descriptions

Windows data types and
structures

Dynamic data exchange

General information on
Windows programming

Reference

Reference, Volume 1: Chapter 1, "Window
Manager Interface Functions"

Reference, Volume 1: Chapter 4, "Functions
Directory"

Reference, Volume 1: Chapter 6, "Messages
Directory"

Reference, Volume 2: Chapter 7, "Data Types
and Structures"

Reference, Volume 2: Chapter 15, "Windows
DDE Protocol Definition"

Guide to Programming: Chapter 22, "Dy­
namic Data Exchange"

Guide to Programming: Chapter 1, "An
Overview of the Windows Environment"

Chapter

6
Messages Directory

Microsoft Windows communicates with applications through fonnatted window
messages. These messages are sent to an application's window function for pro­
cessing.

Some messages return values that contain infonnation about the success of the
message or other data needed by an application. To obtain the return value, the
application must call SendMessage to send the message to a window. This func­
tion does not return until the message has been processed. If the application does
not require the return value of the message, it may call PostMessage to send the
message. This function places a message in a window's application queue and
then returns immediately. If a message does not have a return value, then the
application may use either function to send the message, unless indicated other­
wise in the message description.

A message consists of three parts: a message number, a word parameter, and a
long parameter. Message numbers are identified by predefined message names.
The message names begin with letters that suggest the meaning or origin of the
message. The word and long parameters, named wParam and lParam respec­
tively, contain values that depend on the message number.

The lParam parameter often contains more than one type of infonnation. For ex­
ample, the high-order word may contain a handle to a window and the low-order
word may contain an integer value. The HIWORD and LOWORD utility mac­
ros can be used to extract the high- and low-order words of the lParam para­
meter. The HIBYTE and LOBYTE utility macros can also be used with
HIWORD and LOWORD to access any of the bytes. Casting can also be used.

There are four ranges of message numbers, as shown in the following list:

Range

o to WM_USER - 1

WM_USER to Ox7FFF

Ox8000 to OxBFFF

OxCOOO to OxFFFF

Meaning

Reserved for use by Windows.

Integer messages for use by applica­
tions.

Reserved for use by Windows.

String messages for use by applica­
tions.

6-2 Reference - Volume 1

Message numbers in the first range (0 to WM_ USER - 1) are defined by
Windows. Values in this range that are not explicitly defined are reserved for fu­
ture use by Windows. This chapter describes messages in this range.

Message numbers in the second range (WM_USER to 7FFF) can be defined and
used by an application to send messages within the application. These messages
should not be sent to other applications unless the applications have been de­
signed to exchange messages and to attach the same meaning to the message
numbers.

Message numbers in the third range (8000 to BFFF) are reserved for future use
by Windows.

Message numbers in the fourth range (COOO to FFFF) are defined at run time
when an application calls the RegisterWindowMessage function to obtain a
message number for a string. All applications that register the identical string can
use the associated message number for exchanging messages with each other.
The actual message number, however, is not a constant and cannot be assumed to
be the same in different window sessions.

This chapter lists messages in alphabetical order. For more information about
messages, see Chapter 5, "Messages Overview."

J
I
o

BM_GETCHECK 6-4

Return Value

Return Value

This message determines whether a radio button or check box is checked.

Parameter

wParam

lParam

Description

Is not used.

Is not used.

The return value is nonzero if the radio button or check box is checked. Otherwise, it is
zero. The BM_ GETCHECK message always returns zero for a push button.

This message determines the state of a button control when the user presses a mouse but­
ton or the SPACEBAR.

Parameter

wParam

lParam

Description

Is not used.

Is not used.

The BM_GETSTATE message returns a nonzero value if one of the following occurs:

• A push button is highlighted.

• The user presses a mouse button or the SPACEBAR when a button has the input focus.

• The user presses a mouse button when the cursor is over a button.

Otherwise, BM_ GET S TATE returns zero.

This message checks or removes the checkmark from a radio button or check box.

6-5

Comments

Comments

Parameter

wParam

IParam

Description

Specifies whether to place or remove a checkmark inside the button
or box. If the wPaJ-am parameter is nonzero, a checkmark is placed;
if it is zero, the checkmark (if any) is removed. For three-state but­
tons, if wParam is 1, a checkmark is placed beside the button. If
wPaJ-am is 2, the button is grayed. If wParam is zero, the button is re­
turned to its normal state (no checkmark or graying).

Is not used.

The BM_SETCHECK message has no effect on push buttons.

This message displays a button or check box.

Parameter

wParam

IParam

Description

Specifies the highlighting action to be taken. If the wParam para­
meter is nonzero, the button is highlighted (the interior is drawn
using inverse video). IfwParam is zero, the button is drawn in its reg­
ular state.

Is not used.

Push buttons cannot be highlighted.

This message alters the style of buttons. If the style contained in the wParam parameter
differs from the existing style, the button is redrawn in the new style.

Parameter

wParain

IParam

Description

Specifies the style value. For a complete description of possible but­
ton styles, see Table 6.1, "Button Styles."

Specifies whether or not the buttons are to be redrawn. If IParam is
zero, the buttons will not be redrawn. If IParam is nonzero, they will
be redrawn.

m
I
r-

..I
I

Xl

Comments

6-6

Table 6.1 describes the available button styles:

Table 6.1 Button Styles

Value

BS_AUTOCHECKBOX

BS_AUTORADIOBUTTON

B S_AUT03 STATE

BS_DEFPUSHBUTTON

BS_RADIOBUTION

Meaning

Identical to BS_CHECKBOX, except that the button au­
tomatically toggles its state whenever the user clicks it.

Identical to BS_RADIOBUTION, except that the but­
ton is checked, the application is notified by
BN_CLICKED, and the checkmarks are removed from
all other radio buttons in the group.

Identical to BS_3STATE, except that the button auto­
matically toggles its state when the user clicks it.

Designates a box that may be checked; its border is bold
when the user clicks the button. Any text appears to the
right of the box.

Designates a button with a bold border. This button rep­
resents the default user response. Any text is displayed
within the button. Windows sends a message to the
parent window when the user clicks the button.

Designates a rectangle into which other buttons are
grouped. Any text is displayed in the rectangle's upper­
left comer.

Causes text to appear on the left side of the radio button
or check-box button. Use this style with the
BS_CHECKBOX, BS_RADIOBUTTON, or
BS_3STATE styles.

Designates an owner-draw button. The parent window is
notified when the button is clicked. Notification includes
a request to paint, invert, and disable the button.

Designates a button that contains the given text. The con­
trol sends a message to its parent window whenever the
user clicks the button.

Designates a small circular button that can be checked;
its border is bold when the user clicks the button. Any
text appears to the right of the button. Typically, two or
more radio buttons are grouped together to represent
mutually exclusive choices, so no more than one button
in the group is checked at any time.

Identical to BS_CHECKBOX, except that the box can
be grayed as well as checked. The grayed state typically
is used to show that a check box has been disabled.

6-7

Comments

BN_CLICKEO

This code specifies that the user has clicked a button. The parent window receives the code
through a WM_COMMAND message from a button control.

Parameter

wParam

IParam

Description

Specifies the control ID.

Contains a handle that identifies the button control in its low-order
word and the BN_CLICKED notification code in its high-order
word.

Disabled buttons will not send a BN_CLICKED notification message to a parent window.

BN_DOUBlECLICKED

Comments

This code specifies that the user has double-clicked a button. The control's parent window
receives this code through a WM_COMMAND message from a button control.

Parameter

wParam

IParam

Description

Specifies the control ID.

Contains a handle that identifies the button control in its low-order
word and the BN_DOUBLECLICKED notification code in its high­
order word.

This code applies to buttons with the BS_RADIOBUTTON and BS_OWNERDRAW
styles only.

OJ
I
r-

Return Value

Comments

6-8

This message adds a string to the list box of a combo box. If the list box is not sorted, the
string is added to the end of the list. If the list box is sorted, the string is inserted into the
list after sorting.

This message removes any existing list-box selections.

Parameter

wParam

lParam

Description

Is not used.

Points to the null-terminated string that is to be added. If the combo
box was created with an owner-draw style but without the
CBS_HASSTRINGS style, the lParam parameter is an application­
supplied 32-bit value that is stored by the combo box instead of the
pointer to the string.

The return value is the index to the string in the list box. The return value is CB_ERR if an
error occurs; the return value is CB_ERRSPACE if insufficient space is available to store
the new string.

If an owner-draw combo box was created with the CBS_SORT style but not the
CBS_HASSTRINGS style, the WM_COMPAREITEM message is sent one or more times
to the owner of the combo box so that the new item can be properly placed in the list box.

CB_DELETESTRING []]]

Return Value

Comments

This message deletes a string from the list box.

Parameter

wParam

lParam

Description

Contains an index to the string that is to be deleted.

Is not used.

The return value is a count of the strings remaining in the list. The return value is CB_ERR
if wParam does not specify a valid index.

If the combo box was created with an owner-draw style but without the CBS_HAS­
STRINGS style, a WM_DELETEITEM message is sent to the owner of the combo box so
the application can free additional data associated with the item (through the lParam para­
meter of the CB_ADDSTRING or CB_INSERTSTRING message).

6-9

Return Value

Comments

This message adds a list of the files from the current directory to the list box. Only files
with the attributes specified by the wParam parameter and that match the file specification
given by the IParam parameter are added.

Parameter

wParam

IParam

Description

Contains a DOS attribute value; For a list of the DOS attributes, see
the DlgDirList function in Chapter 4, "Functions Directory."

Points to a file-specification string. The string can contain wildcard
characters (for example, *. *).

The return value is a count of items displayed. The return value is CB_ERR if an error oc­
curs; the return value is CB_ERRSPACE if insufficient space is available to store the new
strings.

The return value of the CB_DIR message is one less than the return value of the CB_9ET­
COUNT message.

CB_FINDSTRING []]]

Return Value

Comments

This message finds the first string in the list box of a combo box which matches the given
prefix text.

Parameter

wParam

IParam

Description

Contains the index of the item before the first item to be searched.
When the search reaches the bottom of the list box it continues from
the top of the list box back to the item specified by wPm'am. If the
wParam parameter is -1, the entire list box is searched from the
beginning.

Points to the prefix string. The string must be null-tenninated.

The return. value is the index of the matching item or CB_ERR if the search was unsuccess­
ful.

If the combo box was created with an owner-draw style but without the CBS_HAS­
STRINGS style, this message returns the index of the item whose long value (supplied as

OJ
I
r-

..J
I

CD

CB_GETCDUNT 6-10

Return Value

Return Value

the lParam parameter of the CB_ADDSTRING or CB_INSERTSTRING message)
matches the value supplied as the lParam parameter of CB_FINDSTRING.

This message returns a count of the items in a list box of a combo box.

Parameter

wParam

IParam

Description

Is not used.

Is not used.

The return value is a count of the items in the list box of a combo box.

This message returns the index of the currently selected item, if any, in the list box of a
combo box.

Parameter

wParam

IParam

Description

Is not used.

Is not used.

The return value is the index of the currently selected item. It is CB_ERR if no item is
selected.

CB_GETEDITSEL []]]
This message returns the starting and ending positions of the selected text in the edit con­
trol of a combo box.

Parameter

wParam

lParam

Description

Is not used.

Is not used.

6-11

Return Value

CB_GETITEMDATA

The return value is a long integer containing the starting position in the low-order word
and the ending position in the high-order word. If this message is sent to a combo box
without an edit control, the return value is CB_ERR.

CB_GETITEMDATA []]]

Return Value

Return Value

Comments

This message retrieves the application-supplied 32-bit value associated with the specified
combo-box item. If the item is in an owner-draw combo box created without the
CBS_HASSTRINGS style, this 32-bit value was contained in the lParam parameter of the
CB_ADDSTRING or CB_INSERTSTRING message that added the item to the combo
box. Otherwise, it was the value in the lParam parameter of a CB_SETITEMDATA
message.

Parameter Description

wParam Contains an index to the item.

lParam Is not used.

The return value is the 32-bit value associated with the item, or CB_ERR if an error occurs.

This message copies a string from the list box of a combo box into a buffer.

Parameter

wParam

lParam

Description

Contains the index of the string to be copied.

Points to a buffer that is to receive the string. The buffer must have
sufficient space for the string and a terminating null character.

The return value is the length of the string in bytes, excluding the terminating null
character. If wParam does not specify a valid index, the return value is CB_ERR.

If the combo box was created with an owner-draw style but without the CBS_HAS­
STRINGS style, the buffer pointed to by the lParam parameter of the message receives the
32-bit value associated with the item through the lParam parameter of the CB_ADD­
STRING or CB_INSERTSTRING message.

•

OJ
I

..J
I

m

CB_ GETLBTEXTLEN 6-12

CB_GETLBTEXTLEN []]]

Return Value

This message returns the length of a string in the list box of a combo box.

Parameter

wParam

IParam

Description

Contains the index of the string.

Is not used.

The return value is the length of the string in bytes, excluding the tenninating null
character. If wParam does not specify a valid index, the return value is CB_ERR.

CB_INSERTSTRING []]]

Return Value

This message inserts a string into the list box of a combo box. No sorting is perfonned.

Parameter

wParam

IParam

Description

Contains an index to the position that will receive the string. If the
w P aram parameter is -1, the string is added to the end of the list.

Points to the null-tenninated string that is to beinserted. If the combo
box was created with an owner-draw style but without the
CBS_HASSTRINGS style, the IParam parameter is an application­
supplied 32-bit value that is stored by the combo box instead of the
pointer to the string.

The return value is the index of the position at which the string was inserted. The return
value is CB_ERR if an error occurs; the return value is CB_ERRSPACE if insufficient
space is available to store the new string.

This message limits the length (in bytes) of the text that the user may enter into the edit
control of a combo box.

6-13

Return Value

Parameter

wParam

IParam

CB_RESETCONTENT

Description

Specifies the maximum number of bytes which the user can enter.

Is not used.

The return value is TRUE if the message is successful; otherwise, it is FALSE. If this
message is sent to a combo box without an edit control, the return value is CB_ERR.

CB_RESETCONTENT ODD

Comments

This message removes all strings from the list box of a combo box and frees any memory
allocated for those strings.

Parameter

wParam

IParam

Description

Is not used.

Is not used.

If the combo box was created with an owner-draw style but without the CBS_HAS­
STRINGS style, the owner of the combo box receives a WM_DELETEITEM message for
each item in the combo box.

CB_SElECTSTRING ODD
This message selects the first string in the list box of a combo box that matches the
specified prefix. The text in the edit control of the combo box is changed to reflect the new
selection.

Parameter

wParam

IParam

Description

Contains the index of the item before the first item to be searched.
When the search reaches the bottom of the list box it continues from
the top of the list box back to the item specified by wParam. If the
wParam parameter is -1, the entire list box is searched from the
beginning.

Points to the prefix string. The string must have a null-terminating
character.

CD
I
r-

....I Return Value
I

al'

Comments

Return Value

Return Value

6-14

The return value is the index of the newly selected item. If the search was unsuccessful,
the return value is CB_ERR and the current selection is not changed.

A string is selected only if its initial characters (from the starting point) match the
characters in the prefix string.

If the combo box was created with an owner-draw style but without the CBS_HAS­
STRINGS style, this message returns the index of the item whose long value (supplied as
the lParam parameter of the CB_ADDSTRING or CB_INSERTSTRING message)
matches the value supplied as the lParam parameter of CB_FINDSTRING.

This message selects a string in the list box of a combo box and scrolls it into view if the
list box is visible, and the text in the combo-box edit control or static-text control is
changed to reflect the new selection. When the new string is selected, the list box removes
the highlight from the previously selected string.

Parameter

wParam

lParam

Description

Contains the index of the string that is to be selected. If wParam is
-1, the list box is set to have no selection.

Is not used.

If the index specified by wParam is not valid, the return value is CB_ERR and the current
selection is not changed.

This message selects all characters in the edit control of a combo box that are within the
starting and ending character positions specified by the lParam parameter.

Parameter

wParam

lParam

Description

Is not used.

Specifies the starting position in the low-order word and the ending
position in the high-order word.

The return value is TRUE if the message is successful; otherwise, it is FALSE. If this
message is sent to a combo box without an edit control, the return value is CB_ERR.

6-15 CB_SETITEMOATA

CB_SETITEMDATA lm

Return Value

This message sets the 32-bit value associated with the specified item in a combo box. If
the item is in an owner-draw combo box created without the CBS_HASSTRINGS style,
this message replaces the 32-bit value that was contained in the lParam parameter of the
CB_ADDSTRING or CB_INSERTSTRING message that added the item to the combo
box.

Parameter Description

wParam Contains an index to the item.

lParam Contains the new value to be associated with the item.

The return value is CB _ERR if an error occurs.

CB_SHOWDROPDOWN lm
This message shows or hides the drop-down list box on a combo box created with the
CBS_DROPDOWN or CBS_DROPDOWNLIST style.

Parameter

wParam

lParam

Description

If TRUE, displays the list box if it is not already visible. If FALSE,
hides the list box if it is visible.

Not used.

This code specifies that the user has double-clicked a string in the list box of a combo box.
The control's parent window receives this code through a WM_COMMAND message
from the control.

Parameter

wParam

lParam

Description

Specifies the control ID of the combo box.

Contains the combo-box window handle in its low-order word and
the CBN_DBLCLK code in its high-order word.

m
I
r-

6-16

..J Comments This message can only occur for a combo box with a list box that is always visible. For
combo boxes with drop-down list boxes, a single closes the list box and so a double-click
cannot occur.

I '
co

Comments

This code specifies that the list box of a combo box will be dropped down. It is sent just
before the combo-box list box is made visible. The control's parent window receives this
code through a WM_COMMAND message from the control.

Parameter

wParam

IParam

Description

Specifies the control ID of the combo box.

Contains the combo-box window handle in its low-order word and
the CBN_DROPDOWN code in the high-order word.

This message does not occur if the combo box does not contain a drop-down list box.

CBN_EDITCHANGE WJ

Comments

This code indicates that the user has taken an action that may have altered the text in the
edit control of a combo box. It is sent after Windows updates the display (unlike the
CBN_EDITUPDATE code). The control's parent window receives this code through a
WM_COMMAND message from the control. .

Parameter

wParam

IParam

Description

Specifies the control ID of the combo box.

Contains the combo-box window handle in its low-order word and
the CBN_EDITCHANGE code in its high-order word.

This message does not occur if the combo box does not contain an edit control.

CBN_EDITUPDATE WJ
This code specifies that a combo box containing an edit control will display altered text.
The control's parent window receives this code through a WM_COMMAND message
from the control.

6-17

Comments

Parameter

wPm'am

IParam

Description

Specifies the control ID of the combo box.

Contains the combo-box window handle in its low-order word and
the CBN_EDITUPDATE code in its high-order word.

This message does not occur if the combo box does not contain an edit control.

This code specifies that the combo-box list-box control cannot allocate enough memory to
meet a specific request. The control's parent window receives this code through a
WM_ COMMAND message from the control.

Parameter

wParam

IParam

Description

Specifies the control ID of the combo box.

Contains the combo-box window handle in its low-order word and
the CBN_ERRSPACE code in its high-order word.

CBN_KlllFOCUS [IQJ
This code is sent when a combo box loses input focus. The control's parent window re­
ceives this code through a WM_COMMAND message from the control.

Parameter

wParam

IParam

Description

Specifies the control ID of the combo box.

Contains the combo-box window handle in its low-order word and
the CBN_KILLFOCUS code in its high-order word.

This code indicates that the selection in the list box of a combo box has changed either as a
result of the user clicking in the list box or entering text in the edit control. The control's
parent window receives this code through a WM_ COMMAND message from the control.

CD
I
r-

J
I
Il

Parameter

wParam

IParam

Description

Specifies the control ID of the combo box.

Contains the combo-box window handle in its low-order word and
the CBN_SELCHANGE code in its high-order word.

6-18

This code is sent when the combo box receives input focus. The control's parent window
receives this code through a WM_COMMAND message from the control.

Parameter

wParam

IParam

Description

Specifies the control ID of the combo box.

Contains the combo-box window handle in its low-order word and
the CBN_SETFOCUS code in its high-order word.

6-19

Return Value

OM_GETOEFIO

This message retrieves the ID of the default push-button control for a dialog box.

Parameter

wParam

IParam

Description

Is not used.

Is not used.

The return value is a 32-bit value. The high-order word contains DC_HASDEFID if the de­
fault button exists; otherwise, it is NULL. The low-order word contains the ID of the de­
fault button if the high-order word contains DC_HASDEFID; otherwise, it is zero.

This message is used by an application to change the default push-button control ID for a
dialog box.

Parameter

wParam

IParam

Description

Contains the ID of the new default push-button control.

Is not used.

tI
I
r

Return Value

6-20

This message deterrriines whether an edit control can respond correctly to an EM_UNDO
message.

Parameter

wParam

IParam

Description

Is not used.

Is not used.

The return value is nonzero if the edit control can process the EM_UNDO message cor­
rectly. Otherwise, it is zero.

EM_EMPTYUNDOBUFFER [ill

Comments

This message directs an edit control to clear its undo buffer. This disables the edit control's
ability to undo the last edit.

Parameter

wParam

IParam

Description

Is not used.

Is not used.

The undo buffer is automatically emptied whenever the edit control receives a
WM_SETTEXT or EM_SETHANDLE message.

This message directs a multiline edit control to add or remove the end-of-line character
from word wrapped text lines.

Parameter

wParam

IParam

Description

Indicates the disposition of end-of-line characters. If the
wParam parameter is nonzero, the characters CR CR LF
(OD OD OA hexadecimal) are placed at the end of wordwrapped
lines. If wParam is zero, the end-of-line characters are removed
from the text.

Is not used.

6-21

Return Value

Comments

Return Value

Comments

Return Value

EM_GETHANOLE

The return value is nonzero if any formatting occurs. Otherwise, it is zero.

Lines that end with a hard return (a carriage return entered by the user) contain
the characters CR LF at the end of the line. These lines are not affected by the
EM_FMTLINES message.

Notice that the size of the text changes when this message is processed.

This message returns the data handle of the buffer that holds the contents of the control
window. The handle is always a local handle to a location in the application's data segment.

Parameter

wPm'am

lParam

Description

Is not used.

Is not used.

The return value is a data handle that identifies the buffer that holds the contents of the edit
control.

An application may send this message to a control only if it has created the dialog box con- I

taining the control with the DS_LOCALEDIT style flag set.

This message copies a line from the edit control.

Parameter

wParam

lParam

Description

Specifies the line number of the line in the control, where the
line number of the first line is zero.

Points to the buffer where the line will be stored. The first word
of the buffer specifies the maximum number of bytes to be
copied to the buffer. The copied line is not null-terminated.

The return value is the number of bytes actually copied. This message is not processed by
single-line edit controls.

a
I
r

J
I
o

EM_GETLINECOUNT 6-22

EM_GETLINECOUNT

Return Value

Comments

Return Value

This message returns the number of lines of text in the edit control.

Parameter

wParam

IParam

Description

Is not used.

Is not used.

The return value is the number of lines of text in the control.

This message is not processed by single-line edit controls.

This message returns the current value of the modify flag for a given edit control. The flag
is set by the control if the user enters or modifies text within the control.

Parameter

wParam

lParam

Description

Is not used.

Is not used.

The return value is the value of the current modify flag for a given edit control.

This message retrieves the formatting rectangle of the control.

Parameter

wParam

lParam

Description

Is not used.

Points to a RECT data structure. The control copies the dimen­
sions of the structure.

6-23

Return Value

Comments

EM_GETSEL

This message returns the starting and ending character positions of the current selection.

Parameter

wParam

IParam

Description

Is not used.

Is not used.

The return value is a long value that contains the starting position in the low-order word. It
contains the position of the first nonselected character after the end of the selection in the
high-order word.

This message limits the length (in bytes) of the text the user may enter.

Parameter

wParam

IParam

Description

Specifies the maximum number of bytes that can be entered. If
the user attempts to enter more characters, the edit control beeps
and does not accept the characters. If the wP aram parameter is
zero, no limit is imposed on the size of the text (until no more
memory is available).

Is not used.

The EM_LIMITTEXT message does not affect text set by the WM_SETTEXT message or
the buffer set by the EM_SETHANDLE message.

EM_LlNEFROMCHAR
This message returns the line number of the line that contains the character whose position
(indexed from the beginning of the text) is specified by the wPm'am parameter.

a
I .-

..I
I
n

Return Value

Return Value

Comments

Parameter

wParam

IParam

Description

Contains the index value for the desired character in the text of
the edit control (these index values are zero-based), or contains
-1.

Is not used.

6-24

The return value is a line number. If wP aram is -1, the number of the line that contains the
first character of the selection is returned; otherwise, wParam contains the index (or posi­
tion) of the desired character in the edit-control text, and the number of the line that con­
tains that character is returned.

This message returns the number of character positions that occur preceding the first
character in a given line.

Parameter

wParam

IParam

Description

Specifies the desired line number, where the line number of the
first line is zero. If the wP aram parameter is -1, the current line
number (the line that contains the caret) is used.

Is not used.

The return value is the number of character positions that precede the first character in the
line.

This message will not be processed by single-line edit controls.

This message returns the length of a line (in bytes) in the edit control's text buffer.

6-25

Comments

Comments

Parameter

wParam

IParam

EM_LINES CROLL

Description

Specifies the character index of a character in the specified line,
where the line number of the first line is zero. If the wPm'am
parameter is -1, the length of the current line (the line that con­
tains the caret) is returned, not including the length of any
selected text. If the current selection spans more than one line,
the total length of the lines, minus the length of the selected text,
is returned.

Is not used.

Use the EM_LINEINDEX message to retrieve a character index for a given line number.
This index can be used with the EM_LINELENGTH message.

This message scrolls the content of the control by the given number of lines.

Parameter

wPm'am

IParam

Description

Is not used.

Contains the number of lines and character positions to scroll.
The low-order word of the IParam parameter contains the num­
ber of lines to scroll vertically; the high-order word contains the
number of character positions to scroll horizontally.

This message will not be processed by single-line edit controls.

EM_REPlACESEl
This message replaces the current selection with new text.

Parameter

wPm'am

IParam

Description

Is not used.

Points to a null-terminated string of replacement text.

a:
I
r

6-26

t, EM_SETHANDLE
o

Comments

This message establishes the text buffer used to hold the contents of the control window.

Parameter

wParam

lParam

Description

Contains a handle to the buffer. The handle must be a local
handle to a location in the application's data segment. The edit
control uses this buffer to store the currently displayed text, in­
stead of allocating its own buffer. If necessary, the control
reallocates this buffer.

Is not used.

This message will not be processed by single-line edit controls.

If the EM_SETHANDLE message is used to change the text buffer used by an edit con­
trol, the previous text buffer is not destroyed. The application must retrieve the previous
buffer handle before setting the new handle, and must free- the old handle by using the
LocalFree function.

An edit control automatically reallocates the given buffer whenever it needs additional
space for text, or it removes enough text so that additional space is no longer needed. An
application may send this message to a control only if it has created the dialog box contain­
ing the control with the DS_LOCALEDIT style flag set.

This message sets the modify flag for a given edit control.

Parameter

wParam

lParam

Description

Specifies the new value for the modify flag.

Is not used.

EM_SETPASSWORDCHAR WJ
This message sets the character displayed in an edit control created with the ES_PASS­
WORD style. The default display character is an asterisk (*).

6-27

Comments

Comments

Parameter

wParam

lParam

Description

Specifies the character to be displayed in place of the character
typed by the user. If wParam is NULL, the actual characters
typed by the user are displayed.

Is not used.

This message sets the formatting rectangle for a control. The text is reformatted and redis­
played to reflect the changed rectangle.

Parameter

wParam

lParam

Description

Is not used.

Points to a RECT data structure that specifies the new dimen­
sions of the rectangle.

This message will not be processed by single-line edit controls.

This message sets the formatting rectangle for a control. The text is reformatted and redis­
played to reflect the changed rectangle. The EM_SETRECTNP message is the same as the
EM_SETRECT message, except that the control is not repainted. Any subsequent altera­
tions cause the control to be repainted to reflect the changed formatting rectangle. This
message is used when the field is to be repainted later.

Parameter

wPm'am

IParam

Description

Is not used.

Points to a RECT data structure that specifies the new dimen­
sions of the rectangle.

This message will not be processed by single-line edit controls.

6-28

This message selects all characters in the current text that are within the starting and
ending character positions given by the IParam parameter.

Parameter

wParam

IParam

Description

Is not used.

Specifies the starting position in the low-order word and the
ending position in the high-order word. The position values 0 to
32,767 select the entire string.

EM_SETTABSTOPS []]]

Return Value

Comments

This message sets the tab-stop positions in a multiline edit control.

Parameter

wParam

IParam

Description

Is an integer that specifies the number of tab stops in the edit
control.

Is a long pointer to the first member of an array of integers con­
taining the tab stop positions in dialog units. (A dialog unit is a
horizontal or vertical distance. One horizontal dialog unit is
equal to 1/4 of the current dialog base width unit. The dialog base
units are computed based on the height and width of the current
system font. The GetDialogBaseUnits function returns the cur­
rent dialog base units in pixels.) The tab stops must be sorted in
increasing order; back tabs are not allowed.

The return value is TRUE if all the tabs were set. Otherwise, the return value is FALSE.

If wParam is zero and [Param is NULL, the default tab stops are set at every 32 dialog
units.

If wParam is I, the edit control will have tab stops separated by the distance specified by
[Paramo

If [Param points to more than a single value, then a tab stop will be set for each value in
[Param, up to the number specified by wParam.

6-29 EM_SETWOROBREAK

EM_SETWORDBREAK

Comments

This message is sent to the multiline edit control, infonning the edit control that Windows
has replaced the default word-break function with an application-supplied word-break
function. A word-break function scans a text buffer (which contains text to be sent to the
display), looking for the first word that will not fit on the current display line. The word­
break function places this word at the beginning of the next line on the display. A word­
break function defines at what point Windows should break a line of text for multiline edit
controls, usually at a blank character that separates two words. The default word-break
function breaks a line of text at a blank character. The application-supplied function may
define a word break to be a hyphen or character other than the blank character.

Parameter

wParam

lParam

Description

Is not used.

Is a procedure-instance address.

The callback-function address, passed as the lParam parameter, must be created by using
the MakeProcInstance function.

The callback function must use the Pascal calling convention and must be declared FAR.

Callback Function LPSTR FAR PASCAL WordBreakFunc(lpchEditText, ichCurrentWord, cchEditText)
LPSTR lpchEditTexi;
short. ichCurrentWord;
short cchEditText;

WordBreakFunc is a placeholder for the application-supplied function name. The actual
name must be exported by including it in an EXPORTS statement in the application's
module-definition file.

Parameter

lpchEditText

ichCurrentWord

cchEditText

Description

Points to the text of the edit control.

Specifies an index to a word in the buffer of text that identifies
at what point the function should begin checking for a word
break.

Specifies the number of bytes of edit text.

tI
I

r-

J Return Value
J
D The return value points to the first byte of the next word in the edit-control text. If the cur-

Return Value

rent word is the last word in the text, the return value points to the first byte that follows
the last word.

This message undoes the last edit to the edit control. When the user modifies the edit con­
trol, the last change is stored in an undo buffer, which grows dynamically as required. Ifin­
sufficient space is available for the buffer, the undo attempt fails and the edit control is
unchanged.

Parameter

wParam

IParam

Description

Is not used.

Is not used.

The return value is nonzero if the undo operation is successful. It is zero if the undo opera­
tion fails.

This code specifies that the user has taken an action that may have altered text. It is sent
after Windows updates a display (unlike the EN_UPDATE code). The control's parent
window receives this code through a WM_COMMAND message from the control.

Parameter

wParam

IParam

Description

Contains the wParam parameter of the WM_COMMAND
message, and specifies the control ID.

Contains an edit-control window handle in its low-order word
and the EN_CHANGE code in its high-order word.

This code specifies that the edit control cannot allocate additional memory space. The con­
trol's parent window receives this code through a WM_COMMAND message from the
control.

6-31

EN_KILLFOCUS

Parameter

wPm'am

lParam

Description

Contains the wPm'am parameter of the WM_COMMAND
message, and specifies the control ID.

Contains an edit-control window handle in its low-order word
and the EN_ERRSPACE code in its high-order word.

This code specifies that the user has clicked the edit con~rol 's horizontal scroll bar. The
control's parent window receives this code through a WM_COMMAND message from the
control. The parent window is notified before the screen is updated.

Parameter

wPm'am

lParam

Description

Contains the wPm'am parameter of the WM_COMMAND
message, and specifies the control ID.

Contains an edit-control window handle in its low-order word
and the EN_HSCROLL code in its high-order word.

This code specifies that the edit control has lost the input focus. The control's parent
window receives this code through a WM_ COMMAND message from the control.

Parameter

wPm'am

lParam

Description

Contains the wPm'am parameter of the WM_COMMAND
message, and specifies the control ID.

Contains an edit-control window handle in its low-order word
and the EN_KILLFOCUS code in its high-order word.

This code specifies that the current insertion has exceeded the specified number of
characters for the edit control. The insertion has been truncated. This message is also sent
when an edit control does not have the ES_AUTOHSCROLL style and the number of
characters to be inserted would exceed the width of the edit control. The control's parent
window receives this code through a WM_ COMMAND message from the control.

0:
I
r

.J
I
n

Parameter

wParam

IParam

Description

Contains the wParam parameter of the WM_COMMAND
message, and specifies the control ID.

Contains an edit-control window handle in its low-order word
and the EN_MAXTEXT code in its high-order word.

6-32

This code specifies that the edit control has obtained the input focus. The control's parent
window receives this code through a WM_COMMAND message from the control.

Parameter

wParam

IParam

Description

Contains the wParam parameter of the WM_COMMAND
message, and specifies the control ID.

Contains an edit-control window handle in its low-order word
and the EN_SETFOCUS code in its high-order word.

The code specifies that the edit control will display altered text. The control's parent
window receives this code through a WM_COMMAND message from the control; notifi­
cation occurs after the control has formatted the text, but before it displays the text. This
makes it possible to alter the window size, if necessary.

Parameter

wParam

IParam

Description

Specifies the control ID.

Contains an edit-control window handle in its low-order word
and the EN_UPDATE code in its high-order word.

6-33 EN_VSCROLL

This code specifies that the user has clicked the edit control '8 vertical scroll bar. The con­
trol's parent window receives this code through a WM_COMMAND message from the
control; notification occurs before the screen is updated.

Parameter

wPm"am

IParam

Description

Contains the wParam parameter of the WM_COMMAND
message, and specifies the control ID.

Contains an edit-control window handle in its low-order word
and the EN_ VSCROLL code in its high-order word.

m
I
r-

...I
I

to

Return Value

Comments

6-34

This message adds a string to the list box. If the list box is not sorted, the string is added to
the end of the list. If the list box is sorted, the string is inserted into the list after sorting.

This message removes any existing list-box selections.

Parameter

wParam

IParam

Description

Is not used.

Points to the null-terminated string that is to be added. If the list
box was created with an owner-draw style but without the
LBS_HASSTRINGS style, the IParam parameter is an
application-supplied 32-bit value that is stored by the list
box instead of the pointer to the string.

The return value is the index to the string in the list box. The return value is ~B_ERR if an
error occurs; the return value is LB_ERRSPACE if insufficient space is available to store
the new string.

If an owner-draw list box was created with the LBS_SORT style but not the LBS_HAS­
STRINGS style, the WM_COMPAREITEM message is sent one or more times to the
owner of the list box so the new item can be properly placed in the list box.

LB_DELETESTRING

Return Value

Comments

This message deletes a string from the list box.

Parameter

wParam

IParam

Description

Contains an index to the string that is to be deleted.

Is not used.

The return value is a count of the strings remaining in the list. The return value is LB_ERR
if an error occurs.

If the list box was created with an owner-draw style but without the LBS_HASSTRINGS
style, a WM_DELETEITEM message is sent to the owner of the list box so the application
can free additional data associated with the item (through the IParam parameter of the
LB _ADDSTRING or LB _INSERTSTRING message).

6-35

Return Value

Comments

Return Value

Comments

This message adds a list of the files from the current directory to the list box. Only files
with the attributes specified by the wPm·am parameter and that match the file specification
given by the IParam parameter are added.

Parameter

wPm-am

IParam

Description

Contains a DOS attribute value. For a list of the DOS attributes,
see the DlgDirList function in Chapter 4, "Functions Directory."

Points to a file-specification string. The string can contain wild­
card characters (for example, *. *).

The return value is a count of items displayed. The return value is LB_ERR if an error oc­
curs; the return value is LB_ERRSPACE if insufficient space is available to store the new
strings.

The return value of the LB_DIR message is one less than the return value of the LB_GET­
COUNT message.

This message finds the first string in the list box which matches the given prefix text.

Parameter

wParam

IParam

Description

Contains the index of the item before the first item to be
searched. When the search reaches the bottom of the list box it
continues from the top of the list box back to the item specified
by wParam. If the wParam parameter is -1, the entire list box is
searched from the beginning.

Points to the prefix string .. The string must be null-terminated.

The return value is the index of the matching item or LB_ERR if the search was unsuccess­
ful.

If the list box was created with an owner-draw style but without the LBS_HASSTRINGS
style, this message returns the index of the item whose long value (supplied as the IParam
parameter of the LB_ADDSTRING or LB_INSERTSTRING message) matches the value
supplied as the IParam parameter of LB_FINDSTRING.

m
I
r

.J
I

:0

Return Value

This message returns a count of the items in the list box.

Parameter

wParam

IParam

Description

Is not used.

Is not used.

6-36

The return value is a count of the items in the list box. The return value is LB_ERR if an
error occurs.

LB_GETCURSEL

Return Value

This message returns the index of the currently selected item, if any.

Parameter

wParam

IParam

Description

Is not used.

Is not used.

The return value is the index of the currently selected item. It is LB_ERR if no item is
selected or if the list-box type is multiple selection.

LB_GETHORIZONTALEXTENT []I]

Return Value

Comments

This message retrieves from a list box the width in pixels by which the list box can be
scrolled horizontally if the list box has horizontal scroll bars.

Parameter

wParam

IParam

Description

Is not used.

Is not used.

The return value is the scroll able width of the list box, in pixels.

To respond to the LB_GETHORIZONTALEXTENT message, the list box must have been
defined with the WS_HSCROLL style.

6-37 LB_GETITEMDATA

lB_GETITEMDATA []]]

Return Value

This message retrieves the application-supplied 32-bit value associated with the specified
list-box item. If the item is in an owner-draw list box created without the LBS_HAS­
STRINGS style, this 32-bit value was contained in the IParam parameter of the LB_ADD­
STRING or LB_INSERTSTRING message that added the item to the list box. Otherwise,
it was the value in the IParam parameter of a LB_SETITEMDATA message.

Parameter Description

wParam Contains an index to the item.

IParam Is not used.

The return value is the 32-bit value associated with the item, or LB_ERR if an error occurs.

lB_GETITEMRECT []]]

Return Value

This message retrieves the dimensions of the rectangle that bounds a list-box item as it is
currently displayed in the list-box window.

Parameter

wParam

lParam

Description

Contains an index to the item.

Contains a long pointer to a RECT data structure that receives
the list-box client coordinates of the item.

The return value is LB _ERR if an error occurs.

This message returns the selection state of an item.

Parameter Description

wParam Contains an index to the item.

lParam Is not used.

to
I
r-

LB_GETSELCOUNT 6-38

J Return Value The return value is a positive number if an item is selected. Otherwise, it is zero. The re­
turn value is LB_ERR if an error occurs. I

Q,

LB_GETSELCOUNT []]]

Return Value

This message returns the total number of selected items in a multi selection list box.

Parameter

wParam

IParam

Description

Not used.

Not used.

The return value is the count of selected items in a list box. If the list box is a single-selec­
tion list box, the return value is LB_ERR.

LB_GETSELITEMS []]]

Return Value

LB_GETTEXT

This message fills a buffer with an array of integers specifying the item numbers of
selected items in a multi selection list box.

Parameter

wParam

IParam

Description

Specifies the maximum number of selected items whose item
numbers are to be placed in the buffer.

Contains a long pointer to a buffer large enough for the number
of integers specified by the wParam parameter.

The return value is the actual number of items placed in the buffer. If the list box is a
single-selection list box, the return value is LB_ERR.

This message copies a string from the list into a buffer.

Parameter Description

wParam Contains the index of the string to be copied.

6·39

Return Value

Comments

Return Value

Return Value

Parameter

IParam

L8_ GETTEXTLEN

Description

Points to the buffer that is to receive the string. The buffer must
have both sufficient space for the string and a terminating null
character.

The return value is the length of the string (in bytes), excluding the terminating null
character. The return value is LB_ERR if the wPm"am parameter is not a valid index.

If the list box was created with an owner-draw style but without the LBS_HASSTRINGS
style, the buffer pointed to by the IParam parameter of the message receives the 32-bit
value associated with the item through the IParam parameter of the LB_ADDSTRING or
LB _INSERTSTRING message.

This message returns the length of a string in the list box.

Parameter

wParam

IParam

Description

Contains an index to the string.

Is not used.

The return value is the length of the string (in bytes), excluding the terminating null
character. The return value is LB_ERR if an error occurs.

This message returns the index of the first visible item in a list box. Initially, item 0 is at
the top of the list box, but if the list box is scrolled, another item may be at the top.

Parameter

wParam

IParam

Description

Not used.

Not used.

The index of the first visible item in a list box.

to
I
r-

LB_INSERTSTRING 6-40

LB_INSERTSTRING

Return Value

This message inserts a string into the list box. No sorting is performed.

Parameter

wParam

IParam

Description

Contains an index to the position that will receive the string. If
the wParam parameter is -1, the string is added to the end of the
list.

Points to the null-terminated string that is to be inserted. If the
list box was created with an owner-draw style but without the
LBS_HASSTRINGS style, the IParam parameter is an appli­
cation-supplied 32-bit value that is stored by the list box instead
of the pointer to the string.

The return value is the index of the position at which the string was inserted. The return
value is LB_ERR if an error occurs; the return value is LB_ERRSPACE if insufficient
space is available to store the new string.

LB_RESETGONTENT

Comments

This message removes all strings from a list box and frees any memory allocated for those
strings.

Parameter

wParam

IParam

Description

Is not used.

Is not used.

If the list box was created with an owner-draw style but without the LBS_HASSTRINGS
style, the owner of the list box receives a WM_DELETEITEM message for each item in
the list box.

LB_SELEGTSTRING
This message changes the current selection to the first string that has the specified prefix.

6-41

Return Value

Comments

Parameter

wPm'am

IParam

LB_SELITEMRANGE

Description

Contains the index of the item before the first item to be
searched. When the search reaches the bottom of the list box it
continues from the top of the list box back to the item specified
by wPm'am. If the wPm'am parameter is -1, the entire list box is
searched from the beginning.

Points to the prefix string. The string must have a null-terminat­
ing character.

The return value is the index of the selected item. The return value is LB_ERR if an error
occurs.

This message must not be used with list boxes that are multiple-selectiQn type.

A string is selected only if its initial characters (from the starting point) match the
characters in the prefix string.

If the list box was created with an owner-draw style but without the LBS_HASSTRINGS
style, this message returns the index of the item whose long value (supplied as the IParam
parameter of the LB_ADDSTRING or LB_INSERTSTRING message) matches the value
supplied as the IParam parameter of LB_FINDSTRING.

LB_SELlTEMRANGE []]]

Return Value

Comments

This message selects one or more consecutive items in a multiple-selection list box.

Parameter

wParam

IParam

Description

Specifies how to set the selection. If the wParam parameter is
nonzero, the string is selected and highlighted; if wParam is
zero, the highlight is removed and the string is no longer
selected.

The low-order word of the IParam parameter is an index that
specifies the first item to set, and the high-order word is an
index that specifies the last item to set.

The return value is LB_ERR if an error occurs,

This message should be used only with multiple-selection list boxes.

OJ
I

.r-

J
I
Q

LB_SETCOLUMNWIDTH 6-42

LB_SETCOLUMNWIDTH WJ

Return Value

Comments

This message is sent to a multi column list box created with the LBS_MULTICOLUMN
style to set the width in pixels of all columns in the list box.

Parameter

wParam

lParam

Description

Specifies the width in pixels of all columns.

Is not used.

This message selects a string and scrolls it into view, if necessary. When the new string is
selected, the list box removes the highlight from the previously selected string.

Parameter

wParam

lParam

Description

Contains the index of the string that is selected. If wP aram is -1,
the list box is set to have no selection.

Is not used.

The return value is LB_ERR if an error occurs.

This message should be used only with single-selection list boxes. It cannot be used to set
or remove a selection in a multiple-selection list box.

LB_SETHORIZONTALEXTENT WJ
. This message sets the width in pixels by which a list box can be scrolled horizontally. If
the size of the list box is smaller than this value, the horizontal scroll bar will horizontally
scroll items in the list box. If the list box is as large or larger than this value, the horizontal
scroll bar is disabled.

Parameter

wParam

lParam

Description

Specifies the number of pixels by which the list box can be
scrolled.

Is not used.

6-43

Comments

LB_SETITEMOATA

To respond to the LB_SETHORIZONTALEXTENT message, the list box must have been
defined with the WS_HSCROLL style.

LB_SETITEMDATA [I[]

Return Value

Return Value

Comments

This message sets a 32-bit value associated with the specified item in a list box. If the item
is in an owner-draw list box created without the LBS_HASSTRINGS style, this message
replaces the 32-bit value that was contained in the IParam parameter of the LB_ADD­
STRING or LB_INSERTSTRING message that added the item to the list box.

Parameter Description

wParam Contains an index to the item.

IParam Contains the new value to be associated with the item.

The return value is LB_ERR if an error occurs.

This message 'selects a string in a multiple-selection list box.

Parameter

wParam

IParam

Description

Specifies how to set the selection. If the wParam parameter is
nonzero, the string is selected and highlighted; if wParam is
zero, the highlight is removed and the string is no longer
selected.

The low-order word of the IParam parameter is an index that
specifies which string to set. If IParam is -1, the selection is
added to or removed from all strings, depending on the value of
wParam.

The return value is LB_ERR if an error occurs.

This message should be used only with multiple-selection list boxes.

to
I
r-

..I
I
11

LB_SETTABSTOPS 6-44

LB_SETTABSTOPS [IQJ

Return Value

Comments

This message sets the tab-stop positions in a list box.

Parameter

wParam

lParam

Description

Is an integer that specifies the number of tab stops in the list
box.

Is a long pointer to the first member of an array of integers con­
taining the tab stop positions in dialog units. (A dialog unit is a
horizontal or vertical distance. One horizontal dialog unit is
equal to 1/4 of the the current dialog base width unit. The dialog
base units are computed based on the height and width of the
current system font. The GetDialogBaseUnits function returns
the current dialog base units in pixels.) The tab stops must be
sorted in increasing order; back tabs are not allowed.

The return value is TRUE if all the tabs were set. Otherwise, the return value is FALSE.

If wParam is zero and lParam is NULL, the default tab stop is two dialog units.

If wParam is 1, the edit control will have tab stops separated by the distance specified by
lParam.

If lParam points to more than a single value, then a tab stop will be set for each value in
lParam, up to the number specified by wParam.

To respond to the LB_SETTABSTOPS message, the list box must have been created with
the LBS_USETABSTOPS style.

LB_SETTOPINDEX [IQJ

Return Value

This message sets the first visible item in a list box to the item identified by the index.

Parameter

wParam

lParam

Description

Specifies the index of the list-box item.

Not used.

The return value is LB_ERR if an error occurs.

6-45

Comments

Comments

This code specifies that the user has double-clicked a string. The control's parent window
receives this code through a WM_COMMAND message from the control.

Parameter

wPm'am

IParam

Description

Contains the wPm'am parameter of the
WM_COMMAND message, and specifies the control ID.

Contains an edit-control window handle in its low-order word
and the LBN_DBLCLK code in its high-order word.

This code applies only to list-box controls that have LBS_NOTIFY style.

This code specifies that the list-box control cannot allocate enough memory to meet a
specific request. The control's parent window receives this code through a WM_COM­
MAND message from the control.

Parameter

wPm'am

IParam

Description

Contains the wParam parameter of the WM_COMMAND
message, and specifies the control ID.

Contains a list-box window handle in its low-order word and the
LBN_ERRSPACE code in its high-order word.

This code applies only to list-box controls that have LBS_NOTIFY style.

This code is sent when a list box loses input focus. The control's parent window receives
this code through a WM_COMMAND message from the control.

Parameter

wParam

IParam

Description

Specifies the control ID of the list box.

Contains the list-box window handle in its low-order word and the
LBN_KILLFOCUS code in its high-order word.

to
I
r-

oJ
I
n

LBN_SELCHANGE 6-46

LBN_SELCHANGE

Comments

This code specifies that the selection in a list box has changed. The control's parent
window receives this code through a WM_ COMMAND message from the control.

Parameter

wParam

IParam

Description

Contains the wParam parameter of the WM_COMMAND
message, and specifies the control ID.

Contains a list-box window handle in its low-order word and the
LBN_SELCHANGE code in its high-order word.

This code applies only to list-box controls that have LBS_NOTIFY style.

This code is sent when the list box receives input focus. The control's parent window re­
ceives this code through a WM_COMMAND message from the control.

Parameter

wParam

IParam

Description

Specifies the control ID of the list box.

Contains the list-box window handle in its low-order word and the
LBN_SETFOCUS code in its high-order word.

6-47

Default Action

This message is sent when a window becomes active or inactive.

Parameter

wPm'am

IParam

Description

Specifies the new state of the window. The wPm'am parameter is
zero if the window is inactive; it is one of the following nonzero
values if the window is being activated:

Value

2

Meaning

The window is being activated through some
method other than a mouse click (for example,
through a call to the SetActive Window function or
selection of the window by the user through the key­
board interface).

The window is being activated by a mouse click by
the user. Any mouse button can be clicked: right,
left, or middle.

Identifies a window and specifies its state. The high-order word of
the IParam parameter is nonzero if the window is minimized.
Otherwise, it is zero. The value of the low-order word of lParam
depends on the value of the wPm'am parameter. If wPm'am is
zero, the low-order word of lParam is a handle to the window
being activated. If wPm'am is nonzero, the low-order word of
IParam is the handle of the window being inactivated (this handle
may be NULL).

If the window is being activated and is not minimized, the DefWindowProc function sets
the input focus to the window.

WM_ACTIVATEAPP
This message is sent when a window being activated belongs to a different application
than the currently active window. The message is sent to the application whose window
will be activated and the application whose window will be deactivated.

WM_ASKCBFORMATNAME 6-48

Parameter Description

wParam Specifies whether a window is being activated or deactivated. A
nonzero value indicates that Windows will activate a window;
zero indicates that Windows will deactivate a window.

lParam Contains the task handle of the application. If the wParam para­
meter is zero, the low-order word of the lParam parameter
contains the task handle of the application that owns the window
that is being deactivated. If wParam is nonzero, the low-order
word of lParam contains the task handle of the application that
owns the window that is being activated. The high-order word is
not used.

WM_ASKCBFORMATNAME

Comments

This message is sent when the clipboard contains a data handle for the CF _OWNER­
DISPLAY format (that is, the clipboard owner should display the clipboard contents), and
requests a copy of the format name.

Parameter

wParam

lParam

Description

Specifies the maximum number of bytes to copy.

Points to the buffer where the copy of the format name is to be
stored.

The clipboard owner should copy the name of the CF _ OWNERDISPLAY format into the
specified buffer, not exceeding the maximum number of bytes.

This message cancels any mode the system is in, such as one that tracks the mouse in a
scroll bar or moves a window. Windows sends the WM_CANCELMODE message when
an application displays a message box.

Parameter

wParam

lParam

Description

Is not used.

Is not used.

6-49 WM_CHANGECBCHAIN

WM_CHANGECBCHAIN

Comments

WM_CHAR

This message notifies the first window in the clipboard-viewer chain that a window is
being removed from the chain.

Parameter

wParam

IParam

Description

Contains the handle to the window that is being removed from
the clipboard-viewer chain.

Contains in its low-order word the handle to the window that fol­
lows the window being removed from the clipboard-viewer
chain.

Each window that receives the WM_CHANGECBCHAIN message should call the Send­
Message function to pass on the message to the next window in the clipboard-viewer
chain. If the window being removed is the next window in the chain, the window specified
by the low-order word of the IParam parameter becomes the next window, and clipboard
messages are passed on to it.

This message results when a WM_KEYUP and a WM_KEYDOWN message are trans­
lated. It contains the value of the keyboard key being pressed or released.

Parameter

wParam

IParam

Description

Contains the value of the key.

Contains the repeat count, scan code, key-transition code, pre­
vious key state, and context code, as shown in the following list:

Bit

0-15 (low-order
word)

16-23 (low byte
of high-order
word)

24

Value

Repeat count (the number of times the
key stroke is repeated as a result of the
user holding down the key).

Scan code (OEM-dependent value).

Extended key, such as a function key or a
key on the numeric keypad (1 if it is an
extended key).

WM_ CHARTO/TEM 6-50

Comments

Parameter Description

Bit

25-26

27-28

29

30

31

Value

Not used.

Used internally by Windows.

Context code (1 if the ALT key is held
down while the key is pressed, 0 other­
wise).

Previous key state (1 if the key is down
before the message is sent, 0 if the key is
up).

Transition state (1 if the key is being
released, 0 if the key is being pressed).

Since there is not necessarily a one-to-one correspondence between keys pressed and
character messages generated, the information in the high-order word of the IParam para­
meter is generally not useful to applications. The information in the high-order word ap­
plies only to the most recent WM_KEYUP or WM_KEYDOWN message that precedes
the posting of the character message.

For IBM® Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT and the
right CONTROL keys on the main section of the keyboard; the INSERT, DELETE, HOME, END,

PAGE UP, PAGE DOWN and DIRECTION keys in the clusters to the left of the numeric key
pad; and the divide (/) and ENTER keys in the numeric key pad. Some other keyboards may
support the extended-key bit in the IParam parameter.

This message is sent by a list box with the LBS_ WANTKEYBOARDINPUT style to its
owner in response to a WM_ CHAR message.

Parameter

wParam

IParam

Description

Contains the value of the key which the user pressed.

Contains the current caret position in its high-order word and the
window handle of the list box in its low-order word.

6-51

Return Value

WM_CHILOACTIVATE

The return value specifies the action which the application performed in response to the
message. A return value of -2 indicates that the application handled all apsects of selecting
the item and wants no further action by the list box. A return value of -1 indicates that the
list box should perform the default action in response to the key stroke. A return value of
zero or greater specifies the index of an item in the list box and indicates that the list box
should perform the default action for the key stroke on the given item.

WM_CHILDACTIVATE

Oefault Action

This message is sent to a child window's parent window when the SetWindowPos func­
tion moves a child window.

Parameter

wPm·am

lParam

Description

Is not used.

Is not used.

This message deletes the current selection.

Parameter

wParam

lParam

Description

Is not used.

Is not used.

This message occurs when a window is closed.

Parameter

wParam

lParam

Description

Is not used.

Is not used.

The DefWindowProc function calls the DestroyWindow function to des.troy the window.

,. ..

WM_COMMANO 6-52

Comments

Comments

An application can prompt the user for confirmation, prior to destroying a window, by pro­
cessing the WM_ CLOSE message and calling the DestroyWindow function only if the
user confirms the choice.

This message occurs when the user selects an item from a menu, when a control passes a
message to its parent window, or when an accelerator key stroke is translated.

Parameter

wParam

IParam

Description

Contains the menu item, the control ID, or the accelerator ID.

Specifies whether the message is from a menu, an accelerator, or
a control. The low-order word contains zero if the message is
from a menu. The high-order word contains 1 if the message is
an accelerator message. If the message is from a control, the .
high-order word of the IParam parameter contains the notifica­
tion code. The low-order word is the window handle of the
control sending the message.

Accelerator key strokes that are defined to select items from the System menu are trans­
lated into WM_SYSCOMMAND messages.

If an accelerator key stroke that corresponds to a menu item occurs when the window that
owns the menu is minimized, no WM_COMMAND message is sent. However, if an accel­
erator key stroke that does not match any of the items on the window's menu or on the Sys­
tem menu occurs, a WM_ COMMAND message is sent, even if the window is minimized.

This message is sent to all top-level windows when Windows detects that more than 12.5
percent of system time over a 30- to 60-second interval is being spent compacting
memory. This indicates that system memory is low.

When an application receives this message, it should free as much memory as possible,
taking into account the current level of activity of the application and the total number of
applications running in Windows. The application can call the GetNumTasks function to
determine how many applications are running.

6-53

Parameter

wPm'am

lParam

WM_COMPAREITEM

Description

Specifies the ratio of CPU time currently spent by Windows
compacting memory. For example, 8000h represents 50% of
CPU time.

Is not used.

WM_COMPAREITEM [IQJ

Return Value

This message determines the relative position of a new item in a sorted owner-draw combo
or list box.

Whenever the application adds a new item, Windows sends this message to the owner of a
combo or list box created with the CBS_SORT or LBS_SORT style. The lParam para­
meter of the message is a long pointer to a COMPAREITEMSTRUCT data structure that
contains the identifiers and application-supplied data for two items in the combo or list
box. When the owner receives the message, the owner returns a value indicating which of
the items should appear before the other. Typically, Windows sends this message several
times until it determines the exact position for the new item.

Parameter

wParam

lParam

Description

Is not used.

Contains a long pointer to a COMPAREITEMSTRUCT data
structure that contains the identifiers and application-supplied
data for two items in the combo or list box.

The return value indicates the relative position of the two items. It may be any of the fol­
lowing values:

Value

-1

o

Meaning

Item 1 sorts before item 2.

Item 1 and item 2 sort the same.

Item 1 sorts after item 2.

6-54

This message sends the current selection to the clipboard in CF _TEXT format.

Parameter

wParam

lParam

Description

Is not used.

Is not used.

This message informs the window procedure that it can perform any initialization. The
Create Window function sends this message before it returns and before the window is
opened.

Parameter

wParam

lParam

Description

Is not used.

Points to a CREATESTRUCT data structure that contains cop­
ies of parameters passed to the Create Window function.

This message is sent to the parent window of a predefined control or message box when
the control or message box is about to be drawn. By responding to this message, the parent
window can set the text and background colors of the child window by using the display­
context handle given in the wParam parameter.

Parameter

wParam

lParam

Description

Contains a handle to the display context for the child window.

The low-order word of the lParam parameter contains the handle to
the child window. The high-order word is one of the following
values, specifying the type of control:

Value

CTLCOLOR_BTN

CTLCOLOR_DLG

Control Type

Button control

Dialog box

6-55

Default Action

Comments

Parameter Description

Value Control Type

CTLCOLOR_EDIT Edit control

CTLCOLOR_LISTBOX List-box control

CTLCOLOR_MSGBOX Message box

CTLCOLOR_SCROLLBAR Scroll-bar control

CTLCOLOR_STATIC Static control

The DefWindowProc function selects the default system colors.

When processing the WM_CTLCOLOR message, the application must align the origin of
the intended brush with the window coordinates by first calling the UnrealizeObject func­
tion for the brush, and then setting the brush origin to the upper-left corner of the window.

If an application processes the WM_ CTLCOLOR message, it must return a handle to the
brush that is to be used for painting the control background. Note that failure to return a
valid brush handle will place the system in an unstable state.

This message sends the current selection to the clipboard in CF _TEXT format, and then de­
letes the selection from the control window.

Parameter

wParam

IParam

Description

Is not used.

Is not used.

This message results when a WM_KEYUP and a WM_KEYDOWN message are trans­
lated. It specifies the character value of a dead key. A dead key is a key, such as the umlaut
(double-dot) character, that is combined with other characters to form a composite
character. For example, the umlaut-O character consists of the dead key, umlaut, and the 0
key.

Comments

Parameter

wParam

IParam

6-56

Description

Contains the dead-key character value.

Contains the repeat count, scan code, key-transition code, pre­
vious key state, and context code, as shown in the following list:

Bit

0-15 (low-order
word)

16-23 (low byte
of high-order
word)

24

25-26

27-28

29

30

31

. Value

Repeat count (the number of times the
key stroke is repeated as a result of the
user holding down the key).

Scan code (OEM-dependent value).

Extended key, such as a function key or a
key on the numeric keypad (1 if it is an
extended key, 0 otherwise).

Not used.

Used internally by Windows.

Context code (1 if the ALT key is held
down while the key is pressed, 0 other­
wise).

Previous key state (1 if the key is down
before the message is sent, 0 if the key is
up).

Transition state (1 if the key is being
released, 0 if the key is being pressed).

The WM_DEADCHAR message typically is used by applications to give the user feed­
back about each key pressed. For example, an application can display the accent in the cur­
rent character position without moving the caret.

Since there is not necessarily a one-to-one correspondence between keys pressed and
character messages generated, the information in the high-order word of the IParam para­
meter is generally not useful to applications. The information in the high-order word ap­
plies only to the most recent WM_KEYUP or WM_KEYDOWN message that precedes
the posting of the character message.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT and the
right CONTROL keys on the main section of the keyboard; the INSERT, DELETE, HOME, END,

PAGE UP, PAGE DOWN and DIRECTION keys in the clusters to the left of the numeric key

6-57

Comments

WM_DELETEITEM

pad; and the divide (/) and ENTER keys in the numeric key pad. Some other keyboards may
support the extended-key bit in the lParam parameter.

This message informs the owner of an owner-draw list box or combo box that a list-box
item has been removed. This message is sent when the list box or combo box is destroyed
or the item is removed by the LB_DELETESTRING, LB_RESETCONTENT,
CB_DELETESTRING or CB_RESETCONTENT message.

Parameter

wParam

lParam

Description

Not used.

Contains a long pointer to a DELETEITEMSTRUCT data
structure that contains information about the deleted list-box
item.

This message informs the window that it is being destroyed. The DestroyWindow func­
tion sends the WM_DESTROY message to the window after removing the window from
the screen. The WM_DESTROY message is sent to a parent window before any of its
child windows are destroyed.

Parameter

wPm'am

lParam

Description

Is not used.

Is not used.

If the window being destroyed is part of the clipboard-viewer chain (set by using the Set­
ClipboardViewer function), the window must remove itself from the clipboard viewer
chain by processing the ChangeClipboardChain function before returning from the
WM_DESTROY message.

WM_DESTROYCLIPBOARD
This message is sent to the clipboard owner when the clipboard is emptied through a call
to the EmptyClipboard function.

WM_OEVMOOECHANGE 6-58

Parameter

wParam

IParam

Description

Is not used.

Is not used.

WM_DEVMODECHANGE
This message is sent to all top-level windows when the user changes device-mode settings.

Parameter

wParam

IParam

Description

Is not used.

Points to the device name specified in the Windows initialization
file, WIN.INI.

WM_DRAWCLIPBOARD

Comments

This message is sent to the first window in the clipboard-viewer chain when the contents
of the clipboard change. Only applications that have joined the clipboard-viewer chain by
calling the SetClipboardViewer function need to process this message.

Parameter

wParam

IParam

Description

Is not used.

Is not used.

Each window that receives the WM_DRA WCLIPBOARD message should call the Send­
Message function to pass the message on to the next window in the clipboard-viewer
chain. The handle of the next window is returned by the SetClipboardViewer function; it
may be modified in response to a WM_CHANGECBCHAIN message.

This message informs the owner-draw button, combo box, list box, or menu that a visual
aspect of the control has changed. The itemAction field in the DRAWITEMSTRUCT
structure defines the drawing operation that is to be performed. The data in this field al­
lows the control owner to detennine what drawing action is required.

6-59

Comments

Parameter

wParam

IParam

Description

Is not used.

Contains a long pointer to a DRAWITEMSTRUCT data struc­
ture that contains information about the item to be drawn and the
type of drawing required.

Before returning from processing this message, an application should restore all objects
selected for the display context supplied in the hDC field of the DRAWITEMSTRUCT
data structure.

This message is sent after a window has been enabled or disabled.

Parameter

wParam

IParam

Description

Specifies whether the window has been enabled or disabled. The
wParam parameter is nonzero if the window has been enabled;
it is zero if the window has been disabled.

Is not used.

WM_ENDSESSION

Comments

This message is sent to tell an application that has responded nonzero to a WM_QUERY­
ENDSESSION message whether the session is actually being ended.

Parameter

wParam

IParam

Description

Specifies whether or not the session is being ended. It is nonzero
if the session is being ended. Otherwise, it is zero.

Is not used.

If the wPm"am parameter is nonzero, Windows can terminate any time after all applica­
tions have returned from processing this message. Consequently, an application should per­
form all tasks required for termination before returning from this message.

The application does not need to call the DestroyWindow or PostQuitMessage function
when the session is being ended.

Default Action

6-60

This message infonns an application's main windows procedure that a modal dialog box or
a menu is entering an idle state. A modal dialog box or menu enters an idle state when no
messages are waiting in its queue after it has processed one or more previous messages.

Parameter

wParam

lParam

Description

Specifies whether the message is the result of a dialog box or a menu
being displayed. It is one of these values:

Value

MSGF _DIALOGBOX

Meaning

The system is idle because a
dialog box is being displayed.

The system is idle because a
menu is being displayed.

Contains in its low-order word the handle of the dialog box (if
wParam is MSGF _DIALOGBOX) or of the window containing the
displayed menu (if wParam is MSGF _MENU). The high-order word
is not used.

The DefWindowProc function returns zero.

WM_ERASEBKGND

Return Value

Default Action

This message is sent when the window background needs erasing (for example, when a
window is resized). It is sent to prepare an invalidated region for painting.

Parameter Description

wParam Contains the device-context handle.

lParam Is not used.

The return value is nonzero if the background is erased. Otherwise, it is zero. If the applica­
tion processes the WM_ERASEBKGND message, it should return the appropriate value.

The background is erased, using the class background brush specified by the hbrback­
ground field in the class structure.

6-61

Comments

WM_FONTCHANGE

If hbrbackground is NULL, the application should process the WM_ERASEBKGND
message and erase the background color. When processing the WM_ERASEBKGND
message, the application must align the origin of the intended brush with the window
coordinates by first calling the UnrealizeObject function for the brush, and then selecting
the brush.

Windows assumes the background should be computed by using the MM_ TEXT mapping
mode. If the device context is using any other mapping mode, the area erased may not be
within the visible part of the client area.

WM_FONTCHANGE

Comments

This message occurs when the pool of font resources changes. Any application that adds or
removes fonts from the system (for example, through the AddFontResource or Re­
moveFontResource function) should send this message to all top-level windows.

Parameter

wParam

IParam

Description

Is not used.

Is not used.

To send the WM_FONTCHANGE message to all top-level windows, an application can
call the Send Message function with the hWnd parameter set to OxFFFF.

WM_GETDLGCODE

Return Value

This message is sent by Windows to an input procedure associated with a control. Nor­
mally, Windows handles all DIRECTION-key and TAB-key input to the control. By respond­
ing to the WM_GETDLGCODE message, an application can take control of a particular
type of input and process the input itself.

Parameter

wParam

IParam

Description

Is not used.

Is not used.

The return value is one or more of the following values, indicating which type of input the
application processes:

.. ..

WM_GETFONT 6-62

Default Action

Comments

Return Value

Value Meaning

DLGC_DEFPUSHBUTTON Default push button.

DLGC_HASSETSEL EM_SETSEL messages.

DLGC_PUSHBUTTON Push button .

DLGC_RADIOBUTTON Radio button.

DLGC_VVANTALLKEYS All keyboard input.

DLGC_ VVANTARROVVS DIRECTION keys.

DLGC_ VVANTCHARS VVM_ CHAR messages.

DLGC_ VVANTMESSAGE All keyboard input (the application
passes this message on to control).

DLGC_ VVANTTAB TAB key.

The DefWindowProc function returns zero.

Although the DefWindowProc function always returns zero in response to the
VVM_GETDLGCODE message, the window functions for the predefined control classes
return a code appropriate for each class.

The VVM_GETDLGCODE message and the returned values are useful only with user-de­
fined dialog controls or standard controls modified by sUbclassing.

This message retrieves from a control the font with which the control is currently drawing
its text.

Parameter

wParam

lParam

Description

Not used.

Not used.

The return value is the handle of the font used by the control, or NULL if it is using the sys­
tem font.

6-63 WM_GETMINMAXINFO

WM_GETMINMAXINFO
This message is sent to a window whenever Windows needs to know the maximized size
of the window, the minimum or maximum tracking size of the window, or the maximized
position of the window. The maximized size of a window is the size of a window when its
borders are fully extended. The maximum tracking size of a window is the largest window
size that can be achieved by using the borders to size the window. The minimum tracking :il
size of a window is the smallest window size that can be achieved by using ·the borders to
size the window.

Parameter

wPw'am

lParam

Description

Is not used.

Points to an array of five points that contains the following infor­
mation:

Point

rgpt[Oj

rgpt[l]

rgpt[2j

rgpt[3j

rgpt[4j

Description

Used internally by Windows.

The maximized size, which is the screen
size by default. The width is
(SM_CXSCREEN + (2 x
SM_CXFRAME». The height is
(SM_CYSCREEN + (2 x SM_CY­
FRAME)).

The maximized position of the upper-left
corner of the window (in screen coordi­
nates). The default x value is
SM_CXFRAME. The default y value is
SM_CYFRAME.

The minimum tracking size, which is the
iconic size by default. The width is
SM_ CXMINTRACK. The height is
SM_CYMINTRACK.

The maximum tracking size, which is
less than the screen size by default. The
width is (SM_CXSCREEN + (2 x
SM_ CXFRAME». The height is
(SM_CYSCREEN + (2 x SM_CY­
FRAME».

WM_GETTEXT 6-64

Comments

WM_GETTEXT

Return Value

The array contains default values for each point before Windows sends the WM_GET­
MINMAXINFO message. This message gives the application the opportunity to alter the
default values.

This message is used to copy the text that corresponds to a window. For edit controls and
combo-box edit controls, the text to be copied is the content of the edit control. For button
controls, the text is the button name. For lixt boxes, the text is the currently selected item.
For other windows, the text is the window caption.

Parameter

wParam

IParam

Description

Specifies the maximum number of bytes to be copied, including
the null-terminating character.

Points to the buffer that is to receive the text.

The return value is the number of bytes copied. It is LB _ERR if no item is selected or
CB _ERR if the combo box has no edit control.

WM_GETTEXTLENGTH

Comments

This message is used to find the length (in bytes) of the text associated with a window. The
length does not include the null-terminating character. For edit controls and combo-box
edit controls, the text is the content of the control. For lixt boxes, the text is the currently
selected item. For button controls, the text is the button name. For other windows, the text
is the window caption.

Parameter

wParam

lParam

Description

Is not used.

Is not used.

The return value is the length of the given text.

6-65

Comments

This message is sent when the user clicks the horizontal scroll bar.

Parameter

wPm "am

[Param

Description

Contains a scroll-bar code that specifies the user's scrolling request.
It can be anyone of the following values:

Value

SB_BOTTOM

SB_ENDSCROLL

SB_LINEDOWN

SB_LINEUP

SB_PAGEDOWN

SB_PAGEUP

SB_THUMBPOSITION

SB_THUMBTRACK

Meaning

Scroll to lower right.

End scroll.

Scroll one line down.

Scroll one line up.

Scroll one page down.

Scroll one page up.

Scroll to absolute position. The
current position is provided in
the low-order word of [Paramo

Drag thumb to specified posi­
tion. The current position is
provided in the low-order word
of [Paramo

Scroll to upper left.

Specifies the window handle of the control. If the message is sent by
a scroll-bar control, the high-order word of the [Param parameter
contains the window handle of the control. If the message is sent as a
result of the user clicking a pop-up window's scroll bar, the high­
order word is not used.

The SB_THUMBTRACK message typically is used by applications that give some feed­
back while the thumb is being dragged.

If an application scrolls the document in the window, it must also reset the position of the
thumb by using the SetScrollPos function.

WM_HSCROLLCLIPBOARO 6-66

WM_HSCROLLCLIPBOARD

Comments

This message is sent when the clipboard contains a data handle for the CF _OWNERDIS­
PLAY format (specifically the clipboard owner should display the clipboard contents) and
an event occurs in the clipboard application's horizontal scroll bar.

Parameter

wPm'am

IParam

Description

Contains a handle to the clipboard application window.

Contains one of the following scroll-bar codes in the low-order word:

Value

SB_BOTTOM

SB_ENDSCROLL

SB_LINEDOWN

SB_LINEUP

SB_PAGEDOWN

SB_PAGEUP

SB_THUMBPOSITION

SB_TOP

Meaning

Scroll to lower right.

End scroll.

Scroll one line down.

Scroll one line up.

Scroll one page down.

Scroll one page up.

Scroll to absolute position.

Scroll to upper left.

The high-order word of the IParam parameter contains the thumb
position if the scroll-bar code is SB_THUMBPOSITION. Otherwise,
the high-order word is not used.

The clipboard owner should use the InvalidateRect function or repaint as desired. The
scroll-bar position should also be reset.

WM_ICONERASEBKGND []]J
This message is sent to a minimized (iconic) window when the background of the icon
must be filled before painting the icon. A window receives this message only if a class icon
is defined for the window. Otherwise, WM_ERASEBKGND is sent instead. Passing this
message to the DefWindowProc function permits Windows to fill the icon background
with the background brush of the parent window.

6-67 WM_INITOIALOG

Parameter Description

wPm'am Contains the device-context handle of the icon.

IParam Is not used.

WM_INITDIALOG

Comments

This message is sent immediately before a dialog box is displayed. By processing this
message, an application can perfonn any initialization before the dialog box is made vis­
ible.

Parameter

wPm'am

IParam

Description

Identifies the first control item in the dialog box that can be
given the input focus, Generally, this is the first item in the
dialog box with WS_ TAB STOP style,

Is the value passed as the dwlnitParam parameter of the function
if the dialog box was created by any of the following functions:

• CreateDialoglndirectParam

• CreateDialogParam

• DialogBoxlndirectParam

• DialogBoxParam

Otherwise, IP aram is not used.

If the application returns a nonzero value in response to the WM_INITDIALOG message,
Windows sets the input focus to the item identified by the handle in the wPm'am para­
meter. The application can return FALSE only if it has set the input focus to one of the con­
trols of the dialog box.

This message is a request to initialize a menu. It occurs when a user moves the mouse into
a menu bar and clicks, or presses a menu key. Windows sends this message before display­
ing the menu, This allows the application to change the state of menu items before the
menu is shown.

WM_INITMENUPOPUP 6-68

Comments

Parameter Description

wParam Contains the menu handle of the menu that is to be initialized.

lParam Is not used.

A WM_INITMENU message is sent only when a menu is first accessed; only one WM_IN­
ITMENU message is generated for each access. This means, for example, that moving the
mouse across several menu items while holding down the button does not generate new
messages. This message does not provide information about menu items.

WM_INITMENUPOPUP
This message is sent immediately before a pop-up menu is displayed. Processing this
message allows an application to change the state of items on the pop-up menu before the
menu is shown, without changing the state of the entire menu.

Parameter

wParam

lParam

Description

Contains the menu handle of the pop-up menu.

Specifies the index of the pop-up menu. The low-order word
contains the index of the pop-up menu in the main menu. The
high-order word is nonzero if the pop-up menu is the system
menu. Otherwise, it is zero.

This message is sent when a nonsystem key is pressed. A nonsystem key is a keyboard key
that is pressed when the ALT key is not pressed, or a keyboard key that is pressed when a
window has the input focus.

Parameter

wParam

lParam

Description

Specifies the virtual-key code of the given key.

Contains the repeat count, scan code, key-transition code, pre­
vious key state, and context code, as shown in the following list:

6-69

Comments

Parameter Description

Bit

0-15 (low-order
word)

16-23 (low byte
of high-order
word)

24

25-26

27-28

29

30

31

Value

Repeat count (the number of times the
key stroke is repeated as a result of the
user holding down the key).

Scan code (OEM-dependent value).

Extended key, such as a function key or a
key on the numeric key pad (1 if it is an
extended key).

Not used.

Used internally by Windows.

Context code (1 if the ALT key is held
down while the key is pressed, 0 other­
wise).

Previous key state (1 if the key is down
before the message is sent, 0 if the key is
up).

Transition state (1 if the key is being
released, 0 if the key is being pressed).

For WM_KEYDOWN messages, the key-transition bit (bit 31)
is 0 and the context-code bit (bit 29) is O.

Because of auto-repeat, more than one WM_KEYDOWN message may occur before a
WM_KEYUP message is sent. The previous key state (bit 30) can be used to determine
whether the WM_KEYDOWN message indicates the first down transition or a repeated
down transition.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT and the
right CONTROL keys on the main section of the keyboard; the INSERT, DELETE, HOME, END,

PAGE UP, PAGE DOWN and DIRECTION keys in the clusters to the left of the numeric key
pad; and the divide (f) and ENTER keys in the numeric key pad. Some other keyboards may
support the extended-key bit in the IParam parameter.

.. ' ..

WM_KEYUP

Comments

6-70

This message is sent when a nonsystem key is released. A nonsystem key is a keyboard
key that is pressed when the ALT key is not pressed, or a keyboard key that is pressed when
a window has the input focus.

Parameter

wParam

IParam

Description

Specifies the virtual-key code of the given key.

Contains the repeat count, scan code, key-transition code, pre­
vious key state, and context code, as shown in the following list:

Bit

0-15 (low-order
word)

16-23 (low byte
of high-order
word)

24

25-26

27-28

29

30

31

Value

Repeat count (the number of times the
key stroke is repeated as a result of the
user holding down the key).

Scan code (OEM-dependent value).

Extended key, such as a function key or a
key on the numeric key pad (1 if it is an
extended key).

Not used.

Used internally by Windows.

Context code (1 if the ALT key is held
down while the key is pressed, 0 other­
wise).

Previous key state (1 if the key is down
before the message is sent, 0 if the key is
up).

Transition state (1 if the key is being
released, 0 if the key is being pressed).

For WM_KEYUP messages, the key-transition bit (bit 31) is 1
and the context-code bit (bit 29) is O.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT and the
right CONTROL keys on the main section of the keyboard; the INSERT, DELETE, HOME, END,

PAGE UP, PAGE DOWN and DIRECTION keys in the clusters to the left of the numeric key

6-71

Comments

pad; and the divide (/) and ENTER keys in the numeric key pad. Some other keyboards may
support the extended-key bit in the lParam parameter.

This message is sent immediately before a window loses the input focus.

Parameter

wParam

IParam

Description

Contains the handle of the window that receives the input focus
(may be NULL).

Is not used.

If an application is displaying a caret, the caret should be destroyed at this point.

WM_LBUTTONDBLCLK

Comments

This message occurs when the user double-clicks the left mouse button.

Parameter

wParam

IParam

Description

Contains a value that indicates whether various virtual keys are
down. It can be any combination of the following values:

Value

MK_CONTROL

MK_LBUTION

MK_MBUTTON

MK_RBUTION

MK_SHIFf

Meaning

Set if CONTROL key is down.

Set if left button is down.

Set if middle button is down.

Set if right button is down.

Set if SHIFf key is down.

Contains the x- and y-coordinates of the cursor. The x-coordinate
is in the low-order word; the y-coordinate is in the high-order
word. These coordinates are always relative to the upper-left
corner of the window.

Only windows whose window class has CS_DBLCLKS style can receive double-click
messages. Windows generates a double-click message when the user presses, releases, and

WM_LBUTTONOOWN 6-72

then presses a mouse button again within the system's double-click time limit. Double­
clicking actually generates four messages: a down-click message, an up-click message, the
double-click message, and another up-click message.

= ,: WM_LBUTTONDOWN
This message occurs when the user presses the left mouse button.

Parameter

wParam

IParam

Description

Contains a value that indicates whether various virtual keys are
down. It can be any combination of the following values:

Value

MK_CONTROL

MK_MBUTTON

MK_RBUTTON

MK_SHIFf

Meaning

Set if CONTROL key is down.

Set if middle button is down.

Set if right button is down.

Set if SHIff key is down.

Contains the x- and y-coordinates of the cursor. The x-coordinate
is in the low-order word; the y-coordinate is in the high-order
word. These coordinates are always relative ~o the upper-left
comer of the window.

This message occurs when the user releases the left mouse button.

Parameter

wParam

Description

Contains a value that indicates whether various virtual keys are
down. It can be any combination of the following values:

Value

MK_CONTROL

MK_MBUTTON

MK_RBUTTON

Meaning

Set if CONTROL key is down.

Set if middle button is down.

Set if right button is down.

6-73

Parameter

IParam

WM_MBUTTONOBLCLK

Description

Value Meaning

Set if SHIFf key is down.

Contains the x- and y-coordinates of the cursor. The x-coordinate
is in the low-order word; the y-coordinate is in the high-order
word. These coordinates are always relative to the upper-left
comer of the window.

WM_MBUTTONDBLCLK

Comments

This message occurs when the user double-clicks the middle mouse button.

Parameter

wParam

IParam

Description

Contains a value that indicates whether various virtual keys are
down. It can be any combination of the following values:

Value

MK_CONTROL

MK_LBUTTON

MK_MBUTTON

MK_RBUTTON

MK_SHIFf

Meaning

Set if CONTROL key is down.

Set if left button is down.

Set if middle button is down.

Set if right button is down.

Set if SHIFf key is down.

Contains the x- and y-coordinates of the cursor. The x-coordinate
is in the low-order word; the y-coordinate is in the high-order
word. These coordinates are always relative to the upper-left
comer of the window.

Only windows whose window class has CS_DBLCLKS style can receive double-click
messages. Windows generates a double-click message when the user presses, releases, and
then presses a mouse button again within the system's double-click time limit. Double­
clicking actually generates four messages: a down-click message, an up-click message, the
double-click message, and another up-click message. .

WM_MBUTTONOOWN 6-74

WM_MBUTTONDOWN
This message occurs when the user presses the middle mouse button.

Parameter

wParam

IParam

Description

Contains a value that indicates whether various virtual keys are
down. It can be any combination of the following values:

Value

MK_CONTROL

MK_LBUTTON

MK_RBUTTON

MK_SHIFf

Meaning

Set if CONTROL key is down.

Set if left button is down.

Set if right button is down.

Set if SHIff key is down.

Contains the x- and y-coordinates of the cursor. The x-coordinate
is in the low-order word; the y-coordinate is in the high-order
word. These coordinates are always relative to the upper-left
comer of the window.

This message occurs when the user releases the middle mouse button.

Parameter

wParam

IParam

Description

Contains a value that indicates whether various virtual keys are
down. It can be any combination of the following values:

Value

MK_CONTROL

MK_LBUTTON

MK_RBUTTON

MK_SHIFf

Meaning

Set if CONTROL key is down.

Set if left button is down.

Set if right button is down.

Set if SHIff key is down.

Contains the x- and y-coordinates of the cursor. The x-coordinate
is in the low-order word; the y-coordinate is in the high-order
word. These coordinates are always relative to the upper-left
comer of the window.

6-75 WM_MDIACTIVATE

WM_MDIACTIVATE []I]

Comments

An application sends this message to a multiple document interface (MDI) client window
to instruct the client window to activate a different MDI child window. As the client
window processes this message, it sends WM_MDIACTIVATE to the child window being
deactivated and to the child window being activated.

Parameter

wParam

lParam

Description

When the application sends the WM_MDIACTIVATE message
to its MDI client window, the wParam parameter contains the
window handle of the MDI child window to be activated. When
the client window sends the message to a child window,
wParam is TRUE if the child is being activated and FALSE if it
is being deactivated.

When received by an MDI child window, the lParam parameter
contains in its high-order word the window handle of the child
window being deactivated and in its low-order word the window
handle of the child window being activated. When this message
is sent to the client window, lParam should be set to NULL.

MDI child windows are activated independently of the MDI frame window. When the
frame becomes active, the child window that was last activated with the WM_MDIAC­
TIVE message receives the WM_NCACTIVATE message to draw an active window frame
and caption bar, but it does not receive another WM_MDIACTIVATE message.

WM_MDICASCADE []I]
This message arranges the child windows of a multiple document interface (MDI) client
window in a "cascade" format.

Parameter

wParam

lParam

Description

Not used.

Not used.

This message causes a multiple document interface (MDI) client window to create a child
window.

WM_MOIOESTROY 6-76

Return Value

Comments

Parameter

wParam

IParam

Description

Not used.

Contains a long pointer to an MDICREATESTRUCT data
structure.

The return value contains the identifier of the new window in the low word and zero in the
high word.

The window is created with the style bits WS_CHILD, WS_CLIPSIBLINGS, WS_CLIP­
CHILDREN, WS_SYSMENU, WS_CAPTION, WS_THICKFRAME, WS_MINIMIZE­
BOX, and WS_MAXIMIZEBOX, plus additional style bits specified in the
MDICREATESTRUCT data structure to which IParam points. Windows adds the title of
the new child window to the window menu of the frame window. An application should
create all child windows of the client window with this message. .

If a client window receives any message that changes the activation of child windows and
the currently active MDI child window is maximized, Windows restores the currently ac­
tive child and maximizes the newly activated child.

When the MDI child window is created, Windows sends the WM_CREATE message to
the window. The IParam parameter of the WM_CREATE message contains a pointer to a
CREATESTRUCT data structure. The IpCreateParams field of the CREATESTRUCT
structure contains a pointer to the MDICREATESTRUCT data structure passed with the
WM_MDICREATE message that created the MDI child window.

An application should not send a second WM_MDICREATE message while a
WM_MDICREATE message is still being processed. For example, it should not send a
WM_MDICREATE message while an MDI child window is processing its WM_CREATE
message.

When sent to a multiple document interface (MDI) client window, this message causes a
child window to be closed.

Parameter Description

wParam Contains the window handle of the child window.

IParam Not used.

6-77

Comments

WM_MOIGETACTIVE

This message removes the title of the child window from the frame window and deacti­
vates the child window. An application should close all MDI child windows with this
message.

If a client window receives any message that changes the activation of child windows and
the currently active MDI child window is maximized, Windows restores the currently ac­
tive child and maximizes the newly activated child.

WM_MDIGETACTIVE []]J

Return Value

This message returns the current active mUltiple document interface (MDI) child window,
along with a flag indicating whether the child is maximized or not.

Parameter

wParam

IParam

Description

Not used.

Not used.

The return value contains the handle of the active MDI child window in its low word. If
the window is maximized, the high word contains 1; otherwise, the high word is zero.

WM_MDIICONARRANGE []]J
This message is sent to a multiple document interface (MDI) client window to arrange all
minimized document child windows. It does not affect child windows that are not min­
imized.

Parameter

wParam

IParam

WM_MDIMAXIMIZE []]J

Description

Not used.

Not used.

This message causes a multiple document interface (MDI) client window to maximize an
MDI child window. When a child window is maximized, Windows resizes it to make its
client area fill the client window. Windows places the child window's System menu in the
frame's menu bar so that the user can restore or close the child window and adds the title
of the child window to the fra~e window title.

Comments

Comments

6-78

Parameter Description

wParam Contains the window identifier of the child window.

IParam Not used.

If an MDI client window receives any message that changes the activation of its child
windows, and if the currently active MDI child window is maximized, Windows restores
the currently active child and maximizes the newly activated child.

This message activates the next mUltiple document interface (MDI) child window immedi­
ately behind the currently active child window and places the currently active window be­
hind all other child windows.

Parameter

wParam

IParam

Description

Not used.

Not used.

If an MDI client window receives any message that changes the activation of its child
windows, and if the currently active MDI child window is maximized, Windows restores
the currently active child and maximizes the newly activated child.

WM_MDIRESTORE 0J
This message restores a multiple document interface (MDI) child window from maximized
or minimized size.

Parameter Description

wParam Contains the window identifier of the child window.

IParam Not used.

6-79 WM_MOISETMENU

WM_MDISETMENU 0J

Return Value

Comments

This message replaces the menu of a mUltiple document interface (MDI) frame window,
the Window pop-up menu, or both.

Parameter

wPm'am

lParam

Description

Not used.

Contains in its low-order word the menu handle (HMENU) of
the new frame-window menu, and contains in its high-order
word the menu handle of the new Window pop-up menu. If
either word is zero, the corresponding menu is not changed.

The return value is the handle of the frame-window menu replaced by this message.

After sending this message, an application must call the DrawMenuBar function to up­
date the menu bar.

If this message replaces the Window pop-up menu, MDI child-window menu items are re­
moved from the previous Window menu and added to the new Window pop-up menu.

If an MDI child window is maximized and this message replaces the MDI frame-window
menu, the System menu and restore controls are removed from the previous frame-window
menu and added to the new menu.

This message causes a multiple document interface (MDI) client window to arrange all its
child windows in a tiled format.

Parameter

wParam

lParam

Description

Not used.

Not used.

WM_MEASUREITEM 0J
This message is sent to the owner of an owner-draw button, combo box, list box, or menu
item when the control is created. When the owner receives the message, the owner fills in
the MEASUREITEM data structure pointed to by the lParam message parameter and re­
turns; this informs Windows of the dimensions of the controL If a list box or combo box is

Comments

Return Value

6-80

created with the LBS_OWNERDRAWVARIABLE or CBS_OWNERDRAWVARIABLE
style, this message is sent to the owner for each item in the control. Otherwise, this
message is sent once.

Parameter

wParam

lParam

Description

Not used.

Contains a long pointer to a MEASUREITEMSTRUCT data
structure that contains the dimensions of the owner-draw con­
trol.

Windows sends the WM_MEASURElTEM message to the owner of combo boxes and list
boxes created with the OWNERDRAWFIXED style before sending WM_INITDIALOO.

/

This message is sent when the user presses a menu mnemonic character that doesn't match
any of the predefined mnemonics in the current menu. It is sent to the window that owns
the menu.

Parameter

wParam

lParam

Description

Contains the ASCII character that the user pressed.

The high-order word contains a handle to the selected menu.
The low-order word contains the MF _POPUP flag if the menu is
a pop-up menu. It contains the MF _SYSMENU flag if the menu
is a System menu.

The high-order word of the return value contains one of the following command codes:

Code

o

1

2

Meaning

Informs Windows that it should discard the character that the
user pressed, and creates a short beep on the system speaker.

Informs Windows that it should close the current menu.

Informs Windows that the low-order word of the return value
contains the menu item-number for a specific item. This item is
selected by Windows.

6-81 WM_MENUSELECT

The low-order word is ignored if the high-order word contains zero or 1. Applications
should process this message when accelerators are used to select bitmaps placed in a menu.

WM_MENUSELECT

Comments

This message occurs when the user selects a menu item.

Parameter

wPm'am

IParam

Description

Identifies the item selected. If the selected item is a menu item,
wPm'am contains the menu-item ID. If the selected item contains a
pop-up menu, wPm'am contains the handle of the pop-up menu.

The low-order word contains a combination of the following menu
flags:

Value

MF_BITMAP

MF_CHECKED

MF _DISABLED

MF_GRAYED

MF _MOUSES ELECT

MF_OWNERDRAW

MF_POPUP

MF_SYSMENU

Meaning

Item is a bitmap.

Item is checked.

Item is disabled.

Item is grayed.

Item was selected with a
mouse.

Item is an owner-draw item.

Item contains a pop-up menu.

Item is contained in the System
menu. The high-order word
identifies the menu associated
with the message.

If the low-order word of the IParam parameter contains -1 and the high-order word of the
wParam parameter contains 0, Windows has closed the menu because the user pressed ESC

or clicked outside the menu.

WM_MOUSEACTIVATE 6-82

WM_MOUSEACTIVATE

Comments

This message occurs when the cursor is in an inactive window and any mouse button is
pressed. The parent receives this message only if the child passes it to the DefWindow­
Proc function.

Parameter

wParam

IParam

Description

Contains a handle to the topmost parent window of the window
being activated.

Contains the hit-test area code in the low-order word and the
mouse message number in the high-order word. A hit test is a
test that determines the location of the cursor.

If the child window passes the message to the DefWindowProc function, DefWindow­
Proc passes this message to a window's parent window before any processing occurs. If
the parent window returns TRUE, processing is halted.

For a description of the individual hit-test area codes, see Table 6.2, "Hit-Test Codes."

This message occurs when the user moves the mouse.

Parameter

wParam

IParam

Description

Contains a value that indicates whether various virtual keys are
down. It can be any combination of the following values:

Value

MK_CONTROL

MK_LBUTTON

MK_MBUTTON

MK_RBUTTON

MK_SHIFT

Meaning

Set if CONTROL key is down.

Set if left button is down.

Set if middle button is down.

Set if right button is down.

Set if SHIff key is down.

Contains the x- and y-coordinates of the cursor. The x-coordinate
is in the low-order word; the y-coordinate is in the high-order
word. These coordinates are always relative to the upper-left
corner of the window.

6-83

Comments The MAKEPOINT macro can be used to convert the IParam parameter to a POINT struc­
ture.

This message is sent after a window has been moved.

Parameter

wParam

lParam

Description

Is not used.

Contains the new location of the upper-left corner of the client
area of the window. This new location is given in screen coordi­
nates for overlapped and pop-up windows and parent-client
coordinates for child windows. The x-coordinate is in the low­
order word; the y-coordinate is in the high-order word.

WM_NCACTIVATE

Default Action

This message is sent to a window when its nonclient area needs to be changed to indicate
an active or inactive state.

Parameter

wParam

lParam

Description

Specifies when a caption bar or icon needs to be changed to indi­
cate an active or inactive state. The wParam parameter is
nonzero if an active caption or icon is to be drawn. It is zero for
an inactive caption or icon.

Is not used.

The DefWindowProc function draws a gray caption bar for an inactive window and a
black caption bar for an active window.

WM_NCCALCSIZE
This message is sent when the size of a window's client area needs to be calculated.

Oefault Action

Return Value

Oefault Action

Parameter

wParam

IParam

Description

Is not used.

6-84

Points to a RECT data structure that contains the screen coordi­
nates of the window rectangle (including client area, borders,
caption, scroll bars, and so on).

The DefWindowProc function calculates the size of the client area, based on the window
characteristics (presence of scroll bars, menu, and so on), and places the result in the
RECT data structure.

This message is sent prior to the WM_CREATE message when a window is first created.

Parameter Description

wParam Contains a handle to the window that is being created.

IParam Points to the CREATESTRUCT data structure for the window.

The return value is nonzero if the nonclient area is created. It is zero if an error occurs; the
Create Window function will return NULL in this case.

Scroll bars are initialized (the scroll-bar position and range are set) and the window text is
set. Memory used internally to create and maintain the window is allocated.

This message informs a window that its nonclient area is being destroyed. The Destroy­
Window function sends the WM_NCDESTROY message to the window following the
WM_DESTROY message. This message is used to free the allocated memory block as­
sociated with the window.

Parameter

wParam

IParam

Description

Is not used.

Is not used.

6-85

Default Action This message frees any memory internally allocated for the window.

WM_NCHITTEST

Return Value

This message is sent to the window that contains the cursor (or the window that used the
GetCapture function to capture the mouse input) every time the mouse is moved.

Parameter

wParam

IParam

Description

Is not used.

Contains the x- and y-coordinates of the cursor. The x-coordinate
is in the low-order word; the y-coordinate is in the high-order
word. These coordinates are always screen coordinates.

The return value of the DefWindowProc function is one of the values given in Table 6.2,
indicating the position of the cursor:

Table 6.2 Hit-Test Codes

Code Meaning

HTBOTTOM In the lower horizontal border of window.

HTBOTTOMLEFf

HTBOTTOMRIGHT

HTCAPTION

HTCLIENT

HTERROR

HTGROWBOX

HTHSCROLL

HTLEFf

HTMENU

HTNOWHERE

HTREDUCE

HTRIGHT

HTSIZE

HTSYSMENU

HTIOP

HTIOPLEFf

In the lower-left corner of window border.

In the lower-right corner of window border.

In a caption area.

In a client area.

Same as HTNOWHERE except that the DefWindowProc function
produces a system beep to indicate an error.

In a size box.

In the horizontal scroll bar.

In the left border of window.

In a menu area.

On the screen background or on a dividing line between windows.

In a ~inimize box.

In the right border of window.

Same as HTGROWBOX.

In a control-menu box (close box in child windows).

In the upper horizontal border of window.

In the upper-left comer of window border.

WM_NCLBUTTONOBLCLK 6-86

Comments

Table 6.2 Hit-Test Codes (continued)

Code Meaning

HTTOPRIGHT In the upper-right comer of window border.

HTTRANSPARENT

HTVSCROLL

HTZOOM

In a window currently covered by another window.

In the vertical scroll bar.

In a maximize box.

The MAKEPOINT macro can be used to convert the IParam parameter to a POINT struc­
ture.

WM_NCLBUTTONDBLCLK

Default Action

This message is sent to a window when the user double-clicks the left mouse button while
the cursor is within a nonclient area of the window.

Parameter

wParam

IParam

Description

Contains the code returned by WM_NCHITIEST (for more
information, see the WM_NCHITIEST message, earlier in this
chapter).

Contains a POINT data structure that contains the x- and y­
screen coordinates of the cursor position. These coordinates are
always relative to the upper-left corner of the screen.

If appropriate, WM_SYSCOMMAND messages are sent. ,-

WM NCLBUTTONDOWN
This message is sent to a window when the user presses the left mouse button while the
cursor is within a nonclient area of the window.

Parameter

wParam

Description

Contains the code returned by WM_NCHITTEST (for more
information, see the WM_NCHITTEST message, earlier in this
chapter).

6-87

Default Action

Parameter

lParam

WM_NCLBUTTONUP

Description

Contains a POINT data structure that contains the x- and y­
screen coordinates of the cursor position. These coordinates are
always relative to the upper-left corner of the screen.

If appropriate, WM_SYSCOMMAND messages are sent.

WM_NCLBUTTONUP

Default Action

This message is sent to a window when the user releases the left mouse button while the
cursor is within a nonclient area of the window.

Parameter

wParam

lParam

Description

Contains the code returned by WM_NCHITIEST (for more
information, see the WM_NCHITIEST message, earlier in this
chapter).

Contains a POINT data structure that contains the x- and y­
screen coordinates of the cursor position. These coordinates are
always relative to the upper-left corner of the screen.

If appropriate, WM_SYSCOMMAND messages are sent.

WM_NCMBUTTONDBLCLK
This message is sent to a window when the user double-clicks the middle mouse button
while the cursor is within a nonc1ient area of the window.

Parameter

wParam

lParam

Description

Contains the code returned by WM_NCHITIEST (for more
information, see the WM_NCHITTEST message, earlier in this
chapter).

Contains a POINT data structure that contains the x- and y­
screen coordinates of the cursor position. These coordinates are
always relative to the upper-left corner of the screen.

WM_NCMBUTTONOOWN 6-88

WM_NCMBUTTONDOWN
This message is sent to a window when the user presses the middle mouse button while the
cursor is within a nonc1ient area of the window.

Parameter

wParam

IParam

WM_NCMBUTTONUP

Description

Contains the code returned by WM_NCHITTEST (for more
infonnation, see the WM_NCHITTEST message, earlier in this
chapter).

Contains a POINT data structure that contains the x- and y­
screen coordinates of the cursor position. These coordinates are
always relative to the upper-left comer of the screen.

This message is sent to a window when the user releases the left mouse button while the
cursor is within a nonc1ient area of the window.

Parameter

wParam

IParam

WM_NCMOUSEMOVE

Description

Contains the code returned by WM_NCHITTEST (for more
infonnation, see the WM_NCHITTEST message, earlier in this
chapter).

Contains a POINT data structure that contains the x- and y­
screen coordinates of the cursor position. These coordinates are
always relative to the upper-left comer of the screen.

This message is sent to a window when the cursor is moved within a nonclient area of the
window .

. Parameter

wParam

Description

Contains the code returned by WM_NCHITTEST (for more
infonnation, see the WM_NCHITTEST message, earlier in this
chapter).

6-89

Default Action

Default Action

Comments

Parameter

IParam

Description

Contains a POINT data structure that contains the x- and y­
screen coordinates of the cursor position. These coordinates are
always relative to the upper-left comer of the screen.

If appropriate, WM_SYSCOMMAND messages are sent.

This message is sent to a window when its frame needs painting.

Parameter

wParam

IParam

Description

Is not used.

Is not used.

The DefWindowProc function paints the window frame.

An application can intercept this message and paint its own custom window frame. Re­
member that the clipping region for a window is always rectangular, even if the shape of
the frame is altered.

WM_NCRBUTTONDBLCLK
This message is sent to a window when the user double-clicks the right mouse button
while the cursor is within a nonclient area of the window.

Parameter

wParam

IParam

Description

Contains the code returned by WM_NCHITTEST (for more
information, see the WM_NCHITTEST message, earlier in this
chapter).

Contains a POINT data structure that contains the x- and y­
screen coordinates of the cursor position. These coordinates are
always relative to the upper-left comer of the screen.

.. ..

WM_NCRBUTTONOOWN 6-90

WM_NCRBUTTONDOWN
This message is sent to a window when the user presses the right mouse button while the
cursor is within a nonc1ient area of the window.

Parameter

wParam

IParam

WM_NCRBUTTONUP

Description

Contains the code returned by WM_NCHITIEST (for more
infonnation, see the WM_NCHITIEST message, earlier in this
chapter).

Contains a POINT data structure that contains the x- and y­
screen coordinates of the cursor position. These coordinates are
always relative to the upper-left corner of the screen.

This message is sent to a window when the user releases the right mouse button while the
cursor is within a nonc1ient area of the window.

Parameter

wParam

IParam

Description

Contains the code returned by WM_NCHITIEST (for more
infonnation, see the WM_NCHITIEST message, earlier in this
chapter).

Contains a POINT data structure that contains the x- and y­
screen coordinates of the cursor position. These coordinates are
always relative to the upper-left corner of the screen.

This message is sent to a dialog box's window function, to alter the control focus. The ef­
fect of this message is different than that of the SetFocus function because
WM_NEXTDLGCTL modifies the border around the default button.

6-91

Comments

Parameter

wPm'am

IParam

Description

If the IParam parameter is nonzero, the wParam parameter iden­
tifies the control that receives the focus. If IParam is zero,
wParam is a flag that indicates whether the next or previous con­
trol with tab-stop style receives the focus. If wParam is zero, the
next control receives the focus; otherwise, the previous control
with tab-stop style receives the focus.

Contains a flag that indicates how Windows uses the wPm'am
parameter. If the IParam parameter is nonzero, wPm'am is a
handle associated with the control that receives the focus; other­
wise, wParam is a flag that indicates whether the next or
previous control with tab-stop style receives the focus.

Do not use the SendMessage function to send a WM_NEXTDLGCTL message if your
application will concurrently process other messages that set the control focus. Use the
PostMessage function instead.

This message is sent when Windows or an application makes a request to repaint a portion
of an application's window. The message is sent either when the UpdateWindow function
is called or by the DispatchMessage function when the applicatio'n obtains a WM_PAINT
message by using the GetMessage or PeekMessage function.

Parameter

wParam

IParam

Description

. Is not used.

Is not used.

This message is sent when the clipboard contains a data handle for the CF _OWNERDIS­
PLAY format (specifically the clipboard owner should display the clipboard contents) and
the Clipboard application's client area needs repainting. The WM_PAINTCLIPBOARD
message is sent to the clipboard owner to request repainting of all or part of the Clipboard
application's client area.

Comments

Parameter

wParam

IParam

Description

Contains a handle to the Clipboard-application window.

The low-order word of the IParam parameter identifies a
PAINTSTRUCT data structure that defines what part of the
client area to paint. The high-order word is not used.

6-92

To determine whether the entire client area or just a portion of it needs repainting, the clip­
board owner must compare the dimensions of the drawing area given in the repaint field
of the PAINTSTRUCT data structure to the dimensions given in the most recent
WM_SIZECLIPBOARD message.

An application must use the GlobalLock function to lock the memory that contains the
PAINTSTRUCT data structure. The application should unlock that memory by using the
GlobalUnlock function before it yields or returns control.

This message is sent to a minimized (iconic) window when the icon is to be painted. A
window receives this message only if a class icon is defined for the window. Otherwise,
WM_PAINT is' sent instead. Passing this message to the DefWindowProc function per­
mits Windows to paint the icon with the class icon.

Parameter

wParam

IParam

Description

Is not used.

Is not used.

WM_PALETTECHANGED [I[]
This message informs all windows that the window with input focus has realized its logical
palette, thereby changing the system palette. This message allows windows without input
focus that use a color palette to realize their logical palettes and update their client areas.

Parameter'

wParam

IParam

Description

Contains the handle of the window that caused the system
palette to change.

Is not used.

6-93

Comments

Comments

WM_PARENTNOTIFY

To avoid creating a loop, a window that receives this message should not realize its palette
unless it determines that wParam does not contain its window handle.

This message is sent to the parent of a child window when the child window is created or
destroyed, or when the user has pressed a mouse button while the cursor is over the child
window. When the child window is being created, Windows sends WM_PARENT­
NOTIFY just before the CreateWindow or CreateWindowEx function that creates the
window returns. When the child window is being destroyed, Windows sends the message
before any processing to destroy the window takes place.

Parameter

wPm"am

IParam

Description

Specifies the event for which the parent is being notified. It can
be any of these values:

Value

WM_LBUTTONDOWN
WM_MBUTTONDOWN
WM_RBUTTONDOWN

Meaning

The child window is being
created.

The child window is being de­
stroyed.

The user has clicked on a child
window.

Contains the window handle of the child window in its low­
order word and the ID of the child window in its high-order
word.

This message is also sent to all ancestor windows of the child window, including the top­
level window.

This message is sent to the parent of all child windows unless the child has the extended
window style WS_EX_NOPARENTNOTIFY; CreateWindowEx creates a window with
extended window styles. By default, child windows in a dialog box have the WS_EX_NO­
PARENTNOTIFY style unless the child window was created by calling the CreateWin­
dowEx function.

< <

6-94

This message inserts the data from the clipboard into the control window at the current
cursor position. Data are inserted only if the clipboard contains data in CF _TEXT format.

Parameter

wParam

IParam

Description

Is not used.

Is not used .

. WM_OUERYDRAGICON WJ

Return Value

This message is sent to a minimized (iconic) window which is about to be dragged by the
user but which does not have an icon defined for its class.

When the user drags the icon of a window without a class icon, Windows replaces the icon
with a default icon cursor. If the application needs a different cursor to be displayed during
dragging, it must return the handle of a monochrome cursor compatible with the display
driver's resolution. The application can call the LoadCursor function to load a cursor
from the resources in its executable file and to obtain this handle.

Parameter

wParam

IParam

Description

Is not used.

Is not used.

The return value contains in its low-order word the handle of the cursor which Windows is
to display while the user drags the icon. The return value is NULL if Windows is to display
the default icon cursor. The default return value is NULL.

WM_OUERYENDSESSION
This message is sent when the user chooses the End Session command. If any application
returns zero, the session is not ended. Windows stops sending WM_QUERYENDSES­
SION messages as soon as one application returns zero, and sends WM_ENDSESSION
messages, with the wParam parameter set to zero, to any applications that have already re­
turned nonzero.

6-95

Return Value

Default Action

Parameter

wPm'am

IParam

Description

Is not used,

Is not used.

WM_ aUERYNEWPALETTE

The return value is nonzero if the application can be conveniently shut down. Otherwise, it
is zero.

The DefWindowProc function returns nonzero.

WM_QUERYNEWPALETTE []]J

Return Value

Return Value

Default Action

This message informs a window that it is about to receive input focus. If the window real­
izes its logical palette when it receives input focus, the window should return TRUE; other­
wise, it should return FALSE.

Parameter

wPm'am

IParam

Description

Is not used.

Is not used.

The return value is TRUE if the window realizes its logical palette. Otherwise, it is FALSE.

This message is sent to an icon when the user requests that it be opened into a window.

Parameter

wPm'am

IParam

Description

Is not used.

Is not used.

The return value is zero when the application prevents the icon from being opened. It is
nonzero when the icon can be opened.

The DefWindowProc function returns nonzero.

WM_QUIT 6-96

This message indicates a request to terminate an application and is generated when the
application calls the PostQuitMessage function. It causes the GetMessage function to re­
turn zero.

Parameter

wParam

lParam

Description

Contains the exit code given in the PostQuitMessage call.

Is not used.

WM_RBUTTONDBLCLK

Comments

This message occurs when the user double-clicks the right mouse button.

Parameter

wParam

lParam

Description

Contains a value that indicates whether various virtual keys are
down. It can be any combination of the following values:

Value

MK_CONTROL

MK_LBUTTON

MK_MBUTTON

MK_RBUTTON

MK_SHIFf

Meaning

Set if CONTROL key is down.

Set if left button is down.

Set if middle button is down.

Set if right button is down.

Set if SHIff key is down.

Contains the x- and y-coordinates of the cursor. The x-coordinate
is in the low-order word; the y-coordinate is in the high-order
word. These coordinates are always relative to the upper-left
comer of the window.

Only windows whose window class has CS_DBLCLKS style can receive double-click
messages. Windows generates a double-click message when the user presses, releases, and
then presses a mouse button again within the system's double-click time limit. Double­
clicking actually generates four messages: a down-click message, an up-click message, the
double-click message, and another up-click message.

6-97 WM_RBUTTONOOWN

WM_RBUTTONDOWN
This message occurs when the user presses the right mouse button.

Parameter

wPm·am

IParam

Description

Contains a value that indicates whether various virtual keys are
down. It can be any combination of the following valu~s:

Value

MK_CONTROL

MK_LBUTTON

MK_MBUTTON

MK_SHIFf

Meaning

Set if CONTROL key is down.

Set if left button is down.

Set if middle button is down.

Set if SHIff key is down.

Contains the x- and y-coordinates of the cursor. The x-coordinate
is in the low-order word; the y-coordinate is in the high-order
word. These coordinates are always relative to the upper-left
corner of the window.

This message occurs when the user releases the right mouse button.

Parameter

wPm"am

IParam

Description

Contains a value that indicates whether various virtual keys are
down. It can be any combination of the following values:

Value

MK_CONTROL

MK_LBUTTON

MK_MBUTTON

MK_SHIFf

Meaning

Set if CONTROL key is down.

Set if left button is down.

Set if middle button is down.

Set if SHIff key is down.

Contains the x- and y-coordinates of the cursor. The x-coordinate
is in the low-order word; the y-coordinate is in the high-order
word. These coordinates are always relative to the upper-left
corner of the window.

WM_RENDERALLFORMATS 6-98

WM_RENDERAllFORMATS

Comments

This message is sent to the application that owns the clipboard when that application is
being destroyed.

Parameter

wParam

lParam

Description

Is not used.

Is not used.

The application should render the clipboard data in all the formats it is capable of generat­
ing and pass a handle to each format to the SetClipboardData function. This ensures that
the data in the clipboard can be rendered even though the application has been destroyed.

WM_RENDERFORMAT

Comments

This message requests that the clipboard owner format the data last copied to the clipboard
in the specified format, and then pass a handle to the formatted data to the clipboard.

Parameter

wParam

lParam

Description

Specifies the data format. It can be anyone of the formats de­
scribed with the SetClipboardData function.

Is not used.

This message occurs if mouse input is not captured and the mouse causes cursor move­
ment within a window.

Parameter

wParam

lParam

Description

Contains a handle to the window that contains the cursor.

Contains the hit-test area code in the low-order word and the
mouse message number in the high-order word.

The DefWindowProc function passes the WM_SETCURSOR message to a parent
window before processing. If the parent window returns TRUE, further processing is
halted. Passing the message to a window's parent window gives the parent window control

6-99

Comments

over the cursor's setting in a child window. The DefWindowProc function also uses this
message to set the cursor to an arrow if it is not in the client area, or to the registered-class
cursor if it is. If the low-order word of the IParam parameter is HTERROR and the high­
order word of IParam is a mouse button-down message, the MessageBeep function is
called.

The high-order word of IParam is zero when the window enters menu mode.

This message is sent after a window gains the input focus.

Parameter

wParam

IParam

Description

Contains the handle of the window that loses the input focus
(may be NULL).

Is not used.

To display a caret, an application should call the appropriate caret functions at this point.

This message specifies the font that a dialog box control is to use when drawing text. The
best time for the owner of a dialog box control to set the font of the control is when it re­
ceives the WM_INITDIALOG message. The application should call the DeleteObject
function to delete the font when it is no longer needed, such as after the control is de­
stroyed.

The size of the control is not changed as a result of receiving this message. To prevent
Windows from clipping text that does not fit within the boundaries of the control, the appli­
cation should correct the size of the control window before changing the font.

Parameter

wParam

IParam

Description

Contains the handle of the font. If this parameter is NULL, the
control will draw text using the default system font.

Specifies whether the control should be redrawn immediately
upon setting the font. Setting lparam to TRUE causes the control
to redraw itself; otherwise, it will not.

Comments

Comments

6-100

Before Windows creates a dialog box with the DS_SETFONT style, Windows sends the
WM_SETFONT message to the dialog-box window before creating the controls. An appli­
cation creates a dialog box with the DS_SETFONT style by calling any of the following
functions:

• CreateDialogIndirect

• CreateDialogIndirectParam

• DialogBoxIndirect

• DialogBoxIndirectParam

The DLGTEMPLATE data structure which the application passes to these functions must
have the DS_SETFONT style set and must contain a FONTINFO data structure that de­
fines the font with which the dialog box will draw text.

This message is sent by an application to a window in order to allow changes in that
window to be redrawn, or to prevent changes in that window from being redrawn.

Parameter

wParam

IParam

Description

Specifies the state of the redraw flag. If the wParam parameter
is nonzero, the redraw flag is set. If wParam is zero, the flag is
cleared.

Is not used.

This message sets or clears the redraw flag. However, it does not direct a list box to update
its display. When the redraw flag is set, a control can be redrawn immediately after each
change. When the redraw flag is cleared, no redrawing is done. Applications that need to
add several names to a list without redrawing until the final name is added should set the
redraw flag before adding the final name to the list.

This message is used to set the text of a window. For edit controls and combo-box edit con­
trols, the text to be set is the content of the edit control. For button controls, the text is the
button name. For other windows, the text is the window caption.

6-101

Return Value

Comments

Parameter

wPm'am

IParam

Description

Is not used.

WM_SHOWWINOOW

Points to a null-terminated string that is the window text.

The return value is LB_ERRSPACE (for a list box) or CB_ERRSPACE (for a combo box)
if insufficient space is available to set the text in the edit control. It is CB_ERR if this
message is sent to a combo box without an edit control.

This message does not change the current selection in the list box of a combo box. An
application should use the CB_SELECTSTRING message to select the list-box item which
matches the text in the edit control.

WM_SHOWWINDOW

Default Action

This message is sent when a window is to be hidden or shown. A window is hidden or
shown when the ShowWindow function is called; when an overlapped window is maxi­
mized or restored; or when an overlapped or pop-up window is closed (made iconic) or
opened (displayed on the screen). When an overlapped window is closed, all pop-up
windows associated with that window are hidden.

Parameter

wParam

IParam

Description

Specifies whether a window is being shown. It is nonzero if the
window is being shown. It is zero if the window is being hidden.

Specifies the status of the window being shown. It is zero if the
message is sent because of a ShowWindow function call. Otherwise,
the IParam parameter is one of the following values:

Value

SW _PARENTCLOSING

SW _PARENTOPENING

Meaning

Parent window is closing (being
made iconic) or a pop-up
window is being hidden.

Parent window is opening
(being displayed) or a pop-up
window is being shown.

The DefWindowProc function hides or shows the window as specified by the message.

WM_SIZE

Comments

6-102

This message is sent after the size of a window has changed.

Parameter

wParam

IParam

Description

Contains a value that defines the type of resizing requested. It can be
one of the following values:

Value

SIZEFULLSCREEN

SIZEICONIC

SIZENORMAL

SIZEZOOMHIDE

SIZEZOOMSHOW

Meaning

Window has been maximized.

Window has been minimized.

Window has been resized, but
neither SIZEICONIC nor SIZE­
FULLSCREEN applies.

Message is sent to all pop-up
windows when some other
window is maximized.

Message is sent to all pop-up
windows when some other
window has been restored to its
former size.

Contains the new width and height of the client area of the window.
The width is in the low-order word; the height is in the high-order
word.

If the SetScrollPos or Move Window function is called for a child window as a result of
the WM_SIZE message, the bRedraw parameter should be nonzero to cause the window to
be repainted.

WM_SIZECLIPBOARD
This message is sent when the clipboard contains a data handle for the CF _OWNERDIS­
PLAY format (that is, the clipboard owner should display the clipboard contents) and the
clipboard-application window has changed size.

6-103

Comments

Parameter

wParam

lParam

WM_SPOOLERSTATUS

Description

Identifies the clipboard-application window.

The low-order word of the lParam parameter identifies a RECT
data structure that specifies the area the clipboard owner should
paint. The high-order word is not used.

A WM_SIZECLIPBOARD message is sent with a null rectangle (0,0,0,0) as the new size
when the clipboard application is about to be destroyed or minimized. This permits the
clipboard owner to free its display resources.

An application must use the GlobalLock function to lock the memory that contains the
PAINTSTRUCT data structure. The application should unlock that memory by using the
GlobalUnlock function before it yields or returns control.

WM_SPOOlERSTATUS I]]]

Comments

This message is sent from Print Manager whenever a job is added to or removed from the
Print Manager queue.

Parameter

wParam

lparam

Description

Is set to SP _JOB STATUS.

Specifies in its low-order word the number of jobs remaining in
the Print Manager queue. The high-order word is not used.

This message is for informational purposes only.

This message results when a WM_SYSKEYUP and WM_SYSKEYDOWN message are
translated. It specifies the virtual-key code of the System-menu key.

Parameter

wParam

lParam

Description

Contains the ASCII-character key code of a System-menu key.

Contains the repeat count, scan code, key-transition code, pre­
vious key state, and context code, as shown in the following list:

WM_SYSCHAR 6-104

Oefault Action

Comments

Parameter

None.

Description

Bit

0-15 (low-order
word)

16-23 (low byte
of high-order
word)

24

25-26

27-28

29

30

31

Value

Repeat count (the number of times the
key stroke is repeated as a result of the
user holding down the key).

Scan code (OEM-dependent value).

Extended key, such as a function key or a
key on the numeric key pad (1 if it is an
extended key, 0 otherwise).

Not used.

Used internally by Windows.

Context code (1 if the ALT key is held
down while the key is pressed, 0 other­
wise).

Previous key state (1 if the key is down
before the message is sent, 0 if the key is
up).

Transition state (1 if the key is being
released, 0 if the key is being pressed).

When the context code is zero, the message can be passed to the TranslateAccelerator
function, which will handle it as though it were a normal key message instead of a system­
key message. This allows accelerator keys to be used with the active window even if the
active window does not have the input focus.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT and the
right CONTROL keys on the main section of the keyboard; the INSERT, DELETE, HOME, END,

PAGE UP, PAGE DOWN and DIRECTION keys in the clusters to the left of the numeric key
pad; and the divide (/) and ENTER keys in the numeric key pad. Some other keyboards may
support the extended-key bit in the lParam parameter.

6-105 WM_SYSCOLORCHANGE

WM_SYSCOLORCHANGE

Default Action

Comments

This message specifies a change in one or more system colors. Windows sends the
message to all top-level windows when a change is made in the system color setting.

Parameter

wPm'am

IParam

Description

Is not used.

Is not used.

Windows sends a WM_PAINT message to any window that is affected by a system color
change.

Applications that have brushes that use the existing system colors should delete those
brushes and re-create them by using the new system colors.

WM_SYSCOMMAND
This message is sent when the user selects a command from the System menu or when the
user selects the maximize or minimize box.

Parameter

wParam

Description

Specifies the type of system command requested. It can be anyone
of the following values:

Value

SC_CLOSE

SC_HSCROLL

SC_KEYMENU

SC_MAXIMIZE
(or SC_ZOOM)

SC_MINIMIZE
(or SC_ICON)

SC_MOUSEMENU

Meaning

Close the window.

Scroll horizontally.

Retrieve a menu through a key
stroke.

Maximize the window.

Minimize the window.

Retrieve a menu through a
mouse click.

WM_SYSCOMMANO 6-106

Default Action

Comments

Parameter

lParam

Description

Value

SC_MOVE

SC_NEXTWINDOW

SC_PREVWINDOW

SC_RESTORE

SC_SIZE

SC_VSCROLL

Meaning

Mdve the window.

Move to the next window.

Move to the previous window.

Checkpoint (save the previous
coordinates).

Size the window.

Scroll vertically.

Contains the cursor coordinates if a System-menu command is
chosen with the mouse. The low-order word contains the x-coordi­
nate, and the high-order word contains the y-coordinate. Otherwise,
this parameter is not used.

The DefWindowProc function carries out the System-menu request for the predefined ac­
tions specified above.

In WM_SYSCOMMAND messages, the four low-order bits of the wParam parameter are
used internally by Windows. When an application tests the value of wParam, it must com­
bine the value OxFFFO with the wParam value by using the bitwise AND operator to ob­
tain the correct result.

The menu items in a System menu can be modified by using the GetSystemMenu, Ap­
pendMenu, InsertMenu, and ModifyMenu functions. Applications that modify the Sys­
tem menu must process WM_SYSCOMMAND messages. Any WM_SYSCOMMAND
messages not handled by the application must be passed to the DefWindowProc function.
Any command values added by an application must be processed by the application and
cannot be passed to DefWindowProc.

An application can carry out any system command at any time by passing a WM_SYS­
COMMAND message to the DefWindowProc function.

Accelerator key strokes that are defined to select items from the System menu are trans­
lated into WM_SYSCOMMAND messages; all other accelerator key strokes are translated
into WM_COMMAND messages.

6-107 WM_SYSDEAOCHAR

WM_SYSDEADCHAR
This message results when a WM_SYSKEYUP and WM_SYSKEYDOWN message are
translated. It specifies the character value of a dead key.

Parameter

wPm'am

lParam

WM_SYSKEYDOWN

Description

Contains the dead-key character value.

Contains a repeat count and an auto-repeat count. The low-order
word contains the repeat count; the high-order word contains the
auto-repeat count.

This message is sent when the user holds down the ALT key and then presses another key.
It also occurs when no window currently has the input focus; in this case, the WM_SYS­
KEYDOWN message is sent to the active window. The window that receives the message
can distinguish between these two contexts by checking the context code in the lParam
parameter.

Parameter

wParam

lParam

Description

Contains the virtual-key code of the key being pressed.

Contains the repeat count, scan code, key-transition code, pre­
vious key state, and context code, as shown in the following list:

Bit

0-15 (low-order
word)

16-23 (low byte
of high-order
word)

24

25-26

27-28

Value

Repeat count (the number of times the
key stroke is repeated as a result of the
user holding down the key).

Scan code (OEM-dependent value).

Extended key, such as a function key or a
key on the numeric key pad (1 if it is an
extended key).

Not used.

Used internally by Windows.

Comments

Parameter Description

Bit

29

30

31

6-108

Value

Context code (1 if the ALT key is held
down while the key is pressed, 0 other­
wise).

Previous key state (1 if the key is down
before the message is sent, 0 if the key is
up).

Transition state (1 if the key is being
released, 0 if the key is being pressed).

For WM_SYSKEYDOWN messages, the key-transition bit (bit
31) is O. The context-code bit (bit 29) is 1 if the ALT key is down
while the key is pressed; it is 0 if the message is sent to the ac­
tive window because no window has the input focus.

When the context code is zero, the message can be passed to the TranslateAccelerator
function, which will handle it as though it were a normal key message instead of a system­
key message. This allows accelerator keys to be used with the active window even if the
active window does not have the input focus.

Because of auto-repeat, more than one WM_SYSKEYDOWN message may occur before
a WM_SYSKEYUP message is sent. The previous key state (bit 30) can be used to deter­
mine whether the WM_SYSKEYDOWN message indicates the first down transition or a
repeated down transition.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT and the
right CONTROL keys on the main section of the keyboard; the INSERT, DELETE, HOME, END,

PAGE UP, PAGE DOWN and DIRECTION keys in the clusters to the left of the numeric key
pad; and the divide (/) and ENTER keys in the numeric key pad. Some o~her keyboards may
support the extended-key bit in the lParam parameter.

This message is sent when the user releases a key that was pressed while the ALT key was
held down. It also occurs when no window currently has the input focus; in this case, the
WM_SYSKEYUP message is sent to the active window. The window that receives the
message can distinguish between these two contexts by checking the context code in the
lParam parameter.

6-109

Comments

Parameter

wParam

IParam

WM_SYSKEYUP

Description

Contains the virtual-key code of the key being released.

Contains the repeat count, scan code, key-transition code, pre­
vious key state, and context code, as shown in the following list:

Bit

0-15 (low-order
word)

16-23 (low byte
of high-order
word)

24

25-26

27-28

29

30

31

Value

Repeat count (the number of times the
key stroke is repeated as a result of the
user holding down the key).

Scan code (OEM-dependent value).

Extended key, such as a function key or a
key on the numeric key pad (1 if it is an
extended key).

Not used.

Used internally by Windows.

Context code (1 if the ALT key is held
down while the key is pressed, 0 other-
wise).

Previous key state (1 if the key is down
before the message is sent, 0 if the key is
up).

Transition state (1 if the key is being
released, 0 if the key is being pressed).

For WM_SYSKEYUP messages, the key-transition bit (bit 31)
is 1. The context-code bit (bit 29) is 1 if the ALT key is down
while the key is pressed; it is 0 if the message is sent to the ac­
tive window because no window has the input focus.

When the context code is zero, the message can be passed to the TranslateAccelerator
function, which will handle it as though it were a nonnal key message instead of a system­
key message. This allows accelerator keys to be used with the active window even if the
active window does not have the input focus.

For IBM Enhanced 101- and 102-key keyboards, enhanced keys are the right ALT and the
right CONTROL keys on the main section of the keyboard; the INSERT, DELETE, HOME, END,

PAGE UP, PAGE DOWN and DIRECTION keys in the clusters to the left of the numeric key

WM_ TIMECHANGE 6-110

pad; and the divide (/) and ENTER keys in the numeric key pad. Some other keyboards may
support the extended-key bit in the lParam parameter.

For non-USA Enhanced l02-key keyboards, the right ALT key is handled as a CONTROL­

ALT key. The following shows the sequence of messages which result when the user
presses and releases this key:

Order

2

3

4

Message

WM_KEYDOWN

WM_KEYDOWN

WM_KEYUP

WM_SYSKEYUP

Virtual-key code (lParam)

VK_CONTROL

VK_MENU

VK_CONTROL

VK_MENU

WM_TIMECHANGE

Comments

This message occurs when an application makes a change (or set of changes) to the system
time. Any application that changes the system time should send this message to all top­
level windows.

Parameter

wParam

lParam

Description

Is not used.

Is not used.

To send the WM_TIMECHANGE message to all top-level windows, an application can
use the SendMessage function with the hWnd parameter set to OxFFFF.

This message occurs when the time limit set for a given timer has elapsed.

6-111

Parameter

wPm'am

IParam

Description

Contains the timer ID, an integer value that identifies the timer.

Points to a function that was passed to the SetTimer function
when the timer was created. If the IParam parameter is not
NULL, Windows calls the specified function directly, instead of
sending the WM_ TIMER message to the window function.

This message undoes the last operation. When sent to an edit control, the previously de­
leted text is restored or the previously added text is deleted.

Parameter

wParam

IParam

Description

Is not used.

Is not used.

WM_ VKEYTOITEM

Return Value

This message is sent by a list box with the LBS_ WANTKEYBOARDINPUT style to its
owner in response to a WM_KEYDOWN message.

Parameter

wParam

IParam

Description

Contains the virtual-key code of the key which the user pressed.

Contains the current caret position in its high-order word and the
window handle of the list box in its low-order word.

The return value specifies the action which the application performed in response to the
message. A return value of -2 indicates that the application handled all aspects of selecting
the item and wants no further action by the list box. A return value of -1 indicates that the
list box should perform the default action in response to the key stroke. A return value of
zero or greater specifies the index of an item in the list box and indicates that the list box
should perform the default action for the key stroke on the given item.

.. ..

WM_VSCROLL 6-112

WM_VSCROLL

Comments

This message is sent when the user clicks the vertical scroll bar.

Parameter

wParam

[Param

Description

Contains a scroll-bar code that specifies the user's scrolling request.
It can be anyone of the following values:

Value

SB_BOTTOM

SB_ENDSCROLL

SB_LINEDOWN·

SB_LINEUP

SB_PAGEDOWN

SB_PAGEUP

SB_THUMBPOSITION

SB_THUMBTRACK

Meaning

Scroll to bottom.

End scroll.

Scroll one line down.

Scroll one line up.

Scroll one page down.

Scroll one page up.

Scroll to absolute position. The
current position is provided in
the low-order word of [Paramo

Drag thumb to specified posi­
tion. The current position is
provided in the low-order word
of [Paramo

Scroll to top.

If the message is sent by a scroll-bar control, the high-order word of
the [Param parameter identifies the control. If the message is sent as
a result of the user clicking a pop-up window's scroll bar, the high­
order word is not used.

The SB_THUMBTRACK message typically is used by applications that give some feed­
back while the thumb is being dragged.

If an application scrolls the document in the window, it must also reset the position of the
thumb by using the SetScrollPos function.

6-113 WM_ VSCROLLCLIPBOARO

WM_VSCROLLCLIPBOARD

Comments

This message is sent when the clipboard contains a data handle for the CF _OWNERDIS­
PLAY format (that is, the clipboard owner should display the clipboard contents) and an
event occurs in the clipboard-application's vertical scroll bar.

Parameter

wPm"am

lParam

Description

Contains a handle to the clipboard-application window.

Contains one of the following scroll-bar codes in the low-order word:

Value Meaning

SB_BOTTOM Scroll to lower right.

SB_ENDSCROLL End scroll.

SB_LINEDOWN Scroll one line down.

SB_LINEUP Scroll one line up.

SB_PAGEDOWN Scroll one page down.

SB_PAGEUP Scroll one page up.

SB_THUMBPOSITION Scroll to absolute position.

SB_TOP Scroll to upper left.

The high-order word of the lParam parameter contains the thumb
position if the scroll-bar code is SB_THUMBPOSITION. Otherwise,
the high-order word is not used.

The clipboard owner should use the InvalidateRect function or repaint as desired. The
scroll bar position should also be reset.

WM_ WININICHANGE 6-114

WM_WININICHANGE

Comments

This message is sent when the Windows initialization file, WIN.lNI, changes. Any applica­
tion that makes a change to WIN.lNI should send this message to all top-level windows.

Parameter

wParam

IParam

Description

Is not used.

Points to a string that specifies the name of the section that has
changed (the string does not include the square brackets).

To send the WM_ WININICHANGE message to all top-level windows, an application can
use the SendMessage function with the hWnd parameter set to OxFFFF.

Although it is incorrect to do so, some applications send this message with IParam set to
NULL. If an application receives this message with a NULL IParam, it should check all
sections in WIN .INI that affect the application.

Volume 2

Part

3
General Reference

Part 3 provides general reference information on components of the Windows
application programming interface that are in addition to the functions and mes­
sages described in the preceding parts.

CHAPTERS
7 Data Types and Structures
8 Resource Script Statements
9 File Formats

10 Module-Definition Statements
11 Binary and Ternary Raster-Operation Codes
12 Printer Escapes
13 Assembly-Language Macros Overview
14 Assembly-Language Macros Directory
15 Windows DDE Protocol Definition

Chapter

7

7. 1 Data Types

Data Types and Structures

This chapter describes the data types and structures used by Microsoft Windows
functions and messages. It contains two parts: a table of data types and a list of
Windows data structures, each arranged alphabetically.

The data types in the following list are key words that define the size and
meaning of parameters and return values associated with Windows functions.
This list contains character, integer, and Boolean types, pointer types, and han­
dles. The character, integer, and Boolean types are common to most C compilers.
Most of the pointer-type names begin with either a P prefix (for short pointers) or
an LP prefix (for long pointers). A short pointer accesses data within the current
data segment; a long pointer contains a 32-bit segment/offset value. A Windows
application uses a handle to refer to a resource that has been loaded into memory.
Windows provides access to these resources through internally maintained tables
that contain individual entries for each handle. Each entry in the handle table con­
tains the address of the resource and a means of identifying the resource type.
The Windows data types are defined in the following list:

Type

BOOL

BYTE

char

DWORD

FAR

FARPROC

Definition

16-bit Boolean value.

Unsigned 8-bit integer.

ASCII character or a signed 8-bit in­
teger.

:Unsigned 32-bit integer or a seg­
ment/offset address.

Data-type attribute that can be used to
create a long pointer.

Long pointer to a function obtained by
calling the MakeProcInstance func­
tion.

7-2 Reference - Volume 2

Type

GLOBALHANDLE

HANDLE

HBITMAP

HBRUSH

HCURSOR

HDC

HFONT

HICON

HMENU

HPALETTE

HPEN

HRGN

HSTR

int

Definition

Handle to global memory. It is a 16-bit
index to a block of memory allocated
from the system's global heap.

General handle. It represents a 16-bit
index to a table entry that identifies pro­
gram data.

Handle to a physical bitmap. It is a 16-
bit index to GDI's physical drawing
objects.

Handle to a physical brush. It is a 16-bit
index to GDI's physical drawing ob­
jects.

Handle to a cursor resource. It is a 16-
bit index to a resource-table entry.

Handle to a display context. It is a 16-
bit index to GDI's device-context
tables.

Handle to a physical font. It is a 16-bit
index to GDI's physical drawing ob­
jects.

Handle to an icon resource. It is a 16-
bit index to a resource-table entry.

Handle to a menu resource. It is a 16-
bit index to a resource-table entry.

Handle to a logical palette. It is a 16-bit
index to GDI's physical drawing ob­
jects.

Handle to a physical pen. It is a 16-bit
index to GDI's physical drawing ob­
jects.

Handle to a physical region. It is a 16-
bit index to GDI's physical drawing
objects.

Handle to a string resource. It is a 16-
bit index to a resource-table entry.

Signed 16-bit integer.

Type

LOCALHANDLE

long

. LONG

LPBITMAP

LPBITMAPCOREHEADER

LPBITMAPCOREINFO

LPBITMAPFILEHEADER

LPBITMAPINFO

LPBITMAPINFOHEADER

LPCOMPAREITEMSTRUCT

LPCREATESTRUCT

LPDELETEITEMSTRUCT

LPDRAWITEMSTRUCT

LPHANDLETABLE

LPINT

LPLOGBRUSH

LPLOGFONT

LPLOGPALETTE

Data Types and Structures 7-3

Definition

Handle to local memory. It is a 16-bit
index to a block of memory allocated
from the application's local heap.

Signed 32-bit integer.

Signed 32-bit integer .

Long pointer to a BITMAP data struc­
ture.

Long pointer to a BITMAPCORE­
HEADER data structure.

Long pointer to a BITMAPCORE­
INFO data structure.

Long pointer to a BITMAP FILE­
HEADER data structure.

Long pointer to a BITMAPINFO data
structure.

Long pointer to a BITMAPINFO­
HEADER data structure.

Long pointer to a COMPAREITEM­
STRUCT data structure.

Long pointer to a CREATESTRUCT
data structure.

Long pointer to a DELETEITEM­
STRUCT data structure.

Long pointer to a DRAWITEM­
STRUCT data structure.

Long pointer to a HANDLETABLE
data structure.

Long pointer to a signed 16-bit integer.

Long pointer to a LOGBRUSH data
structure.

Long pointer to a LOGFONT data
structure.

Long pointer to a LOGPALETTE data
structure.

7-4 Reference - Volume 2

Type

LPLOGPEN

LPMEASUREITEMSTRUCT

LPMETAFILEPICT

LPMSG

LPOFSTRUCT

LPPAINTSTRUCT

LPPALETTEENTRY

LPPOINT

LPRECT

LPRESOURCELIST

LPSTR

LPTEXTMETRIC

LPVOID

LPWNDCLASS

NEAR

NPSTR

PINT

PSTR

PWORD

short

Definition

Long pointer to a LOGPEN data struc­
ture.

Long pointer to a MEASURE­
ITEMSTRUCT data structure.

Long pointer to a METAFILEPICT
data structure.

Long pointer to a MSG data structure.

Long pointer to an OFSTRUCT data
structure.

Long pointer to a PAINTSTRUCT
data structure.

Long pointer to a PALETTEENTRY
data structure.

Long pointer to a POINT data structure.

Long pointer to a RECT data structure.

Long pointer to one or more
RESOURCESTRUCT data structures.

Long pointer to a character string.

Long pointer to a TEXTMETRIC data
structure.

Long pointer to an undefined data type.

Long pointer to a WNDCLASS data
structure.

Data-type attribute that can be used to
create a short pointer.

Near pointer to a character string.

Pointer to a signed 16-bit integer.

Pointer to a character string.

Pointer to an unsigned 16-bit integer.

Signed 16-bit integer.

Type

void

WORD

7.2 Data Structures

Data Types and Structures 7-5

Definition

Empty value. It is used with a function
to specify no return value.

Unsigned 16-bit integer.

This section lists data structures that are used by Windows. The data structures
are presented in alphabetical order. The structure definition is given, followed by
a description of each field.

BITMAP 7-6

BITMAP
Bitmap Data Structure

Comments

The BITMAP structure defines the height, width, color format, and bit values of a logical
bitmap.

typedef struct tagBITMAP
short bmType;
short bmWidth;
short bmHeight;
short bmWidthBytes;
BYTE bmPlanes;
BYTE bmBitsPixel;
LPSTR bmBits;

BITMAP;

The BITMAP structure has the following fields:

Field

bmType

bmWidth

bmHeight

bm WidthBytes

bmPlanes

bmBitsPixel

bmBits

Description

Specifies the bitmap type. For logical bitmaps, the bmType field
must be zero ..

Specifies the width of the bitmap (in pixels). The width must be
greater than zero.

Specifies the height of the bitmap (in raster lines). The height
must be greater than zero.

Specifies the number of bytes in each raster line. This value
must be an even number since the graphics device interface
(GDI) assumes that the bit values of a bitmap form an array of
integer (two-byte) values. In other words, bmWidthBytes x 8
must be the next multiple of 16 greater than or equal to the
bm Width field.

Points to the number of color planes in the bitmap.

Points to the number of adjacent color bits on each plane needed
to define a pixel.

Points to the location of the bit values for the bitmap. The
bmBits field must be a long pointer to an array of character (one­
byte) values.

The currently used bitmap formats are monochrome and color. The monochrome bitmap
uses a one-bit, one-plane format. Each scan is a multiple of 16 bits.

7-7

See Also

BITMAPCOREHEAOER

Scans are organized as follows for a monochrome bitmap of height 11:

Scan 0
Scan 1

Scan n-2
Scan n-l

The pixels on a monochrome device are either black or white. If the corresponding bit in
the bitmap is 1, the pixel is turned on (white); if the corresponding bit in the bitmap is
zero, the pixel is turned off (black).

All devices that have the RC_BITBLT bit set in the device capabilities support bitmaps.

Each device has its own unique color format. In order to transfer a bitmap from one device
to another, use GetDIBits and SetDIBits.

The CreateBitmapIndirect and GetObject functions in Chapter 4, "Functions Directory,"
in Reference, Volume 1.

BITMAPCOREHEADER [1]J
Device-Independent Bitmap Format Information

The BITMAPCOREHEADER structure contains information about the dimensions and
color format of a device-independent bitmap that is compatible with Microsoft OS/2 Pre­
sentation Manager versions 1.1 and 1.2 bitmaps.

typedef struct tagBITMAPCOREHEADER
DWORD bcSize;
WORD bcWidth;
WORD bcHeight;
WORD bcPlanes;
WORD bcBitCount;

BITMAPCOREHEADER;

The BITMAPCOREHEADER structure has the following fields:

Field

bcSize

bcWidth

bcHeight

Description

Specifies the number of bytes required by the BITMAP­
COREHEADER structure.

Specifies the width of the bitmap in pixels.

Specifies the height of the bitmap in pixels.

BITMAPCOREINFO 7-8

Comments

Field

bcPlanes

bcBitCount

Description

Specifies the number of planes for the target device and must be set
to 1.

Specifies the number of bits per pixel. This value must be 1,4, 8, or
24.

The BITMAPCOREINFO data structure combines the BITMAPCOREHEADER struc­
ture and a color table to provide a complete definition of the dimensions and colors of a
device-independent bitmap. See the description of the BITMAPCOREINFO data struc­
ture for more information about specifying a device-independent bitmap.

An application should use the information stored in the bcSize field to locate the color
table in a BITMAPCOREINFO data structure with a method such as the following:

pColor = «LPSTR) pBitmapCorelnfo + (WORD) (pBitmapCorelnfo -> bcSize))

BITMAPCOREINFO []]J
Device-Indpendent Bitmap Information

Comments

The BITMAPCOREINFO structure fully defines the dimensions and color information
for a device-independent bitmap that is compatible with Microsoft OS/2 Presentation
Manager versions 1.1 and 1.2 bitmaps.

typedef struct _BITMAPCOREINFO {
BITMAPCOREHEADER bmciHeader;
RGBTRIPLE bmciColors[];

I BITMAPCOREINFO;

The BITMAPCOREINFO structure contains the following fields:

Field

bmciHeader

bmciColors

Description

Specifies a BITMAPCOREHEADER data structure that contains
information about the dimensions and color format of a device-inde­
pendent bitmap.

Specifies an array of RGBTRIPLE data structures that define the
colors in the bitmap.

An OS/2 Presentation Manager device-independent bitmap consists of two distinct parts:
a BITMAPCOREINFO data structure that describes the dimensions and colors of the bit­
map, and an array of bytes which define the pixels of the bitmap. The bits in the array are

7-9 BITMAPCOREINFO

packed together, but each scan line must be zero-padded to end on a LONG boundary. Seg­
ment boundaries can appear anywhere in the bitmap, however. The origin of the bitmap is
the lower-left corner.

The bcBitCount field of the BITMAPCOREHEADER structure determines the number
of bits which define each pixel and the maximum number of colors in the bitmap. This
field may be set to any of the following values:

Value

4

8

24

Meaning

The bitmap is monochrome, and the bmciColors field must contain two
entries. Each bit in the bitmap array represents a pixel. If the bit is clear,
the pixel is displayed with the color of the first entry in the bmciColors
table; if the bit is set, the pixel has the color of the second entry in the
table.

The bitmap has a maximum of 16 colors, and the bmciColors field con­
tains 16 entries. Each pixel in the bitmap is represented by a four-bit
index into the color table.

For example, if the first byte in the bitmap is Ox 1 F, then the byte repre­
sents two pixels. The first pixel contains the color in the second table
entry, and the second pixel contains the color in the 16th table entry.

The bitmap has a maximum of 256 colors, and the bmciColors field
contains 256 entries. In this case, each byte in the array represents a
single pixel.

The bitmap has a maximum of 224 colors. The bmciColors field is
NULL, and each three bytes in the bitmap array represents the relative
intensities of red, green, and blue, respectively, of a pixel.

The colors in the bmciColors table should appear in order of importance.

Alternatively, for functions that use device-independent bitmaps, the bmciColors field can
be an array of 16-bit unsigned integers that specify an index into the currently realized logi­
cal palette instead of explicit RGB values. In this case, an application using the bitmap
must call device-independent bitmap functions with the wUsage parameter set to
DIB_PAL_COLORS.

BITMAPFILEHEAOER 7-10

Note The bmciColors field should not contain palette indexes if the bitmap is to be stored in a file or
transferred to another application. Unless the application uses the bitmap exclusively and under its
complete control, the bitmap color table should contain explicit RGB values.

BITMAPFILEHEADER [ill
Bitmap File Information

Comments

The BITMAPFILEHEADER data structure contains information about the type, size,
and layout of a device-independent bitmap (DIB) file.

typedef struct tagBITMAPFILEHEADER
WORD bfType;
DWORD bfSize;
WORD bfReservedl;
WORD bfReserved2;
DWORD bfOffBits;

BITMAPFILEHEADER;

The BITMAPFILEHEADER data structure contains the following fields:

Field

bIType

bfSize

bfReservedl

bfReserved2

b fOfffi its

Description

Specifies the type of file. It must be BM.

Specifies the size in DWORDs of the file.

Is reserved and must be set to zero.

Is reserved and must be set to zero.

Specifies in bytes the offset from the BITMAPFILEHEADER
of the actual bitmap in the file.

A BITMAPINFO or BITMAPCOREINFO data structure immediately follows the
BITMAPFILEHEADER structure in the DIB file.

BITMAPINFO [ill
Device-Indpendent Bitmap Information

The BITMAPINFO structure fully defines the dimensions and color information for a
Windows 3.0 device-independent bitmap.

7-11

Comments

BITMAPINFO

typedef struct tagBITMAPINFO {
BITMAPINFOHEADER bmiHeader;
RGBQUAD bmiColors[l];

} BITMAPINFO;

The BITMAPINFO structure contains the following fields:

Field

bmiHeader

bmiColors

Description

Specifies a BITMAPINFOHEADER data structure that con­
tains information about the dimensions and color format of a
device-independent bi tmap.

Specifies an array of RGBQUAD data structures that define the
colors in the bitmap.

A Windows 3.0 device-independent bitmap consists of two distinct parts: a BITMAP­
INFO data structure that describes the dimensions and colors of the bitmap, and an array
of bytes that define the pixels of the bitmap. The bits in the array are packed together, but
each scan line must be zero-padded to end on a LONG boundary. Segment boundaries can
appear anywhere in the bitmap, however. The origin of the bitmap is the lower-left corner.

The biBitCount field of the BITMAPINFOHEADER structure determines the number
of bits which define each pixel and the maximum number of colors in the bitmap. This
field may be set to any of the following values:

Value

4

8

Meaning

The bitmap is monochrome, and the bmiColors field must contain
two entries. Each bit in the bitmap array represents a pixel. If the bit
is clear, the pixel is displayed with the color of the first entry in the
bmiColors table; if the bit is set, the pixel has the color of the second
entry in the table.

The bitmap has a maximum of 16 colors, and the bmiColors field
contains up to 16 entries. Each pixel in the bitmap is represented by a
four-bit index into the color table.

For example, if the first byte in the bitmap is Ox IF, then the byte rep­
resents two pixels. The first pixel contains the color in the second
table entry, and the second pixel contains the color in the 16th table
entry.

The bitmap has a maximum of 256 colors, and the bmiColors field
contains up to 256 entries. In this case, each byte in the array repre­
sents a single pixel.

BITMAPINFOHEAOER

Value

24

Meaning

The bitmap has a maximum of 224 colors. The bmiColors field is
NULL, and each three bytes in the bitmap array represents the rela­
tive intensities of red, green, and blue, respectively, of a pixel.

7-12

The biClrUsed field of the BITMAPINFOHEADER structure specifies the number of
color indexes in the color table actually used by the bitmap. If the biClrUsed field is set to
0, the bitmap uses the maximum number of colors corresponding to the value of the biBit­
Count field.

The colors in the bmiColors table should appear in order of importance.

Alternatively, for functions that use device-independent bitmaps, the bmiColors field can
be an array of 16-bit unsigned integers that specify an index into the currently realized logi­
cal palette instead of explicit ROB values. In this case, an application using the bitmap
must call device-independent bitmap functions with the wUsage parameter set to
Dffi_PAL_COLORS.

Note The bmiColors field should not contain palette indices if the bitmap is to be stored in a file or
transferred to another application. Unless the application uses the bitmap exclusively and under its
complete control, the bitmap color table should contain explicit RGB values.

BITMAPINFOHEADER 0J
Device-Independent Bitmap Format Information

The BITMAPINFOHEADER structure contains information about the dimensions and
color format of a Windows 3.0 device-independent bitmap.

typedef struct tagBITMAPINFOHEADER{
DWORD biSize;
DWORD biWidth;
DWORD biHeight;
WORD biPlanes;
WORD biBitCount
DWORD biCompression;
DWORD biSizelmage;
DWORD biXPelsPerMeter;
DWORD biYPelsPerMeter;
DWORD biClrUsed;
DWORD biClrlmportant;

BITMAPINFOHEADER;

The BITMAPINFOHEADER structure has the following fields:

7-13

Field

biSize

biWidth

biHeight

biPlanes

biBitCount

biCompression

biSizeImage

biXPelsPer Meter

biYPelsPer Meter

BITMAPINFOHEAOER

Description

Specifies the number of bytes required by the BITMAP­
INFOHEADER structure.

Specifies the width of the bitmap in pixels.

Specifies the height of the bitmap in pixels.

Specifies the number of planes for the target device and
must be set to 1.

Specifies the number of bits per pixel. This value must be
1,4,8, or 24.

Specifies the type of compression for a compressed bit­
map. It can be one of the following values:

Value

BCRGB

BCRLE8

Meaning

Specifies that the bitmap is not com­
pressed ..

Specifies a run-length encoded for­
mat for bitmaps with 8 bits per pixel.
The compression format is a two­
byte format consisting of a count byte
followed by a byte containing a color
index. See the following "Com­
ments" section for more information.

Specifies a run-length encoded for­
mat for bitmaps with 4 bits per pixel.
The compression format is a two­
byte format consisting of a count byte
followed by two word-length color in­
dexes. See the following
"Comments" section for more infor­
mation.

Specifies the size in bytes of the image.

Specifies the horizontal resolution in pixels per meter of
the target device for the bitmap. An application can use this
value to select a bitmap from a resource group that best
matches the characteristics of the current device.

Specifies the vertical resolution in pixels per meter of the
target device for the bitmap.

BITMAPINFOHEAOER 7-14

Comments

Field

biClrUsed

biClr Important

Description

Specifies the number of color indexes in the color table ac­
tually used by the bitmap. If this value is 0, the bitmap uses
the maximum number of colors corresponding to the value
of the biBitCount field. See the description of the
BITMAPINFO data structure earlier in this chapter for
more information on the maximum sizes of the color table.

If biClrUsed is nonzero, then the biClrUsed field speci­
fies the actual number of colors which the graphics engine
or device driver will access if the biBitCount field is less
than 24. If the biBitCount field is set to 24, the biClrUsed
field specifies the size of the reference color table used to
optimize performance of Windows color palettes.

If the bitmap is a "packed" bitmap (that is, a bitmap in
which the bitmap array immediately follows the BITMAP·
INFO header and which is referenced by a single pointer),
the biClrUsed field must be set to ° or to the actual size of
the color table.

Specifies the number of color indexes that are considered
important for displaying the bitmap. If this value is 0, then
all colors are important.

The BITMAPINFO data structure combines the BITMAPINFOHEADER structure and
a color table to provide a complete definition of the dimensions and colors of a Windows
3.0 device-independent bitmap. See the description of the BITMAPINFO data structure
for more information about specifying a Windows 3.0 device-independent bitmap.

An application should use the information stored in the biSize field to locate the color
table in a BITMAPINFO data structure with a method such as the following:

pColor = «LPSTR) pBitmaplnfo + (WORD) (pBitmaplnfo -) biSize»

Bitmap Compression Formats

Windows supports formats for compressing bitmaps that define their colors with 8 bits per
pixel and with 4 bits per pixel. Compression reduces the disk and memory storage required
for the bitmap. The following paragraphs describe these formats.

When the biCompression field is set to BI_RLE8, the bitmap is compressed using a run­
length encoding format for an 8-bit bitmap. This format may be compressed in either of
two modes:

7-15 BITMAPINFOHEAOER

• Encoded

• Absolute

Both modes can occur anywhere throughout a single bitmap.

Encoded mode consists of two bytes: the first byte specifies the number of consecutive
pixels to be drawn using the color index contained in the second byte. In addition, the first
byte of the pair can be set to zero to indicate an escape that denotes an end of line, end of
bitmap, or a delta. The interpretation of the escape depends on the value of the second byte
of the pair. The following list shows the meaning of the second byte:

Second Byte
Of Escape

o

2

Meaning

End of line.

End of bitmap.

Delta. The two bytes following the escape contain unsigned values in­
dicating the horizontal and vertical offset of the next pixel from the
current position.

Absolute mode is signalled by the first byte set to zero and the second byte set to a value
between 03H and FFH. In absolute mode, the second byte represents the number of bytes
which follow, each of which contains the color index of a single pixel. When the second
byte is set to 2 or less, the escape has the same meaning as in encoded mode. In absolute
mode, each run must be aligned on a word boundary.

The following example shows the hexadecimal values of an 8-bit compressed bitmap:

03 04 05 06 00 03 45 56 67 00 02 78 00 02 05 01
02 78 00 00 09 IE 00 01

This bitmap would expand as follows (two-digit values represent a color index for a single
pixel):

04 04 04
06 06 06 06 06
45 56 67
78 78
move current position 5 right and 1 down
78 78
end of line
IE IE IE IE IE IE IE IE IE
end of RLE bitmap

CLIENTCREATESTRUCT 7-16

When the biCompression field is set to BI_RLE4, the bitmap is compressed using a run­
length encoding format for a 4-bit bitmap, which also uses encoded and absolute modes. In
encoded mode, the first byte of the pair contains the number of pixels to be drawn using
the color indexes in the second byte. The second byte contains two color indexes, one in its
high-order nibble (that is, its low-order four bits) and one in its low-order nibble. The first
of the pixels is drawn using the color specified by the high-order nibble, the second is
drawn using the color in the low-order nibble, the third is drawn with the color in the high­
order nibble, and so on, until all the pixels specified by the first byte have been drawn.

In absolute mode, the first byte contains zero, the second byte contains the number of color
indexes that follow, and subsequent bytes contain color indexes in their high- and low­
order nibbles, one color index for each pixel. In absolute mode, each run must be aligned
on a word boundary. The end-of-line, end-of-bitmap, and delta escapes also apply to
BI_RLE4.

The following example shows the hexadecimal values of a 4-bit compressed bitmap:

03 04 05 06 00 06 45 56 67 00 04 78 00 02 05 01
04 78 00 00 09 IE 00 01

This bitmap would expand as follows (single-digit values represent a color index for a
single pixel):

040
o 6 0 6 0
4 5 566 7
787 8
move current position 5 right and 1 down
787 8
end of line
lEIEIEIEI
end of RLE bitmap

CLiENTCREATESTRUCT rm
MOl Client Window Creation Structure

The CLIENTCREATESTRUCT data structure contains information about the menu and
first multiple document interface (MDI) child window of an MDI client window. An appli­
cation passes a long pointer to this structure as the ipParam parameter of the Create Win­
dow function when creating an MDI client window.

typedef struct tagCLIENTCREATESTRUCT
{

HMENU hWindowMenu;
WORD idFirstChild;
CLIENTCREATESTRUCT;

The CLIENTCREATESTRUCT structure contains the following fields:

7-17

COLORREF
Color Specification

ExplictRGB

Field

hWindowMenu

idFirstChild

COLORREF

Description

Is the menu handle of the application's Window menu. An appli­
cation can retrieve this handle from the MDI frame window's
menu using the GetSubMenu function.

Is the child window ID of the first MDI child window created.
Windows increments the ID for each additional MDI child
window that the application creates, and reassigns identifiers
when the application destroys a window to keep the range of
identifiers continuous. These identifiers are used in WM_COM­
MAND messages to the application's MDI frame window when
a child window is selected from the Window menu, and should
not conflict with any other command identifiers.

A COLORREF color value is a long integer that specifies a color. GDI functions that re­
quire a color (such as CreatePen and FloodFill) accept a COLORREF value as a para­
meter. Depending on how an application uses the COLORREF value, the value has three
distinct forms. It may specify any of the following:

• Explicit values for red, green, and blue (RGB)

• An index into a logical color palette

• A palette-relative RGB value

When specifying an explicit RGB value, the COLORREF value has the following hex­
adecimal form:

0x00bbggrr

The low-order byte contains a value for the relative intensity of red; the second byte con­
tains a value for green, and the third byte contains a value for blue. The high-order byte
must be zero. The maximum value for a single byte is FF (hexadecimal). The following list
illustrates the hexadecimal values that produce the indicated colors.

Value

OxOOOOOOFF

OxOOOOFFOO

Color

Pure red

Pure green

COLORREF

Palette Index

Value

OxOOFFOOOO

OxOOOOOOOO

OxOOFFFFFF

Ox00808080

Color

Pure blue

Black

White

Medium gray

The RGB macro accepts values for red, green, and blue, and returns an explicit ROB
COLORREF value.

7-18

When specifying an index into a logical color palette, the COLORREF value has the fol­
lowing hexadecimal form:

0x0100iiii

The two low-order bytes consist of a 16-bit integer specifying an index into a logical
palette. The third byte is not used and must be zero. The fourth (high-order) byte must be
set to 1.

For example, the hexadecimal value OxOl000000 specifies the color in the palette entry of
index 0; OxO 1 OOOOOC specifies the color in the entry of index 12, and so on.

The PALETTEINDEX macro accepts an integer representing an index into a logical
palette and returns a palette-index COLORREF value.

Palette-Relative RGB

Comments

When specifying a palette-relative ROB value, the COLORREF value has the following
hexadecimal form:

0x02bbggrr

As with an explicit ROB, the three low-order bytes contain values for red, green, and blue;
the high-order byte must be set to 2.

For output devices that support logical palettes, Windows matches a palette-relative ROB
value to the nearest color in the logical palette of the device context, as though the applica­
tion had specified an index to that palette entry. If an output device does not support a sys­
tem palette, then Windows uses the palette-relative ROB as though it were an explict ROB
COLORREF value.

The PALETTERGB macro accepts values for red, green, and blue, and returns a palette­
relative ROB COLORREF value.

Before passing a palette-index or palette-relative ROB COLORREF value to a function
that also requires a device-context parameter, an application that uses its own palette must

7-19 COMPAREITEMSTRUCT

select its palette into the device context (by calling the SelectPaleUe function) and realize
the palette (by calling RealizePaleUe). This ensures that the function will use the correct
palette-entry color. For functions that create an object (such as CreatePen), the application
must select and realize the palette before selecting the object for the device context.

COMPAREITEMSTRUCT []]]
Owner-Draw Item-Sorting Information

The COMPAREITEMSTRUCT structure supplies the identifiers and application-sup­
plied data for two items in a sorted owner-draw combo box or list box.

Whenever an application adds a new item to an owner-draw combo or list box created with
the CBS_SORT or LBS_SORT style, Windows sends the owner a WM_COMPAREITEM
message. The lParam parameter of the message contains a long pointer to a COMPARE­
ITEMSTRUCT data structure. When the owner receives the message, the owner com­
pares the two items and returns a value indicating which item sorts before the other. For
more information, see the description of the WM_COMPAREITEM message in Chapter 6,
"Messages Directory," in Reference, Volume 1.

typedef struct tagCOMPAREITEMSTRUCT
WORD CtlType;
WORD CtlID;
HWND hwnd Item;
WORD itemIDl;
DWORD itemDatal;
WORD itemI 02;
DWORD itemData2;

COMPAREITEMSTRUCT;

The COMPAREITEMSTRUCT structure has the following fields:

Field

CtiType

CtiID

hwndltem

itemIDl

itemDatal

Description

Is ODT_LISTBOX (which specifies an owner-draw list box) or
ODT_COMBOBOX (which specifies an owner-draw combo box).

Is the control ID for the list box or combo box.

Is the window handle of the control.

Is the index of the first item in the list box or combo box being com­
pared.

Is application-supplied data for the first item being compared. This
value was passed as the IParam parameter of the message that added
the item to the combo or list box.

COMSTAT

COMSTAT

Field

itemID2

itemData2

Description

Is the index of the second item in the list box or combo box being
compared.

Is application-supplied data for the second item being compared.
This value was passed as the lParam parameter of the message that
added the item to the combo or list box.

7-20

Communication-Device Status

The COMSTAT structure contains information about a communications device.

typede'f struct tagCOMSTAT
BYTE fCtsHold: 1;
BYTE fDsrHold: 1;
BYTE fRlsdHold: 1;
BYTE fXoffHold: 1;
BYTE fXoffSent: 1;
BYTE fEof: 1;
BYTE fTxim: 1;
WORD cblnOue;
WORD cbOutOue;

COMSTAT;

The COMSTAT structure has the following fields:

Field

fCtsHold: 1

fDsrHold: 1

fRlsdHold: 1

fXoffHold: 1

fXoffSent: 1

Description

Specifies whether transmission is waiting for the c1ear-to-send
(CTS) signal to be sent.

Specifies whether transmission is waiting for the data-set-ready
(DSR) signal to be sent.

Specifies whether transmission is waiting for the receive-line­
signal-detect (RLSD) signal to be sent.

Specifies whether transmission is waiting as a result of the Xoff­
Char character being received.

Specifies whether transmission is waiting as a result of the Xoff­
Char character being transmitted. Transmission halts when the
XoffChar character is transmitted and used by systems that take
the next character as XON, regardless of the actual character.

7-21

See Also

Field

fEof: 1

ITxim: 1

cblnQue

cbOutQue

CREATESTRUCT

Description

Specifies whether the EofChar character has been received.

Specifies whether a character is waiting to be transmitted.

Specifies the number of characters in the receive queue.

Specifies the number of characters in the transmit queue.

The GetCommError function in Chapter 4, "Functions Directory," in Reference,
Volume 1.

CREATESTRUCT
Window-Creation Structure

The CREATESTRUCT structure defines the initialization parameters passed to an appli­
cation's window function.

typedef struet tagCREATESTRUCT
LPSTR lpCreateParams;
HANDLE hlnstanee;
HANDLE hMenu;
HWND hwndParent;
i nt ey;
int ex;
int y;
int x;
long style;
LPSTR lpszName;
LPSTR lpszClass;
long ExStyle;

CREATESTRUCT;

The CREATESTRUCT structure has the following fields:

Field

IpCreateParams

hlnstance

hMenu

Description

Points to data to be used for creating the window.

Identifies the module-instance handle of the module that owns
the new window.

Identifies the menu to be used by the new window.

DeB

DCB

Field

hwndParent

cy

cx

y

x

style

IpszName

IpszClass

ExStyle

Description

Identifies the window that owns the new window. This field is
NULL if the new window is a top-level window.

Specifies the height of the new window.

Specifies the width of the new window.

Specifies the y-coordinate of the upper-left comer of the new
window. Coordinates are relative to the parent window if the
new window is a child window. Otherwise, the coordinates are
relative to the screen origin.

Specifies the x-coordinate of the upper-left comer of the new
window. Coordinates are relative to the parent window if the
new window is a child window. Otherwise, the coordinates are
relative to the screen origin.

Specifies the new window's style.

7-22

Points to a null-tenninated character string that specifies the new
window's name.

Points to a null-tenninated character string that specifies the new
window's class name.

Specifies extended style for the new window.

Communications-Device Control Block

The DCB structure defines the control setting for a serial communications device.

typedef struct tagDCB
BYTE Id;
WORD BaudRate;
BYTE ByteSize;
BYTE Parity;
BYTE StopBits;
WORD RlsTimeout;
WORD CtsTimeout;
WORD DsrTimeout;

BYTE fBinary: 1;
BYTE fRtsDisable: 1;
BYTE fParity: 1;
BYTE fOutxCtsFlow: 1;

7-23 DCB

BYTE fOutxDsrFlow: 1;
BYTE fDummy: 2;
BYTE fDtrDisable: 1;

BYTE fOutX: 1;
BYTE fInX: 1;
BYTE fPeChar: 1;
BYTE fNull: 1;
BYTE fChEvt: 1;
BYTE fDtrFlow: 1;
BYTE fRtsFlow: 1;
BYTE fDummy2: 1;

char XonChar;
char XoffChar;
WORD XonLim;
WORD XoffLim;
char PeChar;
cha r EofChar;
cha r EvtChar;
WORD TxDelay;

DCB;

The DCB structure has the following fields:

Field

Id

BaudRate

ByteSize

Parity

Description

Specifies the communication device. This value is set by the
device driver. If the most significant bit is set, then the DCB
structure is for a parallel device.

Specifies the baud rate at which the communications device
operates.

Specifies the number of bits in the characters transmitted and
received. The ByteSize field can be any number from 4 to 8.

Specifies the parity scheme to be used. The Parity field can
be anyone of the following values:

Value

EVENPARITY

MARKPARITY

NOPARITY

ODDPARITY

Meaning

Even

Mark

No parity

Odd

DCB

Field

StopBits

RlsTimeout

CtsTimeout

DsrTimeout

fBinary: 1

fRtsDisable: 1

fParity: 1

fOutxCtsFlow: 1

fOutxDsrFlow: 1

mummy: 2

Description

Value

SPACEPARITY

Meaning

Space

Specifies the number of stop bits to be used. The StopBits
field can be anyone of the following values:

Value

ONESTOPBIT

ONE5STOPBITS

TWOSTOPBITS

Meaning

1 stop bit

1.5 stop bits

2 stop bits

7-24

Specifies the maximum amount of time (in milliseconds) the
device should wait for the receive-line-signal-detect (RLSD)
signal. (RLSD is also known as the carrier detect (CD) signal.)

Specifie,s the maximum amount of time (in milliseconds) the
device should wait for the clear-to-send (CTS) signal.

Specifies the maximum amount of time (in milliseconds) the
device should wait for the data-set-ready (DSR) signal.

Specifies binary mode. In nonbinary mode, the EofChar
character is recognized on input and remembered as the end of
data.

Specifies whether or not the request-to-send (RTS) signal is
disabled. If the fRtsDisable field is set, RTS is not used and re­
mains low. If fRtsDisable is clear, RTS is sent when the
device is opened and turned off when the device is closed.

Specifies whether parity checking is enabled. If the fParity
field is set, parity checking is performed and errors are re­
ported.

Specifies that clear-to-send (CTS) signal is to be monitored
for output flow control. If the fOutxCtsFlow field is set and
CTS is turned off, output is suspended until CTS is again sent.

Specifies that the data-set-ready (DSR) signal is to be moni­
tored for output flow control. If the fOutxDsrFlow field is set
and DSR is turned off, output is suspended until DSR is again
sent.

Reserved.

7-25

Field

mtrDisable: 1

fOutX: 1

flnX: 1

fPeChar: 1

fNull:l

fChEvt: 1

mtrFlow: 1

fRtsFlow: 1

fdummy2: 1

XonChar

XoffChar

XonLim

DeB

Description

Specifies whether the data-terminal-ready (DTR) signal is dis­
abled. If the mtrDisable field is set, DTR is not used and
remains low. If mtrDisable is clear, DTR is sent when the
device is opened and turned off when the device is closed.

Specifies that XON/XOFF flow control is used during trans­
mission. If the fOutX field is set, transmission stops when the
XoffChar character is received, and starts again when the
XonChar character is received.

Specifies that XON/XOFF flow control is used during recep­
tion. If the flnX field is set, the XonChar character is sent
when the receive queue comes within XoffLim characters of
being full, and the XonChar character is sent when the re­
ceive queue comes within XonLim characters of being empty.

Specifies that characters received with parity errors are to be
replaced with the character specified by the fPeChar field.
The fParity field must be set for the replacement to occur.

Specifies that received null characters are to be discarded.

Specifies that reception of the EvtChar character is to be
flagged as an event.

Specifies that the data-terminal-ready (DTR) signal is to be
used for receive flow control. If the mtrFlow field is set,
DTR is turned off when the receive queue comes within Xof­
fLim characters of being full, and sent when the receive queue
comes within XonLim characters of being empty.

Specifies that the ready-to-send (RTS) signal is to be used for
receive flow control. If the fRtsFlow field is set, RTS is
turned off when the receive queue comes within XoffLim
characters of being full, and sent when the receive queue
comes within XonLim characters of being empty.

Reserved.

Specifies the value of the XON character for both transmis­
sion and reception.

Specifies the value of the XOFF character for both transmis­
sion and reception.

Specifies the minimum number of characters allowed in the re­
ceive queue before the XON character is sent.

OELETEITEMSTRUCT 7-26

See Also

Field

XoffLim

PeChar

EofChar

EvtChar

TxDelay

Description

Specifies the maximum number of characters allowed in the
receive queue before the XOFF character is sent. The Xoff­
Lim value is subtracted from the size of the receive queue (in
bytes) to calculate the maximum number of characters al­
lowed.

Specifies the value of the character used to replace characters
received with a parity error.

Specifies the value of the character used to signal the end of
data.

Specifies the value of the character used to signal an event.

Not currently used.

The BuildCommDCB, GetCommState, and SetCommState functions in Chapter 4,
"Functions Directory," in Reference, Volume 1.

DElETEITEMSTRUCT []]]
Deleted Owner-Draw List-Box Item

The DELETEITEMSTRUCT structure describes a deleted owner-draw list-box or
combo-box item. When an item is removed from the list box or combo box, or when the
list box or combo box is destroyed, Windows sends the WM_DELETEITEM message to
the owner for each deleted item; the IParam parameter of the message contains a pointer to
this structure.

typedef struct tagDELETEITEMSTRUCT
{

WORD CtlType
WORD CtlID;
WORD itemID;
HWND hwndltem;
DWORD itemData;
DELETEITEMSTRUCT;

The DELETEITEMSTRUCT structure has the following fields:

7-27

Field

CtlType

CtlID

itemID

hwndltem

item Data

OEVMOOE

Description

Is ODT_LISTBOX (which specifies an owner-draw list box) or
ODT_COMBOBOX (which specifies an owner-draw combo
box) ..

Is the control ID for the list box or combo box.

Is the index of the item in the list box or combo box being re­
moved.

Is the window handle of the control.

Contains the value passed to the control in the IParam parameter
of the LB_INSERTSTRING, LB_ADDSTRING, CB_INSERT­
STRING, or CB_ADDSTRING message when the item was
added to the list box.

DEVMODE [IQJ
Printer Driver Initialization Information

The DEVMODE data structure contains information about the device initialization and en­
vironment of a printer driver. An application passes this structure to the DeviceCapabili­
ties and ExtDeviceMode functions.

typedef struct _devicemode {
char dmDeviceName[32];
WORD dmSpecVersion;
WORD dmDriverVersion;
WORD dmSize;
WORD dmDriverExtra;
DWORD dmFields;
short dmOrientation;
short dmPaperSize;
short dmPaperLength;
short dmPaperWidth;
short dmScale;
short dmCopies;
short dmDefaultSource;
short dmPrintQuality;
short dmColor;
short dmDuplex;
BYTE dmDriverData[dmDriverExtra];
} DEVMODE;

The DEVMODE structure contains the following fields:

OEVMOOE

Field

dmDeviceName

dmSpec Version

dmDriver Version

dmSize

dmDriver Extra

dmFields

dm Orientation

dmPaperSize

Description

Specifies the name of the device the driver supports; for
example, "PCL/HP LaserJet" in the case of PCL/HP®
LaserJet®. This string is unique among device drivers.

Specifies the version number of the initialization data
specification upon which the structure is based. The ver­
sion number follows the Windows version number and is
currently Ox300.

7-28

Specifies the printer driver version number assigned by the
printer driver developer.

Specifies the size in bytes of the DEVMODE structure
except the dmDriverData (device-specific) field. If an
application manipulates only the driver-independent por­
tion of the data, it can use this field to determine the length
of the structure without having to account for different ver­
sions.

Contains the size of the dmDriverData field and is the
length of the device-specific data in the DEVMODE
structure. If an application does not use device-specific
information, it should set this field to zero.

Is a bitfield that specifies which of the remaining fields in
the DEVMODE structure have been initialized. Bit 0
(defined as DM_ORIENTATION) corresponds to
dmOrientation; bit 1 (defined as DM_PAPERSIZE)
specifies dmPaperSize, and so on. A printer driver sup­
ports only those fields that are appropriate for the printer
technology.

Selects the orientation of the paper. It can be either
DMORIENT_PORTRAIT (1) or DMORIENT_LAND­
SCAPE (2).

Selects the size of the paper to print on. This field may be
set to zero if the length and width of the paper are both set
by the dmPaperLength and dmPaperWidth fields. Other­
wise, the dmPaperSize field can be set to one of the
following predefined values:

Value

DMPAPER_LETTER

Meaning

81h-by-ll-inch paper

7-29

Field

dmPaperLength

dmPaper Width

dmScale

dmCopies

dmDefaultSource

Description

Value

DMPAPER_LEGAL

DMPAPER_A4

DMPAPER_CSHEET

DMPAPER_DSHEET

DMPAPER_ESHEET

DMPAPER_ENV _9

DMPAPER_ENV_I0

DMPAPER_ENV _11

DMPAPER_ENV _12

DMPAPER_ENV_14

OEVMOOE

Meaning

8112-by-14-inch paper

21 0-by-297 -millimeter paper

17-by-22-inch paper

22-by-34-inch paper

34-by-44-inch paper

37i8-by-87/s-inch #9 envelope

41i8-by-9V5-inch #10 envelope

4112-by-l03/s-inch #11
envelope

43/4-by-ll-inch #12 envelope

5-by-l I'12-inch #14 envelope

Overrides the length of the paper specified by the
dmPaperSize field, either for custom paper sizes or for
devices such as dot-matrix printers which can print on a
page of arbitrary length. These values, along with all other
values which specify a physical length, are in tenths of a
millimeter.

Overrides the width of the paper specified by the
dmPaperSize field.

Scales the printed output. The apparent page size is scaled
by a factor of dmScale/l00 from the physical page size. A
letter-size paper with a dmScale value of 50 would appear
to be 17 by 22 inches, and output text and graphics would
be correspondingly half their normal height and width.

Selects the number of copies printed if the device supports
multiple-page copies.

Specifies the paper bin from which the paper is fed by de­
fault. The application can override this selection by using
the GETSETPAPERBINS escape. Possible bins include
the following:

OEVMOOE

Comments

Field

dmPrintQuality

dmColor

dmDuplex

dmDriverData[]

Description

DMBIN_DEFAULT
DMBIN_UPPER
DMBIN_LOWER
DMBIN_MANUAL
DMBIN_ TRACTOR
DMBIN_ENVELOPE

7-30

There is also a range of values reserved for device-specific
bins. The GETSETPAPERBINS and ENUMPAPERBINS
escapes use these indexes to be consistent with initializa­
tion information.

Specifies the printer resolution. There are four predefined
device-independent values:

DMRES_HIGH (-4)
DMRES_MEDIUM (-3)
DMRES_LOW (-2)
DMRES_DRAFf (-1)

If a positive value is given, it specifies the number of dots
per inch (DPI) and is therefore device dependent.

Switches between color and monochrome on color print­
ers. Possible values are:

• DMCOLOR_COLOR (1)

• DMCOLOR_MONOCHROME (2).

Selects duplex or double-sided printing for printers capable
of duplex printing. Values for this field include:

• DMDUP _SIMPLEX (1)

• DMDUP _HORIZONTAL (2)

• DMDUP _ VERTICAL (3).

Contains device-specific data defined by the device driver.

Only drivers fully updated for Windows version 3.0 and which export the ExtDeviceMode
function use the DEVMODE data structure.

7-31

DLGTEMPLATE
Dialog Template

DLGTEMPLATE

The DLGTEMPLATE defines the contents of a dialog box. This structure is divided into
three distinct parts:

Part

Header Data
Structure

Font-Information
Data Structure

List of Items·

Description

Contains a general description of the dialog box.

Defines the font with which text is drawn in the dialog box. This
part is optional.

Describes the parts that compose the dialog box.

The CreateDialoglndirect, CreateDialoglndirectParam, DialogBoxlndirect, and Dial­
ogBoxIndirectParam functions use this structure.

Header Data Structure

The DLGTEMPLATE header is shown here:

typedef struct f
long dtStyle;
BYTE dtItemCount;
int dtX;
int dty;
int dtCX;
int dtCY;
char dtMenuName[];
char dtClassName[];
char dtCaptionText[];

DLGTEMPLATE;

The DLGTEMPLATE header has the following fields:

Field

dtStyle

Description

Specifies the style of the dialog box. This field may be any or
all of these values:

OLGTEMPLATE

Field Description

Value

DS_LOCALEDIT

DS_MODALFRAME

7-32

Meaning

Specifies that text storage for
edit controls will be allocated in
the application's local data seg­
ment. This allows the use of the
EM_GETHANDLE and
EM_SETHANDLE messages.
If this style is not specified, edit­
control data is located in a
separate global data block.

Specifies a system-modal
dialog box.

Specifies a dialog box with a
modal dialog-box border. This
style can be combined with the
WS_CAPTION and WS_SYS­
MENU style flags to create a
dialog box with a title bar and
System menu.

Indicates that dtX and dtY are
relative to the screen origin, not
to the owner of the dialog box.

Specifies that a font other than
the system font is to be used to
draw text in the dialog box. If
this flag is set, the FONTINFO
data structure described in the
following paragraphs must im­
mediately follow the
DLGTEMPLATE header.

When Windows creates a
dialog box with this attribute,
Windows sends the WM_SET­
FONT message to the
dialog-box window prior to
creating the controls.

7-33

Field

dtltemCount

dtX

dtY

dtCX

dtCY

dtMenuName[]

dtClassName[]

dtCaptionText[]

Description

Value

OLGTEMPLATE

Meaning

Specifies that Windows will not
send the WM_ENTERIDLE
message to the owner of the
dialog box while the dialog box
is displayed.

Specifies the number of items in the dialog box. A dialog box
can contain up to 255 controls.

Specifies the x-coordinate of the upper-left comer of the dialog
box in units of V4 of the current dialog base width unit. The
dialog base units are computed from the height and width of
the current system font; the GetDialogBaseUnits function re­
turns the current dialog base units in pixels. Unless
DS_ABSALIGN is set in the dtStyle field, this value is rela­
tive to the origin of the parent window's client area.

Specifies the y-coordinate of the upper-left comer of the dialog
box in units of V8 of the current dialog base height unit. Unless
DS_ABSALIGN is set in the dtStyle field, this value is rela­
tive to the origin of the parent window's client area.

Specifies the width of the dialog box in units of V4 of the
dialog base width unit.

Specifies the height of the dialog box in uriits of V8 of the
dialog base height unit.

Specifies a null-terminated string that specifies the name of the
dialog box's menu. If this field is NULL, the dialog-box
window does not have a menu.

Specifies a null-terminated string that supplies the name of the
dialog box's class. If dtClassName[] is zero, it creates a
dialog box with the standard dialog-box style. If an application
specifies a class name, it should provide a dialog procedure
that processes each dialog-box message directly or calls the
DefDlgProc function to process the message. Also, the applica­
tion must register the class with the cb WndExtra field of the
WNDCLASS data structure set to DLGWINDOWEXTRA.

Specifies a null-terminated string that supplies the caption for
the dialog box.

OLGTEMPLATE 7-34

Font-Information Data Structure

Item List

The FONTINFO data structure contains information about the point size and face name of
the font which Windows is to use to draw text in the dialog box.

typedef struct{
short int PointSize;·
char szTypeFace[]; /* A null-terminated string */

I FONTINFO;

The FONTINFO structure has the following fields:

Field Description

PointSize Specifies the size of the typeface in points.

szTypeFace Specifies the name of the typeface; for example, "Courier".

Comments

The font specified must have been previously loaded, either from WIN.INI or explicitly by
calling the LoadFont function.

The item list consists of one or more DLGITEMTEMPLATE data structures, one for
each control in the dialog box. The first such structure immediately follows the FONT­
INFO structure or the header at the first byte after the terminating null character in the
szTypeFace field or the dtCaptionText[] field. The following shows the format of the
DLGITEMTEMPLATE structure.

typedef struct {
int dtilX;
int dtilY;
int dtilCX;
int dtilCY;
int dtilIO;
long dtil Styl e;
char dtilClass[];
char dtilText[];
BYTE dt il Info;
PTR dtilOata;

OLG ITEMTEMP LATE

The DLGITEMTEMPLATE data structure has the following fields:

7-35

Field

dtilX

dtilY

dtilCX

dtilCY

dtilID

dtiiStyle

dtilClass[]

dtiiText[]

dtilInfo

dtiiData

DLGTEMPLATE

Description

Specifies the x-coordinate of the upper-left corner of the dialog-box
item in units of V4 of the current dialog base width unit, relative to
the origin of the dialog box. The dialog base units are computed from
the height and width of the current system font. The GetDialog­
BaseUnits function returns the current dialog base units in pixels.

Specifies the y-coordinate of the upper-left corner of the dialog-box
item in units of Vg of the current dialog base height unit. This value is
relative to the origin of the dialog box.

Specifies the width-extent of the dialog-box item in units of 1/4 of the
current dialog base width unit. Dialog base units are computed from
the height and width of the current system font. The GetDialog­
BaseUnits function returns the current dialog base units.

Specifies the height of the dialog-box item in units of Vg of the dialog
base height unit.

Specifies the dialog-box item identification number.

Specifies the style of the dialog-box item.

A null-terminated string that specifies the control's class. It may be
one of the following class names:

BUTTON
EDIT
STATIC
LISTBOX
SCROLLBAR
COMBOBOX

Specifies the text for the item; it is a null-terminated string.

Specifies the number of bytes of additional data that follows this item
description and precedes the next item description.

Specifies additional data which the CreateWindow function receives
through the IpCreateParams field of the CREATESTRUCT data
structure. This field is zero length if dtilInfo is zero.

ORAWITEMSTRUCT 7-36

DRAWITEMSTRUCT []]]
Owner-Draw Control Drawing Information

The DRAWITEMSTRUCT structure provides infonnation the owner needs to detennine
how to paint an owner-draw control. The owner of the owner-draw control receives a
pointer to this structure as the lParam parameter of the WM_DRAWITEM message.

typedef struct tagDRAWITEMSTRUCT
{

WORD CtlType;
WORD CtlID;
WORD itemID;
WORD itemAction;
WORD itemState;
HWND hwndltem;
HOC hOC;
RECT rcltem;
DWORD i temData;
DRAW ITEMSTRUCT;

The DRAWITEMSTRUCT structure has the following fields:

Field

CtlType

CtlID

. itemID

Description

Is the control type. The values for control types are as follows:

Value

ODT_BUTTON

ODT_COMBOBOX

ODT _LISTBOX

ODT_MENU

Meaning

Owner-draw button.

Owner-draw combo box.

Owner-draw list box.

Owner-draw menu.

Is the control ID for a combo box, list box or button. This field is
not used for a menu .

Is the menu-item ID for a menu or the index of the item in a list
box or combo box. For an empty list box or combo box, this field
can be -1. This allows the application to draw only the focus
rectangle at the coordinates specified by the rcItem field even
though there are no items in the control. This indicates to the user
whether the list box or combo box has input focus. The setting of
the bits in the itemAction field detennines whether the rectangle is
to be drawn as though the list box or combo box has input focus.

7-37

Field

itemAction

itemState

hwndltem

DRAWITEMSTRUCT

Description

Defines the drawing action required. This will be one or more of
the following bits:

Value

ODA_DRA WENTIRE

Description

This bit is set when the entire con­
trol needs to be drawn.

This bit is set when the control
gains or loses input focus. The item­
State field should be checked to
determine whether the control has
focus.

This bit is set when only the selec­
tion status has changed. The
itemState field should be checked
to determine the new selection state.

Specifies the visual state of the item after the current drawing ac­
tion takes place. That is, if a menu item is to be grayed, the state
flag ODS_GRAYED will be set. The state flags are:

Value Description

This bit is set if the menu item is to
be checked. This bit is used only in
a menu.

This bit is set if the item is to be
drawn as disabled.

This bit is set if the item has input
focus.

This bit is set if the item is to be
grayed. This bit is used only in a
menu.

This bit is set if the item's status is
selected.

For combo boxes, list boxes and buttons, this field specifies the
window handle of the control; for menus, it contains the handle of
the menu (HMENU) containing the item.

HA NOLETA BLE 7-38

Field

hDC

rcItem

itemData

HANDLETABLE

Description

Identifies a device context; this device context must be used when
performing drawing operations on the control.

Is a rectangle in the device context specified by the hDC field that
defines the boundaries of the control to be drawn. Windows auto­
matically clips anything the owner draws in the device context for
combo boxes, list boxes, and buttons, but does not clip menu items.
When drawing menu items, the owner must ensure that the owner
does not draw outside the boundaries of the rectangle defined by
the rcItem field.

For a combo box or list box, this field contains the value that was
passed to the list box in the lParam parameter of one of the the fol­
lowing messages:

• CB_ADDSTRING

• CB_INSERTSTRING

• LB_ADJ?STRING

• LB_INSERTSTRING

For a menu, this field contains the DWORD value passed as the
lpNewltem parameter of the InsertMenu which inserted the menu
item. Its contents are undefined for buttons.

Window-Handle Table

The HANDLETABLE structure is an array of handles, each of which identifies a GDI ob­
ject.

HANDLE objectHandle[l]

The HANDLETABLE structure has the following field:

Field

objectHandle[l]

Description

Identifies an array of handles.

7-39 LOGBRUSH

LOG BRUSH
Logical-Brush Attribute Information

The LOGBRUSH structure defines the style, color, and pattern of a physical brush to be
created by using the CreateBrushlndirect function.

typedef struct tagLOGBRUSH
WORD lbStyle;
COLORREF lbColor;
short int lbHatch;.

LOGBRUSH;

The LOGBRUSH structure has the following fields:

Field

IbStyle

IbColor

Description

Specifies the brush style. The IbStyle field can be anyone of the following
styles:

Style

BS_DIBPATTERN

BS_HATCHED

BS_HOLLOW

BS_PATTERN

Meaning

Specifies a pattern brush defined by a device-in­
dependent bitmap (DIB) specification.

Specifies a hatched brush.

Specifies a hollow brush.

Specifies a pattern brush defined by a memory
bitmap.

Specifies a solid brush.

Specifies the color in which the brush is to be drawn. If IbStyle is
BS_HOLLOW or BS_PATTERN, IbColor is ignored.

If IpStyle is BS_DIBPATTERN, the low-order word of IbColor specifies
whether the bmiColors fields of the BITMAPINFO data structure con­
tain explicit ROB values or indexes into the currently realized logical
palette. The IbColor field must be one of the following values:

Value Meaning

The color table consists of an array of 16-bit in­
dexes into the currently realized logical palette.

The color table contains literal ROB values.

LOGFONT

See Also

LOG FONT

Field

IbHatch

7-40

Description

Specifies a hatch style. The meaning depends on the brush style.

If IbStyle is BS_DIBPATTERN, the IbHatch field contains a handle to a
. packed DIB. To obtain this handle, an application calls the GlobalAlloc

function to allocate a block of global memory and then fills the memory
with the packed DIB. A packed DIB consists of a BITMAPINFO data
structure immediately followed by the array of bytes which define the pix­
els of the bitmap.

If IbStyle is BS_HATCHED, the IbHatch field specifies the orientation of
the lines used to create the hatch. It can be anyone of the following
values:

Value

HS_BDIAGONAL

HS_CROSS

HS_DIAGCROSS

HS_FDIAGONAL

HS_HORIZONTAL

HS_ VERTICAL

Meaning

45-degree upward hatch (left to right)

Horizontal and vertical crosshatch

45-degree crosshatch

45-degree downward hatch (left to right)

Horizontal hatch

Vertical hatch

If IbStyle is BS_PATTERN, IbHatch must be a handle to the bitmap that
defines the pattern.

If IbStyle is BS_SOLID or BS_HOLLOW, IbHatch is ignored.

The CreateBrushlndirect function in Chapter 4, "Functions Directory," in Reference,
Volume 1.

Logical-Font Descriptor

The LOGFONT structure defines the attributes of a font, a drawing object used to write
text on a display surface.

7-41 LOGFONT

typedef struct tagLOGFONT {
short int lfHeight;
short int lfWidth;
short int lfEscapement;
short int lfOrientation;
short int lfWeight;
BYTE lfltalic;
BYTE lfUnderline;
BYTE lfStrikeOut;
BYTE lfCharSet;
BYTE lfOutPrecision;
BYTE lfClipPrecision;
BYTE lfOuality;
BYTE lfPitchAndFamily;
BYTE lfFaceName[LF_FACESIZE];

LOGFONT;

The LOGFONT structure has the following fields:

Field

IfHeight

IfWidth

lfEscapement

If Orientation

Description

Specifies the average height of the font (in user units). The
height of a forit can be specified in the following three ways. If
the IfHeight field is greater than zero, it is transfonned into
device units and matched against the cell height of the availa­
ble fonts. If IfHeight is zero, a reasonable default size is used.
If IfHeight is less than zero, it is transfonned into device units
and the absolute value is matched against the character height
of the available fonts.

Specifies the average width of characters in the font (in device
units). If the IfWidth field is zero, the aspect ratio of the
device is matched against the digitization aspect ratio of the
available fonts for the closest match by absolute value of the
difference.

Specifies the angle (in tenths of degrees) between the escape­
ment vector and the x-axis of the display surface. The
escapement vector is the line through the origins of the first
and last characters on a line. The angle is measured counter­
clockwise from the x-axis.

Specifies the angle (in tenths of degrees) between the baseline
of a character and the x-axis. The angle is measured counter­
clockwise from the x-axis.

LOGFONT

Field

IfWeight

Ifltalic

lfUnderIine

IfStrikeOut

IfCharSet

IfOutPrecision

IfCIipPrecision

IfQuaIity

7-42

Description

Specifies the font weight (in inked pixels per 1000). Although
the IfWeight field can be any integer value from 0 to 1000, the
common values are as follows:

400 Normal
700 Bold

These values are approximate; the actual appearance depends
on the font face. If IfWeight is zero, a default weight is used.

Specifies an italic font if set to nonzero.

Specifies an underlined font if set to nonzero.

Specifies a strikeout font if set to nonzero.

Specifies the font's character set. The three values are
predefined:

ANSI_CHARSET
OEM_CHARSET
SYMBOL_CHARSET

The OEM character set is system-dependent.

Fonts with other character sets may exist in the system. If an
application uses a font with an unknown character set, it
should not attempt to translate or interpret strings that are to be
rendered with that font. Instead, the strings should be passed
directly to the output device driver.

Specifies the font's output precision, which defines how
closely the output Plust match the requested font's height,
width, character orientation, escapement, and pitch. The de­
fault setting is OUT_DEFAULT_PRECIS.

Specifies the font's clipping precision, which defines how to
clip characters that are partially outside the clipping region.
The default setting is CLIP _DEFAULT_PRECIS.

Specifies the font's output quality, which defines how carefully
GDI must attempt to match the logical-font attributes to those
of an actual physical font. It can be anyone of the following
values:

7-43

Field

IfPitchAndFamily

Description

Value

DEFAULT_QUALITY

DRAFT_QUALITY

PROOF_QUALITY

LOGFONT

Meaning

Appearance of the font does not
matter.

Appearance of the font is less
important than when
PROOF_QUALITY is used.
For GDI fonts, scaling is
enabled, which means that
more font sizes are available,
but the quality may be lower.
Bold, italic, underline, and
strikeout fonts are synthesized
if necessary.

Character quality of the font is
more important than exact
matching of the logical-font at­
tributes. For GDI fonts, scaling
is disabled and the font closest
in size is chosen. Although the
chosen font size may not be
mapped exactly when
PROOF_QUALITY is used, the
quality of the font is high and
there is no distortion of appear­
ance. Bold, italic, underline,
and strikeout fonts are synthe­
sized if necessary.

Specifies the font pitch and family. The two low-order bits
specify the pitch of the font and can be anyone of the follow­
ing values:

DEFAULT_PITCH
FIXED_PITCH
VARIABLE_PITCH

The four high-order bits of the field specify the font family and
can be anyone of the following values:

LOGFONT

Field

IfFaceName

Description

FF _DECORATIVE
FF _DONTCARE
FF_MODERN
FF_ROMAN
FF_SCRIPT
FF_SWISS

The proper value can be obtained by using the Boolean OR
operator to join one pitch constant with one family constant.

7-44

Font families describe the look of a font in a general way. They
are intended for specifying fonts when the exact typeface
desired is' not available. The values for font families are as fol­
lows:

Value

FF _DECORATIVE

FF _DONTCARE

FF_MODERN

Meaning

Novelty fonts.

Don't care or don't know.

Fonts with constant stroke
width (fixed-pitch), with or
without serifs. Fixed-pitch fonts
are usually modem.

Fonts with variable stroke
width (proportionally spaced)
and with serifs.

Fonts designed to look like
handwriting.

Fonts with variable stroke
width (proportionally spaced)
and without serifs.

Specifies the font's typeface. It must be a null-terminated
character string. If IfFaceName is NULL, GDI uses a default
typeface.

7-45

See Also

LOGPALETTE

The CreateFontlndirect function in Chapter 4, "Functions Directory," in Reference,
Volume 1.

LOG PALETTE []]]
Logical Color Palette Information

Comments

LOG PEN

The LOGPALETTE data structure defines a logical color palette.

typedef struct
{

WORD
WORD
PALETTEENTRY
I LOGPALETTE;

palVersion;
palNumEntries;
pal Pal Entry[];

The LOGPALETTE structure has the following fields:

Field

pal Version

palNumEntries

palPalEntry []

Description

Specifies the Windows version number for the structure (cur­
rently Ox300).

Specifies the number of palette color entries.

Specifies an array of PALETTEENTRY data structures that
define the color and usage of each entry in the logical palette.

The colors in the palette entry table should appear in order of importance. This is because
entries earlier in the logical palette are most likely to be placed in the system palette.

This data structure is passed as a parameter to the CreatePalette function.

Logical-Pen Attribute Information

The LOGPEN structure defines the style, width, and color of a pen, a drawing object used
to draw lines and borders. The CreatePenlndirect function uses the LOGPEN structure.

typedef struct tagLOGPEN
WORD lopnStyle;
POINT lopnWidth;
COLORREF lopnColor;

LOGPEN;

LOGPEN

Comments

See Also

7-46

The LOGPEN structure has the following fields:

Field

lopnStyle

lopnWidth

lopnColor

Description

Specifies the pen type, which can be anyone of
the following values:

Constant Name Value

PS_SOLID 0

PS_DASH

PS_DOT 2

PS_DASHDOT 3

PS_DASHDOTDOT 4

PS_NULL 5

PS_INSIDEFRAME 6

Result

- -. . ..

If the width of the pen is greater than 1 and the pen style is
PS_INSIDEFRAME, the line is drawn inside the frame of all
primitives except polygons and polylines; the pen is drawn
with a logical (dithered) color if the pen color does not match
an available RGB value. The PS_INSIDEFRAME style is
identical to PS_SOLID if the pen width is less than or equal
to 1.

Specifies the pen width (in logical units). If the
lopn Width field is zero, the pen is one pixel
wide on raster devices.

Specifies the pen color.

The y value in the POINT structure for lopn Width is not used.

The CreatePenIndirect function in Chapter 4, "Functions Directory," in Reference,
Volume 1.

7-47 MDICREATESTRUCT

MDICREATESTRUCT [IQJ
MDI Child Window Creation Structure

The MDICREATESTRUCT data structure contains infonnation about the class, title,
owner, location, and size of a multiple document interface (MDI) child window.

typedef struet tagMDICREATESTRUCT
{

LPSTR
LPSTR
HANDLE

szClass;
szTitle;
hOwner;

int x;
int y;
int ex;
i nt ey;
LONG style;
LONG lParam;
MDICREATESTRUCT;

The MDICREATESTRUCT structure contains the following fields:

Field

szClass

szTitle

hOwner

x

y

cx

cy

Description

Contains a long pointer to the application-defined class of the
MDI child window.

Contains a long pointer to the window title of the MDI child
window.

Is the instance handle of the application creating the MDI child
window.

Specifies the initial position of the left side of the MDI child
window. If set to CW _USEDEFAULT, the MDI child window
is assigned a default horizontal position.

Specifies the initial position of the top edge of the MDI child
window. If set to CW _USEDEFAULT, the MDI child window
is assigned a default vertical position.

Specifies the initial width of the MDI child window. If set to
CW _USEDEFAULT, the MDI child window is assigned a
default width.

Specifies the initial height of the MDI child window. If set to
CW _USEDEFAULT, the MDI child window is assigned a
default height.

MEA SUREITEMS TRUCT 7-48

Comments

Field

style

IParam

Description

Specifies additional styles for the MDI child window. The style
field ma'y be set to one or more of the following values:

Value

WS_MINIMIZE

WS_MAXIMIZE

WS_VSCROLL

Meaning

The MDI child window is created in a
minimized state.

The MDI child window is created in a
maximized state.

The MDI child window is created with a
horizontal scroll bar.

The MDI child window is created with a
vertical scroll bar.

Is an application-defined 32-bit value.

When the MDI child window is created, Windows sends the WM_CREATE message to
the window. The lParam parameter of the WM_CREATE message contains a pointer to a
CREATESTRUCT data structure. The IpCreateParams field of the CREATESTRUCT
structure contains a pointer to the MDICREATESTRUCT data structure passed with the
WM_MDICREATE message that created the MDI child window.

MEASUREITEMSTRUCT !]I]
Owner-Draw Control Dimensions

The MEASUREITEMSTRUCT data structure informs Windows of the dimensions of an
owner-draw control. This allows Windows to process user interaction with the control cor­
rectly. The owner of an owner-draw control receives a pointer to this structure as the
lParam parameter of an WM_MEASUREITEM message. The owner-draw control sends
this message to its owner window when the control is created; the owner then fills in the
appropriate fields in the structure for the control and returns. This structure is common to
all owner-draw controls.

The MEASUREITEMSTRUCT structure has the following format:

typedef struct tagMEASUREITEMSTRUCT
{

WORD Ct lType;
WORD CtlID;
WORD itemID;
WORD itemWidth;

7-49 MEA SUREITEMS TRUCT

WORD itemHeight;
DWORD i temData
MEASUREITEMSTRUCT;

The MEASUREITEMSTRUCT structure contains the following fields:

Field

CtlType

CtIID

itemID

itemWidth

itemHeight

itemData

Description

Is the control type. The values for control types are as follows:

Value

ODT_BUTTON

ODT_COMBOBOX

ODT_LISTBOX

ODT_MENU

Meaning

Owner-draw button.

Owner-draw combo box.

Owner-draw list box.

Owner-draw menu.

Is the control ID for a combo box, list box, or button. This field
is not used for a menu.

Is the menu-item ID for a menu or the list-box item ID for a vari­
able-height combo box or list box. This field is not used for a
fixed-height combo box or list box, or for a button.

Specifies the width of a menu item. The owner of the owner­
draw menu item must fill this field before returning from the
message.

Specifies the height of an individual item in a list box or a menu.
Before returning from the message, the owner of the owner­
draw combo box, list box, or menu item must fill out this field.

Contains the value that was passed to the combo box or list box
in the IParam parameter of one of the following messages:

• CB_ADDSTRING

• CB_INSERTSTRING

• LB_ADDSTRING

• LB_INSERTSTRING

Contains the DWORD value passed as the IpNewltem parameter
of the AppendMenu, InsertMenu, or ModifyMenu function
that added or modified the menu item. Its contents are undefined
for buttons.

MENUITEMTEMPLATE 7-50

Comments Failure to fill out the proper fields in the MEASUREITEM structure will cause improper
operation of the control.

MENUITEMTEMPLATE
Menu-ltemTemplate

A complete menu template consists of a header and one or more menu-item lists. The fol­
lowing shows the structure of the menu-template header:

typedef struct {
WORD versionNumber;
WORD offset;

I MENUITEMTEMPLATEHEADER;

The menu-template header contains the following fields:

Field

versionNumber

offset

Description

Specifies the version number. Should be zero.

Specifies the offset from the header in bytes where the
menu-item list begins.

One or more MENUITEMTEMPLATE structures are combined to form the menu-item
list.

typedef struct {
WORD mtOption;
WORD mtI D;
LPSTR mtString;

MENUITEMTEMPLATE;

The MENUITEMTEMPLATE structure has the following fields:

Field

mtOption

Description

Specifies a mask of one or more predefined menu options that
specify the appearance of the menu item. The menu options are as
follows:

7-51

See a/so

MENUITEMTEMPLATE

Field Description

Value Meaning

MF_CHECKED Item has a checkmark next to it.

MF_END Item must be specified for the last
item in a pop-up menu or a static
menu.

MF_GRAYED Item is initially inactive and drawn
with a gray effect.

MF_HELP Item has a vertical separator to its
left.

MF _MENUBARBREAK Item is placed in a new column. The
old and new columns are separated
by a bar.

MF _MENUBREAK Item is placed in a new column.

MF_OWNERDRAW The owner of the menu is re-
sponsible for drawing all visual
aspects of the menu item, including
highlighted, checked and inactive
states. This option is not valid for a
top-level menu item.

MF_POPUP Item displays a sublist of menu
items when selected.

mtlD Specifies an identification code for a nonpop-up menu item. The
MENUITEMTEMPLATE data structure for a pop-up menu item
does not contain the mtlD field.

mtString Points to a null-terminated character string that specifies the name
of the menu item.

The LoadMenulndirect function in Chapter 4, "Functions Directory," in Reference,
Volume 1.

METAFILEPICT 7-52

METAFILEPICT
Metafile Picture Structure

The METAFILEPICT structure defines the metafile picture fonnat used for exchanging
metafile data through the clipboard.

typedef struct tagMETAFILEPICT
int mm;
int xExt, yExt;
HANDLE hMF;

METAFILEPICT;

The METAFILEPICT structure has the following fields:

Field Description

mm Specifies the mapping mode in which the picture is drawn.

xExt Specifies the size of the metafile picture for all modes except the
MM_ISOTROPIC and MM_ANISOTROPIC modes. The x-extent speci­
fies the width of the rectangle within which the picture is drawn. The
coordinates are in units that correspond to the mapping mode.

yExt Specifies the size of the metafile picture for all modes except the
MM_~SOTROPIC and MM_ANISOTROPIC modes. The y-extent speci­
fies the height of the rectangle within which the picture is drawn. The
coordinates are in units that correspond to the mapping mode.

For MM_ISOTROPIC and MM_ANISOTROPIC modes, which can be
scaled, the xExt and yExt fields contain an optional suggested size in
MM_HIMETRIC units. For MM_ANISOTROPIC pictures, xExt and
yExt can be zero when no suggested size is supplied. For
MM_ISOTROPIC pictures, an aspect ratio must be supplied even when
no suggested size is given. (If a suggested size is given, the aspect ratio
is implied by the size.) To give an aspect ratio without implying a sug­
gested size, set xExt and yExt to negative values whose ratio is the
appropriate aspect ratio. The magnitude of the negative xExt and yExt
values will be ignored; only the ratio will be used.

hMF Identifies a memory metafile.

7-53 MSG

·MSG
Message Data Structure

The MSG structure contains infonnation from the Windows application queue.

typedef
HWND
WORD
WORD
LONG
DWORD
POINT

struct tagMSG
hwnd;
message;
wParam;
lParam;
time;
pt;

'I MSG;

MULTIKEYHELP

The MSG structure has the following fields:

Field

hwnd

message

wPm"am

IParam

time

pt

Description

Identifies the window that receives the message.

Specifies the message number.

Specifies additional information about the message. The exact meaning
depends on the message value.

Specifies additional information about the message. The exact meaning
depends on the message value.

Specifies the time at which the message was posted.

Specifies the position of the cursor (in screen coordinates) when the
message was posted.

Windows Help Key Word Table Structure

The MULTIKEYHELP structure specifies a key-word table and an associated key word
to be used by the Windows Help application.

typedef struct tagMULTIKEYHELP
WORD mkSize;
BYTE mkKeylist;
BYTE szKeyphrase[];

MULTIKEYHELP;

. The MULTIKEYHELP data structure contains the following fields:

OFS.TRUCT

OFSTRUCT
Open-File Structure

Field

mkSize

mkKeylist

szKeyphrase[]

Description

Specifies the length of the MULTIKEYHELP structure (in
bytes).

7-54

Contains a single character that identifies the key-word table to
be searched.

Contains a null-tenninated text string that specifies the key word
to be located in the key-word table.

The OFSTRUCT structure contains file infonnation which results from opening that file.

typedef struct tagOFSTRUCT
BYTE cBytes;
BYTE fFixedDisk;
WORD nErrCode;
BYTE reserved[4];
BYTE szPathName[120];

OFSTRUCT;

The OFSTRUCT structure has the following fields:

Field

cBytes

fFixedDisk

nErrCode

reserved[4]

szPathName[120]

Description

Specifies the length of the OFSTRUCT structure (in bytes).

Specifies whether the file is on a fixed disk. The fFixedDisk
field is nonzero if the file is on a fixed disk.

Specifies the DOS error code if the OpenFile function returns
-1 (that is, OpenFile failed).

Reserved field. Four bytes reserved for future use.

Specifies 120 bytes that contain the pathname of the file. This
string consists of characters from the OEM character set.

7-55 PAINTSTRUCT

PAINTSTRUCT
Windows Paint Information

The PAINTSTRUCT structure contains infonnation for an application. This infonnation
can be used to paint the client area of a window owned by that application.

typedef struet tagPAINTSTRUCT
HOC hde;
Baal fErase;
RECT rePaint;
Baal fRestore;
Baal fIneUpdate;
BYTE rgbReserved[16];

PAINTSTRUCT;

The PAINTSTRUCT structure has the following fields:

Field

hdc

fErase

rcPaint

fRestore

Description

Identifies the display context to be used for painting.

Specifies whether the background has been redrawn. It has been
redrawn if nonzero.

Specifies the upper-left and lower-right comers of the rectangle
in which the painting is requested.

flncUpdate

rgbReserved[16]

Reserved field. It is used internally by Windows.

Reserved field. It is used internally by Windows.

Reserved field. A reserved block of memory used internally by
Windows.

PALETTEENTRY [IQJ
Logical Palette Color Entry

The PALETTEENTRY data structure specifies the color and usage of an entry in a logi­
cal color palette. A logical palette is defined by a LOGPALETTE data structure.

typedef struet
{

BYTE peRed;
BYTE peGreen;
BYTE peBlue;
BYTE peFlags;
} PALETTE ENTRY,;

POINT

POINT
Point Data Structure

7-56

The PALETTEENTRY structure contains the following fields:

Field

peRed

peGreen

peBlue

peFlags

Description

Specifies the intensity of red for the palette entry color.

Specifies the intensity of green for the palette entry color.

Specifies the intensity of blue for the palette entry color.

Specifies how the palette entry is to be used. The peFlags field may be
set to NULL or one of these values:

Flag

PC_EXPLICIT

PC_NOCOLLAPSE

Meaning

Specifies that the low-order word of the
logical palette entry designates a hard­
ware palette index. This flag allows the
application to show the contents of the
display-device palette.

Specifies that the color will be placed in
an unused entry in the system palette in­
stead of being matched to an existing
color in the system palette. If there are no
unused entries in the system palette, the
color is matched normally. Once this
color is in the system palette, colors in
other logical palettes can be matched to
this color.

Specifies that the logical palette entry
will be used for palette animation; this
prevents other windows from matching
colors to this palette entry since the color
will frequently change. If an unused sys­
tem-palette entry is available, this color
is placed in that entry. Otherwise, the
color will not be available for animation.

The POINT structure defines the x- and y-coordinates of a point.

7-57

See Also

REel

typedef struct tagPOINT {
int x;
int y;

I POINT;

The POINT structure has the following fields:

Field Description

x Specifies the x-coordinate of a point.

y Specifies the y-coordinate of a point.

RECT

The ChiidWindowFromPoint, PtInRect, and WindowFromPoint functions in Chapter
4, "Functions Directory," in Reference, Volume 1.

Rectangle Data Structure

Comments

The RECT structure defines the coordinates of the upper-left and lower-right corners of a
rectangle.

typedef struct tagRECT {
int left;
int top;
int right;
i nt bottom;

RECT;

The RECT structure has the following fields:

Field

left

top

right

bottom

Description

Specifies the x-coordinate of the upper-left comer of a rectangle.

Specifies the y-coordinate of the upper-left comer of a rectangle.

Specifies the x-coordinate of the lower-right comer of a rectangle.

Specifies the y-coordinate of the lower-right comer of a rectangle.

The width of the rectangle defined by the RECT structure must not exceed 32,768 units.

RGBQUAO 7-58

RGBQUAD []]]
RGB Color Structure

The RGBQUAD data structure describes a color consisting of relative intensities of red,
green, and blue. The bmiColors field of the BITMAPINFO data structure consists of an
array of RGBQUAD data structures.

typedef
BYTE
BYTE
BYTE
BYTE

struct tagRGBOUAD
rgbBlue;
rgbGreen;
rgbRed;
rgbReserved;

RGBOUAD;

The RGBQUAD structure contains the following fields:

Field

rgbBlue

rgbGreen

rgbRed

rgbReserved

Description

Specifies the intensity of blue in the color.

Specifies the intensity of green in the color.

Specifies the intensity of red in the color.

Is not used and must be set to zero.

RGBTRIPLE []]]
RGB Color Structure

The RGBTRIPLE data structure describes a color consisting of relative intensities of red,
green, and blue. The bmciColors field of the BITMAPCOREINFO data structure con­
sists of an array of RGBTRIPLE data structures.

typedef struct
BYTE
BYTE
BYTE

RGBTRIPLE;

tagRGBTRIPLE
rgbtBlue;
rgbtGreen;
rgbtRed;

The RGBTRIPLE structure contains the following fields:

7-59

TEXTMETRIC
Basic Font Metrics

Field

rgbtBlue

rgbtGreen

rgbtRed

Description

Specifies the intensity of blue in the color.

Specifies the intensity of green in the color.

Specifies the intensity 6f red in the color.

TEXTMETRIC

The TEXTMETRIC structure contains basic information about a physical font. All sizes
are given in logical units; that is, they depend on the current mapping mode of the display
context.

typedef struct tagTEXTMETRIC
short int tmHeight;
short int tmAscent;
short int tmDescent;
short int tmlnternalLeading;
short int tmExternalLeading;
short int tmAveCharWidth;
short int tmMaxCharWidth;
short int tmWeight;
BYTE tmltalic;
BYTE tmUnderlined;
BYTE tmStruckOut;
BYTE tmFirstChar;
BYTE tmLastChar;
BYTE tmDefaultChar;
BYTE tmBreakChar;
BYTE tmPitchAndFamily;
BYTE tmCharSet;
short int tmOverhang;
short int tmDigitizedAspectX;
short int tmDigitizedAspectY;

TEXTMETRI C;

The TEXTMETRIC structure has the following fields:

Field

tmHeight

tmAscent

Description

Specifies the height (ascent + descent) of characters.

Specifies the ascent (units above the baseline) of
characters.

TEXTMETRIC

Field

tmDescent

tmlnternalLeading "

tmExternalLeading

tmAveCharWidth

tmMaxCharWidth

tmWeight

tmltalic

tmUnderlined

tmStruckOut

tmFirstChar

tmLastChar

tmDefaultChar

tmBreakChar

tmPitchAndFamily

Description

Specifies the descent (units below the baseline) of
characters.

Specifies the amount ofleading (space) inside the
bounds set by the tmHeight field. Accent marks and
other foreign characters may occur in this area. The de­
signer may set this field to zero.

7-60

Specifies the amount of extra leading (space) that the
application adds between rows. Since this area is outside
the font, it contains no marks and will not be altered by
text output calls in either OPAQUE or TRANSPARENT
mode. The designer may set this field to zero.

Specifies the average width of characters in the font
(loosely defined as the width of the letter x). This value
does not include overhang required for bold or italic
characters.

Specifies the width of the widest character in the font.

Specifies the weight of the font.

Specifies an italic font if it is nonzero.

Specifies an underlined font if it is nonzero.

Specifies a struckout font if it is nonzero.

Specifies the value of the first character defined in the
font.

Specifies the value of the last character defined in the
font.

Specifies the value of the character that will be substi­
tuted for characters that are not in the font.

Specifies the value of the character that will be used to
define word breaks for text justification.

Specifies the pitch and family of the selected font. The
low-order bit specifies the pitch of the font. If it is 1, the
font is variable pitch. If it is 0, the font is fixed pitch.

7-61

See Also

Field

tmCharSet

tmOverhang

tmDigitizedAspectX

tmDigitizedAspect Y

TEXTMETRIC

Description

The four high-order bits designate the font family. The
tmPitchAndFamily field can be combined with the hex­
adecimal value OxFO by using the bitwise AND operator,
and then be compared with the font family names for an
identical match. For a description of the font families,
see the LOGFONT structure, earlier in this chapter.

Specifies the character set of the font.

Specifies the per-string extra width that may be added to
some synthesized fonts. When synthesizing some at­
tributes, such as bold or italic, GDI or a device may have
to add width to a string on both a per-character and per­
string basis. For example, GDI makes a string bold by
expanding the intracharacter spacing and overstriking by
an offset value; it italicizes a font by skewing the string.
In either case, there is an overhang past the basic string.
For bold strings, the overhang is the distance by which
the overstrike is offset. For italic strings, the overhang is
the amount the top of the font is skewed past the bottom
of the font.

The tmOverhang field allows the application to deter­
mine how much of the character width returned by a
GetTextExtent function call on a single character is the
actual character width and how much is the per-string
extra width. The actual width is the extent minus the
overhang.

Specifies the horizontal aspect of the device for which
the font was designed.

Specifies the vertical aspect of the device for which the
font was designed. The ratio of the tmDigitizedAspectX
and tmDigitizedAspectY fields is the aspect ratio of the
device for which the font was designed.

The GetDeviceCaps and GetTextMetrics functions in Chapter 4, "Functions Directory,"
in Reference, Volume 1.

WNOCLASS 7-62

WNDClASS
Window-Class Data Structure

The WNDCLASS structure contains the class attributes that are registered by the
RegisterClass function.

typedef struct tagWNDCLASS {
WORD style;
long (FAR PASCAL *lpfnWndProc)();
int cbClsExtra;
int cbWndExtra;
HANDLE hlnstance;
HICON hlcon;
HCURSOR hCursor;
HBRUSH hbrBackground;
LPSTR lpszMenuName;
LPSTR lpszClassName;

WNDCLASS;

The WNDCLASS structure has the 'following fields:

Field Description

style Specifies the class style. These styles can be combined by using
the bitwise OR operator. The style field can be any combination
of the following values:

Value

CS_BYTEALIGNCLIENT

CS_BYTEALIGNWINDOW

CS_CLASSDC

Meaning

Aligns a window's client area
on the byte boundary (in the
x direction).

Aligns a window on the byte
boundary (in the x direction).

Gives the window class its
own display context (shared
by instances).

Sends double-click messages
to a window.

7-63

Field Description

Value

CS_GLOBALCLASS

WNOCLASS

Meaning

Specifies that the window
class is an application global
class: An application global
class is created by an applica­
tion or library and is
available to all applications.
The class is destroyed when
the application or library that
created the class terminates;
it is essential, therefore, that
all windows created with the
application global class be
closed before this occurs.

Redraws the entire window if
the horizontal size changes.

Inhibits the close option on
the System menu.

Gives each window instance
its own display context. Note
that although the
CS_OWNDC style is con­
venient, it must be used with
discretion because each dis­
play context occupies
approximately 800 bytes of
memory.

Gives the parent window's
display context to the
window class.

WNDCLASS

Field

IpfnWndProc

cbCIsExtra

cbWndExtra

hlnstance

Description

Value

CS_VREDRAW

Points to the window function.

7-64

Meaning

Saves the portion of the
screen image that is obscured
by a window; Windows uses
the saved bitmap to re-create
a screen image when the
window is removed.
Windows displays the bitmap
at its original location and
does not send WM_PAINT
messages to windows which
had been obscured by the
window if the memory used
by the bitmap has not been
discarded and if other screen
actions have not invalidated
the stored image. An applica­
tion should set this bit only
for small windows that are
displayed briefly and then re­
moved before much other
screen activity takes place.
Setting this bit for a window
increases the amount of time
required to display the
window due to the time re­
quired to allocate memory to
store the bitmap.

Redraws the entire window if
the vertical size changes.

Specifies the number of bytes to allocate following the window­
class structure.

Specifies the number of bytes to allocate following the window
instance. If an application is using the WNDCLASS structure to
register a dialog box created with the CLASS directive in the
.RC script file, it must set this field to DLGWINDOWEXTRA.

Identifies the class module. The hlnstance field must be an in­
stance handle and must not be NULL.

7-65

Field

hlcon

hCursor

hbr Background

WNOCLASS

Description

Identifies the class icon. The hlcon field must be a handle to an
icon resource. If hlcon is NULL, the application must draw an
icon whenever the user minimizes the application's window.

Identifies the class cursor. The hCursor field must be a handle
to a cursor resource. If hCursor is NULL, the application must
explicitly set the cursor shape whenever the mouse moves into
the application's window.

Identifies the class background brush. The hbrBackground
field can be either a handle to the physical brush that is to be
used for painting the background, or it can be a color value. If a
color value is given, it must be one of the standard system colors
listed below, and the value 1 must be added to the chosen color
(for example, COLOR_BACKGROUND + 1 specifies the sys­
tem background color). If a color value is given, it must be
converted to one of the following HBRUSH types:

COLOR_ACTIVEBORDER
COLOR_ACTIVECAPTION
COLOR_APPWORKSPACE
COLOR_BACKGROUND
COLOR_BTNFACE
COLOR_BTNSHADOW
COLOR_BTNTEXT
COLOR_CAPTIONTEXT
COLOR_GRAYTEXT
COLOR_HIGHLIGHT
COLOR_HIGHLIGHTTEXT
COLOR_INACTIVEBORDER
COLOR_INACTIVE CAPTION
COLOR_MENU
COLOR_MENUTEXT
COLOR_SCROLLBAR
COLOR_ WINDOW
COLOR_ WINDOWFRAME
COLOR_ WINDOWTEXT

When hbrBackground is NULL, the application must paint its
own background whenever it is requested to paint in its client
area. The application can determine when the background needs
painting by processing the WM_ERASEBKGND message or by
testing the fErase field of the PAINTSTRUCT structure filled
by the BeginPaint function.

WNOCLASS

Field

IpszMenuName

IpszClassName

7-66

Description

Points to a null-tenninated character string that specifies the
resource name of the class menu (as the name appears in the
resource file). If an integer is used to identify the menu, the
MAKEINTRESOURCE macro can be used. If the
IpszMenuName field is NULL, windows belonging to this class
have no default menu.

Points to a null-tenninated character string that specifies the
name of the window class.

Chapter

8
Resource Script Statements

This chapter describes the statements that define resources that the Microsoft
Windows Resource Compiler (Re) adds to an application's executable file. See
Tools for infonnation on running the Resource Compiler.

This chapter describes resource script statements in the following categories:

• Single-line statements

• User-defined resources

• RCDAT A statement

• STRINGT ABLE statement

• ACCELERATORS statement

• Menu statements

• Dialog statements

• Directives

8. 1 Single-Line Statements
The single-line statements define resources that are contained in a single file,
such as cursors, icons, and fonts. The statements associate the filename of the
resource with an identifying name or number. The resource is added to the exe­
cutable file when the application is created, and can be extracted during execu­
tion by referring to the name or number.

The following is the general fonn for all single-line statements:

nameID resource-type [load-option] [mem-option]filename

The nameID field specifies either a unique name or an integer value identifying
the resource. For a font resource, nameID must be a number; it cannot be a name.

The resource-type field specifies one of the following key words, which identify
the type of resource to be loaded:

8-2 Reference - Volume 2

Key word

CURSOR

ICON

BITMAP

FONT

Resource Type

Specifies a bitmap that defines the shape of the
cursor on the display screen.

Specifies a bitmap that defines the shape of the icon
to be used for a given application.

Specifies a custom bitmap that an application is
going to use in its screen display or as an item in a
menu.

Specifies a file that contains a font.

The optional/oad-option field takes a key word that specifies when the resource
is to be loaded. The key word must be one of the following:

Option

PRELOAD

LOADONCALL

Description

Resource is loaded immediately.

Resource is loaded when called. This is the default
option.

NOTE Icon and cursor resources can contain more than one image. If the resource is
marked as PRELOAD, Windows loads all images in the resource when the application ex­
ecutes.

The optional mem-option field takes the following key word or key words, which
specify whether the resource is fixed or moveable and whether it is discardable:

Option

FIXED

MOVEABLE

DISCARDABLE

Description

Resource remains at a fixed memory location.

Resource can be moved if necessary in order to
compact memory.

Resource can be discarded if no longer needed.

The default is MOVEABLE and DISCARDABLE for cursor, icon, and font
resources. The default for bitmap resources is MOVEABLE.

The filename field is an ASCII string that specifies the DOS filename of the file
that contains the resource. A full pathname must be given if the file is not in the
current working directory.

Resource Script Statements 8-3

The following example demonstrates the correct usage for a single-line statement:

cursor CURSOR point.cur
cursor CURSOR DISCARDABLE point.cur
10 CURSOR custom. cur

desk ICON desk.ico
desk ICON DISCARDABLE desk.ico
11 ICON custom.ico

disk BITMAP disk.bmp
disk BITMAP DISCARDABLE disk.bmp
12 BITMAP custom.bmp

5 FONT CMROMAN.FNT

B.2 User-Oefined Resources
An application can also define its own resource. The resource can be any data
that the application intends to use. A user-defined resource statement has the fol­
lowing form:

nameID typeID [load-option] [mem-option] {[filename] I
[BEGIN
raw-data
END]}

The nameID field specifies either a unique name or an integer value that identi­
fies the resource.

The typeID field specifies either a unique name or an integer value that identifies
the resource type. If a number is given, it must be greater than 255. The numbers
1 through 255 are reserved for existing and future predefined resource types.

The optional load-option field takes a key word that specifies when the resource
is to be loaded. The key word must be one of the following:

Option

PRELOAD

LOADONCALL

Description

Resource is loaded immediately.

Resource is loaded when called. This is the default
option.

The optional mem-option field takes the following key word or key words, which
specify whether the resource is fixed or moveable and whether it is discardable:

8-4 Reference - Volume 2

Description Option

FIXED

MOVEABLE

Resource remains at a fixed memory location.

Resource can be moved if necessary in order to com­
pact memory. This is the default option.

DISCARDABLE Resource can be discarded if it is no longer needed.

The optional filename field is an ASCII string that specifies the DOS filename of
the file that contains the resource. A full pathname must be given if the file is not
in the current working directory. Do not use thefilename field if you supply raw
data between the optional BEGIN and END statements.

The raw-data field specifies one or more integers and strings. Integers can be in
decimal, octal, or hexadecimal format. Do not use raw-data field and the BEGIN
and END statements if you specify a filename.

The following example demonstrates the correct usage for user-defined state­
ments:

array MYRES data.res
14 300 custom. res
18 MYRES2
BEGIN

"Here is a data string\0", 1* A string. Note:
null-terminated

1024, 1* int
0x029a, 1* hex int
00733, 1* octal int
"\07" 1* octa 1 byte

END

B.3 ReDATA Statement
Syntax
nameID RCDATA [load-optionJ] [mem-optionJ]
BEGIN
raw-data
END

*1
*1
*1
*1

explicitly
*1

The RCDATA statement defines a raw data resource for an application. Raw
data resources permit the inclusion of binary data directly in the executable file.

The nameID field specifies either a unique name or an integer value that identi­
fies the resource.

The optional load-option field takes a key word that specifies when the resource
is to be loaded. It must be one of the following:

Option

PRELOAD

LOADONCALL

Resource Script Statements 8-5

Description

Resource is loaded immediately.

Resource is loaded when called. This is the default
option.

The optional mem-option field takes the following key word or key words, which
specify whether the resource is fixed or moveable and whether it is discardable:

Option

FIXED

MOVEABLE

DISCARDABLE

Description

Resource remains at a fixed memory location.

Resource can be moved if necessary in order to
compact memory.

Resource can be discarded if no longer needed.

The default is MOVEABLE and DISCARDABLE.

The raw-data field specifies one or more integers and strings. Integers can be in
decimal, octal, or hexadecimal format.

The following example demonstrates the correct usage for the RCDAT A
statement:

res name RCDATA
BEGIN

"Here is a data string\0", /* A string. Note: explicitly
null-terminated */

END

1024,
0x029a,
00733,
"\07"

8.4 STRINGTABLE Statement
Syntax

/* int */
/* hex int */
/* octal int */
/* octal byte */

STRINGTABLE [load-option] [mem-option]
BEGIN
stringID string
END

The STRINGTABLE statement defines one or more string resources for an
application. String resources are simply null-terminated ASCII strings that can be
loaded when needed from the executable file, using the LoadString function.

8-6 Reference - Volume 2

The optional load-option field takes a key word that specifies when the resource
is to be loaded. It must be one of the following:

Option

PRELOAD

LOADONCALL

Description

Resource is loaded immediately.

Resource is loaded when called. This is the default
option.

The optional mem-option field takes the following key word or key words, which
specify whether the resource is fixed or moveable and whether or not it is discard­
able:

Option

FIXED

MOVEABLE

DISCARDABLE

Description

Resource remains at a fixed memory location.

Resource can be moved if necessary in order to com­
pact memory.

Resource can be discardeq if no longer needed.

The default is MOVEABLE and DISCARDABLE.

The stringID field specifies an integer value that identifies the resource.

The string field specifies one or more ASCII strings, enclosed in double quota­
tion marks. The string must be no longer than 255 characters and must occupy a
single line in the source file. To add a carriage return to the string, use this
character sequence: \012. For example, "Line one\012Line two" would define a
string that would be displayed as follows:

Line one
Line two

Grouping strings in separate segments allows all related strings to be read in at
one time and discarded together. When possible, an application should make the
table moveable and discardable. The Resource Compiler allocates 16 strings per
segment and uses the identifier value to determine which segment is to contain
the string. Strings with the same upper 12 bits in their identifiers are placed in the
same segment.

The following example demonstrates the correct usage of the STRINGTABLE
statement:

#define IDS_HELLO 1
#define IDS_GOODBYE 2

STRINGTABLE
BEGIN

!

Resource Script Statements 8-7

IDS_HELLO, "Hello"
IDS_GOODBYE, "Goodbye"

END

8.5 ACCELERATORS Statement
Syntax
acctablename ACCELERATORS
BEGIN
event, idvalue, [type] [NOINVERT] [ALT] [SHIFT] [CONTROL]

END

The ACCELERATORS statement defines one or more accelerators for an appli­
cation. An accelerator is a key stroke defined by the application to give the user a
quick way to perform a task. The TranslateAccelerator function is used to trans­
late accelerator messages from the application queue into WM_COMMAND or
WM_SYSCOMMAND messages.

The acctablename field specifies either a unique name or an integer value that
identifies the resource.

The event field specifies the key stroke to be used as an accelerator. It can be any
one of the following:

Character

"char"

ASCII character

Virtual key character

Description

A single ASCII character enclosed in double quotes.
The character can be preceded by a caret (A),
meaning that the character is a control character.

An integer value representing an ASCII character.
The type field must be ASCII.

An integer value representing a virtual key. The vir­
tual key for alphanumeric keys can be specified by
placing the uppercase letter or number in double quo­
tation marks (for example, "9" or "C"). The type
field must be VIRTKEY.

The idvalue field specifies an integer value that identifies the accelerator.

The type field is required only when event ,is an ASCII character or a virtual key
character. The type field specifies either ASCII or,VIRTKEY; the integer value
of event is interpreted accordingly. When VIRTKEY is specified and the event
field contains a string, the event field must be uppercase.

8-8 Reference - Volume 2

The NOINVERT option, if given, means that no top-level menu item is
highlighted when the accelerator is used. This is useful when defining accel­
erators for actions such as scrolling that do not correspond to a menu item. If
NOINVERT is omitted, a top-level menu item will be highlighted (if possible)
when the accelerator is used.

The ALT option, if given, causes the accelerator to be activated only if the ALT
key is down.

The SHIFT option, if given, causes the accelerator to be activated only if the
SHIff key is down.

The CONTROL option, if given, defines the character as a control character (the
accelerator is only activated if the CONTROL key is down). This has the same ef­
fect as using a caret (1\) before the accelerator character in the event field.

The ALT, SHIFT, and CONTROL options apply only to virtual keys.

The following example demonstrates the correct usage of accelerator ~eys:

1 ACCELERATORS
BEGIN

III\C" ,
"K" ,
"k" ,
98,
66,
"gft ,
"G" ,
VK_Fl,
VK_Fl,
VK_Fl,
VK_Fl,
VK_F2,
VK_F2,
VK_F2,

END

8.6 MENU Statement
Syntax

IDDCLEAR
IDDCLEAR
IDDELLIPSE, ALT
IDDRECT, ASCII
IDDSTAR, ASCII
IDDRECT
IDDSTAR
IDDCLEAR, VIRTKEY

control C
shi ft K
alt K
b
B (shift b)
9
G (shift G)

I DDSTAR, CONTRa L, V I RTKEY
IDDELLIPSE, SHIFT, VIRTKEY
IDDRECT, ALT, VIRTKEY
IDDCLEAR, ALT, SHIFT, VIRTKEY
IDDSTAR, CONTROL, SHIFT, VIRTKEY
I DDRECT, AL T, CONTROL, V I RTKEY

menuID MENU [[load-option]] [[mem-option]]
BEGIN
item-definitions
END

F1
control F1
shift Fl
alt F1
alt shift F2
ctrl shift F2
alt control F2

The MENU statement defines the contents of a menu resource. A menu resource
is a collection of infonnation that defines the appearance and function of an appli­
cation menu. A menu is a special input tool that lets a user select commands from
a list of command names.

Resource Script Statements 8-9

The menuID field specifies a name or number used to identify the menu resource.

The optional load-option field takes a key word that specifies when the resource
is to be loaded. It must be one of the following:

Option

PRELOAD

LOADONCALL

Description

Resource is loaded immediately.

Resource is loaded when called. This is the default
option.

The optional mem-option field takes the following key word or key words, which
specify whether the resource is fixed or moveable and whether it is discardable:

Option'

FIXED

MOVEABLE

Description

Resource remains at a fixed memory location.

Resource can be moved if necessary in order to com­
pact memory.

DISCARDABLE Resource can be discarded if no longer needed.

The default is MOVEABLE and DISCARDABLE.

The item-definition field specifies special resource statements that define the
items in the menu. These statements are defined in the following sections.

The following is an example of a complete MENU statement:

sample MENU
BEGIN

END

MENUITEM "&Soup", 100
MENUITEM "S&alad", 101
POPUP "&Entree"
BEGIN

END

MENUITEM "&Fish", 200
MENUITEM "&Chicken", 201, CHECKED
POPUP "&Beef"
BEGIN

END

MENUITEM "&Steak", 301
MENUITEM "&Prime Rib", 302

MENUITEM "&Dessert", 103

8-10 Reference - Volume 2

8.6.1 Item-Oefinition Statements
The MENUITEM and POPUP statements are used in the item-definition section
of a MENU statement to define the names and attributes of the actual menu
items. Any number of statements can be given; each defines a unique item. The
order of the statements defines the order of the menu items.

The MENUITEM and POPUP statements can be used only within an item-defi­
nition section of a MENU statement.

MENU/TEM Statement

Syntax
MENUITEM text, result, [option list]

This optional statement defines a menu item.

The text field takes an ASCII string, enclosed in double quotation marks, that
specifies the name of the menu item.

The string can contain the escape characters \t and \a. The \t character inserts a
tab in the string and'is used to align text in columns. Tab characters should be
used only in pop-up menus, not in menu bars. (See the following section for infor­
mation on 'pop-up mentis.) The \a character aligns all text that follows it flush
right to the menu bar or pop-up menu.

To insert a double quotation mark (") in the string, use two double quotation
marks ('"'). .

To add a mnemonic to the text string, place the ampersand (&) ahead of the letter
that will be the mnemonic. This will cause the letter to appear underlined in the
control and to function as the mnemonic. To use the ampersand as a character in
a string, insert two ampersands (&&).

The result field takes an integer value that specifies the result generated when the
user selects the menu item. Menu-item results are always integers; when the user
clicks the menu-item name, the result is sent to the window that owns the menu.

The optional option list field takes one or more predefined menu options, sepa­
rated by commas or spaces, that specify the appearance of the menu item. The
menu options are as follows: '

Option

CHECKED

GRAYED

Description

Item has a checkmark next to it.

Item name is initially inactive and appears on the
menu in gray or a lightened shade of the menu-text
color.

Option

HELP

INACTIVE

MENUBARBREAK

MENUBREAK

Resource Script Statements 8-11

Description

Item has a vertical separator to its left.

Item name is displayed, but it cannot be selected.

Same as MF _MENUBREAK except that for pop-up
menus, it separates the new column from the old
column with a vertical line.

Places the menu item on a new line for static menu­
bar items. For pop-up menus, places the menu item
in a new column, with no dividing line between the
columns.

The INACTIVE and GRAYED options cannot be used together.

The following example demonstrates the correct usage of the MENUITEM state­
ment:

MENUITEM "&Alpha", 1, CHECKED, GRAYED
MENUITEM "&Beta", 2

POPUP Statement

Syntax
POPUP text, [optionlist]
BEGIN
item-definitions
END

This statement marks the beginning of the definition of a pop-up menu. A pop-up
menu (which is also known as a drop-down menu) is a special menu item that dis­
plays a sublist of menu items when it is selected.

The text field takes an ASCII string, enclosed in double quotation marks, that
specifies the name of the pop-up menu.

The optional option list field takes one or more predefined menu options that
specify the appearance of the menu item. The menu options are as follows:

Option

CHECKED

GRAYED

Description

Item has a checkmark next to it. This option is not
valid for a top-level pop-up menu.

Item name is initially inactive and appears on the
menu in gray or a lightened shade of the menu-text
color.

8-12 Reference - Volume 2

Option Description

INACTIVE

MENUBARBREAK

Item name is displayed, but it cannot be selected.

Same as MF _MENUBREAK except that for pop-up
menus, it separates the new column from the old
column with a vertical line.

MENUBREAK Places the menu item on a new line for static menu­
bar items. For pop-up menus, places the menu item
in a new column, with no dividing line between the
columns.

The options can be combined using the bitwise OR operator. The INACTIVE
and GRAYED options cannot be used together.

The item-definitions field can specify any number of MENUITEM or POPUP
statements. As a result, any pop-up menu item can display another pop-up menu.

The following example demonstrates the correct usage of the POPUP statement:

chern MENU
BEGIN

POPUP "&Elements"
BEGIN

END

MENUITEM "&Oxygen", 200
MENUITEM "&Carbon", 201, CHECKED
MENUITEM "&Hydrogen", 202
MENUITEM "&Sulfur", 203
MENUITEM "Ch&lorine", 204

POPUP "&Compounds"
BEGIN

END

END

POPUP "&Sugars"
BEGIN

END

MENU ITEM "&Glucose", 301
MENUITEM "&Sucrose", 302, CHECKED
MENUITEM "&Lactose", 303, MENUBREAK
MENUITEM "&Fructose", 304

POPUP "&Acids"
BEGIN

END

"&Hydrochloric", 401
"&Sulfuric", 402

Resource Script Statements 8-13

MENU/TEM SEPARATOR Statement

Syntax
MENUITEM SEPARATOR

This special fonn of the MENUITEM statement creates an inactive menu item
that serves as a dividing bar between two active menu items in a pop-up menu.

The following demonstrates the correct usage of the MENUITEM SEPARA­
TOR statement:

MENUITEM "&Roman", 206
MENU ITEM SEPARATOR
MENUITEM "&20 Point", 301

8. 7 DIALOG Statement
The DIALOG statement defines a template that can be used by an application to
create dialog boxes.

Syntax
nameID DIALOG [[load-option]] [[mem-option]] x, y, width, height
[[option-statements]]
BEGIN
control-statements
END

This statement marks the beginning of a DIALOG template. It defines the name
of the dialog box, the memory and load options, the box's starting location on the
display screen, and the box's width and height.

The nameID field specifies either a unique name or an integer value that identi­
fies the resource.

The optional load-option field takes a key word that specifies when the resource
is to be loaded. It must be one of the following:

Option

PRELOAD

LOADONCALL

Description

Resource is loaded immediately.

Resource is loaded when called. This is the default
option.

The optional mem-option field takes the following key word or key words, which
specify whether the resource is fixed or moveable and whether it is discardable:

8-14 Reference - Volume 2

Option

FIXED

MOVEABLE

DISCARDABLE

Description

Resource remains at a fixed memory location.

Resource can be moved if necessary in order to com­
pact memory. This is the default option.

Resource can be discarded if no longer needed.

The x and y fields take integer values that specify the x and y coordinates of the
upper-left comer of the dialog box. The horizontal units are 1/4 of the dialog base
width unit; the vertical units are 1/8 of the dialog base height unit. The current
dialog base units are computed from the height and width of the current system
font. The GetDialogBaseUnits function returns the dialog base units in pixels.
The exact meaning of the coordinates depends on the style defined by the
STYLE option statement. For child-style dialog boxes, the coordinates are rela­
tive to the origin of the parent window, unless the dialog box has the style
DS_ABSALIGN; in that case, the coordinates are relative to the origin of the dis­
play screen.

The width and height fields take integer values that specify the width and height
of the box. The width units are 1/4 of the dialog base width unit; the height units
are V8 of the dialog base height unit.

The option and control statements are described in the following sections.

The following demonstrates the correct usage of the DIALOG statement:

#include "WINDOWS.H"

errmess DIALOG 10, 10, 300, 110
STYLE WS_POPUPIWS_BORDER
CAPTION "Error!"
BEGIN

END

CTEXT "Select One:", 1, 10, 10,280,12
RADIOBUTTON "&Retry", 2, 75, 30, 60, 12
RADIOBUTTON "&Abort", 3, 75, 50, 60, 12
RADIOBUTTON "&Ignore", 4, 75, 80, 60, 12

Comments
Do not use the WS_CHILD style with a modal dialog box. The DialogBox func­
tion always disables the parent/owner of the newly-created dialog box. When a
parent window is disabled, its child windows are implicitly disabled. Since the
parent window of the child-style dialog box is disabled, the child-style dialog
box is too.

If a dialog box has the DS_ABSALIGN style, the dialog coordinates for its
upper-left comer are relative to the screen origin instead of to the upper-left
comer of the parent window. You would typically use this style when you

Resource Script Statements 8-15

wanted the dialog box to start in a specific part of the display no matter where the
parent window may be on the screen.

The name DIALOG can also be used as the class-name parameter to the
CreateWindow function in order to create a window with dialog-box attributes.

8.7. 1 Dialog Option Statements
The dialog option statements, given in the option-statements section of the
DIALOG statement, define special attributes of the dialog box, such as its style,
caption, and menu. The option statements are optional. If the application does not
supply a particular option statement, the dialog box is given default attributes for
that option. Dialog option statements include the following:

• STYLE

• CAPTION

• MENU

• CLASS

• FONT

The option statements are discussed individually in the following sections.

STYLE Statement

Syntax
STYLE style

This optional statement defines the window style of the dialog box. The window
style specifies whether the box is a pop-up or a child window. The default style
has the following attributes:

WS_POPUP
WS_BORDER
WS_SYSMENU

The style field takes an integer value or predefined name that specifies the
window style. It can be any of the window styles defined in Table 8.1, "Window
Styles."

Comments
If the predefined names are used, the #include directive must be used so that the
WINDOWS:H file will be included in the resource script.

8-16 Reference - Volume 2

Table 8.1 Window Styles

Style

DS_SYSMODAL

WS_BORDER

WS_CAPTION

WS_DISABLED

WS_DLGFRAME

Meaning

Specifies that edit controls in the dialog box will
use memory in the application's data segment. By
default, all edit controls in dialog boxes use
memory outside the application's data segment.
This feature can be suppressed by adding the
DS_LOCALEDIT flag to the STYLE command
for the dialog box. If this flag is not used,
EM_GETHANDLE and EM_SETHANDLE mes­
sages must not be used since the storage for the
control is not in the application's data segment.
This feature does not affect edit controls created
outside of dialog boxes.

Creates a dialog box with a modal dialog-box
frame that can be combined with a title bar and
system menu by specifying the WS_CAPTION
and WS_SYSMENU styles.

Suppresses WM_ENTERIDLE messages that
Windows would otherwise send to the owner of
the dialog box while the dialog box is displayed.

Creates a system-modal dialog box.

Creates a window that has a border.

Creates a window that has a title bar (implies
WS_BORDER).

Creates a child window. It cannot be used with
WS_POPUP.

Creates a child window that has the style
WS_CHILD.

Excludes the area occupied by child windows
when drawing within the parent window. Used
when creating the parent window.

Clips child windows relative to each other; that is,
when a particular child window receives a
WP _PAINT message, this style clips all other top­
level child windows out of the region of the child
window to be updated. (IfWS_CLIPSIBLINGS is
not given and child windows overlap, it is
possible, when drawing in the client area of a
child window, to draw in the client area of a neigh­
boring child window.) For use with WS_CHILD
only.

Creates a window that is initially disabled.

Creates a window with a modal dialog-box frame
but no title.

Resource Script Statements 8-17

Table 8.1 Window Styles (continued)

Style Meaning

WS_GROUP Specifies the first control of a group of controls in
which the user can move from one control to the
next by using the arrow keys. All controls defined
with the WS_GROUP style after the first control
belong to the same group. The next control with
the WS_GROUP style ends the style group and
starts the next group (i.e., one group ends where
the next begins). This style is valid only for con­
trols.

WS_HSCROLL Creates a window that has a horizontal scroll bar.

WS_ICONIC Creates a window that is initially iconic. For use
with WS_OVERLAPPED only.

WS_MAXIMIZE Creates a window of maximum size.

WS_MAXIMIZEBOX Creates a window that has a Maximize box.

WS_MINIMIZE Creates a window of minimum size.

WS_MINIMIZEBOX Creates a window that has a Minimize box.

WS_OVERLAPPED Creates an overlapped window. An overlapped
window has a caption and a border.

WS_OVERLAPPEDWINDOW Creates an overlapped window having the
WS_OVERLAPPED, WS_CAPTION, WS_SYS­
MENU, WS_THICKFRAME,
WS_MINIMIZEBOX, and WS_MAXIMIZE­
BOX styles.

WS_POPUP Creates a pop-up window. It cannot be used with
WS_CHILD. .

WS_POPUPWINDOW Creates a pop-up window that has the styles
WS_POPUP, WS_BORDER, and WS_SYS­
MENU. The WS_CAPTION style must be
combined with the WS_POPUPWINDOW style
to make the system menu visible.

WS_SIZEBOX Creates a window that has a size box. Used only
for windows with a title bar or with vertical and
horizontal scroll bars.

Creates a window that has a System-menu box in
its title bar. Used only for windows with title bars.
If used with a child window, this style creates a
Close box instead of a System-menu box.

Specifies one of any number of controls through
which the user can move by using the TAB key.
The TAB key moves the user to the next control
specified by the WS_ TAB STOP style. This style
is valid only for controls.

8-18 Reference - Volume 2

Table 8.1 Window Styles (continued)

Style

WS_THICKFRAME

CAPTION Statement

Syntax
CAPTION captiontext

Meaning

Creates a window with a thick frame that can be
used to size the window.

Creates a window that is initially visible. This ap­
'plies to overlapping and pop-up windows. For
overlapping windows, the y parameter is used as a
ShowWindow function parameter.

Creates a window that has a vertical scroll bar.

This optional statement defines the dialog box's title. The title appears in the
box's caption bar (if it has one).

The default caption is empty.

The caption text field specifies an ASCII character string enclosed in double quo­
tation marks.

The following example demonstrates the correct usage of the CAPTION state­
ment:

CAPTION "Error!"

MENU Statement

Syntax
MENU menuname

This optional statement defines the dialog box's menu. If no statement is given,
the dialog box has no menu.

The menuname field specifies the resource name or number of the menu to be
used.

The following example demonstrates the correct usage of the MENU statement:

MENU errmenu

CLASS Statement

Syntax
CLASS class

Resource Script Statements 8-19

This optional statement defines the class of the dialog box. If no statement is
given, the Windows standard dialog class will be used as the default.

The class field specifies an integer or a string, enclosed in double quotation
marks, that identifies the class of the dialog box. If the window procedure for the
class does not process a message sent to it, it must call the DeIDIgProc function
to ensure that all messages are handled properly for the dialog box. A private
class can use DeIDIgProc as the default window procedure. The class must be
registered with the cbWndExtra field of the WNDCLASS data structure set to
DLGWINDOWEXTRA.

The following example demonstrates the correct usage of the CLASS statement:

CLASS "myclass"

Comments
The CLASS statement should be used with special cases, since it overrides the
normal processing of a dialog box. The CLASS statement converts a dialog box
to a window of the specified class; depending on the class, this could give un­
desirable results. Do not use the predefined control class names with this state­
ment.

FONT Statement

Syntax
FONT pointsize, typeface

This optional statement defines the font with which Windows will draw text in
the dialog box. The font must have been previously loaded, either from WIN.lNI
or by calling LoadFont.

The pointsize field is an integer that specifies the size in points of the font.

The typeface field specifies an ASCII character string enclosed in double quota­
tion marks that specifies the name of the typeface. This name must be identical to
the name defined in the [fonts] section of WIN.lNI.

The following example demonstrates the correct usage of the FONT statement:

FONT 12, "Hel v"

8-20 Reference - Volume 2

8.7.2 Dialog Control Statements
The dialog control statements, given in the control-statements section of the
DIALOG statement, define the attributes of the control windows that appear in
the dialog box. A dialog box is empty unless one or more control statements are
given. Control statements include the following:

• LTEXT

• RTEXT

• CTEXT

• CHECKBOX

• PUSHBUTTON

• LISTBOX

• GROUPBOX

• DEFPUSHBUTTON

• RADIOBUTTON

• EDITTEXT

• COMBOBOX

• ICON

• SCROLLBAR

• CONTROL

The control statements are discussed individually in the following sections. For
more information on control classes and styles, see Tables 8.2, "Control
Classes," and 8.3, "Control Styles."

LTEXT Statement

Syntax
LTEXT text, id, x, y, width, height, [[style]]

This statement defines a flush-left text control. It creates a simple rectangle that
displays the given text flush-left in the rectangle. The text is formatted before it is
displayed. Words that would extend past the end of a line are automatically
wrapped to the beginning of the next line.

The text field takes an ASCII string that specifies the text to be displayed. The
string mustbe enclosed in double quotation marks. To add a mnemonic to the

Resource Script Statements 8-21

text string, place the ampersand (&) ahead of the letter that will be the mne­
monic. To use the ampersand as a character in a string, insert two ampersands
(&&).

The id field takes a unique integer value that identifies the control.

The x and y fields take integer values that specify the x and y coordinates of the
upper-left comer of the control. The horizontal units are V4 of the dialog base
width unit; the vertical units are Vs of the dialog base height unit. The current
dialog base units are computed from the height and width of the current system
font. The GetDialogBaseUnits function returns the dialog base units in pixels.
The coordinates are relative to the origin of the dialog box.

The width and height fields take integer values that specify the width and height
of the control. The width units are V4 of the dialog base width unit; the height
units are Vs of the dialog base height unit.

The optional style field can contain any combination (or none) of the following
styles:

• WS_TABSTOP

• WS_GROUP

These styles are described in Table 8.1, "Window Styles." Styles can be com­
bined using the bitwise OR operator.

Comments
The x, y, width, and height fields can use the addition operator (+) for relative
positioning. For example, "15 + 6" can be used for the x field.

The default style for LTEXT is SS_LEFT and WS_GROUP.

The following example demonstrates the correct usage of the L TEXT statement:

L TEXT "Enter Name:", 3, 10, 10, 40, 10

RTEXT Statement

Syntax
RTEXT text, id, x, y, width, height, [[style]]

This statement defines a flush-right text control. It creates a simple rectangle that
displays the given text flush-right in the rectangle. The text is formatted before it
is displayed. Words that would extend past the end of a line are automatically
wrapped to the beginning of the next line.

The text field takes an ASCII string that specifies the text to be displayed. The
string must be enclosed in double quotation marks. To add a mnemonic to the

8-22 Reference - Volume 2

text string, place the ampersand (&) ahead of the letter that will be the mne­
monic. To use the ampersand as a character in a string, insert two ampersands
(&&).

The id field takes a unique integer value that identifies the control.

The x and y fields take integer values that specify the x and y coordinates of the
upper-left comer of the control. The horizontal units are lf4 of the dialog base
width unit; the vertical units are lfs of the dialog base height unit. The current
dialog base units are computed from the height and width of the current system
font. The GetDialogBaseUnits function returns the dialog base units in pixels.
The coordinates are relative to the origin of the dialog box.

The width and height fields take integer values that specify the width and height
of the control. The width units are lf4 of the dialog base width unit; the height
units are lfs of the dialog base height unit.

The optional style field can contain any combination (or none) of the following
styles:

• WS_TABSTOP

• WS_GROUP

These styles are described in Table 8.1, "Window Styles." Styles can be com­
bined using the bitwise OR operator.

Comments
The x, y, width, and height fields can use the addition operator (+) for relative
positioning. For example, "15 + 6" can be used for the x field.

The default style for RTEXT is SS_RIGHT and WS_GROUP.

The following example demonstrates the correct usage of the RTEXT statement:

RTEXT "Number of Messages", 4, 30, 50, 100, 10

CTEXT Statement

Syntax
CTEXT text, id, x, y, width, height, [[style]]

This statement defines a centered text control. It creates a simple rectangle that
displays the given text centered in the rectangle. The text is formatted before it is
displayed. Words that would extend past the end of a line are automatically
wrapped to the beginning of the next line.

The text field takes an ASCII string that specifies the text to be displayed. The
string must be enclosed in double quotation marks. To add a mnemonic to the

Resource Script Statements 8-23

text string, place the ampersand (&) ahead of the letter that will be the mne­
monic. To use the ampersand as a character in a string, insert two ampersands
(&&).

The id field takes a unique integer value that identifies the control.

The x and y fields take integer values that specify the x and y coordinates of the
upper-left corner of the control. The horizontal units are V4 of the dialog base
width unit; the vertical units are Vs of the dialog base height unit. The current
dialog base units are computed from the height and width of the current system
font. The GetDialogBaseUnits function returns the dialog base units in pixels.
The coordinates are relative to the odgin of the dialog box.

The width and height fields take integer values that specify the width and height
of the control. The width units are 1/4 of the dialog base width unit; the height
units are Vs of the dialog base height unit.

The optional style field can contain any combination (or none) of the following
styles:

• WS_TABSTOP

• WS_GROUP

These styles are described in Table 8.1, "Window Styles." Styles can be com­
bined using the bitwise OR operator.

Comments
The x, y, width, and height fields can use the addition operator (+) for relative
positioning. For example, "15 + 6" can be used for the x field.

The default style for CTEXT is SS_CENTER and WS_GROUP.

The following example demonstrates the correct usage of the CTEXT statement:

CTEXT "Title", 3, 10, 50, 40, 10

CHECKBOX Statement

Syntax
CHECKBOX text, id, x, y, width, height, [[sty'le]]

This statement defines a check-box control belonging to the BUTTON class. It
creates a small rectangle (check box) that is highlighted when clicked. The given
text is displayed just to the right of the check box. The control highlights the
rectangle when the user clicks the mouse in it, and removes the highlight on the
next click.

8-24 Reference - Volume 2

The text field takes an ASCII string that specifies the text to be displayed. The
string must be enclosed in double quotation marks. To add a mnemonic to the
text string, place the ampersand (&) ahead of the letter that will be the mne­
monic. To use the ampersand as a character in a string, insert two ampersands
(&&).

The id field takes a unique integer value that identifies the control.

The x and y fields take integer values that specify the x and y coordinates of the
upper-left corner of the control. The horizontal units are 1/4 of the dialog base
width unit; the vertical units are 1/8 of the dialog base height unit. The current
dialog base units are computed from the height and width of the current system
font. The GetDialogBaseUnits function returns the dialog base units in pixels.
The coordinates are relative to the origin of the dialog box.

The width and height fields take integer values that speCify the width and height
of the control. The width units are 1/4 of the dialog base width unit; the height
units are 1/8 of the dialog base height unit.

The optional style field can contain any combination (or none) of the following
styles:

• WS_TABSTOP

• WS_GROUP

These styles are described in Table 8.1, "Window Styles."

In addition to these styles, the style field may contain any combination (or none)
of the BUTTON-class styles described in Table 8.3, "Control Styles." Styles can
be combined using the bitwise OR operator.

Comments
The x, y, width, and height fields can use the addition operator (+) for relative
positioning. For example, "15 + 6" can be used for the x field.

The default style for CHECKBOX is BS_CHECKBOX and WS_TABSTOP. '

The following example demonstrates the correct usage of the CHECKBOX
statement:

CHECKBOX "Arabic", 3, 10, 10, 40, 10

Resource Script Statements 8-25

PUSHBUTTON Statement

Syntax
PUSHBUTTON text, id, x, y, width, height, [style]]

This statement defines a push-button control belonging to the BUTTON class. It
creates a rectangle containing the given text. The control sends a message to its
parent whenever the user clicks the mouse inside the rectangle.

The text field takes an ASCII string that specifies the text to be displayed. The
string must be enclosed in double quotation marks. To add a mnemonic to the
text string, place the ampersand (&) ahead of the letter that will be the mne­
monic. To use the ampersand as a character in a string, insert two ampersands
(&&).

The id field takes a unique integer value that identifies the control.

The x and y fields take integer values that specify the x and y coordinates of the
upper-left comer of the control. The horizontal units are V4 of the dialog base
width unit; the vertical units are Vs of the dialog base height unit. The current
dialog base units are computed from the height and width of the current system
font. The GetDialogBaseUnits function returns the dialog base units in pixels.
The coordinates are relative to the origin of the dialog box.

The width and height fields take integer values that specify the width and height
of the control. The width units are V4 of the dialog base width unit; the height
units are Vs of the dialog base height unit.

The optional style field can contain any combination (or none) of the following
styles:

• WS_TABSTOP

• WS_DISABLED

• WS_GROUP

These styles are described in Table 8.1, "Window Styles."

In addition to these styles, the style field may contain any combination (or none)
of the BUTTON-class styles described in Table 8.3, "Control Styles." Styles can
be combined using the bitwise OR operator.

Comments
The x, y, width, and height fields can use the addition operator (+) for relative
positioning. For example, "15 + 6" can be used for the x field.

The default style for PUSHBUTTON is BS_PUSHBUTTON and WS_ TAB­
STOP.

8-26 Reference - Volume 2

The following example demonstrates the correct usage of the PUSHBUTTON
statement:

PUSHBUTTON "ON", 7, 10, 10, 20, 10

LISTBOX Statement

Syntax
LISTBOX id, x, y, width, height, [[style]]

This statement defines a list box belonging to the LISTBOX class. It creates a
rectangle that contains a list of strings (such as filenames) from which the user
can make selections.

The id field takes a unique integer value that identifies the control.

The x and y fields take integer values that specify the x and y coordinates of the
upper-left comer of the control. The horizontal units are V4 of the dialog base
width unit; the vertical units are Vs of the dialog base height unit. The current
dialog base units are computed from the height and width of the current system
font. The GetDialogBaseUnits function returns the dialog base units in pixels.
The coordinates are relative to the origin of the dialog box.

The width and height fields take integer values that specify the width and height
of the control. The width units are V4 of the dialog base width unit; the height
units are Vs of the dialog base height unit.

The optional style field can contain any combination (or none) of the following
styles:

• WS_BORDER

• WS_ VSCROLL

These styles are described in Table 8.1, "Window Styles."

In addition to these styles, the style field may contain any combination (or none)
of the LISTBOX-class styles described in Table 8.3, "Control Styles." Styles can
be combined using the bitwise OR operator.

Comments
The x, y, width, and height fields can use the addition operator (+) for relative
positioning. For example, "15 + 6" can be used for the x field.

The default style for LISTBOX is LBS_NOTIFY, WS_ VSCROLL, and
WS_BORDER.

Resource Script Statements 8-27

For infonnation on the recommended keys for use in list-box controls, see the
System Application Architecture, Common User Access: Advanced Intelface
Design Guide.

The following example demonstrates the correct usage of the LISTBOX
statement:

LISTBOX 666, 10, 10, 50, 54

GRDUPBDX Statement

Syntax
GROUPBOX text, id,x,y, width, height, [[style]]

This statement defines a group box belonging to the BUTTON class. It creates a
rectangle that groups other controls together. The controls are grouped by draw­
ing a border around them and displaying the given text in the upper-left corner.

The text field takes an ASCII string that specifies the text to be displayed. The
string must be enclosed in double quotation marks. To add a mnemonic to the
text string, place the ampersand (&) ahead of the letter that will be the mne­
monic. Selecting the mnemonic moves the input focus to the next control in the
group, in the order set in the resource file. To use the ampersand as a character in
a string, insert two ampersands (&&).

The id field takes a unique integer value that identifies the control.

The x and y fields take integer values that specify the x and y coordinates of the
upper-left corner of the control. The horizontal units are V4 of the dialog base
width unit; the vertical units are Vs of the dialog base height unit. The current
dialog base units are computed from the height and width of the current system
font. The GetDialogBaseUnits function returns the dialog base units in pixels.
The coordinates are relative to the origin of the dialog box.

The width and height fields take integer values that specify the width and height
of the control. The width units are V4 of the dialog base width unit; the height
units are Vs of the dialog base height unit.

The optional style field can contain any combination (or none) of the following
styles:

• WS_TABSTOP

• WS_DISABLED

These styles are described in Table 8.1, "Window Styles."

In addition to these styles, the style field may contain any combination (or none)
of the BUTTON-class styles described in Table 8.3, "Control Styles." Styles can
be combined using the bitwise OR operator.

8-28 Reference - Volume 2

Comments
The x, y, width, and height fields can use the addition operator (+) for relative
positioning. For example, "15. + 6" can be used for the x field.

The default style for GROUPBOX is BS_GROUPBOX and WS_TABSTOP.

The following example demonstrates the correct usage of the GROUPBOX state­
ment:

GROUPBOX "Output", 42, 10, 10, 30, 50

DEFPUSHBUTTON Statement

Syntax
DEFPUSHBUTTON text, id, x, y, width, height, [[style]]

This statement defines a default push-button control that belongs to the
BUTTON class. It creates a small rectangle with a bold outline that represents
the default response for the user. The given text is displayed inside the button.
The control highlights the button in the usual way when the user clicks the mouse
in it and sends a message to its parent window.

The text field takes an ASCII string that specifies the text to be displayed. The
string must be enclosed in double quotation marks. To add a mnemonic to the
text string, place the ampersand (&) ahead of the letter that will be the mne­
monic. To use the ampersand as a character in a string, insert two ampersands
(&&).

The id field takes a unique integer value that identifies the control.

The x and y fields take integer values that specify the x and y coordinates of the
upper-left comer of the control. The horizontal units are V4 of the dialog base
width unit; the vertical units are Vg of the dialog base height unit. The current
dialog base units are computed from the height and width of the current system
font. The GetDialogBaseUnits function returns the dialog base units in pixels.
The coordinates are relative to the origin of the dialog box.

The width and height fields take integer values that specify the width and height
of the control. The width units are 1/4 of the dialog base width unit; the height
units are Vg of the dialog base height unit.

The optional style field can contain any combination (or none) of the following
styles:

• WS_TABSTOP

• WS_GROUP

• WS_DISABLED

Resource Script Statements 8-29

These styles are described in Table 8.1, "Window Styles."

In addition to these styles, the style field may contain any combination (or none)
of the BUTTON-class styles described in Table 8.3, "Control Styles." Styles can
be combined using the bitwise OR operator.

Comments
The x, y, width, and height fields can use the addition operator (+) for relative
positioning. For example, "15 + 6" can be used for the x field.

The default style for DEFPUSHBUTTON is BS_DEFPUSHBUTTON and
WS_TABSTOP.

The following example demonstrates the correct usage of the DEFPUSH­
BUTTON statement:

DEFPUSHBUTTON "ON", 7, 10, 10, 20, 10

RAOIOBUTTON Statement

Syntax
RADIO BUTTON text, id, x, y, width, height, [[style]]

This statement defines a radio-button control belonging to the BUTTON class. It
creates a small circle that has the given text displayed just to its right. The control
highlights the button when the user clicks the mouse in it and sends a message to
its parent window. The control removes the highlight and sends a message on the
next click.

The text field takes an ASCII string that specifies the text to be displayed. The
string must be enclosed in double quotation marks. To add a mnemonic to the
text string, place the ampersand (&) ahead of the letter that will be the mne­
monic. To use the ampersand as a character in a string, insert two ampersands
(&&).

The id field takes a unique integer value that identifies the control.

The x and y fields take integer values that specify the x and y coordinates of the
upper-left comer of the control. The horizontal units are 1/4 of the dialog base
width unit; the vertical units are 1/8 of the dialog base height unit. The current
dialog base units are computed from the height and width of the current system
font. The GetDialogBaseUnits function returns the dialog base units in pixels.
The coordinates are relatiye to the origin of the dialog box.

The width and height fields take integer values that specify the width and height
of the control. The width units are 1/4 of the dialog base width unit; the height
units are 1/8 of the dialog base height unit.

The optional style field can contain any combination (or none) of the following
styles:

8-30 Reference - Volume 2

• WS_TABSTOP

• WS_GROUP

• WS_DISABLED

These styles are described in Table 8.1, "Window Styles."

In addition to these styles, the style field may contain any combination (or none)
of the BUTTON-class styles described in Table 8.3, "Control Styles." Styles can
be combined using the bitwise OR operator.

Comments
The x, y, width, and height fields can use the addition operator (+) for relative
positioning. For example, "15 + 6" can be used for the x field.

The default style for RADIOBUTTON is BS_RADIOBUTTON and WS_TAB­
STOP.

The following example demonstrates the correct usage of the RADIO BUTTON
statement:

RADIOBUTTON "AM 101",10,10,10,40,10

EDITTEXT Statement

Syntax
EDITTEXT id, x, y, width, height, [[style]]

This statement defines an EDIT control belonging to the EDIT class. It creates a
rectangular region in which the user can enter and edit text. The control displays
a cursor when the user clicks the mouse in it. The user can then use the keyboard
to enter text or edit the existing text. Editing keys include the BACKSPACE and
DELETE keys. The user can also use the mouse to select characters to be deleted,
or to select the place to insert new characters.

The id field takes a unique integer value that identifies the control.

The x and y fields take integer values that specify the x and y coordinates of the
upper-left comer of the control. The horizontal units are 1/4 of the dialog base
width unit; the vertical units are 1/8 of the dialog base height unit. The current
dialog base units are computed from the height and width of the current system
font. The GetDialogBaseUnits function returns the dialog base units in pixels.
The coordinates are relative to the origin of the dialog box.

The width and height fields take integer values that specify the width and height
of the control. The width units are 1/4 of the dialog base width unit; the height
units are 1/8 of the dialog base height unit.

Resource Script Statements 8-31

The optional style field can contain any combination (or none) of the following
styles:

• WS_TABSTOP

• WS_GROUP

• WS_ VSCROLL

• WS_HSCROLL

• WS_DISABLED

These styles are described in Table 8.1, "Window Styles."

Iri addition to these styles, the style field may contain any combination (or none)
of tpe EDIT-class styles described in Table 8.3, "Control Styles." Styles can be
combined using the bitwise OR operator. The EDIT-class styles must not cOllfiict
with each other.

Comments
The .x, y, width, and height fields can use the addition operator (+) for relative
positioning. For example, "15 + 6" can be used for the x field.

The default style for EDITTEXT is WS_TABSTOP, ES_LEFT, and
WS_BORDER.

Keyboard use is predefined for edit controls. Predefined keys are listed in the Sys­
tem Application Architecture, Common User Access: Advanced Interface Design
Guide.

The following example demonstrates the correct usage of the EDITTEXT
statement:

EDITTEXT 3, 10, 10, 100, 10

COMBOBOX Statement

Syntax
COMBOBOX id, x, y, width~ height, [[style]]

This statement defines a combo box belonging to the COMBOBOX class. A
combo box consists of either a static text field or edit field combined with a list
box. The list box can be displayed at all times or pulled down by the user. If the
combo box contains a static text field, the text field always displays the selection
(if any) in the list-box portion of the combo box. If it uses an edit field, the user
can type in the desired selection; the list box highlights the first item (if any)
which matches what the user has entered in the edit field. The user can then

8-32 Reference - Volume 2

select the item highlighted in the list box to complete the choice. In addition, the
combo box can be owner-draw and of fixed or variable height.

The id field takes a unique integer value that identifies the control.

The x and y fields take integer values that specify the x and y coordinates of the
upper-left comer of the control. The horizontal units are V4 of the dialog base
width unit; the vertical units are Vg of the dialog base height unit. The current
dialog base units are computed from the height and width of the current system
font. The GetDialogBaseUnits function returns the dialog base units in pixels.
The coordinates are relative to the origin of the dialog box.

The width and height fields take integer values that specify the width and height
of the control. The width units are V4 of the dialog base width unit; the height
units are Vg of the dialog base height unit.

The optional style field can contain any combination (or none) of the following
styles:

• WS_TABSTOP

• WS_GROUP

• WS_ VSCROLL

• WS_DISABLED

These styles are described in Table 8.1, "Window Styles."

In addition to these styles, the style field may contain any combination (or none)
of the combo-box styles described in Table 8.3, "Control Styles." Styles can be
combined using the bitwise OR operator.

Comments
The x, y, width, and height fields can use the addition operator (+) for relative
positioning. For example, "15 + 6" can be used for the x field.

The default style for COMBOBOX is WS_TABSTOP and CBS_SIMPLE.

For information on the recommended keys for use in combo-box controls, see the
System Application Architecture, Common User Access: Advanced Interface De­
sign Guide.

The following example demonstrates the correct usage of the COMBOBOX
statement:

COMBOBOX 777, 10, 10, 50, 54, CBS_SIMPLE WS_VSCROLL WS_TABSTOP

Resource Script Statements 8-33

ICON Statement

Syntax
ICON text, id, x, y, width, height, [[style]]

This statement defines an icon control belonging to the STATIC class. It creates
an icon displayed in the dialog box.

The text field specifies the name of an icon (not a filename) defined elsewhere in
the resource file.

The id field takes a unique integer value that identifies the control.

The x and y fields take integer values that specify the x and y coordinates of the
upper-left comer of the control. The horizontal units are 1/4 of the dialog base
width unit; the vertical units are 1/8 of the dialog base height unit. The current
dialog base units are computed from the height and width of the current system
font. The GetDialogBaseUnits function returns the dialog base units in pixels.
The coordinates are relative to the origin of the dialog box.

For the ICON statement, the width and height fields are ignored; the icon auto­
matically sizes itself.

The optional style field allows only the SS_ICON style.

Comments
The x, y, width, and height fields can use the addition operator (+) for relative
positioning. For example, "15 + 6" can be used for the x field.

The default style for ICON is SS_ICON.

The following example demonstrates the correct usage of the ICON statement:

ICON "myicon" 901, 30, 30

SCROLLBAR Statement

Syntax
SCROLLBAR id,x,y, width, height, [[style]]

This statement defines a scroll-bar control belonging to the SCROLLBAR class.
It is a rectangle that contains a scroll thumb and has direction arrows at both
ends. The scroll-bar control sends a notification message to its parent whenever
the user clicks the mouse in the control. The parent is responsible for updating
the thumb position. Scroll-bar controls can be positioned anywhere in a window
and used whenever needed to provide scrolling input..

The id field takes a unique integer value that identifies the control.

8-34 Reference - Volume 2

The x and y fields take integer values that specify the location of the upper-left
corner of the control in dialog units relative to the origin of the dialog box. The
horizontal units are V4 of the dialog base width unit; the vertical units are Vs of
the dialog base height unit. The current dialog base units are computed from the
height and width of the current system font. The GetDialogBaseUnits function
returns the dialog base units in pixels.

The width and height fields take integer values that specify the width and height
of the control. The width units are V4 of the dialog base width unit; the height
units are Vs of the dialog base height unit.

The optional style field can contain any combination (or none) of the following
styles:

• WS_TABSTOP

• WS_GROUP

• WS_DISABLED

These styles are described in Table 8.1, "Window Styles."

In addition to these styles, the style field may contain any combination (or none)
of the SCROLLBAR-class styles described in Table 8.3, "Control Styles." Styles
can be combined using the bitwise OR operator.

Comments
The x, y, width, and height fields can use the addition operator (+) for relative
positioning. For example, "15 + 6" can be used for the x field. .

The default style for SCROLLBARis SBS_HORZ.

The following example demonstrates the correct usage of the SCROLLBAR
statement:

SCROLLBAR 999, 25, 30, 10, 100

CONTROL Statement

Syntax
CONTROL text, id, class, style, x, y, width, height

This statement defines a user-defined control window.

The text field takes an ASCII string that specifies the text to be displayed. The
string must be enclosed in double quotation marks.

The id field takes a unique integer value that identifies the control.

Resource Script Statements 8-35

The class field takes a predefined name, character string, or integer value that de­
fines the class. This can be anyone of the control classes; for a list of the control
classes, see Table 8.2, "Control Classes." If the value is a predefined name sup­
plied by the application, it must be an ASCII string enclosed in double quotation
marks.

The style field takes a predefined name or integer value that specifies the style of
the given control. The exact meaning of style depends on the class value. Tables
8.2, "Control Classes," and 8.3, "Control Styles," list the control classes and
corresponding styles.

The x and y fields take integer values that specify the x and y coordinates of the
upper-left comer of the control. The horizontal units are V4 of the dialog base
width unit; the vertical units are 1/8 of the dialog base height unit. The current
dialog base units are computed from the height and width of the current system
font. The GetDialogBaseUnits function returns the dialog base units in pixels.
The coordinates are relative to the origin of the dialog box.

The width and height fields take integer values that specify the width and height
of the control. The width units are V4 of the dialog base width unit; the height
units are 1/8 of the dialog base height unit.

Comments
The x, y, width, and height fields can use the addition operator (+) for relative
positioning. For example, "15 + 6" can be used for the x field.

Table 8.2 describes the six control classes:

Table 8.2 Control Classes

Class Description

BUTION A button control is a small rectangular child window that repre­
sents a "button" that the user can turn on or off by clicking it
with the mouse. Button controls can be used alone or in groups,
and can either be labeled or appear without text. Button con­
trols typically change appearance when the user clicks them.

COMBOBOX Combo-box controls consist of a selection field similar to an
edit control plus a list box. The list box may be displayed at all
times or may be dropped down when the user selects a "pop
box" next to the selection field.

Depending on the style of the combo box, the user can or can­
not edit the contents of the selection field. If the list box is
visible, typing characters into the selection box will cause the
first list box entry which matches the characters typed to be
highlighted. Conversely, selecting an item in the list box dis­
plays the selected text in the selection field.

8-36 Reference - Volume 2

Table 8.2

Class

EDIT

LISTBOX

SCROLLBAR

STATIC

Control Classes (continued)

Description

An edit control is a rectangular child window in which the user
can enter text from the keyboard. The user selects the control,
and gives it the input focus, by clicking the mouse inside it or
pressing the TAB key. The user can enter text when the control
displays a flashing caret. The mouse can be used to move the
cursor and select characters to be replaced, or to position the
cursor for inserting characters. The BACKSPACE key can be used
to delete characters.

Edit controls use the fixed-pitch font and display ANSI
characters. They expand tab characters into as many space
characters as are required to move the cursor to the next tab
stop. Tab stops are assumed to be at every eighth character posi­
tion.

List-box controls consist of a list of character strings. The con­
trol is used whenever an application needs to present a list of
names, such as filenames, that the user can view and select. The
user can select a string by pointing to the string with the mouse
and clicking a mouse button. When a string is selected, it is
highlighted, and a notification message is passed to the parent
window. A scroll bar can be used with a list-box control to
scroll lists that are too long or too wide for the control window.

A scroll-bar control is a rectangle that contains a scroll thumb
and has direction arrows at both ends. The scroll bar sends a
notification message to its parent whenever the user clicks the
mouse in the control. The parent is responsible for updating the
thumb position, if necessary. Scroll-bar controls have the same
appearance and function as the scroll bars used in ordinary
windows. But unlike scroll bars, scroll-bar controls can be posi­
tioned anywhere within a window and used whenever needed to
provide scrolling input for a window.

The scroll-bar class also includes size-box controls. A size-box
control is a small rectangle that the user can expand to change
the size of the window.

Static controls are simple text fields, boxes, and rectangles that
can be used to label, box, or separate other controls. Static con­
trols take no input and provide no output.

Resource Script Statements 8-37

Table 8.3 describes the control styles for each of the control classes:

Table 8.3 Control Styles

Style

BUTTON Class

BS_DEFPUSHBUTTON

BS_CHECKBOX

BS_AUTOCHECKBOX

BS_RADIOBUTTON

BS_AUTORADIOBUTTON

Description

A small elliptical button containing
the given text. The control sends a
message to its parent whenever the
user clicks the mouse inside the
rectangle.

A small elliptical button with a bold
border. This button represents the
default user response. Any text is
displayed within the button.
Windows sends a message to the
parent window when the user clicks
the mouse in this button.

A small rectangular button that can
be checked; its border becomes
bold when the user clicks the mouse
in it. Any text appears to the right of
the button.

Identical to BS_CHECKBOX ex­
cept that the button automatically
toggles its state whenever the user
clicks it.

A small circular button whose
border becomes bold when the user
clicks the mouse in it. In addition,
to make the border bold, Windows
sends a message to the button's
parent notifying it that a click oc­
curred. On the next click, Windows
makes the border normal again and
sends another message.

Identical to BS_RADIOBUTTON
except that when the button is
checked, the application is notified
with BN_CLICKED, and all other
radio buttons in the group are un­
checked.

Text appears on the left side of the
radio button or check-box button.
Use this style with BS_CHECK­
BOX, BS_3STATE, or
BS_RADIOBUTTON styles.

8-38 Reference - Volume 2

Table 8.3 Control Styles (continued)

Style Description

BS_3STATE Identical to BS_CHECKBOX ex­
cept that a button can be grayed as
well as checked or unchecked. The
grayed state is typically used to
show that a check box has been dis­
abled.

COMBOBOX Class

CBS_DROPDOWNLIST

CBS_OWNERDRAWFIXED

CBS_OWNERDRAWVARIABLE

Identical to BS_3STATE except that
the button automatically toggles its
state when the user clicks it.

A rectangle into which other but­
tons are grouped. Any text is
displayed in the rectangle's upper­
left comer.

An owner-draw button. The parent
window is notified when the button
is clicked. Notification inCludes a re­
quest to paint, invert, and disable
the button.

Displays the list box at all times.
The current selection in the list box
is displayed in the edit control.

Is similar to CBS_SIMPLE, except
that the list box is not displayed un­
less the user selects an icon next to
the selection field.

Is similar to CBS_DROPDOWN,
except that the edit control is re­
placed by a static text item which
displays the current selection in the
list box.

Specifies a fixed-height owner-draw
combo box. The owner of the list
box is responsible for drawing its
contents; the items in the list box
are all the same height.

Specifies a variable-height owner­
draw combo box. The owner of the
list box is responsible for drawing
its contents; the items in the list box
can have different heights.

Table 8.3 Control Styles (continued)

Style

CBS_AUTOHSCROLL

CBS_HASSTRINGS

CBS_OEMCONVERT

EDIT Class

Resource Script Statements 8-39

Description

Scrolls the text in the edit control to
the right when the user types a
character at the end of the line. If
this style is not set, only text which
fits within the rectangular boundary
is allowed.

Sorts strings entered into the list
box.

Specifies an owner-draw combo
box that contains items consisting
of strings. The combo box main­
tains the memory and pointers for
the strings so that the application
can use the LB_GETTEXT
message to retrieve the text for a
particular item.

Text entered in the combo box edit
control is converted from the ANSI
character set to the OEM character
set and then back to ANSI. This en­
sures proper character conversion
when the application calls the Ansi­
ToOem function to convert an
ANSI string in the combo box to
OEM characters. This style is most
useful for combo boxes that contain
filenames and applies only to
combo boxes created with the
CBS_SIMPLE or CBS_DROP­
DOWN styles.

Flush-left text.

Centered text. This style is valid in
multiline edit controls only.

Flush-right text. This style is valid
in multiline edit controls only.

Lowercase edit control. An edit con­
trol with this style converts all
characters to lowercase as they are
typed into the edit control.

8-40 Reference - Volume 2

Table 8.3 Control Styles (continued)

Style Description

Uppercase edit control. An edit con­
trol with this style converts all
characters to uppercase as they are
typed into the edit control.

Password edit control. An edit con­
trol with this style displays all
characters as an asterisk (*) as they
are typed into the edit control. An
application can use the
EM_SETPASSWORDCHAR
message to change the character
that is displayed.

Multiple-line edit control. (The
default is single-line.) If the
ES_AUTOVSCROLL style is
specified, the edit control shows as
many lines as possible and scrolls
vertically when the user presses the
ENTER key. (This is actually the car­
riage-return character, which the
edit control expands to a carriage­
return/line-feed combination. A line
feed is not treated the same as a car­
riage return.) If
ES_AUTOVSCROLL is not given,
the edit control shows as many lines
as possible and beeps if the user
presses ENTER when no more lines
can be displayed.

If the ES_AUTOHSCROLL style is
specified, the multiple-line edit con­
trol automatically scrolls
horizontally when the caret goes
past the right edge of the control. To
start a new line, the user must press
the ENTER key. If ES_AUTO­
HSCROLL is not given, the control
automatically wraps words to the
beginning of the next line when nec­
essary; a new line is also started if
the user presses ENTER. The position
of the word wrap is determined by
the window size. If the window size
changes, the word wrap position
changes, and the text is redisplayed.

Table 8.3 Control Styles (continued)

Style

ES_AUTOVSCROLL

ES_AUTOHSCROLL

ES_OEMCONVERT

LISTBOX Class

Resource Script Statements 8-41

Description

Multiple-line edit controls can have
scroll bars. An edit control with
scroll bars processes its own scroll­
bar messages. Edit controls without
scroll bars scroll as described
above, and process any scroll mes­
sages sent by the parent window.

Text is automatically scrolled up
one page when the user presses the
ENTER key on the last line.

Text is automatically scrolled to the
right by 10 characters when the user
types a character at the end of the
line. When the user presses the
ENTER key, the control scrolls all
text back to position O.

Normally, an edit control hides the
selection when the control loses the
input focus, and inverts the selec­
tion when the control receives the
input focus. Specifying ES_NO­
HIDESEL overrides this default
action.

Text entered in the edit control is
converted from the ANSI character
set to the OEM character set and
then back to ANSI. This ensures
proper character conversion when
the application calls the Ansi­
ToOem function to convert an
ANSI string in the edit control to
OEM characters. This style is most
useful for edit controls that contain
filenames.

Strings in the list box are sorted al­
phabetically and the parent window
receives an input message when­
ever the user clicks or double-clicks
a string. The list box contains
borders on all sides.

8-42 Reference - Volume 2

Table 8.3 Control Styles (continued)

Style

LBS_EXTENDEDSEL

LBS_HASSTRINGS

LBS_MULTIPLESEL

LBS_MULTICOLUMN

LBS_NOINTEGRALHEIGHT

LBS_NOREDRAW

LBS_OWNERDRAWFIXED

LBS_OWNERDRAWVARIABLE

Description

The user can select mUltiple items
using the mouse with the SHIFf

and/or the CONTROL key or special
key combinations.

An owner-draw list box contains
items consisting of strings. The list
box maintains the memory and
pointers for the strings so the appli­
cation can use the LB_GETTEXT
message to retrieve the text for a
particular item.

The parent receives an input
message whenever the user clicks
or double-clicks a string.

The string selection is toggled each
time the user clicks or double-clicks
the string. Any number of strings
can be selected.

The list box contains multiple
columns. The list box can be
scrolled horizontally. The LB_SET­
COLUMNWIDTH message sets the
width of the columns.

The size of the list box is exactly
the size specified by the application
when it created the list box. Nor­
mally, Windows sizes a list box so
that the list box does not display
partial items.

The strings in the list box are sorted
~lphabetically.

The list-box display is not updated
when changes are made. This style
can be changed at any time by send­
ing a WM_SETREDRAW message.

The owner of the list box is re­
sponsible for drawing its contents;
the items in the list box are all the
same height.

The owner of the list box is re­
sponsible for drawing its contents;
the items in the list box are variable
in height.

Table 8.3 Control Styles (continued)

Style

LBS_USETABSTOPS

LBS_ WANTKEYBOARDINPUT

SCROLLBAR Class

SBS_VERT

SBS_RIGHTALIGN

Resource Script Statements 8-43

Description

The list box is able to recognize and
expand tab characters when draw­
ing its strings. The default tab
positions are set at every 32 dialog
units. (A dialog unit is a horizontal
or vertical distance. One horizontal
dialog unit is equal to 1f4 of the cur­
rent dialog base width unit. The
dialog base units are computed
from the height and width of the cur­
rent system font. The
GetDialogBaseUnits function re­
turns the size of the dialog base
units in pixels.)

The owner of the list box receives
WM_ VKEYTOITEM or
WM_CHARTOITEM messages
whenever the user presses a key
when the list box has input focus.
This allows an application to per­
fonn special processing on the
keyboard input.

Vertical scroll bar. If neither
SBS_RIGHTALIGN nor SBS_LEF­
TALIGN is specified, the scroll bar
has the height, width, and position
given in the CreateWindow func­
tion.

Used with SBS_ VERT. The right
edge of the scroll bar is aligned
with the right edge of the rectangle
specified by the x, y, width, and
height values given in the
Create Window function. The
scroll bar has the default width for
system scroll bars.

Used with SBS_ VERT. The left
edge of the scroll bar is aligned
with the left edge of the rectangle
specified by the x, y, width, and
height values given in the
Create Window function. The
scroll bar has the default width for
system scroll bars.

8-44 Reference - Volume 2

Table 8.3 Control Styles (continued)

Style Description

SBS_HORZ Horizontal scroll bar. If neither
SBS_BOTTOMALIGN nor
SBS_TOPALIGN is specified, the
scroll bar has the height, width, and
position given in the CreateWin­
dow function.

SBS_BOTTOMALIGN

SBS_SIZEBOXTOPLEFfALIGN

SBS_SIZEBOXBOTTOMRIGHTALIGN

Used with SBS_HORZ. The top
edge of the scroll bar is aligned
with the top edge of the rectangle
specified by the x, y, width, and
height values given in the
Create Window function. The
scroll bar has the default height for
system scroll bars.

Used with SBS_HORZ. The bottom
edge of the scroll bar is aligned
with the bottom edge of the
rectangle specified by the x, y,
width, and height values given in
the CreateWindow function. The
scroll bar has the default height for
system scroll bars.

Size box. If neither SBS_SIZEBOX­
BOTTOMRIGHTALIGN nor
SBS_SIZEBOXTOPLEFfALIGN
is specified, the size box has the
height, width, and position given in
the CreateWindow function.

Used with SBS_SIZEBOX. The top­
left corner of the size box is aligned
with the top-left corner of the
rectangle specified by the x, y,
width, and height values given in
the Create Window function. The
size box has the default size for sys­
tem size boxes.

Used with SBS_SIZEBOX. The bot­
tom-right corner of the size box is
aligned with the bottom-right corner
of the rectangle specified by the x,
y, width, and height values given in
the Create Window function. The
size box has the default size for sys­
tem size boxes.

Table 8.3 Control Styles (continued)

Style

STATIC Class

SS_LEFfNOWORDWRAP

Resource Script Statements 8-45

Description

A simple rectangle displaying the
given text flush left in the rectangle.
The text is formatted before it is dis­
played. Words that would extend
past the end of a line are automati­
cally wrapped to the beginning of
the next line.

A simple rectangle displaying the
given text centered in the rectangle.
The text is formatted before it is dis­
played. Words that would extend
past the end of a line are automati­
cally wrapped to the beginning of
the next line.

A simple rectangle displaying the
given text flush right in the
rectangle. The text is formatted
before it is displayed. Words that
would extend past the end of a line
are automatically wrapped to the
beginning of the next line.

A simple rectangle displaying the
given text flush left in the rectangle.
Tabs are expanded, but words are
not wrapped. Text that extends past
the end of a line is clipped.

Designates a simple rectangle and
displays a single line of text flush­
left in the rectangle. The line of text
cannot be shortened or altered in
any way. (The control's parent
window or dialog box must not
process the WM_CTLCOLOR
message.)

8-46 Reference - Volume 2

Table 8.3 Control Styles (continued)

Style

SS_BLACKRECT

Description

Unless this style is specified,
windows will interpret any "&"
characters in the control's text to be
accelerator prefix characters. In this
case, the "&" is removed and the
next character in the string is under­
lined. If a static control is to contain
text where this feature is not
wanted, SS_NOPREFIX may be
added. This static-control style may
be included with any of the defined
static controls.

You can combine SS_NOPREFIX
with other styles by using the
bitwise OR operator. This is most
often used when filenames or other
strings that may contain an "&"
need to be displayed in a static con­
trol in a dialog box.

An icon displayed in the dialog box.
The given text is the name of an
icon (not a filename) defined else­
where in the resource file. For the
ICON statement, the width and
height parameters in the
CreateWindow function are ig­
nored; the icon automatically sizes
itself.

A rectangle filled with the color
used to draw window frames. This
color is black in the default
Windows color scheme.

A rectangle filled with the color
used to fill the screen background.
This color is gray in the default
Windows color scheme.

A rectangle filled with the color
used to fill window backgrounds.
This color is white in the default
Windows color scheme.

Box with a frame drawn with the
same color as window frames. This
color is black in the default
Windows color scheme.

8.8 Directives

Table 8.3 Control Styles (continued)

Style

SS_ WHITEFRAME

Resource Script Statements 8-47

Description

Box with a frame drawn with the
same color as the screen back­
ground (desktop). This color is gray
in the default Windows color
scheme.

Box with a frame drawn with the
same color as window backgrounds.
This color is white in the default
Windows color scheme.

User-defined item.

The resource directives are special statements that define actions to be performed
on the script file before it is compiled. The directives can assign values to names,
include the contents of files, and control compilation of the script file.

The resource directives are identical to the directives used in the C programming
language. They are fully defined in the Microsoft C Language Reference.

8.8.1 #include Statement
Syntax
#include filename

This directive copies the contents of the file specified by filename into your
resource script before the Resource Compiler processes the script. It replaces the
rcinclude directive of versions prior to Windows 3.0.

The filename field is an ASCII string that specifies the DOS filename of the file
to be included, using the same syntax as the C-Ianguage preprocessor #include
directive. A forward slash (f) can be used instead of a backslash (for example,
"root/sub"). If the filename has the .H or .C extension, only the preprocessor
directives in the file are processed. Otherwise, this directive processes the entire
contents of the file.

8-48 Reference - Volume 2

The following example demonstrates the correct usage of the #include statement:

#include "WINDOWS.H"

PenSelect MENU
BEGIN

Menuitem "&Black pen", BLACK_PEN
END

8.8.2 #define Statement
Syntax
#define name value

This directive assigns the given value to name. All subsequent occurrences of
name are replaced by value.

The value field takes any integer value, character string, or line of text.

The following example demonstrates the correct usage of the #define statement:

#define
#define

8.8.3 #undef Statement
Syntax
#Undef name

nonzero
USERCLASS "MyControlClass"

This directive removes the current definition of name. All subsequent occur­
rences of name are processed without replacement.

The following example demonstrates the correct usage of the #Undef statement:

#undef
#undef

8.8.4 #ifdef Statement
Syntax
#ifdef name

nonzero
USERCLASS

This directive carries out conditional compilation of the resource file by checking
the specified name. If name has been defined using a #define directive, #ifdef
directs the Resource Compiler to continue with the statement immediately after
#ifdef. If name has not been defined, #ifdef directs the compiler to skip all state­
ments up to the next #endif directive.

Resource Script Statements 8-49

Thr following example demonstrates the correct usage of the #ifdef statement:

#ifdef Debug
errbox BITMAP errbox.bmp
fIend if

8.8.5 #ilndel Statement
Syntax
#ifndef name

This directive carries out conditional compilation of the resource file by checking
the specified name. If name has not been defined or if its definition has been re­
moved using the #Undef directive, #ifndef directs the Resource Compiler to con­
tinue processing statements up to the next #endif, #else, or #elif directive, and
then to skip to the statement after #endif. If name is defined, #ifndef directs the
compiler to skip to the next #endif, #else, or #elif directive.

The following example demonstrates the correct usage of the #ifndef statement:

#ifndef Optimize
errbox BITMAP errbox.bmp
#endif

8.8.6 #il Statement
Syntax
#if constant-expression

This directive carries out conditional compilation of the resource file by checking
the specified constant-expression. If constant-expression is nonzero, #if directs
the Resource Compiler to continue processing statements up to the next #endif,
#else, or #elif directive, then skip to the statement after #endif. If constant-ex­
pression is zero, #if directs the compiler to skip to the next #endif, #else, or #elif
directive.

The constant-expression field specifies a defined name, an integer constant, or an
expression consisting of names, integers, and arithmetical and relational opera­
tors.

The following example demonstrates the correct usage of the #if statement:

#if Version<3
errbox BITMAP errbox.bmp
#endif

8-50 Reference - Volume 2

8.8.7 #elif Statement
Syntax
#elif constant-expression

This directive marks an optional clause of a conditional compilation block de­
fined by an #ifdef, #ifndef, or #if directive. The #elif directive carries out condi­
tional compilation of the resource file by checking the specified constant­
expression. If constant-expression is nonzero, #elif directs the Resource Com­
piler to continue processing statements up to the next #endif, #else, or #elif direc­
tive, then skip to the statement after #endif. If constant-expression is zero, #elif
directs the compiler to skip to the next #endif, #else, or #elif directive. Any num­
ber of #elif directives can be used in a conditional block.

The constant-expression field specifies a defined name, an integer constant, or an
expression c.onsisting of names, integers, and arithmetical and relational opera­
tors.

The following demonstrates the correct usage of the #elif statement:

/Iif Vers i on<3
errbox BITMAP errbox.bmp
/Ielif Version<7
errbox BITMAP userbox.bmp
/Iendif

8.8.8 #else Statement
Syntax
#else

This directive marks an optional clause of a conditional compilation block de­
fined by an #ifdef, #ifndef, or #if directive. The #else directive must be the last
directive before #endif.

The following example demonstrates the correct usage of the #else statement:

/fifdef Debug
errbox BITMAP errbox.bmp
lIe 1 se
errbox BITMAP userbox.bmp
/Iendif

Resource Script Statements 8-51

8.8.9 #endif Statement

8.9 Summary

Syntax
#endif

This directive marks the end of a conditional compilation block defined by an #if
or #ifdef directive. One #if or #endif is required for each #ifdef directive.

The resource script statements define resources that the Resource Compiler adds
to an application's executable file. The application can then load these resources
as they are needed at run time. For more information on topics related to the
Resource Compiler, see the following:

Topic

General information on
Windows programming

Menus

Controls and dialog boxes

Using the Resource
Compiler

Designing dialog boxes

Reference

Guide to Programming: Chapter 1, "An
Overview of the Windows Environment"

Guide to Programming: Chapter 7, "Menus"

Guide to Programming: Chapter 8,
"Controls," and Chapter 9, "Dialog Boxes"

Tools: Chapter 3, "Compiling Resources:
The Resource Compiler"

Tools: Chapter 5, "Designing Dialog Boxes:
The Dialog Editor"

Chapter

9
File Formats

This chapter describes the file fonnats used to create, execute, and supply data to
Microsoft Windows applications. These files include the following:

• Bitmap files

• Icon resource files

• Cursor resource files

• Clipboard files

• Metafiles

9. 1 Bitmap File Formats
Windows version 3.0 bitmap files store a bitmap in a device-independent fonnat
which allows Windows to display the bitmap on any device. In this case, the tenn
"device independent" means that the bitmap specifies pixel color in a fonn inde­
pendent of the method used by any particular device to represent color. The as­
sumed file extension of a Windows device-independent bitmap file is .BMP.

Each bitmap file contains a BITMAPFILEHEADER data structure immedi­
ately followed by a single, device-independent bitmap (DIB) consisting of a
BITMAPINFO data structure and an array of bytes that defines the bitmap bits.

Windows version 3.0 also reads bitmap files in the fonnat read by Microsoft
OS/2 Presentation Manager version 1.2. These files consist of a BITMAPFILE·
HEADER data structure immediately followed by a BITMAPCOREINFO data
structure. Following this data structure is an array of bytes that defines the bit­
map bits.

See Chapter 7, "Data Types and Structures," for infonnation on the BITMAP·
FILE HEADER, BITMAPCOREINFO and BITMAPINFO data structures.

9-2 Reference - Volume 2

9.2 Icon Resource File Format
An icon resource file (with the .ICO file extension) can be device independent
both for color and resolution.

Icon resource files can contain multiple device-independent bitmaps defining the
icon image, one for each targeted display-device resolution. Windows detects the
resolution of the current display and matches it against the x and y pixel-size
values specified for each version of the image. If Windows determines that there
is an exact match between an icon image and the current device, then it uses the
matching image; otherwise, it selects the closest match and stretches the image to
the proper size.

If an icon resource file contains more than one image for a particular resolution,
Windows uses the icon image that most closely matches the color capabilities of
the current display device. If no image exists which exactly matches the device
capabilities, Windows selects the image which has the greatest number of colors
without exceeding the number of display-device colors. If all images exceed the
color capabilities of the current display device, then Windows uses the icon
image with the least number of colors.

The icon resource file contains a header structure at the beginning of the file
which identifies the type and number of icon images contained in the file. The
following shows the format of this header:

Field

icoReserved

icoResourceType

icoResourceCount

Type/Description

WORD Is reserved and must be set to O.

WORD Specifies the type of resource contained
in the file. For an icon resource, this field must be 1.

WORD Specifies the number of images contained
in the file.

The resource directory follows this header. The resource directory consists of one
or more arrays of resource descriptors. The icoResorceCount specifies the num­
ber of arrays. The following list shows the format of the array:

Field

Width

Height

Type/Description

BYTE Specifies the width in pixels of this form
of the icon image. Acceptable values are 16,32, or
64.

BYTE Specifies the height in pixels of this form
of the icon image. Acceptable values are 16,32, or
64.

Field

ColorCount

Reserved

Reserved

Reserved

icoDIBSize-

icoDIBOffset

File Formats 9-3

Type/Description

BYTE Specifies the number of colors in this form
of the icon image. Acceptable values are 2,8, or 16.

BYTE Reserved for future use.

WORD Reserved for future use.

WORD Reserved for future use.

DWORD Specifies in bytes the size of the pixel
array for this form of the icon image.

DWORD Specifies the offset in bytes from the
beginning of the file to the device-independent bit­
map for this form.

Icons can be in color. To achieve transparency, the DIB for each icon will consist
of two parts:

1. The first part is a color bitmap which supplies the XOR mask for the icon.

2. The second part is a monochrome bitmap which provides the AND mask that
defines the transparent portion of the icon.

The monochrome bitmap does not contain a DIB header, but instead immediately
follows the color bitmap. It must have the same pixel height as the color bitmap.

9.3 Cursor Resource File Format
Like icon resource files, cursor resource files (with the .CUR file extension) may
contain multiple images to match targeted display-device resolutions. In the case
of cursors, Windows determines the best match for a particular display-device
driver by examining the width and height of the cursor images.

The cursor resource file contains a header structure at the beginning of the file
which identifies the type and number of resources in the file. The following
shows the format of this header:

Field

curReserved

cur ResourceType

cur ResourceCount

Type/Description

WORD Is reserved and must be set to O.

WORD Specifies the type of resource contained
in the file. For a cursor resource, this field must be 2.

WORD Specifies the number of resources con­
tained in the file.

9-4 Reference - Volume 2

The resource directory follows this header. The resource directory consists of one
or more arrays of resource descriptors. ThecurResorceCount specifies the num­
ber of arrays. The following shows the format of the array:

Field

curWidth

curHeight

ColorCount

Reserved

cur XHotspot

cur YHotspot

curDIBSize

curDIBOffset

Type/Description

BYTE Specifies the width in pixels of this form
of the cursor image.

BYTE Specifies the height in pixels of this form
of the cursor image.

BYTE Specifies the number of colors in this form
of the icon image. Acceptable values are 2,8, or 16.

BYTE Is reserved and must be set to O.

WORD Specifies in pixels the horizontal position
of the hotspot.

WORD Specifies in pixels the vertical position of
the hotspot.

DWORD Specifies in bytes the size of the pixel
array for this form of the cursor image.

DWORD Specifies in bytes the offset to the
device-independent bitmap for this form. The offset
is from the beginning of the file.

Cursors are monochrome. The bitmap for a cursor consists of two parts; the first
half is the XOR mask specifying the visible image, and the second half is the
AND mask specifying the transparent portion of the cursor image. The two parts
must be of equal width and height. By combining the values in corresponding
mask bits, Windows determines whether a pixel is black, white, inverted, or trans­
parent.

Table 9.1 shows what values are necessary to produce the corresponding colors,
inversions, or transparencies:

Table 9.1

AND mask

XORmask

Resultant Pixel

Bit Mask Results

Bit Value

o
o
Black

Bit Value Bit Value Bit Value

o
o

White Transparent Inverted

File Formats 9-5

Figure 9.1 shows two bitmaps that represent the AND mask and the XOR mask
for a cursor. The bit settings in the two bitmaps create a black, cross-shaped
cursor:

1

0

1

AND
Mask

0

0

0

1 0

0 0

1 0

XOR
Mask

0

0

0

0

0

0

Resultant
Cursor _.+

Figure 9.1 Settings and Resultant Cursor

9.4 Clipboard File Format
The Windows clipboard saves and reads clipboard data in files with the .CLP ex­
tension. A clipboard-data file contains a value that identifies it as a clipboard­
data file, one or more data structures defining the format, size, and location of the
clipboard data, and one or more blocks of the actual data.

The clipboard-data file begins with a header consisting of two fields. The follow­
ing describes these fields:

Field

Fileldentifier

FormatCount

Type/Description

WORD Identifies the file as a clipboard-data file.
This field must be set to CLP _ID.

WORD Specifies the number of clipboard for­
mats contained in the file.

This header is followed by one or more data structures, each of which identifies
the format, size, and offset of a block of clipboard data. The following shows the
fields of this data structure:

Field

FormatlD

LenData

Type/Description

WORD Specifies the clipboard-format ID of the
clipboard data. See the description of the SetClip­
boardData function in Chapter 4, "Functions
Directory," in Reference, Volume 1 , for information
on clipboard formats.

DWORD Specifies in bytes the length of the clip­
board data.

9-6 Reference - Volume 2

Field

OrIData

Name

Type/Description

DWORD Specifies in bytes the offset of the clip­
board-data block. The offset is from the beginning
of the file.

Is a 79-character array that specifies the format
name for a private clipboard format.

The first block of clipboard data follows the last of these structures. For bitmaps
and metafiles, the bits follow immediately after the bitmap header and the
MET AFILEPICT data structures.

9.5 Metafile Format
A metafile consists of a collection of graphics device interface (GDI) function
calls that create specific images on a device. Metafiles provide convenient
storage for images that appear repeatedly in applications, and also allow you to
use the clipboard to cut and paste images from one application to another.

Metafiles store images as a series of GDI function calls. After storing the func­
tion calls, applications playa metafile to generate an image on a device.

When an object is created during playback, GDI adds the handle of the object to
the first available entry in the metafile handle table. GDI clears the table entry
corresponding to the object when it is deleted during playback, allowing the table
entry to be reused when another object is created.

NOTE Functions described in this section are discussed in greater detail in Chapter 4,
"Functions Directory," in Reference, Volume 1.

The metafile itself consists of two parts: a header and a list of records. The
header contains a description of the size (in words) of the metafile and the num­
ber of drawing objects it uses. The list of records contains the GDI functions. The
drawing objects can be pens, brushes, or bitmaps.

9.5.1 Metafile Header
The following structured list shows the format of the metafile header:

struct{
WORD mtType;
WORD mtHeaderSize;
WORD mtVersion;
DWORD mtSize;
WORD mtNoObjects;
DWORD mtMaxRecord;

WORD mtNoParameters;
}

File Formats 9-7

The metafile header contains the following fields:

Field

mtType

mtHeaderSize

mtVersion

mtSize

mtNoObjects

mtMaxRecord

mtNoParameters

9.5.2 Metafile Records

Description

Specifies whether the metafile is in memory or re­
corded in a disk file. It is one of these two values:

Value

2

Meaning

Metafile is in memory

Metafile is in a disk file

Specifies the size in words of the metafile header.

Specifies the Windows version number. The ver­
sion number for Windows version 3.0 is Ox300.

Specifies the size in words of the file.

Specifies the maximum number of objects that
exist in the metafile at the same time.

Specifies the size in words of the largest record in
the metafile.

Is not used.

A series of records follows the metafile header. Metafile records describe GDI
functions. GDI stores most of the GDI functions that an application can use to
create metafiles in similar, typical records. "Typical Metafile Record," later in
this section, shows the format of the typical metafile record. Table 9.2, "GDI
Functions and Values," lists the functions which GDI records in typical records,
along with their respective function numbers.

The remainder of the functions contain more complex structures in their records.
"Function-Specific Records," later in this section, describes the records for these
functions.

In some cases, there are two versions of a metafile record. One version represents
the record created by versions of Windows prior to version 3.0, while the second
version represents the record created by Windows versions 3.0 and later.
Windows 3.0 plays all metafile versions, but stores only 3.0 versions. Windows
versions prior to 3.0 will not play metafiles recorded by Windows 3.0.

9-8 Reference - Volume 2

Table 9.2 GDI Functions and Values

Function Value

Arc Ox0817

Chord Ox0830

Ellipse Ox0418

ExcludeClipRect Ox0415

FloodFiII Ox0419

IntersectClipRect Ox0416

LineTo Ox0213

MoveTo Ox0214

OffsetClipRgn Ox0220

Offset ViewportOrg Ox0211

OffsetWindowOrg Ox020F

PatBIt Ox061D

Pie Ox081A

RealizePaleUe (3.0 and later) Ox0035

Rectangle Ox041B

ResizePaleUe (3.0 and later) Ox0139

RestoreDC Ox0127

RoundRect Ox061C

SaveDC OxOOlE

Scale ViewportExt Ox0412

Scale WindowExt Ox0400

SetBkColor Ox0201

SetBkMode OxOl02

SetMapMode Ox0103

SetMapperFlags Ox0231

SetPixel Ox041F

SetPolyFiIlMode Ox0106

SetROP2 OxOl04

SetStretchBItMode Ox0107

SetTextAlign Ox012E

SetTextCharExtra Ox0108

SetTextColor Ox0209

SetTextJ ustification Ox020A

Set ViewportExt Ox020E

Table 9.2 GDI Functions and Values (continued)

Function

SetViewportOrg

SetWindowExt

SetWindowOrg

Typical Metafile Record

Value

Ox020D

Ox020C

Ox020B

File Formats 9-9

The following structured list shows the format of a typical metafile record:

struct{

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

A typical metafile record contains the following fields:

Field

rdSize

rdFunction

rdParm[]

Description

Specifies the size in words of the record.

Specifies the function number.

Is an array of words containing the function parameters,
in the reverse order in which they are passed to the func­
tion.

Function-Specific Records
Some metafile records contain data structures in the parameter field. This section
contains definitions for these records.

AnimatePaiette Record [IQJ
The AnimatePalette record has the following format:

struct {

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

This record contains the following fields:

9-10 Reference - Volume 2

Field

rdSize

rdFunction

rdParm[]

Description

Specifies the record size in words.

Specifies the function number Ox0436.

Contains the following elements:

Element

start

numentries

entries

Description

First entry to be animated.

Number of entries to be animated.

PALETTEENTRY blocks.

BitBIt Record (Prior to 3.0)
The BitBIt record stored by Windows versions prior to 3.0 contains a device-de­
pendent bitmap which may not be suitable for playback on all devices. The fol­
lowing is the format of this record:

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];
}

This record contains the following fields:

Field

rdSize

rdFunction

rdParm[]

Description

Specifies the record size in words.

Specifies the function number Ox0922 .

Contains the following elements:

Element

raster op

SY

SX

DYE

Description

High word of the raster opera­
tion.

The y-coordinate of the. source
origin.

The x-coordinate of the source
origin.

Destination y-extent.

File Formats 9-11

Field Description

Element Description

DXE Destination x-extent.

DY The y-coordinate of destina-
tion origin.

DX The x-coordinate of destina-
tion origin.

bmWidth Width of bitmap (in pixels)

bmHeight Height of bitmap (in raster
lines)

bm WidthBytes Number of bytes in each raster
line.

bmPlanes Number of color planes in the
bitmap.

bmBitsPixel Number of adjacent color bits.

bits Actual device-dependent bit-
map bits.

BitBIt Record [li]
The BitBlt record stored by Windows versions 3.0 and later contains a device-in­
dependent bitmap suitable for playback on any device. The following is the for­
mat of this record:

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];
}

This record contains the following fields:

Field

, rdSize

rdFunction

rdParm[]

Description

Specifies the record size in words.

Specifies the function number Ox0940.

Contains the following elements:

9-12 Reference - Volume 2

Field Description

'Element Description

raster op High word of the raster opera-
tion.

SY The y-coordinate of the source
origin.

SX The x-coordinate of the source
origin.

DYE The y-extent of the destination.

DXE The x-extent of the destination.

DY The y-coordinate of destina-
tion origin.

DX The x-coordinate of destina-
tion origin.

BitmapInfo BITMAPINFO data structure.

bits Actual device-independent bit-
map bits.

CreateBrushlndirect Record
The CreateBrushlndirect record has the following format:

struct {

}

DWORD rdSize;
WORD rdFunction;
LOGBRUSH rdParm;

This record contains the following fields:

Field

rdSize

rdFunction

rdParm

Description

Specifies the record size in words.

Specifies the function number Ox02FC.

Specifies the logical brush.

CreateFontlndirect Record
The CreateFontIndirect record has the following fonnat:

struct {

}

DWORD rdSize;
WORD rdFunction;
LOG FONT rdParm;

This record contains the following fields:

Field Description

rdSize Specifies the record size in words.

File Formats 9-13

rdFunction Specifies the function number Ox02FB.

rdParm Specifies the logical font.

CreatePaiette Record [IQJ
The CreatePalette record has the following fonnat:

struct {

}

DWORD rdSize;
WORD rdFunction;
LOGPALETTE rdParm;

This record contains the following fields:

Field

rdSize

rdFunction

rdParm

Description

Specifies the record size in words.

Specifies the function number OxOOF7.

Specifies the logical palette.

CreatePatternBrush Record (Prior to 3.0)
The CreatePatternBrush record stored by Windows versions prior to 3.0 con­
tains a device-dependent bitmap which may not be suitable for playback on all
devices. The following is the fonnat of this record:

struct {

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

9-14 Reference- Volume 2

This record contains the following fields:

Field

rdSize

rdFunction

rdParm[]

Description

Specifies the record size in words.

Specifies the function number OxOlF9.

Contains the following elements:

Element

bmWidth

bmHeight

bm WidthBytes

bmPlanes

bmBitsPixel

bmBits

bits

Description

Bitmap width.

Bitmap height.

Bytes per raster line.

Number of color planes.

Number of adjacent color bits
that define a pixel.

Pointer to bit values.

Actual bits of pattern.

CreatePatternBrush Record [1QJ
The CreatePatternBrush record stored by Windows versions 3.0 and later con­
tains a device-independent bitmap suitable for playback on all devices. The fol­
lowing is the format of this record:

struct {

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

This record contains the following fields:

Field

rdSize

rdFunction

rdParm[]

Description

Specifies the record size in words.

Specifies the function number Ox0142.

Contains the following elements:

File Formats 9-15

Field Description

Element Description

type Bitmap type. This field may
be either of these two values:

• BS_PATTERN-Brush is
defined by a device-de-
pendent bitmap through a
call to the CreatePat-
ternBrush function.

• BS_DIBPATTERN-
Brush is defined by a
device-independent bitmap
through a call to the
CreateDIBPatternBrush
function.

Usage Specifies whether the bmi-
Colors[] field of the
BITMAPINFO data structure
contains explicit ROB values
or indexes into the currently
realized logical palette. This
field must be one of the fol-
lowing values:

• DIB_ROB_COLORS-
The color table contains
literal ROB values.

• DIB_PAL_COLORS-
The color table consists of
an array of indexes into the
currently realized logical
palette.

BitmapInfo BITMAPINFO data structure.

bits Actual device-independent bit-
map bits.

9-16 Reference - Volume 2

CreatePenlndirect Record
The CreatePenlndirect record has the following format:

struct {

}

DWORD rdSize;
WORD rdFunction;
LOGPEN rdParm;

This record contains the following fields:

Field

rdSize

rdFunction

rdParm

Create Region Record

Description

Specifies the record size in words.

Specifies the function number Ox02FA.

Specifies the logical pen.

The Create Region record has the following format:

struct {

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

This record contains the following fields:

Field Description

rdSize Specifies the record size in words.

rdFunction Specifies the function number Ox06FF.

rdParm[] Specifies the region to be created.

Delete Object [IT]
The DeleteObject record has the following format:

struct {

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm;

This record contains the following fields:

Field

rdSize

rdFunction

rdParm

DrawText Record

File Formats 9-17

Description

Specifies the record size in words.

Specifies the function number OxOlFO.

Specifies the handle-table index of the object to be
deleted.

The DrawText record has the following format:

struct{

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

This record contains the following fields:

Field

rdSize

rdFunction

rdParm[]

Escape Record

Description

Specifies the record size in words.

Specifies the function number Ox062F.

Contains the following elements:

Element

format

count

rectangle

string

Description

Method of formatting.

Number of bytes in the string.

Rectangular structure defining
area where text is to be defined

Byte array containing the
string. The array is
((count + 1) » 1) words long.

The Escape record has the following format:

struct {

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

9-18 Reference - Volume 2

This record contains the following fields:

Field

rdSize

rdFunction

rdParm[]

ExtTextOut Record

Description

Specifies the record size in words.

Specifies the function number Ox0626.

Contains the following elements:

Element

escape number

count

input data

Description

Number identifying in­
dividual escape.

Number of bytes of
information.

Variable length field.
The field is
«count+ 1)/» 1)
words long.

The ExtTextOut record has the following format:

struct{

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

This record contains the following fields:

Field

rdSize

rdFunction

rdParm[]

Description

Specifies the record size in words.

Specifies the function number OxOA32.

Contains the following elements:

Element

y

x

Description

Logical y-value of string's
starting point.

Logical x-value of string's
starting point.

Field

Polygon Record

Description

Element

count

options

rectangle

string

dxarray

File Formats 9-19

Description

Length of the string.

Rectangle type.

RECT structure defining the
ExtTextOut rectangle if op­
tions element is nonzero;
nonexistent if options element
equals zero.

Byte array containing the
string. The array is
((count + 1) » 1) words long.

Optional word array of inter­
character distances.

The Polygon record has the following format:

struct {

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

This record contains the following fields:

Field

rdSize

rdFunction

rdParm[]

Description

Specifies the record size in words.

Specifies the function number Ox0324.

Contains the following elements:

Element

count

list of points

Description

Number of points.

List of individual points.

9-20 Reference - Volume 2

PolyPolygon Record
The PolyPolygon record has the following fonnat:

struct {
DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

This record contains the following fields:

Field

rdSize

rdFunction

rdParm[]

Polyline Record

Description

Specifies the record size in words.

Specifies the function number Ox0538.

Contains the following elements:

Element

count

list of polygon
counts

list of points

Description

Total number of points.

List of number of points for
each polygon.

List of individual points.

The Polyline record has the following fonnat:

struct {

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm[]; ,

This record contains the following fields:

Field

rdSize

rdFunction

rdParm[]

Description

Specifies the record size in words.

Specifies the function number Ox0325.

Contains the following elements:

Field Description

Element

count

list of points

SelectClipRegion

File Formats 9·21

Description

Number of points.

List of individual points.

The SelectClipRegion record has the following format:

struct{

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm;

This record contains the following fields:

Field

rdSize

rdFunction

rdParm

SelectObject

Description

Specifies the record size in words.

Specifies the function number Ox012C.

Specifies the handle-table index of the region
being selected.

The SelectObject record has the following format:

struct{

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm;

This record contains the following fields:

Field

rdSize

rdFunction

rdParm

Description

Specifies the record size in words.

Specifies the function number Ox012D.

Specifies the handle-table index of the object
being selected.

9-22 Reference - Volume 2

SelectPalette Record [IQJ
The SelectPalette record has the following format:

struct{

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm;

This record contains the following fields:

Field

rdSize

rdFunction

rdParm

Description

Specifies the record size in words.

Specifies the function number Ox0234.

Specifies the handle-table index of the logical
palette being selected.

SetOIBitsToOevice Record [IQJ
The SetDIBitsToDevice record has the following format:

struct {

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

This record contains the following fields:

Field

rdSize

rdFunction

rdParm[]

Description

Specifies the record size in words.

Specifies the function number OxOD33.

Contains the following elements:

Element

wUsage

Description

Flag indicating whether the
bitmap color table contains
RGB values or indexes into
the currently realized logical
palette.

File Formats 9-23

Field Description

Element Description

numscans Number of scan lines in the
bitmap.

startscan First scan line in the bitmap.

srcY The y-coordinate of the origin
of the source in the bitmap.

srcX The x-coordinate of the origin
of the source in the bitmap.

extY Height of the source in the bit-
map.

extX Width of the source in the bit-
map.

destY The y-coordinate of the origin
of the destination rectangle.

destX The x-coordinate of the origin
of the destination rectangle.

BitmapInfo BITMAPINFO data structure.

bits Actual device-independent bit-
map bits.

SetPaietteEntries Record [1QJ
The SetPaletteEntries record has the following fonnat:

struct {

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

This record contains the following fields:

Field

rdSize

rdFunction

rdParm[]

Description

Specifies the record size in words.

Specifies the function number OxOO37.

Contains the following elements:

9-24 Reference- Volume 2

Field Description

Element

start

numentries

entries

Description

First entry to be set in the
palette.

Number of entries to be set in
the palette.

PALETTEENTRY blocks.

StretchBIt Record (Prior to 3.0)
The StretchBlt record stored by Windows versions prior to 3.0 contains a device­
dependent bitmap which may not be suitable for playback on all devices. The fol­
lowing is the format of this record:

struct {

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

This record contains the following fields:

Field

rdSize

rdFunction

rdParm[]

Description

Specifies the record size in words.

Specifies the function number OxOB23.

Contains the following elements:

Element

raster op

raster op

SYE

SXE

SY

Description

Low word of the raster opera­
tion.

High word of the raster opera­
tion.

The y-extent of the source.

The x-extent of the source.

The y-coordinate of the source
origin.

File Formats 9-25

Field Description

Element Description

SX The x-coordinate of the source
origin.

DYE The y-extent of the destination.

DXE The x-extent of the destination.

DY The y-coordinate of destina-
tion origin.

DX The x-coordinate of destina-
tion origin.

bmWidth Width of the bitmap in pixels.

bmHeight Height of the bitmap in raster
lines.

bm WidthBytes Number of bytes in each raster
line.

bmPlanes Number of color planes in the
bitmap.

bmBitsPixel Number of adjacent color bits.

bits Actual bitmap bits.

StretchBIt Record []I]
The StretchBIt record stored by Windows versions 3.0 and later contains a
device-independent bitmap suitable for playback on all devices. The following is
the format of this record:

struct {

I

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

9-26 Reference - Volume 2

This record contains the following fields:

Field

rdSize

rdFunction

rdParm[]

Description

Specifies the record size in words.

Specifies the function number OxOB41.

Contains the following elements:

Element Description

raster op Low word of the raster opera-
tion.

raster op High word of the raster opera-
tion.

SYE The y-extent of the source.

SXE The x-extent of the source.

SY The y-coordinate of the source
origin.

SX The x-coordinate of the source
origin.

DYE The y-extent of the destination.

DXE The x-extent of the destination.

DY The y-coordinate of destina-
tion origin.

DX The x-coordinate of destina-
tion origin.

BitmapInfo BITMAPINFO data structure.

bits Actual device-independent bit-
map bits.

StretchOIBits Record [IQJ
The StretchDIBits record has the fol~owing format:

struct {

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

File Formats 9-27

This record contains the following fields:

Field

rdSize

rdFunction

rdParm[]

Description

Specifies the record size in words.

Specifies the function number OxOF43.

Contains the following elements:

Element

dwRop

wUsage

srcYExt

srcXExt

srcY

srcX

dstYExt

dstXExt

dstY

dstX

Bitmaplnfo

bits

Description

Raster operation to be per­
formed.

Flag indicating whether the
bitmap color table contains
ROB values or indexes into
the currently realized logical
palette.

Height of the source in the bit­
map.

Width of the source in the bit­
map.

The y-coordinate of the origin
of the source in the bitmap.

The x-coordinate of the origin
of the source in the bitmap.

Height of the destination
rectangle.

Width of the destination
rectangle.

The y-coordinate of the origin
of the destination rectangle.

The x-coordinate of the origin
of the destination rectangle.

BITMAPINFO data structure.

Actual device-independent bit­
map bits.

9-28 Reference - Volume 2

TextOut Record
The TextOut record has the following fonnat:

struct {

}

DWORD rdSize;
WORD rdFunction;
WORD rdParm[];

This record contains the following fields:

Field Description

rdSize

rdFunction

rdParm[]

Specifies the record size in words.

Specifies the function number Ox0521.

Contains the following elements:

Element

count

string

y-value

x-value

9.5.3 Sample Metafile Program Output

Description

The string's length.

The actual string.

Logical y-coordinate of
string's starting point.

Logical x-coordinate of
string's starting point.

This section shows the metafile created by a sample program.

The following sample program creates a small metafile in which a purple
rectangle with a green border is drawn, and the words "Hello People" are written
in the rectangle.

MakeAMetaFile(hDC)
HOC hOC;
(

HPEN
HBRUSH
HOC
HANDLE

hMetaGreenPen;
hMetaVioletBrush;
hDCMeta;
hMeta;

/* create the metafile with output going to the disk
*/
hDCMeta = CreateMetaFile((LPSTR) "sample.met");

hMetaGreenPen = CreatePen(0, 0, (DWORD) 0x0000FF00);
SelectObject(hDCMeta, hMetaGreenPen);

hMetaVioletBrush = CreateSolidBrush((DWORD)
0x00FF00FF) ;
SelectObject(hDCMeta, hMetaVioletBrush);

Rectangle(hDCMeta, 0, 0, 150, 70);

File Formats 9-29

TextOut(hDCMeta, 10, 10, (LPSTR) "Hello People", 12);

/* we are done with the metafile */
hMeta CloseMetaFile(hDCMeta);

/* play the metafile that we just created */
PlayMetaFile(hDC, hMeta);
I

The resulting binary file SAMPLE.MET looks like this:

0001
0009
0100
0000 0036
0002
0000 000C
0000

mtType ... disk metafile
mtSize .. .
mtVersion
mtSize
mtNoObjects
mtMaxRecord
mtNoParameters

0000 0008 rdSize
02FA rdFunction (CreatePen function call)
0000 0000 0000 0000 FF00 rdParm (LOGPEN structure defining pen)

0000 0004
012D
0000

rdSize
rdFunction (SelectObject)
rdParm (index to object #0 ... the above pen)

0000 0007 rdSize
02FC rdFunction (CreateBrush)
0000 00FF 00FF 0000 rdParm (LOGBRUSH structure defining the brush)

0000 0004
012D
0001

rdSize
rdFunction (SelectObject)
rdParm (index to object #1 ... the brush)

0000 0007 rdSize
041B rdFunction (Rectangle)
0046 0096 0000 0000 rdParm (parameters sent to Rectangle ...

in reverse order)

0000 000C
0521
rdParm

rdSize
rdFunction (TextOut)

9-30 Reference - Volume 2

9.6 Summary

000C count
string
48 65 6C 6C 6F 20 50 65 6F 70 6C 65 "Hello People"
000A y-value
000A x-value

Windows files store information required to create Windows applications as well
as data needed by the Windows system and Windows applications during execu­
tion. For more information on topics related to Windows files, see the following:

Topic

Metafile functions

Device-independent bitmaps

Windows clipboard

Creating icons and cursors

Reference

Reference, Volume 1: Chapter 1, "Window
Manager Interface Functions," and Chapter
4, "Functions Directory"

Guide to Programming: Chapter 11,
"Bitmaps"

Guide to Programming: Chapter 13, "The
Clipboard"

Tools: Chapter 4, "Designing Images:
SDKPaint"

Chapter

10
Module-Definition
Statements

This chapter describes the statements contained in the module-definition file
that defines the application's contents and system requirements for the LINK
program. LINK links compiled source files with Microsoft Windows and other
libraries to create an executable Windows application. For information on run­
ning LINK, see Tools.

The module-definition file contains one or more of the following module state­
ments:

Statement

CODE

DATA

DESCRIPTION

EXETYPE

EXPORTS

HEAPSIZE

IMPORTS

LIBRARY

NAME

SEGMENTS

STACKSIZE

STUB

Description

Code-segment attributes

Data-segment attributes

One-line description of the module

.EXE header type (Windows or OS/2)

Exported functions

Size of local heap in bytes

Imported functions

Dynamic-link library name

Module name

Additional code segment

Size of local stack in bytes

Old-style executable

This chapter describes these statements, their syntax, required and optional
parameters, and usage.

CODE

CODE
Syntax

Comments

Example

DATA
Syntax

10-2

CODE [FIXEDIMOVEABLE] [DISCARDABLE] [\PRELOADILOADONCALL]

This statement defines the attributes of the standard code segment. The standard code seg­
ment is the application segment having the name _TEXT and belonging to the class
CODE. In C applications, the standard data segment is created automatically if no specific
segment name is included in the C-Compiler command line.

The FIXED option, if included, means that the segment remains at a fixed memory loca­
tion; the MOVEABLE option means that the segment can be moved, if necessary, in order
to compact memory.

The DISCARDABLE option, if included, means that the segment can be discarded if it is
no longer needed.

The PRELOAD option, if included, means that the segment is loaded when' the module is
first loaded; the LOADONCALL option means that the segment is loaded when it is
called. The Resource Compiler may override this option. See Tools for more information.

There are no default attributes for code segments. The .DEF file should always explicitly
define code-segment attributes.

If conflicting options are included in the same statement, LINK uses the overriding option
to determine the segment attributes. The following list shows which options override
which:

MOVEABLE overrides FIXED.

PRELOAD overrides LOADONCALL.

CODE MOVEABLE LOADONCALL

In this example, the loader forces all fixed and moveable (but not discardable) data
segments to be loaded. Libraries cannot have code that is moveable but not discardable.

DATA [NONEISINGLEIMULTIPLE] [FIXEDIMOVEABLE]

This statement defines the attributes of the standard data segment. The standard data seg­
ment is all application segments belonging to the group DGROUP and the class DATA. In
C applications, the standard data segment is created automatically. The data is always pre­
loaded.·

10-3

Comments

Example

DESCRIPTION
Syntax

DESCRIPTION

The NONE option, if included, means that there is no data segment. To be effective, this
option should be the only attribute of the segment. This option is available only for librar­
ies.

The SINGLE option, if included, means that a single segment is shared by all instances of
the module, and is valid only for libraries.

The MULTIPLE option means that one segment exists for each instance, and is only valid
for applications.

NONE, SINGLE, and MULTIPLE are mutually exclusive.

The FIXED option, if included, means that the segment remains at a fixed memory loca­
tion. The MOVEABLE option means that the segment can be moved if necessary, in order
to compact memory.

There are no default attributes for data segments. The .DEF file should always explicitly
define data-segment attributes.

Data segments are always preloaded.

If conflicting options are included in the same statement, LINK uses the overriding option
to determine the segment attributes. The following list shows which options override
which:

MULTIPLE overrides NONE.

SINGLE overrides NONE.

MOVEABLE overrides FIXED.

DATA MOVEABLE SINGLE

This example tells LINK that this module has a single, moveable data segment.

DESCRIPTION 'text'

This statement inserts text into the application's module. It is useful for embedding source­
control or copyright information.

Parameter

text

Description

Specifies one or more ASCII characters. The string must be en­
closed in single quotation marks.

EXETYPE

Example

EXETYPE
Syntax

Example

EXPORTS
Syntax

10-4

DESCRIPTION 'Microsoft Windows Template Application'

This example embeds the text "Microsoft Windows Template Application" in the applica­
tion module.

EXETYPE headertype

This statement specifies the default executable-file C.EXE) header type (Windows or
OS/2). It is required for every Windows application.

Parameter

headertype

EXETYPE WINDOWS

Description

Determines the header type. When linking an application in­
tended for the Windows environment, you must set this
parameter to the value "WINDOWS". For an MS OS/2 applica­
tion, set this parameter to the value "OS/2".

EXPORTS exportname [ordinal-option] [\res-option] [data-option] [parameter-option]

This statement defines the names and attributes of the functions to be exported to other
applications. The EXPORTS key word marks the beginning of the definitions. It can be
followed by any number of export definitions, each on a separate line.

Parameter

exportname

ordinal-option

Description

Specifies one or more ASCII characters that define the function
name. It has the following form:

<entryname>=[internalname]

where the entry name parameter specifies the name to be used by
other applications to access the exported function, and internal­
name is an optional parameter that defines the actual name of
the function if en try name is not the actual name.

Defines the function's ordinal value. It has the following form:

10-5

Example

HEAPSIZE
Syntax

Parameter

res-option

data-option

pw'ameter-option

EXPORTS

Description

@ordinal

HEAPS/ZE

where ordinal takes an integer value that specifies the function's
ordinal value. The ordinal value defines the location of the func­
tion's name in the application's string table. (When exporting
functions from libraries, it is better to use an ordinal rather than
a name; using ordinals conserves space.)

Is the optional key word RESIDENTNAME, which specifies
that the function's name must be resident at all times.

Is the optional key word NODATA, which specifies that the
function is not bound to a specific data segment. When invoked,
the function uses the current data segment.

Is an optional integer value that specifies the number of words
the function expects to be passed as parameters.

SampleRead=read2bin @l 8
Stringln=strl @2 4
CharTest NODATA

This example exports the functions SampleRead, StringIn and CharTest so that other appli­
cations, or Windows itself, can call them.

HEAPSIZE bytes

This statement defines the number of bytes needed by the application for its local heap. An
application uses the local heap whenever it allocates local memory.

The default heap size is zero. The minimum size is 256 bytes. For an application, the size
of the local heap must be at least large enough to hold the current environment.

Parameter

bytes

Description

Is an integer value that specifies the heap size in bytes. It must
not exceed 65,536 (the size of a single physical segment).

IMPORTS

Example

IMPORTS
Syntax

Example

10-6

HEAPSIZE 41396

This example sets the size of the application's local heap to 4096 bytes.

IMPORTS [internal-option] modulename [entry-option]

This statement defines the names and attributes of the functions to be imported from dy­
namic-link libraries. The IMPORTS key word marks the beginning of the definitions. It
can be followed by any number of import definitions, each on a separate line.

Parameter

internal-option

modulename

entry-option

IMPORTS

Description

Specifies the name that the application will use to call the func­
tion. It has the following form:

internal-name=

where internal-name is one or more ASCII characters. This
name must be unique.

Specifies one or more uppercase ASCII characters that define
the name of the executable module that contains the function.
The module name must match the name of the executable file.
For example, an application with the executable file
SAMPLE.DLL has the module name "SAMPLE". The exe­
cutable file must be named with the .DLL extension.

Specifies the function to be imported. It can be one of the follow­
ing:

.entryname

.entryordinal

where en try name is the actual name of the function, and entry­
ordinal is the ordinal value of the function.

Sample.SampleRead
write2hex=Sample.SampleWrite
Read.1

10-7

LIBRARY
Syntax

Comments

Example

NAME
Syntax

LIBRARY

NOTE Instead of listing imported DLL functions in the IMPORTS statement, you can specify an "im­
port library" for the DLL in your application's LINK command line. It also saves space to import by ordi­
nal.

LIBRARY library name

This statement defines the name of a library module. Library modules are resource mod­
ules that contain code, data, and other resources but are not intended to be executed as an
independent program. Like an application's module name, a library's module name must
match the name of the executable file. For example, the library USER.EXE has the module
name "USER".

Parameter

library name

Description

Specifies one or more ASCII characters that define the name of
the library module.

The start address of the library module is determined by the library's object files; it is an in­
ternally defined function.

The libraryname parameter is optional. If the parameter is not included, LINK uses the
filename part of the executable file (that is, the name with the extension removed).

If the .DEF file includes neither a NAME nor a LIBRARY statement, LINK assumes a
NAME statement without a modulename parameter is desired.

LIBRARY Utilities

This example gives a library the module name "Utilities."

NAME modulename

This statement defines the name of the application's executable module. The module name
identifies the module when exporting functions.

SEGMENTS

Comments

Example

SEGMENTS
Syntax

Parameter

modulename

10-8

Description

Specifies one or more uppercase ASCII characters that define
the name of the executable module. The module name must
match the name of the executable file. For example, an applica­
tion with the executable file SAMPLE.EXE has the module
name "SAMPLE".

The module name parameter is optional. If the parameter is not included, LINK assumes
that the module name matches the the filename of the executable file. For example, if you
do not specify a module name and the executable file is named MYAPP.EXE, LINK as­
sumes that the module name is "MYAPP".

If the .DEF file includes neither a NAME nor a LIBRARY statement, LINK assumes a
NAME statement without a modulename parameter is desired.

NAME Calendar

This example gives an application the module name "Calendar".

SEGMENTS segmentname [CLASS 'class-name'] [minalloc]\
[FIXEDIMOVEABLE]
[DISCARDABLE] [SHAREDINONSHARED] [PRELOADILOADONCALL]

This statement defines the segment attributes of additional code and data segments.

The FIXED option, if included, means that the segment remains at a fixed memory loca­
tion. The MOVEABLE option means that the segment can be moved if necessary, in order
to compact memory.

The DISCARDABLE option, if included, means that the segment can be discarded if it is
no longer needed.

The PRELOAD option, if included, means that the segment is loaded immediately The
LOADONCALL option means that the segment is loaded when it is accessed or called.
The Resource Compiler may override this option. See Tools for more information.

Parameter

segmentname

Description

Specifies a character string that names the new segment. It can
be any name, including the standard segment names _TEXT and
_DATA, which represent the standard code and data segments.

10·9

Comments

Example

STACKSIZE
Syntax

Comments

Parameter

class-name

minalloc

STACKS/ZE

Description

Is an optional key word that specifies the class name of the
specified segment. If no class name is specified, LINK uses the
class name CODE by default.

Is an optional integer value that specifies the minimum alloca­
tion size for the segment.

There are no default attributes for additional segments. The .DEF file should always expli­
citly define the attributes of additional segments.

If conflicting options are included in the same statement, LINK uses the overriding option
to determine the segment attributes. The following list shows which options override
which:

MOVEABLE overrides FIXED.

PRELOAD overrides LOADONCALL.

SEGMENTS
_TEXT FIXED

INIT PRELOAD DISCARDABLE
RES CLASS 'DATA' PRELOAD DISCARDABLE

STACKSIZE bytes

This statement defines the number of bytes needed by the application for its local stack. An
application uses the local stack whenever it makes function calls.

The default stack size is zero if the application makes no function calls. If your application
does make function calls and you specify a stack size smaller than 5K bytes, Windows au­
tomatically sets the stack size to 5K bytes.

Parameter Description

bytes Is an integer value that specifies the stack size in bytes.

Do not use the STACKSIZE statement for dynamic-link libraries.

STUB

Example

STUB
Syntax

Comments

Example

10-10

STACKSIZE 6144

This example sets the size of an application's stack to 6144 bytes.

STUB 'filename'

This statement appends the old-style executable file specified by filename to the beginning
of the module. The executable stub should display a warning message and terminate if the
user attempts to execute the module without having loaded Windows. The default file
WINSTUB.EXE can be used ifno other actions are required.

Parameter

filename

Description

Specifies the name of the old-style executable file that will be
appended to the module. The name must have the DOS filename
format.

If the file named by filename is not in the current directory, LINK searches for the file in
the directories specified by the user's PATH environment variable.

STUB 'WINSTUB.EXE'

This example specifies the executable file WINSTUB.EXE as the application's stub. If a
user tries to run this application in the DOS environment, rather than with Windows, the
program WINSTUB.EXE starts instead.

Chapter

11
Binary and Ternary
Raster-Operation Codes

This chapter lists and describes the binary and ternary raster operations used by
the graphics device interface (GDI). A binary raster operation uses two operands:
a pen and a destination bitmap. A ternary raster operation uses three operands: a
source bitmap, a brush, and a destination bitmap. Both binary and ternary raster
operations use Boolean operators.

11.1 Binary Raster Operations
This section lists the binary raster-operation codes used by the GetROP2 and
SetROP2 functions. Raster-operation codes define how GDI combines the bits
from the selected pen with the bits in the destination bitmap.

Each raster-operation code represents a Boolean operation in which the selected
pen and the destination bitmap are combined. There are two operands used in
these operations:

D Destination bitmap

P Selected pen

The Boolean operators used in tliese operations are as follows:

a Bitwise AND

n Bitwise NOT (inverse)

o Bitwise OR

x Bitwise Exclusive OR (XOR)

All Boolean operations are presented in reverse Polish notation. For example, the
following operation replaces the destination with a combination of the pen and
the selected brush:

DPo

Each raster-operation code is a 32-bit integer value whose high-order word is a
Boolean operation index and whose low-order word is the operation code. The
16-bit operation index is a zero-extended 8-bit value that represents the result of

11-2 Reference - Volume 2

the Boolean operation on predefined pen and destination values. For example,
the operation indexes for the DPo and DPan operations are shown in Table 11.1:

Table 11.1 Operation Indexes for DPo and DPan

P

o
o

D

o
1

o

PSo

o

DPSoo

1

o

The following list outlines the drawing modes and the Boolean operations that
they represent:

Raster Operation Boolean Operation

R2_BLACK 0

R2_COPYPEN P

R2_MASKNOTPEN DPna

R2_MASKPEN DPa

R2_MASKPENNOT PDna

R2_MERGENOTPEN DPno

R2_MERGEPEN DPo

R2_MERGEPENNOT PDno

R2_NOP D

R2_NOT Dn

R2_NOTCOPYPEN Pn

R2_NOTMASKPEN DPan

R2_NOTMERGEPEN DPon

R2_NOTXORPEN DPxn

R2_WHITE

R2_XORPEN DPx

When a monochrome device is used, GDI maps the value zero to black and the
value I to white. Given an application that attempts to draw with a black pen on

Binary and Ternary Raster-Operation Codes 11-3

a white destination by using the available binary raster operations, the following
results will occur:

Raster Operation Result

R2_BLACK Visible black line

R2_COPYPEN Visible black line

R2_MASKNOTPEN No visible line

R2_MASKPEN Visible black line

R2_MASKPENNOT Visible black line

R2_MERGENOTPEN No visible line

R2_MERGEPEN Visible black line

R2_MERGEPENNOT Visible black line

R2_NOP No visible line

R2_NOT Visible black line

R2_NOTCOPYPEN No visible line

R2_NOTMASKPEN No visible line

R2_NOTMERGEPEN Visible black line

R2_NOTXORPEN Visible black line

R2_WHITE No visible line

R2_XORPEN No visible line

When a color device is used, GDI uses RGB values to represent the colors of the
pen and the destination. An RGB color value is a long integer that contains a red,
a green, and a blue color field, each specifying the intensity of the given color. In­
tensities range from 0 to 255. The values are packed in the three low-order bytes
of the long integer. The color of a pen is always a solid color, but the color of the
destination may be a mixture of any two or three colors. Given an application .
that attempts to draw with a white pen on a blue destination by using the availa­
ble binary raster operations, the following results will occur:

Raster Operation

R2_BLACK

R2_COPYPEN

R2_MASKNOTPEN

Result

Visible black line

Visible white line

Visible black line

11-4 Reference - Volume 2

Raster Operation

R2_MASKPEN

R2_MASKPENNOT

R2_MERGENOTPEN

R2_MERGEPEN

R2_MERGEPENNOT

R2_NOP

R2_NOT

R2_NOTCOPYPEN

R2_NOTMASKPEN

R2_NOTMERGEPEN

R2_NOTXORPEN

R2_WHITE

R2_XORPEN

Result

Invisible blue line

Visible red/green line

Invisible blue line

Visible white line

Visible white line

Invisible blue line

Visible red/green line

Visible black line

Visible red/green line

Visible black line

Invisible blue line

Visible white line

Visible red/green line

11.2 Ternary Raster Operations
This section lists the ternary raster-operation codes used by the BitBlt, PatBlt,
and StretchBlt functions. Ternary raster-operation codes define how GDI com­
bines the bits in a source bitmap with the bits in the destination bitmap.

Each raster-operation code represents a Boolean operation in which the source,
the selected brush, and the destination bitmap are combined. There are three oper­
ands used in these operations:

D

P

S

Destination bitmap

Selected brush (also called pattern)

Source bitmap

The Boolean operators used in these operations are as follows:

a

n

o

x

Bitwise AND

Bitwise NOT (inverse)

Bitwise OR

Bitwise Exclusive OR (XOR)

Binary and Ternary Raster-Operation Codes 11-5

All Boolean operations are presented in reverse Polish notation. For example, the
following operation replaces the destination with a combination of the source and
brush:

PSo

The following operation combines the source and brush with the destination
(there are alternate spellings of the same function, so although a particular spel­
ling may not be in the list, an equivalent form will be):

DPSoo

Each raster-operation code is a 32-bit integer value whose high-order word is a
Boolean operation index and whose low-order word is the operation code. The
16-bit operation index is a zero-extended, 8-bit value that represents the result of
the Boolean operation on predefined brush, source, and destination values. For
example, the operation indexes for the PSo and DPSoo operations are shown in
Table 11.2:

Table 11.2 Operation Indexes for PSo and DPSoo

P S

0 0

0 0

0

0 1

0

0

Operation index:

D

0

1

0

0

1

0

PSo

o
o

OOFC

DPSoo

o

OOFE

In this case, PSo has the operation index OOFC (read from the bottom up); DPSoo
has the operation index OOFE. These values define the location of the correspond­
ing raster-operation codes, as shown in Table 11.1, "Operation Indexes for DPo
and DPan." The PSo operation is in line 252 (FCh) of the table; DPSoo is in line
254 (FEh).

The most commonly used raster operations have been given special names in the
Windows include file, WINDOWS.H. You should use these names whenever
possible in your applications.

When the source and destination are monochrome, a bit value of zero represents
a black pixel and a bit value of 1 represents a white pixel. When the source and
the destination are color, those colors are represented with RGB values. For more

11-6 Reference - Volume 2

infonnation about ROB values, see the RGB structure in Chapter 7, "Data Types
and Structures."

Table 11.3 lists the raster-operation codes:

Table 11.3 Raster-Operation Codes

Boolean
Function
in Hex

00

01

02

03

04

05

06

07

08

09

OA

OB

OC

OD

OE

OF

10

11

12

13

14

15

16

17

18

19

lA

IB

lC

Hex
ROP

00000042

00010289

00020C89

000300AA

00040C88

000500A9

00060865

000702C5

00080F08

00090245

000A0329

000BOB2A

000C0324

000DOB25

000E08A5

OOOFOOOI

00100C85

001100A6

00120868

001302C8

00140869

001502C9

00165CCA

00171D54

00180D59

00191CC8

001A06C5

001B0768

001C06CA

Boolean Common
Function Name
in Reverse Polish

0 BLACKNESS

DPSoon

DPSona

PSon

SDPona

DPon

PDSxnon

PDSaon

SDPnaa

PDSxon

DPna

PSDnaon

SPna

PDSnaon

PDSonon

Pn

PDSona

DSon NOTSRCERASE

SDPxnon

SDPaon

DPSxnon

DPSaon

PSDPSanaxx

SSPxDSxaxn

SPxPDxa

SDPSanaxn

PDSPaox

SDPSxaxn

PSDPaox

Binary and Ternary Raster-Operation Codes 11-7

Table 11.3 Raster-Operation Codes (continued)

Boolean Hex Boolean Common
Function ROP Function Name
in Hex in Reverse Polish

ID 001D0766 DSPDxaxn

IE 001EOIA5 PDSox

IF 001F0385 PDSoan

20 00200F09 DPSnaa

21 00210248 SDPxon

22 00220326 DSna

23 00230B24 SPDnaon

24 00240D55 SPxDSxa

25 00251CC5 PDSPanaxn

26 002606C8 SDPSaox

27 00271868 SDPSxnox

28 00280369 DPSxa

29 002916CA PSDPSaoxxn

2A 002AOCC9 DPSana

2B 002BID58 SSPxPDxaxn

2C 002C0784 SPDSoax

2D 002D060A PSDnox

2E 002E064A' PSDPxox

2F 002FOE2A PSDnoan

30 0030032A PSna

31 0031OB28 SDPnaon

32 00320688 SDPSoox

33 00330008 Sn NOTSRCCOPY

34 003406C4 SPDSaox

35 00351864 SPDSxnox

36 003601A8 SDPox

37 00370388 SDPoan

38 0038078A· PSDPoax

39 00390604 SPDnox

3A 003A0644 SPDSxox

3B 003BOE24 SPDnoan

3C 003COO4A PSx

3D 003D18A4 SPDSonox

11-8 Reference - Volume 2

Table 11.3 Raster-Operation Codes (continued)

Boolean Hex Boolean Common
Function ROP Function Name
in Hex in Reverse Polish

3E 003EIB24 SPDSnaox

3F 003FOOEA PSan

40 00400FOA PSDnaa

41 00410249 DPSxon

42 00420D5D SDxPDxa

43 00431CC4 SPDSanaxn

44 00440328 SDna SRCERASE

45 00450B29 DPSnaon

46 004606C6 DSPDaox

47 0047076A PSDPxaxn

48 00480368 SDPxa

49 004916C5 PDSPDaoxxn

4A 004A0789 DPSDoax

4B 004B0605 PDSnox

4C 004COCC8 SDPana

4D 004D1954 SSPxDSxoxn

4E 004E0645 PDSPxox

4F 004FOE25 PDSnoan

50 00500325 PDna

51 00510B26 DSPnaon

52 005206C9 DPSDaox

53 00530764 SPDSxaxn

54 005408A9 DPSonon

55 00550009 Dn DSTINVERT

56 005601A9 DPSox

57 00570389 DPSoan

58 00580785 PDSPoax

59 00590609 DPSnox

5A 005A0049 DPx PATINVERT

5B 005B18A9 DPSDonox

5C 005C0649 DPSDxox

5D 005DOE29 DPSnoan

5E 005EIB29 DPSDnaox

Binary and Ternary Raster-Operation Codes 11-9

Table 11.3 Raster-Operation Codes (continued)

Boolean Hex Boolean Common
Function ROP Function Name
in Hex in Reverse Polish

5F 005FOOE9 DPan

60 00600365 PDSxa

61 006116C6 DSPDSaoxxn

62 00620786 DSPDoax

63 00630608 SDPnox

64 00640788 SDPSoax

65 00650606 DSPnox

66 00660046 DSx SRCINVERT

67 006718A8 SDPSonox

68 006858A6 DSPDSonoxxn

69 00690145 PDSxxn

6A 006A01E9 DPSax

6B 006B178A PSDPSoaxxn

6C 006C01E8 SDPax

6D 006D1785 PDSPDoaxxn

6E 006EIE28 SDPSnoax

6F 006FOC65 PDSxnan

70 00700CC5 PDSana

71 00711D5C SSDxPDxaxn

72 00720648 SDPSxox

73 00730E28 SDPnoan

74 00740646 DSPDxox

75 00750E26 DSPnoan

76 00761B28 SDPSnaox

77 007700E6 DSan

78 007801E5 PDSax

79 00791786 DSPDSoaxxn

7A 007A1E29 DPSDnoax

7B 007BOC68 SDPxnan

7C 007CIE24 SPDSnoax

7D 007DOC69 DPSxnan

7E 007E0955 SPxDSxo

7F 007F03C9 DPSaan

11-10 Reference - Volume 2

Table 11.3 Raster-Operation Codes (continued)

Boolean Hex Boolean Common
Function ROP Function Name
in Hex in Reverse Polish

80 008003E9 DPSaa

81 00810975 SPxDSxon

82 00820C49 DPSxna

83 00831E04 SPDSnoaxn

84 00840C48 SDPxna

85 00851E05 PDSPnoaxn

86 0086l7A6 DSPDSoaxx

87 008701C5 PDSaxn

88 008800C6 DSa SRCAND

89 00891B08 SDPSnaoxn

8A 008AOE06 DSPnoa

8B 008B0666 DSPDxoxn

8C 008COE08 SDPnoa

8D 008D0668 SDPSxoxn

8E 008E1D7C SSDxPDxax

8F 008FOCE5 PDSanan

90 00900C45 PDSxna

91 009llE08 SDPSnoaxn

92 0092l7A9 DPSDPoaxx

93 009301C4 SPDaxn

94 009417AA PSDPSoaxx

95 009501C9 DPSaxn

96 00960169 DPSxx

97 0097588A PSDPSonoxx

98 00981888 SDPSonoxn

99 00990066 DSxn

9A 009A0709 DPSnax

9B 009B07A8 SDPSoaxn

9C 009C0704 SPDnax

9D 009D07A6 DSPDoaxn

9E 009E16E6 DSPDSaoxx

9F 009F0345 PDSxan

AO 00AOOOC9 DPa

Binary and Ternary Raster-Operation Codes 11-11

Table 11.3 Raster-Operation Codes (continued)

Boolean Hex Boolean Common
Function ROP Function Name
in Hex in Reverse Polish

Al OOAIIB05 PDSPnaoxn

A2 OOA20E09 DPSnoa

A3 OOA30669 DPSDxoxn

A4 OOA41885 PDSPonoxn

A5 OOA5OO65 PDxn

A6 OOA60706 DSPnax

A7 OOA707A5 PDSPoaxn

A8 OOA803A9 DPSoa

A9 OOA90189 DPSoxn

AA OOAAOO29 D

AB OOAB0889 DPSono

AC OOAC0744 SPDSxax

AD OOAD06E9 DPSDaoxn

AE OOAEOB06 DSPnao

AF OOAF0229 DPno

BO OOBOOE05 PDSnoa

Bl OOB10665 PDSPxoxn

B2 OOB21974 SSPxDSxQX

B3 OOB30CE8 SDPanan

B4 OOB4070A PSDnax

B5 OOB507A9 DPSDoaxn

B6 OOB616E9 DPSDPaoxx

B7 OOB70348 SDPxan

B8 OOB8074A PSDPxax

B9 OOB906E6 DSPDaoxn

BA OOBAOB09 DPSnao

BB OOBB0226 DSno MERGEPAINT

BC OOBCICE4 SPDSanax

BD OOBDOD7D SDxPDxan

BE OOBE0269 DPSxo

BF OOBF08C9 DPSano

CO OOCOOOCA PSa MERGECOPY

Cl OOCIIB04 SPDSnaoxn

11-12 Reference - Volume 2

Table 11.3 Raster-Operation Codes (continued)

Boolean Hex Boolean Common
Function ROP Function Name
in Hex in Reverse Polish

C2 00C21884 SPDSonoxn

C3 00C3006A PSxn

C4 00C40E04 SPDnoa

C5 00C50664 SPDSxoxn

C6 00C60708 SDPnax

C7 00C707AA PSDPoaxn

C8 00C803A8 SDPoa

C9 00C90184 SPDoxn

CA 00CA0749 DPSDxax

CB 00CB06E4 SPDSaoxn

CC 00CCOO20 S SRCCOPY

CD 00CD0888 SDPono

CE 00CEOB08 SDPnao

CF OOCF0224 SPno

DO OODOOEOA PSDnoa

Dl 00D1066A PSDPxoxn

D2 00D20705 PDSnax

D3 00D307A4 SPDSoaxn

D4 00D41D78 SSPxPDxax

D5 00D50CE9 DPSanan

D6 00D616EA PSDPSaoxx

D7 00D70349 DPSxan

D8 00D80745 PDSPxax

D9 00D906E8 SDPSaoxn

DA 00DAICE9 DPSDanax

DB 00DBOD75 SPxDSxan

DC .00DCOB04 SPDnao

DD 00DD0228 SDno

DE 00DE0268 SDPxo

DF 00DF08C8 SDPano

EO 00E003A5 PDSoa

El 00EI0185 PDSoxn

E2 00E20746 DSPDxax

Binary and Ternary Raster-Operation Codes 11-13

Table 11.3 Raster-Operation Codes (continued)

Boolean Hex Boolean Common
Function ROP Function Name
in Hex in Reverse Polish

E3 OOE306EA PSDPaoxn

E4 OOE40748 SDPSxax

E5 OOE506E5 PDSPaoxn

E6 OOE61CE8 SDPSanax

E7 OOE70D79 SPxPDxan

E8 OOE81D74 SSPxDSxax

E9 OOE95CE6 DSPDSanaxxn

EA OOEA02E9 DPSao

EB OOEB0849 DPSxno

EC OOEC02E8 SDPao

ED OOED0848 SDPxno

EE OOEEOO86 DSo SRCPAINT

EF OOEFOA08 SDPnao

FO OOFOOO21 P PATCOPY

Fl OOF10885 PDSono

F2 OOF20B05 PDSnao

F3 OOF3022A PSno

F4 OOF40BOA PSDnao

F5 OOF50225 PDna

F6 OOF60265 PDSxo

F7 OOF708C5 PDSano

F8 OOF802E5 PDSao

F9 OOF90845 PDSxna

FA OOFAOO89 DPo

FB OOFBOA09 DPSnoo PATPAINT

FC OOFCOO8A PSo

FD OOFDOAOA PSDnoo

FE OOFE02A9 DPSoo

FF OOFFOO62 WHITENESS

11-14 Reference - Volume 2

11.3 Summary
Raster-operation codes define how GDI combines the bits of a source bitm~p
with the bits of a destination bitmap. For more information on topics related to
raster-operation codes, see the following:

Topic

Using raster-operation
codes with GDI functions

Setting the current drawing
mode with SetROP2

Bitmaps and raster
operations

Reference

Reference, Volume 1: Chapter 2, "Graphics
Device Interface Functions," and Chapter 4,
"Functions Directory"

Reference, Volume 1: Chapter 4, "Functions
Directory"

Guide to Programming: Chapter 6, "The
Cursor, the Mouse, and the Keyboard"

Guide to Programming: Chapter 11,
"Bitmaps"

Chapter

12
Printer Escapes

This chapter contains an alphabetical list of the individual Microsoft Windows
printer escapes. The printer escapes allow applications to access facilities of a
particular output device that are not available directly through the graphics
device interface (GDI). The escape calls are made by an application, translated
by Windows, and then sent to the printer device driver.

ABORTOOC

ABORTDOC
Syntax

Return Value

Comments

BANDINFO
Syntax

12-2

short Escape(hDC, ABORTDOC, NULL, NULL, NULL)

This escape terminates the current job, erasing everything the application has written to the
device since the last ENDDOC escape.

The ABORTDOC escape should be used to terminate:

• Printing operations that do not specify an abort function using the SETABORTPROC
escape

• Printing operations that have not yet reached their first NEWFRAME or NEXT­
BAND escape call

Parameter Type/Description

hDC HDC Identifies the device context.

The return value specifies the outcome of the escape. It is positive if the escape is success­
ful. Otherwise, it is negative.

If an application encounters a printing error or a canceled print operation, it must not at­
tempt to terminate the operation by using the Escape function with either the ENDDOC
or ABORTDOC escape. GDI automatically terminates the operation before returning the
error value.

If the application displays a dialog box to allow the user to cancel the print operation, it
must send the ABORTDOC escape before destroying the dialog box.

The application must send the ABORTDOC escape before freeing the procedure-instance
address of the abort function, if any.

short Escape(hDC, BANDINFO, sizeof(BANDINFOSTRUCT), IplnData, lpOutData)

This escape copies information about a device with banding capabilities to a structure
pointed to by the IpOutData parameter. It is implemented only for devices that use band­
ing.

Banding is a property of an output device that allows a page of output to be stored in a
metafile and divided into bands, each of which is sent to the device to create a complete
page.

12-3

Return Value

Comments

BANOINFO

The information copied to the structure pointed to by lpOutData includes:

• A value that indicates whether there are graphics in the next band

• A value that indicates whether there is text on the page

• A RECT data structure that contains a bounding rectangle for all graphics on the page

The lpOutData parameter is NULL if no data are returned.

The lplnData parameter specifies information sent by the application to the device driver.
This information is read by the device driver only on the first BANDINFO escape call on
a page.

Parameter

hDC

lplnData

lpOutData

Type/Description

HDC Identifies the device context.

BANDINFOSTRUCT FAR * Points to a BANDINFOSTRUCT
data structure that contains information to be passed to the driver. See
the following "Comments" section for more information on the BAND­
INFOSTRUCT data structure.

BANDINFOSTRUCT FAR * Points to a BANDINFOSTRUCT
data structure that contains information returned by the driver. See the
following "Comments" section for more information on the BAND­
INFOSTRUCT data structure.

The return value specifies the outcome of the escape. It is 1 if the escape is successful. It is
zero if the function fails or is not implemented by the driver.

The BANDINFOSTRUCT data structure contains information about the contents of a
page and supplies a bounding rectangle for graphics on the page. The following shows the
format of BANDINFOSTRUCT:

typedef struct {
Baal fGraphicsFlag;
Baal fTextFlag;
RECT GraphicsRect;

BANDINFOSTRUCT;

The BANDINFOSTRUCT structure has the following fields:

BANOINFO

Field

fGraphicsFlag

ITextFlag

Description

Is TRUE if graphics are or are expected to be on the page or in
the band; otherwise, it is FALSE.

Is TRUE if text is or is expected to be on the page or in the
band; otherwise, it is FALSE.

12-4

GraphicsRect Contains a RECT data structure that supplies a bounding region
for all graphics on the page.

Table 12.1 shows the meaning of these fields, depending on which parameter contains the
structure.

Table 12.1 Meaning of BANDINFOSTRUCT Fields·

Field

fGraphicsFlag

ITextFlag

GraphicsRect

When Used in lplnData

TRUE if the application is inform­
ing the driver that graphics are on
the page.

TRUE if the application is inform­
ing the driver that text is on the page.

Supplies the bounding rectangle for
all graphics on the page.

When Used in lpOutData

TRUE if the driver is informing the
application that it expects graphics
in this band.

TRUE if the driver is informing the
application that it expects text in
this band.

No valid return data.

An application should call this escape immediately after each call to the NEXTBAND
escape. It is in reference to the band the driver returned to that escape.

An application should use this escape in the following manner:

On the first band, the driver may give the application a full-page band and ask for text only
(fGraphicsFlag is set to FALSE and ITextFlag is set to TRUE). The application sends
only text to the driver.

If in the first band the application indicated that it had graphics (fGraphicsFlag is set to
TRUE), or that the driver encountered vector fonts, then the driver will band the rest of the
page. If there are no graphics or vector fonts, then the next NEXTBAND will return an
empty rectangle to indicate that the application should move on to the next page.

If there are graphics but no vector fonts (the application set fGraphicsFlag to TRUE, but
there were no graphics in the first full-page text band), then for subsequent bands the
driver may optionally band only into the rectangle the application passed. This rectangle
bounds all graphics on the page. If there are vector fonts, then the driver will band the en-

12-5

BEGIN_PATH
Syntax

Return Value

Comments

tire width and depth of the page with ITextFlag set to TRUE. It will also set fGraphics­
Flag to true if the application set it.

The driver assumes that an application using BANDINFO will only send text in the first
full-page text band since that is all the driver requested. Therefore, if the driver encounters
a vector font or graphics in the band, it assumes they were generated by a text primitive
and sets ITextFlag to TRUE for all subsequent graphics bands so they can be output as
graphics. If the application does not satisfy this expectation, the image will still be
generated properly, but the driver will spend time sending spurious text primitives to
graphics bands.

Older drivers written before the BANDINFO escape was designed used full-page banding
for text. If a particular driver does not support the BANDINFO escape but sets
RC_BANDING, the application can detect full-page banding for text by determining if the
first band on the page covers the entire page.

short Escape(hDC, BEGIN_PATH, NULL, NULL, NULL)

This escape opens a path. A path is a connected sequence of primitives drawn in succes­
sion to form a single polyline or polygon. Paths enable applications to draw complex
borders, filled shapes, and clipping areas by supplying a collection of other primitives that
define the desired shape.

Printer escapes supporting paths enable applications to render images on sophisticated dev­
ices such as PostScript® printers without generating huge polygons to simulate the images.

To draw a path, an application first issues the BEGIN_PATH escape. It then draws the
primitives defining the border of the desired shape and issues an END_PATH escape. The
END_PATH escape includes a parameter specifying how the path is to be rendered.

Parameter Type/Description

hDC HDC Identifies the device context.

The return value specifies the current path nesting level. If the escape is sucpessful, the re­
turn value is the number of BEGIN_PATH escape calls without a corresponding
END_PATH escape call. Otherwise, the return value is zero.

An application may begin a subpath within another" path. If the subpath is closed, it is
treated exactly like a polygon. If it is open, it is treated exactly like a polyline.

An application may use the CLIP _TO_PATH escape to define a clipping area correspond­
ing to the interior or exterior of the currently open path.

Syntax

Return Value

Comments

12-6

short Escape(hDC, CLIP_TO_PATH, sizeof(int), IpC/ipMode, NULL)

This escape defines a clipping area bounded by the currently open path. It enables the
application to save and restore the current clipping area and to set up an inclusive or exclu­
sive clipping area bounded by the currently open path. If the path defines an inclusive clip­
ping area, portions of primitives falling outside the interior bounded by the path are
clipped. If the path defines an exclusive clipping area, portions of primitives falling inside
the interior are clipped.

Parameter

hDC

IpC/ipMode

Type/Description

HDC Identifies the device context.

LPINT Points to a short integer specifying the clip­
ping mode. It can be one of the following values:

Value

CLIP_RESTORE (1)

CLIP_INCLUSIVE (2)

CLIP_EXCLUSIVE (3)

Meaning

Saves the current clip­
ping area.

Restores the previous
clipping area.

Sets an inclusive clipping
area.

Sets an exclusive clip­
ping area.

The return value specifies the outcome of the escape. It is nonzero if the escape was
successful. Otherwise, it is zero.

To clip a set of primitives against a path, an application should follow these steps:

1. Save the current clipping area using the CLIP _TO_PATH escape.

2. Begin a path using the BEGIN_PATH escape.

3. Draw the primitives bounding the clipping area.

12-7

DEVICEDATA
Syntax

DRAFTMODE
Syntax

Return Value

Comments

OEVICEOATA

4. Set the clipping area using the CLIP _TO_PATH escape.

5. Close the path using the END_PATH escape.

6. Draw the primitives to be clipped.

7. Restore the original clipping area using the CLIP _TO_PATH escape.

short Escape(hDC, DEVICEDATA, nCount, IplnData, IpOutData)·

This escape is identical to the PASSTHROUGH escape. See the description of PASS­
THROUGH for further information.

short Escape(hDC, DRAFTMODE, sizeof(int), IpDraftMode, NULL)

This escape turns draft mode off or on. Turning draft mode on instructs the device driver to
print faster and with lower quality (if necessary). The draft mode can be changed only at
page boundaries, for example, after a NEWFRAME escape directing the driver to ad­
vance to a new page.

Parameter

hDC

IpDraftMode

Type/Description

HDC Identifies the device context.

LPINT Points to a short-integer value that specifies the draft
mode. It may be one of the following values:

Value

o

Meaning

Specifies draft mode off.

Specifies draft mode on.

The return value specifies the outcome of the escape. It is positive if the escape is success­
ful. Otherwise, it is negative.

The default draft mode is off.

ORAWPATTERNRECT 12-8

DRAWPATTERNRECT
Syntax

Return Value

Comments

short Escape(hDC, DRAWPATTERNRECT, sizeof(PRECTSTRUCT), lplnData,
NULL)

This escape creates a pattern, gray scale, or solid black rectangle by using the pattern/rule
capabilities of Page Control Language (PCL) on Hewlett-Packard® LaserJet® or LaserJet­
co~patible printers. A gray scale is a gray pattern that contains a specific mixture of black
and white pixels.

Parameter

hDC

lplnData

Type/Description

HDC Identifies the device context.

PRECT STRUCT FAR * Points to a PRECT STRUCT
data structure that describes the rectangle. See the following
"Comments" section for more information on the
PRECT_STRUCT data structure.

The return value specifies the outcome of the escape. It is 1 if the escape is successful.
Otherwise, it is zero.

The lplnData parameter points to a PRECT_STRUCT data structure that defines the
rectangle to be created. The PRECT_STRUCT structure has the following format:

·typedef struct {
POINT prPosition;
POINT prSize;
WORD prStyle;
WORD prPattern;

PRECT_STRUCT;

This structure has the following fields:

Field

prPosition

prSize

prStyle

Description

Specifies the upper-left comer of the rectangle.

Specifies the lower-right comer of the rectangle.

Specifies the type of pattern. It may be one of the following
,values:

12-9

Field

prPattern

Description

Value

o

2

3

Meaning

Black rule.

ENABLEDUPLEX

White rule that erases bitmap data previously
written to same area; this pattern is available on
the HP LaserJet lIP only.

Gray scale.

HP-defined.

Specifies the pattern. It is ignored for a black rule. It speci­
fies the percentage of gray for a gray-scale pattern. It
represents one of six Hewlett-Packard-defined patterns.

An application should use the QUERYESCSUPPORT escape to determine whether a
device is capable of drawing patterns and rules before using the DRAWPATTERNRECT
escape. If an application uses the BANDINFO escape, all patterns and rectangles sent by .
using DRAWPATTERNRECT should be treated as text and sent on a text band.

Do not try to erase patterns and rules created with the DRAWPATTERNRECT escape by
placing opaque objects over them. To erase such patterns and rules, use the function calls
provided by GDI.

ENABlEDUPlEX
Syntax short Escape(hDC, ENABLEDUPLEX, sizeof(WORD), IplnData, NULL)

This escape enables the duplex printing capabilities of a printer. A device that possesses du­
plex printing capabilities is able to print on both sides of the output medium.

Parameter

hDC

IplnData

Type/Description

HDC Identifies the device context.

WORD FAR * Points to an unsigned 16-bit integer that
specifies whether duplex or simplex printing is used. It may
be one of the following values:

ENA BL EPAIRKERNING 12-10

Return Value

Comments

Parameter Type/Description

Value

o

2

Meaning

Simplex

Duplex with vertical binding

Duplex with horizontal binding

The return value specifies the outcome of the escape. It is 1 if the escape is successful.
Otherwise, it is zero.

An application should use the QUERYESCSUPPORT escape to determine whether an
output device is capable of creating duplex output. If QUERYESCSUPPORT returns a
nonzero value, the application should send the ENABLEDUPLEX escape even if simplex
printing is desired. This guarantees replacement of any values set in the driver-specific
dialog box. If duplex printing is enabled and an uneven number of NEXTFRAME
escapes are sent to the driver prior to the ENDDOC escape, the driver will eject an addi­
tional page before ending the print job.

ENABLEPAIRKERNING
Syntax short Escape(hDC, ENABLEPAIRKERNING, sizeof(int), lpNewKernFlag,

lpOldKernFlag)

This escape enables or disables the driver's ability to kern character pairs automatically.
Kerning is the process of adding or subtracting space between characters in a string of text.

When pair kerning is enabled, the driver automatically kerns those pairs of characters that
are listed in the font's character-pair kerning table. The driver reflects this kerning both on
the printer and in GetTextExtent function calls.

Parameter

hDC

lpNewKernFlag

lpOldKernFlag

Type/Description

HDC Identifies the device context.

LPINT Points to a short-integer value that specifies whether
automatic pair kerning is to be enabled (1) or disabled (0).

LPINT Points to a short-integer value that will receive the
previous automatic pair-kerning value.

12-11

Return Value

Comments

ENABLERELATIVEWIOTHS

The return value specifies the outcome of the escape. It is 1 if the escape is successful; it is
zero if the escape is not successful or not implemented.

The default state of this escape is zero; automatic character-pair kerning is disabled.

A driver does not have to support the ENABLEPAIRKERNING escape just because it
supplies the character-pair kerning table to the application via the GETPAIRKERN­
TABLE escape. In the case where the GETPAIRKERNTABLE escape is supported but
the ENABLEPAIRKERNING escape is not, the application must properly space the
kerned characters on the output device using the ExtTextOut function.

ENABLERELATIVEWIDTHS
Syntax

Return Value

Comments

short Escape(hDC, ENABLERELATIVEWIDTHS, sizeof(int), IpNewWidthFlag,
IpO IdWidthF lag)

This escape enables or disables relative character widths. When relative widths are dis­
abled (the default), each character's width can be expressed as a number of device units.
This guarantees that the extent of a string will equal the sum of the extents of the
characters in the string. This allows applications to build an extent table by using one­
character GetTextExtent function calls.

When relative widths are enabled, the sum of a string may not equal the sum of the widths
of the characters. Applications that enable this feature are expected to retrieve the font's ex­
tent table and compute relatively scaled string widths.

Parameter

hDC

IpNewWidthF lag

IpO IdWidthF lag

Type/Description

HDC Identifies the device context.

LPINT Points to a short-integer value that specifies whether
relative widths are to be enabled (1) or disabled (0).

LPINT Points to a short-integer value that will receive the
previous relative character width value.

The return value specifies the outcome of the escape. It is 1 if the escape is successful; it is
zero if the escape is not successful or not implemented.

The default state of this escape is zero; relative character widths are disabled.

The values specified as font units and accepted and returned by the escapes described in
this chapter are returned in the relative units of the font when the ENABLERELATIVE­
WIDTHS escape is enabled.

ENDDOC

END DOC
Syntax

Return Value

Comments

Syntax

12-12

It is assumed that only linear-scaling devices will be dealt with in a relative mode. Non­
linear-scaling devices do not implement this escape.

short Escape(hDC, ENDDOC, NULL, NULL, NULL)

This escape ends a print job started by a STARTDOC escape.

Parameter Type/Description

hDC HDC Identifies the device context.

The return value specifies the outcome of the escape. It is positive if the escape is success­
ful. Otherwise, it is negative.

If an application encounters a printing error or a canceled print operation, it must not at­
tempt to terminate the operation by using the Escape function with either the ENDDOC
or ABORTDOC escape. GDI automatically terminates the operation before returning the
error value.

If the application displays a dialog box to allow the user to cancel the print operation, it
must send the ENDDOC escape before destroying the dialog box.

The application must send the ENDDOC escape before freeing the procedure-instance
address of the abort function, if any.

short Escape(hDC, END_PATH, sizeof(PATH_INFO), lplnData, NULL)

This escape ends a path. A path is a connected sequence of primitives drawn in succession
to form a single polyline or polygon. Paths enable applications to draw complex borders,
filled shapes, and clipping areas by supplying a collection of other primitives defining the
desired shape.

Printer escapes supporting paths enable applications to render images on sophisticated dev­
ices such as PostScript printers without generating huge polygons to simulate them.

12-13

Return Value

Comments

To draw a path, an application first issues the BEGIN_PATH escape. It then draws the
primitives defining the border of the desired shape and issues an END_PATH escape.

The END_PATH escape takes as a parameter a pointer to a structure specifying the man­
ner in which the path is to be rendered. The structure specifies whether or not the path is to
be drawn and whether it is open or closed. Open paths define polylines, and closed paths
define fillable polygons.

Parameter

hDC

IplnData

Type/Description

HDC Identifies the device context.

PATH INFO FAR * Points to a PATH INFO data structure
that defines how the path is to be rendered. See the following
"Comments" section for more information on this data structure.

The return value specifies the current path nesting level. If the escape is successful, the re­
turn value is the number of BEGIN_PATH escape calls without a corresponding
END_PATH call. Otherwise, the return value is - L

An application may begin a subpath within another path. If the subpath is closed, it is
treated exactly like a polygon. If it is open, it is treated exactly like a polyline.

An application may use the CLIP _TO_PATH escape to define a clipping area correspond­
ing to the interior or exterior of the currently open path.

The IplnData parameter points to a PATH_INFO data structure that specifies how to ren­
der the path. This data structure has the following form:

typedef struct
short
BYTE
BYTE
LOGPEN
LOGBRUSH
DWORD

JPATH_INFO;

RenderMode;
FillMode;
BkMode;
Pen;
Bru~h;
BkColor;

12-14

The PATH_INFO structure has the following fields:

Field

RenderMode

FillMode

BkMode

Pen

Brush

BkColor

Description

Specifies how the path is to be rendered. It may be one of the fol­
lowing values:

Value

NO_DISPLAY (0)

OPEN (1)

CLOSED (2)

Meaning

The path is not drawn.

The path is drawn as an open polygon.

The path is drawn as a closed polygon.

Specifies how the path is to be filled. It can be one of the follow­
ing values:

Value

. ALTERNATE (1)

WINDING (2)

Meaning

The fill is done using the alternate fill
algorithm.

The fill is done using the winding fill
algorithm.

Specifies the background mode for filling the path. It can be one
of the following values:

Value

OPAQUE

TRANSPARENT

Meaning

The background is filled with the
background color before the brush is
drawn.

The background is not changed.

Specifies the pen with which the path is to be drawn. If Render­
Mode is set to NO_DISPLAY, the pen is ignored.

Specifies the brush with which the path is to be filled. If Render­
Mode is set to NO_DISPLAY or OPEN, the brush is ignored.

Specifies the color with which the path is filled if BkMode is set
to OPAQUE.

12-15 ENUMPAPERBINS

ENUMPAPERBINS
Syntax

Return Value

Comments

short Escape(hDC, ENUMPAPERBINS, sizeof(int), /pNumBins, /pOutData)

This escape retrieves attribute infonnation about a specified number of paper bins. The
GETSETPAPERBINS escape retrieves the number of bins available on a printer.

Parameter

hDC

/pNumBins

/pOutData

Type/Description

HDC Identifies the device context.

LPINT Points to an integer that sp~cifies the number of bins
for which infonnation is to be retrieved.

LPSTR Points to a data structure to which infonnation about
the paper bins is copied. The size of the structure depends on the
number of bins for which information was requested. See the fol­
lowing "Comments" section for a description of this data
structure.

The return value specifies the outcome of the escape. It is 1 if the escape is successful; it is
zero if the escape is not successful or not implemented.

The data structure to which the /pOutData parameter points consists of two arrays. The
first is an array of short integers containing the paper-bin identifier numbers in the follow­
ing format:

short BinList[cBinMax]

The number of integers in the array (cBinMax) is equal to the value pointed to by the
/pNumBins parameter.

The second array in the data structure to which /pOutData points is an array of characters
in the following format:

char PaperNames[cBinMax][cchBinName]

The cBinMax value is equal to the value pointed to by the /pNumBins parameter; the
cchBinName value is the length of each string (currently 24).

ENUMPAPERMETRICS 12-16

ENUMPAPERMETRICS
Syntax

Return Value

EPSPRINTING
Syntax

short Escape(hDC, ENUMPAPERMETRICS, sizeof(int), IpMode, IpOutData)

This escape performs one of two functions according to the mode:

• It determines the number of paper types supported and returns this value, which can
then be used to allocate an array of RECT data structures.

• It returns one or more RECT data structures that define the areas on the page that can
receive an image.

Parameter

hDC

IpMode

IpOutData

Type/Description

HDC Identifies the device context.

LPINT Points to an integer that specifies the mode for the
escape. It can be one of the following values:

Value

o
Meaning

The return value indicates how many
RECT data structures are required to
contain the information about the availa­
ble paper types.

The array of RECT structures to which
IpOutData points is filled with the infor­
mation.

LPRECT Points to an array of RECT data structures that re­
turn all the areas that can receive an image.

The return value is positive if successful, zero if the escape is not implemented, and nega­
tive if an error occurred.

short Escape(hDC, EPSPRINTING, sizeof(BOOL), IpEool, NULL)

This escape suppresses the output of the Windows PostScript header control section, which
is about 7K. If an application uses this escape, no GDI calls are allowed.

12-17

Return Value

Syntax

. Parameter

hDC

IpRool

Type/Description

HDC Identifies the device context.

BOOL FAR * Points to a Boolean value indicating that
downloading should be enabled (TRUE) or disabled (FALSE).

The return value is positive if successful, zero if the escape is not implemented, and nega­
tive if an error occurred.

short Escape(hDC, EXT_DEVICE_CAPS, sizeof(int), lplndex, IpCaps)

This escape retrieves information about device-specific capabilities. It supplements the
GetDeviceCaps function.

Parameter

hDC

lplndex

Type/Description

HDC Identifies the device context.

LPINT Points to a short integer specifying the index of the capabil­
ity to be retrieved. It can be anyone of the following values:

Value Meaning ,

The IpCaps parameter indicates
which of the 16 binary raster
operations the device driver sup­
ports. A bit will be set for each
supported raster operation. For
further information, see the
description of the SetROP2
function in Chapter 4, "Func­
tions Directory," in Reference,
Volume 1.

Parameter Type/Description

Value

PATTERN_CAPS (2)

POLYGON_CAPS (4)

12-18

Meaning

The IpCaps parameter returns
the maximum dimensions of a
pattern brush bitmap. The low­
order word of the capability
value contains the maximum
width of a pattern brush bitmap,
and the high-order word con­
tains the maximum height.

The IpCaps parameter indicates
whether the device is capable of
creating paths using alternate
and winding interiors, and
whether the device can 00 ex­
clusive or inclusive clipping to
path interiors. The path capabili­
ties are obtained using the
logical OR operation on the fol­
lowing values:

PATH_ALTERNATE (1)
PATH_WINDING (2)
PATH_INCLUSIVE (4)
PATH_EXCLUSIVE (8)

The IpCaps parameter returns
the maximum number of poly­
gon points supported by the
device. The capability value is
an unsigned value specifying
the maximum number of points.

The IpCaps parameter indicates
whether the device can convert
monochrome pattern bitmaps to
color. The capability value is 1
if the device can do pattern bit­
map color conversions, and
zero if it cannot.

12-19

Return Value

EXTTEXTOUT
Syntax

Parameter

/pCaps

Type/Descri ption

Value

EXTTEXTOUT

Meaning

The /pCaps parameter indicates
whether the device is capable of
performing binary raster opera­
tions on text. The low-order
word of the capability value
specifies which raster opera­
tions are supported for text. A
bit is set for each supported
raster operation, as in the
R2_CAPS escape. The high­
order word specifies the type of
text to which the raster capabili­
ties apply. It is obtained by
applying the logical OR opera­
tion to the following values
together:

RASTER_TEXT (1)
DEVICE_TEXT (2)
VECTOR_TEXT (4)

DWORD FAR * Points to a 32-bit integer to which the capabili­
ties will be copied.

The return value is nonzero if the specified extended capability is supported, and zero if it
is not.

short Escape(hDC, EXTTEXTOUT, sizeof(EXTTEXT_STRUCT), lplnData, NULL)

This escape provides an efficient way for the application to call the GDI TextOut function
when justification, letter spacing, and/or kerning are involved.

This function is provided only for backward compatibility. New applications should use
the GDI ExtTextOut function instead.

EXTTEXTOUT 12-20

Return Value

Comments

Parameter

hDC

IplnData

Type/Description

HDC Identifies the device context.

EXTTEXT STRUCT FAR * Points to an EXTTEXT STRUCT
data structure that specifies the initial position, characters,and
character widths of the string. See the following "Comments" section
for more information on the EXTTEXT STRUCT data structure.

The return value specifies the outcome of the escape. It is 1 if the escape is successful; it is
zero if the escape is not successful or not implemented.

The EXTEXT_STRUCT data structure has the following format:

typedef struct {
WORD X;
WORD Y;
WORD FAR *lpText;
WORD FAR *lpWidths;

EXTTEXT_STRUCT;

This structure has the following fields.

Field

x

Y

IpText

IpWidths

Description

Specifies the x-coordinate of the upper-left comer of the string's
starting point.

Specifies the y-coordinate of the upper-left comer of the string's
starting point.

Points to an array of cch character codes, where cch is the num­
ber of bytes in the string (cch is also the number of words in the
width array).

Points to an array of cch character widths to use when printing
the string. The first character appears at (X,Y), the second at (X
+ IpWidths[O],Y), the third at (X + IpWidths[O] +
IpWidths[1],Y), and so on. These character widths are specified
in the font units of the currently selected font. (The character
widths will always be equal to device units unless the applica­
tion has enabled relative character widths.)

The units contained in the width array are specified as font units
of the device.

12-21

FLUSH OUTPUT
Syntax

Return Value

FLUSHOUTPUT

short Escape(hDC, FLUSHOUTPUT, NULL, NULL, NULL)

This escape clears all output from the device's buffer.

Parameter Type/Description

hDC HDC Identifies the device context.

The return value specifies the outcome of the escape. It is positive if the escape is success­
ful. Otherwise, it is negative.

GETCOLORTABLE
Syntax

Return Value

short Escape(hDC, GETCOLORTABLE, sizeof(int), /plndex, lpColor)

This escape retrieves an ROB color-table entry and copies it to the location specified by
the lpColor parameter.

Parameter

hDC

lplndex

lp Co lor

Type/Description

HDC Identifies the device context.

LPINT Points to a short-integer value that specifies the index
of a color-table entry. Color-table indexes start at zero for the
first table entry.

DWORD FAR * Points to the long-integer value that will re­
ceive the ROB color value for the given entry.

The return value specifies the outcome of the escape. It is positive if the escape is success­
ful. Otherwise, it is negative.

GETEXTENDEDTEXTMETRICS
Syntax short Escape(hDC, GETEXTENDEDTEXTMETRICS, sizeof(WORD), lplnData,

lpOutData)

This escape fills the buffer pointed to by the lpOutData parameter with the extended text
metrics for the selected font.

GETEXTENOEOTEXTMETRICS 12-22

Return Value

Comments

Parameter

hDC

lplnData

lpOutData

Type/Description

HDC Identifies the device context.

WORD FAR * Points to an unsigned 16-bit integer that speci­
fies the number of bytes pointed to by the lpOutData parameter.

EXTTEXTMETRIC FAR * Points to an EXTTEXT­
METRIC data structure. See the following "Comments" section
for a description of this data structure.

The return value specifies the number of bytes copied to the buffer pointed to by the lpOut­
Data parameter. This value will never exceed that specified in the nSize field pointed to by
the lplnData parameter. The return value is zero if the escape fails or is not implemented.

The lpOutData parameter points to an EXTTEXTMETRIC data structure which has the
following format:

typedef struc{
short etmSize;
short etmPointSize;
short etmOrientation;
short etmMasterHeight;
short etmMinScale;
short etmMaxScale;
short .etmMasterUnits;
short etmCapHeight;
short etmXHeight;
short etmLowerCaseAscent;
short etmLowerCaseDescent;
short etmSlant;
short etmSuperScript;
short etmSubScript;
short etmSuperScriptSize;
short etmSubScriptSize;
short etmUnderlineOffset;
short etmUnderlineWidth;
short etmDoubleUpperUnderlineOffset;
short etmDoubleLowerUnderlineOffset;
short etmDoubleUpperUnderlineWidth;
short etmDoubleLowerUnderlineWidth;
short etmStrikeOutOffset;
short etmStrikeOutWidth;
WORD etmKernPairs;
WORD etmKernTracks;
IEXTTEXTMETRIC;

The EXTTEXTMETRIC data structure has the following fields:

12-23

Field

etmSize

etmPointSize

etmOrientation

etmMaster Height

etmMinScale

etmMaxScale

GETEXTENOEOTEXTMETRICS

Description

Specifies the size of the structure in bytes.

Specifies the nominal point size of this font
in twips (twentieths of a point, or V1440
inch). This is the intended size of the font;
the actual size may differ slightly depending
on the resolution of the device.

Specifies the orientation of the font. The et­
mOrientation field may be any of the
following values:

Value Meaning

o Either orientation

Portrait

2 Landscape

These values refer to the ability of this font
to be placed on a page with the given orienta­
tion. A portrait page has a height that is
greater than its width. A landscape page has
a width that is greater than its height.

Specifies the font size in device units for
which the values in this font's extent table
are exact.

Specifies the minimum valid size for this
font. The following equation illustrates how
the minimum point size is determined:

. . etmMinScale x 72
smallest pomt SIze = dill!, R

'.J yert es

The value 72 represents the number of
points per inch. The djVertRes value is the
number of dots per inch.

Specifies the maximum valid size for this
font. The following equation illustrates how
the maximum point size is determined:

. . etmMaxScale x 72
largest pomt SIze = dill!. R

'.J yert es

GETEXTENOEOTEXTMETRICS

Field

etmMasterU nits

etmCapHeight

etmXHeight

etmLowerCaseAscent

etmLowerCaseDescent

etmSlant

etmSuperScript

etmSubScript

etmSuperScriptSize

Description

The value 72 represents the number of
points per inch. The djVertRes value is the
number of dots per inch.

12-24

Specifies the integer number of units per em
where an em equals etmMasterHeight. That
is, etmMasterUnits is emtMasterHeight
expressed in font units rather than device
units.

Specifies the height in font units of upper­
case characters in the font. Typically, this is
the height of the capital H.

Specifies the height in font units of lower­
case characters in the font. Typically, this is
the height of the lowercase x.

Specifies the distance in font units that the
ascender of lowercase letters extends above
the baseline. Typically, this is the height of
the lowercase d.

Specifies the distance in font units that the
descender of lowercase letters extends below
the baseline. Typically, this is specified for
the descender of the lowercase p.

Specifies for an italicized or slanted font the
angle of the slant measured in tenths of a
degree clockwise from the upright version of
the font.

Specifies in font units the recommended
amount to offset superscript characters from
the baseline. This is typically a negative
value.

Specifies in font units the recommended
amount to offset subscript characters from
the baseline. This is typically a positive
value.

Specifies in font units the recommended size
of superscript characters for this font.

12-25

Field

etmSubScriptSize

etm U nderlineOffset

etmU nderline Width

etmDouble Upper U nderlineOfTset

etmDou bleLower U nderlineOffset

etmDouble Upper Underline Width

etmDoubleLowerUnderline Width

etmStrikeOutOfTset

etmStrikeOutWidth

etmKernPairs

etmKernTracks

GETEXTENDEDTEXTMETRICS

Description

Specifies in font units the recommended size
of subscript characters for this font.

Specifies in font units the offset downward
from the baseline where the top of a single
underline bar should appear.

Specifies in font units the thickness of the
underline bar.

Specifies the offset in font units downward
from the baseline where the top of the upper
double underline bar should appear.

Specifies the offset in font units downward
from the baseline where the top of the lower
double underline bar should appear.

Specifies in font units the thickness of the
upper underline bar.

Specifies in font units the thickness of the
lower underline bar.

Specifies in font units the offset upward
from the baseline where the top of a strike­
out bar should appear.

Specifies the thickness in font units of the
strike-out bar.

Specifies the number of character kerning
pairs defined for this font. An application
can use this value to calculate the size of the
pair-kern table returned by the
GETPAIRKERNTABLE escape. It will
not be greater than 512 kern pairs.

Specifies the number of kerning tracks de­
fined for this font. An application can use
this value to calculate the size of the track­
kern table returned by the
GETTRACKKERNTABLE escape. It will
not be greater than 16 kern tracks.

GETEXTENTTABLE 12-26

The values returned in many of the fields of the EXTTEXTMETRIC structure are af­
fected by whether relative character widths are enabled or disabled. For more information,
see the description of ENABLERELATIVEWIDTHS escape earlier in this chapter.

GETEXTENTTABLE
Syntax

Return Value

Comments

short Escape(hDC, GETEXTENTTABLE, sizeof(CHAR _RANGE _ STRUCT),
[plnData,lpOutData)

This escape retrieves the width (extent) of individual characters from a group of consecu­
tive characters in the selected font's character set.

Parameter

hDC

IplnData

IpOutData

Type/Description

HDC Identifies the device context.

LPSTR Points to a CHAR RANGE STRUCT data structure - -
that defines the range of characters for which the width is to be re-
trieved. See the following "Comments" section for more information
on the CHAR RANGE STRUCT data structure. - -
LPINT Points to an array of short integers that receives the
character widths. The size of the array must be at least (chLast­
chFirst + 1).

The return value specifies the outcome of the escape. It is 1 if the escape is successful, and
zero if the escape is not successful. If the escape is not implemented, the return value is
zero.

The IplnData parameter points to a CHAR_RANGE_STRUCT data structure that de­
fines the range of characters for which the width is to be retrieved. The
CHAR_RANGE_STRUCT structure has the following format:

typedef struct {
BYTE chFirst;
BYTE chLast;

CHAR_RANGE_STRUCT

12-27

GETFACENAME
Syntax

Return Value

GETFACENAME

This structure has the following fields:

Field

chFirst

chLast

Description

Specifies the character code of the first character whose width is
to be retrieved.

Specifies the character code of the last character whose width is
to be retrieved.

The values retrieved are affected by whether relative character widths are enabled or dis­
abled. For more information, see the ENABLERELATIVEWIDTHS escape, earlier in
this chapter.

short Escape(hDC, GETFACENAME, NULL, NULL, IpFaceName)

This escape retrieves the face name of the current physical font.

Parameter

hDC

IpFaceName

Type/Description

HDC Identifies the device context.

LPSTR Points to a buffer of characters to receive the face
name. This buffer must be at least 60 bytes in length.

The return value is positive if the escape was successful, zero if the escape is not imple­
mented, or negative if an error occurred.

GETPAIRKERNTABLE
Syntax short Escape(hDC, GETPAIRKERNTABLE, NULL, NULL, IpOutData)

This escape fills the buffer pointed to by the IpOutData parameter with the character-pair
kerning table for the selected font.

GETPAIRKERNTABLE 12-28

Return Value

Comments

Parameter

hDC

/pOutData

Type/Description

HDC Identifies the device context.

KERNPAIR FAR * Points to an array of KERN PAIR data
structures. This array must be large enough to accommodate the
font's entire character-pair kerning table. The number of
character-kerning pairs in the font can be obtained from the
EXTTEXTMETRIC data structure returned by the GETEX­
TENDEDTEXTMETRICS escape. See the following
"Comments" section for the fonnat of the KERNPAIR data
structure.

The return value specifies the number of KERNPAIR structures copied to the buffer. This
value is zero if the font does not have kerning pairs defined, the escape fails, or is not im­
plemented.

The KERNPAIR data structure has the following format:

typedef struc {
union {

BYTE each [2J; /* UNION: 'each' and 'both'
share the same memory */

WORD both;
} kpPair;

short kpKernAmount;
} KERNPAIR;

The KERNPAIR structure contains the following fields:

Field

kpPair.each[O]

kpPair.each[l]

kpPair.both

kpKernAmount

Description

Specifies the character code for the first character in the kerning
pair.

Specifies the character code for the second character in the kern­
ing pair.

Specifies a WORD in which the first character in the kerning
pair is in the low-order byte and the second character is in the
high-order byte.

Specifies the signed amount that this pair will be kerned if they
appear side by side in the same font and size. This value is typi­
cally negative since pair-kerning usually results in two
characters being set more tightly than normal.

12-29 GETPHYSPAGESIZE

The array of KERNPAIR structures is sorted in increasing order by the kpPair.both field.

The values returned in the KERN PAIR structures are affected by whether relative
character widths are enabled or disabled. For more information, see the description of the
ENABLERELATIVEWIDTHS escape earlier in this chapter.

GETPHYSPAGESIZE
Syntax

Retum Value

short Escape(hDC, GETPHYSPAGESIZE, NULL, NULL, lpDimensions)

This escape retrieves the physical page size and copies it to the location pointed to by the
/pDimensions parameter.

Parameter

hDC

lpDimensions

Type/Description

HDC Identifies the device context.

LPPOINT Points to a POINT data structure that will receive
the physical page dimensions. The x field of the POINT data
structure receives the horizontal size in device units, and the y
field receives the vertical size in device units.

The return value specifies the outcome of the escape. It is positive if the escape is success­
ful. Otherwise, it is negative.

GETPRINTINGOFFSET
Syntax short Escape(hDC, GETPRINTINGOFFSET, NULL, NULL, /pOffset)

This escape retrieves the offset from the upper-left comer of the physical page where the
actual printing or drawing begins. This escape is generally not useful for devices that allow
the user to set the origin of the printable area directly.

Parameter

hDC

lpOffset

Type/Description

HDC Identifies the device context.

LPPOINT Points to a POINT structure that will receive the
printing offset. The x field of the POINT structure receives the
horizontal coordinate of the printing offset in device units, and
the y field receives the vertical coordinate of the printing offset
in device units.

GETSCALINGFACTOR 12-30

Return Value The return value specifies the outcome of the escape. It is positive if the escape is success­
ful. Otherwise, it is negative.

GETSCALlNGFACTOR
Syntax

Return Value

short Escape(hDC, GETSCALINGFACTOR, NULL, NULL, lpFactors)

This escape retrieves the scaling factors for the x- and y-axes of a printing device. For each
scaling factor, the escape copies an exponent of 2 to the location pointed to by the lpF ac­
tors parameter. For example, the value 3 is copied to lpF actors if the scaling factor is 8.

Scaling factors are used by printing devices that support graphics at a smaller resolution
than text. .

Parameter

hDC

lpFactors

Type/Description

HDC Identifies the device context.

LPPOINT Points to the POINT data structure that will re­
ceive the scaling factor. The x field of the POINT structure
receives the scaling factor for the x-axis, and the y field receives
the scaling factor for the y-axis.

The return value specifies the outcome of the escape. It is positive if the escape is success­
ful. Otherwise, it is negative.

GETSETPAPERBINS
Syntax short Escape(hDC, GETSETPAPERBINS, nCount, lplnData, lpOutData)

This escape retrieves the number of paper bins available on a printer and sets the current
paper bin. See the following "Comments" section for more information on the actions per­
formed by this escape.

Parameter

hDC

nCount

lplnData

Type/Description

HDC Identifies the device context.

int Specifies the number of bytes pointed to by the lplnData
parameter.

BinInfo FAR * Points to a BinInfo data structure that speci­
fies the new paper bin. It may be set to NULL.

12-31

Comments

Parameter

/pOutData

GETSETPAPERBINS

Type/Description

Binlnfo FAR * Points to a Binlnfo data structure that con­
tains information about the current or previous paper bin and the
number of bins available.

There are three possible actions for this escape, depending on the values passed in the /pIn­
Data and /pOutData parameters:

/plnData

NULL

Binlnfo

Binlnfo

/pOutData Action

Binlnfo Retrieves the number of bins and the number of the current bin.

Binlnfo Sets the current bin to the number specified in the BinNumber field
of the data structure to which /plnData points and retrieves the num­
ber of the previous bin.

NULL Sets the current bin to the number specified in the BinNumber field
of the data structure to which /plnData points.

The Binlnfo data structure has the following format:

typedef struct{
DWORD BinNumber;
DWORD NbrofBins;
DWORD Reserved;
DWORD Reserved;
DWORD Reserved;
DWORD Reserved;

Binlnfo;

The Binlnfo structure has the following fields:

Field

BinNumber

NbrofBins

Description

Identifies the current or previous paper bin.

Specifies the number of paper bins available.

When setting a new bin, the setting does not take effect until a new device context is
created (without initialization data). The setting will take immediate effect if the high bit of
the bin number is set, so that the next page printed will come from the new bin. For ex­
ample, Ox8001 uses the second bin immediately whenever OxOOOl sets the same bin as the
default for later print jobs.

GETSETPAPERMETRICS 12-32

In general, only the immediate-selection form should be used by applications. Setting the
bin for future print jobs is supported for backward compatibility to an earlier form of this
escape which appeared in some versions of HP's Page Control Language (peL) and Post­
Script.

GETSETPAPERMETRICS
Syntax

Return Value

Comments

short Escape(hDC, GETSETPAPERMETRICS, sizeof(RECT), lpNewPaper,
lpPrevPaper)

This escape sets the paper type according to the given paper metrics information. It also re­
trieves the current printer's paper metrics information.

This escape expects a RECT data structure representing the imageable area of the physical
page and assumes the origin is in the upper-left comer.

Parameter

hDC

lpNewPaper

lpPrevPaper

Type/Description

HDC Identifies the device context.

LPRECT Points to a RECT data structure that defines the
new image able area.

LPRECT Points to a RECT data structure that receives the
previous imageable area.

The return value is positive if successful, zero if the escape is not implemented, and nega­
tive if an error occurs.

This escape is provided only for backward compatibility. New applications should use the
GDI DeviceCapabilities and ExtDeviceMode functions instead.

GETSETPAPERORIENT
Syntax short Escape(hDC, GETSETPAPERORIENT, nCount, lplnData, NULL)

This escape returns or sets the current paper orientation.

Parameter Type/Description

hDC HDC Identifies the device context.

12-33

Return Value

Comments

Parameter

nCount

IplnData

GETSETSCREENPARAMS

Type/Description

Specifies the number of bytes pointed to by the /plnData para­
meter.

ORIENT FAR * Points to an ORIENT data structure that
specifies the new paper orientation. See the following "Com­
ments" section for a description of this data structure. It may be
set to NULL, in which case the GETSETPAPERORIENT
escape returns the current paper orientation.

The return value specifies the current orientation if lplnData is NULL; otherwise, it is the
previous orientation. The return value is -1 if the escape failed.

This escape is provided only for backward compatibility. New applications should use the
GDI DeviceCapabilities and ExtDeviceMode functions instead.

The ORIENT data structure has the following format:

typedef struct{
DWORD Orientation;
DWORD Reserved;
DWORD Reserved;
DWORD Reserved;
DWORD Reserved;

ORIENT;

The Orientation field can be either of these values:

Value

2

Meaning

The new orientation is portrait.

The new orientation is landscape.

This escape is also known as GETSETPAPERORIENTATION.

GETSETSCREENPARAMS
Syntax short Escape(hDC, GETSETSCREENPARAMS, sizeof(SCREENPARAMS),

/plnData, /pOutData)

This escape retrieves or sets the current screen information for rendering halftones.

GETSETSCREENPARAMS 12-34

Return Value

Comments

Parameter

hDC

/plnData

/pOutData

Type/Description

HDC Identifies the device context.

SCREENPARAMS FAR * Points to a SCREENPARAMS
data structure that contains the new screen information. This
parameter may be NULL.

SCREENPARAMS FAR * Points to a SCREENPARAMS
data structure that retrieves the previous screen information.
This parameter may be NULL.

The return value specifies the outcome of the escape. It is positive if the escape is success­
ful. Otherwise, it is negative.

This escape affects how device-independent bitmaps (DIBs) are rendered and how color
objects are filled.

The SCREENPARAMS data structure has the following format:

typedef struct {
int angle;
int frequency;
DWORD types;
SCREENPARAMS;

The SCREENPARAMS structure has the following fields:

Field

angle

frequency

types

Description

Specifies in degrees the angle of the halftone screen.

Specifies in dots per inch of the screen frequency.

Is a mask containing bits which indicate the type of screen cell.
If a pointer to this structure is passed as the /plnData parameter,
only one bit may be set. If the /pOutData parameter contains a
pointer to this structure, when the escape returns, the types field
will have a bit set for each type supported by the printer driver.
Acceptable bit values are:

• DIAMOND

• DOT

• ELLIPSE

12-35 GETTECHNOLOGY

• LINE

GETTECHNOLOGY
Syntax

Return Value

short Escape(hDC, GETTECHNOLOGY, NULL, NULL, /pTechllology)

This escape retrieves the general technology type for a printer, thereby allowing an applica­
tion to perform technology-specific actions.

Parameter

hDC

lpTechnology

Type/Description

HDC Identifies the device context.

LPSTR Points to a buffer to which the driver copies a null-ter­
minated string containing the printer technology type, such as
"PostScript. "

The return value specifies the outcome of the escape. It is 1 if the escape is successful, and
is zero if the escape is not successful or is not implemented. .

GETTRACKKERNTABLE
Syntax short Escape(hDC, GETTRACKKERNTABLE, NULL, NULL, lpOutData)

This escape fills the buffer pointed to by the lpOutData parameter with the track-kerning
table for the currently selected font.

Parameter

hDC

lpOutdata

Type/Description

HDC Identifies the device context.

KERNTRACK FAR * Points to an array of KERNTRACK
structures. This array must be large enough to accommodate all
the font's kerning tracks. The number of tracks in the font can be
obtained from the EXTTEXTMETRIC structure returned by
the GETEXTENDEDTEXTMETRICS escape. See the follow­
ing "Comments" section for the format of the KERNTRACK
data structure.

GETTRACKKERNTABLE 12-36

Return Value

Comments

The return value specifies the number of KERNTRACK structures copied to the buffer.
This value is zero if the font does not have kerning tracks defined, or if the escape fails or
is not implemented.

The KERNTRACK data structure has the following format:

typedef struct {
short ktDegree;
short ktMinSize;
short ktMinAmount;
short ktMaxSize;
short ktMaxAmount;
} KERNTRACK;

The KERNTRACK structure contains the following fields:

Field

ktDegree

ktMinSize

ktMinAmount

ktMaxSize

ktMaxAmount

Description

Specifies the amount of track kerning. Increasingly negative
values represent tighter track kerning, and increasingly positive
values represent looser track kerning.

Specifies in device units the minimum font size for which linear
track kerning applies.

Specifies in font units the amount of track kerning to apply to
font sizes less than or equal to the size specified by the ktMin­
Size field.

Specifies in device units the maximum font size for which linear
track kerning applies.

Specifies in font units the amount of track kerning to apply to
font sizes greater than or equal to the size specified by the
ktMaxSize field.

Between the ktMinSize and ktMaxSize font sizes, track kerning is a linear function from
ktMinAmount to ktMaxAmount. The values returned in the KERNTRACK structures
are affected by whether relative character widths are enabled or disabled. For more infor­
mation, see the description of the ENABLERELATIVEWIDTHS escape earlier in this
chapter.

12-37 GETVECTORBRUSHSIZE

GETVECTORBRUSHSIZE
Syntax

Return Value

short Escape(hDC, GETVECTORBRUSHSIZE, sizeof(LOGBRUSH), IplnData,
IpOutData)

This escape retrieves in device units the size of a plotter pen used to fill closed figures.
GDI uses this information to prevent the plotter pen from writing over the borders of the
figure when filling closed figures.

Parameter

hDC

lplnData

lpOutData

Type/Description

HDC Identifies the device context.

LOGBRUSH FAR * Points to a LOGBRUSH data structure
that specifies the brush for which data are to be returned.

LPPOINT Points to a POINT data structure that contains in
its second word the width of the pen in device units.

The return value specifies the outcome of the escape. It is 1 if the escape is successful; it is
zero if the escape is not successful or is not implemented.

GETVECTORPENSIZE
Syntax

Return Value

short Escape(hDC, GETVECTORPENSIZE, sizeof(LOGPEN), IplnData,
IpOutData)

This escape retrieves the size in device units of a plotter pen. GDI uses this information to
prevent hatched brush patterns from overwriting the border of a closed figure.

Parameter

hDC

IplnData

lpOutData

Type/Description

HDC Identifies the device context.

LOGPEN FAR * Points to a LOGPEN data structure that
specifies the pen for which the width is to be retrieved.

LPPOINT Points to a POINT data structure that contains in
its second word the width of the pen in device units.

The return value specifies the outcome of the escape. It is 1 if the escape is successful; it is
zero if the escape is not successful or if it is not implemented.

MFCOMMENT 12-38

MFCOMMENT
Syntax

Return Value

NEWFRAME
Syntax

Return Value

BOOL Escape(hDC, MFCOMMENT, nCount, lpComment, NULL)

This escape adds a comment to a metafile.

Parameter

hDC

nCount

lpComment

Type/Description

HDC Identifies the device context for the device on which the
metafile appears.

short Specifies the number of characters in the string pointed
to by the lpC omment parameter.

LPSTR Points to a null-terminated string that contains the
comment that will appear in the metafile.

The return value specifies the outcome of the escape. It is -1 if an error such as insufficient
memory or an invalid port specification occurs. Otherwise, it is positive.

short Escape(hDC, NEWFRAME, NULL, NULL, NULL)

This escape informs the device that the application has finished writing to a page. This
escape is typically used with a printer to direct the device driver to advance to a new page.

Parameter Type/Description

hDC HDC Identifies the device context.

The return value specifies the outcome of the escape. It is positive if the escape is success­
ful. Otherwise, it is one of the following values:

Value Meaning

Job was terminated because the application's abort func­
tion returned zero.

General error.

12-39

Comments

NEXTBAND
Syntax

Return Value

Value

NEXTBANO

Meaning

Not enough disk space is currently available for spool­
ing, and no more space will become available.

SP _OUTOFMEMORY

SP _USERABORT

Not enough memory is available for spooling.

User terminated the job through the Print Manager.

Do not use the NEXTBAND escape with NEWFRAME. For banding drivers, GDI re­
plays a metafile to the printer, simulating a sequence of NEXTBAND escapes.

The NEWFRAME escape restores the default values of the device context. Consequently,
if a font other than the default font is selected when the application calls the NEW­
FRAME escape, the application must select the font again following the NEWFRAME
escape.

short Escape(hDC, NEXTBAND, NULL, NULL, IpBandRect)

This escape informs the device driver that the application has finished writing to a band,
causing the device driver to send the band to the Print Manager and return the coordinates
of the next band. Applications that process banding themselves use this escape.

Parameter

hDC

IpBandRect

Type/Description

HDC Identifies the device context.

LPRECT Points to the RECT data structure that will receive
the next band coordinates. The device driver copies the device
coordinates of the next band into this structure.

The return value specifies the outcome of the escape. It is positive if the escape is success­
ful. Otherwise, it is one of the following values:

Value Meaning

Job was terminated because the application's abort func­
tion returned zero.

General error.

PA SS THROUGH 12-40

Comments

PASSTHROUGH
Syntax

Return Value

Comments

Value Meaning

Not enough disk space is currently available for spool­
ing, and no more space will become available.

SP _OUTOFMEMORY

SP _USERABORT

Not enough memory is available for spooling.

User terminated the job through the Print Manager.

The NEXTBAND escape sets the band rectangle to the empty rectangle when printing
reaches the end of a page.

Do not use the NEWFRAME escape with NEXTBAND.

short Escape(hDC, PASSTHROUGH, nCount, lplnData, NULL)

This escape allows the application to send data directly to the printer, bypassing the stand­
ard print-driver code.

NOTE To use this escape, an application must have thorough knowledge of how the particular printer
operates.

Parameter

hDC

nCount

lplnData

Type/Description

HDC Identifies the device context.

short Specifies the number of bytes to which the lplnData
parameter points.

LPSTR Points to a structure whose first word (16 bits) con­
tains the number of bytes of input data. The remaining bytes of
the structure contain the data 'itself.

The return value specifies the number of bytes transferred to the printer if the escape is
successful. It is less than zero if the escape is not implemented, and less than or equal to
zero if the escape is not successful. '

There may be restrictions on the kinds of device data an application can send to the device
without interfering with the operation of the driver. In general, applications must avoid re-
setting the printer or causing the page to be printed. .

12-41 QUER YES CS UPPOR T

It is strongly recommended that applications not perform functions that consume printer
memory, such as downloading a font or a macro.

An application can avoid corrupting its data stream when issuing multiple, consecutive
PASSTHROUGH escapes if it does not access the printer any other way during the
sequence.

QUERYESCSUPPORT
Syntax

Return Value

Syntax

short Escape(hDC, QUERYESCSUPPORT, sizeof(int), /pEscNum, NULL)

This escape determines whether a particular escape is implemented by the device driver.

Parameter

hDC

/pEscNum

Type/Description

HDC Identifies the device context.

LPINT Points to a short-integer value that specifies the
escape function to be checked.

The return value specifies whether a particular escape is implemented. It is nonzero for im­
plemented escape functions. Otherwise, it is zero.

If the lpEscNum parameter is set to DRAWPATTERNRECT, the return value is one of the
following:

Value

o

2

Meaning

DRAWPATTERNRECT is not implemented.

DRAWPATTERNRECT is implemented for a printer other than
the HP LaserJet lIP; this printer supports white rules.

DRAWPATTERNRECT is implemented for the HP LaserJet liP.

short Escape(hDC, RESTORE _ CTM, NULL, NULL, NULL)

This escape restores the previously saved current transformation matrix.

The current transformation matrix controls the manner in which coordinates are translated,
rotated, and scaled by the device. By using matrices, an application can combine these
operations in any order to produce the desired mapping for a particular picture.

Return Value

Comments

SAVE_elM
Syntax

Return Value

Comments

12-42

Parameter Type/Description

hDC "DC Identifies the device context.

The return value specifies the number of SAVE _ CTM escape calls without a correspond­
ing RESTORE _ CTM call. If the escape is unsuccessful, the return value is -1.

Applications should not make any assumptions about the initial contents of the current
transformation matrix.

This escape uses a matrix specification based on the Microsoft OS/2 Presentation Manager
graphics programming interface (OPI) model, which is an integer-coordinate system simi­
lar to the system which ODI uses.

short Escape(hDC, SAVE_CTM, NULL, NULL, NULL)

This escape saves the current transformation matrix.

The current transformation matrix controls the manner in which coordinates are translated,
rotated, and scaled by the device. By using matrices, an application can combine these
operations in any order to produce the desired mapping for a particular picture.

An application can restore the matrix by using the RESTORE _ CTM escape.

An application typically saves the current transformation matrix before changing it. This al­
lows the application to restore the previous state upon completion of a particular operation.

Parameter Type/Description

hDC "DC Identifies the device context.

The return value specifies the number of SAVE _ CTM escape calls without a correspond­
ing RESTORE _ CTM call. The return value is zero if the escape was unsuccessful.

Applications should not make any assumptions about the initial contents of the current
transformation matrix.

Applications are expected to restore the contents of the current transformation matrix.

This escape uses a matrix specification based on the OS/2 Presentation Manager graphics
programming interface (OPI) model, which is an integer-coordinate system similar to the
system that ODI uses.

12-43 SELECTPAPERSOURCE

SELECTPAPERSOURCE
This escape has been superseded by the GETSETPAPERBINS escape and is provided
only for backward compatibility. New applications should use the GETSETPAPERBINS
escape instead.

SETABORTPROC
Syntax

Return Value

Comments

short Escape(hDC, SETABORTPROC, NULL, lpAbortFullc, NULL)

This escape sets the abort function for the print job.

If an application is to allow the print job to be canceled during spooling, it must set the
abort function before the print job is started with the STARTDOC escape. Print Manager
calls the abort function during spooling to allow the application to cancel the print job or
to process out-of-disk-space conditions. If no abort function is set, the pririt job will fail if
there is not enough disk space for spooling.

Parameter

hDC

lpAbortFullc

Type/Description

HDC Identifies the device context.

FARPROC Points to the application-supplied abort function.
See the following "Comments" section for details.

The return value specifies the outcome of the escape. It is positive if the escape is success­
ful. Otherwise, it is negative.

The address passed as the lpAbortFullc parameter must be created by using the Make­
ProcInstance function.

The callback function must use the Pascal calling convention and must be declared FAR.
The abort function must have the following form:

Callback Function short FAR PASCAL AbortFullc(hPr, code)
HDChPr;
short code;

AbortFullc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in an EXPORTS statement in the application's module­
definition file.

SETALLJUSTVALUES 12-44

Parameter

hPr

code

Return Value

Description

Identifies the device context.

Specifies whether an error has occurred. It is zero if no error has
occurred. It is SP _OUTOFDISK if Print Manager is currently
out of disk space and more disk space will become available if
the application waits.

If code is SP _ OUTOFDISK, the application does not have to
abort the print job. If it does not, it must yield to Print Manager
by calling the PeekMessage or GetMessage function.

The return value should be nonzero if the print job is to continue, and zero if it is canceled.

SETAllJUSTVAlUES
Syntax

Return Value

Comments

short Escape(hDC, SETALLJUSTVALUES, sizeof(JUST_ VALUE_STRUCT),
lplnData, NULL)

This escape sets all of the text-justification values that are used for text output.

Text justification is the process of inserting extra pixels among break characters in a line of
text. The blank character is normally used as a break character.

Parameter

hDC

lplnData

Type/Description

HDC Identifies the device context.

JUST VALUE STRUCT FAR * Points to a
JUST-VALUE-STRUCT data structure that defines the text­
justification valii"es. See the following "Comments" section for
more information on the JUST_ VALUE_STRUCT data struc­
ture.

The return value specifies the outcome of the escape. It is 1 if the escape is successful.
Otherwise, it is zero.

The /plnData parameter points to a JUST_ VALUE_STRUCT data structure that de­
scribes the text-justification values used for text output. The JUST_ VALUE_STRUCT
structure has the following format:

12-45

Syntax

typedef struct {
short nCharExtra;
WORD nCharCount;
short nBreakExtra;
WORD nBreakCount;

JUST_VALUE_STRUCT;

This structure has the following fields:

Field

nCharExtra

nCharCount

nBreakExtra

nBreakCount

Description

Specifies the total extra space (in font units) that must be dis­
tributed over nCharCount characters.

Specifies the number of characters over which nCharExtra is
distributed.

Specifies the total extra space (in font units) that is distributed
over nBreakCount characters.

Specifies the number of break characters over which nBreak­
Extra is distributed.

The units used for nCharExtra and nBreakExtra are the font units of the device and are
dependent on whether relative character widths were enabled with the ENABLE­
RELATIVEWIDTHS escape.

The values set with this escape apply to subsequent calls to the TextOut function. The
driver stops distributing the extra space specified in the nCharExtra field when it has out­
put the number of characters specified in the nCharCount field. Likewise, it stops dis­
tributing the space specified by the nBreakExtra field when it has output the number of
characters specified by the nBreakCount field. A call on the same string to the GetText­
Extent function made immediately after the call to the TextOut function will be processed
in the same manner.

To re-enable justification with the SetTextjustification and SetTextCharacterExtra func­
tions, an application should call the SETALLJUSTVALUES escape and set the nChar­
Extra and nBreakExtra fields to zero.

short Escape(hDC, SET_ARC _DIRECTION, sizeof(int), IpDirection, NULL)

This escape specifies the direction in which elliptical arcs are drawn using the GDI Arc
function.

SET_BACKGROUNO_COLOR 12-46

Return Value

Comments

Syntax

By convention, elliptical arcs are drawn counterclockwise by GDI. This escape lets an
application draw paths containing arcs drawn clockwise.

Parameter

hDC

IpDirection

Type/Description

HDC Identifies the device context.

LPINT Points to a short integer specifying the arc direction. It
can be either of the following values:

• COUNTERCLOCKWISE (0)

• CLOCKWISE (1)

The return value is the previous arc direction.

This escape maps to PostScript language elements and is intended for PostScript line dev­
ices.

short Escape(hDC, SET_BACKGROUND_COLOR, nCount, IpNewColor,
IpOldColor)

This escape sets and retrieves the current background color for the device.

The background color is the color of the display surface before an application draws any­
thing on the device. This escape is particularly useful for color printers and film recorders.

This escape should be sent before the application draws anything on the current page.

Parameter

hDC

nCount

lpNewColor

IpOldColor

Type/Description

HDC Identifies the device context.

int Specifies the number of bytes pointed to by the IpNew­
Color parameter.

DWORD FAR * Points to a 32-bit integer specifying the
desired background color. This parameter can be NULL if the
application is merely retrieving the current background color.

DWORD FAR * Points to a 32-bit integer which receives the
previous background color. This parameter can be NULL if the
application does not use the previous background color.

12-47

Return Value

Comments

SET_BOUNDS
Syntax

Return Value

Comments

The return value is TRUE if the escape was successful and FALSE if it was unsuccessful.

The default background color is white.

The background color is reset to the default when the device driver receives an ENDDOC
or ABORTDOC escape.

short Escape(hDC, SET_BOUNDS, sizeof(RECT), lplnData, NULL)

This escape sets the bounding rectangle for the picture being produced by the device driver
supporting the given device context. It is used when creating images in a file format such
as Encapsulated PostScript (EPS) and Hewlett-Packard Graphics Language (HPGL) for
which there is a device driver.

Parameter

hDC

lplnData

Type/Description

HDC Identifies the device context.

LPRECT Points to a RECT data structure that specifies in
device coordinates a rectangle that bounds the image to be out­
put.

The return value is TRUE if the escape was successful; otherwise, the return value is
FALSE.

An application should issue this escape before each page in the imag~. For single-page im­
ages, this escape should be issued immediately before the STARTDOC escape.

When an application uses coordinate-transformation escapes, device drivers may not per­
form bounding box calculations correctly. When an application uses the SET_BOUNDS
escape, the driver does not have to calculate the bounding box.

Applications should always use this escape to ensure support for the Encapsulated Post­
Script (EPS) printing capabilities that will be built into future PostScript drivers.

SETCOLORTABLE 12-48

SETCOLORTABLE
Syntax

Return Value

Comments

short Escape(hDC, SETCOLORTABLE, sizeof(COLORTABLE_STRUCT),
IplnData,lpColor)

This escape sets an ROB color-table entry. If the device cannot supply the exact color, the
function sets the entry to the closest possible approximation of the color.

Parameter

hDC

IplnData

IpColor

Type/Description

HDC Identifies the device context.

COLORTABLE STRUCT FAR * Points to a
COLORTABLE-STRUCT data structure that contains the
index and ROB value of the color-table entry. See the following
"Comments" section for more information on the
COLORTABLE STRUCT data structure.

DWORD FAR * Points to the long-integer value that is to re­
ceive the ROB color value selected by the device driver to
represent the requested color value.

The return value specifies the outcome of the escape. It is positive if the escape is success­
ful. Otherwise, it is negative.

The COLORTABLE_STRUCT data structure has the following format:

typedef struct {
WORD Index;
DWORD rgb;

} COLORTABLE_STRUCT;

This structure has the following fields:

Field

Index

rgb

Description

Specifies the color-table index. Color-table entries start at zero
for the first entry.

Specifies the desired ROB color value.

A device's color table is a shared resource; changing the system display color for one
window changes it for all windows. Only applications developers who have a thorough
knowledge of the display driver should use this escape.

The SETCOLORTABLE escape has no effect on devices with fixed color tables.

12-49 SETCOPYCOUNT

This escape is intended for use by both printer and display drivers. However, the EGA and
VGA color drivers do not support it.

This escape changes the palette used by the display driver. However, since the driver's
color-mapping algorithms will probably no longer work with a different palette, an exten-
sion has been added to this function. .

If the color index pointed to by the /pInData parameter is OXFFFF, the driver is to leave all
color-mapping functionality to the calling application. The application must use the proper
color-mapping algorithm and take responsibility for passing the correctly mapped physical
color to the driver (instead of the logical RGB color) in such device-driver functions as
RealizeObject and Colorlnfo.

For example, if the device supports 256 colors with palette indexes of 0 through 255, the
application would determine which index contains the color that it wants to use in a certain
brush. It would then pass this index in the low-order byte of the DWORD logical color
passed to the RealizeObject device-driver function. The driver would then use this color
exactly as passed instead of performing its usual color-mapping algorithm. If the applica­
tion wants to reactivate the driver's color-mapping algorithm (that is, if it restores the origi­
nal palette when switching from its window context), then the color index pointed to by
/pI nData should be OxFFFE.

SETCOPYCOUNT
Syntax

Return Value

short Escape(hDC, SETCOPYCOUNT, sizeof(int), /pNumCopies, IpActualCopies)

This escape specifies the number of uncollated copies of each page that the printer is to
print.

Parameter

hDC

IpNumCopies

IpActualC opies

Type/Description

HDC Identifies the device context.

LPINT Points to a short-integer value that contains the num­
ber of uncollated copies to be printed.

LPINT Points to a short-integer value that will receive the
number of copies to be printed. This may be less than the num­
ber requested if the requested number is greater than the device's
maximum copy count.

The return value specifies the outcome of the escape. It is 1 if the escape is successful; it is
zero if the escape is not successful. If the escape is not implemented, the return value is

- zero.

SETKERNTRACK 12-50

SETKERNTRACK
Syntax

Return Value

Comments

short Escape(hDC, SETKERNTRACK, sizeof(int), IpNewTrack, IpOldTrack)

This escape specifies which kerning track to use for drivers that support automatic track
kerning. A kerning track of zero disables automatic track kerning.

When track kerning is enabled, the driver will automatically kern all characters according
to the specified track. The driver will reflect this kerning both on the printer and in Get­
TextExtent function calls.

Parameter

hDC

IpNewTrack

IpOldTrack

Type/Description

HDC Identifies the device context.

LPINT Points to a short-integer value that specifies the kern­
ing track to use. A value of zero disables this feature. Values in
the range 1 to nKernTracks correspond to positions in the track­
kerning table (using 1 as the first item in the table). For more
information, see the description of the EXTTEXTMETRIC
structure provided under the description of the GETEXTEN­
DEDTEXTMETRICS escape.

LPINT Points to a short-integer value that will receive the
previous kerning track.

The return value specifies the outcome of the escape. It is 1 if the escape is successful; it is
zero if the escape is not successful or not implemented.

Automatic track kerning is disabled by default.

A driver does not have to support the ENABLEPAIRKERNING escape just because it
supplies the track-kerning table to the application by using the GETTRACKKERN­
TABLE escape. In the case where GETTRACKKERNTABLE is supported but the SET­
KERNTRACK escape is not, the application must properly space the characters on the
output device.

12-51

SETLINECAP
Syntax

Return Value

Comments

SETLINECAP

short Escape(hDC, SETLINECAP, sizeof(int), IpNewCap, IpOldCap)

This escape sets the line end cap.

A line end cap is that portion of a line segment that appears on either end of the segment.
The cap may be square or circular. It can extend past, or remain flush with the specified
segment end points.

Parameter

hDC

IpNewCap

IpOldCap

Type/Description

"DC Identifies the device context.

LPINT Points to a short-integer value that specifies the end-cap
type. The possible values and their meanings are given in the follow­
ing list:

Value

-1

o

2

Meaning

Line segments are drawn by using the default GDI
end cap.

Line segments are drawn with a squared end point
that does not project past the specified segment
length.

Line segments are drawn with a rounded end
point; the diameter of this semicircular arc is equal
to the line width.

Line segments are drawn with a squared end point
that projects past the specified segment length.
The projection is equal to half the line width.

LPINT Points to a short-integer value that specifies the previous
end-cap setting.

The return value specifies the outcome of the escape. It is positive if the escape is success­
ful. Otherwise, it is negative.

The interpretation of this escape varies with page-description languages (PDLs). Consult
the PDL documentation for its exact meaning.

This escape is also known as SETENDCAP.

SETLINEJOIN 12-52

SETLlNEJOIN
Syntax

Return Value

Comments

short Escape(hDC, SETLINEJOIN, sizeof(int), IpNewJoin, IpOldJoin)

This escape specifies how a device driver will join two intersecting line segments. The
intersection can form a rounded, squared, or mitered corner.

Parameter

hDC

IpNewJoin

IpOldJoin

Type/Description

"DC Identifies the device context.

LPINT Points to a short-integer value that specifies the type of
intersection. The possible values and their meanings are given in the
following list:

Value

-1

o

2

Meaning

Line segments are joined by using the default GDI
setting.

Line segments are joined with a mitered corner;
the outer edges of the lines extend until they meet
at an angle. This is referred to as a miter join.

Line segments are joined with a rounded corner; a
semicircular arc with a diameter equal to the line
width is drawn around the point where the lines
meet. This is referred to as a round join.

Line segments are joined with a squared end point;
the outer edges of the lines are not extended. This
is referred to as a bevel join.

LPINT Points to a short-integer value that specifies the previous
line join setting.

The return value specifies the outcome of the escape. It is positive if the escape is success­
ful. Otherwise, it is negative.

The interpretation of this escape varies with page-description languages (PDLs). Consult
the PDL documentation for its exact meaning.

If an application specifies a miter join but the angle of intersection is too small, the device
driver ignores the miter setting and uses a bevel join instead.

12-53 SETMITERLIMIT

SETMITERLIMIT
Syntax

Return Value

Comments

Syntax

short Escape(hDC, SETMITERLIMIT, sizeof(int), IpNewMiter, IpOldMiter)

This escape sets the miter limit for a device. The miter limit controls the angle at which a
device driver replaces a miter join with a bevel join.

Parameter

hDC

nCount

IpNewMiter

IpOldMiter

Type/Description

HDC Identifies the device context.

short Specifies the number of bytes to which the IpNewMiter
parameter points.

LPINT Points to a short-integer value that specifies the
desired miter limit. Only values greater than or equal to -1 are
valid. If this value is -1, the driver will use the default GDI
miter limit.

LPINT Points to a short-integer value that specifies the pre­
vious miter-limit setting.

The return value specifies the outcome of the escape. It is positive if the escape is success­
ful. Otherwise, it is negative.

The miter limit is defined as follows:

miter length ___ _
line width - sin (x/2)

X is the angle of the line join in radians.

The interpretation of this escape varies with page-description languages (PDLs). Consult
the PDL documentation for its exact meaning.

short Escape(hDC, SET_POLY _MODE, sizeof(int), IpMode, NULL)

This escape sets the poly mode for the device driver. The poly mode is a state variable indi­
cating how to interpret calls to the GDI Polygon and Polyline functions.

The SET_POLY_MODE escape enables a device driver to draw shapes (such as Bezier
curves) not supported directly by GDI. This permits applications that draw complex curves
to send the curve description directly to a device without having to simulate the curve as a
polygon with a large number of points.

Parameter

hDC

/pMode

12-54

Type/Description

HDC Identifies the device context.

LPINT Points to a short integer specifying the desired poly
mode. The poly mode is a state variable indicating how points in
Polygon or Polyline function calls should be interpreted. All
device drivers are not required to support all possible modes. A
device driver returns zero if it does not support the specified
mode. The /pMode parameter may be one of the following values:

Value

PM_POLYLINE (1)

PM_BEZIER (2)

PM_POLYLINE­
SEGMENT (3)

Meaning

The points define a conventional poly­
gon or polyline.

The points define a sequence of 4-
point Bezier spline curves. The first
curve passes through the first four
points, with the first and fourth points
as end points, and the second and third
points as control points. Each sub­
sequent curve in the sequence has the
end point of the previous curve as its
start point, the next two points as con­
trol points, and the third as its end
point.

The last curve in the sequence is per­
mitted to have fewer than four points.
If the curve has only one point, it is
considered a point. If it has two
points, it is a line segment. If it has
three points, it is a parabola defined
by drawing a Bezier curve with the
first and third points as end points and
the two control points equal to the sec­
ond point.

The points specify a list of coordinate
pairs. Line segments are drawn con­
necting each successive pair of points.

12-55

Return Value

Comments

Syntax

The return value is the previous poly mode. If the return value is zero, the device driver
did not handle the request.

An application should issue the SET_POLY_MODE escape before it draws a complex
curve. It should then call the Polyline or Polygon function with the desired control points
defining the curve. After drawing the curve, the application should reset the driver to its
previous state by issuing the SET_POLY _MODE escape.

Polyline calls draw using the currently selected pen.

Polygon calls draw using the currently selected pen and brush. If the start and end points
are not equal, a line is drawn from the start point to the end point before filling the polygon
(or curve).

GDI treats Polygon calls using PM_POLYLINESEGMENT mode exac.t1y the same as
Polyline calls.

Four points define a Bezier curve. GDI generates the curve by connecting the first and sec­
ond, second and third, and third and fourth points. GDI then connects the midpoints of
these consecutive line segments. Finally, GDI connects the midpoints of the lines connect­
ing the midpoints, and so forth.

The line segments drawn in this way converge to a curve defined by the following para­
metric equations, expressed as a function of the independent variable t.

X(t) = (1-t)\1 + 3(1-t)2tx2 + 3(I-t)t2x3 + t\4

Y(t) = (1-t)3Y1 + 3(1-t)2ty2 + 3(1-t)t2Y3 + t3Y4

The points (Xl,Yl), (X2,Y2), (X3,y3) and (X4,Y4) are the control points defining the curve.
The independent variable t varies from 0 to 1.

Primitive types other than PM_BEZIER and PM_POLYLINE SEGMENT may be added to
this escape in the future. Applications should check the return value from this escape to de­
termine whether or not the driver supports the specified poly mode.

short Escape(hDC, SET_SCREEN_ANGLE, sizeof(int), IpAngle, NULL)

This escape sets the current screen angle to the desired angle and enables an application to
simulate the tilting of a photographic mask in producing a color separation for a particular
primary.

Return Value

Comments

SET_SPREAD
Syntax

Parameter

hDC

IpAngle,

12-56

Type/Description

HDC Identifies the device context.

LPINT Points to a short-integer value specifying the desired
screen angle in tenths of a degree. The angle is measured coun­
terclockwise.

The return value is the previous screen angle.

Four-color process separation is the process of separating the colors comprising an image
into four component primaries: cyan, magenta, yellow, and black. The image is then repro­
duced by overprinting each primary.

In traditional four-color process printing, half-tone images for each of the four primaries
are photographed against a mask tilted to a particular angle. Tilting the mask in this man­
ner minimizes unwanted moire patterns caused by overprinting two or more colors.

The device driver defines the default screen angle.

short Escape(hDC, SET_SPREAD, sizeof(int), IpSpread, NULL)

This function sets the amount that nonwhite primitives are expanded for a given device to
provide a slight overlap between primitives to compensate for imperfections in the repro­
duction process.

Spot color separation is the process of separating an image into each distinct color used in
the image. The image is reproduced by overprinting each successive color in the image.

When reproducing a spot-separated image, the printing equipment must be calibrated to
align each page exactly on each pass. However, differences in temperature, humidity, and
so forth, between passes often cause images to align imperfectly on subsequent passes. For
this reason, lines in spot separations are often widened (spread) slightly to make up for
problems in registering subsequent passes through the printer. This process is called trap­
ping. The SET_SPREAD escape implements this process.

Parameter

hDC

IpSpread

Type/Description

HDC Identifies the device context.

LPINT Points to a short-integer value that specifies the
amount, in pixels, by which all nonwhite primitives are to be ex­
panded.

12-57

Return Value

Comments

STARTDOC
Syntax

Return Value

Comments

STARTOOC

The return value is the previous spread value.

The default spread is zero.

The current spread applies to all bordered primitives (whether or not the border is visible)
and text.

short Escape(hDC, STARTDOC, nCount, lpDocName, NULL)

This escape informs the device driver that a new print job is starting and that all sub­
sequent NEWFRAME escape calls should be spooled under the same job until an
ENDDOC escape call occurs. This ensures that documents longer than one page will not
be interspersed with other jobs.

Parameter

hDC

nCount

lpDocName

Type/Description

HDC Identifies the device context.

short Specifies the number of characters in the string pointed
to by the lpDocName parameter.

LPSTR Points to a null-terminated string that specifies the
name of the document. The document name is displayed in the
Print Manager window. The maximum length of this string is 31
characters plus the terminating null character.

The return value specifies the outcome of the escape. It is -1 if an error such as insufficient
memory or an invalid port specification occurs. Otherwise, it is positive.

The correct sequence of events in a printing operation is as follows:

1. Create the device context.

2. Set the abort function to keep out-of-disk-space errors from terminating a printing
operation.

An abort procedure that handles these errors must be set by using the SETABORT­
PROC escape.

3. Begin the printing operation with the STARTDOC escape.

4. Begin each new page with the NEWFRAME escape, or each new band with the
NEXTBAND escape.

TRANSFORM_ CTM 12-58

Syntax

Return Value

Comments

5. End the printing operation with the ENDDOC escape.

6. Destroy the cancel dialog box, if any.

7. Free the procedure-instance address of the abort function.

If an application encounters a printing error or a canceled print operation, it must not at­
tempt to terminate the operation by using the Escape function with either the ENDDOC
or ABORTDOC escape. GDI automatically terminates the operation before returning the
error value.

short Escape(hDC, TRANSFORM_CTM, 36, lpMatrix, NULL)

This escape modifies the current transformation matrix. The current transformation matrix
controls the manner in which coordinates are translated, rotated, and scaled by the device.
By using matrices, you can combine these operations in any order to produce the desired
mapping for a particular picture.

The new current transformation matrix will contain the product of the matrix referenced by
the lpMatrix parameter and the previous current transformation matrix (CTM = M x CTM).

Parameter

hDC

lpMatrix

Type/Description

HDC Identifies the device context.

LPSTR Points to a 3-by-3 array of 32-bit integer values speci­
fying the new transformation matrix. Entries in the matrix are
scaled to represent fixed-point real numbers. Each matrix entry
is scaled by 65,536. The high-order word of the entry contains
the whole integer portion, and the low-order word contains the
fractional portion.

The return value is TRUE if the escape was successful and FALSE if it was unsuccessful.

Applications should not make any assumptions about the initial value of the current trans­
formation matrix.

The matrix specification used for this escape is based on the Microsoft OS/2 Presentation
Manager graphics programming interface (GPI) model, which is an integer-coordinate sys­
tem similar to the one used by GDI.

Chapter

13
Asselnbly-Language
Macros Overview
Assembly-language Microsoft Windows applications are highly structured as­
sembly-language programs that use high-level-language calling conventions as
well as Windows functions, data types, and programming conventions. Although
you create assembly-language Windows programs by using the Microsoft Macro
Assembler, the goal is to generate object files that are similar to the object files
generated by the C Compiler. This chapter gives some guidelines that can help
you meet this goal when creating assembly-language Windows applications.

The SDK includes the file CMACROS.lNC. This file contains high-level-lan­
guage-macros that define segments, programming models, function interfaces,
and data types needed to create Windows applications. The Cmacros provide as­
sembly-time options that define the memory model and the calling conventions
that the application will use. The options must be selected in the assembly-lan­
guage source file prior to the INCLUDE directive.

This chapter provides an overview of the Cmacros and supplies important infor­
mation on creating an assembly-language Windows application. The chapter
covers the following topics:

• How to create an assembly-language Windows application

• An overview of the Cmacros

• How to use the Cmacros in an assembly-language application

13. 1 Guidelines for Creating Assembly-Language Windows
Applications

When creating an assembly-language Windows application using the Cmacros,
you should add the following to your application's assembly-language source
file:

1. Specify the memory model by setting one of the options memS, memM,
memC, or memL to 1.

2. Specify the Pascal calling convention by setting the ?PLM option to 1.

This is required for functions that will be called by Windows.

13-2 Reference - Volume 2

3. Enable the Windows prolog and epilog by setting the ?WIN option to 1.

This is required for callback functions or for exported f~nctions in Windows
libraries.

4. Include the CMACROS.INC file in the application source file.

The statement that includes the CMACROS.INC file must come after the
statements described in the preceding steps.

5. Create the application entry point, WinMain, and make sure that it is declared
a public function.

6. Declare any callback functions as described in Section 13.1.6, "Declaring
Callback Functions."

7. After assembling the application source files, link your application's as­
sembled object files with the appropriate C-Ianguage library for Windows
and C run-time libraries.

The rest of this section describes these steps in more detail.

13.1.1 Specifying a Memory ModeJ
The Cmacro memory-model options specify the memory model that the applica­
tion will use. The memory model defines how many code and data segments are
in the application. The following is a list of the possible memory models:

Model

Small

Medium

Compact

Large

Huge

Description

One code segment and one data segment.

Multiple code segments and one data segment.

One code segment and multiple data segments.

Multiple code and data segments.

Multiple code segments and mUltiple data segments
with one or more data items larger than 64K.

Select a memory model by defining the option name at the beginning of the as­
sembly-language source file. Table 13.1 shows the option names available:

Assembly-Language Macros Overview 13-3

Table 13.1 Memory Options

Option Memory Code Data
Name Model Size Size

memS small small small

memM medium large small

memC compact small large

memL large large large

memH huge large large

You can define a name by using the EQU directive. The definition has the fol­
lowing form:

memM EQU

If no option is selected, the default model is small.

When you select a memory-model option, two symbols are defined. These two
symbols can be used for code that is dependent on the memory model:

SizeC

SizeD

o = small code
1 = large code

o = small data
1 = large data
2 = huge data

13.1.2 Selecting a Calling Convention
The Cmacro calling-convention option specifies the high-level-language calling
convention that the application will use. You can select the calling convention by
defining the value of the symbol ?PLM. Table 13.2 lists the values and conven­
tions.

Table 13.2 Calling Conventions

?PLM value Convention

o Standard C

Pascal

Description

The caller pushes the rightmost argument onto the
stack first, the leftmost last. The caller pops the ar­
guments off the stack after control is returned.

The caller pushes the leftmost argument onto the
stack first, the rightmost last. The called function
pops the arguments off the stack.

13-4 Reference - Volume 2

You can set the ?PLM symbol value by using the = directive. The statement has
the following form:

?PLM = 1

The default is the Pascal calling convention. The Pascal calling convention is re­
quired for functions that are called by Windows.

13.1.3 Enabling the Windows Prolog/Epilog Option
The Windows prolog/epilog option is required for Windows applications. It speci­
fies whether to use special prolog and epilog code with each function; this code
defines the current data segment for the given function.

You set this option by defining the value of the symbol ?WIN. Table 13.3 lists
the values:

Table 13.3 Prolog/Epilog Code Options

?WIN value Meaning

o Disables the special prolog/epilog code.

Enables the special prolog/epilog code.

You can set the ?WIN symbol value by using the = directive. The statement has
the following form:

?WIN = 1

By default, the prolog and epilog code are enabled.

13.1.4 Including the File CMACROS.INC
The file CMACROS.INC contains the assembly-language definitions for all the
Cmacro macros. You must include this file at the beginning of the assembly-lan­
guage source file by using the INCLUDE directive. The line has the following
form:

INCLUDE CMACROS.INC

You must give the full pathname if the macro file is not in the current directory
or in a directory specified on the command line.

For a complete description of each of the Cmacro macros, see Chapter 14, "As­
sembly-Language Macros Directory."

Assembly-Language Macros Overview 13-5

13.1.5 Creating the Application Entry Point
Create the application entry point, WinMain, and make sure that it is declared a
public function. It should have the following form:

cProc WinMain, <PUBLIC>, <si,dD
parmW hlnstance
parmW hPrevlnstance
parmD lpCmdLine
parmW nCmdShow

cBegin WinMain

cEnd WinMain

sEnd

The WinMain function should be defined within the standard code segment
CODE.

13.1.6 Declaring Callback Functions
Make sure any callback functions are declared as follows:

cProc TestWndProc, <FAR,PUBLIC>, <si ,dD
parmW hWnd
parmW message
parmW wParam
pa rmD 1 Pa ram

cBegin TestWndProc

cEnd TestWndProc

Callback functions must be defined within a code segment.

13. 1.7 Linking with Libraries
After assembling your application's source files, you should link the assembled
object files with the appropriate C-Ianguage libraries.

If the entire application is written in assembly language, to link properly you may
need to add an external definition for the absolute symbol __ acrtused in your
application source file.

13-6 Reference - Volume 2

13.1.8 Enabling Stack Checking
You can enable stack checking by defining the symbol ?CHKSTK. When stack
checking is enabled, the prolog code calls the externally defined routine
CHKSTK to allocate local variables.

You can define the ?CHKSTK symbol by using the = directive. The statement
has the following form:

?CHKSTK = 1

Once CHKSTK is defined, stack checking is enabled for the entire file.

The default (when CHKSTK is not defined) is no stack checking.

13.2 Cmacro Groups
Chapter 14, "Assembly-Language Macros Directory," lists and describes the
Cmacro macros, a set of assembly-language macros that can be used with the
Microsoft Macro Assembler (MASM) to create assembly-language Windows
applications. The Cmacros provide a simplified interface to the function and seg­
ment conventions of high-level languages such as C.

The Cmacros are divided into the following groups:

• Segment macros

• Storage-allocation macros

• Function macros

• Call macros

• Special-definition macros

• Error macros

The rest of this section briefly describes each group of macros.

13.2.1 Segment Macros
Segment macros give access to the code and data segments that an application
will use. These segments have the names, attributes, classes, and groups required
by Windows.

The Cmacros have two predefined segments, named CODE and DATA, that any
application can use without special definition.

Macro Name

createSeg

sBegin

sEnd

assumes

data OFFSET

codeOFFSET

segNameOFFSET

13.2.2 Storage-Allocation Macros

Assembly-Language Macros Overview 13-7

Description

Creates a new segment that has the specified name
and segment attributes.

Opens up a segment (this macro is similar to the
SEGMENT assembler directive).

Closes a segment (this macro is similar to the ENDS
assembler directive).

Makes all references to data and code in the segment
segName relative to the segment register given by
segReg. It is similar to the ASSUME assembler
directive.

Generates an offset relative to the start of the group
to which the DATA segment belongs. It is similar to
the OFFSET assembler operator, but automatically
provides the group name.

Generates an offset relative to the start of the group
to which the CODE segment belongs. It is similar to
the OFFSET assembler operator, but automatically
provides the group name.

Generates an offset relative to the start of the group
to which the user-defined segment segName
belongs. It is similar to the OFFSET assembler oper­
ator, but automatically provides the group name.

Storage-allocation macros allocate static memory (either private or public), de­
clare externally defined memory and procedures, and allow the definition of
public labels.

Macro Name

staticX

globalX

externX

labelX

Description

Allocates private static-memory storage.

Allocates public static-memory storage.

Defines one or more names that will be the labels of
external variables or functions.

Defines one or more names that will be the labels of
public (global) variables or functions.

13-8 Reference - Volume 2

13.2.3 Function Macros
Function macros define the names, attributes, parameters, and local variables of
functions.

Macro Name

cProc

parrnX

localX

cBegin

cEnd

13.2.4 Call Macros

Description

Defines the name and attributes of a function.

Defines one or more function parameters. The para­
meters provide access to the arguments passed to the
function.

Defines one or more frame variables for the
specified function.

Defines the actual entry point for the specified func­
tion.

Defines the exit point for the specified function.

Call macros can be used to call cProc functions and high-level-language func­
tions. These macros pass arguments according to the calling convention defined
by the ?PLM option.

Macro Name

cCaIl

Save

Arg

13.2.5 Special-Definition Macros

Description

Pushes the specified arguments onto the stack, saves
registers (if any), and calls the specified function.

Directs the next cCall macro to save the specified
registers on the stack before calling a function, and
to restore the registers after the function returns.

This macro defines the arguments to be passed to a
function by the next cCall macro.

Special-definition macros inform the Cmacros about user-defined variables, func­
tion-register use, and register pointers.

Macro Name

Def

FarPtr

13.2.6 Errornfacros

Assembly-Language Macros Overview 13-9

Description

Registers the name of a user-defined variable with
the Cmacros.

Defines a 32-bit pointer value that can be passed as
a single argument in a cCall macro.

Error macros generate an error message to the console and an error message in
the listing. Both the text that caused the error and the result of its evaluation are
displayed in the generated error message.

Error macros let you code assertions into an assembly-language source program.
This lets you code optimum instruction sequences for some operations based on
the variable allocation or bit position of flag in a word, and assert that the as­
sumptions made are true.

Macro Name

errnz

errn$

13.3 Using the Cmacros

Description

Evaluates a given expression. If the result is not
zero, an error is displayed.

Subtracts the offset of the label parameter from the
offset of the location counter, then adds the bias
parameter to the result. If this result is not zero, then
an error message is displayed. .

This section explains the assembly-language statements generated by some of the
Cmacros and illustrates their use with an example of a Cmacros function called
BITBLT.

13.3.1 Overriding Types
Parameters and local variables created using the parrnX and localX macros actu­
ally correspond to expressions of the following form:

localB x
parmB y

==)

==)

x equ byte ptr [bp+nnJ
y equ byte ptr [bp+nnJ

In this example, the nn parameter specifies an offset from the current bp register
value.

13-10 Reference - Volume 2

These expressions let you use the names without having to explicitly type in
"type ptr" and "[bp+offset]" operators. This means that "x" can be referred to as
follows:

mov a 1 , x

and that "y" can be referred to as follows:

mov ax,y

A problem arises if the type must be overridden. The assembler creates an error
message if it encounters the following line:

mov ax,word ptr x

This can be solved by enclosing the name in parentheses:

mov ax,word ptr ex)

One exception to this pattern is the localV macro. The expression generated by
this macro does not have a type associated with it. Therefore it can be overridden
without the parentheses. For example:

localV horse,10 = = > horse equ [bp+nnJ

13.3.2 Symbol Redefinition
Any symbol defined by a parrnX macro in one function can be redefined as a
parameter in any other function. This allows different functions to refer to the
same parameter by the same name, regardless of its location on the stack.

13.3.3 Cmacros: a Sample Function
The following example defines the assembly function BITBL T, which is aFAR
and PUBLIC type function. When BITBLT is invoked, the SI and DI registers
are automatically saved, and automatically restored upon exit. The BP register is
always saved.

BITBLT is passed'seven double-word pointers on the stack. Space will be allo­
cated on the stack for eight frame variables (one structure, five bytes, and two
words).

The cBegin macro defines the start of the actual code. The pExt parameter is
loaded, and some values are loaded into registers. The AX and BX registers are
saved on the following cCall.

Another C function, There, is invoked by the cCall macro. Four arguments are
passed to There: pDestBitmap, the 32-bit pointer in DS:SI, register AX, and
register BX. The cCall macro places the arguments on the stack in the correct
order.

Assembly-Language Macros Overview 13-11

When There returns, the arguments placed on the stack are automatically
removed, and the AX and BX registers are restored.

When cEnd is reached, the frame variables are removed, any autosave registers
are restored, and a return of the correct type (near or far) is perfonned.

The following example shows how the BITBL T function is defined:

cProc BITBLT,<FAR,PUBLIC>,<si ,di>

parmD pDestBitmap ;-> to dest bitmap descriptor
parmD pDestOrg ;-> to dest origin (a point)
parmD pSrcBitmap ;-> to source bitmap descriptor
parmD pSrcOrg ;-> to source origin
parmD pExt ;-> to rectangle extent
parmD pRop ;-> to rasterop descriptor
parmD pBrush ;-> to a physical brush

local V nOps,4 ;# of each operand used

local B phaseH ;Horizontal phase (rotate count)
localB PatRow ;Current row for patterns [0 .. 7]
1 oca 1 B direction ;Increment/decrement flag

1 oca 1 W startMask ;mask for first dest byte
1 oca 1 W lastMask ;mask for last dest byte

localB firstFetch ;Number of first fetches needed
1 oca 1 B stepDi recti.on ;Direction of move (1 eft, right)

cBegin

lds si ,pExt
mov aX,extentX[si]
mov bX,extentY[si]

RegPtr dest,ds,si
Save <ax,bx>

cCall THERE,<pDestBitmap,dest,ax,bx>

mov extentX[siJ,cx
mov extentY[siJ,dx

\ .
\ .
\ .
cEnd

13-12 Reference - Volume 2

13.4 Summary
The CMACROS.INC file defines segments, programming models, function
interfaces, and data types needed to create Windows applications. The Cmacros
provide assembly-time options that define the memory model and the calling con­
ventions that the application will use. For more information on topics related to
the Cmacros, see the following:

Topic

Cmacro descriptions

U sing the linker

Using the Macro Assembler

Reference

Reference, Volume 2: Chapter 14,
"Assembly-Language Macros Directory"

Tools: Chapter 2, "Linking Applications: The
Linker"

Microsoft Macro Assembler Programmer's
Guide

Chapter

14
AssenJh/y-Language
Macros Directory
This chapter describes the Cmacros, a set of assembly-language macros that
can be used with the Microsoft Macro Assembler (MASM) to create assembly­
language Windows applications. The Cmacros provide a simplified interface to
the function and segment conventions of high-level languages such as C.

This section lists the Cmacros in alphabetical order, and describes each macro in
detail.

Arg

Arg
Syntax

Comments

Examples

assumes
Syntax

Examples

cBegin
Syntax

14-2

Arg namelist

This macro defines the arguments to be passed to a function by the next cCall macro. The
arguments are pushed onto the stack in the order given. This order must correspond to the
order of the function parameters.

More than one Arg macro can be given before each cCall. Multiple Arg macros have the
same effect as a single macro.

The name list parameter specifies a list of argument names to be passed to the function. All
names must have been previously defined.

Byte-type parameters are passed as words. There is no sign extension or zeroing of the
high-order byte.

Immediate arguments are not supported.

Arg
Arg
Arg
Arg

varl
var2
var3
<varl,var2,var3>

assumes segReg, segName

This macro makes all references to data and code in the segment segName relative to the
segment register given by segReg. It is similar to the ASSUME assembler directive.

The segReg parameter specifies the name of a segment register.

The segName parameter specifies the name of a predefined segment, CODE or DATA, or
a user-defined segment.

assumes CS, CODE
assumes OS, CODE

cBegin [procName]

This macro defines the actual entry point for the function procName. The macro creates
code that sets up the frame and saves registers.

14-3

eCall
Syntax

Comments

Examples

eEnd
Syntax

cCa//

The optional procName parameter specifies a function name. If it is given, it must be the
same as the name given in the cProc macro immediately preceding the cBegin macro.

cCall procName, [<argList>], [<underscores>]

This macro pushes the arguments in argList onto the stack, saves registers (if any), and
calls the functionprocName.

The procName parameter specifies the name of the function to be called.

The optional argList parameter specifies a list of the names of arguments to be passed to
the function. This list is not required if the Arg macro is used before cCall.

The optional underscores parameter specifies whether an underscore should be added to
the beginning of procName. If this argument is blank and the calling convention is the C
calling convention, an underscore is added.

The arguments of an Arg macro are pushed onto the stack before any arguments in the ar­
gList parameter of a cCall macro.

Byte-type parameters are passed as words. There is no sign extension or zeroing of the
high-order byte.

Immediate arguments are not supported.

cCall there,<pExt,ax,bx,pResult>

Arg pExt
Arg ax
cCall there,<bx,pResult>

cEnd [procName]

This macro defines the exit point for the procName function. The macro creates code that
discards the frame, restores registers, and returns to the caller.

The optional procName parameter specifies a function name. If it is given, it must be the
same as the name given in the cBegin macro immediately preceding the cEnd macro.

Once a function has been defined using cProc, any formal parameters should be declared
with the parrnX macro and any local variables with the localX macro. The cBegin and
cEnd macros must be used to delineate the code for the function.

code OFFSET 14-4

Example

codeOFFSET
Syntax

Example

cProc
Syntax

The following is an example of a complete function definition:

eProe strepY,<PUBLIC>,<si ,di>
parmW dst
parmW sre
loealWent

eBegin
eld
mov
mov
push
pop
xor
mov

loop:
lodsb
stosb
inc
emp
jnz
mov

eEnd

s i , s re
di,dest
ds
es
eX,ex
ent,ex

ent
al ,0
loop
ax,ent

codeOFFSET arg

This macro generates an offset relative to the start of the group to which the CODE seg­
ment belongs. It is similar to the OFFSET assembler operator, but automatically provides
the group name. For this reason, it should be used instead of OFFSET.

The arg parameter specifies a label name or offset value.

mov ax,eodeOFFSET label

cProc procName, <attributes>, <autoSave>

This macro defines the name and attributes of a function.

The procName parameter specifies the name of the function.

The attributes parameter specifies the function type. It can be a combination of the follow­
ing:

14-5

Comments

Examples

createSeg
Syntax

Type

NEAR

FAR

PUBLIC

createSeg

Description

A near function. It can only be called from the segment in
which it is defined.

A far function. It can be called from any segment.

A public function. It can be externally declared in other
source files.

The default attribute is NEAR and private (i.e., cannot be declared externally in other
source files). The NEAR and FAR attributes cannot be used together. If more than one at­
tribute is selected, the angle brackets are required.

The autoS ave parameter specifies a list of registers to be saved when the function is in­
voked, and restored when exited. Any of the 8086's registers can be specified.

If this function is called by a function written in C, it must save and restore the SI and DI
registers.

The BP register is always saved, regardless of whether it is present in the autoSave list.

cProc procl, <FAR, dS,es>
cProc proc2, <NEAR,PUBLIC>
cProc proc3"ds

createSeg segName, /ogName, align, combine, class

This macro creates a new segment that has the specified name and segment attributes. The
macro automatically creates an assumes macro and an OFFSET macro for the new seg­
ment. This macro is intended to be used in medium-model Windows applications to define
nonresident segments. The segName parameter specifies the actual name of the segment.
This name is passed to the linker.

The logName parameter specifies the logical name of the segment. This name is used in all
subsequent sBegin, sEnd, and assumes macros that refer to the segment.

The align parameter specifies the alignment type. It can be anyone of the following:

BYTE
WORD
PARA
PAGE

data OFFSET 14-6

Example

Comments

dataOFFSET
Syntax

Example

The combine parameter specifies the combine type for the segment. It can be anyone of
the following:

COMMON
MEMORY
PUBLIC
STACK

If no combine type is given, a private segment is assumed.

The class parameter specifies the class name of the segment. The class name defines
which segments must be loaded in consecutive memory.

createSeg _INIT,INITCODE,BYTE,PUBLIC,CODE

sBegin INITCODE
assumes CS:INITCODE

mav aX,initcadeOFFSET sample

sEnd INITCODE

The alignment, combine type, and class name are described in detail in the Microsoft
Macro Assembler Reference.

The Cmacros have two predefined segments, named CODE and DATA, that any applica­
tion cari use without special definition. Medium-, large-, and huge-model applications can
define additional segments by using the createSeg macro.

dataOFFSET arg

This macro generates an offset relative to the start of the group to which the DATA seg­
ment belongs. It is similar to the OFFSET assembler operator, but automatically provides
the group name. For this reason, it should be used instead of OFFSET.

The arg parameter specifies a label name or offset value.

mv aX,dataOFFSET label

14-7

DefX
Syntax

Example

errn$
Syntax

DelX

DefX <namelist>

This macro registers the name of a user-defined variable with the Cmacros. Variables that
are not defined using the staticX, globalX, externX, parrnX, or localX macros cannot be
referred to in other macros unless the name is registered, or the variable was defined with
the DW assembler directive.

The X parameter specifies the storage size of the variable. It can be anyone of the follow­
ing:

Type

B

W

D

Q

T

CP

DP

Description

Byte

Word

Double-word

Quad-word

Ten-byte word

Code pointer (one word for small and compact models)

Data pointer (one word for small and medium models)

The name list parameter specifies a list of variable names to be defined.

maxSize db 132
DefB maxSize

dest equ wordptr es:[di]
DefW dest

errn$label, [bias]

This macro subtracts the offset of label from the offset of the location counter, then adds
bias to the result. If this result is not zero, then an error message is displayed.

The label parameter specifies a label corresponding to a memory location.

The optional bias parameter specifies a signed bias value. A plus or minus sign is required.

errnz

Example

errnz
Syntax

Examples

end of previous code
errn$ functionl

function1:

If a function that was originally located immediately after another piece of code is ever
moved, errn$ displays an error message.

errnz <expression>

14-8

This macro evaluates a given expression. If the result is not zero, an error is displayed.

The expression parameter specifies the expression to be evaluated. The angle. brackets are
required if there are any spaces in the expression.

x
y

db
db

?
?

mov ax, word ptr x
errnz «OFFSET y) - (OFFSET x) -1>

If during assembly, x and y receive anything but sequential storage locations, errnz dis­
plays an error message.

table1 struc

table1len equ $-table1
table1 ends

table2 struc

table2len equ $-table2
table2 ends

errnz table1Len-table2Len

If during assembly, the length of two tables is not the same, errnz displays an error
message.

14-9

externX
Syntax

Examples

FarPtr
Syntax

externX

externX <namelist>

This macro defines one or more names that will be the labels of external variables or func­
tions.

The X parameter specifies the storage size or function type. It can be anyone of the follow­
ing:

B

W

D

Q

T

CP

DP

NP

FP

P

Description

Constant value declared with the EQU and = directives in a
separate file

Byte

Word

Double-word

Quad-word

Ten bytes

Code pointer (one word for small and compact models)

Data pointer (one word for small and medium models)

Near function pointer

Far function pointer

Near for small and compact models; far for other models

The name list parameter specifies the list of the names of the variables or functions.

externB <DataBase>
externFP <SampleRead>

FarPtr name, segment, offset

This macro defines a 32-bit pointer value that can be passed as a single argument in a
cCall macro. In the FarPtr macro, the segment and offset values do not have to be in
registers.

The name parameter specifies the name of the pointer to be created.

globalX

Example

globalX
Syntax

Examples

14-10

The segment parameter specifies the text that defines the segment portion of the pointer.

The offset parameter specifies the text that defines the offset portion of the pointer.

FarPtr destPtr,es,<wordptr 3[si]>
cCall proc,<destPtr,ax>

globalX name, [initiaIValue] [replication]

This macro allocates public static-memory storage.

The X parameter specifies the size of the storage to be allocated. It can be anyone of the
following:

Type

B

W

D

Q

T

CP

DP

Description

Byte

Word

Double-word

Quad-word

Ten bytes

Code pointer (one word for small and compact models)

Data pointer (one word for small and medium models)

The name parameter specifies the reference name of the allocated memory.

The optional initialValue parameter specifies an initial value for the storage. The default is
zero if no value is specified.

The optional replication parameter specifies a count of the number of times the allocation
is to be duplicated. This parameter generates the DUP assembler operator.

globalW flag,l
globalB string,0, 30

14-11

labelX
Syntax

Examples

localX
Syntax

/abe/X

labelX <namelist>

This macro defines one or more names that will be the labels of public (global) variables
or functions.

The X parameter specifies the storage size or function type. It can be anyone of the follow­
ing:

Type

B

W

D

Q

T

CP

DP

NP

FP

P

Description

Byte

Word

Double-word

Quad-word

Ten bytes

Code pointer (one word for small and compact models)

Data pointer (one word for small and medium models)

Near function pointer

Far function pointer

Near for small and compact models; far for other models

The namelist parameter specifies the list of the names of the external variables or func­
tions.

labelB <DataBase>
labelFP <SampleRead>

localX <name list>, size

This macro defines one or more frame variables for the function. To keep the words in the
stack aligned, the macro ensures that the total space allocated is an even number of bytes.

10 calX

Comments

Examples

The X parameter specifies the storage size. It can be anyone of the following:

Type

B

W

D

V

Q

T

CP

DP

Description

Byte (allocates a single byte of storage on the stack)

Word (allocated on a word boundary)

Double-word (allocated on a word boundary)

Variable size (allocated on a word boundary)

Quad-word (aligned on a word boundary)

Ten-byte word (aligned on a word boundary)

Code pointer (one word for small and compact models)

Data pointer (one word for small and medium models)

14-12

The name list parameter specifies the list of the names of the frame variables for the func­
tion.

The size parameter specifies the size of the variable. It is used with localV only.

B-type variables are not necessarily aligned on word boundaries.

The localD macro creates two additional symbols, OFF name and SEG name.
OFF _name is the offset portion of the parameter; SEG _name is the segment portion.

Only the name is required when referencing a variable. Write your code like this:

mav al,varl

Not like this:

mav al ,byte ptr varl[bp]

lacalB <Ll,L2,L3>
lacalW L4
lacalD <L5>
lacalV L6,%Csize struc)

14-13

parrnX
Syntax

Comments

Examples

parmX

parrnX <namelist>

This macro defines one or more function parameters. The parameters provide access to the
arguments passed to the function. Parameters must appear in the same order as the argu­
ments in the function call.

The X parameter specifies the storage size. It can be anyone of the following:

Type

B

W

D

Q

T

CP

DP

Description

Byte (allocated on a word boundary on the stack)

Word (allocated on a word boundary)

Double-word (allocated on a word boundary)

Quad-word (aligned on a word boundary)

Ten-byte word (aligned on a word boundary)

Code pointer (one word for small and compact models)

Data pointer (one word for small and medium models)

The name list parameter specifies the list of the parameter names.

The parmD macro creates two additional symbols, OFF _name and SEG_name.
OFF _name is the offset portion of the parameter; SEG _name is the segment portion.

Only the parameter name is required when referring to the corresponding argument. Write
your code like this:

mov al,varl

Not like this:

mov al ,byte ptr varl[bp]

parmW varl
parmB <var2,var3,var4>
pa rmD <va r5>

Save

Save
Syntax

Examples

sBegin
Syntax

Examples

14-14

Save <regList>

This macro directs the next cCalI macro to save the specified registers on the stack before
calling a function, and to restore the registers after the function returns. The macro can be
used to save registers that are destroyed by the called function.

The Save macro applies to only one cCalI macro; each new cCalI must have a correspond­
ing Save macro. If two Save macros appear before a cCalI, only the second macro is recog­
nized.

The regList parameter specifies a list of registers to be saved.

Save
Save

<c1,bh,si>
<ax>

sBegin segName

This macro opens up a segment. It is similar to the SEGMENT assembler directive.

The segName parameter specifies the name of the segment to be opened. It can be one of
the predefined segments, CODE or DATA, or the name of a user-defined segment.

sBegin DATA
sBegin CODE

segNameOFFSET
Syntax

Example

segNameOFFSET arg

This macro generates an offset relative to the start of the group to which the user-defined
segment segName belongs. It is similar to the OFFSET assembler operator, but automati­
cally provides the group name. For this reason, it should be used instead of OFFSET.

The arg parameter specifies a label name or offset value.

mv aX,initcodeOFFSET label

14-15

sEnd
Syntax

Examples

staticX
Syntax

Examples

sEnd

sEnd [segName]

This macro closes a segment. It is similar to the ENDS assembler directive.

The optional segName parameter specifies a name used for readability. If it is given, it
must be the same as the name given in the matching sBegin macro.

sEnd
sEnd DATA

staticX name, [initiaIValue], [replication]

This macro allocates private static-memory storage.

The X parameter specifies the size of storage to be allocated. It can be anyone of the fol­
lowing:

Type

B

W

D

Q

T

CP

DP

Description

Byte

Word

Double-word

Quad-word

Ten bytes

Code pointer (one word for small and compact models)

Data pointer (one word for small and medium models)

The name parameter specifies the reference name of the allocated memory. The optional in­
itialValue parameter specifies an initial value for the storage. If no value is specified, the
default is zero.

The optional replication parameter specifies a count of the number of times the allocation
is to be duplicated. This parameter generates the DUP assembler operator.

staticW flag,l
staticB string, , 30

Chapter

it;
'"

Windows ODE Protocol
n"lin;I;"n UG"""'U'.

The Microsoft Windows Dynamic Data Exchange (DDE) protocol defines the
method for communicating among applications. This communication takes place
as applications send messages to each other to initiate conversations, to request
and share data, and to terminate conversations. This chapter describes these mes­
sages and the rules associated with their use. It also briefly describes several clip­
board formats which a DDE application can register for use in a DDE
conversation.

Guide to Programming provides an overview of DDE programming, including
such concepts as client, server, application, topic and item. It also introduces the
modes of DDE communication, including permanent data links, one-time trans­
fers, and remote command execution, and it explains the flow of DDE messages.

Conventions Used in This Chapter
Message-specific argument names bear prefixes indicating their type, as follows:

Prefix

a

cf

f

h

w

Description

An atom of word length (16 bits); for example, aName.

A registered clipboard format number (word length); for
example, cfFormat.

A flag bit; for example,jName.

A handle (word length) to a global memory object; for
example, hName.

Any other word-length argument; for example, wName.

15.1 Using the ODE Message Set
Each DDE message has two parameters. The first parameter, wParam (word
length), carries the handle of the sender's window; it is the same in all cases and
so is not shown in Table 15.1. The second parameter, IParam (a long word, 32
bits), is composed of a low-order word and a high-order word containing
message-specific arguments, as follows:

15-2 Reference - Volume 2

Table 15.1 DDE Messages

Message

WM_DDE_ACK

In reply to INITIATE

In reply to EXECUTE

All other messages

WM_DDE_ADVISE

WM_DDE_DATA

WM_DDE_EXECUTE

WM_DDE_INITIATE

WM_DDE_POKE

WM_DDE_REQUEST

WM_DDE_TERMINATE

WM_DDE_UNADVISE

Arguments in lParam
Low-order word High -order word

aApplication aTopic

wStatus hCommands

wStatus altern

hOptions altern

hData altern

(Reserved) hCommands

aApplication aTopic

hData altern

cfFormat altern

(Reserved) (Reserved)

(Reserved) altern

An application calls the SendMessage function to issue the WM_DDE_INIT­
lATE message or a WM_DDE_ACK message sent in response to
WM_DDE_INITIA TE. All other messages are sent using the PostMessage
function. The window handle of the receiving window appears as the first para­
meter of these calls. The second parameter contains the message to be sent, the
third parameter identifies the sending window, and the fourth parameter contains
the message-specific arguments. For example:

PostMessage(hwndRecipient, WM_DDE_MESSAGE, hwndSender,
MAKELONG(low_word, high_word))

The MAKELONG macro combines low_word and high_word into a long word.

15.2 Synchronizing the DOE Conversation
An application window that processes DDE requests from the window of a DDE
partner must process them strictly in the order in which they are received from
that partner. However, when handling messages from multiple DDE partners, the
window does not have to follow this "first in, first out" rule. In other words, only
the conversations themselves must be synchronous; the window can shift from
one conversation to another asynchronously.

For example, suppose the following messages are in a window's queue:

Message from window X
Message from window Y
Message from window X

Windows ODE Protocol Oefinition 15-3

The window must process message 1 before message 3, but it need not process
message 2 before message 3. If window Y is a lower-priority DDE-conversation
partner than window X, the window can defer processing the messages from
window Y until it has finished dealing with the messages sent by window X. The
following shows acceptable processing orders for these messages and the relative
priority implied by each order:

Order Relative Priority

2 3 Window X = window Y

3 2 Window X > window Y

2 3 Window X < window Y

If an application is unable to process an incoming request because it is waiting
for a DDE response, it must post a WM_DDE_ACK message with the ffiusy
flag set to 1 to prevent deadlock. An application can also send a busy
WM_DDE_ACK message if for any reason the application cannot process
an incoming request within a reasonable amount of time.

An application should be able to deal with the situation in which its DDE partner
fails to respond with a message within a certain time-out interval. Since the
length of this interval may vary depending on the nature of the application and
the configuration of the user's system (including whether it is on a network), the
application should provide a way for the user to specify the time-out interval.

15.3 Using Atoms
Certain arguments of DDE messages (altern, aTopic, and aApplication) are
global atoms. Applications using these atoms must explicitly delete them to
purge them from the atom list. Section 15.7, "DDE Message Directory," de­
scribes the rules for allocating and deleting atoms used by each message.

In all cases, the sender of a message must delete any atom which the intended
receiver will not receive due to an error condition, such as failure of the Post­
Message function.

15-4 Reference- Volume 2

15.4 Using Shared Memory Objects
DDE uses shared memory objects for three purposes:

• To carry a data item value to be exchanged. This is an item referenced by the
hData argument in the WM_DDE_DATA and WM_DDE_POKE messages.

• To carry options in a message. This is an item referenced by the hOptions ar­
gument in a WM_DDE_ADVISE message.

• To carry an execution-command string. This is an item referenced by the
hCommands argument in the WM_DDE_EXECUTE message and its corre­
sponding WM_DDE_ACK message.

Applications that receive a DDE shared memory object must treat it as read only.
It must not be used as a mutual read/write area for the free exchange of data.

As with a DDE atom, a shared memory object should be freed properly to pro­
vide for effective memory management. Shared memory objects should be prop­
erly locked and unlocked. Section 15.7, "DDE Message Directory," describes the
rules for allocating and deleting shared memory objects used by each message.

In all cases, the sender of a message must delete any shared memory object
which the intended receiver will not receive due to an error condition, such as
failure of the PostMessage function.

15.5 Using Clipboard Formats
You can pass data by means of any of the standard clipboard formats or with a
registered clipboard formats. See the description of the SetClipboardData func­
tion in Chapter 4, "Functions Directory," in Reference, Volume 1, for more infor­
mation on standard clipboards. See the description of the RegisterClipboard­
Format function for information on registering clipboard formats.

A special, registered format named Link is used to identify an item in a DDE
conversation. For more information, see Guide to Programming.

15.6 Using the System Topic
Applications are encouraged to support at all times a special topic with the name
System. This topic provides a context for items of information that may be of
general interest to another application.

The following list contains suggested items for the System topic. This list is not
exclusive. The data item values should be rendered in the CF _TEXT format.
Individual elements of a System topic item value should be delimited by tab
characters.

Item

SysItems

Topics

ReturnMessage

Status

Formats

Windows DOE Protocol Definition 15-5

Description

A list of the System-topic items supported by the appli­
cation.

A list of the topics supported by the application at the
current time; this list can vary from moment to mo­
ment.

Supporting detail for the most recently used
WM_DDE_ACK message. This is useful when more
than eight bits of application-specific return data are
required.

An indication of the current status of the application.
When a server receives a WM_DDE_REQUEST
message for this System-topic item, it should respond
by posting a WM_DDE_DATA message with a string
containing either "Busy" or "Ready," as appropriate.

A list of clipboard format numbers that the application
can render.

15.7 ODE Message Directory
This section describes the nine DDE messages. Included in each description is a
list of the message-specific arguments and the rules for posting and receiving
each message. The SDK contains the DDE.H header file which defines the DDE
messages and data structures described in this section.

15-6

This message notifies an application of the receipt and processing of a WM_DDE_IN­
ITIATE, WM_DDE_EXECUTE, WM_DDE_DATA, WM_DDE_ADVISE,
WM_DDE_UNADVISE, or WM_DDE_POKE message, and in some cases, of a
WM_DDE_REQUEST message.

Parameter

wParam

[Param

Description

Identifies the sending window.

The meaning of the low-order and high-order words depends on
the message to which the WM_DDE_ACK message is respond­
ing.

When responding to WM_DDE_INITIATE:

Argument

aApplication

aTopic

Description

Low-order word of [Paramo An atom that
contains the name of the replying applica­
tion.

High-order word of [Paramo An atom
that contains the topic with which the re­
plying server window is associated.

When responding to WM_DDE_EXECUTE:

Argument

wStatus

hCommands

Description

Low-order word of [Paramo A series of
flags that indicate the status of the re­
sponse.

High-order word of [Paramo A handle
that identifies the data item containing
the command string.

15-7

Comments

Posting

Parameter Description

When replying to all other messages:

Argument

wStatus

a/tem

Description

Low-order word of lParam. A series of
flags that indicate the status of the re­
sponse.

High-order word of [Paramo An atom
that specifies the data item for which the
response is sent.

The wStatus word consists of a DDEACK data structure that contains the following infor­
mation:

Bit

15

14

13-8

7-0

Name

fAck

fBusy

bAppReturnCode

Meaning

1 = Request accepted.

o = Request not accepted.

1 = Busy. An application is expected to set
fBusy if it is unable to respond to the request at
the time it is received. The fBusy flag is defined
only when fAck is zero.

0= Not busy.

Reserved for Microsoft use.

Reserved for application-specific return codes.

Except in response to the WM_DDE_INITIATE message, post the WM_DDE_ACK
message by calling the PostMessage function, not SendMessage. When responding to
WM_DDE_INITIATE, send the WM_DDE_ACK message with SendMessage.

When acknowledging any message with an accompanying a/tem atom, the application that
sends WM_DDE_ACK can reuse the a/tem atom that accompanied the original message,
or it may delete it and create a new one.

When acknowledging WM_DDE_EXECUTE, the application that sends WM_DDE_ACK
should reuse the hCommands object that accompanied the original WM_DDE_EXECUTE
message.

Receiving

Comments

15-8

If an application has initiated the termination of a conversation by sending
WM_DDE_ TERMINATE and is awaiting confirmation, the waiting application should not
acknowledge (positively or negatively) any subsequent message sent by the other applica­
tion. The waiting application should delete any atoms or shared memory objects received
in these intervening messages.

The application that receives WM_DDE_ACK should delete all atoms accompanying the
message.

If the application receives WM_DDE_ACK in response to a message with an accompany­
ing hData object, the application should delete the hData object.

If the application receives a negative WM_DDE_ACK message sent in reply to a
WM_DDE_ADVISE message, the application should delete the hOptions object sent with
the original WM_DDE_ADVISE message.

If the application receives a negative WM_DDE_ACK message sent in reply to a .
WM_DDE_EXECUTE message, the application should delete the hCommands object sent
with the original WM_DDE_EXECUTE message.

This message, posted by a client application, requests the receiving (server) application to
supply an update for a data item whenever it changes.

Parameter

wParam

[Param

Description

Identifies the sending window.

Identifies the requested data and specifies how the data is to be
sent.

Argument

hOptions

altem

Description

Low-order word of [Paramo A handle to
a global memory object that specifies
how the data is to be sent.

High-order word of [Paramo An atom
that specifies the data item being re­
quested.

The global memory object identified by hOptions consists of a DDEADVISE data struc­
ture that contains the following:

15-9

Posting

Receiving

Word Name

fAckReq

ffieferUpd

reserved

2 cfFormat

Content

If bit 15 is 1, the receiving (server) application
is requested to send its WM_DDE_DATA mes­
sages with the ACK-requested bit (fAckReq)
set. This offers a flow-control technique
whereby the client application can avoid over­
load froin incoming DATA messages.

If bit 14 is 1, the server is requested to send its
WM_DDE_DATA messages with a null hData
handle. These messages are alarms telling the
client that the source data has changed. Upon re­
ceiving one of these alarms, the client can
choose to call for the latest version of the data
by issuing a WM_DDE_REQUEST message,
or it can choose to ignore the alarm altogether.
This would typically be used when there is a
substantial resource cost associated with render­
ing and/or assimilating the data.

Bits 13-0 are reserved.

The client's preferred type of data. Must be a
standard or registered clipboard data format
number.

If an application supports more than one clipboard format for a single topic and item, it
can post multiple WM_DDE_ADVISE messages for the topic and item, specifying a differ­
ent clipboard format with each message.

Post the WM_DDE_ADVISE message by calling the PostMessage function, not Send­
Message.

Allocate hOptions by calling the GlobalAlloc function with the GEMEM_DDE_SHARE
option.

Allocate altern by calling the GlobalAddAtom function.

If the receiving (server) application responds with a negative WM_DDE_ACK message,
the sending (client) application must delete the hOptions object.

Post the WM_DDE_ACK message to respond positively or negatively. When posting
WM_DDE_ACK, reuse the altern atom or delete it and create a new one. If the
WM_DDE_ACK message is positive, delete the hOptions object; otherwise, do not delete
the object.

Comments

15-10

This message, posted by a server application, sends a data item value to the receiving
(client) application, or notifies the client of the availability of data.

Parameter

wParam

[Param

Description

Identifies the sending window.

Identifies the available data and specifies how it is sent.

Argument

hData

altem

Description

Low-order word of [Paramo A handle
that identifies the global memory object
containing the data and additional infor­
mation. The handle should be set to
NULL if the server is notifying the client
that the data item value has changed
during a "warm link." A warm link is es­
tablished by the client sending a
WM_DDE_ADVISE message with the
fDeferUpd bit set.

High-order word of [Paramo An atom
that identifies the data item for which
data or notification is sent.

The global memory object identified by hData consists of a DDEDATA data structure that
contains the following:

Word Name

1 fAckReq

reserved

Content

If bit 15 is 1, the receiving (client) application
is expected to send a WM_DDE_ACK message
after the WM_DDE_DATA message has been
processed. If bit 15 is zero, the client applica­
tion should not send a WM_DDE_ACK
message.

Bit 14 is reserved.

15-11

Posting

Receiving

Word Name

fRelease

fRequested

reserved

2 ctFormat

3-n Value[]

Content

If bit 13 is 1, the client application is expected
to free the hData memory object after pro­
cessing it. If bit 13 is zero, the client application
should not free the object. See the "Posting"
and "Receiving" sections for exceptions.

If bit 12 is 1, this data is offered in response to a
WM_DDE_REQUEST message. If bit 12 is
zero, this data is offered in response to a
WM_DDE_ADVISE message.

Bits 11-0 are reserved.

This specifies the format in which the data are
sent or offered to the client application. It must
be a standard or registered clipboard data for­
mat.

This is the data. It is in the format specified by
ctFormat.

Post the WM_DDE_DATA message by calling the PostMessage function, not SendMes­
sage.

Allocate hData by calling the GlobalAlloc function with the GMEM_DDESHARE option.

Allocate altern by calling the GlobalAddAtom function.

If the receiving (client) application responds with a negative WM_DDE_ACK message,
the sending (server) application must delete the hData object.

If the sending (server) application sets the fRelease flag to zero, the sender is responsible
for deleting hData upon receipt of either a positive or negative acknowledgement.

Do not set both the fAckReq and fRelease flags to zero. If both flags are set to zero, it is
difficult for the sending (server) application to determine when to delete hData.

If fAckReq is 1, post the WM_DDE_ACK message to respond positively or negatively.
When posting WM_DDE_ACK, reuse the altern atom or delete it and create a new one.

If fAckReq is zero, delete the altern atom.

If the sending (server) application specified hData as NULL, the receiving (client) applica­
tion can request the server to send the actual data by posting a WM_DDE_REQUEST
message.

Comments

After processing the WM_DDE_DATA message in which hData is not NULL, delete
hData unless either of the following conditions is true:

• The fRelease flag is zero.

15-12

• The fRelease flag is 1, but the receiving (client) application responds with a negative
WM_DDE_ACK message.

This message, posted by a client application, sends a string to a server application to be
processed as a series of commands. The server application is expected to post a
WM_DDE_ACK message in response.

Parameter Description

wParam

[Param

Identifies the sending window.

Specifies the commands to be executed.

Argument

reserved

hCommands

Description

The low-order word of [Param is re­
served.

High-order word of [Paramo A handle
that identifies a global memory object
containing the command(s) to be ex­
ecuted.

The command string is null-terminated. The command string should adhere to the syntax
shown below. Optional syntax elements are enclosed in double brackets ([]); single brack­
ets ([]) are a syntax element.

[opcodestring] [[opcodestring]] •..

The opcodestring uses the following syntax:

opcode[(parameter [,parameter] •••)]

The opcode is any application-defined single token. It may not include spaces, commas,
parentheses, or quotation marks.

The parameter is any application-defined value. Multiple parameters are separated by com­
mas, and the entire parameter list is enclosed in parentheses. The parameter may not in­
clude commas or parentheses except inside a quoted string. If a bracket or parenthesis
character is to appear in a quoted string, it must be doubled: ((.

15-13

Posting

Receiving

The following examples show valid command strings:

[connect][download(queryl,results.txt)][disconnect]
[query("sales per employee for each district")]
[open("sample.xlm")][run("rlcl")]

Post the WM_DDE_EXECUTE message by calling the PostMessage function, not Send­
Message.

Allocate hCommands by calling the GlobalAlloc function with the
GMEM_DDE_SHARE option.

When processing WM_DDE_ACK sent in reply to WM_DDE_EXECUTE, the sender of
the original WM_DDE_EXECUTE message must delete the hCommands object sent back
in the WM_DDE_ACK message.

Post the WM_DDE_ACK message to respond positively or negatively, reusing the hCom­
mands object.

This message, sent by either a client or server application, initiates a conversation with
applications responding to the specified application and topic names.

Upon receiving this message, all applications with names that match the aApplication
application and that support the aTopic topic are expected to acknowledge it (see the
WM_DDE_ACK message).

Parameter

wParam

[Param

Description

Identifies the sending window.

Specifies the target application and the topic.

Argument

aApplication

Description

Low-order word of [Paramo An atom that
specifies the name of the application
with which a conversation is requested.
The application name may not contain
slashes or backslashes. These characters
are reserved for future use in network im­
plementations. If the application name is
NULL, a conversation with all applica­
tions is requested.

Comments

Sending

Receiving

Parameter Description

Argument

aTopic

15-14

Description

High-order word of [Paramo An atom
that specifies the topic for which a con­
versation is requested. If the topic is
NULL, a conversation for all available
topics is requested.

If the aApplication argument is NULL, any application may respond. If the aTopic argu­
ment is NULL, any topic is valid. Upon receiving a WM_DDE_INITIATE request with a
null topic, an application is expected to send a WM_DDE_ACK message for each of the
topics it supports.

Send the WM_DDE_INITIATE message by calling the SendMessage function, not the
PostMessage function. Broadcast the message to all windows by setting the first para­
meter of SendMessage to -1, as shown:

SendMessage(-l,WM_DDE_INITIATE,hwndClient,MAKELONG(aApp,aTopic));

If the application has already obtained the window handle of the desired server, it can send
WM_DDE_INITIATE directly to the server window by passing the server's window
handle as the first parameter of SendMessage .

. Allocate aApplication and aTopic by calling GlobalAddAtom.

When SendMessage returns, delete the aApplication and aTopic atoms.

To complete the initiation of a conversation, respond with one or more WM_DDE_ACK
messages, where each message is for a separate topic. When sending WM_DDE_ACK
message, create new aApplication and aTopic atoms; do not reuse the atoms sent with the
WM_DDE_INITIATE message.

This message, posted by a client application, requests the receiving (server) application to
accept an unsolicited data item value.

The receiving application is expected to reply with a positive WM_DDE_ACK message if
it accepts the data, or with a negative WM_DDE_ACK message if it does not.

15-15

Comments

Posting

Parameter

wPm'am

IParam

Description

Identifies the sending window.

Identifies the data and specifies how it is sent.

Argument

hData

altem

Description

Low-order word of [Paramo A handle
that specifies the global memory object
containing the data and other informa­
tion.

High-order word of [Paramo An atom
that identifies the data item offered to the
server application.

The global memory object identified by hData consists of a DDEPOKE data structure that
contains the following:

Word Name

reserved

fRelease

reserved

2 cfFormat

3-n Value[]

Content

Bits 15-14 are reserved.

If bit 13 is 1, the receiving (server) application
is expected to free the memory object after pro­
cessing it. If bit 13 is zero, the receiving
application should not free the object. See the
following "Posting" and "Receiving" sections
for exceptions.

Bits 12-0 are reserved.

This specifies the client's preferred type of data.
It must be a standard or registered clipboard
data format.

This is the data. It is in the format specified by
cfFormat.

Post the WM_DDE_POKE message by calling the PostMessage function, not SendMes­
sage.

Allocate hData by calling the GlobalAlloc function with the GMEM_DDESHARE option.

Allocate altem by calling the GlobalAddAtom function.

Receiving

15-16

If the receiving (server) application responds with a negative WM_DDE_ACK message,
the sending (client) application must delete the hData object.

If the sending (client) application sets the fRelease flag to zero, the sending application
must delete hData upon receiving either a positive or negative WM_DDE_ACK message.

Post the WM_DDE_ACK message to respond positively or negatively. When posting
WM_DDE_ACK, reuse the altem atom or delete it and create a new one.

After processing the WM_DDE_POKE message, delete hData unless either of the follow­
ing conditions is true:

• The fRelease flag is zero.

• The fRelease flag is 1, but the receiving (server) application responds with a negative
WM_DDE_ACK message.

WM DOE REQUEST - -

Posting

This message, posted by a client application, requests the receiving (server) application to
provide the value of a data item.

Parameter

wParam

lParam

Description

Identifies the sending window.

Specifies the requested data and the clipboard format number for
the data

Argument

cfFormat

altem

Description

Low-order word of [Paramo A standard
or registered clipboard format number.

High-order word of [Paramo An atom
that specifies which data item is being re­
quested from the server.

Post the WM_DDE_REQUEST message by calling the PostMessage function, not Send­
Message.

Allocate altern by calling the GlobalAddAtom function.

15-17

Receiving

Posting

Receiving

If the receiving (server) application can satisfy the request, it responds with a
WM_DDE_DATA message containing the requested data. Otherwise, it responds with a
negative WM_DDE_ACK message.

When responding with either a WM_DDE_DATA or WM_DDE_ACK message, reuse the
altern atom or delete it and create a new one.

This message, posted by either a client or server application, terminates a conversation.

Parameter

wParam

IParam

Description

Identifies the sending window.

Is reserved.

Post the WM_DDE_ TERMINATE message by calling the PostMessage function, not
SendMessage.

While waiting for confirmation of the termination, the sending application should not ac­
knowledge any other messages sent by the receiving application. If the sending application
receives messages (other than WM_DDE_ TERMINATE) from the receiving application, it
should delete any atoms or shared memory objects accompanying the messages.

Respond by posting a WM_DDE_TERMINATE message.

This message, sent by a client application, informs a server application that the specified
item, or a particular clipboard format for the item, should no longer be updated. This termi­
nates the warm or hot link for the specified item.

Parameter Description

wParam Identifies the sending window.

IParam Specifies the data-request item to be canceled.

Posting

Receiving

Parameter Description

Argument

altern

cfForrnat

15-18

Description

High-order word of IPararn. An atom
that specifies the data for which the up­
date request is being retracted. When
altern is NULL, all active
WM_DDE_ADVISE conversations as­
sociated with the client are to be
terminated.

Low-order word of IPararn. The clip­
board format of the item that specifies
the clipboard format for which the up­
date request is being retracted. When
cfForrnat is NULL, all active
WM_DDE_ADVISE conversations for
the item are to be terminated.

Post the WM_DDE_UNADVISE message by calling the PostMessage function, not Send­
Message.

Allocate altern by calling the GlobalAddAtom function.

Post the WM_DDE_ACK message to respond positively or negatively. When posting
WM_DDE_ACK, reuse the altern atom or delete it and create a new one.

Appendixes
A Virtual-Key Codes

8 RC Diagnostic Messages

C Windows Debugging Messages

o Character Tables

E Windows 32-Bit Memory Management DLL

Appendix A
Virtual-Key Codes

The following list shows the symbolic constant names, hexadecimal values, and
descriptive information for Microsoft Windows virtual-key codes. The codes are
listed in numeric order.

Name

VK_LBUTTON

VK_RBUTTON

VK_CANCEL

VK_MBUTTON

VK_CLEAR

VK_RETURN

VK_SHIFT

VK_CONTROL

VK_MENU

VK_PAUSE

VK_CAPITAL

VK_SPACE

VK_PRIOR

VK_NEXT

VK_END

VK_HOME

VK_LEFT

VK_UP

Value

OIH

02H

03H

04H

05H-07H

08H

09H

OAH-OBH

OCH

ODH

lOH

llH

I2H

13H

I4H

I5H-I9H

IAH

IBH

ICH-IFH

20H

2IH

22H

23H

24H

25H

26H

Description

Left mouse button

Right mouse button

Used for control-break processing

Middle mouse button (3-button
mouse)

Undefined

BACKSPACE key

TAB key

Undefined

CLEAR key

REf URN key

SHIFrkey

CONTROL key

MENU key

PAUSE key

CAPITAL key

Reserved for Kanji systems

Undefined

ESCAPE key

Reserved for Kanji systems

SPACEBAR

PAGE UP key

PAGE DOWN key

END key

HOME key

LEFT ARROW key

UPARROW key

· A-2 Reference - Volume 2

Name Value Description

VK_RIGHT 27H RIGHT ARROW key

VK_DOWN 28H DOWN ARROW key

VK_SELECT 29H sELEcrkey

2AH OEM specific

VK_EXECUTE 2BH EXECUTE key

VK_SNAPSHOT 2CH PRINTSCREEN key for Windows
version 3.0 and later

VK_INSERT 2DH INSERT key

VK_DELETE 2EH DELETE key

VK_HELP 2FH HELP key

VK_O 30H o key

VK_l 3lH 1 key

VK_2 32H 2 key

VK_3 33H 3 key

VK_4 34H 4 key

VK_5 35H 5 key

VK_6 36H 6 key

VK_7 37H 7 key

VK_8 38H 8 key

VK_9 39H 9 key

3AH-40H Undefined

VK_A 4lH A key

VK_B 42H B key

VK_C 43H ckey

VK_D 44H Dkey

VK_E 45H Ekey

VK_F 46H Fkey

VK_G 47H Gkey

VK_H 48H Hkey

VK_I 49H I key

VK_J 4AH J key

VK_K 4BH Kkey

VK_L 4CH Lkey

VK_M 4DH Mkey

VK_N 4EH Nkey

VK_O 4FH o key

Virtual-Key Codes A-3

Name Value Description

VK_P 50H p key

VK_Q 5lH Qkey

VK_R 52H R key

VK_S 53H s key

VK_T 54H Tkey

VK_U 55H u key

VK_V 56H v key

VK_W 57H wkey

VK_X 5SH x key

VK_Y 59H y key

VK_Z 5AH zkey

5BH-5FH Undefined

VK_NUMPADO 60H Numeric key pad 0 key

VK_NUMPADl 6lH Numeric key pad I key

VK_NUMPAD2 62H Numeric key pad 2 key

VK_NUMPAD3 63H Numeric key pad 3 key

VK_NUMPAD4 64H Numeric key pad 4 key

VK_NUMPAD5 65H Numeric key pad 5 key

VK_NUMPAD6 66H Numeric key pad 6 key

VK_NUMPAD7 67H Numeric key pad 7 key

VK_NUMPADS 6SH Numeric key pad 8 key

VK_NUMPAD9 69H Numeric key pad 9 key

VK_MULTIPLY 6AH Multiply key

VK_ADD 6BH Add key

VK_SEPARATER 6CH Separater key

VK_SUBTRACT 6DH Subtract key

VK_DECIMAL 6EH Decimal key

VK_DIVIDE 6FH Divide key

VK_Fl 70H FI key

VK_F2 7lH F2 key

VK_F3 72H F3 key

VK_F4 73H F4 key

VK_F5 74H F5 key

VK_F6 75H F6 key

VK_F7 76H F7 key

VK_FS 77H F8 key

A-4 Reference - Volume 2

Name Value Description

VK_F9 78H F9key

VK_FlO 79H FlO key

VK_Fll 7AH Fll key

VK_F12 7BH F12 key

VK_F13 7CH F13 key

VK_F14 7DH F14 key

VK_F15 7EH F15 key

VK_F16 7FH F16 key

80H-87H OEM specific

88H-8FH Unassigned

VK_NUMLOCK 90H NUM LOCK key

VK_OEM_SCROLL 91H SCROLL LOCK key

92H-B9H Unassigned

VK_OEM_l BAH Keyboard-specific punctuation key
(may not appear on every keyboard)

VK_OEM_PLUS BBH Plus (+) key

VK_OEM_COMMA BCH Comma (,) key

VK_OEM_MINUS BDH Minus (-) key

VK_OEM_PERIOD BEH Period (.) key

VK_OEM_2 BFH Keyboard-specific punctuation key
(may not appear on every keyboard)

VK_OEM_3 COH Keyboard-specific punctuation key
(may not appear on every keyboard)

CIH-DAH Unassigned

VK_OEM_4 DBH Keyboard-specific punctuation key
(may not appear on every keyboard)

VK_OEM_5 DCH Keyboard-specific punctuation key
(may not appear on every keyboard)

VK_OEM_6 DDH Keyboard-specific punctuation key
(may not appear on every keyboard)

VK_OEM_7 DEH Keyboard-specific punctuation key
(may not appear on every keyboard)

VK_OEM_8 DFH Keyboard-specific punctuation key
(may not appear on every keyboard)

EOH-EIH OEM specific

VK_OEM_102 E2H <> or\! on enhanced, non-U.S.
IBM®-compatible l02-key keyboard

E3H-E4H OEM specific

Virtual-Key Codes A-5

Name Value Description

E5H Unassigned

E6H OEM specific

E7H-E8H Unassigned

E9H-F5H OEM specific

F6H-FEH Unassigned

AppendixB
RC Diagnostic Messages

This appendix contains descriptions of diagnostic messages produced by the
Resource Compiler (RC). Many of these messages appear when the Resource
Compiler is not able to compile your resources. The descriptions in this appendix
can help you determine the problem.

A (V) symbol at the beginning of a message description indicates that the
message is displayed only ifRC is run with the -V (verbose) option. These
messages are generally informational and do not necessarily indicate errors.

See Chapter 8, "Rescource Script Statements," for information on the key words
and fields specified in this appendix.

The messages are listed in alphabetical order.

Accelerator Type required (ASCII or VIRTKEY)

The type field in the ACCELERATORS statement must contain either the
ASCII or VIRTKEY value.

BEGIN expected in Accelerator Table

The BEGIN key word must immediately follow the ACCELERATORS
key word.

BEGIN expected in Dialog

The BEGIN key word must immediately follow the DIALOG key word.

BEGIN expected in menu

The BEGIN key word must immediately follow the MENU key word.

BEGIN expected in RCData

The BEGIN key word must immediately follow the RCDAT A key word.

BEGIN keyword expected in String or Error Table

The BEGIN key word must immediately follow the STRINGT ABLE or
ERRT ABLE key word.

Cannot Reuse String Constants

You are using the same value twice in a STRINGT ABLE or ERRT ABLE
statement. Make sure you are not mixing overlapping decimal and hexadecimal
values.

8-2 Reference - Volume 2

Control Character out of range [1\ A - 1\ Z]

A control character in the ACCELERATORS statement is invalid. The
character following the caret (A) must be between A and Z, inclusive.

copy of templile-2 to exelile failed

The temporary file was not able to create the new .EXE file. Make sure that the
TEMP environment variable is pointing to a drive that is not write-protected.

Copying segment id (size bytes)

(V) RC is copying the specified segment to the .EXE file.

Could not find RCPP.EXE

RCPP.ERR must be in the current directory or a directory in the PATH eI?-viron­
ment.

Could not open in-file-name

RC could not open the specified file. Make sure the file exists and that you typed
the filename correctly.

Couldn't open resource-name

RC could not open the specified file. Make sure the file exists and that you typed
the filename correctly.

Couldn't write executable

The .EXE file could not be copied to the temporary file. Make sure that the
TEMP environment variable is pointing to a drive that is not write-protected and
that the .EXE file from the linker is correct. You can check the .EXE file with the
EXEHDR program.

Creating resource-name

(V) RC is creating a new .RES file.

Empty menus not allowed

An END key word appears before any menu items are defined in the MENU
statement. Empty menus are not permitted by the Resource Compiler. Make sure
you do not have any open quotation marks within the MENU statement.

END expected in Dialog

The END key word must occur at the end of a DIALOG statement. Make sure
there are no open quotes left from the preceding statement.

RC Diagnostic Messages 8-3

END expected in menu

The END key word must come at the end of a MENU statement. Make sure you
do not have any open quotation marks or a mismatched pair of BEGIN and END
statements.

Error: Bitmap file resourcelile is not in 3.00 format.

Use SDKPaint to convert version 2.x resource files to the 3.0 format.

Error Creating resource-name

Could not create specified .RES file. Make sure it is not being created on a read­
only drive. Use the -V option to find out whether the file is being created.

Error: 1/0 error reading file.

Read failed. Since this is a generic routine, no specific filename is supplied.

Error: I/O error seeking in file

Seeking in file failed.

Error: 1/0 error writing file.

Write failed. Since this is a generic routine, no specific filename is supplied.

Error: Old DIB in resource-name. Pass it through SDKP AINT.

The resource file specified is not compatible with Windows 3.0. Make sure you
have read and saved this file using the latest version of SDKPaint.

Error: Out of memory. Try not using resources with string identifiers.

There is not enough memory to allocate for a table of string names. You can
view these names are when you use the -V option. Try to replace the string
names with numbers. For example, you can change

MYleON leON myicon.ico

to

1 leON myicon.ico

or provide the following statement in your header file:

#define MYleON 1

Error: Resource file resouce-name is not in 3.00 format.

Make sure your icons and cursors have been read and saved using the latest
version of SDKPaint.

8-4 Reference - Volume 2

Errors in .EXE file

LINK failed. See the CodeView and Utilities manual in the Microsoft C 5.1
Optimizing Compiler documentation set for more information .

. EXE file too large; relink with higher I ALIGN value

The EXE file is too large. Relink the .EXE file with a larger IALIGN value. If
the .EXE file is larger than 800K, you should use the IALIGN:32 value on your
LINK line .

. EXE not created by LINK

You must create the .EXE file with a version of LINK that is from C version 5.1
or later.

Expected Comma in Accelerator Table

RC requires a comma between the event and idvalue fields in the ACCEL­
ERATORS statement.

Expected control class name

The class field of a CONTROL statement in the DIALOG statement must be
one of the following types: BUTTON, COMBOBOX, EDIT, LISTBOX,
SCROLLBAR, STATIC, or user-defined. Make sure the class is spelled correctly.

Expected font face name

The typeface field of the FONT option in the DIALOG statement must be an
ASCII character string enclosed in double quotation marks. This field specifies
the name of a font.

Expected ID value for Menuitem

The MENU statement must contain a menuID field, which specifies the name or
number that identifies the menu resource.

Expected Menu String

Each MENU ITEM and POPUP statement must contain a text field, which is a
string enclosed in double quotation marks that specifies the name of the menu
item or pop-up menu. A MENUITEM SEPARATOR statement requires no
quoted string.

Expected numeric command value

RC was expecting a numeric idvalue field in the ACCELERATORS statement.
Make sure you have used a#define constant to specify the value and that the con­
stant is spelled correctly.

RC Diagnostic Messages 8-5

Expected numeric constant in string table

A numeric constant, defined in a #define statement, must immediately follow the
BEGIN key word in a STRINGT ABLE or ERRT ABLE statement.

Expected numeric point size

The pointsize field of the FONT option in the DIALOG statement must be an in­
teger point size value.

Expected Numerical Dialog constant

A DIALOG statement requires integer values for the x, y, width, and height
fields. Make sure these values are included after the DIALOG key word and that
they are not negative.

Expected String iri STRINGT ABLE/ERRT ABLE

A string is expected after each stringid value in a STRINGT ABLE or
ERRT ABLE statement.

ExpeCted String or Constant Accelerator command

RC was not able to determine what kind of key is being set up for the accel­
erator. The event field in the ACCELERATORS statement might be invalid.

Expecting number for ID

Expecting a number for the id field of a control statement in the DIALOG state­
ment. Make sure you have a number or #define statement for the control ID.

Expecting quoted string in dialog class

The class field of the CLASS option in the DIALOG statement must be an in­
teger or a string, enclosed in double quotation marks.

Expecting quoted string in dialog title

The caption text field of the CAPTION option in the DIALOG statement must
be an ASCII character string enclosed in double quotation marks.

File not found: fileame

The file specified in the RC command line was not found. Check to see whether
the file has been moved to another directory and whether the filename or
pathname is typed correctly.

Font Ilames must be ordinals

The pointsize field in the FONT statement must be an integer, not a string.

8-6 Reference - Volume 2

Gangload area is [size] bytes at offset Ox[address]

(V) This is the size (in bytes) of all the segments that have one of the following
attributes:

• PRELOAD

• DISCARDABLE

• Code segments that contain the entry point, WinMain

• Data segments (which should not be discardable)

The segments are placed in a continguous area in the .EXE file for fast loading.
The offset value is from the the beginning of the file. To disable gangloading, use
the -k option.

Insufficient memory to spawn RCPP.EXE

There wasn't enough memory to run the preprocessor (RCPP). You can try not
running any memory-resident software that might be taking up too much
memory. Use the CHKDSK program to verify the amount of memory you have.

Invalid Accelerator

An event field in the ACCELERATORS statement was not recognized or was
more than two characters in length.

Invalid Accelerator Type (ASCII or VIRTKEY)

The type field in the ACCELERATORS statement must contain either the
ASCII or VIRTKEY value.

Invalid control character

A control character in the ACCELERATORS statement is invalid. A valid con­
trol character consists of one letter (only) following a caret (").

Invalid Control type

Each control statement in a DIALOG statement must be one of the following:
CHECKBOX, COMBOBOX, CONTROL, CTEXT, DEFPUSHBUTTON,
EDITTEXT, GROUPBOX, ICON, LISTBOX, LTEXT, PUSHBUTTON,
RADIOBUTTON, RTEXT, SCROLLBAR.

Make sure these control statements are spelled correctly.

Invalid .EXE file

The .EXE file is invalid. Make sure that the linker created it correctly and that
the file exists. You can check the .EXE file with the EXEHDR program.

RC Diagnostic Messages 8-7

Invalid switch, option

Invalid type

You used an option that was not valid. Use RC -? for a list of the command-line
options.

The resource type was not among the types defined in the WINDOWS.H file.

Invalid usage. Use rc -? for Help

Make sure you have at least one filename to work with. Use RC -? for a list of
the command-line options.

No executable filename specified.

The -FE option was used, but no .EXE filename specified.

No resource binary filename specified.

The -FO option was used, but no .RES filename specified.

Not a Microsoft Windows format .EXE file

Make sure that the linker created the .EXE file correctly and that the file exists.
You can check the .EXE file with the EXEHDR program.

Out of far heap memory

There wasn't enough memory. Try not running any memory-resident software
that might be taking up too much space. Use the CHKDSK program to find out
how much memory you have.

Out of memory, needed n bytes

RC was not able to allocate the specified amount of memory.

RC: Invalid swap area size: -S string

Invalid swap area size. Check your syntax for the -S option on the RC command
line. The following are acceptable command lines:

RC S123
RC S123K
RC S123p

RC: Invalid switch: option

;where K is kilobytes
;where p is paragraphs

You used an option that was not valid. Use RC -? for a list of the command-line
options.

RC: RCPP preprocessor-command-string

(V) RC is passing the specified string to the preprocessor.

8-8 Reference - Volume 2

RC: RCPP.ERR not found

RCPP.ERR must be in the current directory or a directory in the PATH environ­
ment.

RC terminated by user

A CONTROL+C key combination was pressed, terminating RC.

RC terminating after preprocessor errors

See the Microsoft C 5.1 Optimizing Compiler documentation for information
about preprocessor errors.

RCPP.EXE command line greater than 128 bytes

The command line was too long.

RCPP.EXE is not a valid executable

RCPP.EXE is not valid. The file might have been altered. Try copying the file
from the SDK disks.

Reading resource-name

(V) RC is reading the .RES file.

Resources will be aligned on number byte boun~aries

(V) The alignment is determined by the ALIGN:nuniber option on the LINK
line.

Sorting preload segments and resources into gangload section

(V) RC is sorting the preloaded segments so that they can be loaded quickly.

Text string or ordinal expected in Control

The text field of a CONTROL statement in the DIALOG statement must be
either a text string or an ordinal reference to the type of control is expected. If
using an ordinal, make sure that you have a #define statement for the control.

The EXETYPE of this program is not Windows

The EXETYPE WINDOWS statement did not appear in the .DEF file. Since the
linker might make optimizations for OS/2 (the default EXETYPE) that are not
appropriate for Windows, the EXETYPE WINDOWS statement must be
specified.

Unable to create destination

RC was not able to create the destination file. Make sure there is enough disk
space.

RC Diagnostic Messages 8-9

Unable to open exelile

RC could not open this .EXE file. Make sure that the linker created it correctly
and that the file exists.

Unbalanced Parentheses

Make sure you have closed every open parenthesis in the DIALOG statement.

Unexpected value in RCData

The raw-data values in the RCDAT A statement must be integers or strings, each
separated by a comma. Make sure you did not leave out a comma or leave out a
quotation mark around a string.

Unknown DIB header format

The bitmap header is not a BITMAPCOREHEADER or BITMAPINFO­
HEADER structure.

Unknown error spawning RCPP.EXE

For an unknown reason, RCPP was not started. Try copying the file from the
SDK disks, and use the CHKDSK program to verify the amount of available
memory.

Unknown Menu SubType

The item-definition field of the MENU statement can contain only MENUITEM
and POPUP statements.

Warning: ASCII character not equivalent to virtual key code

There is an invalid virtual-key code in the ACCELERATORS statement. The
ASCII value for some characters (such as *, ", &,) is not equivalent to the virtual­
key code for the corresponding key. (In the case of the asterisk (*), the virtual­
key code is equivalent to the ASCII value for 8, the numeric character on the
same key. Therefore the statement

VIRTKEY '* '

is invalid.) See Appendix A, "Virtual-Key Codes," and Appendix D, "Character
Tables," for these values.

Warning: Discardable segment id (hex-size bytes) is excessively large.

The segment is greater than 27FFh in size. RC displays this warning because
very large segments can adversely affect memory usage. Check your map file
listing for the exact size of your segments.

8-10 Reference - Volume 2

Warning: SHIFT or CONTROL used without VIRTKEY

The ALT, SHIFT, and CONTROL options apply only to virtual keys in the
ACCELERATORS statement. Make sure you have used the VIRTKEY option
with one of these other options.

Writing resource resource-name or ordinal-id resource type (resource size)

(V) RC is writing the resource name or ordinal ID, followed by a period and the
resource type and size (in bytes).

Warning: string segment number set to PRELOAD

RC displays this warning when it copies a segment that must be preloaded but
that is not marked PRELOAD in the linker .DEF file.

All nondiscardable segments should be preloaded, including automatic data
segments, fixed segments and the entry point of the code (WinMain).

The attributes of your code segments are set by the .DEF file. Check your map
file listing for more infonnation.

AppendixC
Windows Debugging Messages

The debugging version of Microsoft Windows generates diagnostic messages
whenever it encounters an error that would otherwise cause the system to fail.
Each diagnostic message has a unique number or string that identifies the cause
of the message and potential failure. This appendix lists most of the diagnostic
message names, their corresponding hexadecimal value, explains the meaning of
each message, and in some cases suggests possible solutions.

The messages are divided into three sections that correspond to the three
Windows modules: User, ODI, and Kernel. The messages in each section are pro­
duced by a function that is contained in the respective module. This division is
necessary only because some messages in the User and ODI modules have the
same error code.

User Error Codes

Code

1

2

4

5

The error codes in this section are created by functions in the Windows User
module. Some of these messages use the same codes as do ODI messages. Check
the context of the error code to determine which module it is associated with. See
the next section, "ODI Error Codes" for more information on differentiating
these messages.

Meaning

Not enough memory was available for the requested allocation. Ask for a smaller
amount of memory. Check HEAPW ALK to see how much memory is free.
Make sure you are not creating fixed objects that are fragmenting memory.

Not enough memory was available for the requested reallocation. Do not attempt
to call the LocalRealloc function to increase the size of your segment beyond
64K. Avoid creating fixed objects that fragment memory. Make sure that the
object is not discardable.

The memory block could not be locked. Make sure the return value from your
allocation function is a valid handle. Check HEAPW ALK to see how much
memory is free. Make sure you are not creating a fixed object that is fragmenting
the memory.

The memory block could not be unlocked. Make sure the block was locked to
begin with.

C-2 Reference - Volume 2

6

7

8

9

A

B

C

D

E

F

16

17

An invalid handle was passed to a GDI function. This could occur for any GDI
object. Check the value you obtain from the Create/Get GDI object to make sure
it returned a valid value.

The handle to the window you passed to the function was not valid. Use the
IsWindow function to verify that the handle is valid and that the window has not
been destroyed.

The five preallocated display contexts (DCs) are in use. Make sure your
application calls the ReleaseDC function to release a DC when the application is
done with it. If ReleaseDC is not called, the DC will not be available to the
system or any application.

The DefWindowProc function was not found in your application. Place the
DefWindowProc function in your application and make sure you are passing the
correct parameters.

Some other application may have left the clipboard open. Pause and check again
in a few seconds. Make sure your application calls the CloseClipboard function
as soon as possible. Do not leave the clipboard open.

Your application attempted to destroy a window while it was still using a display
context (DC). Make sure your application calls the ReleaseDC function to
release a DC when the application is done with it. If ReleaseDC is not called, the
DC will not be available to the system or any application.

The keyboard driver did not initialize correctly. Rerun Setup.

The mouse driver did not initialize correctly. Rerun Setup, or make sure that the
mouse hardware did not get disconnected and that it is working outside of
Windows.

The display driver did not initialize correctly. Rerun Setup.

An attempt was made to unlock the data segment but it wasn't locked. Make sure
the data segment is locked before trying to unlock it.

The counter for windows of a particular class exceeded the limit of 32,767. Each
time a window of a particular class is created, Windows increments a class usage
counter. Each time a window of that class is destroyed, the counter is
decremented. This message occurs in a CreateWindow or CreateWindowEx
function.

The counter for windows of a particular class became a negative number. See the
preceding message for details. This message occurs in a DestroyWindow
function.

18

Windows Debugging Messages C-3

The counter for windows of a particular class was not zero when the class was
destroyed. When an application or library tenninates, Windows destroys all
windows and classes created by that application or library. This error occurs if
after the class is destroyed there still exists a window created by a different
application or library that used the destroyed class.

GOI Error Codes

Code

o
1- A

GDI errors occur when an invalid handle is passed to certain GDI functions.
These errors can be identified by the existence of ValidateHandle in the back­
trace. ValidateHandle is an internal Windows function that ensures that a handle
is valid. Make sure you check for this function in order to differentiate GDI er­
rors from User errors that have the same code number. (User messages are de­
scribed in the previous section.)

Meaning

A GDI function received a NULL object handle.

A valid handle is referencing an object that is not a valid GDI object or is a GDI
object of the wrong type. This error often occurs when an object is deleted and
the handle is reused for some other purpose in another GDI operation.

The value of the error code depends on the type of object expected by the GDI
function that generated the error. Each GDI object has a type identifier. Each
CDI function that accepts an object as a parameter detennines which object or
objects are accep~able. To ensure that the handle it receives is valid, the GDI
function calls ValidateHandle and passes it the handle and a range of acceptable
type identifiers. If the handle references an object whose type identifier does not
fall in the acceptable range, ValidateHandle generates an error code representing
the lowest value of the range.

For example, the SelectObject expects its first parameter to be a DC, a metafile
DC, or and banding metafile DC. It passes this value, along with the range (7H to
AH) to ValidateHandle. If the type identifier of the handle is not within that
range, ValidateHandle produces an error code with the value 7H.

The following list shows the type identifier of various objects:

TypeID

2

3

4

Object

Pen

Brush

Font

Palette

C-4 Reference - Volume 2

B

TypeID Object

5 Bitmap

6 Region

7 Device context

8 Disabled device context

9 Metafile device context

A Banding metafile device context

A window being destroyed had not released a DC that was obtained using the
GetDC function.

Kernel Error Codes

Code

FF

FF

FF

FF

The diagnostic messages in this section are associated with functions contained
in the Windows Kernel module. These messages are listed in numerical order.
Some numbers represent multiple messages. The retail version of Windows
displays both the code number and the message text. The debugging version of
Windows displays only the code number.

Message

gnotify - can't discard segment

This error is usually caused in real mode by a far call when the DS register is
pointing to a fixed object. Windows will not be able to discard the code segment
that made the call.

This error can be produced by the following functions: GlobalReAlIoc,
GlobalAlIoc (the wFlags parameter cannot contain GMEM_NOCOMPACT or
GMEM_NODISCARD), GlobalCompact, GlobalDiscard, GlobalWire.

Cannot GetProcAddress a task

You cannot use the GetProcAddress call for a library or the calling task.

MakeProcInstance only for current instance

This message is displayed if you use MakeProcInstance to call the entry point
of another task.

MyOpenFile not reentrant

Internal Windows error.

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

Windows Oebugging Messages C-5

gadd_free: Seg add not in range

Unable to add segment to global free list. Your application has stepped over
Windows'memory.

FREE MEMORY OVERWRITE AT

Memory listed as free does not contain CC in each byte as expected. Put a break
point at the specified address to find the problem.

free Jist: prev bad

The free global memory list was corrupted by a wild write; the pointer from the
previous entry in list does not point to the current entry.

free list: next bad

The free global memory list was corrupted by a wild write; the pointer in the next
entry does not point back to current entry.

free list: count bad - .

The free global memory list was corrupted by a wild write; the final entry in the
list does not match expected final entry.

Heap frozen in INT 3F.

Internal Windows error.

LOCAL FREE MEMORY OVERWRITE AT

The memory listed as free does not contain CC in each byte as expected.

Automatic Data Segment ·Iarger than 64K.

STACK + HEAP + STATICS combined are greater than 64K. Change the mod­
ule-definition (.DEF) file.

PatchCodeHandle, CORE DUMP FOLLOWS:

Internal Windows error.

Iru: prey bad

The free global memory list was corrupted by a wild write; the pointer from the
previous entry in the list does not point to current entry.

Iru: next bad

The free global memory list was corrupted by a wild write; the pointer in the next
entry does not point back to the current entry.

C-6 Reference - Volume 2

FF

100

100

Iru: count bad

The free global memory list was corrupted by a wild write; the final entry in the
list does not match the expected final entry.

LocalAlloc : Invalid local heap

A wild write corrupted the local heap.

lfreeadd : Invalid local heap

Unable to add segment to the local free list. Your application has overwritten the
local heap.

100 function_name: Invalid local heap

103

140

140

140

Lists the function at which the check is occurring (LocaIAlloc, LocalLock, etc.)
and generally indicates an overwrite of the local heap list.

Invalid local heap

Either a wild write occurred or the Locallnit function was not performed cor­
rectly. Leave some memory for Windows when calling Locallnit.

Local heap is busy

Two edit controls in the same dialog with the same ID value. Make sure that you
don't interchange decimal and hexadecimal numbers.

EnterCrit: local heap is busy

Internal Windows error. Attempting to reenter critical section of local memory
manager.

LeaveCrit: local heap is NOT busy

Internal Windows error. Attempting to leave critical section of local memory
manager when not already in critical section.

143 Invalid local heap

14B Invalid local heap

ISB Invalid local heap

180 LDREF: Invalid local handle

A local handle (produced in calls to LocalReAlloc, LocalLock, etc.) is invalid.

leO LocalLock: Object usage count overflow

LMEM_MOVEABLE or LMEM_DISCARDABLE memory was locked more
than the limit of 255 times.

Windows Debugging Messages C-7

IFO LocalFree: freeing locked object

Local memory was not unlocked before LocalFree was called.

IFO LocalUnlock: Object usage count underflow

Local memory was unlocked more times than it was locked.

200 gmove _stack usage error

Internal Windows error using temporary stack.

200 Leave eems stack error - -
Internal Windows error using temporary stack.

200 function_name: Invalid global heap,offender yara _reader _header

Lists the function at which check is occurring (&n = GlobalAlloc, GlobalLock,
etc.) and generally indicates overwrite of local heap list.

200 function_name: Invalid global heap,offender yara _reader _header

240

Lists the function where check failed and generally indicates overwrite of local
heap list.

If DX is nonzero, DX = offending arena header:

Code

201

202

204

208

280

IfDX is 0:

Code

210

220

240

Critical section problems

Meaning

Forward links invalid

Backward links invalid

ga_handle points to free handle

Arena points to handle

ga_sig is bad

Meaning

Allocated handles don't match used handles

Total number of handles don't match up

Total number of free handles does not match up

C-8 Reference - Volume 2

280 gdref: invalid handle

Global handle (produced in calls to GlobalReAIIoc, GlobalLock, etc.) is invalid.
Make sure you:

iii Have a window procedure for the window.

• Do a MakeProcInstance call for the window procedure.

• Export your window procedure.

2eo GlobalLock: Object usage count overflow

GMEM_MOVEABLE or GMEM_DISCARDABLE memory was locked more
than the limit of 255 times.

2FO EMS _ GlobalFree: freeing locked object

Memory was not unlocked before GlobalFree was called.

2FO GlobalFree: freeing locked object

Global memory was not unlocked before GlobalFree was called.

2FO GlobalFree: freeing locked object

Global memory was not unlocked before GlobalFree was called.

2FO GlobalUnlock: Object usage count underflow

Global memory was unlocked more times than it was locked.

2FO GlobalUnWire: Object usage count underflow

303

303

401

401

Global memory was unwired more times than it was wired.

PatchStack - invalid BP chain

Stack frame chain was invalid due to a wild write.

SearchStack - invalid BP chain

Stack frame chain was invalid due to a wild write.

BOOT: unable to load application

LoadModule failed for the shell application.

BOOT: Unable to find file pathname

File not found.

401

401

403

404

405

406

407

408

409

409

409

BOOT: Invalid .EXE file pathname

.EXE file fonnat is invalid.

BOOT: Unable to load pathname

Windows Debugging Messages C-9

LoadModule failed for a library loaded during boot time. Pass a far pointer to
the name of the module that could not be loaded.

Invalid ordinal reference

You have linked to a function that does not have an entry point in the version of
Windows you are running. Check your .DEF file to make sure you are using the
correct ordinal reference.

Call to undefined dynlink entry point at entry-point

A bad import table or wild wr:ite occurred over segment relocation table. This
message is displayed when your application calls the ordinal entry point for a
driver that no longer contains that ordinal.

Invalid start procedure

Bad EXE header.

Invalid module handle

Could not obtain EXE header for the specified module handle.

Invalid relocation record in es,bx

A wild write destroyed a relocation record.

Error saving forward reference

Out of memory loading segment from hModule of segment location

Insufficient memory was available for loading segments.

1/0 error reading segment contents from hModule of segment location

Unable to read segment due to file open, read, or seek error.

Segment contents invalid

Checksum value did not match segment contents when loading a segment.

C-10 Reference - Volume 2

409

410

411

412

4FF

501

502

503

504

505

Segment contents trashed

A wild write has occurred on the specified segment.

Error 409 occurs when a code segment was changed after it was loaded; this is
usually the result of a wild write.

Running in the protected-mode version of Windows will cause a general protec­
tion violation to occur on the code causing the violation.

Check to make sure your buffers are large enough for the operation. Also, run
Shaker to see if the problem occurs more frequently.

Error reading relocation records from

Int 21 function 3F was unable to read off the disk, or the information read is in­
compatible with the information requested.

Insert disk for specified file

Unable to load non-resident name table

When attempting to load the nonresident name table, one of the following four
possible errors occurred:

• OpenFile failed.

• Int 21 function 42 (seek) failed.

• Int 21 function 3F (load seg) failed.

• The table size is inconsistent with the contents.

INT 3F handler unable to load segment

LoadSegment failed. You will receive an "Out of memory loading segment"
message before you receive this message.

Missing resource table

Bad resource type

Bad resource name

Bad resource file

Unable to read resource from segment

Int 21 function 3F was unable to read off disk or the information read is incom­
patible with.the information requested.

505

600

700

Error loading from resource file filename

This error has one of these possible causes:

Windows Debugging Messages C-11

• The hReslnfo parameter of LoadResource is NULL.

• A wild write has destroyed the module header.

• A wild write has destroyed the EXE table.

• The resource file does not contain the resource requested.

Atom Manager errors

A wild write has occurred.

Input/Output package errors

Appendix 0
Character. Tables

IBM PC Extended Character Set
128 C 144 E: 160 a
129 i.i 145 CI! 161 i
130 e 146 d: 162 6
131 a 147 a 163 U
132 a 148 i:j 164 n
133

....
149 0 165 oN a

134 a 150 fi 166 !!

135 ~ 151 iJ 167 Q

136 e 152 1i 168 b
137 e 153 0 169

138 e 154 U 170 ..,

139 :.: 155 ¢ 171 %
140 1 156 f. 172 %
141 i 157 ¥ 173 i
142 ii • 158 I 174 «

143 " 159 I 175 »

176 I 192 I
177 I 193 I
178 I 194 I
179 ~ 195 I
180 • 196 I
181 I 197 I
182 I 198 I
183 I 199 I
184 I 200 I
185 I 201 I
186 I 202 I
187 I 203 I
188 I 204 I
189 I 205 I
190 I 206 I
191 I 207 I

I Indicates that this character is not supported by Windows.

208 I 224 I 240 I
209 I 225 Il 241 ±
210 I 226 I 242 I

211 I 227 , 243 I

212 I 228 I 244 I

213 I 229 I 245 I
214 I 230 J1 246 I

215 I 231 I 247 I

216 I 232 I 248 0

217 I 233 I 249 I
218 I 234 I 250 I
219 I 235 I 251 I

220 I 236 I 252 I
221 I 237 I 253 2

222 I 238 I 254 ..

223 I 239 I 255 I

0-2 Reference - Volume 2

ANSI Table
o

2

3

4

5

6

7

8

9

10

11

12 •

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27 •

28 •

29 •

30 •

31 •

32

33 !
34 II

35 D
36 $
37 %
38 &

39

40 (

41)

42 *
43 +

44

45 -

46 •

47 I
48 0
49 1
50 2
51 3

52 4

53 5
54 6
55 7
56 8
57 9
58

59

60 <
61

62 >
63 ?

64 @
65 A
66 B
67 C

68 D
69 E
70 F
71 G
72 H
73 I
74 J
75 K

76 L

77 M
78 H
79 0
80 P
81 Q
82 R
83 S
84 T
85 U

86 U

87 W
88 X

89 Y
90 Z
91 [

92 \

93]

94 A

95

96 ...

97 a
98 b

99 C

100 d

101 e
102 f .
103 g
104 h
105 i
106 j
107 k
108 1
109 III

110 n
111 0

112 P
113 q
114 r
115 5
116 t
117 U

118 U

119 W
120 X

121 Y
122 Z

123 {

124 I
125 }

126

127 •

128

129

130

131

132

133

134

135

136

137

138

139

140 •

141 •

142 •

143 •

144 •

145 '

146 '

147 •

148 •

149 •

150 •

151 •

152 •

153 •

154 •

155 •

156 •

157 •

158 •

159 •

• Indicates that this character is not supported by Windows.

160

161 i
162 ¢

163 E
164 1=1

165 ¥
166

167 §
168

169 ©

po ~

171 «

172 -.

173 -

174 @

175

176 0

177 ±
178 2

179 3

180 '

181 J1
182 ,-

183

184 ~

185 1

186 Q

187 »

188 %
1~9 %
190 %i
191 b

192 A
193 A
194 it
195 A
196 A
197 A
198 II

199 C
200 E
201 E
202 E
203 E
204 i
205 i
206 i
207 I
208 f)

209 f.i

210 0
211 {j

212 0
213 ii
214 i:j
215 X

216 It

217 U
218 U
219 0
220 U
221 Y
222 Il
223 (}

224 a
225" a
226 a
227 a
228 a
229 a
230 ce
231 ~

232 e
233 e
234 e
235 e
236 i
237 i
238 i
239 :.:

240 6

241 n
242 0
243 6
244 8
245 0'
246 i:i
247

248 H

249 U
250 U
251 il
252 U
253 Y
254 Jl
255 Y

AppendixE
Windows 32-Bit Memory Management OLL

One of the significant features of the Intel 80386 and 80486 microprocessors is
the availability of 32-bit registers for the manipulation of code and data. Applica­
tions written to use these registers can avoid the segmented memory model of ear­
lier CPUs and instead use a "flat" memory model in which memory is viewed as
a single, contiguous block.

Although Microsoft Windows version 3.0 continues to adhere to a segmented
memory model, Windows does provide a set of functions that allow an applica­
tion to make use of the 32-bit capabilities of the 80386 and 80486 processors.
These functions are available to an application through a dynamic-link library
(DLL) named WINMEM32.DLL. This DLL is supplied as part of the SDK and is
not part of the retail version of Windows. Consequently, if your application calls
functions in WINMEM32.DLL, you must include WINMEM32.DLL with your
application when you distribute it to your application's end users.

This appendix introduces the functions contained in WINMEM32.DLL and ex­
plains how to use these functions in the context of a Windows application. It
covers the following information:

• A brief look at some of the differences between a segmented memory model
and a flat memory model

• Using WINMEM32.DLL to take advantage of the 32-bit capabilities of the
80386 and 80486 processors

• Programming considerations when using these capabilities in a Windows
application

• Common approaches for using 32-bit memory in a Windows application

A directory of the functions supplied by WINMEM32.DLL follows this informa­
tion. The appendix concludes with several assembly-language code examples il­
lustrating how to use the DLL's functions.

IMPORTANT This appendix assumes that you are thoroughly familiar with the archi­
tecture and code- and memory-management features of the 80386/80486 processors. This
appendix does not attempt to explain these features, and assumes that you are familiar with
the terminology and concepts associated with that architecture.

Only experienced Windows-application developers with extensive experience writing as­
sembly-level code should attempt to use these functions in an application.

E-2 Reference - Volume 2

E. 1 Segmented and Flat Memory Models
The 80x86 family of microprocessors implement a segmented memory model in
which system memory is divided into 64K segments. In the native mode of these
processors, the address of any byte consists of two 16-bit values: a segment
address and an offset. In the protected mode of the 80286, 80386, and 80486 pro­
cessors, the segment address is replaced by a selector value which the processor
uses to access the 64K segment. In both modes, memory objects larger than 64K
will occupy all or part of several segments. An application cannot access these
objects as though they consist of a single contiguous block simply by in­
crementing a pointer to the memory. Instead, the application can increment only
the offset portion of the address, taking care not to exceed the 64K boundary of
the segment.

The 80386 processor introduced 32-bit registers that parallel the 16-bit registers
of older members of the 80x86 family. These registers make it possible for the
first time to access memory in segments larger than 64K. In fact, the maximum
segment size is potentially so large (232 bytes) that a flat memory model utilizing
a single segment is noW feasible. In this model, an application's code and/or data
occupies a single segment. The application can manipulate the 32-bit offset por­
tion of the memory as though it were a simple pointer. The application can incre­
ment and decrement the pointer/offset throughout the address space without
having to deal with multiple segment boundaries.

To a certain extent, then, the flat memory model most closely resembles the tiny
memory model in which both code and data occupy a single segment; except, of
course, that the segment is much larger than the 64K limit imposed by the seg­
mented memory model. As in the tiny memory model, the beginning of the seg­
ment of the flat memory model can appear anywhere in memory. In other words,
the segment-descriptor portion of the address can refer to virtually any location
in memory. As the application moves through memory, the segment descriptor
never changes. Only the offset is incremented and decremented to point to differ­
ent locations in memory.

As this appendix will note, it is not possible to implement a Windows application
using an exclusively flat memory model. Windows itself relies on the 16-bit seg­
mented memory model, and so any application that interacts with Windows must
implement at least one 16-bit code segment. Despite this limitation, however, it
is possible for a Windows application to reside largely in one or more 32-bit code
segments and to use 32-bit data segments. The WINMEM32.DLL library makes
this possible in a way that ensures the application will cooperate fully with
Windows and similar platforms.

Windows 32-Bit Memory Management OLL £-3

E.2 Using the WINMEM32.0LL Library
Although you could directly implement flat memory model code in your
Windows application, this implementation would necessarily be unique to your
application. As a result, your application might not run with future versions of
Windows or with other compatible platforms.

WINMEM32.DLL supplies a standard method for implementing a flat memory
model that is guaranteed to run with future versions of Windows and other com­
patible platforms. It gives your application access to services for allocating, real­
locating, and freeing 32-bit memory objects; for translating 32-bit pointers to
16-bit pointers that can be used by Windows and DOS functions; and for aliasing
a data segment to a code segment so you can execute code loaded into a 32-bit
segment.

Your application can load WINMEM32.DLL when Windows is running in real,
standard, or 386 enhanced mode. However, since the 32-bit registers of the
80386/80486 processor are available only when Windows is in 386 enhanced
mode, WINMEM32.DLL is enabled only in that mode. If your application can
run in real or standard mode, you must design your application so that it can
access 16-bit memory instead of 32-bit memory in these modes. You can deter­
mine the mode in which Windows is running by calling the GetWinFlags
function.

WINMEM32.DLL contains eight functions that enable your application to access
32-bit memory. The following list summarizes each of these functions:

Function

Giobal32Alloc

Giobal32Realloc

Giobal32Free

Giobal16Pointer Alloc

Giobal16PointerFree

Giobal32CodeAlias

Giobal32CodeAliasFree

GetWinMem32Verwsion

Description

Allocates a block of 32-bit memory.

Changes the size of a 32-bit memory object.

Frees a 32-bit memory object.

Converts a 32-bit pointer to a 16-bit pointer.

Frees a pointer alias created by
Giobal16Pointer Alloc.

Creates a code alias for a 32-bit memory ob­
ject, allowing code in the the object to be
executed.

Frees a code alias created by
G lobal32CodeAlias.

Returns the version number of the
WINMEM32.DLL API.

£-4 Reference - Volume 2

A directory listing of these functions appears later in this appendix.

WINMEM32.DLL is a standard Windows DLL, and so your application loads it
as it would any other DLL. In addition to the DLL, the SDK provides the
C-Ianguage WINMEM32.H include file to declare the functions in your applica­
tion, and the import library WINMEM32.LIB to allow your application to import
the functions of the DLL when you link your application.

The calling convention of the WINMEM32.DLL functions is the same as for
other Windows functions. The DLL entry points are external F AR PASCAL pro­
cedures. They preserve SS, BP, DS, SI, and DI, and they return values in AX or
DX:AX.

E .. 3 Considerations for Using 32-8it Memory
As previously noted, Windows adheres to the segmented memory model. That is,
all far pointers are in the form 16: 16 consisting of a 16-bit segment address (in
real mode) or selector (in protected mode), combined with a 16-bit offset within
the segment. An application using the 32-bit registers of the 80386/80486 proces­
sor cannot directly call the Windows functions because its far pointers are in the
form 16:32 and Windows cannot deal with the extra 16 bits in the offset portion
of the address.

Because of this conflict, a Windows application cannot reside exclusively in a 32-
bit segment. It must contain at least one 16-bit "helper" code segment through
which it interacts with Windows (including WINMEM32.DLL). In other words,
all calls to Windows functions must be made in the helper code segment. The
helper segment contains the code that converts the 16:32 pointers in the 32-bit
segment to the 16:16 pointers used by Windows functions. This segment also per­
forms the same tasks for the application when the application is making calls to
DOS, to other DLLs, and to any other code that exclusively uses 16: 16 pointers.

An important limitation on this helper segment is that it must not be discardable.
If the segment were discarded and a 32-bit segment were to attempt to access the
segment, an indirect call into the Windows kernel module to reload the segment
would result. Since the source of this indirect call would not be a 16-bit segment,
the system might crash.

Another important consideration is that your application must not assume any­
thing about the state of the 32-bit registers around 16: 16 API calls. For instance,
the Windows API calls preserve SI and DI, but they presently do not preserve
ESI and ED!. If the application wants to preserve 32-bit registers around 16: 16
API calls, it must explicitly push and pop the register values around the calls. If
the 32-bit code segment that calls a Windows function (via the helper segment)
assumes that ESI and EDI will be preserved when the Windows function returns,
the helper segment must explicitly save the registers before making the actual
Windows function call. The helper segment must then restore the registers when
the Windows function returns.

Windows 32·Bit Memory Management OLL £·5

This rule also applies to return values when a 32-bit segment indirectly calls a
Windows function and the caller expects a 32-bit return value. The helper
segment must explicitly set the hign-order 16 bits of the return value when it
moves it into the EAX register, as shown in the following examples:

MOVEZX EAX,AX Unsigned return

MOVESX EAX,AX Signed return

All these considerations apply equally to calls to Windows DLLs, DOS, and
other 16-bit APIs.

£.3: 1 The Flat Model Under Windows
In the Windows environment, system memory is a shared resource which
Windows manages on behalf of all applications. For this reason, a true flat
memory model is not possible in the Windows environment. When an applica­
tion allocates 32-bit memory in Windows, the memory that Windows gives the
application can be located anywhere in physical memory. The memory to which
the selector refers is specific to the application and does not include system-wide
memory locations. In other words, the selector that the application receives does
not refer to interrupt vector O. This means that offset 400h for the selector does
not point to the DOS ROM BIOS data area, for example.

£.3.2 The Application Stac/(
Windows has problems operating in an environment of mixed segment types
(both 16:16 and 16:32 segments). As a result, the stack selector size must match
the corresponding code selector size. In other words, when the processor is ex­
ecuting code in a 16:32 (USE32) code segment, the selector in the SS register
must also be 16:32. And when code in a 16: 16 (USE 16) segment is executing,
the SS register must contain a 16: 16 selector.

When the 80386/80486 processor is executing on a USE16 stack segment, it uses
the low-order 16 bits of the ESP register as the SP register. Since only the lower
16 bits are of use when the processor is executing on a USE 16 stack segment, it
does not control how the upper 16 bits of the ESP register are set. As a result, the
upper 16 bits are set at random. When an application switches to a USE32 stack
segment, the ESP register will contain a corrupted pointer unless the high 16 bits
of ESP are set properly.

For example, a Windows application has a USE32 code segment and a USE16
helper segment, but (improperly) only a USE32 stack. When the application calls
from its USE32 code into the USE16 segment, it stays on its USE32 stack. The
USE16 code segment calls a Windows function, which changes the selector in
the SS register to a USE16 selector. Since the stack is now USEI6, the upper 16
bits of the ESP register are set at random. The code that originally switched
stacks then restores the original selector in SS and, not knowing that it referred to

£-6 Reference - Volume 2

a USE32 stack, restores the 16-bit SP register instead of the full 32 bits of the
ESP register. As a result, the USE32 stack now has an invalid pointer in the ESP
register.

There are a number of ways to deal with this problem. First, an application can
maintain two separate stacks, one USE16 and the other USE32. Maintaining sepa­
rate stacks requires you to include extra code -for example, you must copy para­
meters for stack-calling conventions such as C. Another solution would be to
maintain one stack but two stack selectors, again one USE16 and the other
USE32. Both selectors would point to the same USE32 memory. This would re­
quire the USE32 stack to be restricted to ESP values less than or equal to FFFFh.

In either case, the USE16 code segment must switch to the USE32 stack immedi­
ately before calling into a USE32 code segment. When control returns from the
USE32 code segment to the USE16 code segment, the USE16 segment must im­
mediately switch back to the USE16 stack before doing anything else.

Since the problem with stack switching is the corruption of the high 16 bits of
ESP, a Windows application with 16:32 code must make sure that it sets the high
16 bits of ESP when it is switching onto the USE32 stack selector. It sets these
bits by placing the selector into SS, as shown in the following example:

MOV SS,word ptr [Use32StackSel]
MOV ESP,dword ptr [Use32StackOffset]

MOV SS,word ptr [Use32StackSel]
MOVZX ESP,word ptr [Use32StackOffset]

MOV SS,word ptr [Use32StackSel]
MOVZX ESP,SP

E.3.3 Interrupt-Time Code
Because Windows is a 16-bit environment, Windows has problems dealing with
a mixed code-type environment, a 32-bit code segment in a Windows application
must not contain code that is executed at interrupt time. Also, it must not contain
data that is accessed at interrupt time. Any code executed at interrupt time must
be in a USE16 code segment running on a USE16 stack. Data used at interrupt
time must be USE16 data. This rule also applies to processor exceptions (such as
the coprocessor exception) since they are handled like interrupts. Note, however,
that it is acceptable for a 32-bit code segment to access data in a USE16 data
segment.

Windows 32-8it Memory Management OLL £-7

E.3.4 Programming Languages
As should be obvious by now, the helper segment has to perform very low-level
tasks to manage transitions between USE16 and USE32 stacks, and between
USE16 and USE32 code. For this reason, it is difficult to use a high-level lan­
guage such as C to write the helper segment code. Even if you were to write the
helper segment in C, you would have to add assembly-language support for the
more difficult tasks. In most cases, then, it is easier and more efficient to write
the entire helper segment in assembly language.

E.4 Using 32-8it Memory in a Windows Application
There are three common uses for 32-bit memory in a Windows application. In in­
creasing order of complexity, they are:

• Using 32-bit data objects in 16-bit code

• Using 32-bit code and data in a subroutine library

• Using 32-bit code and data for the main program

The following sections briefly describe each of these approaches.

E.4.1 Using 32-Bit Data Objects
The simplest use of 32-bit memory is to store data that is used exclusively by
USE16 code segments. In this case, the application contains no USE32 code
segments and so does not require a dedicated helper segment. Instead, any (or
all) of its code segments performs the necessary tasks of allocating, reallocating,
and freeing the 32-bit memory. If data from the 32-bit memory is to be passed to
Windows functions or other 16-bit functions, the application's USE16 code seg­
ment also performs the aliasing of 32-bit pointers to 16-bit pointers using the
Gioba116Pointer Alloc function.

£-8 Reference - Volume 2

£.4.2 Using 32-Bit Code and Data in a Subroutine Library
Using 32-bit memory for code and data can simplify porting an application from
a 32-bit platforms to the Windows environment when portions of the application
can be isolated as a subroutine library. This subroutine library serves as a low­
level engine, but does not call Windows or DOS functions.

As when the 32-bit memory is used exclusively for data storage, the USE16 code
segment retains control of the program. Typically, the USE 16 segment allocates
the 32-bit memory, creating one or more objects for code and data. In addition to
the data-management tasks described in the previous section, the USE16 segment
also loads the subroutine code into one of the 32-bit segments, fixes up the point­
ers in the code as required, and creates a code-segment alias to permit the code to
be executed. The USE16 code segment is responsible for maintaining control of
the program flow, calling into the USE32 code segment when it requires the low­
level services of the subroutine library.

£.4.3 Using 32-Bit Code and Data for the Main Program
The most complex use of 32-bit memory involves placing the primary control of
the program in a 32-bit code segment. In this type of application, the USE16 seg­
ment is reduced exclusively to helper status. During initialization, the USE16 seg­
ment allocates the 32-bit memory for code and data, loads the code into the
USE32 segment, creates a code-segment alias for the USE32 segment, and then
calls the main entry point in the USE32 segment.

From that point, the USE32 segment takes control of the program, calling into
the USE16 helper segment only when the application needs to call Windows or
DOS functions. The USE32 segment continues to control the flow of the pro­
gram until the application is ready to terminate. Only then does it return control
to the USE16 segment so the USE16 segment can free the 32-bit memory and
perform other garbage collection before the application quits.

Windows 32-8it Memory Management OLL E-9

E.5 Functions Directory
This section describes the functions in WINMEM32.DLL. Most of these func­
tions return zero to indicate success or a nonzero error-code value to indicate
failure. The following list describes these error codes.

Value

2

3

4

5

Meaning

Invalid function. The current Windows mode does not support
this function. Windows supports the 32-bit memory functions
only in 386 enhanced mode.

Invalid flags. The wFlags parameter contained invalid bit set­
tings. The wFlags parameter currently is not used and must be
set to zero.

Invalid parameter. One of the parameters was invalid. For ex­
ample, a size parameter was out of range.

Selector not available. There is not enough room in the descrip­
tor table(s) to allocate the required selector(s). It may be
necessary to advise the user to close other Windows applications.

Insufficient memory. There is not enough memory to satisfy the
requested allocation or reallocation.

GetWinMem32 Version £-10

GetWinMem32Version []]]
Syntax

Return Value

WORD GetWinMem32Version(

This function returns the API version implemented by the DLL. This is not the version
number of the DLL itself.

This function has no parameters.

The return value specifies the version of the 32-bit memory API implemented by
WINMEM32.DLL. The high-order 8 bits contain the major version number, and the
low-order 8 bits contain the minor version number. The current API version number
is 1.00 (1 OOh): the major version number is 1, and the minor version number is O.

Giobal16PointerAlioc []]]
Syntax

Return Value

WORD Globa116PointerAIloc(wSelector, dwOffset, IpBuffer, dwSize, wFlags)

This function converts a 16:32 pointer into a 16:16 pointer alias that the application can
pass to a Windows function or other 16: 16 functions.

Parameter

wSelector

dwOffset

IpBuffer

dwSize

wFlags

Type/Description

WORD Specifies the selector of the object for which an alias is to
be created. This must be the selector returned by a previous call to
Global32AIloc.

DWORD Specifies the offset of the first byte for which an alias is
to be created. The offset is from the first byte of the object specified
by the wSelector parameter. Note that wSelector:dwOffset forms a
16:32 address of the first byte of the region for which an alias is to be
created.

LPDWORD Points to a four-byte location in memory that re­
ceives the 16:16 pointer alias for the specified region.

DWORD Specifies the addressable size in bytes of the region for
which an alias is to be created. This value must be in the range 1 to
10000h.

WORD Is reserved and must be set to zero.

The return value is zero if the function was successful. Otherwise, it is one of the error
codes described at the beginning of this section.

E-11

Comments

Global 16PointerFree

When this function returns successfully, the location pointed to by the IpBuffer parameter
contains a 16: 16 pointer to the first byte of the region. This is the same byte to which
wSelector:dwO./fset points. .

The returned selector is a read/write, expand up, small (B bit clear) data descriptor. The
descriptor DPL and the setting of granularity (the G bit) are at the discretion of the system,
and so the application should not assume their settings. The descriptor DPL and the selec­
tor RPL are appropriate for a Windows application.

NOTE An application must not change the setting of any fields in the descriptor or the selector RPL.
Doing so can result in a system crash and will prevent the application from running on compatible
platforms.

Because of tiling schemes implemented by some systems, the offset portion of the returned
16: 16 pointer is not necessarily zero.

An application should not assume the size limit of the returned selector. Instead, an applica­
tion should assume that at least dwSize bytes can be addressed starting at the 16: 16 pointer
created by this function.

Giobal16PointerFree IJI]
Syntax

Return Value

Comments

WORD Globa116PointerFree(wSelector, dwAlias, wFlags)

This function frees the 16: 16 pointer alias previously created by a call to the
Gioba116Pointer Alloc function.

Parameter

wSelector

dwAlias

wFlags

Type/Description

WORD Specifies the selector of the object for which the alias is to
be freed. This must be the selector returned by a previous call to
Global32AlIoc.

DWORD Specifies the 16: 16 pointer alias to be freed. This must
be the alias (including the original offset) returned by a previous call
to Gioba116Pointer Alloc.

WORD Is reserved and must be set to zero.

The return value is zero if the function was successful. Otherwise, it is one of the error
codes described at the beginning of this section.

An application should free a 16: 16 pointer alias as soon as it is no longer needed. Freeing
the alias releases space in the descriptor table, a limited system resource.

Giobal32Alioc E-12

Giobal32Alloc [[[]
Syntax

Return Value

Comments

WORD GlobaI32AlIoc(dwSize, IpSe lector, dwMaxSize, wFlags)

This function allocates a block of memory to be used as a USE32 code or data segment
and retrieves the selector portion of the 16:32 address of the memory block. The first byte
of the object is at offset 0 from this selector.

Parameter

dwSize

IpSelector

dwMaxSize

wFlags

Type/Description

DWORD Specifies the initial size in bytes of the block to be allo­
cated. This value must be in the range of 1 to 4000000h (64
megabytes).

LPWORD Points to a two-byte location in memory that receives
the selector portion of the 16:32 address of the allocated object.

DWORD Specifies the maximum size in bytes that the object will
reach when it is reallocated by the Global32Realloc function. This
value must be in the range of 1 to 4000000h (64 megabytes). If the
application will never reallocate this block of memory, the dwMax­
Size parameter should be set to the same value as the dwSize
parameter.

WORD Is reserved and must be set to zero.

The return value is zero if the function was successful. Otherwise, it is one of the error
codes described at the beginning of this section.

If the Global32AlIoc function fails, the value to which IpSelector points is zero. If the
function succeeds, IpSelector points to the selector of the object. The valid range of offsets
for the object referenced by this selector is in the range of 0 to (but not including) dwSize.

The returned selector is a read/write, expand-up, big (B bit set), data descriptor. The
descriptor DPL and the setting of granularity (the G bit) are at the discretion of the system;
the application should not assume these settings. Since the system sets the granularity, the
actual size of the object (and the selector size limit) may be greater than the requested size
by up to one byte less than 4K. The descriptor DPL and the selector RPL will be appro­
priate for a Windows application.

NOTE An application must not change the setting of any fields in the descriptor or the selector RPL.
Doing so can result in a system crash and will prevent the application from running on compatible
platforms.

E-13 Giobal32CodeAlias

The allocated object is neither moveable nor discardable, but can be paged. Since page
locking an object is useful only if the object contains code or data that is used at interrupt
time, and since 32-bit memory cannot be used at interrupt time, an application should not
page lock a 32-bit memory object.

Giobal32CodeAlias []]]

Syntax

Return Value

Comments

WORD GlobaI32CodeAlias(wSelector, IpAlias, wFlags)

This function creates a 16:32 (USE32) code alias selector for a 32-bit memory object pre­
viously created by the Giobal32Alloc function. This allows the application to execute
code contained in the memory object.

Parameter

wSelector

lpAlias

wFlags

Type/Description

WORD Specifies the selector of the object for which an alias is to
be created. This must be the selector returned by a previous call to
Global32Alloc.

LPWORD Points to a two-byte location in memory that receives
the 16:32 code-segment alias selector for the specified object.

WORD Is reserved and must be set to zero.

The return value is zero if the function was successful. Otherwise, it is one of the error
codes described at the beginning of this section.

If the function fails, the value pointed to by the lpAlias parameter is zero. If the function is
successful, lpAlias points to a USE32 code-segment alias for the object specified by the
wSelector parameter. The first byte of the object is at offset 0 from the selector returned in
lpAlias. Valid offsets are determined by the size of the object as set by the most recent call
to the Giobal32Alloc or Giobal32Realloc function.

The returned selector is a read/execute, nonconforming, USE32 (D bit set) code descriptor.
The descriptor DPL and the setting of granularity (the G bit) are at the discretion of the sys­
tem, and so the application should not assume their settings. The granularity will be con­
sistent with the current data selector for the object. The descriptor DPL and the selector
RPL are appropriate for a Windows application.

NOTE An application must not change the setting of any fields in the descriptor or the selector RPL.
Doing so can result in a system crash and will prevent the application from running on compatible
platforms.

Global32CodeAliasFree E-14

An application should not call this function more than once for an object. Depending on
the system, the function might fail if an application calls it a second time for a given object
without first calling the Giobal32CodeAliasFree function for the object.

Giobal32CodeAliasFree [[QJ
Syntax

Return Value

WORD GlobaI32CodeAliasFree(wSelector, wAlias, wFlags)

This function frees the USE32 code selector alias previously created by a call to the
Giobal32CodeAlias function.

Parameter

wSelector

wAlias

wFlags

Type/Description

WORD Specifies the selector of the object for which the alias is to
be freed. This must be the selector returned by a previous call to
Global32Alloc.

WORD Specifies the USE32 code selector alias to be freed. This
must be the alias returned by a previous call to Global32CodeAlias.

WORD Is reserved and must be set to zero.

The return value is zero if the function was successful. Otherwise, it is one of the error
codes described at the beginning of this section.

Giobal32Free [[QJ
Syntax

Return Value

WORD GlobaI32Free(wSelector, wFlags)

This function frees an object previously allocated by the Giobal32Alloc function.

Parameter

wSelector

wFlags

Type/Description

WORD Specifies the selector of the object to be freed. This must
be the selector returned by a previous call to Global32Alloc.

WORD Is reserved and must be set to zero.

The return value is zero if the function was successful. Otherwise, it is one of the error
codes described at the beginning of this section.

E-15

Comments

Giobal32Realioc

This function frees the object itself, as well as all aliases created for the object by the
32-bit memory API.

NOTE Before terminating, an application must call this function to free each object allocated by
G1obal32Alloc to ensure that all aliases created for the object are freed.

Giobal32Realioc []]]
Syntax

Return Value

Comments

WORD GlobaI32Realloc(wSelector, dwNewSize, wFlags)

This function changes the size of a 32-bit memory object previously allocated by the
Giobal32Alloc function.

Parameter

wSelector

dwNewSize

wFlags

Type/Description

WORD Specifies the selector of the object to be changed. This
must be the selector returned by a previous call to Global32Alloc.

DWORD Specifies the new size in bytes of the object. This value
must be greater than zero and less than or equal to the size specified
by the dwMaxSize parameter of the Giobal32Alloc function call that
created the object.

WORD Is reserved and must be set to zero.

The return value is zero if the function was successful. Otherwise, it is one of the error
codes described at the beginning of this section.

If this function fails, the previous state of the object is unchanged. If the function succeeds,
it updates the state of the object and the state of all aliases to the object created by the
32-bit memory API. For this reason, an application must call the Giobal32Realloc to
change the size of the object. Using other Windows functions to manipulate the object will
result in corrupted aliases.

This function does not change the selector specified by the wSelector parameter. If this
function succeeds, the new valid range of offsets for the selector is in the range of 0 to (but
not including) dwNewSize.

The system determines the appropriate granularity of the object. As a result, the actual size
of the object (and the selector size limit) may be greater than the requested size by up to
one byte less than 4K.

E-16 Reference - Volume 2

; __________ 0 __ _

SAMPLE code for WINMEM32 DLL

e __ _ ,

.386p

memS equ

. xli st

include cmacros.inc

NOTE that we CANNOT use the normal CMACROS segment macros:

CreateSeg
sBegin
sEnd

because since we are .386p the default segment type is USE32. Our segments
need to be USE16 so we have to declare our segements manually so that the
USE16 segment attribute is included.

include windows.inc

.1 i st

These equates would normally be in an app specific include file

error_bad_file EQU
error_wrong_mode EQU

08001h
08002h

e ___ _ ,

; External WINMEM32 Procedures

externFP
externFP
externFP
externFP
externFP
externFP
externFP
externFP

GetWinMem32Version
Globa132Alloc
Globa132Realloc
Globa132Free
Global16PointerAlloc
Global16PointerFree
Globa132CodeAlias
Globa132CodeAliasFree

e __ _ ,

; External Windows Procedures

externFP
externFP

OpenFile
GetWinFlags

Windows 32-8it Memory Management OLL £-17

externFP
externFP
externFP
externFP

llseek
1 read
lclose

OemToAnsi

MANUAL VERSION OF: createSeg _HELPERCODE,hcode,word,public,CODE

NOTE that this segment MUST NOT BE DISCARDABLE, it should be fixed.
This is because the segment is called by USE32 code.

HELPERCODE segment word publ i c 'CODE' use16
HELPERCODE ends

MANUAL VERSION of the automatic data segment declaration

DATA segment word public 'DATA' use16
DATA ends

DATA segment use16

global 0 AddrOEMToANSI,0 Address of OEMToANSI helper function
global 0 AddrDOSGetFreeSpace,0 Address of DOS Get disk Free space

helper function
globalD U32RetVal,0 Return code from USE32 ca 11

global 0 U16StackAlias,0 Ali as for the stack

global 0 EntryStackSave,0 stack ptr save location

This FWORD forms the entry point for the USE32 code

U32EntryPt
global 0
globalW

globalW

DATA ends

LABEL FWORD
U32EntOff,00010000h
U32CodeSe 1 ,0

U32DataSel,0

HELPERCODE segment use16
assume cs:_HELPERCODE

Entry assumed at offset 64K
CODE alias for the BIG object

DATA selector for the BIG object

.*** ,

SetupCallUSE32

SetupCallUSE32(fName)

Setup and call into USE32 code

E-18 Reference - Volume 2

ASSUMPTI ONS:

ENTRY:

EXIT:

USES:

The USE32 Image is a 0 ORGed 32 bit code image with NO HEADER.
The first 64k of the image (offsets 00000000-0000FFFFh) is reserved

for the stack. We put the stack here so that the required stack
switching (USE32(->USE16) is simply a matter of changing SS.

The entry point of the USE32 code is assumed to be right after the
stack at offset 00010000h in the image. We enter with OS, FS, GS
and SS set to the FLAT data segment, and CS set to the flat code
segment. It is the responsibility of the USE32 entry point to set
ES AND PRESERVE IT FOR US.

When this code wishes to call the two provided USE16 helper routines,
it looks up the call addresses in the AddrOEMToANSI and
AddrDOSGetFreeSpace variables in the _DATA segment.
This "loader" code actually needs to pass the selector for the
_DATA segment to the USE32 code so that it can access the data
segment, or it needs to copy the call addresses into the USE32
code/data segment. This detail of the implementation is NOT
included in this code.

FName - DWORD pointer to file name of USE32 image to load

AX != 0 If an error occurs
AX error code

Else
AX o and U32RetVal contains the return code from the

USE32 code.

C Standard

;***
cProc StartupCallUSE32,(FAR,PUBLIC>,(si ,di>

ParmD fName

Local 0 fSize
Local 0 U16RdAlias
Local 0 FileOff
LocalW fHand
LocalV OpnBuf,(SIZE

cBegin
assume ds:_DATA
assume es:nothing
assume ss:_DATA

OPENSTRUC>

Size of file
Alias for reading image
Current file offset for read
File handle
Open file struct for openfile call

First check if we are running in enhanced mode

NOTE THAT SINCE WE DO NOT KNOW AS YET WHAT MODE WE ARE IN WE NEED

Windows 32-Bit Memory Management OLL £-19

TO AVOID USING 386 SPECIFIC INSTRUCTIONS

cCall GetWinFlags

and
cmp
je

ax,WF_PMODE + WF_ENHANCED
ax,WF_PMODE + WF_ENHANCED
short OKtoLoad MUST BE SHORT

mov ax,error_wrong_mode
jmp Donel

We now know we are in the proper mode and that 386 instructions
are now OK.

OKtoLoad:

Set up the addresses for the USE32 code to call the helper routines

mov
mov
mov
mov
mov

Open the

1 ea
regptr
cCa 11
cmp
je
mov

ax,cs
word ptr
word ptr
word ptr
word ptr

file

bX,OpnBuf

[AddrOEMToANSI+2],ax
[AddrOEMToANSI],offset HELPERCODE:U320EMtoANSI
[AddrDOSGetFreeSpace+2],ax
[AddrDOSGetFreeSpace],offset _HELPERCODE:U32GetDskFree

ssbx,ss,bx
OpenFile,<fName,ssbx,OF_READ>
ax,-l Did we find it?
Donel Fl Err No, fi 1 e error
fHand,ax Save file handle

Get file size

cCa 11
s h 1
mov
inc
jz
dec
mov
cmp
jbe

_11see~,<fHand,0,0,2>

edx,l6
dx,ax
edx
DonelFl Err
edx
fSize,edx
edx,10000h
DonelF1Err

seek failed, file error

Image is at least 64k?
No, size is too small, file error

Move file pointer back to start of file for read

cCall _11seek,<fHand,0,0,0>

Allocate big USE32 object

mov si ,dataOffset U32DataSel
regptr Selpt,ds.si

£-20 Reference - Volume 2

cCall Globa132Alloc,<fS;ze,Selpt,fS;ze,0)
or aX,ax Worked?
jnz FcloseEr ; No, return WINMEM32 error code

Allocate USE16 stack alias for first 64K of object

mov si ,dataOffset U16StackAl i as
regptr Alipt,ds,si
mov ecx,00010000h ; 64K
cCall Global16PointerAlloc,<[U32DataSel],0,0,Alipt,ecx,0)
or ax, ax Worked?
jnz AliasErrF3 ; No, return WINMEM32 error code

Allocate USE32 code alias

mov
regptr
cCall
or
jnz

si ,dataOffset U32CodeSel
Alipt,ds,si
Globa132CodeAlias,<[U32DataSel],Alipt,0)
aX,ax ; Worked?
AliasErrF2 ; No, return WINMEM32 error code

Now read in the image. We will do this in 32K hunks.

ReadLp:

Read32k:

mov

mov
cmp
jbe
mov

F;leOff,0

ecx,00008000h
ecx,fSize
short Read32k
ecx,fSize

Starting at file offset 0

32k

Make a USE16 alias for this region of the object

push
1 ea
regptr
cCall
pop
or
jnz
push
cCall
push
cCall
pop
pop
inc
jz
dec
cmp
jne
add

ecx
si ,U16RdAlias
Alipt,ss,si
Global16PointerAlloc,<[U32DataSel],FileOff,Alipt,ecx,0)
ecx
aX,ax
short AliasErrFl
ecx
_lread,<fHand,U16RdAlias,cx)
ax
Global16PointerFree,<[U32DataSel],U16RdAlias,0)
ax
ecx
ax
short Fl RdErr
ax
ax,cx
short Fl RdErr
FileOff,ecx

Windows 32-Bit Memory Management OLL £-21

sub fSize,ecx
ja short ReadLp

We are now ready to set up and call into the USE32 code

Save the current stack so we can switch to the USE32 stack

NOTE CAREFULLY THAT THIS MAKES THIS ROUTINE NON-REENTRANT
SINCE IT SAVES THE CURRENT SS:SP IN A STATIC MEMORY LOCATION.

mov
mov
mov
push
pop

word ptr [EntryStackSave],sp
word ptr [EntryStackSave+2],ss
aX,[U32DataSel]
ds
es

assume es: DATA

Set up all the segs, and call into USE32

NOTE that we just leave the file open across the call.

mov dS,ax
assume ds:nothing

mov fS,ax
mov gS,ax
mov sS,ax

assume ss:nothing
mov esp,0000FFFCh
call [U32EntryPt]

Recover OS and stack.

mov bX,es
mov dS,bx

assume ds: DATA
mov sS,word ptr [EntryStackSave+2]

assume ss:_DATA
mov sp,word ptr [EntryStackSave]

Set success return and clean up.

mov [U32RetVal],eax

F1RdErr:

xor
jmp

mov
AliasErrFl:

ax, ax
short AliasErrFl

Free USE32 code alias

push ax

Return success

Save error code

£-22 Reference - Volume 2

cCall
pop

AliasErrF2:

Globa132CodeAliasFree,<[U32DataSel],[U32CodeSel],0>
ax

Free USE16 stack alias

push
cCall
pop

ax ; Save error code
Global16PointerFree,<[U32DataSel],[U16StackAlias],0>
ax

AliasErrF3:

Free the object

push
cCall
pop

ax ; Save error code
Globa132Free,<[U32DataSel],0)
ax

FcloseEr:

Close the file

push
cCall
pop
jmp

DonelFl Err:

ax
_lclose,<fHand>
ax
short Donel

mov ax,error_bad_file
Donel:
cEnd

Save error code

;***

U320EMtoANSI - Call OemToANSI from USE32 segment

Assumes PASCAL calling convention

ENTRY:

EXIT :

USES:

U320EMtoANSI(lpOemStr,lpAnsiStr)

NOTE that these pointer arguments are NOT really LPSTRs. They
are near pointers into the USE32 data object (implied segment
is U32DataSel)

EAX is return code

32 bit C Standard

;***
PUBLIC U320EMtoANSI

Windows 32-8it Memory Management OLL £-23

U320EMtoANSI proc far
assume ds:nothing
assume es:nothing
assume ss:nothing

First switch to the USE16 stack

mov cX,ds ; Save entry OS in cx till we get the stack switched
mov aX,SEG _DATA
mov dS,ax

assume ds: DATA
mov sS,word ptr [U16StackAlias+2]
push ecx ; Entry OS, as DWORD to keep stack aligned
push ebp
mov bp,sp

Frame now looks like this:

dword ptr [bp + 20] --) First arg to OEMToANSI lpOemStr (actually a 32
bit near pOinter)

dword ptr [bp + 16] --) Second arg to OEMToANSI lpAnsiStr (actually a 32
bit near pOinter)

dword ptr [bp + 12] --) Return CS
dword ptr [bp + 8] --) Retu rn EI P
dword ptr [bp + 4] --) Entry OS pushed as DWORD
dword ptr [bp + 0] --) Entry EBP

lpOemStr equ dword ptr [bp+20]
lpAnsiStr equ dword ptr [bp+16]

sub sp,8 Need two LPSTRs for the aliases

AlsOemStr equ dword ptr [bp-4] Alias for lpOemStr
AlsAnsiStr equ dword pt r [bp-8] Alias for lpAnsiStr

push esi
push edi
push ebx
push es Preserve "flat" ES, FS, GS
push fs
push gs

There is a ?, how BIG is lpOemStr? Need to know this to set the
size of the alias(s). What we will do is "cheat". We will set
the size to 64k (or size to end of USE32 object, whichever is
smaller). NOTE that this assumes that the string is <= 64K which
is a reasonable assumption since we can't alias something larger
than that anyway.

lsl eax,dword ptr [U32DataSel] ; Get limit of USE32 object
inc eax ; Limit -) size
mov edx,eax

£-24 Reference - Volume 2

sub eax,lpOemStr Number of bytes to end of USE32 object
jc SkipCall Bad string ptr
sub edx,lpAnsiStr Number of bytes to end of USE32 object
jc short SkipCall Bad string ptr
cmp eax,edx
jbe short UseSrcLim
mov eax,edx lpAnsiStr is closer to end of object

UseSrcLim:
mov ecx,00010000h
cmp ecx,eax
jbe short Use64k
mov ecx,eax

Use64k:

Create Alias for lpOemStr

push
1 ea
regptr

ecx
bx,AlsOemStr
AlsPt,ss,bx

64k

Limited by size to end of object

cCall Global16PointerAlloc,<[U32DataSel],lpOemStr,AlsPt,ecx,0>

pop
or
jnz

ecx
aX,ax
short SkipCall

Create Alias for lpAnsiStr

lea bX,AlsAnsiStr

cCall Global16PointerAlloc,<[U32DataSel],lpAnsiStr,AlsPt,ecx,0>

or ax,ax
jnz short FreeOemAls

Ca 11 OemToAns i

cCall OemToAnsi ,<AlsOemStr,AlsAnsiStr>

, Free the aliases

push ax ; Save RET code

cCall Global16PointerFree,<[U32DataSel],AlsAnsiStr,0>

pop
FreeOemAls:

push

ax

ax

Restore RET code

Sa ve RET code

cCall Global16PointerFree,<[U32DataSel],AlsOemStr,0>

pop
SkipCall:

ax ; Restore RET code

Windows 32-Bit Memory Management OLL E-25

pop gs
pop fs
pop es
pop ebx
pop edi
pop esi
add sp,8
pop ebp
pop ecx ; Entry OS in CX

Sign extend the return to make it 32 bit

movsx eax,ax

Switch back to the USE32 stack MAKING SURE TO SET HIGH 16 BITS OF ESP.

mov sS,[U32DataSel]
movzx esp,sp
mov ds,cx

assume ds:nothing
db 66h USE32 override on far ret so it returns to EIP
ret (2 * 4)

U320EMtoANSI endp

;***

U32GetDskFree - Issue DOS call to get disk free space

Assumes PASCAL calling convention

ENTRY:

EXIT :

USES:

U32GetDskFree(drvnum)

EAX = Disk free space in bytes
EAX == 0FFFFFFFFh if error

32 bit C Standard

;***
PUBLIC U32GetDskFree

U32GetDskFree proc far
assume ds:nothing
assume es:nothing
assume ss:nothing

First switch to the USE16 stack

£-26 Reference - Volume 2

mov cx,ds Save entry DS in cx till we get the stack switched
mov ax,SEG _DATA
mov ds,ax

assume ds: DATA
mov ss,word ptr [U16StackAlias+2]

ArgDrv

push ecx ; Entry DS, as DWORD to keep stack aligned
push ebp
mov bp,sp

Frame now looks like this:

dword ptr [bp + 16] --) Drive # argument (0 default, A 1 ...)
dword ptr [bp + 12] --) Return CS
dword ptr [bp + 8] --) Return EIP
dword ptr [bp + 4] --) Entry DS pushed as DWORD
dword ptr [bp + 0] --) Ent ry EBP

equ dword ptr [bp+16]

push
push
push
push
push
push

mov
mov
int

movsx
cmp
je
movzx
movzx
movzx
mul

mul

esi
edi
ebx
es
fs
gs

edx,ArgDrv
ah,36h
21h

eax,ax
ax,0FFFFh
short BadDrv
eax,ax
ebx,bx
ecx,cx
ecx

ebx

Preserve "flat" ES, FS, GS

Drive # to DL

Make DOS call

Sign extend AX for error
Error?
Yes, return 0FFFFFFFFh
Convert sectors/cluster to 32 bit
Convert Available clusters to 32 bit
Convert bytes/sector to 32 bit
EAX sectors/cluster * bytes/sector

bytes/cluster
EAX bytes/cluster * Available clusters

free bytes
BadDrv:

pop
fJVfJ

pop
pop
pop
pop
pop
pop

gs
fs
es
ebx
edi
esi
ebp
ecx ; Entry DS in CX

Switch back to the USE32 stack MAKING SURE TO SET HIGH 16 BITS OF ESP.

mov sS,[U32DataSel]

Windows 32-Bit Memory Management OLL £-27

movzx esp,sp
mov ds,cx

assume ds:nothing
db 66h USE32 override on far ret so it returns to Erp
ret (1 * 4)

U32GetDskFree endp

HELPERCODE ends

end

Index
Special Characters
\a. See Escape character
__ Acrtused symbol, (vol. 2) 13-5
& (ampersand)

use in dialog control statement, (vol. 2) 8-21 to 8-25,
8-27 to 8-29

use in MENUITEM statement, (vol. 2) 8-10
BACKSPACE key, (vol. 2) 8-36
Bold text, as document convention, (vol. 1) xxiv
A (caret), (vol. 2) 8-7, 8-8
?CHKSTK, Cmacro, (vol. 2) 13-6
CONTROL key, (vol. 2) 8-8
{ } (curly braces), as document convention, (vol. 1) xxv
#define directive, resource compiler, (vol. 2) 8-48
[[] (double brackets), as document convention, (vol. 1)
xxv
... (ellipses), as document convention, (vol. 1) xxiv
#endif directive, resource compiler, (vol. 2) 8-51
#if directive, resource compiler, (vol. 2) 8-49 to 8-50
#ifdef directive, resource compiler, (vol. 2) 8-48
#ifndef directive, resource compiler, (vol. 2) 8-49
#inc1ude directive, resource compiler, (vol. 2) 8-47
Italic text, as document convention, (vol. 1) xxiv
_1close function, (vol. 1) 3-14, 4-271
_1creat function, (vol. 1) 3-14, 4-271
_llseek function, (vol. 1) 3-14,4-274
_lopen function, (vol. 1) 3-14,4-294 to 4-295
_lread function, (vol. 1) 3-14,4-297
_lwrite function, (vol. 1) 3-14,4-300 to 4-301
Monospaced type, as document convention, (vol. 1)
xxiv, (vol. 2) ix
() (parentheses), as document convention, (vol. 1) xxiv
?PLM option

calling convention, defined, (vol. 2) 13-8
Cmacro, (vol. 2) 13-3 to 13-4

" "(quotation marks), as document convention, (vol. 1)
xxv
SHIFT key, (vol. 2) 8-8
\to See Escape character
TAB key, (vol. 2) 8-17
#undef directive, resource compiler, (vol. 2) 8-48
I (vertical bar), as document convention, (vol. 1) xxvx
?WIN option, Cmacro, (vol. 2) 13-4
32-bit memory management, (vol. 2) E-l to E-8

A
ABORTDOC printer escape, (vol. 2) 12-2
Absolute symbol, Cmacro, (vol. 2) 13-5

Accelerators
See also ACCELERATORS resource statement
loading or translating, (vol. 1) 1-4
with dialog boxes, (vol. 1) 1-52

ACCELERATORS resource statement, (vol. 2) 8-7
AccessResource function, (vol. 1) 3-7, 4-2
AddAtom function, (vol. 1) 3-9,4-2
AddFontResource function, (vol. 1) 2-28,4-3
Addition (+) operator, (vol. 2) 8-21 to 8-26, 8-28 to 8-33
AdjustWindowRect function, (vol. 1) 1-7,4-3
AdjustWindowRectEx function, (vol. 1) 1-7,4-4
Aligning brushes, (vol. 1) 1-39
Alignment, segment, (vol. 2) 14-5
AllocDStoCSAlias function, (vol. 1) 3-5, 4-5
AllocResource function, (vol. 1) 3-7,4-5
AllocSelector function, (vol. 1) 3-5,4-6
ALTERNATE filling mode, (vol. 1) 4-58, 4-389
ALTERNATE polygon-filling mode, (vol. 1) 4-58,
4-197,4-389
Ampersand (&), adding a mnemonic with, (vol. 2) 8-10,
8-21 to 8-25,8-27 to 8-29
AnimatePalette function, (vol. 1) 2-10, 4-7
ANSI table, (vol. 2) D-2
ANSCFIXED_FONT stock object, (vol. 1) 4-207
ANSC V AR_FONT stock object, (vol. 1) 4-207
AnsiLower function, (vol. 1) 3-8, 4-7
AnsiLowerBuff function, (vol. 1) 3-8, 4-8
AnsiNext function, (vol. 1) 3-8, 4-8
AnsiPrev function, (vol. 1) 3-8, 4-9
AnsiToOem function, (vol. 1) 3-8, 4-9
AnsiToOemBufffunction, (vol. 1) 3-8,4-10
AnsiUpper function, (vol. 1) 3-8,4-10
AnsiUpperBuff function, (vol. 1) 3-8, 4-11
AnyPopup function, (vol. 1) 1-57,4-11
AppendMenu function, (vol. 1) 1-26, 1-56,4-11 to 4-13,
4-54,4-59,4-211,6-106
Application, assembly language, (vol. 2) 13-1
Arc function, (vol. 1) 2-22, 4-14
Argmacro

arguments, position of, (vol. 2) 14-3
cCall, use with, (vol. 2) 14-2
Cmacro, (vol. 2) 14-2

Argument, cCalllist specification, (vol. 2) 14-3
Argument, macro. See Argument, cCalllist specification
ArrangeIconicWindows function, (vol. 1) 1-28,4-15
ASCII character, use with ACCELERATORS statement,
(vol. 2) 8-7
ASPECTX device capability, (vol. 1) 4-167
ASPECTXY device capability, (vol. 1) 4-167

2 Reference

ASPECTY device capability, (vol. 1) 4-167
Assembly language

calling conventions, (vol. 2) 13-3
checking the stack, (vol. 2) 13-5
creating, (vol. 2) 13-1 to 13-2
creating application entry point, (vol. 2) 13-5
declaring callback functions, (vol. 2) 13-5
enabling stack checking, (vol. 2) 13-6
error macros, (vol. 2) 13-9
macros, (vol. 2) 13-1
memory options, specifying, (vol. 2) 13-2
prolog/epilog option, enabling, (vol. 2) 13-4
segment macros, (vol. 2) 13-6 to 13-7
special definition macros, (vol. 2) 13-8
storage-allocation macros, (vol. 2) 13-7

Assembly-language macro, Cmacro, (vol. 2) 13-6, 14-1
assumes macro, Cmacro, (vol. 2) 14-2, 14-6

8
Background

brush, class background, (vol. 1) 1-13
color, default, (vol. 1) 1-33
mode, default, (vol. 1) 1-33

BANDINFO printer escape, (vol. 2) 12-2 to 12-4
BEGIN_PATH printer escape, (vol. 2) 12-5
BeginDeferWindowPos function, (vol. 1) 1-28,4-16
BeginPaint function, (vol. 1) 1-31,4-16
BITBLT, example Cmacros function, (vol. 2) 13-9 to
13-10
BitBlt function

and color palettes, (vol. 1) 2-13
described, (vol. 1) 2-25, 4-17 to 4-19

Bitmap
file format, (vol. 2) 7-10
memory, setting bits in, (vol. 1) 4-375
mouse cursor shape, (vol. 2) 8-2
resource, (vol. 2) 8-2

BITMAP data structure, (vol. 2) 7-6
Bitmap, device-dependent, getting device-independent
bits from, (vol. 1) 4-171
Bitmap, device-independent

BITMAPCOREHEADER data structure, (vol. 2) 7-8
BITMAPCOREINFO data structure, (vol. 2) 7-9
BITMAPINFO data structure, (vol. 2) 7-11
BITMAPINFOHEADER data structure, (vol. 2) 7-14
color, (vol. 2) 7-58 to 7-59
creating, (vol. 1) 4-44
described, (vol. 2) 7-9, 7-11 to 7-12
displaying, (vol. 1) 4-377
file format, (vol. 2) 9-1
retrieving bits, (vol. 1) 4-171
setting on display surface, (vol. 1) 4-377

Bitmap functions
device independent, list of, (vol. 1) 2-26 to 2-27
list of, (vol. 2) 2-25 to 2-26

BITMAP resource-compiler key word, (vol. 2) 8-2
BITMAPCOREHEADER data structure, (vol. 2) 7-7, 7-9
BITMAPCOREINFO

See also RGBTRIPLE
data structure, (vol. 2) 7-8 to 7-9

BITMAPFILEHEADER data structure, (vol. 2) 7-10
BITMAPINFO

See also RGBQUAD
data structure, (vol. 1) 4-45, 4-171, 4-376, (vol. 2) 7-10 to

7-11,7-14
BITMAPINFOHEADER data structure, (vol. 1) 4-44 to
4-45, (vol. 2) 7-11 to 7-15
BITSPIXEL device capability, (vol. 1) 4-167
BLACK_BRUSH stock object, (vol. 1) 4-207
BLACK_PEN stock object, (vol. 1) 4-207
BLACKNESS raster-operation code, (vol. 1) 4-19
BLACKONWHITE stretching mode, (vol. 1) 4-399
BM_GETCHECK message, (vol. 1) 5-9, 6-4
BM_GETSTATE message, (vol. 1) 5-9, 6-4
BM_SETCHECK message, (vol. 1) 5-9, 6-4
BM_SETSTATE message, (vol. 1) 5-9, 6-5
BM_SETSTYLE message, (vol. 1) 5-9, 6-5 to 6-6
BN_CLICKED message, (vol. 1) 5-15, 6-7
BN_DOUBLECLICKED message, (vol. 1) 5-15, 6-7
BOOL data type, (vol. 2) 7-1
Border, window, (vol. 2) 8-16
Braces, curly ({ D, as document convention, (vol. 1) xxv
Brackets, angle « », (vol. 2) 14-5
Brackets, double ([[]), as document convention, (vol. 1)
xxv
BringWindowToTop function, (vol. 1) 1-28,4-20
Brush

alignment, (vol. 1) 1-39
creating, (vol. 1) 4-35, (vol. 2) 7-39
default, (vol. 1) 1-33
origin, default, (vol. 1) 1-33

BS_3STATE control style, (vol. 1) 4-69, 6-6, (vol. 2) 8-38
BS_AUT03STATE control style, (vol. 1) 4-68, 6-6, (vol.
2) 8-38
BS_AUTOCHECKBOX control style, (vol. 1) 4-68, 6-6,
(vol. 2) 8-37
BS_AUTORADIOBUTTON control style, (vol. 1) 6-6,
(vol. 2) 8-37
BS_CHECKBOX control style, (vol. 1) 4-68, 6-6, (vol.
2) 8-37
BS_DEFPUSHBUTTON control style, (vol. 1) 4-68, 6-6,
(vol. 2) 8-37
BS_GROUPBOX control style, (vol. 1) 4-68, 6-6, (vol.
2) 8-38
BS_HATCHED brush style, (vol. 2) 7-39

BS_HOLLOW brush style, (vol. 2) 7-39
BS_LEFITEXT control style, (vol. 1) 4-68, 6-6, (vol. 2)
8-37
BS_OWNERDRAW control style, (vol. 1) 4-69, 6-6 to
6-7, (vol. 2) 8-38
BS_PATTERN brush style, (vol. 2) 7-39
BS_PUSHBUTTON control style, (vol. 1) 4-69, 6-6,
(vol. 2) 8-37
BS_RADIOBUTTON control style, (vol. 1) 4-69, 6-6 to
6-7, (vol. 2) 8-37
BS_SOLID brush style, (vol. 2) 7-39
BuildCommDCB function, (vol. 1) 3-11, 4-20
BUTTON control class

control styles, (vol. 2) 8-24, 8-27, 8-29 to 8-30,8-37
described, (vol. 1) 4-64, 4-68, (vol. 2) 8-23, 8-25,8-27,

8-35
Button notification codes, (vol. 1) 5-15
Button, owner-draw, (vol. 1) 1-50, (vol. 2) 7-36, 7-48
BYTE data type, (vol. 2) 7-1
BYTE, segment alignment type, (vol. 2) 14-5

c
C language, library, (vol. 2) 13-5
Cache, display-context, (vol. 1) 1-36
Call macros, Cmacro, (vol. 2) 13-8
Callback functions, (vol. 2) 13-5
Calling convention

Cmacro, (vol. 2) 13-3
high-level language, (vol. 2) 13-3
Pascal, (vol. 2) 13-3

CallMsgFilter function, (vol. 1) 1-63,4-21
CallWindowProc function, (vol. 1) 1-2, 1-16,4-21
Capital letters, small, as document convention, (vol. 1)
xxv, (vol. 2) x
CAPTION resource statement, (vol. 2) 8-18
Caret (A)

creating and displaying, (vol. 1) 1-61
functions, (vol. 1) 1-60
in ACCELERATORS statement, (vol. 2) 8-7 to 8-8
sharing, (vol. 1) 1-61

Carriage-return character, (vol. 2) 8-40
Catch function, (vol. 1) 3-6,4-22
CB_ADDSTRING message, (vol. 1) 5-13, 6-8, 6-10 to
6-11,6-14, (vol. 2) 7-38, 7-49
CB_DELETESTRING message, (vol. 1) 5-13, 6-8, 6-57
CB_DIR message, (vol. 1) 5-13, 6-9
CB_FINDSTRING message, (vol. 1) 5-13, 6-9
CB_GETCOUNT message, (vol. 1) 5-14, 6-10
CB_GETCURSEL message, (vol. 1) 5-14, 6-10
CB_GETEDITSEL message, (vol. 1) 5-14, 6-10
CB_GETITEMDATA message, (vol. 1) 5-14, 6-11
CB_GETLBTEXT message, (vol. 1) 5-14, 6-11

Index 3

CB_GETLBTEXTLEN message, (vol. 1) 5-14, 6-12
CB_INSERTSTRING message, (vol. 1) 5-14, 6-8, 6-10
to 6-12, 6-14, (vol. 2) 7-38, 7-49
CB_LIMITTEXT message, (vol. 1) 5-14, 6-12
CB_RESETCONTENT message, (vol. 1) 5-14, 6-13, 6-57
CB_SELECTSTRING message, (vol. 1) 5-14, 6-13
CB_SETCURSEL message, (vol. 1) 5-14, 6-14
CB_SETEDITSEL message, (vol. 1) 5-14, 6-14
CB_SETITEMDATA message, (vol. 1) 5-14, 6-11, 6-15
CB_SHOWDROPDOWN message, (vol. 1) 5-14, 6-15
cBegin macro, Cmacro, (vol. 2) 14-2
CBN_DBLCLK message, (vol. 1) 5-17, 6-15
CBN_DROPDOWN message, (vol. 1) 5-17, 6-16
CBN_EDITCHANGE message, (vol. 1) 5-17, 6-16
CBN_EDITUPDATE message, (vol. 1) 5-17, 6-16
CBN_ERRSPACE message, (vol. 1) 5-17, 6-17
CBN_KILLFOCUS message, (vol. 1) 5-17, 6-17
CBN_SELCHANGE message, (vol. 1) 5-17, 6-17
CBN_SETFOCUS message, (vol. 1) 5-17,6-18
CBS_AUTOHSCROLL control style, (vol. 2) 8-39
CBS_DROPDOWN control style, (vol. 2) 8-38
CBS._DROPDOWNLIST control style, (vol. 2) 8-38
CBS_HASSTRINGS control style, (vol. 1) 4-69,6-8,
6-10 to 6-12, 6-14, (vol. 2) 8-39
CBS_OEMCONVERT control style, (vol. 1) 4-70, (vol.
2) 8-39
CBS_OWNERDRAWFIXED control style, (vol. 1) 4-70,
(vol. 2) 8-38
CBS_OWNERDRAWVARIABLE control style, (vol. 1)
4-70, (vol. 2) 8-38
CBS_SIMPLE control style, (vol. 2) 8-38
CBS_SORT control style, (vol. 2) 8-39
cCall macro

Arg macro, use with, (vol. 2) 14-2
Cmacro, (vol. 2) 13-8
FarPtr macro, use with, (vol. 2) 14-9
Save macro, use with, (vol. 2) 14-14

CE_BREAK communication error code, (vol. 1) 4-161
CE_CTSTO communication error code, (vol. 1) 4-161
CE_DNS communication error code, (vol. 1) 4-161
CE_DSRTO communication error code, (vol. 1) 4-161
CE_FRAME communication error code, (vol. 1) 4-161
CE_IOE communication error code, (vol. 1) 4-161
CE_MODE communication error code, (vol. 1) 4-161
CE_OOP communication error code, (vol. 1) 4-161

. CE_OVERRUN communication error code, (vol. 1)
4-161
CE_PTO communication error code, (vol. 1) 4-161
CE_RLSDTO communication error code, (vol. 1) 4-161
CE_RXOVER communication error code, (vol. 1) 4-162
CE_RXPARITY communication error code, (vol. 1)
4-162
CE_TXFULL communication error code, (vol. 1) 4-162

4 Reference

cEnd macro, Cmacro, (vol. 2) 14-3
CF _BITMAP clipboard format, (vol. 1) 4-370
CF _DIB clipboard format, (vol. 1) 4-370
CF _DIF clipboard format, (vol. 1) 4-370
CF _DSPBITMAP clipboard format, (vol. 1) 4-370
CF _DSPMET AFILEPICT clipboard format, (vol. 1)
4-370
CF _DSPTEXT clipboard format, (vol. 1) 4-370
CF _METAFILEPICT clipboard format, (vol. 1) 4-370
CF._OEMTEXT clipboard format, (vol. 1) 4-371
CF _OWNERDISPLAY clipboard format, (vol. 1) 4-371
CF _PALETTE clipboard format, (vol. 1) 4-157, 4-371
CF _SYLK clipboard format, (vol. 1) 4-371
CF _TEXT clipboard format, (vol. 1) 4-371
CF _TIFF clipboard format, (vol. 1) 4-371
ChangeClipboardChain function, (vol. 1) 1-59,4-23
ChangeMenu. See AppendMenu; DeleteMenu;
InsertMenu; ModifyMenu; RemoveMenu
ChangeMenu function, (vol. 1) 4:-23
ChangeS elector function, (vol. 1) 3-5, 4-24
char data type, (vol. 2) 7-1
Character

determining if alphabetic, (vol. 1) 4-263
determining if alphanumeric, (vol. 1) 4-264
determining if lowercase, (vol. 1) 4-264
determining if uppercase, (vol. 1) 4-264
escape

\a, (vol. 2) 8-10
\t, (vol. 2) 8-10

Character cell, (vol. 1) 2-31
Character tables, (vol. 2) D-l to D-2
CHECKBOX resource statement

described, (vol. 2) 8-23 to 8-24
DIALOG resource statement, (vol. 2) 8-20

CheckDlgButton function, (vol. 1) 1-43,4-24
CHECKED option

MENU ITEM resource statement, (vol. 2) 8-10
POPUP resource statement, (vol. 2) 8-12

Checkmark
custom, (vol. 1) 4-385
getting size of, (vol. 1) 4-184

CheckMenuItem function, (vol. 1) 1-56,4-25,4-311
CheckRadioButton function, (vol. 1) 1-43,4-26
Child window

clipping, (vol. 2) 8-16
described, (vol. 1) 1-23

ChildWindowFromPoint function, (vol. 1) 1-57,2-20,
4-26
?CHKSTK, Cmacro, (vol. 2) 13-6
Chord function, (vol. 1) 2-24 to 2-25, 4-27
Class

Application Global, (vol. 1) 1-9
Application Local, (vol. 1) 1-9

class background brush
assigning, (vol. 1) 1-13
setting, (vol. 1) 1-13

class name
assigning, (vol. 1) 1-11
global uniqueness, (vol. 1) 1-11

creating, (vol. 1) 1-8
Cursor, (vol. 1) 1-12
defining and registering, (vol. 1) 1-8
determining ownership, (vol. 1) 1-9
display contexts, (vol. 1) 1-18
elements, (vol. 1) 1-10

assigning, (vol. 1) 1-10
class names, (vol. 1) 1-10

instance handle, (vol. 1) 1-12
functions

default messages, (vol. 1) 1-20
defining, (vol. 1) 1-18, 1-20
examining, (vol. 1) 1-18, 1-20
receiving, (vol. 1) 1-18, 1-20
responding, (vol. 1) 1-18, 1-20

icon, (vol. 1) 1-12
menu, (vol. 1) 1-14
messages

declaring, (vol. 1) 1-20
sending, (vol. 1) 1-20
values, (vol. 1) 1-20

predefined, (vol. 1) 1-10
redrawing client area, (vol. 1) 1-17
registering, (vol. 1) 1-9, 1-20
shared, (vol. 1) 1-10
styles

child, (vol. 1) 1-23
described, (vol. 1) 1-14 to 1-15
overlapped, (vol. 1) 1-22
owned, (vol. 1) 1-22
pop-up, (vol. 1) 1-23

System Global, (vol. 1) 1-8
window, unregistering, (vol. 1) 4-452

CLASS resource statement, (vol. 2) 8-19
ClearCommBreak function, (vol. 1) 3-11,4-28
Client area

child window, (vol. 1) 1-23
painting, (vol. 2) 7-55
redrawing, (vol. 1) 1-17
update region, (vol. 1) 1-38

CLIENTCREATESTRUCT data structure, (vol. 1) 1-25,
5-19, (vol. 2) 7-16
ClientToScreen function, (vol. 1) 2-20, 4-28
CLIP_TO_PATH printer escape, (vol. 2) 12-6
Clipboard

file format, (vol. 2) 9-5
formats, (vol. 1) 4-370

functions, (vol. 1) 1-58
getting prioritized format, (vol. 1) 4-197

CLIPCAPS device capability, (vol. 1) 4-167
ClipCursor function, (vol. 1) 1-62,4-29
Clipping, child window, (vol. 2) 8-16
Clipping functions, (vol. 1) 2-22 to 2-23
Clipping region, default, (vol. 1) 1-33
CloseClipboard function, (vol. 1) 1-59,4-29
CloseComm function, (vol. 1) 3-11, 4-29
CloseMetaFile function, (vol. 1) 2-41, 4-30
CloseSound function, (vol. 1) 3-12,4-30
CloseWindow function, (vol. 1) 1-28,4-30
CLRDTR communication function code, (vol. 1) 4-128
CLRRTS communication function code, (vol. 1) 4-128
Cmacro

Arg macro, arguments, position of, (vol. 2) 14-2 to 14-3
assumes macro, (vol. 2) 14-2
BITBLT sample function, (vol. 2) 13-9
call macros, (vol. 2) 13-8
calling convention, (vol. 2) 13-3
calling cProc function, (vol. 2) 13-8
calling high-level-language function, (vol. 2) 13-8
cBegin macro, (vol. 2) 14-2
cCall macro, (vol. 2) 13-8
cEnd macro, (vol. 2) 14-3
codeOFFSET macro, (vol. 2) 14-4
cProc macro, (vol. 2) 13-8
createSeg macro, (vol. 2) 14-6
dataOFFSET macro, (vol. 2) 14-6
defined, (vol. 2) 13-6, 14-1
DefX macro, (vol. 2) 14-7
errn$ macro, (vol. 2) 14-7
errnz macro, (vol. 2) 14-8
Error macros, (vol. 2) 13-9
example, (vol. 2) 13-9, 13-10
extemX macro, (vol. 2) 14-9
FarPtr macro, (vol. 2) 14-9
function, (vol. 2) 13-8
globalX macro, (vol. 2) 14-10
INCLUDE directive, (vol. 2) 13-4
labelX macro, (vol. 2) 14-11
10calX macro, (vol. 2) 13-9, 14-11
memory-model options, (vol. 2) 13-2
options, (vol. 2) 13-1
overriding type, (vol. 2) 13-9
parmX macro, (vol. 2) 13-9 to 13-10, 14-5
?PLM option, (vol. 2) 13-4, 13-8
Save macro, (vol. 2) 14-14
sBegin macro, (vol. 2) 14-14
segment macros

CODE segment, (vol. 2) 14-6
DATA segment, (vol. 2) 14-6
described, (vol. 2) 13-6

segNameOFFSET macro, (vol. 2) 14-14
sEnd macro, (vol. 2) 14-15
special-definitions macros, (vol. 2) 13-8
stack-checking option, (vol. 2) 13-6
staticX macro, (vol. 2) 14-15
storage-allocation macros, (vol. 2) 13-7
symbol redefinition, (vol. 2) 13-10
?WIN option, (vol. 2) 13-4
Windows prolog/epilog, (vol. 2) 13-4

CMACROS.INC file, (vol. 2) 13-4

Index 5

CODE module-definition statement, (vol. 2) 10-2
Code segment attributes, defining, (vol. 2) 10-2, 10-8
CODE segment, Cmacro, (vol. 2) 14-6
CODE statement, (vol. 2) 10-1
codeOFFSET macro, Cmacro, (vol. 2) 14-4
Coding instruction sequences, (vol. 2) 13-9
Color

data types, (vol. 2) 7-17
explicit RGB, (vol. 2) 7-17
logical-palette index, (vol. 1) 4-327, (vol. 2) 7-17
palette-relative RGB, (vol. 2) 7-17
specifying, (vol. 2) 7-17
using color in logical palette, (vol. 1) 4-327 to 4-328

COLOR_ACTIVEBORDER system color, (vol. 1) 4-401
COLOR_ACTIVECAPTION system color, (vol. 1) 1-13,
4-401
COLOR_APPWORKSPACE system color, (vol. 1) 1-13,
4-401
COLOR_BACKGROUND system color, (vol. 1) 1-13,
4-401
COLOR_BTNFACE system color, (vol. 1) 1-13,4-401
COLOR_BTNSHADOW system color, (vol. 1) 1-13,
4-401
COLOR_BTNTEXT system color, (vol. 1) 4-401
COLOR_CAPTIONTEXT system color, (vol. 1) 1-13,
4-401
COLOR_GRAYTEXT system color, (vol. 1) 1-13,
4-250,4-401
COLOR_HIGHLIGHT system color, (vol. 1) 1-13,4-401
COLOR_HIGHLIGHTTEXT system color, (vol. 1) 1-13,
4-401
COLOR_INACTIVEBORDER system color, (vol. 1)
4-401
COLOR_INACTIVECAPTION system color, (vol. 1)
1-13,4-401
COLOR_MENU system color, (vol. 1) 1-13,4-401
COLOR_MENUTEXT system color, (vol. 1) 1-13,4-401
Color palette

See also Logical palette
default, (vol. 1) 1-33
updating client area, (vol. 1) 4-452

COLOR_SCROLLBAR system color, (vol. 1) 1-13,
4-401

6 Reference

COLOR_WINDOW system color, (vol. 1) 1-13,4-401
COLOR_ WINDOWFRAME system color, (vol. 1) 1-13,
4-401
COLOR_ WINDOWTEXT system color, (vol. 1) 1-13,
4-401
COLORONCOLOR stretching mode, (vol. 1) 4-399
COLORREF data type, (vol. 1) 2-9, 3-13, (vol. 2) 7-17 to
7-18
Combine type, segments, (vol. 2) 14-6
CombineRgn function, (vol. 1) 2-21,4-31
Combo box

deleted item, (vol. 2) 7-26
described, (vol. 1) 1-50
owner-draw

described, (vol. 1) 1-50 to 1-51
new item position, (vol. 1) 6-53
sorting, (vol. 2) 7-19

COMBOBOX control class
control styles, (vol. 1) 4-69, (vol. 2) 8-32, 8-38
described, (vol. 1) 4-64, (vol. 2) 8-32, 8-35

COMBOBOX resource statement
described, (vol. 2) 8-31 to 8-32
DIALOG resource statement, (vol. 2) 8-20

Command, Cmacro
EQU, (vol. 2) 13-3
INCLUDE, (vol. 2) 13-4

COMMON combine type, Cmacro, (vol. 2) 14-6
Communication devices, (vol. 2) 7-20, 7-22
COMPAREITEMSTRUCT data structure, (vol. 1) 6-53,
(vol. 2) 7-19
COMPLEXREGION region type, (vol. 1) 4-32, 4-129,
4-158,4-224,4-260,4-318 to 4-319, 4-359·
COMSTAT data structure, (vol. 2) 7-20
Contexts

class and private, (vol. 1) 1-18
classes, displaying, (vol. 1) 1-34
displaying, (vol. 1) 1-32
displaying cache, (vol. 1) 1-36
displaying common defaults, (vol. 1) 1-33
painting changes, (vol. 1) 1-36
private display, (vol. 1) 1-35
window display, (vol. 1) 1-35
WM_PAINT message, (vol. 1) 1-36

Control
current font, (vol. 1) 6-62
owner-draw See Control, owner-draw
setting current font, (vol. 1) 6-99
size-box, (vol. 2) 8-36

Control class
BUTTON

control styles, (vol. 2) 8-37
described, (vol. 2) 8-35

. COMBOBOX

control styles, (vol. 1) 4-69
described, (vol. 1) 4-64, (vol. 2) 8-35

control styles, described, (vol. 2) 8-37
described, (vol. 2) 8-35
EDIT, (vol. 2) 8-36
EDIT, control styles, (vol. 2) 8-39
LISTBOX, (vol. 2) 8-36
LISTBOX control styles, (vol. 2) 8-41
SCROLLBAR, (vol. 2) 8-36.
SCROLLBAR control styles, (vol. 2) 8-43
STATIC, (vol. 2) 8-36

Control, edit See Edit control
CONTROL option, ACCELERATORS resource
statement, (vol. 2) 8-8
Control, owner-draw

described, (vol. 1) 1-50
drawing, (vol. 1) 6-58, 6-79, (vol. 2) 7-36
item deleted from, (vol. 2) 7-27
measuring, (vol. 1) 6-79

CONTROL resource statement
described, (vol. 2) 8-34 to 8-35
DIALOG resource statement, (vol. 2) 8-20

Control styles
BUTTON class, (vol. 2) 8-37
COMBOBOX class, (vol. 1) 4-69, (vol. 2) 8-38
described, (vol. 2) 8-37
EDIT class, (vol. 2) 8-39
LISTBOX class, (vol. 2) 8-41
SCROLLBAR class, (vol. 2) 8-43

Control text
centered, (vol. 2) 8-22
left-justified, (vol. 2) 8-20
right-justified, (vol. 2) 8-21

Control window, user-defined, (vol. 2) 8-34
Coordinate functions, (vot 1) 2-20
Copy MetaFile function, (vol. 1) 2-41,4-32
CopyRect function, (vol. 1) 1-67, 4-32
CountClipboardFormats function, (vol. 1) 4-33
CountVoiceNotes function, (vol. 1) 3-12,4-33
cProc macro, Cmacro, (vol. 2) 13-8
CreateBitmap function, (vol. 1) 2-25,4-33
CreateBitmapIndirect function, (vol. 1) 2-25,4-34
CreateBrushIndirect function, (vol. 1) 2-5,4-35
CreateCaret function, (vol. 1) 1-60,4-35
CreateCompatibleBitmap function, (vol. 1) 2-25, 4-36
CreateCompatibleDC function, (vol. 1) 2-2, 4-37
CreateCursor function, (vol. 1) 1-62,4-38
CreateDC function, (vol. 1) 2-2,4-38
CreateDialog function, (vol. 1) 1-43, 1-46,4-39 to 4-40,
4-44,4-78
CreateDialogIndirect function, (vol. 1) 1-43,4-41 to
4-42,4-78,6-100
CreateDialogIndirectParam function, (vol. 1) 1-43,4-43,

4-79,6-100
CreateDialogParam function, (vol. 1) 1-43,4-44,4-79
CreateDIBitmap function, (vol. I) 2-26, 4-44 to 4-45
CreateDIBPattemBrush function, (vol. 1) 2-5,4-46
CreateDiscardableBitmap function, (vol. 1) 2-25,4-46
CreateEllipticRgn function, (vol. I) 2-21, 4-47
CreateEllipticRgnIndirect function, (vol. I) 2-21, 4-48
CreateFont function, (vol. 1) 2-28, 4-48 to 4-50
CreateFontIndirect function, (vol. I) 2-28,4-51
CreateHatchBrush function, (vol. 1) 2-5, 4-51
CreateIC function, (vol. 1) 2-2, 4-52
Createlcon function, (vol. 1) 1-39,4-53
CreateMenu function, (vol. 1) 1-56,4-54
Create MetaFile function, (vol. 1) 2-41, 4-54
CreatePalette function, (vol. 1) 2-10,4-7,4-55,4-361
CreatePattemBrush function, (vol. 1) 2-6,4-55
CreatePen function, (vol. 1) 2-6,4-56
CreatePenIndirect function, (vol. 1) 2-6,4-57
CreatePolygonRgn function, (vol. 1) 2-21, 4-57
CreatePolyPolygonRgn function, (vol. 1) 2-21,4-58
CreatePopupMenu function, (vol. 1) 1-26, 1-56,4-59
CreateRectRgn function, (vol. 1) 2-21, 4-59
CreateRectRgnIndirect function, (vol. 1) 2-21,4-60
CreateRoundRectRgn function, (vol. 1) 2-21, 4-60
createSeg macro, Cmacro, (vol. 2) 14-6
CreateSolidBrush function, (vol. 1) 2-6,4-61
CREATESTRUCT data structure, (vol. 2) 7-21
CreateWindow function, (vol. 1) 1-3

creating a child window, (vol. 1) 1-23
creating a window with dialog-box attributes, (vol. 2)

8-15
creating an overlapped window, (vol. 1) 1-22
described, (vol. 1) 1-7,4-61 to 4-75

CreateWindowEx function, (vol. 1) 1-7,4-4,4-76 to 4-77
Creating windows, (vol. 2) 8-15
CS_BYTEALIGNCLIENT window class style, (vol. 1)
1-14, (vol. 2) 7-62
CS_BYTEALIGNWINDOW window class style, (vol. 1)
1-14, (vol. 2) 7-62
CS_CLASSDC window class style, (vol. 1) 1-14, 1-34,
(vol. 2) 7-62
CS_DBLCLKS window class style, (vol. 1) 1-14, (vol. 2)
7-62
CS_GLOBALCLASS window class style, (vol. 1) 1-15
CS_HREDRAW window class style, (vol. 1) 1-15, (vol.
2) 7-63
CS_NOCLOSE window class style, (vol. 1) 1-15, (vol. 2) .
7-63
CS_OWNDC window class style, (vol. 1) 1-15, 1-17,
1-35, (vol. 2) 7-63
CS_PARENTDC window class style, (vol. 1) 1-15, (vol.
2) 7-63
CS_SAVEBITS window class style, (vol. 1) 1-15, (vol.

Index 7

2) 7-64
CS_ VREDRAW window class style, (vol. 1) 1-15, (vol.
2) 7-64
CTEXT resource statement, (vol. 2) 8-22 to 8-23
CTLCOLOR_BTN control type for setting color, (vol. I)
6-54
CTLCOLOR_DLG control type for setting color, (vol. I)
6-54
CTLCOLOR_EDIT control type for setting color, (vol. 1)
6-55
CTLCOLOR_LISTBOX control type for setting color,
(vol. 1)6-55
CTLCOLOR_MSGBOX control type for setting color,
(vol. I) 6-55
CTLCOLOR_SCROLLBAR control type for setting
color, (vol. 1) 6-55
CTLCOLOR_STATIC control type for setting color,
(vol. 1) 6-55
Curly braces ({ }), as document convention, (vol. 1) xxv,
(vol. 2) x
Cursor

class, (vol. 1) 1-12
confining, (vol. 1) 1-63
creating custom, (vol. 1) 1-63
displaying and hiding, (vol. 1) 1-62
file format, (vol. 2) 9-3
functions, (vol. 1) 1-61
positioning, (vol. 1) 1-63
resource, (vol. 2) 8-2
with pointing devices, (vol. 1) 1-62

CURSOR resource-compiler key word, (vol. 2) 8-2
CURVECAPS device capability, (vol. 1) 4-168
CW _USEDEFAULT default window width, (vol. 2) 7-47

o
DATA module-definition statement, (vol. 2) 10-2
Data object, 32-bit, (vol. 2) E-7
Data segment attributes, defining, (vol. 2) 10-2, 10-8
DATA segment, Cmacro, (vol. 2) 14-6
DATA statement, (vol. 2) 10-1
Data types, naming conventions, (vol. 2) 7-1, 7-5
dataOFFSET macro, Cmacro, (vol. 2) 14-6
DC_BINS device capability, (vol. 1) 4-91
DC_DRIVER device capability, (vol. 1) 4-92
DC_DUPLEX device capability, (vol. 1) 4-92
DC_EXTRA device capability, (vol. 1) 4-92
DC_FIELDS device capability, (vol. 1) 4-92
DC_MAXEXTENT device capability, (vol. 1) 4-92
DC_MINEXTENT device capability, (vol. 1) 4-92
DC_PAPERS device capability, (vol. 1) 4-93
DC_PAPERSIZE device capability, (vol. 1) 4-93
DC_SIZE device capability, (vol. 1) 4-93

8 Reference

DC_VERSION device capability, (vol. 1) 4-93
DCB data structure, (vol. 2) 7-22 to 7-25
DDE

messages, (vol. 2) 15-1
protocol, (vol. 2) 15-1

DebugBreak function, (vol. 1) 3-14, 4-78
.DEF file. See Module-definition file
DEFAULT_PALETTE stock object, (vol. 1) 4-208
Default pushbutton control, (vol. 2) 8-28
DefDlgProc function, (vol. 1) 1-7, 1-43,4-78, (vol. 2)
8-19
DeferWindowPos function, (vol. 1) 1-28,4-79 to 4-80
DefFrameProc function, (vol. 1) 1-7, 4-81
DefHookProc function, (vol. 1) 1-63,4-82
#define directive, resource compiler, (vol. 2) 8-48
DefineHandleTable function, (vol. 1) 3-3, 3-5, 4-83
DefMDIChildProc function, (vol. 1) 1-7,4-84
DEFPUSHBUTTON resource statement

described, (vol. 2) 8-28 to 8-29
DIALOG resource statement, (vol. 2) 8-20

DefWindowProc function, (vol. 1) 1-7,4-85
DefX macro, Cmacro, (vol. 2) 14-7
DeleteAtom function, (vol. 1) 3-9,4-86
DeleteDC function, (vol. 1) 2-2,4-37,4-86
DELETEITEMSTRUCT data structure

as parameter ofWM_DELETEITEM message, (vol. 1)
6-57

described, (vol. 2) 7-26
DeleteMenu function, (vol. 1) 1-56,4-87
DeleteMetaFile function, (vol. 1) 2-41, 4-87
DeleteObject function, (vol. 1) 2-6, 4-88, 6-99
DESCRIPTION module-definition statement, (vol. 2)
10-3
DESCRIPTION statement, (vol. 2) 10-1
DestroyCaret function, (vol. 1) 1-60,4-88
DestroyCursor function, (vol. 1) 1-62,4-89
DestroyMenu function, (vol. 1) 1-56,4-90
DestroyWindow function

described, (vol. 1) 1-7,4-90
destroying modeless dialog boxes, (vol. 1) 1-45
effect, (vol. 1) 1-28

Device context
attributes and functions, (vol. 1) 2-3
creating, saving and deleting, (vol. 1) 2-4
functions, described, (vol. 1) 2-2

DEVICE_DEFAULT_FONT stock object, (vol. 1) 4-207
Device driver, device capabilities, (vol. 1) 4-91
Device-independent bitmap. See Bitmap,
device-independent
DeviceCapabilities function, (vol. 1) 2-44, 4-91 to 4-93
DEVICEDATA printer escape, (vol. 2) 12-7. See
PASSTHROUGH printer escape
DeviceMode function, (vol. 1) 2-44, 4-94

Devices, communication, (vol. 2) 7-20, 7-22
DEVMODE data structure, (vol. 1) 4-92 to 4-93, 4-131,
(vol. 2) 7-27 to 7-30
Dialog box

accelerators, (vol. 1) 1-52
buttons, (vol. 1) 1-49
control identifiers, (vol. 1) 1-48
control styles, (vol. 1) 1-48
controls

control messages, (vol. 1) 1-51
described, (vol. 1) 1-47, 1-51

creating, (vol. 1) 1-45 to 1-46, (vol. 2) 7-31, 8-13
described, (vol. 1) 1-43
dimensions, (vol. 1) 1-51
edit controls, (vol. 1) 1-49
input function, (vol. 1) 1-46
items, (vol. 2) 7-34
keyboard input, (vol. 1) 1-52
keyboard interface

actions, (vol. 1) 1-51
filtering, measurements, (vol. 1) 1-52
scrolling, (vol. 1) 1-52

modal
creating, (vol. 1) 1-46,4-98 to 4-99
moveable, (vol. 1) 1-45

modeless
creating, (vol. 1) 4-43 to 4-44
deleting, (vol. 1) 1-45
using, (vol. 1) 1-45

owner draw, (vol. 1) 1-51
private window class default function, (vol. 1) 4-78
redrawing, (vol. 1) 1-51
return values, (vol. 1) 1-47
scrolling, (vol. 1) 1-52
template, (vol. 1) 1-46, (vol. 2) 8-13
text font, (vol. 2) 7-34
using, (vol. 1) 1-45
window style, (vol. 2) 8-15

Dialog box units, (vol. 2) 8-21 to 8-30,8-32
Dialog functions, (vol. 1) 1-43
Dialog option statements, (vol. 2) 8-15
DIALOG resource statement

control class, control styles, (vol. 2) 8-37
described, (vol. 2) 8-13
dialog control statements

CHECKBOX, (vol. 2) 8-20, 8-23
COMBOBOX, (vol. 2) 8-20, 8-31
CONTROL, (vol. 2) 8-20, 8-34
control classes, (vol. 2) 8-35
CTEXT, (vol. 2) 8-20, 8-22
DEFPUSHBUTTON, (vol. 2) 8-20, 8-28
EDITTEXT, (vol. 2) 8-20, 8-30
GROUPBOX, (vol. 2) 8-20, 8-27

ICON, (vol. 2) 8-20, 8-33
LISTBOX, (vol. 2) 8-20, 8-26
L TEXT, (vol. 2) 8-20
PUSHBUTTON, (vol. 2) 8-20, 8-25
RADIOBUTTON, (vol. 2) 8-20, 8-29
RTEXT, (vol. 2) 8-20 to 8-21
SCROLLBAR, (vol. 2) 8-33

dialog option statement
CAPTION, (vol. 2) 8-15, 8-18
CLASS, (vol. 2) 8-15, 8-19
FONT, (vol. 2) 8-15, 8-19
MENU, (vol. 2) 8-15, 8-18
STYLE, (vol. 2) 8-14 to 8-15

DIALOG template, (vol. 2) 8-13
DialogBox function, (vol. 1) 1-43, 1-46,4-79,4-95, (vol.
2)8-14
DialogBoxIndirect function, (vol. 1) 1-43,4-79,4-96 to
4-97,6-100
DialogBoxIndirectParam function, (vol. 1) 1-43,4-79,
4-98,6-100
DialogBoxParam function, (vol. 1) 1-43,4-79,4-99
DIE. See Bitmap, device-independent
DIE_PAL_COLORS, device-independent bitmap color
table option, (vol. 1) 4-45 to 4-46, 4-172, 4-376, 4-378,
4-436, (vol. 2) 7-9, 7-12, 7-39, 9-15
DIE_RGB_COLORS, device-independent bitmap color
table option, (vol. 1) 4-45 to 4-46, 4-172, 4-376, 4-378,
4-436, (vol. 2) 7-39, 9-15
Digitized aspect, fonts, (vol. 1) 2-36
Directive, resource compiler

#define, (vol. 2) 8-48
described, (vol. 2) 8-47
#elif, (vol. 2) 8-50
#else, (vol. 2) 8-50
#endif, (vol. 2) 8-51
#if, (vol. 2) 8-49
#ifdef, (vol. 2) 8-48
#ifndef, (vol. 2) 8-49
#include, (vol. 2) 8-47
#undef, (vol. 2) 8-48

Disabled window, (vol. 2) 8-14
DISCARDABLE resource-compiler key word, (vol. 2)
8-2,8-4 to 8-6, 8-9, 8-14
DispatchMessage function, (vol. 1) 1-2,4-99
Display context default characteristics, (vol. 1) 1-33
Display, updating, (vol. 1) 1-37
DKGRA Y _BRUSH stock object, (vol. 1) 4-207
DLGC_DEFPUSHBUTTON input type, (voL 1) 6-62
DLGC_HASSETSEL input type, (vol. 1) 6-62
DLGC_PUSHBUTTON input type, (vol. 1) 6-62
DLGC_RADIOBUTTON input type, (vol. 1) 6-62
DLGC_ WANTALLKEYS input type, (vol. 1) 6-62
DLGC_ W ANTARROWS input type, (vol. 1) 6-62

Index 9

DLGC_ W ANTCHARS input type, (vol. 1) 6-62
DLGC_WANTMESSAGE input type, (vol. 1) 6-62
DLGC_ W ANTTAB input type, (vol. 1) 6-62
DlgDirList function, (vol. 1) 1-43,4-100 to 4-101
DIgDirListComboBox function, (vol. 1) 1-43,4-102
DlgDirSelect function, (vol. 1) 1-44,4-103
DIgDirSelectComboBox function, (vol. 1) 1-44,4-104
DLGITEMTEMPLATE data structure, (vol. 2) 7-34
DLGTEMPLATE

data structure, (vol. 1) 6-100, (vol. 2) 7-31 to 7-35
DLGITEMTEMPLATE data structure, (vol. 2) 7-34
FONTINFO data structure, (vol. 2) 7-34

OM_COPY option, (vol. 1) 4-131
DM_GETDEFID message, (vol. 1) 5-9, 6-19
OM_MODIFY option, (vol. 1) 4-132
DM_PROMPT option, (vol. 1) 4-132
DM_SETDEFID message, (vol. 1) 5-9, 6-19
OM_UPDATE option, (vol. 1) 4-132
Document conventions

bold text, (vol. 1) xxiv
curly braces ({ }), (vol. 1) xxv
double brackets ([[]]), (vol. 1) xxv
horizontal ellipses (...), (vol. 1) xxiv
monospaced type, (vol.l) xxiv
italic text, (vol. 1) xxiv
parentheses (), (vol. 1) xxiv
quotation marks (" "), (vol. 1) xxv
small capital letters, (vol. 1) xxv
vertical bar (I), (vol. 1) xxv
vertical ellipses, (vol. 1) xxiv

DOS interrupt function request (21H), (vol. 1) 4-104
DOS3Call function, (vol. 1) 3-6,4-104
Double brackets ([[]]), as document convention, (vol. 1)
xxv
Double quotation marks (" "), (vol. 2) 8-6 to 8-7,8-10,
8-19
DPtoLP function, (vol. 1) 2-20, 4-105
DRAFT_QUALITY font quality, (vol. 2) 7-43
DRAFTMODE printer escape, (vol. 2) 12-7
DrawFocusRect function, (vol. 1) 1-31,2-24,4-106
Drawleon function, (vol. 1) 1-31,4-106
Drawing

formatted text, (vol. 1) 1-40
gray text, (vol. 1) 1-42
icons, (vol. 1) 1-39
mode, default, (vol. 1) 1-33

ORA WITEMSTRUCT
as parameter ofWM_DRAWITEM message, (vol. 1)

6-59
data structure, described, (vol. 2) 7-36 to 7-37

DrawMenuBarfunction, (vol. 1) 1-56,4-12,4-87,4-107,
4-257,4-311,4-350
DRAWPATTERNRECT printer escape, (vol. 2) 12-8

10 Reference

DrawText function, (vol. 1) 1-31,4-107 to 4-109
Driver, printer initialization, (vol. 2) 7-27
DRIVERVERSION device capability, (vol. 1) 4-167
Drop-down menu. See Pop-up menu
DS_ABSALIGN dialog-box style, (vol. 2) 7-32, 8-14 to
8-15
DS_LOCALEDIT dialog-box style, (vol. 1) 4-66, (vol. 2)
7-32,8-16
DS_MODALFRAME dialog-box style, (vol. 1) 4-66,
(vol. 2) 7-32, 8-16
DS_NOIDLEMSG dialog-box style, (vol. 1) 4-66, (vol.
2) 7-33, 8-16
DS_SETFONT dialog-box style, (vol. 1) 6-100, (vol. 2)
7-32
DS_SYSMODAL dialog-box style, (vol. 1) 4-66, (vol. 2)
7-32,8-16
DSTINVERT raster operation, (vol. 1) 4-19
DT_BOTTOM forma.t for DrawText function, (vol. 1)
4-108
DT_CALCRECT format for DrawText function, (vol. 1)
4-108
DT _EXPANDT ABS format for DrawText function, (vol.
1) 4-108
DT _EXTERNALLEADING format for DrawText
function, (vol. 1) 4-108
DT_NOCLIP format for DrawText function, (vol. 1)
4-108
DT_NOPREFIX fonnat for DrawText function, (vol. 1)
4-109
DT_SINGLELINE format for DrawText function, (vol.
1) 4-109
DT _ T ABSTOP format for DrawText function, (vol. 1)
4-109
DT _TOP format for DrawText function, (vol. 1) 4-109
DT _ VCENTER format for DrawText function, (vol. 1)
4-109
DT_ WORDBREAK format for DrawText function, (vol.
1) 4-109
DUP assembler operator, (vol. 2) 14-15
DWORD data type, (vol. 2) 7-1
Dynamic Data Exchange. See DDE

E
Edit control

described, (vol. 2) 8-30 to 8-31,8-40
tab stops in, (vol. 1) 6-28

EDIT control class
control styles, (vol. 2) 8-31, 8-39
described, (vol. 1) 4-64, (vol. 2) 8-36

Edit-control notification codes, (vol. 1) 5-16
Editing keys, (vol. 2) 8-30
EDITTEXT resource statement

described, (vol. 2) 8-30 to 8-31
style option, (vol. 2) 8-30

EDITTEXT statement, DIALOG resource statement,
(vol. 2) 8-20
#elif directive, resource compiler, (vol. 2) 8-50
Ellipse function, (vol. 1) 2-24 to 2-25, 4-110
Ellipses

horizontal, as document convention, (vol. 1) xxiv
vertical, as document convention, (vol. 1) xxiv

#else directive, resource compiler, (vol. 2) 8-50
EM_CANUNDO message, (vol. 1) 5-10, 6-20
EM_EMPTYUNDOBUFFER message, (vol. 1) 5-10,
6-20
EM_FMTLINES message, (vol. 1) 5-10, 6-20
EM_GETHANDLE message, (vol. 1) 5-10, 6-21
EM_GETLINE message, (vol. 1) 5-10, 6-21
EM_GETLINECOUNT message, (vol. 1) 5-10, 6-22
EM_GETMODIFY message, (vol. 1) 5-10, 6-22
EM_GETRECT message, (vol. 1) 5-10, 6-22
EM_GETSEL message, (vol. 1) 5-10, 6-23
EM_LIMITTEXT message, (vol. 1) 5-10, 6-23
EM_LINEFROMCHAR message, (vol. 1) 5-10, 6-23
EM_LINEINDEX message, (vol. 1) 5-10, 6-24
EM_LINELENGTH message, (vol. 1) 5-10, 6-24
EM_LINES CROLL message, (vol. 1) 5-10, 6-25
EM_REPLACESEL message, (vol. 1) 5-11, 6-25
EM_SETHANDLE message, (vol. 1) 5-11, 6-26
EM_SETMODIFY message, (vol. 1) 5-11, 6-26
EM_SETPASSWORDCHAR message, (vol. 1) 4-71,
5-11,6-26, (vol. 2) 8-40
EM_SETRECT message, (vol. 1) 5-11, 6-27
EM_SETRECTNP message, (vol. 1) 5-11, 6-27
EM_SETSEL message, (vol. 1) 5-11, 6-28
EM_SETTABSTOPS message, (vol. 1) 5-11, 6-28
EM_SETWORDBREAK message, (vol. 1) 5-11,6-29
EM_UNDO message, (vol. 1) 5-11, 6-30
EmptyClipboard function, (vol. 1) 1-59,4-110
EMS memory, determining available, (vol. 1) 4-177
EN_CHANGE message, (vol. 1) 5-16, 6-30
EN_ERRS PACE message, (vol. 1) 5-16, 6-30
EN_HSCROLL message, (vol. 1) 5-16, 6-31
EN_KILLFOCUS message, (vol. 1) 5-16, 6-31
EN_MAXTEXT message, (vol. 1) 5-16, 6-31
EN_SETFOCUS message, (vol. 1) 5-16, 6-32
EN_UPDATE message, (vol. 1) 5-16, 6-32
EN_ VSCROLL message, (vol. 1) 5-16, 6-33
ENABLEDUPLEX printer escape, (vol. 2) 12-9
EnableHardwareInput function, (vol. 1) 1-30,4-111
EnableMenuItem function, (vol. 1) 1-56,4-111,4-311
ENABLEPAIRKERNING printer escape, (vol. 2) 12-10
ENABLERELATIVEWIDTHS printer escape, (vol. 2)
12-11
EnableWindow function, (vol. 1) 1-29,4-112

END_PATH printer escape, (vol. 2) 12-12 to 12-14
EndDeferWindowPos function, (vol. 1) 1-28,4-113
EndDialog function, (vol. 1) 1-44,4-99,4-113
ENDDOC printer escape, (vol. 2) 12-12
#endif directive, resource compiler, (vol. 2) 8-51
EndPaint function, (vol. 1) 1-31, 4-114
Entry point

creating, (vol. 2) 13-5
function, (vol. 2) 14-2

EnumChildWindows function, (vol. 1) 1-57,4-115
EnumClipboardFormats function, (vol. 1) 1-59,4-116
EnumFonts function, (vol. 1) 2-28, 4-117
EnumMetaFile function, (vol. 1) 2-41, 4-118 to 4-119
EnumObjects function, (vol. 1) 2-6, 4-120
ENUMPAPERBINS printer escape, (vol. 1) 4-91, (vol. 2)
12-15
ENUMPAPERMETRICS printer escape, (vol. 2) 12-16
EnumProps function, (vol. 1) 1-65,4-121 to 4-122
EnumTaskWindows function, (vol. 1) 1-57,4-123 to
4-124
EnumWindows function, (vol. 1) 1-57,4-125
Epilog, Windows, (vol. 2) 13-4
EPSPRINTING printer escape, (vol. 2) 12-16
EQU directive, Cmacro, (vol. 2) 13-3
EqualRect function, (vol. 1) 1-67,4-126
EqualRgn function, (vol. 1) 2-21, 4-126
errn$ macro, Cmacro, (vol. 2) 14-7
errnz macro, Cmacro, (vol. 2) 14-8
Error macros, Cmacro, (vol. 2) 13-9
ERROR region type, (vol. 1) 4-32, 4-129, 4-158, 4-224,
4-260,4-318 to 4-319, 4-359
ES_AUTOHSCROLL control style, (vol. 1) 4-70, (vol.
2) 8-41
ES_AUTOVSCROLL control style, (vol. 1) 4-70, (vol.
2) 8-40 to 8-41
ES_CENTER control style, (vol. 1) 4-70, (vol. 2) 8-39
ES_LEFT control style, (vol. 1) 4-70, (vol. 2) 8-39
ES_LOWERCASE control style, (vol. 1) 4-70, (vol. 2)
8-39
ES_MULTILINE control style, (vol. 1) 4-70, (vol. 2) 8-40
ES_NOHIDESEL control style, (vol. 1) 4-71, (vol. 2)
8-41
ES_OEMCONVERT control style, (vol. 1) 4-71, (vol. 2)
8-41
ES_PASSWORD control style, (vol. 1) 4-71, (vol. 2) 8-40
ES_RIGHT control style, (vol. 1) 4-71, (vol. 2) 8-39
ES_UPPERCASE control style, (vol. 1) 4-71, (vol. 2)
8-40
Escape character

\a, (vol. 2) 8-10
\1, (vol. 2) 8-10

Escape function, (vol. 1) 4-126
EscapeCommFunction function, (vol. 1) 3-11, 4-127

Escapes, printer, (vol. 2) 12-1
EV _BREAK event-mask value, (vol. 1) 4-373
EV _ CTS event-mask value, (vol. 1) 4-373
EV _DSR event-mask value, (vol. 1) 4-373
EV _ERR event-mask value, (vol. 1) 4-373
EV _PERR event-mask value, (vol. 1) 4-373
EV _RING event-mask value, (vol. 1) 4-373
EV _RLSD event-mask value, (vol. 1) 4-373
EV _RXCHAR event-mask value, (vol. 1) 4-373
EV _RXFLAG event-mask value, (vol. 1) 4-373

Index 11

EV _TXEMPTY event-mask value, (vol. 1) 4-373
EVEN PARITY parity type, (vol. 2) 7-23
ExcludeClipRect function, (vol. 1) 2-22,4-128
ExcludeUpdateRgn function, (vol. 1) 1-31,4-129
EXETYPE module-definition statement, (vol. 2) 10-4
Exit point, function, (vol. 2) 14-3
ExitWindows function, (vol. 1) 3-6,4-130
Exporting function, (vol. 2) 10-7
EXPORTS module-definition statement, (vol. 2) 10-4
EXPORTS statement, (vol. 2) 10-1
EXT_DEVICE_CAPS printer escape, (vol. 2) 12-17 to
12-18
ExtDeviceMode function, (vol. 1) 2-44,4-130 to 4-132
Extents, viewport and window default, (vol. 1) 1-33
externX macro, Cmacro, (vol. 2) 14-9
ExtFloodFill function, (vol. 1) 2-25, 4-133
ExtTextOut function, (vol. 1) 2-27, 4-134 to 4-135
EXTTEXTOUT printer escape, (vol. 2) 12-19 to 12-20

F
FAR data type, (vol. 2) 7-1
FAR function type, Cmacro, (vol. 2) 13-10
FARPROC data type, (vol. 2) 7-1
FarPtr

cCall, use with, (vol. 2) 14-9
macro, Cmacro, (vol. 2) 14-9

FatalAppExit function, (vol. 1) 3-14, 4-136
FatalExit function, (vol. 1) 3-14,4-136
FF _DECORATIVE font family, (vol. 2) 7-44
FF _DONTCARE font family, (vol. 2) 7-44
FF _MODERN font family, (vol. 2) 7-44
FF_ROMAN font family, (vol. 2) 7-44
FF _SCRIPT font family, (vol. 2) 7-44
FF _SWISS font family, (vol. 2) 7-44
File

bitmap, device-independent, format, (vol. 2) 9-1
clipboard format~ (vol. 2) 9-5 .
closing, (vol. 1) 4-271
CMACROS.INC, (vol. 2) 13-4
creating, (vol. 1) 4-271
cursor format, (vol. 2) 9-3
help, displaying, (vol. 1) 4-460

12 Reference

icon format, (vol. 2) 9-2
initialization

application-specific, (vol. 1) 4-199, 4-463
WINDOWS.H, (vol. 2) 8-15

metafile format, (vol. 2) 9-6
module-definition file format, (vol. 2) 10-1
opening, (vol. 1) 4-294
positioning the pointer, (vol. 1) 4-274
reading, (vol. 1) 4-297
writing, (vol. 1) 4-300

Filling mode
ALTERNATE, (vol. 1) 4-58, 4-389
WINDING, (vol. 1) 4-58,4-389

FillRect function, (vol. 1) 1-31,4-137
FillRgn function, (vol. 1) 2-21, 4-138
Filters, installing, (vol. 1) 1-65
FindAtom function, (vol. 1) 3-9,4-138
FindResource function, (vol. 1) 3-7, 4-139
FindWindow function, (vol. 1) 1-57,4-140
Fixed-pitch font attribute, (vol. 1) 2-35
FIXED resource-compiler key word, (vol. 2) 8-2 to 8-3,
8-5 to 8-6, 8-9, 8-13
FlashWindow function, (vol. 1) 1-59,4-141
Flat memory model, (vol. 2) E-2, E-5
FloodFill function, (vol. 1) 2-25, 4-141
FlushComm function, (vol. 1) 3-11,4-142
FLUSHOUTPUT printer escape, (vol. 2) 12-21
Font functions, (vol. 1) 2-28 to 2-29
Font mapping characteristics, (vol. 1) 2-38 to 2-39
FONT resource-compiler key word, (vol. 2) 8-2
FONT resource statement, (vol. 2) 8-19
Font Selection, (vol. 1) 2-40
FONTINFO data structure, (vol. 1) 6-100, (vol. 2) 7-34
Fonts

average character width, (vol. 1) 2-35
character sets

ANSI, (vol. 1) 2-35
described, (vol. 1) 2-34
OEM, (vol. 1) 2-35
printer, (vol. 1) 2-35
vendor specific, (vol. 1) 2-35

control, current, (vol. 1) 6-62
default, (vol. 1) 1-33
digitized aspect, (vol. 1) 2-36
family

described, (vol. 1) 2-29
italic, bold, and underline, (vol. 1) 2-32

leading, (vol. 1) 2-33 to 2-34
logical, creating, (vol. 1) 4-48, 4-51, (vol. 2) 7-40
maximum character width, (vol. 1) 2-36
overhang, (vol. 1) 2-36
pitch, (vol. 1) 2-35
resource, (vol. 2) 8-2

setting in control, (vol. 1) 6-99
Formats, clipboard, (vol. 1) 4-370
Formatted text, styles, (vol. 1) 1-41
FrameRect function, (vol. 1) 1-31,4-143
FrameRgn function, (vol. 1) 2-21, 4-143
FreeLibrary function, (vol. 1) 3-2,4-144
FreeModule function, (vol. 1) 3-2, 4-144
FreeProcInstance function, (vol. 1) 3-2, 4-145
FreeResource function, (vol. 1) 3-7, 4-145
FreeSelector function, (vol. 1) 3-5,4-146
Function macros, Cmacro, (vol. 2) 13-8
Function register, (vol. 2) 13-8
Functions

additional, (vol. 1) 1-67
bitmap, (vol. 1) 2-25 to 2-27
bounding rectangles, (vol. 1) 2-25
callback, (vol. 2) 13-5
caret, (vol. 1) 1-60 to 1-61
clipboard, (vol. 1) 1-58
clipping, (vol. 1) 2-22
coordinates, (vol. 1) 2-20, 2-23
defining in assembly language, (vol. 2) 14-4
device context attributes, (vol. 1) 2-3
device contexts, (vol. 1) 2-2
displaying, (vol. 1) 1-28
drawing tools, (vol. 1) 2-5
entry point, (vol. 2) 14-2
environment, (vol. 1) 2-47
error, (vol. 1) 1-59
exit point, (vol. 2) 14-3
far, (vol. 2) 14-5
filters, (vol. 1) 1-63
font, (vol. 1) 2-28
hardware, (vol. 1) 1-30
hook, (vol. 1) 1-63
information, (vol. 1) 1-57
input, (vol. 1) 1-29
main loop, (vol. 1) 1-4
mapping drawing attributes, (vol. 1) 2-15
menu, (vol. 1) 1-56
metafile, (vol. 1) 2-41
movement, (vol. 1) 1-28
near, (vol. 2) 14-5
obtaining device information, (vol. 1) 2-5
painting, (vol. 1) 1-31
printer control, (vol. 1) 2-44
property lists, (vol. 1) 1-65, 1-67
public, (vol. 2) 14-5
rectangle

coordinates, (vol. 1) 1-67
specifying, (vol. 1) 1-67

regions, (vol. 1) 2-21
system, (vol. 1) 1-58

G

text, (vol. 1) 2-27
window, (vol. 1) 1-6

GCL_MENUNAME option, (vol. 1) 4-368
GCL_ WNDPROC option, (vol. 1) 4-154, 4-368
GCW _CBCLSEXTRA option, (vol. 1) 4-155, 4-369
GCW _CBWNDEXTRA option, (vol. 1) 4-155, 4-369
GCW _HBRBACKGROUND option, (vol. 1) 4-155,
4-369
GCW _HCURSOR option, (vol. 1) 4-155, 4-369
GCW _HICON option, (vol. 1) 4-155, 4-369
GCW _HMODULE option, (vol. 1) 4-155
GCW _STYLE option, (vol. 1) 4-155, 4-369
GDI functions

brushes, predefined, (vol. 1) 2-7
color palettes, (vol. 1) 2-10
drawing attribute functions

background mode and color, (vol. 1) 2-14
described, (vol. 1) 2-13
mapping funtions, (vol. 1) 2-15
stretch mode and text color, (vol. 1) 2-14

drawing tool functions, (vol. 1) 2-5
mapping functions, (vol. 1) 2-15
mapping modes

constraining, (vol. 1) 2-17 to 2-18
transformation equations, (vol. 1) 2-18

obtaining device information, (vol. 1) 2-5
pens, predefined, (vol. 1) 2-8
selecting fonts, (vol. 1) 2-36
using drawing tools, (vol. 1) 2-6
working with color palettes, (vol. 1) 2-11

GetActiveWindow function, (vol. 1) 1-29,4-147
GetAspectRatioFilter function, (vol. 1) 2-36, 4-147
GetAsyncKeyState function, (vol. 1) 1-30,4-147
GetAtomHandle function, (vol. 1) 3-9, 4-148
GetAtomName function, (vol. 1) 3-9,4-148
GetBitmapBits function, (vol. 1) 2-25, 4-149
GetBitmapDimension function, (vol. 1) 2-25, 4-149
GetBkColor function, (vol. 1) 2-14, 4-150
GetBkMode function, (vol. 1) 2-14, 4-150
GetBrushOrg function, (vol. 1) 2-6, 4-150
GetBValue function, (vol. 1) 2-9,4-151
GetCapture function, (vol. 1) 1-29,4-151
GetCaretBlinkTime function, (vol. 1) 1-60,4-151
GetCaretPos function, (vol. 1) 1-60, 4-152
GetCharWidth function, (vol. 1) 2-28, 4-152
GetClasslnfo function, (vol. 1) 1-7,4-153
GetClassLong function, (vol. 1) 1-7,4-153
GetClassName function, (vol. 1) 1-7,4-154
GetClassWord function, (vol. 1) 1-7,4-155
GetClientRect function, (vol. 1) 1-28, 4-156

Index 13

GetClipboardData function, (vol. 1) 1-59,4-156
GetClipboardFormatName function, (vol. 1) 1-59,4-157
GetClipboardOwner function, (vol. 1) 1-59,4-157
GetClipboardViewer function, (vol. 1) 1-59,4-158
GetClipBox function, (vol. 1) 2-22,4-158
GetCodeHandle function, (vol. 1) 3-2, 4-159
GetCodelnfo function, (vol. 1) 3-5,4-159 to 4-160
GETCOLORTABLE printer escape, (vol. 2) 12-21
GetCommError function, (vol. 1) 3-11,4-161
GetCommEventMask function, (vol. 1) 3-11, 4-162
GetCommState function, (vol. 1) 3-11,4-162
GetCurrentPDB function, (vol. 1) 3-7,4-163
GetCurrentPosition function, (vol. 1) 4-163
GetCurrentTask function~ (vol. 1) 3-7, 4-164
GetCurrentTime function, (vol. 1) 1-29, 1-58,4-164
GetCursorPos function, (vol. 1) 1-62,4-164
GetDC function, (vol. 1) 1-31, 4-165
GetDCOrg function, (vol. 1) 2-2, 4-165
GetDesktopWindow function, (vol. 1) 4-166
GetDeviceCaps function, (vol. 1) 4-166 to 4-169
GetDialogBaseUnits function, (vol. 1) 1-44, 1-47,4-170,
4-304,6-28,6-44, (vol. 2) 7-35, 8-14, 8-21 to 8-30,8-32
to 8-35
GetDIBits function, (vol. 1) 2-13, 2-26, 4-168, 4-171
GetDIgCtrlID function, (vol. 1) 1-44, 4-172
GetDlgltem function, (vol. 1) 1-44,4-173
GetDlgltemlnt function, (vol. 1) 1-44,4-173
GetDlgltemText function, (vol. 1) 1-44,4-174
GetDOSEnvironment function, (vol. 1) 3-7; 4-175
GetDoubleClickTime function, (vol. 1) 1-29,4-175
GetDriveType function, (vol. 1) 3-13,4-175
GetEnvironment function, (vol. 1) 2-47, 4-176
GETEXTENDEDTEXTMETRICS printer escape, (vol.
2) 12-21 to 12-25
GETEXTENTTABLE printer escape, (vol. 2) 12-26
GETFACENAME printer escape, (vol. 2) 12-27
GetFocus function, (vol. 1) 1-29,4-177
GetFreeSpace function, (vol. 1) 3-3,4-177
GetGValue function, (vol. 1) 2-9, 4-178
GetInputState function, (vol. 1) 1-30,4-178
GetInstanceData function, (vol. 1) 3-2, 4-178
GetKBCodePage function, (vol. 1) 1-31,4-179
GetKeyboardState function, (vol. 1) 1-30,4-180
GetKeyboardType function, (vol. 1) 4-181
GetKeyNameText function, (vol. 1) 1-30,4-182
GetKeyState function, (vol. 1) 1-30,4-183
GetLastActiveP'opup function, (vol. 1) 1-7, 4-183
GetMapMode function, (vol. 1) 2-15, 4-184
GetMenu function, (vol. 1) 1-56,4-184
GetMenuCheckMarkDimensions function, (vol. 1) 1-56,
4-184
GetMenultemCount function, (vol. 1) 1-56,4-185
GetMcnultemID function, (vol. 1) 1-56,4-185

14 Reference

GetMenuState function, (vol. 1) 1-56,4-185 to 4-186
GetMenuString function, (vol. 1) 1-56, 4-187
GetMessage function, (vol. 1) 1-2, 4-188
GetMessagePos function, (vol. 1) 1-2,4-189
GetMessageTime function, (vol. 1) 1-2,4-189
GetMetaFile function, (vol. 1) 2-41,4-190
GetMetaFileBits function, (vol. 1) 2-41, 4-190
GetModuleFileName function, (vol. 1) 3-2,4-190
GetModuleHandle function, (vol. 1) 3-2,4-191
GetModuleUsage function, (vol. 1) 3-2,4-191
GetNearestColor function, (vol. 1) 2-9, 4-192
GetNearestPaletteIndex function, (vol. 1) 2-10, 4-192
GetNextDlgGroupItem function, (vol. 1) 1-44,4-192
GetNextDlgTabItem function, (vol. 1) 1-44, 4-193
GetNextWindow function, (vol. 1) 1-58,4-194
GetNumTasks function, (vol. 1) 3-7,4-194
GetObject function, (vol. 1) 2-6,4-195
GETPAIRKERNTABLE printer escape, (vol. 2) 12-27 to
12-28
GetPaletteEntries function, (vol. 1) 2-10,4-195
GetParent function, (vol. 1) 1-58,4-196
GETPHYSPAGESIZE printer escape, (vol. 2) 12-29
GetPixel function, (vol. 1) 2-26, 4-196
GetPolyFillMode function, (vol. 1) 2-14,4-197
GETPRINTINGOFFSET printer escape, (vol. 2) 12-29
GetPriorityClipboardFormat function, (vol. 1) 1-59,4-197
GetPrivateProfileInt function, (vol. 1) 3-10, 4-198 to
4-199
GetPrivateProfileString function, (vol. 1) 3-10,4-199 to
4-200
GetProcAddress function, (vol. 1) 3-2,4-200
GetProfileInt function, (vol. 1) 3-10, 4-201
GetProfileString function, (vol. 1) 3-10, 4-202
GetProp function, (vol. 1) 1-65, 4-203
GetRgnBox function, (vol. 1) 2-21, 4-203
GetROP2 function, (vol. 1) 2-14,4-204
GetRValue function, (vol. 1) 2-9, 4-204
GETSCALINGFACTOR printer escape, (vol. 2) 12-30
GetScrollPos function,.(vol. 1) 1-53,4-205
GetScrollRange function, (vol. 1) 1-53, 4-205 to 4-206
GETSETPAPERBINS printer escape, (vol. 2) 12-30 to
12-31
GETSETPAPERMETRICS printer escape, (vol. 2) 12-32
GETSETPAPERORIENT printer escape, (vol. 2) 12-32
GETSETPAPERORIENT ATION printer escape, (vol. 2)
12-33
GETSETSCREENPARAMS printer escape, (vol. 2)
12-33 to 12-34 .
GetStockObject function, (vol. 1) 2-6, 4-207
GetStretchBltMode function, (vol. 1) 2-14,4-208
GetSubMenu function, (vol. 1) 1-56,4-209, (vol. 2) 7-17
GetSysColor function, (vol. 1) 1-58,4-209,4-250
GetSysModalWindow function, (vol. 1) 4-210

GetSystemDirectory function, (vol. 1) 3-13, 4-210
GetSystemMenu function, (vol. 1) 1-57,4-211,6-106
GetSystemMetrics function, (vol. 1) 1-58,4-212
GetSystemPaletteEntries function, (vol. 1) 2-10, 4-213
GetSystemPaletteUse function, (vol. 1) 2-10,4-214
GetTabbedTextExtent function, (vol. 1) 2-27,4-215
GETTECHNOLOGY printer escape, (vol. 2) 12-35
GetTempDrive function, (vol. 1) 3-13,4-216
GetTempFileName function, (vol. 1) 3-13,4-216
GetTextAlign function, (vol. 1) 2-27,4-217 to 4-218
GetTextCharacterExtra function, (vol. 1) 4-219
GetTextColor function, (vol. 1) 2-14, 4-219
GetTextExtent function, (vol. 1) 2-27, 4-220
GetTextFace function, (vol. 1) 2-27, 4-220
GetTextMetrics function, (vol. 1) 2-27, 4-221
GetThresholdEvent function, (vol. 1) 3-12,4-221
GetThresholdStatus function, (vol. 1) 3-12, 4-222
GetTickCount function, (vol. 1) 1-29, .4-222
GetTopWindow function, (vol. 1) 1-58,4-222
GETTRACKKERNTABLE printer escape, (vol. 2) 12-35
to 12-36
GetUpdateRect function, (vol. 1) 1-31,4-223
GetUpdateRgn function, (vol. 1) 1-31, 4-223
GETVECTORBRUSHSIZE printer escape, (vol. 2) 12-37
GETVECTORPENSIZE printer escape, (vol. 2) 12-37
GetVersion function, (vol. 1) 3-2,4-224
GetViewportExt function, (vol. 1) 2-15, 4-225
GetViewportOrg function, (vol. 1) 2-15, 4-225
GetWindow function, (vol. 1) 1-58,4-225
GetWindowDC function, (vol. 1) 1-31,4-226
GetWindowExt function, (vol. 1) 2-15, 4-227
GetWindowLong function, (vol. 1) 1-7, 1-16,4-228
GetWindowOrg function, (vol. 1) 2-15, 4-228
GetWindowRect function, (vol. 1) 1-28, 4-229
GetWindowsDirectory function, (vol. 1) 3-13,4-229
GetWindowTask function, (vol. 1) 1-58,4-230
GetWindowText function, (vol. 1) 1-28,4-230
GetWindowTextLength function, (vol. 1) 1-29,4-231
GetWindowWord function, (vol. 1) 1-7,4-231
GetWinFlags function, (vol. 1) 3-3,4-232
GeiWinMem32Version, (vol. 2) E-3, E-lO
Global variable, Cmacro, (vol. 2) 14-11
Gioba116PointerAlloc function, (vol. 2) E-3, E-1O to E-ll
Gioba116PointerFree function, (vol. 2) E-3, E-ll
Globa132Alloc function, (vol. 2) E-3, E-12 to E-13
Giobal32CodeAlias function, (vol. 2) E-3, E-13 to E-14
Globa132CodeAliasFree function, (vol. 2) E-3, E-14
Globa132Free function, (vol. 2) E-3, E-14 to E-15
Giobal32Realloc function, (vol. 2) E-3, E-15
GlobalAddAtom function, (vol. 1) 3-9,4-233
GlobalAlloc function, (vol. 1) 3-3, 4-233 to 4-234
GlobalCompact function, (vol. 1) 3-3,4-177,4-235
GlobalDeleteAtom function, (vol. 1) 3-9,4-235

GlobalDiscard function, (vol. 1) 3-3, 4-236
GlobalDosAlloc function, (vol. 1) 3-3, 4-236
GlobalDosFree function, (vol. 1) 3-3, 4-237
GlobalFindAtom function, (vol. 1) 3-10,4-237
GlobalFix function, (vol. 1) 3-5,4-238
GlobalFlags function, (vol. 1) 3-3,4-238
GlobalFree function, (vol. 1) 3-3,4-239
GlobalGetAtomName function, (vol. 1) 3-10,4-240
GLOBALHANDLE data type, (vol. 2) 7-2
GlobalHandle function, (vol. 1) 3-3, 4-240
GlobalLock function, (vol. 1) 3-3, 4-241
GlobalLRUNewest function, (vol. 1) 3-3, 4-241
GlobalLRUOldest function, (vol. 1) 3-3, 4-242
GlobalNotify function, (vol. 1) 3-3,4-242
GlobalPageLock function, (vol. 1) 3-6,4-243
GlobalPageUnlock function, (vol. 1) 3-6, 4-244
GlobalReAlloc function, (vol. 1) 3-3,4-244 to 4-245
GlobalSize function, (vol. 1) 3-3,4-246
GlobalUnfix function, (vol. 1) 3-6, 4-247
GlobalUnlock function, (vol. 1) 3-4, 4-247
GlobalUnwire function, (vol. 1) 3-4, 4-248
GlobalWire function, (vol. 1) 3-4,4-248
globalX macro, Cmacro, (vol. 2) 14-10
GMEM_DDESHARE option, (vol. 1) 4-234, 4-239
GMEM_DISCARDABLE option, (vol. 1) 4-234, 4-239,
4-245
GMEM_DISCARDED option, (vol. 1) 4-239
GMEM_FIXED option, (vol. 1) 4-234
GMEM_MODIFY option, (vol. 1) 4-245
GMEM_MOVEABLE option, (vol. 1) 4-234, 4-245
GMEM_NOCOMPACT option, (vol. 1) 4-234, 4-246
GMEM_NODISCARD option, (vol. 1) 4-234, 4-246
GMEM_NOT_BANKED option, (vol. 1) 4-177, 4-234,
4-239
GMEM_NOTIFY option, (vol. 1) 4-234
GMEM_ZEROINIT option, (vol. 1) 4-234, 4-246
Graphics device interface, defined, (vol. 1) xvii
GRAY_BRUSH stock object, (vol. 1) 4-207
GRAYED menu-item option, (vol. 2) 7-51
GRA YED option

MENUITEM resource statement, (vol. 2) 8-11
POPUP resource statement, (vol. 2) 8-12

GrayString function, (vol. 1) 1-31,4-249 to 4-251
Group box, BUTTON class, (vol. 2) 8-27
GROUPBOX resource statement

described, (vol. 2) 8-27 to 8-28
DIALOG resource statement, (vol. 2) 8-20

GW _CHILD option, (vol. 1) 4-226
GW _HWNDFIRST option, (vol. 1) 4-226
GW _HWNDLAST option, (vol. 1) 4-226
GW _HWNDNEXT option, (vol. 1) 4-194, 4-226
GW _HWNDPREV option, (vol. 1) 4-194, 4-226
GW _OWNER option, (vol. 1) 4-226

Index 15

GWL_EXSTYLE option, (vol. 1) 4-228, 4-416
GWL_STYLE option, (vol. 1) 4-228, 4-416
GWL_ WNDPROC option, (vol. 1) 4-228, 4-416
GWW_HINSTANCE option, (vol. 1) 4-231, 4-428
GWW _HWNDPARENT option, (vol. 1) 4-231
GWW _ID option, (vol. 1) 4-231,4-428

H
HANDLEd~a~~,~~.~~2
Handle table, (vol. 2) 7-38
Handles

instance, (vol. 1) 1-12
task, obtaining, (vol. 1) 4-164

HANDLETABLE data structure, (vol. 2) 7-38
HBITMAP data type, (vol. 2) 7-2
HBRUSH data type, (vol. 2) 7-2
HCURSOR data type, (vol. 2) 7-2
HDC data type, (vol. 2) 7-2
Heap, local, (vol. 2) 10-5
HEAPSIZE module-definition statement, (vol. 2) 10-5
HEAPSIZE statement

described, (vol. 2) 10-1
syntax, (vol. 2) 10-5

Help application, (vol. 1) 4-460
HELP_CONTEXT option, (vol. 1) 4-460
HELP _HELPONHELP option, (vol. 1) 4-460
HELP_INDEX option, (vol. 1) 4-460
HELP_KEY option, (vol. 1) 4-461
HELP _MUL TIKEY option, (vol. 1) 4-461
HELP option, MENUITEM resource statement, (vol. 2)
8-10
HELP_QUIT option, (vol. 1) 4-461
HELP _SETINDEX, (vol. 1) 4-461
HFONT data type, (vol. 2) 7-2
HIBYTE utility macro, (vol. 1) 3-13, 4-252
HICON data type, (vol. 2) 7-2
HideCaret function, (vol. 1) 1-60,4-252
HiliteMenuItem function, (vol. 1) 1-57,4-253
HIWORD utility macro, (vol. 1) 3-13,4-171,4-254
HMENU data type, (vol. 2) 7-2
HOLLOW_BRUSH stock object, (vol. 1) 4-207
Hook chain, (vol. 1) 4-82
Hook function, (vol. 1) 4-82
HORZRES device capability, (vol. 1) 4-167
HORZSIZE device capability, (vol. 1) 4-167
HPALETTE data type, (vol. 2) 7-2
HPEN data type, (vol. 2) 7-2
HRGN data type, (vol. 2) 7-2
HS_BDIAGONAL brush hatch style, (vol. 1) 4-52, (vol.
2) 7-40
HS_CROSS brush hatch style, (vol. 1) 4-52, (vol. 2) 7-40
HS_DIAGCROSS brush hatch style, (vol. 1) 4-52, (vol.

16 Reference

2) 7-40
HS_FDIAGONAL brush hatch style, (vol. 1) 4-52, (vol.
2) 7-40
HS_HORIZONTAL brush hatch style, (vol. 1) 4-52, (vol.
2) 7-40
HS_ VERTICAL brush hatch style, (vol. 1) 4-52, (vol. 2)
7-40
HSTR data type, (vol. 2) 7-2
HTBOTTOM mouse-position code, (vol. 1) 6-85
HTBOTTOMLEFT mouse-position code, (vol. 1) 6-85
HTBOTTOMRIGHT mouse-position code, (vol. 1) 6-85
HTCAPTION mouse-position code, (vol. 1) 6-85
HTCLIENT mouse-position code, (vol. 1) 6-85
HTERROR mouse-position code, (vol. 1) 6-85
HTGROWBOX mouse-position code, (vol. 1) 6-85
HTHSCROLL mouse-position code, (vol. 1) 6-85
HTLEFT mouse-position code, (vol. 1) 6-85
HTMENU mouse-position code, (vol. 1) 6-85
HTNOWHERE mouse-position code, (vol. 1) 6-85
HTREDUCE mouse-position code, (vol. 1) 6-85
HTRIGHT mouse-position code, (vol. 1) 6-85
HTSIZE mouse-position code, (vol. 1) 6-85
HTSYSMENU mouse-position code, (vol. 1) 6-85
HTTOP mouse-position code, (vol. 1) 6-85
HTTOPLEFT mouse-position code, (vol. 1) 6-85
HTTOPRIGHT mouse-position code, (vol. 1) 6-86
HTTRANSPARENT mouse-position code, (vol. 1) 6-86
HTVSCROLL mouse-position code, (vol. 1) 6-86
HTZOOM mouse-position code, (vol. 1) 6-86
hWindowMenu, (vol. 2) 7-17

I
IBM PC extended character set, (vol. 2) D-1
Icon

class, (vol. 1) 1-12
drawing, (vol. 1) 1-39
file format, (vol. 2) 9-2

Icon resource, (vol. 2) 8-2
ICON resource-compiler key word, (vol. 2) 8-2
ICON resource statement

described, (vol. 2) 8-33
DIALOG resource statement, (vol. 2) 8-20

IDABORT menu-item value, (vol. 1) 4-307
IDC_ARROW cursor type, (vol. 1) 4-278
IDC_CROSS cursor type, (vol. 1) 4-278
IDC_IBEAM cursor type, (vol. 1) 4-278
IDC_ICON cursor type, (vol. 1) 4-278
IDC_SIZE, (vol. 1) 4-278
IDC_SIZENESW cursor type, (vol. 1) 4-278
IDC_SIZENS cursor type, (vol. 1) 4-278
IDC_SIZENWSE cursor type, (vol. 1) 4-278
IDC_SIZEWE cursor type, (vol. 1) 4-278

IDC_UPARROW cursor type, (vol. 1) 4-278
IDC_ WAIT cursor type, (vol. 1) 4-278
IDCANCEL menu-item value, (vol. 1) 4-132, 4-307
IDCAPPLICATION icon type, (vol. 1) 4-279
IDCASTERISK icon type, (vol. 1) 4-279
IDCEXCLAMATION icon type, (vol. 1) 4-279
IDCHAND icon type, (vol. 1) 4-279
IDCQUESTION icon type, (vol. 1) 4-279
IDIGNORE menu-item value, (vol. 1) 4-307
IDNO menu-item value, (vol. 1) 4-307
IDOK menu-item value, (vol. 1) 4-132, 4-307
IDRETRY menu-item value, (vol. 1) 4-307
IDYES menu-item value, (vol. 1) 4-307
IE_BADID error return value for OpenComm function,
(vol. 1) 4-322
IE_BAUDRATE error return value for OpenComm
function, (vol. 1) 4-322
IE_BYTESIZE error return value for OpenComm
function, (vol. 1) 4-322
IE_DEFAULT error return value for OpenComm
function, (vol. 1) 4-322
IE_HARDWARE error return value for OpenComm
function, (vol. 1) 4-322
IE_MEMORY error return value for OpenComm
function, (vol. 1) 4-322
IE_NOPEN error return value for OpenComm function,
(vol. 1) 4-322
IE_OPEN error return value for OpenComm function,
(vol. 1) 4-322
#if directive, resource compiler, (vol. 2) 8-49
#ifdef directive, resource compiler, (vol. 2) 8-48
#ifndef directive, resource compiler, (vol. 2) 8-49
IMPORTS module-definition statement, (vol. 2) 10-6
IMPORTS statement, (vol. 2) 10-1, 10-6
INACTIVE option

MENU ITEM resource statement, (vol. 2) 8-10
POPUP resource statement, (vol. 2) 8-11

INCLUDE command, Cmacro, (vol. 2) 13-4
#include directive

resource compiler, (vol. 2) 8-47
when required with STYLE statement, (vol. 2) 8-15

INCLUDE environmental variable, (vol. 2) 8-47
IncUpdate, (vol. 2) 7-55
InflateRect function, (vol. 1) 1-67 to 1-68, 4-255
InitAtomTable function, (vol. 1) 3-10,4-255
Initialization file, application-specific

getting integer from, (vol. 1) 4-199
getting string from, (vol. 1) 4-199
writing to, (vol. 1) 4-463

InSendMessage function, (vol. 1) 1-2, 4-256
InsertMenu function, (vol. 1) 1-26, 1-57,4-54,4-59,
4-211,4-256 to 4-258,6-106, (vol. 2) 7-38
Instructions, coding sequences, (vol. 2) 13-9

int data type, (vol. 2) 7-2
Integer messages, (vol. 1) 6-1
Intercharacter spacing, default, (vol. 1) 1-33
Internal data structures, (vol. 1) 1-16
Interrupt

function request (21H), (vol. 1) 4-104
--function request (5CH), (vol. 1) 4-315

IntersectClipRect function, (vol. 1) 2-22,47259
IntersectRect function, (vol. 1) 1-67 to 1-68, 4-260
InvalidateRect function, (vol. 1) 1-31,4-261
InvalidateRgn function, (vol. 1) 1-32,4-261
InvertRect function, (vol. 1) 1-32, 4-262
InvertRgn function, (vol. 1) 2-21, 4-263
IsCharAlpha function, (vol. 1) 3-8,4-263
IsCharAlphaNumeric function, (vol. 1) 3-8, 4-264
IsCharLower function, (vol. 1) 3-8, 4-264
IsCharUpper function, (vol. 1) 3-8,4-264
IsChild function, (vol. 1) 1-58,4-265
IsClipboardFormatAvailable function, (vol. 1) 1-59,4-265
IsDialogMessage function, (vol. 1) 1-44,4-266
IsDlgButtonChecked function, (vol. 1) 1-44,4-266
IsIconic function, (vol. 1) 1-29,4-267
IsRectEmpty function, (vol. 1) 1-68,4-267
IsWindow function, (vol. 1) 1-58,4-268
IsWindowEnabled function, (vol. 1) 1-30,4-268
IsWindowVisible function, (vol. 1) 1-29,4-269
IsZoomed function, (vol. 1) 1-29,4-269

K
Key

BACKSPACE, (vol. 2) 8-36
CONTROL, (vol. 2) 8-8
editing, (vol. 2) 8-30
getting name, (vol. 1) 4-182
SHIFT, (vol. 2) 8-8
TAB, (vol. 2) 8-17

Key word, resource-compiler
BITMAP, (vol. 2) 8-2
CURSOR, (vol. 2) 8-2
DISCARDABLE, (vol. 2) 8-2, 8-4 to 8-6, 8-9, 8-14
FIXED, (vol. 2) 8-2 to 8-3, 8-5 to 8-6, 8-9, 8-13
FONT, (vol. 2) 8-2
ICON, (vol. 2) 8-2
LOADONCALL, (vol. 2) 8-2 to 8-3, 8-5 to 8-6, 8-9, 8-13
MOVEABLE, (vol. 2) 8-2, 8-4 to 8-6, 8-9, 8-14
PRELOAD, (vol. 2) 8-2 to 8-4, 8-6, 8-9, 8-13

Keyboard, using with dialog boxes, (vol. 1) 1-52
KillTimer function, (vol. 1) 1-30,4-270

L
Label

name, (vol. 2) 14-4, 14-6

public, (vol. 2) 13-7
labelX macro, Cmacro, (vol. 2) 14-11
Language, assembly, (vol. 2) 13-1

Index 17

LB_ADDSTRING message, (vol. 1) 5-12, 6-34 to 6-35,
6-39,6-41, (vol. 2) 7-27, 7-38, 7-49
LB_DELETESTRING message, (vol. 1) 5-12, 6-34, 6-57
LB_DIR message, (vol. 1) 5-12, 6-35
LB_FINDSTRING message, (vol. 1) 5-12, 6-35
LB_GETCOUNT message, (vol. 1) 5-12, 6-36
LB_GETCURSEL message, (vol. 1) 5-12, 6-36
LB_GETHORIZONTALEXTENT message, (vol. 1)
5-12,6-36
LB_GETITEMDATA message, (vol. 1) 5-12, 6-37
LB_GETITEMRECT message, (vol. 1) 5-12, 6-37
LB_GETSEL message, (vol. 1) 5-12, 6-37
LB_GETSELCOUNT message, (vol. 1) 5-12, 6-38
LB_GETSELITEMS message, (vol. 1) 5-12, 6-38
LB_GETTEXT message, (vol. 1) 5-12, 6-38
LB_GETTEXTLEN message, (vol. 1) 5-12, 6-39
LB_GETTOPINDEX message, (vol. 1) 5-12, 6-39
LB_INSERTSTRING message, (vol. 1) 5-12, 6-34 to
6-35,6-39 to 6-41, (vol. 2) 7-27, 7-38, 7-49
LB_RESETCONTENTmessage, (vol. 1) 5-13, 6-40, 6-57
LB_SELECTSTRING message, (vol. 1) 5-13, 6-40
LB_SELITEMRANGE message, (vol. 1) 5-13, 6-41
LB_SETCOLUMNWIDTH message, (vol. 1) 4-72, 5-13,
6-42, (vol. 2) 8-42
LB_SETCURSEL message, (vol. 1) 5-13, 6-42
LB_SETHORIZONTALEXTENT message, (vol. 1)
5-13,6-42
LB_SETITEMDATA message, (vol. 1) 5-13, 6-37, 6-43
LB_SETSEL message, (vol. 1) 5-13, 6-43
LB_SETTABSTOPS message, (vol. 1) 5-13, 6-44
LB_SETTOPINDEX message, (vol. 1) 5-13, 6-44
LBN_DBLCLK message, (vol. 1) 5-16, 6-45
LBN_ERRSPACE message, (vol. 1) 5-16, 6-45
LBN_KILLFOCUS message, (vol. 1) 5-16, 6-45
LBN_SELCHANGE message, (vol. 1) 5-16, 6-46
LBN_SETFOCUS message, (vol. 1) 5-16, 6-46
LBS_EXTENDEDSELcontrol style, (vol. 1) 4-71, (vol.
2) 8-42
LBS_HASSTRINGS control style, (vol. 1) 4-72, 6-34 to
6-35,6-37,6-39 to 6-41, (vol. 2) 8-42
LBS_MULTICOLUMN control style, (vol. 1) 4-72,6-42,
(vol. 2) 8-42
LBS_MULTIPLESEL control style, (vol. 1) 4-72, (vol.
2) 8-42
LBS_NOINTEGRALHEIGHT control style, (vol. 2) 8-42
LBS_NOREDRA W control style, (vol. 1) 4-72, (vol. 2)
8-42
LBS_NOTIFY control style, (vol. 1) 4-72, (vol. 2) 8-42
LBS_OWNERDRA WFIXED control style, (vol. 1) 4-72,
(vol. 2) 8-42

18 Reference

LBS_OWNERDRAWVARIABLE control style, (vol. 1)
4-72, (vol. 2) 8-42
LBS_SORT control style, (vol. 1) 4-72, (vol. 2) 8-42
LBS_STANDARD control style, (vol. 1) 4-72, (vol. 2)
8-41
LBS_ WANTKEYBOARDINPUT control style, (vol. 2)
8-43
_Idose function, (vol. 1) 3-14,4-271
_lcreat function, (vol. 1) 3-14, 4-271
Library

C-Ianguage, (vol. 2) 13-5
linking, (vol. 2) 13-5
Windows, (vol. 2) 13-5

Library module, (vol. 2) 10-7
LIBRARY module-definition statement, (vol. 2) 10-7
LIBRARY statement, (vol. 2) 10-1, 10-7
LimitEMSPages function, (vol. 1) 3-4,4-272
Line-output functions

coordinates, (vol. 1) 2-23
pen styles, colors and widths, (vol. 1) 2-23

LINECAPS device capability, (vol. 1) 4-169
LineDDA function, (vol. 1) 2-22, 4-272
LineTo function, (vol. 1) 2-22,4-273
List box

directory listings, (vol. 1) 1-49
horizontal scrolling, (vol. 1) 6-36, 6-42
owner-draw, (vol. 1) 1-50, (vol. 2) 7-26

deleted item, (vol. 1) 6-57
measuring, (vol. 2) 7-48
sorting, (vol. 1) 6-53, (vol. 2) 7-19

tab stops in, (vol. 1) 6-44
LISTBOX control class

control styles, (vol. 2) 8-26, 8-41
described, (vol. 1) 4-65, (vol. 2) 8-26, 8-36

LISTBOX resource statement
described, (vol. 2) 8-26
DIALOG resource statement, (vol. 2) 8-20

_llseek function, (vol. 1) 3-14,4-274
LMEM_DISCARDABLE option, (vol. 1) 4-285, 4-287,
4-290
LMEM_DISCARDED option, (vol. 1) 4-287
LMEM_FIXED option, (vol. 1) 4-285
LMEM_MODIFY option, (vol. 1) 4-285, 4-290
LMEM_MOVEABLE option, (vol. 1) 4-285, 4-290
LMEM_NOCOMPACT option, (vol. 1) 4-285, 4-290
LMEM_NODISCARD option, (vol. 1) 4-286, 4-291
LMEM_ZEROINIT option, (vol. 1) 4-286, 4-291
LoadAccelerators function, (vol. 1) 3-7,4-275
LoadBitmap function, (vol. 1) 2-26, 3-7, 4-275 to 4-276
LoadCursor function, (vol. 1) 1-62, 3-7,4-277
LoadIcon function, (vol. 1) 3-7, 4-278
LoadLibrary function, (vol. 1) 3-2, 4-279
LoadMenu function, (vol. 1) 3-7,4-280

LoadMenuIndirect function, (vol. 1) 1-57,4-281
LoadModule function, (vol. 1) 3-15,4-281 to 4-282
LOADONCALL resource-compiler key word, (vol. 2)
8-2 to 8-3, 8-5 to 8-6, 8-9, 8-13
LoadResource function, (vol. 1) 3-7, 4-283
LoadString function, (vol. 1) 3-7,4-284, (vol. 2) 8-5
LOBYTE utility macro, (vol. 1) 3-13,4-285
Local heap, (vol. 2) 10-5
Local stack, (vol. 2) 10-9
LocalAlloc function, (vol. 1) 3-4,4-285
LocalCompact function, (vol. 1) 3-4, 4-286
LocalDiscard function, (vol. 1) 3-4,4-287
LocalFlags function, (vol. 1) 3-4,4-287
LocalFree function, (vol. 1) 3-4, 4-288
LOCALHANDLE data type; (vol. 2) 7-3
LocalHandle function, (vol. 1) 3-4,4-288
Locallnit function, (vol. 1) 3-4, 4-288
LocalLock function, (vol. 1) 3-4, 4-289
LocalReAlloc function, (vol. 1) 3-4,4-290
LocalShrink function, (vol. 1) 3-4, 4-291
LocalSize function, (vol. 1) 3-4, 4-292
LocalUnlock function, (vol. 1) 3-4, 4-292
10ca1X, Cmacro, (vol. 2) 13-9, 14-11
LockData function, (vol. 1) 3-4,4-293
LockResource function, (vol. 1) 3-7, 4-293
LockSegment function, (vol. 1) 3-4, 3-6,4-294
LOGBRUSH data structure, (vol. 2) 7-39
LOGFONT data structure, (vol. 2) 7-40 to 7-44
Logical palette

See also LOGPALETTE data structure
and input focus, (vol. 1) 6-95
changed, (vol. 1) 6-92
changing entries in, (vol. 1) 4-387
creating, (vol. 1) 4-55, (vol. 2) 7-45
finding color in, (vol. 1) 4-192
index specifier (direct), (vol. 1) 4-327
index specifier (indirect), (vol. 1) 4-328
realizing, (vol. 1) 4-343, 6-92
retrieving entries, (vol. 1) 4-195
selecting, (vol. 1) 4-361

LOGPALETTE data structure, (vol. 1) 4-55, (vol. 2)
7-45,7-55
LOGPEN data structure, (vol. 2) 7-45 to 7-46
LOGPIXELSX device capability, (vol. 1) 4-167
LOGPIXELSY device capability, (vol. 1) 4-167
long data type, (vol. 2) 7-3
_lopen function, (vol. 1) 3-14,4-294 to 4-295
LOWORD utility macro, (vol. 1) 3-13,4-171,4-296
LPBITMAP data type, (vol. 2) 7-3
LPBITMAPCOREHEADER data type, (vol. 2) 7-3
LPBITMAPCOREINFO data type, (vol. 2) 7-3
LPBITMAPFILEHEADER data type, (vol. 2) 7-3
LPBITMAPINFO data type, (vol. 2) 7-3

LPBITMAPINFOHEADER data type, (vol. 2) 7-3
LPCOMPAREITEMSTRUCT data type, (vol. 2) 7-3
LPCREATESTRUCT data type, (vol. 2) 7-3
LPDELETEITEMSTRUCT data type, (vol. 2) 7-3
LPDRAWITEMSTRUCT data type, (vol. 2) 7-3
LPHANDLETABLE data type, (vol. 2) 7-3
LPINT data type, (vol. 2) 7-3
LPLOGBRUSH data type, (vol. 2) 7-3
LPLOGFONT data type, (vol. 2) 7-3
LPLOGPALETTE data type, (vol. 2) 7-3
LPLOGPEN data type, (vol. 2) 7-4
LPMEASUREITEMSTRUCT data type, (vol. 2) 7-4
LPMETAFILEPICT data type, (vol. 2) 7-4
LPMSG data type, (vol. 2) 7-4
LPOFSTRUCT data type, (vol. 2) 7-4
LPPAINTSTRUCT data type, (vol. 2) 7-4
LPPALETTEENTRY data type, (vol. 2) 7-4
LPPOINT data type, (vol. 2) 7-4
LPRECT data type, (vol. 2) 7-4
LPSTR data type, (vol. 2) 7-4
LPTEXTMETRIC data type, (vol. 2) 7-4
LPtoDP function, (vol. 1) 2-20,4-296
LPVOID data type, (vol. 2) 7-4
LPWNDCLASS data type, (vol. 2) 7-4
_lread function, (vol. 1) 3-14, 4-297
lstrcat function, (vol. 1) 3-8,4-297
lstrcmp function, (vol. 1) 3-8,4-298
lstrcmpi function, (vol. 1) 3-8,4-299
lstrcpy function, (vol. 1) 3-9,4-299
lstrlen function, (vol. 1) 3-9,4-300
L TEXT resource statement

described, (vol. 2) 8-20 to 8-21
DIALOG resource statement, (vol. 2) 8-20

LTGRA Y _BRUSH stock object, (vol. 1) 4-207
_lwrite function, (vol. 1) 3-14, 4-300 to 4-301

M ________________________ _
Macro Assembler, (vol. 2) 13-1
Macros, Cmacro, (vol. 2) 13-6, 14-1
MAKEINTATOM utility macro, (vol. 1) 3-10, 3-13,
4-302
MAKEINTRESOURCE function, (vol. 1) 3-13
MAKEINTRESOURCE utility macro, (vol. 1) 4-153,
4-302
MAKELONG utility macro, (vol. 1) 3-13, 4-302
MAKEPOINT utility macro, (vol. 1) 3-13, 4-303
MakeProcInstance function, (vol. 1) 3-2, 4-303, (vol. 2)
7-1
MapDialogRect function, (vol. 1) 1-44,4-304
Mapping mode, default, (vol. 1) 1-33
MapVirtualKey function, (vol. 1) 1-31,4-305
MARKPARITYparity type, (vol. 2) 7-23

Index 19

max macro, (vol. 1) 4-305
Maximize box, (vol. 2) 8-17
MB_ABORTRETRYIGNORE option, (vol. 1) 4-308
MB_APPLMODAL option, (vol. 1) 4-308
MB_DEFBUTTON1 option, (vol. 1) 4-308
MB_DEFBUTTON2 option, (vol. 1) 4-308
MB_DEFBUTTON3 option, (vol. 1) 4-308
MB_ICONASTERISK option, (vol. 1) 4-308
MB_ICONEXCLAMATION option, (vol. 1) 4-308
MB_ICONHAND option, (vol. 1) 4-308
MB_ICONINFORMATION option, (vol. 1) 4-308
MB_ICONQUESTION option, (vol. 1) 4-308
MB_ICONSTOP option, (vol. 1) 4-308
MB_OK option, (vol. 1) 4-308
MB_OKCANCEL option, (vol. 1) 4-308
MB_RETRYCANCEL option, (vol. 1) 4-308
MB_SYSTEMMODAL option, (vol. 1) 4-308
MB_TASKMODAL option, (vol. 1) 4-309
MB_ YESNO option, (vol. 1) 4-309
MB_ YESNOCANCEL option, (vol. 1) 4-309
MDI. See Multiple document interface (MDI)
MDICREATESTRUCT

as parameter ofWM_MDICREATE message, (vol. 1)
6-76

data structure, (vol. 2) 7-47
MEASUREITEMSTRUCT data structure, (vol. 1) 6-80,
(vol. 2) 7-48 to 7-50
memC option, Cmacro, (vol. 2) 13-2
memH option, Cmacro, (vol. 2) 13-2
memL option, Cmacro, (vol. 2) 13-2
memM option, Cmacro, (vol. 2) 13-2
MEMORY combine type, Cmacro, (vol. 2) 14-6
Memory, least-recently used, (vol. 1) 4-241 to 4-242
Memory model

flat, (vol. 2) E-1
segmented, (vol. 2) E-2 .

Memory-model option
Cmacro, (vol. 2) 13-2
compact. See memC option, Cmacro
huge. See memH option, Cmacro
large. See memL option, Cmacro
medium. See memM option, Cmacro
small. See memS option, Cmacro

memS option, Cmacro, (vol. 2) 13-2
Menu

changing, (vol. 1) 4-11 to 4-13, 4-256 to 4-258, 4-309 to
4-311

class, (vol. 1) 1-14
creating, (vol. 1) 4-54
deleting, (vol. 1) 4-87
loading, (vol. 2) 7-50
owner-draw. See Menu, owner-draw
pop-up, (vol. 1) 1-26, 4-59

20 Reference

resource, (vol. 2) 8-8
Menu bar, described, (vol. 1) 1-25
Menu checkmark

custom, (vol. 1) 4-385
getting size of, (vol. 1) 4-184

Menu functions, (vol. 1) 1-56
Menu item, removing, (vol. 1) 4-349
Menu, owner-draw

drawing, (vol. 2) 7-36
measuring, (vol. 2) 7-48

MENU resource statement, (vol. 2) 8-8 to 8-11, 8-13,
8-18
MENUBARBREAK option

MENUITEM statement, (vol. 2) 8-11
POPUP statement, (vol. 2) 8-12

MENUBREAK option
MENUITEM statement, (vol. 2) 8-11
POPUP statement, (vol. 2) 8-11

MENUITEM SEPARATOR statement, (vol. 2) 8-13
MENUITEM statement, (vol. 2) 8-10
MENUITEMTEMPLATE data structure, (vol. 2) 7-50 to
7-51
MERGECOPY raster operation, (vol. 1) 4-19
MERGEPAINT raster operation, (vol. 1) 4-19
Message functions, (vol. 1) 1-2
MessageBeep function, (vol. 1) 1-59,4-306
MessageBox function, (vol. 1) 1-59,4-306 to 4-308
Messages

application queue, (vol. 1) 1-3
bypassing the queue, (vol. 1) 1-3
checking the queue, (vol. 1) 1-5
clipboard, (vol. 1) 5-7
closing, (vol. 1) 1-28
contents, (vol. 1) 6-1
described, (vol. 1) 1-6
destroy message, (vol. 1) 1-28
dispatching, (vol. 1) 1-3
examining

checking queues, passing, posting, (vol. 1) 1-6
formatted and transmitting, (vol. 1) 1-6

generated by applications, (vol. 1) 1-3
generating or processing

input events and application queue, (vol. 1) 1-3
queuing and virtual-key, (vol. 1) 1-3

input events, (vol. 1) 1-3
integer, (vol. 1) 6-1
keyboard input, (vol. 1) 1-4
peeking, (vol. 1) 1-5
posting, (vol. 1) 1-5, 4-335
pulling, (vol. 1) 1-3
pushing, (vol. 1) 1-3
ranges, (vol. 1) 6-1
reading, (vol. 1) 1-3, 1-5

reserved, (vol. 1) 6-1
sending, (vol. 1) 1-5
special actions, (vol. 1) 1-3
string, (vol. 1) 6-1
translating

accelerator keys, (vol. 1) 1-5
described, (vol. 1) 1-4
loops, (vol. 1) 1-5

virtual keys, (vol. 1) 1-4
window

default processing, (vol. 1) 4-85
functions, (vol. 1) 1-3

Metafile file format, (vol. 2) 9-6
Metafile functions

additional escapes, (vol. 1) 2-47
described, (vol. 1) 2-41
environment, (vol. 1) 2-47
information escapes, (vol. 1) 2-47
printer escapes

banding, (vol. 1) 2-45 to 2-46
starting and ending, (vol. 1) 2-46
terminating, (vol. 1) 2-46

Metafile picture format, (vol. 2) 7-52
METAFILEPICT data structure, (vol. 2) 7-52
Metafiles

changing, (vol. 1) 2-43
creating, (vol. 1) 2-41 to 2-42
deleting, (vol. 1) 2-43
storing, (vol. 1) 2-43

MF_BITMAP menu flag, (vol. 1) 4-13, 4-258,4-311,
6-81
MF _BYCOMMAND menu flag, (vol. 1) 4-25, 4-112,
4-253,4-258,4-311
MF _BYPOSITION menu flag, (vol. 1) 4-25, 4-112,
4-253,4-258,4-311
MF _CHECKED menu flag, (vol. 1) 4-13, 4-25, 4-186,
4-258,4-311,6-81
MF_CHECKED menu-item option, (vol. 2) 7-51
MF _DISABLED menu flag, (vol. 1) 4-13, 4-112, 4-186,
4-258,4-311,6-81
MF_ENABLED menu flag, (vol. 1) 4-13, 4-112, 4-186,
4-258,4-311
MF _END menu option, (vol. 2) 7-51
MF _GRAYED menu flag, (vol. 1) 4-13, 4-112, 4-186,
4-258,4-311,6-81
MF _HELP menu-item option, (vol. 2) 7-51
MF _HI LITE menu flag, (vol. 1) 4-253
MF _MENUBARBREAK menu flag, (vol. 1) 4-13,
4-186,4-258,4-311
MF _MENUBARBREAK menu-item option, (vol. 2) 7-51
MF _MENUBREAK menu flag, (vol. 1) 4-13, 4-186,
4-258,4-312
MF _MENUBREAK menu-item option, (vol. 2) 7-51

MF _MOUSES ELECT menu flag, (vol. 1) 6-81
MF _OWNERDRAW menu flag, (vol. 1) 4-13, 4-259,
4-312,6-81
MF _OWNERDRA W menu-item option, (vol. 2) 7-51
MF _POPUP menu flag, (vol. 1) 4-14, 4-259, 4-312, 6-81
MF _POPUP menu-item option, (vol. 2) 7-51
MF _SEPARATOR menu flag, (vol. 1) 4-14, 4-186,
4-259,4-312
MF _STRING menu flag, (vol. 1) 4-14, 4-259, 4-312
MF _SYSMENU menu flag, (vol. 1) 6-81
MF _UNCHECKED menu flag, (vol. 1) 4-14,4-25,
4-186,4-259,4-312
MF _UNHILITE menu flag, (vol. 1) 4-253
MFCOMMENT printer escape, (vol. 2) 12-38
MIDCREATESTRUCT menu flag, (vol. 2) 7-48
min macro, (vol. 1) 4-309
Minimize box, (vol. 2) 8-17
Minus (-) sign, (vol. 2) 14-7
MK_CONTROL mouse-key code, (vol. 1) 6-71 to 6-74,
6-82, 6-96 to 6-97
MK_LBUTTON mouse-key code, (vol. 1) 6-71, 6-73 to
6-74,6-82, 6-96 to 6-97
MK_MBUTION mouse-key code, (vol. 1) 6-71 to 6-73,
6-82, 6-96 to 6-97
MK_RBUTTON mouse-key code, (vol. 1) 6-71 to 6-74,
6-82,6-96
MK_SHIFf mouse-key code, (vol. 1) 6-71 to 6-74,6-82,
6-96 to 6-97
MM_ANISOTROPIC mapping mode, (vol. 1) 4-383
MM_HIENGLISH mapping mode, (vol. 1) 4-383
MM_HIMETRIC mapping mode, (vol. 1) 4-383
MM_ISOTROPIC mapping mode, (vol. 1) 4-384
MM_LOENGLISH mapping mode, (vol. 1) 2-20,4-384
MM_LOMETRIC mapping mode, (vol. 1) 4-384
MM_TEXT mapping mode, (vol. 1) 2-19, 4-384
MM_TWIPS mapping mode, (vol. 1) 4-384
Mnemonic, (vol. 2) 8-10, 8-21 t08-25, 8-27 to 8-29
ModifyMenu function, (vol. 1) 1-57,4-211,4-309 to
4-311, 6-106
Module-definition file

CODE statement, (vol. 2) 10-2
DATA statement, (vol. 2) 10-2
DESCRIPTION statement, (vol. 2) 10-3
EXETYPE statement, (vol. 2) 10-4
EXPORTS statement, (vol. 2) 10-4
HEAPSIZE statement, (vol. 2) 10-5
IMPORTS statement, (vol. 2) 10-6
LIBRARY statement, (vol. 2) 10-7
module statement, (vol. 2) 10-1
NAME statement, (vol. 2) 10-7
SEGMENTS statement, (vol. 2) 10-8
STACKSIZE statement, (vol. 2) 10-9
STUB statement, (vol. 2) 10-10

Index 21

Module statement in module-definition file, (vol. 2) 10-1
Mouse cursor. See Cursor
MOVEABLE resource-compiler key word, (vol. 2) 8-2,
8-4 to 8-6, 8-9, 8-14
MoveTo function, (vol. 1) 2-22, 4-312
MoveWindow function, (vol. 1) 1-29,4-313
MSG data structure, (vol. 2) 7-53
MSGF _DIALOGBOX filter-function message type, (vol.
1) 4-426 to 4-427
MSGF _MENU filter-function message type, (vol. 1)
4-426 to 4-427
MSGF _MESSAGEBOX filter-function message type,
(vol. 1) 4-427
MulDiv function, (vol. 1) 3-13, 4-314
MULTIKEYHELP data structure, (vol. 2) 7-53
Multiple document interface (MDI)

child window, (vol. 2) 7-16
activating, (vol. 1) 6-75, 6-78
active, (vol. 1) 6-77
cascading, (vol. 1) 6-75
closing, (vol. 1) 6-76
creating, (vol. 1) 6-75, (vol. 2) 7-47
default function, (vol. 1) 4-84
maximizing, (vol. 1) 6-77
restoring, (vol. 1) 6-78
system accelerator, (vol. 1) 4-445
tiling, (vol. 1) 6-79

client window, (vol. 1) 6-75 to 6-77,6-79
described, (vol. 1) 1-25
frame window default function, (vol. 1) 4-81
messages, (vol. 1) 5-19
system accelerator, (vol. 1) 4-445

Multiple-line edit control, (vol. 2) 8-40
Multiple-line resource statement

ACCELERATORS, (vol. 2) 8-7
DIALOG, (vol. 2) 8-13
MENU, (vol. 2) 8-8
RCDATA, (vol. 2) 8-4
STRINGTABLE, (vol. 2) 8-5

Multitasking, defined, (vol. 1) xvi

N
NAME module-definition statement, (vol. 2) 10-7
NAME statement, (vol. 2) 10-1
Naming

conventions, data types, (vol. 2) 7-5
executable module, (vol. 2) 10-7
imported functions, (vol. 2) 10-6
library module, (vol. 2) 10-7

NEAR data type, (vol. 2) 7-4
NETBIOS interrupt, function request (5CH), (vol. 1)
4-315

22 Reference

NetBIOSCall function, (vol. 1) 3-6, 4-315
NEWFRAME printer escape, (vol. 2) 12-38
NEXTBAND printer escape, (vol. 2) 12-39
NO INVERT option, ACCELERATORS resource
statement, (vol. 2) 8-8
Non-resident segments, (vol. 2) 14-5
NOPARITYparity type, (vol. 2) 7-23
Notification codes

button, (vol. 1) 5-15
edit control, (vol. 1) 5-16

NPSTR data type, (vol. 2) 7-4
NULL_BRUSH stock object, (vol. 1) 4-207
NULL_PEN stock object, (vol. 1) 4-207
NULLREGION region type, (vol. 1) 4-32, 4-129 to
4-130,4-158,4-224,4-260,4-318 to 4-319,4-359
NUMBRUSHES device capability, (vol. 1) 4-167
NUMCOLORS device capability, (vol. 1) 4-167
NUMFONTS device capability, (vol. 1) 4-167
NUMPENS device capability, (vol. 1) 4-167

o
ODA_DRA WEN TIRE drawing action, (vol. 2) 7-37
ODA_FOCUS drawing action, (vol. 2) 7-37
ODA_SELECT drawing action, (vol. 2) 7-37
ODDPARITY parity type, (vol. 2) 7-23
ODS_CHECKED owner-draw control status, (vol. 2)
7-37
ODS_DISABLED owner-draw control status, (vol. 2)
7-37
ODS_FOCUS owner-draw control status, (vol. 2) 7-37
ODS_GRA YED owner-draw control status, (vol. 2) 7-37
ODS_SELECTED owner-draw control status, (vol. 2)
7-37
ODT_BUTTON owner-draw control type, (vol. 2) 7-36,
7-49
ODT_COMBOBOX owner-draw control type, (vol. 2)
7-19, 7-27, 7-36, 7-49
ODT_LISTBOX owner-draw control type, (vol. 2) 7-19,
7-27, 7-36, 7-49
ODT_MENU owner-draw control type, (vol. 2) 7-36,
7-49
OEM_FIXED_FONT stock object, (vol. 1) 4-207
OemKeyScan function, (vol. 1) 1-31,4-316
OemToAnsi function, (vol. 1) 3-9,4-316
OemToAnsiBuff function, (vol. 1) 3-9, 4-317
OF_CANCEL option, (vol. 1) 4-323
OF_CREATE option, (vol. 1) 4-323
OF_DELETE option, (vol. 1) 4-323
OF_EXIST option, (vol. 1) 4-323
OF_PARSE option, (vol. 1) 4-323
OF_PROMPT option, (vol. 1) 4-323
OF_READ option, (vol. 1) 4-295, 4-323

OF _READWRITE option, (vol. 1) 4-295
OF_REOPEN option, (vol. 1) 4-323
OF_VERIFY option, (vol. 1) 4-325
OF_WRITE option, (vol. 1) 4-296, 4-325
OFFSET macro, Cmacro, (vol. 2) 14-6
Offset value, (vol. 2) 14-4, 14-6
OffsetClipRgn function, (vol. 1) 2-22,4-317
OffsetRect function, (vol. 1) 1-67 to 1-68, 4-318
OffsetRgn function, (vol. 1) 2-21, 4-319
OffsetViewportOrg function, (vol. 1) 2-15, 4-319
OffsetWindowOrg function, (vol. 1) 2-15, 4-320
OFSTRUCT data structure, (vol. 2) 7-54
ONE5STOPBITS stop-bits type, (vol. 2) 7-24
ONESTOPBIT stop-bits type, (vol. 2) 7-24
OPAQUE background mode, (vol. 1) 4-365
OpenClipboard function, (vol. 1) 1-59,4-321
OpenComm function, (vol. 1) 3-11, 4-321
OpenFile function, (vol. 1) 3-14,4-322 to 4-324
OpenIcon function, (vol. 1) 1-29,4-325
OpenSound function, (vol. 1) 3-12, 4-326
Option

MENUBARBREAK, (vol. 2) 8-11
MENUBREAK, (vol. 2) 8-11
SHIFT, (vol. 2) 8-8

Option, Cmacro
memC, (vol. 2) 13-2
memL, (vol. 2) 13-2
memM, (vol. 2) 13-2
memory-model, (vol. 2) 13-2
memS, (vol. 2) 13-2
?PLM, (vol. 2) 13-3
stack-checking, (vol. 2) 13-6
?WIN, (vol. 2) 13-4

Option, menu-item
CHECKED, (vol. 2) 8-10, 8-12
GRAYED, (vol. 2) 8-11 to 8-12
HELP, (voL 2) 8-10
INACTIVE, (vol. 2) 8-10 to 8-11
MENUBARBREAK, (vol. 2) 8-12

OR operator, (vol. 2) 8-12, 8-21 to 8-22, 8-24 to 8-27,
8-30 to 8-32
Origin

brush, default, (vol. 1) 1-33
viewport, default, (vol. 1) 1-33
window, default, (vol. 1) 1-34

OutputDebugString function, (vol. 1) 3-14, 4-326
Overlapped window, (vol. 1) 1-22
Overriding types, (vol. 2) 13-9
Owner-draw button. See Button, owner-draw
Owner-draw control. See Control, owner-draw
Owner-draw dialog box controls, (vol. 1) 1-51
Owner-draw menu. See Menu, owner-draw
OWNERDRA WFIXED resource option, (vol. 1) 6-80

p
PAGE alignment type, (vol. 2) 14-5
Painting

functions, (vol. 1) 1-31
inverting, drawing, filling, (vol. 1) 1-39
rectangles, (vol. 1) 1-39
systems display, (vol. 1) 1-31
updating

background, (vol. 1) 1-38
displays, (vol. 1) 1-37
nonclient area, (vol. 1) 1-42

validating
rectangle, (vol. 1) 4-455
region, (vol. 1) 4-455

PaintRgn function, (vol. 1) 2-21, 4-327
PAINTSTRUCT data structure, (vol. 2) 7-55
Palette, logical. See Logical palette
Palette, system, retrieving entries, (vol. 1) 4-213
PALETTE ENTRY data structure, (vol. 2) 7-45, 7-55
PALETTEINDEX utility macro, (vol. 1) 3-13,4-327
PALETTERGB utility macro, (vol. 1) 3-13, 4-327
PARA alignment type, (vol. 2) 14-5
Paren theses ()

as document convention, (vol. 1) xxiv
overriding type, (vol. 2) 13-10

parrnX macro, Cmacro, (vol. 2) 13-9 to 13-10, 14-5
Pascal calling convention, (vol. 2) 13-3 to 13-4
PASSTHROUGH printer escape, (vol. 2) 12-40
PatBlt function, (vol. 1) 2-26, 4-328
PA TCOPY raster operation, (vol. 1) 4-19
P A TINVERT raster operation, (vol. 1) 4-19
PATPAINT raster operation, (vol. 1) 4-19
PC_EXPLICIT palette-entry option, (vol. 2) 7-56
PC_NOCOLLAPSE palette-entry option, (vol. 2) 7-56
PC_RESERVED palette-entry option, (vol. 1) 4-7, (vol.
2) 7-56
PDEVICESIZE device capability, (vol. 1) 4-167
PeekMessage function, (vol. 1) 1-2,4-329 to 4-330
Pen

creating, (vol. 1) 4-56 to 4-57, (vol. 2) 7-45
position, default, (vol. 1) 1-33

Pie function, (vol. 1) 2-24 to 2-25, 4-331
PINT data type, (vol. 2) 7-4
PLANES device capability, (vol. 1) 4-167
PlayMetaFile function, (vol. 1) 2-41, 4-332
PlayMetaFileRecord function, (vol. 1) 2-41, 4-332
?PLM option

calling convention, defined, (vol. 2) 13-8
Cmacro, (vol. 2) 13-3 to 13-4

Plus (+) operator, (vol. 2) 8-21 to 8-26, 8-28 to 8-33
Plus (+) sign, with bias value, (vol. 2) 14-7
PIvCNOREMOVE option, (vol. 1) 4-330

PM_NOYIELD option, (vol. 1) 4-330
PM_REMOVE option, (vol. 1) 4-330
POINT data structure, (vol. 1) 4-93, (vol. 2) 7-56
Pointer naming, Cmacro, (vol. 2) 14-9
Polygon-filling mode, default, (vol. 1) 1-33
Polygon function, (vol. 1) 2-24, 4-333

Index 23

POL YGONALCAPS device capability, (vol. 1) 4-169
Polyline function, (vol. 1) 2-22, 4-334
PolyPolygon function, (vol. 1) 2-24, 4-334
Pop-up menu

creating, (vol. 1) 4-59
described, (vol. 1) 1-26, (vol. 2) 8-11
nested, (vol. 2) 8-12

POPUP resource statement, (vol. 2) 8-10 to 8-12
PostAppMessage function, (vol. 1) 1-2,4-335
PostMessage function, (vol. 1) 1-2,4-335
PostQuitMessage function, (vol. 1) 1-2,4-336
PRELOAD resource-compiler key word, (vol. 2) 8-2 to
8-4,8-6,8-9,8-13
Printer-control functions, (vol. 1) 2A4
Printer device driver

capabilities, (vol. 1) 4-91
initialization, (vol. 1) 4-130, (vol. 2) 7-27

Printer-escape functions
banding, (vol. 1) 2-45
creating output, (vol. 1) 2-45

Prof Clear function, (vol. 1) 3-15,4-337
ProfFinish function, (vol. 1) 3-15,4-337
ProfFlush function, (vol. 1) 3-15,4-337
ProfinsChk function, (vol. 1) 3-15,4-338
ProfSampRate function, (vol. 1) 3-15,4-338
Prof Setup function, (vol. 1) 3-15,4-338 to 4-339
Prof Start function, (vol. 1) 3-15,4-340
Prof Stop function, (vol. 1) 3-15,4-340
Programming model, setting, (vol. 2) 13-2
Prolog

code, (vol. 2) 13-4
Windows, (vol. 2) 13-4

PROOF_QUALITY font quality, (vol. 2) 7-43
Property list functions, (vol. 1) 1-65

adding entries, (vol. 1) 1-67
creating, (vol. 1) 1-67·
dumping contents, (vol. 1) 1-67

PSTR data type, (vol. 2) 7-4
PtInRect function, (vol. 1) 1-67 to 1-68, 4-340
PtInRegion function, (vol. 1) 2-21, 4-341
PtVisible function, (vol. 1) 2-22, 4-341 to 4-342
PUBLIC combine type, Cmacro, (vol. 2) 14-6
PUBLIC function, Cmacro, (vol. 2) 13-10
Public labels, (vol. 2) 13-7
Public variable, (vol. 2) 14-11
PUSHBUTTON resource statement

described, (vol. 2) 8-25

24 Reference

DIALOG resource statement, (vol. 2) 8-20
PWORD data type, (vol. 2) 7-4

a
QUERYESCSUPPORT printer escape, (vol. 2) 12-41
Queue

application, (vol. 1) 1-3
checking, (vol. 1) 1-5

Quotation marks (" ")

R

as document convention, (vol. 1) xxv
in strings, (vol. 2) 8-7, 8-10

R2 BLACK raster drawing mode, (vol. 2) 11-2 to 11-3
R2-COPYPEN raster drawing mode, (vol. 2) 11-2 to 11-3
R2 - MASKNOTPEN raster drawing mode, (vol. 1)
4-395, (vol. 2) 11-2 to 11-3
R2_MASKPEN raster drawing mode, (vol. 1) 4-395,
(vol. 2) 11-2 to 11-4
R2 MASKPENNOT raster drawing mode, (vol. 1)
4-395, (vol. 2) 11-2 to 11-4
R2 MERGENOTPEN raster drawing mode, (vol. 1)
4-395, (vol. 2) 11-2 to 11-4
R2 MERGEPEN raster drawing mode, (vol. 1) 4-395,
(vol. 2) 11-2 to 11-4
R2 MERGEPENNOT raster drawing mode, (vol. 1)
4-395, (vol. 2) 11-2 to 11-4
R2 NOP raster drawing mode, (vol. 2) 11-2 to 11-4
R2=NOT raster drawing mode, (vol. 1) 4-395, (vol. 2)
11-2 to 11-4
R2_NOTCOPYPEN raster drawing mode, (vol. 1) 4-395,
(vol. 2) 11-2 to 11-4
R2 NOTMASKPEN raster drawing mode, (vol. 1)
4-395, (vol. 2) 11-2 to 11-4
R2 NOTMERGEPEN raster drawing mode, (vol. 1)
4-395, (vol. 2) 11-2 to 11-4
R2_NOTXORPEN raster drawing mode, (vol. 1) 4-395,
(vol. 2) 11-2 to 11-4
R2 WHITE raster drawing mode, (vol. 2) 11-2 to 11-4
R2=XORPEN raster drawing mode, (vol. 1) 4-395, (vol.
2) 11-2 to 11-4
Radio-button control, (vol. 2) 8-29
RADIOBUTTON resource statement

described, (vol. 2) 8-29 to 8-30
DIALOG resource statement, (vol. 2) 8-20

Raster fonts, digitized aspect, (vol. 1) 2-36
RASTERCAPS device capability, (vol. 1) 4-168
Raw-data resource. See RCDAT A resource statement
RC BANDING device capability, (vol. 1) 4-168
RC - BITBLT device capability, (vol. 1) 4-168
RC - BITMAP64 device capability, (vol. 1) 4-168
RC=DCBITMAP device capability, (vol. 1) 4-168

RC diagnostic messages, (vol. 2) B-1 to B-1O
RC DIBTODEV device capability, (vol. 1) 4-168
RC - FLOODFILL device capability, (vol. 1) 4-168
RC - GDI20 OUTPUT device capability, (vol. 1) 4-168
RC -PALETTE device capability, (vol. 1) 4-168
RC -SCALING device capability, (vol. 1) 4-168
RC - STRETCHBLT device capability, (vol. 1) 4-168
RC - STRETCHDIB defice capability, (vol. 1) 4-168
RCDATA resource statement, (vol. 2) 8-4 to 8-5
ReadComm function, (vol. 1) 3-11,4-343
Realize. See Logical palette
RealizePalette function, (vol. 1) 2-10,4-343
RECT data structure, (vol. 2) 7-57
Rectangle function, (vol. 1) 2-24,4-344
Rectangle functions

additional functions, (vol. 1) 1-67
coordinates, (vol. 1) 1-67
in Windows, (vol. 1) 1-67
InflateRect, (vol. 1) 1-68
IntersectRect, (vol. 1) 1-68
IsRectEmpty, (vol. 1) 1-68
OffsetRect, (vol. 1) 1-68
PtlnRect, (vol. 1) 1-68
SetRect, (vol. 1) 1-68
specifying, (vol. 1) 1~67
UnionRect, (vaLl) 1-69

Rectangle, validating, (vol. 1) 4-455
RectInRegion function, (vol. 1) 2-22, 4-345
RectVisible function, (vol. 1) 2-22, 4-345
Region

rounded rectangle, creating, (vol. 1) 4-60
validating, (vol. 1) 4-455

Region functions, (vol. 1) 2-21
Register

pointers, (vol. 2) 13-8
saving, (vol. 2) 14-14

RegisterClass function, (vol. 1) 1-7,4-345
RegisterClipboardFormat function, (vol. 1) 1-59,4-346
RegisterWindow~essage functio~, (vol. 1) 4-347
Relative-absolute flag, default settmg, (vol. 1) 1-33
ReleaseCapture function, (vol. 1) 1-30,4-348
ReleaseDC function, (vol. 1) 1-32,4-348
RemoveFontResource function, (vol. 1) 2-28, 4-348
RemoveMenu function, (vol. 1) 1-57,4-349
RemoveProp function, (vol. 1) 1-65,4-350
ReplyMessage function, (vol. 1) 1-2,4-351
Reserved messages, (vol. 1) 6-1
RESETDEV communication function code, (vol. 1) 4-128
Resource

bitmap, (vol. 2) 8-2
cursor, (vol. 2) 8-2
font, (vol. 2) 8-2
icon, (vol. 2) 8-2

loading, (vol. 2) 8-2 to 8-4,8-6,8-13
managing hooks, (vol. 1) 1-63
raw data, (vol. 2) 8-4
string, (vol. 2) 8-5
user-defined, (vol. 2) 8-3

Resource directive
#define, (vol. 2) 8-48
described, (vol. 2) 8-47
#elif, (vol. 2) 8-50
#else, (vol. 2) 8-50
#endif, (vol. 2) 8-51
#if, (vol. 2) 8-49
#ifdef, (vol. 2) 8-48
#ifndef, (vol. 2) 8-49
#include, (vol. 2) 8-47
#undef, (vol. 2) 8-48

Resource statement
ACCELERATORS

CONTROL option, (vol. 2) 8-8
NOINVERT option, (vol. 2) 8-8
SHIff option, (vol. 2) 8-8

DIALOO
CAPTION statement, (vol. 2) 8-18
CHECKBOX statement, (vol. 2) 8-23
CLASS statement, (vol. 2) 8-19
COMBOBOX statement, (vol. 2) 8-31
CONTROL statement, (vol. 2) 8-34
CTEXT statement, (vol. 2) 8-22
DEFPUSHBUTTON statement, (vol. 2) 8-28
described, (vol. 2) 8-13
dialog control statements, (vol. 2) 8-20
dialog option statements, (vol. 2) 8-15
EDITTEXT statement, (vol. 2) 8-30
FONT statement, (vol. 2) 8-19
OROUPBOX statement, (vol. 2) 8-27
ICON statement, (vol. 2) 8-33
LISTBOX statement, (vol. 2) 8-26
LTEXT statement, (vol. 2) 8-20
MENU statement, (vol. 2) 8-18
options, (vol. 2) 8-13
PUSHBUTTON statement, (vol. 2) 8-25
RADIOBUTTON statement, (vol. 2) 8-29
RTEXT statement, (vol. 2) 8-21
SCROLLBAR statement, (vol. 2) 8-33
STYLE statement, (vol. 2) 8-15

MENU, (vol. 2) 8-8 to 8-11, 8-13
RCDATA, (vol. 2) 8-4 to 8-5
resource, (vol. 2) 8-1
single-line, (vol. 2) 8-1 to 8-2
STRINOT ABLE, (vol. 2) 8-5 to 8-6
user-defined, (vol. 2) 8-3 to 8-4

RESTORE_CTM printer escape, (vol. 2) 12-41
RestoreDC function, (vol. 1) 2-2, 4-352

ROB
See also Color
explicit, (vol. 2) 7-17
palette-relative, (vol. 2) 7-17

Index 25

ROB utility macro, (vol. 1) 3-13,4-352
ROBQUAD data structure, (vol. 2) 7-11, 7-58
ROBTRIPLE data structure, (vol. 2) 7-8, 7-58
RON_AND region-combining mode, (vol. 1) 4-31
RON_COPY region-combining mode, (vol. 1) 4-31
RON_DIFF region-combining mode, (vol. 1) 4-31
RON_OR region-combining mode, (vol. 1) 4-31
RON_XOR region-combining mode, (vol. 1) 4-31
RoundRect function, (vol. 1) 2-24,4-353 to 4-354
RT_ACCELERATOR resource type, (vol. 1) 4-139
RT_BITMAP resource type, (vol. 1) 4-139
RT_DIALOO resource type, (vol..1) 4-139
RT_FONT resource type
RT_MENU resource type, (vol. 1) 4-139
RT_RCDATA resource type, (vol. 1) 4-139
RTEXT resource statement, (vol. 2) 8-21 to 8-22

s
S_ALLTHRESHOLD voice-queue state, (vol. 1) 4-457
S_LEOATO voice note style, (vol. 1) 4-410
S_NORMAL voice note style, (vol. 1) 4-410
S_PERIOD512 voice frequency, (vol. 1) 4-398
S_PERIODI024 voice frequency, (vol. 1) 4-398
S_PERIOD2048 voice frequency, (vol. 1) 4-398
S_PERIODVOICE voice frequency, (vol. 1) 4-398
S_QUEUEEMPTY voice-queue state, (vol. 1) 4-457
S_SERDCC voice error code, (vol. 1) 4-412
S SERDDR voice error code, (vol. 1) 4-414
S=SERDFQ voice error code, (vol. 1) 4-414
S SERDLN voice error code, (vol. 1) 4-412
S - SERDMD voice error code, (vol. 1) 4-411
S=SERDNT voice error code, (vol. 1) 4-412
S_SERDRC voice error code, (vol. 1) 4-412
S SERDSH voice error code, (vol. 1) 4-412
S - SERDTP voice error code, (vol. 1) 4-411
S - SERDVL voice error code, (vol. 1) 4-411, 4-414
S - SERMACT voice error code, (vol. 1) 4-413
S - SEROFM voice error code, (vol. 1) 4-413
S=SERQFUL voice error code, (vol. 1) 4-41 i to 4-412,
4-414
S_STACCATO voice note style, (vol. 1) 4-410
S_THRESHOLD voice-queue state, (vol. 1) 4-457
S_ WHITE512 voice frequency, (vol. 1) 4-398
S_ WHITE 1024 voice frequency, (vol. 1) 4-398
S_ WHITE2048 voice frequency, (vol. 1) 4-398
S_ WHITEVOICE voice frequency, (vol. 1) 4-398
SAVE_CTM printer escape, (vol. 2) 12-42
Save macro, Cmacro, (vol. 2) 14-14

26 Reference

SaveDC function, (vol. 1) 2-2,4-355
Saving, registers, (vol. 2) 14-14
SB_BOTH scroll-bar type', (vol. 1) 4-431
SB_BOTTOM scrolling request, (vol. 1) 6-65 to 6-66,
6-112 to 6-113
SB_CTL scroll-bar type, (vol. 1) 4-205 to 4-206, 4-396 to
4-397,4-431
SB_ENDSCROLL scrolling request, (vol. 1) 6-65 to
6-66,6-112 to 6-113
SB_HORZ scroll-bar type, (vol. 1) 4-205 to 4-206,4-396
to 4-397, 4-431
SB_LINEDOWN scrolling request, (vol. 1) 6-65 to 6-66,
6-112 to 6-113
SB_LINEUP scrolling request, (vol. 1) 6-65 to 6-66,
6-112 to 6-113
SB_PAGEDOWN scrolling request, (vol. 1) 6-65 to
6-66,6-112 to 6-113
SB_PAGEUP scrolling request, (vol. 1) 6-65 to 6-66,
6-112 to 6-113
SB_THUMBPOSITION scrolling request, (vol. 1) 6-65
to 6-66, 6-112 to 6-113
SB_THUMBTRACK scrolling request, (vol. 1) 6-65,
6-112
SB_TOP scrolling request, (vol. 1) 6-65 to 6-66, 6-112 to
6-113
SB_ VERT scroll-bar type, (vol. 1) 4-205 to 4-206,4-396
to 4-397,4-431
sBegin macro, Cmacro, (vol. 2) 14-5, 14-14
SBS_BOTTOMALIGN control style, (vol. 1) 4-73, (vol.
2) 8-44
SBS_HORZ control style, (vol. 1) 4-73, (vol. 2) 8-44
SBS_LEFT ALIGN control style, (vol. 1) 4-73, (vol. 2)
8-43
SBS_RIGHTALIGN control style, (vol. 1) 4-73, (vol. 2)
8-43
SBS_SIZEBOX control style, (vol. 1) 4-73, (vol. 2) 8-44
SBS_SIZEBOXBOTTOMRIGHTALIGN control style,
(vol. 1) 4-73, (vol. 2) 8-44
SBS_SIZEBOXTOPLEFTALIGN control style, (vol. 1)
4-74, (vol. 2) 8-44
SBS_TOPALIGN control style, (vol. 1) 4-74, (vol. 2)
8-44
SBS_ VERT control style, (vol. 1) 4-74, (vol. 2) 8-43
SC_CLOSE system command, (vol. 1) 6-105
SC_HSCROLL system command, (vol. 1) 6-105
SC_KEYMENU system command, (vol. 1) 6-105
SC_MAXIMIZE system command, (vol. 1) 6-105
SC_MINIMIZE system command, (vol. 1) 6-105
SC_MOUSEMENU system command, (vol. 1) 6-105
SC_MOVE system command, (vol. 1) 6-106
SC_NEXTWINDOW system command, (vol. 1) 6-106
SC_PREVWINDOW system command, (vol. 1) 6-106
SC_RESTORE system command, (vol. 1) 6-106

SC_SIZE system command, (vol. 1) 6-106
SC_ VSCROLL system command, (vol. 1) 6-106
ScaleViewportExt function, (vol. 1) 2-15,4-355
ScaleWindowExt function, (vol. 1) 2-15,4-356
ScreenToClient function, (vol. 1) 2-20,4-356
Scroll bar

control-class styles, (vol. 2) 8-41, 8-43
described, (vol. 1) 1-25
horizontal, (vol. 2) 8-17
vertical, (vol. 2) 8-18

SCROLLBAR control class
control styles, (vol. 2) 8-43
described, (vol. 1) 4-65, (vol. 2) 8-36

SCROLLBAR resource statement, (vol. 2) 8-33
ScrollDC function, (vol. 1) 1-53,4-357
Scrolling

described, (vol. 1) 1-55
functions

controlling, (vol. 1) 1-54
described, (vol. 1) 1-53
processing, (vol. 1) 1-55
requests, (vol. 1) 1-55

hiding, (vol. 1) 1-56
using thumb, (vol. 1) 1-54

ScrollWindow function, (vol. 1) 1-53,4-358
Segment

alignment type, (vol. 2) 14-6
class name, (vol. 2) 14-6
combine type, (vol. 2) 14-6

Segment macros, Cmacro, (vol. 2) 13-6
Segment types, mixed, (vol. 2) E-5 to E-6
Segmented memory mode, (vol. 2) E-2
SEGMENTS module-definition statement, (vol. 2) 10-8
SEGMENTS statement, (vol. 2) 10-1
segNameOFFSET macro, Cmacro, (vol. 2) 14-14
SelectClipRgn function, (vol. 1) 2-22,4-359
SelectObject function, (vol. 1) 2-6, 4-360
SelectPalette function, (vol. 1) 2-10, 4-361
SELECTPAPERSOURCE printer escape. See
GETSETPAPERBINS printer escape
sEnd macro, Cmacro, (vol. 2) 14-5, 14-15
SendDlgltemMessage function, (vol. 1) 1-44,4-362
SendMessage function

described, (vol. 1) 1-2 to 1-3, 4-362
message deadlock caused by, (vol. 1) 1-6

SET _ARC_DIRECTION printer escape, (vol. 2) 12-45
SET_BACKGROUND_COLOR printer escape, (vol. 2)
12-46
SET_BOUNDS printer escape, (vol. 2) 12-47
SET_POLY _MODE printer escape, (vol. 2) 12-53 to
12-54
SET _SCREEN_ANGLE printer escape, (vol. 2) 12-55
SET_SPREAD printer escape, (vol. 2) 12-56

SETABORTPROC printer escape, (vol. 2) 12-43
SetActiveWindow function, (vol. 1) 1-30,4-363
SETALLJUSTVALUES printer escape, (vol. 2) 12-44
SetBitmapBits function, (vol. 1) 2-26, 4-363
SetBitmapDimension function, (vol. 1) 2-26,4-364
SetBkColor function, (vol. 1) 2-14, 4-364
SetBkMode function, (vol. 1) 2-14, 4-365
SetBrushOrg function, (vol. 1) 2-6, 4-365
SetCapture function, (vol. 1) 1-30,4-366
SetCaretBlinkTime function, (vol. 1) 1-60,4-366
SetCaretPos function, (vol. 1) 1-60,4-367
SetClassLong function, (vol. 1) 1-8, 1-16,4-367
SetClassWord function, (vol. 1) 1-8,4-368
SetClipboardData function, (voL 1) 1-59,4-369 to 4-371
SetClipboardViewer function, (vol. 1) 1-59,4-372
SETCOLORTABLE printer escape, (vol. 2) 12-48
SetCommBreak function, (vol. 1) 3-11,4-372
SetCommEventMask function, (vol. 1) 3-11,4-373
SetCommState function, (vol. 1) 3-11, 4-374
SETCOPYCOUNT printer escape, (vol. 2) 12-49
SetCursor function, (vol. 1) 1-62,4-374
SetCursorPos function, (vol. 1) 1-62,4-375
SetDIBits function, (vol. 1) 2-13, 2-26,4-168,4-375 to
4-376
SetDIBitsToDevice function, (vol. 1) 2-26, 4-168, 4-377
to 4-378
SetDIgItemInt function, (vol. 1) 1-44,4-378
SetDIgItemText function, (vol. 1) 1-44,4-379
SetDoubleClickTime function, (vol. 1) 1-30,4-379
SETDTR communication function code, (vol. 1) 4-128
SETENDCAP printer escape. See SETLINECAP printer
escape
SetEnvironment function, (vol. 1) 2-47, 4-380
SetErrorMode function, (vol. 1) 3-7, 4-380
SetFocus function, (vol. 1) 1-30,4-381
SetHandleCount function, (vol. 1) 3-14,4-382
SETKERNTRACK printer escape, (vol. 2) 12-50
SetKeyboardState function, (vol. 1) 1-31,4-382
SETLINECAP printer escape, (vol. 2) 12-51
SETLINEJOIN printer escape, (vol. 2) 12-52
SetMapMode function, (vol. 1) 2-15,4-383
SetMapperFlags function, (vol. 1) 2-28, 2-36, 4-384
SetMenu function, (vol. 1) 1-57,4-385
SetMenuItemBitmaps function, (vol. 1) 1-57,4-14,
4-184,4-385
SetMessageQueue function, (vol. 1) 1-2,4-386
SetMetaFileBits function, (vol. 1) 2-41, 4-387
SETMITERLIMIT printer escape, (vol. 2) 12-53
SetPaletteEntries function, (vol. 1) 2-10, 4-387
SetParent function, (vol. 1) 1-58,4-388
SetPixel function, (vol. 1) 2-26,4-388
SetPolyFillMode function, (vol. 1) 2-14, 4-333 to 4-334,
4-389

Index 27

SetProp function, (vol. 1) 1-65, 4-390
SetRect function, (vol. 1) 1-68, 4-390
SetRectEmpty function, (vol. 1) 1-67,4-391
SetRectRgn function, (vol. 1) 2-22, 4-391
SetResourceHandler function, (vol. 1) 3-8, 4-392 to 4-393
SetROP2 function, (vol. 1) 2-14, 4-394 to 4-395
SETRTS communication function code, (vol. 1) 4-128
SetScrollPos function, (vol. 1) 1-53, 4-396
SetScrollRange function, (vol. 1) 1-53,4-397
SetSoundNoise function, (vol. 1) 3-12, 4-398
SetStretchBltMode function, (vol. 1) 2-14, 4-398
SetSwapAreaSize function, (vol. 1) 3-4,4-399
SetSysColors function, (vol. 1) 1-58, 4-400
SetSysModalWindow function, (vol. 1) 1-30,4-401
SetSystemPaletteUse function, (vol. 1) 2-10, 4-214, 4-402
SetTextAlign function, (vol. 1) 2-27, 4-403 to 4-404
SetTextCharacterExtra function, (vol. 1) 4-405
SetTextColor function, (vol. 1) 2-14, 4-250, 4-405
SetTextJustification function, (vol. 1) 2-27, 4-406
SetTimer function, (vol. 1) 1-30,4-407
SetViewportExt function, (vol. 1) 2-15, 4-408
SetViewportOrg function, (vol. 1) 2-15, 4-409
SetVoiceAccent function, (vol. 1) 3-12,4-410
SetVoiceEnvelope function, (vol. 1) 3-12, 4-411
SetVoiceNote function, (vol. 1) 3-12, 4-412
SetVoiceQueueSize function, (vol. 1) 3-12,4-413
SetVoiceSound function, (vol. 1) 3-12, 4-413
SetVoiceThreshold function, (vol. 1) 3-12,4-414
SetWindowExt function, (vol. 1) 2-15, 4-414
SetWindowLong function, (vol. 1) 1-8, 1-16,4-415
SetWindowOrg function, (vol. 1) 2-15, 4-416
SetWindowPos function, (vol. 1) 1-29,4-417 to 4-418
SetWindowsHook function, (vol. 1) 1-64,4-419 to 4-426
SetWindowText function, (vol. 1) 1-25, 1-29,4-427
SetWindowWord function, (vol. 1) 1-8,4-428
SETXOFF communication function code, (vol. 1) 4-128
SETXON communication function code, (vol. 1) 4-128
SHIFT option, ACCELERATORS resource statement,
(vol. 2) 8-8
short data type, (vol. 2) 7-4
ShowCaret function, (vol. 1) 1-60,4-429
ShowCursor function, (vol. 1) 1-62, 4-429
ShowOwnedPopups function, (vol. 1) 1-29,4-430
ShowScrollBar function, (vol. 1) 1-53,4-430
ShowWindow function, (vol. 1) 1-29,4-282,4-431,4-459
SIMPLEREGION region type, (vol. 1) 4-32, 4-129 to
4-130,4-158,4-224,4-260,4-318 to 4-319, 4-359
Single-line resource statement, (vol. 2) 8-1 to 8-2
Size-box control, (vol. 2) 8-17, 8-36
SIZEFULLSCREEN window-sizing request, (vol. 1)
6-102
SIZEICONIC window-sizing request, (vol. 1) 6-102
SIZENORMAL window-sizing request, (vol. 1) 6-102

28 Reference

SizeofResource function, (vol. 1) 3-8,4-432
SIZEZOOMHIDE window-sizing request, (vol. 1) 6-102
SIZEZOOMSHOW window-sizing request, (vol. 1) 6-102
SM_CXBORDER system-metric value, (vol. 1) 4-212
SM_CXDLGFRAME system-metric value, (vol. 1) 4-212
SM_CXFRAME system-metric value, (vol. 1) 4-212
SM_CXFULLSCREEN system-metric value, (vol. 1)
4-213
SM_CXHSCROLL system-metric value, (vol. 1) 4-212
SM_CXHTHUMB system-metric value, (vol. 1) 4-212
SM_CXMINTRACK system-metric value, (vol. 1) 4-213
SM_CXSIZE system-metric value, (vol. 1) 4-213
SM_CXVSCROLL system-metric value, (vol. 1) 4-212
SM_CYBORDER system-metric value, (vol. 1) 4-212
SM_CYDLGFRAME system-metric value, (vol. 1) 4-212
SM_CYFRAME system-metric value, (vol. 1) 4-212
SM_CYFULLSCREEN system-metric value, (vol. 1)
4-213
SM_CYHSCROLL system-metric value, (vol. 1) 4-212
SM_CYSIZE system-metric value, (vol. 1) 4-213
SM_CYVSCROLL system-metric value, (vol. 1) 4-212
SM_CYVTHUMB system-metric value, (vol. 1) 4-212
SM_DEBUG system-metric value, (vol. 1) 4-213
SM_MOUSEPRESENTsystem-metric value, (vol. 1)
4-213
SM_SWAPBUTTON system-metric value, (vol. 1) 4-213
Small capital letters, as document convention, (vol. 1)
xxv, (vol. 2) x
SP _APPABORT escape error code, (vol. 2) 12-38 to
12-39
SP _ERROR escape error code, (vol. 1) 4-127, (vol. 2)
12-38 to 12-39
SP _OUTOFDISK escape error code, (vol. 1) 4-127, (vol.
2) 12-39 to 12-40
SP _OUTOFMEMORY escape error code, (vol. 1) 4-127,
(vol. 2) 12-39 to 12-40
SP _USERABORT escape error code, (vol. 1) 4-127,
(vol. 2) 12-39 to 12-40
SPACEPARITY parity type, (vol. 2) 7-24
Special-definition macros, Cmacro, (vol. 2) 13-8
SRCAND raster operation, (vol. 1) 4-19
SRCCOPY raster operation, (vol. 1) 4-19
SRCERASE raster operation, (vol. 1) 4-19
SRCINVERT raster operation, (vol. 1) 4-19
SRCPAINT raster operation, (vol. 1) 4-19
SS_BLACKFRAME control style, (vol. 1) 4-74, (vol. 2)
8-46
SS_BLACKRECT control style, (vol. 1) 4-74, (vol. 2)
8-46
SS_CENTER control style, (vol. 1) 4-74, (vol. 2) 8-45
SS_GRA YFRAME control style, (vol. 1) 4-74, (vol. 2)
8-47
SS_GRA YRECT control style, (vol. 1) 4-74, (vol. 2) 8-46

SS_ICON control style, (vol. 1) 4-74, (vol. 2) 8-33, 8-46
SS_LEFT control style, (vol. 1) 4-75, (vol. 2) 8-45
SS_LEFTNOWORDWRAP control style, (vol. 1) 4-75,
(vol. 2) 8-45
SS_NOPREFIX control style, (vol. 1) 4-75, (vol. 2) 8-46
SS_RIGHT control style, (vol. 1) 4-75, (vol. 2) 8-45
SS_SIMPLE control style, (vol. 1) 4-75, (vol. 2) 8-45
SS_USERITEM control style, (vol. 1) 4-75, (vol. 2) 8-47
SS_ WHITEFRAME control style, (vol. 1) 4-75, (vol. 2)
8-47
SS_ WHITERECT control style, (vol. 1) 4-75, (vol. 2)
8-46
Stack

local, (vol. 2) 10-9
mixed segment types, (vol. 2) E-5 to E-6

Stack-checking option, Cmacro, (vol. 2) 13-6
STACK combine type, Cmacro, (vol. 2) 14-6
STACKSIZE module-definition statement, (vol. 2) 10-1,
10-9
Standard C calling convention, (vol. 2) 13-3
STARTDOC printer escape, (vol. 2) 12-57
StartSound function, (vol. 1) 3-12,4-433
Statement

See also specific statement
module-definition file

EXETYPE, (vol. 2) 10-4
LIBRARY, (vol. 2) 10-7
NAME, (vol. 2) 10-7

STATIC control class, (vol. 1) 4-65, (vol. 2) 8-36
Static-memory storage

macros, (vol. 2) 13-7
private, (vol. 2) 14-15
public, (vol. 2) 14-10

staticX macro, Cmacro, (vol. 2) 14-15
StopSound function, (vol. 1) 3-12, 4-433
Storage

static-memory, private, (vol. 2) 14-15
static-memory, public, (vol. 2) 14-10

Storage-allocation macros, Cmacro, (vol. 2) 13-7
Storage size, (vol. 2) 14-9 to 14-13, 14-15
StretchBlt function

and color palettes, (vol. 1) 2-13
described, (vol. 1) 2-26, 4-433 to 4-434

StretchDIBits function, (vol. 1) 2-27, 4-435 to 4-436
Stretching mode, default, (vol. 1) 1-33
String messages, (vol. 1) 6-1
String resource

See also RCDAT A resource statement; STRINGT ABLE
resource statement

described, (vol. 2) 8-5
Strings

comparing, (vol. 1) 4-298 to 4-299
concatenating, (vol. 1) 4-297

copying, (vol. 1) 4-299
determining length of, (vol. 1) 4-300
formatting, (vol. 1) 4-465, 4-467

STRINGTABLE resource statement, (vol. 2) 8-5 to 8-6
STUB module-definition statement, (vol. 2) 10-1, 10-10
Style, control

BUTTON class, (vol. 2) 8-24 to 8-25, 8-27, 8-29 to 8-30
COMBOBOX class, (vol. 2) 8-32
default

CHECKBOX statement, (vol. 2) 8-24
COMBOBOX statement, (vol. 2) 8-32
CTEXT statement, (vol. 2) 8-23
DEFPUSHBUTTON statement, (vol. 2) 8-29
EDITTEXT statement, (vol. 2) 8-31
GROUPBOX statement, (vol. 2) 8-28
ICON statement, (vol. 2) 8-33
LISTBOX statement, (vol. 2) 8-26
LTEXT statement, (vol. 2) 8-21
PUSHBUTTON statement, (vol. 2) 8-25
RADIOBUTTON statement, (vol. 2) 8-30
RTEXT statement, (vol. 2) 8-22

DS_ABSALIGN, (vol. 2) 8-14 to 8-15
EDIT class, (vol. 2) 8-31
LISTBOX class, (vol. 2) 8-26
STATIC class, (vol. 2) 8-33

STYLE resource statement
DIALOG resource statement, (vol. 2) 8-14 to 8-15
listing window style, (vol. 2) 8-15
when #include directive required with, (vol. 2) 8-15

Style, window
listing, (vol. 2) 8-15
WS_BORDER, (vol. 2) 8-16, 8-26
WS_CAPTION, (vol. 2) 8-16
WS_CHILD, (vol. 2) 8-14, 8-16
WS_CHILDWINDOW, (vol. 2) 8-16
WS_CLIPCHILDREN, (vol. 2) 8-16
WS_CLIPSIBLINGS, (vol. 2) 8-16
WS_DISABLED, (vol. 2) 8-16, 8-25, 8-27, 8-29 to 8-31
WS_DLGFRAME, (vol. 2) 8-16
WS_GROUP, (vol. 2) 8-17, 8-21 to 8-25,8-29 to 8-31
WS_HSCROLL, (vol. 2) 8-17, 8-31
WS_ICONIC, (vol. 2) 8-17
WS_MAXIMIZE, (vol. 2) 8-17
WS_MAXIMIZEBOX, (vol. 2) 8-17
WS_MINIMIZE, (vol. 2) 8-17
WS_MINIMIZEBOX, (vol. 2) 8-17
WS_OVERLAPPED, (vol. 2) 8-17
WS_OVERLAPPEDWINDOW, (vol. 2) 8-17
WS_POPUP, (vol. 2) 8-17
WS_POPUPWINDOW, (vol. 2) 8-17
WS_SIZEBOX, (vol. 2) 8-17
WS_SYSMENU, (vol. 2) 8-17
WS_ TABSTOP, (vol. 2) 8-17, 8-21 to 8-25, 8-27,8-29 to

8-31
WS_THICKFRAME, (vol. 2) 8-18
WS_ VISIBLE, (vol. 2) 8-18
WS_VSCROLL, (vol. 2) 8-18, 8-26, 8-31

Styles
dialog box controls, (vol. 1) 1-48
formatted text, (vol. 1) 1-41

Index 29

Subclassing windows, (vol. 1) 1-16,4-368,4-416
SW _HIDE window state, (vol. 1) 4-432
SW _MINIMIZE window state, (vol. 1) 4-432
SW _PARENTCLOSING window state, (vol. 1) 6-101
SW_PARENTOPENING window state, (vol. 1) 6-101
SW _RESTORE window state, (vol. 1) 4-432
SW _SHOW window state, (vol. 1) 4-432
SW _SHOWMAXIMIZED window state, (vol. 1) 4-432
SW _SHOWMINIMIZED window state, (vol. 1) 4-432
SW _SHOWMINNOACTIVE window state, (vol. 1)
4-432
SW _SHOWNA window state, (vol. 1) 4-432
SW _SHOWNOACTIVATE windQw state, (vol. 1) 4-432
SW _SHOWNORMAL window state, (vol. 1) 4-432
SwapMouseButton function, (vol. 1) 1-30,4-437
SwapRecording function, (vol. 1) 3-15, 4-438
SwitchStackBack function, (vol. 1) 3-5, 4-438
SwitchStackTo function, (vol. 1) 3-5, 4-438
SWP _DRA WFRAME window-position flag, (vol. 1)
4-80,4-418
SWP _HIDEWINDOW window-position flag, (vol. 1)
4-80,4-418
SWP _NOACTIV ATE window-position flag, (vol. 1)
4-80,4-418
SWP _NOMOVE window-position flag, (vol. 1) 4-80,
4-418
SWP _NOREDRA W window-position flag, (vol. 1) 4-80,
4-418
SWP _NOSIZE window-position flag, (vol. 1) 4-80, 4-418
SWP _NOZORDER window-position flag, (vol. 1) 4-80,
4-418
SWP _SHOWWINDOW window-position flag, (vol. 1)
4-80,4-418
Symbol redefinition, Cmacro, (vol. 2) 13-10
SyncAllVoices function, (vol. 1) 3-12,4-439
System accelerator (MOl), (vol. 1) 4-445
SYSTEM_FIXED_FONT stock object, (vol. 1) 4-208
SYSTEM_FONT stock object, (vol. 1) 4-207
System functions, (vol. 1) 1-58
System-menu box, (vol. 1) 1-25, (vol. 2) 8-17
System palette, retrieving entries, (vol. 1) 4-213
System services interface, defined, (vol. 1) xix

30 Reference

T
TA_BASELINE text-alignment flag, (vol. 1) 4-218,4-404
TA_BOTTOM text-alignment flag, (vol. 1) 4-218, 4-404
TA_CENTER text-alignment flag, (vol. 1) 4-218, 4-404
TA_LEFT text-alignment flag, (vol. 1) 4-218, 4-404
TA_NOUPDATECP text-alignment flag, (vol. 1) 4-218,
4-404
TA_RIGHT text-alignment flag, (vol. 1) 4-218, 4-404
TA_TOP text-alignment flag, (vol. 1) 4-218, 4-404
TA_UPDATECP text-alignment flag, (vol. 1) 4-218,
4-404
Tab stop, (vol. 2) 8-36
TabbedTextOut function, (vol. 1) 2-28,4-440
Table, handle, (vol. 2) 7-38
Task

handle, obtaining, (vol. 1) 4-164
yielding control, (vol. 1) 1-3, 4-469

Task windows
enumerating, (vol. 1) 4-123
posting messages to, (vol. 1) 4-335

TECHNOLOGY device capability, (vol. 1) 4-167
Template, DIALOG, (vol. 2) 8-13
Text

color, default, (vol. 1) 1-33
drawing, (vol. 1) 1-42
graying, (vol. 1) 1-41

Text control
left-justified, (vol. 2) 8-20
right-justified, (vol. 2) 8-21

Text functions, (vol. 1) 2-27
TEXTCAPS device capability, (vol. 1) 4-169
TEXTMETRIC data structure, (vol. 2) 7-59 to 7-61
TextOut function, (vol. 1) 2-28, 4-441
Throw function, (vol. 1) 3-7, 4-441
Timer, killing, (vol. 1) 4-270
Title bar, (vol. 1) 1-25, (vol. 2) 8-16 to 8-17
ToAscii function, (vol. 1) 3-9, 4-442
TrackPopupMenu function, (vol. 1) 1-26, 1-57,4-59,
4-443
TRANSFORM_CTM printer escape, (vol. 2) 12-58
TranslateAccelerator function, (vol. 1) 1-2, 1-4,4-444,
(vol. 2) 8-7
TranslateMDISysAccel function, (vol. 1) 1-2,4-445
TranslateMessage function, (vol. 1) 1-2, 1-4,4-446
TransmitCommChar function, (vol. 1) 3-11,4-446 to
4-447
TRANSPARENT background mode, (vol. 1) 4-365
TWOSTOPBITS stop-bits type, (vol. 2) 7-24
Types, data, (vol. 2) 7-1 to 7-5

u
#undef directive, resource compiler, (vol. 2) 8-48
UngetCommChar function, (vol. 1) 3-11,4-448
UnhookWindowsHook function, (vol. 1) 1-64,4-448
UnionRect function, (vol. 1) 1-67, 1-69,4-449
UnlockData function, (vol. I) 3-5,4-449
UnlockResource function, (vol. I) 3-8, 4-450
UnLockSegment function, (vol. 1) 3-5 to 3-6, 4-450
UnrealizeObject function, (vol. I) 2-6, 4-451
UnregisterClass function, (vol. 1) 1-8,4-452
UpdateColors function, (vol. 1) 2-10,4-452
UpdateWindow function, (vol. 1) 1-32,4-453
Updating region, client area, (vol. 1) 1-38
User-defined control window, (vol. 2) 8-34
User-defined resource, (vol. 2) 8-3
User-defined resource statement, (vol. 2) 8-3 to 8-4
User-defined variable, (vol. 2) 13-8, 14-7

v
Validate Code Segments function, (vol. 1) 3-14,4-454
ValidateFreeSpaces function, (vol. 1) 3-14, 4-454
ValidateRect function, (vol. 1) 1-32,4-455
ValidateRgn function, (vol. 1) 1-32,4-455
Variable

environmental, INCLUDE, (vol. 2) 8-47
external, (vol. 2) 14-11
frame, (vol. 2) 14-12
global, (vol. 2) 14-11
local, (vol. 2) 13-8
names defined, (vol. 2) 14-7
public, (vol. 2) 14-11
size, (vol. 2) 14-12
user-defined, (vol. 2) 13-8, 14-7

Variable-pitch font attribute, (vol. 1) 2-35
Vertical bar (I), as document convention, (vol. 1) xxv
VERTRES device capability, (vol. 1) 4-167
VERTSIZE device capability, (vol. 1) 4-167
Viewport

extents, default, (vol. 1) 1-33
origin, default, (vol. 1) 1-33

Virtual-key character, (vol. 2) 8-7
Virtual-key codes, (vol. 2) A-I to A-5
Virtual keys, (vol. 1) 1-4
VkKeyScan function, (vol. 1) 1-31,4-456
void data type, (vol. 2) 7-5

Hf ________________________ _
WaitMessage function, (vol. 1) 1-2,4-457
WaitSoundState function, (vol. 1) 3-12,4-457
WH_CALLWNDPROC windows-hook type, (vol. 1)
4-419, 4-448

WH_GETMESSAGE windows-hook type, (vol. 1)
4-419,4-448
WH_JOURNALPLA YBACK windows-hook type, (vol.
1) 4-419, 4-448
WH_JOURNALRECORD windows-hook type, (vol. 1)
4-419, 4-448
WH_KEYBOARD windows-hook type, (vol. 1) 1-64,
4-419,4-448
WH_MSGFILTER windows-hook type, (vol. 1) 1-64,
4-419,4-449
WH_SYSMSGFILTER windows-hook type, (vol. 1)
4-419
WHITE_BRUSH stock object, (vol. 1) 4-207
WHITE_PEN stock object, (vol. 1) 4-207
WHITENESS raster-operation code, (vol. 1) 4-19
WHITEONBLACK stretching mode, (vol. 1) 4-399
?WIN option, Cmacro, (vol. 2) 13-4
WINDING filling mode, (vol. 1) 4-58, 4-389
WINDING polygon-filling mode, (vol. 1) 4-58, 4-197,
4-389
Window

background, (vol. 1) 1-38
background brush, (vol. 1) 1-11
border, (vol. 2) 8-16
brush alignment, (vol. 1) 1-39
child, (vol. 2) 8-16

close box, (vol. 1) 1-25
described, (vol.'l) 1-23
ID, (vol. 1) 1-23
input, (vol. 1) 1-23
messages, (vol. 1) 1-23
overlapping, (vol. 1) 1-24
owner window, (vol. 1) 1-23
showing, (vol. 1) 1-23

class
attributes, (vol. 1) 1-10
background brush, (vol. 1) 1-11, 1-13
cursor, icon, attributes, (vol. 1) 1-10
described, (vol. 1) 1-8
functions, (vol. 1) 1-10
instance handle, (vol. 1) 1-10
menu, (vol. 1) 1-11, 1-14
name, (vol. 1) 1-10
unregistering, (vol. 1) 4-452

control, user-defined, (vol. 2) 8-34
creating, (vol. 1) 4-76, (vol. 2) 7-21, 8-15
dialog box, (vol. 1) 1-43
disabled, (vol. 2) 8-14, 8-16
extents, default, (vol. 1) 1-34
function. See Window function
icon, (vol. 1) 1-22
iconic, (vol. 2) 8-17
main, creating, (vol. 1) 1-27

MOl, (vol. 1) 1-25
open, (vol. 1) 1-22
origin, default, (vol. 1) 1-34
overlapped, (vol. 1) 1-22
overlapping, (vol. 1) 1-22, (vol. 2) 8-17
owner, describing, (vol. 1) 1-23
painting rectangles, (vol. 1) 1-39
pop-up

creating and showing, (vol. 1) 1-23
style, (vol. 2) 8-17

scroll bars, (vol. 1) 1-25
size, (vol. 2) 8-17
state, (vol. 1) 1-27
style, dialog box, (vol. 2) 8-15
styles

child, (vol. 1) 1-22 to 1-23
described, (vol. 1) 1-21
listing, (vol. 2) 8-15
owned, (vol. 1) 1-22
pop-up, (vol. 1) 1-23
state, (vol. 1) 1-27
WS_CHILD, (vol. 2) 8-14

subclassing, (vol. 1) 1-16,4-368,4-416
System menu box, (vol. 1)1-25
title bar, (vol. 1) 1-25
visible, (vol. 2) 8-18
window-function address, (vol. 1) 1-12
zoom, (vol. 2) 8-17

Window applications
application queue, (vol. 1) 1-3
dispatching messages, (vol. 1) 1-3
pulling messages, (vol. 1) 1-3
pushing messages, (vol. 1) 1-3
reading messages, (vol. 1) 1-3
yielding control, (vol. 1) 1-3

Window bar menu, (vol. 1) 1-25
Window function

address, (vol. 1) 1-12
receiving messages, (vol. I) 1-3
role, (vol. 1) 1-6

Index 31

Window manager interface, defined, (vol. 1) xvi
WindowFromPoint function, (vol. 1) 1-58,2-20,4-458
Windows

classes, locating, (vol. 1) 1-9
displaying functions, (vol. 1) 1-28
enumerating for a task, (vol. 1) 4-123
epilog, (vol. 2) 13-4
library, (vol. 2) 13-5
painting

drawing, (vol. 1) 1-39
filling, (vol. 1) 1-39
inverting, (vol. 1) 1-39

posting messages to a task, (vol. 1) 4-335

32 Reference

prolog, (vol. 2) 13-4
subclassing, (vol. 1) 1-16

Windows debugging messages, (vol. 2) C-l to C-ll
Windows prolog/epilog, Cmacro, (vol. 2) 13-4
WINDOWS.H initialization file, (vol. 2) 8-15
WinExec function, (vol. 1) 3-15,4-458 to 4-459
WinHelp function, (vol. 1) 3-15, 4-460 to 4-461
WinMain function

in assembly-language application, (vol. 2) 13-5
main loop, (vol. 1) 1-4

WINMEM32.DLL library, (vol. 2) E-l, E-3, E-9
WM_ACTIVATE message, (vol. 1) 5-2, 6-47
WM_ACTIV A TEAPP message, (vol. 1) 5-2, 6-47
WM_ASKCBFORMATNAME message, (vol. 1) 5-7,
6-48
WM_CANCELMODE message, (vol. 1) 5-2, 6-48
WM_CHANGECBCHAIN message, (vol. 1) 5-7, 6-49
WM_CHAR message, (vol. 1) 5-5, 6-49
WM_CHARTOITEM message, (vol. 1) 5-5, 6-50
WM_CHILDACTIVATE message, (vol. 1) 5-2, 6-51
WM_CLEAR message, (vol. 1) 5-11, 6-51
WM_CLOSE message, (vol. 1) 1-28,5-2,6-51
WM_COMMAND message, (vol. 1) 5-5, 6-52, (vol. 2) .
7-17,8-7
WM_COMMAND notification codes. See Notification
codes
WM_COMPACTING message, (vol. 1) 5-8, 6-52
WM_COMPAREITEM message, (vol. 1) 5-15, 6-53,
(vol. 2) 7-19
WM_COPY, (vol. 1) 5-11, 6-54
WM_CREATE message, (vol. 1) 4-76, 5-2, 6-54
WM_CTLCOLOR message, (vol. 1) 5-2, 6-54
WM_CUT message, (vol. 1) 5-11, 6-55
WM_DDE_ACK message, (vol. 2) 15-6 to 15-7
WM_DDE_ADVISE message, (vol. 2) 15-8 to 15-9
WM_DDE_DATA message, (vol. 2) 15-10 to 15-11
WM_DDE_EXECUTE message, (vol. 2) 15-12
WM_DDE_INITIATE message, (vol. 2) 15-13
WM_DDE_POKE message, (vol. 2) 15-14 to 15-15
WM_DDE_REQUEST message, (vol. 2) 15-16
WM_DDE_TERMINATEmessage, (vol. 2) 15-17
WM_DDE_UNADVISE message, (vol. 2) 15-17 to 15-18
WM_DEADCHAR message, (vol. 1) 5-5, 6-55 to 6-56
WM_DELETEITEM message, (vol. 1) 5-15, 6-8, 6-13,
6-34,6-40,6-57, (vol. 2) 7-26
WM_DESTROY message, (vol. 1) 1-28,5-2,6-57
WM_DESTROYCLIPBOARD message, (vol. 1) 5-7,
6-57
WM_DEVMODECHANGE message, (vol. 1) 5-8, 6-58
WM_DRAWCLIPBOARD message, (vol. 1) 5-7, 6-58
WM_DRAWITEMmessage, (vol. 1) 5-15, 6-58, (vol. 2)
7-36
WM_ENABLE message, (vol. 1) 5-2, 6-59

WM_ENDSESSION message, (vol. 1) 5-2, 6-59
WM_ENTERIDLE message, (vol. 1) 5-2, 6-60, (vol. 2)
7-33
WM_ERASEBKGND message, (vol. 1) 5-2, 6-60
WM_FONTCHANGE message, (vol. 1) 5-8, 6-61
WM_GETDLGCODE message, (vol. 1) 5-2, 6-61
WM_GETFONT message, (vol. 1) 5-9, 6-62
WM_GETMINMAXINFO message, (vol. 1) 5-3, 6-63
WM_GETTEXT message, (vol. 1) 5-3, 6-64
WM_GETTEXTLENGTH message, (vol. 1) 5-3, 6-64
WM_HSCROLL message, (vol. 1) 1-25,5-5,5-17,6-65
WM_HSCROLLCLIPBOARD message, (vol. 1) 5-7,
6-66
WM_ICONERASEBKGND message, (vol. 1) 5-3, 6-66
WM_INITDIALOG message, (vol. 1) 4-43 to 4-44, 4-98
to 4-99,5-4,6-67,6-80
WM_INITMENU message, (vol. 1) 5-4, 6-67
WM_INITMENUPOPUP message, (vol. 1) 5-4, 6-68
WM_KEYDOWN message, (vol. 1) 5-5, 6-68 to 6-69
WM_KEYUP message, (vol. 1) 5-5, 6-70
WM_KILLFOCUS message, (vol. 1) 5-3, 6-71
WM_LBUTTONDBLCLK message, (vol. 1) 5-5, 6-71
WM_LBUTTONDOWN message, (vol. 1) 5-5, 6-72
WM_LBUTTONUP message, (vol. 1) 5-5, 6-72
WM_MBUTTONDBLCLK message, (vol. 1) 5-5, 6-73
WM_MBUTTONDOWN message, (vol. 1) 5-5, 6-74
WM_MBUTTONUP message, (vol. 1) 5-5, 6-74
WM_MDIACTIVATE message, (vol. 1) 5-19, 6-75
WM_MDICASCADE message, (vol. 1) 5-19, 6-75
WM_MDICREATE message, (vol. 1) 5-19, 6-75
WM_MDIDESTROY message, (vol. 1) 5-19, 6-76
WM_MDIGETACTIVE message, (vol. 1) 5-19, 6-77
WM_MDIICONARRANGE message, (vol. 1) 5-20,6-77
WM_MDIMAXIMIZE message, (vol. 1) 5-20, 6-77 to
6-78
WM_MDINEXT message, (vol. 1) 5-20, 6-78
WM_MDIRESTORE message, (vol. 1) 5-20, 6-78
WM_MDISETMENU message, (vol. 1) 5-20, 6-79
WM_MDITILE message, (vol. 1) 5-20, 6-79
WM_MEASUREITEM message, (vol. 1) 5-15, 6-79,
(vol. 2) 7-48
WM_MENUCHAR message, (vol. 1) 5-3, 6-80
WM_MENUSELECT message, (vol. 1) 5-3, 6-81
WM_MOUSEACTIVATE message, (vol. 1) 5-5, 6-82
WM_MOUSEMOVE message, (vol. 1) 5-5, 6-82
WM_MOVE message, (vol. 1) 5-3, 6-83
WM_NCACTIVATE message, (vol. 1) 5-18, 6-75, 6-83
WM_NCCALCSIZE message, (vol. 1) 5-18, 6-83
WM_NCCREATE message, (vol. 1) 5-18, 6-84
WM_NCDESTROY message, (vol. 1) 5-18, 6-84
WM_NCHITTEST message, (vol. 1) 5-18, 6-85
WM_NCLBUTTONDBLCLK message, (vol. 1) 5-18,
6-86

WM_NCLBUTTONDOWN message, (vol. 1) 5-18,6-86
WM_NCLBUTTONUP message, (vol. 1) 5-18, 6-87
WM_NCMBUTTONDBLCLK message, (vol. 1) 5-18,
6-87
WM_NCMBUTTONDOWN message, (vol. 1) 5-18, 6-88
WM_NCMBUTTONUP message, (vol. 1) 5-18, 6-88
WM_NCMOUSEMOVE message, (vol. 1) 5-19, 6-88
WM_NCPAINT message, (vol. 1) 5-19, 6-89
WM_NCRBUTTONDBLCLK message, (vol. 1) 5-19,
6-89
WM_NCRBUTTONDOWN message, (vol. 1) 5-19, 6-90
WM_NCRBUTTONUP message, (vol. 1) 5-19, 6-90
WM_NEXTDLGCTL message, (vol. 1) 5-9, 6-90
WM_PAINT message, (vol. 1) 1-37,5-3,6-91
WM_PAINTCLIPBOARD message, (vol. 1) 5-7, 6-91
WM_PAINTICON message, (vol. 1) 5-3, 6-92
WM_PALETTECHANGED message, (vol. 1) 5-8,6-92
WM_PARENTNOTIFY message', (vol. 1) 5-3, 6-93
WM_PASTE message, (vol. 1) 5-11, 6-94
WM_QUERYDRAGICON message, (vol. 1) 5-3, 6-94
WM_QUERYENDSESSION message, (vol. 1) 5-3, 6-94
WM_QUERYNEWPALETTE message, (vol. 1) 5-3, 6-95
WM_QUERYOPEN message, (vol. 1) 5-4, 6-95
WM_QUIT message, (vol. 1) 1-28,5-4,6-96
WM_RBUTTONDBLCLK message, (vol. 1) 5-6, 6-96
WM_RBUTTONDOWN message, (vol. 1) 5-6, 6-97
WM_RBUTTONUP message, (vol. 1) 5-6, 6-97
WM_RENDERALLFORMATS message, (vol. 1) 5-7,
6-98
WM_RENDERFORMAT message, (vol. 1) 5-7, 6-98
WM_SETCURSOR message, (vol. 1) 5-6, 6-98
WM_SETFOCUS message, (vol. 1) 5-4, 6-99
WM_SETFONT message, (vol. 1) 5-4, 5-9, 6-99, (vol. 2)
7-32
WM_SETREDRAW message, (vol. 1) 5-4, 6-100
WM_SETTEXT message, (vol. 1) 5-4, 6-100
WM_SHOWWINDOW message, (vol. 1) 5-4, 6-101
WM_SIZE message, (vol. 1) 5-4, 6-102
WM_SIZECLIPBOARD message, (vol. 1) 5-7, 6-102
WM_SPOOLERSTATUS message, (vol. 1) 5-8, 6-103
WM_SYSCHAR message, (vol. 1) 5-6, 6-103 to 6-104
WM_SYSCOLORCHANGE message, (vol. 1) 5-8, 6-105
WM_SYSCOMMAND message, (vol. 1) 5-6, 6-105 to
6-106, (vol. 2) 8-7
WM_SYSDEADCHAR message, (vol. 1) 5-6, 6-107
WM_SYSKEYDOWN message, (vol. 1) 5-6, 6-107
WM_SYSKEYUP message, (vol. 1) 5-7, 6-108 to 6-109
WM_SYSMENU window style, (vol. 2) 7-32
WM_TIMECHANGE message, (vol. 1) 5-8,6-110
WM_TIMER message, (vol. 1) 5-6, 6-110
WM_UNDO message, (vol. 1) 5-11, 6-111
WM_USER message, (vol. 1) 6-1

Index 33

WM_ VKEYTOITEM message, (vol. 1) 5-6, 6-111
WM_ VSCROLL message, (vol. 1) 1-25,5-6,5-17,6-112
WM_ VSCROLLCLIPBOARD message, (vol. 1) 5-7,
6-113
WM_ WININICHANGE message, (vol. 1) 5-8, 6-114
WNDCLASS data structure, (vol. 1) 4-153, (vol. 2) 7-62
to 7-67 .
WORD alignment type, (vol. 2) 14-5
WORD data type, (vol. 2) 7-5
Wordwrap, (vol. 2) 8-40
WriteComm function, (vol. 1) 3-11,4-462
WritePrivateProfileString function, (vol. 1) 3-10,4-462
to 4-463
WriteProfileString function, (vol. 1) 3-10,4-464
WS_BORDER window style, (vol. 1) 4-66, (vol. 2) 8-16,
8-26,8-32
WS_CAPTION window style, (vol. 1) 1-25, 1-45,4-66,
6-76, (vol. 2) 7-32,8-16
WS_CHILD window style, (vol. 1) 1-23,4-66,6-76,
(vol. 2) 8-14, 8-16
WS_CHILDWINDOW window style, (vol. 1) 4-66, (vol.
2) 8-16
WS_CLIPCHILDREN window style, (vol. 1) 4-66, 6-76,
(vol. 2) 8-16
WS_CLIPSIBLINGS window style, (vol. 1) 4-66, 6-76,
(vol. 2) 8-16
WS_DISABLED window style, (vol. 1) 4-67, (vol. 2)
8-16,8-25,8-27,8-29 to 8-31
WS_DLGFRAME window style, (vol. 1) 4-67, (vol. 2)
8-16
WS_EX_DLGMODALFRAME extended window style,
(vol. 1) 4-77
WS_EX_NOPARENTNOTIFY extended window style,
(vol. 1)4-77
WS_GROUP window style, (vol. 1) 4-67, (vol. 2) 8-17,
8-21 to 8-25, 8-29 to 8-31
WS_HSCROLL window style, (vol. 1) 4-67, (vol. 2)
7-48,8-17,8-31
WS_ICONIC window style, (vol. 1) 4-67, (vol. 2) 8-17
WS_MAXIMIZE window style, (vol. 1) 4-67, (vol. 2)
7-48, 8-17
WS.:..MAXIMIZEBOX window style, (vol. 1) 4-67,6-76,
(vol. 2) 8-17
WS_MINIMIZE window style, (vol. 1) 4-67, (vol. 2)
7-48,8-17
WS_MINIMIZEBOX window style, (vol. 1) 4-67, (vol.
2) 8-17
WS_OVERLAPPED window style, (vol. 1) 1-22,4-67,
(vol. 2) 8-17
WS_OVERLAPPEDWINDOW window style, (vol. 1)
1-22,4-67, (vol. 2) 8-17
WS_POPUP window style, (vol. 1) 1-23,4-67, (vol. 2)
8-17

34 Reference I~

WS_POPUPWINDOW window style, (vol. 1) 4-67, (vol.
2) 8-17
WS_SIZEBOX window style, (vol. 2) 8-17
WS_SYSMENU window style, (vol. 1) 1-25, 1-45,4-66
to 4-67, 6-76, (vol. 2) 8-16 to 8-17
WS_TABSTOP window style, (vol. 1) 4-67, (vol. 2)
8-17,8-21 to 8-25, 8-27, 8-29 to 8-31 .
WS_THICKFRAME window style, (vol. 1) 4-68,6-76,
(vol. 2) 8-18'
WS_ VISIBLE window style, (vol. 1) 4-68, (vol. 2) 8-18
WS_ VSCROLL window style, (vol. 1) 4-68, (vol. 2)
7-48,8-18,8-26,8-31 to 8-32
wsprintf function, (vol. 1) 3-9,4-465 to 4-466
wvsprintffunction, (vol. 1) 3-9, 4-467 to 4-468

y
Yield function, (vol. 1) 3-7,4-469 to 4-470

Lookfor all three
books in the
Microsoft Windows™ Programmer's
Reference Library.

H ere, for every Windows programmer, is an up-to-date, comprehensive
reference to each component in the Windows application programming

interface (API). Included is detailed information on each Windows environment
version 3 function, message, data type, resource-compiler statement, assembly­
language macro, and file format.

This information is the foundation for any program that takes advantage of special
Windows capabilities: data interchange with other applications; device-independent
graphics; multitasking; dynamic linking; and shared display, memory, keyboard,
mouse, and system timer resources.

Look for these other books in the Microsoft Windows Programmer's Reference Library:

Microsoft Windows Guide to Programming. An example-packed introduction to writing
applications using version 3 of the Microsoft Windows application programming interface
(API). Step-by-step instructions accompanied by dozens of code excerpts.

Microsoft Windows Programming Tools. Detailed instructions on using the specialized
Windows software development tools: the C Compiler, the linker, the Resource Compiler,
the resource editors, and the debugging and optimization tools . A special section addresses
the Windows Help system and its programming guidelines.

Please Note: The three books in the Microsoft Windows Programmer's Reference Library are
included in the Microsoft Windows Software Development Kit (SDK).

V
ISBN 1-55615-309-0]

U.S.A.
U.K.
Canada

$39.95
£36.95
$44.95

[Recommended] The Authorized
Editions

9~1~~~ i
Illil'" f

